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Titre : La relation génotype-phénotype vue a différentes échelles

Résumé : Avec la révolution moléculaire en biologie, une compréhension des mécanismes de la relation
génotype-phénotype est devenue possible. Récemment, les progres réalisés dans la synthese et le
séquengage de I’ADN ont permis le développement d’expériences de deep-mutational scanning capable de
quantifier divers phénotypes pour un ensemble de génotypes sur toute la longueur d’un gene. Ces
ensembles de données sont non seulement intéressants en eux-mémes, mais permettent également de
tester de maniere rigoureuse des modeles phénotypiques quantitatifs. Nous avons utilisé cette
technologie pour caractériser les cartes séquence-fitness de 3 systemes bactériens modeles: un régulateur
global, la CRP, une enzyme de résistance aux antibiotiques, la B-lactamase, et une petite voie
métabolique constituée des enzymes AraA et AraB. Ces systeémes ont été choisis pour éclairer les rdles
de différentes caractéristiques dans la formation de la relation génotype-fitness (réseaux de régulations,
stabilité des protéines et flux métabolique). Nous constatons que la tendance globale des effets sur le
fitness semble prévaloir sur les tendances spécifiques. Ceci nous conduit a penser qu’une grande partie de
la relation entre le génotype et le fitness pourrait étre expliquée a partir de la forme des fonctions de
phénotype-fitness. Par ailleurs, nous voyons que la caractérisation de la relation génotype-fitness dans
différents systemes peut étre un moyen puissant d’obtenir des informations sur les phénotypes

pertinents.

Mots clefs : évolution, génétique, biologie des systemes, deep-mutational scanning, paysages adaptatifs,

épistasie, expression génique, métabolisme, toxicité, régulateurs globaux

Title: The genotype-phenotype relationship across different scales

Abstract: With the molecular revolution in Biology, a mechanistic understanding of the genotype-
phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have
enabled the development of deep-mutational scanning experiments, capable of scoring comprehensive
libraries of genotypes for a variety of phenotypes over the length of entire genes. Such datasets are not
only interesting in themselves, but also allow rigorous testing of quantitative phenotypic models. We
used this technology to characterise sequence-fitness maps for 3 model bacterial systems: a global
regulator, CRP, an antibiotic-resistance enzyme, B-lactamase, and a small metabolic pathway, consisting
of the enzymes AraA and AraB. These different systems were chosen to illuminate the roles of different
mechanistic features in shaping the genotype-fitness relationship (regulatory wiring, protein stability and
metabolic flux). We find that smooth patterns of fitness effects tend to prevail over idiosyncrasy,
indicating that much of the genotype-fitness relationship could be understood from the global shape of
smooth underlying phenotype-fitness functions. On the flip side, we see that characterising the

genotype-fitness relationship in different systems can be a powerful way to glean phenotypic insights.

Keywords: evolutionary genetics, systems biology, deep-mutational scanning, fitness landscapes,

epistasis, gene expression, metabolism, toxicity, global regulators
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1 Introduction
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1.1 Part I: Overview

1.1.1 Conceptual origins of the genotype/phenotype
distinction
The need to distinguish genotype from phenotype was first suggested (implicitly) by
Gregor Mendel (Mendel, 1866). Based on his observations of the disappearance and
reappearance of an apparently discrete trait in pea plants (white flowers) over two
successive generations, Mendel proposed the existence of discrete internal “factors”
(genotype) that are passed from one generation to the next. These factors interact
through some logic within an individual plant to manifest its visible features
(phenotype), but are not themselves altered by this process, being passed to the next
generation re-assorted but individually untouched. Hence the fundamental distinction
that the agent of heredity, genotype, causes phenotype, but phenotype does not affect
genotype (Figure 1.1). Indeed, the “epistemic cut” separating genotype from phenotype

may lie at the origin of biological evolution itself (Pattee, 2001).

A physical explanation for such a cut was first provided by Francis Galton (Galton,
1876), whose pool of hereditary elements (“stirp”) was divided into “patent” ones that
developed into different cell types (phenotype), and “latent” ones that were
transmitted to the next generation (genotype). More famously, August Weismann

(Weismann, 1892) proposed the distinction between the Keimplasma (germplasm) and
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Somatoplasma (somatoplasm) tissues in multicellular organisms. According to
Weismann, the source of gametes, the germplasm, was physically isolated from
environmental influence, while the somatoplasm forming the body of an organism
(phenotypes) developed throughout an individual’s lifetime and was sensitive to the
environment. It was left to Wilhelm Johannsen, however, to introduce the current
terminology of genotype and phenotype ((Johannsen, 1911); Figure 1.2), in the process
conceptualising the active field of developmental biology as the study of how genotypes

lead to phenotypes (Figure 1.1).

Heredity
Generation n n+1 n+?2
genotype > genotype > genotype
Development \l/ l \l/
phenotype phenotype phenotype

Figure 1.1: The concept of separation between genotype and phenotype.
The genotype is passed directly from one generation to the next, and develops into
the phenotype within each individual (boxes). The phenotype, however, cannot
itself be transmitted through generations, nor can it have any reciprocal effect on

the genotype.

10
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136 THE AMERICAN NATURALIST [VoL. XLV

EXPLANATION OF DIAGRAMS

DIAGRAMS SHOWING FIVE DIFFEREXT PURE LINES OF BEAXS AXD A * POPULA-
TION ¥ FORMED BY THEIE UNION. In ench case the beans enclosed in glass-
tuhes are marshalled in equidistant classes of lebgth; ldentieal classes are
superposed, The pure lines show transgressive fluctuation : it is mostly impos-
sible to state by simple inspeection of any individual bean the line to which. it
belongs,—The fluctuations about the average length (the phenotype) within the
pure lines as well az in the mixed population show no characteristic difference.

Figure 1.2: A remarkable (and the exclusive) figure from Johannsen’s
paper coining the term phenotype. “All “types” of organisms, distinguishable
by direct inspection or only by finer methods of measuring or description, may be

99

characterized as “phenotypes””. [Excerpt and figure from (Johannsen, 1911)].

11
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1.1.2 Zooming in: from the chromosome to the codon

The material basis of the genotype (carrier of Mendel’s factors, Galton’s latent stirp
and Johannsen’s genes) was unequivocally narrowed down to the chromosome by 1915
(Morgan et al., 1915), although some cytologists had been propounding the
chromosome theory of inheritance since 1902 (Boveri, 1902; Sutton, 1902; Wilson,
1902; Stevens, 1905; Wilson, 1905; Carothers, 1913; Crow and Crow, 2002). While this
crucial insight provided a mechanism for heredity (Ze. transmission of the genotype
through generations), it revealed nothing about the mechanism of the development of
phenotype from genotype. Understanding this would require an even finer
characterisation of the genetic material, starting with its chemical identity as DNA
(Avery et al., 1944; Hershey and Chase, 1952), and quickly followed by its molecular
structure as the double helix (Watson and Crick, 1953). Once again, the immediate
beneficiary of the base-pairing double helix discovery was heredity — the molecular
mechanism of template-based DNA replication for the transmission of genotype
through generations, as proposed by Koltsov in 1927 with remarkable prescience
(Soyfer, 2001), suggested itself directly from the structure (Watson and Crick, 1953),
and was powerfully demonstrated in bacteria 5 years later (Meselson and Stahl, 1958).
In the same year, Francis Crick finally made explicit a molecular basis for the
genotype-phenotype relationship, based on the emerging picture from studies on

protein synthesis and the genetic code (Crick, 1958). His “Central Dogma” (it turns

12
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out that his understanding of the definition of “dogma” was mistaken (Judson, 1979))
held that information, in the form of monomer sequence, could be transferred from
nucleic acid to protein (whose versatile functional roles in causing phenotypes were by
then well-recognised [see especially (Beadle and Tatum, 1941; Pauling et al., 1949)]),
but not from protein to protein or from protein to nucleic acid. Messenger RNA
(mRNA) was then confirmed as the informational intermediate leading from DNA to
protein (Brenner et al., 1961; Gros et al., 1961), and by the end of 1966 the complete
genetic code had been cracked (Nirenberg et al., 1966). The molecular revolution of

Biology was firmly established (Figure 1.3).

DNA RNA Protein

TACGCTACGATC lranscription Translation

L ————> AUGCGAUGCUAG ——> Met-Arg-Cys
ATGCGATGCTAG

Replication

Figure 1.3: The simplified “Central Dogma” of Molecular Biology by the
end of the 1960s. DNA, the genotype molecule, is replicated by a semi-
conservative mechanism enabled by specific base-pairing between sister strands.
The sequence of bases in the DNA “coding strand” is copied to messenger RNA
(transcription), and messenger RNA (mRNA) serves as the direct template for
protein synthesis (translation). The resulting sequence of amino acid residues is
determined, essentially unambiguously, by the DNA base sequence, via the
(redundant) genetic code. As proteins are well-known to be directly responsible for
major cell functions, and are therefore agents of phenotype, this picture provides an
obvious analogy with Figure 1.1, and so a molecular basis for the separation of

genotype and phenotype.

13
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1.1.3 The code is cracked! Long live the code!

The demonstration of a simple chemical code by which the genotype is translated to
molecules of established biochemical function was surely beyond the wildest dreams of
the pre-revolution pioneers hoping for an understanding of the genotype-phenotype
relationship. Given a sequence of DNA bases, we could now predict the precise
sequence of amino acid residues in the polypeptide chain it encoded. Although not
quite: around a decade later it was found that, in eukaryotic cells, the base sequence of
mRNAs could be processed (“spliced”) before being translated into polypeptides, with
a single initial transcript potentially giving rise to multiple differently rearranged
"splice variants" (Berget et al., 1977; Chow et al., 1977; Goldberg et al., 1978; Nevins
and Darnell, 1978), and so the code governing this transcript processing would also
have to be cracked (Figure 1.4). And even then, the resulting theoretical polypeptide
chains are still a far cry from the kind of organismal traits biologists are interested in.
First, they are theoretical — they may or may not be synthesised at different times,
places and amounts within an organism, and so we must understand the rules of their
dynamical expression. Second, it is generally found that protein functionality does not
result directly from amino acid sequence but from 3-dimensional structure (Wright and
Dyson, 1999). This structure can depend on post-translational modifications and non-
covalent interactions with other molecules, so we must understand the rules of protein

folding, modification and intermolecular interaction, as well as the ultimate structure-

14
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function relationship. Third, macroscopic phenotypes do not result from the action of a
single protein, or even a single supramolecular assembly, but rather from a set of them,
functionally interconnected through the regulated processes of metabolism, physiology
and development (Schadt, 2009). We thus need a quantitative understanding of their

rules, too.

A Adenovirus hexon gene
A
' N\
B c -:y
: EcoRI A |

[
M Exons [ ] Introns  1kb

Figure 1.4: The discovery of RNA splicing provided a direct visualisation
of the fact that the correspondence between DN A base sequence and
polypeptide amino acid sequence was not always as direct as first assumed.
The first experiments used electron microscopy to visualise DNA-RNA hybrid
molecules prepared in vitro. The DNA is the transcribed strand of a eukaryotic viral
genome fragment and the RNA is messenger RNA that has been transcribed from part
of this fragment. The two strands can therefore hybridise via complementary base-
pairing (which is the mechanism by which RNA is accurately transcribed from DNA).
The complex structure of the hybrid (B) thus revealed that the mRNA is not simply
a direct transcript of the encoding DNA, but that the mRNA must have been
processed by the excision of several regions (introns) and the concatenation of the
regions flanking these introns (ezons) (A). To complicate things further, it was also
found that a single DNA sequence could result in multiple different mRNA transcripts
(alternative splicing). [Figure from (Berk, 2016)].

15
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1.1.4 Where are we now? Step-by-step from
genotype to phenotype in the era of molecular

biology

1.1.4.1 Expression

The simplicity of the genetic code translating mRNA base sequence to amino acid
sequence appears, however, to have been a “once-in-a-lifetime” gift to biologists (see
(Jantzen and Danks, 2008) for a formal explanation of what may make translation
such a special case). The base sequence determinants of gene expression are not nearly
as clear-cut, although considerable progress has been made in unravelling them over
the last decades. This progress began with the alignment of sequences from known
gene regulatory regions of different species, leading to the discovery of reasonably
conserved consensus sequences such as the Pribnow box for bacterial transcription
(Pribnow, 1975) and the Shine-Dalgarno sequence for bacterial translation (Shine and
Dalgarno, 1975). These sequences govern expression by binding the macromolecular
assemblies directly responsible for transcription and translation, the rate of these
processes being determined in part by the strength of such binding. The relationship
between sequence and expression is thus a quantitative one, determined directly by
physico-chemistry, in contrast to the genetic code which seems to have largely

transcended this realm into that of symbolism (Jantzen and Danks, 2008).

16
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Since these initial discoveries, molecular biologists have reported countless sequence-
dependent mechanisms governing the dynamics of cellular RNA and protein levels,
such as nucleosome organization (Kaplan et al., 2010; Hornung et al., 2012), epigenetic
marks (Wachter et al., 2014), transcription factor binding (Slattery et al., 2014; Levo
et al., 2015), messenger ribonucleoprotein particle formation (Gehring et al., 2017),
ribonuclease processivity (Pertzev, 2006), mRNA 3’ end processing (Shalem et al.,
2015), mRNA folding (Kudla et al., 2009; Anderson-Lee et al., 2016), ribosome binding
(Salis et al., 2009), translation elongation rate (Gingold and Pilpel, 2014) and protein
modification (Basu and Plewczynski, 2010), not to mention those capable of altering
the encoded sequence via mRNA splicing (Julien et al., 2016; Rosenberg et al., 2015)
and editing (Tan et al., 2017). An impressive number of models are available to predict
the effect of sequence on these processes, and the rapidly developing technologies of —
omics and machine learning are enabling their continued refinement (Libbrecht and

Noble, 2015).

1.1.4.2 Protein structure, macromolecular assembly and

molecular function

Now that we have considered the journey from DNA sequence to the dynamical
synthesis of a (modified) polypeptide chain, we can move to the next step: protein
folding, a discipline all by itself. The prediction of 3-dimensional structure from amino

acid sequence was until recently considered an insurmountable challenge (Dill et al.,

17
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2007; R. Shenoy and Jayaram, 2010). But advances in statistical mechanics and
homology modelling have now placed it firmly within our grasp, to the point where
(simple) novel folds can be accurately designed at atomic resolution (Kuhlman et al.,
2003). Prediction accuracy can still of course be much improved, however, especially in
the case of large multi-domain proteins and membrane proteins (Dill et al., 2007; R.
Shenoy and Jayaram, 2010), and in reality proteins exist not as static structures but as
a dynamic ensemble of conformers, so protein motion must also be considered
(Monzon et al., 2017). Proteins often function as multimers or supramolecular
assemblies, and so the next step in the chain of causality from genotype to organismal
phenotype, and one of the new frontiers of protein science, is physical protein-protein
interaction. Computational approaches for the qualitative prediction of interactions
from both amino acid sequence and 3-D structure have been developed that perform
fairly well, and again these are likely to improve as more large-scale protein-interaction
datasets are incorporated (Ventura, 2005; Lee et al., 2007; Tuncbag et al., 2008;
Kamisetty et al., 2014; Celaj et al., 2017; Snider et al., 2015; Uetz et al., 2000; Ito et
al., 2001; Butland et al., 2005; Stelzl et al., 2005; Krogan et al., 2006; Tarassov et al.,
2008; Yu et al., 2008) (Figure 1.5). These interactions may be modulated, however, by
post-translational modifications like ubiquitylation, and the “code” governing the
resulting signalling networks is far from being understood (Lothrop et al., 2013; Yau

and Rape, 2016).
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Finally, the molecular function/activity arising from these folded proteins and protein
assemblies must be deduced. Whereas 3-D structure prediction can successfully be
performed from first principles, this is clearly untenable at present for function
prediction, not least because function in this context is such a poorly defined concept
(Smith et al., 2003). However, when chemical mechanisms are well-understood, it is in
principle possible to determine quantitative “functional” parameters like association
rate constants from structure, but the necessary molecular simulations are
computationally expensive (and so not compatible with the —omics zeitgeist) and this
field is in its infancy (Gabdoulline et al., 2003; Garcia-Viloca, 2004; Gabdoulline et al.,
2007). More promisingly, progress has also been made in assigning qualitative
molecular function based on homology to domains or proteins of experimentally
deduced function (Lee et al., 2007; Sadowski and Jones, 2009; R. Shenoy and Jayaram,
2010). Ironically (given the textbook importance of structure in defining function and
consequently the enormous efforts invested in solving structures), sequence homology
has proven more fruitful in this respect than structural similarity, perhaps due to the
extreme fluidity in the structure-function relationship (Stockwell and Thornton, 2006;
Sadowski and Jones, 2009) (Figure 1.6), but maybe simply because there are so few

solved structures for comparison (Lee et al., 2007).
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Figure 1.5: S. cerevisiae protein-protein interactome network
representations constructed from three different data types. Nodes are
proteins and edges represent physical interactions. Data types are (left-right) yeast-2-

hybrid, coaffinity purification-mass spectrometry, and literature-curated interactions.

[Figure from (Yu et al., 2008)].

Figure 1.6: Conformational diversity of a ligand bound to different
proteins. Nicotinamide adenine dinucleotide (NAD) is shown bound to 19 different
representative proteins, with its different conformations (colours) superimposed by
aligning them on the rigid nicotinamide ring (highlighted). Two viewing angles (left
and right) are shown, and a few unusual conformations are labelled. Even a simple
molecular function like ligand binding is seen to be structurally diverse. [Figure from

(Stockwell and Thornton, 2006)].
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1.1.4.3 Functional molecular networks

Now that we have an individual protein (assembly) performing a particular molecular
function, we must question how many such functions combine through interconnected
networks of signalling, gene regulation and metabolism, and ultimately physiology, to
result in a measurable phenotype. It began to be realised in the 1930s, with the
establishment of nonequilibrium thermodynamics, that the self-organization occurring
in living systems (Schrodinger, 1944) must depend somehow on the integration of
multiple molecular processes (Westerhoff and Palsson, 2004). By the 1960s,
experiments then started to make clear that certain biological phenomena, such as
feedback inhibition in metabolic pathways (Yates and Pardee, 1957), chemiosmotic
ATP synthesis (Mitchell, 1961), oscillating metabolite levels (Chance et al., 1964) and
the complex regulation of gene expression in response to the environment (Beckwith,
1967), could only be understood by considering biochemical reactions in their context
of integrated systems, rather than by the prevailing reductionist approach of
considering them individually, marking the dawn of Systems Biology (Westerhoff and
Palsson, 2004). Early models of such processes, and later those at the scale of the
entire cell (Joshi and Palsson, 1989; Novak and Tyson, 1995), were successfully built
based directly on the kinetics of individual reactions (Figure 1.7). The laws of enzyme
kinetics were by then well-understood, their origins tracing back to the beginning of

the 20™ century (Henri, 1902; Michaelis and Menten, 1913; Cornish-Bowden, 2013).
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They are generally simple enough to have enabled the development of analytical
frameworks for the study of multi-enzyme systems (including signalling pathways),
such as Metabolic Control Analysis, capable of solving without the need for simulation
the fluxes and steady-state concentrations given information on the individual
reactions (Kacser and Burns, 1973; Heinrich and Rapoport, 1974; Westerhoff and
Chen, 1984; Krauss and Brand, 2000). The great limitation of the kinetic approach to
cell-scale modelling, however, is the requirement for accurate knowledge of kinetic
parameters and rate constants, which is lacking for the vast majority of known
biochemical reactions (see above) (Westerhoff and Palsson, 2004; Dandekar et al.,

2014; Hartmann and Schreiber, 2015).
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Figure 1.7: An early attempt at a comprehensive cell-scale kinetic model.
The model describes human red blood cell metabolism using previously measured
kinetic constants and the imposed physico-chemical constraints of osmotic balance

and electroneutrality. [Figure from (Joshi and Palsson, 1989)].
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To overcome this limitation, qualitative modelling approaches requiring less detailed
data, in particular stoichiometric and Boolean approaches, have been developed (Ay
and Arnosti, 2011; Chandrasekaran and Price, 2010; Hyduke and Palsson, 2010;
O’Brien et al., 2015; Machado et al., 2016; Brunk et al., 2018). The primary data
limitation for these approaches now becomes the network structure, the accuracy of
which may be crucial, considering the network is an integrated system. The
remarkable success of biochemists in unravelling metabolic pathways since the early
20" century means that this limitation is least problematic for modelling metabolism.
Effectively complete metabolic network reconstructions now exist for several microbes
and cell types from multicellular organisms, and new reconstructions can be built using
increasingly available annotated genome data (O’Brien et al., 2015) (Figure 1.8).
Constraint-based stoichiometric analysis of these reconstructions, such as Flux Balance
Analysis (FBA), has proved especially promising, achieving some major successes
beginning with the prediction of the optimal growth rate of E. coli on an unfavourable
carbon source (Ibarra et al., 2002) and the growth effects of single-gene deletions in S.
cerevisiae (Famili et al., 2003), and now including an impressive number of
applications across medical and industrial biotechnology (Milne et al., 2009; O’Brien et
al., 2015). Genome-scale regulatory and signalling networks have proven more
challenging to reconstruct, in part due to their position as signal-flow networks rather
than mass-flow networks like metabolism, making their wiring less constrained over

evolutionary time (Hyduke and Palsson, 2010). Regulatory networks are the more
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advanced of the two, with that of E. coli probably being the most complete. A recent
in silico study revealed, however, that even for E. coli, an average of only ~27% of
genes found to be differentially expressed across experimental environments could be
directly explained by the network reconstruction (Fang et al., 2017). Improvements in
chromatin immunoprecipitation (ChIP), transcriptomic and comparative genomics
methods are all helping improve this situation, but progress is certainly slower than for
metabolic networks (Novichkov et al., 2010; Fang et al., 2017). Large-scale signalling
networks have proven least amenable to experimental elucidation, with their
reconstruction relying primarily on manual curation (Hyduke and Palsson, 2010).
Finally, several different approaches have been taken to model the integration of
metabolic networks with regulatory and/or signalling networks, but this work is still in
its infancy (Arias et al., 2015; Chandrasekaran and Price, 2010; Gongalves et al., 2013;

Ryll et al., 2014).
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Figure 1.8: Reconstruction of the E. coli metabolic network. The E. coli K-
12 MG1655 metabolic network structure is shown by the coloured nodes and edges.
Nodes are metabolites and edges represent reactions. The network was built from
the KEGG PATHWAY database, which is compiled from existing literature (Kanehisa et
al., 2014).

1.1.4.4 Cell physiology

Ultimately, these network models describe the transformation of a set of input
molecules into a set of output molecules, via (regulated) metabolism. And so it would
seem that we have still not even reached a cell-level phenotype. So how have such
models managed to predict a trait like cellular growth rate? The answer is that they
must include some “cell physiological” function mapping molecules to cell growth rate,
like the oft-used biomass function of FBA. The biomass function of a particular cell

type must account for at least the macromolecular content of a cell, and ideally also
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the energetic requirements of cell maintenance and growth processes, from biosynthesis
to error-checking in transcription, along with all necessary vitamins, cofactors and
elements. This information is of course incomplete, but continues to grow with the
help of the FBA framework itself, the refinement of biomass functions for certain
unicellular model organisms being an active field of research (Feist and Palsson, 2010).
A landmark in this area was the 2012 construction of a comprehensive whole-cell
model of a simple bacterium, going the whole way from genome to individual molecules
to detailed cellular physiology, based entirely on information from existing literature
and databases (Karr et al., 2012) (Figure 1.9). The model was capable of predicting
observed gene essentiality with 79% accuracy. Despite abstracting away many
molecular kinetic details, such molecular-resolution models still of course require an
ambitious amount of information, and so no further ones have been built to date.
Rather, there has been an increasing trend towards highly coarse-grained models
focussing on the relationship between macromolecular composition and microbial
growth rate, which together have provided several novel insights into the laws of
microbial growth (Bosdriesz et al., 2015; Giordano et al., 2016; de Jong et al., 2017;

Scott et al., 2014; WeiBe et al., 2015).

26



Harry Kemble — These de doctorat - 2018

External
environment

S

=) Ribosome i
,..“-ﬂ" assembly Termégglecr;‘rg@nelle

RNA
modification

RNA
Metabolism decay.‘,.

Q —.\ b e lrar?srft’)tg;?ion
\q‘u._, » & o RN prodBsing aminoacylation A | Host..

processing interactior

y 4

~
Transcription / . T |

ranscriptional Macromolecular . Translation
regulation complexation Protein

% modlﬂcatlon Brited
Protein rotel
¥®..fivation folding

"Host epithelium

DNA
repair@’ DNA
damage

Férotein Metabolites
ecay
: A B RNA
(’ W Protein
Ch
condensation B DNA

Replication
initiation

DNA
replication

\ FtsZ
polymerizatio
Cytokinesis

Chromosgme
segregation

Figure 1.9: Whole-cell model of a bacterium. Mycoplasma genitalium, a
simple bacterium containing 525 genes, was modelled in silico by dividing it into 28
functional processes involving DNA, RNA, proteins and metabolites, and building
sub-models based on various formalisms for each from existing data (Kanehisa et
al., 2014). The model predicts phenotypes from genotype by considering detailed

molecular biology, metabolism and cellular physiology. [Figure from (Karr et al.,
2012)).

1.1.4.5 Development

In the case of microbes, whole-cell models amount to whole-organism models, and so

we have reached the end of the chain of causality between genotype and organismal

phenotype. For multicellular organisms, however, integration of cell-level behaviour

into the classical biological hierarchy of tissue-organ-organism through the process of
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development must now be considered. The first quantitative mechanistic models of
development can be traced back to the 1950s, with Alan Turing’s diffusion-driven
instability demonstration (Turing, 1952), which described how a spatially periodic
pattern could arise from an initially homogenous system due to intrinsic noise. A
molecular basis for Turing’s abstract “morphogens” soon revealed itself with the
discovery of diffusible growth factors, encouraging the construction of explicit tissue
pattern formation models such as Lewis Wolpert’s French Flag model (Wolpert, 1969).
Since then, quantitative developmental biology has progressed somewhat irregularly,
but many models now exist describing cell differentiation, tissue patterning and
embryogenesis in terms of morphogens, cell growth and migration, cell-cell contacts
and cell/tissue mechanics. Advances in imaging, single-cell and omics technologies are
supporting more detailed studies of increasingly more model systems, but the field
remains one that treats its experimental models on a case-by-case basis — the prospect
of a set of general quantitative principles of development is at present difficult to
envision (Davidson and Baum, 2012; Salazar-Ciudad and Jernvall, 2010; Vasieva et al.,

2013; Yuan et al., 2017).

1.1.4.6 Organismal anatomy and physiology

Finally, we reach the top of the hierarchy, associated to the ancient disciplines of
organismal anatomy and physiology (of multicellular organisms, of course). With the

rise of molecular biology, funding for research in physiology, once at the centre of
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biology, began to wane considerably. Efforts have therefore been made over the last 20
years to restore its standing, by establishing physiology within a quantitative and
integrative framework capable of uniting the traditionally disparate sub-disciplines
concerned with the various organ systems (Hunter, 2016). Some of these sub-
disciplines, notably neurology (Hodgkin and Huxley, 1952), cardiology (Noble, 1960;
Vik, 2011) and osteology/myology (Alexander, 2003), have a more solid history of
mathematical modelling, but the others are now catching up, its importance being
increasingly widely recognised (Gavaghan et al., 2006). Although there are enormous
gaps in our quantitative understanding of biology at the organismal scale, the
establishment of ambitious research programmes such as The Physiome Project
(Hunter, 2016) and The OpenWorm Project (Gleeson et al., 2015), which aim to model
whole organisms at the physiological level, inspires hope. But while the incorporation
of behavioural rules into these models may be feasible for C. elegans in the not-too-

distant future, the same can hardly be said for humans (Faisal and Stephens, 2009).

1.1.4.7 Summing up

To sum-up the state of our mechanistic understanding of the genotype-phenotype
relationship, many promising inroads have been made, and models of different scales
are being fruitfully combined. But there exist errors and patent large gaps in our
knowledge at every step of the way, explaining why we cannot yet design a de novo

genome containing the instructions for an organism with a set of pre-defined
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phenotypes (de novo genome synthesis itself being no longer a limiting factor (Cello et
al., 2002; Gibson et al., 2010; Annaluru et al., 2014)). And it should be noted here,
first, that the genotype-phenotype relationship may be modulated by the environment
at every step of the way. And second, that even if we had a complete specification of
an organism’s genotype and environmental history, we could not in general predict
phenotype with certainty, due to internal stochastic effects caused by the low copy
number of important biomolecules in each cell/sub-cellular compartment. Stochastic
effects, resulting in phenotypic heterogeneity in a population of clonal cells in a
homogenous environment, have been shown to contribute to key biological processes,
such as antibiotic persistence in E. coli and cell differentiation in higher organisms
(Balaban, 2004; Keern et al., 2005; Bressloff, 2017). Such processes can therefore only

be understood within a probabilistic framework.

1.2 Scope of the rest of this thesis

Given the many uncertainties and knowledge gaps sketched out above, the rest of this
thesis will not aim to predict phenomes from genomes, but rather focus on some basic
properties (distribution of mutational effects and epistasis) that emerge from this
mechanistic view of the genotype-phenotype (including fitness) relationship in systems
of various sizes and spans (with the highest phenotypic level being limited to
unicellular organismal fitness). As well as their fundamental importance to biology as a

whole, these properties are of great interest to the applied fields of biotechnology and

30



Harry Kemble — These de doctorat - 2018

medicine (Lehner, 2013). The global structure of Part II (One gene, A few genes, Many
genes) was inspired by the programme of the Evolutionary Systems Biology (ESB)

2018 conference, Cambridge, UK.
1.3 Part II : Experimental Insights

1.3.1 Properties emerging from the genotype-
phenotype relationship

1.3.1.1 One gene

1.3.1.1.1 Experimental history of comprehensive genotype-phenotype

mapping of single genes

Empirical snapshots of the local, or occasionally global, genotype-phenotype map for
short sequences have recently become possible through creative combinations of high-
throughput mutagenesis and phenotyping technologies. The technical challenge may be
broken down as follows: the number of possible nucleic acid or protein sequence
variants grows exponentially with sequence length; to draw statistical conclusions
about the genotype-phenotype relationship for even very short sequences (eg. > 5-
mer), a large number (> 10%) of sequence variants must be characterised; currently,
the only economical way of generating large numbers of sequence variants is in bulk; to
characterise a phenotype of a large number of pooled sequence variants, not only do we
need a high-throughput phenotyping technology, but also a high-throughput way to

trace measured phenotype of individual variants back to their sequence.
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The earliest strategy used to achieve this last challenge was phage display, originally
developed for engineering purposes (Smith, 1985; Scott and Smith, 1990). Phage
display is an in vitro system which allows biochemical phenotypes of peptides, such as
binding affinity, to be easily traced back to DNA sequence. A peptide of interest is
fused to a viral coat protein, making it accessible for biochemical analysis while
remaining physically associated to the DNA from which it is expressed (Figure 1.10).
Soon after the invention of phage display, alternative molecular display systems were
developed (bacterial, yeast, ribosomal, mRNA), also for engineering goals (Levin and
Weiss, 2006), but it was not until about 20 years after that a display strategy was used
to attempt the first comprehensive local genotype-phenotype characterisation (P&l et

al., 2006).

Phage display library
Bind Elute
and and
wash ampllfy
=) Sequence

Immobilised surface

Figure 1.10: The most common use of phage display. A phage display
library is constructed by high-throughput bulk mutagenesis, containing up to
trillions of variants of a polypeptide of interest, which are expressed on the outside
of phage particles (solid coloured circles). A biochemical selection is then applied to
the polypeptide variants, most typically based on binding affinity. Selected phage
particles can be amplified in bacteria and sequenced, linking genotype to
biochemical phenotype. Multiple selection and analysis cycles may be performed if

desired.
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In this study, single point mutations were systematically introduced into the 35-aa
receptor-binding site of human growth hormone using Kunkel mutagenesis (Kunkel et
al., 1991), a phage display library was constructed, the library was screened for
binding to either a structure-specific antibody or the human growth hormone receptor
(to assess structural stability and receptor binding affinity, respectively), and a sample
of screened clones was Sanger-sequenced to achieve quasi-quantitative measures for
these two phenotypes. This first comprehensive deep-mutational scanning study
produced several novel insights: the native protein fold was highly tolerant to
mutations in the targeted solvent-exposed positions (with the established exceptions of
cysteine and proline), with all positions showing a similar level of robustness;
hydrophobic residues were generally more stabilising than hydrophilic ones, a very
surprising result for a solvent-exposed region; at the majority of positions, mutations
existed that resulted in both greater stability and stronger receptor binding than the
wildtype; binding affinity was less robust to mutation than overall stability, with
robustness in this case being position-specific; experimentally determined binding
affinity robustness did not relate strongly to sequence conservation across species;
physicochemical similarity of residue side-chains did not correlate strongly with

phenotypic effects (P4l et al., 2006).

Although hugely informative, only a few studies employing this methodological

strategy have been performed, as it still involves one low-throughput step — Sanger

33



Harry Kemble — These de doctorat - 2018

sequencing — and so is rather labour-intensive. Microarray binding assays provide a
higher-throughput approach for the specific case of assessing binding of a library of
short nucleic acid sequences to a protein (Badis et al., 2009), but ultimately it was the
arrival of massively parallel sequencing technologies that allowed large-scale genotype-
phenotype mapping studies to flourish. Similarly to the aforementioned Sanger-
sequencing study, the earliest such study used phage-display of human WW domain
variants coupled with (weak) selection for binding to its peptide ligand, with Illumina
sequencing of pre- and post-selection libraries to again give a quasi-quantitative
measure of binding affinity (Fowler et al., 2010). The conclusions differed
substantially, however: this time, 97% of the library variants bound the ligand less
tightly than did the wildtype; mutational intolerance of the different positions
correlated strongly with evolutionary conservation; the core ligand binding region was
generally intolerant to mutation; each position appeared to possess a unique
mutational preference spectrum; and global thermodynamic instability was concluded
to be the primary determinant of binding affinity for the majority of variants. Some of
the inconsistencies between these two studies may have a technical basis, but they also
provide a first hint that the genotype-phenotype relationship, even for a given
biochemical phenotype (here, ligand binding), may vary substantially between protein

domains and as an extension whole proteins.
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With the advent of high-throughput sequencing, one of the new limitations now
becomes the types of phenotypes which allow easy coupling of phenotype measurement
with sequencing. Creative approaches have been developed based on molecular display
to assess a mutant protein library for binding to other proteins, DNA, RNA and small
molecule ligands, as well as amenable enzymatic activities such as ubiquitination
(Fowler and Fields, 2014; Starita et al., 2013). Further, particle sorting techniques like
cell and microfluidic-droplet sorting can be used to place variants into phenotypic (eg.
fluorescence) bins which are then subjected to deep-sequencing (Fowler and Fields,
2014; Kinney et al., 2010; McLaughlin Jr et al., 2012; Noderer et al., 2014; Sarkisyan et
al., 2016; Whitehead et al., 2012) (Figure 1.11). These strategies are all only quasi-
quantitative, however, as molecular display experiments use mutant frequency change
over selection cycles as a proxy for protein stability, binding or activity, and sorting

techniques can only place mutants into a limited number of discrete phenotypic bins.

Cell library Fluorescence bins

Deep-sequence

—)
FACS
—)
—)

l@?@l
e

Figure 1.11: FACS-seq, a common particle-sorting method for high-
throughput genotype-phenotype mapping. A cell library is constructed containing
variants of a sequence of interest linked somehow to cell fluorescence (eg. a regulatory
sequence controlling expression of a fluorescent reporter). Fluorescence-activated cell
sorting (FACS) is then used to physically sort cells into bins based on chosen
fluorescence ranges, and each bin is deep-sequenced, linking genotype to a simple cell-

level phenotype.
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To overcome this limitation, some in vitro, fluorescence-coupled microarray- and flow-
cell-based techniques have been developed to directly measure the biochemical (binding
affinity) phenotypes of a large number of mutants in parallel (Boyle et al., 2017;
Buenrostro et al., 2014; Geertz et al., 2012; Maerkl and Quake, 2009; Nutiu et al.,
2011; Shultzaberger et al., 2012) (Figure 1.12). Such methods tend to require highly
specialised equipment /expertise, however, and so their output is limited to a small
number of laboratories. In the specific case that a gene product functions by processing
nucleic acids, direct catalytic measurements can also be made at high-throughput

(Guenther et al., 2013).
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Figure 1.12: HiTS-FLIP, a specialised method to directly quantify DNA

affinity landscapes. ~100 million unique DNA sequences are clustered and

second-strand with
‘ ‘ ‘ unmodified dNTPs

‘ ‘ ‘ lllumina-sequence;
Strip and re-synthesise
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sequenced on an Illumina flowcell, and the chemically modified second-strand DNA
is stripped away and rebuilt with unmodified dNTPs. Increasing concentrations of a
DNA-binding protein of interest, tagged with a fluorescent reporter, are introduced,
and binding to each cluster is visualised by fluorescence imaging. Each immobilised
clonal DNA cluster is now associated to a sequence and a series of fluorescence
measurements for different binding protein concentrations, allowing in vitro
dissociation constants (Kq) to be precisely estimated for all sequences, thus linking
genotype to a basic biochemical parameter at very high throughput. [Figure based
n (Nutiu et al., 2011)].
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One particular phenotype has proven generally amenable to easy and affordable
experimental genotype-phenotype coupling, however. It allows precise, fully
quantitative estimates, and is (fortuitously?) of great general interest to biologists,
being a highly integrated trait of direct evolutionary significance: competitive cellular
fitness (Hietpas et al., 2011) (Figure 1.13). In the original EMPIRIC (Eztremely
Methodical and Parallel Investigation of Randomized Individual Codons) experiment, a
9-a.a. region of S. cerevisiae Hsp90 (an essential and highly conserved eukaryotic
chaperone protein), chosen to include positions covering a range of residue
microenvironments and conservation levels, was comprehensively mutagenized to
create a library of all possible single point-mutants. The fitness impact of all mutations
was then directly measured in bulk, by growing the library in conditions where
expression of the native Hsp90 copy was repressed (transferring to fresh medium at
fixed time intervals to maintain exponential growth), and using deep-sequencing to
sample mutant abundances at several time-points over a few days. Because the
wildtype sequence was included in the library and the wildtype generation time was
known, the competitive fitness of each mutant could be estimated relative to the
wildtype as a selection coefficient, by taking the change in the ratio of mutant to

wildtype reads as a function of wildtype generation time.
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Figure 1.13: EMPIRIC, a general method for high-throughput genotype-
fitness mapping. A cell library is constructed containing variants of a sequence of
interest. The library is propagated under the chosen conditions, and deep-
sequencing is applied at several time-points to track the change in variant
frequencies over time, linking genotype to a highly integrated quantitative
phenotype, cell fitness.

With this dataset, a truly quantitative and comprehensive analysis of individual
mutation effects (on fitness) became possible for a small protein region, providing an
important novel empirical insight: the distribution of fitness effects was bimodal, with
a fairly equal proportion of mutations being either strongly deleterious or nearly
neutral, consistent with a nearly neutral model of molecular evolution (Ohta, 1973).
Two expected results were also confirmed: synonymous substitutions had far smaller
effects on fitness than did non-synonymous ones (but see also (Agashe et al., 2016;
Cuevas et al., 2012; Zwart et al., 2018)), and hydrophobic residues were more

interchangeable with each other than were polar ones.
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The interest in characterising genotype-fitness maps for other systems was immediately
recognised, and experiments have now been performed on genes covering a diverse
range of functions including ubiquitin, poly(A)-binding protein, antibiotic resistance
enzymes, a small nucleolar RNA, tRNAs, metabolic enzymes and regulatory regions
(Bernet and Elena, 2015; Chan et al., 2017; Dandage et al., 2018; Domingo et al., 2018;
Firnberg et al., 2014; Jacquier et al., 2013; Klesmith et al., 2015; Li and Zhang, 2018;
Li et al., 2016; Melamed et al., 2013; Melnikov et al., 2014; Puchta et al., 2016; Roscoe
et al., 2013; Wrenbeck et al., 2017). Experiments vary in how precisely fitness is
measured, and in how artificial the sequence-fitness relationship is: indeed, due to the
ease of massively parallel genotype-fitness mapping with this approach, many artificial
systems have been devised in which fitness is an indirect readout of some other
phenotype, such as gene expression (Shultzaberger et al., 2010, 2012), protein-protein
binding affinity (Diss and Lehner, 2018) or protein stability (Kim et al., 2013).
Caution should therefore be taken in comparing studies, as non-linearities between
different phenotypic levels likely have a major influence on the observed properties of

the genotype-phenotype relationship, as will be discussed below.

This last decade has thus provided a rich pool of experimental data with which to
explore statistically the genotype-phenotype relationship across different scales, and

the following will summarise some principal conclusions.

1.3.1.1.2 Distribution of mutational effects (DME) in single genes
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The distribution of effects of individual new mutations is of profound importance to
medical and evolutionary genetics, and continues to be a hotly debated topic (Eyre-
Walker and Keightley, 2007). The deep mutational scanning studies outlined above

have revealed, perhaps unsurprisingly, that it differs between coding and non-coding

regions, different types of gene and even different regions within genes.

1.3.1.1.2.1 The DME in single proteins

In proteins, whether the focal phenotype is biochemical functionality (Lagator et al.,
2017a; McLaughlin Jr et al., 2012; Sarkisyan et al., 2016) or a highly integrated trait
like fitness (Bank et al., 2014, 2015; Chan et al., 2017; Diss and Lehner, 2018; Firnberg
et al., 2014; Hietpas et al., 2011; Jacquier et al., 2013; Jiang et al., 2013, 2016;
Klesmith et al., 2015; Mavor et al., 2016; Melamed et al., 2013; Melnikov et al., 2014;
Roscoe et al., 2013; Wrenbeck et al., 2017), the DME appears to be universally multi-
modal, typically with near-neutral and highly deleterious modes and a vanishing
fraction of beneficial effects (an almost trivial exception to this is the DME on
expression or related phenotypes in repressor proteins (Lagator et al., 2017a); or, more
generally, when decrease-of-function of one phenotype leads to an increase of a
downstream phenotype, the DME is expected to be flipped) (Figure 1.14). The same
multi-modality is found for whole viral genomes, which are dense with protein-coding
sequences (Carrasco et al., 2007; Domingo-Calap et al., 2009; Peris et al., 2010;

Sanjuan et al., 2004a). A popular and conceptually simple mechanistic hypothesis for
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this is as follows: a globally determined property of proteins is stability; stability is
therefore potentially affected by amino acid changes at many positions, while positions
contributing to a limiting step in direct protein function are likely to be rare; protein
folding is cooperative, resulting in a “thermodynamic cliff” in the stability-folding
function; protein mutants therefore tend to lie either at the plateau at the top of this
cliff (where the majority of the molecular ensemble is “correctly” folded), which is
likely where the wildtype resides, or at the bottom of it (majority of ensemble is
unfolded); the number of natively-folded molecules is likely a key determinant of
protein activity, and the phenotype being measured depends either directly or
indirectly on this activity (Wylie and Shakhnovich, 2011) (Figure 1.15). This
hypothesis is partially supported by some empirical studies (Bank et al., 2015;

Firnberg et al., 2014; Jacquier et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016).
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Figure 1.14: A sample of experimentally characterised DMEs in various
proteins, all showing multi-modality. DMEs are shown for both full-length
proteins and small protein regions. Mutated proteins include a fluorescent protein, a
chaperone, metabolic enzymes, ubiquitin, transcription factor subunits and an
antibiotic resistance enzyme. Measured phenotypes include fluorescence, minimum
inhibitory antibiotic concentration (MIC) and cell fitness. [Figures from (Bank et
al., 2015; Chan et al., 2017; Diss and Lehner, 2018; Firnberg et al., 2014; Hietpas et
al., 2011; Jacquier et al., 2013; Roscoe et al., 2013; Sarkisyan et al., 2016; Wrenbeck
et al., 2017)].
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Figure 1.15: Illustration of the thermodynamic hypothesis for DMEs in
proteins. Left panel - Black sigmoid curve shows the fraction of natively folded
protein molecules as a function of the free energy of folding, AG, following: P™% =

M‘;G/’%T , where £, is the Boltzman constant and T is temperature (k; T is set here

to 0.62, as in (Wylie and Shakhnovich, 2011)). Dashed line marks a hypothetical
wildtype protein stability (-3 kcal/mole), located on the plateau of the sigmoid, for
illustration. Red curve shows a hypothetical distribution of mutant AG values,
resulting from a DME on AG that is Gaussian with a mean of 41, following (Wylie
and Shakhnovich, 2011), but here with a larger standard deviation of 3. Right
panel: The resulting DME on the relative fraction of natively folded protein
molecules, which is bimodal under these parameter values. The standard deviation
of the DME on AG had to be increased relative to (Wylie and Shakhnovich, 2011)
to observe this bimodality, as the original model includes an extra (semi-step-)
function in which protein functionality is set to 0 when AG > 0 (rationalised by an
aggravating toxic effect of misfolded protein molecules). Such steepening of the

sigmoid causes bimodality to appear with a smaller range of AG effects.

Whatever the mechanism(s) responsible for changes in protein activity, however, the
precise form of the distribution of mutational effects must depend on the quantitative
relationship between activity and the measured phenotype, and on the activity of the

wildtype. For example, three orthologous wildtype indole-3-glycerol phosphate
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synthases were found to have their neutral mode shifted towards beneficial effects,
showing they were sub-optimal for fitness under the chosen experimental conditions
(Chan et al., 2017) (top right panel of Figure 1.14). An elegant demonstration of the
impact of a non-linear activity-fitness relationship was provided by the EMPIRIC
creators (Jiang et al., 2013). They characterized this relationship (a fitness elasticity
function in the language of Metabolic Control Analysis (Kacser et al., 1995)) for their
system, the Hsp90 chaperone protein, and found a strongly concave, saturating
function similar to a binding curve. Interestingly, similar-shaped functions are found to
generally describe activity-flux or activity-fitness relationships across enzymes and
organisms, in line with expectations from Metabolic Control Analysis (Bershtein et al.,
2013; Dykhuizen et al., 1987; Jiang et al., 2013; Kacser and Burns, 1981; Lunzer, 2005)
(Figure 1.16). As is often found, wildtype Hsp90 activity lay safely on this plateau, far
from the fitness shoulder, at endogenous expression levels. This meant that even
mutations with an intermediate effect on activity could be nearly-neutral to fitness. By
then measuring the distribution of fitness effects at increasingly reduced expression
levels, such latent activity effects were shown to have greater and greater impacts on
fitness. Indeed, the large number of mutations inferred to have intermediate, rather
than nearly-neutral, effects on activity suggested that the dominant mechanism for
activity changes in this particular mutated region was via direct molecular function

(substrate binding), rather than global stability.
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Figure 1.16: A sample of experimentally characterised elasticity
functions, all of a saturating concave form. Proteins include a chaperone, a
sugar transporter, a sugar hydrolase, an acid reductase, an acid dehydrogenase, four
enzymes from an arginine biosynthesis pathway, alcohol dehydrogenase, an amino
acid hydroxylase and an aminoimidazole carboxylase. Organisms include
Saccharomyces cerevisiae, Escherichia coli, Neurospora crassa, Drosophila
melanogaster, Mus musculus and Homo sapiens. Measured phenotypes include
growth rate, metabolic flux and DNA repair rate. [Figures from (Bershtein et al.,
2013; Dykhuizen et al., 1987; Jiang et al., 2013; Kacser and Burns, 1981; Lunzer,
2005)].
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The DME in proteins, as will be found in other sequences, is thus shaped by forces at
several scales, from the intramolecular level to the intermolecular interface level to the
cell-system level and beyond. A source of bias to be wary of is therefore the choice of
experimental system: it is often desirable to focus on systems suspected to show linear,
or at least monotonic, relationships across these levels (eg. the activity-fitness
function), but more complex relationships may well be common (Chou et al., 2014;
Dekel and Alon, 2005; Drummond and Wilke, 2008; Perfeito et al., 2011; Rokyta et al.,
2011; Serohijos and Shakhnovich, 2014; Serohijos et al., 2012; Shultzaberger et al.,
2010; Towbin et al., 2017). A striking demonstration of this was provided recently for
the case of expression-fitness relationships — these were characterized in parallel for 81
diverse genes in the yeast, S. cerevisiae, by inserting in front of each gene a library of
synthetic promoters of known strength (Keren et al., 2016). In addition to the
commonly found concave function, a variety of other forms were uncovered, including
step-like ones, invariant ones, peaked ones (eg. for certain genes with regulatory
function; Chapter 1) and even multi-peaked ones (Figure 1.17). Importantly, genes
from the same pathway or complex tended to display similarly expression-fitness
curves, suggesting that these are shaped primarily by the cell-level function of a gene,
rather than its specific biochemistry. The consequences of these different elasticity
functions for the DME across different genes should therefore be a fruitful avenue for

future research.
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Figure 1.17: Expression-fitness functions for a diverse set of protein-

coding yeast genes. Red lines mark wildtype expression levels. [Figure from

(Keren et al., 2016)].

1.3.1.1.2.2 The DME in single functional non-coding RNAs

The DME for the few functional non-coding RNA sequences (cis-regulatory region,

tRNA, snoRNA, twister ribozyme) so far examined appears to follow similar rules to

proteins: deleterious and nearly-neutral modes and a miniscule proportion of beneficial

mutations, again probably shaped in part by both a thermodynamic stability threshold

and common saturating concave activity-fitness functions (Bendixsen et al., 2017;

Bernet and Elena, 2015; Kobori and Yokobayashi, 2016; Li et al., 2016; Puchta et al.,

2016). This is perhaps not surprising because, first, as for proteins, non-coding RNA

function depends strongly on structure, and second, there is no obvious reason why the
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dependence of cell fitness on RNA-regulated activities or direct RNA activities
(especially those chosen for experimental investigation) would be fundamentally

different to its dependence on protein activities.

1.3.1.1.2.3 The DME in single cis-regulatory DNA regions

In the case of cis-regulatory DNA sequences, measured DMEs are generally unimodal
(Badis et al., 2009; Kinney et al., 2010; Lagator et al., 2016, 2017a; Warren et al.,
2006), although they can be multimodal in more complex regulatory contexts (Lagator
et al., 2017b, 2017a) or when a fraction of the sites function through specific base-
pairing with other nucleic acids (and so are highly sensitive to mutation) (Boyle et al.,
2017). The majority of mutations decrease DNA binding to regulators (again
presumably because wildtype sequences are optimised for relatively strong binding),
but of course the impact of this on downstream phenotypes depends if the regulation is
activational, repressive or some complex mixture of both (Lagator et al., 2017b). The
biophysical reason for a more uniform DME on direct biochemical phenotypes for cis-
regulatory DNA sequences than for proteins and non-coding RNAs is not clear: the
thermodynamics of DNA-protein binding can result in similar energy-phenotype
functions to those of macromolecular folding described earlier (Lagator et al., 2017b;
Mustonen et al., 2008; Vilar, 2010). It may be that in reality they are less steep (for
example, because deleterious effects from misfolded molecules no longer contribute), or

that cis-regulatory mutations tend to have smaller effects on binding energy than do
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protein and non-coding RNA mutations on folding energy, and so sample a more local
region of the energy space (see Figure 1.15). In any case, one result of this difference is
that the DME in cis-regulatory DNA sequences might be even more sensitive to the
precise forms of downstream phenotype-phenotype transformations than in proteins

and non-coding RNA, as the direct phenotype space is more evenly explored.

1.3.1.1.3 Epistasis within single genes (intragenic epistasis)

Epistasis, in this thesis, describes interactions between mutations. More precisely, it is
defined here as the deviation of an observed phenotype value from that expected if the
constituent individual mutations combined additively on the log-scale (ie.
multiplicatively on an absolute scale) (2000) (Figure 1.18). Epistasis is increasingly
acknowledged to be critically important for medical and evolutionary genetics and bio-
engineering: among other things, it confounds prediction of mutational effects,
constrains adaptive paths, determines the benefit of sex and hinders efforts to increase
yields and activities of industrially useful substances (Badano and Katsanis, 2002;
Breen et al., 2012; Dipple and McCabe, 2000; Hansen, 2013; Kimura and Maruyama,
1966; Kondrashov, 1988; Kondrashov and Kondrashov, 2001; Manolio et al., 2009;
Niederberger et al., 1992; Phillips, 2008; Scriver and Waters, 1999; Weinreich, 2006).
Intragenic epistasis is logically shaped by the same forces as those shaping the DME,

such as thermodynamics and elasticity functions (Lehner, 2011; de Visser et al., 2011),
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and its basic statistical properties will now be summarised for the systems in which

large-scale measurements have been made.

A* B* A B- A* B-

Log phenotype

Pa+Pg

reciprocal simple . . simple reciprocal
sign sign magnitude none magnitude sign sign
e<0 =0 >0

Figure 1.18: Types of pairwise epistasis possible for different types of
mutation pairs. ‘A’ and ‘B’ are mutations, and superscript ‘+’ and ‘-’ denote that
these individual mutations increase or decrease, respectively, the value of the
measured phenotype, P. In all cases, the white point is wildtype and the orange
point is the AB double mutant. The grey dashed line marks the sum of P4 and Pp,
which is the ezpected value for the double mutant. Epistasis measures the deviation
from this expectation, which may be either negative or positive, and it can be
categorised as either magnitude (the direction of mutational effects do not depend
on the other mutation) or sign type. Sign epistasis can be further categorised as
simple (effect of one mutation changes sign in presence of the other) or reciprocal
(effects of both mutations change sign in the presence of the other). The three
examples shown are (left-right): no epistasis between a pair of positive-effect
mutations, positive simple sign epistasis between a pair of negative-effect mutations,
and negative magnitude epistasis between a positive-effect and negative-effect

mutation.

1.3.1.1.3.1 Intragenic epistasis within single proteins
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Within proteins, epistasis appears prevalent and predominantly negative, with a
unimodal distribution. As the majority of mutations tend to reduce the value of the
measured phenotype, this epistasis mainly represents synergistic interactions between
deleterious mutations: the combined impact of multiple mutations is often worse than
“the sum of the parts” (Bank et al., 2015, 2016; Melamed et al., 2013; Olson et al.,
2014; Sarkisyan et al., 2016) (but (Araya et al., 2012; Diss and Lehner, 2018) are
exceptions). Under the stability threshold model outlined above, such synergistic
negative epistasis would indeed be expected to prevail between mutations having
mildly destabilising effects, because, beginning from the stability plateau, the
downwards slope initially becomes steeper as stability is decreased. As the threshold is
crossed, however, the slope levels off again, which can result in positive epistasis being
detected between highly destabilising mutations if the protein is non-essential or if an
experimental measurement limit is approached (Bank et al., 2015; Bershtein et al.,
2006; Diss and Lehner, 2018; Jacquier et al., 2013; Sarkisyan et al., 2016; Wylie and
Shakhnovich, 2011) (Figure 1.19). Differences in the destabilising effects of mutations,
wildtype stability and measurement precision/range could therefore explain
discrepancies between studies as to the pervasiveness of epistasis as well as the relative
fractions of positive and negative interactions. Negative epistasis between mutations of
mildy deleterious biochemical effect could also result from concave saturating elasticity
functions (described above) (Bank et al., 2015; Szathmary, 1993), for the same reason

that it results from the stability function, and analogously to the classical molecular
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hypothesis of genetic dominance and recessivity (Kacser and Burns, 1981). Of course,
as for the DME, many specific cases will deviate from these general expectations
(Chapter 3) and vary across proteins, such as specific local structural interactions
which could generate sign epistasis, for example (sign epistasis is not predicted by
monotonic functions like the common sigmoidal and concave ones discussed so far).
Further, any single mutation could potentially effect multiple molecular phenotypes,
including stability, activity (existing or new!) per folded molecule, folding kinetics,
aggregation propensity, degradation rate and post-translational modification (DePristo
et al., 2005; Echave and Wilke, 2017; Shah et al., 2015; Sikosek and Chan, 2014), so

simplistic models should be treated as what they are.
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siselsidg

Figure 1.19: Trends of epistasis predicted by thermodynamic model of
mutation effects. Black sigmoid curve shows the logarithm of a phenotype that
increases proportionally with the fraction of natively folded protein molecules as a
function of the free energy of folding, AG. A small background value (phenotype of 0.1
in the absence of any correctly folded molecules) has been applied to capture the
situation for non-essential genes and/or the effect of measurement background/limits. If
the phenotype can truly go to 0 in the limit of very high AG, the stability curve is no
longer sigmoidal on this log scale, but has a concave shape, causing the epistasis curve
(see below) to become increasingly negative, in a linear fashion, as AG increases. In
reality, however, even if the phenotype really does approach zero, experimental
limitations will likely result either in a background phenotype value in the absence of
correctly folded protein, resulting in a log-sigmoid as shown here, or in a threshold
being applied below which all mutants are considered null and therefore not considered
for epistasis analysis. The formula and parameter values are the same as those in Figure
1.15, just with the addition of the 0.1 background phenotype. Dashed vertical line
marks a hypothetical wildtype protein stability (-3 kcal/mole), located on the plateau
of the sigmoid, for illustration. Blue curve shows the epistasis that would occur between
pairs of mutations of identical AG effects, each of which individually displaces AG from
the wildtype value to the value indicated by the x-axis. Dashed horizontal line marks
the boundary between positive and negative epistasis (ie. zero epistasis). A transition
from negative to positive epistasis is seen to occur as mutations become more strongly
destabilising, due to the sigmoid shape of the stability curve. The shape of the epistasis
curve could explain why both negative and positive epistasis is observed between
mutations within proteins, as well as the existence of certain correlations between

mutation effect size and epistasis (see below).

53



Harry Kemble — These de doctorat - 2018

In addition to prevailing negative epistasis, a trend of “increasing losses” is sometimes
detected in proteins (at least for mildly deleterious mutations), further supporting the
idea that there exists some source of concavity in the phenotypic landscape (Bank et
al., 2015; Diss and Lehner, 2018; Sarkisyan et al., 2016). This trend manifests as a
positive correlation between the sum of the magnitude of individual mutation effects
and the magnitude of epistasis they experience when combined. The flip-side of
“increasing losses” between the predominantly deleterious mutations of the DME is
“diminishing returns” between the rare mutations from the beneficial tail of the DME
(MacLean et al., 2010; Nagel et al., 2012; Schenk et al., 2013): synergistic negative
epistasis increases with the increasing downward slope moving away from the plateau,
and antagonistic negative epistasis increases with the decreasing upward slope. The
evolutionary outcome of these trends should be a more rapid purging of deleterious
mutation combinations (negative selection), but a slower rate of adaptation resulting
from beneficial combinations (positive selection), than would be expected in the

absence of epistasis.

1.3.1.1.3.2 Intragenic epistasis within functional non-coding RN As

Epistasis between mutations residing in the same non-coding RNA molecule, as for the
DME and again probably for the same reasons, appears similar to the case of proteins:
it is common and usually biased towards negativity (Bendixsen et al., 2017; Domingo

et al., 2018; Kobori and Yokobayashi, 2016; Li and Zhang, 2018; Li et al., 2016;
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Puchta et al., 2016). Notably, these experimental results are in direct contrast to the
predominance of positive epistasis predicted by earlier computational RNA folding
models (Wilke and Christoph, 2001; Wilke et al., 2003), but it is not clear whether this
is due to the binary nature of these models or the fact that they do not use naturally
evolved sequences as their starting point (Bendixsen et al., 2017) - when higher-order
epistasis was examined experimentally, positive and negative epistasis were found to be
equally prevalent, with many cases of sign-epistasis, leading the authors to conclude a
rugged multi-dimensional fitness landscape on the global level ((Domingo et al., 2018);

cf. (Bank et al., 2016) for a protein region).

1.3.1.1.3.3 Epistasis within single cis-regulatory DNA regions

Epistasis within cis-regulatory DNA has also been studied experimentally in a limited
number of contexts. Within a mammalian Rhodopsin promoter region bound by at
least two transcription factors, epistasis for expression was found to be biased towards
negativity (Kwasnieski et al., 2012). More strikingly, in a recent study of the direct
effect of target-site mutations on dCas9-DNA binding, negative epistasis for initial
association rate between the universally deleterious single mutations was found to be
ubiquitous — binding was essentially always worse than would be predicted from the
simple addition of individual mutation effects (Boyle et al., 2017). dCas9-DNA binding
may be rather unrepresentative, however, as its function is clearly not regulatory (it is

immune), and it is mediated by DNA:RNA base-pairing. Another team recently
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examined the expression epistasis between mutations within both the same and
different operators in two different promoters: the E. coli araBAD promoter (Lagator
et al., 2016) and the lambda bacteriophage Pr promoter (Lagator et al., 2017b).
Although these two promoters possess substantially different architectures, both
exhibited a predominance of negative epistasis, whether mutations resided in the same
or different operators and whether active repressor proteins were present in high
concentration or not. The authors showed that, at least for the simple case where
expression is determined by DNA binding to a single regulator, this is to be expected
from thermodynamic considerations: the free binding energy-expression curve resulting
from their generic model is, once again, of a concave, saturating form (Lagator et al.,
2017b). Notably, though, in the lambda bacteriophage Pr promoter, the fraction of
positive interactions increased when active repressor concentration was increased, as
did the frequency of the most extreme form of interaction, reciprocal sign epistasis
(from 8% to 66%). This is explained by the fact that repressor binding sites
(operators) and RNA polymerase binding sites overlap in this promoter, and so
promoter mutations will tend to effect binding to both of these — one of which
decreases transcription and the other of which increases transcription. The proposed
thermodynamic model suggests that under these constraints, the nature of epistasis
now depends on both the concentrations of repressor and RNA polymerase and on the
sign and relative magnitude of the individual mutation effects on binding to both

proteins (Lagator et al., 2017b).
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Cis-regulatory DNA sequences have thus proved to be an excellent model system for
studying how epistasis can arise through the inherent molecular pleiotropy of
mutations: they directly affect multiple molecular phenotypes (here, binding energy for
different regulatory proteins), often differentially, and the measured phenotype (here,
expression) is then some simple (Chapter 4) or complex function of these multiple
input phenotypes. In reality, as for proteins and non-coding RNAs, many more
molecular phenotypes than those typically considered are potentially impacted by an
individual mutation, such as DNA structure (Rajkumar et al., 2013), binding site
accessibility (Levo and Segal, 2014), regulator protein cooperativity (Todeschini et al.,
2014) and long-range DNA looping (Levine et al., 2014), likely accounting for the
significant fraction of observed interactions that are not explained by simple binding
energy models (Lagator et al., 2017b). Current empirical studies thus present a
minimal mechanistic picture of the potential sources of epistatic interactions, rightly
so, and the goal now should be to find additional molecular phenotypes that may

account for a substantial amount of the unexplained epistasis.

Finally, cis-regulatory sequences appear to play a major role in evolutionary processes
(Wittkopp and Kalay, 2012; Wray, 2007), yet none of the studies above have assessed
epistasis at the level of fitness. Just as for proteins and RNA, in addition to the
mechanisms just discussed, this is bound to be also shaped by the expression-fitness

elasticity functions of the regulated genes. Fortunately, these are far more accessible to
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high-throughput genome-wide characterization than are pure activity-fitness functions

(Keren et al., 2016).

1.3.1.2 Two genes

Adding just one more gene, let alone several, to the kinds of high-throughput studies
that have provided such rich insights for single genes generally requires more than
simply twice the effort (let’s call it experimental effort epistasis). For many systems,
the problem is that the length of DNA fragments required to carry two different genes
exceeds those amenable to the highest-throughput sequencing technologies (max. ~1kb
with Illumina). Presumably largely for this reason, very few deep-mutational scanning
studies have assayed more than one gene or even regulatory sequence simultaneously,
but unique DNA barcodes that allow a long sequence to be broken up for sequencing

and then reassembled in silico provide one workaround (Sarkisyan et al., 2016).

1.3.1.2.1 Epistasis between two genes (intergenic epistasis)

1.3.1.2.1.1 Intergenic epistasis between two physically interacting partners

A recent exception was the measurement of intermolecular epistasis between a library
of point-mutants of the leucine zipper domains of two proto-oncogenes, FOS and JUN
(Diss and Lehner, 2018). The products of these two genes physically interact through
these domains to form a transcription factor complex, AP-1. In this case, the technical
challenge of long sequencing fragments was overcome by isolating the two small leucine

zipper domains, which are presumed to function in a modular manner, and cloning
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them adjacent to each other in the absence of the rest of the native proteins. An
artificial complementation assay, in which intermolecular FOS-JUN binding drives the
assembly of a drug-resistance enzyme, was used to link binding strength to an easily
measurable phenotype (cell growth in the presence of the drug). Further, the
relationship between abundance of the complementation complex and growth rate is
well-characterised, and expected to be approximately linear, removing the common
added complication of non-linear elasticity functions discussed above. Intermolecular
epistasis was found to be common and just slightly biased towards negativity.
Importantly though, a characteristic relationship between the effect of single mutations
and the interaction they experienced when combined suggested that the epistasis could
be partly explained by a sigmoidal thermodynamic fitness landscape similar to that
proposed to explain the DME and epistasis within single genes (but this time based on
intermolecular binding rather than folding) (Figure 1.19). Indeed, applying this model
removed the correlation between individual effects and epistasis, and increased the
percentage of explained variance in double-mutant phenotype scores from ~86% (under
a simple multiplicative model) to ~89%. This is a promising conclusion, as it implies
that general rules for single genes may also be applicable to some degree for multiple
genes whose products interact physically. It may also, however, be a particularity of
the system, as the folding of leucine zippers like FOS and JUN is known to be coupled

to their binding (Patel et al., 1990; Thompson et al., 1993) - studies on other pairs of
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binding partners are therefore necessary to uncover to what extent rules can be

generalised from single proteins to multi-protein complexes.

An impressive effort was also recently made to characterise the epistasis between a
large number of mutants of a particular repressor protein and also of its cis-regulatory
DNA target at low-throughput, using a fluorescent reporter to measure expression
(Lagator et al., 2017a). Epistasis was detected for about half of the 150 pair-wise
interactions tested, the majority of which were positive. As before, much, but not all,
of this epistasis could be rationalized in terms of the promoter architecture, which
contained overlapping binding sites for the mutated repressor protein and RNA
polymerase, raising hope that a set of rules may exist that adequately predicts epistasis
both within promoters, and between promoters and regulators, when promoter

architecture is known.

1.3.1.2.1.2 Intergenic epistasis between two functionally interacting partners

Although epistasis between protein-protein and protein-DNA binding partners is of
great importance, the majority of genes in a given genome are expected to interact
indirectly, through metabolic, regulatory and signalling networks. As explained in the
first part of the introduction, metabolic networks are perhaps the most tractable of
these, being based on simple mass-flow. Metabolic Control Analysis (MCA) provides a
rigorous framework to explore how pathway phenotypes such as flux and metabolite

concentrations depend on the activity of several enzymes simultaneously, and thus
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enables predictions of inter-enzyme epistasis (Szathmary, 1993). Several small-scale
studies provide support for the validity of MCA in general (Chou et al., 2014;
Dykhuizen et al., 1987), but its rich predictions regarding the epistasis between genes
connected by metabolic pathways have until now not been tested (Chapter 4).
Importantly, the nature of fitness epistasis is predicted to vary considerably depending
on which pathway phenotypes are under selection (flux, steady-state metabolite
levels), the pathway position of any selected metabolites relative to the two enzymes
considered, and the type of selection operating (directional, stabilising) (Szathmary,
1993) (Figure 1.20). This points to the necessity of uncovering which phenotypes are
typically under selection if we are to use such systems-models to predict sequence-
fitness relationships. Epistasis between two or more genes in signal-flow networks has
also never been tested on a systematic scale, but a recent small-scale study on a
synthetic gene regulatory cascade found a surprisingly high frequency of sign-epistasis
simply at the level of expression (briefly, explained by the fact that changes in the
activity of one regulator shift the optimal activity of other regulators) (Nghe et al.,
2018). Sign epistasis has strong consequences for both evolution and the predictability
of mutation effects, and so regulatory and signalling networks are a key area of future

study.
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Fitness

Figure 1.20: Two-dimensional activity-fitness functions predicted from
Metabolic Control Analysis. E; and E, are the activities of two adjacent
enzymes in a linear metabolic pathway. In both landscapes, fitness is assumed to
depend solely on the steady-state concentration of a pathway intermediate, in a
Gaussian manner (7e. stabilising selection is assumed to operate on the
intermediate). The only difference is that, in one case, the intermediate lies
downstream of the two enzymes (left), and in the other, it lies between them
(right). The two landscapes have strikingly different forms, resulting in different
expectations of inter-enzyme epistasis. Further, in both cases, trends of inter-
enzyme epistasis will depend on the position of the wildtype and the distribution of

mutation effects on enzyme activity. [Figures from (Szathmary, 1993)].

1.3.1.3 The genome

1.3.1.3.1 Experimental approaches for genome-wide genotype-phenotype
mapping

Scaling up deep-mutational scanning experiments to the scale of the genome is at
present out of reach: bottlenecks include the precise, genome-wide introduction of
individual mutations (mutagenesis efficiency and accuracy), sequencing costs and
linking mutations at distant loci. The first is improving with advances in genome

engineering, particularly from CRISPR-Cas9-based methods (Barbieri et al., 2017;
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Haimovich et al., 2015; Roy et al., 2018). The second is continuing to improve,
following a long-term trend of decreasing costs (but see (Muir et al., 2016) for the
alternative challenge of managing increasing amounts of data); and the third is
becoming more feasible with emulsion-based generalised DNA assembly technologies
that encapsulate single cells and enable distal DNA sites to be linked by sequencing
(either by directly ligating mutated sites adjacent to each other (Haliburton et al.,

2017; Zeitoun et al., 2015) or, more scalably, by ligating them to a cell-specific DNA

~—~

barcode (Zeitoun et al., 2017)) (Figure 1.21).
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Figure 1.21: bTRACE, a general high-throughput method for analysing the
effect of known genome-wide mutation combinations. A multiplex genome
engineering method is used to construct a library in which each cell can contain multiple
mutations throughout the genome, and this library is itself transformed with a library of
plasmids carrying highly diverse DNA barcodes (triangles), such that each cell now
contains a unique barcode. Single cells are then encapsulated in emulsion droplets, where
they are lysed, and a targeted binary PCR assembly reaction is performed to ligate
barcodes adjacent to chosen mutated genomic regions. The emulsion is then broken, and
deep-sequencing of the assembled product pool allows reconstruction of the complete
genotype associated to each barcode. In parallel, the library can be phenotyped by one of
the deep-sequencing techniques discussed previously, with only the small DNA barcodes
now needing to be sequenced, allowing genome-wide mutation combinations to be linked

to an amenable trait at high throughput [Figure based on (Zeitoun et al., 2017)].
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In the meantime, a plethora of “functional genomics® systematic genome-wide studies
have been performed, especially in yeast, that measure the effects (typically fitness) of
different types of large perturbations in single or multiple (maximum of 3) genes
(deletion, overexpression, knockdown, transposon insertion; typically one or two
perturbations per gene) (Baba et al., 2006; Babu et al., 2014; Boutros et al., 2004;
Breslow et al., 2008; Collins et al., 2007; Costanzo et al., 2010, 2016; Davierwala et al.,
2005; Decourty et al., 2008; Douglas et al., 2012; Fuchs et al., 2010; Gagarinova et al.,
2016; Giaever et al., 2002; Jaffe et al., 2017; Kamath et al., 2003; Kuzmin et al., 2018;
Nichols et al., 2011; Onge et al., 2007; van Opijnen et al., 2009; Roguev et al., 2008;
Sameith et al., 2015; Schuldiner et al., 2005; Szappanos et al., 2011; Tischler et al.,
2006; Tong, 2004; Tsherniak et al., 2017; Ursell et al., 2017). These provide rich
functional datasets, but it is not clear that any genotype-phenotype inferences would
generalise to the less extreme perturbations (eg. point mutations) often found in
nature. Further, the majority are biased towards altering functions of known genes. An
approach to study genome-wide genotype-fitness relationships at the other extreme is
mutation accumulation experiments and the analysis of natural DNA sequence data.
These benefit from sampling naturally-occurring mutations, which may be very
different to those introduced experimentally (even for point mutations), and having
the potential to capture mutations of effects too weak to be quantified directly, but
they rely purely on inferences (Eyre-Walker and Keightley, 2007). In between these

two extremes (in terms of artificiality) are experiments that directly measure the
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effects of randomly induced or collected mutations (Bonhoeffer, 2004; Carrasco et al.,
2007; Domingo-Calap et al., 2009; Peris et al., 2010; Sanjuan et al., 2004a; Szafraniec
et al., 2003; Wloch et al., 2001), or of mutations that are detected during experimental
evolution (Caudle et al., 2014; Chou et al., 2011, 2014; Flynn et al., 2013; Khan et al.,
2011; Kryazhimskiy et al., 2014; Kvitek and Sherlock, 2011; Rokyta et al., 2011;
Venkataram et al., 2016), all of which provide datasets orders of magnitude smaller

than do systematic perturbation studies.

1.3.1.3.2 The genome-wide DME

An early finding of the genome-wide perturbation studies was that, in most organisms
and in permissive conditions, the majority of genes are inessential (Baba et al., 2006;
Gerdes et al., 2003; Giaever et al., 2002; Kim et al., 2010; Sassetti et al., 2003;
Viswanatha et al., 2018; Yamamoto et al., 2009; Zhang and Lin, 2009). A notable
exception is the “minimal bacterium”, Mycoplasma genitalium (Glass et al., 2006;
Hutchison IIT et al., 1999), which was in fact the first organism in which gene
essentiality was examined directly (Hutchison III et al., 1999), demonstrating a
frequent irony in experimental biology: the first choice of experimental system is
usually based on convenience, which in some cases results in it being an utterly
unrepresentative outlier. “Chemical genomics” approaches which phenotype genome-
wide perturbation libraries in many different defined environments, perhaps

unsurprisingly, reduce the fraction of inessential genes by revealing conditionally
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essential genes that are necessary for growth in at least one of the environments tested
(Nichols et al., 2011). The interpretation of these classifications (essential,
conditionally essential, inessential) is not clear, however, as they are clearly fully-

dependent on the environments tested (see Environment).

Interestingly, it seems from studies reporting quantitative fitness effects of genome-
wide perturbations that the DFE of single-gene deletions/disruptions (Baryshnikova et
al., 2010; van Opijnen et al., 2014; Wang et al., 2018) might be qualitatively similar to
the DFE of randomly sampled/induced genome-wide mutations (Eyre-Walker and
Keightley, 2007), itself similar to the DFE of single point-mutations in proteins and
non-coding RNAs: a nearly-neutral mode with a heavy negative tail, a very
deleterious/lethal mode (sometimes overlooked) and a small proportion of beneficial
effects (see (Bataillon and Bailey, 2014; Eyre-Walker and Keightley, 2007) for more
fine-scale properties), and uncovering the precise reasons for this universality should

prove to be a highly worthwhile endeavour.

In the meantime, top-down heuristic phenotype-fitness models have provided useful
unifying frameworks with which to capture such common trends found across these
different scales and species, as they do not rely on system-specific mechanistic details.
In particular, Fisher’s Geometric Model of Adaptation (FGMA), originally proposed
simply as a convenient metaphor for phenotypic adaptation (Fisher, 1930), can

correctly predict the oft-observed shifted reflected l-shape of the nearly-neutral mode
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of the DFE (although not generally the strongly deleterious/lethal mode) (Bank et al.,
2014; Bataillon and Bailey, 2014; Chevin et al., 2010; Jacquier et al., 2013; Martin,
2014; Martin and Lenormand, 2006; Tenaillon, 2014; Trindade et al., 2012). FGMA
assumes that fitness depends on a certain number of independent traits and that, in a
given environment, there is a single optimum value for each of these traits, with fitness
decreasing smoothly with increasing distance from the optimum (generally modelled as
a Gaussian function). Mutations are assumed to be partially or fully pleiotropic (in
which case their directional effect in phenotype space is completely unconstrained),
and their phenotypic effects are typically drawn from a multivariate normal
distribution with a mean of zero (Figure 1.22). When the number of idealized traits
under selection is not too large (which appears to generally be the case) and the
wildtype resides close to the optimum (ie. it is well-adapted), the DFE takes the
aforementioned shifted reflected -shape, with a small number of weakly beneficial
mutations, a near-neutral mode and a heavy deleterious tail. In addition to the DFE,
FGMA predicts the common patterns of epistasis observed between beneficial
mutations in systems of all scales (see also below): a general predominance of negative
(antagonistic) epistasis and, more specifically, a trend of diminishing returns
(Blanquart et al., 2014; Martin et al., 2007; Rokyta et al., 2011). These agreements are
not so surprising when we consider the similarities of a Gaussian FGMA to the
sigmoidal and simple concave phenotype-fitness functions previously demonstrated to

explain these patterns: in all cases, as the fitness maximum is approached, the upwards
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slope becomes increasingly flat (ie. they are all locally concave at high fitness). One

difference is that, as opposed to the sigmoidal and simple concave functions, the non-

monotonicity of FGMA also predicts sign epistasis (for example, a mutation that is

beneficial in a maladapted background may become deleterious in a well-adapted

background due to optimum overshooting (Blanquart et al., 2014)). Overall, the

success of FGMA suggests that at least some of the repeatedly observed properties of

the genotype-fitness relationship may be remarkably predictable without the need for

any mechanistic knowledge.
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Figure 1.22: The canonical isotropic Fisher’s Geometric Model of

Adaptation (FGMA) in two dimensions. The fitness surface here is described

by an isotropic multivariate Gaussian, centred at the origin of phenotype space.

The red point (shown both on the fitness surface and projected onto phenotype

space) represents a wildtype genotype, and the blue circle represents an isotropic

cloud of (mild) one-step mutations. Under such a model, when the wildtype is near

the optimum, the DFE will contain a small fraction of weakly beneficial mutations

(those that move closer to the optimum) and a heavy tail of deleterious mutations.

[Figure adapted from (Gros et al., 2009)].
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1.3.1.3.3 Genome-wide epistasis (intergenic epistasis)

The nature of epistasis appears to be less general across systems. The genome-wide
deletion analyses (like the single gene and regulatory sequence studies) tend to find a
predominance of negative interactions, though still alongside a substantial proportion
of positive ones (Babu et al., 2014; Costanzo et al., 2010, 2016; Onge et al., 2007;
Roguev et al., 2008; Szappanos et al., 2011), but it should be noted that these have for
now mainly been performed in yeast. In line with Flux Balance Analysis (FBA) pair-
wise gene perturbation predictions (He et al., 2010; Segre et al., 2005; Szappanos et al.,
2011), comparing interaction profiles for different genes has provided information on
the topology of their functional connections, providing “wiring diagrams” of cell
function (Costanzo et al., 2016) (Figure 1.23). For example, genes from redundant
pathways tend to undergo negative synergistic interactions with each other, and genes
from the same pathway tend towards positive antagonistic interactions (perhaps
contributing to the differential proportions of negative and positive epistasis) (Avery
and Wasserman, 1992; Battle et al., 2010; Beltrao et al., 2010; Breslow et al., 2008; Fu
et al., 2017; Lehner, 2011; Onge et al., 2007; Ye et al., 2005). As stated above, though,
it is not clear that these rules should generalise to mutations other than the complete
loss-of-function ones making up the vast majority of these datasets (hypomorphic
alleles of essential genes are the exception) (Chapter 4; (Szathmary, 1993; Xu et al.,

2012)).

69



Harry Kemble — These de doctorat - 2018

Figure 1.23: A global network of gene-gene interaction profile
similarities. Nodes are yeast genes and edges connect genes with similar genome-
wide fitness interaction profiles, revealing functional modules. [Figure from
(Costanzo et al., 2016)].

On the other hand, epistasis between naturally-occurring mutations in viral and
cellular genomes appears to be biased towards positive interactions, with positive
epistasis more common between the relatively frequent deleterious mutations and
negative epistasis more common between rarely-occurring beneficial mutations, ie. an
overall trend of antagonism (Bonhoeffer, 2004; Burch, 2004; Caudle et al., 2014; Chou
et al., 2011, 2014; Flynn et al., 2013; Khan et al., 2011; Kryazhimskiy et al., 2014;
Lali¢ and Elena, 2012; Maisnier-Patin et al., 2005; Rokyta et al., 2011; Sanjuan et al.,
2004b; Schoustra et al., 2016; de Visser et al., 2011). This antagonism represents a
kind of genomic buffering process: combinations of deleterious mutations are “less bad”
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than expected from simple additivity, and beneficial combinations are “less good” (and
beneficial /deleterious combinations have rarely been studied explicitly), but a true
mechanistic explanation is lacking for now. Further, the trend of diminishing returns
between beneficial mutations found in single genes is often also found at the genome
scale, suggesting analogously the saturation, and sometimes even an optimum
overshoot (potentially causing sign epistasis) (Rokyta et al., 2011), by successive
mutations of some phenotype that is contributing to fitness, or of the phenotype-
fitness function itself (reviewed in (Berger and Postma, 2014)). These general fitness-
level trends found for real mutations are rather encouraging for the predictability of
adaptive dynamics, despite the underlying genetic and even phenotypic complexity

((Kryazhimskiy et al., 2014); see FGMA discussion above).

1.3.1.4 The environment

It is clear that the environment affects genotype-phenotype relationships, and so for a
complete understanding of them we must consider them across different environments.
Indeed, the few studies that explore large mutant sets across large numbers of
environments find fundamental changes, such as the proportion of essential genes
(Nichols et al., 2011). Even such ambitious large-scale studies explore only a vanishing
fraction of potentially relevant fixed environments, though, not to mention dynamic

ones.
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Studies examining environmental effects therefore tend to have the ambition of proof-
of-principle, rather than exhaustive sampling, and these have produced myriad
examples of the environmental-dependence of both mutation effects and epistasis
(although it should be noted that this is an area potentially ripe for publication bias).
It remains extremely difficult to form any general conclusions, however, as
“environment” is such a broad term. It may refer, for example, to the concentration of
small molecules (gene expression inducers, enzyme substrates, cofactors, antibiotics)
which have some expected specific role the system of study (Dean, 1995; Lagator et al.,
2016, 2017b; Melnikov et al., 2014; Nghe et al., 2018; Shultzaberger et al., 2010; de Vos
et al., 2013, 2015; Wrenbeck et al., 2017), precise physico-chemical parameters known
to matter in in vitro studies (Hayden and Wagner, 2012; Hayden et al., 2011), or more
general “pleiotropic” factors such as temperature, chemical stresses, complex nutrients
or even host (Bank et al., 2014; Caudle et al., 2014; Dandage et al., 2018; Flynn et al.,
2013; Fragata et al., 2018; Hietpas et al., 2013; Jagdishchandra Joshi and Prasad,
2014; Lali¢ et al., 2011; Li and Zhang, 2018; Mavor et al., 2016). It will be important
going forward to develop a more systematic approach to the environment, focussing on

relevant, informative experimental conditions.

1.4 Outline of the original research chapters

included in this thesis

72



Harry Kemble — These de doctorat - 2018

The three research chapters presented here aim to help fill some of the gaps in our

understanding of the genotype-phenotype relationship highlighted in the Introduction.

Chapter 1 describes the results of a deep-mutational scanning experiment on a global
transcriptional regulator in E. coli. Fitness was measured for a comprehensive set of
single codon-substituted CRP mutants in environments containing different
concentrations of CRP’s specific allosteric activator, cAMP, and sodium chloride, a
stressor molecule known to induce a CRP-mediated stress response. This study
addresses the lack of empirical DFEs for highly pleiotropic regulators, which are
frequent targets for adaptation to new environments and whose behaviour is likely to
be highly influenced by the nature of the complex networks in which they are

embedded.

Chapter 3 describes the results of a deep-mutational scanning experiment on the model
B-lactamase antibiotic-resistance protein, TEM-1. Fitness effects were measured at
high precision for a comprehensive set of single and double codon substitutions in a
small region encoding an a-helix, which is expected to generally have no direct role in
TEM-1 function. Any fitness changes caused by these mutations are thus expected to
be exerted primarily through structural effects. This study adds to existing fitness and
epistasis data for single model proteins, contributing a new level of precision and a
well-controlled system designed to precisely unravel the contribution of different

phenotypic dimensions to the genotype-fitness relationship.
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Chapter 4 describes the results of a deep-mutational scanning experiment on two
promoters driving the expression of two genes encoding enzymes that participate in the
same metabolic pathway. Fitness effects were measured at ultra-high precision for a
comprehensive set of single-nucleotide substitutions in the core region of one or both
promoters. Artificial promoters were used so that their activity could also be
independently controlled by chemical inducers, allowing fitness and epistasis to be
measured from three different regions of expression space. This study addresses the
lack of intergenic epistasis data for genes interacting indirectly through their common
participation in molecular pathways, and reveals the existence of remarkably diverse
types and trends of fitness epistasis for such a simple system, which can be explained
by the inherent molecular pleiotropy of mutation effects on a few key phenotypes

(here, flux, metabolite toxicity and expression burden).
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2 Single-Mutation Fitness Landscape
of a Global Transcriptional

Regulator across Environments
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2.1 Introduction

The Distribution of Fitness Effects (DFE) of new mutations is one of the key
evolutionary parameters, influencing for example the rate of and potential for
adaptation (Chevin et al., 2010; Hoffmann and Sgro, 2011), the maintenance of
quantitative and molecular genetic variation (Charlesworth et al., 1995; Hill, 2010), the
rate of genomic decay from Muller’s Ratchet (Loewe, 2006), and the benefit of sex
(Otto and Lenormand, 2002; Peck et al., 1997) (reviewed in (Bataillon and Bailey,
2014; Eyre-Walker and Keightley, 2007; Keightley and Eyre-Walker, 2010)). Moreover,
it is central to our understanding of complex disease (Eyre-Walker and Keightley,

2007).

The most direct and efficient strategy for characterising the DFE is to introduce a
large number of random point mutations into the organism of interest and quantify
each of their effects with a fitness assay (with the only limitations being the sensitivity
of the assay to weak-effect mutations and the fact that random mutations may not
reflect the actual spectrum of new mutations) (Eyre-Walker and Keightley, 2007). At
present, such an approach is only feasible for the smallest of viral genomes (Carrasco
et al., 2007; Domingo-Calap et al., 2009; Peris et al., 2010; Sanjuan et al., 2004). On a
finer scale, the DFE for individual genes may also prove informative. Indeed, the
recent development of high-throughput, Next Generation Sequencing-enabled bulk

competition assays (Hietpas et al., 2011) has made it possible to rapidly and
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comprehensively characterise all possible single nucleotide or codon substitutions in a
given gene (Klesmith et al., 2015; Kowalsky et al., 2015; Li et al., 2016; Melnikov et
al., 2014; Roscoe et al., 2013; Wrenbeck et al., 2017). Such comprehensive single-
mutation fitness landscapes have now been mapped for regions or the entire length of a
variety of genes, encoding products including a chaperone protein (Bank et al., 2014;
Hietpas et al., 2011, 2013; Jiang et al., 2013), ubiquitin (Mavor et al., 2016; Roscoe et
al., 2013), poly(A)-binding protein (Melamed et al., 2013), antibiotic-resistance
enzymes (Dandage et al., 2018; Firnberg et al., 2014; Jacquier et al., 2013; Melnikov et
al., 2014), metabolic enzymes (Chan et al., 2017; Jiang et al., 2016; Klesmith et al.,
2015; Wrenbeck et al., 2017), a tRNA (Li and Zhang, 2018; Li et al., 2016) and a small

nucleolar RNA (Puchta et al., 2016).

The emerging picture from these studies is that the DFE for single genes tends to be
bimodal, with weakly deleterious and highly deleterious/lethal modes and a vanishing
fraction of beneficial mutations (the proportion of mutations in each of these categories
varies widely across studies, however). Encouragingly, a similar trend is found at the
scale of the whole genome (Eyre-Walker and Keightley, 2007), giving hope that the
DFE in single genes may indeed be informative for the genome-wide DFE. In addition,
the large-scale sequence-fitness maps obtained from these deep-mutational scanning
experiments have proved to be rich resources for inferring structural and mechanistic

details (Chan et al., 2017; Hietpas et al., 2011; Jiang et al., 2013, 2016; Mavor et al.,
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2016; Melamed et al., 2013; Melnikov et al., 2014; Roscoe et al., 2013). Single-gene
sequence-fitness maps are therefore well established as valuable sources of insight in

both evolutionary and molecular biology.

2.1.1 Global transcriptional regulators

An important class of genes for which such maps are currently lacking is those
encoding global transcriptional regulators. These provide particularly intriguing
subjects because they are frequently found to be among the first targets of adaptation
to new environments, both in the laboratory and in nature (Damkiaer et al., 2013;
Hindré et al., 2012; Saxer et al., 2014; Tenaillon et al., 2012). They are also interesting
at the molecular level, due to their typically relaxed requirements for DNA sequence
recognition (Badis et al., 2009; Shultzaberger et al., 2012; Slattery et al., 2014) and
their ability to function through multiple mechanisms and modes of action (ie. a single
regulator can act as both activator and repressor) (Browning and Busby, 2016).
Further, some have been found to be remarkably capable of developing novel molecular
functionality via altered DNA-binding specificity, resulting in the recognition of new
sets of targets and thus potentially regulatory network rewiring (Shultzaberger et al.,
2012). Such rewiring should be of profound importance to evolution, as it entails a
transition in genome-wide genetic constraints, altering the future set of potentially
adaptive paths (Hindré et al., 2012). Finally, the DFE of a gene depends

fundamentally on its product’s activity-fitness function (Jiang et al., 2013), and this is
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likely to be rather different for global regulators than for the majority of genes
characterised so far (for whom it is typically expected to be monotonic). This
distinction is reasoned on an evolutionary level, as the known environmentally-
responsive role of regulators suggests that there is some regulator activity level that is
optimal for fitness in a given environment (Towbin et al., 2017), and also on a
molecular level, as global regulators are embedded within complex regulatory networks,
including feedback loops (Seshasayee et al., 2006), suggesting the existence of complex

activity-fitness functions.

2.1.2 The cyclic AMP receptor protein (CRP) of
Escherichia coli
We therefore chose to characterise the single-mutation fitness landscape of a canonical
global transcriptional regulator, the cyclic AMP (cAMP) receptor protein (CRP) of
FEscherichia coli (Kolb et al., 1993). CRP is a conditionally essential homodimeric
protein implicated in the regulation of an array of physiological processes: most
famously, carbon metabolism (Gérke and Stiilke, 2008; Kolb et al., 1993), but also
nitrogen assimilation (Mao et al., 2007), iron uptake (Zhang et al., 2005),
osmoregulation (Balsalobre et al., 2006; Landis et al., 1999), biofilm formation
(Jackson et al., 2002) and multidrug resistance (Nishino et al., 2008), to name a few.
CRP responds to the cell state via the small signalling molecule, cAMP, which

allosterically activates CRP’s C- terminal helix-turn-helix DNA-binding domain upon
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binding its N-terminal region (Fic et al., 2009; Kolb et al., 1993). It directly regulates
> 500 target genes through binding their promoter regions (Gama-Castro et al., 2016),
but has also been found to interact with thousands of weaker sites throughout the
chromosome (Grainger et al., 2005). CRP regulates transcription initiation most often
by activation, but also by repression, through diverse mechanisms, acting both alone
and in combination with other CRP dimers and/or other transcription factors (TFs)
(Kolb et al., 1993). Phylogenetically, CRP belongs to a well-characterized bacterial
transcription factor family which shows conservation of certain key structural
characteristics (cAMP-binding and DNA-binding domains) (Kérner et al., 2003;
Matsui et al., 2013; Soberén-Chavez et al., 2017). Although this conservation leads
members of the family to bind similar DNA sequences, promoter divergence causes
their target gene repertoires to differ substantially between species, and thus also their

physiological roles (Soberén-Chévez et al., 2017).

CRP provides an excellent model for our purposes because: a) it is well-characterised
at the genetic, structural and physiological levels (Kolb et al., 1993); b) its activity can
be easily experimentally modulated, by applying cAMP to the growth medium
(Towbin et al., 2017); ¢) it is short (209 amino acids), allowing it to be characterised
in its entirety; d) CRP activity-fitness functions have recently been characterised

under a variety of conditions (Towbin et al., 2017); e) CRP mutants have been
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documented to play a role in adaptation to new environments (Basak and Jiang, 2012;

Gayan et al., 2017; Sievert et al., 2017).

2.1.3 Choice of experimental environments

In selecting conditions in which to which to perform fitness mapping, we reasoned that
the external environment could affect the fitness effects of CRP mutations by two
principle means. The first is to change the relationship between
transcriptomic/proteomic state and fitness (for example, the fitness effect of expressing
a particular CRP-regulated metabolic enzyme will clearly depend on the presence or
absence of its substrate in the environment). The second is by changing the
relationship between CRP activity changes and transcriptomic/proteomic state (either
directly, by cAMP-mediated control of CRP activity, or indirectly, by control of the
activity of other regulators with which CRP interacts). By definition, environments in
which CRP is physiologically adaptive potentially affect both these relationships.
Varying external cAMP concentration, however, should predominantly affect the latter
relationship, by changing wildtype CRP activity (its only known effect in E. coli),
allowing us to capture the effects of changing the latter relationship without changing
the former. As we can only increase, but not decrease, native cAMP concentration
experimentally, we required a growth source resulting in low endogenous cAMP levels.
We thus chose glucose, which meets this requirement and is also the preferred sugar of

E. coli and the majority of studied microorganisms (Bettenbrock et al., 2007; Gorke
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and Stiilke, 2008). To examine the impact of an environment inducing a
physiologically adaptive cAMP /CRP-mediated response, and thus likely affecting both
relationships, we chose sodium chloride (NaCl), an experimentally robust molecule
which causes hyperosmotic stress (Balsalobre et al., 2006). We thus chose to study the
single-mutation fitness landscape of CRP in the four following controlled
environments: glucose, glucose + cAMP, glucose + NaCl, and glucose + cAMP +

NaCl.

2.2 Results

2.2.1 Optimisation of experimental conditions

Due to technical limitations, our mutant library was designed to be expressed from a
multicopy plasmid rather than from its native position on the chromosome, and so we
first constructed a set of three E. coli K12 MG1655 control strains with which to
assess the impact of this and to optimise experimental conditions: one with no copies
of erp (erp [pBC-crpl), one with the native chromosomal copy of crp (crp* [pBC-crp])
and one with crp translocated from the chromosome to a multicopy plasmid (crp
[PBC-crp*]). We then measured the growth of monocultures of these three strains in
different test conditions. We found that 400mM NaCl, a typical concentration used in
previous studies of the CRP-mediated osmotic stress response, did not allow detectable
growth of the crp [pBC-crp] strain under our conditions. This is in contrast to one of

the previous studies (Balsalobre et al., 2006), perhaps because of differences in the
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mineral media compositions. As we were interested in using a stress condition that still
permitted growth of crp-null mutants, we reduced NaCl concentration to 100mM,
finding this to reduce the growth rate of the crp [pBC-crp] strain by ~25%, while
causing no measurable growth defect in the crp* strains (Figure 2.1A). This condition
therefore allows the impact of a stressful environment on the DFE to be assessed with
the wildtype growth rate being kept relatively constant, and so was selected for the
high-throughput competition assays. We also note that the crp-null strain grows slower
than the crp-overexpressing strain both in the presence and absence of NaCl,
demonstrating that overexpressed crp, although somewhat artificial, was still adaptive

in these conditions.

For cAMP, we found that external cAMP concentrations within the range of those
used in previous physiological studies (10 mM, (Bren et al., 2016)) abolished growth of
the overexpressing crp [pBC-crp*] strain (but not the single-copy crp* [pBC-crp
strain). This demonstrates a growth hypersensitivity to cAMP caused by crp
overexpression, perhaps aggravated by the native crp feedback loops (Kremling et al.,
2007) which we chose to leave intact, highlighting that our experimental system can
behave rather differently to the natural case. A low-concentration cAMP titration
experiment was therefore performed on the crp [pBC-crp?] strain (Figure 2.1B),
revealing a monotonic decrease of growth rate with increasing external cAMP

concentration, and so again suggesting the presence of an optimum in the CRP
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activity-fitness function (Towbin et al., 2017). We opted to use for the mutant
competition assays the cAMP concentrations causing crp [pBC-crp*] growth to be
most similar to the crp-null strain (which is insensitive to cAMP), to calibrate the
system such that loss-of-function mutations would be expected to be beneficial, and
gain-of-function mutations, deleterious: 0.7 mM in the absence of NaCl, and 1.2 mM in
the presence of NaCl. Growth rates of crp [pBC-crp?], representing the experimental
“wildtype” strain, and crp [pBC-crp] are provided for convenience in Figure 2.1C for

the 4 environments chosen for deep-mutational fitness scanning.
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Figure 2.1: Choice of experimental conditions. A. The effect of 100 mM NaCl
on growth rate of the strain harbouring crp on a plasmid (crp [pBC-crp?]) and the
crp-null strain (crp [pBC-crp]). Mean exponential growth rate is shown with the
SEM of 2 independent replicates from different days. B. The effect of cAMP
concentration on crp [pBC-crp?] exponential growth rate, with or without 100 mM
NaCl. C. Growth rates of crp [pBC-crp*] and erp [pBC-crp] in the 4 conditions
chosen for deep-mutational fitness scanning. NaCl was added at 100 mM, and cAMP
at 0.7 mM in the absence of NaCl and 1.2 mM in the presence of NaCl. Mean
exponential growth rate is shown with the SEM of 2 independent replicates from

different days.

2.2.2 Mutant library quality

To achieve a comprehensive full-length mutant crp library, a gene-tiling approach
(Firnberg and Ostermeier, 2012; Kowalsky et al., 2015) was used in which 3 plasmid
sub-libraries were created, each targeting a different third of the crp open reading
frame (ORF) (see Methods). The sub-libraries were designed to together contain every
possible single NNS codon substitution between the start and stop codons, with NNS

accommodating all of the 20 amino acids as well as the amber stop codon. Carryover
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of the wildtype template during mutagenesis ensures the wildtype crp DNA sequence is
also present at high frequency (Firnberg and Ostermeier, 2012; Hietpas et al., 2011).
Each plasmid sub-library was also intergenically tagged with unique DNA barcodes
containing 20 randomised positions (Mavor et al., 2016; Sarkisyan et al., 2016). Once a
first sequencing step was performed to associate these barcodes with their
accompanying crp genotype, crp genotypes could be tracked through competition by
simply sequencing the short barcode region. This strategy also means that internal

replicates are present for every genotype.

The majority of expected crp DNA genotypes were present at a satisfactory sequencing
coverage at to of the competition assays (Figure 2.2A; median expected genotype
counts = 734). At the barcode level, ~93% of all expected genotypes were associated to
> 9 high-confidence barcodes (defined as barcodes present at > 5 read counts), with a
median of 80 high-confidence barcodes per expected genotype, providing a large

number of internal independent replicates (Figure 2.2B).
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Figure 2.2. Sequencing coverage and quality of barcoded mutant library.
A. The total read coverage of all expected crp DNA genotypes at to of competition
assays, computed by summing the counts of all barcodes associated to each
genotype. WT is the wildtype DNA sequence. B. The number of unique barcodes
(present at >5 reads at toof competition assays) associated to each crp DNA
genotype. C. The total read coverage of all unique barcodes at t, of competition

assays.

The cost of this barcode richness, however, was a relatively low level of barcode
sequencing coverage (Figure 2.2C; median of 12 reads/high-confidence barcode at to).
As a consequence, barcodes were not used individually to compute independent fitness
estimates for each genotype, but they did allow anomalous lineages associated to a
particular genotype to be filtered out before aggregating the remaining barcode counts
and computing a single genotype fitness estimate. This outlier removal step was found
to be critical for accurate fitness estimation, as even very rare undetected off-target
beneficial mutations (likely introduced during mutagenesis) can have enormous
impacts on the apparent frequency change of unfit genotypes. It was particularly
important for the wildtype genotype, not only because it serves as a reference, but also

because it was so abundant (Figures 2A-B), causing undetected mutations in the
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wildtype background to be numerous enough to potentially skew fitness estimates
substantially (Figure 2.3). This problem was aggravated by our choice of certain
environments in which undetected loss-of-function mutations, expected to be relatively

common, were beneficial compared to the wildtype (Figure 2.3, right panel).
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Figure 2.3. Anomalous barcode detection. The log ratio of t, to t; counts,
against t; counts, is shown for all barcodes associated to the wildtype crp DNA
genotype in 2 environments (n = 257,952 and 198,584, left-right). Outlier barcodes
(brown) were detected with a 2-tailed Poisson test (logiy p-value < -10) (see
Methods).

2.2.3 Fitness estimation and experimental noise

A key assumption in estimating fitness from competition data is that selection
remained constant throughout the experiment. We found that this was not the case for
the 2 cAMP-containing environments (Figure 2.4); and so to reduce any confounding
effects to a minimum we chose to quantify fitness based on just 2 adjacent time-points:
t1 and t2, with to-t; being left out to allow time for physiological acclimatisation to the

competition media (see Methods). The experimental noise in these fitness estimates
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was assessed by re-computing them using 2 fully independent sets of barcodes (Figure
2.5), and we found that it was far lower for the 2 environments containing cAMP than
for the 2 without it (Pearson’s r = 0.96 vs. 0.71 and 0.78), due presumably to the very
different DFEs: cAMP results in a large number of mutations being highly beneficial,
reducing counting noise (the wildtype has a below-average fitness, causing it to reduce
in frequency over time (Figure 2.4A), which could counteract this noise-reduction, but
this does not occur as it is present in the initial library at extremely high frequency
(Figure 2.2A)). A further consequence is a much larger range of fitness effects, also

improving the correlation.
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Figure 2.4. Barcode and mutant dynamics during competitive growth. A.
Example trajectories are shown for a random sample of 1,000 barcodes associated to
the wildtype (black), and all barcodes associated to 2 c¢rp codon mutants (red and
blue). Thick lines are the mean number of barcode counts. B. Barcode-grouped
trajectories are shown for all mutant c¢rp DNA genotypes relative to the wildtype.
Synonymous genotypes are coloured green, and genotypes containing a stop codon
within the first 150 codons are coloured orange. After barcode outlier filtering, read
counts for all barcodes belonging to a particular mutant were summed and
normalized to total WT crp DNA read counts. Dashed lines indicate time-window

chosen for fitness estimation.
We also found that stop codons present in the first ~3/4 of crp, representing expected
crp null-mutants, were associated with an especially high degree of measurement
uncertainty (Figure 2.5), even when they increased in frequency (Figure 2.4B, panels 2
and 4), clearly due to their low starting abundance (Figure 2.4B). This problem arises

because, due to crp’s highly pleiotropic nature, there exist no truly permissive media

for library cloning and outgrowth, and so selection had acted on the mutant library
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prior to the competition assays. In the rich medium (Lysogeny Broth) we used, null
mutations were deleterious and so, although growth prior to competition was kept to a
minimum, they were depleted from the library. This pre-assay selection problem is
aggravated by the fact that, as we have shown, barcode-mutation assignment carries
some uncertainty. The result is that a fraction of barcodes assigned to any one mutant
may be misassigned, with some of these erroneous lineages being fitter than the
correctly assigned ones. During the unwanted pre-assay selection, these misassigned
lineages would rise in frequency relative to the correctly assigned ones, without
detection, and by the time of assay they could represent the majority of barcodes if
their fitness relative to the correct barcodes was sufficiently high. This explains how
some early stop codon genotypes can be estimated as beneficial with rather high
confidence in the conditions (- cAMP) where they are expected to be deleterious, for
example. Overall, these confounding factors strongly limit our ability to quantify the
effects of mutations that were highly deleterious in the pre-competition medium
(comprising, at least, null-like mutants), but we can see from Figure 2.4B that they

represent a minority of the library.

91



Harry Kemble — These de doctorat - 2018

- cAMP - NaCl + cAMP - NaCl
o~ H 4
31 r=o071 ‘ v r=0.96 /
— // o~
8 = . 2 < |
£° 2o
: S - ; 2
s - ak 3 o 4
= - A = © i
N G / o~ P
T / kol
8 o 3 2
b 9 7 5 g
g P i
o ™ v 3
S s -l g
8’| 7 & «
o L o
24 7
T T T r r ; , ;
03 -02 01 00 01 02 02 0.0 0.2 0.4 0.6
Barcode subset 1 (relative fitness) Barcode subset 1 (relative fitness)
- cAMP + NaCl + cAMP + NaCl
© |
o
~ | r=078 r=0096
7 0
0w 13
Q >4 O <
£ £ S
E o o g °
22 o 2
2 . Ao 2 a9
N w2 x
ko] D
§ < | / é o
@ % 2 2
g | g
e 8
& 8- v 8w
: S
T T T L) T T T T
-0.6 0.4 0.2 0.0 0.2 0.2 0.0 0.2 0.4 06
Barcode subset 1 (relative fitness) Barcode subset 1 (relative fitness)

Figure 2.5. Experimental noise characterised by independent barcode
sets. After barcode outlier filtering, barcodes associated to each crp mutant
DNA genotype and the wildtype DNA genotype were randomly split into 2 equal-
sized subsets. For each subset, log fitness relative to the wildtype was computed
using the sum of mutant and wildtype barcode subset counts (see Methods). The
Pearson correlation coefficient for the 2 resulting sets of independent fitness
estimates is indicated. Synonymous genotypes are coloured green, and genotypes

containing a stop codon within the first 150 codons are coloured orange.

2.2.4 Distribution of fitness effects (DFE)

With an awareness of the distribution of experimental noise in our fitness estimates,
we next assessed the DFE across environments at the level of protein sequence, by
pooling all barcodes associated to a particular amino acid change. Fitness estimates

were obtained for 89-92% of all 4,180 possible single amino acid substitutions
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(including to the amber stop codon), with 2 positions being essentially uncovered (0 or
1 of the 20 possible substitutions quantified, likely due to missing degenerate primers
in the mutagenesis step). In line with the monoculture growth measurements, the DFE
was substantially transformed by the presence of cAMP, and far less so by NaCl
(Figure 2.6). As seen already, the DFE of early stop codons is far broader than would
be expected (as they should all be similarly null-like), due to increased counting noise
and the potential takeover of misassigned barcodes, but they can still provide an
indication of where null-like mutants are expected to lie in each distribution (except in
the noisiest case of the -cAMP —NaCl environment). The DFE of synonymous
mutations provides another biological control of fitness estimates, as the majority are
expected to be very nearly neutral, and we find them to indeed be centred close to zero

and far narrower than the corresponding DFEs of amino acid substitutions.

The extensive overlap between the DFEs of synonymous mutations and early stop
codons in the no-cAMP environments suggests, however, that the level of experimental
noise for low-fitness mutants is too high to permit reliable interpretation of the overall
DFE in these conditions. The change in selection pressure caused by cAMP alleviates
this problem, in part by making null-like mutants beneficial (see above), and results in
a clear separation between the synonymous and early stop codon DFEs. Interestingly,
it also results in the appearance of bimodality in the DFE of single amino acid

substitutions, a very common observation for experimental DFEs in general (Bank et
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al., 2014, 2015; Bernet and Elena, 2015; Chan et al., 2017; Diss and Lehner, 2018;
Eyre-Walker and Keightley, 2007; Firnberg et al., 2014; Hietpas et al., 2011; Jacquier
et al., 2013; Jiang et al., 2013, 2016; Klesmith et al., 2015; Li et al., 2016; Mavor et al.,
2016; Melamed et al., 2013; Melnikov et al., 2014; Puchta et al., 2016; Roscoe et al.,
2013; Wrenbeck et al., 2017) . Typically, the modes are centred close to the wildtype
and close to null-mutants, with null-mutations being lethal or very deleterious. In this
system, a nearly-neutral mode is indeed apparent, and the other mode lies fairly close
to that of the (beneficial) null-mutants, but is clearly shifted to the right. The activity
of this large set of mutants most likely lies somewhere between that of the wildtype
and the null-mutants, both of which are less fit than them, and their location at the
extreme-right of the DFE (Bataillon and Bailey, 2014) in turn suggests that this
intermediate activity represents a rather broad fitness optimum, perhaps resulting
from the negative feedback in the CRP-cAMP signalling network (You et al., 2013). In
more natural conditions, when the wildtype lies on this plateau, this would provide a
strong source of genetic robustness, buffering fitness against activity-changing

mutations (Denby et al., 2012; Marciano et al., 2014, 2016).

mutations (Denby et al., 2012; Marciano et al., 2014, 2016).
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Figure 2.6. Distribution of fitness effects (DFE) of single amino acid
substitutions in CRP. The DFE of synonymous mutations is shown in green, and
the DFE of amber stop codons (in the first 150 positions) in orange. In all cases, log

fitness is estimated relative to the wildtype crp DNA sequence.

2.2.5 Fitness correlations between environments

The correlation between fitness effects across environments has important implications
for evolution and the predictability of mutational effects in general, and it may also
provide hints about mechanism and underlying phenotypes. We found that there was a
significantly positive correlation across all environments, and, as suggested by the
DFEs, the correlation was far stronger (and close to the identity line) between

conditions differing by just NaCl presence rather than cAMP presence (Figure 2.7, top
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panels vs. bottom panels). In all cases, however, a strong, smooth trend was apparent,
suggesting the correlations are shaped predominantly by some relatively simple global
phenotypic mechanism rather than by idiosyncratic mutation-environment
interactions. In the environments differing by cAMP presence, this trend, although
noisy, was clearly non-monotonic, remarkably reminiscent of those in the ara system of
Chapter 4, which were indicative of overshoots of a phenotypic optimum in some
states or environments but not in others (Figure 2.7, bottom panels; Figure 2.8A). In
this case, the pattern can be explained in terms of the discrimination of mutants who,
in one environment, have similar fitness but lie on 2 sides of a phenotypic (ie. CRP
activity) optimum (here, this seems to apply to the case of early stop codon mutants
and a set of more weakly affected mutants) (Figure 2.8C). In a 2" environment,
however, their respective positions relative to the optimum are shifted, and large
differences in their fitness become apparent (Figure 2.8B). Another result of such
environmental shifting of activity with respect to an optimum is that mutations can
switch between being beneficial and deleterious in different environments (Figure 2.7,
upper-left quartile of bottom panels; Figure 2.8B-C). The presence of a phenotypic
optimum is in line with known features of the CRP activity-fitness relationship
(Towbin et al., 2017) and the conclusions made from the DFE shapes. Finally, the
extensive breadth of the inferred CRP activity optimum is again hinted at by the
density of mutants lying at the top-right “corner” of the non-monotonic correlation

trends: although cAMP induces large changes in CRP activity, a substantial
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proportion of mutants find their way close to the apparent maximal fitness when it is

both present and absent.

0.0 0.1
0.4

-0.1

0.2

-CAMP + NaCl (log relative fitness)
-0.2
+CAMP + NacCl (log relative fitness)

«
Q o
o

<

3

['e} o~

e o

©

Q - T T T T T y ) y

03 02 01 00 01 02 0.2 0.0 0.2 0.4
-cAMP - NaCl (log relative fitness) +CAMP - NaCl (log relative fitness)
— bR =

g <] 1=034 23] r=032
Q Q
s g
2 2
S o g3
Z o Z O
A a
< s
S 3
£ o F o

<Q S

T T T T T T T T T T T T T T T T
06 -05 -04 -03 -02 -01 00 0.1 -06 -05 -04 -03 -02 -01 00 0.1
-cAMP + NaCl (log relative fitness) -cAMP + NaCl (log relative fitness)

Figure 2.7. Correlations of fitness effects between environments.
Synonymous mutations are shown in green, and mutants containing an early stop

codon (first 150 positions) in orange. Pearson’s correlation coefficients are provided.
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Figure 2.8. Non-monotonous fitness effect correlation and optimum
overshooting. A. The same plot as that in Figure 2.7, bottom left panel, but with
colouring removed for clarity. The region of apparent non-monotony is circled. B. A
hypothetical CRP activity-fitness function is shown, along with the position of 3
hypothetical genotypes, in the absence of cAMP: wildtype (black), a null-mutant
(orange) and a weakly-deactivated mutant (purple). Dashed line shows log fitness in
the absence of CRP activity. Note that the wildtype has a slightly above-optimal
CRP activity (in line with its being carried on a multicopy plasmid in our
experimental system). The weakly deactivating mutation is then slightly beneficial,
and the null-mutation is deleterious. C. As for B, but in the presence of cAMP,
which increases the activity of the non-null-mutants (null-mutants are completely
infunctional, and so do not respond to cAMP). The result is that both mutations
now become similarly beneficial with respect to the wildtype, which causes non-
monotonicity and sign-changes in the correlation between their fitness effects in the

2 environments.

2.2.6 Sequence-fitness maps

Comprehensive sequence-fitness maps provide an unprecedented resource both for

understanding protein evolution and for detailed structural and mechanistic insights. It
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is immediately apparent from ours and others’, for example, that positions can vary
greatly in their overall sensitivity to mutation, and some have more specific constraints
on residue physico-chemistry than others. They may also point to currently unexplored
mutations, positions or whole regions warranting functional characterisation.
Unfortunately, we have not yet had the opportunity to analyse these maps in any
detail, but they are provided here as a community resource (Figure 2.9). We also note
that, when viewed as a classical functional screen (with function here being the highly
integrated trait of fitness), the use of artificial environments designed to transform the
direction and magnitude of fitness effects can be extremely useful: the presence of

activity-increasing cAMP clearly amplifies the signal in many cases.
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Figure 2.9. Sequence-fitness maps for single amino acid substitutions
across the entire length of CRP, in 4 environments. Residues on the y-axes
are ordered according to chemical similarity, and the amber stop codon is at the
top. Red indicates beneficial mutations, white, neutral, and blue, deleterious.
Proline (P) is known to be particularly disruptive at many sites and so can serve as
a biological control of data quality. We find that it stands out clearly, as expected

(right panels, 4" row from top).

2.3 Discussion

2.3.1 Technical considerations

This (unfinished) research project aimed to comprehensively characterise the single
amino acid substitution fitness landscape of a bacterial global transcriptional regulator,
CRP. Two experimental issues warranting discussion were encountered along the way.
The first was experimental realism: monoculture growth measurements of control
strains revealed that, in certain environments, our multicopy genetic system could

100



Harry Kemble — These de doctorat - 2018

behave very differently to the natural single-copy one, with the multicopy wildtype
even being inviable under cAMP concentrations permitting growth of the single-copy
wildtype. One way to alleviate this could be to use a weaker non-native promoter that
matches multicopy expression to the native single-copy expression (Hietpas et al.,
2011). The complex native crp promoter region is an integral part of its function,
however, embedding it within the context of a large regulatory network, and so such a
system would likely lack key features of the natural one. More precise genetic
manipulations of RNA polymerase- or ribosome-binding sites may permit comparable
expression levels between the multicopy and single-copy system while leaving the
regulatory network intact, but this would be a substantial endeavour, with no
guarantees of true equivalence between the experimental and native systems. The ideal
solution would therefore be mutagenesis of crp at its native chromosomal locus (Li et
al., 2016), a difficult task, but one that is becoming more feasible with advances in
genome engineering (Haimovich et al., 2015). The discrepancy between our
experimental system and the natural one means that the reported mutational fitness
effects can of course not be interpreted as a direct estimation of fitness effects in the
natural system, but they can still allow highly relevant evolutionary and functional

inferences to be made.

The second experimental issue was the high level of uncertainty in fitness estimates for

null-like mutants. This is a common problem in large-scale sequencing-based
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competition assays, as their rapid depletion from the population during competition
results in low read counts, and is often partially dealt with by assigning a lower bound
representing the expected fitness of null-mutants. In our case, the problem was
aggravated by low read counts before competition, as well as the possibility that fitter,
misassigned barcode lineages had begun to takeover, as the highly pleiotropic nature of
CRP meant that no non-selective media could be found for library cloning and
outgrowth. This is ultimately a less extreme version of the technical challenge
associated with characterising essential genes, for which, by definition, permissive
growth conditions do not exist. A workaround for these is to maintain the mutated
copy of the gene alongside a functional copy, which can then be “shutoff” or removed
immediately prior to competition (Hietpas et al., 2011). The engineering of such a
system is, again, technically difficult, and the possibility of unwanted residual wildtype
activity remaining during competition is a serious concern, but such a strategy is likely
the most economical one. In terms of the results presented here, the noise is far less
problematic for the cAMP-containing environments (in which null-mutations are

beneficial), and, in general, conclusions can still be reached with an awareness of it.

2.3.2 Underlying phenotype-fitness landscape

Both the DFEs and the correlations of fitness effects between environments allow
inferences to be made regarding an underlying phenotypic dimension. First, the 2 more

reliable amino acid substitution DFEs (those in the cAMP-containing environments)
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show a mode shifted to the right of the DFEs of both synonymous mutations and early
stop codons. The order, by increasing fitness is: synonymous, early stop codons, amino
acid substitutions, implying that complete loss-of-function increases fitness, but
another class of mutations increases fitness even more. As loss-of-function mutations
form a zero-activity bound, this implies non-monotonicity in the CRP activity-fitness
function. One possibility is that the wildtype activity lies in a fitness valley, and these
mutations increase activity and thus fitness. But from our knowledge of CRP’s biology
and the apparently universal predominance of loss-of-function mutations over gain-of-
function ones, a far more reasonable hypothesis is that these mutations decrease
activity to an intermediate level between the wildtype and null-mutants, and this level
lies at an optimum in the activity-fitness function (see Figure 2.8B-C). The large
amplitude of this high-fitness mode and its truncation-like right tail then suggest that
this apparently maximal fitness can be reached by a substantial proportion of mutants,
implying a very broad fitness plateau (ie. a wide range of CRP activities result in near-
maximal fitness). Second, the correlations between fitness effects in environments
differing by ¢cAMP presence show a smooth non-monotonous trend, with a group of
mutations switching between being beneficial and deleterious in the 2 environments.
This is a strong sign of the fact that changing environments shifts the position of
genotypes in the activity-fitness landscape relative to an optimum (Figure 2.8B-C; see
Chapter 4), as would be entirely expected from the known role of cAMP: it is a highly

specific activator of CRP, and so should change its activity while having minimal
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impact on the activity-fitness function itself. Further, the high density of points in the
top-right corner of these correlations again points to the breadth of the inferred fitness
plateau: a large number of mutants lie on it in both the presence and absence of

cAMP, even though it is expected to shift their activity considerably.

The next step of this project will be to test these hypotheses using quantitative
models. Existing knowledge of the CRP activity-fitness landscape comes from
experiments disrupting one of its native feedback loops and controlling activity via
external cAMP (Towbin et al., 2017). These experiments indeed reveal a function with
a single optimum, although not a particularly broad one. The broad plateau inferred
from our results then likely relies on CRP being embedded in its native regulatory
context, and on the fact that mutations can affect CRP activity/cAMP, rather than
simply total CRP activity (You et al., 2013). This raises the tantalising possibility that
global transcriptional regulators, due to their being embedded within networks
typically possessing feedback, may in general be endowed with broad plateaus in their
activity-fitness landscapes (potentially selected for to buffer against small physiological
fluctuations in total activity) (Denby et al., 2012; Marciano et al., 2014, 2016). Such
plateaus could then make them particularly robust to activity-changing mutations, in
turn increasing cryptic genetic variation and the potential for innovation (Wagner,

2012).
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More generally, the strong, smooth trends in the correlations between environments
reiterate the fact that simple global phenotypic dimensions may often explain many of
the observed interactions between mutations and environment (Hietpas et al., 2013; Li
and Zhang, 2018), as well as epistatic interactions (Bank et al., 2015; Diss and Lehner,
2018; Sarkisyan et al., 2016), providing a very promising route to the prediction of

mutational fitness effects.

2.3.3 Gain-of-function mutations

As explained in the introduction, the cAMP-containing environments were designed to
result in gain-of-function mutations, but not loss-of-function ones, having a deleterious
fitness effect (Figure 2.8C). Our results indicate that such mutations may constitute a
significant fraction of the complete set, but we have not yet had the opportunity to
quantify this. To accomplish this, bootstrapping of barcodes will be performed to
obtain confidence intervals on the fitness estimates, allowing the rigorous classification
of significantly deleterious mutations. Such a classification would provide a lower
bound on the number of mutations that have an effect other than simply reduction of
wildtype CRP activity (a lower bound because these mutations could also confer a net
fitness benefit, although this would presumably be rarer). Mechanistically, these
mutations could act by increasing the existing activity of CRP, as for the well-known
mutations making it constitutively active in the absence of cAMP (Youn et al., 2006).

Alternatively, they could create a novel (deleterious) function. Novel functionality
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affecting fitness may not be as rare as one would think, due to CRP’s multiple
intermolecular interfaces (Kolb et al., 1993): for example, mutations affecting RNA
polymerase-contacting regions but not the DNA-binding domain could result in CRP
blocking transcription where it used to activate it (similarly to the novel function of
dCas9 (Dominguez et al., 2016)), or sequestering RNA polymerase. Mutations could
also alter CRP’s DNA binding repertoire (Shultzaberger et al., 2012). Further,
although not “gain-of-function” mutations, those causing more general stresses such as
toxic misfolding would also be included in this category (Bednarska et al., 2013).
Ultimately, such an analysis would provide an assessment of the proportion of
mutations that either increase wildtype activity or are not well described by a simple,
one-dimensional phenotype-fitness function (ie. CRP activity), both of which bear

important implications for evolution and the predictability of mutation effects.

2.3.4 Sequence-fitness maps as a functional resource

The full-length sequence-fitness maps provided here should provide valuable
information for protein biochemists. It is complementary to maps based on in vitro
assays (Fowler and Fields, 2014), pointing to variants and regions relevant for fitness.
Comparisons between such different types of maps could also be extremely insightful,
revealing how the enormously complex in vivo context of a global regulator and its

relationship to fitness transforms conclusions based on in vitro functional biochemistry.
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2.4 Methods

General microbiology and molecular biology

Lysogeny Broth (LB) powder, agar, salts, sugars, growth supplements and antibiotics
were all purchased from Sigma-Aldrich. Bacteria were cultured in LB, unless otherwise
stated. M9 base medium consisted of 1X M9 salts supplemented with 1TmM MgSO4
and 100 pM CaCl2. Glucose was used at a concentration of 0.4% w/v throughout.
Ampicillin (amp) was used at 100 pg/ml, chloramphenicol (cm) at 10 pg/ml and
streptomycin (str) at 50 pg/ml. Bacterial cultures were grown at 37°C (with shaking at
200 rpm for liquid cultures; Multitron, Infors HT'), unless otherwise stated, and culture
stocks were stored at -80°C in LB with 40% glycerol. For electroporation, DNA was
added to 50 nl homemade electro-competent cells (unless otherwise stated), transferred
to a lmm-gap electroporation cuvette (VWR) and submitted to a pulse of 1,800 V
(Electroporator 2510, Eppendorf). Cells were immediately transferred to fresh LB for
recovery at 37°C (unless otherwise stated) with shaking for 30-90 minutes, before being

plated on the appropriate selective media and left to grow overnight.

All enzymes and molecular biology reagents were purchased from NEB, unless
otherwise stated. Primers were purchased from IDT or Eurofins, and designed with the
help of Primer3 (Rozen and Skaletsky, 2000). For sensitive applications like barcoding

and NGS library preparation, primers were ordered HPLC-purified, otherwise they

107



Harry Kemble — These de doctorat - 2018

were ordered desalted. UltraPure agarose was supplied by Invitrogen, and all agarose
gels were stained with SYBR Safe (Thermo Scientific) and visualised with a GelDoc
XR+ imager (Bio-Rad). The GeneRuler 1kb Plus ladder (Thermo Scientific) was used

for DNA fragment size estimation.

All plasmids used in this study, excluding the mutant library, are detailed in Table
2.51. DNA fragments used in cloning are detailed in Table 2.52. Primers, excluding

those used for library mutagenesis, are provided in Table 2.53.

Plasmid construction

Two plasmids, pBC -crp” and pBC -crp, were constructed for the initial optimisation
of experimental conditions, with an intermediate plasmid, p-crp*, also serving as the
template for library mutagenesis. Plasmid pBC -crp*is derived from pSkunk3-BLA
(Firnberg and Ostermeier, 2012), a low/medium-copy phagemid containing a bacterial
p15A oriand a phage f1 ori (necessary for the library mutagenesis step), and was
constructed by replacing the bla gene cassette used in the original study with a crp
cassette. The crp cassette was based on that from (Zhang et al., 2012), containing the
complete native crp promoter region (including two CRP-cAMP binding sites, four Fis
binding sites and three annotated crp promoters), the ORF (with 20bp of its upstream
ribosome binding site-containing region and 16bp of its downstream region) and an
ectopic rrnB T1 terminator for strong transcriptional termination, with these 3

components being separated by restriction sites. The original aadA1 Str/Sp-resistance
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cassette from pSkunk3-BLA was then swapped with a bla B-lactamase cassette
attached to a short random DNA barcode, to be comparable with the mutant library
design (see Library Creation). Plasmid pBC-crp was derived from pBC-crp* by
excision of the entire crp cassette followed by self-ligation of the plasmid backbone.
Plasmids, DNA fragments and PCR primers used in the construction of these plasmids

are detailed in Tables S1-3, respectively, and the detailed cloning methods follow.

The DNA fragments used to construct plasmids p-crp”, pBC-crp” and pBC-crp come
from either PCR amplification or from direct restriction digestion of purified plasmid
DNA, and were joined by either standard restriction-ligation or by Gibson Assembly
(Gibson et al., 2009) (in which case, overlaps of ~40 nucleotides were used). PCR
amplifications were all performed with Phusion Hot Start II High-Fidelity DNA
Polymerase (Thermo Scientific) in its High-Fidelity buffer, following the
manufacturer’s recommendations. Restriction enzymes were used according to the
manufacturer’s instructions. After PCR amplification and/or digestion, DNA
fragments were either verified by electrophoresis and column-purified (QIAquick PCR
Purification Kit, QIAGEN) or, when necessary, gel purified (QIAquick Gel Extraction
Kit, Qiagen). Gel-purification was always followed by a 2nd clean-up (QIAquick PCR
Purification Kit, QIAGEN) to improve DNA quality for ligation. When DNA termini
blunting was necessary, mung bean nuclease (NEB) was applied before gel extraction,

following the manufacturer’s recommendations. For gel extractions, agarose gels were
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stained with SYBR Safe (Thermo Scientific), and DNA was visualised with blue light
to avoid UV-induced DNA damage (Blue Transilluminator, Pearl Biotech). A
NanoDrop ND-1000 spectrophotometer (Thermo Scientific) was used to determine
DNA concentration for all fragments prior to ligation/Gibson Assembly. Standard
ligation and Gibson Assembly were performed using T4 ligase and Gibson Assembly
Master Mix (NEB), respectively, according to the manufacturer’s recommendations
(T4 ligase was then inactivated by heating at 65°C for 10 mins). In both cases, DNA
was subsequently microdialysed against water for > 30 mins (MF-Millipore, Merck),
and 1-5 pl were electroporated into 50 pl electrocompetent cells. DH5a AaraBA was
used as the cloning strain in all cases. After electroporation, cells were recovered in 1
ml LB for 30-90 mins at 37°C with shaking at 200 rpm, plated on LB-agar in the
presence of the antibiotic indicated in Table 2.51 and incubated overnight at 37°C.
Plasmid DNA was purified from several colonies (Plasmid Mini Kit, QITAGEN) and

verified by both restriction analysis and Sanger sequencing of the ligated region.

Strain engineering

The plasmid host strain for both monoculture growth measurements and mutant
library competition assays was FE. coli K12 MG1655 Acrp. The crp gene deletion was
performed in E. coli K12 MG1655 (A. Couce; Coli Genetic Stock Centre #6300) using
the standard method of Datsenko and Wanner (Datsenko and Wanner, 2000). E. coli

K12 MG1655 was made electrocompetent, electroporated with 10 ng plasmid pKD46
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DNA, and transformants were selected on LB-agar with 100 pg/ml ampicillin at 30°C.
Several colonies were then re-isolated under the same conditions. The cat
chloramphenicol-resistance cassette was PCR-amplified from pKD3 (Datsenko and
Wanner, 2000) using primer pair KO-crp-fwd and KO-crp-rev and a 2:1 mix of
GoTaq/Pfu DNA polymerases (Promega). PCR product was verified by 1% agarose gel
electrophoresis, column-purified (QIAquick PCR Purification Kit, QITAGEN) and
spectrophotometrically quantified (NanoDrop ND-1000). A pre-culture of a single
pKD46-transformed colony was grown overnight (LB-amp) at 30°C and then diluted
100x into LB-amp with 0.2% L-arabinose and grown at 30°C to an OD600nm of ~0.7
(BioMate 3S, Thermo Scientific; 3-5 hours). The culture was made electrocompetent,
electroporated with ~200 ng of the purified PCR product, and recombinants were
selected on LB-agar with 10 pg/ml chloramphenicol at 37°C, for curing of pKD46.
Several colonies were then re-isolated under the same conditions, and tested in parallel
for pKD46 curing by plating on LB-amp and checking for colonies after an overnight
growth at 30°C. Several of the re-isolated colonies were verified by colony-PCR, using
3 primer pairs as in (Datsenko and Wanner, 2000). The gene-specific primers were
verif-crp-fwd and verif-crp-rev, and the common cat primers were cI and ¢2 from
(Datsenko and Wanner, 2000). The 3 primer pairs were thus: verif-crp-fwd/verif-crp-
rev, verif-crp-fwd/cl and verif-crp-rev/c2. GoTaq DNA polymerase (Promega) was
used for amplification, following the manufacturer’s recommendations, and PCR

products were analysed by agarose gel electrophoresis (1.5%). The cat cassette was
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then removed as described in (Datsenko and Wanner, 2000). For this, a pre-culture of
a single recombineered colony was grown overnight (LB-cm, 37°C) and then diluted
100x into LB-cm and grown at 37°C to an OD600nm of ~0.7 (BioMate 3S, Thermo
Scientific; 2-4 hours). The culture was made electrocompetent, electroporated with 10
ng plasmid pCP20 DNA, and transformants were selected on LB-agar with 100 pg/ml
ampicillin at 30°C. Several colonies were then re-isolated under the same conditions,
and then again in the absence of ampicillin at 42°C, to cure pCP20. Finally, several
colonies were streaked in parallel on LB (37°C, purification), LB-cm (37°C, verify cat
loss) and LB-amp (30°C, verify pCP20 loss). The loss of the cat cassette through FRT
recombination was verified molecularly for several clones by colony-PCR, using the
same primer pairs and conditions described above for cat insertion verification. The
PCR product resulting from amplification with primer pair verif-crp-fwd/verif-crp-rev
was also Sanger-sequenced (GATC; using the amplification primers) as a final

verification.

Monoculture Growth Measurements

Optical density was monitored using a home-made turbidometer which allows the
quasi-continuous, parallel turbidimetric measurement of cultures growing in standard
glass culture tubes (5ml cultures in 15ml tubes) in a standard shaking incubator. Each
tube has its own light source (~600 nm LED) and phototransistor, and measurements

are recorded every 10 seconds for a range of emitted light intensities. Different light
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intensities provide optimal results for different cell density ranges, and so appropriate
intensities can be selected after data collection depending on the growth phase of
interest (lower intensity for lower cell density, and visa versa). The apparatus offers
several advantages over turbidometric microplate readers, the current method of choice
for high-throughput growth measurements of microorganisms in liquid culture. First,
the two major problems of growth in microplates, sample evaporation and low aeration
(Hermann et al., 2003), are avoided due to the use of standard laboratory culture
volumes. Aeration is further improved as the setup allows OD to be measured during
continuous agitation, whereas microplate readers require shaking to be stopped for
each reading. The standard laboratory conditions used in our system thus allow for
better cell growth than do microplates, resulting in a more stable exponential phase
and so enabling classical exponential growth rate estimates, rather than the
alternative, inherently less stable metric of maximum growth rate. Second, the ability
of our apparatus to measure OD during continuous agitation allows measurements to
be taken at extremely high frequency (“quasi-continuously”), allowing easy noise-
filtering when necessary and increasing the confidence of growth parameter estimates.
Finally, due to the longer path-length in our set-up and the use of a range of light
intensities, it has a lower detection threshold and so allows growth to be accurately
observed at lower cell densities. This permits growth rates to be estimated from earlier

in the exponential phase, helping to avoid the many pitfalls of using turbidity to
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estimate cell number at high cell density/after long growth times (Stevenson et al.,

2016).

For these growth assays, 5 ml M9 + 0.4% glucose + 100 pg/ml ampicillin was
inoculated with the appropriate strain in a 50 ml Falcon tube and grown overnight at
37°C, with shaking at 200 rpm. Overnight cultures were diluted 1,000x into 5 ml of the
appropriate medium (same as the pre-culture medium, with or without the indicated
concentrations of NaCl and cAMP) in 15 ml glass culture tubes, and growth was
monitored with the instrument described above at 37°C and 200 rpm shaking. Tube
positions were randomised for each trial in case of any subtle positional effects. Growth
curves were processed using a home-made R (version 3.4.3) script, and exponential
growth rates were estimated using the lm() function, taking a universal (low) OD

window (0.02 < ODyep < 0.14).

Library Creation

The initial crp mutant library was constructed by the PFunkel method (Firnberg and
Ostermeier, 2012) using a gene-tiling approach (Firnberg and Ostermeier, 2012;
Kowalsky et al., 2015), resulting in 3 pooled sub-libraries each consisting of mutations
targeted to a different third of the ORF. First, uracil-containing single-stranded DNA
was produced from plasmid p-crp* following (Firnberg and Ostermeier, 2012), except

for the final centrifugation step which was performed at 26,200 xg for 1h at 4°C to

114



Harry Kemble — These de doctorat - 2018

increase yields. DNA concentration was quantified using the Qubit ssDNA Assay Kit

(ThermoFisher Scientific).

For each of the 3 sub-libraries, PFunkel mutagenesis was then carried out as described
in (Kowalsky et al., 2015), but with an amplification step of 20 mins, using 1 pg of
ssDNA as template in a total volume of 100 pl. Mutagenic primers, each containing a
single NNS triplet and together covering every codon between the crp start and stop
codon, were designed using the online QuikChange Primer Design module (Agilent,
Santa Clara, CA), as recommended in (Kowalsky et al., 2015). Mutated DNA was
purified with the innuPREP PCRpure Kit (Analytik Jena) and eluted in 15 ul of
DNAse/RNAse free water. 2 ul were then electroporated into 20 nl of electrocompetent
DHb5a cells, which were incubated in 500 pl of LB for 1 hour at 37°C with shaking at
200 rpm. These cells were then plated on LB-agar with 50 pg/ml streptomycin and
incubated overnight at 37°C. Enough transformations were performed to obtain
~40,000 — 60,000 colonies for each sub-library, to avoid loss of complexity. For each
sub-library, plasmid DNA was purified from 4 colonies (Plasmid Mini Kit, QIAGEN)
and the crp region was Sanger-sequenced (GATC) as a preliminary test of library
quality, which was satisfactory. In sub-libraries 1 (in which the first third of crp is
mutated) and 3, 3 of the clones showed a single unique NNS codon substitution, and 1
was wildtype. In sub-library 2, 3 of the clones showed a single unique NNS codon

substitution, and 1 showed 2 NNS codon substitutions. Two clones in total showed
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signs of a SNP, which could result either from accidental isolation of multiple clones,
or from a single clone containing two different sequences. Neither case is problematic,
as plasmid DNA from all clones was then pooled together for the barcoding step.
Finally, for each sub-library, all colonies were scraped off the agar into 40% LB-
glycerol (3 mL/plate), mixed thoroughly, and mixed plasmid DNA was directly

purified from 800 pl of this suspension (Plasmid Mini Kit, QTAGEN).

Library Barcoding

Association of mutations with short unique DNA barcodes has proved a powerful
method for the deep-mutational scanning of long DNA sequences (Mavor et al., 2016;
Sarkisyan et al., 2016). In addition, their high diversity helps overcome the problem of
PCR and sequencing errors in the mutated gene, and they provide internal replicates
for each genotype. We therefore tagged our plasmid sub-libraries with barcodes
containing 20 random nucleotides, split into 4 blocks of 5 (Levy et al., 2015) to aid
their alignment to a reference: N;ATN;ATN;ATN;. Barcodes were inserted
immediately downstream of crp’s T1 transcriptional terminator, and so are expected to

be effectively neutral for fitness.

In detail, primers 0KH160309a and oKH160104b (Table 2.S3) were used at a
concentration of 0.5 nM each to PCR-amplify bla from plasmid pKD3 (Datsenko and
Wanner, 2000), using Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo

Scientific) in its High-Fidelity buffer, following the manufacturer’s recommendations.
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Cycling conditions were: 98°C for 30 secs, followed by 30 cycles of 98°C for 10 secs,
60°C for 30 secs and 72°C for 25 secs, with a final extension step of 72°C for 3 mins.
PCR product quality was checked by agarose gel electrophoresis, after which the
product was column-purified (QIAquick PCR Purification Kit, QITAGEN) and
quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). The
purified product was then digested for 1 hour with Spel-HF restriction enzyme (NEB
CutSmart buffer), while each of the purified plasmid sub-libraries obtained above was
digested for 1 hour with BstZ17I and Spel-HF restriction enzymes (NEB CutSmart
buffer). Digested DNA was again column-purified (QIAquick PCR Purification Kit,
QIAGEN) and quantified with a NanoDrop ND-1000 spectrophotometer. 60 ng of each
digested sub-library was then ligated in a 1:4 molar ratio with the bla/barcode-
containing insert in a total volume of 20 pl. The ligation was carried out at 16°C
overnight using T4 DNA ligase (NEB T4 DNA ligase reaction buffer), which was then
deactivated by heating at 65°C for 10 mins. The ligate was microdialysed against
water for 30 mins (MF-Millipore, Merck), after which several transformations were
performed as follows: 1-2 ul were electroporated into 151l commercially-prepared
ElectroMAX DHb5a-E electrocompetent cells (Invitrogen); cells were recovered in 500
nl LB for 30 mins (to minimise cell replication) at 37°C with shaking at 200rpm,
plated on LB-agar with 100 pg/ml ampicillin and incubated overnight at 37°C. For
each sub-library, plasmid DNA was purified from 2 colonies (QIAquick PCR

Purification Kit, QTAGEN) for Sanger sequencing (GATC) of the ¢rp and barcode
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regions as a preliminary test of barcoding efficiency. All 6 colonies contained a unique,
correctly inserted barcode. Of the crp sequences, 1 of the 6 was wildtype, 1 contained 2
NNS codon substitutions and the other 4 contained single, unique NNS codon
substitutions. Some clones again showed signs of SNPs, but this was not problematic,
as plasmid DNA from all clones would again be purified and pooled in the next step.
For each sub-library, an estimated 200,000 colonies (each expected to carry a unique
barcode) were scraped off the agar into 40% LB-glycerol (3 ml/plate), and plasmid
DNA was purified directly from 800 yl of each resulting cell suspension (QIAprep Spin

Miniprep Kit, Qiagen) after thorough mixing.

Barcode-mutation association: sample preparation

To reveal the crp ORF sequence linked to each barcode, each plasmid sub-library was
PCR~amplified with a different forward primer binding just upstream of the mutated
crp region and a common reverse primer binding just downstream of the barcode. A
standard 2-step PCR protocol was used to add the technical sequences necessary for
paired-end Illumina MiSeq sequencing of barcode-crp amplicons. Both PCR steps (<
15 cycles each) were performed in emulsion (Micellula DNA Emulsion & Purification
Kit, Roboklon) to avoid recombination that would create false barcode-mutation
associations, under conditions optimised according to the manufacturer’s
recommendations, and using KAPA HiFi HotStart ReadyMixPCR Kit (Kapa

Biosystems).
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For the first PCR, primer pairs were oCRPlink-1-fwd/oCRPlink-rev for sub-library 1,
oCRPlink-2-fwd/oCRPlink-rev for sub-library 2, and oCRPlink-3-fwd/oCRPlink-rev
for sub-library 3 (Table 2.53). These primers contain adaptors for a 2nd PCR at their
5" extremities, followed by fully randomised hexamers added to increase amplicon
diversity to facilitate MiSeq flow-cell clustering. Purified products from the 1% PCR
were each quantified fluorometrically (dsDNA HS Assay Kit with a QuBit 2.0, Thermo
Scientific), and used as templates in the 2nd emulsion PCR step, which employed a
different pair of P5/P7 Nextera Index Kit primers (Illumina) for each sub-library
(these add Illumina adaptors and sub-library multiplexing indexes). Each resulting
amplicon sub-library was gel-purified (QIAquick Gel Extraction Kit, Qiagen) using a
1.5% agarose gel and a 20,000X dilution was quantified by qPCR using KAPA Library
Quantification Kit for Illumina (Kapa Biosystems) on a LightCycler 480 (Roche),

following the manufacturer’s recommendations.

The amplicon sub-libraries are composed of DNA fragments of the structure: P5 - i5 -
N¢ PCR tag — crp region - Ny plasmid barcode - Ng PCR tag - i7 - P7, with the crp
region containing the whole ORF in sub-library 1 (total amplicon length ~ 1.2 kb), the
C-terminal two thirds in sub-library 2 (total amplicon length ~ 1 kb), and the C-
terminal third in sub-library 3 (total amplicon length ~ 0.7 kb). 300nt paired-end
MiSeq sequencing allowed us to sequence the entire mutated region of each crp sub-

library (and slightly further) on Read 1 and the plasmid barcode on Read 2 (note that
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Reads 1 and 2 do not overlap). For this, a 600-cycle MiSeq Reagent Kit v3 (Illumina)
was used, and DNA was loaded at a concentration of 10 pM with a 15 % PhiX DNA
spike-in (PhiX Control v3, Illumina). Several runs were performed, and preliminary
quality filtering and demultiplexing by the standard MiSeq software package
(Illumina) resulted in an output of ~10 M read pairs for each sub-library, giving an

expected coverage of ~50X for each plasmid barcode.

Barcode-mutation association: analysis

MiSeq reads were processed using the Mothur (Schloss et al., 2009) (version 1.37.6)
software package via the following steps: reads were quality-filtered by size (>250
bases), number of uncalled bases (<3 Ns) and length of the longest homopolymer
stretch, another indicator of overall read quality (<13 bases). Sequences of the
mutated region of crp were extracted from Read 1, and plasmid barcode sequences
from Read 2, by Needleman alignment to reference sequences (default alignment
parameters). Reads for which either the crp or barcode region contained insertions or
did not generate a full alignment with the reference were discarded. The Mothur
Precluster algorithm was then used to cluster barcode sequences differing by a
Hamming distance of 1, with the aim of correcting for PCR and sequencing errors (the
potential barcode diversity is so high (> 1x10'?) that the presence of immediately
neighbouring sequences is very likely due to these errors). The algorithm uses sequence

abundance to decide the “true” (majority) barcode sequence for each cluster, and to
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decide where a sequence clusters if it has >1 immediate neighbour. After de-gapping
and re-grouping barcode sequences to account for any alignment ambiguities resulting
from small deletions, barcode clusters were used to build a dictionary assigning each
“true” barcode sequence to a consensus sequence for the mutated crp region. Barcode
clusters were only considered if they contained >4 reads, and an associated consensus
crp region sequence was only assigned if the most common base at every considered

crp position occurred at a frequency of > 0.75.

Transformation of host strain with plasmid library

To move the barcoded plasmid sub-libraries into the final host strain, while avoiding
the creation of transformants harbouring multiple unique plasmids (Goldsmith et al.,
2007), several transformations were performed as follows, with plasmid concentration
kept fairly low: 10 ng of each purified plasmid sub-library obtained above were
electroporated into 50 pl electrocompetent MG1655 Acrp cells; cells were recovered in
500 pl LB for 30 mins at 37°C with shaking at 200rpm, dilutions were plated on LB-
agar with 100 pg/ml ampicillin and incubated overnight at 37°C. For each sub-library,
an estimated 1-3 million colonies were scraped off the agar into LB-glycerol (40%), and

this cell suspension was aliquoted and stored at -80°C after thorough mixing.

Bulk competition assays
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The final mutant sub-libraries (MG1655 Acrp transformed with barcoded plasmid sub-
libraries) were pooled and competed over ~30 mean generations (~3 days) in the 4
different competition media. Cell density was kept low during competition (ODgoy <
0.15) by serial transfer into fresh medium, in order to maintain the culture in
exponential phase and to avoid large changes in medium composition. Large volumes
of media (100 ml) were used to avoid severe population bottlenecks during serial
transfer (>10% cells each transfer). Plasmid DNA was purified from the culture at
several time-points for HiSeq sequencing of plasmid barcodes. Plasmid barcode
abundance serves as a proxy for the abundance of cells carrying that particular
barcode. The change in frequency over time of a barcode thus provides an estimate of
competitive fitness for the lineage carrying that barcode (Hietpas et al., 2011). Since
we know the crp sequence associated to each barcode, this in turn provides us with a

distribution of fitness estimates for every mutant.

The base competition medium (BCM) consisted of M9 + 0.4% glucose, with 100 pg/ml
ampicillin to select against plasmid loss. The 4 competition assays were performed in:
BCM, BCM + 0.7 mM cAMP, BCM + 100mM NaCl, and BCM + 100mM NaCl +
1.2mM cAMP. In detail, 1 ml of frozen cell stock of each of the sub-libraries was
washed by pelleting, resuspending in 50 ml M9 + 0.4% glucose, pelleting again, and
resuspending again in M9 + 0.4% glucose. Cell density of each washed sub-library was

quantified (BioMate 3S, Thermo Scientific), and they were then co-diluted in equal cell
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quantity into 200 ml BCM (in a 500 ml container) to result in a total blank-subtracted
ODgoo ~0.05 (200 pl read by Varioskan microplate reader, Thermo Scientific). This
common starting-culture was recovered for ~5 hours at 37°C with shaking at 200 rpm,
reaching an ODgg of 0.11 (to), before being concentrated 50X by pelleting 100 ml and
resuspending in 2 ml BCM. 270 nl of this cell concentrate was then diluted into 100 ml
of each competition medium (in 250 ml containers), aiming for an ODey of ~0.015. In
all cases, media were pre-warmed at 37°C prior to transfer to keep temperature
constant and detect any contamination. The 4 cultures were left to grow (37°C, 200
rpm) to an ODgy of ~0.12 (~3 mean generations; t1), and 6.25 ml of each culture was
then transferred to 93.75 ml fresh competition media (16X dilution). The 4 cultures
were again left to grow to an ODgy of ~0.12 (~4 mean generations; t2), and the transfer
procedure was repeated until ts, for a total of ~31 mean generations of competition.
The precise number of mean generations between each sampling was calculated from
measured ODgy values and used for estimating fitness. At every transfer, plasmid DNA
was also purified from a 50 ml sample of culture (QIAprep Spin Miniprep Kit, Qiagen)
and quantified fluorometrically (dsDNA HS Assay Kit with a QuBit 2.0, Thermo
Scientific) for eventual HiSeq sequencing of plasmid barcodes. The rest remaining after
this and transfer was pelleted, resuspended in LB-40% glycerol and stored at -80°C as

an archive.

Barcode-sequencing of competed mutants: sample preparation
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To track plasmid barcode frequencies throughout the competition experiments,
barcodes were PCR-amplified from plasmid DNA in 2 steps, as for Barcode-mutation
association, to add technical sequences necessary for 100nt overlapping paired-end
[Mlumina HiSeq sequencing. This was performed for the sample from time-points to, ti,

ts, t4, and ts (approximately 0, 3, 7, 15 and 31 mean generations).

In detail, at each selected time-point, 20 ng of purified plasmid DNA was PCR-
amplified in a 40 pl reaction using 0.6 pM each of primers oCRP-BCseq-fwd and
oCRP-BCseq-rev (Table 2.S3). These primers contain adaptors for a 2nd PCR at their
5" extremities, followed by fully randomised hexamers to increase amplicon diversity,
as in Barcode-mutation association. In this case, the randomized hexamers were also
used to detect PCR duplicates arising from the 2nd PCR (Levy et al., 2015). KAPA
HiFi HotStart ReadyMixPCR Kit (Kapa Biosystems) was used for amplification,
under the following cycling conditions (cycle number was kept low to reduce PCR
errors and artefacts): 95°C for 3 mins, followed by 13 cycles of 98°C for 20 secs, 58°C
for 30 secs and 68°C for 30 secs, with a final extension step of 68°C for 2 mins.
Amplicons (~200 bp) were gel-purified (QIAquick Gel Extraction Kit, Qiagen) using a
2% agarose gel and quantified fluorometrically (dsDNA HS Assay Kit with a QuBit
2.0, Thermo Scientific). A 2nd 40 nl PCR was then performed using ~8 ng of each
amplicon as template and 0.6 pM each of a P5 and P7 Nextera Index Kit primer

(Illumina) to add Illumina adaptors and multiplexing indexes. KAPA HiFi HotStart
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ReadyMixPCR Kit (Kapa Biosystems) was again used for amplification, under the
following cycling conditions: 95°C for 3 mins, followed by 13 cycles of 98°C for 20 secs,
55°C for 30 secs and 68°C for 30 secs, with a final extension step of 68°C for 5 mins.
These ~300 bp amplicons, of the structure, P5 - i5 - Ng PCR tag - Ny plasmid barcode
- N¢ PCR tag - i7 - P7, were gel-purified (QIAquick Gel Extraction Kit, Qiagen) using
a 2% agarose gel and sent to IntegraGen (Evry, France) for qPCR-based
quantification, equimolar pooling and 100nt paired-end HiSeq-4000 sequencing
(Illumina). Preliminary quality filtering and demultiplexing (Integragen, Evry, France)
resulted in ~19-43 million read pairs per time-point per competition experiment,

giving, for each point, an expected barcode coverage of ~32-72X.

Barcode-sequencing of competed mutants: analysis

HiSeq sequencing reads were processed using the Mothur (Schloss et al., 2009) (version
1.37.6) software package by the following steps: Forward and reverse reads were joined
into contigs using Mothur’s make.contigs command with the default parameters.
Contigs were then quality-filtered by size (<131bp, as longer contigs imply forward
and reverse reads could not be properly overlapped), number of uncalled bases (no Ns)
and length of longest homopolymer stretch, an indicator of overall read quality (<9
bases). To remove the majority of PCR duplicates arising from the 2nd PCR (made
possible by randomised hexamers introduced on each side of the barcode during the 1st

PCR (Levy et al., 2015)), if a particular complete contig was present more than once,
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only one copy was kept. Barcode sequences were then extracted after aligning contigs
to the reference sequence (Needleman global alignment). Reads containing insertions or
not generating a full alignment with the reference were discarded. After de-gapping
and re-clustering barcode sequences to account for any alignment ambiguities resulting
from small deletions, the number of occurrences of each barcode was tabulated across
all time-points for each competition experiment. Finally, a custom R (v.3.4.3) script
was used to merge these barcode counts tables with the barcode- mutation dictionary
generated in Barcode-mutation association. Only barcodes associated to wildtype crp
DNA sequences or those containing a single mutated codon, and containing no
mutations in the sequenced region outside the ORF, were considered for further

analysis.

Estimation of competitive fitness from Illumina sequencing data

We found that competitive fitness could be rather inconstant over the course of
competition in the cAMP-containing environments (Figure 2.4). Moreover, by ts, a
substantial number of lower-fitness mutants begin to escape detection completely, and
so to avoid any bias in fitness estimates we consider only the frequency changes
between t; and t. for all environments. Mutations were analysed at the level of either
DNA (for analysis of synonymous effects) or amino acid sequence. Under either
definition, we began by removing outlier barcodes associated to the wildtype and all

mutants using a 2-tailed Poisson test for P(counts, | counts;,, 1) and
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P(counts;,| counts; ,A), with A computed from the ratio of the sum of all relevant
barcode counts at t; and at t.. If the lowest of the 2 log p-values was less than -10, the
barcode was declared an outlier and removed. For each mutant, the remaining barcode
counts were summed and normalised to total remaining wildtype barcode counts, and
mutant log relative fitness, F'*, was computed as the log ratio of this frequency at t. to
that at ti, normalized by the number of mean generations that had elapsed between
them. Mutants associated to < 5 unique barcodes, or whose total t; abundance was <
10 read counts, were considered unreliable and discarded. All steps of fitness analysis

were performed with custom R (v.3.4.3) scripts.
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Supplementary Tables

Plasmid name

Description

DNA fragments
used for
construction
(this study)

Construction
method /
Supplier

Antibiotic
used for

selection

pKD3

(Datsenko and
Wanner, 2000)

pKD46

(Datsenko and Wanner,

2000)

pCP20

(Datsenko and Wanner,

2000)

pSkunk3-BLA

(Firnberg and
Ostermeier, 2012)

p-crp’

pBC-¢rp?

pBC-crp

PCR template plasmid for Datsenko-Wanner gene
deletion, containing a cat Cm-resistance cassette
flanked by FRT sites and an R6Ky pir-dependent ori.
Also used as PCR template for bla amplification in

library barcoding step

Plasmid with L-arabinose-inducible A Red expression
cassette for Datsenko-Wanner recombineering;
temperature-sensitive ori (repAl01ts) for easy curing

Plasmid with yeast FLP recombinase expression
cagsette for Datsenko-Wanner resistance-gene
excision; temperature-sensitive ori (repA101ts) for

easy curing

Phagemid containing p154 and f1 oris, bla B-
lactamase gene and aadAl Str/Sp-resistance gene.
Used for backbone of plasmid library and all plasmids
constructed in this study

pSkunk3-BLA backbone, with ble replaced by a erp
cassette; used as template for crp mutagenesis

p-crp’, with sadAl replaced by a bla cassette linked
to a random DNA barcode; used in initial
optimisation of experimental conditions

pBC-crp’, with entire erp cassette excised; used in

initial optimisation of experimental conditions

aKH150603a,
aKH150603b,
aKH150603c,
pSKUNK-bkh

aKH160316a, p-
crp’-bkb

pBC-¢rp’-bkh

Lab stocks

Lab stocks

Lab stocks

E. Firnberg and
M. Ostermeier

Gibson Assembly
(Gibson et al.,
2009)

Restriction-
ligation

Restriction-
ligation

Cm

Amp

Amp

Str

Str

Amp

Amp

Table 2.S1. Plasmids used in this study. Amp: ampicillin (100 pg/ml); Cm:
chloramphenicol (10 pg/ml); Str: streptomycin (50 pg/ml).
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DNA fragment name Description/Creation PCR template or Primers used Restriction
digested plasmid for PCR enzymes used
(blank if (either post-
fragment PCR or
comes directly directly on
from plasmid plasmid)
digestion)
aKH150603a Entire native crp promoter region, with an upstream extension E. coli K12 oKH150603a, -
overlapping the EcoRV extremity of pSKUNK-bkb and a MG1655 genomic oKH150603h
downstream Sacl site introduced. PCR-amplification (upstream and DNA
downstream extensions introduced on primers)
alKH150603b crp coding sequence, along with native upstream and downstream E. coli K12 oKH150603¢, -
regions, with an upstream extension overlapping aKH150603a and &~ MG1655 genomic oKH150615d
downstream extension overlapping aKH150603c. PCR-amplification DNA
(upstream and downstream extensions introduced on primers)
aKH150603¢ rrnB T1 transcriptional terminator, with an upstream Kpnl site E. coli K12 oKH150603e, -
introduced and a downstream extension overlapping the Spel MG1655 genomic oKH150603f
extremity of pSKUNK-bkh (upstream and downstream extensions DNA
introduced on primers)
aKH160316a bla cassette, with a randomised barcode region inserted downstream pKD3 oKH160309a, Spel
followed by a Spel site, and an upstream extension containing a oKH160104h

p-crp’-bkb

pBC-crp’-bkb

pSKUNK-bkh

short, region missing from p-crp’-bkb

p-crp’ backbone, with cadA1 excised. Double-digest of p-crp’ p-crp’ - BstZ171, Spel

followed by column purification

pBC-¢rp” backbone, with entire ¢rp cassette excised. Double-digest pBC-erp - EcoRV, Spel
of pBC-erp” followed by mung hean nuclease blunting and gel
extraction
pSkunk3-BLA backbone, containing oris and aadA1 Str/Sp- pSkunk3-BLA - EcoRV, Spel

resistance gene. Double-digest of pSkunk3-BLA followed by gel
extraction

Table 2.S2.

DNA fragments used for cloning in this study.
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Primer name

Sequence (5" -> 37)

cl (Datsenko and Wanner,
2000)

c2 (Datsenko and Wanner,
2000)

KO-crp-fwd

KO-crp-rev

oCRP-BCseq-fwd

oCRP-BCseq-rev

oCRPlink-1-fwd

oCRPlink-2-fwd

oCRPlink-3-fwd

oCRPlink-rev

oKH150603a

oKH1350603b
oKH150603¢
oKH150603e
oKH150603f
oKH150615d
oKH160104b
oKH160309
verif-crp-fwd

verif-crp-rev

TTATACGCAAGGCGACAAGG

GATCTTCCGTCACAGGTAGG

GGCGTTATCTGGCTCTGGAGAAAGCTTATAACAGAGGATAACCGCGCATGGTGTAGGCTGGAGCTGCTTC

CTACCAGGTAACGCGCCACTCCGACGGGATTAACGAGTGCCGTAAACGACCATATGAATATCCTCCTTAG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNCTACAAACTCTTCCTGTCGTC

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNCAAGATCCGGCCACGATGC

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNCATAACAGAGGATAACCGCG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNTCTCCTATCTGAATCAGGGTG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNCAACCTGGCGTTCCTCGAC

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNGTCCGGCGTAGAGGATCTG

AGCCAGAAAACCGAATTTTGCTGGGTGGGCTAACGATATCAGAGTACGCGTACTAACCAAATCGCGCAAC

TTATGAGCTCTCTCCAGAGCCAGATAACGCCGCTGTCT

AGAGACAGCGGCGTTATCTGGCTCTGGAGAGAGCTCATAACAGAGGATAACCGCGCATG

GTTTGGTACCCAGGCATCAAATAAAACGAAAGGCTCAG

AGCGCGTCGGCCGGTCGAATGCATAAGCTTACTAACTAGTTGTAGATATGACGACAGGAAGAGTTTGT

GCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCTGGGTACCCGCCACTCCGACGGGATTA

TACACTCCGCTAGCGCTGATGTCCGGCGGTGCCAGGTGGCACTTTTCGGG

TTTTTACTAGTGGTACCTTNNNNNATNNNNNATNNNNNATNNNNNATCTTCAGATCCTCTACGCCGG

TTTCCTGACAGAGTACGCGT

GCGTTAATCCGGTCAGCAAA

Table 2.S3. PCR primers used in this study, excluding those used for

mutagenesis
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Abstract: The interactions between mutations on fitness, or epistasis, affects genome
evolution together with our ability to predict individual mutation effects. The
mechanistic bases of epistasis remain however largely unknown. To quantify the extent
and molecular bases of epistasis, we focused on a structural component of a protein
and made a comprehensive library of more than 15,000 double mutants in the 11
amino-acid alpha-helix of beta-lactamase TEM-1. The pervasive epistasis observed was
largely explained by a thermodynamic model of protein stability that sorted mutations
as inactivating, destabilizing, neutral or stabilizing. Yet, deviations from that
prediction were consistently found as the distance to the active site decreased and
when the interacting residues were in contact. Our results suggest that even in a small
structural component of a protein, both macroscopic and microscopic interactions

shape the epistasis landscape.
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3.1 Introduction

Sequences of the first proteins triggered the emergence of molecular evolution and
bioinformatics in the 1960s (Hagen 2000). Yet, more than 50 years later, despite a
massive number of available protein sequences and a pressing demand from human
genetic disease and synthetic biology, the prediction of non-synonymous mutation
effects remains a challenging task. Recently, protein deep mutational scans, in which
the impacts of all possible single amino acid changes in a protein are investigated,
offered new perspectives to the study of nonsynonymous mutations (Fowler & Fields
2014). However, one of the first lessons from these approaches was that mutation
impact could vary with genetic background (Bank et al. 2015, 2016; Jacquier et al.
2013). These variations limit the power of descriptive mutation scans, calling for an

integrated understanding of mutation effects and especially of their interactions.

Epistasis refers to the context dependency of mutation effects. In genetics, epistasis
refers to interactions between mutations in general; in population genetics, pairwise
epistasis refers more precisely to mutation interactions that translate to non-additivity
of log-fitness effects. Epistasis between mutation A and B can be quantitatively
estimated as the deviation between the observed log-fitness of the double mutants, AB,
and the sum of the log fitness of both individual mutations (A and B). Under this
strict definition, epistasis has been predicted to have a large impact on many facets of

evolution, from the evolution of mutation rate and recombination (de Visser & Elena
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2007), to the diversity of adaptive paths and the repeatability of adaptation (De Visser
& Krug 2014). An integrated vision of epistasis may be obtained top-down with

phenomenological models that capture its global properties (Gros et al. 2009; Martin et
al. 2007), but a bottom-up mechanistic approach is needed when it comes to predicting

the effects of individual mutations.

As proteins generally operate in a folded state, mutations” impacts on proteins have
mostly been investigated through their impacts on that fold or its affinity with a
substrate. For epistatic interactions, two mutually non-exclusive mechanistic visions
have emerged. With compensatory mutations, characterized by two independently
deleterious mutations that when combined outcompete at least one of the single
mutants, the idea of key-lock local interactions suggested itself. Alternatively, the
existence of mutations with a global impact on protein stability (Bloom et al. 2005)
hinted that the cooperative nature of protein folding could also result in epistatic
effects, this time at a more global level (Wylie & Shakhnovich 2011). The extent of
both types of interactions and the overall prevalence of epistasis remain unclear,

however.

To investigate the molecular determinants of epistatic interactions, we generated a
comprehensive library of more than 15,000 single and double mutants within an alpha-
helix of beta-lactamase TEM-1. TEM-1 is an extremely successful antibiotic-resistance

gene that is now present in about 35% of E. coli natural isolates (EARS-Net, France).
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We focused on an 11 amino acid alpha-helix, from residue 119 to 128 (Figure 3.1A), as
alpha-helices are the most characterized and frequent secondary structure in protein
folds. For the sake of generality this alpha-helix is not involved in the active site, it is
just a structural component of the enzyme. The mutants, who cover more than 76% of
all possible double mutants, were analyzed for their impact on protein activity,
measured through the minimum inhibitory concentration (MIC), and more importantly

through their impact on fitness, which allows a proper estimation of epistasis.

3.2 Results

Mutants were produced in bulk and associated to genetic barcodes. Changes in
frequency of the barcodes estimated through sequencing were used to compute (i)
fitness through 30 generations of evolution in 8 mg/1 of amoxicillin, an antibiotic
degraded by TEM-1 and (ii) Minimum Inhibitory concentrations through challenges
with 1, 2, 4, 8 and 16 mg/] of that antibiotic. The consistency of the signature of the
multiple barcodes covering a given genotype as well as the very high correlation
between MIC and fitness for both single (r=0.984) and double mutants (r=0.963)
supported the robustness of the data produced (Supplementary Figure 3.S1 and 3.52).
Mutants with stop codons could be used to define a lower threshold for log-fitness:

below a value of 1, mutants were considered selectively lethal (Supplementary Figure

3.93).
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Figure 3.1. Single- and double- mutation fitness effects. A. Pairwise epistasis is
a measure of the deviation of the observed fitness of a double mutant from the sum of
the fitnesses of its constituent single mutants, on a log scale. It can also be
qualitatively categorized as magnitude, sign and reciprocal sign, as well as positive or
negative. The figures illustrate how this categorization functions in the case of a pair of
deleterious mutations (left) and a pair including a deleterious (b to B) and a beneficial
mutation (a to A) (right). B. 3D structure of beta-lactamase TEM-1. In red, the
alpha-helix of interest and in blue, the serine residue of the active site. C. The effects
on fitness of all single mutations per residue. D, E. Distribution of fitness effects of
single (D) and double (E) mutants with the distribution of fitness effects of stop
codons in grey. Below the dotted line, mutants are considered non-functional. F.
Fitness of the double mutants with missing data in white. G. Zoom on the double
mutant fitness map involving residues 1127 and M129 (top) and S124 and M129
(bottom).
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The distribution of fitness effects of single mutations had a trimodal structure with
close to 50% lethal mutants (Figure 3.1D). This suggested an overall important role of
the alpha-helix. The different residues had very different patterns, with 3 sites
permissive to mutations, while the others were much more sensitive (Figure 3.1C). As
expected, proline, which is known to be incompatible with alpha-helix structure, was
lethal or close to lethal at all sites (fitness<-0.95) (Figure 3.1C). The distribution of
double mutation effects also appeared to be tri-modal, with an even larger fraction of
lethal genotypes (77%) (Figure 3.1E). A dominance effect emerged: mutant
combinations including a lethal mutation were lethal (Figure 3.1FG). Out of the
11,477 double mutants comprising at least one lethal mutation, only 59 (0.5%) had a
log fitness higher than -0.75 (Figure 3.1F). Only 7 (0.06% of total) resulted from the
combination of two deleterious mutations, an instance of sign epistasis in which one of
the mutations is deleterious in one background and beneficial in another. This general
dominance effect clarifies the partial success of methods based on residue conservation
(Adzhubei et al. 2013; Ng & Henikoff 2003) to predict mutational effects: large effects
such as inserting a proline within an alpha-helix are effectively context-independent.
This also suggests that the extent of pairwise key-lock epistatic compensation is very

limited among mutations of large effects.

We then focused on the quantification of epistasis and noticed that double mutant

fitness deviated substantially from that expected (Figure 3.2A). Epistasis could not be
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computed for lethal double mutants that were predicted to be lethal based on their
constituent single mutants. Excluding these cases, and restricting the dataset to
mutants whose fitness is estimated with high accuracy, we could compute a
distribution of epistasis that was both broadly distributed around zero and biased
towards negative values (Figure 3.2B), as observed in other experiments based on
proxies of protein function rather than on true fitness. Yet some large positive epistasis
was also found, especially among pairs including a beneficial mutation and a
deleterious one (Figure 3.2C). We then looked at the fitness effects of individual
mutations across all different genetic backgrounds (Figure 3.2D). Mutations exhibited
highly contrasting patterns. First, 67 lethal mutations were lethal across all
backgrounds. Second, 115 deleterious mutations, including some lethals, had their
fitness positively correlated with background fitness (Figure 3.2DE). Third, 17
mutations showed an overall context-independence in their effects (Figure 3.2DE).
These mutations had small effects on fitness, with 10 having less than a 1% effect, 6
less than 5% and 1 a 12% effect. Finally, 10 mutations, with marginally positive fitness
effects in the ancestral background (9 of them with log(fitness) <0.01, and
log(fitness)>-0.01 for the other) had some marked fitness benefits in deleterious
backgrounds (Figure 3.2DE). Strikingly, excluding mutations that were lethal in all
backgrounds, 88% of mutations exhibited some strong form of context dependency that
was structured by background fitness. This consistency suggests a macroscopic force at

play, such as protein stability.
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Distribution of epistasis using the same colour code, excluding mutants with non-
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context dependency categories is presented.
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Protein stability controls the amount of protein in a functional fold. It can be directly
connected to fitness in the case of an antibiotic resistance gene (Jacquier et al. 2013).
Upon change of stability, the amount of functioning protein changes according to the
free energy of the reference sequence (AGO) and the impact of the mutation (AAG):

Pnat = T . The resulting relative fitness of a mutant can be computed as

+e0Go+AAG

log(%) = log(1 + e?%) — log(1 + e260*226) Depending on the mutant AAG, this

model produces patterns of fitness effects according to background fitness similar to

those observed (Figure 3.3A).

We used a goodness-of-fit approach (Methods) to estimate a AAGO of -2.9 kcal/mol,
and estimated a AAG value for each of the single mutants. We found a correlation of
0.948 between the observed and predicted fitness under the stability model, compared
with a 0.890 correlation under the no-epistasis, additive model. Hence the model
provides an improvement, validating quantitatively the likely role of protein stability.
Most importantly, the stability model captures the overall background dependency of
the mutations’ fitness effects (Figure 3.3B) and reproduces the shape and breadth of
the distribution of epistasis (Figure 3.3C), with a correlation of 0.75 between observed
and predicted epistasis. It suggests therefore that a large fraction of epistasis between
non-synonymous mutations arises not through local interactions but mostly through a

global interaction at the level of protein stability.
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Figure 3.3. Stability and context dependency. A. The relationship between
background log-fitness and new mutations’ relative log-fitness predicted by the model
of stability is presented. The modelled protein has a free energy of -2.9 kcal mol! and
the impact of mutations, AAG, is -1, 0.5, 0, 0.5, 1, 1.5 and 2 from light grey to black.
B. The lines represent the fit of the model for the 3 mutants from figure 2D. C. In red
is the distribution of epistasis as presented in Figure 3.2B, and overlaid on it in blue is
the distribution of epistasis obtained with the fitted stability model.

A deeper look at the data suggests, however, that the global stability model is not
sufficient. First, if we focused on fitting a model based only on residues separated by
less than 6A, the correlation decreased to 0.925, while when only distant pairs (>6 A)

were considered, the correlation improved to 0.964. This implies that interactions

between physically close were less well explained by a global model than distant ones.
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Accordingly, a maximum likelihood model was used (Methods) to quantify error to the
stability model. A model with two different errors was best supported, and found an
error for sites at less than 6 A of 1.84 times greater than the one found for sites further
away. For some of the local interactions, forces other than stability seemed to be at
play. For instance, mutation R120D and M11W showed signs of both stabilizing and
destabilizing effects, the positive effects being restricted to residues in direct contact
(Figure 3.4ABC). The R120D mutation leads to a change in charge that is deleterious
for distant interactions, but became beneficial when associated to departure from the
E121 charged amino acid at the neighbouring amino residue (Figure 3.4B). These
interactions, unexplained by the stability model, represent what we refer to as
idiosyncratic epistasis. They may result from non-additivity of the AAG, but also from

the existence of some local forces at play that are not directly linked to stability.
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fitness according to background fitness for three mutants: R120D (A), M129W (C)
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in green points, and the ones involving residues at less than 6A result in blue points.
The green line is the fit of the stability model. B. At residue 120, the decrease of
charge associated with the R to D mutation compensates mutations at residue 121
that increase the charge. E. Adding an additive component to the fitness of mutation
M129H improves the fit to the data. The maximum improvement obtained for that
mutation occurs when the additive fraction is equal to the fitness of the MI11H
mutation (vertical dotted line). The arrow represents the intensity of the goodness of
fit improvement. F. Goodness of fit improvement associated with the incorporation of
an additive component to fitness according to mutated residue. Residue M129 is closer

to the active site.

149



Harry Kemble — These de doctorat - 2018

With the overall quality of the stability model, it is tempting to use it as a new
neutral model and to compute deviation from it as a new form of epistasis. However, a
closer look at the data revealed that some mutations seemed to behave almost
additively with the other mutations (Figure 3.4D). We tested therefore if decomposing
fitness into a stability component and an additive component would result in a better
overall fit (Methods) (Figure 3.4E). We found a substantial improvement for a fraction
of the mutations. When looking at the 25 showing the largest improvement, 14
occurred at site M129, 6 at T128, 2 at 1127, 2 at A126 and 1 at C123, revealing clearly
a gradient along the alpha helix (Figure 3.4F). Knowing that residue M129 is the
closest to the active site, we suspect that another global phenotype linked to protein
activity rather than stability may be under selection in the protein, and that both
phenotypes interact independently. The additive combination of multiple global
phenotypes prevents the development of a simple alternative to epistasis, but suggests
rather that both epistasis and deviation from the stability model should be considered

next to uncover the molecular determinants of epistasis.

3.3 Discussion

Even though we examined interactions among residues in a local 3D structure of the
protein, we showed that most mutations exhibit a macroscopic pattern of epistasis.

These patterns can be captured by a simple biophysical model of protein stability that

150



Harry Kemble — These de doctorat - 2018

predicts the emergence of epistasis based on the additive effects of mutations on the
overall stability of the protein. Hence, additivity at the phenotypic level, here,
summing the independent AAG values, results in a macroscopic epistasis due to the
nonlinearity of the mapping from phenotype to fitness (Otwinowski et al. 2018). The
importance of this form of macroscopic epistasis at the protein level is reminiscent of
the negative epistasis found genome-wide in experimental evolution (Chou et al. 2011;
Khan et al. 2011; Kryazhimskiy et al. 2014; Wiser et al. 2013). Interestingly, this
macroscopic epistasis also occurs between mutations affecting residues in contact.
Hence, while it is tempting to interpret these interactions as the result of some key-
lock mechanisms, epistasis may be resulting simply from the impact of the mutations
on a global property of the protein. Many alternative mutations with similar effects on

stability would have had similar effects.

Our precise estimates of fitness also allowed us to identify certain deviations from the
stability model. Both forms of deviation suggest the existence of phenotypes other than
stability that affect fitness in an independent manner. Some of these phenotypes may
also generate a global pattern of epistasis as we could imagine for the affinity to the
substrate, but others, like the conservation of charge at residues 120-121, may be very
local traits. This apparent complexity challenges our ability to predict mutation effects
in two ways: first, local interactions seem hard to predict, and second, stability effects

are predictable but rely on precise knowledge of the overall stability of the protein.
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However, two factors give us hope. First, deep mutational scans can, like the one
performed here, provide some quite robust estimates of the macroscopic parameters of
mutations. As the context-dependency is based on many mutations, this provides some
power to precisely quantify the impact of mutations on a simple model of stability, or
even in some more complex models including multiple phenotypes as we have shown
here and has been done in alternative models based on reporter proteins (Otwinowski
& Wilke). Second, local idiosyncratic interactions could result in the long term in some
specific coevolution patterns between pairs of sites (Weigt et al. 2009). These patterns
are specifically the ones that can be inferred from multiple sequence alignment, and

have been shown to allow the prediction of mutational effects (Figliuzzi et al. 2016).

3.4 Methods

Strains and plasmids

E. coli strains used in this study were XL1-Blue (Agilent, Santa Clara, CA) of
genotype recAl endA1 gyrA96 thi-1 hsdR17 supE44 relAl lac [F’ proAB lacl1qZAM15
Tni0 (Tetr)); CJ236 (NEB) of genotype FA(HindIll)::cat (Tra+ Pil+ CamR)/ ung-1
relA1 dut-1 thi-1 spoT1 mcerA; DH5a (Invitrogen) of genotype F— ®80lacZAM15
AllacZYA-argF) U169 recAl endA1 hsdR17 (rK-, mK+) phoA supE44 A— thi-1

gyrA96 relA1; DH10b Electromax (ThermoFisher Scientific) of genotype F- merA
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A(mrr-hsdRMS-merBC) @80lacZAM15 AlacX74 recAl endAl araD139A (ara,

lew) 7697 galU galK A-rpsL nupG.

Phagemid pSkunk3-TEM-1 was obtained graciously from Elad Firnberg and Marc
Ostermeier. The plasmid pSkunk-TEM-helix was created by inserting an Necol
restriction site 2 bases before the beginning of the alpha-helix to mutagenize it using
single-step PFunkel mutagenesis. Using the same protocol, we also inserted Xhol and
Notl restrictions sites surrounding the streptomycin/spectinomycin (Str/Spec)
resistance gene. Plasmid pKD3 was used to amplify the cat gene encoding
chloramphenicol (Cm) resistance (Datsenko & Wanner 2000). The plasmid pSkunk-
TEM-helix-Cm was created by swapping the Str/Spec resistance gene with cat and

adding a DNA barcode of 20 degenerate nucleotides.

Targeted mutagenesis

Targeted mutagenesis was performed using the PFunkel mutagenesis strategy
(Firnberg & Ostermeier 2012). Uracil-containing single-strand DNA of pSkunk3-TEM-
helix was produced as published by (Firnberg & Ostermeier 2012; Kowalsky et al.
2015) (except the final centrifugation step, which was performed at 26200 xg for 1h at
4°C). DNA was quantified using the Qubit® ssDNA Assay Kit (ThermoFisher
Scientific). Mutagenesis was then performed as previously described with 1 pg of
ssDNA used as template in a total volume of 100 pl. The only difference was the
elongation step, which was 15 min. Thus, the reaction cycling conditions were 95°C for
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3 min, followed by 55°C for 90 sec, and 68°C for 15 min and 45°C for 15 min. We used
the innuPREP PCRpure Kit (Analytik Jena) to purify DNA, and eluted it in 15 pl of
distilled DNAse/RNAse-free water. 2 pl were then electroporated in 20 pl of DH5a
electrocompetent cells and incubated with 500 nul of LB medium for 1 hour at 37°C
with shaking at 250 rpm. The transformation was plated on LB-agar with 50 pg/ml
streptomycin and incubated overnight at 37°C. PCR verification and Sanger
sequencing were performed on isolated colonies using primers TEM-pSKUNK-DIM-F
and TEM-pSKUNK-DIM-R to check for mutagenesis efficiency. Mutants were stocked
in LB-glycerol 40% after an overnight culture at 37°C in LB media containing 50

ng/ml streptomyecin.

Comprehensive PFunkel mutagenesis

Primers containing all combinations of two NNS degenerate codons (N is either A, T,
G or C; S is either G or C) in the 11 codons of the targeted alpha-helix were designed

with 20 fixed base-pairs surrounding the alpha helix.

Protocols were performed as published by (Firnberg & Ostermeier 2012; Kowalsky et
al. 2015) for single-site mutagenesis, with an amplification step of 20 mins. Purification
was carried out using the innuPREP PCRpure Kit (Analytik Jena), and DNA was
eluted in 15ul of distilled water. 2 jl were electroporated in 20 pl of Dhba
electrocompetent cells and incubated with 500 pl of LB media for 1 hour at 37°C with

shaking at 250 rpm. The transformation was plated on LB agar with 50 pg/ml
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streptomycin and incubated overnight at 37°C. A pool of 150,000 colonies was scraped
from the LB agar plates (245 mm X 245 mm, Greiner Bio-one) in LB-glycerol 40% and
stored at -80°C. After pooling all colonies together, plasmids were extracted from a
sample using a plasmid Miniprep Kit (Qiagen, Valencia, CA), forming the library of

mutants.

Mutant barcoding

10 pg of purified plasmid from the library of mutants was digested with NotI, Xhol
and Ncol (buffer 3.1 (NEB)), in 500ul total reaction volume, gel extracted (band of
3,350 bp) using Qiagen Gel Extraction kit and then also cleaned a 2nd time with
Qiagen PCR, Purification kit. The final concentration was 25 ng/ul. Plasmid pKD3
was used as template for PCR amplification of cat using specific primers that also
contained overlapping regions of pSkunk-TEM-helix (for subsequent Gibson
Assembly). The forward primer also contained a non-overlapping region with a DNA
barcode consisting of 20 degenerate nucleotides. Phusion High-Fidelity DNA
Polymerase (New England Biolabs) was used with reaction cycling conditions: 98°C
for 30 sec, followed by 35 cycles of 98°C for 10 sec, and 62°C for 30 sec, 72°C for 15 sec

and a final extension at 72°C for 2 min.

The plasmid pSkunk-TEM-helix-Cm was created by switching the
spectinomycin/streptomycin resistance gene with the cat cassette amplified previously,

using Gibson Assembly (NEB), allowing integration of the DNA barcode. The Gibson
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reaction was carried out with 3ul of 25 ng/ul of plasmid fragment and 1.3 ul of 88
ng/pl of the barcode-CmR-amplicon (1:5 molar ratio backbone:insert), in a total of 20
nl reaction mix, and incubated at 50°C for 1 hour. The total volume of Gibson reaction
was dialysed with water for 30 mins and 4 pl were electroporated into 20 ul of DH10b
Electromax competent cells. These were then incubated in 500 pl of LB media for 1
hour at 37°C with shaking at 250 rpm. The transformants were plated on LB agar
with 25 pg/ml chloramphenicol and incubated overnight at 37°C. A pool of ~2 x 106
colonies was scraped from the LB-agar plates (245 mm X 245 mm, Greiner Bio-one)

into LB-glycerol 40% and frozen at -80°C.

Selection experiments

Selection with 8g/1 of amoxicillin: 1ml of the frozen barcoded library cell stock was
cultured in MH broth at 37°C with shaking at 250 rpm from ODgy 0.2 to ODgg 0.4
without antibiotics (named T0). Then, 3.2 ml of this first culture were used to re-
inoculate 96.8 ml MH broth supplemented with 8g/1 amoxicillin (corresponding to 2
dilutions below the MIC of TEM-1) until ODey 0.2 (this point is called T1). This re-
inoculation of 3.2 ml of culture of ODgy 0.2 into 96.8 ml fresh MH broth supplemented
with 8 g/l amoxicillin was repeated until approximately 40 total population-averaged
generations (T8). Half of these cultures were pelleted for plasmid extraction and half

were pelleted and re-suspended in LB-glycerol 40% for storing at -80°C.
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Selection with different amoxicillin concentrations: From the first culture, named TO,
we used 3.2 ml to re-inoculate a total of 100 ml of MH broth supplemented with
various amoxicillin concentrations ranging from 16 g/1 to 1 g/1, and left the cultures to
grow until ODgg 0.2 at 37°C with shaking at 250 rpm. Half of these cultures was
pelleted for freezing at -80°C and half was washed 2 consecutive times with sterile
physiological serum and grown overnight in fresh MH medium without antibiotics.
Finally, half of this overnight culture was plasmid-extracted and half was pelleted and

re-suspended in LB-glycerol 40% for storing at -80°C.

Library Preparation and Deep Sequencing

The protocol is carried out in 2 steps.

Combining barcodes and alpha-helix sequences: the first step is to reveal which
barcodes are linked to which mutations in the TO library. For that, a two-step PCR
method was used to amplify the corresponding part of the gene, including the alpha
helix sequence on 5' part and barcode sequence on 3' extremity, and to add the
[umina sequencing adaptor and multiplex barcode sequences. In detail, plasmid DNA
concentration was determined using Qubit fluorometric quantification (ThermoFisher
scientific) and normalized to 2.5 ng/pl. 12.5 ng of DNA was used for the 1st PCR
using specific primers and allowed the attachment of an adaptor that is necessary for
the 2nd PCR. Between specific primers and adaptors, 6 degenerate nucleotides were

inserted in order to increase the diversity of DNA to facilitate MiSeq clustering.
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Kapa Hifi Hotstart Ready Mix PCR Kit polymerase (Kapa Biosystems) was used for
amplification. The reaction cycling conditions were 95°C for 30 sec, followed by 12
cycles of 95°C for 10 sec, 55°C for 30 sec, 68°C for 30 sec and a final extension at 68°C

for 5 min.

After gel purification using Qiagen gel extraction kit (Valencia, CA), DNA was
quantified using Qubit fluorometric quantification and DNA concentration was
normalized. The 2nd PCR was performed using 5 ng of DNA using primers
commercialized by Illumina in the Nextera Index Kit allowing dual indexing. The
reaction cycling conditions were the same as previously but only 11 cycles were
performed using Kapa Hifi Hotstart Ready Mix PCR Kit polymerase (Kapa
Biosystems). After gel-purification with Qiagen gel extraction kit (Valencia, CA),
quantification using qPCR kapa Hifi Hotstart (Kapa Biosystems) on a Light cycler 480
Roche was performed with reaction cycling conditions of 95°C for 5 min, followed by

35 cycles of 95°C for 30 sec and 60°C for 45 sec as specified by Kapa Biosystems.

This library, corresponding to the first time-point of evolution (T0), was diluted to 12
pM and loaded on the MiSeq with a mix of 10% PhiX DNA (PhiX Control v3,
illumina) as sequencing control and to increase diversity. Three MiSeq V3 2x75 bp
paired-end runs (Illumina technology) were performed for this part, resulting in a total
of > 40M reads, for an expected ~20x coverage of barcode diversity. The paired-end

reads are non-overlapping, with the alpha helix sequence on Read 1 and the barcode
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sequence on Read 2. The amplification protocol was changed for the third MiSeq run:
in order to decrease recombination that arises during PCR, we used an emulsion-PCR,

protocol (Micellula, following the manufacturer's guidelines).

Barcoding sequencing: The second step consists of sequencing the barcodes alone at
the different time-points (T0, T1, T2, T4, T6 and T8), and different amoxicillin
concentrations (16, 8, 4, 2, 1 g/L). For this, a similar protocol was carried out using
oligonucleotides that surround the barcode region, employing the same 2-step PCR
based method and similar conditions. In this case, the 6 degenerate nucleotides
inserted on either side of the barcode region during the 1st PCR also allowed us to
remove PCR duplicates arising from the 2nd PCR. All libraries corresponding to the
different evolution time-points and amoxicillin concentrations were quantified using a
qPCR-based method (Integragen) and pooled in equal molar quantity. They were then
sequenced on a HiSeq4000 with a 2x100 bp paired-end kit (Illumina technology) by
Integragen society, to give overlapping reads of the barcode region. The run resulted
in ~300M raw paired-end reads, and so ~27M for each of the 11 time-

points/conditions. This gives a barcode coverage of ~14x for each time-point/condition.

Sequence analysis

Barcode-mutant association: The following steps were performed using the Mothur
software package (Schloss et al. 2009): raw reads from all sequencing runs were pooled

together and quality-filtered by size (>69 bases), number of uncalled bases (<3 Ns)
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and length of longest homopolymer stretch, an indicator of overall read quality (<13
bases). Alpha helix and barcode sequences were extracted from Read 1 and Read 2,
respectively, after alignment to the reference sequences (Needleman global alignment).
Reads for which either the alpha helix or barcode region contained insertions or did
not generate a full alignment with the reference were discarded. The Mothur precluster
algorithm was then used to cluster barcode sequences differing by a Hamming distance
of 1, with the aim of correcting for PCR and sequencing errors (the potential barcode
diversity is so high that the presence of immediately neighbouring sequences is very
likely due to these errors). The algorithm uses sequence abundance to decide the
“true” (majority) sequence for each cluster, and to decide where a sequence clusters if
it has >1 immediate neighbor. After de-gapping and re-clustering barcode sequences to
account for any alignment ambiguities resulting from small deletions, barcode clusters
were used to build a dictionary assigning each “true” barcode sequence to an alpha
helix sequence. Due to the high rate of PCR~derived recombination observed (caused
by the long homologous region between the barcode region and alpha helix sequence,
and resulting in molecules with swapped barcodes), a haplotype-based strategy was
used for this step rather than one in which each nucleotide is considered
independently. This is because the small number of mutations present in each mutant
means that, at any particular position, the majority of molecules will possess the W'T
base, and so a high recombination rate can result in consensus alpha helix sequences in

which mutant bases are assigned as WT. The efficiency of this strategy was ensured by
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the short length of the mutagenized region and high quality of the reads, meaning that
most reads did not contain a single error in the regions of interest and so were not
wasted. Briefly, a custom Python script was used to perform the following: for each
barcode cluster (consisting of reads whose barcode sequences are identical to or the
immediate neighbor of the inferred “true” barcode sequence), the paired alpha helix
sequences were fetched; the number of occurrences of each resulting alpha helix
sequence was tabulated; if the cluster contains more than 2 reads in total, the most
abundant alpha helix sequence is >= 5x more abundant than the second-most
abundant alpha helix sequence, and the most abundant alpha helix sequence contains
no Ns, then the most abundant alpha helix sequence is assigned to the “true” barcode

sequence for that cluster (else the cluster is discarded).

Barcode counting: The following steps were performed using the Mothur software
package (Schloss et al. 2009): demultiplexed forward and reverse reads were joined into
contigs using Mothur’s make.contigs command with the default parameters, which
takes into account the Phred score to assign (or not) a base when there is
disagreement between forward and reverse reads. Contigs were then quality-filtered by
size (<151bp, as longer contigs imply forward and reverse reads could not be properly
overlapped), number of uncalled bases (no Ns) and length of longest homopolymer
stretch, an indicator of overall read quality (<13 bases). To remove the majority of

PCR duplicates arising from the 2nd PCR (made possible by the 6 degenerate
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nucleotides introduced on each side of the barcode during the 1st PCR), if a particular
contig was present more than once, only one copy was kept. Barcode sequences were
then extracted after aligning full contigs to the reference sequence (Needleman global
alignment). Reads containing insertions or not generating a full alignment with the
reference were discarded. Next, the Mothur precluster algorithm was used to cluster
barcode sequences differing by a Hamming distance of 1, with the aim of correcting for
PCR and sequencing errors, as described above for the barcode-mutant association.
After de-gapping and re-clustering barcode sequences to account for any alignment
ambiguities resulting from small deletions, the number of occurrences of each “true”
barcode was tabulated across all time-points/conditions. Finally, a custom R script
was used to merge the barcode-mutant dictionary generated above with the barcode

counts table.

Based on previous work in which we found no clear effect of synonymous mutations,

we combined all synonymous mutations into a single allele.

Quality control of barcodes

Multiple barcodes were associated to the each genotypes. Several processes may lead to
variability in the signal provided by the different barcodes. First, though we used some
correction and some emulsion PCR to try to correct that bias, some recombination
may occur during the PCR between the part of the protein and the barcode and

escape our detection procedures. Hence, a barcode may appear to be associated to the
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focal genotype, but may indeed correspond to an alternative genotype. Even if a
barcode is associated properly to its alpha-helix genotype, we have not sequenced the
whole protein. Consequently, an undetected mutation may affect the protein elsewhere
and result in a modified behaviour of that barcode. To limit the effect of these outliers,
that are often barcodes associated with loss of function or maximal fitness, we first did
a screen to filter outlier barcodes.

For that purpose, we computed the change in the focal genotype to wild-type

genotype frequency over the first cycle of evolution (TO to T1), using the sum of all

YiBCl wt®
0
wel 3;BC)

barcodes linked the focal genotype. K; = ( ), in which BCl-lj is the number of

reads matching the j™ barcode associated to genotype i at time 1, and Wt! the number
of reads matching barcodes associated to wild type sequence. The value of K
corresponds to an estimate of fitness over one cycle. Then, for each individual barcode

we can compute based on BCS- the estimated number of reads expected at T1. If the

barcode is following the overall trend we expect
X BCj; Wt° X
Vo \werBel)

We expect therefore BCilj to be distributed with a Poisson law of parameter

1

2 BCjj
I 0
ZiBCij

BC).

All barcodes, with a p-value lower than 10 were assumed to reject that model and to
be the result of some of the artefacts previously mentioned. They were later on
discarded, and reads matching all the remaining barcodes were combined to estimate
fitness. Furthermore, barcodes with less than 10 counts for the combined time T0 and

T1 were excluded as well as mutants with less than 4 barcodes.
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Computing fitness

The frequency of a genotype is supposed to evolve through time according to its

t
Gy

wtt

G _ G
wtt — wto

relative fitness with the following law: (), such that log ( ) =tF +

0
log (%), with F; = log(f;). Fitness is therefore the slope of the change in the ratio of

genotype to wild-type frequency. However, because we are dealing with counts, there is a lower
bound to the genotype frequency, and computing the slope may be affected by low values,
especially for deleterious mutants who tend to disappear rapidly. To compute the slope, we
first computed the number of points that could be reliably used for that purpose. We used a
moment matching approach in which we matched the pattern of our distribution of

relative counts through time with a distribution of Os and 1s that has similar variance

Gt
i

across
wtt

and mean. For each genotype, we computed the variance V; and mean M; of

the 5 time points (T0, T1, T2, T4 and T6).

We then computed the number points to be used for the slope as nbp; =

ceiling - SVi , in which ceiling corresponds to the function rounding to the next
+ 2
(M;)

integer.

The underlying idea is to compute a distribution composed of 0 and 1 that has a

t

L
wtt

standardized mean and variance similar to the one observed for across time points.

. . . .G
Let us consider two extremes cases. If a mutant is very deleterious, the ratios W—‘tt at
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the different time points are X, Y, 0, 0, 0, with X>>Y. The mean is M = X/5, the

. X%  Xx?  4x? . . . .
variance V = FERET IR With these approximations, we find nbp; = vV— =1,
1+

which means that the distribution is well matched with a distribution 1,0,0,0,0. In

practice, if Y>0 we have SVi > 1 and nbp; = 2. This means for our purposes that the

o7

best signal is to be extracted from the first two points. If conversely the mutant is
neutral, its ratio to wildtype will remain constant through time: X, X, X, X, X. With
such a distribution we have M = X and V = 0, so nbp; = 5. The slope then has to be

estimated using all points.

Computing MIC

For MIC determination, we first used wildtype counts at different concentrations to
estimate the change in frequency of the various genotypes with antibiotic
concentration. We identified a subset of clones which increased in frequency over the
wildtype at the highest concentration. That set of clones was used as reference.
Similarly to the determination of the number of points used to estimate fitness, we
used a moment matching approach to identify the concentrations at which the mutant
is eradicated by the antibiotic, mimicking the retention of the mutant with a step
down function. In detail, the normalised change in ratio of counts towards the
reference set was computed through time, leading for each mutant to a set of values of

the form xio, Xi1, Xi2, Xia, Xis, Xit6, With xio=1 the initial normalized frequency and the
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other values reflecting the relative maintenance or loss of the mutant with increasing

concentration. The variance V; and mean M; of x; were used in the following formula to

compute a quantitative MIC: MIC; = L‘,i.

o)

Fitness of stop codons

Many genotypes are corresponding to non-functioning protein due to non-sense
mutations or frameshifts. We used the distribution of fitness effects of non-sense
mutations (n=2,045) to define a threshold value corresponding to gene inactivation.
Estimates of fitness are much more noisy for largely deleterious mutants as counts may
come to close to zero at the first time point. The noise prevents precise measures of
epistasis in that range. A stringent cut-off of log fitness of -1 was used, meaning that
the log-fitness of mutants with value of -1 were assigned that minimal value. This
value has a Z score of 4.8 and corresponds to less than 5% chance that one of the

15,000 mutants is assigned as an inactivating mutation while it is not.

Estimating error on fitness measurement

We quantified the error rate in three ways:

a) Biological semi-replicate

The distribution of mutation effects is very sensitive to the antibiotic concentration,
which are difficult to reproduce with high precision on a daily bases. We therefore
estimate that internal controls such as the variability of fitness estimates based on
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barcodes are more appropriate than biological replicates that will represent a slightly
different environment. Nevertheless, the day of the experiment, we did a partial
replicate using the same exact media and antibiotic dilution. Rather than evolving the
population for 30 generations, we evolved them only for 4 in the presence of the same
antibiotic concentration, but then contrary to the presented experiment, we allowed a
24 hours recovery growth in the absence of antibiotic. A correlation of 0.982 was found

between estimates of fitness in the two conditions.

b) Using Independent barcodes to estimate noise

To use internal controls to estimate noise in the fitness, we exploited the multiple
barcodes found for each genotype. After the aberrant barcodes have been filtered out,
we then used two approaches. In the first one we estimated fitness from two fully
independent sets of barcodes picked randomly. The correlations between the two
independent set was 0.942 when we included the non-functional ones (log fitness<-1),
and higher than 0.994 when we assigned them a threshold fitness of -1 and 0.976

excluding non-functional mutants.

c¢) Using bootstrapping of barcodes to estimate noise

To estimate noise more properly, we used a bootstrapping approach. For each
genotype having J barcodes, a set of J barcodes sampled with resampling from that set

of barcodes was performed 100 times. The mean and variance of fitness among the
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bootstrap replicates was then measured. 50% of mutants with log-fitness higher than -1

had a standard deviations of less than 0.01, 70% of less than 0.02, 92% of less than 5%.

However, using either bootstrapping or the two sets of barcodes, some mutants with
low barcode counts and a low number of barcodes still exhibited quite a high level of
noise. As these may confound the estimate of epistasis, we excluded them from any
analysis involving epistasis. We used three criteria to do so. For non-functioning
mutants, we excluded mutants with a coefficient of variation (standard deviation
divided by mean) of more than 20%. For mutants with fitness higher than -1, we kept
the mutants with a coefficient of variation of lower than 12% or of an absolute value
lower than 0.03 (the coefficient of variation being infinite for clones of mean close to
0). These empirical criteria were used to balance the quality of the data used to infer
epistasis and the intensity of the filtering. These stringent filters reduced the number
of mutant from 18,050 to 15,526 (86% retention), but affected mostly non-functioning
mutants as the number of functioning mutants decreased from 3,252 to 3,066 (94%

retention).

After these filterings, that are fully independent of any measure of epistasis, but just
linked to experimental noise, the correlation between the fitness estimates based on the
two independent sets of barcodes was 0.954, 0.998 when non-functional were attributed

a fitness of -1 and 0.993 excluding the non-functional mutants.

Estimation of the thermodynamic model parameters
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To fit the parameters of the thermodynamics model of stability, we had to assign each
single mutant a free entropy value, AAG, reflecting the mutations’ impact on the

overall stability of the protein AGy. Though measures of AGy have been performed in
vitro, the cellular environment in which the mutants are evaluated could substantially

affect this value. We therefore also estimated AG.

Ideally, for the single mutants, there is a direct connection from estimated fitness to
ANG. Using such a transformation does improve the signal, but is limited for two
reasons. First, for mutants that have fitness lower than -1, this method does not give
any AAG value, even if some of them are compensated by stabilizing double mutants.
Second, it appears that our protein is quite stable, which results in stabilizing mutants
having a very minor effect on fitness as they are on the plateau side of the stability to
fitness. For these important mutants, noise in the fitness estimation can result in very
important change in the AAG estimation, and infinite values could even be computed if
the observed fitness is higher than the maximal one predicted by the model. We
therefore decided to use all double mutant fitness effects to estimate the AAG of the

single mutants.

We first noticed that when plotting the predictions of the stability model on graphs
like Figure 3.2D, the curves connecting the effects of a focal mutation according to the

fitness of the diverse genetic background to which it was associated in the double

169



Harry Kemble — These de doctorat - 2018

mutants depended dominantly on AAG of the focal mutant and on the measured
fitness of the single mutants. Accordingly, AAG of each mutant could be estimated
independently using these graphs. Two further complications limited our ability to
perform a simple optimization. First, for deleterious mutants, the curve is almost
vertical and any deviation from that curve due to noise result in a very bad fit.
Second, as discussed in the main text, we expected and found various ways in which
the double mutants may deviate from the stability model. It appeared that these
outliers affected significantly the fit if taken into account. To circumvent these two
issues, we decided to estimate AAG of each mutant using a goodness-of-fit based on the
distance to the theoretical curve and to restrict the fit to the 75% of points closest to
the curve. In other words we allowed 25% of the points to deviate from the stability

model.

With this strategy we could compute an overall goodness of fit for all mutants and

vary in a gradual way the value of AGy to find the one with the best fit. A value of -

2.9 kcal was found to be optimal. Using that value we could compute the AAG of all

mutants.

Estimation of the additive part of the fitness component

The stability model predicts that fitness of a single mutant and double mutants are
AGo
1+ erRT

AGo+DAG;
1+e RT

F, = Log = g(8AG))
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AGy
1+ erT
AGO+AAGi+AAGj

1+e RT

F;; = Log = g(AAG; + AAG)).

To include an  additive component, we redefined log fitness as
AGy
1+ eRT

AGo+AAG;
1+e RT

F; = h; + Log = h; + g(AAG;)

AGo
1+ erRT
AGO+AAGi+AAGj

1+e RT

Fij =h; + hj + Log = h; + by + g(AAG; + AAG)).

For one mutation at a time, we then tried various fractions of additive effects, ranging
from 120% of the observed fitness to -10% of it. We computed the AAG of all mutants
taking into account the additive part in the fit. In other words, for the focal mutation
that has the additive part, the graph of figure 2D used to fit AAG; has to be modified.
On the x-axis, we have F; and on the ordinates F;; — F; — h; rather than F;; — F;, as we

want on that graph only the stability contribution to fitness. For the other mutants,

only the points corresponding to the double mutant including the focal mutation with

the additive part has to be modified with abscise F; — h; and ordinateF;; — F; — h;.

For each mutant, we could compute how large goodness-of-fit gain was due to adding
an additive part. In all cases showing a large benefit, the additive fraction to be added

represented at least 60% of the observed fitness.

Estimation of the error part of the stability model prediction
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Using the whole data set, we could estimate an error to the model using a maximum
likelihood framework. The AAG values were fixed. For each mutant, we either used the
standard deviation o;; of the fitness estimate or a fitted version of this deviation using
a loess regression of the standard error according to the log fitness value. With the
fitted error we fitted with single and double mutants independently. Then, we
estimated that the deviation of the observed fitness to the one predicted with the
stability model resulting from a random deviation due to the experimental measure of
the mutant and an overall random deviation from the model. This deviation from the
model could be either the same for all pairs of mutations or could be different for
residues in contact or not, ie. two model parameters. These parameters of noise were
optimized using a Monte Carlo Markov Chain with Metropolis Hasting sampling. The
two-error model was always much better than the single-error one, and always
suggested a higher deviation from the model for residues in contact compared to

distant residues.
For the single error model:

;i — 9(AAG; + AAG)))

2 2
O'ij +Um

F;
Log(Lk(a,,))~ — Z Log(aijz +0,2) — z (

Li#] Li#]

For the double error model:

2
Fij—g(AAG+AAGH)
Log(Lk(Omp,0ma))~ = Xijizj L0g(01j% + Omp?8ij + Oma® (1 = 8:))) = T i) aijz( ; )

+Jmp25ij+0'md2(1—5i]‘)'

with §;; = 1if the side-chains of residues carrying mutation i and j are less than 6A away and
0 otherwise.
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3.5 Supplementary figures
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Figure 3.S1. Correlation between MIC of amoxicillin and fitness for

single mutants. r = 0.984.
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Figure 3.S2. Correlation between MIC of amoxicillin and fitness for double

mutants. r = 0.963.
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Figure 3.S3. Distribution of fitness effects of stop-codon mutations. They
have been used to define a lower threshold for log-fitness: below a value of -1, mutants

were considered selectively lethal.

173



Harry Kemble — These de doctorat - 2018

3.6 References

Adzhubei I, Jordan DM, Sunyaev SR. 2013. Predicting Functional Effect of Human Missense
Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 76(1):7.20.1-7.20.41

Bank C, Hietpas RT, Jensen JD, Bolon DNA. 2015. A systematic survey of an intragenic
epistatic landscape. Mol. Biol. Evol. 32(1):229-38

Bank C, Matuszewski S, Hietpas RT, Jensen JD. 2016. On the (un)predictability of a large
intragenic fitness landscape. Proc. Natl. Acad. Sci. U. S. A. 113(49):14085-90

Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH. 2005.
Thermodynamic prediction of protein neutrality. Proc Natl Acad Sci U A. 102(3):606-11

Chou H-H, Chiu H-C, Delaney NF, Segre D, Marx CJ. 2011. Diminishing Returns Epistasis
Among Beneficial Mutations Decelerates Adaptation. Science. 332(6034):1190-92

Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia
coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97(12):6640-45

de Visser JA, Elena SF. 2007. The evolution of sex: empirical insights into the roles of epistasis
and drift. Nat Rev Genet. 8(2):139-49

De Visser JAG, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution.
Nat. Rev. Genet. 15(7):480-90

Figliuzzi M, Jacquier H, Schug A, Tenaillon O, Weigt M. 2016. Coevolutionary landscape
inference and the context-dependence of mutations in beta-lactamase TEM-1. Mol. Biol. Evol.
33(1):268-80

Firnberg E, Ostermeier M. 2012. PFunkel: Efficient, Expansive, User-Defined Mutagenesis.
PLoS ONE. 7(12):e52031

Fowler DM, Fields S. 2014. Deep mutational scanning: a new style of protein science. Nat.
Methods. 11(8):801-7

Gros PA, Le Nagard H, Tenaillon O. 2009. The evolution of epistasis and its links with genetic
robustness, complexity and drift in a phenotypic model of adaptation. Genetics. 182(1):277-93

Hagen JB. 2000. The origins of bioinformatics. Nat. Rev. Genet. 1(3):231-36

Jacquier H, Birgy A, Nagard HL, Mechulam Y, Schmitt E, et al. 2013. Capturing the
mutational landscape of the beta-lactamase TEM-1. Proc. Natl. Acad. Sci. 110(32):13067-72

Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative epistasis between

beneficial mutations in an evolving bacterial population. Science. 332(6034):1193-96

174



Harry Kemble — These de doctorat - 2018

Kowalsky CA, Klesmith JR, Stapleton JA, Kelly V, Reichkitzer N, Whitehead TA. 2015.
High-Resolution Sequence-Function Mapping of Full-Length Proteins. PLOS ONE.
10(3):¢0118193

Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Microbial evolution. Global epistasis
makes adaptation predictable despite sequence-level stochasticity. Science. 344(6191):1519-22

Martin G, Elena SF, Lenormand T. 2007. Distributions of epistasis in microbes fit predictions
from a fitness landscape model. Nat Genet. 39(4):555-60

Ng PC, Henikoff S. 2003. SIFT: predicting amino acid changes that affect protein function.
Nucleic Acids Res. 31(13):3812-14

Otwinowski J, McCandlish DM, Plotkin JB. 2018. Inferring the shape of global epistasis. Proc.
Natl. Acad. Sci. 201804015

Otwinowski J, Wilke C. Biophysical Inference of Epistasis and the Effects of Mutations on
Protein Stability and Function. Mol. Biol. Evol.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur:
Open-Source, Platform-Independent, Community-Supported Software for Describing and
Comparing Microbial Communities. Appl. Environ. Microbiol. 75(23):7537—41

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. 2009. Identification of direct residue

contacts in protein—protein interaction by message passing. Proc. Natl. Acad. Sci. 106(1):67-72

Wiser MJ, Ribeck N, Lenski RE. 2013. Long-Term Dynamics of Adaptation in Asexual
Populations. Science. 342(6164):1364-67

Wrylie CS, Shakhnovich EI. 2011. A biophysical protein folding model accounts for most
mutational fitness effects in viruses. Proc Natl Acad Sci U A. 108(24):9916-21

175



Harry Kemble — These de doctorat - 2018
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Abstract: Our ability to predict the impact of mutations on traits relevant for disease
and evolution remains severely limited by the dependence of their effects on the
genetic background and environment. Even when molecular interactions between genes
are known, it is unclear how these translate to organism-level interactions between
alleles. We therefore characterized the interplay of genetic and environmental
dependencies in determining fitness by quantifying ~4,000 fitness interactions between
expression variants of two metabolic genes, in different environments. We detect a
remarkable variety of environment-dependent interactions, and demonstrate they can
be quantitatively explained by a mechanistic model accounting for catabolic flux,
metabolite toxicity and expression costs. Complex fitness interactions between
mutations can therefore be predicted simply from their simultaneous impact on a few

connected molecular phenotypes.
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4.1 Introduction

Despite its centrality to medical and evolutionary genetics, our ability to predict the
impact of mutations on even the apparently simplest of organismal traits (1-8), let
alone complex ones (9), remains minimal. Three of the main factors proposed to
account for this “missing heritability” (9) are: the large number of possible alleles at
any locus, each having a potentially different impact on a gene’s function; interaction
between alleles at different loci (intergenic epistasis), such that their combined effect is
not simply the sum of their individual effects; and interaction between genotype and
environment, such that different genotypes respond to the environment in different
ways (1-9). A promising inroad is the increasingly refined characterization of molecular
interaction networks enabled by —omics approaches (10). Metabolic networks are the
best-characterized of these, and are of great practical interest for medicine and
engineering, but even for metabolic genes it remains unclear how functional
interactions at the molecular level translate to allelic interactions at the level of

integrated traits relevant for disease, industry and adaptation (11).

We therefore developed an experimental system with which to systematically quantify
the fitness interactions occurring between many alleles of two metabolic genes from the
same pathway. Further, the design enabled us to probe the dependence of these
interactions on environmentally modulated gene expression, a common non-genetic

mechanism for the modification of physiological traits (5, 12).
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Our system was composed of the genes (araA and araB) encoding the enzymes
responsible for the first two steps of the well-studied Escherichia coli L-arabinose-
utilization pathway (13): L-arabinose isomerase (AraA) and L-ribulokinase (AraB),
who together transform the sugar, L-arabinose, into the intermediate, L-ribulose-5-
phosphate (Fig. 4.1A). L-ribulose-5-phosphate enters the pentose phosphate pathway
(PPP) of central metabolism via further enzymatic reactions, ultimately supporting
cell growth, but like many intermediates (14, 15), its accumulation is toxic, retarding
growth (16). Environmental modulation of gene expression was achieved by placing
each of the two genes under an independent, trans-regulated chemically-inducible

promoter.

For each promoter, 36 single-base variants were constructed, along with the initial
“wildtype” sequence, and combined with all variants of the other promoter (Fig. 4.1B).
The organismal phenotype, competitive fitness, was then measured for the entire set of
1,369 genotypes under three different inducer concentration combinations (Figs. 4.1C-
D). Fitness was measured by tagging the mutant library with unique DNA barcodes
(tens to thousands per genotype) (Figs. 4.51-2), culturing the pooled library for ~30
mean generations, and tracking barcode frequencies over time with Next-Generation
Sequencing (Fig. 4.53). The barcodes act as internal replicates for every genotype,

enabling precise fitness estimates at high-throughput (log relative fitness, F™*, median
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standard deviation of 0.0011 for single mutants and 0.0047 for double mutants; Fig.
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Fig. 4.1. Quantitative mapping of fitness interactions between expression variants
of two metabolic genes in expression-modifying environments. (A) L-arabinose
pathway of E. coli. (B) araA and araB were placed under the control of inducible promoters,
making their expression sensitive to the concentration of their respective inducers,
anhydrotetracycline (aTc) and isopropyl B-D-1-thiogalactopyranoside (IPTG). A barcoded
library of mutant promoter combinations was constructed, with mutations targeting the -35
and -10 RNA-polymerase binding hexamers (black letters). Underlined bases are annotated
repressor binding sites. (C) Competitive fitness was measured under different inducer
concentrations defining three environments. Pri01 single mutants — green; Prico1 single
mutants — purple; double mutants - orange. Contours are hypothetical fitness isoclines. (D)
Epistasis was quantified for all mutant promoter pairs across environments. Epistasis can be
categorized as either magnitude or sign type. Sign epistasis is further categorized as simple
(effect of one mutation changes sign in presence of the other) or reciprocal (effects of both
mutations change sign in the presence of the other). Capitalized letters represent mutant
alleles of pricto1-araA and Prico1-araB. Superscript plus and minus denote that individual

alleles are beneficial or deleterious, respectively.
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4.2 Results

The overall distribution of fitness effects depended critically on the inducer
environment, ie. the trans-regulatory input (Fig. 4.2A; Fig. 4.S5A; Data S1). The
proportion of beneficial effects varied from 88% in Envi (median F™ = 0.12) to 51% in
Envs (median F™ = -0.03) and 12% in Env, (median F™ = -0.12). Further, the
correlation of fitness effects between environments ranged from strongly positive (Env-
Envs, Pearson’s r = 0.74, p < 2.2x107°) to weakly negative (Envi-Env,, Pearson’s r = -
0.11, p = 1x10*) (Fig. 4.55B), demonstrating that fitness in one environment can be
an extremely poor predictor of fitness in other environments due simply to expression
differences. At the level of individual alleles, all but one had changing patterns of
effects across environments (Fig. 4.2B). In some environments, they were universally
beneficial or deleterious across genetic backgrounds, and in others they switched
between being beneficial and deleterious depending on the allele at the second
promoter. This pervasive and inconsistent variability poses a clear challenge for the

prediction of mutation effects.
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Fig. 4.2. Fitness effects of promoter mutations across backgrounds and
environments. (A) Genotypes are colored according to the natural logarithm of their fitness
relative to the wildtype (F'*). Grey denotes unquantifiable fitness effects. Letters show
wildtype bases, and the 3 mutations at each position are ordered alphabetically, as in B. Single
promoter mutants make up the right-most column (araA) and top row (araB). Inducer
concentrations were: 20 ng/ml aTc and 30 pM IPTG (Envy); 5 ng/ml aTc and no IPTG
(Envs); 200 ng/ml aTc and no IPTG (Envs). (B) Fitness changes when an allele of one
promoter is added to alleles of the second promoter. Large points indicate the “background”
promoter is wildtype. Red, blue and grey points indicate positive, negative and non-significant
fitness changes, respectively. Red, blue and grey rectangles indicate, in that environment, an
allele can be beneficial but never deleterious, deleterious but never beneficial, or both beneficial
and deleterious. G7A of Prio1-araA (*) is the only allele conferring a qualitatively consistent

fitness effect (beneficial) across all backgrounds and environments.

To further characterize how the effects of mutations in one gene depended on the allele
present at the other gene, we computed epistasis (17) for all mutation pairs in each

environment. Epistasis evaluates quantitatively and qualitatively how the log fitness of
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a double mutant deviates from the sum of that of the constituent single mutants (Fig.
4.3A, Fig. 4.56A). Epistasis was found to be pervasive (89%, 39% and 81% of pairs in
Envys, respectively), heterogeneous and environment-dependent. A trend of
antagonism reported for several other systems (18) was recovered between pairs of
individually beneficial (negative epistasis in 89%, 72% and 100% in Envys,
respectively) and individually deleterious (positive epistasis 100% (1/1), 97% and 98%,
respectively) mutations, while interactions between a beneficial and a deleterious
mutation could be mostly positive or mostly negative, depending on the environment
and on which gene carried the beneficial/deleterious mutation. This epistatic diversity
extended to individual mutation pairs, with more than 20% interacting both positively
and negatively across environments (Figs. 4.56B-C). Notably, sign epistasis, an
extreme interaction which occurs when the sign of a mutation effect changes in the
presence of a second mutation (Fig. 4.1D), represented 31% of significant interactions

in Envy, 17% in Env, and 34% in Envs.
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Fig. 4.3. Strength, types and trends of epistasis across environments. (A) Violins

show epistasis for different kinds of mutation pairs (white point - median; black point - mean).

Mutation pairs may contain mutations that are individually both beneficial (A" B"), both
deleterious (A" B") or mixed (A" B and A" BY), or one of which confers an undetectable effect
(A’ B* and A*/- B%). The number of each such pair is provided. Stacked bars show fractions

of different epistasis types (colors as Fig. 4.1D, with white where epistasis could not be

computed). Scatterplots show fitness of double mutants against that expected if mutation

effects combined additively. Points colored as in Fig. 4.1D. (B) Relationship between

background fitness and the fitness change induced by mutations in the second promoter, in

Envi. Top: araA promoter mutations added to existing araB promoter mutations; bottom:

inverse case. Colored points highlight particular alleles. Top: Prio1-araA alleles T2C (red) and
G7C (blue). Bottom: Pricoi-araB alleles T1A (red) and C11A (blue). Large points show effects
in the wildtype background.

Confronted with such a variety of interactions, we asked whether they might be

understood simply in terms of the quantitative fitness effects of the interacting

mutations, as has been found for some other mutation sets (19). We found that the

effects of individual mutations were weakly predictive of the type and value of epistasis

they exhibited with mutations at the second promoter (Fig. 4.3A scatterplots). In all

environments, there was a significantly negative correlation between the sum of

183



Harry Kemble — These de doctorat - 2018

individual fitness effects and the value of epistasis (Pearson’s r = -0.36, -0.37, -0.51 in
Envys, respectively; p < 2.2x107 for all), a trend of diminishing returns that appears
common across experimental systems (19-22) (Fig. 4.S7A). However, when the two
genes were considered separately, the relationship between individual fitness effects
and epistasis was found to be markedly different between araA and araB: the negative
correlation was stronger for Priio.1i-araA mutations being added to existing Prico-araB
mutations than for the inverse case (Figs. 4.S7B-C; Pearson’s r = -0.67, -0.73, -0.63 in
Envis, p < 2.2x107 for all, vs. 0.12, -0.20 and -0.34, p < 1.6x10° for all), in which the
correlation can even be positive, an extremely rare trend in existing studies (19).
Moreover, we found that the average trend was in some cases strikingly non-monotonic
(Figs. 4.57B-C), revealing that different alleles of a particular promoter can cause
similar fitness changes on their own but interact very differently with alleles at the

second promoter.

The relationship between individual mutation effects and epistasis was further
complicated by the fact that it could be different for different alleles of the same
promoter. For example, in Envy, the numerous beneficial Prieo.1-araA mutations caused
the average negative trend with Pri.coi-araB background fitness, while the rare
deleterious Prieo1-araA mutations showed no such trend (Fig. 4.3B, top panel). For
individual Pricoi-araB mutations in Preo1-araA backgrounds, the relationship was

consistently non-monotonic, but had a different average direction for individually

184



Harry Kemble — These de doctorat - 2018

beneficial or deleterious alleles (Fig. 4.3B, bottom panel). Moreover, the trend for a
given allele could vary greatly with the environment (Figs. 4.57B-C). These results
demonstrate that genes interacting simply through their common participation in a
linear pathway can exhibit complex, allele- and environment-dependent trends of
epistasis. The smooth patterns exemplified by Fig. 4.3B, however, suggest that they

may in principle be understood from an underlying phenotypic mechanism.

To this end, we constructed a quantitative model of the metabolic pathway, where
fitness results from a balance between the benefit of flux (2%) and the costs of

intermediate toxicity (14, 24, 25) and AraA and AraB protein expression (26-28). Log

v
1/n—¢

fitness was computed as F = (w +up — ) (1 - 04A - BBB), with w a basal

growth rate, u and v terms describing the catabolic benefit and toxicity cost of

pathway flux (¢), A and B the cellular activity of the two enzymes, and 8 the cost of

1

enzyme expression. Flux depended on AraA and AraB activities as ¢ = AAri/Brn (25,

29).

Each promoter mutation was then characterized as a change in the activity (via
expression) of AraA or AraB. Because most mutations lay outside of the repressor
binding sites governing promoter inducibility (Fig. 4.1B), the fold-change in activity
caused by each mutation was kept constant across inducer environments. Parameters

describing the fitness function, wildtype activities in the 3 environments and
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expression effects of individual mutations were then optimized to fit the observed data

(Data S2; Fig. 4.S8A).

The fitted model is in excellent agreement with our data, yielding r* values of 0.98
between experimental and simulated fitness effects and 0.82 between experimental and
simulated epistasis coefficients (Fig. 4.4A-B; Fig. 4.S8B-C; see Fig. 4.S9 for more
minimal models). Notably, the model is capable of recapitulating the diverse and
complex trends of epistasis seen in the data. In particular, we find that the non-
monotonic relationships between single-mutant fitness and the fitness impact of alleles
at the second promoter are well explained by the single mutants lying at two sides of a
phenotypic optimum (Fig. 4.4B). Such overshooting, which is also the cause of sign
epistasis (Fig. 4.4C) (30), is relatively common in our dataset, mostly because L-
ribulose-5-phosphate toxicity results in an optimum in the flux-fitness relationship (24,
25) (Fig. 4.510). Two alleles of the same gene may thus result in similar fitness
changes individually but cause substantially different expression levels and fluxes,
resulting in different responses to mutations at the second gene. This is principally due
to enzymes possessing different degrees of flux control on each side of the optimum,

with lower levels of one resulting in the second having less control.
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Fig. 4.4. Mechanistic basis of heterogeneous, environmentally dependent epistasis.
(A) Fitted activity-fitness model. Spheres are positioned according to predicted activity levels
and observed F'* (Envys — red, blue, orange). Three largest spheres are wildtype, intermediate-
sized spheres are single mutants, small pale spheres are double mutants. (B) Upper plots
recapitulate Fig. 4.3B. Lower plots show highlighted genotypes within fitness landscape (black
point is wildtype; other large points are single mutants, grey for the gene considered as
carrying the “background” alleles). (C) Fitness surface on log activity scale, colored by
predicted intergenic epistasis type (colors as Fig. 4.1D; determined as non-significant (grey) if
magnitude < 0.005). Large black point is wildtype. Smaller, opaque blue, red and black points
are single mutants, colored by observed F™ (deleterious, beneficial and neutral, respectively).
Transparent points are double mutants, colored by observed epistasis type and sized by
epistasis strength. (D) Dark grey marks area below a hypothetical disease threshold (40% of
maximum fitness). Points are four genotypes in Env, (blue) and Env; (orange): wildtype
(largest), C11A of Preor-araA and G7T of Prucoi-araB (intermediate size), and the resulting
double-mutant (smallest). Green arrow represents a change in activity levels caused by non-
genetic factors like ageing or environment. A disease state results here from one combination of

alleles and environment (pale orange).
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4.3 Discussion

The model reveals how the biology underlying a linear pathway can result in
heterogeneous, environmentally dependent intergenic interactions. When fitness
depends solely on flux (23, 25), the nature of epistasis should be guaranteed by
pathway topology alone (25). Under the slightly more complex selection pressure
resulting from metabolite toxicity (24, 25) and gene expression costs, however,
interactions can be both positive and negative. We find that epistatic categories form
several localized zones over the fitness landscape, their size and position dependent on
the wildtype phenotype, controlled here by the environment (Fig. 4.4C; Fig. 4.511).
Encouragingly, these zones are generally large and orderly enough to be predictable,
but only through knowledge of the underlying landscape and the position of the

relevant genotypes within it.

The importance of this knowledge becomes immediately apparent when considering the
existence of a disease threshold (Fig. 4.4D). The two alleles shown can lead to disease,
but only when they co-occur, and only in one particular environment. The model thus
provides a mechanism by which potential physiological defects can be manifested,
aggravated or alleviated by particular combinations of alleles and environments (1-7,
9). Insight into intergenic fitness landscapes for other biological systems, and for genes
connected by more complex topologies, will be indispensable for progress across

medicine, bio-engineering and evolution.
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4.4 Methods

General microbiology and molecular biology

Lysogeny Broth (LB) powder, agar, salts, sugars, growth supplements, antibiotics and
inducers were all purchased from Sigma-Aldrich. Bacteria were cultured in LB, unless
otherwise stated. Liquid LB was the standard Lennox formulation, except for when
blasticidin-S was included, in which case the Luria low-salt formulation (0.5 g/L NaCl)
was used. LB-agar always contained the Luria low-salt formulation. M9 base medium
consisted of 1X M9 salts supplemented with 1mM MgSO4 and 100 pM CaCl,. Unless
otherwise stated, L-arabinose was used at a concentration of 0.03% w/v. Ampicillin
(amp) was used at 100 pg/ml, chloramphenicol (cm) at 10 pg/ml, streptomycin (str)
at 50 pg/ml, blasticidin-S (bsd) at 100 pg/ml and erythromycin (erm) at 20 pg/ml.
Bacterial cultures were grown at 37°C (with shaking at 200 rpm for liquid cultures;
Multitron, Infors HT'), unless otherwise stated, and culture stocks were stored at -80°C
in LB with 40% glycerol. For electroporation, DNA was added to 50 ul homemade
electro-competent cells (unless otherwise stated), transferred to a lmm-gap
electroporation cuvette (VWR) and submitted to a pulse of 1,800 V (Electroporator
2510, Eppendorf). Cells were immediately transferred to fresh LB for recovery at 37°C
(unless otherwise stated) with shaking for 30-90 minutes, before being plated on the

appropriate selective media and left to grow overnight.
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All enzymes and molecular biology reagents were purchased from NEB, unless
otherwise stated. Primers were purchased from IDT or Eurofins, and designed with the
help of Primer3 (31). For sensitive applications like barcoding and NGS library
preparation, primers were ordered HPLC-purified, otherwise they were ordered
desalted. UltraPure agarose was supplied by Invitrogen, and all agarose gels were
stained with SYBR Safe (Thermo Scientific) and visualised with a GelDoc XR+
imager (Bio-Rad). The GeneRuler 1kb Plus ladder (Thermo Scientific) was used for

DNA fragment size estimation.

All plasmids used in this study, excluding the mutant library, are detailed in Table
4.51. DNA fragments used in cloning are detailed in Table 4.S2. Primers, excluding
those used for promoter mutagenesis, are provided in Table 4.S3. All strains are

detailed in Table 4.54. Primers used in promoter mutagenesis are provided in Table

4.55.

Plasmid construction

Our library creation strategy depended on two plasmids, pKH1511c and pKH1511d,
which were created in this study. pKH1511c serves as the library “backbone”, carrying
all the necessary elements of the final plasmid library except for the Prieo.1 and Priacot
promoters destined to drive araA and araB expression, respectively: p15A origin-of-
replication, lacl-tetR repressor cassette (for inducibility of Preio1 and Puaco), araA

and araB. araA and araB ORFs (with their upstream ribosome binding site-containing
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regions) are divergently oriented (with each followed by an artificial transcriptional
terminator), and are separated by 2 restriction sites to allow easy insertion of
divergently oriented Prieo.1 and Prico1 promoters. pKH1511d serves as a template for
amplification of a bsd blasticidin S-resistance cassette with primers containing the
Prito1 and Praco1r variant sequences, allowing their eventual insertion into pKH1511c¢
(Figure 4.51). pKH1511d replication is pir-dependent, abolishing the occurrence of
false-positive colonies caused by PCR template carryover during library cloning.
Plasmids, DNA fragments, PCR primers and bacterial strains used in the construction
of these two plasmids are detailed in Tables 4.51-4, respectively, and the detailed

cloning methods follow.

The DNA fragments used to construct pKH1503a, pKH1511¢c and pKH1511d come
from either PCR amplification or from direct restriction digestion of purified plasmid
DNA, and were joined by either standard restriction-ligation or by Gibson Assembly
(32) (in which case, overlaps of ~40 nucleotides were used). PCR amplifications were
all performed with Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo
Scientific) in its High-Fidelity buffer, following the manufacturer’s recommendations.
Restriction enzymes were used according to the manufacturer’s instructions. When
found necessary to reduce the occurrence of false-positive colonies, DNA was treated
with calf intestinal alkaline phosphatase (to reduce vector self-ligation) and/or Dpnl

(to digest PCR template). After PCR amplification and/or digestion, DNA fragments
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were either verified by electrophoresis and column-purified (QIAquick PCR
Purification Kit, QTAGEN) or, when necessary, gel purified (QIAquick Gel Extraction
Kit, Qiagen). Gel-purification was always followed by a 2nd clean-up (QIAquick PCR
Purification Kit, QIAGEN) to improve DNA quality for ligation. For gel extractions,
agarose gels were stained with SYBR Safe (Thermo Scientific), and DNA was
visualised with blue light to avoid UV-induced DNA damage (Blue Transilluminator,
Pearl Biotech). A NanoDrop ND-1000 spectrophotometer (Thermo Scientific) was used
to determine DNA concentration for all fragments prior to ligation/Gibson Assembly.
Standard ligation and Gibson Assembly were performed using T4 ligase and Gibson
Assembly Master Mix (NEB), respectively, according to the manufacturer’s
recommendations (T4 ligase was then inactivated by heating at 65°C for 10 mins). In
both cases, DNA was subsequently microdialysed against water for > 30 mins (MF-
Millipore, Merck), and 1-5 ul were electroporated into 50 pl electrocompetent cells.
DHb5a AaraBA was used as the cloning strain except when the plasmid was pir-
dependent, in which case PIR1 was used. After electroporation, cells were recovered in
1 ml LB for 30-90 mins at 37°C with shaking at 200 rpm, plated on LB-agar in the
presence of the antibiotic indicated in Table 4.51 and incubated overnight at 37°C.
Plasmid DNA was purified from several colonies (QIAquick PCR Purification Kit,
QIAGEN) and verified by both restriction analysis and Sanger sequencing of the insert

region.
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Strain engineering and adaptation

The final library host strain, E. coli MG1655 AaraBA D-ara*/*° AfucK AlaclZYA::cat
D/L-ara® (Table 4.54), was originally designed to possess a rewired D-arabinose
metabolism (33-35), in which araB (but not araA) participates. D-arabinose was not
used in this study, however, so this feature (D-arat/** AfucK) is not relevant here. In
addition, araA and araB ORFs were removed from the chromosome, to allow them to
be expressed exclusively from plasmids (the 3¢ gene of the araBAD operon, araD, was
kept on the chromosome under the control of its native L-arabinose-responsive
promoter, as were the transcriptional regulator gene, araC, and the transporter genes,
araF, araFGH and araJ; given the all-or-nothing response of the positive feedback loop
governing L-arabinose uptake, all these genes are expected to be maximally induced by
internal L-arabinose by the time of fitness measurement (36)). Further, lacIZYA was
replaced by a cat chloramphenicol-resistance cassette. This allows the use of IPTG to
control the artificial promoter, P01, in the absence of any effects resulting from
induction of the native lac operon, and the absence of lacY also causes this control to
be titratable rather than all-or-nothing (37). Finally, this strain was transformed with
plasmid pKH1503a (which carries an araBA cassette under the control of Prico1; Table
4.S1) and briefly adapted to M9 with alternating D-/L-arabinose (see above) in the

presence of a low concentration of IPTG. This adaptation step was included to allow
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fixation of any mutations conferring a very high fitness advantage to our engineered
strain in our approximate experimental conditions, to avoid them interfering with

mutant library competition experiments. Detailed strain engineering methods follow.

Details of the final library host strain, and all intermediates used in its creation, are
provided in Table 4.54. Gene knockouts were performed using the method of Datsenko
and Wanner (38). The relevant strain was made electrocompetent, electroporated with
10 ng plasmid pKD46 DNA, and transformants were selected on LB-agar with 100
ng/ml ampicillin at 30°C. Several colonies were then re-isolated under the same
conditions. The cat chloramphenicol-resistance cassette was PCR-amplified from pKD3
(38) using primer pairs KO-araBA-fwd/KO-araBA-rev for araBA, KO-lacIZYA-
fwd/KO-laclZY A-rev for lacIZYA and KO-fucK-fwd/KO-fucK-rev for fucK, and a 2:1
mix of GoTaq/Pfu DNA polymerases (Promega). PCR products were verified by 1%
agarose gel electrophoresis, column-purified (QIAquick PCR Purification Kit,
QIAGEN) and spectrophotometrically quantified (NanoDrop ND-1000). A pre-culture
of a single pKD46-transformed colony was grown overnight (LB-amp) at 30°C and
then diluted 100x into LB-amp with 0.2% L-arabinose and grown at 30°C to an
ODgoonm of ~0.7 (BioMate 3S, Thermo Scientific; 3-5 hours). The culture was made
electrocompetent, electroporated with ~200 ng of the purified PCR product, and
recombinants were selected on LB-agar with 10 pg/ml chloramphenicol at 37°C, for

curing of pKD46. Several colonies were then re-isolated under the same conditions, and
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tested in parallel for pKD46 curing by plating on LB-amp and checking for colonies
after an overnight growth at 30°C. Several of the re-isolated colonies were verified by
colony-PCR, using 3 primer pairs for each knockout (38). The gene-specific primers are
verif-araBA-fwd /verif-araBA-rev for araBA, verif-lacIZY A-fwd/verif-lacIZY A-rev for
lacIZYA and verif-fucK-fwd /verif-fucK-rev for fucK, and the common cat primers are
cl and ¢2 from reference (38). For each knockout, the 3 primer pairs were: gene-
specific fwd/gene-specific rev, gene-specific fwd/cl and gene-specific rev/c2. GoTaq
DNA polymerase (Promega) was used for amplification, following the manufacturer’s
recommendations, and PCR products were analysed by agarose gel electrophoresis
(1.5%). In the case of araBA and fucK, we wished to retain function of the remaining
genes in their respective operons, and so the cat cassette was removed as described in
reference (38). For this, a pre-culture of a single recombineered colony was grown
overnight (LB-cm, 37°C) and then diluted 100x into LB-cm and grown at 37°C to an
ODgoonm of ~0.7 (BioMate 3S, Thermo Scientific; 2-4 hours). The culture was made
electrocompetent, electroporated with 10 ng plasmid pCP20 DNA, and transformants
were selected on LB-agar with 100 pg/ml ampicillin at 30°C. Several colonies were
then re-isolated under the same conditions, and then again in the absence of ampicillin
at 42°C, to cure pCP20 (38). Finally, several colonies were streaked in parallel on LB
(37°C, purification), LB-cm (37°C, verify cat loss) and LB-amp (30°C, verify pCP20
loss). The loss of the cat cassette through FRT recombination was verified molecularly

for several clones by colony-PCR, using the same primer pairs and conditions described
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above for cat insertion verification. The PCR products resulting from amplification
with the gene-specific primer pairs were also Sanger-sequenced (GATC; using the

amplification primers) as a final verification.

Adaptations were performed as described in Table 4.54. For the initial adaptation
step, pre-cultures were grown overnight in LB, washed twice in an equal volume of
M9, and 1 ml washed cells were diluted in 100 ml of the appropriate adaptation media.
Once growth became apparent, cultures were serially transferred in a volume of 20 ml,
being left to grow for ~24 hours between each transfer, at which point they were
diluted ~100x into fresh media. After adaptation, colonies were isolated on agar plates

containing the same media used for adaptation.

To cure the plasmid from MG1655 AaraBA D-ara™®° AfucK AlacIZYA::cat D/L-
ara®™, a pre-culture was grown overnight in LB-cm, and dilutions were plated on LB-
cm with 2% ribitol and 200 pM IPTG. IPTG induces araBA from the plasmid, and
AraB converts ribitol to the toxic compound ribitol phosphate (39), rendering plasmid-
harbouring cells unable to grow. Several colonies were tested and confirmed for
plasmid loss by streaking on LB-str and by colony-PCR, (primers
oKH150401¢c/0KH150202d, GoTaq (Promega)), with comparison to control colonies
grown in the absence of ribitol. The final plasmid-less host strain was also tested once
more for its marker-less AaraBA and AfucK deletions using colony-PCR (primer pairs

verif-araBA-fwd /verif-araBA-rev and verif-fucK-fwd /verif-fucK-rev, as above).
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Library creation strategy

On the evolutionary scale, direct changes in the total cellular activity of a particular
enzyme can occur through either regulatory mutations, which alter the concentration
of active enzyme, or structural mutations, which can effect both active enzyme
concentration and kinetic parameters. A common target of regulatory mutations is the
promoter (40), which controls a protein’s expression level by determining transcription
rate, and we decided to focus on promoter mutations in this study. We first placed
araA and araB under the control of the well-known artificial, chemically-inducible
promoters, Prio1and Prao., developed by Lutz and Bujard (41). They are each
regulated by a single transcription factor (tetR repressor for Prwo1and lacl repressor
for Prco1), and can be specifically induced to different levels by addition of a small,
non-metabolisable compound (aTc for Prieo-1and IPTG for Priaco1). We focussed
mutagenesis on the RNA polymerase-binding sites (-35 and -10 hexamers) of the two
promoters, as these sites are known to be the most significant determinants of
expression level in the core promoter (42, 43). Conveniently, these sites are identical
between Prieo.1 and Praco.1, coming from phage lambda Py in both cases (41). For each
promoter, we constructed all possible single-bp substitutions over this 12bp region (36
mutants for each promoter), along with the wildtype sequence. All 37 sequence

variants of the two promoters were combined together, resulting in a plasmid library
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containing: all 1,296 double-promoter mutants, all 36 single-promoter mutants for each
promoter (one promoter is mutated, the other is wildtype) and the full wildtype (both
promoters are wildtype). The majority of mutations in the RNA polymerase-binding
sites are expected to have little or no effect on repressor binding, and their relative
effect on expression should be similar across different inducer concentrations (44, 45).
However, one of the -10 bases on Prwi0.1 overlaps with a tet operator, and three of the -
35 bases on P01 are expected to overlap with a lac operator (41) (Fig. 4.51), meaning
that the effect on expression of mutations at these positions could depend strongly on

inducer concentration (46).

The overall structure of the plasmid on which the library is based is shown in Fig.
4.51. araA and araB are divergently expressed from Priio1and Prico1 promoters,
respectively. These two promoters are separated from each other by a short bsd
blasticidin S resistance cassette (47), in order to reduce any physical interactions
between them. The presence of a resistance cassette between the promoters also
considerably increased cloning efficiency, as explained below, and bsd in particular was
chosen for its small size (396 bp ORF), making it possible to sequence both promoters
on a single amplicon using paired-end Illumina technology (Fig. 4.S1). The promoters’

repressors, tetR and lacl, were included on the plasmid.

Plasmid molecules were also intergenically tagged with unique DNA barcodes, similarly

to reference (48) (Fig. 4.51). These were used to help overcome the problem of PCR
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and sequencing errors and to increase the precision of mutant fitness estimates by
providing many independent frequency trajectories for each mutant (Figs. 4.52-4). The
barcodes thus also allowed us to account for anomalous lineages containing off-target
mutations (present in the initial library) and de novo mutations (arising during
competition assays). They consist of 20 random nucleotides, split into 4 blocks of 5
(49) to avoid the creation of restriction sites used in a later sequencing step:
N;ATN;ATN;ATN;. Barcodes were inserted downstream of the lacl-tetR cassette, far
from the Prwo1and Pracos promoters, to avoid any effects on araA and araB
expression, and so are expected to be effectively neutral for fitness (Fig. 4.51). Care
was taken throughout to avoid loss of library complexity (Fig. 4.52), and quality

controls were employed at each step of library construction.

The pooled plasmid library was constructed using standard restriction-ligation cloning
(Fig. 4.51). Due to their short length, promoter sequences could be introduced facing
outwards on the 5’ ends of PCR primers that were used to amplify a bsd (47)
blasticidin S-resistance cassette from plasmid pKH1511d (Prieto-10n forward primers
and Prico1 on reverse primers). This was done using primer pools with randomised
nucleotides at each of the 12 target positions for each promoter. The primers also
contained restriction sites on their 5’ extremities, allowing the resulting amplicon pool
to be ligated into the library backbone, pKH11511c, in the desired orientation. The

resulting plasmid library was transformed into DH5a AaraBA and colonies were
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selected on blasticidin S. This strategy ensured that the occurrence of false-positive
colonies from undigested or self-ligated vector was negligible, as a functional ori could
only come from pKH11511¢ (the pKH1511d ori is pir-dependent), while bsd was only
present in pKH1511d. Due to the use of fully-randomised nucleotides at each target
position and the combinatorial way in which variants of the two promoters were
cloned together, the expected genotype frequencies in this initial library are: 1/16 for
WT, 1/192 for each of the 72 single-promoter mutants and 1/2304 for each of the
1,296 double-promoter mutants. With this in mind, an estimated 40,000 colonies were
harvested in this step to avoid loss of library complexity. Barcodes were added in a 2"
round of restriction-ligation cloning, introduced via a randomised PCR primer. The
primer, containing fully-randomised nucleotides at 20 positions, was used to amplify
the bla B-lactamase gene from plasmid pKD3 (38), and the resulting amplicon pool was
swapped with the aadA1 streptomycin/spectinomycin resistance gene in the plasmid
library backbone. The primer contains restriction sites on its 5’ extremity, one of
which is used for this ligation, and another of which allows the barcodes to be moved
closer to the mutated promoter region in a later step (see Barcode-promoter
association). The barcoded plasmid library was again transformed into DH5a AaraBA
and colonies were this time selected on ampicillin. False-positive colonies were avoided
for the same reason as above, as pKD3 also has a pir-dependent ori. An estimated
100,000 colonies were harvested during this step, with the vast majority expected to

contain a unique barcode. Expected barcode richness was thus: 6,250 for WT, 521 for
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each single-promoter mutant and 43 for each double-promoter mutant. In a final step,
the engineered host strain, MG1655 AaraBA D-ara™* AfucK AlaclZYA::cat D/L-
ara®°, was transformed with this barcoded plasmid library, and an estimated 600,000
colonies were harvested after selection on ampicillin. Detailed library construction

methods follow.

Library creation methods

To create the initial library, two promoter-containing primer sets, oPtetLib-fwd and
oPlacLib-rev, were each pooled in equimolar quantity (Table 4.S5). These two primer
pools were then used together at a concentration of 0.5 uM each pool to PCR-amplify
bsd from plasmid pKH1511d, using Phusion Hot Start II High-Fidelity DNA
Polymerase (Thermo Scientific) in its High-Fidelity buffer, following the
manufacturer’s recommendations. Cycling conditions were: 98°C for 30 secs, followed
by 35 cycles of 98°C for 10 secs, 60°C for 30 secs and 72°C for 15 secs, with a final
extension step of 72°C for 2 mins. PCR product quality was checked by agarose gel
electrophoresis, after which the product was column-purified (QIAquick PCR
Purification Kit, QTAGEN) and quantified with a NanoDrop ND-1000
spectrophotometer (Thermo Scientific). The purified product and plasmid pKH1511c
were then both digested for 90 mins with Xhol and Sacl-HF restriction enzymes (NEB
CutSmart buffer), and digested DNA was again column-purified (QIAquick PCR

Purification Kit, QTAGEN) and quantified with a NanoDrop ND-1000
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spectrophotometer. 70ng of the pKH1511¢ vector fragment was ligated in a 1:3 molar
ratio with the bsd/promoter-containing insert in a total volume of 20 pl. The ligation
was carried out at 16°C overnight using T4 DNA ligase (NEB T4 DNA ligase reaction
buffer), which was then deactivated by heating at 65°C for 10 mins. The ligate was
microdialysed against water for 30 mins (MF-Millipore, Merck), after which several
transformations were performed as follows: 3 jl were electroporated into 50 pl
electrocompetent DH5a AaraBA cells; cells were recovered in 500 pl low-salt (Miller)
LB for 1 hour at 37°C with shaking at 200 rpm, plated on LB-agar with 100 pg/ml
blasticidin-S and incubated overnight at 37°C. Colony-PCR and Sanger sequencing
(GATC) of the mutated promoter region was performed on 4 of the resulting colonies
as a preliminary test of library quality, and all 4 clones had a unique promoter
genotype with a single base substitution in the target region of either one or both
promoters, as expected. An estimated 40,000 colonies were scraped off the agar into
LB-glycerol (40%), and plasmid DNA was purified from a sample of this cell

suspension (QIAprep Spin Miniprep Kit, Qiagen) after thorough mixing.

To barcode the plasmid library, primers oBarcodeBla-fwd and oBarcodeBla-rev (Table
4.83) were used at a concentration 0.5 pM each to PCR~amplify bla from plasmid
pKD3 (38), using Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo
Scientific) in its High-Fidelity buffer, following the manufacturer’s recommendations.

Cycling conditions were: 98°C for 30 secs, followed by 30 cycles of 98°C for 10 secs,

202



Harry Kemble — These de doctorat - 2018

60°C for 30 secs and 72°C for 25 secs, with a final extension step of 72°C for 3 mins.
PCR product quality was checked by agarose gel electrophoresis, after which the
product was column-purified (QIAquick PCR Purification Kit, QTAGEN) and
quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). The
purified product was then digested for 1 hour with Spel-HF restriction enzyme (NEB
CutSmart buffer), while the purified plasmid library obtained above was digested for 1
hour with BstZ171 and Spel-HF restriction enzymes (NEB CutSmart buffer). Digested
DNA was again column-purified (QIAquick PCR Purification Kit, QIAGEN) and
quantified with a NanoDrop ND-1000 spectrophotometer. 60 ng of the digested library
was ligated in a 1:4 molar ratio with the bla/barcode-containing insert in a total
volume of 20 pl. The ligation was carried out at 16°C overnight using T4 DNA ligase
(NEB T4 DNA ligase reaction buffer), which was then deactivated by heating at 65°C
for 10 mins. The ligate was microdialysed against water for 30 mins (MF-Millipore,
Merck), after which several transformations were performed as follows: 1 pl was
electroporated into 15nl commercially-prepared ElectroMAX DHb5a-E electrocompetent
cells (Invitrogen); cells were recovered in 500 pl LB for 30 mins (to minimise cell
replication) at 37°C with shaking at 200rpm, plated on LB-agar with 100 pg/ml
ampicillin and incubated overnight at 37°C. The use of commercially prepared
electrocompetent cells was necessary due to reduced cloning efficiency at this step,
possibly due to the ligation reaction involving blunt ends. Plasmid DNA was purified

from 3 colonies (QIAquick PCR Purification Kit, QIAGEN) for Sanger sequencing
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(GATC) of the mutated promoter and barcode regions as a preliminary test of
barcoding efficiency. All 3 colonies were found to possess a unique promoter genotype,
as before, along with a unique, correctly-inserted barcode. An estimated 100,000
colonies were scraped off the agar into LB-glycerol (40%), and plasmid DNA was
purified from a sample of this cell suspension (QIAprep Spin Miniprep Kit, Qiagen)

after thorough mixing.

To move the barcoded plasmid library into the final host strain, while avoiding the
creation of transformants harbouring multiple unique plasmids (50), several
transformations were performed as follows, with plasmid concentration kept fairly low:
5 ng of the purified barcoded plasmid library obtained above were electroporated into
50 pl electrocompetent MG1655 AaraBA D-arat/* AfucK AlacIZYA::cat D/L-ara®™
cells; cells were recovered in 500 pl LB for 30 mins at 37°C with shaking at 200rpm,
plated on LB-agar with 100 pg/ml ampicillin and incubated overnight at 37°C. An
estimated 600,000 colonies were scraped off the agar into LB-glycerol (40%), and this

cell suspension was aliquoted and stored at -80°C after thorough mixing.

Barcode-promoter association

To reveal the Prieo1and Pruco.1 promoter sequences linked to each barcode sequence,
barcodes were first brought closer to the promoters by excision of the intervening

region from the plasmid followed by re-circularisation (48). PCR-~amplification was
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then used to add the technical sequences necessary for paired-end Illumina MiSeq

sequencing of barcode-promoter amplicons (Fig. 4.51B).

To first move barcodes closer to the promoter region, the purified barcoded plasmid
library was digested for 90 mins with Xhol, Sall-HF and Sphl restriction enzymes
(NEB CutSmart buffer). The largest fragment (~5.5 kb), which contains the mutated
promoters and the barcode, was gel-purified (QIAquick Gel Extraction Kit, Qiagen)
using a 1% agarose gel and quantified with a NanoDrop ND-1000 spectrophotometer
before being self-ligated. Xhol and Sall are isocaudamers, so they create
complementary cohesive ends, but the sequence resulting from ligation between these
ends is no longer recognised by either enzyme (Sphl cuts within the region being
discarded, and was simply included to ease gel extraction of the desired fragment).
Because of this, they can be included in the reaction mix during self-ligation of the
purified fragment to help reduce intermolecular ligation (undesired intermolecular
ligation events which recreate Xhol and Sall sites can be reversed, releasing the
original monomers and so increasing the efficiency of the desired intramolecular
ligation reaction (48, 51)). Due to the inclusion of these restriction enzymes, the self-
ligation reaction was carried out in a restriction enzyme buffer, with ATP added for
ligase activity. Additionally, the concentration of DNA and ligase was substantially
reduced compared to standard ligation reactions to further reduce the occurrence of

intermolecular ligation. The self-ligation reaction mix thus consisted of: 1X NEB
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restriction buffer 2 supplemented with 100 pg/ml BSA and 1 mM ribo-ATP (NEB), 30
ng DNA, 1 U each of Xhol and Sall-HF and 800 U of T4 DNA ligase, in a total
volume of 200 pl. Inspired by the strategy of reference (51), the reaction was cycled 50
times between 37°C (restriction enzyme and ligase activity optimum) for 5 mins and
16°C (promote annealing of DNA termini) for 15 mins. A final 37°C incubation was
carried out for 15 mins to promote digestion of any remaining Xhol and Sall sites,
followed by one of 65°C for 20 minutes to inactivate all enzymes. The ligate was
concentrated to ~20 pl using a SpeedVac concentrator (Savant DNA 120, Thermo
Scientific) and then microdialysed against water for 90 mins (MF-Millipore, Merck). As
a preliminary test of the success of this ligation step, a portion of the ligate was used
in a transformation to allow isolation and sequencing of several re-circularised
plasmids: 2 pl were electroporated into 50 pl electrocompetent DH5a AaraBA cells;
cells were recovered in 500 pl LB for 30 mins at 37°C with shaking at 200 rpm, plated
on LB-agar with 100 pg/ml ampicillin and incubated overnight at 37°C; plasmid DNA
was purified from 6 colonies (QIAquick PCR Purification Kit, QTAGEN) for Sanger
sequencing (GATC) of the ligated region containing the mutated promoters and
barcode. All 6 clones were found to possess the expected linking sequence between
promoters and barcode, and all plasmids were inferred to be monomeric due to the
high Phred scores of the chromatograms (suggesting the presence of a single unique

barcode on each re-circularised plasmid).
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With the re-circularised DNA placing barcodes in proximity to their respective
mutated promoters, this region was then PCR-amplified in a 40 pl reaction using 25 ng
of the ligated DNA as template and 0.6 pM each of primers oLinkBarcode-fwd and
oLinkBarcode-rev (Table 4.S3). These primers contain adaptors for a 2" PCR at their
5" extremities, followed by fully randomised hexamers added to increase amplicon
diversity to facilitate MiSeq flow-cell clustering. KAPA HiFi HotStart ReadyMixPCR
Kit (Kapa Biosystems) was used for amplification, under the following cycling
conditions (cycle number was kept low to reduce PCR errors and artefacts): 95°C for 3
mins, followed by 15 cycles of 98°C for 20 secs, 60°C for 30 secs and 68°C for 30 secs,
with a final extension step of 68°C for 2 mins. The amplicon (~0.9 kb) was gel-purified
(QIAquick Gel Extraction Kit, Qiagen) using a 1.5% agarose gel and quantified
fluorometrically (dsDNA HS Assay Kit with a QuBit 2.0, Thermo Scientific). A 2nd 40
nl PCR was then performed using 5 ng of this amplicon as template and 0.6 pM each
of a P5 and P7 Nextera Index Kit primer (Illumina) to add Illumina adaptors and
multiplexing indexes. KAPA HiFi HotStart ReadyMixPCR Kit (Kapa Biosystems) was
again used for amplification, under the following cycling conditions (cycle number was
again kept low): 95°C for 30 secs, followed by 12 cycles of 95°C for 10 secs, 55°C for 30
secs and 68°C for 30 secs, with a final extension step of 68°C for 5 mins. The amplicon
library (~1 kb) was gel-purified (QIAquick Gel Extraction Kit, Qiagen) using a 1.5%

agarose gel and a 20,000X dilution was quantified by qPCR. using KAPA Library
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Quantification Kit for Illumina (Kapa Biosystems) on a LightCycler 480 (Roche),

following the manufacturer’s recommendations.

The resulting amplicon library is composed of DNA fragments of the structure: P5 - i5
- N PCR tag - Preto1 (rev) - bsd (rev) - Puaco.1- Na plasmid barcode - Ng PCR tag - i7
- P7, which are ~1 kb in size (close to the size-limit for reliable MiSeq sequencing).
300nt paired-end MiSeq sequencing allowed us to sequence the entire Prio.1 promoter
on Read 1 and the plasmid barcode and entire P01 promoter on Read 2 (note that
Reads 1 and 2 do not overlap). For this, a 600-cycle MiSeq Reagent Kit v3 (Illumina)
was used, and DNA was loaded at a concentration of 12pM, with a 20% PhiX DNA
spike-in (PhiX Control v3, Illumina). Preliminary quality filtering and demultiplexing
by the standard MiSeq software package (Illumina) resulted in an output of > 22M

read pairs, giving an expected coverage of > 220X for each plasmid barcode.

MiSeq reads were processed using the Mothur (52) (version 1.37.6) software package
via the following steps: reads were quality-filtered by size (>199 bases), number of
uncalled bases (<3 Ns) and length of the longest homopolymer stretch, another
indicator of overall read quality (<9 bases). Entire P01 sequences were extracted
from Read 1, and barcode sequences and entire Prnco.1 from Read 2, by Needleman
alignment to reference sequences (default alignment parameters). Reads for which
either the Prieo1, Praco.1 or barcode region contained insertions or did not generate a

full alignment with the reference were discarded. The Mothur Precluster algorithm was
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then used to cluster barcode sequences differing by a Hamming distance of 1, with the
aim of correcting for PCR and sequencing errors (the potential barcode diversity is so
high (> 1x10%) that the presence of immediately neighbouring sequences is very likely
due to these errors (Fig. 4.52C)). The algorithm uses sequence abundance to decide
the “true” (majority) sequence for each cluster, and to decide where a sequence
clusters if it has >1 immediate neighbour. After de-gapping and re-grouping barcode
sequences to account for any alignment ambiguities resulting from small deletions,
barcode clusters were used to build a dictionary assigning each “true” barcode
sequence to a Pretoq and Praco1sequence. Due to a high rate of PCR-derived
recombination (53) being observed (caused by the extensive homology between all
fragments, and resulting in some molecules displaying incorrect barcode-promoter
associations), a haplotype-based strategy was used for this step rather than one in
which each nucleotide is considered independently as in reference (48). This is because
the small number of mutations expected to be present in each mutant (0-2) means
that, at any particular position, the majority of molecules will possess the WT base. If
the consensus Prieo1 and Priacoa sequences attached to a particular barcode are
computed by considering each nucleotide independently, a high recombination rate can
thus result in mutant bases being assigned as the W'T base. The haplotype-based
strategy, executed in Python (v3.5), consists of the following steps: for each barcode
cluster (consisting of reads whose barcode sequences are identical to or the immediate

neighbour of the inferred “true” barcode sequence), the associated complete Prieo.1-
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Prico1 concatenate sequences were grouped; the number of occurrences of each of these
108-nt Prieo-1-Priaco1 sSequences was tabulated; if the cluster contained more than 2 read
pairs in total, the most abundant concatenate Piieo-1-Priaco-1 sequence is 2 5x more
abundant than the second-most abundant one, and the most abundant concatenate
Prieto1-Priaco-1 sequence contains no Ns (uncalled bases), then this Prieto-1-Priaco-1
sequence is assigned to the “true” barcode sequence for that cluster (else the cluster is
discarded). This stringent requirement is aimed at reducing barcode-promoter mis-
assignments caused by PCR and sequencing errors, PCR-derived recombination or
intermolecular ligation during the first step of barcode-promoter association, as well as
to avoid any barcodes that may be linked to multiple promoter genotypes. Only
barcodes associated to promoter genotypes for which the entire promoter regions

contain no unexpected mutations were considered for further analysis.

Mutant library competition assays

The final mutant library (host strain transformed with barcoded plasmid library) was
competed over ~30 mean generations (~3 days) in the presence of L-arabinose and
different concentrations of the inducers, aTc and IPTG. Cell density was kept low
during competition (ODgyp < 0.2) by serial transfer into fresh medium, in order to
maintain the culture in exponential phase and to avoid large changes in medium
composition. Large volumes of media (100 ml) were used to avoid severe population

bottlenecks during serial transfer (> 1 x 10%cells each transfer). Plasmid DNA was
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purified from the culture at several time-points for HiSeq sequencing of plasmid
barcodes. Plasmid barcode abundance serves as a proxy for the abundance of cells
carrying that particular barcode. The change in frequency over time of a barcode thus
provides an estimate of competitive fitness for the lineage carrying that barcode (54).
Since we know the Preto-1-Prico1 sequence associated to each barcode (see Barcode-
promoter association), this in turn provides us with a distribution of fitness estimates

for every mutant.

The base competition medium consisted of M9 + 0.1% casamino acids (for basal
growth) + 0.03% L-arabinose, with 100 pg/ml ampicillin to select against plasmid loss.
A preliminary competition experiment was performed under inducer concentrations of
20 ng/ml aTc and 30 pM IPTG, expected to endow the wildtype with near-maximal
fitness (although this was found to be inaccurate). A second round of competition
experiments was carried out at a later date and was comprised of three different
inducer concentration combinations. One duplicated those of the initial experiment to
check reproducibility (Figs. 4.53-4), and the other two were: 5 ng/ml aTc and no
IPTG, and 200 ng/ml aTc and no IPTG. No IPTG was chosen to reduce araB
expression as much as possible, as the preliminary experiments suggested that the
wildtype over-expressed araB even in the absence of inducer (28), due to promoter
leakiness. The range of aTc was chosen to explore the full range of achievable araA

expression.
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In detail, a sample of the frozen library cell stock was thawed and diluted in 200 ml of
M9 + 0.5% casamino acids (with 100 pg/ml ampicillin), in a 500 ml flask, for a final
blank-subtracted ODgy of 0.12 (200 pl read by Varioskan microplate reader, Thermo
Scientific). This common starting-culture was recovered for ~3.5 hours at 37°C with
shaking at 200 rpm, reaching an ODggy of 0.3, before being washed with 200 ml of M9
+ 0.1% casamino acids. Washed cell pellets (each coming from 50 ml of the original
culture) were resuspended directly in 100 ml of the different competition media, for an
effective 2X dilution of the original culture (ODgy of ~0.15; flasks of competition media
were always pre-warmed at 37°C to keep temperature constant and detect any
contamination, with aTc, IPTG and ampicillin being added at the time of transfer to
avoid degradation). These cultures were then acclimatised to their respective
competition media for ~2.25 hours (37°C, 200 rpm), reaching an ODg of 0.23-0.28, to
allow time for stable induction by aTc, IPTG and L-arabinose. These acclimatised
cultures were taken as ty, and so plasmid DNA was purified from a 50 ml sample of
each culture (QIAprep Spin Miniprep Kit, Qiagen) and quantified fluorometrically
(dsDNA HS Assay Kit with a QuBit 2.0, Thermo Scientific) for eventual HiSeq
sequencing of plasmid barcodes (the rest remaining after this and transfer was pelleted,
resuspended in LB-40% glycerol and stored at -80°C as an archive). 3.2 ml of each
culture was transferred to 100 ml fresh competition media (~32X dilution) and left to
grow (37°C, 200 rpm) to an ODgy of ~0.12 (3-4 mean generations). DNA was purified

from a 50 ml sample of each culture (t:), as before, and 3.2 ml of each culture was
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again transferred to 100 ml of fresh competition media and left to grow to an ODgg of
~0.12 (~5 mean generations). This procedure was repeated until t¢ (or ts in an initial
experiment), for a total of ~29 mean generations of competition (or ~39), over which
time the impact of de novo mutation appears low (Fig. 4.53). The precise number of
mean generations between each sampling was calculated from ODgg values and used

for estimating fitness.

Barcode-sequencing of competed mutant library

To track plasmid barcode frequencies throughout the competition experiments,
barcodes were PCR-amplified from plasmid DNA in 2 steps, as for Barcode-promoter
association, to add technical sequences necessary for 100nt overlapping paired-end
[llumina HiSeq sequencing. This was performed for time-points to, t1, to, ts, te and ts
(approximately 0, 4, 9, 19, 29 and 39 mean generations) for the preliminary
experiment, and t;, t2, ts+ and ts for the later experiments. These time-points were
chosen with the aim of obtaining precise fitness estimates for both large-effect and

small-effect mutations.

In detail, at each selected time-point, 20 ng of purified plasmid DNA was PCR-
amplified in a 40 pl reaction using 0.6 pM each of primers oBarcodeSeq-fwd and
oBarcodeSeq-rev (Table 4.S3). These primers contain adaptors for a 2*¢ PCR at their
5" extremities, followed by fully randomised hexamers to increase amplicon diversity,

as in Barcode-promoter Association. In this case, the randomized hexamers were also
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used to detect PCR duplicates arising from the 2™ PCR*. KAPA HiFi HotStart
ReadyMixPCR, Kit (Kapa Biosystems) was used for amplification, under the following
cycling conditions (cycle number was kept low to reduce PCR errors and artefacts):
95°C for 3 mins, followed by 12 cycles of 98°C for 20 secs, 60°C for 30 secs and 68°C
for 30 secs, with a final extension step of 68°C for 2 mins. Amplicons (~200 bp) were
gel-purified (QIAquick Gel Extraction Kit, Qiagen) using a 2% agarose gel and
quantified fluorometrically (dsDNA HS Assay Kit with a QuBit 2.0, Thermo
Scientific). A 2nd 40 pl PCR was then performed using 5-8 ng of each amplicon as
template and 0.6 pM each of a P5 and P7 Nextera Index Kit primer (Illumina) to add
[lumina adaptors and multiplexing indexes. KAPA HiFi HotStart ReadyMixPCR Kit
(Kapa Biosystems) was again used for amplification, under the following cycling
conditions: 95°C for 3 mins, followed by 13 cycles of 98°C for 20 secs, 55°C for 30 secs
and 68°C for 30 secs, with a final extension step of 68°C for 5 mins. These ~300 bp
amplicons, of the structure, P5 - i5 - Ng PCR tag- Ny plasmid barcode- Ng PCR tag -
i7 - P7, were gel-purified (QIAquick Gel Extraction Kit, Qiagen) using a 2% agarose
gel and sent to IntegraGen (Evry, France) for qPCR-based quantification, equimolar
pooling and 100nt paired-end HiSeq-4000 sequencing (Illumina). Preliminary quality
filtering and demultiplexing (Integragen, Evry, France) resulted in ~18 M read pairs
per time-point per competition experiment, giving, for each point, an expected barcode

coverage of ~200X and an expected mutant coverage of >14,000X.
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HiSeq sequencing reads were processed using the Mothur (52) (version 1.37.6) software
package by the following steps: Forward and reverse reads were joined into contigs
using Mothur’s make.contigs command with the default parameters. Contigs were then
quality-filtered by size (<131bp, as longer contigs imply forward and reverse reads
could not be properly overlapped), number of uncalled bases (no Ns) and length of
longest homopolymer stretch, an indicator of overall read quality (<9 bases). To
remove the majority of PCR duplicates arising from the 2nd PCR, (made possible by
randomised hexamers introduced on each side of the barcode during the 1st PCR (49)),
if a particular full contig was present more than once, only one copy was kept. Barcode
sequences were then extracted after aligning contigs to the reference sequence
(Needleman global alignment). Reads containing insertions or not generating a full
alignment with the reference were discarded. Next, the Mothur precluster algorithm
was used to cluster barcode sequences differing by a Hamming distance of 1, with the
aim of correcting for PCR and sequencing errors, as described in Barcode-promoter
association. After de-gapping and re-clustering barcode sequences to account for any
alignment ambiguities resulting from small deletions, the number of occurrences of
each “true” barcode was tabulated across all time-points for each competition
experiment. Finally, a custom R (v.3.4.3) script was used to merge these barcode
counts tables with the barcode-promoter mutant dictionary generated in Barcode-

promoter association.
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Estimation of competitive fitness and epistasis

We found that competitive fitness was not constant over the course of competition,
with, for example, a possible period of physiological adaptation between t, and t, for
certain inducer environments (Fig. 4.S3). By t; a substantial number of lower-fitness
mutants begin to escape detection completely, and so to avoid any bias in fitness
estimates we consider only the frequency changes between t, and ¢, (two time-points).
We begin by removing outlier barcodes associated to the wildtype genotype, to avoid
any systematic biases coming from inaccurate wildtype estimates. This was done by
computing the log ratio of t; to t, counts for all wildtype barcodes and removing those
giving values > 1.5x the inter-quartile range above (below) the upper (lower) quartile.
We also removed all barcodes giving < 8 reads at t,from our dataset. For every
remaining mutant barcode, 7, we then estimate its log fitness relative to the wildtype

as:

t t
ln( fi: )— ln< fi: )
Frel — va(/}t Ef‘,ft
i

ta—ty !

where f; is the frequency of a mutant barcode, }; fi,¢ is the total frequency of all

wildtype barcodes and t; — t»is the number of mean generations between the two time-
points considered (~9). We now estimate log relative fitness of a mutant g, Fgrel, as the
median of that of its associated barcodes, F;]riel. We use the median barcode fitness as a

fitness estimate for each promoter genotype as a convenient way to filter out the many
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sources of error in a competition experiment (especially undetected mutations
introduced during library construction, de novo mutations arising during competition
and barcode-promoter misassignments due to PCR and sequencing errors) (Fig.
4.53A). The number of eligible barcodes for each promoter genotype ranges from a few
to thousands (exact numbers are provided in Data S1). Some barcodes disappear from
our sequencing sample by ¢, and so are given an Firel of —Inf. In Env; and Envs, for a
very few genotypes this is the case for the majority of their barcodes, and we identify
these mutants as being less fit than the wildtype but cannot estimate total/marginal

fitness effects or epistasis for them.

To estimate the precision of mutant fitness estimates, we used standard bootstrapping
of the eligible mutant and wildtype barcodes (n=1,000), each time computing the
mutants’ fitness, Fbrel, as the median fitness of their associated barcodes, Egrid. The
same 1,000 sets of randomly sampled wildtype barcodes were used as the references for
all mutants. The bootstrap distributions were then used to determine significance
(empirical 95% confidence) for non-neutrality of total (F;®') and marginal (F,"*7)
fitness effects, non-zero epistasis, simple sign epistasis and reciprocal sign epistasis,

pairing bootstrap Pgel estimates by sampled wildtype barcode set when necessary.

The marginal fitness change induced by adding mutation A to the genetic background

B is defined as F;Tgrg = FJel — FZel and epistasis between mutations A and B is

defined as g45 = Fjg' — (Fy¢ + FEeH (17).
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Phenotype-fitness model

We consider a linear metabolic reaction path,

where S is the substrate (L-arabinose) concentration. As shown in references (25, 29),
for S and Z fixed, the steady-state flux for non-saturated enzymes and the intermediate

concentration are respectively given by:

1
" 1/A+1/B+n

® (1)

%

V=0 -tavis @

where A and B are proportional to the maximum reaction rates provided by each
enzyme, 1 is the inverse of the maximal flux, @4, as imposed by the fixed pathway
steps, and D is a certain function of S and equilibrium constants (see reference (29) for
detailed expressions). We note that the flux, ¢, is an increasing function of A and B
and saturates at @4, for very efficient enzymes A and B, or very high concentrations
of them. However, at high fluxes, the hypothesis of unsaturated downstream enzymes
breaks down, and a reaction step becomes limiting, such that the concentrations of

metabolic intermediates may build up to toxic levels.
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To account for such saturation, we extend the model above by considering the full
Reversible Michealis-Menten (RMM) form for the step C instead of its first order
approximation (similar reasoning applies for longer paths). At steady-state, all reaction

speeds must be equal, giving for the third step:

aY — Bz

T1+yr +ozZ ®

4

where a,f,y,6 are the RMM parameters for C. Equivalently, expressing Y as a

function of ¢:

, _BZ+(1+87)g
a—yg

(4).

We could eliminate Y by combining (2) and (4), Z being fixed, and obtain an exact
expression for ¢. Note that expression (1) is recovered for § =y =0, as this
corresponds to the unsaturated case. In the general case, ¢ would still be an increasing
function of A and B and saturate at a certain value, but its expression becomes more

complicated.

Instead of using the full expression of ¢, we report here an approximation with less
parameters, which consistently recovers the monotonicity with A and B, and the limit
regimes for unsaturated and saturated downstream steps. For this, we simply keep
expression (1) for the flux, and set its saturation by the saturation of the reaction
catalysed by C, as obtained in the limit of very high Y in (4):

Pmax = 1/7] =aly.
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With this, expression (4) becomes:

P+
Pmax — P

where P and Q) are functions of the fixed downstream enzyme properties and
concentrations. We note in particular that Y diverges when the flux becomes maximal,

meaning that the downstream reaction is saturated, leading to an accumulation of Y.

We now assume fitness to be a function of flux and the toxic intermediate (L-ribulose-

5-phosphate) concentration, Y, and that there exist constants e and f such that, from

(1) and (5):

P+ Qo
F=ep—fY=ep—f—F— (6).
(pmax (p

This expression can be further simplified by considering the low and high flux regimes:

For ¢ << @max, (6) behaves as F =—fP/@Qmar +up, with u=e— f(Q+
P/Omax)/ Pmax, the offset —fP/@nqr being determined solely by properties of the
fixed downstream enzyme, C. Thus, any fitness change due to mutations in A and B is

of the form ugp.

For @~@max, the first term of (6) remains finite while the second with numerator v =
f(P+ Q@max) diverges. Thus, replacing e by u as defined in the regime ¢ << @ax

has a negligible contribution.
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Introducing a basal growth rate, w, supplied by alternative nutrients in the medium

(casamino acids), fitness is then well approximated by:

v
F=w+up ——— (7).
Pmax — ¢

In addition to flux and toxic metabolite concentration, gene expression burden can also
contribute to fitness changes (26, 28, 55, 56). Following the observation that protein
expression burden depends on metabolic state (27, 57), we include an expression cost
factor in which 84 and 9pdescribe the cost of increasing cellular enzyme activity,
including potential contributions from both the amount of expression and the specific

enzyme activity constants:

F=(w+ug0— )(1— 0,A- 0,B) (8).

v
In-¢
This expression is considered valid only when both factors are positive. Expressions (1)
and (8) together define a fitness surface in the two-dimensional space of AraA and

AraB activities, described by the 6 independent parameters, w, u, v, 94, 93 and 7.

The entire model consists of 83 parameters: the 6 detailed immediately above; 5
defining the “wildtype” activity levels (AraA and AraB activities for the 3 inducer
environments, with Env, and Envs having the same wildtype AraB activity, as both
contained the same IPTG concentration); and 72 defining the relative impact of the
single mutations (36 for each gene) on enzyme expression/activity. For a given

parameter set, the fitness, F'*, of the 72 single mutants and 1,296 double mutants was
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computed in each of the 3 environments, relative to the respective “wildtype” fitness.
The 83-parameter model was fitted on 4,079 data points, corresponding to the
computable set of relative fitnesses (Fig. 4.2A) of the 1,368 mutants measured in 3

different environments.

The model was fit using multiple Monte Carlo Markov Chains (MCMC) (58).
Parameters were generated randomly from uniform distributions, both initially and at
each step of the chain for a randomly chosen parameter (bounds are provided in Fig.
4.S8A and Data S2; bounds for expression effects of inducer concentrations and a few
mutations were guided by experimental expression measurements (data not shown)).
800 chains, each of 300,000 steps, were simulated, and for each chain the parameter set
giving the best fit with measured fitness values was stored (residuals were weighted to
give equal consideration overall to single and double mutants, and were also
normalised to the mean fitness effect in the environment from which they came). The
distribution of goodness-of-fit values from the 800 chains was multi-modal (ze.
convergence was not guaranteed), with ~5-10% of the chains achieving a best fit
residing in the lowest peak. We take the best of all these parameter sets as the most
likely fit, but the distributions of parameter values from the best 2.5% of chains are

also provided in Fig. 4.S8A and Data S2.

Several fitness function variations containing less parameters than the one presented in

the main text were fit in the same way, and we conclude that flux, toxicity and gene
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expression burden must all be accounted for to explain the observed fitness and

epistasis values (Fig. 4.59).
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4.5 Supplementary figures

A
PCR of blasticidin resistance gene
(~400bp) using pools of primers Digest promoter amplicon pools and ligate with digested ara
with mutated promoters at 5’ ends plasmid
}}7 /‘? Sacl /}> /}7 Xhol Sacl  Xhol
§> éﬁ ! 1 11
§I> élz I _' I I w 225
§|> élz — ! m ! Digest barcode amplicon pool and
m \ \ ligate with digested plasmid library
Rreplaced by ampR)
| \ (strR repl y amp
T = )
~a o 4 4
1,369 variants
~40,000 clones
Initial library (WT, single and
double-promoter mutants) I
ampR  — 1
+ BstZ171 Spel
ampR  —
ampR  —
PCR of ampicillin resistance
gene using a pool of Ny,
barcode primers
Plieto1 />
N.
C 2 ATTGACATCCCTATCAGTGA CAC =>
PL\acOrl -35 -10 %
R
AATTGTGAGCGGATAACAATTGACATTGTGATCGGATAACAAGATACTCAGCAC ame
/ % pKD3 @
B
Digest barcoded plasmid library Extract large fragment and
re—c?rcula?ize Paired-end Illumina MiSeq
,}7 }? Xhol
I
> PCR of ligate to get promoter- -.>,Rie,§d, },(9',3 kb) ,E%a,d,?,(?s__bl
barcode amplicons flanked by /}7 }?
lllumina adaptors
> bsd® Ny —
S 4 >
< >
~1 kb

—— lllumina adaptors

Fig. 4.S1.

Construction and characterisation of barcoded promoter-mutant plasmid
library. (A) A blasticidin-resistance cassette (bsd") was amplified from pkH1511d
using pools of primers carrying variants of the entire P, ., (green arrow) and P,

(purple arrow) promoters at their 5" ends, flanked by Sacl and Xhol restriction sites.
The resulting amplicon pool (containing an expected 1,369 promoter variant
combinations — see below) was digested with Sacl and Xhol and ligated with a Sacl-
Xhol digest of plasmid pKH1511c. ~40,000 colonies were harvested after

transformation with this ligate, from which plasmid DNA was then purified, giving an

initial plasmid library. An ampicillin-resistance cassette (a,mpR) was amplified from
pKD3 using for forward priming a pool of primers containing a region of 20 fully

randomised nucleotides (the barcode, N, ) at their 5’ end, flanked by a Spel restriction
site. The resulting amplicon pool was digested with Spel and ligated with a BstZ171-
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Spel digest of the initial plasmid library (BstZ171 creates blunt ends). ~100,000
colonies were harvested after transformation with this ligate, each expected to harbour
a plasmid with a unique barcode. Underlined regions of the P, ,and P, ., sequences
are the repressor binding sites reported in reference (41). The repressor of P, , is
TetR, and the repressor of Py, is Lacl, both encoded on the constant region of the
library plasmid (lacl-tetR). The red T in Py, , differs from the original sequence
reported in reference (41), and was used due to its appearance during an initial
adaptation step (this modified sequence still allows titratable control of expression
from P, ., using IPTG, as verified by growth and expression measurements — see
Table 4.S1). Black letters denote the -35 and -10 RNA-polymerase binding hexamers
(note that 1 of the -10 nucleotides in P, ., ;, and 3 of the -35 nucleotides in Py, |,

overlap with repressor binding sites). These hexamers were targeted for mutation: over
these 12 sites, for each promoter, all 36 possible single-nucleotide substitutions were
made, along with the wildtype, and the two sets of promoter variants were
comprehensively combined. (B) To uncover which barcodes were linked to which
promoter genotypes, the barcoded plasmid library was first digested with Xhol and
Sall to remove the region between the P, ., ,and P, ., promoters and the barcode.
The remaining section of the plasmids was re-circularised by ligation under conditions
promoting intramolecular ligation. This ligate was used as template for PCR to
amplify the newly created promoter-barcode region while adding Illumina adaptors to
the amplicon termini. Finally, non-overlapping paired-end I[llumina MiSeq sequencing

was used to associate barcode sequences with promoter genotypes.
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Fig. 4.S2.

Sequencing coverage and quality of barcoded mutant library. Data from t, of
the preliminary competition experiment. (A) The total coverage (after pooling barcode
counts) of each genotype is on the order of 10° for double mutants, 10° for single
mutants and 10° for the “wildtype”. These different ranges result directly from the
library creation strategy. (B) The number of unique barcodes associated to each

genotype is on the order of 10° for double mutants, 10” for single mutants and 10" for
the wildtype. These different ranges also result directly from the library creation
strategy. (C) Over all barcode sequences observed, the mean Hamming distance to a
barcode’s nearest neighbor is 4.5. The complete absence of immediately neighbouring
sequences is due to the preclustering analysis, in which immediately neighbouring

sequences were assumed to be the result of PCR and sequencing errors.

226



Harry Kemble — These de doctorat - 2018

A Env;- (Initial Experiment) Env, Env, Env;
20 ng/ml aTc, 30 uM IPTG 20 ng/ml aTc, 30 uM IPTG 5 ng/ml aTe, 0 IPTG 200 ng/ml aTc, 0 IPTG
gf2em 133w q4m  130M  123M 81 157M 17.4m 19.2M 1oam|  E{  158m 154m 23.1M 153M 8 235M 18.3M 13.4M 16.7M
Vi36My v v v vV Vv v v v Vv v v v VY v
o, ¥ ifs ty ts ts 1 4 b ty ts 1t t ts tt b ty ts
& 1 g4 & ]
£
3
9 o g 8 g
0! B € 8 g
® @ 8 8 __/\ 8
® @ 8 3 2
O
2 ﬁ =—(\\ .
o w0 » M © o s w0 ® m m % R S S
B

1603

Frequency relative to wildtype

1005

20 2 30 0 5

g4

Mean generations

Fig. 4.S3.

Mutant dynamics during pooled competition assays under different inducer
concentrations. (A) Example trajectories are shown for all barcodes associated to
the wildtype (black), a single Prwo.1i-araA mutant (green), a single Prico-1-araB mutant
(purple) and the resulting double mutant (orange). Thick lines show median read
counts. Numbers are the total number of HiSeq reads obtained at each sampled time-
point. (B) Barcode-grouped trajectories are shown for all 1,368 mutants relative to the
wildtype. Colours as in A. At every time-point, read counts for all barcodes belonging
to a particular mutant have been summed and normalized to WT read counts. Dashed

lines indicate time-window chosen for fitness estimation.
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Fig. 4.54.

Measurement precision and reproducibility. (A) Fitness estimates are plotted
against their corresponding bootstrap standard deviations (SD) for the different
competition assays. Single mutants (blue) yield more precise estimates as they are
associated to more barcodes than double mutants (orange). Precision is lower for less-
fit genotypes due to their more rapidly decreasing abundances and so higher counting
noise. Lines show median SDs. (B) F™ estimates are compared between two replicate
experiments (Env; conditions; same mutant library stock). Colors as in A.
Reproducibility is high (Pearson’s r = 0.99, n = 1,344 mutants), but systematic

differences are apparent, likely due to small differences in media composition.
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Fig. 4.S5.

Fitness effects of single and double mutations across environments. (A)
Density distributions of fitness effects (F) of single Preo.1-araA mutants (green),
single Prico1-araB mutants (purple) and double mutants (orange). (B) Correlations
between mutant F™ in different environments range from strongly positive to weakly
positive and weakly negative, and can show strong signs of non-monotonicity. Pearson’s
r is shown, with n = 1,345, 1,345 and 1,366 mutants, left-right. Colours as in A.
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Fig. 4.S6.

Epistasis across environments. (A) Genotype-epistasis maps. “-35” and “-10”
denote the RNA polymerase-binding hexamers. Letters show the wildtype base at each
position. The three mutants at each position are ordered alphabetically, as in Fig. 2A.
Grey denotes incomputable epistasis coefficients. (B) Correlations between epistasis
coefficients in different environments, with Pearson’s r (n = 1,223, 1,223 and 1,294
mutation pairs, left-right). (C) The fraction of mutation pairs (n=1,296) for which,
across environments, epistasis can be positive but never negative (red), negative but
never positive (blue), or both positive and negative (green). Pairs exhibiting no
detectable epistasis in any environment are shown in grey, and those for which epistasis

could not be computed in all environments are white.
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Fig. 4.S7.
Correlations between individual fitness effects and epistasis. (A) In all

environments, the sum of the fitness effects of two individual mutations (F” “ expected)
correlates negatively with the epistasis they experience when combined, a trend of
diminishing returns and losses (Pearson’s r, n = 1,223, 1,296 and 1,294 mutation pairs,

Env, ). The relationship appears complex, however. (B) When P, ., -araB is

considered alone, the negative correlation between fitness effects and epistasis is

stronger, but in Env, and Env, there is evidence of non-monotonicity (Pearson’s r,
number of mutation pairs as for A). Different P, ,-araA alleles can cause different

trends within an environment, and the same P, -araA allele can cause different
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trends across environments (coloured alleles as for Fig. 3B, top panel). (C) When

P; io-araA is considered alone, the negative correlation between fitness effects and
epistasis is weaker, and in Env, it even becomes positive, albeit strongly non-
monotonous (Pearson’s r, number of mutation pairs as for A). Different P, . ,-araB
alleles can cause different trends within an environment, and the same Py, ., ,-araB

allele can cause different trends across environments (coloured alleles as for Fig. 3B,

bottom panel).
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Fig. 4.S8.

Performance of flux-toxicity-expression burden model. (A) Parameter
estimates. Boxplots show distributions from the best 2.5% of Markov chains (n = 800
chains). Red points show parameter estimates from the best chain. Triangles show
bounds of the uniform prior distributions. Parameter descriptions are given in Data S2.
Vertical dashed lines separate the fitness function parameters, parameters describing
wildtype expression levels across environments, and the expression effect (natural

logarithm) of mutations (ordered as in Fig. 2B), from left to right. Prior bounds of
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underlined expression effect parameters were guided by expression measurements. The
majority of mutations in both promoters are predicted to decrease expression
(expression effect < 0), which is not surprising as the (identical) “wildtype” RNA
polymerase-binding sequences are a Hamming distance of only 2 away from the
bacterial consensus sequence, indicating near-maximal binding strength. (B)
Correlations between observed values and those predicted by the model. Left — fitness
(n = 4,079 mutant measurements); right — epistasis (n = 3,813 mutation pair
measurements); p < 2.2e-16 for both. Opaque points are single-mutants. Points are
coloured by environment, as in Fig. 4A. Arrow points to genotypes containing a

qualitative outlier mutation, P, ., ;-araA GTA, which is also the only mutation to be

beneficial in all environments (Fig. 2B), presumably because its effect on expression
depends on the environment (supported by the fact that it lies in a repressor binding
site (Fig. S1A)). (C) Comparison of epistatic trends from experimental data and
model, across environments. Top row — as for Fig. 3A; lower two rows — as for Fig. 3B
(same 4 alleles coloured in all environments). Looping is explained by single-mutants

lying on two sides of a phenotypic optimum.
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Fig. 4.S9.

Goodness-of-fit comparison of different phenotype-fitness models.
Correlations between observed values and those predicted by different model
variations. Top row — fitness (n = 4,079 mutant measurements); bottom row — epistasis
(n = 3,813 mutation pair measurements); p < 2.2e-16 for all. Opaque points are single-
mutants. Points are coloured by environment, as in Fig. 4A. Goodness of fit is
calculated as the sum of the squared differences between all observed fitness effects and
epistasis coefficients and those predicted by the models (n = 7,892). N is the number
of parameters defining the fitness function for each model. From left to right: complete
model used in main text; as complete model, except that expression burden per
activity unit is the same for both proteins; as complete model, but no toxicity; as

complete model, but no expression burden.
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Fig. 4.S10.
Flux-fitness relationship predicted by model. The fitted model results in the

existence of a particular flux that is optimal for fitness (24, 25). As the flux exceeds
this optimum, the rapid accumulation of the toxic intermediate, L-ribulose-5-
phosphate, causes a steep fitness decline. The flux-fitness function diverges at very
high fluxes (above the predicted range of our dataset), presumably as one or more of
the simplifying assumptions underlying the enzyme activity-flux function starts to

break down.
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Fig. 4.S11.

Fitness surface coloured by predicted epistasis category in Env,. As for Fig.
4C. The vast majority of interactions in this environment are predicted, and observed,

to be weak (see blue points in Fig. S8C, right panel).
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4.6 Supplementary tables

Plasmid name Description DNA fragments Construction Antibiotic Accidental mutations /
used for method / used for Sequence conflicts
construction (this Supplier selection
study)
pKD3 (38) PCR template plasmid for Datsenko-Wanner (38) - Lab stocks Cm -
gene deletion, containing a cat Cm-resistance
cassette flanked by FRT sites and an R6Ky pir-
dependent ori. Also used as PCR template for bla
amplification in library barcoding step
pKD46 (38) Plasmid with L-arabinose-inducible A Red expression - Lab stocks Amp -
cassette for Datsenko-Wanner (38) recombineering;
temperature-sensitive ori (repA101ts) for easy curing
pCP20 (38) Plasmid with yeast FLP recombinase expression - Lab stocks Amp -
cassette for Datsenko-Wanner (38) resistance-gene
excision; temperature-sensitive ori (repA101ts) for
easy curing
pSkunk3-BLA (59) Phagemid containing p15A and f1 oris, bla 8- - A. Birgy Str -
lactamase gene and aadAl Str/Sp-resistance gene.
Used for backbone (f1 phage ori not exploited in this
study)
pZS4int-1 (41) pSC101 ori, lacl and tetR repressor genes under - A. Decrulle and Sp G -> C at +246 of tetR ORF,
constitutive promoters, attP phage A attachment site 1. Matic causing Lys82 -> Asn82
and aadAl Str/Sp -resistance gene. Used for lacl and (reported in other constructs,
tetR including reference (60)); 2
small insertions between tetR
stop codon and its T1
terminator
pKH1503a pSkunk3-BLA backbone, with bla replaced by: araBA pSkunk-bkb, Gibson Str -
under Pyiaco-1 inducible promoter (41) and lacl and tetR akKH150312a, Assembly
repressor genes under constitutive promoters (41) aKH150312b
pKH1503a%" Plasmid purified from a single colony (MG1655 - Purified from a Str -
DaraBA D-ara*’®"° AfucK AlaclZYA::cat D/L-ara®"° single colony
[PKH1503a°]) isolated after adaptation to alternating isolated after
D- and L-arabinose. Sanger sequencing of araBA, MG1655 AaraBA
tetR and lacl, along with their regulatory regions, D-ara*®"° Afuck
revealed a single G —> C substitution in the 2™ lacO1 AlaclZYA::cat
operator (-23 from TSS, in notation of reference (41)). [PKH1503a]
This was found in 3/3 colonies tested from the evolved adaptation to
population, and was deliberately included in all future alternating D-
Puiaco-1-containing plasmids of this study (it was found and L-arabinose
through growth and expression measurements to still
allow titratable expression control by IPTG)
pKH1511c pKH1503a%"* backbone (rather than pKH1503a akKH151120a, Restriction- Str C -> A substitution
backbone, to exploit any unseen adaptive mutations akKH151120b, ligation (synonymous) at +1638 of
arising during adaptation), with Puiaco-1-araBA replaced aKH151120c araB ORF
by araA and araB in divergent orientation and
promoter-less, separated by Sacl and Xhol restriction
sites to allow easy insertion of divergent promoters
pSW23T::attP (61) oriVreky (pir-dependent replication), attP phage A - A. Soler and D. Cm -
attachment site, cat Cm-resistance gene. Used for pir- Mazel
dependent backbone to avoid template plasmid
carryover during cloning
pBSK-BSD1 pBluescript SK phagemid containing pUC and f1 oris, - A. Couce (gene Amp -
bsd Bsd-resistance cassette and bla B-lactamase synthesis by
gene. Used for bsd Epoch Life
Science, Inc, TX,
USA)
pKH1511d pSW23T::attP with bsd Bsd-resistance cassette pSW23T::attP- Gibson Cm -
inserted into multiple cloning site. Used to avoid bkb, Assembly
plasmid carryover during future bsd cloning akKH151126a

Table 4.S1.

Plasmids used in this study. Amp: ampicillin (100 pg/ml); Bsd: blasticidin; Cm:

chloramphenicol (10 pg/ml); Spec: spectinomycin (50 pg/ml); Str: streptomycin (50

jg/ml).
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DNA fragment name Description/Creation PCR template or Primers used Restriction
digested plasmid for PCR enzymes used
(blank if (either post-
fragment PCR or
comes directly directly on
from plasmid plasmid)
digestion)
pSkunk-bkb pSkunk3 backbone, containing oris and aadAl Str/Sp-resistance pSkunk3-BLA - EcoRV, Spel
gene. Double-digest of pSkunk3-BLA to excise bla, followed by (59)
gel-extraction of backbone fragment
akKH150312a lacl-tetR constitutive expression cassette (inc. T1 terminator), with pZS4int-1 (41) 0KH150312a, -
a downstream extension overlapping the Spel extremity of 0KH150312b
pSkunk-bkb. PCR-amplification; overlap introduced on reverse
primer
akKH150312b Puaco-1-araBA bicistronic cassette (inc. BBa_B1002 artificial E. coli K12 0KH150312c, -
terminator (BioBrick Foundation)), with an upstream extension MG1655
overlapping the EcoRV extremity of pSkunk-bkb and a genomic DNA 0KH150312e
downstream extension overlapping the upstream extremity of
aKH150312a. PCR-amplification; overlaps, Piiaco-1and BBa_B1002
all introduced on primers
akKH151120a pKH1503a"° backbone, containing oris, aadAl Str/Sp-resistance pKH1503a°"° 0KH150312a, Sphl, Ncol
gene and lacl-tetR (Puiaco-1-araBA removed), with a downstream 0KH151120a
extension containing an Ncol site. PCR-amplification; extension
introduced on reverse primer
akKH151120b araB coding region followed by BBa_B1004 artificial terminator pKH1503a%"° 0KH151120b, Sacl, Sphl
(BioBrick Foundation), with an upstream extension containing Sacl 0KH151120c
and Xhol restriction sites and a downstream extension containing
an Sphl restriction site. PCR-amplification; extensions and
BBa_B1004 introduced on primers
akKH151120c araA coding region followed by BBa_B1002 artificial terminator pKH1503a%"° 0KH151120d, Sacl, Ncol
(BioBrick Foundation), with an upstream extension containing a 0KH151120e
Sacl restriction site and a downstream extension containing an
Ncol restriction site. PCR-ampilification; extensions introduced on
primers
pSW23T::attP-bkb Linearised pSW23T::attP. Double-digest of pSW23T::attP at pSW23T::attP - Spel, Sacll
Multiple Cloning Site (61)
akKH151126a bsd Bsd-resistance cassette (inc. T1 terminator), with an upstream pBSK-BSD1 0KH151126a, -
extension overlapping the Sacll extremity of pSW23T::attP-bkb 0KH151203a

and a downstream extension overlapping the Spel extremity of
pSW23T::attP-bkb. PCR-amplification; overlaps introduced on
primers

Table 4.S2.
DNA fragments used for cloning in this study.
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Primer name Sequence (5’ -> 3’)

0KH150202d ATGGCAGAAATTCGAAAGC

oKH150312a GCGGCATGCATTTACGTTGA

0KH150312b AGCGCGTCGGCCGGTCGAATGCATAAGCTTACTAACTAGTGAGAGCGTTCACCGACAAAC

0KH150312c AGCCAGAAAACCGAATTTTGCTGGGTGGGCTAACGATATCAATTGTGAGCGGATAACAATTGACATTGTGAGCGGATAACAAGATACTG
AGCACACCCGTTTTTTTGGATGGAGTG

oKH150312e TTTTGCACCATTCGATGGTGTCAACGTAAATGCATGCCGCGCGAAAAAACCCCGCCGAAGCGGGGTTTTTTGCGTTAGCGACGAAACC

CGTAATAC

0KH150401c ATTCATTAATGCAGCTGGC

0KH151120a TTTTTCCATGGGATATCGTTAGCCCACCCAG

o0KH151120b TTTTTGAGCTCCACAGCTAACCTCGAGACCCGTTTTTTTGGATGGAGTG

0KH151120c TTTTTGCATGCCGCGCGGCAAAACCCCGCCGAAGCGGGGTTTTCGGCGTTATAGAGTCGCAACGGCCT

0KH151120d TTTTTGAGCTCTGCGACTCTATAAGGACACG

0KH151120e TTTTTCCATGGGCGAAAAAACCCCGCCGA

oKH151126a GATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCACTAGTGCGGCCGCGTGAGCCAGTGTGACTCTAGT

o0KH151203a CGTTTTATTTGATGCCTCTAGCACGCGTACCATGGAGCTCCACCGCGGATAGGAACTTCACGCTAGGG

KO-araBA-fwd ACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGATGGAGTGAAACGATGGTGTAGGCTGGAGCTGCTTC

KO-araBA-rev
verif-araBA-fwd
verif-araBA-rev
KO-lacIZYA-fwd
KO-laclZYA-rev
verif-laclZYA-fwd
verif-laclZYA-rev
KO-fucK-fwd
KO-fucK-rev
verif-fucK-fwd
verif-fucK-rev
oBarcodeBla-fwd
oBarcodeBla-rev
oLinkBarcode-fwd
oLinkBarcode-rev
oBarcodeSeq-fwd
oBarcodeSeq-rev
c1(38)

2 (38)

ATCAGGCGTTACATACCGGATGCGGCTACTTAGCGACGAAACCCGTAATACATATGAATATCCTCCTTAG

TTGCATCAGACATTGCCGTC

GTTGGCTTCTAATACCTGGCG

GTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGGTGTAGGCTGGAGCTGCTTC

AGCGCAGCGTATCAGGCAATTTTTATAATTTAAACTGACGATTCAACTTTCATATGAATATCCTCCTTAG

GTGATGACTATCAACTGGCAC

CTATTGCTGGCAAGCTGGTG

TCCGGCTACCGGGCCTGAACAAGCAAGAGTGGTTAGCCGGATAAGCAATGGTGTAGGCTGGAGCTGCTTC

AAATTAACGGCGAAATTGTTTTCAGCATTTCACACTTCCTCTATAAATTCCATATGAATATCCTCCTTAG

AACGCACCAACTCAACCTGG

TTGATGCGGATGATGTCAGG

TTTTTACTAGTGGCGCGCCGTCGACTTNNNNNATNNNNNATNNNNNATNNNNNATCTTCAGATCCTCTACGCCGG

TACACTCCGCTAGCGCTGATGTCCGGCGGTGCCAGGTGGCACTTTTCGGG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNCGTGTCCTTATAGAGTCGCAG

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNGTCCGGCGTAGAGGATCTG

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNGTGAACGCTCTCACTAGTGG

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNCAAGATCCGGCCACGATGC

TTATACGCAAGGCGACAAGG

GATCTTCCGTCACAGGTAGG

Table 4.S3.

PCR Primers used in this study, excluding those used directly for promoter

mutagenesis.
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Strain name

Description/Usage

Genotype

Engineering method / Supplier

Antibiotic /
supplements
used for selection
/ adaptation

K12 MG1655

PIR1

DH5a

DH5a AaraBA::cat

DH5a AaraBA

MG1655 AaraBA::cat

MG1655 AaraBA

MG1655 AaraBA
AlaclZYA::cat

MG1655 AaraBA D-
ara+levo

MG1655 AaraBA D-
ara*’®° AfucK::cat

MG1655 AaraBA D-
ara*®"° Afuck

MG1655 AaraBA D-
ara*’®° Afuck
AlaclZYA::cat

MG1655 AaraBA D-
ara*’®° Afuck
AlaclZYA::cat

[pPKH1503a]

MG1655 AaraBA D-
ara*’®° Afuck
AlaclZYA::cat D/L-
ara®"° [pKH1503a"]

MG1655 AaraBA D-
ara*’®° Afuck
AlaclZYA::cat D/L-
ara®”®

“Wildtype” laboratory strain

pir-expressing strain for cloning and maintenance of pir-
dependent plasmids (thymidine auxotroph)

Standard strain for plasmid cloning and maintenance

Intermediate for construction of DH5a AaraBA

Preliminary tests; used as alternative to DH5a in this
study

Intermediate for construction of MG1655 AaraBA

Preliminary tests; intermediate for construction of
MG1655 AaraBA AlaclZYA::cat and MG1655 AaraBA D-
ara+/evo

Preliminary tests

MG1655 AaraBA derivative able to metabolise D-
arabinose using genes of the fuc operon, due to a fucR
mutation rendering the operon D-arabinose-inducible.
Further adapted to D-arabinose for ~ 60 generations,
and a single colony isolated. Intermediate for
construction of MG1655 AaraBA D-ara™®" AfucK::cat

Intermediate for construction of MG1655 AaraBA D-
ara*’®° Afuck

Intermediate for construction of MG1655 AaraBA D-
ara™’®° AfucK AlaclZYA::cat

Intermediate for construction of MG1655 AaraBA D-
ara*®"° AfucK AlaclZYA::cat [pKH1503a]

Intermediate for construction of MG1655 AaraBA D-
ara*’®"® AfucK AlaclZYA::cat D/L-ara®° [pKH1503a]

MG1655 AaraBA D-ara™®"° AfucK AlaclZYA::cat
[pPKH1503a] derivative adapted to alternating D- and L-
arabinose in presence of 10uM IPTG for ~45
generations, and a single large colony isolated. Evolved
plasmid (pKH1503a%"°) used as template for further
plasmid constructs; intermediate for construction of
MG1655 AaraBA D-ara*’®" AfucK AlaclZYA::cat D/L-
ara®*®

Final engineered/adapted plasmidless host strain for
barcoded promoter-mutant plasmid library; able to utilize
L-arabinose in presence of plasmid-expressed AraA and

AraB, and D-arabinose in presence of plasmid-
expressed AraB

F* N ilvG™ rfb-50 rph-1

F~ Alac169 rpoS(am)
robA1 creC510 hsdR514
endA recAl
uidA(AMIul)::pir-116

F A" ®80laczAM15
A(lacZYA-argF) U169
recAl endAl hsdR17 (rK™
, mK*) phoA supE44 thi-1
gyrA96 relA1

DH5a AaraBA::cat

DH5a AaraBA::FRT

MG1655 AaraBA::cat

MG1655 AaraBA::FRT

MG1655 AaraBA::FRT
AlaclZYA::cat

MG1655 AaraBA::FRT
fucRP#2 D-ara®"°

MG1655 AaraBA::FRT
fucRP-¥@ D-ara®"°
AfucK::cat

MG1655 AaraBA::FRT
fucRP#2 D-ara®°
AfucK::FRT

MG1655 AaraBA::FRT
fucRP#2 D-ara®°
AfucK::FRT AlaclZYA::cat

MG1655 AaraBA::FRT
fucRP#2 D-ara®°
AfucK::FRT AlaclZYA::cat
[PKH1503a]

MG1655 AaraBA::FRT
fucRP-¥2 D-ara®"°
AfucK::FRT AlaclZYA::cat
D/L-ara®" [pKH1503a%"°]

MG1655 AaraBA::FRT
fucRP#2 D-ara®"°
AfucK::FRT AlaclZYA::cat
D/L-ara®*°

A. Couce; Coli Genetic Stock
Centre #6300

A. Soler and D. Mazel

Lab stock

Datsenko-Wanner (pKD46) (38)

Datsenko-Wanner (pCP20) (38)

Datsenko-Wanner (pKD46) (38)

Datsenko-Wanner (pCP20) (38)

Datsenko-Wanner (pKD46) (38)

Incubated in M9 + D-arabinose
until visible growth (6 days).
Then, serially transferred in M9
+ D-arabinose for ~ 60
generations before isolation of a
single colony (see refs. (33-35))

Datsenko-Wanner (pKD46) (38)

Datsenko-Wanner (pCP20) (38)

Datsenko-Wanner (pKD46) (38)

Plasmid transformation
(electroporation)

Incubated in M9 + 10uM IPTG +
D-arabinose until visible growth
(2 weeks). Then, serially
transferred in M9 + 10uM IPTG
+ alternating D- and L-
arabinose for ~45 generations
before isolation of a single large
colony

Plasmid curing

Erm +dT

Cm

Cm

D-arabinose

Str

Alternating D-
and L-arabinose
(+ IPTG + Str)

Ribitol (39) (+
IPTG + Cm)

Table 4.S4.

E. coli strains used in this study. Cm:

isopropyl B-D-1-thiogalactopyranoside. For adaptation, D- and L-arabinose were

chloramphenicol (10 pg/ml); dT: thymidine
(30 pg/ml); Erm: erythromycin (20 pg/ml); Str: streptomycin (50 pg/ml); IPTG:

present at 0.3% and 0.2% w/v, respectively.
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Primer name

Sequence (5° -> 3’)

oPtetLib-fwd-1

oPtetLib-fwd-2

oPtetLib-fwd-3

oPtetLib-fwd-4

oPtetLib-fwd-5

oPtetLib-fwd-6

oPtetLib-fwd-7

oPtetLib-fwd-8

oPtetLib-fwd-9

oPtetLib-fwd-10

oPtetLib-fwd-11

oPtetLib-fwd-12

oPlacLib-rev-1

oPlacLib-rev-2

oPlacLib-rev-3

oPlacLib-rev-4

oPlacLib-rev-5

oPlacLib-rev-6

oPlacLib-rev-7

oPlacLib-rev-8

oPlacLib-rev-9

oPlacLib-rev-10

oPlacLib-rev-11

oPlacLib-rev-12

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGATGTCANTCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGATGTCNATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGATGTNAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGATGNCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGATNTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATCTCTATCACTGATAGGGANGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTATNTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTANCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGTNTCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCAGNATCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCANTATCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTGAGCTCGTGCTCNGTATCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGAGGCGCGCCGTGAGCCAGTGT
GACTCTAGTAG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAATGTCANTTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAATGTCNATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAATGTNAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAATGNCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAATNTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATCTTGTTATCCGATCACAANGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTATNTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTANCTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGTNTCTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCAGNATCTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCANTATCTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

TTTTTCTCGAGGTGCTCNGTATCTTGTTATCCGATCACAATGTCAATTGTTATCCGCTCACAATTATAGGAACTTCACGCTAGGG

Table 4.S5.

Forward and reverse primer sets for promoter mutagenesis. -35 and -10 RNA

polymerase-binding hexamers are in bold. N (italicised) denotes a mix of all 4 bases.
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5 Discussion
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This thesis has been concerned with the properties emerging from the mapping
between genotype and phenotype, a fundamental relationship in Biology whose
conceptual origins date back to over 150 years ago (Mendel, 1866). Although entirely
abstract initially, I described in the Introduction how Biology’s molecular revolution
endowed this mapping with a detailed material basis, encapsulated by Francis Crick’s
famed Central Dogma (Crick, 1958). This states, in its simplest form, that the
genotype is nucleic acid and the phenotype results from the activity of proteins;
protein residue sequence is encoded for by nucleic acid, via the genetic code, but such

information cannot flow in reverse, nor between proteins.

Such an understanding raised the prospect that the purely statistical inferences made
by pre-revolution geneticists might now be explained mechanistically: careful structural
and biochemical characterisation of protein variants might reveal which precise
genotypes would be expected to result in which precise phenotypes. The mass of data
on molecular mechanisms collected over the last decades, along with the recent
explosion of genome-sequence data, has revealed however that, except maybe for the
very simplest of cases (eg. an early stop codon in an essential gene), predicting

phenotype from genotype from first principles remains a formidable task.

An appealing solution is to focus on small, well-understood model systems. Recent
methodological advances in DNA synthesis and sequencing have now made it possible

to score comprehensive genotype libraries for a variety of phenotypes (“deep-
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mutational scanning”) (Fowler and Fields, 2014; Hietpas et al., 2011). Such datasets
provide a complete, or locally complete, picture of the genotype-phenotype map for
these systems, allowing the rigorous testing of mechanistic models. The research
conducted for this thesis therefore leveraged this technology to perform deep-
mutational fitness scanning experiments on 3 different model bacterial systems: a
global transcriptional regulator, CRP, an antibiotic-resistance enzyme, B-lactamase,
and a small metabolic pathway, consisting of the enzymes, AraA and AraB. These
different systems were chosen to illuminate the roles of different mechanistic features
in shaping the genotype-fitness relationship (protein stability, regulatory wiring and

metabolic flux).

Chapter 1 describes the genotype-fitness map for all single amino acid substitutions of
CRP, in 4 environments. Although the system was somewhat artificial, being located
on a multicopy plasmid due to technical limitations, it appears to have provided
information on the underlying CRP activity-fitness function, as hoped. First, both the
shape of the DFEs and the correlations between fitness effects in different
environments point to the existence of an optimum, intermediate activity of CRP
resulting in maximum fitness in a given environment. This makes some sense
intuitively, as CRP is known to respond adaptively to changes in the environment by
varying its activity, and is also in line with the results of a recent study (Towbin et

al., 2017). An apparently undocumented property of the activity-fitness function,
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however, is that this activity optimum appears to in fact represent a very broad fitness
plateau, allowing genotypes to “find their way there” easily, even in highly
maladaptive artificial environments. This robustness could well result from the known
negative feedback in the CRP regulatory network (You et al., 2013), and
encouragingly, genetic robustness has been associated with the negative feedback motif
in some recent studies (Denby et al., 2012; Marciano et al., 2014, 2016). These results
therefore suggest regulatory network architecture to have a profound impact on the
genotype-fitness relationship, with negative feedback potentially expanding the space
of equally fit genotypes. This in turn highlights the need to consider higher-level
organization when considering the genotype-phenotype relationship for even a single
gene. Unfortunately, time ran out before hypotheses could be tested rigorously, but

this will be done in the near future.

Another promising direction for the CRP data is the classification of mutations that
either increase existing CRP activity or behave in a way that is inconsistent with the
existence of a single phenotypic dimension (ie. CRP activity), an analysis that is
enabled by the particular experimental conditions used. These would represent
mutations interfering with other cellular processes in unforeseen ways, and as such

would be critically important for the predictability of mutation effects.

Finally, the original idea of the CRP project was to perform a deep-mutational scan

for expression levels of CRP-regulated genes using a new microfluidic technology, but
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this remains under development. Coupling such measurements with the fitness data in
the future could allow fitness changes to be understood from a finer-grained phenotypic
level: the expression of the set of CRP’s target genes rather than just CRP activity

itself.

Chapter 3 describes the results of a project closer to completion, which characterised
fitness effects and epistasis in a library of >15,000 single- and double-mutations in an
11-residue a-helix of the model antibiotic-resistance enzyme, B-lactamase TEM-1.
Epistasis was found to occur frequently between mutations, much of which could be
explained by a simple thermodynamic model of protein stability that enabled
classification of mutations as inactivating, destabilising, neutral or stabilising. The
power of such global phenotype-fitness models to explain so much of the variance
observed in fitness data across model systems has been thoroughly discussed in this
thesis, but it was particularly surprising to find it hold true for a small structural
region of a protein: this might have been expected to show more idiosyncratic trends of
epistasis between mutations, driven by the physical proximity of affected residues and
so specific local physicochemical interactions. These kinds of interactions, although
rarer, were however also detected as deviations from the thermodynamic model. As
expected, they were found to be more frequent when one of the mutations was close to
the active site, and among mutations in directly contacting residues. Assessing the

influence of these different flavours of epistasis, global and local, on evolutionary
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processes and the predictability of mutation effects should prove to be an interesting

future direction.

Chpater 3 describes the most developed project, which characterised the epistasis
arising between expression variants of the metabolic genes, araA and araB. The
experiments were designed to address the extent to which mutations in one gene can
depend on the state of other functionally connected genes, using a well-defined
metabolic pathway as a model. We found epistasis to be pervasive and surprisingly
diverse, with a significant proportion of both positive and negative interactions,
synergistic and antagonistic interactions, and magnitude and sign interactions.
Further, a diversity of trends of epistasis were also detected (assessed by the

correlations between fitness effects and epistasis).

Fortunately, there exists a rigorous mathematical framework with which to explore the
behaviour of such molecular pathways: Metabolic Control Analysis. We thus tested our
data against several simple phenotypic models based on Metabolic Control Analysis
(Heinrich and Rapoport, 1974; Kacser and Burns, 1973), each considering different sets
of molecular phenotypes as contributing to fitness. When pathway flux alone is
considered as a phenotype, the resulting 2-enzyme activity-fitness function is concave
monotonic, leading to a large fitness plateau (Dykhuizen et al., 1987). Such a model
could not explain our data, in part because it makes sign interactions impossible, while

we found them to be abundant. We therefore considered phenotypes that could result
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in a cost to enzyme expression, which could form the non-monotonicity in the activity-
fitness landscape required for sign epistasis. One costly phenotype that is well-known
in the F. coli arabinose pathway is the toxicity of one of the intermediates, L-ribulose-
5-phosphate (Englesberg et al., 1962). Another more general, and now well established,
one is protein expression burden (Dekel and Alon, 2005; Koch, 1983; Stoebel et al.,
2008). The introduction of each of these phenotypes into our metabolic flux model
improved its fit with the data considerably, as expected, but we found that all 3
molecular phenotypes (flux, toxicity, expression burden) needed to be considered to
explain the full extent of observed fitness and epistasis trends. The final model
demonstrates how surprisingly complex patterns of intergenic fitness interactions can
emerge from a relatively simple, smooth underlying phenotype-fitness surface. Viewed
from another perspective, it reveals how epistasis can emerge through molecular
pleiotropy: as seen in the Introduction, a single mutation is likely to affect several
partially dependent molecular phenotypes, each of which bears a potentially
independent contribution to fitness. This can then cause complex patterns at the level

of fitness even if each individual phenotype-fitness function is simple and monotonic.

Together, these 3 research projects suggest that it may indeed be feasible to
understand properties of the genotype-fitness relationship from the bottom-up, at least
for model systems. In these datasets, smooth trends tend to prevail over idiosyncrasy,

indicating that much of the genotype-fitness relationship could be understood from the
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global shape of smooth underlying phenotype-fitness functions. On the flip side, we
have seen that characterising the genotype-fitness relationship in different systems can
be a powerful way to glean phenotypic insights: the inferred broad plateau in the
activity-fitness function of a global regulator, the stability model describing the
activity of antibiotic-resistance enzyme variants, and the joint contribution of flux,

toxicity and expression burden to fitness for a metabolic pathway.

Future directions for the study of model genetic systems include the development of
technical tools to ease the characterisation of fitness effects in the most natural
settings possible. For example, improved precision genome engineering methods to
avoid the use of multicopy plasmids, and robust complementation strategies to avoid
the loss of null-mutants prior to competition when non-selective growth conditions
cannot be found. As we have seen, for certain genes, such as global regulators, key
properties of the genotype-fitness relationship may depend enormously on their
position within a network of interacting components, and so studying them in their
natural context could provide insight as to how the effect of mutations in individual

genes is shaped by network structure.

Another exciting possibility is the large-scale characterisation of mutation effects at
several phenotypic scales simultaneously (eg. protein stability, protein activity, flux,
expression, cell morphology, fitness), which could enable a direct and complete

mechanistic description of the translation of genotype into high-level traits. Indeed,
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certain phenotypes, such as metabolic flux (Sauer, 2004) and the set of —omes, have
received very little direct attention, mostly due to the enormous technical challeges
and cost involved in their high-throughput measurement/coupling to genotype
libraries. One promising candidate, however, is the transcriptome, due to the fact that
it can be sequenced by RNA-seq: using the same emulsion-based technology that can
enable distal genomic sites to be linked together for many single cells (Figure 1.21), the
transcriptome can in principle be quantified for single cells whilst linking this
information to the cells’ genotypes with the use of unique cellular DNA-barcodes
(Adamson et al., 2016; Dixit et al., 2016). The transcriptomic impact of random
mutations or a large set of transcriptional regulator mutations, for example, could thus

be rapidly assessed and even linked to high-throughput fitness measurements.

Finally, the systematic analysis of the effects of genome-wide combinations of point-
mutations still appears far out of reach, but a feasible next step might be introducing
synthetic promoter libraries like those used in (Keren et al., 2016) in front of pairs of
genes across the genome and measuring the fitness effects. Although clearly artificial,
and in some cases breaking regulatory links that are ensured by native promoters, such
an experiment could provide quantitative two-dimensional expression-fitness
landscapes for many pairs of genes, which should be an extremely important

component of the genotype-fitness relationship, and which for now we are almost
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completely blind to (Chapter 4; see (Martin, 2016) for higher level 2-D trait-fitness

landscapes in a multicellular organism).

With constantly improving sequencing, genetic engineering and —omics technologies,
and the application of experimental creativity, our mechanistic understanding of the

genotype-phenotype relationship across different scales can only continue to grow.
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