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Abstract

Grain breakage in granular materials has been relatively, difficult to compute and
characterize in tomography images. This is based on the perceived complexity of an
algorithmic formulation for the characterization of grains that move and break.

In this thesis, we highlight computational approaches that augment the un-
derstanding of breakage and crushing phenomena in granular materials. Due to
the inter-connectedness of segmentation accuracy and the ability to compute for
breakage, we start by examining noise removal techniques in granular materials.
Noise removal techniques are analyzed based on a set of materials to which they
were applied. Secondly, we deviate from a morphological watershed approach to
segmentation of geomaterials to a hierarchical approach that better captures apri-
ori information from data sources. Next, we go on to propose methods by which
breakage in granular materials can be detected.
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Résumé

La rupture du grain dans les matériaux granulaires a été relativement difficile à
calculer et à caractériser dans les images de tomographie. c’est parce qu’il est
complexe de formuler un algorithme pour la caractérisation des grains qui bougent
et se cassent.

Dans cette thèse, nous mettons en évidence des approches informatiques qui
améliorent la compréhension des phénomènes de rupture et de broyage dans les
matériaux granulaires. En raison de l’interdépendance de la précision de la segmen-
tation et de la capacité de calcul de la rupture, nous commençons par examiner les
techniques d’élimination du bruit dans les matériaux granulaires. Les techniques
d’élimination du bruit sont analysées à l’aide d’un ensemble de matériaux auxquels
elles s’appliquent. Deuxièmement, nous passons d’une approche morphologique par
bassin versant à la segmentation des géomatériaux à une approche hiérarchique qui
permet de mieux capturer les informations a priori à partir des sources de données.
Les moyens par lesquels la segmentation spécifique au contexte ou à l’image peut
être réalisée sont itérés. Troisièmement, nous présentons un modèle pour capturer
les ruptures d’images statiques; sans considération de motion. Enfin, nous présen-
tons des modèles spatio-temporels qui suivent l’évolution de la casse dans les images
de matériaux granulaires.
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Chapter 1

Introduction

1.1 Problem definition

Grain breakage is an important phenomenon in a large number of industrial prob-
lems. These industrial processes include processes that subject granular materials
to high stresses. Such industrial processes include the installation of supporting
piles into the soil, petroleum extraction, and the installation of wind turbines. The
study of grain breakage is also essential when grain breakage is the final goal of
a process, e.g., crushing of extracted ores from mining, or particles from pharma-
ceuticals. Multi-scale models for granular media require quantitative measurements
coming from experiments. For a complex phenomenon such as grain breakage, a
series of high-resolution tomography images are essential. The ability to quantify
critical variables related to grain breakage, e.g., particle size, and shape evolution,
is required for modeling. The quantification of such variables is not trivial. We
can obtain high-resolution images of grain breakage by X-ray imaging or Neutron
imaging. These images mostly consist of a sequence of 3-dimensional sub-images,
showing the temporal change in grains. Although these images are of high resolu-
tion, they sometimes contain noise. These noisy components degrade the accuracy
of critical variable computations.

In this thesis, we approach the different elements necessary for the computation
of variables relating to breakage. We start from the removal of noise in images for
which such computation is required, to the identification of granular material and
subsequently, temporal tracking of grains even when they break. We outline various
methods for different parts.
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Figure 1.1: Breakage across the temporal stack in zeolite grains undergoing oedo-
metric compression

1.2 Challenges associated with the problem

We summarize the steps associated with computing the values of parameters that
relate to breakage in these images as;

• obtaining the tomography image

• removal of noise-related artifacts

• identification of individual grains

• Tracking the displacement, rotation, and breakage of grains across the tempo-
ral axis

All of these sub-problems need to handled in the same sequence as presented due to
the dependence of the next step on the preceding step. The propagation of errors
from one step to another is a challenge.

During the identification of grains, it is vital to identify the particles of a broken
grain as particles belonging to a single grain. Such identification enables us to cal-
culate the values of grain parameters such as grain volume without loss of precision.
It also allows us to track the evolution of each grain post-breakage without using its
unique label ID. However, it is also necessary to identify such grains as broken to
characterize its evolution leading to breakage. Thus a grain broken into fragments
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should implicitly be characterized as broken but its fragments should retain the
information of belonging to the original particle.

1.3 Overview of thesis

Chapter 2

In Chapter 2, we present the basics of x-ray tomography and methods by which we
generate X-ray tomography images of geomaterials. We also present an overview of
the problems associated with x-ray tomography image generation. We also present
an introduction to breakage of geomaterials; the types of breakage and methods
by which they occur. This chapter serves as an introduction to the concepts used
throughout this thesis.

Chapter 3

In chapter 3, we present the datasets used during this work. We explain the methods
by which some of the naturally occurring materials imaged are formed, the effective
content of these materials, and the conditions under which they were imaged. We
also present an introduction to artificially generated spheres used extensively during
the thesis.

Chapter 4

In chapter 4, we present methods by which we quantify noise in tomography images
of granular materials. First, we review the method for the computation of noise
presented in [72]. Then we present a neural network based substitute that achieves
better noise estimation. Our method is based on the encoder structure commonly
used in neural networks.

Chapter 5

In chapter 5, we present various edge preserving methods for noise removal present
brief observations on the use of each method.
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Chapter 6

In chapter 6, we present a novel method by which granular material properties such
as the nature of granular contact can provide better segmentation accuracy. The
contact model is used to inform the segmentation and serves a prior. This prior
based hierarchical segmentation biases the segmentation towards extracting grains
that conform to the prior model.

Chapter 7

In chapter 7, We formulate a method by which we can add texture to artificial grains
(code generated) and break these grains. Using our formulation, we study the pa-
rameters that affect the computation of breakage outlined in [141]. We propose
methods for the detection and tracking of broken grains. We compare the segmen-
tation between two successive time-steps and use the disparity in results to account
for breakage.

Chapter 8

In chapter 8, We propose a method for the detection and tracking of broken grains.
We compare the segmentation between two successive time-steps and use the dis-
parity in results to account for breakage.

Chapter 9

Here we present our significant conclusions from this work, limitations, and future
perspectives.
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Chapter 2

Grain breakage: A short literature
review

2.1 X-ray basics

2.1.1 From x-rays to images

X-ray Computed Tomography (CT) is a non-destructive technique for visualizing the
internal features of solid objects, and for obtaining digital information on their 3D
geometry and properties. It has been used extensively in experimental geomechanics
to image geomaterials. Its use helps to understand the material composition and its
fundamental behavioral responses.

X-ray CT is also used in the non-destructive volumetric study of rare specimens,
e.g., fossils, meteorites, 3D measurement of fluid flow fields, porosity, microporosity,
fracture extent and roughness, 3D fabric determination (foliations, shape preferred
orientations, network properties). It is suitable for use in many fields and in many
contexts. Its extensive use is because it does not destroy the material with which it
interacts.

Wilhelm Rontgen discovered X-rays while experimenting with cathode rays in
a glass tube [62]. The discovery of x-rays motivated research into its use and its
behavior [1], [5]. One such experiment was done by Arthur Compton [5], in which
he directed x-rays to a metal surface. He discovered that the flux of x-rays decreased
upon scattering. He observed that metal surface ejected electrons when x-rays hit
the surface. He also observed an increase in the wavelength of the beam, inferring a
reduction in x-ray flux. The absorption of sufficient x-ray led to the release of free
electrons. As x-rays interact with materials, their change in intensity correlates to
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Figure 2.1: A typical x-ray system for imaging materials

the atomic number of the material. [5], [114].

In order to reconstruct a 3D volume of x-ray attenuation, we rotate the sample
or the source-detector system. The source emits x-rays, and the detector captures
the x-rays after material interaction. This is shown in figure 2.1. The rotation of the
sample or the source-detector takes place at angle intervals. At every rotation angle,
the detector captures the attenuated beam resulting in image projections. These
projections capture material property variance at these angular intervals. A flat
source and detector, emitting x-rays and recapturing them respectively, can do so in
two dimensions. We obtain a 3-dimensional image representation by “reconstructing”
the projections of the attenuation field into a single map of attenuation.

To explain the process of reconstruction, we introduce the projection-slice the-
orem in 1.

Theorem 1 (Projection-Slice Theorem ). In N dimensions, the projection-slice the-
orem states that the Fourier transform of the projection of an N-dimensional func-
tion f(r) onto an m-dimensional linear submanifold is equal to an m-dimensional
slice of the N-dimensional Fourier transform of that function consisting of an m-
dimensional linear submanifold through the origin in the Fourier space which is
parallel to the projection submanifold.
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The projection-slice theorem in 1 postulates that a perfect reconstruction re-
quires an infinite amount of projections. In reality, an infinite number of projections
will take an infinite amount of time to acquire. Therefore, perfect reconstruction
is impossible. Apart from reconstruction errors due to the impossibility of perfect
reconstruction, noise sources can affect the quality of reconstruction. These sources
range from human errors to machine and instrumentation errors. Together these
form the basis for noise in reconstructed images.

2.1.2 The mathematics of reconstruction

Definition 1 (Beer-Lambert Law). For a monochromatic, non-refractive zero width
x-ray beam that traverses a homogenous material along a distance z from the origin,
the intensity J(z) is given by

J(z) = J0(z) exp

(
−
∫
τ(z)dz

)
(2.1)

where −
∫
τ(z)dz is the coefficient of attenuation being integrated through a

variation in z. This highlights x-rays and x-ray attenuation energy as being a func-
tion of position.

We describe the total attenuation p at position x and y as

Γ(r) = ln

(
J

J0

)(
−
∫
τ(z)dz

)
(2.2)

Equation 2.2 states that the ration of the input ray intensity over the output
ray intensity after a logarithm operation represents the line integral of the attenu-
ation coefficients along the x-ray path. The problem of reconstruction can thus be
stated as: given the line integrals of an object, how can we calculate its attenuation
distribution?

Based on the polar geometry, r is equal to x cos θ+ y sin θ, when the projection
is at the angle θ

This thus simplifies to equation 2.3 Which describes the radon transformation
of an unknown density function f(x, y).

Γθ(r) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy (2.3)

As with Fourier transformations, the inverse transform of the Radon equation
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should theoretically yield the original image.

f(x, y) =
1

2π

∫ π

0

gθ(r)(x cos θ + y sin θ)dθ (2.4)

Due to the limited number of projections, several algorithms have been de-
signed, based on the Radon transform to perform the reconstruction projections
into tomography images. We examine some of these reconstruction algorithms.

Fourier domain reconstruction

Consider a sample f(x, y) with x-ray sampling at equally spaced angular intervals.
Fourier domain reconstruction transforms each projection using the discrete Fourier
transform. Its output is the corresponding frequency spectra on a polar raster. Gaps
(sparsity) created in the frequency domain on the raster are fixed, using various
interpolation techniques. See [13], [31].

The inverse discrete Fourier transform of the raster yields the image approx-
imation. Sparsity in the frequency domain is a cause for high noise levels in re-
construction by this method. Algorithmic improvements have been made to change
sparsity and thus reduce image noise levels.

A concentric square raster can be generated by changing the angle between
projections as follows

θ′ =
R0

max{| cos θ|, | sin θ|}

The use of the concentric square raster has the advantage of generating a uni-
formly spaced rectangular grid in the frequency domain and inherently reducing
interpolation errors and in effect, reconstruction noise.

Filtered Back-projection reconstruction

The filtered back-projection algorithm is one of the most commonly used algorithms
for tomographic image reconstruction. There are two steps in the filtered back-
projection algorithm. The first step is filtering the projections by a kernel whose
frequency response is |ω|. This can be visualized as a simple weighting of each
projection in the frequency domain. The next step is the back-projection step,
which consists of projecting back each view through the line corresponding to the
direction in which the projection data was collected. The derivation of the filtered
back-projection algorithm can be seen in [88]. The choice of |ω| corresponds to the
ramp filter. Practically, the ramp filter amplifies statistical noise in projection data.
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Iterative reconstruction

Iterative reconstruction techniques are a set of techniques in which the image re-
construction is obtained by solving a set of linear equations. These methods have
gained traction over the years because of the ease with which apriori information
can be introduced. See [33], [87], [130], [137], [139] for detailed insight into these set
of algorithms.

2.2 Noise and artifacts in tomography images

We evaluate reconstruction algorithms based on how close the reconstructed image
is to reality. We define reality as the true attenuation coefficients[88]. Severe de-
viation from reality might occlude image features and reduce the capacity for both
observational inference and quantitative inference. The deviation from reality in
the resulting images manifests as inconsistencies in the reconstructed image. These
inconsistencies can be a result of faulty data collection process, instrumentation, or
system design. These usually result in artifacts, blur, or noise (random sources).
The combination of artifacts, blur, and noise degrades the quality of a CT image.

2.2.1 Noise sources

Noise impairs the visibility of low contrast objects [30]. It is characterized as the
addition of unwanted information or data to pixels (picture elements). If the aggre-
gate information contained in a group of picture elements is not significantly distinct
from their environment (high contrast), noise erodes all or a part of such aggregate
information [30], [83]. The addition of noise is mostly due to the erroneous mea-
surement of pixel attenuation characteristics. Such faulty measurements can be due
to equipment faults, human error, or a variety of other sources. Noise erodes image
structures and often limits the ability to visualize image structures.

Due to the variety of inputs by which noise can affect an image, it is challenging
to mitigate during scanning and reconstruction [2]. It is thus modeled in literature
as an additive Gaussian with a mean of 0 (additive white Gaussian) [3], [122].

2.2.2 Artifacts

Different kinds of artifacts can be introduced into the resulting image during scan-
ning or reconstruction. These include ring artifacts, beam hardening, aliasing arti-
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facts such as partial volume effect.

Ring artifacts [89], [90], [93] are introduced when there is faulty calibration in
the scanner detector. This faulty calibration gives a consistently erroneous reading
at each angular position, resulting in a circular artifact.

Beam hardening on the other is caused by selective attenuation in x-rays with
polychromatic energies [14]. They can also be manifest as streaking artifact [14], [18]
or the cupping artifact [14], [75], [111]. In very different cross sections, dark bands
or streaks can appear between two dense objects in an image. They occur because
the portion of the beam that passes through one of the objects at certain positions
is hardened less than when it passes through both objects at other positions. The
resulting artifact is called the streaking artifact.

X rays passing through the middle portion of a uniform cylindrical phantom
are hardened more than those passing through the edges because they are pass-
ing through more material. As the beam becomes harder, the rate at which it is
attenuated decreases, so the beam is more intense when it reaches the detectors.
Therefore, the resultant attenuation profile differs from the ideal profile that would
be obtained without beam hardening. The resulting artifact is the cupping artifact.
Beam artifacts can be reduced using adequate beam filtration[88].

Partial-Volume Effects Partial volume effect results as errors due to discretiza-
tion. Because each pixel in a computed tomography image represents the attenua-
tion properties of a specific material volume, if that volume is comprised of several
substances, then the resulting computed tomography value represents some average
of their properties. This is termed the partial-volume effect. Furthermore, because
of the inherent resolution limitations of X-ray computed tomography, all material
boundaries are blurred to some extent, and thus the material in any one voxel can
affect computed tomography values of surrounding voxels [48]. The effect of partial
volume is thus; material edges are not represented as hard edges in the images, but
as soft ramp edges, which is a linear combination of material and void.

2.2.3 Blur

Blur can be described as the smoothing of pixel information. It can also be described
as the inadequacy of information in picture elements. Blur can be introduced during
scanning when a large spot size and a small detector size is used [30], [55]. The
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reconstructed image is blurred if the voxel size is smaller than the characteristic
sharpness of the beam[106]. It is vital to set reconstruction parameters in a way
that does not result in a blurred image. Many techniques can be used to reduce blur
in tomography images such as the point spread function [91], iterative Richardson-
Lucy algorithm, and the Laplacian sharpening filter.

2.3 Grain breakage

Breakage can be observed in many engineering and geological processes and struc-
tures. These includes earth dams [8], pile driving [37], railway ballasts [68], rapid
penetration [124] and shearing of granular faults gouge [65]. Many factors are re-
sponsible for the breakage of granular materials. Among these factors are loading
mode, microstructural heterogeneities, stresses, and temperature. The high num-
ber of influences causing grains to break makes breakage a complex phenomenon to
study. When we subject a granular assembly to high confining pressure, the mean
stress within the assembly rises. When the mean stress gets high, breakage occurs.
In scientific research, it has been observed that under high effective stresses, break-
age of particles or particle failure might occur. Particle breakage can change the
physical and mechanical behavior of a granular assembly [7], [21], [38], [39], [60],
[96]. Particle breakage in an assembly affects the grain size distribution[39]. The
grain size distribution (GSD) describes the relative sizes of grains present in an as-
sembly. Particle breakage also affects the shear strength [49], [73]. Shear strength is
the resistance of a material to a load that can cause sliding failure. The breaking of
particles can also affect the solid fraction [79], which is the fraction of the assembly
volume that is solid. It can also affect the yield surface[20].

2.3.1 Parameters influencing breakage

Shape of material

The effect of the shape of a material relative to soil behavior was summarised in [63]
using three principles. These are sphericity, angularity, and roughness. Sphericity
influences fabric anisotropy by increasing stiffness and residual friction angle. In-
creased angularity, on the other hand, can cause a decrease in small-strain stiffness
and an increase in high-strain strength. In a bid to quantify the effect of particle
shape on particle crushing behavior, Afshar et al. in [131] built a DEM model to
simulate different shaped recycled construction and demolition materials. The effect
of shape on particle crushing was evaluated. Granular materials with shapes closer
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to spheres were evaluated to be more resistant to crushing.

Behaviour of material

Different mechanical properties can influence the deformation behavior of materials.
These properties include; tensile strength [4] and the shear strength [120] of the
material. In [11], Billam et al. observed that the crushing force is dependent on the
nature of the material. Lo et al. also observed in [12] the dependence of particle
crushing on the particle mineralogy. However, in Yamamuro et al. [41], it is observed
that the fundamental influencing properties of granular material relative to crushing
is the inherent strength and the effective stress rate.

Grain size distribution

The effect of grain size distribution has previously been analyzed from two per-
spectives. Marsal [6] indicated that a large particle size could lead to large contact
normals, which in turn amplifies the possibility of breakage. The probability of large
particles undergoing breakage is increased due to an increase in the possibility of
inclusions in large-sized granular materials.

Hardin [21] analyzed data of several granular materials with different sized
particles under loading. He used bp to describe the potential for breakage of a
particle whose size is D.

bp = log10

[ D

Dmin

]
for D ≥ Dmin (2.5)

bp = 0 for D ≥ Dmin (2.6)

Dmin refers to the minimum size of particle which can crush for any given particle.
This value is usually evaluated through laboratory tests.

Where bp represents the potential for breakage for a given size fraction, the
potential for breakage for the material is as given using equation 2.7.

Bp =

∫ 1

0

bpdf (2.7)

The amount of crushing is represented as

Bt =

∫ 1

0

(
bp0 − bpl

)
df (2.8)
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Figure 2.2: Relationship between total breakage and breakage potential [21]

bp0 equals the initial value of bp and bpl is the value of bp after loading. Mea-
surements in [21] show that the value Bt is directly proportional to Bp.

Thus relative breakage is characterized as

Br =
Bt

Bp

(2.9)

Relative humidity

Much research has focused primarily on breakage as a function of the mechanical and
behavioral properties of granular materials. However, breakage can be influenced by
external factors such as relative humidity [57], [76], [121]. In these works, [57], [76],
[121], it is shown that exposure to water can lead to breakage by lowering the yield
strength. Chester et al. in [76] show that the injection of water into dry samples
can lead to volumetric collapse. Thus, in the presence of water, the required stress
for the critical failure of a specimen through fracture is reduced. This effect of water
vapor on fracture has also been observed in [9], [19], [110].

2.3.2 Influence of breakage on material properties

Breakage can lead to changes in an assembly of grains. Three parameters that can
be affected significantly are the shape of the particles and the grain size distribution.
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Figure 2.3: Relative breakage according to Einav in [77]

Particle shape

Angular particles cause stress concentrations and thus crush under the influence of
a load. Thus as breakage progress, the mean shape of particles become less angular.

According to Ueng et al. in [47], less angular particles could lead to a reduction
of the friction angle and thus induce a decrease in the shearing strength.

Grain size distribution

The breaking of particles effectively leads to a reduction in the size of the grain
and thus influence the grain size distribution of the grain assembly. Einav in [77],
[78], describes breakage by a change in the surface of the grain size distribution
curve. Changes in grain sizes result in changes to the grain size distribution curve.
According to Einav [77], [78], the surface of the curve before loading is higher than
the surface of the curve after loading which is in turn higher than the surface of a
size distribution state called the ultimate distribution. The ultimate distribution is
a grain state where further breakage can no longer occur.

2.3.3 Breakage types

Breakage is a way to dissipate an energy build up within a material. It is an irre-
versible change of shape or size of a particle. When cracks appear within materials,
the localized stresses within a grain are modified. With an increase in the build-up
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Figure 2.4: Different breakage types [94]

of stresses, cracks propagate, resulting in breakage [51].

Daouadji et al. in [94] identified three breakage modes in granular materials.
These are fracture, attrition, and abrasion, as can be seen in figure 2.4. The differ-
ence between these breakage modes is characterized by a difference in the shape and
size of the particles. During breakage, some parametric changes such as changes in
shape and grain size distribution can be observed, according to [94].

2.3.4 Single particle breakage tests

Single particle breakage tests study the effects and characteristics of single grains
undergoing breakage. Studying one particle at a time allows fine-grained control
and easy tracking of broken particles. Although some results obtained can be ex-
trapolated to understand breakage in grain assemblies, it is not representative of
contact topologies and coordination numbers found in the grain assemblies. In [43],
McDowell observed that particle breakage was the principal source of plastic volu-
metric compression on the normal compression line. He relates the micromechanics
of grain fracture to the macroscopic deformation of crushable aggregates by per-
forming one-dimensional compression tests. In one-dimensional compression tests,
a vertical load is applied with restraints applied along the lateral axis. This vertical
load results in vertical deformation without lateral deformation. McDowell [43] ob-
served high yield stress to indicate the start of particle fracture. With the same test
framework, [113] observed that when crushing strength increases, the shear stiffness
increased, and the volumetric strain decreased.

Other types of single particle crushing tests have also been used to evaluate
particle crushing properties. Salami et al. in [133] performed several multi-point
crushing tests on cylindrical samples to investigate the effect of coordination number
on crushing properties. Salami et al. [133] demonstrated that different contact
orientations can influence the fragmentation of a single particle and that the critical
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force was highly dependent on the contact area. Nakata et al. in [50] evaluated the
relationship between crushing characteristics and one-dimensional compression test.
Nakata et al. observed that particle stress grows as void ratio increases, and the
coordination number decreases.

Zhao et al. in [127] studied particle crushing behavior using a computed tomog-
raphy scan of four Leighton Buzzard sand and four highly decomposed granite parti-
cles. They demonstrated that complicated morphology and microstructure pattern
often results in intricate fracture patterns. They observed that simpler morphology
often yields in breakage that is parallel to the loading direction. They also observed
that particle fragments often converge to the same sphericity and convexity levels.

Todisco et al. [134] observed from single particle compression tests that altering
the coordination number affected breakage. They observed that a coordination
number greater than four generally resulted in breakage by splitting. Abrasion and
attrition showed in figure 2.4 were observed to occur with coordination number equal
to four.

2.3.5 Multi particle breakage tests

A change in the grain size distribution of an assembly is usually indicative of break-
age[21]. It not so much only the breakage of single particles, but the effect of particle
breakage on a grain assembly. However, the bridge between the breakage of a single
particle and full-scale measurements in an assembly is not trivial [138].

Karatza et al. in [141] studied the evolution of grain size distribution and other
breakage parameters in Zeolite using X-ray tomography imaging. They imaged
the deformation and reconstructed the projections into a 4-dimensional stack of
3-dimensional images. To track grains through time, identified grain labels in a
3D image are correlated to the next image using digital image/volume correlation
described in [95], [98], [135]. The degree of match of a grain label to the next timestep
(deformed image) is quantified using the normalized correlation coefficient [35]. A
normalized correlation coefficient of the maximum value of 1.0 is reflective of a
perfectly correlated label. To identify broken grains, Karatza et al. in [141] imposed
a threshold of 0.94 on the normalized correlation coefficient. They characterized
grains with a normalized correlation coefficient value lower value than 0.94 as broken.
An analysis of the extracted grains confirms the relationship between breakage type
and coordination number initially observed in [134].

Guida et al in [138], adopted a similar set-up as [141] to study breakage mech-
anisms in glsleca. As opposed to sand grains, LECA particles break at relatively
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Figure 2.5: Detecting breakage in zeolite images of granular materials undergoing
compression [141]
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Figure 2.6: Detecting breakage in images of LECA undergoing compression [138]

low-stress levels [138]. They also have high porosity.

Hurley et al. in [140] performed an extensive study on the mechanics of breakage
by combining 3D x-ray tomography and 3D x-ray diffraction. X-ray tomography
gave insight into the granular and material properties, while x-ray diffraction study,
allowed access to localized force statistics. Both systems provided combined access to
a variety of local and global measurements on the sample, including grain kinematics,
contacts, average intra-granular stresses, and inter-particle forces.

2.4 Conclusion

In this chapter, we introduce the basics of x-ray computed tomography image gen-
eration. We show how samples are imaged using an x-ray scanner. The sample or
the source-detector on the scanner is rotated at constant angles to generate pro-
jections for each angle. We highlight how these projections can be combined into
a 3-dimensional image using reconstruction techniques. Further, we highlight the
problems with reconstruction. Next, this chapter reviews previous research relating
to breakage in granular materials. We identify the primary breakage modes in gran-
ular materials under loading. These are splitting, abrasion, and attrition, as shown
in figure 2.4. Next, we highlight research studying the breakage of single grains
under load. We indicate that although single particle breakage gives fine-grained
control over the process (tracking of broken particles), results obtained are difficult
to extrapolate to grain assemblies. In single particle crushing, breakage is shown
to be dependent on mechanical properties such as yield stress, shear stiffness, and
volumetric strain. Multi-particle tests highlight the effect of localized breakage on
the global behavior of an assembly of granular materials.We highlight research that
shows that breakage affects global shape behavior and size distribution.
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Chapter 3

Datasets

3.1 Introduction

In this chapter, we present the datasets used in this work. The datasets presented are
granular materials scanned and reconstructed at the laboratoire 3SR, Grenoble. The
x-ray scanner in Laboratoire 3SR (Grenoble) is a built-to-specification laboratory
x-ray tomograph supplied by RX-Solutions (Annecy). The cabin in which the x-ray
scanner is housed is lead-lined. The x-ray source in this tomograph emits a cone-
beam in the direction of the detector. By implication, as one translates an observed
specimen from the detector towards the source, the specimen is enlarged on the
detector due to geometric magnification. [114].

Some specifics on the construction and mounting of this scanner makes it easy
to carry out both triaxial and ooedometric tests. These include:

• Translation trolley
The trolley, on which the rotation stage can translate in the direction of the
beam, allows for easy control of the zoom level for the specimen being scanned.
It is made of solid tell component and can thus carry high loads.

• Room for experiments
The x-ray cabin is of considerably larger width and height than in an ordi-
nary x-ray scanner. This considerably large size means that large amounts of
experimental equipment can be mounted inside the cabin.

• Connection to outside
There is the easy passage of tubes in and out of the cabin, resulting in less
exposure to x-ray radiation.
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• Translatable source and detector The source and detector can be moved
synchronously, which allows experimental installations of different heights to
be scanned.

Figure 3.1: Laboratoire 3SR x-ray scanner

All of the datasets which are subsequently presented were scanned using this
x-ray scanner at the Laboratoire 3SR.

3.2 Datasets

3.2.1 Sapphire Spheres

Sapphire spheres is a synthetically produced material. This dataset’s underlying
sample had almost perfect spheres of 5 different sizes. The sizes of the grains range
from 300 µm to 600 µm in increments of 100 µm. The manufacturer (Sandoz Fils S.A.
in Switzerland) grade of the spheres is between grade 5 and 10, meaning sphericity
tolerances between 0.125 µm to 0.250 µm and diameter tolerances of±1 µm to 2.5 µm.
In the corresponding tomography generated image, the pixel size is 7.50 µm/px.

A slice of sapphire spheres is shown in figure 3.2.
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(a) Sapphire spheres (b) Sapphire spheres (3D)

Figure 3.2: Dataset slices: Image slices shown from 3D images of sapphire spheres

3.2.2 Zeolite

(a) Zeolite (b) Zeolite (3D)

Figure 3.3: Dataset slices: Image slices shown from 3D images of Zeolite

Zeolites are used in industrial applications as adsorbents and catalysts. They
are isotropic, and the shape of the intact particles is very rounded and of high
sphericity. The sample was provided to the University of Edinburgh by CWK,
Germany and studied by Zeynep Karatza at the Laboratoire 3SR. The zeolite sample
has a mean diameter (D50) of 1.36mm (medium-very coarse), is rather uniform
(Cu = 1.07), with minimum and maximum particle sizes of 1.09mm and 1.50mm,
respectively. Each zeolite particle has a density of 2.18gcm3 and an estimated crush
strength of 15N (based on the manufacturer’s specifications). The zeolite granules
are produced from zeolite powder (2µm diameter) with a mineral binder like clay.
Henceforth, zeolite will refer to the granules and not the powder. Zeolites are water-
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insoluble, isotropic and highly hygroscopic and hence very sensitive to moisture and
temperature changes [141]. A slice and 3-dimensional specimen of zeolite are shown
in figure 3.3.

3.2.3 Leighton Buzzard

(a) Leighton Buzzard (b) Leighton Buzzard (3D)

Figure 3.4: Dataset slices: Image slices shown from 3D images of Leighton buzzard

Leighton Buzzard sand is an uncemented sand coming from "near bristol." It
has been used to study soil-shallow foundation interaction and soil retaining wall
interaction. Leighton Buzzard sand is angular in shape; however, it has rounded
edges.

3.2.4 Highly Decomposed Granite

Highly decomposed granite is derived from granite via its weathering to the point
that the parent material readily fractures into smaller pieces of weaker rock. It
has practical uses that include its incorporation into paving and driveway materi-
als, residential gardening materials in arid environments, as well as various types
of walkways and heavy-use paths in parks. Highly decomposed granite is a non-
homogenous material, and it is elongated and angular. Images were obtained during
an Oedometric compression test performed at the Laboratoire 3SR.

3.2.5 Caicos Ooid

Caicos ooid comes from Ambergis Shoal in the Caicos platform in the British West
Indies. Caicos ooids grow in marine environments and are formed through material
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(a) Highly Decomposed Granite (b) Highly Decomposed Granite
(3D)

Figure 3.5: Dataset slices: Image slices shown from 3D images of Highly Decomposed
Granite

(a) Caicos Ooid (b) Caicos Ooid (3D)

Figure 3.6: Dataset slices: Image slices shown from 3D images of Caicos ooids

accretion. This mode of formation implies that they start from a seed point, which
can be small quartz or calcite and continuously grow over time [114]. The grains
tend to grow by physical attachment as they roll or through precipitation over its
surface. This usually generates well-rounded grains. Images for Caicos Ooids were
obtained from a triaxial compression test. Evident is a significant amount of blur.
Also, visual noise such as the ring artifact is present in the image. A slice of this
image is shown in figure 3.6
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3.2.6 Hostun sand

(a) Hostun sand (b) Hostun sand (3D)

Figure 3.7: Dataset slices: Image slices shown from 3D images of Hostun sand

Hostun sand is produced close to the commune of Hostun, in the Rhône-Alpes
region of France. The images used are of a sample collected directly from the quarry,
which is run by Sibelco France, at the beginning of 2011. The material is excavated
as clumps made of a range of different silica grain sizes, lightly cemented by kaolin.
The silica particles making up these clumps have been crushed in-situ from larger
rocks. Since particles have been generated by crushing, they are generally angular.
Hostun sand grains are also visibly angular in the x-ray tomography images shown
in Figure 3.7 [114].

3.2.7 Kalisphera

Kalisphera is an artificial sphere generation tool used to produce 3D raster images of
spheres, including their partial volume effect. The ability to generate these spheres,
gives the capacity to quantitatively evaluate the metrological performance of our
image-based measurement techniques with reference to a ground truth. [125]. In
this work, kalisphera is mostly to gain quantitative insight into the performance of
developed algorithms due to the access it gives to the ground truth. An example of
the result of this data generation tool is shown in figure 3.8.

3.3 Conclusion

Here we gave insight into the datasets used in this work. We briefly present details
about naturally occurring grains, their shape, the conditions under which they were
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(a) Kalisphera

Figure 3.8: Dataset slices: Image slices shown from 3D images of Kalisphera

scanned, and the experimental procedures by which they were imaged. Further,
we introduce kalisphera; a sphere generation tool used to generate artificial spheres
which include their partial volume effect.
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(a) Sapphire spheres (b) Hostun sand (c) Caicos ooids

(d) Highly decomposable
granite

(e) Leighton buzzard
sand

(f) Zeolite

Figure 3.9: Dataset slices: Image slices shown from 3D images of sapphire spheres,
zeolite, highly decomposable granite, caicos ooids, leighton buzzard and hostun sand
imaged under different mechanical conditions
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Chapter 4

Quantifying Noise

4.1 Introduction

Tomography imaging has been used extensively for the characterization and under-
standing of geomaterials. Images are first scanned using an x-ray scanner, and the
resulting radiographs are used to reconstruct a 3D image of the imaged sample.
However, it is difficult to obtain a perfect reconstruction void of noise due to the nu-
merous noise sources present due to imaging and reconstruction. Due to the variety
of noise inputs, noise in tomography images of geomaterials is usually approximated
as a zero mean Gaussian. Although there has been research into the effect of noise
on reconstruction accuracy, there has been limited research into quantifying the
noise in these reconstructed images. We propose that the quantification of noise
in these images might aid in setting the hyper-parameters of noise removal algo-
rithms. Liu et al. in [72] proposed a model-based approach to quantifying noise in
images. It quantifies the noise as the standard deviation value of the most occurring
mean-standard deviation pair computed within pixel neighborhoods. We propose
an alternative noise quantification method based on the encoder model of neural
networks. The proposed method would not require a quantification on the entire
image but can make noise inference from part of the image as small as a single slice.

4.2 Background

Noise can be formulated as the Minkowski distance between the true reconstruc-
tion and the generated reconstruction. However, in reality, this is near impossible
to compute. This is due to the ill-posed formulation where a perfect reconstruc-
tion is necessary to compute noise. To quantify noise (approximate) noise, without
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reference to the perfect reconstruction, [72] proposed a solution based on a statis-
tical analysis of the pixel values. In [72], the method proposed computes the mean
and standard deviation within the neighborhood of each pixel and then formulates
noise as the standard deviation in the most occurring mean-standard deviation pair.
Thus the histogram counts the observations that fall into disjoint mean-standard
deviation categories. Each category is defined using a bin. This method gives the
estimation of the noise in the image. In this formulation, there is an implicit as-
sumption of noise to be a zero-mean additive Gaussian and thus is the reason it can
be characterized using a scalar standard deviation parameter.

Consider an noisy reconstructed image I. Its equivalent hypothetical noiseless
image is denoted as I∞ and it noise free estimation as Ie. if

Ie ≈ I∞

then equation can be rewritten as

σ2 = (|I|p − |Ie|p)1/p (4.1)

where Ie = f(I)

A simple definition of f(I) can be as a transformation of I by the mean gray
value of the entire image. This implies that the noiseless representation is estimated
to be the mean value constant image Iµ. In any image with distinct foreground and
background, this does not work. It induces the loss of texture and latent content
in the image. However its failure gives insight into potential formulations of the
function f(I).

A potential solution is to partition the image into constant volume regions with
no notion of homogeneity or heterogeneity (neighborhoods). The mean and standard
deviation(which we classify as noise) is thus computed on these neighborhoods and
by an aggregation function projected to the entire image. This resembles an intuitive
explanation for the formulation developed in [72].

We proceed to validate the effectiveness of this formulation for the computation
of noise using Kalisphera. In [126], the tool Kalisphera is provided to aid in the
creation of artificial 3D spheres. The effect due to Partial Volume is simulated on
the created spheres to mimic this effect as obtained in Natural Images nearly. Since
additive white Gaussian noise can be added numerically to an otherwise perfect
artificial assembly of grains, we use the defined formulation to compute the noise
and compare it with the ground truth.

3-dimensional positions and radii obtained from DEM simulations were used to
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Images bins=1,000 bins=5,000 bins=10,000

Sapphire spheres 0.1639 0.1568 0.1578
Zeolite 0.1640 0.1625 0.294
Caicos ooids 0.16 0.12 0.04838
Leighton buzzard 0.00 0.043 0.0612
Highly decomposable granite 0.105 0.124 0.112
hostun sand 0.142 0.145 0.1475

Table 4.1: Calculated noise for dataset images: Noise is calculated by partitioning
the image into 5000 partitions, and setting noise as the maximum occurring standard
deviation

create a dataset of 152 artificial grains. See [126]. In the kalisphera image of 152
grains, noise is progressively added from 0.0 to 0.2 in increments of 0.02.

The graph of added noise vs. model computed noise in figure 4.1 shows, a close
linear correlation between noise added and noise measured.

Having validated the formulation for the computation of noise in datasets, noise
in the natural images is computed. See table 4.1. Sapphire spheres validate the
qualitative assessment of being noisy. The noise computation across bin values is
constant. The zeolite data is also considered as noisy by the formulation. This high-
lights a potential problem; the inability to differentiate between noise and texture.
Due to the number of inclusions in Zeolite, as the number of bins is increased, the
value of noise increases. This is a result of these inclusions creating high frequencies
in the histogram, reducing the averaging effect of bins by increasing the number of
bins, highlights these high frequencies.

Images, visually hypothesized to contain blur are deemed less noisy. In images
like hostun sand having structured noise with predictable repeatability like the ring
artifact, there is, little effect on the noise values.

In the natural images, it is difficult to evaluate the accuracy of the noise values
computed since we do not know the true noiseless image.

4.3 A deep neural network approach

Let I be the tomography image for which we want to estimate noise. Assuming a
linear mixing model, mathematically the observed image can be represented as

I = I∞ + n (4.2)
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(a) Kalisphera (b) Kalisphera(Noise=0.1)

(c) Noise plot

Figure 4.1: Noise is progressively added to the Kalisphera image and calculated
using the computational model for noise computation
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where I is the observed image, I∞ is the true value and n is the noise perturbation.
Noise in tomography due to the multiplicity of inputs is usually represented as
Gaussian of zero mean.

f(n) =
1√

2πσ2
exp− n

2σ2
(4.3)

As such, the distribution n is characterizable by its variance. The task of
estimating the noise in I is thus one of finding the variance.

It is easy to find the variance σ2 if the noise n is separated from the mixed model
I. However, this is mostly not the case since I∞ is unknown. Since I is the only
known value, the task of estimating the noise n, parameterizable by its estimated
variance σ̂2 is defined as

σ̂2 = ρ(I) (4.4)

The function ρ(I) in reality can be difficult to define. As such we define ρ(I) as a
neural network. The task is thus to train a neural network, parameterized by θ such
that the loss L. We define the loss as the difference between the predicted noise
noise and the true noise as shown in equation 4.5

L = ||σ̂2 − σ2||1 (4.5)

Where σ̂2 is the estimated noise and σ2 is the true noise value. Once minimized
on the training set (which are images for which σ2 is known), it can then be used to
estimate the noise on images for which the input noise is not known.

4.3.1 Architecture details

The architecture used takes inspiration from the encoder model described in [84].
We show how the encoder model can be used to quantify noise in tomography images
of geomaterials. Our neural network model consist of two major repeating layer; the
convolutional layer and the downsampling layer.

Convolution Layer

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm
which can take in an input image, assign importance (learnable weights and biases)
to various aspects/objects in the image and be able to differentiate one from the
other. As such, the convolutional layer learns relevant features in the image useful
for the computation of noise. The convolutional layer consists of several filters
that can be convolved with the input to yield these relevant features. While in
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Figure 4.2: Model diagram for the noise quantifying encoder. Conv. refers to convolution.
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primitive methods such as Gaussian filter and median filter the filters are hand-
engineered, with enough training, each convolutional layer can learn the best filter
values resulting in the minimization of the objective function for the overall task.
The convolutional layer requires four parameters; the number of filters, the kernel
size, padding, and the stride.

Downsampling Layer

The downsampling layer is also a convolutional layer. However, it has a stride of
2. This implies that it learns a downsampling of the input data that encodes the
best representation of the input data. As regards the task of noise removal, this
layer removes redundancy from the learned representation of the convolutional layer
above it. This ensures that only data points that characterize the noise are kept. It
also learns a high-level embedding of the convolutional layer above it. This implies
that it compresses the information learned in the convolutional layer above.

Layer Type Parameters Array Size

Encoder

Input - (1, 512, 512)

Conv k(3x3), s1, p1 (16, 512, 512)

Downsample k(4x4), s2, p1 (16, 256, 256)

Conv k(3x3), s1, p1 (16, 256, 256)

Downsample k(4x4), s2, p1 (32, 128, 128)

Conv k(3x3), s1, p1 (32, 128, 128)

Downsample k(4x4), s2, p1 (64, 64, 64)

Conv k(3x3), s1, p1 (64, 64, 64)

Downsample k(4x4), s2, p1 (128, 32, 32)

Conv k(3x3), s1, p1 (128, 32, 32)

Downsample k(4x4), s2, p1 (256, 16, 16)

Conv k(3x3), s1, p1 (256, 16, 16)

Downsample k(4x4), s2, p1 (256, 8, 8)

Conv k(3x3), s1, p1 (256, 8, 8)

Downsample k(4x4), s2, p1 (256, 4, 4)

Conv k(3x3), s1, p1 (1, 4, 4)

Averaging - (1, 1, 1)

Table 4.2: Architecture details for the encoder. k refers to kernel size for the con-
volution, s to stride, p to padding.
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4.3.2 Structure

In the structure as seen in figure 4.2 and table 4.2, the convolutional and downsam-
pling layers are alternated. The downsampling layer reduces the resolution by half.
This layer learns to extract only the most significant features from the previous layer
that contributes to the network ability to minimize the loss. The convolution layer
learns to extract features that can be used to characterize noise. Alternating these
layers imply that we learn localized noise values at a given layer across the image,
then keep only the values considered as important. As compared with the model-
based approach, we hypothesize that the encoder based approach learns a noise
distribution within the image, where local noise values are not equally weighted.
For instance, we hypothesize that in regions with partial volume effect, it learns to
weight their contributions less.

At the lowest level, we average the values together using an averaging layer.
The output of this layer is the estimated noise σ̂2

4.4 Training Procedure

Algorithm 1 Training procedure
1: for b = 1, ..., B do
2: Sample mini-batch of data pairs (I, σ2)

3: σ̂2 = ρ (I; θE)

4: L = ||σ̂2 − σ2||1
5: θ ← θ − λ∇θL
6: end for

Training of the proposed network allows the model to learn a model that sepa-
rates the noise component in the tomography image and quantify the variance of the
separated noise distribution. This computed variance serves as an estimation for the
noise. However, training such model on a 3-dimensional image can be problematic
due to the size of these images. Another problem with training such a network is the
need for data for which the variance of the noise distribution is known. In reality,
this is often difficult to obtain or estimate. To overcome the problem of datasets
with a known noise distribution, we create a kalisphera dataset and add a 0 centered
Gaussian noise distribution. Kalisphera is an analytical sphere generation tool that
can generate a dataset of artificial spherical grains [125]. The generated dataset has
certain realistic components obtainable in real dataset such partial volume effect
and blur. However, to create such dataset, it is necessary to have to radii and grain
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positions that correspond to a mechanically stable configuration. We obtain these
configurations from Discrete element modeling (DEM) experiments performed in
[136].

4.5 Evaluation

4.5.1 Implementation details

The outlined models were trained using a kalisphera dataset of 7, 500 × 500 × 500

images. Since the training was done slice by slice, this resulted in a training set
of 3500 samples. For the validation set, we used 2 500 × 500 × 500 images not in
the training set, resulting in 1000 slice samples. The validation set is used during
training to indicate how the model can compute noise on data it has not seen before.
For the final evaluation after training, a test set of 2 500× 500× 500, different from
the validation set is also used.

Data augmentation was used to amplify the variance of these samples. The
augmentations used were: random holes to simulate texture and squashing the dy-
namic range of the image. With a probability of 0.1, 20 holes of radius 2 pixels was
randomly inserted in the considered slice. Also, the dynamic range of the slices were
sometimes squashed to allow the network learn a robust noise model. The original
range of the image was between 64 and 192. With a probability of 0.4, the lower
limit is shifted to a random position between 64 and 100 and the upper limit is
shifted to a random position between 150 and 192.

All trainings were performed with the ADAM optimizer [123], employing a
learning rate of 0.0002 and a batch size of 32 samples per GPU. 2 RTX2080Ti GPUs
were used. Training was automatically stopped when no improvement was observed
on the validation set in the preceding 30 epochs, and the learned parameters leading
to the lowest validation loss were selected.

4.5.2 Results

Artificial dataset

The noise estimation using the trained Encoder based neural network shows stronger
correlation to the input noise. This can be seen in figure 4.3. At low noise realizations
(between 0 and 0.025), the model-based approach often struggles. However, the
encoder based approach to determining noise performs well at high and low noise
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realizations. There is a possibility, however, that the encoder based model overfit to
the kalisphera data and cannot generalize well to other datasets. Overfitting is often
when the trained model cannot generalize beyond the data on which it is trained.
The significance of overfitting is explored in our evaluation on natural datasets.

Figure 4.3: Noise estimation in Kalisphera datasets using a Model based approach
and a Neural network based approach

Natural dataset

Natural occurring datasets were evaluated using the trained model. Since these
datasets were of different sizes (per slice) than the one the model was trained on, two
or more slices were often concatenated. We argue that the concatenation approach
does not distort the noise distribution as it is expected to be the same from slice to
slice. We averaged the noise predictions for the different concatenated slices.

Although it is difficult to evaluate these results due to the fact there is no ground
truth for comparison; there exists some trends we consider interesting. The model
being trained on spherical kalisphera grains, overfits. It implicitly learns that the
grain for which the noise distribution is needed is spherical. As such, it gives realistic
noise values for spherical or near-spherical grains. This is can be observed in table
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4.3. One way to curb overfitting would be to introduce artificial grains with more
angular shapes. In reality, this might be difficult to achieve. As in DEM, artificial
grains with more angularity might be generated by generating clusters of spheres.
These clustered spheres should yield complex shapes that aid in overcoming overfit-
ting. However, it would be difficult to generate realistic mechanical configurations
and would require significant compute resources.

Estimated noise
Method S.Spheres Zeolite H. sand C. ooids L. Buzzard H.D. Granite

Model(5000bins) 0.157 0.1625 0.145 0.12 0.043 0.124
Encoder 0.198 0.174 0.012 0.152 0.01 0.03

Table 4.3: Average noise on the natural datasets. All results use the same encoder
and the model based approach. S.Spheres refers to Sapphire spheres, H. sand refers
to hostun sand, C. ooids refers to Caicos ooids, L. Buzzard to Leighton buzzard,
H.D Granite to Highly decomposable granite.

4.6 Conclusion

We reviewed the technique in use for the computation of noise in tomography imag-
ing. Using kalisphera, we trained a neural network encoder model to compute noise
on tomography images. The computed noise on kalisphera correlates more linearly
with the input noise than the model-based approach. This chapter is significant on
two accounts;

• The computes the input noise in Kalisphera with better accuracy than the
model-based approach.

• It introduces the use of kalisphera data as a means by which complicated
"unknown" models can be approximated using neural networks with realistic
data for which we have ground truth.
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Chapter 5

Image Filtering

5.1 Introduction

Noise filtering is an important step in the identification and tracking of granular
materials as the process by which we remove noise and artifacts. In effect, noise
filtering is an important step for the characterization of granular material. In this
chapter, we introduce filters used during this work to process our datasets. We
briefly comment on individual filters and the results we obtain when they are used.

5.2 A review of methods for image filtering

5.2.1 Linear filters and Convolution

Filters transform an input signal into an output signal. A simple class of filters is the
linear filter. By definition, linear filters possess the characteristic, linearity. Linearity
encapsulates two fundamental principles; additivity and homogeneity. A noise filter
which adheres to these axioms of homogeneity and additivity is termed a linear filter.
Images are discrete; thus, filter implementations are discrete. Discrete linear filters
can also be space invariant. This implies that, at each spatial position, the filter
composition is constant. As a result of space invariance, the filter transformation
operation can be represented by a convolution [46], [61].

(Kσ ∗ I)(x) :=

∫
R3

Kσ(x− y)I(y)dy (5.1)

Noise removal filters based on these principles are examined with some detail.
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Mean filter

The transformation operator also referred to as kernel for the mean filter is a boxcar
function. Thus, the output of the transformation point is the average of the value
of points, in the interval defined by the boxcar function [32].

Kσ = (b− a)V f(a, b;x) = V

(
H(x− a)−H(x− b)

)
(5.2)

On an image, each pixel is replaced by the average of its’ neighbors. The
neighbors are defined using a neighborhood scheme; defined by a notion of close
distance pixels. The neighborhood function is usually a square neighborhood of a
given width.

Gaussian filter

The Gaussian filter has a Gaussian kernel. As a result, a point transformation is a
weighted average of windowed pixels. The window is defined by the width of the
filter. This is, in turn, defined as the scale of the Gaussian function. The weighting
decreases with an increase in spatial distance to the central pixel [32].

Kσ =
1

2πσ
e
||x−y||
2σ2 (5.3)

Limitations of linear filters

Edges are very important in tomography image processing because they mostly
embed shape characteristics and physical structure properties of granular materials.
These boundaries, hence, characterize the localized granular materials within the
image scene. Linear filters do not preserve edges. They filter across edges, without
a delimiting notion of edges. The blurring of edges is an undesirable effect, as the
erosion of structural properties skews future computations to be made.

Another undesirable quality is edge shifting. Since a Gaussian filter replaces
a voxel value by the weighted combination of it’s neighbor voxels, there is an edge
shift. This implies that the resulting location of the edge is not the exact location
of it. This affects the accurate quantification of properties such as the coordination
number. It is thus expedient to examine a class of filters that preserve edge structure
whilst removing noise.
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5.2.2 Edge aware filters

Edge-based filters take extra parameterization; either in terms of image specific
edge quantification or other apriori information. This extra parameterization makes
them nonlinear and in effect not linear space invariant. Essentially, this means
they can hardly be formulated as a convolution operation except approximations
are made [74]. However, the principle of pixel neighborhood is fundamental to their
applicability.

Anisotropic diffusion

Anisotropic diffusion is a partial differential equation (PDE) based filtering tech-
nique that models image filtering as a diffusion process. The diffusion equation, a
generalization of the heat equation describes changes to image voxel density in im-
ages undergoing diffusion over time. This model lays a foundation for the scale-space
theory as described in [45]. It was first introduced by [25].

∂I

∂t
=
∂2I

∂x2
+
∂2I

∂y2
+
∂2I

∂z2
(5.4)

∂I

∂t
= div

(
c(x, y, z, t)∇I

)
= ∇c.∇I + c(c, y, z, t)∆I (5.5)

c(.) is a function that determines the diffusion coefficient. The degree to which
diffusion occurs in time is dependent on the diffusion coefficient. Therefore for an
edge preserving filter, a diffusion coefficient that is modeled to discourage diffusion
at edges and encourage diffusion at flat zones will preserve edge structures.

It models the flux to be dependent on edge strength and thus avoid material
changes in such regions, in effect, smoothing out homogeneous regions. This ensures
that at points where the edge strength is high, diffusion is minimal. [25] proposed
that the following equations be used to model an anisotropic behavior on the diffu-
sion based on edge strength

c(‖ ∇I ‖) = e(‖∇I‖/K)2

and
c(‖ ∇I ‖) =

1

1 +

(
‖∇I‖
K

)
This has proven to be sufficient in [64], [128], [129] for the removal of noise in

tomography images.
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Total Variation filtering

Total variation filtering was first introduced by [29]. It models noise filtering as an
energy minimisation problem.

In = I + σn

where σn is white additive Gaussian noise.

To recover the original image from the noisy image, [29] proposed this mini-
mization problem.

E(.) = min
I
‖ In − I ‖22 +λ ‖ DI ‖1 (5.6)

Variations and stable solutions to the minimization has been proposed by [29],
[59], [66], [82], [97]

Median filtering

A median filter cannot be expressed as a convolution. This is because the median
filter is based on order statistics of an image patch, and the resulting output voxel
of a median filter is not a combination of other voxels within a given window.

This technique has been used extensively to process tomography images [103],
[109]. It computes a filtered value for every voxel in the image by replacing the voxel
intensity under consideration, with the median intensity within its neighborhood.
Median filtering is well suited for the removal of point noise (salt and pepper noise)
that arise due to magnetic effects. Noise due to magnetic effects, tend to generate
voxel intensities with values near the extremities of the intensity spectrum. This
characteristic is exploited by median filtering in its discrimination against isolated
extreme intensity differences within a neighborhood. In discrete systems like images,
this median can be computed from the histogram h(x, i) centred around position x
[117]

This filter, by implication, works best in low noise situations with less than
severe distortions to the voxel values.

Bilateral filtering

Bilateral filter is an edge-aware filter which is computed as a weighted average of
neighbor voxels in a defined neighborhood. It is similar to Gaussian filtering. The
difference exists in the way the neighborhood weights are computed. The bilateral
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filter’s weighting does not only take into account the spatial distance of the neighbors
but also the intensity difference.

The origin and formulation of bilateral filtering have mostly been jointly at-
tributed to [34], [42], [44], [112]. We denote the bilateral as BF [.]

Gσ =
1

2πσ
e
||x−y||
2σ2

B[I] =
1

W

∑
q∈S

Gσs(‖ p− q ‖)Gσr |Ip − Iq| (5.7)

The normalization parameter ensures that the weights in a given window sum
up to 1. The parameter σs controls the width of the spatial Gaussian and thus
determines the weight Gσs . Gσs assigns weights to voxels based on spatial distance.
A large σs will thus smooth large features while a small σs will restrict the filtering
to small features. The parameter σr works in the same way to determine the value of
Gσr and thus control how voxel differences affect the central voxel. As σr increases,
the behavior of the bilateral filter starts to approach that of a Gaussian filter. This is
so because a large σr relaxes the restriction on the effect of allowable voxel difference.
[72] theorised the relationship between noise σn and σr to be

σr = 1.95σn

[52], [53], [58], [74] have characterised the bilateral filter, its effects and failures,
sufficiently. One of the highlighted problems is the huge computational complexity
in computing the bilateral transformation of an image.

Guided filtering

The guided image filtering process was designed by [116] to solve some of the high-
lighted problems. It assumes a linear model. Thus, It maps linearly, an input image,
to an output image using a guidance image and a set of weights. The input image
can also be the guidance image.

The primary assumption of the guided filter is a local linear model between
the guidance image I and the output image Q. It is assumed that Q is a linear
transform of I in a window wk centered around the voxel k

Qi = akIi + bk ∀i ∈ wk (5.8)

(ak, bk) are linear coefficients, which are constant within a given window wk.
This linear model ensures that an edge in I will be an edge in the output.
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∆Q = a∆I

The implementation seeks a model that minimizes the distance between the
filter output and its input. Mathematically, minimizing a cost function such as 5.9

E(ak, bk) =
∑
i∈wk

(
akIi + bk − P

)2

+ εa2k (5.9)

ε is a regularising parameter which constrains the model parameter ak from
becoming too large.

Solving for ak and bk, we obtain,

ak =
1
n

∑
i∈wk IiPi − µ

I
kµ

P
k

σ2 + ε

bk = µPk − akµIk

where µPk is the mean of the kth window in image P, µIk is the mean of the kth
window in the image I and σ2

k is the variance of the window in the image I.

To understand this filter intuitively, we take the simplest case where the guid-
ance image is equal to the image for which filtering is required.

In that case,

ak =
σ2

σ2 + ε

bk = µk(1− ak)

This highlights two dominating processes, ak highlights the edge, while bk per-
forms an edge-aware mean filtering of the image, slowing down to 0 Where the ak
approaches 1. The relative importance of the edge is controlled using ε. The ε
parameter thus performs discrimination between edge and noise.

The output image is thus

Q = āI + b̄ (5.10)

ā and b̄ represent mean filtered versions of the parameters ak and bk.

Guided filtering decouples edge structure other image structures, filter these
image structure and couple the structures back into an output image.
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5.3 Brief comments on the application of noise fil-

ters to our datasets

Bilateral and total variation filters remove noise extensively. However, they also
remove the texture/signal. These filters remove pixel variance and produce piecewise
smooth regions. They are useful in applications where texture is not required or
when the next operation is a thresholding operation. It also makes them useful for
the removal of a ring artifact.

The total variation method controls fidelity by using a weighting term. Of note,
is, this weighting term also controls the edge fidelity. This highlights the tendency
of total variation denoising to introduce blur into an image, with an increase in
weights. This is verified in C.5. We observe that as the weight term is increased,
edge shifting increases. Although total variation filtering is capable of filtering high
noise contents, care must be taken to factor in the consequent effect on the edges.

Edges are an important part of a qualitative characterization. Humans iden-
tify three features as edges: a sharp, step-function like intensity change, a ridge,
gradient change, or both[92]. The bilateral filter is particularly good at preserving
step-like edges because the range term averages together all similar values within the
neighborhood space domain and also assigns tiny weights to different values on the
opposite side of the step. However, due to the effects of partial volume, tomography
images possess gradient like edges, whose gradients are steep in high-resolution im-
ages and less steep in low-resolution images. This can also result in edge shifting or
dislocation and should be avoided where edge fidelity is important. Extensions have
been proposed in literature to solve this problem; trilateral filter [67] , joint bilateral
filter [54]. However, the guided filter also solves this problem due to its gradient
preserving property discussed in [116]. In figure C.4, the image has a low resolution.
Thus, the combination of partial volume and its low resolution results in bilateral
filtering, filtering across edges. Guided filter, however, retains edge boundaries. In
Appendix A, we compare the runtimes of noise removal algorithms. In Appendix
B, we show the denoising capacity of individual filters as noise in increased in the
dataset and in appendix C, we show results obtained by the use of each denoising
algorithm.

Conclusions

We summarize our observation from the use of denoising filters;
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• In the case of low-resolution images, bilateral filtering leads to edge shifts that
distort the structure of grains.

• Total variation denoising and bilateral filtering filter towards a piecewise con-
stant image and thus are good for the removal of noise in images where texture
is not important.

• Guided filtering is less severe and conserves structural relationships and thus
should be used in cases where texture, contact, and grain edges are of impor-
tance.
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Chapter 6

Contact based hierarchical
segmentation

6.1 Introduction

X-ray tomography is used in the study of granular materials and has enabled sig-
nificant findings. Such studies include the study of particle morphology and its
evolution as a result of mechanical loading [95], [114]. The accuracy of measured
micro-structural properties is sometimes limited by the image analysis methods used
on the resulting image volume. Image segmentation methods have been used ex-
tensively for grain labeling on the acquired grayscale volume images (in which each
voxel is associated with a scalar value) [95], [114]. The most notable of segmenta-
tion procedures used in tomography imaging for granular materials is morphological
watershed [98], [102], since these materials can often be imaged with sufficient con-
trast so that image thresholding can meaningfully be applied to identify the solid
(grain) phase. Image thresholding is the separation of pixel values into different
pixel groups or classes, whose pixel values are sometimes modeled by Gaussian dis-
tributions. Most image thresholding algorithms aim to separate the background
from the foreground in an image. One of the many preferred methods for achieving
such separation is Otsu thresholding. Otsu thresholding maximizes the inter-class
variance while minimizing the intra-class variance of pixel values [17]. These classes
mostly correspond to the different phases in the grain assembly, i.e., solid/air or
solid/water/air.

The scale of interest for analysis can be the grain scale, or it can be a finer
(micro) scale. An example of the use of fine scale segmentation might be to extract
the texture patterns in individual grains. Usually, we require a different segmenta-

63



tion for the study of granular materials at each scale. The quality of segmentation
is usually subjective. This subjectivity is because segmentation quality relies on
the extraction of the required image features. On a given image, this can differ
from task to task. This task dependence makes a single-scale segmentation (one
resulting segmentation), difficult to evaluate. Morphological watershed is a way by
which we get single scale segmentation. In a morphological watershed segmenta-
tion technique, the image is transformed into a topological surface (distance map or
gradient)[27]. The morphological watershed algorithm floods the topography, start-
ing from pre-defined marker positions until the marker basins meet on watershed
lines[27].

Hierarchical segmentation, has become a major trend [86], [99], [118], [119]
due to its multiscale solution. A hierarchical segmentation is a segmentation tech-
nique that results in a sequence of segmentation maps; from a fine scale to a coarse
scale (i.e., small to large regions) [70], [108], [132]. Multiscale segmentation, in this
context, is a subset of the study of scale-spaces (algorithmic solutions that span
across multiple scales) seen extensively in literature [24]. Consequently, the result-
ing hierarchical segmentation is not a single partitioning of the image pixels into
sets but rather, a multiscale structure comprised of segmentation (partition sets) at
increasing scales. Many studies have formulated watershed based on graphs as a
hierarchical scheme [80], [85]. This implies that the segmentation of an image can
result in a solution at each scale of the image.

The finest scale, i.e., the one with the partition with smaller regions, of the
hierarchy can be an initial segmentation or the image pixel set. Such initial seg-
mentation is usually an oversegmentation of the image. The oversegmented image is
based on a defined minima set. A set of minimum can be chosen randomly or using
a local-minima generation procedure [115]. The minima set can be used along with
morphological watershed to generate an initial segmentation.

A sequence of hierarchical segmentation maps can be obtained from such min-
ima based oversegmentation by the successive removal of a minimum. At each
iteration, the minimum which ranks lowest is removed. The ranking is generated by
an attribute ordering function (extinction function). Attribute ordering functions
rank minima based on defined attributes on the resulting region [70], [132] such as
volume or area. The attribute ordering function maps a given segment/region re-
sulting from flooding/segmentation using each minimum from the minima set to a
scalar value. The removal of a minimum implies that the image region it generated
be merged to the most similar region to it. A similarity measure computes region
closeness [108].

64



Geometric properties of granular materials have been studied widely in liter-
ature since some geometrical features can control mechanical, e.g., particle shape,
and inter-particle contacts. Granular contact is the characterization of the mode by
which two grains are in contact. Some studies of granular contact relate a contact
to the size and shape of grains in the assembly [105]. These studies imply that the
mode by which grains are in contact is dependent on the size and shape of the grains.
Where grains are similar in terms of size and shape, the nature contact is identical.
Although the nature of contact is known (can be inferred from the physical grains
being imaged), it is seldom put into account during the hierarchical segmentation
process, and as such, it cannot contribute towards generating meaningful segments.
Thus we propose a method by which hierarchical segmentation can be applied to
yield segmentation maps that conform to known contact types. We derive a hi-
erarchical segmentation process that takes known contact types into account. The
contact model is added to ensure that our hierarchical segmentation conserves image
regions that fit the model.

In this chapter:

• We investigate the use of a contact model in hierarchical segmentation of
granular materials. We claim that this leads to better and informative seg-
mentation of granular materials.

• We show how generated datasets using kalisphera [125] can offer insight into
algorithmic performance. Kalisphera is a modelling tool by which we can
generate images of spherical granular materials. Noise and blur are added to
generated data in the style of [136].

• We show also that with fractured or broken grains, our formulation can rep-
resent them as a single grain. It does this provided there is enough contact
between broken particles.

Our chapter organization is as follows; First, we review the fundamentals. Here
we review the fundamentals of hierarchies, attribute filtering and saliency maps.
Then we present the proposed granular contact model and show how it can be used
with hierarchical segmentation. Next, we present our experimental procedure and
set-up. Next, we evaluate the results. We compare the proposed method against
hierarchical schemes that do not incorporate a contact model. We also examine
different dataset types and scenarios where grains break. To close the chapter, we
present our major conclusions.
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6.2 Definitions

Graphs and notations

A 3-dimensional tomography image can be represented as a weighted digraph G =

(V ,E,w), whose vertices V are image pixels in the image I ⊂ Z3, and edges E are
adjacent pixel pairs as defined by an adjacency relation A [80], [132]. A pixel x is
adjacent to a pixel y, if x is in the neighbourhood of y. An edge between x and y is
denoted by ex,y.

Partitions and hierarchy

A partition P of a finite vertex set V is a set of nonempty disjoint subsets of V
whose union is V . Any element of the partition P of V is called a region of P and
represents a region of connected pixels/superpixels in the image. Any pixel x which
is an element of the set V , uniquely belongs to an element (region) of P [80], [132].
This unique relationship is denoted as [P ]x. Given two different partitions P and
P′ of a set V , we say that P′ is a refinement of P if any region of P′ is included in
a region of P [80], [132].

A hierarchy (on V ) is a sequence H = (P0, . . . ,Pl) of indexed partitions of P
such that Pi−1 is a refinement of Pi , for any i ∈ 1, . . . , l. The integer l is called the
depth of H.

Saliency maps and ultrametric maps

The cut of P (for the graph G) denoted by φ(P), is the set of edges of the graph
G whose two vertices belong to different regions of P. The saliency map of H is a
mapping Φ(H) from the edge set E to 0, . . . , l such that each edge is represented
by the maximum partition depth λ in which it belongs to the cut set [69], [81]. An
Ultrametric Contour Map (UCM) is an image representation of a saliency where
pixel values corresponds to the mapped values in the range 0, . . . , l map [69], [81].

Minimum spanning tree (MST)

The Minimum Spanning Tree (MST) is a subgraph T of G such T is connected,
acyclic and includes all the vertices in G. For a graph to be connected implies that
for any two nodes in the graph, there is a path between them. Acyclic implies that
there are no circular paths. A spanning tree thus represents different edge structure
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on a connected graph. A graphG can thus have multiple spanning trees. The weight
of a spanning tree is the sum of all its connecting edge weights. Thus a minimum
spanning tree is a spanning tree T with minimum possible weight.

Hierarchical Segmentation

For each 3D image, a fine partition set can be the 3D pixel points or can be produced
by an initial segmentation (as in a set of superpixels). Figure 6.5 shows the Minimum
Spanning Forest (MSF)/ fine partition. This fine partitioning contains all the image
edges. A similarity measure is defined between adjacent regions of this fine partition
set. The superpixels are the nodes/vertexes of the graph structure. Adjacent pixels
are connected together by edges with weight w. w is computed according to a
dissimilarity measure which we will define.

Starting with a base minima set, the lowest ranked minimum is progressively
removed from the minima set according to an attribute ranking function (extinc-
tion function). This results in an indexed hierarchy of partitions (H, λ), with H a
hierarchy of partitions and λ : H → R+. λ is a function that maps each successive
partition to scalar values in an increasing level set. When a minimum is removed,
the image region associated with it is merged to the most similar adjacent region
(defined by the dissimilarity function). The creation of partition sets, as a function
of decreasing minima set, results in a hierarchy [132].

The hierarchy can be made to emphasize an image statistic. This is achieved
by choosing an attribute ranking function that ranks regions based on the chosen
statistic. For instance to emphasize objects of uniform size we use the area attribute
function. At every level set of the hierarchy (partition set), each region results from
a minimum in the level minima set.

On the resulting hierarchy, the saliency map and consequently the UCM is
computed [69]. The UCM is a mapping from the saliency map to an image. Every
node’s pixel value is mapped to its saliency value in the resulting image. The
resulting image shows the persistence of edges in the scale space. Stronger edges
persist in the scale-space across multiple resolutions. They are thus more likely to
appear in more image partitions across the indexed hierarchy.

Constrained connected components (α-ω)

Extracting relevant partitions at different resolutions in the hierarchy has been ac-
tively researched over time. A segmentation tree was used and optimized in [15]. A
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stepwise optimization was adopted in [23]. [22] extracted relevant nodal connections
using a shortest spanning tree segmentation. The pyramid of the region adjacency
graph was adopted in [26]. A graph weighted hierarchy was used in [71], [101].
Guigues et. al. in [70] introduced hierarchical cuts as a function of minimizing an
energy criterion. However, in [80] the idea of using constrained connectivity was
introduced. This formulates segmentation at a given resolution as one of finding the
right maximal-connected components threshold α on the ultrametric map.

A connectivity criterion is used to extract partitions at a given scale or reso-
lution. The connectivity criterion stipulates that two pixels are connected if there
is a path P between them and the difference between successive elements in the
path does not exceed a threshold. This was introduced in [16] and is linked to
single-linkage clustering and minimum spanning trees in [10].

A path P between two pixels x and y in G or I is a sequence of n > 1 pixels
(x = p1, . . . , pn = y). Thus two pixels x and y of an image I are α-connected if
there exists a path P between them such that range of intensity values between
two successive pixels does not exceed a local range parameter α. The α connected
components of a pixel x is set of pixels that are α connected to the pixel. It is
denoted as CCα(x). On the hierarchical scale-space, varying the value of α varies
the resolution of extraction.

An important property of α-connected components is that they form an ordered
sequence such that

CCα(x) ⊆ CCα′(x) (6.1)

for all α′ ≥ α.

This implies that the regions that result from CCα(x) is a refinement of CCα′(x).

A problem with this extraction strategy is that it suffers from the chaining effect
[28], [80]. Chaining effect is best explained in 6.1, where although α is 5, the overall
range is 9. This is because α is satisfied locally along the path but not globally. In
[28], an additional parameter ω is introduced to limit the overall variation.

According to [40], two pixels x, y of image I are (α, ω)-connected if there is a
path P between them such that range of successive points is less than α and the
overall range is less than ω. However, as is evident and also noted in [40], [80],
this connectivity relation, although it is symmetric and reflexive, it is not transitive.
This definition hence is not optimal. To satisfy these properties, [80], defined the
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(a) 0-CC (b) 1-CC (c) 2-CC

(d) 3-CC (e) 4-CC (f) 5-CC

Figure 6.1: 7× 7 image and its partitions into α-connected components [80]

α, ω connectivity as

CCα,ω(x) = max

(
CCαi(x)|αi ≤ α,R

(
CCαi(x)

)
≤ ω

)
(6.2)

where R is a range function. This implies that the overall range of the connected
components must be less or equal to ω.

Minima Ranking

A linear function f : ri 7→ R maps each region ri in the partition to a scalar value.
The functional mapping is based on a defined criterion (volume, area, dynamics) on
the region corresponding to each minimum. The scalar attribute values are sorted
and the lowest ranked minimum is removed. Its corresponding region is merged with
the closest region.

Here we add a contact function to the attribute ranking function. This enables
valid granular contacts to persist in the hierarchy space. A single scale segmentation
is extracted from the contour maps using the α − ω method described in [80]. We
use this method due to fact that it
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(a) 0-CC (b) 1-CC (c) 2-CC

(d) 3-CC (e) 4-CC (f) 5-CC

Figure 6.2: 7× 7 image and its partitions into α− ω-connected components [80]

Algorithm 2 Hierarchical Segmentation
minima = GenerateMinima(image)
segments = GenerateInitialMSF(minima, image)
while CountMinima(minima) ≥ 1 do

RemoveMinima(minima, attributeFilter)
UpdateMSF(minima, segments)
UpdateHierarchy(segments)

end while

Watershed and Power watershed

In [100], Couprie et. al. proposed a general graph formulation that encapsulates
random walker, graph cuts and power watershed as parametric variations of this
general framework. This formulation is shown in equation 6.3.

min
x

∑
ex,y∈E

wpx,y|x− y|q + λ
∑
vx∈V

wpx|x− t|q (6.3)

wx,y corresponds to the weight between node (pixel) x and an adjacent node y.
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Find Minima
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Output

Error MetricsGround truth

Figure 6.3: Kalishphera grain experiments: The flow diagram showing the experi-
mental procedure on natural grain experiments

yi corresponds to the target label. p and q correspond to scalar constants. When
p is small and finite and q is 1, the formulation corresponds to the random walker
formulation. However when p is small and finite and q is 2, graph cuts. As p→∞,
variations in q correspond to a family of watershed variations referred to as power
watershed.

6.3 Proposed contact based attribute function

The contact-based attribute function requires a separation between foreground and
background. This is so because contact interaction between two grains is differ-
ent from contact interaction between grain and void (background). This implicitly
means that we would consider 2-phase materials only. Thus we first separate the
background. This separation between background and foreground can be achieved
using image thresholding methods such as Otsu thresholding [17].

Recall that a cut of a partition set P, is a subset of the edge set E such that both
vertexes of an edge, ex,y ∈ E, vx and vy belong to adjacent regions. Consider two
adjacent regions in a partition P, ri and rj. The contact set C is thus a partitioning
of the cut set, such that ∀ci,j ∈ C, ci,j is a set containing edges between two adjacent
regions ri, rj in contact. A region can be composed of multiple vertices and thus we
can have multiple edges between two regions.

We propose a contact based attribute function to highlight two contact prop-
erties necessary for a contact model in a spherical granular material assembly.

• LengthWith the background node excluded, the total contact surface area per
region surface area should be minimized. Let Ci be a subset of C containing
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all the contacts of a given region ri and all of its adjacent regions in contact.

K(i) =
1

|Ci|
∑
|ci,j| ∀ci,j ∈ Ci (6.4)

For two spheres in contact, the contact surface relative to the surface area
should be minimal. Minimizing grain to grain contact length constrains the
segmentation to small contact lengths. Large contact length in a spherical
grain assembly mostly signifies over-segmentation.

• Flatness Real contact surfaces are mostly approximated by a plane. As such,
we penalize contacts for which an approximation by a plane induces large
deviations from the plane center (outliers). We compute how closely a contact
surface can be approximated by a plane, by looking at the minimum of the
contact bounding box dimension. This approximation reflects the prevailing
shape of the contact.

We find the enclosing cuboid (w, h, d), aligned with the image axis, for the set
of points. The minimal enclosing cuboid is computed as the bounding box on
the contact points which is the bounding box on the convex hull of the set of
points. We denote flatness of a contact ci,j ∈ Ci as;

u(ci,j) = min(w, h, d)

Thus for a contact set of a region (minima), the flatness score is denoted as,
the sum of values u(ci,j) over the contact set, normalized by the cardinality
of the contact set |{u(ci,j), u(ci,k), ...}|. This flatness measure of region r is
denoted by U(r).

U(i) =
1

|Ci|
∑

u(ci,j) ∀ci,j ∈ Ci (6.5)

In reality, this approximation might not be sufficient for contacts of grain with
more complex shapes. This is because complex (angular) shapes have a larger
variance in the type of contact and can thus have larger contact areas and
flatness areas. We show in figure 6.4 a wrongly segmented grain having both
long contact lengths and curved contacts.

We combine these properties into an affine objective function, allowing larger pe-
nalization. This implies that each parameter serves as a scale for the other, thus
leading both properties having a larger combined effect in the resulting scalar value
for each region. The overall function to be minimized is,

O(r) =
1

U(i)
√
K(i)

(6.6)
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Figure 6.4: Oversegmentation of two zeolite grains using regular hierarchical water-
shed

Where O(·) is the objective function to be minimized evaluating a region r. To
obtain this formulation, we examine each parameter defined. The K(i) parameter
calculates the average contact length. Thus its parametric maximum is the surface
area of the grain. The parametric limit of U(i) is the radius of a grain. Assuming, a
spherical model, we normalize K to refer to its radius, thus ensuring the same scale
for both independent measures. This results in equation 6.6.

Contact attribute descriptor is a soft-feature. This implies, that although it
can improve the accuracy of descriptor statistics such volume or dynamics, it is
not sufficiently reliable as a stand-alone descriptor for an attribute function as it is
non-increasing. In other words, the contact attribute function should be combined
with other descriptor functions to improve the accuracy of segmentation. The cost
function space of contact-alone based attribute function is more difficult to navigate
due to its non-linearity and non-convexity i.e., it does not satisfy the increasingness
criterion as defined in [70]. As such it is not monotonic across scales. However, it
can aid other attribute functions towards having a well-defined minimum in the cost
function space. To combine the contact function with other attribute functions, we
design a minima ranking function as seen in algorithm 3. A feature such as volume
is computed on the minima set. Each minimum is given a rank. The contact index is
also computed with each minimum earning a rank. Both ranks are combined using

Nr = Nm + ψNc
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(a) Grains in 3D (b) Slice of 3D image (c) Slice of 3D image + 0.1
std of noise

(d) Initial MSF (e) Size distribution

Figure 6.5: Given structural properties; radius and 3D position, kalisphera generates
a 3D image containing 5521 grains as shown in figure 6.5a. A slice of this 3D image
is shown in figure 6.5b. Due to near image uniformity, the image is corrupted with
additive gaussian noise with 0.1 standard deviation as shown in figure 6.5c. After
adding noise, the maximum pixel value was thus 255 and the minimum 0. An
initial segmentation with 200, 000 segments is obtained using simple linear iterative
clustering.[104]
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Where Nc is the contact ranking, Nm is the ranking from an attribute like volume,
area or dynamics and ψ is a weight. The linear combination of the attribute filter
with the contact filter yields a smoothing on the space of attribute filter choices.
This implies that the contact attribute imposes a bias towards our contact model
especially when regions/minima are closely ranked. This is why we mostly adopt
ψ ≤ 1.0 As such the overall combination should remain a monotonically increasing
or weakly monotonically increasing function.

Algorithm 3 Contact model based hierarchical segmentation
minima = GenerateMinima(image)
segments = GenerateInitialMSF(minima, image)
while CountMinima(minima) ≥ 1 do

attributeRank = RankMinima(minima, segments, attributeFilter)
contactRank = RankMinima(minima, segments, contactModel)
ranks = attributeRank · ψ contactRank
RemoveMinima(minima, ranks)
UpdateMSF(minima, segments)
UpdateHierarchy(segments)

end while

This combined value Nr defines a score for each minimum. We iteratively
remove the least scoring minimum. The iterative removal of minimums results in a
hierarchy with the saliency of its features (edges) showing how much they appear
within the hierarchy. As discussed, the saliency map can be converted into an image
representation called the ultrametric contour map. To extract a single segmentation
at a given scale, we use the (α, ω) technique to extract clusters. Where α = ω and
α, ω ∈ R. Starting from a given pixel point x we find the CCα,ω of that point which
yields all pixels points belonging to the cluster. This is iteratively done until all
pixels in the UCM belongs to a cluster. The clusters are independent of the starting
pixel. The extracted clusters represent the segmentation.

6.4 Experimental study

6.4.1 Datasets

Synthetic dataset

We assessed our method by using synthetic images of spheres. The edges of the
spheres were analytically represented as partially filled pixels. These partially filled
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voxels simulate partial volume effect seen in natural images. Kalipshera was used
to generate these synthetic spheres[125]. A data set used to build the kalisphera
assembly was obtained from [136]. It consists of a time-series of 7 mechanically
stable configurations of 5522 spheres undergoing compression. These configurations
were obtained using a discrete element modeling (DEM) simulation. The data set
consists of 5522 granular positions and radii. These positions and radii are then
rendered into a 3D image using kalisphera, having only to choose the pixel size
relative to the sphere size. The pixel size is 15e−6m/pixel. The size distribution of
the grains is shown in figure 6.5e.

The result is 7 volumes of 500×500×500 pixels with 5522 grains with the grains
displaced(translated) within the timesteps. The dynamic range of each image is 8-
bit, with the background (pores) at 64 and the foreground (grains) at 192. 10%

standard deviation of the maximum image value(192) of noise is added to each
image. An example of kalisphera generated grains is shown in figure 6.6.

Real dataset

Our method is also evaluated on a granular material imaged using x-ray tomography
imaging. Sapphire spheres which are shown in 6.7 is a spherically shaped material.
The imaged sample consists of regular spheres with physical diameters ranging from
300mm to 800mm. The sample image used is a 256× 256× 256 volume containing
109 grains.

The algorithm is also evaluated on Leighton Buzzard sand. Leighton Buzzard
sand is angular in shape and thus deviates from the spherical model iterated. This
dataset is also a temporal dataset. Implying that it contains several 3D images
with grains undergoing compression. During compression, grains also break. This
in effect provides more size variations along the temporal dimension. We evaluate
four temporal sample images with a size of 300 × 300 × 300. A sample image is
shown in figure 6.7.

The algorithm is evaluated on images of Zeolite. This dataset contains 5 tem-
poral images. They are spherical in shape and posses visible inclusions in the grains.
The variance between the size of the grains is not wide and thus the sizes can be
said to uniform. This is shown in figure 6.7.
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(a) Time-step 0 (b) Time-step 1 (c) Time-step 2

(d) Noise 0 (e) Noise 1 (f) Noise 2

(g) Threshold 0 (h) Threshold 1 (i) Threshold 2

(j) Oversegmentation 0 (k) Oversegmentation 1 (l) Oversegmentation 2

Figure 6.6: The first three timesteps of the generated kalisphera dataset shown in a,
b, and c. The corresponding images with noise added is shown in d, e, and f. The
images are thresholded using otsu threshold(g, h, i) and an oversegmentation map
is generated for each
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(a) LB (Slice) (b) LB (3D) (c) SS (Slice)

(d) SS (3D image) (e) Zeolite (Slice) (f) Zeolite (3D image)

Figure 6.7: Slice and 3D image showing Leighton buzzard sand depicted as LB,
cropped cross section of Sapphire spheres depicted as SS and cropped Zeolite.
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6.4.2 Assessment method

To account for performance, we use a supervised assessment strategy outlined in
[142]. The likelihood of extracting optimal segmentation is evaluated with respect
to the ground truth. The quality of the extracted segmentation is measured using
the Bidirectional Consistency Error (BCE) [56].

Bidirectional Consistency Error (BCE)

The bidirectional consistency error defined in [56] is used to measure the fidelity of
the obtained segmentation. This criterion is defined between 0.0 and 1.0 with 1,
indicating a perfect match.

A segmentation map is a partition set P which composed of regions ri. Thus
we denote the resulting segmentation as Pg and the reference segmentation as Pr.

BCE(Pg,Pr) =
1

n

n∑
i=1

max

(
E(Pg,Pr, ri), E(Pr,Pg, ri)

)
(6.7)

where ri is a region in the partition Pg and E is a function computed as;

E(P1,P2, ri) =
|R(P1, ri)|\R(P2, ri)

|R(P1, ri)|
(6.8)

|.| is the cardinality of the set, R(.) is a function that calculates the correspond-
ing region in the segmentation map/ partition set that the region in consideration
belongs to. \ denotes the set difference.

Hierarchy Evaluation

The accuracy potential of a hierarchy is computed as the curve BCE vs the fragmen-
tation level. Since BCE measures how closely a segmentation matches the ground
truth, the measure of BCE against fragmentation level, shows closely our method
approaches an optimal BCE. This implies that it measures how the merge decisions
affect the overall optimization.

Fragmentation level is measured as the expected number of segments over the
actual number of segments in the reference segmentation map.

fragmentation =
|Pg|
|Pr|
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|Pr| refer to the number of segments in the ground truth image while |Pg| is the
number of segments gotten. This measures the tendency of a hierarchical process
to make the right merging decisions leading towards the best possible segmentation;
close enough to the ground truth segmentation.

6.4.3 Experimental set-up

Our hierarchical watershed is compared against a morphological watershed on the
kalisphera dataset. For hierarchical segmentation, a single scale segmentation is
extracted by varying the α, ω parameter as iterated in [80]. The values of α, ω is
progressively increased (α and ω always have the same value), till the image is a
single label or region. For each extracted segmentation, we compute the BCE score
and the fragmentation level.

Two variants of the morphological watershed are considered; gradient-based and
distance map-based. In the gradient approach, we compute the gradient magnitude
of the 3D image. The minima on the gradient magnitude surface are computed
and both are used by the watershed transform to generate a label image. The dis-
tance map approach starts by thresholding the image using Otsu thresholding [17].
A distance map is computed on the threshold image using the Euclidean distance
map function. The minima of the inverted distance map are used by the water-
shed function to generate also a corresponding label image. The connectivity used
in both gradient and distance map computations is the 26-neighborhood connec-
tion (fully connected). To have the same basis for comparison, we use a masking
layer given by the thresholding (otsu thresholding)to separate foreground from back-
ground in morphological approaches. This implies that we use the separated back-
ground/foreground used in the hierarchical schemes as an overlay for the images,
thus having the same starting point which is a properly segmented background.

We also verify the effect of combining a contact based function with known
attribute functions. Thus we compare the result accuracy between when these at-
tribute functions are used alone and when they are combined with a contact model.
We use the combination strategy outlined in equation 6.
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Methods
BCE

ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5 ψ = 0.6 ψ = 0.7

Dynamics + contact 0.68 0.73 0.83 0.86 0.71 0.62 0.60
Volume + contact 0.58 0.62 0.72 0.75 0.75 0.62 0.56

(a) BCE values at different ψ combination values evaluated for both dynamics and volume when com-
bined using 6.6.

(b) Dynamics (c) Volume

Figure 6.8: Fragmentation plots for volume and dynamics, before and after the use
of contact attribute function. The combination is done according to equation 6.6.

6.5 Result and Evaluation

6.5.1 Evaluation of hierarchies on kalisphera

In evaluating the effect of adding a contact model, we determine the optimal ψ
value for the attribute combination function. The ψ parameter as iterated is the
weighting on the combination function. This weighting determines the contribution
of the contact model to the ranking of a minimum. To determine the optimal
weighting, we experiment with values from 0 to 1. We observe that optimal values
for the combination of dynamics and contact model range between 0.3 and 0.4. But,
optimal values for the combination of volume and our model range between 0.4 and
0.5. We show this in figure 6.8a. We should state that ψ values and BCE do not
exhibit a linear relationship. This implies that increasing the value of ψ does not
guarantee a better segmentation.

Having obtained optimal ψ values that can be used, we analyze the effect of
using the contact model. Figure 6.8 and 6.10 shows that the introduction of the
contact model allows merging to reach a more optimal segmentation. We charac-
terize optimal hierarchical segmentation as valid image structures persisting in the
hierarchy. This implies that the addition of our contact model leads towards the
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Figure 6.9: BCE-Fragmentation curves showing the performance against watershed
variants. The results are averaged over 7 Kalisphera Images

right merging decisions at various time-steps. The sequential nature of the merger
thus leads to a cascade of better decision making steps. This, in turn, leads to image
structures persisting across many scales. This proves a significant improvement over
dynamics or volume alone as a metric for attribute filtering.

6.5.2 Comparison against morphological watershed

The segmentation algorithm predominantly used in geomechanics is the morpho-
logical watershed algorithm. To have an overview of the improvements our model
provides, we compare the proposed method against it. We aim to quantitatively
evaluate the performance and merits of our method. Our method is compared to
two morphological watershed variants; gradient and distance map based. We com-
pare these methods on the Kalisphera dataset. We iterate through the hierarchy
(varying α, ω), calculating the best BCE value from the hierarchy for each α-ω pair.
We compare this BCE against BCE values obtained using morphological watershed
variants. Results are shown in table 6.11b. Results of best BCE values against
morphological and power watershed averaged over 7 time-steps is shown in 6.9.

We observe that our proposed method performs better than all the examined
methods. It is also shown that the gradient-based morphological watershed performs
the least. It is argued that the amplification of noise by gradients mostly leads
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Figure 6.10: BCE-Fragmentation curves averaged over 7 Kalisphera images

(a) BCE-Fragmentation curves (Single
Image)

BCE

Morphological watershed (gradient) 0.53
Morphological watershed (distance) 0.71
Dynamics + contact (ψ = 0.36) 0.88

Volume + contact (ψ = 0.48) 0.75

(b) Best BCE score

Figure 6.11: Bidirectional consistency error of morphological variants compared
against hierarchical based methods using the defined contact model
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to poor segmentation of geomaterials. Gradient induced problems coupled with
partial volume effect is argued to be the reason for its poor performance. This has
informed the trend of the use of distance maps in the processing of images of granular
materials. The distance map based watershed is also affected by noise. But, it is
only affected as long as the image noise is large enough to distort the thresholding
of such image. However, it still leads to better performance than the gradient-
based approach. Our dynamics hierarchical segmentation plus contact model has
the best performance. This is so because it has significant descriptive power as it uses
both the topological landscape and contact prior. This leads to significantly better
performance. We argue that more descriptive statistics leads to better segmentation.
We also compare our method against the power watershed algorithm. We vary p
and set p = 20. We observe better performance than the power watershed approach.
We explain this variance in subsection 6.5.4.

6.5.3 Evaluation of unsupervised hierarchies on Sapphire Sphere

grains

In analyzing the effect and usefulness of the proposed method, we evaluate its perfor-
mance on synthetic materials; Sapphire spheres imaged using x-ray tomography at
the Laboratoire 3SR. Due to the subjective nature of ground-truths on this dataset,
we qualitatively analyze the results obtained to visually understand the effect of
the proposed method. In the ultrametric contour map (UCM), we observe in figure
6.13 that weak gradients at grain contact points are more resistant to being merged
prematurely, thus resulting in higher saliency values. This reduces the possibility of
undersegmentation. This is shown in figure 6.13.

This shows that the segmentation merging process evolves in such a way as to
find a contact configuration that is realistic in terms of the proposed model. It is,
therefore, less attracted to oversegmentation or grain configurations with contacts
that do not fit the defined model.

To further verify this phenomenon, we observe the segmentation of two grains
in contact. As shown in figure 6.12, we observe that when a dynamics contact
extinction is applied, the best obtainable segmentation under segments both grains,
merging them as one due to the weak contact between them. However, a combination
with the attribute contact model yields a clear separation between both grains in the
extracted segmentation. The combination clearly improves the ability to segment
grains in contact with weak delineating gradients. These types of gradients are
common in 3D x-ray tomography images due to low imaging resolution and the
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(a) Dynamics (b) Dynamics + Contact

Figure 6.12: Two sapphire grain segmentation: In sapphire spheres, this shows
how a contact aware segmentation can reduce or minimise the oversegmentation of
granular materials.

(a) Saliency (b) Volume (c) Volume + contact

Figure 6.13: Volume attribute function + contact model: Shows the saliency values
at the contact of granular materials.

effects of partial volume.

6.5.4 Comparison against power watershed

To validate the performance of the proposed method against graph-based techniques,
we compare its performance against power watershed.

We applied the power watershed algorithm to sapphire spheres and zeolite grain
assemblies. We observe that provided the gradient magnitudes within a grain are
less than the gradient magnitude between void and grain, there exists a configuration
in p and q for which power watershed performs just as well as the contact based
segmentation. This can be seen in figure 6.3 We argue that this so because as
p → ∞, the formulation becomes biased towards the preservation of edges and is
less perturbed by weak edges. The justification for the use of our contact based
method in light of the performance of the power watershed family would simply be
the ease by which we can navigate the scale-space. This implies that we are able to
navigate through a variety of segmentation using contact based segmentation and
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(a) Power Watershed (b) Contact based (ψ = 0.28 )

Figure 6.14: Power watershed compared against Contact based hierarchical water-
shed (Dynamics + contact).

choose the optimal segmentation for the specified task.

6.5.5 Preliminary conclusions

• The proposed method outperforms morphological watershed variants in the
segmentation of spherical and near-spherical grains.

• The proposed method biases the merging towards conservation of contacts as
the edge weight criterion using gradients might not be enough due to poor
imaging resolutions or partial volume effect.

• In the observed images there is a configuration in power watershed (p, q) that
gives almost similar results in contact preservation.

6.5.6 Qualitative evaluation on Leighton Buzzard sand

The contact interaction in the Leighton buzzard assembly deviates from the char-
acteristic contact interaction observed with non-spherical data due to its angular
shape. As already stated, the contact mode is highly dependent on the shape of the
material. In assemblies where there is no consistently defined shape such as angular
materials, there exists a wide variance in the contact types observed. Some of the
contact types observed in the assembly are shown in figure 6.15. The complexity of
finding an optimal labeling is augmented by the fact that some grains are fractured
or broken.
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(a) Flat Contact (b) Contact in broken grain (c) Multi-Point Contact

Figure 6.15: Observed contact types in Leighton buzzard sand.

(a) ψ = 0.09 (b) ψ = 0.32 (c) ψ = 0.68

Figure 6.16: Observed segmentation for flat contacts using different values of ψ.

In figure 6.15a, we observe a flat contact where the contact Surface between
two grains is larger than that obtained as with spherical grains. Such large contact
area violates the assumptions for our formulation in which the area of contact is
minimized. As such this would most likely result in undersegmentation. The con-
tact type is shown in 6.15b resulting from the fracture of the grain violates this
assumption even more. Broken grains can even violate the Flatness assumption de-
pending on the mode of fracture. Fracture modes would be explored in detail in the
succeeding chapters.

Our algorithm is applied to 3D tomography images of Leighton Buzzard sand
with different ψ values.Recall that ψ is the weighting signifying the contribution
of the contact extinction. Contact extinction weighted by ψ was paired with the
dynamics extinction since we have established that a combination of both yields
better descriptive statistics. In figure 6.16, we observe that to optimally segment
these contact types, it is necessary to limit ψ to low values. This is consistent
as we expect a huge dependence on contact extinction to drive the segmentation
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(a) ψ = 0.1 (b) ψ = 0.38 (c) ψ = 0.56

Figure 6.17: Observed segmentation for contacts due to grain breakage using differ-
ent values of ψ.

(a) ψ = 0.23 (b) ψ = 0.48 (c) ψ = 0.66

Figure 6.18: Observed segmentation for multiple point contact using different values
of ψ.

towards merging flat contacts and in effect lead to undersegmentation. However,
this behavior is necessary for grains where breakage occurs (see figure 6.17), as this
drives the segmentation to identify broken grains as a single grain as opposed to
identifying it as multiple grains. The segmentation of multiple contact points also
violates the assumptions made in our formulation due to the fact that multiple
points of contact can affect the shape of contact. The resulting contact bounding
box for which we deem flatness necessary can thus violate the flatness criterion.
This is shown in figure 6.18. Here we observe that a higher ψ value results in
undersegmentation of these grains.

Getting our algorithm to work at the sample scale is more complicated due to
the complex interdependence between shape, contact and breakage and how they
relate to the ψ parameter. We show that it can be carefully tuned to capture broken
grains, flat contacts, and multi-point contacts when they occur. In figure 6.19, we
observe that the application of our contact model results in the segmentation of
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(a) ψ = 0.2 (b) ψ = 0.0 (c) ψ = 0.2

(d) ψ = 0.0

Figure 6.19: Segmentation results from the application of the contact model to
Leighton buzzard sand. c and d shows extracted grains undergoing undersegmenta-
tion when contact model is applied

broken particles as one grain. However, it also results in undersegmentation when
the contact type is flat or multi-point. The variance in contact types thus makes it
difficult to optimize for the entire sample.

6.5.7 Qualitative evaluation on zeolite undergoing breakage

With the understanding that our formulation augments the accuracy of segmenta-
tion and also the probability of associating broken grains as a single grain (this is
important to track the evolution of breakage), we apply the formulation to a near-
spherical natural occurring grain undergoing "simple" fracture. Simple fracture in
this regard is characterized as the splitting of grain into two or three sub-particles,
with contact between the sub-particles. As zeolite grains are near-spherical, we eval-
uate how well our algorithm is able to take advantage of the sphericity assumption
and segment a broken grain without assigning different labels to the sub-particles.

We observe in figure 6.20 that with a ψ = 0.38, a couple of broken grains
previously assigned labels as different grains are now assigned labels depicting them
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(a) Morphological Watershed (b) Contact based (ψ = 0.38)

Figure 6.20: Breakage capture in zeolite grains with ψ = 0.38 compared against
morphological watershed.

as a single grain. In the zeolite image examined, the degree to which broken grains
are captured is augmented from 22.4% to 68%. However, it falls apart when fracture
patterns do not yield particles that are in contact or that have a significant contact
area.

6.6 Conclusion

The combination of a contact model with dynamics and volume extinction functions
is shown to increase the accuracy of grain segmentation in 3D tomography images.
saliency values of these contact regions are augmented, thus making them more
resistant to merging. Although the contact prior is simple and can be said to apply
to spherical grains, the improved result validates the combination with a contact
model yields better segmentation results in multi-scale segmentation

We recall some of the conclusions made in this chapter

• Our method outperforms morphological watershed in the detection and preser-
vation of valid granular contacts, thereby reducing oversegmentation.

• Provided there is no strong texture or noise within granular materials, there
is a parameterization for the power watershed family that would yield contact
preserving segmentation.
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• Using the described method on angular materials with variance in contact
topologies might result in sub-optimal results due to the assumption of a spher-
ical contact.

• In spherical grains or near spherical grains with fracture or breakage, our
method detects fractured pieces like a grain provided there is contact between
the grain particles.
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Chapter 7

A study on threshold based breakage
detection

7.1 Introduction

In this chapter, we examine methods by which we detect broken grains in 3D images
of granular materials. The ability to detect grains undergoing breakage is relevant for
parametric studies on granular materials. These parametric studies establish links
between theoretical models in geomechanics and experimental models by validating
or invalidating theoretical claims. As such, the ability to detect grains that break is
necessary to understand theoretical models that characterize breakage and breakage
of grains in grain assemblies. An example of studies that benefit from the ability to
detect broken grains is the study of the interaction of granular materials under high
loads.

The detection of broken grains is not trivial. It is so because effectively char-
acterizing breakage in an assembly of granular materials involves processing the
resulting 3D sequence of images, labeling the grains, correlating these grains across
time-steps and attributing grain particles to parent grains when breakage occurs.
This sequence of steps implies that we perform both spatial correlation and temporal
correlation of particles.

In [138], [141], methods were formulated to detect grains; however, these meth-
ods have their failings. In this chapter, we highlight the problems associated with
these approach to breakage detection proposed in [138], [141] by showing the large
number of influences on choosing the right threshold for the isolation of broken
grains.

The studies in [138], [141] highlight a process for the detection of breakage in 3D
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granular assemblies. The method presented detects breakage by examining the value
of the normalized correlation coefficient of correlated grains between a time-step
where breakage does not occur and a time-step where breakage occurs. Correlation
in this context refers to the algorithmic procedure in matching identified grains by
their texture a subsequent time-step. In a time-series (stack of 3D tomography
images), a previous time-step image is segmented using any of the segmentation
methods, and a correlation is performed. The normalized correlation coefficient is a
scalar value that specifies the degree of matching for an identified grain. It is usually
between 0 and 1 with 1 signifying a perfectly correlated grain. The normalized
correlation coefficient of grain can be computed using equation 7.1.

∑
m

∑
n [f(m+ i, n+ j)− f̄ ][g(m,n)− ḡ]√∑
m

∑
n [f(m,n)− f̄ ]2[g(m,n)− ḡ]2

(7.1)

In the method, they impose a threshold on the normalized correlation coefficient
values. Consequently, grains with values below the threshold are characterized as
broken. In [141] a threshold of 0.96 on 3D tomography images of zeolite grains while
[138] imposed a threshold of 0.94.

One problem reported as a result of this method is the arbitrary method in
choosing the threshold value. In [138], it is shown that a slightly higher threshold
value misses out on detecting some broken grains, and a slightly lower threshold de-
tects texture variance as breakage. It is thus imperative to tune this parameter per
breakage detection operation. Per-image tuning can be expensive in terms of mem-
ory and time since there is no guide to choosing the right threshold. In this chapter,
we attempt to find variables by which guide the choice of a suitable threshold for
the method described in [138]. We hypothesize that there is a relationship between
the threshold value choice and parametric variables in the image such as random
noise, breakage gap, internal porosity, and the number of broken particles. Thus we
attempt to find relationships between these variables and the task of choosing the
right threshold for a given detection operation. Our analysis is done using kalisphera
grains.

7.2 Analytical study

To study the effects of the outline parameters on the optimal threshold choice, it
is important to be able to control the way grains breakage. In multiple particle
tests, it is almost impossible to define breakage patterns. Although it is less difficult
when performing single particle breakage tests, it still is not trivial. To study these
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(a) Two piece kalisphera(slice) (b) Two piece kalisphera(3D)

(c) Three piece kalisphera(slice) (d) Three piece kalisphera(3D)

(e) Four piece kalisphera(slice) (f) Four piece kalisphera(3D)

Figure 7.1: More complex breakage operation through the stacking of three breakage
modes. Both left and right are further breakaged
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phenomena, we derive an algorithmic method by which we breakage kalisphera grains
and impose localized texture.

7.2.1 Fracturing kalisphera grains

Creating a kalisphera grain using the kalisphera tool is done by defining a grain
radius and grain centre. The kalisphera tool then generates the grain with the
given parameters. Breaking such a grain into two parts can be simple to achieve
analytically. However, complex breakage patterns are not. To break such grain,
we approximate breakage as comprising a breakage centre, breakage gap size and
rotation (breakage orientation).

The breakage center is the approximate center of the breakage plane to be
imposed. The breakage gap size is the distance between two particles are breakage
and the breakage orientation is the orientation of the plane of breakage. Implicitly we
approximate that every complex breakage pattern is a sequence of splitting events.
Thus to impose a complex pattern, we recursively split the grain and its particles.
The result of every breakage operation is a left and a right component which can
further be broken. Based on this representation, we stack breakage operations on
a grain and its sub-particles recursively and in effect can create complex breakage
patterns. These patterns are as shown in figures 7.1a, 7.1c, 7.1e.

7.2.2 Imposing texture on kalisphera grains

The localized texture is also a characteristic of grains, which is useful in correlation
operations. We impose local texture on kalisphera grains by adding Gaussian noise to
particles separated using the breakage algorithm. To add local texture to a region of
the grain without breaking the grain, we set all breakage gaps to 0. Textured regions
are identified by applying the successive splitting operation, however, without the
breakage gap. We show an example of a locally textured grain in 7.2.

7.2.3 Results and discussion

Size ratio of breakage particles

To validate the effect of the size ratio between the particles and the normalized
correlation coefficient, we created a 3D kalisphera grain of 30 pixels in radius. A
corresponding temporal displaced image was created with a displacement of 1 pixel
in the x,y, and z axes. The displaced kalisphera grain is artificially breakaged into
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(a) Textured kalisphera grain(slice) (b) Textured kalisphera(3D)

Figure 7.2: Localized texture in artificially generated kalisphera grains

two particles, with the breakage gap progressively increased and the size ratio of
the two particles progressively varied by varying the position of the breakage plane.
An increase in the breakage gap triggers a reduction in the normalized correlation
coefficient. The slope of the decrease in the normalized correlation coefficient, how-
ever, varies depending on the size ratio of the resulting particles from the split. A
more balanced split yields a steeper slope in the reduction in normalized correlation
coefficient as the breakage gap increases. During correlation, an imbalance in the
shape of the particles causes the correlation algorithm to recognize with more the
certainty, the larger sized grain. The dependence on the larger sized grain is so
because the normalized correlation coefficient becomes a function of size uniquely.
To validate this hypothesis, we create a kalisphera grain with localized texture on
the smaller sized particle. Then we observe the values of locally textured grains vs.
when the texture is uniformly distributed (as in zero texture) as shown in figure 7.2.

The results in figure 7.4, show a difference in the variation of normalized corre-
lation when there is localized texture, and when there is no localized texture. Unique
texture patterns contribute significantly to the ability of correlation to recognize a
grain. When grains with these landmark patterns break, the effect on the correlation
coefficient is stronger than in homogeneous or textureless grains. This phenomenon
is the case also in grains with internal porosity as the internal porosity is viewed as
texture. This reason can be the probable reason why highly porous Leica grains in
[138] need a significantly lower threshold than Zeolite grains in [141].

97



Figure 7.3: Normalized correlation coefficient as the breakage centre is varied along
the Y-axis

Figure 7.4: Normalized correlation coefficient as the breakage centre is for textured
and non-textured grains
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Number of breakage particles

To account for the effect of the number of breakage particles on the normalized
correlation coefficient, a 3D kalisphera grain with a radius of 30 pixels was artificially
broken into 2, 3 and 4 particles. A uniform displacement of 1 in all three axes is
imposed and each particle is translated. In the case of the image volume with 2

particles, we progressively increase the breakage gap from 1 pixel to 10 pixels. For
the other volumes with more than 2 particles, the breakage gap corresponding to the
first splitting event is progressively widened. The resulting graph in 7.5 highlights
the dependence of the normalized correlation coefficient on the number of particles.
The splitting events resulting in more than 2 particles correlate poorly proportion
to the number of particles into which they are split. In effect, grains with higher
number of particles have lower normalized correlation coefficient.

Figure 7.5: Normalized correlation coefficient for broken kalisphera grains, where
the number of particles is 2, 3 and 4 respectively.

Grain size

We also investigate for the effect of grain size on the resulting normalized correlation
coefficient. 3D Kalisphera grains with radius ranging from 20 to 90 pixels are created
and split along the centre and the breakage gap is progressively widened. It is
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Figure 7.6: Normalized correlation coefficient for kalisphera grains of different sizes

observed as shown in figure 7.6 that as the breakage radius/gap is increased, smaller
grains experience a reduction in their correlation score in direct proportion to their
size. We argue that this is due to the fact that smaller sized grains have less effective
texture which is a basis for correlation. This highlights a difficulty in optimally
setting the threshold parameter, as grain assemblies usually contain grains which
vary in size.

breakage gap

In figures 7.5, 7.6, 7.3, it is observed in all experimental procedures that an increase
in breakage gap, always yields a corresponding decrease in the normalized corre-
lation coefficient. This implies, that in any breakage scenario (splitting, attrition
or abrasion), an increase in the gap between particles induces a decrease in the
normalized correlation coefficient by a factor that corresponds to the dominating
environmental factor (grain size, breakage centre and number of resulting particles).
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7.3 Conclusions

The combined effects of breakage gap, texture, grain size and breakage particle size
makes choosing a suitable threshold very difficult. This difficulty is amplified by the
fact that grain assemblies posses texture variations and size variations. These vari-
ations go on to affect the process of breakage thereby resulting in multiple breakage
scenarios with variational differences that hitherto cannot fully be captured by a
scalar threshold parameter. In cases where the assembly is homogeneous in size,
shape or texture, the ability to capture fully all breakage cases using a threshold
parameter exists.

Furthermore, the threshold parameter based detection is not well suited for
progressive breakage since the original unbroken state should be correlated to the
broken state. As breakage approaches crushing and particles disperse, breakage
becomes difficult to characterize.
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Chapter 8

Detecting Breakage

8.1 Back-correlation based detection

Instead of computing a forward correlation from time-step 0 to time-step 1 and
thresholding the normalized correlation coefficient to detect broken grains, we for-
mulate a backward correlation from time-step 1 to 0. This involves performing a
segmentation(labeling) of the grains in time-step 1 and correlating them backwards
with the previous time-step. Although this eliminates the dependence on a tuned
threshold parameter, it introduces a new dependence on the quality of segmentation.

To formalize the proposed method, we define the parameters involved. Let a
tomography time-series be a set of images denoted as S containing images denoted
as Si, with i representing the position in the time-series such that i ∈ [1 . . . T ]. T
is the sequence length of the image sequence S i.e., the number of images in the
time-series. Let a segmentation of Si be a mapping G(.) such that Si is transformed
into a labelled(segmented) image Li such that each pixel maps into a label in the
label set. Here we define a correlation C to be a mapping from one labeled image
Lx to another labeled image Ly such that every label in Lx is associated to a label
in Ly. Thus the method of back-correlation for the detection of breakage maps Li+1

to Li such that when two labels in Li+1 map to the same label in Li, the grain is
considered broken. As is observed, this is dependent on the quality of segmentation.
We denote the sequence of labeled images as L.

However, this method of breakage detection can be computationally intensive
since it performs a correlation on each patch. This is sometimes more than is
necessary, especially in cases where a few grains break. Therefore we propose an
approximation that uses minima to detect broken grains.
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8.1.1 Minima based back-correlation

The detection of breakage requires that the particles of a broken grain are corre-
lated in time to a point where the grain in unbroken and that these particles are
independently identified to enable their tracking as they undergo more changes in
time.

In the minima based detection, we find a coupling between temporal minima
and in effect, correlate grains from their unbroken to their broken states. Consider an
image sequence S. For Si ∈ S, there is a set of minima Mi which maps to a labelling
Li. We define a new correlation function Cm which maps the set of minima Mi+1 to
set of pixels M corr

i+1 in Si. If Si has been sufficiently labelled and transformed to Li,
we propose that M corr

i+1 can inform the labelling of Si+1 since its labels are known
due to the labelling of Li. A grain is thus broken where two minimum couple to the
same label value. This is approximately equal to back-correlation based detection
but with correlation done using only the minima and not the entire particle.

8.1.2 Combined back-correlation

The minima based approach bases the correlation of the entire particle or grain on
a point. This is prone to errors in cases with high breakage events. As such, we
combine both schemes to characterize the evolving breakage of a sample. In the first
temporal half, breakage is detected using the minima based approach and in the last
temporal half by full back-correlation approach.

Algorithm 4 Combined back-correlation based detection
1: for t = 2, ..., T do
2: if t ≤ T

2
then

3: Cm

(
Mt+1,St

)
4: else
5: C

(
Lt+1,Lt

)
6: end if
7: end for

8.1.3 Visualising Broken grains

Breakage capture refers to the representation of a grain, although broken by one
label. However, to detect the grain as a broken grain, it is necessary to map the initial
representation of a broken grain (by multiple labels) to its unique representation as
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one label in the captured or revised state. As such, we correlate its representation
before the application of the back correlation algorithm to its representation after
the breakage detection algorithm has been applied. Where two particles in the pre-
correction state map to one particle after its application, we characterize such a grain
as broken or "further-broken" depending on the timeline of progressive breakage
which we aim to characterize. An example of such characterization is shown in
figure 8.3.

8.1.4 Rectifying segmentation using spatiotemporal correla-

tion

A grain is characterized as broken when two segments (particles) in the next tem-
poral image correlate to one label in the previous time-step. Although this captures
most breakage events, it also characterizes oversegmentation as breakage in cases
where the grain in the next time-step is over-segmented. This amounts to some
false positives in the detection of breakage. One way to avoid this is to create
better quality images through pre-processing (filtering). We, however, try to de-
tect these cases and use it to perform an informed segmentation and re-labeling of
grains. For the informed segmentation procedure, we detect oversegmentation by
looking at breakage events and characterizing the contact between the particles of
potentially broken grains. Where a contact is characterised as being the result of
oversegmentation, the particles are joined together.

In order to perform this characterisation, let the length of the contact between
two labels Li Lj be |Cij|. Where Cxy is the set of boundary points. Also let the
three principal axes be px, py and pz. Oversegmentation is defined here as

|Cij| ≥ min(px,py,pz).γ (8.1)

Where γ is a scalar parameter which should at least be greater than 0.5, we set
gamma to be 0.75. This is found to be sufficient in distinguishing actual breakage
cases from oversegmentation.

8.2 Experimental Setup

The combined backward correlation breakage detection algorithm is applied to a 3D
time sequence of zeolite grains undergoing deformation and breakage and Leighton
Buzzard sand under compression. The zeolite images were obtained from experi-
ments performed in [141]. The grains are near spherical in shape and posses impu-
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7

Figure 8.1: Slices for 3D image sequence showing Leighton buzzard sand undergoing
progressive breakage from time-step 1 to time-step 7
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7

Figure 8.2: 3D image sequence showing Leighton buzzard sand undergoing progres-
sive breakage from time-step 1 to time-step 7
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(a) t = 2 (b) t = 3 (c) t = 4

(d) t = 5 (e) t = 6 (f) t = 7

Figure 8.3: Leighton buzzard sand grain undergoing breakage and further breakage
under progressive loading

rities that manifest as "near white" on the grayscale images. Although it is similar
to salt and pepper noise seen in image processing, they are actual impurities on the
sample.

The images are filtered using a bilateral filter to remove noise components. In
the course of our experiments, the segmentation algorithm used is a morphological
watershed, and image correlation was performed using SPAM The grains are first
separated using morphological watershed; then broken grains are detected using the
combined back correlation algorithm with the first half of samples matched using
their minima and the remaining time-steps (more breakage events) correlated using
the full back-correlation approach. The labels of successive time-steps are corrected
to match the ancestor labels.

We also apply the combined backward detection to 3D samples of Leighton
Buzzard sand varying in time and undergoing progressive breakage. The sample
contains 7 time-series images, and progressive breakage can be observed from the
second time-step. The progression of breakage can be observed in sample slices from
the 3D volume at increasing time-steps shown in figure 8.1 and figure 8.2.
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(a) t = 2 (b) t = 3 (c) t = 4

(d) t = 5 (e) t = 6 (f) t = 7

Figure 8.4: Detecting breakage in Leighton buzzard sand

(a) t = 2 (b) t = 3 (c) t = 4

Figure 8.5: Detecting breakage in zeolite grains
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(a) t = 1 (b) t = 2

Figure 8.6: Breakage detection from time-step 1 to time-step 2 using the back corre-
lation algorithm for zeolite grains undergoing compression and progressive breakage

8.3 Results and Discussion

Between time-steps 1 and 2 of the zeolite dataset we observe mainly splitting and
abrasion breakage events. These breakage patterns are, however, simple enough to
be sufficiently captured by the back-correlation algorithm, as shown in 8.6. We
characterize the successful capture of a broken grain as when it is assigned the same
label as its unbroken parent grain. These breakage patterns are relatively easy to
capture due to the compact and non-dispersed breakage modes. This means that
the resulting broken particles are either close together as in the parent grain or
partially connected. Also, as there are limited events of breakage simultaneously
occurring, it is even simpler to identify breakage events. The initial time-steps of
Leighton Buzzard sand also present simple breakage cases owing to their large sizes
due to the resolution at which they are imaged. Figure 8.7 shows the capture of
these breakage cases.

As we progress over time, the breakage modes increase in complexity. In figure
8.8 we analyse the results of detecting breakage on the succeeding time-step i.e from
time-step 2 to time-step 3 of zeolite dataset. More complicated breakage patterns
are observed which are correspondingly more difficult to detect and capture. As
such false positives are thus more evident in the results, we show. We argue that
as progressive breakage approaches its ultimate distribution (see [77]), the particle
space becomes denser and as such grayscale pixel variance approaches 0. This implies
that as crushing occurs within an assembly of grains, the unique granular texture
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(a) t = 2 (b) t = 3

Figure 8.7: Breakage detection from time-step 2 to time-step 3 using the back corre-
lation detection algorithm in Leighton buzzard sand grains undergoing compression
and progressive breakage

(a) t = 2 (b) t = 3

Figure 8.8: Breakage detection from time-step 2 to time-step 3 using the back corre-
lation algorithm in zeolite grains undergoing compression and progressive breakage
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(a) t = 3 (b) t = 4

Figure 8.9: Breakage detection from time-step 3 to time-step 4 using the back corre-
lation algorithm in zeolite grains undergoing compression and progressive breakage

time-step=2 time-step=3 time-step=4

0.06 0.052 0.048

Table 8.1: Change in average grayscale variance computed over grains undergoing
progressive breakage

is gradually removed. Furthermore, any method to detection of crushed grains
hinged on texture based methods such as correlation may become less effective
as the granular state approaches the ultimate distribution. Although we did not
fully investigate this phenomenon, we show by a simple experiment the gradual
reduction in texture, which we approximate as pixel variance. To verify this texture
dissipation, we track the average change in variance of 4 grains having similar initial
gray value variance, where we observe a decrease in variance as time-step increases.
This is shown in table 8.1. Analyzing the next time-step in the Leighton buzzard
series (see figure 8.11), we observe less false positives. We argue that this is due to
its size and inherently more diverse texture component.

This texture dependence is evident in the result difference between the Leighton
buzzard sample and the zeolite sample. The reduced resolution at which zeolite
is processed (and the number of grains) ensures that the accuracy of capture is
less when grains appear crushed. Thus our method performs better in process-
ing Leighton Buzzard sand than zeolite as we go further in the breakage timeline.
This correlates well with results obtained from texture experiments performed on
Kalisphera grains in the previous chapter.
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(a) t = 2 (b) t = 3

Figure 8.10: Breakage detection from time-step 2 to time-step 3 using the back cor-
relation algorithm in zeolite grains undergoing compression and progressive breakage

(a) t = 3 (b) t = 4

Figure 8.11: Breakage detection from time-step 3 to time-step 4 using the back
correlation detection algorithm in Leighton buzzard sand grains undergoing com-
pression and progressive breakage
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(a) t = 5 (b) t = 6

Figure 8.12: Breakage detection from time-step 5 to time-step 6 using the back
correlation detection algorithm in Leighton buzzard sand grains undergoing com-
pression and progressive breakage

(a) t = 3 (b) t = 4

Figure 8.13: Breakage detection from time-step 6 to time-step 7 using the back
correlation detection algorithm in Leighton buzzard sand grains undergoing com-
pression and progressive breakage
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(a) t = 3 (b) t = 4

Figure 8.14: Breakage detection from time-step 3 to time-step 4 using the back
correlation detection algorithm in Leighton buzzard sand grains undergoing com-
pression and progressive breakage

Evident also in the succeeding time-step 8.9 is a slight increase in the number
of false positives. Leighton Buzzard sand, however, has a higher volume per grain.
As such and consistent with observations on kalisphera grain experiments, size and
texture aid correlation. We observe that these elements (size and texture) determine
the quality of breakage detection.

Segmentation Rectification

Using the defined rectification algorithm in subsection 8.1.4 we show that spatio-
temporal information from the back-correlation algorithm can be used to detect
oversegmentation in temporal images.

In figure 8.14, we show a Leighton buzzard grain oversegmented initially due to
a hole in the grain. The oversegmentation is rectified during the breakage detection
process. Although the process of segmentation rectification reduces the error rate of
detection and increases the quality of segmentation, it is computationally intensive
due to the computation of an Eigen decomposition on each grain. Although iterative
approximations to the Eigen-decomposition exist using the power law [107], we do
not research further.
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Chapter 9

Conclusions and Perspectives

The principal objective of this Ph.D. thesis was to explore techniques for the identi-
fication and tracking of granular materials undergoing breakage. The task of grain
identification and tracking is directly hinged on the quality of data on which algo-
rithms are built. Notably affecting the quality of data is noise. A large part of this
thesis is devoted to studying the quantification and the removal of noise to augment
the quality of data on which grains are identified and tracked. First, we tackle the
task of computing the amount of noise in a tomography image. We reviewed the
technique in use for the computation of noise in tomography imaging. Using kali-
sphera, we trained a neural network encoder model to compute noise on tomography
images. The computed noise on kalisphera correlates more linearly with the input
noise than the model-based approach. This chapter is significant on two accounts;

• The computes the input noise in Kalisphera with better accuracy than the
model based approach.

• It introduces the use of kalisphera data as a means by which complicated
"unknown" models can be approximated using neural networks with realistic
data which we have a ground truth.

This chapter also goes further to present the failings of our trained encoder. Due
to the fact that it was trained using spherical data, it does not generalize to non-
spherical data. Means by which this can be mitigated include the DEM approach
where complex grains can represented as clusters of spheres. A wider variety of
shape factors can in effect be simulated.

In chapter 5, we present grain filtering algorithms we used and how they can be
applied to granular materials. We briefly discussed our observations in using each
of the filtering algorithms.
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In chapter 6, we explore the segmentation (identification) of granular materi-
als. We introduce hierarchical segmentation for granular materials as against the
commonly used morphological watershed. We then propose a method by which
contact structure information can be used as apriori information to guide the hier-
archical segmentation process. This chapter shows that the introduction of a simple
spherical contact model drives the segmentation to extract a labeling that is more
mechanically consistent with expected contact. This in effect reduces the amount
of oversegmentation in tomography images of granular materials. Subsequently we
show that such contact model used for the segmentation of zeolite grains (near spher-
ical) induces the segmentation to label broken grains as a single provided they are
in contact. These are reasons why this is significant;

• In a single image, with no temporal context, the task of determining if a grain
(whole) is broken is much less trivial than determining if a broken particle is a
part of a broken grain. The former can be established by looking at the grain
datapoints for a plane of breakage. It can also be achieved by checking for a
disparity in segmentation when a morphological watershed is used and when
a contact based hierarchical segmentation is used.

• In a temporal image with grains undergoing displacement, rotation and break-
age, it is easier to separate (in an image) a clustered broken grain, than to
aggregate broken particles into one frame. The context for separating a grain
is the grain, however the context for aggregating particles into a grain is the
entire spatial image.

However the conceived model for biasing the segmentation towards labeling
grains in view of ensuring realistic contacts is spherical and thus works best on
spherical or near-spherical grains. Future work in this regard would be to take into
account more complicated contact types and shapes.

Chapter 7 studies the only known method by which breakage is detected in
granular materials. The method reported in [138], [141] imposes a threshold on the
correlation coefficient (degree to which temporally displaced grains match). Grains
that fall below the imposed threshold are characterized as broken. A problem that
exists with this method to breakage characterization is how to the set the threshold
parameter. In this chapter we list potential influences on the threshold parameter
and study the effects of these influences with single particle characterizations using
kalisphera. To study the effect of these influences we implement a recursive method
by which these analytically derived spheres can be broken and by which localized
texture ( only a section of the grain) can be imposed. In this study the following
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was learned;

• Wider breakage gaps require low threshold values

• When small grains break, they experience a more significant decrease the cor-
relation coefficient than when large grains break.

• Unevenly distributed texture on grains result in a different correlation coeffi-
cient depending on which of the particles has the most texture component.

• In a simple splitting breakage event, even sized particles result in higher cor-
relation coefficient, provided that they have uniform texture

In chapter 8 we derive a new method for breakage detection and tracking. In
this derived method we map a grain particle (broken) to a previous state. When
two labels map to a single grain in the previous time-step, they are characterized as
broken. Such backward characterization can be achieved using a minima set or the
entire label. We show how our algorithm can be used to rectify oversegmentation
in granular materials. Although the algorithm was outlined and shown to work in
Leighton Buzzard sand and Zeolite, extensive studies was not made on a wide range
of datasets. This is a natural extension to the proposed method.
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Appendix A

Algorithmic speed and efficiency of
noise removal algorithms

In evaluating the performance of these algorithms, the speeds of guided filtering,
bilateral and total variation denoising are evaluated. Anisotropic diffusion is not
evaluated due to the fact, that it is iterative and an evaluation of its runtime is
inherently very subjective. Classical bilateral filtering is slow, although speed up
schemes have been proposed in [92].

The experiment was run using the Scipy implementation of Total variation
denoising, the ITK implementation of Bilateral filtering and an implementation of
guided filter. The guided filter was implemented in C++ but coupled to python
using Pybind11. The seemed a fair fight as ITK and scipy are C++ developed but
have python bindings.

The runtime scales linearly with increase in image volume. This is shown in
figures A.1 and A.2.

Total variation filtering runs in less time and guided filtering has an almost
constant runtime across image volume scales. Guided filtering is shown not to of
constant time in A.3

conclusions

• In cases where runtime is of importance, guided filtering presents the fastest
times, followed by total variation filtering. The brute force implementation of
bilateral filtering should be avoided
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Figure A.1: Runtime for noise filtering algorithms for image volumes: The image
is a cube volume with defined width. The cube is progressively increased and the
runtime is measured

Figure A.2: Runtime for noise filtering algorithms for image volumes: The image
is a cube volume with defined width. The cube is progressively increased and the
runtime is measured. Plotting the volume against the measured time
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Figure A.3: Runtime for guided filter on image volume: The image is a cube volume
with defined width. The cube is progressively increased and the runtime is measured.
Plotting the volume against the measured time
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Appendix B

Noise response in natural datasets

It is necessary to make a distinction between edge-based methods and model based
methods. Although all of the methods are edge preserving, edge-based methods
are modelled on the preservation of edges while model based methods generate an
output that is described as mathematical transformation of the input and in effect,
edge preserving. Total variation models noise as an additive Gaussian while guided
filtering models the transformation as a linear transformation.

The addition of two Gaussian, with width σ1 and σ2 will yield a Gaussian
with σ1 + σ2 [36]. This follows the principle of additivity outlined by linearity.
Thus, if a noise component of an image is an additive Gaussian, it should respond
linearly to the addition of noise. In the cases where the noise response can be closely
approximated as linear, Highly decomposable granite 3.5 and Leighton buzzard 3.4,
Model based algorithms perform better (Guided filtering and Total variation). The
linear approximations of its noise response is seen B.1d, B.1e. However even in these
cases where the image response to noise is closely depicting that the initial noise
value is an additive Gaussian, the variational approach out performs guided filtering
at high noise levels. With increase in noise, ε parameter in guided fails to distinguish
between noise and edges. An example is in figure B.3 where guided filtering performs
well at low noise but its performance quickly degrades in high noise. It should be
noted that bilateral filtering does almost as well in these scenarios, but apart from
the fact that it is outperformed, its computational cost makes it insufficient.

In case of non linear response of noise, signifying that the underlying noise is
not an additive Gaussian, Bilateral and anisotropic diffusion are consistent in their
performance. However, in cases where grain size per pixel is small and images have
large sized grains, guided filtering performs better across all noise realisations. This
is seen in sapphire spheres B.1a and highly decomposable granite B.1d. It can be
said that although noise is high, there is enough statistical information for the filter.
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(a) Sapphire spheres (b) Hostun sand

(c) Caicos ooids (d) HD granite

(e) Leighton buzzard (f) Zeolite

Figure B.1: Noise regression plots: Noise is progressively to Sapphire spheres, Hos-
tun sand, Caicos ooids, Highly decomposable granite, Leighton buzzzard and Zeolite.
The internal noise is the calculated using the noise computation model. The plot is
analysed for how well it fits a linear model.

124



(a) Sapphire spheres (b) hostun sand

(c) Caicos ooids (d) HD granite

(e) Leighton buzzard (f) Zeolite

Figure B.2: Noise regression plots: Noise is progressively to Sapphire spheres, Hos-
tun sand, Caicos ooids, Highly decomposable granite, Leighton buzzard and Zeolite
and filtered using Guided filtering, Bilateral filtering, Anisotropic diffusion and total
variation filtering. The internal noise is the calculated using the noise computation
model. The bar plot representation gives inference into how much noise remains
after filtering with a particular filter.
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(a) Sapphire spheres (b) Hostun sand

(c) Caicos ooids (d) HD granite

(e) Leighton buzzard (f) Zeolite

Figure B.3: Noise regression plots: Noise is progressively to Sapphire spheres, Hos-
tun sand, Caicos ooids, Highly decomposable granite, Leighton buzzard and Zeolite
and filtered using Guided filtering, Bilateral filtering, Anisotropic diffusion and total
variation filtering. The internal noise is the calculated using the noise computation
model. The graph gives inference into how much noise remains after filtering with
a particular filter.
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Structured noise and texture contribute to an inherent non linear noise response.
And in these cases and at high noise, the performance of filters with linear descriptors
degrade. It is noted however, that the bilateral filter performs consistently across
all datasets.

conclusions

• Not all noise in images can be characterised as a gaussian.

• Filters behave differently in different texture scenarios.

• More experimentation is needed to validate the induced assumptions.
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Appendix C

Denoising of dataset images
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(a) Image (b) Anisotropic

(c) Bilateral (d) Total variation

(e) Guided

Figure C.1: Different filters are applied to sapphire spheres image: Anisotropic
diffusion, bilateral filter, total variation filter, guided filter
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(a) Image (b) Anisotropic

(c) Bilateral (d) Total variation

(e) Guided

Figure C.2: Different filters are applied to zeolite image: Anisotropic diffusion,
bilateral filter, total variation filter, guided filter
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(a) Image (b) Anisotropic

(c) Bilateral (d) Total variation

(e) Guided

Figure C.3: Different filters are applied to highly decomposable granite image:
Anisotropic diffusion, bilateral filter, total variation filter, guided filter
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(a) Image (b) Anisotropic

(c) Bilateral (d) Total variation

(e) Guided

Figure C.4: Different filters are applied to hostun image: Anisotropic diffusion,
bilateral filter, total variation filter, guided filter
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(a) Image (b) Total variation (weight = 0.1)

(c) Total variation (weight = 0.3) (d) Total variation (weight = 0.8)

Figure C.5: Blur effects of total variation filtering: The weight parameter in total
variation filtering is varied. An increase in the value implies less data fidelity. This
is shown to increase the blur in the sapphire spheres image
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