
HAL Id: tel-02438921
https://theses.hal.science/tel-02438921v1

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing and learning deep neural networks on chip
Ghouthi Boukli Hacene

To cite this version:
Ghouthi Boukli Hacene. Processing and learning deep neural networks on chip. Machine Learning
[cs.LG]. Ecole nationale supérieure Mines-Télécom Atlantique, 2019. English. �NNT : 2019IMTA0153�.
�tel-02438921�

https://theses.hal.science/tel-02438921v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité :Electronique, Informatique, Signal, Image, Vision
 Par

 Ghouthi BOUKLI HACENE

 Processing and Learning Deep Neural Networks on Chip

Thèse présentée et soutenue à Brest, le 03/10/2019
Unité de recherche : Lab-STICC, UMR CNRS 6285
Thèse N° : 2019IMTA0153

Rapporteurs avant soutenance :

Julie GROLLIER Directrice de recherche, CNRS/Thales
Warren GROSS Professeur, McGill

Composition du Jury :

Rapporteurs : Julie GROLLIER Directrice de recherche, CNRS/Thales
 Warren GROSS Professeur, McGill

Examinateurs : Hervé JEGOU Chercheur, Facebook AI Research

Yoshua BENGIO Professeur, Université de Montréal
Vincent GRIPON Chercheur permanent, IMT Atlantique

Dir. de thèse : Michel JEZEQUEL Professeur, IMT Atlantique

Invité(s)
Nicolas FARRUGIA Maitre de conférence, IMT Atlantique
Matthieu ARZEL Maitre de conférence, IMT Atlantique

2

Table of Contents

Page

Résumé 7

1 Introduction 13

2 Basics in Deep Learning 23

2.1 Datasets . 23

2.1.1 Training, Validation and Test Sets 23

2.1.2 CIFAR10 and CIFAR100 . 24

2.1.3 ImageNet (ILSVRC 2012) . 25

2.1.4 ImageNet1, ImageNet2 and ImageNet50 25

2.1.5 AudioSet . 25

2.2 Main Elements . 26

2.2.1 Activation Functions . 26

2.2.2 Loss Functions . 26

2.2.3 Layers . 27

2.3 Deep learning . 30

2.3.1 Deep Neural Networks . 30

2.3.2 Learning Process . 36

3

4 TABLE OF CONTENTS

2.3.3 Classification Inherent Difficulties 37

3 Neural Networks and Low Resources Systems 39

3.1 Context . 39

3.2 Quantization . 40

3.3 Pruning . 44

3.4 Light Architectures . 48

3.5 Convolution Alternatives . 51

3.6 Other Methods . 61

3.7 Comparison and Combination of Different Compression Methods 64

3.8 Hardware Implementation . 66

3.8.1 Hardware Architecture . 66

3.8.2 Hardware Results . 69

3.9 Energy Gains with Faulty Memories . 69

3.10 Summary of the Chapter . 74

4 Incremental Learning on Chip 75

4.1 Context . 75

4.2 Main Methods in the Literature . 77

4.3 Transfer Learning . 79

4.4 Segmentation . 79

4.5 Budget Restricted Incremental Learning 82

4.6 Transfer Incremental Learning using Data Augmentation 83

4.6.1 Feature Vector Extraction . 84

4.6.2 Vector Segmentation . 84

TABLE OF CONTENTS 5

4.6.3 Aggregation of Subspaces Weak Classifiers 85

4.6.4 Data Augmentation . 86

4.7 Experimental Results . 87

4.7.1 Benchmark Protocol . 87

4.7.2 Results . 88

4.8 Hardware Implementation . 93

4.8.1 Data Quantization . 93

4.8.2 Hardware Architecture . 94

4.8.3 Results . 97

4.9 Summary of the Chapter . 97

5 Conclusion 99

5.1 Conclusion and Perspectives . 100

5.1.1 Summary of the Thesis . 100

5.1.2 Summary of Contributions . 100

5.1.3 Perspectives . 102

6 TABLE OF CONTENTS

Résumé

Introduction

L’apprentissage machine fait référence à un domaine de l’informatique dans lequel le

principe est d’apprendre à partir d’exemples, d’expériences et/ou d’interactions. Au lieu

d’être explicitement codés pour exécuter une tâche spécifique, les algorithmes développés

dans ce domaine sont donc en mesure d’acquérir leurs fonctionnalités d’une manière

qui est sans aucun doute beaucoup plus proche de la façon dont l’homme apprend, de

sorte que l’apprentissage machine est un sous-domaine de l’intelligence artificielle. De

nombreuses raisons justifient et motivent l’utilisation de l’apprentissage machine. Par

exemple, dans certains cas, il n’y a pas de solution connue au problème, comme pour la

classification des images. Dans d’autres cas, les solutions connues sont trop coûteuses

sur le plan informatique, et l’apprentissage machine apporte des compromis intéressants

entre la justesse et la vitesse des algorithmes.

L’apprentissage machine n’est pas une méthode en soi, mais plutôt un ensemble

de méthodes telles que les machines à vecteurs de support (SVM), les forêts aléatoires

d’arbres de décision, et l’apprentissage de réseaux de neurones profonds. Ces derniers

ont suscité le plus d’intérêt au cours de ces dernières années. L’apprentissage profond

est basé sur un algorithme inspiré du cerveau appelé réseau de neurones artificiel, dans

lequel les neurones sont connectés et échangent des informations entre eux.

Grâce à l’intérêt que ce domaine a suscité au cours des deux dernières décennies,

l’apprentissage machine en général et l’apprentissage profond en particulier sont devenus

l’état de l’art dans de nombreux domaines comme la vision par ordinateur, la reconnais-

sance vocale, le traitement du langage naturel et même les jeux, dépassant ainsi les

capacités humaines pour certains tâches. Cependant, pour atteindre des performances

de l’état de l’art, l’apprentissage profond utilise une grande quantité de ressources, y

compris de la mémoire pour stocker les modèles et les données, et des calculs pour

traiter les différentes données, ce qui conduit à une grande consommation d’énergie, et

7

8 RÉSUMÉ

à un temps de calcul considérable. De tels besoins peuvent rapidement devenir une lim-

itation qui limite les domaines d’application d’apprentissage profond. La mémoire, la

puissance de calcul et la consommation énergétique représentent des ressources clés que

les méthodes d’apprentissage profond récemment introduites visent à préserver, et qui

soulèvent des défis scientifiques, techniques et même sociétaux.

Dans ce manuscrit, nous cherchons à réduire la mémoire et la complexité (ou le

nombre d’opérations) de l’apprentissage profond, car ce sont les deux principales limita-

tions qui engendrent les différents défis, et nous abordons le problème de la prédiction et

de l’apprentissage sur puce. Nous passons en revue et introduisons certaines méthodes

qui visent à réduire la taille et la complexité des modèles d’apprentissage profond, ainsi

que d’autres méthodes permettant un apprentissage incrémental très performant, dans

lequel les données sont apprises au fur et à mesure.

Réduction de la complexité de l’inférence

Afin de faciliter l’implantation des réseaux de neurones sur des systèmes embarqués à

faible ressources, certains travaux ont été proposés afin de réduire l’utilisation de la

mémoire et/ou le nombre d’opérations. Les principales approches sont les suivantes.

Certains travaux visent à utiliser des approches de haut niveau et proposent d’utiliser

des techniques d’élagage pour réduire le nombre de connexions dans les architectures de

réseaux de neurones [56, 62, 32, 107], ou de factorisation pour fusionner plusieurs parties

des architectures [28, 105]. D’autres approches utilisent des architectures de réseaux de

neurones légers [40], des convolutions groupées [37, 86], ou remplacent la convolution

par un décalage de l’entrée suivit d’une multiplication [104, 44, 23]. Nous avons intro-

duit durant la thèse une nouvelle méthode appelé Shift Attention Layer (SAL) [26], une

méthode d’élagage, qui pendant la phase d’apprentissage choisi de ne garder qu’un seul

poids par noyau de convolution, et donc remplace la convolution par une multiplication.

SAL surpasse les autres méthodes de compression de l’état de l’art en terme de justesse,

de nombre de paramètres et nombre de calculs. Dans d’autres travaux, les auteurs pro-

posent d’utiliser des approches de bas niveau telles que la quantification des valeurs de

poids et/ou d’activation sur n bits (n < 32) [101, 67, 118], jusqu’aux cas extrêmes où elles

deviennent ternaires [57] (habituellement -1,0, +1) ou même binaires (habituellement −1
ou +1) [11]. Durant nos travaux de thèse, nous avons également pensé à une méthode

très bas niveau pour réduire la consommation d’énergie du réseau de neurones et qui

consiste à tout simplement réduire la tension d’alimentation du système embarqué [27].

Afin de réduire au mieux l’énergie de consommation tout en gardant une justesse accept-

RÉSUMÉ 9

able, nous avons proposé d’appliquer les même conditions, a savoir réduire la tension

d’alimentation durant la phase d’apprentissage, et donc adapter le réseau de neurones a

de telles conditions.

Dans ce manuscrit nous passons en revue différentes méthodes de compression, et

nous introduisons une comparaison critique de ces méthodes. En particulier, dans la

littérature et dans la plupart des méthodes discutées dans ce manuscrit, les auteurs

comparent la justesse et le nombre de paramètres de leurs méthodes avec une référence

choisie a priori. Cependant, un tel processus ne donne que deux points qui ne peu-

vent être utilisés pour effectuer une comparaison équitable. Une bonne comparaison

consisterait donc à comparer la justesse pour le même nombre de paramètres et vice

versa.

Les méthodes de compression peuvent être efficaces pour réduire la mémoire et le

nombre d’opérations nécessaire pour traiter une donnée à travers le réseau de neurones

et (par exemple) la classifier. Cependant, de telles méthodes ne sont pas adaptées pour

être utilisées durant la phase d’apprentissage, qui est une phase très complexe et très

coûteuse en ressource, et donc ne peuvent pas réduire sa complexité.

Apprentissage incrémental

Afin de répondre aux problèmes liés à la phase d’apprentissage, et la rendre moins

coûteuse en terme de mémoire et d’opérations, nous proposons dans ce document d’étudier

les solutions incrémentales, permettant d’apprendre au fur et à mesure qu’on fournit de

nouvelles données. Il s’agit d’une méthode permettant à un modèle d’apprendre les

données de façon séquentielle, utilisant à chaque étape des sous-ensembles de la base de

données. Plus précisément, une approche d’apprentissage incrémental peut être définie

par [77, 78] : a) la capacité d’apprendre des informations supplémentaires à partir de

nouvelles données (incrément par les exemples), b) l’absence du besoin de stocker ou

de réutiliser les données originales qui ont servi à entrâıner les classifieurs (afin de lim-

iter l’occupation mémoire), c) la préservation des connaissances préalablement acquises

(éviter l’oubli catastrophique) et d) la capacité de gérer de nouvelles catégories qui peu-

vent être introduites avec de nouvelles données (incrément par les catégories). Donc,

dans le contexte des systèmes embarqués, la notion d’apprentissage incrémental prend

tout son sens, car elle permet de réduire la complexité d’apprentissage en apprenant

qu’un exemple à la fois, et de limiter la mémoire car elle ne nécessite pas de stocker en

mémoire toutes la base de données d’apprentissage.

10 RÉSUMÉ

Certaines méthodes d’apprentissage incrémental ont été proposées dans la littérature.

Par exemple, les auteurs de [78, 92] proposent d’ajouter de nouveaux classifieurs pour

traiter les nouvelles données, au risque de se retrouver avec un très grand nombre d’entre

eux. Dans [93, 76], les auteurs s’appuient sur des machines à vecteurs de support qu’il

est nécessaire de ré-entrâıner lors de l’acquisition de nouvelles données, générant de

l’oubli catastrophique [46, 17]. Afin de répondre à ces deux problèmes, une combinaison

de machines à vecteurs de support avec l’algorithme learn++ a été proposée [16, 68].

Cette combinaison offre des performances prometteuses [68]. Cependant, elle requiert

l’entrâınement systématique d’un classifieur s’appuyant sur les nouvelles et anciennes

données, et certaines informations sont oubliées alors que de nouvelles sont apprises.

Récemment, dans [81] les auteurs ont proposé une méthode d’apprentissage incrémental

appelée “Incremental Classifier and Representation Learning” (iCaRL), basée sur un

extracteur de caractéristiques DNN entrâınable, suivie d’une couche de classification.

Dans [66], les auteurs ont proposé d’utiliser un DNN pré-entrainé auquel aucun change-

ment n’est apporté durant la phase d’apprentissage, comme extracteur de caractéristiques

suivi d’un Nearest Class Mean classifier (NCM). NCM représente chaque classe à l’aide

du vecteur caractéristique moyen calculé à partir de tous les exemples observés jusqu’à

présent et appartenant à cette classe. Le processus de classification se fait en attribuant

la classe du vecteur moyen le plus semblable à l’aide d’une métrique qui peut être apprise

à partir des données. Finalement, dans [27] et [7], nous avons introduit Budget Restricted

Incremental Learning (BRIL) et Transfer Increment Learning with Data Augmentation

(TILDA), deux méthodes incrémentales utilisant de l’apprentissage par transfert suivit

d’un classifieur incrémental visant à réduire la complexité de la phase d’apprentissage

tout en gardant une justesse acceptable. En appliquant la segmentation sur les vecteurs

caractéristiques obtenus grâce à l’apprentissage par transfert, la justesse de NCM, BRIL

ainsi que TILDA peut être améliorée faisant plus particulièrement de TILDA une solu-

tion incrémentale, atteignant une justesse comparable à des méthodes non-incrémentales

et facilitant l’apprentissage sur des systèmes embarqués aux ressources limitées.

Conclusion et ouvertures

Dans ce manuscrit, nous avons abordé essentiellement le problème de la mise en œuvre

de solutions d’apprentissage en profondeur dans le contexte des systèmes embarqués à

ressources limitées. Nous avons examiné plusieurs propositions visant à réduire à la fois

la mémoire et le nombre d’opérations, à l’aide de l’élagage, de la quantification ou de la

factorisation. Nous avons vu comment réduire la consommation d’énergie d’un système

embarqué en réduire la tension d’alimentation tout en gardant une justesse acceptable.

RÉSUMÉ 11

Cependant, de telle méthodes sont uniquement adaptées à la phase d’inférence et ne

peuvent réduire la complexité ou la mémoire nécessaire durant la phase d’entrâınement.

Nous avons également introduit de nouvelles méthodes d’apprentissage incrémental,

puisqu’un modèle d’apprentissage profond basique n’a pas la capacité d’apprendre de

nouvelles informations au fur et à mesure sans détruire les connaissances acquises ou

apprises précédemment. De telle méthodes peuvent être considérées comme des solutions

alternatives visant à faciliter la phase d’entrâınement ou d’apprentissage, donnant ainsi

des solutions d’apprentissage incrémental sur puce.

Nos travaux ainsi que d’autres méthodes de l’état de l’art qui visent à remplacer la

convolution par un décalage de l’entrée suivie d’une multiplication ouvrent une nouvelle

perspective considérable. Les réseaux de neurones convolutifs ont été considérés comme

la meilleure solution applicable aux ensembles de données de traitement contenant des

images. Cependant, dans ce manuscrit, nous avons montré que les méthodes basées

sur les couches à décalage peuvent être plus performantes que les CNN dans certaines

conditions.

Les méthodes de quantification présentées dans ce manuscrit visent à réduire la

mémoire et le nombre d’opérations uniquement durant la phase de classification (ou

d’inférence). La phase d’apprentissage étant plus coûteuse, reconsidérer ces méthodes et

leur utilisation pour réduire la mémoire et le nombre d’opérations pendant l’entrâınement

serait une contribution importante dans ce domaine. Cette question devrait certainement

susciter plus d’intérêt, car il est tout à fait clair que de nombreuses applications de

l’apprentissage profond nécessiteront un réglage fin des paramètres à la volée.

Enfin, nous pensons que l’apprentissage sur puce sera un des prochains sujets

majeurs du domaine. En particulier, la recherche d’une solution pour l’entrâınement

d’algorithmes d’apprentissage profond sur un système embarqué avec des ressources

limitées comme les smartphones ou les FPGAs semble cruciale à court terme. En effet,

une telle solution vise à remplacer les GPUs ou les TPUs, des dispositifs chers et coûteux

en terme d’énergie, par des systèmes embarqués pour entrâıner les réseaux de neurones.

Une telle solution pourrait exploiter nos contributions sur les architectures matérielles

et les méthodes de quantification pour réduire la mémoire et le nombre de d’opérations

de la phase d’inférence comme point de départ, afin de les réadapter pour proposer une

solution d’apprentissage sur puce. Ainsi, l’apprentissage sur puce fournirait une solution

moins coûteuse pour entrâıner des réseaux de neurones sur des appareils moins chers

(smartphones ou FPGA) accessibles à tous, à faible consommation énergétique.

12 RÉSUMÉ

Chapter 1

Introduction

Machine learning refers to the field of computer science in which the principle is to learn

from examples, experiments and/or interactions. Instead of being explicitly hard-coded

to perform a specific task, algorithms developed in this field are thus able to acquire

their functionality in a way that is without doubt much closer to the way humans learn.

As such, machine learning is a subfield of artificial intelligence. There are many reasons

to motivate machine learning. For example, in some cases there is no known explicit

solution to the problem, like for image classification. In some other cases, the known

solutions are too computationally expensive, and machine learning brings interesting

trade-offs between correctness and speed of the algorithms.

Thanks to the interest machine learning received during the last two decades, it has

become a very mature field and the state-of-the-art in numerous challenging domains

such as computer vision or natural language processing, surpassing even human capac-

ities for some tasks. For instance, in 2016, a machine learning based solution has been

introduced with a better ability to classify and recognize objects than human [95]. More-

over, during the same year, another machine learning method called AlphaGo defeated

world’s champions in the GO game [88].

Machine learning is not a method by itself, but a set of different methods such as

Support Vector Machine (SVM), Random Forest and deep learning. The latter is the

one that received the most interest during these last years. It is built upon a brain-

inspired algorithm called artificial neural network, in which neurons are connected and

exchange information between them. Recent applications are more focused on using deep

learning instead of other machine learning algorithms for several reasons. The first one

is that deep learning is one of the few methods we know today that is able to exploit the

statistical dependencies hidden in massive amounts of data, where other machine learning

13

14 CHAPTER 1. INTRODUCTION

methods can quickly reach a saturation point as depicted in Figure 1.1. This is arguably

due to the fact that the complexity of training a deep learning architecture scales linearly

with the number of elements in the dataset, making it the only viable option for very large

datasets such as the ones defined in Chapter 2. In addition, deep learning based solutions

have the ability to decompose a difficult problem in a composition of simpler ones, all

trained simultaneously. As such, most of the deep learning methods directly handle

raw data, while other methods require feature extraction defined by human experts (cf.

Figure 1.2). It is well known that in the field of computer vision, the adoption of deep

learning began with the understanding that in the classical decomposition of learning

methods in two steps – feature extraction then classification –, little progress was to be

expected on the last step.

Obviously, deep learning is not the ideal solution for every problem. Throughout

this thesis, we shall deeply question its computational and memory costs, making it

sometimes impractical for resource-limited devices or real-time processing applications.

Also, because it relies on a very large number of parameters that are trained through

optimization routines, the understanding, interpretation and robustness of deep learning

raise a lot of concerns and questions for which it is fair to say they remain mostly open.

In application domains such as automatically assisted surgery, or autonomous cars, these

questions are a main barrier to the global adoption of the methodology.

As most machine learning methods, deep learning is usually made of two phases.

The first one is the learning phase (also called training phase), where the learning pa-

rameters are tuned in order to solve a given task. The second one is the predicting

phase (also called classification phase or inference), where the model is used to predict

and classify the output corresponding to a given input for a given task. For instance, if

during the learning phase the deep learning model learns to differentiate animals from

cars, during prediction it will predict if a given previously unseen input corresponds to

an animal or a car.

Due to its state-of-the-art performance, deep learning is now pervasive in many

applications and domains, and has become a part of our daily life and tasks, even though

we do not necessarily realize using it. Among the most impressive and challenging

applications of deep learning, we find:

1. Image recognition and detection:

Thanks to deep learning we can recognize and detect the position of objects, ani-

mals or even people into a picture or a video with a high accuracy (cf. Figure 1.3).

15

Figure 1.1: How machine learning techniques scale with amounts of dataa.

ahttps://www.slideshare.net/ExtractConf

Figure 1.2: Feature extraction in deep learning and in general machine learning meth-

odsa.

ahttps://medium.com/intro-to-artificial-intelligence/deep-learning-series-1-intro-to-deep-learning-

abb1780ee20

16 CHAPTER 1. INTRODUCTION

Figure 1.3: Objects recognition and detection using a deep learning solutiona.

ahttps://www.technative.io/all-seeing-ai-video-analytics-in-action

2. Natural language processing:

Deep learning is used in natural language processing to extract the meaning of a

given word, or a sentence, and analyze it. For instance, it is possible to analyze

what is said in a Google review to determine whether it is positive or negative

(a.k.a. sentiment analysis).

3. Playing games (AlphaGo):

Go is a strategic and complex Chinese board game and was one of few games

where human were still better than machines until 2014. Developed by the British

company Deep Mind, AlphaGo, a deep learning based algorithm, defeated in 2015

the Go world champion.

4. Positive hopes:

Deep learning is used in the medical domain, since it can be combined to medical

imaging to improve cancer diagnosis by extracting some important details into im-

ages that cannot be detected by the human eye1. On another hand, deep learning

can also be used to help fight climate change2. Indeed, there are years of climate-

related and weather data available that can be used by deep learning for better

decision making. For instance, deep learning gives a more accurate weather pre-

diction than humans, can detect earlier warning signs of a catastrophic weather

event and thus reduces damage to human lives3. Deep learning is also used in

1https://experiences.microsoft.fr/business/intelligence-artificielle-ia-business/intelligence-artificielle-

medecine
2https://bernardmarr.com/default.asp?contentID=1360
3https://www.globaltechcouncil.org/artificial-intelligence/how-can-deep-learning-solve-the-problem-

17

education, to detect students strengths and weaknesses and adapt and review stu-

dents learning path4. For instance, the mobile application Duolingo uses a deep

learning based solution to predict the probability of remembering particular words,

and then offers to more practice words which are harder to remember5.

To achieve sate-of-the-art performance, deep learning uses a large amount of re-

sources, including memory to store models and data, and computations to process inputs,

leading to a large energy consumption. Such needs can quickly become a limitation that

reduce deep learning application domains. Memory, computation and power represent

key resources that recently introduced deep learning methods aim to preserve. There

are scientific, technical and even societal challenges associated with these questions.

1. Societal challenges:

In societal challenges, two main subjects can be discussed, the relation between

ecology and deep learning, and accessibility of deep learning to everyone. As

mentioned above, deep learning needs a large memory footprint and computations

to store and process data, especially during learning where the algorithm needs to

repeat the process several times trying to find the structure connecting the artificial

neurons between them that allows to reach the best performance. Considering that,

almost all deep learning applications and research use Graphics Processing Units

(GPUs), a significant energy consumption device, during hours, days or sometimes

months. The energy cost can quickly become huge. Such an energy consumption

makes deep learning an expensive solution which does not respect the environment

and sustainable development.

It is very difficult to obtain objective indicators about the energy consumption

that is dedicated in datacenters to the computations using deep learning methods.

But it is fair to envision that the usage is growing, and that it is definitely not

insignificant. At the time of writing this thesis, training a modern deep learning

architectures on the celebrated ImageNet ILSVRC 2012 challenge requires of the

order of one week of computations on a modern desktop computer. As this bench-

mark is often required to prove the efficiency of methods when submitting a paper

to a major and well known conference, a lot of hyperparameters have to be tried,

hence as many weeks or even months of computations. Knowing that the power

consumption of such a computer is of the order of 1000W, one can quickly derive

of-global-climate-change/
4https://aibusiness.com/machine-learning-and-the-future-of-education
5https://www.forbes.com/sites/bernardmarr/2018/07/25/how-is-ai-used-in-education-real-world-

examples-of-today-and-a-peek-into-the-future/70626870586e

18 CHAPTER 1. INTRODUCTION

that most papers submitted to top-tier conferences used computations correspond-

ing to more than one year household consumption in a typical occidental country.

Of course the point of this discussion is not to criticize research or the way it is

conducted right now, but simply to illustrate how ecologically impactful simple

computations can become. When it comes to big companies, one has to imagine

orders of magnitudes more demanding architectures.

Finding methods to reduce the power consumption of trained architectures, as well

as the training cost, could be key to limiting the ecological impact the field has

and is going to have in the coming years.

Also, deep learning solutions aim at assisting people in their work or daily life, and

thus relieve them from some exhaustive work and ease their daily tasks. However,

and as mentioned above, deep learning is an expensive solution which requires

a large memory footprint, computations and power usage, and uses GPUs, an

expensive device to process data. Such needs make the accessibility of deep learning

to everyone a considerable challenge, and then may not reach its objective which is

assisting people in their work and daily life. Indeed, if data is a key limiting factor

for public research institutions, computations also are. By reducing the resources

needed to find the correct hyperparameters for a given task, we would make a step

forward more democratization of deep learning for everyone.

2. Technical challenges:

Technical challenges may occur when using deep learning solutions in real time ap-

plications or implementing them on limited resources embedded systems. Indeed,

to process a given input, the algorithm needs to read deep learning model’s param-

eters from a memory, and computes some basic operations using these parameters

and the input. Due to the large memory needed to store deep learning model

and computations needed to process data, the algorithm needs to read model’s

parameters from the memory numerous times, to compute a large number of oper-

ations and to store the result of each operation in the memory. Therefore, such an

algorithm requires a significant amount of time to process data. To achieve a state-

of-the-art performance, deep learning models rely on a large number of parameters

and computations which increases the time needed to process a given input. Thus,

using deep learning methods for real time applications can be challenging.

Another technical challenge when considering real time applications would be in-

cremental learning (also called continuous learning or curriculum learning), a learn-

ing scenario in which new pieces of information are learned through time, building

over previously acquired knowledge. Despite the fact that deep learning models are

brain inspired, they are not adapted to incremental learning, since when learning

19

new information, models are adapted to better represent the new learned data,

and then previously learned knowledge is destroyed. Note that this phenomenon is

referred to as “catastrophic forgetting” in the literature [46, 17]. Thus, deep learn-

ing may not be adapted to a real time application during which data streaming

continuously provides previously unseen information.

Embedded systems with limited resources such as smartphones or more low level

ones such as Field-Programmable Gate Arrays (FPGAs) or Application Specific

Integrated Circuit (ASIC) need to address some technical challenges in order to

use deep learning solutions. Indeed, embedded systems have limited computational

resources and scarce amounts of memory. As a consequence, embedded systems

are not adapted to store large parameters sets required by modern deep learning

models, and cannot perform the extensive computations required by the model in

a reasonable time. Finally, such embedded systems are battery-powered, which

further limits the feasibility of implementing algorithms with intensive memory

access and computations. For all these reasons, implementing state of the art deep

learning applications on embedded systems is currently challenging.

3. Scientific challenges:

Deep learning is mostly an experimental field, where results and improvements are

reached thanks to experimental protocols. Therefore, finding the deep learning

architecture that achieves the best performance, can be a demanding search where

all possible structures need to be tested.

A scientific challenge would be to describe deep learning models using some math-

ematical assumptions. Indeed, such assumptions allow to understand deep learn-

ing models, and then accelerate model’s structure search, since they assert which

structure is more relevant to achieve the best performance for a given task. A

mathematical assumption can be used to define the perfect number of artificial

neurons in a deep learning model, the way they are initially connected (before

learning), the number of iterations the model needs to process and learn the same

data, and the algorithm used during learning to refine neurons connections. Thus,

it avoids to test all possible cases for each parameter, which drastically accelerates

and eases the model structure search.

Usually, an artificial neural network (or deep learning model) contains a large num-

ber of neurons and connections, which makes it a complex structure, difficult to

understand or to mathematically describe. A relevant approach to ease under-

standing deep learning models is to rely on models containing fewer parameters

and computations. However, obtaining a comparable state-of-the-art performance

using a less complex model is a real challenge. Moreover, it is a necessary criterion,

20 CHAPTER 1. INTRODUCTION

otherwise a not suitable structure with lower performance will be studied, giving

no information about the suitable model.

In this thesis, we focus on reducing memory and computations of deep learning

since they are the two main limitations that beget the different challenges, and tackle

the problem of predicting and learning on chip. We review and introduce some methods

that aim at reducing deep learning model size and computations, and others able to

perform incremental learning, in order to address all the challenges discussed above.

The outline of this Ph.D. thesis is as follows:

• First, in Chapter 2 we introduce all the notions required to describe our works and

other related ones. In more details, we first introduce the different used datasets,

then we define basic functions used to build neural network structures, and finally

we explain the learning process.

• Then, in Chapter 3 we focus on quantizing neural networks and reducing their size.

More precisely, we first review state-of-the-art methods that aim at quantizing and

reducing neural networks size, then we introduce our contribution and compare it

to other methods. Next, we present a hardware architecture to implement our

contribution on an FPGA, and finally we study the effect of reducing the energy

consumption of a device on deep learning performance.

• Next, in Chapter 4 we discuss incremental learning. Actually, we review state-of-

the-art incremental learning methods, then we present and compare our contribu-

tion with other methods. Finally, we propose a hardware architecture to implement

our method on FPGA to obtain an incremental learning on chip solution.

• Finally, in Chapter 5 we summarize the different contributions of this thesis, con-

clude and discuss future work.

In this manuscript, we use a Xilinx Ultra Scale Vu13p (xcvu13p-figd2104-1-e) Field

Programmable Gate Array (FPGA) as a reference to evaluate hardware implementations.

It is worth to mention that such a choice is made since this is one of the most recent

and largest FPGAs available in our lab, able to compete with latest CPUs and GPUs.

The scientific contributions that were written during this PhD are:

• Hacene, G. B., Gripon, V., Farrugia, N., Arzel, M., Jezequel, M. (2017, February).

Finding All Matches in a Database using Binary Neural Networks. In COGNITIVE

21

2017: The Ninth International Conference on Advanced Cognitive Technologies

and Applications (pp. 59-64).

• Medjkouh, S., Xue, B., Hacene, G. B. (2017, February). Sparse Clustered Neural

Networks for the Assignment Problem. In COGNITIVE 2017: The Ninth Inter-

national Conference on Advanced Cognitive Technologies and Applications (pp.

69-75).

• Hacene, G. B., Gripon, V., Farrugia, N., Arzel, M., Jezequel, M. Budget Restricted

Incremental Learning with Pre-Trained Convolutional Neural Networks and Binary

Associative Memories. In SIPS 2017: International Workshop on Signal Processing

Systems.

• Hacene, G. B., Gripon, V., Farrugia, N., Arzel, M., Jezequel, M. Incremental

Learning on Chip. In GlobalSIP 2017: Global Conference on Signal and Informa-

tion Processing.

• Marques, M. R. S., Hacene, G. B., Lassance, C. E. R. K., Horrein, P. H. (2017,

July). Large-Scale Memory of Sequences Using Binary Sparse Neural Networks on

GPU. In High Performance Computing Simulation (HPCS), 2017 International

Conference on (pp. 553-559). IEEE.

• Gripon, V., Hacene, G. B., Lowe, M., Vermet, F. (2018, April). Improving Accu-

racy of Nonparametric Transfer Learning Via Vector Segmentation. In 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

(PP. 2966-2970). IEEE

• Hacene, G. B., Gripon, V., Arzel, M., Farrugia, N., Bengio, Y. (2018). Quan-

tized guided pruning for efficient hardware implementations of convolutional neural

networks. arXiv preprint arXiv:1812.11337.

• Hacene, G. B., Lassance, C., Gripon, V., Bengio, Y. (2019). Attention Based

Pruning for Shift Networks.

• Bontonou, M., Lassance, C., Boukli Hacene,G., Gripon, V. INTRODUCING

GRAPH SMOOTHNESS LOSS FOR TRAINING DEEP LEARNING ARCHI-

TECTURES. In 2019 IEEE Data Science Workshop (DSW).

• Boukli Hacene, G., Gripon, V., Farrugia, N., Arzel, M., Jezequel, M. (2018).

Transfer Incremental Learning Using Data Augmentation. Applied Sciences, 8(12),

2512.

22 CHAPTER 1. INTRODUCTION

• Hacene, G. B., Leduc-Primeau, F., Soussia, A. B., Gripon, V., Gagnon, F. Train-

ing Modern Deep Neural Networks for Memory-Fault Robustness. In 2019 IEEE

International Symposium on Circuits and Systems (ISCAS).

• Boukli Hacene, G., Gripon, V., Farrugia, N., Arzel, M., Jezequel, M. (2019).

Efficient Hardware Implementation of Incremental Learning and Inference on Chip.

In 2019 IEEE International NEWCAS Conference.

Chapter 2

Basics in Deep Learning

In this chapter, we introduce some notions and definitions related to our domains of

interest. We first introduce deep neural networks (DNNs). We then explain how to

apply them to challenging computer vision datasets introduced in Section 2.1.

Since a DNN architecture can be complex and contains numerous layers and func-

tions, we first define in Section 2.2 the basic DNN components, using formalism of tensor

spaces. Next, we introduce in Section 2.3 how to assemble such components to obtain

neural networks, and some classical DNN architectures. We finally present the learning

and inference processes and discuss performance on the abovementioned datasets. Note

that here we only provide a general overview of the field, while focusing in particular on

the concepts that will be further developed in the next chapters. The reader can refer

to textbooks such as [4] for generalities in machine learning, as well as [20] for a more

in-depth presentation of deep learning.

2.1 Datasets

We present in this Section the datasets used to perform experiments in Chapters 3 and 4.

2.1.1 Training, Validation and Test Sets

To assess the performance of a classifier, it is common to rely on a methodology that

consists in using two datasets made of pairs of the form (input image, corresponding

label). The first one, called training set is used to train the classifier. The second one,

called validation set, is used to assess the ability of the trained classifier to generalize

23

24 CHAPTER 2. BASICS IN DEEP LEARNING

to novel unseen inputs. Even though this is not the main motivation of this document,

it is worth mentioning that this methodology, often referred to as “crossvalidation” in

the literature, is more and more criticized in the community. As a matter of fact, it

has been known for years that trained architectures that appear to achieve very good

performance in generalization, as assessed using the validation set, can be very easily

fooled using imperceptible changes of their inputs [64]. This can be easily explained by

the fact deep learning architectures, which are the state-of-the-art classifiers on these

datasets, are made of a huge number of parameters that are likely to capture biases of

the training set. These biases are likely to also exist in the validation set, since in most

cases both are sampled from the same distribution.

There is a third type of dataset called test set. Usually the training set is used to

train the classifier, the validation set is used to test the classifier’s generalisation (ie. if

the classifier performs well on other unseen data), and the test set is an unlabelled and

unknown dataset classified and labelled by the classifier. Note that in some cases, the

validation set and test sets are the same. The generalisation can be defined as the ability

of a classifier to avoid over-fitting [115] when considering the same data distribution into

validation and test sets as into training set. On another hand, the generalisation can be

defined as the robustness of a classifier against adversarial examples [112] when validation

and test set distributions are different from training set one (eg. using a low coast camera

during classification phase that provides a low quality images comparing to high quality

training images, specially when considering mobile applications ruining on embedded

systems). In such a scenario, the generalisation is more challenging since the classifier

is not well adapted to this new and unseen data distribution. To measure how good the

generalisation is, a measurement called accuracy is used, and which represents the ratio

of number of correct predictions to the total number of input samples [4]. Note that in

some cases, the accuracy reported is refereed to by top-k accuracy, which means that if

the expected answer matches one of the classifier’s k highest probability answers, then

it is considered as a correct prediction.

2.1.2 CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 are datasets containing colored tiny pictures of size 32×32 [50].

Because they are encoded using the three main colors, a picture in one of these datasets

can be represented as a tridimensional tensor containing a total of 32 × 32 × 3 = 3072

dimensions. CIFAR10 contains 10 classes, each one made of 5000 images for training

and 1000 images for testing. CIFAR100 contains 100 classes, each one made of 500

images for training and 100 images for testing. These datasets are widely accepted

2.1. DATASETS 25

as an interesting compromise between a toy dataset, in the sense that the images are

small, and as such training architectures can be fast, and a competitive one, as the

best performance reported in the state-of-the-art is respectively of 97.6% accuracy for

CIFAR10 [122] and only 85, 42% for CIFAR100 [63].

2.1.3 ImageNet (ILSVRC 2012)

ImageNet is a large visual dataset used in visual object recognition research. It is made

of more than 14 millions of images and 20, 000 classes. ILSVRC2012 [85] is a subset

of Imagenet that contains 1, 000 classes, more than 1, 200, 000 images for training and

50, 000 images for testing. Contrary to CIFAR10 and CIFAR100, the images have various

sizes which are typically of the order of a 1,000 pixels in both width and height. It is

common to resize the input images to 200 to 300 pixels square inputs that are being

processed by the classifier. Despite being a few years old, ILSVRC remains a highly

competitive benchmark that requires a processing time of the order of days to weeks to

be trained. As such, it is considered by most as a reference in vision benchmarks.

2.1.4 ImageNet1, ImageNet2 and ImageNet50

In this document we introduce two other datasets extracted from Imagenet. We call

them ImageNet1 and ImageNet2. Both contain 10 classes, distinct between themselves

and from that in the ILSVRC dataset. Each class contains about 900 images for training

and 100 for testing. In some cases, we also make use of ImageNet50, built using the same

idea, but containing a total of 50 classes.

2.1.5 AudioSet

AudioSet is a large dataset made of 10 second sound clips extracted from YouTube

videos [18]. It contains more than 2 millions of samples which correspond to 5.8 thou-

sands of hours of audio split into 527 classes. AudioSet is sometimes presented as the

equivalent of ImageNet for sound recognition.

Let us point out that these datasets are but a small fraction of the plethora that can

be found freely online. In order to be fair in comparisons, it is crucial that different

methodologies are evaluated against using the same benchmarks. This is why all the

results presented in this manuscript use these few selected datasets.

26 CHAPTER 2. BASICS IN DEEP LEARNING

2.2 Main Elements

Deep Neural Networks are complex mathematical objects that are built by assembling

simpler elementary blocks. This is why we first introduce these basic blocks. Namely, in

this section we introduce some activation functions, loss functions and common layers.

2.2.1 Activation Functions

An activation function f is a non-linear and differentiable function usually applied to

a layer output. Its main role is to introduce non-linearity between layers, and thus to

avoid factorizing the whole network into a single linear operation. Indeed, recall that

the algebra of tensors is associative.

Common activation functions used in a neural network include:

• Relu or ReLU (Rectified Linear Unit): the input x is a scalar, and the output x′

is computed as follows:

f(x) = x′ = max(0, x).

• Sigmoid: the input x is a scalar, and the output x′ is computed as follows:

f(x) = x′ =
1

1 + e−x
.

• tanh: the input x is a scalar, and the output x′ is computed as follows:

f(x) = x′ =
ex − e−x

ex + e−x
.

• Softmax: the input X = {x1, x2, . . . , xD} is a vector with dimension D, and the

output X′ = {x′1, x′2, . . . , x′D} is a vector with same dimension computed as follows:

f(X)i = x′i =
e

xi
T

∑D
j=1 e

xj

T

.

where T is called the softmax temperature. Note that when the temperature tends

to 0, the softmax tends to a hard maximum indicator.

2.2.2 Loss Functions

Let us consider the DNN’s output XL = {xL,1, xL,2, . . . , xL,Y } associated with the input

X0 ={x0,1, x0,2, . . . , x0,D} through a given DNN. Here, D refers to the dimension of the

2.2. MAIN ELEMENTS 27

input, Y to that of the output (typically Y is the number of classes in the problem), and

L to the number of layers in the architecture. A loss function g (also referred to as cost

function) evaluates how far this output is from an expected target Y = {y1, y2, . . . , y,Y }.
In other words, it measures an error when predicting the class of a given input.

Common loss functions used to train neural networks are:

• Mean Square Error:

g(XL,Y) =
1

Y

Y
∑

i=1

(xL,i − yi)
2.

• Cross Entropy:

g(XL,Y) = − 1

Y

Y
∑

i=1

yi log(xL,i).

• Binary Cross Entropy:

g(XL,Y) = − 1

Y

Y
∑

i=1

yi log(xL,i) + (1− yi) log(1− xL,i).

• Hinge loss:

g(XL,Y) =
1

Y

Y
∑

i=1

max(0, 1− yixL,i).

Mean Square Error (MSE) was originally the first of these losses to be introduced.

It very intuitively measures the L2 distance between the output of the DNN and the

expected target. A key problem with using MSE is that it tends to slow the training

procedure when the error becomes small. However, cross entropy, binary cross entropy

and hinge loss have the advantage of accelerating the convergence, in particular when

the error becomes small. This is due to the properties of the gradients of these losses, as

for instance cross entropy can only be used in conjunction with a normalization factor

on the output, such as using the softmax activation.

2.2.3 Layers

The layer indexed by l is a combination of one (or more) linear function(s) h and one

non-linear (or activation) function f . It computes an output Xl+1 using an input Xl,

its learnable weights Wl and biases Bl as follows:

Xl+1 = f(h(Xl,Wl) +Bl).

28 CHAPTER 2. BASICS IN DEEP LEARNING

The layer type is defined by its linear function h. Note that l represents the index

of the layer in the neural network, where 1 ≤ l ≤ L, and L is the total number of

layers. Note that for readability reasons, we disregard both the bias parameters Bl and

activation functions f in the following definitions.

The most common layers used in the literature are:

Fully Connected layers

Given an input vector Xl ∈ R
Cl and using the learnable weight parameters Wl ∈

R
Cl×Cl+1 , the fully connected layer (FC) computes the output Xl+1 ∈ R

Cl+1 as follows:

xl+1,c′ =

Cl
∑

c=1

xl,iwl,c,c′ , 1 ≤ c′ ≤ Cl+1.

Convolutional layers

In 2D convolutional layers, an input tensor Xl is typically tridimensional: Xl ∈
R
Cl×Hl×Rl . Here, Cl represents the number of input channels (also called feature maps),

and H and R represent respectively the length and the width of a feature map Xl,c,Hl,Rl

where 1 ≤ c ≤ Cl. The weight parameters Wl ∈ R
Cl+1×Cl×S1l×S2l are referred to as

filters, where Cl+1 represents the number of output channels, and S1l × S2l represents

the size of a kernel Wl,c′,c,S1l,S2l , where 1 ≤ c ≤ Cl and 1 ≤ c′ ≤ Cl+1. The convolutional

layer computes output feature maps Xl+1 ∈ R
Cl+1×Hl+1×Rl+1 as follows:

xl+1,c′,h′,r′ =

Cl
∑

c=1

S1
∑

s1=1

S2
∑

s2=1

xl,c,s1+h′,s2+r′wl,c′,c,s1,s2.

Note that unless otherwise mentioned, in this manuscript convolution refers to 2-

dimensional (2D) convolution.

Depthwise Separable Convolution layers

Depthwise Separable Convolution is a depthwise convolution followed by a pointwise

convolution. In a depthwise operation, the convolution is applied on one channel at a

time. Given an input tensor Xl ∈ R
Cl×Hl×Rl , depthwise convolution uses the filter

Wl ∈ R
Cl,S1l×S2l to compute an output tensor XPl ∈ R

Cl×HPl×RPl as follows:

xpl,c,h′,r′ =

S1
∑

s1=1

S2
∑

s2=1

xl,c,s1+h′,s2+r′wl,c,s1,s2.

2.2. MAIN ELEMENTS 29

The pointwise convolution is a standard convolution (as defined below) when kernel

size S1× S2 = 1× 1. Thus, the pointwise convolution takes XPl as input and uses the

filter WPl ∈ R
Cl+1×Cl×1×1 to compute the output Xl+1 ∈ R

Cl+1×Hl+1×Rl+1 .

Batch Normalization layers

Note that because we did not need it before, we disregarded batches in the previous

definitions. But typically, multiple inputs are processed in parallel in the architecture,

adding a dimension to all input and output tensors. Given a batch of M input tensors

{X1
l ,X

2
l , . . . ,X

M
l } where Xm

l ∈ R
Cl×Hl×Rl and 1 ≤ m ≤M , a batch normalization [41]

layer (BN) normalizes the input layer (the batch) by adjusting and scaling the input

tensors Xm
l , and then computes output tensors Xm

l+1, as follows:

µl,c,h,r =
1

M

M
∑

m=1

xml,c,h,r

σ2
l,c,h,r =

1

M

M
∑

m=1

(xml,c,h,r − µl,c,h,r)
2

x̄ml,c,h,r =
xml,c,h,r − µl,c,h,r√

σ2 + ǫ

xml+1,c,h,r = γl,c,h,rx̄
m
l,c,h,r + bl,c,h,r,

where ǫ is a small positive number used for numerical stability, and Γl ∈ R
Cl×Hl×Rl and

Bl ∈ R
Cl×Hl×Rl are learnable parameters optimized during learning process.

BN layers have been introduced for various reasons [41]. For one, they allow the

outputs of a given layer to be normalized, avoiding explosion effects that considerably

harden the training of the architecture. Also, they introduce competition between inputs,

which is empirically demonstrated to improve the accuracy.

Pooling

A pooling layer aims at downscaling a given input Xl. Pooling layers can be used to

avoid overfitting since they compute large scale features, and then consider more general

and abstract representations of data. It is commonly thought that such a process helps

optimizing deeper layers parameters, since the deeper a layer is, the more abstract data

used to optimize the layer parameters are. But probably the most compelling argument

to use downsampling is to reduce the number of operations required in deep layers, that

still typically concentrate most of them.

30 CHAPTER 2. BASICS IN DEEP LEARNING

2.3 Deep learning

Deep learning is a set of machine learning methods using Deep Neural Networks (DNNs)

to model, learn and process data at a high level of abstraction. In this section we will

introduce some DNNs and Convolutional Neural Networks (CNNs) architectures. We

will also discuss the learning process of DNNs and how their parameters are modified

and tuned to better complete a specific task.

2.3.1 Deep Neural Networks

Originally, neural networks were introduced as a cascade of layers chaining linear and

non-linear functions [54, 55, 84, 33]. Recently, novel and more complex architectures have

been proposed to further increase the accuracy while reducing the number of operations

and parameters [94, 30, 39, 121].

In [13], the authors claim that a two-layer neural network can be used as a universal

function approximator. However, to end up with such an approximator, the number

of neurons in the first layer (or hidden layer) should tend to infinity. Usually, a DNN

contains more than two layers with finite number of neurons. In this manuscript, we only

consider some DNN architectures such as multi-layer perceptrons (MLPs) or CNNs, and

omit other architectures such as Recurrent Neural Networks or Deep Belief Networks.

Multi Layer Perceptron

A multi layer perceptron (MLP) is a DNN made only of fully connected layers [36],

and in which we usually refer to its internal layers as hidden layers and its last layer

as output layer (cf. Figure 2.1). An MLP can achieve an accuracy of 99.2% on the

toy dataset MNIST [98], which is comparable to the state-of-the-art methods. However,

such a DNN architecture shows quickly some limitations when considering more chal-

lenging and complex datasets. For instance, an MLP achieves an accuracy of 72.7% on

CIFAR10 at most [9], where other CNN based methods can easily reach and exceed 90%

of accuracy. Thus, in recent DNN architectures, an MLP is used at the end of a CNN

as a classifier and not as the DNN itself [51, 89].

Convolutional Neural Network

As a basic definition, a convolutional neural network (CNN) is a DNN made of

convolutional layers. A CNN can also contain FC layers for classification purpose and

pooling layers to downscale data. One of the earliest CNN that was introduced is LeNet-

2.3. DEEP LEARNING 31

Figure 2.1: Multi Layer Perceptron (MLP)

Figure 2.2: LeNet-5 architecture. Note that this figure is originally introduced in [55].

5 [55] which was used to classify handwritten digits and letters. LeNet-5 architecture is

shown in Figure 2.2 and can be described as follows:

f5 ◦ h7 ◦ f4 ◦ h6 ◦ f3 ◦ h5 ◦ h4 ◦ f2 ◦ h3 ◦ h2 ◦ f1 ◦ h1,

where h1, h3 and h5 represent convolutional layers, h2 and h4 pooling operations, h6 and

h7 fully connected layers, f1 to f4 Relu and f5 a softmax activation. Based on LeNet-5

architecture, Krizhevsky et al. [51] propose Alexnet, a CNN architecture where layers

are cascaded and which generates a surge of interest in the field since it represents the

first CNN based solution that has won Imagenet competition (cf. Figure 2.3). In [89],

the authors propose to improve Alexnet, and introduce VGG, another CNN architecture

(cf. Figure 2.4). However, these CNN architectures show a limitation in accuracy even

when adding more layers. To avoid such a drawback, recent works focus on different

types of CNN architectures. In [30], the authors introduce Residual Networks (ResNet),

based on a CNN architecture that uses residual connections, also referred to as skip

connections, between different layers, so an upper layer can have one or more inputs

coming from lower layers, and then providing more information to the upper layer (cf.

Figure 2.5). ResNets containing hundreds of layers can be efficiently trained.

32 CHAPTER 2. BASICS IN DEEP LEARNING

Figure 2.3: Alexnet architecture [51]. Note that “dense” in the figure refers to fully

connected layer.

Figure 2.4: VGG architecture. Note that this figure is originally introduced in [89].

Figure 2.5: Comparison between a standard CNN component and a residual component.

2.3. DEEP LEARNING 33

Table 2.1: Comparison of accuracy between standard CNN architectures (Alexnet, VGG)

and more recent and complex CNN architectures (ResNet, DenseNet, NASNet) on CI-

FAR10 and ImageNet ILSVRC2012.

Network CIFAR10 ImageNet

Top-1 Top-5

AlexNet [51] 77.22% 56.6% 80.2%

VGG16 [89] 92.64% 71.93% 90.67%

ResNet-50 [30] 95.3% 79.26% 94.75%

DenseNet-121 [39] 95.04% 76.39% 93.34%

NASNet [63] 97.6% 82.7% 96.2%

Hung et al. [39] introduce Densely Connected Convolutional Networks (DenseNets),

also based on a CNN architecture in which the input of an upper layer is the concatena-

tion of all the outputs of lower layers (cf. Figure 2.8). Zoph et al. [122] propose to search

for a block to build an efficient neural network architecture trained on a small dataset

and then use this block to define a bigger DNN architecture trained on a larger dataset.

Basically, the authors search for the best block (or cell) on CIFAR10, and then use the

obtained cell on ImageNet dataset to define a more complex DNN containing more copies

of this cell, each with its own parameters (cf. Figure 2.6 and Figure 2.7). Currently,

NASNet architectures are considered as the state of the art in computer vision tasks

such as ImageNet classification challenge [85], outperforming other CNN architectures,

especially the simply chained layers based ones as depicted in Table 2.1.

It is worth mentioning that CNNs are getting more and more standard in vision

benchmarks, whereas MLP being only used in other domains where no regular structure

of signals is available. There are key properties of CNNs, that are going to be very

important for the remaining of this document:

1. Convolutional layers can be applied to inputs with varying sizes. As such, it is

possible to train CNNs using high resolution images and to deploy on smaller ones,

or conversely. In other words, the number of parameters in convolutional layers is

independent on both the input and output spatial dimensions of the images (but

not of the number of input feature maps).

2. Most architectures introduced in the literature trade the spatial resolution for a

higher number of feature maps, the deeper the layer is in the architecture. As such,

layers close to the input typically contain a few number of feature maps, where

34 CHAPTER 2. BASICS IN DEEP LEARNING

Figure 2.6: Overview of NASNet architecture where the obtained cells (normal cell and

reduction cell depicted in Figure 2.7) on CIFAR10 are transfered to ImageNet. We notice

that for ImageNet the authors use more reduction cells due to the size of images which

is bigger than CIFAR10’s. Note that this figure is originally introduced in [122].

2.3. DEEP LEARNING 35

Normal Cell Reduction Cell

hi

hi-1

...

hi+1

concat

avg!

3x3

sep!

5x5

sep!

7x7

sep!

5x5

max!

3x3

sep!

7x7

add add

add add add

sep!

3x3

iden!

tity

avg!

3x3

max!

3x3

hi

hi-1

...

hi+1

concat

sep!

3x3

avg!

3x3

avg!

3x3

sep!

5x5

sep!

3x3

iden!

tity

iden!

tity

sep!

3x3

sep!

5x5

avg!

3x3

add add add addadd

Figure 2.7: Overview of the normal cell architecture (left), and reduction cell architecture

(right). Here sep refers to depth-wise separable convolution, max refers to max pooling

and avg refers to average pooling. Note that this figure is originally introduced in [122].

Figure 2.8: Overview of DenseNet architecture [39].

36 CHAPTER 2. BASICS IN DEEP LEARNING

layers close to the output may contain thousands of those. This adjustment can

be thought of as a way to avoid information bottlenecks.

3. The number of feature maps of each convolutional layer of a given DNN is consid-

ered as a hyperparameter. In many cases, authors scale this number proportionally

for each layer, in order to adjust the accuracy vs. memory trade-off. These aspects

will be closely looked at in the next chapters of this document.

4. Throughout numerous experiments, authors observed that it is often better to use

more layers with smaller kernels for convolutions, rather than using larger kernels

with few layers. The theoretical reasons for this finding are still highly unclear.

5. Convolutions are in most cases used jointly with data augmentation techniques,

in which the training set is artificially increased by making small shifts, rotations

and/or flips of input images.

2.3.2 Learning Process

The learning process objective is to minimize the loss of a given architecture on the

training set. To do so, batches of inputs are processed, the loss function is computed

on these inputs, and the result gradient error is back propagated throughout the whole

architecture to update each weight concurrently [103, 84]. This process is typically split

into two main parts: feed forward (or inference), where the output is computed for

each input, and back propagation, where the weights are updated. These two steps are

detailed in the following paragraphs.

2.3. DEEP LEARNING 37

Feed Forward

Given an input data X0 and its corresponding label Y, the feed forward processes

the input data through the L layers of the neural network, and obtains the neural network

output XL. The loss function g(XL,Y) is then used to evaluate the error made by the

neural network relatively to the label Y. Note that when considering a batch of M input

data, the loss function computes the relative error as follows:

ḡ =
1

M

M
∑

m=1

g(Xm
L ,Ym).

Back Propagation

The learning process aims at modifying the DNN’s parameters to reduce as much

as possible the relative error computed by the loss function. To do so, gradient w.r.t w,

denoted δg
δw is used to update and optimize parameters using a gradient-descent based

optimization algorithm at a learning rate α as follows:

wnew = wold − α
δg

δwold
.

Usually, the gradients δg
δWl

are computed using the gradients w.r.t outputs of the

next layer l + 1 as follows:

δg

δWl
=

δXl+1

δWl

δg

δXl+1
.

On another hand, we have:

Xl+1 = f(h(Xl,Wl))⇒
δg

δXl
=

δf(h(Xl,Wl))

δXl

δg

δXl+1
.

This means the gradient calculation is back propagated from the last layer to the

first layer of the neural network, in opposition of the feed forward process.

2.3.3 Classification Inherent Difficulties

Classification can be seen as a regression problem, in which the outputs are finite. Find-

ing a solution that is able to generalize well is complex. And worse, in many cases, it is

preferred a solution that contradicts some provided examples, if it yields more regularity.

38 CHAPTER 2. BASICS IN DEEP LEARNING

In the more general context of machine learning, understanding what is a good gen-

eralization is an open challenge. As mentioned previously, most studies in the literature

consider cross-validation a good proxy for assessing this generalization.

In this ambiguous context, a lot of techniques and methods introduced in the litera-

ture aim at improving generalization by constraining the structural properties of a DNN

function, or by hardening the training process. Some examples include Dropout [90],

where some output values are erased at random during the feed-forward step or L2-

regularization, where an additional term is added to the loss during training to penalize

weights that diverge from 0.

In the literature, the overfitting refers to trained architectures that perform very well

on the training set, but fail at generalizing to the test set. When using fully connected

layers, this is often due to the fact they contain too many parameters, which allows the

DNN to capture biases of the training set. It is important to point out that, due to the

highly constrained nature of convolutional layers, increasing the number of parameters

in convolutional layers typically does not create overfitting. This interesting property of

convolutional layers is even more true when making use of data augmentation [2].

Chapter 3

Neural Networks and Low

Resources Systems

Contents

2.1 Datasets . 23

2.1.1 Training, Validation and Test Sets 23

2.1.2 CIFAR10 and CIFAR100 . 24

2.1.3 ImageNet (ILSVRC 2012) . 25

2.1.4 ImageNet1, ImageNet2 and ImageNet50 25

2.1.5 AudioSet . 25

2.2 Main Elements . 26

2.2.1 Activation Functions . 26

2.2.2 Loss Functions . 26

2.2.3 Layers . 27

2.3 Deep learning . 30

2.3.1 Deep Neural Networks . 30

2.3.2 Learning Process . 36

2.3.3 Classification Inherent Difficulties 37

3.1 Context

As we have seen in chapter 2, during the last few years Deep Neural Networks (DNNs)

have made considerable progress and became state-of-the-art in various domains such

39

40 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

as natural language processing, sound/music classification, or computer vision. In par-

ticular, Convolutional Neural Network (CNN) architectures have continuously been im-

proved to tackle new challenges such as image classification, object detection or face

recognition, even to the point they are considered on par with human performance for

some of these problems. However, such performance comes with a high cost in terms

of the number of trainable parameters (memory) and the number of operations (com-

putational complexity). As a consequence, the implementation of CNNs on embedded

systems with limited resources is a difficult task.

In order to ease implementation of CNNs on resource-limited devices, authors have

proposed several ways to reduce memory usage and/or number of operations. The

main approaches are as follows. Some authors aim at using high level approaches and

propose to use pruning techniques to reduce the number of connections in the architec-

tures [56, 62, 32, 107] as described in Section 3.3, or factorisation techniques to merge

several parts of DNN architectures [28, 105] as shown in Section 3.6. Other approaches

use lightweight neural network architectures [40], grouped convolutions [37, 86], or de-

compose convolutional operations into shift operations followed by a point wise con-

volution [104, 44, 23, 26] as shown in Sections 3.4 and 3.5. In other works, authors

propose to use low level approaches such as quantizing weight and/or activation val-

ues using n (n < 32) bits [101, 67, 118], up to the extreme cases where they become

ternary [57] (usually -1,0, +1) or even binary (usually −1 and +1) [11] as presented in

Section 3.2. Another way to reduce the neural network energy consumption consists in

reducing the input voltage of the embedded system [27] as discussed in Section 3.9. We

review the main ideas and concepts from these previous studies in Sections 3.2, 3.3, 3.4

and 3.6. Next, we describe the contributions that were made during the PhD in Sec-

tions 3.5, 3.8 and 3.9. Notably, we introduce a critical comparison of all the different

methods in Section 3.7. In particular, in the literature and most of methods discussed in

this manuscript, the authors compare the accuracy and number of parameters of their

method and the baseline. However, such a process gives only two points that cannot

be used to perform a fair comparison. A good comparison would be to compare the

accuracy for the same number of parameters and vice versa as discussed in Section 3.7.

3.2 Quantization

One of the most prominent approach in the field of compression of DNNs is quantization.

In 2015, Courbariaux et al. introduce BinaryConnect (BC) [11] to binarize CNNs weights

W. This method constrains the weights to be either +1 or −1 during inference. As such,

3.2. QUANTIZATION 41

Table 3.1: Comparison of obtained accuracy of full precision Alexnet, BC, BWN, BNN

and XNOR-Net on ImageNet ILSVRC2012.

Full precision BC BWN BNN XNOR-Net

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

56.6% 80.2% 35.4% 61.0% 56.8% 79.4% 27.9% 50.42% 44.2% 69.2%

memory footprint is reduced and it is possible to replace all multiplication-accumulation

operations by simple additions (or subtractions). BC uses the sign function to transform

any real number to its binary quantized value (+1 or −1):

wb =

{

1 if w ≥ 0

−1 otherwise.

The method works as follows. During the training process, the inference is per-

formed using the binary version of weights Wb. However, the gradients are applied on

the non-quantized values W.

In [12] the same authors propose to extend this principle to activations. The pro-

posed method is called Binary Neural Network (BNN). Introduced in [79], XNOR-Net

is another method in which both weights and activations are binarized. The authors

propose a method named Binary Weight Network (BWN) in which they attribute to

each layer a scaling factor αl and constrain weight values Wl to be either αl or −αl,

where αl = E(|Wl|), and Wb
l = αl × sign(Wl). They do similarly with the activa-

tions. The rest of the training process is performed the same way as for the BC method.

Binarizing both weights and activations reduces memory and replaces multiplication-

accumulation operations by XNOR operations followed by a bit-counting. In Table 3.1,

we report the results from [79] showing that BWN achieves an accuracy comparable to

the full precision network, significantly outperforming BC. It also shows that XNOR-Net

achieves a better accuracy than BNN, and thus supports the fact adding a scaling factor

is important to achieve a better accuracy.

In the same vein, Li et al. [57] propose Ternary Weight Networks (TWN) and

introduce a third quantized value (0) to improve the accuracy. For each layer l, a

symmetric threshold δl and a scaling factor αl are used, and then weights are quantized

into {−αl, 0, αl} as follows:

42 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Table 3.2: Comparaison of obtained accuracy of full precision ResNet-18, BWN, TWN

and TTQ on ImageNet ILSVRC2012.

Full precision BWN TWN TTQ

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

69.6% 89.2% 60.8% 83.0% 65.3% 82.6% 66.6% 83.6%

wt
l,i =

αl if wl,i > δl

0 if |wl,i| ≤ δl

−αl if wl,i < −δl,

where δl = 0.7×E(Wl), αl = E(W∗
l) and W∗

l = {wl,i, |wl,i| > δl}.

In [120], the authors use Trained Ternary Quantization (TTQ) in which each layer

l is associated with two scaling factors αp
l and αn

l for positive and negative weights,

and a threshold δl, which are all used to quantize weight values Wl into {αn
l , 0, α

n
l }. In

addition, they propose to learn these scaling factors during the training phase. Table 3.2

shows that adding a third value and thus a second bit to quantize weights can significantly

improve accuracy. We also observe that learning scaling factors is beneficial to the

accuracy. Tables 3.2 and 3.1 show that it is more difficult to binarize small and optimized

architectures such as ResNet than large and non optimized architectures such as AlexNet.

Indeed, AlexNet is the first neural network used in the ImageNet challenge and generated

a surge of interest in the field, but it is a large neural network architecture that may

contain extra parameters, and thus its binarization (or quantization) is more easier.

These methods allow to scale down to 1 or 2 bits weight and activation values. How-

ever, the gradient and error values computed during backwards propagation as well as

the weight updates are still using 32-bit Floating Point (32-FP) precision (cf. Figure 3.3:

a). The reason is that gradient values dW can be much smaller than W, thus a 32-FP

is needed to perform the addition dW+W, and to achieve a good accuracy [73, 49] (cf.

Figure 3.1). On the other hand, other approaches focus not only on quantizing weights

and activations during inference, but also on gradients and errors during backward prop-

agation. Micikevicius et al. [67] introduce Mixed Precision Training (MPT), in which

they use IEEE Half precision 16-bit Floating Point format (16-HFP) (cf. Figure 3.3: b)

to perform quantization. Note however that multiply-accumulate operations results are

still encoded using 32-FP format. As shown in [67] and depicted in Figure 3.2, there are

some values below minimum presentable range of 16-HFP that are set to 0 when quan-

tizing, while a part of presentable range remains unused. Thus, the authors introduce a

loss-scaling method to scale up gradients dW and dX and limit the number of values set

3.2. QUANTIZATION 43

Figure 3.1: Overview of the distribution of values of weights, activations and gradient

values (or weight updates) at the first training epoch (blue) and last training epoch

(purple) of a ResNet architecture trained on CIFAR10. We see that gradient (or weight

updates) values are way smaller than weights, in particular at the end of training. This

figure is introduced in [49].

to 0 by using a larger part of 16-HFP presentable range. Dynamic Fixed Point (DFP)

method [14] uses an unusual format for quantizing values, with a 16-bit mantissa and a

shared exponent (cf. Figure 3.3: c), and a 32-FP format for results accumulation. Al-

though these methods focus on quantizing weights and activations during inference, and

gradients during back propagation, a 32-FP format is required for data accumulation.

Moreover, full precision 32-FP representation is used to update weights.

A more recent work [101] proposes to train a DNN using 8-bit Floating Point (8-FP)

quantizing format (cf. Figure 3.3: d) and a 16-bit Floating Point (16-FP) format for

data accumulation. More precisely, the authors propose to use chunk based accumu-

lation in which a long dot-product is divided into smaller equal size chunks. For each

chunk, accumulation is performed to get a partial sum. Then, an accumulation of these

partial sums is computed to get the final product value. The main idea is to add values

of comparable magnitudes together and to avoid adding a large number of small ones,

that would likely be considered as 0 in 8-FP. Table 3.3 compares and summarizes all

the methods introduced in this subsection. Table 3.3 shows that it is harder to bina-

rize activations than weight, and the accuracy drop is less significant when considering

AlexNet, since it is a large and non optimized neural network architecture. Moreover,

quantization methods need higher precision during training to perform well. Note that

in Table 3.3 the CNN baseline used to evaluate both TWN and TTQ is Resnet-18, and

to evaluate all other methods is AlexNet.

44 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Figure 3.2: Histogram of activation gradient values during the training phase of Multibox

SSD network [60] collected across all layers during 32-FP training. This figure was

originally introduced in [67].

3.3 Pruning

In deep learning, a pruning-based method is a method that eliminates some neurons

or connections according to a defined criterion in order to reduce the size of the neural

network. Such a method evaluates the importance of each neuron, prunes the less

important neurons and then finely tunes (i.e. retrains) the network. This concept has

generated a lot of interest. For instance, Li et al. [56] use the absolute sum
∑

|Wl,i,:,:,:|
to measure the importance of a filter Wl,i, then prune m filters with the smallest sum

values and their corresponding output feature maps. Kernels in the next layer that

are applied to pruned feature maps should also be removed since they are not used to

compute the next output feature map (cf. Figure 3.4). Luo et al. define ThiNet [62], a

pruning method which uses the importance of each feature map in layer l + 1 to prune

filters in layer l. Unlike in [56], where the importance of a filter (the operator) is used to

decide which feature map is pruned, ThiNet uses the importance of the output feature

map (which represents the input feature map of the next layer) to prune this feature

map and its corresponding filter. The idea is to try to approximate the output of layer

l+1 when using only a subset of input feature maps, and thus the non used input feature

maps can be pruned. Each input feature map in layer l+ 1 is computed using one filter

in layer l, hence when an input feature map is removed, the corresponding filter in layer

l can be pruned. Moreover, and as shown in [56], kernels in layer l + 1 that are applied

to the pruned feature maps are also removed. Finally, fine tuning is applied to recover

the neural network accuracy (cf. Figure 3.5).

3.3. PRUNING 45

(a) S 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0

Sign bit
8-bit exponent 23-bit mantissa

(b) S 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1

5-bit exponent 10-bit mantissa

S 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0

15-bit mantissa

(C) S 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1
S 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0

8-bit shared exponent

1 1 0 0 0 0 0 1

(d) S 1 1 0 1 1 0 0

5-bit exponent

2-bit
mantissa

Figure 3.3: Overview of the precision of a) IEEE-754 floating point (32-FP), b) IEEE-

754 half-floating point (16-HFP), c) dynamic fixed point (16-DFP), and d) 8 bit floating

point (8-FP) data formats.

Table 3.3: Comparison of obtained top-1 accuracy on ImageNet ILSVRC2012 of full pre-

cision baselines and different quantization methods. Here “Acc” refers to accumulation,

“Qan” to quantization method and “Net” to network.

Method Bit precision Top-1 accuracy (%) Net

W X dW dX Acc Baseline Qan

BC [11] 1 32 32 32 32 56.6 35.4 AlexeNet

BNN [12] 1 1 32 32 32 56.6 27.9 AlexeNet

BWN [79] 1 32 32 32 32 56.6 56.8 AlexeNet

XNOR-Net [79] 1 1 32 32 32 56.6 44.2 AlexeNet

TWN [57] 2 32 32 32 32 69.6 65.3 Resnet-18

TTQ [120] 2 32 32 32 32 69.6 66.6 Resnet-18

DFP [14] 16 16 16 16 32 57.4 56.9 AlexeNet

MPT [67] 16 16 16 16 32 56.8 56.9 AlexeNet

8-FP training [101] 8 8 8 8 16 58.0 57.5 AlexeNet

46 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Figure 3.4: Overview of a filter pruning method. When a filter is pruned, its correspond-

ing feature map and related kernels in the next layer are also removed. Note that this

figure was originally introduced in [56].

Yu et al. [111] focus on applying Infinite Feature Selection (Inf-FS) [83], a feature

ranking algorithm on the last DNN layer to obtain the importance score of each neuron.

These importance scores are then propagated through the neural network to obtain

the importance score of each neuron in each layer. The bottom ranked neurons are

pruned, their score importance are not propagated and the network is fine-tuned to

reduce accuracy drop (cf. Figure 3.6).

In [32], the authors introduce AutoML for Model Compression (AMC), a reinforce-

ment learning based method to perform channel pruning. This method uses a trainable

reinforcement learning agent which takes as input an embedding El from layer l, and

outputs a sparsity ratio SRl corresponding to channel pruning ratio in layer l. Then

using SRl, the layer l is compressed and layer l + 1 is processed. Finally, a reward

R = −error ∗ log(FLOPs) is computed and returned to the reinforcement learning

agent. Note that FLOPs represents the total number of multiplication-addition required

by a neural network to process data.

Yamamoto et al. [107] introduce Pruning Channels with Attention Statistics (PCAS),

a pruning method which uses a channel pruning technique based on attention statistics

by adding attention blocks to each layer. Starting from a pre-trained neural network,

the authors add for each layer l an attention block which receives feature map Xl and

outputs SVl, a scaling Cl dimensional vector. These attention blocks are trained without

updating the parameters of the pre-trained network, and then for each layer l, a channel

c is pruned if its corresponding scaling value SVl,c is lower than a defined threshold.

Table 3.4 aims at resuming and comparing different pruning methods introduced in this

subsection. It shows that it the accuracy drop is more significant when considering more

complex datasets. Moreover, such results give only two points that cannot be used to

fairly compare pruning methods with their corresponding baselines. In addition, such

baselines can be improved when using the same hyper-parameters as pruning methods.

3.3. PRUNING 47

prune weak filters

* … …*
Original

Model

* * ……
Pruned

Model

input of

layer � filters of

layer � input of

layer �+1

filters of

layer �+1

input of

layer �+2

fine-tuning

* * ……
Fine-tuned

Model

Figure 3.5: Overview of ThiNet method. First, on the first row are shown the least

important input feature map of layer l + 1, its corresponding kernels in the same layer,

and the corresponding filter in layer l (dotted boxes). Then on the second row, all weak

feature maps and their corresponding filters and kernels are removed. Finally on the

third row, a fine tuning is applied on the pruned model to recover accuracy. Note that

this figure was originally introduced in [62].

Table 3.4: Comparison of obtained top-1 accuracy, number of parameters (NP) and

pruning ratio (PR) on CIFAR10 (C10), CIFAR100 (C100) and ImageNet ILSVRC2012

(ImNet) of different pruning methods applied on ResNet (RN) and MobileNet (M-Net).

Method Network Dataset Baseline Pruning NP(M) PR

Pruned-B [44] RN-56 C10 93.04% 93.06% 0.73 13.7%

NISP [104] RN-56 C10 93.04% 93.01% 0.47 42.6%

PCAS [107] RN-56 C10 93.04% 93.58% 0.39 53.7%

AMC [32] RN-50 C10 93.53% 93.55% NA 60.0%

Pruned-B [44] RN-50 C100 74.40% 73.60% 7.83 54.2%

PCAS [107] RN-50 C100 74.66% 73.83% 4.02 76.5%

NISP [104] RN-50 ImNet 72.68% 71.79% 14.36 33.7%

PCAS [107] RN-50 ImNet 72.68% 72.64% 12.47 51.2%

Pruned-B [44] RN-34 ImNet 73.23% 72.52% 20.10 7.2%

ThiNet [62] RN-50 ImNet 72.88% 72.04% 16.94 33.7%

AMC [32] M-NetV1 ImNet 70.90% 70.20% 13.20 34.3%

48 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

… …

…

…

FRL

… …

Input

Backward

0.18 0.98

0.75

0.23

0.62

0.87

0.56

0.71

0.12

0.56

0.91

0.81 0.20

0.11

0.07

0.88

0.71

0.92

0.61

0.79

Figure 3.6: Overview of the propagation of neuron importance from the final response

layer (FRL) to previous layers, while pruning neurons with low importance scores. Note

that this figure was originally introduced in [111].

3.4 Light Architectures

Several authors have proposed to simplify neural network architectures in order to reduce

the amount of computations, thus obtaining what we will refer to here as ”light” architec-

tures. One application domain of such architectures is mobile applications, for instance

using trained networks on smartphones. In [40], the authors introduce SqueezeNet, an

Alexnet accuracy level neural network with fewer parameters and a smaller model size.

The authors build the CNN architecture using three main strategies. The first strategy

is to replace the majority of 3 × 3 kernels by 1 × 1 kernels, since a 1 × 1 kernel has 9

times fewer parameters. The second one is to decrease the number of input channels of

3× 3 kernels, since the total number of parameters of a convolutional layer l containing

only 3 × 3 kernels is 9ClCl+1, where Cl is number of input channels, and Cl+1 is the

number of output channels. The third strategy is to use downsampling only at the end of

the network (on the last layers), so that convolutional layers handle large input feature

maps which leads to higher accuracy as shown in [29]. To do so, the Fire module – a

new building block – is introduced. A Fire module is made of a squeeze layer and an

expand layer (cf. Figure 3.7). To fulfil the first strategy, Fire modules use more 1 × 1

than 3 × 3 kernels. In a Squeeze layer, the number of output channels is reduced, and

then the number of input channels of expand layer which contains 3 × 3 kernels is also

reduced, thus strategy 2 is fulfilled. Finally, the authors introduce max and average

pooling layers and convolutional layers with stride higher than 1 deep in the network.

Howard et al. [37] propose MobileNet, a neural network architecture which uses a

3 × 3 depthwise convolution (3 × 3 DWConv) followed by 1 × 1 pointwise convolution

(instead of 3 × 3 standard convolution) to reduce both the number of operations and

3.4. LIGHT ARCHITECTURES 49

sque
eze8

expa
nd8

1x18convolu.on8filters8

1x18and83x38convolu.on8filters8

ReLU8

ReLU8

Figure 3.7: Overview of a Fire module. The first squeeze layer aims at reducing the

number of input feature maps to 3×3 kernels to fulfil strategy 2, and the second expand

layer aims at replacing some 3× 3 kernels by 1× 1 kernels to fulfil strategy 1. Note that

this figure was originally introduced in [40].

Table 3.5: Comparison of obtained top-1 accuracy and number of parameters on Ima-

geNet ILSVRC2012 of SqueezeNet, MobileNetV1, MobileNetV2 and ShuffleNet.

Network Accuracy(%) Params (M)

SqueezeNet [40] 57.5 1.24

MobileNetV1 [37] 70.6 4.20

ShuffleNet [116] 71.5 3.40

MobileNetV2 [86] 72.0 3.40

parameters (cf. Figure 3.8 (a)). With the aim to improve MobileNet, Sandler et al. [86]

come up with MobileNetV2 which uses a block containing 3 layers, a 1× 1 convolution,

a 3 × 3 DWConv and another 1 × 1 convolution. It also may use a residual connection

that results in adding the input of the first 1 × 1 convolutional layer to the output of

the second 1 × 1 convolutional layer (cf. Figure 3.8 (c)). In the same vein, Zhang et

al. [116] use a channel shuffle concept, in which output channels of a grouped convolution

(GConv) are randomly shuffled to define ShuffleNet Units, a key component to define

the neural network architecture ShuffleNet (cf. Figure 3.8 (b)). Table 3.5 compares the

obtained performance from SqueezeNet, MobileNet, MobileNetV2 and ShuffleNet, and

the corresponding number of parameters.

50 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

input

Dwise 3x3,

stride=s, Relu6

conv 1x1, Relu6

(a) MobileNetV1 (b) ShuffleNet

Conv 1x1, Relu6

Dwise 3x3, Relu6

input

conv 1x1, Linear

Add

Conv 1x1, Relu6

Dwise 3x3,

stride=2, Relu6

input

conv 1x1, Linear

Stride=1 block Stride=2 block

(c) MobileNetV2

Figure 3.8: Comparison of blocks for different architectures. Note that this figure was

originally introduced in [86].

3.5. CONVOLUTION ALTERNATIVES 51

1x1 1x1

5x5 3x3

Pool

1x1

Base

Filter Concat

1x1

(a) InceptionV1

1x1 1x1

3x3 3x3

Pool

1x1

Base

Filter Concat

3x3

1x1

(b) InceptionV2

Figure 3.9: Comparison of blocks of InceptionV1 and InceptionV2. Note that this figure

was originally introduced in [95].

3.5 Convolution Alternatives

In this subsection, we describe our contribution to the reduction of computations in

CNNs, by introducing shift layers. The basic idea is to revisit convolution operations in

order to save computations. In previous work, to reduce the number of neural network

parameters, some methods focus on decomposing the convolution operation. For in-

stance, Simonyan et al. [89] reduce the number of parameters of VGG by replacing 7×7

(resp. 5×5) convolutional layers by three (resp. two) 3×3 convolutional layers. Assum-

ing that the number of both input and output channels is C, they use 3(9C2) = 27C2

(resp. 2(9C2) = 18C2) parameters instead of 49C2 (resp. 25C2). Moreover, they claim

that they obtain a more discriminative decision function, since three (resp. two) non-

linear activation functions are incorporated instead of one. To define a novel neural

network architecture “InceptionV2” [95], the authors apply this method on the original

inception module defined in [94] to improve the accuracy and reduce the number of

parameters (cf. Figure 3.9: (a) and (b)). Moreover, they propose another alternative

decomposition, in which a 7 × 7 convolution layer was replaced by a 1 × 7 convolution

layer followed by a 7 × 1 convolution layer. As a consequence, there architecture uses

only 2× 7C2 = 14C2 parameters instead of 49C2.

Simultaneously, Wu et al. [104] and we [23] introduce Shift Layers (SLs), an alter-

native to Convolutional Layers (CLs). An SL consists in a shift operation to adjust

data spatially, followed by a 1 × 1 convolution. To explain how a convolutional layer

can be replaced by a shift layer, we consider a 1D convolutional case (other cases can

easily be derived). Furthermore, and for simplicity reasons, we consider only one layer

52 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

l, and disregard downsampling and padding (i.e. border effects). For easy reading,

we introduce the following notations: Cl = C, Cl+1 = D, Hl = Hl+1 = H, Sl = S,

Xl = X, Xl+1 = Y, Wl = W. Let us consider a 1D convolutional layer, and denote

by X ∈ R
C×H the input feature map tensor, W ∈ R

D×C×S the weight tensor, and

Y ∈ R
D×H the output feature map tensor. The convolution operation is depicted in

Figure 3.11: (1), and can be computed as follows:

yd,h =

C
∑

c=1

S
∑

h′=1

xc,h+h′−⌈S/2⌉wd,c,h′ , 1 ≤ d ≤ D, 1 ≤ h ≤ H . (3.1)

Basically, to obtain a shift layer, for each kernel Wd,c,·,·, 1 ≤ d ≤ D, 1 ≤ c ≤ C, we

prune all weights but one, and end up with exactly one weight wd,c,id,c per kernel, where

id,c represents the index of non-pruned weight. Then Equation 3.1 becomes:

yd,h =
C
∑

c=1

xc,h+hd,c−⌈S/2⌉wd,c,hd,c
(3.2)

=
C
∑

c=1

x̃c,hw̃d,c , (3.3)

where x̃c,h = xc,h+hd,c−⌈S/2⌉ and w̃d,c = wd,c,hd,c
. From Equation 3.3 and as shown in

Figure 3.11, we observe that the convolutional operation is transformed into a shifted

input feature map X̃ convolved with a kernel of size 1. Thus, the convolution operation

is replaced by a shift operation followed by a 1 × 1 convolution. To estimate the drop

in performance caused by this pruning method, we randomly remove m weights per

kernel and see the behaviour of the accuracy. We use CIFAR10, and compare various

modern CNN architectures such as Resnet [30], Wide-Resnet [113], Densenet [39], and

Mobilenet [86]. Note that these architectures contain 1 × 1 and 3 × 3 convolutional

kernels only. Thus we apply the proposed method on the 3 × 3 kernels. Figure 3.10

shows that the accuracy of the architecture is quite robust to this process, even when 8

out of the 9 connections in slices of 3× 3 kernels are randomly removed.

In this method, the shifts are hand-crafted and determined before the training pro-

cess (i.e. we choose which weight we keep for each kernel at the initialisation, and before

starting the training process). To improve the accuracy of the shift operation method,

Jeon et al. [44] propose an active shift layer (ASL), to replace the hand-crafted shifts by

learnable parameters which are optimised during back propagation. The authors formu-

late the shift value αc (βc can be defined when considering 2D convolution) corresponding

to each feature map Xc,· as a learnable parameter to define the amount of shift. The

3.5. CONVOLUTION ALTERNATIVES 53

0 2 4 6 8

94

95

96

Number of connections removed per kernel slice

A
cc
u
ra
cy

(%
)

Resnet18
Resnet34

WideResnet-28-10
Densenet121
MobilenetV2

Figure 3.10: Evolution of accuracy as a function of the number of connections removed.

learnable parameter αc should be a real number and not an integer, so it can be made

differentiable and optimised. This is why the authors use bilinear interpolation [43] to

define non-integer shift as follows:

x̃c,h+αc
= Z1

c (1−∆αc) + Z2
c∆αc , (3.4)

where ∆αc = αc − ⌊αc⌋, and Z1
c and Z2

c are the two nearest integer points used to

compute bilinear interpolation as follows:

Z1
c = xc,h + ⌊αc⌋, Z2

c = xc,h + ⌊αc⌋+ 1 . (3.5)

This method aims at avoiding accuracy drops caused by the hand-crafted shifts.

However, to perform a shift operation during inference, ASL needs to compute a non-

integer shift which can be computationally expensive compared to an integer shift where

just a memory access is needed, and thus the result architecture requires to perform

interpolations and does not fall into the original shift layer formulation. To furthermore

improve this method, we propose Shift Attention Layer (SAL), a pruning-shift attention-

based method [26]. SAL uses pruning in such a way to keep only one weight per kernel,

and thus not only to reduce memory of CNNs, but also to replace convolutional layers

by shift layers. The idea we propose is to add an attention mechanism to the convolution

layer which aims at identifying which weights should be kept in each kernel. As such,

we introduce A ∈ R
D×C×H an attention tensor containing as many elements as weights

in the weight tensor. Each value of A is normalised between 0 and 1 and represents

54 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

how important the corresponding weight in W is (cf. Figure 3.11: (3)). At the end of

the training process, A becomes binary, with only one nonzero element per slice Ad,c,·,

corresponding to the weights in W that should be kept.

More precisely, each slice Ad,c,· is normalized using a softmax function with tem-

perature T . The temperature is decreased smoothly along the training process. Such

a method eventually finds out that the most accurate solution is the convolution itself,

and puts all attention tensor elements to the same value 1/S, thus it can still compute

a convolution operation. To force the layer to select some of the weights, we divide each

slice Ad,c,· elements by their standard deviation (sd) before applying the softmax, so we

end up with sd = 1 and then prevent the elements from converging to the same value.

Algorithm 1 summarises the training process of one layer. At the end of the training,

the selected weight in each kernel Wd,c,· corresponds to the maximum value in Ad,c,·.

Algorithm 1 SAL algorithm of one layer

Inputs: Input tensor X,

Initial softmax temperature T , Constant α < 1.

for each training iteration do

T = αT

for d := 1 to D do

for c := 1 to C do

Ad,c,· =
Ad,c,·

sd(Ad,c,·)

Ad,c,· = Softmax(Ad,c,·, T)

end for

end for

WA = W ·A (· is the pointwise multiplication)

Compute standard convolution as described in Equation 3.1 using input tensor X

and weight tensor WA instead of W .

Update W and A via back-propagation.

end for

To evaluate the performance of the proposed SAL method, we adopt a benchmark

protocol that compares the obtained performance with CNNs baseline, vanilla shift layers

and other pruning methods.

3.5. CONVOLUTION ALTERNATIVES 55

H

C

(1)

S

X Yd

H

C

(2)

S

X Yd

H

Shifted X
Yd

C

(3)

Figure 3.11: An overview of the proposed method: we depict here the computation for

a single output feature map d. Panel (1) represents a standard convolutional operation:

the weight filterWd,·,· containing SH weights is moved along the spatial dimension of the

input to produce each output inYd. In panel (2), we depict the attention tensorA on top

of the weight filter: the darker the cell is, the more important the corresponding weight

has been identified to be. At the end of the training process, A should contain only

binary values with a single 1 per slice Ad,c,·. In panel (3), we depict the corresponding

obtained shift layer: for each slice along the input feature maps, the cell with the highest

attention is kept and the others are disregarded. As a consequence, the initial convolution

with a kernel size S has been replaced by a convolution with a kernel size 1 on a shifted

version of the input X.

56 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Benchmark Protocol

We perform the evaluation on three vision datasets: CIFAR10, CIFAR100 and ImageNet

ILSVRC 2012. We test Resnet-20/56 on CIFAR10 and Resnet-20/50 on CIFAR100 using

the following training hyper-parameters: we use 300 epochs to train Resnet-20 and 400 to

train Resnet-56/50, 0.1 as initial learning rate and divided it by 10 after each 100 epochs,

a training batch of 128 examples, the initial/final softmax temperatures are 6.7/0.02,

and the temperature is multiplied at each step (each time a batch of 128 examples is

processed) by α = 0.99994, 0.99996 when using 300, 400 epochs respectively.

We test Resnet-w32 and Resnet-w64 defined in [44] on ImageNet ILSVRC 2012

using the following training hyper-parameters: 90 epochs to train the neural networks,

a batch of 1024 examples, 0.1 as initial learning rate that is divided by 10 after each 30

epochs, initial/final softmax temperatures are 6.7/0.016 so that the temperature update

at each step is α = 0.99995. We also used standard data augmentation defined in [51].

Note that these latest parameters were chosen because they perform well in practice.

Let us point out that the values of temperatures were obtained by using a grid

search. The fact the final temperature is not zero means that the tensors A may contain

nonbinary values. This is why we binarize A using a hard max to obtain the correspond-

ing shift layers before evaluating on the test set.

Results

SAL is a pruning method aiming at reducing memory and number of operations, and

also at replacing convolutional layers by shift layers. Hence for a fair evaluation we need

to compare it to shift-based module methods such as SL ans ASL, but also to pruning

methods described in Section 3.3.

To compare SAL with shift-based module methods (cf. Table 3.6), and pruning

methods (cf. Table 3.7 and Table 3.8), we perform experiments on CIFAR10 and CI-

FAR100. Table 3.6 shows that our method achieves a better accuracy with fewer param-

eters than the baseline and other shift-module based method. Tables 3.7 and 3.8 show

that SAL is comparable or better in term of accuracy and number of parameters/floating

point operations (FLOPs) when compared with other pruning methods.

In the second experiment, an average of A along channel dimension is plotted

at the end of training process to show the proportion of each kept position in slices

Ad,c,·,·. Figure 3.12 plots a heat-map to represent the proportion of kept weights through

3.5. CONVOLUTION ALTERNATIVES 57

Table 3.6: Comparison of accuracy and number of parameters between the baseline

CNN architecture (ResNet20), vanilla SL, ASL, and SAL (the proposed method) on

both CIFAR10 and CIFAR100.

CIFAR10 CIFAR100

Accuracy Params Accuracy Params

CLs Baseline 94.66% 1.22 M 73.7% 1.24 M

SLs Vanilla SL [104] 93.17% 1.2 M 72.56% 1.23 M

SAL (ours) 95.52% 0.98 M 77.39% 1.01 M

Interpolate ASL [44] 94.53% 0.99 M 76.73% 1.02 M

Table 3.7: Comparison of accuracy, number of parameters and number of floating

point operations (FLOPs) between baseline architecture (Resnet-56), SAL (the pro-

posed method), and some other pruning methods on CIFAR10. Note that the number

between () refers to the result obtained by the baseline used for each method.

CIFAR10

Accuracy Params (M) FLOPs (M)

Pruned-B [56] 93.06%(93.04) 0.73(0.85) 91(126)

Pruning NISP [111] 93.01%(93.04) 0.49(0.85) 71(126)

PCAS [107] 93.58%(93.04) 0.39(0.85) 56(126)

SAL (ours) 94%(93.04) 0.36(0.85) 42(126)

Table 3.8: Comparison of accuracy, number of parameters and number of floating

point operations (FLOPs) between baseline architecture (Resnet-50), SAL (the pro-

posed method), and some other pruning methods on CIFAR100. Note that the number

between () refers to the result obtained by the baseline used for each method.

CIFAR100

Accuracy Params (M) FLOPs (M)

Pruned-B [56] 73.6%(74.46) 7.83(17.1) 616(1409)

Pruning PCAS [107] 73.84%(74.46) 4.02(17.1) 475(1409)

SAL (ours) 77.6%(78) 3.9 (16.9) 251(1308)

58 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Wd,c,·,·, ∀d, c, for the 4 first CLs (first row), and the 4 last CLs (second row), of Resnet-20

trained on CIFAR10, and where attention tensors A values are initialised uniformly at

random. An interesting thing to notice is that at the end of training, first layers present

a uniform distribution of kept weight, while last layers show an asymmetric distribution

in which most of kept weights are in corner positions. This interestingly suggests that

shift-layers would benefit from a non regular number of shifts in each direction.

To see how much kept weight positions at the end of training depend on the ini-

tialisation, we propose to perform an other initialisation where A values are initialised

uniformly at random except the centre value Ad,c,⌊S/2⌋,⌊S/2⌋ to which we attribute the

maximum over the corresponding slice max(Ad,c,·,·). Figure 3.13 shows that almost all

kept weights in the first layer are slices centres. In the intermediate layers, we see a

uniform distribution of kept weight positions, and we observe the same phenomenon in

last layers as in the previous experiment. This shows that the uniform distribution of

kept weight positions in first layers is not caused by the initialisation of A. We also plot

a heat-map of kept weight positions distribution of ResNet-56 trained on CIFAR10, and

where A is initialised uniformly at random. Figure 3.14 shows that for the first layers,

the number of kept weights is more important on the centre row than at other positions.

However, we see on the last layers that there is more kept weights in the corners than

at other positions, just as seen for previous experiments.

For further results, we run an experiment in which we replace all 3 × 3 Resnet-20

kernels by 5× 5 kernels, and train the network on CIFAR10. We observe in Figure 3.15

that the weights of the centre in first layers are more important than at other positions.

We also see that on the last layers the weight distribution is still not uniform, and the

weights on the corners are more important in the last layer.

From all these experiments, we consistently observe that in deeper layers, the

method tends to keep more weights in corner positions than others, and this inde-

pendently from initialization process or neural network architecture. This observation

interestingly questions the hyper-parameters used by the corresponding architectures.

It clearly seems the network is more interested in locality in the initial layers than it

is in the last layers. Based on this finding, we modified the vanilla shift layer method,

using an equivalent uneven distribution of shifts as the one found in our experiments.

As such, shifts are predetermined but not uniform. We obtained an accuracy of 94.8%

on Resnet-20 and CIFAR10, to be compared to the 93.17% accuracy from Table 3.6.

Interestingly, this accuracy is even better than the results obtained using the method

in [44]. On the other hand, the obtained accuracy remains lower than that of SAL,

suggesting that selecting the shifts during the learning process is still more efficient than

3.5. CONVOLUTION ALTERNATIVES 59

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

0.0604

0.3172

Figure 3.12: Heat maps representing the average values in A for various layers in the

Resnet-20 architecture trained on CIFAR10. In this experiment, values in A are initial-

ized uniformly at random. The first row represents the 4 first layers and the second row

the 4 last layers of Resnet-20.

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

0.0604

0.3172

Figure 3.13: Heat maps representing the average values in A for various layers in the

Resnet-20 architecture trained on CIFAR10. In this experiment, values in A are ini-

tialized uniformly at random but the centre value that takes the maximum over the

corresponding slice. The first row represents the 4 first layers and the second row the 4

last layers of Resnet-20.

having a good choice of predetermined shift proportions.

In a third experiment, we observe the effect of initial and final temperature choices

on accuracy. Figure 3.16: left represents the evolution of accuracy of Resnet-20/56

trained on CIFAR10 and Resnet-20/50 trained on CIFAR100 as function of final tem-

perature while initial temperature is fixed at 6.7. It shows that the accuracy decreases

when the final temperature becomes too high. Note that when the final temperature is

large, obtained values in A at the end of the training process can be far from binary. In

all cases, we round the values in A to the nearest integer before computing the accuracy.

This experiment shows that final temperature values need to be small enough so the soft-

max can push the highest value to 1 and the other values to 0. Figure 3.16: right shows

60 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

−1 0 1
−1
0
1

0.0658

0.1787

Figure 3.14: Heat maps representing the average values in A for various layers in the

Resnet-56 architecture trained on CIFAR10. In this experiment, values in A are initial-

ized uniformly at random. The first row represents the 4 first layers and the second row

the 4 last layers of Resnet-56.

0.0258

0.0673

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

−2−1 0 1 2
−2
−1
0
1
2

Figure 3.15: Heat maps representing the average values in A for various layers in the

Resnet-20 architecture with 5×5 kernels trained on CIFAR10. In this experiment, values

in A are initialized uniformly at random. The first row represents the 4 first layers and

the second row the 4 last layers.

3.6. OTHER METHODS 61

10−3 10−2 10−1 100
0

50

100

Final temperature

A
cc
u
ra
cy

(%
)

10−2 10−1 100 101 102

80

90

Initial temperature

Resnet-20+CIFAR10
Resnet56+CIFAR10
Resnet-20+CIFAR100
Resnet-50+CIFAR100

Figure 3.16: Evolution of accuracy of Resnet-20/56 trained on CIFAR10 and Resnet-

20/50 trained on CIFAR100 as function of final temperature (left), and as function of

initial temperature (right).

the behaviour of the accuracy of Resnet-20/56 trained on CIFAR10 and Resnet-20/50

trained on CIFAR100 when initial temperature is changed and final temperature is fixed

at 0.02. We see an interesting region between 10 and 6.7 in which the accuracy is better.

It is worth mentioning that the choice of initial and final temperatures is sensitive with

respect to the obtained accuracy. Throughout our experiments, we observed that a too

slow decrease in temperature causes the architecture to get stuck in local minima that

are poorly fitted to the ending rounding operation. On the contrary, a too fast decrease

in temperature prevents the learning procedure from finding the best shifts and boils

down to an accuracy that is very similar to that of vanilla shift layers.

In the fourth experiment, we compare the accuracy, memory usage and FLOPs of

SAL against vanilla Shiftnet and standard CNN on ImageNet ILSVRC 2012. Table 3.9

shows that SAL is able to obtain better accuracies than vanilla Shiftnet and standard

CNN for the same memory and FLOPs budget.

3.6 Other Methods

To reduce CNNs memory footprint, other works propose to investigate other leads as

weights sharing, or encoding information theory based techniques. Searching other meth-

62 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Table 3.9: Comparison of accuracy, number of parameters and FLOPs between a stan-

dard CNN, SAL and vanilla Shiftnet on ImageNet ILSVRC 2012.

Top-1 Top-5 Params FLOPs

Large Resnet-w24 (CLs) 63.47% 85.52% 3.2 M 664 M

budget Shiftnet-A [104] 70.1% 89.7% 4.1 M 1.4G

Resnet-w64 + SAL (ours) 71% 89.8% 3.3 M 538 M

Small Resnet-w16 (CLs) 56.6% 80.4% 1.4 M 295 M

budget Shiftnet-B [104] 61.2% 83.6% 1.1 M 371 M

Resnet-w32 + SAL (ours) 62.7% 84% 0.97 M 136 M

ods and techniques to reduce complexity and memory footprint of CNNs can be relevant

in such a way some different methods can be combined in order to further compress

CNN models. For instance, Gong et al. [?] use vector quantization to compress DNNs

size while keeping an accuracy comparable to the state-of-the-art. However, the authors

compress only the fully connected layers, and ignore the convolutional layers. Han et

al. [28] present deep compression, a quantization method built upon three main stages

to reduce the storage required by neural network, while preserving the accuracy (cf.

Figure 3.17). The authors propose to start by a pruning stage, where all connections

with weight values below a defined threshold are pruned and removed from the network.

To keep a good accuracy after the pruning process, they retrain the network to learn the

new weight values for the new sparse architecture. They claim that pruning stage could

divide the number of parameters by 9 (resp. 16) for Alexnet (resp. VGG-16). Then,

a weight sharing stage is applied on the resulting sparse neural network architecture to

further compress the network by reducing the number of bits required to store weight

values. For this purpose, the authors use k-means clustering to identify which weight

falls into which cluster, and thus all weights belonging to the same cluster are replaced

by the same value corresponding to the centroid of the cluster. A fine-tuning process is

computed after the clustering stage to keep a good accuracy. During back propagation,

weight gradients of the same cluster are summed, and the resulting values are used to

update the centroid values (cf. Figure 3.18). At this stage, the authors claim that they

divide the number of parameters by 27 (resp. 31) for Alexnet (resp. VGG-16). Finally,

they apply Huffman coding to take advantage of the weight values distribution. At the

end, the authors show that they divide the number of parameters by 35 (resp. 49) for

Alexnet (resp. VGG-16). This method is also applied to SqueezeNet, a neural network

architecture introduced in [40] and defined in Section 3.4, allowing Squeezenet to achieve

3.6. OTHER METHODS 63

Train Connectivity

Prune Connections

Train Weights

Cluster the Weights

Generate Code Book

Quantize the Weights
with Code Book

Retrain Code Book

Pruning: less number of weights
Quantization: less bits per weight

original
 size

 9x-13x
reduction

 27x-31x
reduction

 same
accuracy

 same
accuracy

original
network

Encode Weights

Encode Index

Huffman Encoding

 35x-49x
reduction

 same
accuracy

Figure 3.17: Overview of deep compression method. this method contains three compres-

sion stages: a pruning based method to compress original network by a factor between

9× and 13×, a weight sharing method based on k-means to further compress the network

by a factor between 27× and 31× and a Huffman coding. At the end the neural network

is compressed by a factor between 35× and 49× while keeping the same accuracy as the

original one. Note that this figure was originally introduced in [28].

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

3 0 1 1

1 1 0 3

0 3 1 0

3 1 2 2

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

 weights
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
 (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3.18: Overview of Weight sharing quantization method (top) and fine tuning

process (bottom). Note that this figure was originally introduced in [28].

an AlxeNet accuracy on ImageNet ILSVRC2012 using 1/50× as many parameters and

less than 0.5MB of memory.

The weight sharing method introduced above uses k-means, and thus it assigns

weights to clusters once and for all at one step in the training process. This sudden

factorisation can lead to drop in accuracy. To alleviate this drawback, Wu et al. [105]

propose deep k-means, a weight sharing method based on spectrally relaxed k-means

regularisation introduced in [114], and defined by Equation 3.6, where Tr denotes the

matrix trace, and considering nj the number of weights belonging to cluster j. Note

64 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Table 3.10: Comparison of obtained top-1 accuracy, and compression ratio (CR) when

using deep compression (DC) and deep k-means (DK).

Method Network Dataset Baseline Compressed CR

DC [28] Alexnet ImageNet 57.20% 57.20% 35×

DC [28] VGG-16 ImageNet 68.5% 68.83% 49×

DC [28] SqueezeNet ImageNet 57.50% 57.50% 10.2×

DK [105] WideResNet CIFAR10 93.52% 89.03% 50×

DK [105] GoogLeNet ImageNet 69.76% 67.81% 4×

that B would be a matrix such as Bij = 1/
√
nj if column i belongs to the cluster j and

Bij = 0 otherwise, and BTB = I.

min
W;B

Tr(WTW)− Tr(BTWTWB). (3.6)

This regularisation allows to learn the assignments of neural network weights dur-

ing the retraining (or fine-tuning) process , and thus the cost function minimised by

retraining process becomes (where λ is a scalar):

min
W,B

E(W) +
λ

2
[Tr(WTW)− Tr(BTWTWB)]. (3.7)

After retraining, a k-means is performed to assign weights to clusters. Table 3.10

compares the accuracy obtained when such compressing methods are used.

There is also other methods based on distillation that aim at reducing neural net-

works memory footprint by transferring the knowledge from a bigger model to a smaller

one [34, 48], and even combine it with other compressing methods to further reduce

neural networks size [91].

3.7 Comparison and Combination of Different Compres-

sion Methods

As described above, there are different compression methods that aim at reducing DNNs

size. A relevant question would be: which method fits better in a specific limited re-

sources embedded system when a specific accuracy drop is allowed? Moreover, how can

3.7. COMPARISON AND COMBINATIONOF DIFFERENT COMPRESSIONMETHODS65

0 0.2 0.4 0.6 0.8 1 1.2

·107
90

91

92

93

94

95

Memory footprint

T
es
t
se
t
ac
cu

ra
cy

(%
)

MobileNetV2
SqueezeNet
Resnet-18

Resnet-18+BC
Resnet-18+BWN

Resnet-18+k-means
Resnet-18+SAL
Resnet-18+SAL2

Resnet-18+SAL+BWN

Figure 3.19: Comparison of accuracy when applying compression methods on a CNN

baseline (Resnet-18) and other different CNN architectures.

these methods be combined in order to further compress DNNs when achieving an ac-

ceptable accuracy? We propose to evaluate in Figure 3.19 the compression methods and

their combinations, and determinate which method or combination of methods gives a

considerable compression rate while keeping a good accuracy. To get a good approxi-

mation of memory needed to implement a neural network on an embedded system, we

consider both weights and activations when one input data is processes, thus memory

footprint of a DNN will be the memory needed to store both weights and activations. We

do not consider pruning methods since authors only present weight compression ratio in

their contributions, which cannot be used to determinate activation compression ratio.

In our evaluation we compare SAL with Binary Connect (BC) [11], Binary Weight

Network (BWN) [79] and k-means [28] applied to Resnet-18, and with MobileNetV2 [86]

and Squeezenet [40]. We also perform the comparison with another version of SAL

denoted SAL2, in which we keep two weights per kernel instead of one, and with a

combination of SAL and BWN. We use different versions of Resnet-18 with different

number of weights and activations as baseline. We also apply compression methods

on these different versions in order to compare the accuracy obtained by the different

methods for the same budget of memory. Figure 3.19 shows that the baseline outperforms

MobileNetV2, Squeezenet and applying BC on Resnet-18. It also shows that SAL and

SAL2 outperform all other methods, and SAL2 achieves a better accuracy than SAL.

66 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Table 3.11: Comparison of accuracy and memory usage between Resnet-20 baseline,

SAL, SAL with BC and SAL with BWN on CIFAR10.

Accuracy(%) Memory usage (Mb)

baseline 94.66 39.04

SAL 95.52 31.36

SAL + BC 93.20 6.87

SAL + BWN 94.00 6.87

3.8 Hardware Implementation

As depicted in Section 3.5, SAL is an efficient pruning method that reduces both memory

and computations. Moreover, it replaces the standard and complex convolutional by a

simple shift operation followed by 1 × 1 convolution. In [23], we propose to combine

a shift based module method with BC [11], and end up with one kept binary weight

per kernel. Consequently, we replace the convolutional operation by only a low-cost

multiplexer, and propose an efficient hardware architecture to implement such a method

on FPGA. Such a combination still achieves a comparable accuracy to state-of-the-art

while using less parameters as depicted in Table 3.11.

In this section, we introduce the hardware architecture of SAL combined with BC or

BWN, its different components, and the way they are connected. Then, we present the

hardware implementation of the proposed combination, applied to Resnet-18, on FPGA.

Since that the same scaling factor α is used to define all the weights of the same layer,

BWN can be assimilated to BC with one multiplication at the final stage by α. Thus, the

same hardware architecture can be used to implement the combination of SAL with BC

and BWN on FPGA. Note that for simplicity reasons, we use the following notations:

Xl = X, Xl+1 = Y, Wl = W, Cl = C, Cl+1 = D, Hl = Hl+1 = H, Rl = R, Rl+1 = R′.

3.8.1 Hardware Architecture

In Figure 3.20, we depict the proposed hardware architecture to perform the combination

of SAL and BC (or BWN) which we name “ SALBC block”. This architecture uses a

simple low-cost multiplexer. In more details, SALBC block is made of two sub-blocks:

a memory one and a processing unit one.

3.8. HARDWARE IMPLEMENTATION 67

Memory
block

nR

X1 FI
P
Wc,·

Enable s
nR′

X2

Processing
Unit

nR′

Yp,h,·

Itter done

Figure 3.20: Hardware architecture of SALBC block.

The memory block contains two block RAMs (BRAMs) containing data encoded

using n bits fixed point. The first is used to store the computed feature maps. Once they

are all computed, the content of the first BRAM is copied to the second one, so that it

becomes the input of the next layers. At the same time, the computed feature maps of an

another image can be stored in the first BRAM. We thus obtain a pipeline architecture,

in which all implemented layers work at the same time to speed up inference process.

To avoid data overflow, we process each row of a slice of X independently, and

each slice of the kernel tensor independently. In more details, we copy from BRAM one

to BRAM two a feature subvector X2
c,h = {x2c,h,1, x2c,h,2, . . . , x2c,h,R′} made of R′ values,

instead of the whole subvector feature vector Xc,h = {xc,h,1, xc,h,2, . . . , xc,h,R} made of

R > R′ values (cf. Figure 3.20). This is to account for the border effects (padding). To

simplify notations, we replace Xc,h (resp. X2
c,h) by X1 (resp. X2) in the following.

The processing unit uses X2 and a vector Wc,· made of P values coded on 1 bit each.

It thus computes in parallel P feature vectors Yp,h,· (cf. Figure 3.21). The First-Input

signal (FI) is set to 1 when the first feature vector is read from the second BRAM to

initialise registers by 0. To compute each feature vector p where 1 ≤ p ≤ P ≤ D, we

use the corresponding wc,p to add either X2 or -X2 to the content of register p. Once

all input feature vectors have been read from the second BRAM of memory block, the

signal Enable s is set to 1, and the content of registers is written one by one into the first

BRAM of the memory block of the next layer. At the end of this process, the Itter done

signal is set to 1 in the processing unit block, so new data can be read from the memory

block to process other feature vectors.

To achieve the computation associated with SALBC block described in Figure 3.20,

CH clock cycles (CCs) are required to copy all contents from the first BRAM to the

second one, CHD/P CCs to compute all output feature vectors of one layer, and DH

CCs to write all computed feature vectors into the memory block of the next layer. Thus

the total number of CCs required is:

68 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

nR′nR′

0
Register

1

MUXFI

add
nR′

MUXwc,1

nR′nR′

X2 −X2

nR′nR′

0
Register

2

MUXFI

add
nR′

MUXwc,2

nR′nR′

X2 −X2

nR′nR′

0
Register

P

MUXFI

add
nR′

MUXwc,P

nR′nR′

X2 −X2

CounterEnable s
Itter done

DEMUX Relu
nR′

Yp,h

Figure 3.21: Hardware architecture of a processing unit block.

CCs = CH +
CHD

P
+DH. (3.8)

This should be compared to [1], where the number of clock cycles becomes:

CCs =
3H2CD

P
. (3.9)

We observe that the proposed architecture is 3H faster than the one introduced

in [1], which can be significant when H is big. For instance with the CIFAR10 dataset,

at the input layer of a CNN H = 32, and thus the proposed method is 96 times faster.

In addition it is a pipeline architecture, so it can be 3LH faster where L is the total

number of layers that fit in an FPGA.

Note that in the proposed architecture, P should be lower or equal to D, otherwise

reaching full parallelism would require to read more than one vector X2, and as such

would also require more BRAMs, resulting in a more complex architecture.

3.9. ENERGY GAINS WITH FAULTY MEMORIES 69

3.8.2 Hardware Results

We implemented one/few layers of Resnet-18 on Xilinx Ultra Scale Vu13p (xcvu13p-

figd2104-1-e) FPGA. The implemented layers are arranged in a pipeline, and their func-

tionality has been verified comparing the output of each SALBC block with the ones

obtained by software simulation over a batch of examples. Table 4.5 shows the required

resources to implement one/few layers of Resnet-18 trained on CIFAR10 dataset for

different values of P . It also shows that the obtained architecture obtain a low process-

ing latency to compute a valid output of one layer. Moreover, this processing latency

increases when processing more than one layer, but processing outflow is maintained

thanks to the pipeline design.

Table 3.12: FPGA results for the proposed architecture on vu13p (xcvu13p-figd2104-1-

e). Here “PL” refers to processing latency.

P LUT FF BRAMs Frequency PL Processing outflow Power

Conv64− 64 16 22424 22424 114 240MHz 52µs 19230 images/s 3.7W

4×Conv64− 64 16 89746 75235 456 240MHz 208µs 19230 images/s 6.5W

3×Conv128− 128 32 59780 45024 171 240MHz 154, 8µs 19379 images/s 4.8W

3×Conv128− 128 64 134090 102552 171 240MHz 103, 2µs 29069 images/s 7.8W

3×Conv256− 256 64 74067 52051 87 250MHz 147, 3µs 20366 images/s 5.5W

3×Conv256− 256 128 154599 102723 87 218MHz 112, 8µs 26595 images/s 7.8W

3×Conv512− 512 128 132155 52151 45 208MHz 177µs 16949 images/s 7.9W

3.9 Energy Gains with Faulty Memories

The large number of parameters and computations makes hardware implementation of

DNNs a real challenge that needs a large amount of memory and a complex logic cir-

cuit, and thus consumes a significant amount of energy. An easy way to reduce energy

consumption is to reduce off-chip memory accesses since they are costly in energy, and

use only on-chip memory. However, even when using on-chip memory, the memory ac-

cess energy represents 30 − 60% of the total energy [47]. One way to reduce energy

consumption of both on-chip memory and logic circuit is to reduce the supply voltage.

Doing so can cause bit-cell failure and increase failure rates by several orders of mag-

nitude, especially when approaching the minimum energy operating of on-chip memory

comparing to operating at the nominal supply [15]. Such a bit-cell failure rate may not

be catastrophic if appropriate methods are used to preserve the system’s accuracy.

70 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

Reducing supply voltage and exploiting fault tolerance to reduce energy consump-

tion has been the main subject of numerous contributions in the last years since DNNs

show a limited amount of fault tolerance [100, 45]. For instance, when memory faults

are detected at the bit level, a bit masking technique can be used to reduce the mag-

nitude of weights affected by these faults, thus reducing the impact of errors on perfor-

mance [80, 102]. In [47, 108] the authors propose to modify the training process and

take into account bit flips occurring in on-chip memory, and also consider the effect of

memory faults when storing the input. In addition, the problem of training a network

to compensate known defect locations is considered in [59, 106]

In [27], we investigate the impact of bit-cell faults on DNNs performance, and

propose a regularizer to increase the robustness of DNNs when reducing supply voltage.

We only consider the energy consumed by memory accesses, and assume that the energy

needed to process the inference is proportional to the number of memory accesses. Hence,

we denote by E0 a base energy metric, which represents the sum of the number of all

DNNs weights and of the number of activation values used during the inference process.

We consider a model to link bit-cell fault probability p when supply voltage is

reduced, and the energy consumed by memory accesses. Let us denote by 0 ≤ η ≤ 1 the

normalized energy consumption in such a way that the energy consumed when reducing

supply voltage is given by ηE0. Considering data published in [15], we could establish a

relation between fault probability p and normalized energy η defined as follows:

p(η) = e−aη . (3.10)

To obtain a specific value of a, we consider the energy data reported in [8] and the

reliability of on-chip memory for 65nm CMOS at VDD ∈ {0.5, 1.1} from [15]. Minimising

the sum of the relative squared error leads to a = 12.8. In our study we consider the

case when bit-cell faults can be detected, and then used the bit masking (BM) deviation

approach introduced in [80]. The BM approach can be defined as follows: when a

memory fault is detected on the sign bit, the corresponding value is then replaced by

zero. On the other hand, when a memory fault is detected on any other bit, the bit

value is replaced by sign bit value. We consider that all bit cells have an equal memory

fault probability p, and memory faults can affect both weights and activations. Note

that due to the use of the activation function ReLU, activation values are positive, and

then we assume that memory faults cannot affect their sign bit.

To study the robustness to memory faults, we perform experiments using CI-

FAR10, and compare four main architectures, PreActResNet18 [31], MobileNetV2 [86],

3.9. ENERGY GAINS WITH FAULTY MEMORIES 71

Table 3.13: Number of memory accesses and accuracy by architecture

Architecture Parameters Activations Accuracy

PreActResNet18 [31] 11.2× 106 0.55× 106 94.87%

MobileNetV2 [86] 2.30× 106 1.53× 106 93.80%

SENet18 [38] 11.3× 106 0.86× 106 94.77%

ResNet18 [30] 11.2× 106 0.56× 106 94.86%

10−3 10−2
60

70

80

90

p

T
es
t
se
t
ac
cu

ra
cy

(%
)

PreActResNet18

MobileNetV2

SENet18

ResNet18

Figure 3.22: Impact of the architecture on the robustness under BM deviations.

SENet18 [38] and ResNet18 [30], which represent modern CNNs architectures achieving

a good accuracy on CIFAR10. Table 3.13 shows the obtained accuracy and the number

of weights and activations needed to process one input image for each CNN architecture.

We perform a first experiment in which we compare the robustness of the different

CNN architectures mentioned above when both weights and activations are affected by

BM. Figure 3.22 shows the accuracy behaviour when varying the memory fault probabil-

ity p, and Figure 3.23 plots the accuracy in function of energy ηE0, where E0 represents

the sum of weights and activations reported in Table 3.13, and p is obtained from the nor-

malized energy η as described in Equation (3.10). From both Figures 3.22 and 3.23, we

see that some architectures are more robust than others, and PreActResNet18 provides

a good trade-off between accuracy, number of parameters and activations and robustness

to BM, thus we focus on this architecture when performing other experiments.

In a second experiment, we want to identify the relative robustness of different parts

of the CNN when applying BM deviations. To do this, and since PreActResnet18 is made

of 4 sequential blocks (each one contains 2 convolutional layers, 2 batch-norm layers and

1 shortcut), we apply BM deviation to both weights and activations of one block at a

time. Figure 3.24 plots the obtained results, and shows that all neural network blocks

72 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

0.2 0.4 0.6 0.8 1
90

92

94

Normalized energy

T
es
t
se
t
ac
cu

ra
cy

(%
)

PreActResNet18

MobileNetV2

SENet18

ResNet18

Figure 3.23: Energy consumption of different architectures under BM deviations.

10−3 10−2
94

94.2

94.4

94.6

94.8

p

T
es
t
se
t
ac
cu

ra
cy

(%
)

Deviations on Block 1

Deviations on Block 2

Deviations on Block 3

Deviations on Block 4

Figure 3.24: Impact on accuracy of BM deviations applied to different stages of the

network, “Block 1” being the first and “Block 4” the last.

are affected by BM deviations. Moreover, we observe that the robustness is increased

with the depth of the neural network. According to this, a clever method to reduce

energy consumption while keeping a good accuracy will be to exploit this difference of

robustness through different layers. We will denote this approach by “Diff Fault” in the

remaining experiments. We also notice that at a high accuracy of 94.8%, we have pB4 =

5pB3 = 5pB2 = 10pB1, where pBi is the memory fault probability assigned to block i.

This configuration is used in the following when Diff Fault is introduced.

Another way to reduce energy consumption and keep a good accuracy is to apply

the deviation model during training in order to increase the robustness of DNNs. Since

training is computationally expensive, and since the BM deviation model deviates values

towards zero, we propose to replace it by a less complex deviation model in which each

value has a probability pe to be zero, referred to as the erasure model. To do so, we

need to find a way to link memory faults probability p and the probability for a value to

be zero pe. During training, erasure model is similar to dropout [90], but in this case it

is used to increase DNNs robustness rather than to prevent overfitting. To find a good

3.9. ENERGY GAINS WITH FAULTY MEMORIES 73

10−3 10−2
90

92

94

p

T
es
t
se
t
ac
cu

ra
cy

(%
)

Erasure model

Bit-mask model

Erasure (weights only)

Bit mask (weights only)

Figure 3.25: Impact of memory faults on accuracy for different deviation models.

function f such as pe = f(p), we evaluate the effect of both BM and erasure models on

PreActResNet18 and we plot results in Figure 3.25. Because the number of weights in

PreActResnet18 is 20× more than activations, we only consider when deviation models

are applied on weights only, and match the accuracy of the two models to find f . From

Figure 3.25, we observe that BM and erasure model reach the same accuracy when

pe = 2p, and thus this relation allows to use erasure model as an approximation of BM.

Using erasure model during training is referred to as regularizer (reg).

We also consider the effect of reducing the number of parameters on the accuracy.

Since the number of parameters (weights) linearly depends on both the number of input

and output feature maps, an easy way to reduce it will be to reduce the number of feature

maps, such as if the number of feature maps is divided by a number k, the number of

parameters will be divided by k2. As a reference we train two variants of PreActResNet

with F/2 and F/
√
2, where F represents the original number of feature maps.

As a last experiment, we aim at providing the effect of deviations when applying

erasure model during training. Note that we use erasure model rather than BM because

it is less complex and then speed up the training process. Figure 3.26 shows that

introducing erasure model during training allows to achieve same accuracy as standard

training while using less energy. Moreover, we notice that combining erasure regularizer

with Diff Fault leads to an additional gains. We thus conclude that we can significantly

improve the energy reduction using erasure regularizer and Diff Fault during training. In

addition, an interesting thing we notice is that to reduce energy consumption, it is better

to train a bigger neural network for robustness than just reduce the neural network size.

74 CHAPTER 3. NEURAL NETWORKS AND LOW RESOURCES SYSTEMS

0 0.2 0.4 0.6 0.8 1
90

92

94

++
+

+

+

Normalized energy

T
es
t
se
t
ac
cu

ra
cy

(%
)

Reliable implem.

Faulty (F)

Faulty (F) + reg.

+ Diff. Fault. (F)

Diff. Fault. (F) + reg.

Faulty (F/2)

Faulty (F/
√

2)

Figure 3.26: Energy consumption of the Preact-Resnet18 architecture under BM devi-

ations. Each faulty implementation curve corresponds to a fixed network size, with the

number of feature maps shown within parentheses.

3.10 Summary of the Chapter

We discussed in this chapter quantization techniques used to compress DNNs size and

reduce their computations and complexity. We proposed Shift Attention Layer (SAL),

a shift module based method, and a guided pruning method that aims at replacing

standard convolutional by a shift operation followed by 1× 1 convolution. We saw that

such a method eases hardware implementation of DNN based solution on FPGA.

We also proposed to study the effect of input power voltage of an embedded system

on DNNs robustness, and proposed a regularizer to make DNNs more robust against

voltage drop. Finally, we proposed to compare some quantization techniques to see

which method achieves the best trade off between accuracy and memory footprint.

A logical continuation to this work would be focusing on how to reduce complexity

of the training process of SAL, and continue exploring quantization methods and their

combination to find the architecture that achieves the best accuracy for a given energy

budget. Another challenge would be to avoid storing the whole dataset needed during

learning phase, and perform incremental learning where only one or few examples are

stored and learn at a time.

Chapter 4

Incremental Learning on Chip

Contents

3.1 Context . 39

3.2 Quantization . 40

3.3 Pruning . 44

3.4 Light Architectures . 48

3.5 Convolution Alternatives . 51

3.6 Other Methods . 61

3.7 Comparison and Combination of Different Compression Meth-

ods . 64

3.8 Hardware Implementation . 66

3.8.1 Hardware Architecture . 66

3.8.2 Hardware Results . 69

3.9 Energy Gains with Faulty Memories 69

3.10 Summary of the Chapter . 74

4.1 Context

During a life time, humans have the ability to learn incrementally new pieces of informa-

tion, combining them to previously acquired knowledge when facing day-to-day tasks.

This process is nondestructive, and usually called in the literature “curriculum learn-

ing” [3]. By contrast, Deep Neural Networks (DNNs), although they were introduced as

a simplifying model for brain mechanism, cannot achieve the same kind of learning. In-

deed, training with streaming data has the consequence of destroying previously learned

75

76 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

knowledge and results in what is usually referred to as “catastrophic forgetting” in the

literature [46, 17].

Despite the fact that DNNs became the state-of-the-art in several domains, they

are still unable to perform an incremental learning process because learning new data

will modify DNNs parameters in such a way to lose previously acquired information.

Many techniques try to avoid this loss of knowledge by learning several DNNs over time,

and use another algorithm to choose which DNN is more adapted to process an input

data [19, 72]. Such a technique leads to very complex systems quickly, and are likely to

fail in adversarial conditions [97].

Let us first define what incremental learning refers to (adapted from [81]):

1. It is able to perform learning process using one or few examples at a time, without

requiring to store or consider previous learned examples.

2. It is able to approach state-of-the-art classification accuracy while learning incre-

mentally new data, and thus avoid catastrophic forgetting.

3. It requires low computational power and memory footprint during both learning

and inference phases.

Incremental learning has received a particular interest for a long time [87, 99, 119],

and several methods have been proposed. However, satisfying criteria listed above while

keeping a high accuracy remains an open challenge.

There is no doubt that DNNs are state-of-the-art in many machine learning chal-

lenges. But they rely on large quantities of available data and hundreds of millions

of trainable parameters to perform the learning process, which require a large memory

footprint and computational power, and thus makes Learning On Chip (LOC) an open

challenging research so far [6, 74, 71, 53]. Due to the complexity of DNNs and the

resources needed to perform a learning phase, most recent works propose DNN hard-

ware implementations targeting only the inference part [5, 58, 109, 23], and assume that

the learning phase is computed offline using a remote server. Incremental learning ap-

proaches satisfying the above-mentioned criteria would be a good solution to overcome

LOC problems, since they learn only one or few examples at a time, and do not use

a large memory to store data. However, the methods presented in the literature of-

ten achieve poor accuracy compared to DNN counterparts. In the coming sections, we

explain how to combine incremental approaches with DNNs to achieve high accuracy

while performing Incremental Learning On Chip (ILOC). The chapter is organised as

4.2. MAIN METHODS IN THE LITERATURE 77

follows. In Section 4.2 we present incremental learning related works. In Section 4.3 we

introduce transfer learning concept. In Section 4.4 we discuss vector segmentation and

how it helps to classify feature vectors obtained using transfer learning. Section 4.5 and

Section 4.6 explain two incremental learning methods of our contribution. Section 4.7

performs some experiments using challenging computer vision datasets. In Section 4.8

we propose a hardware architecture and show some FPGA implementation results of an

ILOC solution, and finally in Section 4.9 we summarise the chapter.

4.2 Main Methods in the Literature

There has been some interest in incremental learning during last years [61]. For instance,

in [93, 76, 117], the authors propose a Support Vector Machine (SVM) based method

to learn one subset at a time. To learn a batch of new data, a new SVM is trained on

these new data combined to support vectors of previous SVMs. Since support vectors

are not conveying the full extent of previous data, the new resulting SVM will suffer from

catastrophic forgetting, and thus does not fulfill criterion 2 introduced in Section 4.1.

“Learn++” [78, 69], another incremental learning algorithm, uses weak one-vs-all

classifiers to accommodate new classes and combine them through weighted majority

votes. This approach is also able to manage the insertion, deletion and recurrence of

classes over learning data [92]. However, it needs to add and train new classifiers each

time a new class is introduced, and then ends up with a large computational power

and memory footprint which violates criterion 3. This method is also used to add the

incremental learning capability to SVMs, by using a set of SVMs trained with Learn++

called “SVMLearn++” [16], which consists of using the learn++ algorithm with an SVM

classifier. Despite the fact that SVMLearn++ shows promising results on biological

datasets [68], this method still needs to train new SVMs each time new data is available,

and suffers from catastrophic forgetting.

Pentina et al. [75] show the possibility of learning data sequentially. However, to

perform such an operation, they need to choose a correct ordering of the whole dataset,

and thus have the whole dataset before training which violates criterion 1. In [66], the

authors propose a transfer learning technique (cf. Section 4.3), in which a pre-trained

DNN is used as feature extractor, followed by the Nearest Class Mean classifier (NCM).

NCM summarizes each class using the average feature vector X̄ of all examples observed

for the class so far. To classify a D-dimensional feature vector X given by the pre-trained

DNN, NCM assigns to it the class of the closest mean as follows:

78 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

y∗ = argmin
y∈{1,...,Y }

d(X, X̄) (4.1)

X̄ =
1

Ny

∑

i:yi=y

Xi , (4.2)

where d(X, X̄) is the Euclidean distance between X and X̄, yi is the label of Xi, and

Ny is the number of samples in class y. The authors also propose to use learnable

metric instead of Euclidean distance during classification. However, to do so, they need

to use the whole dataset to learn the new metric, which does not correspond to an

incremental learning concept. NCM shows a better accuracy in incremental learning

scenario compared to other parametric classifiers [65, 66, 82], but lower than state-of-

art, and hence does not fulfill criterion 2.

In [52], Kuzborskij et al. show the possibility of adding new classes to a multi-class

classifier while keeping an acceptable accuracy. The classifier can be retrained using a

small amount of data belonging to all classes. Based on this work, in [81] the authors

propose “Incremental Classifier and Representation Learning” (iCaRL), an incremental

learning method using a trainable DNN feature extractor, and an NCM classifier. The

classification process is the same as introduced by the NCM method, where a DNN

is used as a feature extractor, and the class of the nearest mean is assigned to the

obtained D-dimensional feature vector X. During the learning process, the authors use

a loss function containing a classification term that encourage the network to output the

corresponding class of a new image, and a distillation term which ensures that previously

learned information is not lost when new classes are learned. Note that m images per

each learned class are kept, and combined to new input data to retrain the model, which

violates criterion 3. Moreover, when given a data stream containing only few classes at

a time, iCaRL achieves a very low accuracy as depicted in [81, 7], hence iCaRL does

not fulfill criterion 2. On the contrary, to reach good performances and a comparable

accuracy to state-of-art methods, iCaRL thus needs to be trained over batches of data

containing a large part of the dataset, which does not correspond to an incremental

learning scenario and infringes criterion 1.

We introduce Budget Restricted Incremental Learning (BRIL) [24], and Transfer

Incremental Learning using Data Augmentation (TILDA) [7], two incremental learning

methods using a pre-trained DNN as feature extractor, and an incremental classifier

trained on obtained feature vectors. In these methods, we propose to improve the

accuracy of transfer learning using vector segmentation.

4.3. TRANSFER LEARNING 79

4.3 Transfer Learning

During the past few years, transfer learning based on DNNs as feature extractors has

become increasingly popular [110]. It is used to reach state-of-the-art accuracy on too

small datasets that cannot be used to train a neural network, or to avoid the large

computational training of DNNs. Basically, transfer learning consists first in training a

deep neural network on a large first dataset, and then using inner layers of the obtained

pre-trained DNN that act as a generic feature extractor [70, 35, 72], combined with

classification methods such as Multi Layer Perceptron (MLP), Support Vector Machines

(SVMs) or Nearest Neighbour search (NN) to process a second dataset (cf. Figure 4.1).

As a matter of fact, DNN’s inner layers provide a good description of an input image, even

when it does not belongs to the learning domain [70]. A transfer learning based method

allows a rapid, flexible and low cost deployment of performing solutions in restricted

embedded systems such as robots or smartphones, since the larger and computational

part consists of a pre-trained unchanged DNN. In the next section, we discuss feature

vectors obtained from DNN’s inner layers and how the classification accuracy can be

improved when using vector segmentation.

4.4 Segmentation

Segmentation is the process of partitioning and splitting a given vector into subvectors,

process each subvector independently to obtain a result and compute an algorithm that

combines all obtained results for all subvectors such as a majority vote to finally get a

result corresponding to the initial vector.

The reason why vector segmentation helps to increase the accuracy is directly linked

to the use of transfer learning. Indeed, to provide a good representation of feature

vectors, the pre-trained DNNs that are used to compute transfer learning were trained

on a dataset containing a large variety of classes. As a consequence, it is expected that

a considerable part of the extracted feature vectors of a dataset counting few classes

is not used. Hence, the useful information in the resulting feature vectors is likely to

be sparsely spread among the coordinates. In [22], we show that for some distributions

where feature vectors are sparse and information is represented by only few coordinates,

splitting D-dimensional feature vectors into P equal size parts, where 1 < P << D,

classifying each part independently and then performing a majority vote to classify the

feature vector can help a non-parametric classifier (e.g. nearest neighbour search (NN))

achieve a better accuracy than just classifying the feature vector.

80 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

1. Train a CNN using massive generic datasets:

“cat”

2. Compute feature vectors using an intermediate representation in the CNN:

3. Use a classification method on obtained feature vectors:

“healthy”
SVM,k-NN,

MLP,random forest. . .

Figure 4.1: Overview of transfer learning process.

4.4. SEGMENTATION 81

Inception V3, 1-NN

P 1 4 16 64 256

CIFAR10 0.8519 0.8652 0.8781 0.8651 0.8347

ImageNet1 0.9328 0.9354 0.9424 0.9439 0.9081

ImageNet2 0.9438 0.9451 0.9524 0.9464 0.9171

Inception V3, 5-NN

P 1 4 16 64 256

CIFAR10 0.8689 0.8761 0.8759 0.8668 0.8461

ImageNet1 0.9389 0.9450 0.9429 0.9394 0.9202

ImageNet2 0.9467 0.9498 0.9511 0.9488 0.9303

SqueezeNet, 1-NN

P 1 5 20 100 200

CIFAR10 0.6839 0.7069 0.7472 0.6890 0.6225

ImageNet1 0.8854 0.8900 0.9001 0.8784 0.8466

ImageNet2 0.8737 0.8802 0.8926 0.8669 0.8267

SqueezeNet, 5-NN

P 1 5 20 100 200

CIFAR10 0.7284 0.7483 0.7566 0.6954 0.6371

ImageNet1 0.8985 0.8965 0.8980 0.8698 0.8501

ImageNet2 0.8862 0.8901 0.8893 0.8591 0.8280

AudioSet

P 1 2 10 20 40 160

1-NN 0.605 0.621 0.704 0.698 0.724 0.660

5-NN 0.564 0.649 0.704 0.718 0.727 0.668

Table 4.1: Accuracy of classification, depending on the feature extractor used, the

dataset and the number of segments P . This table is introduced in [22].

To show the effect of splitting feature vectors on accuracy, we use three main pre-

trained DNNs as feature extractors: InceptionV3 [96] trained on ImageNet ILSVRC 2012

that outputs a 2048-dimensional feature vector, SequeezeNet [40] trained on ImageNet

ILSVRC 2012 as well that outputs a 1000-dimensional feature vector, and a DNN trained

on AudioSet [18] that outputs a 1280-dimensional feature vector which represents the

concatenation of ten 128-dimensions feature vectors, one per second of the corresponding

audio track. We perform our tests on CIFAR10, Imagenet1, ImageNet2, and on 10 classes

chosen in AudioSet so that they contain a similar number of elements (radio, cat, hi-hat,

helicopter, fireworks, stream, bark, baby/infant cry, snoring, train horn). We report the

results in Table 4.1. Table 4.1 shows that for each experiment, splitting feature vectors

into P parts leads to a better accuracy. We exploit this idea when introducing BRIL in

Section 4.5 and TILDA in Section 4.6 to improve classification accuracy.

82 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

4.5 Budget Restricted Incremental Learning

We introduce in [24] Budget Restricted Incremental Learning (BRIL), an incremental

learning method built upon three main steps: 1) the use of a pre-trained DNN to extract

feature vectors from an input dataset, 2) the use of product quantization techniques to

embed data in a finite alphabet and 3) the use of a majority vote to classify data.

The first step consists in using transfer learning to extract features of a given input.

Indeed, inner layers of a DNN pre-trained on a large number of examples act as a generic

feature extractor. In the following, we denote by Xm
0 the m-th training input and by

Xm
l its corresponding feature vector, where 1 ≤ m ≤ M , and M is the total number of

training inputs (cf. Figure 4.2 step 1).

The second step consists in quantizing obtained feature vectors Xm
l where 1 ≤

m ≤ M using a Product Quantization (PQ) technique [42]. Since we aim at providing

a computationally light solution (cf. criterion 3), we choose to use Product Random

Sampling as a PQ technique. Basically, we split each feature vector Xm
l into P disjoint

sub-vectors of equal size
(

Xm
l,p

)

1≤p≤P
, and quantize each resulting sub-vector indepen-

dently from each other using k randomly sampled anchor vectors (Vp,i)1≤p≤P,1≤i≤k,

where each Vp,i is such that ∃Xm
l ,Xm

l,p = Vp,i. In the remaining of this chapter, we

refer to (Vp,i)1≤p≤P,1≤i≤k as anchor sub-vectors.

Next, each sub-vector Xm
l,p is quantized by choosing the closest anchor sub-vector

in its corresponding subspace, as depicted in Equation (4.3). We use the Euclidean

distance to determinate the closest anchor sub-vector. Each quantization is independent

from each other, so that the process can be performed concurrently, enabling a highly

parallel implementation on hardware. Note that since we are using Product Random

Sampling, the learning phase only consists in computing feature vectors of input data,

splitting these feature vectors into P equal size parts, and then choosing randomly k

sub-feature vectors to store, representing anchor vectors and their corresponding classes.

Learning new data results only into storing new anchor vectors. The parameter k controls

how many anchor vectors are added to each class, and thus most of training data is

disregarded when k is a small number.

i⋆(m, p) = argmin
i
‖Xm

l,p −Vp,i‖2
Qm

p = Vp,i⋆(m,p).
(4.3)

Finally, as a last step, we identify the classes that correspond to the obtained

(Qp)1≤p≤P , and perform a majority vote using theses classes to take a final decision and

4.6. TRANSFER INCREMENTAL LEARNING USING DATA AUGMENTATION83

Input
Signal
sm Pre-trained

CNN

Hidden
Layer
Output

Feature
Vector
xm

Split
Feature
Vector

Step 1 Step 2

Quantization
•
• •
•

+

qm
1

Step 3

majority vote

•
• •
•

•
•
••+ •

• •
•

•••
•
+

y21

•
• •
•

c̃1 c̃1

c̃2 c̃3

c̃1 c̃1

c̃2 c̃3

c̃1 c̃1

c̃2 c̃3

xm
1

xm
2

xm
3

2 · c̃1
0 · c̃2
1 · c̃3

Output
Class
c̃1

Figure 4.2: Overview of the proposed method, comprising three main steps. Given a set

of samples, we first use a pre-trained CNN for feature extraction (Step 1). Subsequently,

we use a PQ technique to quantize the feature vectors (Step 2). Finally, we use a majority

vote to classify the quantized data (Step 3). This figure is introduced in [24].

classify the input Xm
0 . The combination of using a pre-trained DNN as feature extractor

and a majority vote classifier allows the model to learn new classes and/or examples

without damaging previously learned knowledge [21] or retraining it. BRIL constitutes

our first original proposal for an incremental learning method. However, as we will see

in the following benchmarks, and despite being compliant with criteria 1 and 3, BRIL

violates criterion 2 since it achieves a significantly lower classification accuracy than

state-of-the-art methods. In the next section, we introduce another method, TILDA,

before moving on to benchmarking the two proposed approaches.

4.6 Transfer Incremental Learning using Data Augmenta-

tion

In [7], we introduce Transfer Incremental Learning using Data Augmentation (TILDA),

an incremental learning method that attempts to combine the characteristics of previ-

ously introduced work to fulfill all 3 criteria.

In more details, TILDA uses a pre-trained DNN to extract features from input vec-

tors, as with the iCaRL and BRIL methods. As BRIL, TILDA uses vector segmentation

to improve the accuracy. TILDA uses NCM-based classifiers to reduce the memory foot-

print. Finally, as BRIL and Learn++, TILDA uses a majority vote to aggregate the

decisions of multiple classifiers.

84 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

TILDA process can be split into four main steps: 1) a pre-trained DNN extracts

feature vectors, 2) feature vectors are split into multiple subvectors, 3) each subvector

is classified independently from the others using an NCM-based method, and 4) the

multiple decisions are aggregated using a majority vote.

Note that in order to further increase the accuracy of the method, we not only

use data augmentation during training but also when predicting the class of a given

unlabelled input. In other words, we generate multiple versions of a unlabelled input,

obtain a decision for each one then perform a majority vote (distinct from the one of

step 4) to obtain a global decision.

In the coming subsections, we review in detail each of the above mentioned steps.

4.6.1 Feature Vector Extraction

Similarly as in BRIL, to perform feature extraction, TILDA relies on the use of a pre-

trained DNN. We will use the same notation as defined above, for which the feature

extraction leads to consider the feature vector Xm
l during learning and classification

process instead of its corresponding input Xm
0 , where l denotes one layer in the DNN

architecture. Since we consider a fixed layer l, for more readability we denote Xm
y , Xm

l ,

where y is the class of Xm
l .

4.6.2 Vector Segmentation

As discussed in Section 4.4, we split each feature vector Xm
y into P equal size parts,

denoted
(

Xm
y,p

)

1≤p≤P
. For each class and subspace, we use k anchor vectors initialized

as 0. We associate to each anchor vector a counter, also initialized by 0, which represents

how many times the corresponding anchor vector has been modified. Considering each

subspace p and each class y, we denote by Vy,p = [Vy,p,1, ...,Vy,p,k] the corresponding

anchor vectors and Ny,p = [Ny,p,1, . . . , Ny,p,k] their associated counters.

For each class y and subspace p, anchor vectors should be interpreted as centroids

of a clustering of the corresponding subspace with observations {Xm
y,p}. In other words,

at each step of the training process we ensure that anchor vectors are the barycenter of

a subset of already processed input sub-vectors, and the associated counter accounts for

the cardinality of the corresponding subset.

Then, each time an input training vector is processed, we identify which anchor

vector we need to update. The update process consists of computing a new anchor

4.6. TRANSFER INCREMENTAL LEARNING USING DATA AUGMENTATION85

vector which represents a barycenter of the old one with weight given by its counter and

the input training sub-vector with weight 1, and then incrementing the corresponding

counter by one. Basically, this is an online way to compute the average of the subset of

vectors associated with a given anchor vector.

A problem with clustering methods when they are performed in an online manner is

that they are likely to cause unbalanced clusters. In order to avoid this, we penalize most

used anchor vectors by taking into account their corresponding counters when associating

a new input subvector to its corresponding cluster. More precisely, for each class y

and subspace p, we multiply obtained distances (di)1≤i≤k between input training sub-

vector Xm
y,p and anchor vectors Vy,p by corresponding counters Ny,p, and then associate

Xm
y,p to Vy,p,i corresponding to the smallest diNy,p,i. This procedure is detailed in

Algorithm 2. Note that when two or more anchor vectors obtain the same score (i.e.

distances multiplied by counters), we choose uniformly at random one of the them.

Algorithm 2 Incremental Learning of Anchor Subvectors

Input: streaming feature vector Xm
y,p

for p := 1 to P do

for i := 1 to k do

di = ‖Xy,p −Vy,p,i‖2
Ri = diny,p,i

end for

k̃ = argmin
i

Ri

Vy,p,k̃ ← Vy,p,k̃ny,p,k̃ +Xm
y,p

ny,p,k̃ ← ny,p,k̃ + 1

Vy,p,k̃ ← Vy,p,k̃/ny,p,k̃

end for

Note that the way we perform the clustering is unfortunately not independent of

the order of the streaming data, which contradicts criterion 1. However, it is possible,

at the cost of a lower accuracy, to change the clustering technique to fulfill this criterion.

4.6.3 Aggregation of Subspaces Weak Classifiers

At prediction stage, given an unlabelled input X0, we first compute its corresponding

feature vector X using the pre-trained DNN. We then split X into P parts and obtain

86 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

(Xp)1≤p≤P . We compute Euclidean distances between each Xp and all anchor vectors

Vy,p,i for which the counter is not 0. Note that there are at most kY such distances,

where Y is the number of classes seen so far. The class of the closest average anchor

vector is considered as the decision for the p-th subspace. Finally, we apply a majority

vote over all subspaces to achieve an aggregate decision (cf. Algorithm 3). Note that

more elaborate strategies such as a weighted majority vote can result in higher accuracy

but may require more computation during the learning phase as well as memorization

of previously seen examples.

Algorithm 3 Predicting the Class of a Test Input Signal

Input: input signal s

Compute the feature vector X associated with S

Initialize the vote vector C as the 0 vector with dimension Y

for p := 1 to P do

vp = argmin
y

[

min
i
‖Xp −Vy,p,i‖2

]

Cvp = Cvp + 1

end for

ỹ = argmax
y

(Cy)

Output: class ỹ attributed to s

4.6.4 Data Augmentation

We use two data augmentation methods to improve the accuracy and robustness: one

during training and one during classification.

During Training

To improve the accuracy without increasing memory usage, data augmentation is ap-

plied to the training dataset. We generate multiple versions of each training input (cf.

Section 4.7.1), and consider the resulting dataset as an input to train the model.

During Classification

In addition, we propose to obtain multiple predictions for each unlabelled input X0 using

data augmentation [10]. The idea is to generate multiple versions of the input X0 that

we denote (X0,s)1≤s≤S . We perform a prediction of the class associated with each X0

independently, and then perform a second a majority vote to obtain the final prediction.

4.7. EXPERIMENTAL RESULTS 87

Remarks

We point out multiple facts about the proposed method:

1. The learning procedure performs learning one example at a time,

2. The learning procedure is computationally light as it only requires performing of

the order of D operations where D is the dimension of feature vectors,

3. The learning procedure has a small memory footprint, since it only stores the

averages of feature vectors,

4. The learning procedure is such that adding new examples can only increase ro-

bustness of the method, so that there is no catastrophic forgetting,

5. During prediction stage, memory usage is of the order of kY D and thus is inde-

pendent on the number of examples and grows linearly with the number of classes,

6. During prediction, computations are of the order of kY DS elementary operations.

From these facts we derive that TILDA is compliant with criteria 1 and 3 defined

in the introduction. In the next section, we devise a set of experiments to evaluate the

classification accuracy of the proposed method on challenging datasets (criterion 2).

4.7 Experimental Results

To evaluate and compare some incremental and non-incremental learning methods, we

use a benchmark protocol described in the following section.

4.7.1 Benchmark Protocol

We propose an incremental learning scenario in which the streaming data may contain

new classes and/or new examples. We test and compare Budget Restricted Incremental

Learning (BRIL), Nearest Neighbour search (NN), the Nearest Class Mean classifier

(NCM), Learn++, incremental Classifier and Representation Learning (iCaRL), and

Transfer Incremental Learning using Data Augmentation (TILDA). Note that Learn++

uses Classification And Regression Trees (CART) as weak classifiers.

We perform the evaluation on some challenging computer vision datasets: CIFAR10,

CIFAR100 and ImageNet ILSVRC 2012 [85]. Because all methods use a DNN pre-trained

88 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

on ImageNet ILSVRC 2012, we also use 50 classes extracted from the wider ImageNet

dataset that have not been used to train the CNN (denoted ImageNet50). All methods

take the same feature vectors extracted from Inception V3 [96] as input and use the whole

dataset for training, unless explicitly mentioned. This requires to modify iCaRL method

by replacing its CNN with a fully connected network: we use a MultiLayer Perceptron

(MLP) with one hidden layer containing 1024 neurons, and output layer containing Y

neurons, where Y is the number of classes.

Note that CIFAR10, CIFAR100 and ImageNet could be arguably considered as

similar datasets, since they all contain pictures of various common objects. As such, we

expect to reach high accuracy when using a pre-trained DNN on ImageNet to predict

the classes for CIFAR10 or CIFAR100.

We also compare TILDA with non-incremental learning methods (NI) denoted by

TMLP and TSVM. TMLP uses transfer learning to compute feature extractors through

Inception V3, and then trains an MLP over feature vectors, using the hyper-parameters

previously described for iCaRL. TSVM method uses Inception V3 to get feature vectors

as well, and uses them to train an SVM using Radial Basis Function kernel.

Data augmentation used in TILDA generates a horizontal flip of the original image,

and shifts the pixels of the image by one pixel at a time (to the left, right, top, bottom,

and on the four diagonals). Thus we generate S = 10 images (8 generated by shifting

pixels on the image, one generated by horizontal flip and the original one).

4.7.2 Results

In the first experiment, we consider only the proposed TILDA method, and we aim to

show that replacing the last layers of Inception V3 by TILDA does not compromise the

performance obtained on Imagenet ILSVRC 2012. The 5-top accuracy is 94.4% when we

use TILDA with P = 16 and k = 30, and 96.5% when we use the last layers of Inception

V3 to classify data. So the accuracy obtained when using TILDA approaches the one

obtained by the full pre-trained Inception V3.

In the second experiment, we consider only TILDA as well, and we depict the

contribution of each TILDA’s step (i.e. vector segmentation, NCM-inspired classification

and data augmentation) on classification accuracy. This kind of experiments is often

referred to as an ablation test in the litterature.

Therefore, we define three methods: TILDA-DA does not use data augmentation

4.7. EXPERIMENTAL RESULTS 89

0 5 10 15 20 25 30

84

85

86

87

88

89

Value of k

A
cc
u
ra
cy

(%
)

P = 1
P = 8
P = 16
P = 32

0 5 10 15 20 25 30

60

62

64

66

68

70

Value of k

P = 1
P = 8
P = 16
P = 32

0 5 10 15 20 25 30

68

70

72

74

76

Value of k

P = 1
P = 8
P = 16
P = 32

Figure 4.3: Evolution of the accuracy as a function of P and k for CIFAR10 (left),

CIFAR100 (right) and ImageNet50 (bottom). This figure is introduced in [7].

and classifies only the original image, TILDA-NCM disregards NCM inspired classifica-

tion and uses k feature vectors randomly chosen per class, and TILDA-P where vectors

are not splitted. The evaluation is performed on CIFAR10, CIFAR100, ImageNet50 and

ImageNet ILSVRC 2012. Table 4.2 summarizes the accuracies of TILDA, TILDA-DA,

TILDA-NCM and TILDA-P, when performing one-shot learning (learning one example

at a time). We notice that TILDA-DA, TILDA-NCM and TILDA-P reach lower accura-

cies than TILDA, which confirms the interest of the combination of data augmentation

with NCM-inspired classification and subspace division.

One more time, we perform an experiment in which we consider only TILDA to

study the effect of both quantization parameters P and k on the accuracy (cf. Figure 4.3).

This experiment demonstrates that TILDA reaches best performances for P = 16. In

the following, we perform experiments using TILDA with P = 16 and k = 30. Note

that in order to be fair in comparison with other techniques, we do not perform data-

augmentation during training or prediction in TILDA in the upcoming experiments.

As a fourth experiment, we aim at stressing the effect of class-incremental learning.

We adopt a class-incremental scenario (CI), in which methods are trained over streaming

data providing all examples from one class simultaneously, one class at a time. We test

90 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

2 4 6 8 10

80

90

100

Number of classes

A
cc
u
ra
cy

(%
)

TILDA-DA
NN
NCM

Learn++
iCaRL

0 20 40 60 80 100

40

60

80

100

Number of classes

TILDA-DA
NN
NCM

Learn++
iCaRL

0 10 20 30 40 50
50

60

70

80

90

100

Number of classes

TILDA-DA
NN
NCM

Learn++
iCaRL

Figure 4.4: Evolution of the accuracy as a function of number of classes for CIFAR10

(left), CIFAR100 (right) and ImageNet50 (bottom). This figure is introduced in [7].

and compare TILDA-DA, NCM, Learn++, NN and iCaRL on CIFAR10, CIFAR100 and

ImageNet50 (cf. Figure 4.4). Learn++ adds one weak classifier each time a novel class is

introduced, and iCaRL stores 30 feature vectors per class. We can see that TILDA-DA

outperforms the other methods by achieving a better accuracy.

The fifth experiment is illustrating the behaviour of the accuracy when trying to

obtain incremental information from new examples of the same class. We adopt an

example-incremental scenario (EI), in which we train the method over streaming data

providing new examples without introducing new classes. We test and compare TILDA-

DA, NCM, NN, Learn++ and BRIL on CIFAR10, CIFAR100 and ImageNet50. We di-

vide these datasets into 10 equal size parts, each part containing 5000 examples (500/50

example per class) for CIFAR10/CIFAR100, and 4500 examples (90 per class) for Ima-

geNet50. During this experiment, incremental learning methods learn one dataset part

at a time. Learn++ adds one weak classifier each time a new part is learned. Fig-

ure 4.5 shows that all methods handle example-incremental learning and improve their

accuracy each time they learn new information provided by new examples. TILDA-DA

consistently obtains higher accuracy than Learn++, NCM, NN and BRIL regardless of

the quantity of provided data. Note that Learn++ needs large number of examples to

perform, and obtains a low accuracy when only few examples are provided.

4.7. EXPERIMENTAL RESULTS 91

0.2 0.4 0.6 0.8 1

60

70

80

Proportion of database

A
cc
u
ra
cy

(%
)

TILDA-DA
NCM

Learn++
NN
BRIL

0.2 0.4 0.6 0.8 1

20

30

40

50

60

70

Proportion of database

TILDA-DA
NCM

Learn++
NN
BRIL

0.2 0.4 0.6 0.8 1

30

40

50

60

70

Proportion of dataset

TILDA-DA
NCM

Learn++
NN
BRIL

Figure 4.5: Evolution of the accuracy as a function of number of learning examples for

CIFAR10 (left), CIFAR100 (right) and ImageNet50 (bottom). This figure is introduced

in [7].

Table 4.2: Accuracy of TILDA on CIFAR10, CIFAR100, ImageNet50 and ImageNet

ILSVRC 2012. TILDA uses the following parameters: P = 16 and k = 30. We learn

incrementally one example at a time. This table is introduced in [7].

TILDA TILDA-DA TILDA-NCM TILDA-P

CIFAR100 69.6% 65.3% 60.7% 67%

CIFAR10 88.7% 86.6% 84.11% 87%

ImageNet50 76% 74.4% 69.2% 72%

ILSVRC 2012 94.4% 91% 89.6% 90%

92 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

Table 4.3: Comparison of accuracy (Acc) and memory usage (M) relative to full dataset

(corresponding to 100%) for the different methods. Note that memory usage of Learn++

method represents the size of weak classifiers, and for iCaRL represents the stored feature

vectors and the size of the trainable neural network. This figure is introduced in [7].

only CI both CI and EI only EI

Learn++ iCaRL TILDA TILDA-DA NN NCM BRIL Learn++

Acc100 34% 30% 69.6% 65.3% 60.2% 58.25% 57% 34%

M100 10.5% 8% 6% 6% 100% 0.2% 6% 6.8%

Acc10 79.8% 41% 88.7% 86.6% 85% 83% 82% 79.5%

M10 0.65% 2.7% 0.6% 0.6% 100% 0.02% 0.6% 0.65%

Acc50 54.2% 64% 76% 74.4% 69.7% 67.2% 67.4% 50%

M50 4.7% 5.6% 3.3% 3.3% 100% 0.11% 3.3% 3%

Table 4.3 summarizes the different incremental learning methods, and shows their

obtained accuracies and memory footprints. Learn++ uses either class-incremental sce-

nario (CI) or example-incremental scenario (EI). iCaRL performs learning process using

CI. TILDA, NN, NCM, and BRIL use one-shot learning to process one example at a

time providing a novel class or additional information, thus they handle both class-

incremental and example-incremental at the same time. TILDA outperforms all other

incremental learning methods on both accuracy and memory usage.

The last evaluation we perform aims to compare TILDA with non incremental learn-

ing methods such as TMLP and TSVM. To do so, we store and train these methods on

the whole dataset. The parameters used for TILDA are P = 16 and k = 30 for CI-

FAR10, CIFAR100 and ImageNet50, and uses one-shot learning to process one example

at a time. Table 4.4 shows that TILDA reaches an accuracy comparable to state-of-art

methods, even when it learns incrementally only one example at a time.

As shown by the different evaluations, TILDA can at any instant classify data

with a good accuracy (cf. Figure 4.4 and Figure 4.5), outperforms other incremental

learning methods (cf. Table 4.3), and approaches non incremental state-of-art accuracy

(cf. Table 4.4). Consequently, TILDA fulfills criterion 2.

4.8. HARDWARE IMPLEMENTATION 93

Table 4.4: Comparison of TILDA with non-incremental learning methods. This figure

is introduced in [7].

TILDA TILDA-DA TMLP TSVM

Acc (CIFAR100) 69.6% 65.16% 68.6% 67.6%

M (CIFAR100) 6% 6% 100% 100%

Acc (CIFAR10) 88.7% 86.6% 90% 89.2%

M (CIFAR10) 0.6% 0.6% 100% 100%

Acc (ImageNet50) 76% 74.4% 75.2% 75%

M (ImageNet50) 3.3% 3.3% 100% 100%

4.8 Hardware Implementation

In Section 4.6 and 4.7, we showed that TILDA fulfill all criteria introduced in Section 3.1,

and thus represents a good solution to overcome Learning on Chip (LOC) problems. In

this section, we exploit the simplicity of TILDA method and its good performance to

propose an incremental learning on chip (ILOC) solution. We assume that a generic

feature extraction is performed by an external CPU which provides feature vectors Xm

to the FPGA. Consequently, we introduce a hardware implementation to compute only

the incremental classifier part. The DNN hardware implementation can be performed

using compression methods and hardware architectures introduced in Chapter 3.

4.8.1 Data Quantization

All data and signals are quantized on n = 18 bits fixed-point representation, which en-

ables to use only 1 dedicated multiplier block (Xilinx DSP Block) for each multiplication.

In addition, we perform local quantization by setting the number of integer bits ñ ≤ n

at each step of the algorithm. In the subsequent figures depicting hardware blocks, we

include the width of each bus in italics. The number ñ of integer bits at each step of the

hardware implementation changes as follows:

• Feature-vector, Anchor-vector: ñ = 5,

• Distance: ñ = 10,

• Address, Counter: ñ = 18,

94 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

Feature
Vector

Xm

nD

Input

Class

n

Input

Register

nD/P

nD/P

nD/P

counter
L-P

L-P
n

ADD

Address

n
n

Processing
block

Processing
block

Processing
block

Y

Y

Y

Parallel

Majority

Vote

Output

Class

Y

Sequential

Majority

Vote

Output

Class

Y

Figure 4.6: Hardware architecture for incremental learning.

• Distance×Counter: ñ = 16,

• Anchor-vector×Counter: ñ = 10,

• Anchor-vector+Feature-vector: ñ = 10.

4.8.2 Hardware Architecture

An overview of the hardware architecture is presented in Figure 4.6. Each input feature

vector Xm is split into P sub-vectors, and processed on P Processing blocks in parallel.

Each processing block p gets a sub-vector, as well as an address that is generated by the

counter L-P block. Each processing block outputs the class associated to a sub-vector.

The obtained classes (yp)1≤p≤P , which represent a Y -dimensional vector, are used to

compute a Parallelized Majority vote, and classify the input feature vector Xm. Finally,

Sequential Majority vote is used to output the class of the original signal when data

augmentation is performed to classify unlabelled data.

Processing block

We use this component to learn or classify a sub-vector. This component has three

inputs: feature sub-vector, learning-processing signal L-P, and address (generated by

Counter/L-P) and has only one output, the obtained class of a feature sub-vector one-

hot encoded on Y bits, where Y is the number of classes. Given a feature sub-vector

4.8. HARDWARE IMPLEMENTATION 95

n

MUXn
E = 1

Mem

nD/P
FSV
Xm

p

nD/P

n

CTD n
Dist

CRD n
Indx

Counter (address)

DR
Y FSV

Class

n

L-P

Val

AND

W-R

Figure 4.7: Hardware architecture of Processing block. Note that “FSV” refers to feature

subvector, “Mem” refers to Memory, “CDT” refers to Compute Distance, “CRD” refers

to Compare Distance and “DR” to Distance Register.

Xm
p , we first compute the euclidean distance between Xm

p and Vi
p (where Vi

p is the

first anchor vector addressed by the address generator), multiply the distance by anchor

vector’s counter, and store the result in the register rp in Compare Distance block.

We repeat the same process using each
(

Vj
p

)

i≤j≤i+k
, compare the result with the rp

value, and store the smallest one in rp. Finally, Compare Distance block outputs the

index of the nearest Vj
p from Xm

p . Given this index, Distance register block outputs the

same index and the class of anchor vector corresponding to the index. It also outputs

a validation signal val, which is equal to 1 when the nearest Vj
p from Xm

p has been

determined. During the learning process (L-P=1), when val signal is equal to 1, R-W

becomes 0 and we use the feature sub-vector and index from the Distance Register block

through the multiplexer to modify the memory content according to Algorithm 2. The

inverse values of indexes are stored in Look-up tables and multiplied by the output of

the Distance Register block (cf. Figure 4.7).

Counter/L-P

This component is an ordinary counter, which counts from 0 to Modulo in value. This

counter uses a signal L-P which is equal to 1 during learning phase, and 0 during

classification phase. This signal sets Modulo in to k during learning phase, to generate

only k different addresses in order to read only anchor vectors of a specific class. During

classification phase, it sets Modulo in to Y k, in order to read all anchor vectors.

96 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

Y

P

1 0 0 0 0

1 0 0 0 0

0 0 1 0 0
r′1 r′2 r′3 r′Y

Comparator

Output Class

Figure 4.8: Overview of majority vote process.

Memory

The Memory block contains two memory blocks (Xilinx UltraRam technology), one to

store anchor vectors (URAM A-V), and the other one to store corresponding counters

(URAM Counters). Addresses are provided by Counter/L-P. It is also performs the

multiplication/division of an anchor vector and its corresponding counter, and the sum

between an anchor vector and an input feature sub-vector.

Majority vote

Class vectors yp are one-hot encoded on Y bits. Parallel Majority Vote computes a

bitwise addition over all (yp)1≤p≤P vectors. The Y results stored into
(

r′y
)

1≤y≤Y
registers

are compared sequentially, and the class index y corresponding to the register r′y with

the highest value is attributed to the unlabelled feature vector Xm (cf. Figure 4.8).

Sequential Majority vote is computed only when using data augmentation. This

block takes as input only one class vector yp and performs an addition between each y

bit of the input class vector and the y inner register. A final comparison is performed

between each y results, which outputs a global predicted class vector.

During training, when Compare Distance block compares two distances, Compute

Distance block computes a new distance between input feature sub-vector and another

anchor vector. Thus, the learning phase needs k + 3 clock cycles per feature vector.

Precisely, it takes k cycles to compute/compare distances, 1 cycle to multiply anchor

4.9. SUMMARY OF THE CHAPTER 97

vector with its corresponding counter, 1 cycle to add the result with the input feature

sub-vector and increment its counter and 1 cycle to divide the result by this incremented

counter. During classification process, sequential majority vote needs at least S clock

cycles (S represents the number of feature vectors resulting form data augmentation) to

give an output, parallel majority vote needs at least Y S clock cycles to classify S feature

vectors, and processing block needs Y kS clock cycles to classify S sub-vectors resulting

from data augmentation and corresponding to the same input. In the proposed architec-

ture, these three blocks work at the same time, thus Y kS is the number of clock cycles

needed to classify an unlabelled feature vector, with Y k cycles to compute distances,

repeated S times to classify all feature vectors resulting from data augmentation.

4.8.3 Results

The proposed hardware architecture has been implemented and validated by software

simulation over a batch of examples. We provide synthesis results of the hardware

architecture on a Xilinx Ultra Scale Vu13p (xcvu13p-figd2104-1-e) Field Programmable

Gate Array (FPGA) in Table 4.5. We also include synthesis results from BRIL that we

proposed in [25] as a reference.

Performance estimates are given for CIFAR10 for P = 16, K = 30 and Y =

10, yielding an accuracy of 89.1%/87% with/without data augmentation, instead of

88.7%/86.6% obtained for 32-bit encoding. To obtain feature vectors, we use inception

V3 [96] (D = 2048). 2048 DSPs are used to compute distances and P = 16 more to

multiply/divide anchor vectors by their corresponding counters. Power consumption

and maximum clock frequency of the whole system are estimated to about 8 Watts and

208 MHz. The estimated time needed to learn/classify an input vector is 158.2/1442

ns at maximum clock frequency, corresponding to an acceleration factor of 104 when

compared with a software simulation delay using an I7 870 (2.93 GHz) processor.

4.9 Summary of the Chapter

In this chapter, we discussed the incremental learning concept and compared some in-

cremental learning methods. We introduced Budget Restricted Incremental Learning

(BRIL) and Transfer Incremental Learning Using Data Augmentation (TILDA), two in-

cremental learning methods using feature extraction, vector segmentation, and majority

vote. An incremental learning method is well adapted to real life tasks, and presents

a good solution to perform learning on chip (LOC), since it learns only one or few ex-

98 CHAPTER 4. INCREMENTAL LEARNING ON CHIP

Table 4.5: FPGA results for TILDA and BRIL implementations on vu13p (xcvu13p-

figd2104-1-e) (D = 2048, P = 16, K = 30).

TILDA BRIL [25]

Memory usage (bits) 11059488 6553600

Look-up Tables (LUT) 152546 95654

DSP 2064 2048

Maximum frequency (MHz) 208 204

Learning delay (ns) 158.2 5

Classifying delay (ns) 1442 1470

Energy consumption (W) 7 13

Accuracy (%) 87 82

amples at a time. We also introduced a hardware architecture to perform incremental

learning on chip (ILOC). Such a hardware architecture allows an embedded system to

train a model on chip that dynamically adapts to new data.

A future work would be exploring further the methods for splitting feature vectors,

data augmentation strategies and a weighted majority vote to improve the accuracy, and

also introducing hardware architecture and implementation of the pretrained CNN to

propose a complete embedded incremental learning on chip solution.

Chapter 5

Conclusion

Contents

4.1 Context . 75

4.2 Main Methods in the Literature 77

4.3 Transfer Learning . 79

4.4 Segmentation . 79

4.5 Budget Restricted Incremental Learning 82

4.6 Transfer Incremental Learning using Data Augmentation . . 83

4.6.1 Feature Vector Extraction . 84

4.6.2 Vector Segmentation . 84

4.6.3 Aggregation of Subspaces Weak Classifiers 85

4.6.4 Data Augmentation . 86

4.7 Experimental Results . 87

4.7.1 Benchmark Protocol . 87

4.7.2 Results . 88

4.8 Hardware Implementation . 93

4.8.1 Data Quantization . 93

4.8.2 Hardware Architecture . 94

4.8.3 Results . 97

4.9 Summary of the Chapter . 97

99

100 CHAPTER 5. CONCLUSION

5.1 Conclusion and Perspectives

5.1.1 Summary of the Thesis

In this Ph.D. manuscript, we tackled the problem of implementing deep learning solutions

in the context of resource limited devices. We reviewed several propositions to reduce

both memory and computations, using pruning, quantification, or factorization. We

also introduced novel methods to handle the case of incremental learning, since a vanilla

deep learning model does not have the ability to learn new information over time without

destroying previously acquired knowledge.

5.1.2 Summary of Contributions

This section summaries the different contributions introduced in this thesis, and briefly

explains how each one is an answer to the problematic of the Ph.D.

In Section 3.5, we introduced Shift Attention Layer (SAL), a novel attention-based

pruning method that replaces a vanilla convolutional layer by the concatenation of a

shift operation and a simple 1x1 convolution. The idea is to use pruning not only to

reduce neural network size but also to considerably reduce the number of operations. To

this end, we equipped each convolutional kernel with an attention mechanism aiming at

learning which weight should be kept in the resulting shift layer. We demonstrated that

SAL reduces both memory and computations required by a deep learning based inference

solution, and thus may address the societal and technical challenges mentioned in the

introduction since it tackles the two main limitations: memory and computations, that

beget these challenges. However, SAL requires extra parameters at training stage, and

as such cannot be used to accelerate the training procedure.

In Section 3.8, we presented a hardware architecture to implement SAL on FPGA.

In addition to SAL, we binarized the remaining weights using BWN. As such we ended

up with a simple hardware architecture that shifts a given input, and then uses a low

cost multiplexer (since the weight values should be either 1 or −1). We believe that

this resulting hardware implementation could be of use in many practical cases, and

in particular when the time, memory or energy is limited to run a prediction. Such a

solution could be in particular implemented in the context of smartphones.

In Section 3.9, we studied the effect of reducing input voltage of an embedded system

implementing a deep neural network on its accuracy. We assumed that reducing input

5.1. CONCLUSION AND PERSPECTIVES 101

voltage introduce errors in on chip memory where neural network parameters are stored.

Therefore, we proposed to introduce the same error during training phase, causing a

significant increase in the neural network accuracy under the effect of reduced input

voltage. Such a contribution aims at addressing the energetic impact of deep learning.

In Section 4.4, we focused on how to improve performance of transfer learning using

vector segmentation. When using transfer learning, one usually considers a pre-trained

neural network on a large dataset to process a smaller dataset. Hence, one ends up with

sparse feature vectors where useful information would be spread among the coordinates.

Thus, splitting resulting features vectors, classifying each part independently, and finally

using a majority vote to classify resulting feature subvectors can considerably increase the

performance and robustness of the method. In this contribution, we aimed at addressing

a scientific challenge, which is to better understand and exploit the feature vector specific

distributions when relying on transfer learning with deep neural networks.

In Section 4.6, we proposed Transfer Incremental Learning using Data Augmen-

tation (TILDA), an incremental learning method. TILDA relies on pre-trained neural

networks to extract feature vector of a given input, then splits this feature vector to

improve the performance, and uses a Nearest Mean Class (NCM) inspired classifier to

incrementally learn one example at a time. TILDA tackles incremental learning, a real

time problem and a technical challenge, where the algorithm is adapted on the fly using

new data while keeping previous acquired knowledge.

In Section 4.8, we introduced a hardware architecture to implement TILDA on

FPGA. Such a hardware architecture can easily fit on an FPGA due to the simplicity of

TILDA algorithm, giving an incremental learning on chip solution, and aims at address-

ing some technical challenges. Indeed, it tackles both real time problem and learning

and processing data on chip.

A main contribution of this Ph.D., that corresponded to a significant effort of re-

search, was to list, understand, implement and compare the numerous techniques that

have been introduced in the literature to tackle the problem of compressing deep learn-

ing methods. We quickly understood that this problem is missing standardized and fair

benchmarks allowing to quickly grasp the main interests (and disadvantages) of pro-

posed methods. We were very surprised to observe that many proposed techniques in

the literature (some of which were cited hundreds of times at the time of writing this

document) resulted in almost no gain (and sometimes even worst performance) than sim-

ply smartly tuning the hyperparameters on the initial baseline architecture. Too many

papers advantageously benefit from a modest understanding of the actual specificities of

GPUs or even modern processors to push methods that apparently reduce the number

102 CHAPTER 5. CONCLUSION

of parameters or number of computations, but actually result in longer processing time

and memory usage. We sincerely hope that this manuscript will help the readers better

understand the effect of mainstream methods on memory and computations.

5.1.3 Perspectives

As mentioned in Section 3.10 and Section 4.9, the different contributions discussed in

this manuscript can be extended in numerous ways, and used as a starting point to

explore other and more efficient solutions.

Our work and other state-of-the-art methods on shift layers open a new considerable

perspective. Convolutional Neural Networks were considered as the best solution that

can be applied to process datasets containing images. However, in this manuscript

we showed that shift layers based methods can outperform CNNs in some conditions.

Indeed, a shift layer based method is able to achieve a better accuracy than CNNs while

using less parameters. Moreover, it does not compute the complex convolution operation,

accelerates data processing and uses less resources. Thus, such a method can be a

substitution to CNNs. Shift layers have the main interest of focusing the computations

to very precise kernels (made of only 1 weight each), and offer new perspectives of

understanding the performance of deep neural networks.

Quantization methods introduced in this manuscript aim at reducing memory foot-

print and computations only for classification (or inference) phase. Since learning phase

is more expensive, reconsidering these methods and using them to reduce memory and

computations during training would be an important contribution in this field. This

question should definitely attract more interest, as it is quite clear that many applica-

tions of deep learning will require fine tuning the parameters on the fly.

Finally, we believe that a learning on chip solution where deep learning models are

trained on an embedded system with limited resources such as smartphones or FPGAs

would be the next major subject. Indeed, such a solution aims at substituting GPUs

by embedded systems to train neural network. It will use hardware architectures and

quantization methods designed to reduce memory and computations of inference phase

as a starting point and re-adapt them to propose a learning on chip solution. Thus,

learning on chip will provide a cheaper solution to train neural networks on cheaper

devices (smartphones or FPGAs) accessible to everyone, with a low energy consumption.

Deep learning has become a central technology of today. It is still very unclear how

it is going to continue to permeate science. But it appears that compression is a key

5.1. CONCLUSION AND PERSPECTIVES 103

challenge of the field. Not only compression is required for some concrete applications,

but it could change how fast the field is going to advance, and how accessible it is going

to be to small companies and associations. Making deep learning solutions accessible to

everyone, with a lesser ecological impact, and a clearer understanding of its fundamental

functioning, are contributions we would hope to participate to in the coming years.

104 CHAPTER 5. CONCLUSION

Bibliography

[1] Arash Ardakani, Carlo Condo, and Warren J Gross. A convolutional accelerator

for neural networks with binary weights. In Circuits and Systems (ISCAS), 2018

IEEE International Symposium on, pages 1–5. IEEE, 2018. 68

[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern

machine learning and the bias-variance trade-off. arXiv preprint arXiv:1812.11118,

2018. 38

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-

riculum learning. In Proceedings of the 26th annual international conference on

machine learning, pages 41–48. ACM, 2009. 75

[4] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

23, 24

[5] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Ken-

neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. Finn-r: An

end-to-end deep-learning framework for fast exploration of quantized neural net-

works. ACM Transactions on Reconfigurable Technology and Systems (TRETS),

11(3):16, 2018. 76

[6] Gian Marco Bo, Daniele D Caviglia, and Maurizio Valle. An on-chip learning neural

network. In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-

ENNS International Joint Conference on, volume 4, pages 66–71. IEEE, 2000.

76

[7] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, and

Michel Jezequel. Transfer incremental learning using data augmentation. Applied

Sciences, 8(12):2512, 2018. 10, 78, 83, 89, 90, 91, 92, 93

[8] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge. Yield-driven near-threshold

SRAM design. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 18(11):1590–1598, Nov 2010. 70

105

106 BIBLIOGRAPHY

[9] Xiuyuan Cheng, Xu Chen, and Stéphane Mallat. Deep haar scattering networks.

Information and Inference: A Journal of the IMA, 5(2):105–133, 2016. 30

[10] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Juergen Schmid-

huber. Deep big simple neural nets excel on handwritten digit recognition. arXiv

preprint arXiv:1003.0358, 2010. 86

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In Ad-

vances in neural information processing systems, pages 3123–3131, 2015. 8, 40, 45,

65, 66

[12] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

41, 45

[13] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314, 1989. 30

[14] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar,

Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,

Bharat Kaul, Evangelos Georganas, et al. Mixed precision training of convolu-

tional neural networks using integer operations. arXiv preprint arXiv:1802.00930,

2018. 43, 45

[15] R.G. Dreslinski, M. Wieckowski, D Blaauw, D Sylvester, and T. Mudge. Near-

threshold computing: Reclaiming Moore’s law through energy efficient integrated

circuits. Proc. of the IEEE, 98(2):253–266, Feb. 2010. 69, 70

[16] Zeki Erdem, Robi Polikar, Fikret Gurgen, and Nejat Yumusak. Ensemble of svms

for incremental learning. In International Workshop on Multiple Classifier Sys-

tems, pages 246–256. Springer, 2005. 10, 77

[17] Robert M French. Catastrophic forgetting in connectionist networks. Trends in

cognitive sciences, 3(4):128–135, 1999. 10, 19, 76

[18] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade

Lawrence, R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An

ontology and human-labeled dataset for audio events. In 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 776–780.

IEEE, 2017. 25, 81

BIBLIOGRAPHY 107

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014. 76

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016. 23

[21] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.

An empirical investigation of catastrophic forgetting in gradient-based neural net-

works. arXiv preprint arXiv:1312.6211, 2013. 83

[22] Vincent Gripon, Ghouthi B Hacene, Matthias Löwe, and Franck Vermet. Im-

proving accuracy of nonparametric transfer learning via vector segmentation. In

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2966–2970. IEEE, 2018. 79, 81

[23] Ghouthi Boukli Hacene, Vincent Gripon, Matthieu Arzel, Nicolas Farrugia, and

Yoshua Bengio. Quantized guided pruning for efficient hardware implementations

of convolutional neural networks. arXiv preprint arXiv:1812.11337, 2018. 8, 40,

51, 66, 76

[24] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, and

Michel Jezequel. Budget restricted incremental learning with pre-trained convo-

lutional neural networks and binary associative memories. In Signal Processing

Systems (SiPS), 2017 IEEE International Workshop on, pages 1–6. IEEE, 2017.

78, 82, 83

[25] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, and

Michel Jezequel. Incremental learning on chip. In Signal and Information Process-

ing (GlobalSIP), 2017 IEEE Global Conference on, pages 789–792. IEEE, 2017.

97, 98

[26] Ghouthi Boukli Hacene, Carlos Lassance, Vincent Gripon, Matthieu Courbariaux,

and Yoshua Bengio. Attention based pruning for shift networks. arXiv preprint

arXiv:1905.12300, 2019. 8, 40, 53

[27] Ghouthi Boukli Hacene, François Leduc-Primeau, Amal Ben Soussia, Vincent

Gripon, and François Gagnon. Training modern deep neural networks for memory-

fault robustness. 8, 10, 40, 70

[28] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

108 BIBLIOGRAPHY

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015. 8, 40, 62, 63, 64, 65

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In Proceed-

ings of the IEEE international conference on computer vision, pages 1026–1034,

2015. 48

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016. 30, 31, 33, 52, 71

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, pages 630–645.

Springer, 2016. 70, 71

[32] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:

Automl for model compression and acceleration on mobile devices. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 784–800, 2018.

8, 40, 46, 47

[33] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-

bury, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE

Signal processing magazine, 29, 2012. 30

[34] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015. 64

[35] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung Han. Online tracking

by learning discriminative saliency map with convolutional neural network. CoRR,

abs/1502.06796, 2015. 79

[36] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989. 30

[37] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017. 8, 40, 48, 49

[38] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint

arXiv:1709.01507, 7, 2017. 71

BIBLIOGRAPHY 109

[39] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In CVPR, volume 1, page 3, 2017. 30,

33, 35, 52

[40] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. 8, 40,

48, 49, 62, 65, 81

[41] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015. 29

[42] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for

nearest neighbor search. IEEE transactions on pattern analysis and machine in-

telligence, 33(1):117–128, 2011. 82

[43] Yunho Jeon and Junmo Kim. Active convolution: Learning the shape of convolu-

tion for image classification. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4201–4209, 2017. 53

[44] Yunho Jeon and Junmo Kim. Constructing fast network through deconstruction

of convolution. arXiv preprint arXiv:1806.07370, 2018. 8, 40, 47, 52, 56, 57, 58

[45] X. Jiao, M. Luo, J. Lin, and R. K. Gupta. An assessment of vulnerability of

hardware neural networks to dynamic voltage and temperature variations. In

2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 945–950, Nov 2017. 70

[46] Nikola Kasabov. Evolving connectionist systems: Methods and applications in

bioinformatics, brain study and intelligent machines. Springer Science & Business

Media, 2013. 10, 19, 76

[47] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. S. Sathe. Energy-efficient

neural network acceleration in the presence of bit-level memory errors. IEEE

Trans. on Circuits and Systems I: Regular Papers, pages 1–14, 2018. 69, 70

[48] Animesh Koratana, Daniel Kang, Peter Bailis, and Matei Zaharia. Lit: Learned

intermediate representation training for model compression. In International Con-

ference on Machine Learning, pages 3509–3518, 2019. 64

[49] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William

Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. Flexpoint:

110 BIBLIOGRAPHY

An adaptive numerical format for efficient training of deep neural networks. In

Advances in neural information processing systems, pages 1742–1752, 2017. 42, 43

[50] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009. 24

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012. 30, 31, 32, 33, 56

[52] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. From n to n+ 1: Mul-

ticlass transfer incremental learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3358–3365, 2013. 78

[53] Griffin Lacey, Graham W Taylor, and Shawki Areibi. Deep learning on fpgas:

Past, present, and future. arXiv preprint arXiv:1602.04283, 2016. 76

[54] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,

and time series. The handbook of brain theory and neural networks, 3361(10):1995,

1995. 30

[55] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989. 30, 31

[56] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Prun-

ing filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016. 8, 40, 44,

46, 57

[57] Yangqing Li, Saurabh Prasad, Wei Chen, Changchuan Yin, and Zhu Han. An ap-

proximate message passing approach for compressive hyperspectral imaging using

a simultaneous low-rank and joint-sparsity prior. In Hyperspectral Image and Sig-

nal Processing: Evolution in Remote Sensing (WHISPERS), 2016 8th Workshop

on, pages 1–5. IEEE, 2016. 8, 40, 41, 45

[58] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-bnn:

Binarized neural network on fpga. Neurocomputing, 275:1072–1086, 2018. 76

[59] C. Liu, M. Hu, J. P. Strachan, and H. Li. Rescuing memristor-based neuromorphic

design with high defects. In 2017 54th ACM/EDAC/IEEE Design Automation

Conference (DAC), pages 1–6, June 2017. 70

[60] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016. 44

BIBLIOGRAPHY 111

[61] Vincenzo Lomonaco and Davide Maltoni. Comparing incremental learning strate-

gies for convolutional neural networks. In IAPR Workshop on Artificial Neural

Networks in Pattern Recognition, pages 175–184. Springer, 2016. 77

[62] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method

for deep neural network compression. In Proceedings of the IEEE international

conference on computer vision, pages 5058–5066, 2017. 8, 40, 44, 47

[63] Vladimir Macko, Charles Weill, Hanna Mazzawi, and Javier Gonzalvo. Improving

neural architecture search image classifiers via ensemble learning. arXiv preprint

arXiv:1903.06236, 2019. 25, 33

[64] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017. 24

[65] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Metric

learning for large scale image classification: Generalizing to new classes at near-

zero cost. Computer Vision–ECCV 2012, pages 488–501, 2012. 78

[66] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka.

Distance-based image classification: Generalizing to new classes at near-zero cost.

IEEE transactions on pattern analysis and machine intelligence, 35(11):2624–2637,

2013. 10, 77, 78

[67] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich

Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaev, Ganesh

Venkatesh, et al. Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

8, 40, 42, 44, 45

[68] José Fernando Garćıa Molina, Lei Zheng, Metin Sertdemir, Dietmar J Dinter, Ste-

fan Schönberg, and Matthias Rädle. Incremental learning with svm for multimodal

classification of prostatic adenocarcinoma. PloS one, 9(4):e93600, 2014. 10, 77

[69] Michael D Muhlbaier, Apostolos Topalis, and Robi Polikar. Learn++. nc: Com-

bining ensemble of classifiers with dynamically weighted consult-and-vote for effi-

cient incremental learning of new classes. IEEE transactions on neural networks,

20(1):152–168, 2009. 77

[70] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transfer-

ring mid-level image representations using convolutional neural networks. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2014. 79

112 BIBLIOGRAPHY

[71] Francisco Ortega-Zamorano, José M Jerez, Daniel Urda, Rafael M Luque-Baena,

Leonardo Franco, et al. Efficient implementation of the backpropagation algo-

rithm in fpgas and microcontrollers. IEEE Trans. Neural Netw. Learning Syst.,

27(9):1840–1850, 2016. 76

[72] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359, 2010. 76, 79

[73] Hyunsun Park, Jun Haeng Lee, Youngmin Oh, Sangwon Ha, and Seung-

won Lee. Training deep neural network in limited precision. arXiv preprint

arXiv:1810.05486, 2018. 42

[74] Kolin Paul and Sanjay Rajopadhye. Back-propagation algorithm achieving 5 gops

on the virtex-e. In FPGA Implementations of Neural Networks, pages 137–165.

Springer, 2006. 76

[75] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum

learning of multiple tasks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5492–5500, 2015. 77

[76] Tomaso Poggio and Gert Cauwenberghs. Incremental and decremental support

vector machine learning. Advances in neural information processing systems,

13:409, 2001. 10, 77

[77] Robi Polikar, Lalita Udpa, Satish S Udpa, and Vasant Honavar. Learn++: an

incremental learning algorithm for multilayer perceptron networks. In Acoustics,

Speech, and Signal Processing. ICASSP’00. Proceedings.IEEE International Con-

ference on, volume 6, pages 3414–3417. IEEE, 2000. 9

[78] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An

incremental learning algorithm for supervised neural networks. IEEE transactions

on systems, man, and cybernetics, part C (applications and reviews), 31(4):497–

508, 2001. 9, 10, 77

[79] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. In Eu-

ropean Conference on Computer Vision, pages 525–542. Springer, 2016. 41, 45,

65

[80] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,

Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.

Minerva: Enabling low-power, highly-accurate deep neural network accelerators.

BIBLIOGRAPHY 113

In Proc. 43rd Int. Symp. on Computer Architecture (ISCA’16), pages 267–278,

Piscataway, NJ, USA, 2016. IEEE Press. 70

[81] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H.

Lampert. iCaRL: incremental classifier and representation learning. 2017. 10, 76,

78

[82] Marko Ristin, Matthieu Guillaumin, Juergen Gall, and Luc Van Gool. Incremental

learning of ncm forests for large-scale image classification. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3654–3661,

2014. 78

[83] Giorgio Roffo, Simone Melzi, and Marco Cristani. Infinite feature selection. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages 4202–

4210, 2015. 46

[84] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985. 30, 36

[85] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International Journal of Com-

puter Vision, 115(3):211–252, 2015. 25, 33, 87

[86] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–

4520, 2018. 8, 40, 49, 50, 52, 65, 70, 71

[87] Jeffrey C Schlimmer and Douglas Fisher. A case study of incremental concept

induction. In AAAI, pages 496–501, 1986. 76

[88] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484, 2016. 13

[89] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 30, 31, 32,

33, 51

114 BIBLIOGRAPHY

[90] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014. 38, 72

[91] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé

Jégou. And the bit goes down: Revisiting the quantization of neural networks,

2019. 64

[92] Yu Sun, Ke Tang, Leandro L Minku, Shuo Wang, and Xin Yao. Online ensemble

learning of data streams with gradually evolved classes. IEEE Transactions on

Knowledge and Data Engineering, 28(6):1532–1545, 2016. 10, 77

[93] Nadeem Ahmed Syed, Syed Huan, Liu Kah, and Kay Sung. Incremental learning

with support vector machines. 1999. 10, 77

[94] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1–9, 2015. 30, 51

[95] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2818–

2826, 2016. 13, 51

[96] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. arXiv

preprint arXiv:1512.00567, 2015. 81, 88, 97

[97] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-

han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199, 2013. 76

[98] Yichuan Tang. Deep learning using linear support vector machines. arXiv preprint

arXiv:1306.0239, 2013. 30

[99] Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In

Advances in neural information processing systems, pages 640–646, 1996. 76

[100] Jean-Charles Vialatte and François Leduc-Primeau. A study of deep learning

robustness against computation failures. In Proc. 9th Int. Conf. on Advanced

Cognitive Technologies and Applications, Feb. 2017. 70

BIBLIOGRAPHY 115

[101] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash

Gopalakrishnan. Training deep neural networks with 8-bit floating point num-

bers. In Advances in neural information processing systems, pages 7686–7695,

2018. 8, 40, 43, 45

[102] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Wei. A 28nm

soc with a 1.2ghz 568nj/prediction sparse deep-neural-network engine with >0.1

timing error rate tolerance for IoT applications. In 2017 IEEE International Solid-

State Circuits Conference (ISSCC), pages 242–243, Feb 2017. 70

[103] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical

report, Stanford Univ Ca Stanford Electronics Labs, 1960. 36

[104] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant,

Amir Gholaminejad, Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero

parameter alternative to spatial convolutions. arXiv preprint arXiv:1711.08141,

2017. 8, 40, 47, 51, 57, 62

[105] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan,

and Yingyan Lin. Deep k-means: Re-training and parameter sharing with

harder cluster assignments for compressing deep convolutions. arXiv preprint

arXiv:1806.09228, 2018. 8, 40, 63, 64

[106] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang. Fault-tolerant training

enabled by on-line fault detection for RRAM-based neural computing systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

pages 1–1, 2018. 70

[107] Kohei Yamamoto and Kurato Maeno. Pcas: Pruning channels with attention

statistics. arXiv preprint arXiv:1806.05382, 2018. 8, 40, 46, 47, 57

[108] L. Yang and B. Murmann. SRAM voltage scaling for energy-efficient convolutional

neural networks. In 18th Int. Symp. on Quality Electronic Design (ISQED), pages

7–12, March 2017. 70

[109] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam-

bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al.

Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded fp-

gas. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 23–32. ACM, 2019. 76

[110] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

116 BIBLIOGRAPHY

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014. 79

[111] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,

Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using

neuron importance score propagation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 9194–9203, 2018. 46, 48, 57

[112] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks

and defenses for deep learning. IEEE transactions on neural networks and learning

systems, 2019. 24

[113] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016. 52

[114] Hongyuan Zha, Xiaofeng He, Chris Ding, Ming Gu, and Horst D Simon. Spectral

relaxation for k-means clustering. In Advances in neural information processing

systems, pages 1057–1064, 2002. 63

[115] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on over-

fitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893, 2018. 24

[116] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile devices. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6848–

6856, 2018. 49

[117] Jun Zheng, Furao Shen, Hongjun Fan, and Jinxi Zhao. An online incremental

learning support vector machine for large-scale data. Neural Computing and Ap-

plications, 22(5):1023–1035, 2013. 77

[118] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv preprint arXiv:1606.06160, 2016. 8, 40

[119] Zhi-Hua Zhou and Zhao-Qian Chen. Hybrid decision tree. Knowledge-based sys-

tems, 15(8):515–528, 2002. 76

[120] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary

quantization. arXiv preprint arXiv:1612.01064, 2016. 42, 45

[121] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learn-

ing. arXiv preprint arXiv:1611.01578, 2016. 30

BIBLIOGRAPHY 117

[122] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-

ferable architectures for scalable image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8697–8710, 2018. 25,

33, 34, 35

Titre : Traitement et apprentissage des réseaux de neurones profonds sur puce

Mots clés : Apprentissage profond, Compression des réseaux de neurones, Vision par ordinateur,
Systèmes embarqués.

Résumé : Dans le domaine de l'apprentissage machine, les réseaux de neurones profonds sont
devenus la référence incontournable pour un très grand nombre de problèmes. Ces systèmes sont
constitués par un assemblage de couches, lesquelles réalisent des traitements élémentaires,
paramétrés par un grand nombre de variables. À l'aide de données disponibles pendant une
phase d'apprentissage, ces variables sont ajustées de façon à ce que le réseau de neurones
réponde à la tâche donnée. Il est ensuite possible de traiter de nouvelles données.

Si ces méthodes atteignent les performances à l'état de l'art dans bien des cas, ils reposent pour
cela sur un très grand nombre de paramètres, et donc des complexités en mémoire et en calculs
importantes. De fait, ils sont souvent peu adaptés à l'implémentation matérielle sur des systèmes
contraints en ressources. Par ailleurs, l'apprentissage requiert de repasser sur les données
d'entraînement plusieurs fois, et s'adapte donc difficilement à des scénarios où de nouvelles
informations apparaissent au fil de l'eau.

Dans cette thèse, nous nous intéressons dans un premier temps aux méthodes permettant de
réduire l'impact en calculs et en mémoire des réseaux de neurones profonds. Nous proposons
dans un second temps des techniques permettant d'effectuer l'apprentissage au fil de l'eau, dans
un contexte embarqué.

Title : Processing and Learning Deep Neural Networks on Chip

Keywords : Deep Learning, Compression of Neural Networks, Computer Vision, Embedded
Systems.

Abstract : In the field of machine learning, deep neural networks have become the inescapable
reference for a very large number of problems. These systems are made of an assembly of layers,
performing elementary operations, and using a large number of tunable variables. Using data
available during a learning phase, these variables are adjusted such that the neural network
addresses the given task. It is then possible to process new data.

To achieve state-of-the-art performance, in many cases these methods rely on a very large
number of parameters, and thus large memory and computational costs. Therefore, they are often
not very adapted to a hardware implementation on constrained resources systems. Moreover, the
learning process requires to reuse the training data several times, making it difficult to adapt to
scenarios where new information appears on the fly.

In this thesis, we are first interested in methods allowing to reduce the impact of computations and
memory required by deep neural networks. Secondly, we propose techniques for learning on the
fly, in an embedded context.

	Résumé
	Introduction
	Basics in Deep Learning
	Datasets
	Training, Validation and Test Sets
	CIFAR10 and CIFAR100
	ImageNet (ILSVRC 2012)
	ImageNet1, ImageNet2 and ImageNet50
	AudioSet

	Main Elements
	Activation Functions
	Loss Functions
	Layers

	Deep learning
	Deep Neural Networks
	Learning Process
	Classification Inherent Difficulties

	Neural Networks and Low Resources Systems
	Context
	Quantization
	Pruning
	Light Architectures
	Convolution Alternatives
	Other Methods
	Comparison and Combination of Different Compression Methods
	Hardware Implementation
	Hardware Architecture
	Hardware Results

	Energy Gains with Faulty Memories
	Summary of the Chapter

	Incremental Learning on Chip
	Context
	Main Methods in the Literature
	Transfer Learning
	Segmentation
	Budget Restricted Incremental Learning
	Transfer Incremental Learning using Data Augmentation
	Feature Vector Extraction
	Vector Segmentation
	Aggregation of Subspaces Weak Classifiers
	Data Augmentation

	Experimental Results
	Benchmark Protocol
	Results

	Hardware Implementation
	Data Quantization
	Hardware Architecture
	Results

	Summary of the Chapter

	Conclusion
	Conclusion and Perspectives
	Summary of the Thesis
	Summary of Contributions
	Perspectives

