
HAL Id: tel-02439193
https://theses.hal.science/tel-02439193

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularization schemes for transfer learning with
convolutional networks

Xuhong Li

To cite this version:
Xuhong Li. Regularization schemes for transfer learning with convolutional networks. Technology for
Human Learning. Université de Technologie de Compiègne, 2019. English. �NNT : 2019COMP2497�.
�tel-02439193�

https://theses.hal.science/tel-02439193
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 

Par Xuhong LI 
 

 
 
 

 
 
Thèse présentée  
pour l’obtention du grade 
de Docteur de l’UTC 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regularization schemes for transfer learning with  
convolutional networks 

Soutenue le 10 septembre 2019  
Spécialité : Informatique : Unité de recherche Heudyasic (UMR-
7253) 

D2497



  UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE 

THESIS 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor 

Spécialité : Informatique 

Area of specialization: Computer Science 

by 

XUHONG LI 

        Regularization Schemes for Transfer Learning with    
Convolutional Networks 

10/09/2019 

Heudiasyc Laboratory, UMR UTC/CNRS 7253 

Thesis Committee: 

Rapporteurs  Nicolas Thome  Professor CNAM CEDRIC Lab 
  Gilles Gasso  Professor INSA Rouen 

Examinateurs  Elisa Fromont  Professor Université Rennes 1 

  Alain Rakotomamonjy  Professor Université de Rouen 

  Véronique Cherfaoui  Professor Université de technologie de 
Compiègne 

Directeurs  Yves Grandvalet  CNRS senior researcher 

  Franck Davoine  CNRS researcher 
 



Acknowledgement

First and foremost, I would like to express my gratitude to my supervisors of the

thesis, Yves Grandvalet and Franck Davoine, for their continuous support of my PhD

life, for their patience, motivation, and immense knowledge. Franck and Yves have

taught me the way of thinking and researching as professional researcher, the tenacity

of perfecting a job, as well as the professional knowledge in the field of statistics,

machine learning and computer vision. I appreciate every discussion, meeting with

them that gave me the motivation to keep working on challenging problems. I am

grateful for their wise guidance throughout my thesis, and I feel so lucky to work

under their supervision.

I would like to thank the committee members for joining my defense of the thesis.

Many thanks to Nicolas Thome and Gilles Gasso for reviewing my manuscript during

the summer vacation, and to Elisa Fromont, Alain Rakotomamonjy and Véronique

Cherfaoui for all their comments and insightful suggestions for improving the thesis.

I also want to thank the Chinese Scholarship Council (CSC) from Chinese govern-

ment for the financing during my PhD, and Heudiasyc laboratory, UMR UTC/CNRS

7253 for supporting me to participate in international conferences, and for buying the

powerful GPU servers at the beginning of my thesis that makes it possible for me to

finish my experiments.

I warmly thank my labmates of Heudiasyc, whose friendships made me have a

memorable experience at UTC. I also appreciate my dear Chinese friends for their

help and encouragement. I could not have smoothly survived from the PhD thesis

without their accompanying. I would like to give my sincere thanks to my parents for

their unconditional love and support.

Last but not least, I thank Xiaolei, my best friend and my wife, for understanding

me and helping me throughout these years with all her efforts.





Abstract

Transfer learning with deep convolutional neural networks significantly reduces

the computation and data overhead of the training process and boosts the perfor-

mance on the target task, compared to training from scratch. However, transfer learn-

ing with a deep network may cause the model to forget the knowledge acquired when

learning the source task, leading to the so-called catastrophic forgetting. Since the

efficiency of transfer learning derives from the knowledge acquired on the source

task, this knowledge should be preserved during transfer. This thesis solves this prob-

lem of forgetting by proposing two regularization schemes that preserve the knowl-

edge during transfer. First we investigate several forms of parameter regularization, all

of which explicitly promote the similarity of the final solution with the initial model,

based on the L1, L2, and Group-Lasso penalties. We also propose the variants that

use Fisher information as a metric for measuring the importance of parameters. We

validate these parameter regularization approaches on various tasks. The second reg-

ularization scheme is based on the theory of optimal transport, which enables to es-

timate the dissimilarity between two distributions. We benefit from optimal transport

to penalize the deviations of high-level representations between the source and target

task, with the same objective of preserving knowledge during transfer learning. With a

mild increase in computation time during training, this novel regularization approach

improves the performance of the target tasks, and yields higher accuracy on image

classification tasks compared to parameter regularization approaches.

Keywords — transfer learning, regularization, convolutional networks, optimal

transport, computer vision.





Résumé

L’apprentissage par transfert de réseaux profonds réduit considérablement les coûts

en temps de calcul et en données du processus d’entraînement des réseaux et améliore

largement les performances de la tâche cible par rapport à l’apprentissage à partir de

zéro. Cependant, l’apprentissage par transfert d’un réseau profond peut provoquer un

oubli des connaissances acquises lors de l’apprentissage de la tâche source. Puisque

l’efficacité de l’apprentissage par transfert vient des connaissances acquises sur la

tâche source, ces connaissances doivent être préservées pendant le transfert. Cette

thèse résout ce problème d’oubli en proposant deux schémas de régularisation préser-

vant les connaissances pendant l’apprentissage par transfert. Nous examinons d’abord

plusieurs formes de régularisation des paramètres qui favorisent toutes explicitement

la similarité de la solution finale avec le modèle initial, par exemple, L1, L2, et Group-

Lasso. Nous proposons également les variantes qui utilisent l’information de Fisher

comme métrique pour mesurer l’importance des paramètres. Nous validons ces ap-

proches de régularisation des paramètres sur différentes tâches de segmentation sé-

mantique d’image ou de calcul de flot optique. Le second schéma de régularisa-

tion est basé sur la théorie du transport optimal qui permet d’estimer la dissimilar-

ité entre deux distributions. Nous nous appuyons sur la théorie du transport opti-

mal pour pénaliser les déviations des représentations de haut niveau entre la tâche

source et la tâche cible, avec le même objectif de préserver les connaissances pen-

dant l’apprentissage par transfert. Au prix d’une légère augmentation du temps de

calcul pendant l’apprentissage, cette nouvelle approche de régularisation améliore les

performances des tâches cibles et offre une plus grande précision dans les tâches de

classification d’images par rapport aux approches de régularisation des paramètres.

Keywords — apprentissage par transfert, régularisation, réseaux de neurones à

convolution, transport optimal, vision par ordinateur.





Contents

Contents 1

List of Figures 5

List of Tables 7

List of Algorithms 9

1 Introduction 11
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions and Thesis Outline . . . . . . . . . . . . . . . . . . . . 13

1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background and Related Work 17
2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Elemental Units in Convolutional Networks . . . . . . . . . . 18

2.1.2 Optimization Algorithms of Deep Networks . . . . . . . . . . 21

2.1.3 Recent Advances in Convolutional Neural Network Structures 23

2.1.4 Fully Convolutionalizing the Network . . . . . . . . . . . . . 25

2.1.5 Structure Modifications for Image Segmentation . . . . . . . 27

2.1.6 Structure Modifications for Other Vision Tasks . . . . . . . . 31

2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Lifelong Learning (Continual Learning) . . . . . . . . . . . . 35

2.2.4 Inductive Transfer Learning with CNN . . . . . . . . . . . . 36

2.3 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Mathematical Definition . . . . . . . . . . . . . . . . . . . . 38

1



CONTENTS

2.3.2 Entropic Solvers . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Optimal Transport Applications in Deep Learning . . . . . . . 40

2.3.4 Optimal Transport on Neuron Distributions . . . . . . . . . . 42

2.4 Regularization Approaches . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Regularizers Bringing Desirable Properties . . . . . . . . . . 43

2.4.2 Regularizers Creating Synthetic Training Examples . . . . . . 44

2.4.3 Regularizers with Good Randomness . . . . . . . . . . . . . 44

2.4.4 Regularizers as Inductive Bias for Better Learning . . . . . . 45

3 Parameter Regularizers for Fine-Tuning 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 -SP Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experimental Results in Image Classification . . . . . . . . . . . . . 55

3.4.1 Source and Target Databases . . . . . . . . . . . . . . . . . . 55

3.4.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Comparison across Penalties, Source and Target Databases . . 57

3.4.4 Fine-Tuning from A Similar Source . . . . . . . . . . . . . . 58

3.5 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Behavior on the Source Task . . . . . . . . . . . . . . . . . . 61

3.5.2 Fine-Tuning vs. Freezing the Network . . . . . . . . . . . . . 61

3.5.3 Layer-Wise Analysis . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 Computational Efficiency . . . . . . . . . . . . . . . . . . . 64

3.5.5 Theoretical Insights . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Other Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Transfer Learning Approaches . . . . . . . . . . . . . . . . . 68

3.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 74

3.6.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . 79

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Representation Regularizers for Fine-Tuning 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 A Reminder on the Optimal Transport Problem and the Sinkhorn Solvers 85

4.4 Representation Regularizers . . . . . . . . . . . . . . . . . . . . . . 86

2



CONTENTS

4.4.1 Representation Regularization via Optimal Transport . . . . . 86

4.4.2 Two Baselines . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . 89

4.5.3 Comparison across Regularizers . . . . . . . . . . . . . . . . 90

4.6 Analyses and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Comparison with Transporting Data . . . . . . . . . . . . . . 91

4.6.2 Possible Transport . . . . . . . . . . . . . . . . . . . . . . . 92

4.6.3 Effective Transport . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.4 The Envelope Theorem . . . . . . . . . . . . . . . . . . . . . 95

4.7 Other Regularizers Tested . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Contributions and Perspectives 99
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Publications 105

Bibliography 107

3



CONTENTS

4



List of Figures

1.1 Illustration of a neuron and an activation . . . . . . . . . . . . . . . . 14

2.1 Illustration of a simple convolutional network . . . . . . . . . . . . . 19

2.2 Comparison between a simple convolutional network and a fully con-

volutionalized network . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Illustration of a fully convolutionalized network . . . . . . . . . . . . 28

2.4 Illustration of a fully convolutional network proposed by Long et al.

[2015a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Illustration of the atrous spatial pyramid pooling (ASPP) module pro-

posed by Chen et al. [2018a] . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Illustration of the pooling pyramid module proposed by Zhao et al.

[2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Illustration of the inadequacy of the standard L2 regularization in

transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Classification accuracy (in %) on Stanford Dogs 120 for L2-SP . . . . 56

3.3 Classification accuracies (in %) of the tested fine-tuning approaches

on the four target databases . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Classification accuracies of fine-tuning with L2 and L2-SP on Stan-

ford Dogs 120 and Caltech 256–30 when freezing the first layers of

ResNet-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 R2 coefficients of determination with L2 and L2-SP regularizations

for Stanford Dogs 120 . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Boxplots of the diagonal elements of the Fisher information matrix

computed on the training set of ImageNet using the pre-trained model 65

4.1 Traces of the optimal transport plans at the output of each ResNet-101

unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5



LIST OF FIGURES

4.2 Traces of the optimal transport plans at the penultimate layer during

training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6



List of Tables

3.1 Characteristics of the target databases: name and type, numbers of

training and test images per class, and number of classes. . . . . . . . 56

3.2 Average classification accuracies (in %) of L2, L2-SP and L2-SP-

Fisher on 5 different runs . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Classification accuracy drops on the source tasks due to fine-tuning

based on L2, L2-SP and L2-SP-Fisher regularizers . . . . . . . . . . . 63

3.4 Training and test details for segmentation on Cityscapes . . . . . . . . 70

3.5 Source datasets for transfer learning . . . . . . . . . . . . . . . . . . 72

3.6 Target datasets for transfer learning . . . . . . . . . . . . . . . . . . . 72

3.7 Summary of experimental results . . . . . . . . . . . . . . . . . . . . 75

3.8 EncNet pixel accuracy and mIoU on the PASCAL Context validation

set according to regularization hyper-parameters. . . . . . . . . . . . 76

3.9 Average endpoint errors on the two subsets of the Scene Flow dataset 77

3.10 DSTL classification accuracy using the Inception-V3 network on the

Birds200 validation set according to regularization hyper-parameters. 78

4.1 Average classification precision of no-regularized, L2, L2-SP, ΩI , ΩR

and ΩP using ten-crop test . . . . . . . . . . . . . . . . . . . . . . . 91

7



LIST OF TABLES

8



List of Algorithms

1 A direct implementation of convolution in the l-th layer . . . . . . . . 20

2 Stochastic gradient descent (SGD) update at training iteration k . . . . 22

3 The Sinkhorn-Knopp algorithm . . . . . . . . . . . . . . . . . . . . . 41

9



LIST OF ALGORITHMS

10



Chapter 1

Introduction

Contents
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions and Thesis Outline . . . . . . . . . . . . . . . . 13

1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Context and Motivation

Deep neural networks have been applied to fields including computer vision, natural

language processing, speech recognition, machine translation as well as board game

programs, where they have produced results comparable to and in some cases supe-

rior to human experts. These deep network models contain millions of parameters to

be estimated and require billions of operations for a single forward pass, leading to

an obligation of enormous computation resources for fast experimental evaluations,

numerous training data for assuring the desired performance, and a delicate design of

network structures together with a good initialization of parameters for the gradient-

based optimization. Facing these problems, it is not practical for each single task to

collect a lot of training data, or spend weeks or months on searching the best train-

ing scheme. Few companies and laboratories are capable of launching such costly

experiments.

Transfer learning can yet relieve the pain. The idea of transfer learning is to gain

prior knowledge from solving a source task, and to exploit the stored knowledge to

solve a different but related target task. Fortunately, the open-source environment in

11



1.1. CONTEXT AND MOTIVATION

this community encourages the release of large-scale datasets and pre-trained deep

network models, which boosts a lot the research in the community. During trans-

fer learning, some form of knowledge that is learned from the source task is then

transferred to the target task and exploited to improve the performance. Technically,

fine-tuning, a common tool for transferring knowledge, initializes the model with the

pre-trained parameter values, and continues training on the target dataset for adaption

to an optimal solution for the target task. Through fine-tuning and transfer learn-

ing, the training process can be largely shortened to hours or minutes, and less prone

to overfitting when there are few data available on the target task. However, trans-

fer learning with deep networks may cause the model to easily forget the knowledge

learned from the source, leading to the known catastrophic forgetting. Since the effi-

ciency of transfer learning derives from the learned knowledge in the source task, the

knowledge should be preserved during transfer learning, especially when the source

task is “rich” and contains a large-scale dataset.

This thesis thus proposes approaches for preserving the knowledge during transfer

learning. We propose to implement this inductive bias of preserving the source knowl-

edge for transfer learning problems through regularization approaches. In most cases

of machine learning, data are split into training set and test set, which are used for

training the model and measuring the performance of the learned model respectively.

Regularization approaches are designed, via various ways, to reduce the test error, i.e.

the error that the learned model makes on the test data set, sometimes at the expense of

the increased error on the training data set. The regularization approaches are applied

during the training phase and hence cause increased computation during training, but

no additional operations for inference during testing. In addition, the increased com-

putation during training is usually mild compared to the computation of the input data

passing through the deep network.

Many regularization approaches are actually motivated by an inductive bias to-

wards a desired model or a preferred property in the learned model, and, as we dis-

cussed before, the desired one in this thesis is to maximally preserve the knowledge

from the source task. In terms of knowledge, we propose two points of view:

• If two models with the same structure have similar parameters, then they contain

similar knowledge.

• If for any input, two models always yield similar outputs, then they contain

similar knowledge.

12



1.2. CONTRIBUTIONS AND THESIS OUTLINE

The first point of view may need delicacy on the definition of similar parameters, since

each parameter is in different scale for the contribution of the model’s discrimination

capacity. We tackle this problem via the Fisher information matrix, and compare with

simply ignoring it, and find that in practice, the different scales for parameters are not

so bothersome. The second point view also needs some concrete definitions on the

similar outputs. We consider measuring the outputs at the penultimate layer of a deep

network, as they can be seen as the most advanced features extracted by the network

for the discrimination layer.

Thereby, we propose to transfer the knowledge through parameters and representa-

tions, based on which we respectively propose two different families of regularization

approaches in this thesis. While the proposed regularization approaches can be ap-

plied widely in many transfer learning problems, we evaluate them under a particular

and practical setting in transfer learning, where a vast amount of data was available

for training on the source problem, and some limited amount of labeled data is avail-

able for solving the target problem. Note that different from the setting we consider,

many applications like domain adaptation, network compression, lifelong learning,

reinforcement learning, where knowledge can be accumulated, may also benefit from

our proposed regularization approaches.

1.2 Contributions and Thesis Outline

Following the motivations and the propositions, this thesis is simply organized as fol-

lows:

In Chapter 2, we present the background concepts. First we introduce the convo-

lutional neural networks, including the unit operations, optimization algorithms and

recent advances in computer vision. Then we recall the transfer learning definition

and categorization, and discuss the applications of convolutional networks in transfer

learning. After that, we introduce a mathematical tool of measuring the distance be-

tween two probability distributions, the optimal transport theory, which is exploited

to preserve the source knowledge during transfer learning and based on which we

develop the regularization approach on representations. At the end of Chapter 2, we

give a general introduction on the regularization approaches in deep learning and some

thoughts about using regularization as inductive bias for better learning.

In Chapter 3, we present the regularization approaches that are based on parame-

ters for transfer learning with convolutional networks. We show that they all encode an

13



1.3. TERMINOLOGY

Σ ϕ

1

x0

x1

x2

xn

b
w

0

w1

w2

w n

...

y = ϕ(
∑n

i=0 xiwi + b)

Figure 1.1: Illustration of a neuron and an activation. ϕ is the activation function, b is

the bias, and the output y can be also referred as activation or activity.

explicit bias towards the pre-trained parameters learned on the source task, preserving

the source knowledge. We validate the parameter regularization approaches on vari-

ous experiments in image classification, image segmentation, video segmentation and

optical flow estimation. Analyses and theoretical hints are also provided.

In Chapter 4, instead of focusing on the parameters, we propose a novel regular-

ization approach based on the optimal transport theory to penalize the deviations of

the output activations on the target task, with the same objective of preserving the

knowledge during transfer learning. We show that this novel regularization approach

also improves the performance of the target tasks, and yields higher accuracy on image

classification tasks than parameter regularization approaches.

In Chapter 5, we conclude the thesis, summarize our contributions and suggest

some possible paths to future research.

1.3 Terminology

Before opening this thesis, we would like to clarify some terms in context of machine

learning and artificial neural networks.

Neurons, Activations In context of artificial neural networks, an artificial neuron,

or simply a neuron, is a mathematical function conceived as a model of biological

neurons. It consists in two functions, a weighted sum of inputs, and a non-linear acti-

vation function through which the sum is passed. The output of a neuron is sometimes

referred as activation or activity. Mathematically, a neuron is a function with opera-

tions and parameters while an activation is an output value of the neuron, see Figure

1.1. We respect this difference throughout this thesis.

14



1.3. TERMINOLOGY

Channels, Kernels, Filters Regarding convolutional neural networks where the in-

put is usually an image with RGB color channels, activations at a hidden layer com-

pose a feature map, i.e. a 3D tensor with the height, the width and the number of

channels. In computer vision, particularly image processing, a kernel is a convolution

matrix yet without trainable parameters, used for blurring, sharpening, edge detection

and other filters. So sometimes, a kernel can be referred as a filter, especially in the

field of signal processing. A convolutional kernel in convolutional networks has no

difference from the conventional kernel except that the values in the convolutional

kernel can be trainable by machine learning algorithms. Usually, the convolution be-

tween a kernel and an image produces a channel. So the number of channels at a

layer is equal to the number of kernels. Thereby, we do not much distinguish the three

notions in this thesis: channels, kernels, filters, regardless of their subtle difference.

Features, Representations, Activations In pattern recognition, extracting pertinent

features of the data is a crucial step for effective learning algorithms. Traditionally,

this step is manually done by feature engineering, but feature learning or represen-

tation learning proposes to replace feature engineering by allowing the machine to

both learn the features and use them to perform a specific task. Because of this fea-

ture/representation learning scheme, representations also refer to features. Features

or representations are slightly different from the activations as the activations denote

the evaluation of features or representations on particular instances. We respect this

difference throughout the thesis.

Parameters, Weights In general, parameters and weights are both trainable vari-

ables, embedded in a function. Depending on the variable values, this function can

cause different effects and extract different features from the data. Learning algo-

rithms search for the optimal values for these parameters and weights. In neural net-

works, weights specifically refer to the variables that are multiplied by the inputs of

the current layer, and there is an extra variable that is simply multiplied by 1. This

extra variable is also trainable and named bias. All the weights and biases are the

trainable parameters in the neural network.

15



1.3. TERMINOLOGY

16



Chapter 2

Background and Related Work

Contents
2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 18

2.1.1 Elemental Units in Convolutional Networks . . . . . . . . 18

2.1.2 Optimization Algorithms of Deep Networks . . . . . . . . 21

2.1.3 Recent Advances in Convolutional Neural Network Struc-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Fully Convolutionalizing the Network . . . . . . . . . . . 25

2.1.5 Structure Modifications for Image Segmentation . . . . . 27

2.1.6 Structure Modifications for Other Vision Tasks . . . . . . 31

2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Lifelong Learning (Continual Learning) . . . . . . . . . . 35

2.2.4 Inductive Transfer Learning with CNN . . . . . . . . . . 36

2.3 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Mathematical Definition . . . . . . . . . . . . . . . . . . 38

2.3.2 Entropic Solvers . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Optimal Transport Applications in Deep Learning . . . . . 40

2.3.4 Optimal Transport on Neuron Distributions . . . . . . . . 42

2.4 Regularization Approaches . . . . . . . . . . . . . . . . . . . . 42

17



2.1. CONVOLUTIONAL NEURAL NETWORKS

2.4.1 Regularizers Bringing Desirable Properties . . . . . . . . 43

2.4.2 Regularizers Creating Synthetic Training Examples . . . . 44

2.4.3 Regularizers with Good Randomness . . . . . . . . . . . 44

2.4.4 Regularizers as Inductive Bias for Better Learning . . . . 45

Prologue In this chapter, we present the background concepts. First we introduce

the convolutional neural networks, including the unit compositions of the network,

the evolution of network structures, and recent advances of convolutional networks in

computer vision. Then we recall the transfer learning definition and categorization,

and discuss the applications of convolutional networks in transfer learning. After that,

we introduce a mathematical tool of measuring the distance between two probability

distributions, the optimal transport theory, which will be used to develop a regular-

ization approach for preserving the source knowledge during transfer learning. At the

end of this chapter, we give a general introduction on the regularization approaches

in deep learning and some thoughts about using regularization as inductive bias for

better learning.

2.1 Convolutional Neural Networks

Convolutional neural networks have their first success in the 1980s [LeCun et al.,

1989] for recognizing handwritten digits from small binarized images. The network

used at that time is LeNet [LeCun et al., 1989], a very small convolutional network, but

inspires the invention of the first modern convolutional network AlexNet [Krizhevsky

et al., 2012], which has won the ImageNet large-scale visual recognition competition

[Deng et al., 2009] in 2012 by a wide margin over other models.

2.1.1 Elemental Units in Convolutional Networks

Convolution and Feature Maps The essential operation in convolutional neural

network is, without question, the convolution. Algorithm 1 presents a direct imple-

mentation of convolution for better understanding the convolution operation, without

forgetting that it can be largely sped up by parallel computing. With other elemental

units, Figure 2.1 shows a simple convolutional neural network for image classifica-

tion. In this thesis, we consider the notion of layers as the sets of activations or the

18



2.1. CONVOLUTIONAL NEURAL NETWORKS

input image

layer l = 0

convolutional layer

layer l = 1

convolutional layer

layer l = 2

convolutional layer

layer l = 3

convolutional layer

layer l = 4

fully connected layer

layer l = 5

output layer

l = 6

Figure 2.1: An illustration of a simple convolutional network with a single-channel

image as input.

outputs of neurons, which are determined real values, distinguished from trainable

parameters. Note that there are no parameters at layer 0. The slices in black in con-

volutional layers and the sticks in fully connected layers are the activations or called

the feature maps in convolutional networks. The small (sliding) windows with colors

present the convolutional kernels where the parameters reside. Each of these windows

does an element-wise multiplication of kernel parameters and activations within the

window, a sum of all the resulted elements, and a non-linear activation function. This

operation will be repeated when these windows, with the same parameters, slide onto

a new position of the image plane or the feature map plane. As for fully connected

layers, all activations are fully connected to those in the previous layer.

Each feature map (or the set of activations in the feature map plan) A in a con-

volutional layer is a 3D tensor of dimension W × H × Cout, and computed by a 4D

tensor k of Cin ×Cout × k× k, which is named as convolutional kernel, where Cin is

the number of feature map slices in the previous layer, Cout is the number of feature

map slices in this layer, and k × k is the window size, varying from 1×1 to 7×7. The

size of kernel can be set arbitrarily and it controls principally the size of the network.

It can be set very large to have enough capacity of the model being representative and

yet be prone to overfitting, or it can be very small for speeding up the training and test

phrases. For balancing the representative capacity and the risk of overfitting, and also

following the practical engineering advice (related to the GPU memory and computa-

tion speed), the sizes of convolution kernels always start with a small value in the first

layers and then increase gradually along the network with the dimensions of feature

19



2.1. CONVOLUTIONAL NEURAL NETWORKS

Algorithm 1 A direct implementation of convolution in the l-th layer
1: for cout in 1...Cout do
2: for w in 1...W do
3: for h in 1...H do
4: for x in 1...k do
5: for y in 1...k do
6: for cin in 1...Cin do
7: Al[w, h, cout] + = Al−1[w + x, h + y, cin] × k[cin, cout,

x, y]

8: end for
9: end for

10: end for
11: end for
12: end for
13: end for

maps decreasing.

The convolution operation enables the parameter sharing and the translation invari-

ance properties. For each position of the feature map, the same parameters are used

for extracting the features, as the kernel window slides on the feature map plan. In a

traditional neural network, each element of the parameter matrix is used exactly once

when extracting the features. The property of sharing parameter thus reduces largely

the number of trainable parameters. As for the translation invariance, the convolution

helps to detect the translated features. When the input image is translated, the features

related to the objects change positions but will still be captured as the convolution

kernel slides on the feature plan, and these important features will be given to the next

layer and contribute for the discrimination.

Non-Linear Activation Functions Besides the convolution operation, non-linear

activation functions are another important component in (convolutional) neural net-

works, and the stack of activation functions in neural networks can help the network

to learn complex data, approximate almost any function representing a feature, and

provide accurate predictions. Non-linear activation functions are usually simple and

computationally efficient. Several choices are preferred in the community, like tanh,

sigmoid , ReLU (rectified linear unit ), etc. For deep convolutional neural networks,

20



2.1. CONVOLUTIONAL NEURAL NETWORKS

ReLU is a desirable choice among many activation functions for its efficacy and not

easily falling into the gradient diminishing problem.

Pooling Pooling is an operation once frequently used in convolutional neural net-

works, but for modern convolutional networks, pooling layers are replaced by convo-

lution layers with an equivalent stride, while a pooling layer is applied before the last

layer for reducing the feature map spatial dimensions by averaging all outputs of each

feature map.

2.1.2 Optimization Algorithms of Deep Networks

A learning problem is different from a pure optimization problem. In most machine

learning scenarios, we have no access to the true data distribution noted as pdata, caus-

ing the pure optimization problem unfeasible. Instead, a learning problem exploits an

optimization algorithm to minimize a loss function with respect to the empirical distri-

bution, i.e. the training data set, noted as p̂data, hoping the optimized model performs

well with respect to pdata, or a related test data set. Throughout this thesis, we develop

the supervised case, where the per-example loss function L is related to the output of

the model f(x;w) and the label y. Then the generalization loss or error J∗(w), which

measures the performance of the learned model, is the expectation of the per-example

loss over the true underlying distribution pdata:

J∗(w) = E(x,y)∼pdataL(f(x;w), y). (2.1)

Since this data generating distribution pdata is difficult to access, we cannot directly

compute the generalization error. The simplest solution is to minimize the expected

loss on the training set p̂data:

J (w) = E(x,y)∼p̂dataL(f(x;w), y). (2.2)

Specifically, this expectation can be obtained by the average over all training exam-

ples:

E(x,y)∼p̂dataL(f(x;w), y) =
1

N

N∑
i=1

L(f(xi;w), yi), (2.3)

where N is the number of training examples. Then the learning problem is to search

an optimal solution of Equation 2.3 with an optimization algorithm, expecting the

solution, i.e. the learned model, to have small generalization error. In practice, the

21



2.1. CONVOLUTIONAL NEURAL NETWORKS

Algorithm 2 Stochastic gradient descent (SGD) update at training iteration k

1: Require Learning rate ε(k), parameters w(k), mini-batch size m

2: while stopping criterion not met do
3: Sample a mini-batch of m examples from the training set {xi} with corre-

sponding targets {yi}.
4: Compute gradients: g(k) ← ∇w 1

m

∑m
i=1 L(f(xi;w

(k)), yi)

5: Update parameters: w(k+1) ← w(k) − ε(k)g(k)

6: end while

algorithms that are used for deep learning are based on stochastic gradient descent,

which is slightly different from solving the Equation 2.3. The SGD algorithm is an

iterative gradient-based algorithm. In each iteration, the algorithm randomly selects a

mini-batch of training examples, to evaluate the gradients of the loss function with re-

spect to the parameters, then update the parameters by a small step of the gradients for

minimizing the loss function, and it stops until the stopping criterion is met. Updat-

ing parameters through the SGD algorithm is presented in Algorithm 2. More details

about the practical and intuitive views of using SGD for optimizing deep networks can

be found in [Goodfellow et al., 2017, Section 8.1.2 and 8.1.3].

The SGD algorithm has many variants, including SGD with momentum, SGD

with Nesterov momentum [Nesterov, 1983; Sutskever et al., 2013], Adagrad [Duchi

et al., 2011], RMSprop [Tieleman and Hinton, 2012], Adam[Kingma and Ba, 2015], to

name a few. They are all based on gradients and the difference is the way of updating

parameters. We refer the interested readers to Ruder [2016] for the introduction and

the motivation of each SGD variant.

An open question still remains about the SGD algorithms. When optimizing a con-

vex function, a minimum is always good because any local minimum is guaranteed to

be a global minimum. However, with non-convex functions, such as neural networks,

it is possible to have many local minima and we are not sure about these minima.

Whether SGD and its variants encounter these local minima and whether these local

minima have high generalization error, it still remains an open question in the commu-

nity. However, experts now suspect that, for sufficiently large neural networks, most

local minima have a low generalization error value, and that it is not important to find

a true global minimum rather than to find a point in parameter space that has low but

not minimal cost [Goodfellow et al., 2017, Section 8.2.2]. This can be done with the

SGD algorithms. So in this thesis, we continue to apply the SGD with momentum to

22



2.1. CONVOLUTIONAL NEURAL NETWORKS

train the convolutional networks.

2.1.3 Recent Advances in Convolutional Neural Network Struc-
tures

LeNet and AlexNet are two networks aforementioned, their structures are very simple,

starting with several convolutional layers and ending with two or three fully connected

layers. This simple design is yet inefficient. In this subsection, we briefly review the

problems of this simple design and discuss the advances in neural network structures,

including the general designs and the partial components. Since AlexNet, the research

on network structure has been wildly explored.

Receptive Field The receptive field of a good network was suggested to be large

enough to cover the whole image to capture the global information. Five convolutional

layers in AlexNet are far away from enough to get a large receptive filed. Simonyan

and Zisserman [2015] showed that the sequence of two convolutional layers of kernel

size 3 × 3 is equal to one layer of 5 × 5 but has less parameters, so they encouraged

to use more 3 × 3 layers instead of one large layer. Based on this idea, Simonyan

and Zisserman [2015] proposed a 19-layer network VGG with the same network de-

sign (several straightforward convolutional plus three fully connected layers). The

“theoretical” receptive field is not widely applicable and sometimes inexplicable for

some problems, e.g. image segmentation. Despite that this is still an open question,

the network VGG is powerful and popular, also robust when applying on the transfer

learning problems.

Deeper or Wider Second, rather than going deeper, Szegedy et al. [2015] concate-

nated four convolutional layers of different sizes and proposed Inception network (also

called GoogLeNet). Instead of choosing a best kernel size, or stacking 3 × 3 layers,

Szegedy et al. [2015] decided to have them all. Moreover, in each block, to avoid

the extra parameters when using large size kernels, Szegedy et al. [2015] followed the

suggestion in Lin et al. [2014a], i.e., inserting a layer of 1 × 1 to reduce the number

of slices before the convolution of 3 × 3 or 5 × 5. This network has a depth of 22

with some width. Inception networks also follow some engineering insights. If all the

layers are sequential, the computation of forward and backward cannot move to the

next layer before finishing all the computations at the current layer, wasting time to

23



2.1. CONVOLUTIONAL NEURAL NETWORKS

wait all threads to be finished in the parallel algorithm. In addition, small convolution

operations may not occupy all processing units but large ones may need more, leading

some processing units free at some moments. So a good engineer design of the several

parallel convolutions is possible to make good use of the powerful parallel resources.

Batch Normalization When there are more layers between the input and output,

the vanishing gradient problem becomes more critical. Since activation functions

like sigmoid, tanh or ReLU, have the gradients in range between 0 and 1, the

gradients computed by the chain rule vanish exponentially backwards. Therefore, it

happens easily for deep networks that gradients in the first layers are very small and

have little or none effect when updating the parameters. For solving this vanishing

gradient problem, Ioffe and Szegedy [2015] proposed to achieve a standard normal

distribution for each layer by normalizing the inputs via mini-batch statistics. This

new mechanism is called batch normalization, and integrated into later versions of

Inception networks [Ioffe and Szegedy, 2015; Szegedy et al., 2016, 2017], as well as

many other networks. In practice, batch normalization accelerates the training process,

makes the parameter initialization less important, and improves the performance. We

will continue to discuss batch normalization later in Section 2.4.

Residual Networks Another important advance is the residual networks (ResNet)

[He et al., 2016a], which were also motivated to solve the gradient vanishing problem.

Different from normalizing the activations, He et al. [2016a] introduced a unit for

learning the residual representation, where the output of lth layer is Al = Al−1 +

g(Al−1;wl). This forces the model to explicitly learn the residual between layers,

instead of learning the whole mapping function. In practice, two or three layers are

used for constructing the residual unit, and then a shortcut connection for the identity

is added to the learned residual. After residual units, the convolutional networks break

the depth record and go to 1,000 layers. Furthermore, the ResNet has proved its good

representation capacity and transferability, with robust improvements after transfer

learning in image classification, object detection, image segmentation and many other

visual recognition problems, see the next subsections. The ResNet is a totally different

advance from batch normalization, despite that they focus on the same problem of

gradients vanishing, and they are actually compatible to each other.

24



2.1. CONVOLUTIONAL NEURAL NETWORKS

Global Pooling The last problem exposed in AlexNet and even VGG networks, is

that the connection between the last convolutional layer and the first fully connected

is very extravagant. The feature map of the last convolutional layer will be rearranged

into a 1D vector and fully connected to the following layer. Note that the number of

parameters in a fully connected layer is the product of the numbers of activations in

the connected two layers, so the extra dimensions from the spatial plan (i.e. W ×
H) will incredibly increase the number of parameters in that layer. Although the

generalization ability of large networks does not linearly depend on the number of

parameters, extra parameters are always disfavoured. However, this problem has been

simply solved by averaging all the spatial activations of the last convolutional layer and

reducing the spatial dimension to 1 × 1, which has been applied in ResNet He et al.

[2016a,b] and Inception networks Szegedy et al. [2015]; Ioffe and Szegedy [2015];

Szegedy et al. [2016, 2017].

Other Structures In parallel with ResNet and Inception networks, there are sev-

eral other popular convolutional network architectures: YOLO [Redmon et al., 2016],

MobileNets [Howard et al., 2017], DenseNet [Huang et al., 2017] etc. Different from

designing the whole network structure, Hu et al. [2018] introduced a squeeze-and-

excitation (SE) module that can be easily integrated into any network structure, which

achieves better results than vanilla networks. Simultaneously, instead of manually

devising the architectures, Zoph and Le [2017]; Zoph et al. [2018] proposed neural

architecture search (NAS) methods by reinforcement learning, and resulted better per-

formance. However, in this thesis, we use ResNet as the main backbone of the model

for tasks because of its popularity and good transferability.

2.1.4 Fully Convolutionalizing the Network

As for many other visual tasks rather than image classification, e.g., object detection

and image segmentation, convolutional networks are not directly applicable because

a) the fully connected layers lead to an obligation of an input image with a fixed

dimension while images’ dimensions are variant; b) the output of a network is a vector

of probabilities indicating the chance of the image for belonging to certain category,

but has no information about the position of regions of interest. These problems have

easily been fixed by a simple technique behind the convolution operation: a fully

connected layer is equivalent to a corresponding convolutional layer, and thus can be

25



2.1. CONVOLUTIONAL NEURAL NETWORKS

input image

layer l = 0

fully connected layers

l = 5 and l = 6

input image

layer l = 0

convolutionalization

l = 5 and l = 6

Figure 2.2: An illustration of the comparison between a simple convolutional network

(top) and a fully convolutionalized network (bottom) with a single-channel image as

input. The last two fully connected layers are replaced by convolutional ones with

equivalent operations. The input image for the convolutionalized network is larger for

showing the effect of convolutionalized layers, expanding the spatial dimensions and

changing the vectors to feature maps. This convolutionalization makes it possible to

allow an image in arbitrary dimensions as input for the network.

totally replaced by the convolutional layers, as shown in Figure 2.2.

Convolutionalizing the fully connected layers is, in fact, computing the matrix

multiplication in high dimensions. When the image size does not change, there are

two situations for the convolutionalization: (1) Between two vectors, the fully con-

nected layer is equivalent to the matrix-vector multiplication. In this situation, the size

of parameters matches the size of the input and output vectors. Then for the convolu-

tionalization, we just need to expand the 2D parameter matrix to the 4D convolutional

kernel with the kernel size being 1×1, and the 1D activation vector to the 3D feature

map with the spatial dimension being 1×1 as the same image size is considered, with-

out changing the effective size of parameters and activations. (2) Between a feature

map and a vector, the fully connected layer needs the feature map to be vectorized

before doing the matrix-vector multiplication. In this situation, the size of original

26



2.1. CONVOLUTIONAL NEURAL NETWORKS

parameters matches the size of the vectorized feature map and the output vector. For

the convolutionalization, we just need to reshape the 2D parameters to the 4D con-

volutional kernel with the kernel size being the size of the original feature map, and

expand the 1D activation vector to the 3D feature map with the spatial dimension be-

ing 1×1 as the same image size is considered, without changing the effective size

of parameters and activations. The size of the 2D parameters is equal to the size of

the 4D convolutional kernel because it matches the size of the vectorized feature map

and the output vector. The convolutionalization is illustrated in Figure 2.3. After the

convolutionalization, when larger images come into the network, the output will have

larger spatial dimensions.

Although it is an inherent property of convolution, it was firstly applied recently

on object detection (classification and bounding-box localization) by Sermanet et al.

[2014]. They combined this convolutionalization technique with multi-scale predic-

tions and obtained a good performance on both object classification and localization.

However, in the work of Sermanet et al. [2014], the convolutionalization was only

used in the inference step; when training, the images were cropped to a fixed dimen-

sion and the network was trained to output a classifier for predicting the category of

the cropped image and a regression for localizing the bounding box. Briefly speak-

ing, the convolutionalization helps for some object detection tasks, and yet it helps a

lot for image segmentation, which does not need to predict the coordinates of bound-

ing boxes because its output corresponds the positions of image pixels. Long et al.

[2015a] proposed to train a fully convolutional VGG network end-to-end and pixels-

to-pixels for image segmentation, applied bilinear upsampling and skip connections

from intermediate layers, and achieved state-of-the-art performance.

2.1.5 Structure Modifications for Image Segmentation

Based on fully convolutional networks, many modifications have been proposed to im-

prove the performance. One problem in the AlexNet and VGG nets is that operations

like large stridden convolutions or poolings, reduce significantly the spatial resolution

and lead to a fuzzy prediction at local pixels. We introduce three approaches that

address this problem.

Fully Convolutional Networks Long et al. [2015a] coped with this problem by

restoring the spatial resolution via bilinear upsampling and shortcut from intermediate

27



2.1. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.3: Illustration of a fully convolutionalized network. A simple convolutional

network with two fully connected layers at the end is fully convolutionalized. This

diagram omits the feature dimension for simplicity. A 14×14 image (top) or a 16×16

image is used as input. The first stage reduces the 14×14 image to a 5×5 feature map,

and a 5×5 convolutional kernel squeezes all the spatial dimension of the 5×5 feature

map. Then the classifier layers follow. However, when the image size is 16×16,

the feature map after the first stage is 6×6 and the 5×5 convolutional kernel strides

on the feature map, getting a 2×2 feature map. Those in yellow in the bottom sub-

figure are the additional compared with the top sub-figure. Then the classifier layers

of 1×1 convolutional kernel still cannot squeeze the spatial dimension, and output a

2×2 prediction. The copyright of this figure belongs to Sermanet et al. [2014].

28



2.1. CONVOLUTIONAL NEURAL NETWORKS

layers that have more detailed position information, see Figure 2.4. ResNet can also

be used for image segmentation by removing the global average pooling layer and

performs better than VGG nets, but it still suffers from that problem1.

DeepLab Chen et al. [2018a] proposed that the spatial resolution can be retained by

applying dilated convolution (or convolution à trous) on some convolutional layers.

The dilated convolution multiplies the convolution kernel with dilated elements in the

feature maps and explicitly enables the large resolution for computing the features.

This operation was originally developed for the efficient computation of the wavelet

transform [Holschneider et al., 1990], and in the context of convolutional networks,

it was also used in Papandreou et al. [2015]. The dilated convolution is effective for

image segmentation, and since Chen et al. [2018a], it is used in every convolutional

network for image segmentation. Furthermore, inspired by [He et al., 2015] from

object detection, Chen et al. [2018a] also introduced an atrous spatial pyramid pooling

(ASPP) module that is a concatenation of multiple parallel dilated convolutional layers

with different dilatation rates. This is an explicit increase in spatial resolution that

successfully improves the detection of small objects without losing the precision on

large ones. The ensemble of these approaches used in Chen et al. [2018a] is referred

as DeepLab. Later Chen et al. [2017, 2018b] improved the DeepLab by absorbing

other advantageous components and obtained better results on different databases.

PSPNet Instead of using ASPP, Zhao et al. [2017] proposed PSPNet, which is en-

dowed with another pooling pyramid module that gives information of different scales.

Information at each scale comes from a branch, which reduces the same input feature

map to different scales, extracts features with new convolutional layers (and batch nor-

malization layers), and finally re-upsamples the obtained new features to the original

spatial dimensions. All branches and the input feature maps are then concatenated for

the next layer. This pooling pyramid module combines the global information with

different level local information, and yields a more precise prediction.

1The “theoretical” wide receptive field is an open question as mentioned before. It causes a contra-
diction here: the wide receptive field of ResNet is able to cover the entire input image, and expected
to capture enough global information. However, when predicting the spatial information, it turns out
that Resnet does not have enough global information, because of large gains from the approaches that
explicitly extract global information.

29



2.1. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.4: Illustration of a fully convolutional network proposed by Long et al.

[2015a]. Input, pooled and prediction layers are shown as grids that reveal relative

spatial coarseness, while intermediate layers are shown as vertical lines. First row is

the single-stream network that upsamples the final predictions, which are downsam-

pled to 1/32 by 5 pooling layers, back to pixels. Second row (FCN-16s) combines

predictions from both the final layer and the pool4 layer that is after 4 pooling lay-

ers, for predicting finer details and retaining high-level semantic information. Third

row repeats the similar operation with additional predictions from pool3 and provides

further precision. The copyright of this figure belongs to Long et al. [2015a].

Figure 2.5: Illustration of the atrous spatial pyramid pooling (ASPP) module proposed

by Chen et al. [2018a]. To classify the center pixel (orange), ASPP exploits multi-scale

features by employing multiple parallel dilated convolution with different rates. The

copyright of this figure belongs to Chen et al. [2018a].

30



2.1. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.6: Illustration of the pooling pyramid module proposed by Zhao et al. [2017].

Given an input image (a), a convolutional network extracts features(b). Then a pyra-

mid parsing module is applied to harvest different sub-region representations by dif-

ferent pooling layers, followed by convolution and batch normalization layers. After

that, each branch is upsampled to the original scale and concatenated to form the final

feature representations, which carry both local and global context information in (c).

Finally, the representations are fed into a convolution layer to get the final per-pixel

prediction (d). The copyright of this figure belongs to Zhao et al. [2017].

Other Networks Regarding image segmentation, there are other interesting net-

works which should be mentioned, e.g., U-Net [Ronneberger et al., 2015], Decon-

vNet [Noh et al., 2015] and SegNet [Badrinarayanan et al., 2017], to name a few.

They resolve the image segmentation problem under a different scheme where sev-

eral deconvolutional layers (similar to upsampling, but the coefficients are trainable

parameters) are after the convolutional layers, which is also called a encoder-decoder

network.

2.1.6 Structure Modifications for Other Vision Tasks

Besides image segmentation, many computer vision tasks benefit from convolutional

networks. Here, we briefly recall the recent advances in object detection and optical

flow estimation, under the notion of deep learning. Experiments in object detection

and optical flow estimation are conducted in this thesis for evaluating the proposed

regularization approaches.

Object Detection In respect to object detection, before fully convolutionalizing the

network [Sermanet et al., 2014; Long et al., 2015a], Girshick et al. [2014] already

31



2.1. CONVOLUTIONAL NEURAL NETWORKS

offered a solution for object detection, which is based on region proposal methods for

proposing category-independent bounding boxes, then each of the proposed regions,

which is already localized, then given to a pre-trained convolutional network, and

classified to a category if it contains an object. The property of convolution saves

repeated computations for each region [He et al., 2015; Girshick, 2015] because the

feature plan in convolutional networks matches the image pixel plan. Furthermore, a

region proposal network (RPN) tackles the region proposal task with a neural network

and is integrated into one single convolutional network [Ren et al., 2015]. However, a

bounding-box localization is not satisfactory to He et al. [2017] and they proposed to

predict each pixel in each candidate region instead of the coordinates of the bounding

box. In parallel to the R-CNN family, Redmon et al. [2016]; Redmon and Farhadi

[2017, 2018] proposed an extremely fast structure, which have equal performance to

other approaches. They excluded the region proposal methods and designed a unified

elaborate network through pre-defining several anchor boxes for object detection. Liu

et al. [2016] shared similar idea and expanded to use multi-scale features to do the

detection.

Optical Flow Estimation As for optical flow estimation, Weinzaepfel et al. [2013]

stacked multi-layer feature maps from a convolutional network and built a matching

algorithm. Dosovitskiy et al. [2015] created a synthetic database for optical flow esti-

mation and trained a convolutional network to estimate optical flow directly. Then Ilg

et al. [2017] improved the structure and greatly reduced the estimation error.

More Applications in Computer Vision Convolutional networks can also be

trained to estimate the stereo matching cost [Zbontar et al., 2016] for computing the

disparity map or depth [Zagoruyko and Komodakis, 2015; Luo et al., 2016]. More

applications with convolutional networks follow: face recognition [Lawrence et al.,

1997], simultaneous localization and mapping (SLAM) [McCormac et al., 2017], de-

tection in point clouds [Qi et al., 2017], human action recognition [Ji et al., 2013], etc.

We limit our references in computer vision tasks, without forgetting that convolutional

networks are applicable in natural language processing and speech recognition.

32



2.2. TRANSFER LEARNING

2.2 Transfer Learning

Transfer learning is biologically motivated by the way that humans apply learned

knowledge to solve new problems, and consists in exploiting knowledge learned in

one problem and searching a good protocol of transferring to a new problem. We

follow the nomenclature of transfer learning from Pan and Yang [2010]: A domain

corresponds to the feature space and its distribution, whereas a task corresponds to

the label space and its conditional distribution with respect to features. The initial

learning problem is defined on the source domain as the source task, whereas the new

learning problem is defined on the target domain as the target task.

Pan and Yang [2010] categorized transfer learning under three sub-settings, unsu-

pervised transductive, and inductive. In unsupervised transfer learning, data are not

labeled in both source and target problems. The transductive transfer learning in Pan

and Yang [2010], emphasizes only that the source and target tasks are the same, not

strictly limited under the traditional transductive learning, where the learned model

depends on all seen data (including test data) and is not applicable for new data. Nei-

ther the unsupervised nor the transductive transfer learning is considered in this thesis,

as we need source labels for a good pre-trained model and we have no access to the

test data during training. So we particularly consider the last transfer learning setting.

The inductive transfer learning learns a predictive model or general principals from

specific observations, and infers the decision for the target problem. In this setting,

the source and target tasks are different but related. In practice, in inductive transfer

learning problems, a parametric model is trained in the source problem and transferred

to the target problem in a special way, like transferring parameters, or considering the

relations between problems.

According to domain and task settings during the transfer, Pan and Yang [2010]

introduced several types of transfer learning problems, and in this section, we discus

about a few types that matter in this thesis, like domain adaptation and multi-task

learning. We also refer to works on new specific problems that were formalized or

popularized after Pan and Yang [2010], such as lifelong learning, but their typology

remains valid. Finally, we investigate the inductive transfer learning, with convolu-

tional networks as the predictive model.

33



2.2. TRANSFER LEARNING

2.2.1 Domain Adaptation

Despite that domain adaptation is a branch of transductive transfer learning, many

approaches for solving the domain adaptation problems are inspiring or directly ap-

plicable for solving other transfer learning problems. In domain adaptation, the target

domain differs from the source domain whereas the target task is identical to the source

task and no (or few) target examples are labeled. The difference between distributions

of data in domains is called the domain shift, sometimes referred to covariate shift.

For instance, a spam-filtering model has been learned from a lot of collected emails

(as the source domain). When the learned model comes to a new user who receives

significantly different emails (as the target domain), the model needs to be adapted be-

cause of the domain shift between the source and target domains. So most approaches

in domain adaptation are searching for a common feature space for source and target

domains to reduce domain shift.

Before deep networks, Pan et al. [2011] reduced the domain shift by minimizing

the maximum mean discrepancy (MMD) between the empirical means of two do-

mains, after features passing through a mapping function in the reproducing kernel

Hilbert space (RKHS). Courty et al. [2017] proposed to solved the domain adaptation

problems by optimal transport. In the context of convolutional networks, Long et al.

[2015b] utilized multi-kernel MMD to regularize the feature maps in the fully con-

nected layers between domains. Meanwhile, Tzeng et al. [2015] proposed a domain

confusion loss, trying to learn domain invariant features that a domain classifier is

confused and not able to recognize which domain those features come from. Another

contribution of Tzeng et al. [2015] is that they also gave “soft” labels [Hinton et al.,

2015], computed from source labeled samples, to target unlabeled data as to consider

an inter-category relationship. Rozantsev et al. [2019] integrated the MMD, domain

confusion and a parameter regularizer into a single framework to reduce the domain

shift.

In many databases, a test set is prepared, which has roughly the same distribution

as the training set, but in reality, their distributions can be very different. A good model

from manually created databases usually performs poorly in a different environment.

Domain adaptation becomes more and more attractive because it can improve the

performance on a set of unlabeled examples that are different from the source data.

34



2.2. TRANSFER LEARNING

2.2.2 Multi-Task Learning

Multi-task learning is a branch of the inductive transfer learning, and it focuses on

the performance of all tasks. In multi-task learning, multiple tasks are learned jointly

by a single model. Each task can improve the performance of others by using the

knowledge on the problem as a regularization term. All tasks share the common rep-

resentations and what is learned for each task can help other tasks to be better solved

[Caruana, 1997]. While the intuition seems sound, in practice, it is not always a free

lunch.

Multi-task learning with neural networks exists since Baxter [1997] which shares

low dimensional representations (the first layers) and separately outputs a branch for

each task. This kind of structure is still being used nowadays for contemporary con-

volutional networks, and much advanced. For instance, Yang and Hospedales [2017]

utilized a tensor factorization approach to recognize parameters that can be shared and

ones that are task-dependent. Misra et al. [2016] proposed a cross-stitch unit that is a

linear combination between shared feature maps for one pair of tasks, where the linear

weights are manually controlled by the similarity between each pair of tasks. Kendall

et al. [2018] modeled each output as a Gaussian distribution and learned to weight the

tasks by minimizing the log likelihood. Similarly, Chen et al. [2018d] learned the rates

of tasks by constraining the norm of gradients with respect to each task to be close.

Multi-task learning with convolutional networks in computer vision is widely ap-

plied, like surface normal maps and depth estimation [Qi et al., 2018], optical flow

estimation and video segmentation [Cheng et al., 2017], or everything [Sharif Raza-

vian et al., 2014]. This is because many related tasks can be solved simultaneously,

and the representations are transferable among tasks.

2.2.3 Lifelong Learning (Continual Learning)

Lifelong learning [Thrun and Mitchell, 1995] or continual learning copes with a se-

quential set of tasks usually by a single model. Lifelong learning is crucial for compu-

tational systems and autonomous agents interacting in the real world and processing

continuous streams of information, and contributes a lot towards the strong artificial

intelligence. However, along the lifelong learning, the knowledge extracted from the

previous tasks can be easily lost as new tasks are learned, resulting in what is known

as catastrophic forgetting.

35



2.2. TRANSFER LEARNING

Pentina and Lampert [2015] transformed a multi-task problem to a lifelong learn-

ing problem. They argued that learning sequentially multiple tasks can be more ef-

fective than learning them jointly. Their solution is to establish an order of tasks to

be learned and apply the adaptive SVM (A-SVM) [Yang et al., 2007] to each task

with the parameters in the previous task as a reference. Rusu et al. [2016] stored one

model for each learned task and transferred the knowledge to the new task through the

connections with previous models. Li and Hoiem [2017] proposed to use the outputs

of the target examples, computed by the original network on the source task, to de-

fine a distillation learning scheme [Hinton et al., 2015] preserving the memory of the

source tasks when training on the target task. Jung et al. [2018] regularized the rep-

resentations in the penultimate layer to be similar to the ones computed by the source

network. Different from keeping the similar representations, Kirkpatrick et al. [2017]

search solutions with similar parameters for preserving the knowledge and solving the

target task jointly. They get sensible improvements by measuring the sensitivity of the

parameters of the network learned on the source data thanks to the Fisher informa-

tion. The Fisher information matrix defines a metric in parameter space that is used

in their regularizer to preserve the representations learned on the source data, thereby

retaining the knowledge acquired on the previous tasks.

Lifelong learning is very attractive for designing an autonomous agent dealing

with many (new) tasks. The key to lifelong learning is to maximally preserve the

knowledge that was already learned to solve all the inductive transfer learning prob-

lems.

2.2.4 Inductive Transfer Learning with CNN

Convolutional networks are broadly applicable in the fields mentioned before, and

they are even more attractive in the inductive transfer learning setting, where the

target domain is identical to the source domain, and the target task is different from

the source task. All the applications introduced in 2.1.5 and 2.1.6 can be framed in the

field of inductive transfer learning.

From the view of feature extractors, convolutional networks are extremely power-

ful compared to other models. Donahue et al. [2014] selected the features computed at

different layers of the pre-trained AlexNet [Krizhevsky et al., 2012] and plugged them

into an SVM or a logistic regression classifier for learning a new task. This approach

outperformed the state of the art at that time on the Caltech-101 database [Fei-Fei

36



2.3. OPTIMAL TRANSPORT

et al., 2006]. Similar conclusions were found by Oquab et al. [2014]; Sharif Razavian

et al. [2014]. Later, Yosinski et al. [2014] showed that fine-tuning the whole AlexNet

resulted in better performances than using the network as a static feature extractor.

Furthermore, fine-tuning pre-trained VGG [Simonyan and Zisserman, 2015] on the

image classification task of VOC-2012 [Everingham et al., 2010] and Caltech 256

[Griffin et al., 2007] achieved the best results at that time. Since that, fine-tuning be-

comes a very practical way of benefitting from knowledge learned on a large database,

and a useful technique for inductive transfer learning tasks.

After that, Ge and Yu [2017] proposed a scheme for selecting a subset of images

from the source problem that have similar local features to those in the target prob-

lem and then fine-tuned a pre-trained convolutional network for image classification

tasks. Similarly, Cui et al. [2018] selected an optimal source domain for a target do-

main by computing the similarity between each source class and each target class and

performed the transfer. In fact, all the applications introduced in 2.1.5 and 2.1.6 that

tackled complex computer vision tasks, also benefited a lot from fine-tuning and trans-

fer learning. All these approaches showed promising results in a challenging transfer

learning setup, as going from classification to object detection or image segmentation

requires rather heavy modifications of the architecture of the network.

The success of transfer learning with convolutional networks relies on the gener-

ality of the learned representations that have been constructed from a large database

like ImageNet. Yosinski et al. [2014] quantified the transferability of these pieces of

information in different layers, e.g. the first layers learn general features, the middle

layers learn high-level semantic features and the last layers learn the features that are

very specific to a particular task. Zeiler and Fergus [2014] also visualized the features

in the intermediate layers, demonstrating, with images, that convolutional networks

learn features from general level to task-specific level. Overall, the learned represen-

tations can be conveyed to related but different domains and the parameters in the

network are reusable for different tasks.

2.3 Optimal Transport

The optimal transport (OT) theory is a mathematical tool of estimating the distance

between probability distributions with consideration of the geometric structure of the

support space on which the distributions are defined. We would like to benefit from

the OT theory to access the distance between the distributions from source and target

37



2.3. OPTIMAL TRANSPORT

domains and minimize it in order to preserve the source knowledge.

The optimal transport problem was firstly described by the French mathemati-

cian Gaspard Monge [Monge, 1781] as an assignment problem, and later relaxed to a

probabilistic transport by Kantorovich [1942]. The problem was inspired by a mini-

mization task about a worker transporting a pile of sand to another specific-shape pile

with minimal efforts. For instance, the sand was a shape of cone and the worker would

like to reshape it to a castle. The efforts are defined as the total distance of moving

each small heap of sand from original place to the target position, and recall that the

task is to minimize the effort, or equivalently, to find the optimal target position for

each heap of sand. The OT problem is interesting because it can be cast as a mea-

sure between distributions, either or both discrete and continuous. We can, of course,

compare distributions using alternative measures, like classic Kullback-Leibler diver-

gence, Jensen-Shannon divergence, Hellinger distance or others, but the OT problem

entails the geometric structure of the support space on which the distributions are de-

fined. That is the cost of transporting the mass, which differs the optimal transport

from other measures.

Many great books introduce mathematical and algorithmic foundations of the op-

timal transport theory, like Villani [2008]; Santambrogio [2015]; Peyré and Cuturi

[2018]. We refer readers to these books for detailed introduction of the OT theory.

Here we make a brief reminder on the OT problem and its efficient solutions, and

discuss the applications in machine/deep learning.

2.3.1 Mathematical Definition

Let µ and ν be two discrete probability distributions: µ =
∑n

i=1 µiδxi and ν =∑m
i=1 νiδyi , where

∑n
i=1 µi =

∑m
i=1 νi = 1, and δx is the Dirac delta function at

position x. Then with a defined cost function d and the cost matrix M ∈ Rn×m, where

Mij = d(xi,yj), we can give the optimal transport cost in the Kantorovich-relaxed

OT problem:

LM(µ,ν) = min
P∈U(µ,ν)

〈P,M〉F , (2.4)

where 〈 ·, ·〉F is the Frobenius inner product, U(µ,ν) is the set of all possible joint

distributions of µ and ν, equivalent to U(µ,ν) = {P ∈ Rn×m
+ | P1m = µ,PT1n =

ν}. The optimal joint distribution that minimizes the transport cost is the optimal

38



2.3. OPTIMAL TRANSPORT

transport plan P0:

P0 = argmin
P∈U(µ,ν)

〈P,M〉F . (2.5)

The Equation 2.4 is thus equal to

LM(µ,ν) = 〈P0,M〉F . (2.6)

This optimum is a distance between µ and ν if M is a metric matrix, namely d is a

distance between xi and yj [Villani, 2008, Chapter 6].

We reconsider the initial problem of transporting sand within the mathematical

definition. The cost function d can be simply the Euclidean distance between two po-

sitions at a 2D plan, as the effort of moving a small heap of sand is proportional to

the distance. Then in this 2D plan, a source distribution of sand is given, the worker

would like to change to a target distribution with minimal effort. Although the trans-

port happens in the same space, this problem does not lose the generality. The cost

d can be zero when the sand does not move, and it can be large if the worker moves

some sand from a corner to another. So a minimal transport plan should be decided

in advance, and that is P0. Each row of P0 tells the worker how much sand to move

from each source position to each target position. Each column of P0 shows how

much sand each target position is received from each source position. Following the

optimal transport plan P0, the effort is minimal.

2.3.2 Entropic Solvers

Linear programming is a solver for the OT problem because of the linear objective

function and linear constraints, however, its computational budget increases in a cubic

rate or more [Pele and Werman, 2009] with the n or m increasing. It is difficult to

make it applicable in practice with a large model or a large dataset.

Recently, Cuturi [2013] proposed to search for an approximate solution to the OT

problem in a set of entropic-constrained joint distributions:

LαM(µ,ν) = min
P∈Uα(µ,ν)

〈P,M〉F , (2.7)

where Uα(µ,ν) := {P ∈ U(µ,ν) | h(µ) + h(ν)− h(P) ≤ α)} ⊂ U(µ,ν), and h is

the entropy, specifically,

h(µ) = −
∑
i

µi log µi, h(ν) = −
∑
i

νi log νi, h(P) = −
∑
i,j

pij log pij, (2.8)

39



2.3. OPTIMAL TRANSPORT

noting that both h(µ) and h(ν) are constant. In fact, h(µ) + h(ν) − h(P) is the

Kullback-Leibler divergence between P and µνT , remembering that KL(a, b) =∑
i ai log ai

bi
. In order to connect the transport plan with Uα(µ,ν), Cuturi [2013] pro-

posed to compute

Pλ
0 = argmin

P∈U(µ,ν)

〈P,M〉F −
1

λ
h(P), (2.9)

where a λ ∈ (0,+∞) can be always found for each α in LαM(µ,ν), such that

LαM(µ,ν) = 〈Pλ
0 ,M〉F .

The rest is simple. Solving Equation 2.9 needs nothing but applying the method

of Lagrange multipliers and the Sinkhorn-Knopp algorithm. With the Lagrangian,

we cannot get the closed-form solution of Pλ
0 directly, but we can obtain that the

solution has a special form diag(a)Kdiag(b), where K = e−λM is the element-wise

exponential of −λM, diag(a) is a diagonal matrix with the elements of the vector a

as its diagonal, and a and b depend on the two Lagrangian multipliers respectively.

Then, Sinkhorn’s theorem [Sinkhorn, 1964] states that for a strictly positive matrix

K, there exists unique diagonal matrices D1 and D2 with strictly positive diagonal

elements, such that D1KD2 is a doubly stochastic matrix. Thus the solution Pλ
0 exists

and is unique. Furthermore, a simple iterative method Sinkhorn-Knopp algorithm can

converge to the solution, by alternately rescaling rows and columns of K to sum to 1.

The Sinkhorn iterations are sometimes numerically unstable, and our experiments

often encounter that instability, but it can be relieved by the proximal point algorithm

with any Bregman divergence, suffering from slightly more computation cost, see

[Peyré and Cuturi, 2018, Remark 4.9] and Xie et al. [2018].

2.3.3 Optimal Transport Applications in Deep Learning

In terms of deep networks, the optimal transport is quite appealing for many applica-

tions, especially for training generative models [Arjovsky et al., 2017; Gulrajani et al.,

2017]. In the following, We discuss briefly about the generative models with optimal

transport, and some other applications of the optimal transport.

The stochastic process of generating natural images or language texts is difficult

to accurately describe. Goodfellow et al. [2014] proposed the generative adversarial

networks (GANs) to appaximate this process with deep networks. The GAN structure

composes two networks: one generator for generating the examples, one discriminator

for distinguishing generated examples from natural ones. The loss function in Good-

fellow et al. [2014] is equivalent to a Jensen-Shannon divergence between the under-

40



2.3. OPTIMAL TRANSPORT

Algorithm 3 The Sinkhorn-Knopp algorithm
Input two distributions µ and ν with length n and m respectively, cost matrix M

with shape (n, m), regularizer term scalar λ

K = e−λM : element-wise exponentiation

a = 1n/n, b = 1m/m : initialization of the two scaling diagonal matrices in vector

form

while a changes or not exceed the preset maximum iteration step do
a = µ

Kb
: update a, element-wise division, scaling the sum of cols to µ

b = ν
KTa

: update b, element-wise division, scaling the sum of cols to ν

end while
Pλ

0 = diag(a)Kdiag(b) : a is converged as well as b and Pλ
0

output optimal transport plan Pλ
0 with shape (n, m)

lying data distribution and the model distribution. Arjovsky et al. [2017] showed that

the optimal transport costs might have nicer properties over the Jensen-Shannon di-

vergence when learning distributions supported by low dimensional manifolds, since

the OT costs leverage the geometry of the underlying space when measuring the dif-

ference between distributions. With a better measurement between distributions, the

data distribution can be easier to approximate by GANs. Thus minimizing the dis-

tance between distributions is the key of GANs, which matches the objective of the

OT problem.

Arjovsky et al. [2017] minimize an upper bound of the optimal transport cost, i.e.

the Kantorovich-Rubinstein duality:

LM(µ,ν) = sup
‖f‖L≤1

Ex∼µ[f(x)]− Ex∼ν [f(x)], (2.10)

where the supremum is over all the 1-Lipschitz functions f : X → R, and f works

for the discriminator in GANs. The constraints of 1-Lipschitz functions can be done

by some clipping tricks on parameters [Arjovsky et al., 2017] or gradients [Gulrajani

et al., 2017]. GANs with the optimal transport cost stabilized the quality of generated

examples because of the meaningful cost function.

In addtion, instead of reshaping the OT problem to the duality form, Bousquet

et al. [2017]; Genevay et al. [2018]; Chen et al. [2018c]; Salimans et al. [2018] directly

exploit the smoothed OT cost for training GANs.

Beyond GANs, Courty et al. [2017] transformed the domain adaptation problem

to an optimal transport one, and solved it by adding a group-sparsity term on the

41



2.4. REGULARIZATION APPROACHES

transport plan with the Sinkhorn algorithm. The OT theory is also helpful in tag

prediction [Frogner et al., 2015], comparing documents [Kusner et al., 2015; Huang

et al., 2016], dictionary learning [Rolet et al., 2016] etc.

2.3.4 Optimal Transport on Neuron Distributions

In this thesis, we focus on transfer learning with deep networks and propose to pre-

serve the neuron distribution during the transfer, relying on the OT theory. We explain

the motivations in Chapter 4, but here we would like to clarify the neuron distribution

and its link with the optimal transport problem.

We consider that neurons at some layer of the neural network are samples drawn

from a conditional distribution given the neurons at the previous layer, and the param-

eters at the current layer are responsible for generating the samples, i.e. the neurons at

this layer. This conditional distribution is the neuron distribution that we would like

to preserve during transfer learning.

If we split a neural network into two parts from a certain layer, and then consider

the neurons at that layer, any permutation among these neurons will not change the

representation capacity of the network, even linear transformations on the neurons

will not either, provided a corresponding adjustment of the parameters at the next

layer. During transfer learning, considering the neurons at the penultimate layer, i.e.

the output of the feature extractor, the permutations and transformations will probably

happen during fine-tuning or other transfer learning approaches. While these trans-

formations are not detrimental for the learning, the approach of preserving the neuron

distribution during transfer learning should recognize these transformations and not

punish them. The optimal transport metric is able to do that. We detail this idea in

Chapter 4.

2.4 Regularization Approaches

In deep learning, training a deep network is difficult [Glorot and Bengio, 2010] and

prone to overfitting. A regularization approach, or a regularizer, is a common so-

lution that can lessen the chance or amount of overfitting for a trainable model and

reduce the generalization error of the learned model. A deep network is highly capa-

ble of memorizing all the training data if no regularizers are applied. In the following,

we will introduce some common regularizers that are classified into three categories

42



2.4. REGULARIZATION APPROACHES

according to the effect. Note that detailed descriptions of these regularizers and others

can be found in the book of deep learning [Goodfellow et al., 2017, Chapter 7]. After

that, we will discuss how a regularizer implements an inductive bias for a desirable

property in the learned model.

2.4.1 Regularizers Bringing Desirable Properties

A very common and classic regularizer is based on the trainable parameters of the

model. We usually gather all the parameters in the model as a parameter vector w.

The L2 parameter regularizer restrains the L2 norm of w to a small value, in order

to force the model to learn useful representations instead of fitting the input-output

mappings. The gradients of the L2 regularizer w.r.t. parameters are a smaller-than-one

positive scale of current values of parameters, so the L2 regularizer is also named as

weight decay. In fact, any norm of parameters can be used as parameter regularizer,

with different objectives, but only a few are mostly used, e.g. L2 constrains the pa-

rameters in a ball of the parameter space, L1 is used for sparsity, and Group-Lasso is

for group-sparsity. These parameter regularizers can bring different properties to the

learned model, and they are very easy to be integrated into the model, especially when

using stochastic gradient descent, where the parameter regularizer is added on the loss

function and the back-propagation does the rest.

Early stopping prevents the training process from falling into the overfitting. Early

stopping has been proved to be equivalent to the L2 parameter regularizer, at least

under the quadratic approximation of the objective function, see [Goodfellow et al.,

2014, Section 7.8] for example.

Dropout is a regularizer on the network structure. Srivastava et al. [2014] proposed

to randomly “drop out” some connections between layers during the SGD algorithm.

At each step, the architecture is different. Each neuron cannot always work together

with others, so the neurons are forced to learn robust and independent features, rather

than interdependent features. This kind of efficient technique is very useful for training

a large neural network.

Model ensemble methods combine several models and predict the output together.

This method works because different models will usually not make the same errors.

This is also a property of improving the performance that a model desires, despite

some additional computation and training time.

43



2.4. REGULARIZATION APPROACHES

2.4.2 Regularizers Creating Synthetic Training Examples

Although the ideal way to avoid overfitting is to collect more labeled data, it is not

always feasible in practice. Data augmentation helps on it. Several data augmentation

techniques are like random blur (adding noises on the color space), random mirror

(randomly inverse horizontally the image), random crop (choose a part of image ran-

domly as input for the network), and random scale (increase or reduce the original

dimension of an image). These synthetic transformations of images are equivalent to

increase the number of training examples and can improve the performance for many

vision tasks in practice.

2.4.3 Regularizers with Good Randomness

Some randomness during training is also helpful to avoid overfitting and can be re-

garded as regularizer. Some aforementioned regularizers, like data augmentation tech-

niques and dropout, can simultaneously increase the scale of the dataset and provide

good randomness.

Other regularizers with good randomness are, for instance, the normalization oper-

ations. Batch normalization (BN) [Ioffe and Szegedy, 2015] is an efficient technique

in deep learning, normalizing the feature maps with the examples in one mini-batch.

The normalization step is standard: within each kernel, each activation subtract the

sample mean and then is divided by the sample standard deviation. This step does not

only normalize the forward activations at each layer, but also prevent the backward

gradients from exploding or vanishing. The motivation of BN is to solve the mysteri-

ous “internal covariate shift” inside the network but exceptionally, BN did much more

beyond that: it accelerates the training process, makes the parameter initialization less

important, and improves the performance. Some papers [Santurkar et al., 2018; Kohler

et al., 2019] aim at demonstrating why batch normalization works. Before the batch

normalization, the limit of convolutional network is a 22-layer GoogLeNet [Szegedy

et al., 2015]. Nowadays, the depth can be more than one thousand [He et al., 2016a,b]

and even ten thousand [Xiao et al., 2018]. Despite the fact that BN facilitates the

optimization process, BN acts like a regularizer because from the view of one given

example, it is always combined with different examples in mini-batches, thus always

gives different statistics for normalizing the feature maps during training, so it is never

deterministic and acts as a turbulence and a regularizer. Several alternatives of batch

normalization, like layer normalization [Lei Ba et al., 2016], instance normalization

44



2.4. REGULARIZATION APPROACHES

[Ulyanov et al., 2016], group normalization [Wu and He, 2018], were proposed re-

cently with the same mechanism of normalization but along different dimensions or

subsets of feature maps for different tasks.

2.4.4 Regularizers as Inductive Bias for Better Learning

We have briefly introduced the prevailing regularizers in deep learning, principally

with deep neural networks and the stochastic gradient descent algorithm. These regu-

larizers can be grouped into three parts as presented in the previous three subsections.

Here we would like to discuss about the link between regularizers and the inductive

bias, specifically, how a regularizer brings a desirable property for the trainable model.

Simply speaking, the inductive bias is a set of assumptions that are probably ad-

vantageous to reduce the generalization error of the model. A classical example of

an inductive bias is Occam’s razor, assuming that the simplest consistent hypothesis

about the target function is actually the best. An overly complex model family is not

a reasonable choice for training on few data. Parameter regularizers assume that the

model can learn more useful and pertinent representations with constrained values or

with less parameters, instead of fitting the data wildly. Thus parameter regularizers

can be seen an inductive bias. Since early stopping is equivalent to the L2 parameter

regularizer, then it is also an inductive bias. Dropout presumes from the biological

intuition that a set of independent neurons is better than a set of interdependent neu-

rons. Randomly dropping out some neurons can punish this interdependence and thus

improve the robustness of the learned model.

The regularizers we propose in this thesis also follow the inductive bias intuition.

In transfer learning, a pre-trained model on a large database like ImageNet is not

only a starting point for fine-tuning, but also a reference around which exists with

high probability a good solution for the target task. Thereby we propose a family

of parameter regularizers using the source knowledge as reference in Chapter 3. In

Chapter 4, we also focus on preserving the source knowledge. Instead of working

on parameters, we introduce another family of regularizers on representations, and

make efforts on encouraging the similarity between neuron distributions in source and

target domains through optimal transport. We evaluate the proposed regularizers with

various experiments, which are presented in the corresponding chapter.

45



2.4. REGULARIZATION APPROACHES

46



Chapter 3

Parameter Regularizers for
Fine-Tuning

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 -SP Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experimental Results in Image Classification . . . . . . . . . . 55

3.4.1 Source and Target Databases . . . . . . . . . . . . . . . . 55

3.4.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Comparison across Penalties, Source and Target Databases 57

3.4.4 Fine-Tuning from A Similar Source . . . . . . . . . . . . 58

3.5 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Behavior on the Source Task . . . . . . . . . . . . . . . . 61

3.5.2 Fine-Tuning vs. Freezing the Network . . . . . . . . . . . 61

3.5.3 Layer-Wise Analysis . . . . . . . . . . . . . . . . . . . . 63

3.5.4 Computational Efficiency . . . . . . . . . . . . . . . . . 64

3.5.5 Theoretical Insights . . . . . . . . . . . . . . . . . . . . . 65

3.6 Other Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Transfer Learning Approaches . . . . . . . . . . . . . . . 68

3.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 70

47



3.1. INTRODUCTION

3.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 74

3.6.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . 79

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Prologue In inductive transfer learning, fine-tuning pre-trained convolutional net-

works substantially outperforms training from scratch. When using fine-tuning, the

underlying assumption is that the pre-trained model extracts generic features, which

are at least partially relevant for solving the target task, but would be difficult to extract

from the limited amount of data available on the target task. However, besides the ini-

tialization with the pre-trained model and the early stopping, there is no mechanism

in fine-tuning for retaining the features learned on the source task. In this chapter, we

investigate several regularization schemes that explicitly promote the similarity of the

final solution with the initial model. We show the benefit of having an explicit induc-

tive bias towards the initial model, and we eventually recommend a simple L2 penalty

with the pre-trained model being a reference as the baseline of penalty for transfer

learning tasks.

3.1 Introduction

Modern convolutional neural networks are powerful models that can achieve remark-

able performance on large-scale image databases, e.g. ImageNet [Deng et al., 2009]

and Places365 [Zhou et al., 2018], meanwhile, once trained on a large database, they

can be refined to solve related but different visual tasks by means of transfer learning,

using fine-tuning [Yosinski et al., 2014; Simonyan and Zisserman, 2015], with much

less computation time and power consumption than training from scratch.

In transfer learning, some form of knowledge is believed to be extracted by learn-

ing from the large-scale database of the source task, and this knowledge is then trans-

ferred to the target task by initializing the network with the pre-trained parameters. In

inductive transfer learning, particularly fine-tuning, parameter regularizers still con-

strain the model in the neighborhood of the origin and some parameters may be driven

far away from their initial values. However, we will show in the experimental section

that some parameters may be driven far away from their initial values during fine-

tuning. This leads to important losses of the initial knowledge that is assumed to be

relevant for the target problem.

48



3.1. INTRODUCTION

We argue that the standard L2 parameter regularizer, which drives the parameters

towards the origin, is not adequate in the framework of transfer learning, and thereby

provides suboptimal results for the target problem. Parameter regularizers, like the

standardL2, are critical and efficient when learning on small databases. When learning

from scratch, parameter regularizers are aimed at reducing the generalization error and

avoiding overfitting, by implicitly restricting the capacity of the network, that is, the

effective size of the search space, implicitly driving the parameters towards the origin.

However, we can regularize the parameters towards any value of the parameter space,

and better results should be obtained for a value closer to the true one [Goodfellow

et al., 2017, Section 7.1.1]. In transfer learning, a reference is given from solving

the source task, and hence the network capacity has not to be restricted blindly: We

advocate for a coherent parameter regularizer, where the pre-trained model is both

used as the starting point of the optimization process and as the reference in the penalty

that encodes an explicit inductive bias, so as to help preserve the knowledge embedded

in the initial network during fine-tuning. This simple modification keeps the original

control of overfitting, by constraining the effective search space around the initial

solution, while encouraging committing to the acquired knowledge. We show that it

has noticeable effects in transfer learning scenarios. Figure 3.1 provides a didactic

illustration for the particular case of the L2-SP parameter regularization in a situation

that would for example correspond to linear regression.

The parameter regularizers that encourage similarity with the starting point of the

fine-tuning process will be denoted with the SP suffix. Despite the existence of several

approaches akin to L2-SP in other circumstances as described in the next section,

many works (like all state-of-the-art results mentioned in 2.1.5 and 2.1.6) disregard

the inconsistency of using L2 in transfer learning scenarios.

In this chapter, we explore how a coherent explicit inductive bias, encoded by a

parameter regularizer, affects the transfer learning process. We consider the inductive

transfer learning setting, where the target domain is identical to the source domain,

and the target task is different from the source task. We furthermore focus on the case

where a vast amount of data was available for training on the source problem, and

some limited amount of labeled data is available for solving the target problem. Under

this setting, we evaluate -SP regularizers based on the L2, Lasso and Group-Lasso

penalties, which can freeze some individual parameters or groups of parameters to the

pre-trained values. We also test the L2-SP and Group-Lasso-SP variants that use the

Fisher information to measure similarity. Our experiments in classification, semantic

49



3.1. INTRODUCTION

(a) (b) (c)

Figure 3.1: Illustration of the inadequacy of the standard L2 regularization in transfer

learning. The plots show the same 2D parameter space in a simple transfer learning

situation. The red star represents the minimum of the unregularized risk for the target

task; the black cross is the starting point of the optimization process, and the black

point represents the result of a gradient-like optimizer, with intermediate solutions

represented by the black segment. The ellipses represent the contour levels of the

target task, and the large blue circle represents the effective search domain defined by

the regularizer (admissible set). The sub-figures correspond three cases: (a) presents

the standard learning process with L2 where there is no transfer learning, (b) is the

fine-tuning process with L2 where the pre-trained model is not beneficial, and (c)

shows the case of fine-tuning with L2-SP where the memory of the pre-trained mode

is preserved and the optimization is easier.

50



3.2. RELATED WORK

segmentation and video analyses, using several convolutional network architectures,

and additional analyses, indicate that all tested parameter regularization methods using

the pre-trained parameters as a reference get an edge over the standard L2.

We present related work that preserves the knowledge in other transfer learning

problems in Section 3.2, and our propositions of parameter regularizers in Section

3.3. Section 3.4 shows that all such schemes get an edge over the standard approaches

that either use weight decay or freeze part of the network for preserving the low-level

representations that are built in the first layers of the network. Section 3.5 provides

some analyses and theoretic insights. More experimental results beyond image seg-

mentation are given in Section 3.6.

3.2 Related Work

The regularization scheme we advocate in this chapter is related to several existing ap-

proaches that were proposed to encourage similarity of parameters or representations

across different tasks.

In lifelong learning, Li and Hoiem [2017] proposed to use the outputs of the target

examples, computed by the original network on the source task, to define a learning

scheme retaining the memory of the source tasks when training on the target task.

They also tried to preserve the pre-trained parameters instead of the outputs of exam-

ples but they did not obtain interesting results. Kirkpatrick et al. [2017] get sensible

improvements by measuring the sensitivity of the parameters of the network learned

on the source data thanks to the Fisher information. The Fisher information matrix

defines a metric in the parameter space, which is used in their regularizer to preserve

the representations learned on the source data, thereby retaining the knowledge ac-

quired on the previous tasks. This scheme, named elastic weight consolidation, was

shown to avoid forgetting, but fine-tuning with plain stochastic gradient descent was

more effective than elastic weight consolidation for learning new tasks. Hence, elastic

weight consolidation may be thought as being inadequate for transfer learning, where

performance is only measured on the target task.

In domain adaptation, Rozantsev et al. [2019] proposed a parameter regularization

scheme for encouraging the similarity of the representations of the source and the tar-

get domains. Their regularizer encourages similar source and target parameters, up to

a linear transformation. Still in domain adaptation, besides vision, encouraging sim-

ilar parameters in deep networks has been proposed in speaker adaptation problems

51



3.3. -SP REGULARIZERS

[Liao, 2013; Ochiai et al., 2014] and neural machine translation [Barone et al., 2017],

where it proved to be helpful.

Beyond deep networks, regularization has been a means of building shrinkage es-

timators for decades. Shrinking towards zero is the most common form of shrinkage,

but shrinking towards adaptively chosen targets has been around for some time, start-

ing with Stein shrinkage [Lehmann and Casella, 1998, chapter 5], where it can be

related to empirical Bayes arguments. Shrinking towards a reference has also been

used in maximum entropy models [Chelba and Acero, 2006] or SVM [Yang et al.,

2007; Aytar and Zisserman, 2011; Tommasi et al., 2014]. For example, Yang et al.

[2007] proposed an adaptive SVM (A-SVM), which regularizes the squared differ-

ence between the parameter vector and an initial parameter vector that is learned from

the source database. Then, Aytar and Zisserman [2011] added a linear relaxation to

A-SVM and proposed the projective model transfer SVM (PMT-SVM), which reg-

ularizes the angle between the parameter vector and the initial one. Experiments in

Aytar and Zisserman [2011]; Tommasi et al. [2014] demonstrated that both A-SVM

and PMT-SVM were able to outperform standard L2 regularization with limited la-

beled data in the target task. These approaches were shown to outperform standard

L2 regularization with limited labeled data in the target task [Aytar and Zisserman,

2011; Tommasi et al., 2014]. They differ from the application to deep networks in

several respects, the more important one being that they consider a fixed representa-

tion, with which transfer aims at producing similar classification parameters, that is,

similar classification rules. For deep networks, transfer aims at learning similar repre-

sentations upon which classification parameters will be learned from scratch. Hence,

even though the techniques we discuss here are very similar regarding the analytical

form of the regularizers, they operate on very different objects.

3.3 -SP Regularizers

Let w ∈ Rn be the parameter vector containing all the network parameters that are

to be adapted to the target task. The regularized objective function JΩ that is to be

optimized is the sum of the standard objective function J and the regularizer Ω(w) .

In our experiments, J is the negative log-likelihood, so that the criterion JΩ could be

interpreted in terms of maximum a posteriori estimation, where the regularizer Ω(w)

would act as the log prior of w. More generally, the minimization of JΩ is a trade-off

between the data-fitting term and the regularization term.

52



3.3. -SP REGULARIZERS

L2 penalty The current baseline penalty for transfer learning is the usual L2 penalty,

also known as weight decay, since it drives the weights of the network to zero:

Ω(w) =
α

2
‖w‖2

2 , (3.1)

where α is the regularization parameter setting the strength of the penalty and ‖·‖p is

the p-norm of a vector.

L2-SP Let w0 be the parameter vector of the model pre-trained on the source prob-

lem, acting as the starting point (-SP) in fine-tuning. Using this initial vector as the

reference in the L2 penalty, we get:

Ω(w) =
α

2

∥∥w −w0
∥∥2

2
. (3.2)

Typically, the transfer to a target task requires some modifications of the network

architecture used for the source task, such as on the last layer used for predicting

the outputs. Then, there is no one-to-one mapping between w and w0, and we use

two penalties: one for the part of the target network that shares the architecture of

the source network, denoted wS , the other one for the novel part, denoted wS̄ . The

compound penalty then becomes:

Ω(w) =
α

2

∥∥wS −w0
S
∥∥2

2
+
β

2
‖wS̄‖

2
2 . (3.3)

L2-SP-Fisher Elastic weight consolidation [Kirkpatrick et al., 2017] was proposed

to avoid catastrophic forgetting in the setup of lifelong learning, where several tasks

should be learned sequentially. In addition to preserving the initial parameter vector

w0, it consists in using the estimated Fisher information to define the distance between

wS andw0
S . More precisely, it relies on the diagonal of the Fisher information matrix,

resulting in the following penalty:

Ω(w) =
α

2

∑
j∈S

F̂jj
(
wj − w0

j

)2
+
β

2
‖wS̄‖

2
2 , (3.4)

where F̂jj is the estimate of the jth diagonal element of the Fisher information matrix.

It is computed as the average of the squared Fisher’s score on the source problem,

using the inputs of the source data:

F̂jj =
1

m

m∑
i=1

K∑
k=1

fk(x
(i);w0)

(
∂

∂wj
log fk(x

(i);w0)

)2

,

53



3.3. -SP REGULARIZERS

where the outer average estimates the expectation with respect to inputs x and

the inner weighted sum is the estimate of the conditional expectation of outputs

given input x(i), with outputs drawn from a categorical distribution of parameters

(f1(x(i);w), . . . , fK(x(i);w)).

L1-SP We also experiment the L1 variant of L2-SP:

Ω(w) = α
∥∥wS −w0

S
∥∥

1
+
β

2
‖wS̄‖

2
2 . (3.5)

The usual L1 penalty encourages sparsity; here, by using w0
S as a reference in the

penalty, L1-SP encourages some components of the parameter vector to be frozen,

equal to the pre-trained initial values. The penalty can thus be thought as intermedi-

ate between L2-SP (3.3) and the strategies consisting in freezing a part of the initial

network. We explore below other ways of doing so.

Group-Lasso-SP (GL-SP) Instead of freezing some individual parameters, we may

encourage freezing some groups of parameters corresponding to channels of con-

volution kernels. Formally, we endow the set of parameters with a group struc-

ture, defined by a fixed partition of the index set I = {1, . . . , p}, that is, I =⋃G
g=0 Gg, with Gg ∩ Gh = ∅ for g 6= h. In our setup, G0 = S̄, and for g > 0, Gg

is the set of fan-in parameters of channel g. Let pg denote the cardinality of group g,

and wGg ∈ Rpg be the vector (wj)j∈Gg . Then, the GL-SP penalty is:

Ω(w) = α
G∑
g=1

sg

∥∥∥wGg −w0
Gg

∥∥∥
2

+
β

2
‖wS̄‖

2
2 , (3.6)

wherew0
G0 = w0

S̄
4
= 0, and, for g > 0, sg is a predefined constant that may be used to

balance the different cardinalities of groups. In our experiments, we used sg = p
1/2
g .

Our implementation of Group-Lasso-SP can freeze feature extractors at any depth

of the convolutional network, to preserve the pre-trained feature extractors as a whole

instead of isolated pre-trained parameters. The group Gg of size pg = hg × wg × dg
gathers all the parameters of a convolution kernel of height hg, width wg, and depth

dg. This grouping is done at each layer of the network, for each output channel, so that

the group index g corresponds to two indexes in the network architecture: the layer

index l and the output channel index at layer l. If we have cl such channels at layer l,

we have a total of G =
∑

l cl groups.

54



3.4. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION

Group-Lasso-SP-Fisher (GL-SP-Fisher) Following the idea of L2-SP-Fisher, the

Fisher version of GL-SP is:

Ω(w) = α

G∑
g=1

sg

(∑
j∈Gg

F̂jj
(
wj − w0

j

)2
)1/2

+
β

2
‖wG0‖

2
2 .

3.4 Experimental Results in Image Classification

In this section, we evaluate the aforementioned parameter regularizers for transfer

learning on several pairs of source and target problems, and show the improvements of

-SP regularizers on the standard L2 in image classification. We use ResNet [He et al.,

2016a] as our base network, presented in Section 2.1.3, since it has proven its wide

applicability on transfer learning tasks. The source task is usually a classification task.

Conventionally, if the target task is also a classification task, the fine-tuning process

starts by replacing the last layer with a new one, randomly generated, whose size is

defined by the number of classes in the target task.

3.4.1 Source and Target Databases

For comparing the effect of similarity between the source problem and the target prob-

lem on transfer learning, we chose two source databases: ImageNet [Deng et al., 2009]

contains 1.2 million labeled images of 1000 objects for generic object recognition, and

Places365-Standard [Zhou et al., 2018] has 1.8 million labeled images for 365 cate-

gories of scenes for scene classification. Likewise, we have four different databases

related to four target problems: Caltech 256 [Griffin et al., 2007] contains different

objects for generic object recognition; MIT Indoors 67 (Indoors67) [Quattoni and

Torralba, 2009] consists of 67 indoor scene categories; Stanford Dogs 120 (Dogs120)

[Khosla et al., 2011] contains images of 120 breeds of dogs; Foods101 [Bossard et al.,

2014] collects photos of 101 food categories, and is a much larger database than the

previous ones (yet with some noise in terms of image quality and class labels). Each

target database is split into training and testing sets following the suggestion of their

creators, except Dogs120. Testing set of Dogs120 is a subset of ImageNet training set

but has no overlapping with ImageNet validation set. Since ImageNet training set is

used as the source database, the evaluation in Dogs120 should avoid using the same

images, so we use a part of ImageNet validation set, which contains only those 120

breeds of dogs, for evaluating the performance on Dogs120. Table 3.1 collects details

55



3.4. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION

Table 3.1: Characteristics of the target databases: name and type, numbers of training

and test images per class, and number of classes.

Database task category # training # test # classes

Caltech 256–30 generic object recog. 30 20 257

Caltech 256–60 generic object recog. 60 20 257

MIT Indoors 67 scene classification 80 20 67

Stanford Dogs 120 specific object recog. 100 50 120

Foods101 specific object recog. 750 250 101

0 10−4 10−3 10−2 10−1

79

81

83

85

β

ac
cu

ra
cy

α = 0

α = 10−3

α = 10−2

α = 10−1

α = 1

Figure 3.2: Classification accuracy (in %) on Stanford Dogs 120 for L2-SP, according

to the two regularization hyperparameters α and β respectively applied to the layers

inherited from the source task and the last classification layer (see Equation 3.3).

for all target databases. In addition, we consider two configurations for Caltech 256:

30 or 60 examples randomly drawn from each category for training, and 20 remaining

examples for test. Transfer learning may be less necessary when many training target

examples are used for the target task, but it still benefits from the source problem.

3.4.2 Training Details

Most images in those databases are color images. If not, we create a three-channel im-

age by duplicating the gray-scale data. All images are pre-processed: we resize images

to 256×256 and subtract the mean activity computed over the training set from each

channel, then we adopt random blur, random mirror and random crop to 224×224 for

data augmentation. The network parameters are regularized as described in Section

56



3.4. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION

3.3. Note that the parameter regularizers are only applied to weights in convolutional

and fully connected layers: the biases and parameters in the normalization layers are

not penalized to follow the usual fine-tuning protocol. Cross validation is used for

choosing the best regularization hyperparameters α and β: α differs across experi-

ments, and β = 0.01 is consistently picked by cross-validation for regularizing the

last layer. Figure 3.2 illustrates that the test accuracy varies smoothly according to

the regularization strength, and that there is a sensible benefit in penalizing the last

layer (that is, β ≥ 0) for the best α values. When applicable, the Fisher information

matrix is estimated on the source database. The two source databases (ImageNet or

Places365) yield different estimates. Regarding testing, we use central crops as inputs

to compute the classification accuracy.

Meanwhile, we perform another image pre-processing procedure for matching the

state of the art: the aspect ratio of images is kept and images are resized with the

shorter edge being 256. Regarding testing, we average the predictions of 10 cropped

patches (the center patch, the four corner patches, and all their horizontal reflections)

as final decision.

Stochastic gradient descent with momentum 0.9 is used for optimization. We run

9000 iterations and divide the learning rate by 10 after 6000 iterations. The initial

learning rates are 0.005, 0.01 or 0.02, depending on the tasks. Batch size is 64. Then,

under the best configuration, we repeat five times the learning process to obtain an

average classification accuracy and standard deviation. All the experiments are per-

formed with Tensorflow [Abadi et al., 2015]. The source code is publicly available for

reproducibility purposes. 1

3.4.3 Comparison across Penalties, Source and Target Databases

A comprehensive view of our experimental results is given in Figure 3.3. Each plot

corresponds to one of the four target databases listed in Table 3.1. The red points

mark the accuracies of transfer learning when using Places365 as the source database,

whereas the blue points correspond to the results obtained with ImageNet. As ex-

pected, the results of transfer learning are much better when source and target are

alike: the scene classification target task MIT Indoor 67 (top left) is better transferred

from the scene classification source task Places365, whereas the object recognition

target tasks benefit more from the object recognition source task ImageNet. Besides

1 https://github.com/holyseven/TransferLearningClassification

57

https://github.com/holyseven/TransferLearningClassification


3.4. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION

showing that choosing an appropriate source problem is critical in transfer learning

(see Afridi et al. [2018]; Ding et al. [2018] for example), for our purpose of evaluating

regularizers, these results display similar trends for the two source databases: all the

fine-tuning strategies based on penalties using the starting point -SP as a reference

perform consistently better than standard fine-tuning (L2). There is thus a benefit in

having an explicit bias towards the starting point, even when the target task is not too

similar to the source task.

Interestingly, the best source database for Foods101 is Places365 with L2 regu-

larization and ImageNet for the penalties using the starting point -SP as a reference.

Considering the relative failure of L2-SP-Fisher, it is likely that Foods101 is quite far

from the two sources but slightly closer to ImageNet.

The benefit of the explicit bias towards the starting point is comparable for L2-

SP and L2-SP-Fisher penalties; the strategies based on L1 and Group-Lasso penalties

behave rather poorly in comparison. They are even less accurate than the plain L2

strategy on Caltech 256–30 when the source problem is Places365. Stochastic gradi-

ent descent does not handle well these penalties whose gradient is discontinuous at the

starting point where the optimization starts. The stochastic forward-backward split-

ting algorithm [Duchi and Singer, 2009], which is related to proximal methods, leads

to substandard results, presumably due to the absence of a momentum term. In the

end, we used plain stochastic gradient descent on a smoothed version of the penalties

eliminating the discontinuities of their gradients, but some instability remains.

3.4.4 Fine-Tuning from A Similar Source

Table 3.2 displays the results of fine-tuning with L2-SP and L2-SP-Fisher, which are

compared to the current baseline of fine-tuning with L2, and the state-of-the-art refer-

ences [Ge and Yu, 2017; Martinel et al., 2018]. We report the average accuracies and

their standard deviations on 5 different runs. Since we use the same data and the same

starting point, runs differ only due to the randomness of stochastic gradient descent

and to the parameter initialization of the last layer.

In the first part of Table 3.2 (first three lines), we observe that L2-SP and L2-SP-

Fisher always improve over L2 by a clear margin, and that this improvement is even

more important when less data are available for the target problem (Caltech-30 vs.

Caltech-60 and Foods101 vs. others). When less training examples are available for

the target problem, the role of the regularizer is more important. Meanwhile, little

58



3.4. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION

L
2

L
2 -SP

L
2 -SP-F

L
1 -SP GL-SP

GL-SP-F

78

81

84

Caltech 256–30

L
2

L
2 -SP

L
2 -SP-F

L
1 -SP GL-SP

GL-SP-F

82

84

86

Caltech 256 – 60

L
2

L
2 -SP

L
2 -SP-F

L
1 -SP GL-SP

GL-SP-F

75

80

85

MIT Indoor 67

L
2

L
2 -SP

L
2 -SP-F

L
1 -SP GL-SP

GL-SP-F

65

70

75

Stanford Dogs 120

L
2

L
2 -SP

L
2 -SP-F

L
1 -SP GL-SP

GL-SP-F

84

85

86

Foods 101

Figure 3.3: Classification accuracies (in %) of the tested fine-tuning approaches on the

four target databases, using ImageNet (dark blue dots) or Places365 (light red dots)

as source databases. MIT Indoor 67 is more similar to Places365 than to ImageNet;

Stanford Dogs 120, Caltech 256 and Foods101 are more similar to ImageNet than to

Places365.

59



3.5. ANALYSES

Table 3.2: Average classification accuracies (in %) of L2, L2-SP and L2-SP-Fisher on

5 different runs. The source database is Places365 for MIT Indoors 67 and ImageNet

for Caltech 256 and Foods101. References of the state of the art are taken from Ge and

Yu [2017], except for Foods101 where it is from Martinel et al. [2018]. For Dogs120,

there is no reference that is based on the test set use here to avoid the overlap with

Imagenet training set. Enhanced variants respecting the aspect ratio and using 10-

crop test are marked with a star (∗). Results with the highest accuracy in each part are

highlighted in bold.

Caltech-30 Caltech-60 Indoors67 Dogs120 Foods101

L2 81.5±0.2 85.3±0.2 79.6±0.5 66.3±0.2 84.6±0.1

L2-SP 83.5±0.1 86.4±0.2 84.2±0.3 74.9±0.2 85.4±0.3
L2-SP-Fisher 83.3±0.1 86.0±0.1 84.0±0.4 74.4±0.1 85.1±0.1

L2∗ 82.7±0.2 86.5±0.4 80.7±0.9 67.7±0.3 86.7±0.2

L2-SP∗ 84.9±0.1 87.9±0.2 85.2±0.3 77.1±0.2 87.1±0.1
L2-SP-Fisher∗ 84.8±0.1 87.9±0.1 85.2±0.1 76.9±0.1 87.0±0.1

Reference 83.8±0.5 89.1±0.2 85.8 — 90.3

difference is observed between L2-SP and L2-SP-Fisher. Note that we do not report

here the performances of training from scratch, but that transfer learning really helps

in these setups: we could only reach 76.9% accuracy on Foods101 (with 10 times

more computing efforts, that is, number of epochs).

In the second part of Table 3.2, we boost the performance of fine-tuning with

L2, L2-SP and L2-SP-Fisher by exploiting additional training and post-processing

techniques, that is, by respecting the aspect ratio of images and by using 10-crop test.

The improved results are above state of the art for Caltech–30, and close to state of

the art for Indoors67, without making use of the advanced techniques employed by

Ge and Yu [2017] and Martinel et al. [2018]. These results show that simply changing

the regularizer from L2 to L2-SP or L2-SP-Fisher is remarkably efficient not only for

baseline models, but also for more advanced ones.

3.5 Analyses

Among all -SP methods, while the results of different methods are similar, L2-SP and

L2-SP-Fisher always reach a better accuracy on the target task. We expected L2-SP-

60



3.5. ANALYSES

Fisher to outperform L2-SP since Fisher information provides a relevant metric in

parameter space and was shown to help in lifelong learning, but there is no significant

difference between the two options in our setups. Since L2-SP is simpler than L2-SP-

Fisher, we recommend the former, and we focus on the analysis of L2-SP, although

most of the discussion would also apply to L2-SP-Fisher.

3.5.1 Behavior on the Source Task

The variants using the Fisher information matrix behave like the simpler variants using

a Euclidean metric on parameters. One reason is that, contrary to lifelong learning, our

objective does not favor solutions that retain accuracy on the source task. Hence, the

metric defined by the Fisher information matrix is less relevant for our actual objective

that only relates to the target task. Table 3.3 reports the drop in performance when the

fine-tuned models are applied on the source task, without any retraining, simply using

the original classification layer instead of the classification layer learned for the target

task. The performance drop is consistently smaller for L2-SP-Fisher than for L2-SP.

This confirms that L2-SP-Fisher is indeed a better approach in the situation of lifelong

learning, where accuracies on the source tasks matter. In comparison to L2-SP-Fisher

and L2-SP, L2 fine-tuning results in catastrophic forgetting: the performance on the

source task is considerably affected by fine-tuning.

The relative drops in performance with Foods101 follow the pattern observed for

the other databases except that the decrease is much larger. This may be a sign of the

substantial divergence of the data distribution of Foods101 from the one of ImageNet,

with a compromise between the source task and the target task met far from the starting

point.

3.5.2 Fine-Tuning vs. Freezing the Network

Freezing the first layers of a network during transfer learning [Yosinski et al., 2014] is

another way to ensure a very strong inductive bias, letting less degrees of freedom to

transfer learning. Figure 3.4 shows that this strategy, which is costly to implement if

one looks for the optimal number of layers to be frozen, can improve L2 fine-tuning

considerably, but that it is a rather inefficient for L2-SP fine-tuning. Among all pos-

sible choices, L2 fine-tuning with partial freezing is dominated by the plain L2-SP

fine-tuning. Note that L2-SP-Fisher (not displayed) behaves similarly to L2-SP.

61



3.5. ANALYSES

1 10 22 34 46 58 70 82 100

66.3

(L2)

74.9

(L2-SP)

Stanford Dogs 120

L2-SP
L2

1 10 22 34 46 58 70 82 100

81.5

(L2)

83.5

(L2-SP)

Index up to which layers are frozen

Caltech 256 – 30

Figure 3.4: Classification accuracies (in %) of fine-tuning with L2 and L2-SP on Stan-

ford Dogs 120 (top) and Caltech 256–30 (bottom) when freezing the first layers of

ResNet-101. The dashed lines represent the accuracies reported in Table 3.2, where

no layers are frozen. ResNet-101 begins with one convolutional layer, then stacks

3-layer blocks. The three layers in one block are either frozen or trained altogether.

62



3.5. ANALYSES

Table 3.3: Classification accuracy drops (in %, the lower, the better) on the source

tasks due to fine-tuning based onL2, L2-SP andL2-SP-Fisher regularizers. The source

database is Places365 for MIT Indoors 67 and ImageNet for Caltech 256, Stanford

Dogs 120 and Foods101. The classification accuracies of the pre-trained models are

54.7% and 76.7% on Places365 and ImageNet respectively. Results with the lowest

drops are highlighted in bold.

L2 L2-SP L2-SP-Fisher

MIT Indoors 67 24.1 5.3 4.9
Caltech 256–30 15.4 4.2 3.6
Caltech 256–60 16.9 3.6 3.2

Stanford Dogs 120 14.1 4.7 4.2
Foods101 68.6 64.5 53.2

3.5.3 Layer-Wise Analysis

We complement our experimental results by an analysis relying on the activations of

the hidden units of the network, to provide another view on the differences between

L2 and L2-SP fine-tuning. Activation similarities are easier to interpret than parameter

similarities, as they provide a view of the network that is closer to the functional

prospective we are actually pursuing. Matching individual activations makes sense,

provided that the networks slightly differ before and after tuning so that few roles are

switched between units or feature maps.

The dependency between the pre-trained and the fine-tuned activations throughout

the network is displayed in Figure 3.5, with boxplots of the R2 coefficients, gathered

layer-wise, of the fine-tuned activations with respect to the original activations. This

figure shows that, indeed, the roles of units or feature maps have not changed much

after L2-SP and L2-SP-Fisher fine-tuning. The R2 coefficients are very close to 1 on

the first layers, and smoothly decrease throughout the network, staying quite high,

around 0.6, for L2-SP and L2-SP-Fisher at the greatest depth. In contrast, for L2

regularization, some important changes are already visible in the first layers, and the

R2 coefficients eventually reach quite low values at the greatest depth. This illustrates

in details how the roles of the network units are remarkably retained with L2-SP and

L2-SP-Fisher fine-tuning, not only for the first layers of the networks, but also for the

63



3.5. ANALYSES

1 4 7 10 13 22 25 37 49 61 76 91 100
0

0.2

0.4

0.6

0.8

1

Layer index

R
2

L2

L2-SP

L2-SP-Fisher

Figure 3.5: R2 coefficients of determination with L2 and L2-SP regularizations for

Stanford Dogs 120. Each boxplot summarizes the distribution of the R2 coefficients

of the activations after fine-tuning with respect to the activations of the pre-trained

network, for all the units in one layer. ResNet-101 begins with one convolutional

layer, then stacks 3-layer blocks. We display here only the R2 at the first layer and at

the outputs of some 3-layer blocks.

last high-level representations before classification.

We now look at the diagonal elements of the Fisher information matrix, still com-

puted on ResNet-101 from training inputs of ImageNet. Their distributions across

layers, displayed in Figure 3.6, show that the network is more sensitive to the param-

eters of the first layers, with a high disparity within these layers, and are then steady

with most values within one order of magnitude. As a result, L2-SP-Fisher is very

similar to L2-SP, except for being more conservative on the first layers. This observa-

tion explains the small differences between L2-SP and L2-SP-Fisher that are observed

in our transfer learning setups.

3.5.4 Computational Efficiency

The -SP regularizers introduce no extra parameters, and they only increase slightly

the computational burden. L2-SP increases the number of floating point operations

required for a learning step of ResNet-101 by less than 1%. Hence, at a negligible

computational cost, we can obtain significant improvements in classification accuracy,

and no additional cost is experienced at test time.

64



3.5. ANALYSES

1 10 19 28 37 46 55 64 73 82 91 100

−7

−5

−3

−1

Layer index

lo
g

1
0
(F̂

jj
)

Figure 3.6: Boxplots of the diagonal elements of the Fisher information matrix (log-

scale) computed on the training set of ImageNet using the pre-trained model. We

display here these elements at the first layer and then at the last layer of all 3-layer

blocks of ResNet-101.

3.5.5 Theoretical Insights

Effect of L2-SP

Analytical results are very difficult to obtain in the deep learning framework. Under

some (highly) simplifying assumptions, the effect of L2 regularization can be analyzed

by doing a quadratic approximation of the objective function around the optimum [see,

e.g. Goodfellow et al., 2017, Section 7.1.1]. This analysis shows that L2 regularization

rescales the parameters along the directions defined by the eigenvectors of the Hessian

matrix.

A similar analysis can be used forL2-SP regularization. Let J be the unregularized

objective function and JSP (w) = J (w) + α
2
‖w −w0‖2

2 be the regularized objective

function. Let ŵ = argminwJ (w) and ŵSP = argminwJ
SP (w) be their respective

minima. The quadratic approximation of J (ŵ) gives

H(ŵSP − ŵ) + α(ŵSP −w0) = 0 , (3.7)

where H is the Hessian matrix of J w.r.t. w, evaluated at ŵ. Since H is symmetric

and positive semidefinite, it can be decomposed as H = PΛPT. Applying the de-

composition to Equation (3.7), we obtain the following relationship between ŵSP and

ŵ:

PTŵSP = (Λ + αI)−1ΛPTŵ + α(Λ + αI)−1PTw0 . (3.8)

65



3.5. ANALYSES

This equation shows that, in the direction defined by the i-th eigenvector of H, ŵSP

is a convex combination of the projections of ŵ and w0 on that direction. Indeed

noting λi the eigenvalue corresponding to the i-th eigenvector, the terms of the convex

combination are λi
λi+α

and α
λi+α

.

This contrasts with L2 that leads to a trade-off between the optimum of the un-

regularized objective function and the origin. Clearly, searching for a solution in the

vicinity of the pre-trained parameters is intuitively much more appealing, since it is

the actual motivation for using the pre-trained parameters as the starting point of the

fine-tuning process.

Bias-Variance Analysis

We propose here a simple bias-variance analysis for the case of linear regression, for

which this analysis is tractable. Consider the squared loss function J(w) = 1
2
‖Xw −

y‖2, where y ∈ Rn is a vector of continuous responses, and X ∈ Rn×p is the matrix of

predictor variables. We use the standard assumptions of the fixed design case, that is:

(i) y is the realization of a random variable Y such that E[Y] = Xw∗, V[Y] = σ2In,

and w∗ is the vector of parameters; (ii) the design is fixed and orthonormal, that is,

XTX = Ip. We also assume that the reference we use for L2-SP, i.e. w0, is not far

away from w∗, since it is the minimizer of the unregularized objective function on a

large data set: w0 = w∗ + ε, where ‖ε‖ � ‖w∗‖.
We consider the three estimates ŵ = argminwJ (w), ŵL2

= argminwJ (w) +
α
2
‖w‖2

2 and ŵSP = argminwJ (w) + α
2
‖w −w0‖2

2. Their closed-form formulations

are respectively: 
ŵ = XTy

ŵL2

=
1

1 + α
XTy

ŵSP =
1

1 + α
XTy +

α

1 + α
w0

(3.9)

So that their expectations and variances are:

E[ŵ] = w∗

E[ŵL2

] =
1

1 + α
w∗

E[ŵSP] =
1

1 + α
w∗ +

α

1 + α
w0

= w∗ +
α

1 + α
ε

(3.10)

66



3.6. OTHER SETUPS



V[ŵ] = σ2Ip

V[ŵL2

] =

(
σ

1 + α

)2

Ip

V[ŵSP] =

(
σ

1 + α

)2

Ip

(3.11)

These expressions show that, without any regularization, the least squared estimate

ŵ is unbiased, but with the largest variance. With the L2 regularizer, the variance

is decreased by a factor of 1/(1 + α)2 but the squared bias is ‖w∗‖2α2/(1 + α)2.

The L2-SP regularizer benefits from the same decrease of variance and suffers from

the smaller squared bias ‖ε∗‖2α2/(1 + α)2. It is thus always a better option than

L2 (provided the asumption ‖ε‖ � ‖w∗‖ holds), and it is the best option regarding

squared error when ‖ε∗‖α < σ, which is likely when the sample size on the source

task is much larger than the sample size on the target task.

Shrinkage Estimation

Using L2-SP instead of L2 can also be motivated by an analogy with shrinkage esti-

mation [see e.g. Lehmann and Casella, 1998, chapter 5]. Although it is known that

shrinking toward any reference is better than raw fitting, it is also known that shrink-

ing towards a value that is close to the “true parameters” is more effective. The notion

of “true parameters” is not readily applicable to deep networks, but the connection

with Stein shrinking effect may be inspiring by surveying the literature considering

shrinkage towards other references, such as linear subspaces. In particular, it is likely

that manifolds of parameters defined from the pre-trained network would provide a

more relevant reference than the single parameter value provided by the pre-trained

network.

3.6 Other Setups

Experiments in the above sections are based on image classification and we have ob-

served significant improvement in accuracy for all -SP regularizers. For demonstrating

the versatility of -SP regularizers, we apply the L2-SP regularizer, the most efficient

one among -SP regularizers, on more various vision tasks under the inductive transfer

learning setting.

67



3.6. OTHER SETUPS

In the following of this section, we perform experiments with seven representative

approaches that largely benefit from transfer learning in image classification, image

semantic segmentation as well as video analysis. All these approaches define a pro-

tocol relying at least partly on fine-tuning, originally implemented with weight decay,

and will be compared with the L2-SP regularizer. All these experiments show consis-

tent improvement using L2-SP, demonstrating the versatility of the -SP regularizers

for fine-tuning state-of-the-art convolutional networks across network structures and

datasets.

Among these seven approaches, FCN [Long et al., 2015a], ResNet (for image seg-

mentation) [He et al., 2016a], DeepLab [Chen et al., 2018a] and PSPNet [Zhao et al.,

2017] have been presented in details in Section 2.1.5. These four approaches are re-

produced by ourselves and we compare the L2 and L2-SP regularizers with the same

experimental protocol. As for the other three approaches, i.e., EncNet [Zhang et al.,

2018], SegFlow [Cheng et al., 2017] and DSTL [Cui et al., 2018], which will be in-

troduced in the following of this section, we cooperate with the authors and have done

the experiments with their original implementations under the very same conditions

except a simple change in the parameter regularizer, turning the weight decay to the

L2-SP regularizer.

3.6.1 Transfer Learning Approaches

PSPNet Zhao et al. [2017] propose a pyramid pooling module for combining local,

intermediate and global-scale information, in order to improve image segmentation

performance. The pyramid pooling module is appended to the penultimate layer of

the pre-trained model and pools the features maps in different scales. Then the pooled

feature maps are upsampled and concatenated with the feature maps of the penultimate

layer. The fused features contain local, global and intermediate-scale information,

which hints the scene situation and helps the recognition of various categories in this

scene.

The network equipped with this module is named as pyramid scene parsing net-

work (PSPNet). Zhao et al. [2017] has built it based on an ImageNet-pretrained

ResNet [He et al., 2016a], evaluated on the PASCAL VOC dataset [Everingham et al.,

2010], ADE20K [Zhou et al., 2017] and Cityscapes [Cordts et al., 2016].

EncNet Zhang et al. [2018] have proposed a context-encoding module to extract the

68



3.6. OTHER SETUPS

relation between the global semantic context and the object categories, so as to em-

phasize the frequent objects in one scenario and de-emphasize the rare ones. The pro-

posed module explicitly captures contextual information of the scene using sparse en-

coding and learns a set of scaling factors, by which the feature maps are then rescaled

for selectively highlighting the class-dependent feature channels. For an image seg-

mentation problem, the highlighted features containing the semantic context informa-

tion, facilitate the pixel-wise prediction and improve the recognition of small objects.

Meanwhile, an additional loss of predicting the presence of each object category is

computed from the encoded features to better extract the contextual information.

This proposed approach, which we refer to as EncNet, keeping the name from

Zhang et al. [2018], is built upon a pre-trained ResNet [He et al., 2016a] and evaluated

on the PASCAL VOC dataset [Everingham et al., 2010] and ADE20K [Zhou et al.,

2017] for image segmentation.

SegFlow Cheng et al. [2017] have proposed a network architecture, named SegFlow,

with two branches for simultaneously segmenting video frames pixel-wisely and for

computing the optical flow in videos. The segmentation branch is based on ResNet

[He et al., 2016a] but modified to a fully-convolutional structure; and the optical flow

branch is an encoder-decoder network [Dosovitskiy et al., 2015]. Both segmentation

and optical flow branches have feature maps of multiple scales, enabling plausible

connections between the two tasks. In SegFlow, the two branches are unified in a bi-

directional way, i.e. the features from the segmentation branch are concatenated to the

optical flow branch and the features from the optical flow branch are concatenated to

the segmentation branch. Gradients from either task can pass through both branches

and the information in the feature space can be shared maximally.

This unified network is initialized with the pre-trained ResNet [He et al., 2016a]

and FlowNetS [Dosovitskiy et al., 2015], and then fine-tuned on the DAVIS 2016

dataset [Perazzi et al., 2016] for video object segmentation and the Scene Flow

datasets [Mayer et al., 2016] for optical flow.

Domain Similarity for Transfer Learning Cui et al. [2018] propose to measure the

similarity between domains using the Earth Mover’s Distance (EMD) and then select

from the source domain a subset that is more similar to the target domains for transfer

learning. By averaging the image features in each category, the proposed approach is

able to compute the similarities between any two domains. With a greedy selection

69



3.6. OTHER SETUPS

Table 3.4: Training and test details for segmentation on Cityscapes. Abbreviations

used in this table: lr - learning rate; poly lr - polynomial learning rate policy; bs -

batch size; bn - batch normalization; rdm scale - random scale; ms test - multi-scale

test.

FCN ResNet DeepLab PSPNet

training

lr policy fixed lr poly lr

bs×h×w 2×800×800 8×864×864

bn stats frozen but trained β and γ all training

rdm scale no [0.5, 2.0]

test
ms test no yes

image size whole image 864×864 crops

strategy, they choose the top k categories from the source problem with the highest

similarities for pre-training the network.

Using the proposed domain similarity estimation, they select two subsets from

ImageNet [Deng et al., 2009] and iNaturalist [Van Horn et al., 2018] for transferring

on different target databases: Subset A incorporates the 200 most similar categories

for each of the seven databases, and Subset B is slightly biased towards bird and

dog breeds. Experiments are conducted by pre-training on Subset A or B and then

separately fine-tuning on each of the target databases. They compare the performance

with pre-training from ImageNet, iNaturalist or the combination of ImageNet and

iNaturalist, and show that the performance is improved by pre-training on a closer

domain. Note that we refer to their approach as DSTL, the abbreviation of domain

similarity for transfer learning.

3.6.2 Experimental Setup

In the following, we present the experimental setup for the seven approaches, includ-

ing evaluation metrics, the source and target datasets and network architectures. For

training and implementation details, we refer the reader to the original papers [Long

et al., 2015a; Cheng et al., 2017; Zhang et al., 2018; Cui et al., 2018], a public repos-

itory2 for DeepLab and our implementation3 for PSPNet. The performances of FCN,

2https://github.com/DrSleep/tensorflow-deeplab-resnet
3https://github.com/holyseven/PSPNet-TF-Reproduce

70

https://github.com/DrSleep/tensorflow-deeplab-resnet
https://github.com/holyseven/PSPNet-TF-Reproduce


3.6. OTHER SETUPS

ResNet, DeepLab and PSPNet may be different from the original works because of

some modifications of experimental settings, like crop size and batch size, see Ta-

ble 3.4, but when comparing with L2-SP, the same setting is used. As for EncNet,

SegFlow and DSTL, original experimental protocol are performed except the L2-SP

regularizer.

The parameter regularizers are only applied to weights in convolutional and fully

connected layers as before.

Evaluation Metrics We recall the evaluation metrics used for measuring the perfor-

mance on image classification, segmentation and optical flow estimation.

• For classification problems, the common accuracy is defined as the ratio of

correctly predicted examples to total examples.

• For image segmentation, pixel accuracy is defined as the ratio of correctly pre-

dicted pixels to total pixels.

• Still for image segmentation, the mean intersection over union (mean IoU or

mIoU) is more commonly used than pixel accuracy. The intersection over union

(IoU) compares two sets: the set of pixels that are predicted to be of a given

category and the set of ground truth pixels that truly belong to this category. It

measures the discrepancy between the two sets as the ratio of their intersection

to their union, i.e.. The mIoU is the mean of IoUs over all categories.

• For evaluating the optical flow, the average endpoint error (EPE) is defined

as the average L2 distance between the estimated optical flow vector and the

ground truth vector at each pixel position.

Datasets As the most famous source database, ImageNet [Deng et al., 2009] con-

tains 1.2 million labeled images of 1000 objects for generic object recognition, as we

presented for classification tasks. iNaturalist [Van Horn et al., 2018] is also for clas-

sification and consists of 675K images from 5089 species of plants and animals. A

selected part of ImageNet and iNaturalist towards bird and dogs breeds is used as the

source database for DSTL because the target tasks of DSTL are mainly plants and ani-

mals. DSTL computes a similarity between target and source classes to select a subset

of the classes of the source domain. This subset is used for pre-training the network,

then the pre-trained network is fine-tuned with the target databases, like Birds200

[Welinder et al., 2010], Flowers102 [Nilsback and Zisserman, 2008], Cars196 [Krause

71



3.6. OTHER SETUPS

dataset
#im

ages/scenes
#classes

task
addressed

note
approach

Im
ageN

etD
eng

etal.[2009]
∼

1.2M
1000

im
age

classification
object-centered

all

iN
aturalistV

an
H

orn
etal.[2018]

∼
675K

5,089
im

age
classification

naturalcategories
D

ST
L

Flying
C

hairs
D

osovitskiy
etal.[2015]

∼
2K

scenes
-

opticalflow
synthetic

SegFlow

Table
3.5:

Source
datasets.

For
each

dataset,w
e

provide
the

order
of

m
agnitude

of
the

num
ber

of
exam

ples,the
num

ber
of

classes,

the
type

oftask
addressed,and

the
approach(es)using

this
datasetforthe

source
problem

.

dataset
#im

ages/seq.
#classes

task
addressed

approach

PascalC
ontextM

ottaghietal.[2014]
∼

10K
59

im
age

segm
entation

E
ncN

et

Scene
Flow

M
ayeretal.[2016]

32
sequences

-
opticalflow

SegFlow

D
AV

IS
2016

Perazzietal.[2016]
50

sequences
-

video
segm

entation
SegFlow

C
U

B
200

W
elinderetal.[2010]

∼
11K

200
im

age
classification

D
ST

L

Flow
ers102

N
ilsback

and
Z

isserm
an

[2008]
∼

10K
102

im
age

classification
D

ST
L

Stanford
C

ars
K

rause
etal.[2013]

∼
16K

196
im

age
classification

D
ST

L

A
ircraftM

ajietal.[2013]
∼

10K
100

im
age

classification
D

ST
L

Food101
B

ossard
etal.[2014]

∼
100K

101
im

age
classification

D
ST

L

N
A

B
irds

V
an

H
orn

etal.[2015]
∼

50K
555

im
age

classification
D

ST
L

Table
3.6:

Targetdatasets.
For

each
dataset,w

e
provide

the
order

of
m

agnitude
of

the
num

ber
of

exam
ples,the

num
ber

of
classes,

the
type

oftask
addressed,and

the
approach

thatuses
this

datasetforthe
targetproblem

.

72



3.6. OTHER SETUPS

et al., 2013], Aircraft100 [Maji et al., 2013], Foods101 [Bossard et al., 2014] and

NABirds [Van Horn et al., 2015]. They were collected for the recognition of birds,

flowers, cars, aircraft models, foods, and birds respectively. They are relatively smaller

than ImageNet and iNaturalist. The transfer learning approach DSTL aims at boost-

ing the classification accuracy of target tasks by exploiting knowledge from the source

domain.

As for the source database for image segmentation, besides ImageNet, Microsoft

COCO [Lin et al., 2014b] has around 328K images and 2.5M segmented instances

for object detection and instance segmentation. We use ImageNet as the source for

all segmentation tasks, and also COCO for DeepLab when fine-tuning on Semantic

Boundaries Dataset (SBD) [Hariharan et al., 2011]. SBD labeled images from the

PASCAL VOC dataset [Everingham et al., 2010] and augmented pixel-wise annota-

tions for image segmentation. The PASCAL Context has the same images as PASCAL

VOC [Everingham et al., 2010] but provides detailed annotations for the whole scene,

including the background. Different from object-center databases, Cityscapes [Cordts

et al., 2016] focuses on urban street scenes and images of Cityscapes are much larger

than those mentioned above. Cityscapes consists of 20,000 images with coarse anno-

tations, and 5,000 images with high quality pixel-wise labeling, which are split into a

training set (2975 images), a validation set (500 images) and a test set (1525 images).

We use SBD as the target databases for PSPNet, PASCAL Context for EncNet, and

Cityscapes for FCN, ResNet, DeepLab and PSPNet.

Flying Chairs [Dosovitskiy et al., 2015] is a synthetic dataset for optical flow es-

timation, generated by modeling chair models, adding them on a background image,

and randomly sampling the motion of chairs. Compared with the other dataset con-

cerning optical flow, Flying Chairs can provide enough training data, 22,872 image

pairs. For the comparison, Scene Flow [Mayer et al., 2016] is also a synthetic dataset

and has three subsets, two of which are used as target databases for SegFlow and have

8,591 and 4,392 annotated training frames respectively. These two subsets are named

Monkaa and Driving. Monkaa is created using parts and pieces from the animated

short film Monkaa, and Driving is a naturalistic, dynamic driving scenes with many

objects, shadows, reflections and many complex scenarios. Davis 2016 [Perazzi et al.,

2016] is another target database of SegFlow and has a total of 50 sequences, 3,455

annotated frames.

We summarize the source and target datasets in Table 3.5 and Table 3.6 respec-

tively, including the size of each dataset, the task related and the approach that uses

73



3.6. OTHER SETUPS

this dataset.

Network Structures The source task is usually a classification task since this type

of task minimizes the labelling burden. Conventionally, if the target task is also a

classification task, like DSTL, the fine-tuning process starts by replacing the last layer

with a new one, randomly generated, whose size is defined by the number of classes

in the target task. The modification of the network structure in quite light in this

situation.

In contrast, for image segmentation and optical flow estimation, where the ob-

jective differs radically from image classification, the source network needs to be

modified, typically by adding a decoder part, which is much more elaborated than

a single fully connected layer. Nevertheless, fine-tuning from the pre-trained network

still performs favorably compared to training from scratch in these challenging situa-

tions. Here, we follow the exactly the original papers regarding the modifications of

the network architectures.

3.6.3 Experimental Results

Table 3.7 compares the results of fine-tuning with L2 and L2-SP of all approaches on

their specific target tasks. We readily observe that fine-tuning with L2-SP in place of

L2 consistently improves the performance, whatever the task, whatever the approach.

Some of these improvements are marginal, but we recall that, compared to the base-

line methods with L2 fine-tuning, changing the regularization to L2-SP only adds a

subtraction operation per weight during training, and that it does not cost anything

during the inference process.

FCN, ResNet, DeepLab, PSPNet We fine-tuned FCN, ResNet, DeepLab and PSP-

Net with the standard L2, and L2-SP, all other things being equal. We readily ob-

serve that fine-tuning with L2-SP in place of L2 consistently improves the perfor-

mance in mean Intersection over Union (mIoU) score, for all networks. The best

model (PSPNet-extra with L2-SP) has been evaluated on the test set and is currently

on the public benchmark of Cityscapes4, with 80.3% mIoU, to be compared to 80.2%

obtained by Zhao et al. [2017].

4https://www.cityscapes-dataset.com/method-details/?submissionID=

1148

74

https://www.cityscapes-dataset.com/method-details/?submissionID=1148
https://www.cityscapes-dataset.com/method-details/?submissionID=1148


3.6. OTHER SETUPS

approach target dataset task metric L2 L2-SP

FCN Cityscapes image segmentation mIoU 66.9 67.9

ResNet-101 Cityscapes image segmentation mIoU 68.1 68.7

DeepLab Cityscapes image segmentation mIoU 68.6 70.4

DeepLab-COCO Cityscapes image segmentation mIoU 72.0 73.2

PSPNet Cityscapes image segmentation mIoU 78.2 79.4

PSPNet-extra Cityscapes image segmentation mIoU 80.9 81.2

PSPNet SBD image segmentation mIoU 78.3 79.9

EncNet-50 PASCAL Context image segmentation mIoU 50.84 51.17

EncNet-101 PASCAL Context image segmentation mIoU 54.10 54.12

SegFlow∗ DAVIS video segmentation IoU 65.5 66.2

SegFlow DAVIS video segmentation IoU 67.4 68.0

SegFlow Monkaa Final optical flow EPE 7.90 7.17

SegFlow Driving Final optical flow EPE 37.93 30.31

DSTL Birds200 image classification accuracy 88.47 89.19

DSTL Flowers102 image classification accuracy 97.21 97.68

DSTL Cars196 image classification accuracy 90.19 90.67

DSTL Aircraft100 image classification accuracy 85.89 86.83

DSTL Food101 image classification accuracy 88.16 88.75

DSTL NABirds image classification accuracy 87.64 88.32

Table 3.7: Summary of experimental results. For all metrics except EPE, higher is bet-

ter. DeepLab-COCO means the network was pre-trained on Microsoft COCO before

fine-tuning. PSPNet-extra means the fine-tuning involves the 20K coarsely labeled

images while PSPNet only uses densely labeled images. SegFlow marked with ‘∗’

does not use the optical flow branch. The optical flow results of SegFlow are evalu-

ated on two subsets of Scene Flow databases [Mayer et al., 2016], i.e. Monkaa and

Driving.

75



3.6. OTHER SETUPS

approach α β accuracy mIoU

EncNet-50 - L2 1e-4 1e-4 79.09 50.84

EncNet-50 - L2-SP 1e-4 1e-3 79.10 50.31

EncNet-50 - L2-SP 1e-3 1e-4 79.18 51.12

EncNet-50 - L2-SP 1e-4 1e-4 79.20 51.17

EncNet-101 - L2 1e-4 1e-4 80.70 54.10

EncNet-101 - L2-SP 1e-4 1e-4 80.81 54.12

Table 3.8: EncNet pixel accuracy and mIoU on the PASCAL Context validation set

according to regularization hyper-parameters.

For PSPNet on SBD, we apply the same protocol, except that images are cropped

to 480×480, enabling a larger batch size of 16. The results on the public validation

set are again in favor of L2-SP, which reaches 79.9% in mIoU compared to 78.3% for

L2. On the test set, L2-SP reaches 79.8%5.

EncNet The EncNet-50 and EncNet-101 are based on ResNet-50 and ResNet-101

respectively, pre-trained on ImageNet. The networks are fine-tuned on the PASCAL

Context for image segmentation, and their performance are measured by pixel accu-

racy and mIoU. The improvements in mIoU brought by L2-SP for EncNet-101 are

marginal; they are slightly larger for EncNet-50.

Table 3.8 goes into more details. It reports the average test pixel accuracy and

mIoU obtained with several values of the hyper-parameters. Pixel accuracy, which is

the criterion that is actually used during training, is always improved by L2-SP, even

for suboptimal choices of the regularization parameters.

Another interesting observation is that it is relatively safer to increase the α/β ra-

tio than to decrease it. In other words, for controlling the complexity of the overall

network, being more conservative on the pre-trained part of the network, that is, re-

taining its memory, is a better option than being more constrained on its novel part

that allows to address the target task.

5http://host.robots.ox.ac.uk:8080/anonymous/NAAVTI.html

76

http://host.robots.ox.ac.uk:8080/anonymous/NAAVTI.html


3.6. OTHER SETUPS

Monkaa Clean Monkaa Final Driving Clean Driving Final

val train+val val val train+val val

FlowNetS 10.51 6.15 10.47 66.93 23.90 67.15

SegFlow-L2 7.94 4.49 7.90 37.91 14.35 37.93

SegFlow-L2-SP β = 1.0 7.55 4.00 7.60 34.20 12.85 35.17

SegFlow-L2-SP β = 0.1 7.10 3.62 7.17 31.11 6.04 30.31

SegFlow-L2-SP β = 0.01 7.41 3.94 7.52 30.57 6.65 30.14

Table 3.9: Average endpoint errors (EPEs) on the two subsets of the Scene Flow

dataset. The evaluations on the validation set of the Monkaa and Driving datasets use

both forward and backward samples, while evaluations on train+val use only forward

ones. Results of FlowNetS are from Dosovitskiy et al. [2015], and the hyperparameter

α=0.1 for all SegFlow-L2-SP settings.

SegFlow As for the segmentation performance of SegFlow, we have conducted two

experiments, fine-tuning without the optical flow branch (SegFlow∗ in Table 3.7) and

fine-tuning the entire model. Both options are evaluated on the DAVIS target task [Per-

azzi et al., 2016]. The segmentation branch and the optical flow branch of SegFlow

are pre-trained on ImageNet [Deng et al., 2009] and FlyingChairs [Dosovitskiy et al.,

2015] respectively. When applicable, both branches are regularized towards the pre-

trained values by L2 or L2-SP fine-tuning. The benefits of L2-SP are again systematic

and higher than with EncNet.

For the optical flow estimation, we again observe systematic benefits of L2-SP,

with still higher impact (note that, for the EPE used to measure performance, the

lower, the better). Table 3.9 reports additional results on optical flow estimation with

SegFlow. There are two target tasks corresponding to Monkaa with 24 scenes, and

Driving with 8 scenes. There are two versions for both datasets: a Clean version,

which has no motion blur and atmospheric effects and a Final version, which includes

some blurring effects.

We compare L2-SP with the standard L2 and test different choices of β when using

L2-SP during fine-tuning. We evaluate the optical flow estimation on the validation set

and the train+val set. First, as expected, transferring from a synthetic Flying Chairs

dataset to a synthetic animated Monkaa dataset is more effective than transferring to a

77



3.6. OTHER SETUPS

approach α β accuracy

DSTL - Inception-V3 - L2 4e-5 4e-5 88.47

DSTL - Inception-V3 - L2-SP 1e-4 1e-4 89.07

DSTL - Inception-V3 - L2-SP 1e-3 1e-3 89.19

DSTL - Inception-V3 - L2-SP 1e-3 1e-2 88.53

DSTL - Inception-V3 - L2-SP 1e-2 1e-3 89.12

DSTL - Inception-V3 - L2-SP 1e-1 1e-3 89.00

Table 3.10: DSTL classification accuracy using the Inception-V3 network on the

Birds200 validation set according to regularization hyper-parameters.

realistic driving scene dataset. Second, Table 3.9 shows that fine-tuning SegFlow with

L2-SP does not require an intensive search of hyper-parameters. Compared to L2, L2-

SP performs better on a wide range of β values, covering several orders of magnitude:

Suboptimal choices of (α, β) still allow for substancial reductions in errors. In ad-

dition, the comparison with FlowNetS, which is the optical flow branch of SegFlow,

shows that the benefit of turning from L2 to L2-SP is sometimes comparable to the

one of integrating the segmentation branch. It is likely due to the strong similarity of

the domains.

DSTL The source datasets used here for DSTL are subsets of ImageNet [Deng et al.,

2009] and iNaturalist [Van Horn et al., 2018], containing 585 categories slightly biased

towards bird and dog breeds, i.e. Subset B in Cui et al. [2018]. We pre-train Inception-

V3 [Szegedy et al., 2016] on this subset and fine-tune on six target datasets.

As shown in Table 3.7, fine-tuning with L2-SP outperforms the baseline of L2 on

all six datasets. Table 3.10 investigates the classification accuracy with respect to the

values of α and β in the validation set of Birds200 [Welinder et al., 2010], which is

a dataset of 200 bird species. We have the same observations as with EncNet and

SegFlow, i.e. the performance can be easily improved by using the L2-SP penalty, and

it is better to have a large α/β ratio.

78



3.7. CONCLUSION

3.6.4 Analysis and Discussion

Behavior across Network Structures L2-SP behaves very well across all tested

network structures. FCN is based on VGG and equipped with dilated convolution op-

eration. DeepLab, PSPNet and EncNet are based on ResNet and strengthened by

adding different modules. The segmentation branch of SegFlow is also based on

ResNet transformed to fully convolutional; the flow branch is FlowNetS [Dosovitskiy

et al., 2015], which is a variant of VGG. For DSTL, Inception-V3 [Szegedy et al.,

2016] is used. Despite the various network structures and the diversity of problems

addressed, we consistently observe higher performance from fine-tuning with L2-SP.

Choosing α and β A practical problem may reside in the selection of the regular-

ization parameters α and β of Equation (3.3). However, the experimental results show

that this selection needs not to be accurate, and that a rule of thumb is to explore a

large α/β ratio rather than a small one. When the pre-trained values are relevant, the

target task benefits a lot from the pre-trained model, and α can be set to a large value

without imposing detrimental constraints. As for β, which applies to the randomly ini-

tialized weights in the new layers, a large β would impede a necessary optimization.

In practice, we roughly choose α and β by:

(i) starting from the default regularization rate as using the weight decay for both

α and β;

(ii) α is free to increase to 10 times larger; β depends on the task but usually the

optimal value is larger than the default;

(iii) if the optimization process is not affected a lot, repeat increasing α or β.

3.7 Conclusion

We described and tested some simple regularization approaches for transfer learning

with convolutional networks. They all encode an explicit bias towards the solution

learned on the source task, resulting in a trade-off between the solution to the target

task and the pre-trained parameter that is coherent with the original motivation for fine-

tuning. All the regularizers evaluated here have been already used for other purposes

or in other contexts, but we demonstrated their relevance for inductive transfer learning

with deep convolutional networks.

79



3.7. CONCLUSION

We show that a simple L2 penalty using the starting point as a reference, L2-SP,

is useful, even if early stopping is used. This penalty is much more effective than the

standard L2 penalty that is commonly used in fine-tuning. It is also more effective

and simpler to implement than the strategy consisting in freezing the first layers of

a network. We provide theoretical hints and strong experimental evidence showing

that L2-SP retains the memory of the features learned on the source database. We thus

believe that this simple L2-SP scheme should be considered as the standard baseline in

inductive transfer learning, and that future improvements of transfer learning should

rely on this baseline.

We also conducted experiments with three state-of-the-art transfer learning ap-

proaches, i.e. EncNet [Zhang et al., 2018] on image segmentation, SegFlow [Cheng

et al., 2017] on video analysis, and DSTL [Cui et al., 2018] on image classification.

By doing so, we demonstrate that the L2-SP regularization, used in place of the stan-

dard weight-decay, is very effective and versatile: not a single comparison is in favor

of L2 regularization. The L2-SP parameter regularization is extremely simple to im-

plement, requiring only to use the pre-trained model as the reference when computing

the L2 penalty. Furthermore, tuning the hyper-parameters of L2-SP is not unduly time-

consuming: the optimal values depend on the task, but a general rule works: large α

is usually harmless while large β may be an obstacle for the optimization process.

We conclude that for transfer learning tasks, L2-SP is more appealing in intuition and

in practice. We eventually recommend this simple L2-SP scheme as the baseline of

penalty for transfer learning tasks.

Besides, we tested the effect of more elaborate penalties, based on L1 norm,

Group-L1 norm, or Fisher information. None of the L1 or Group-L1 options seem

to be valuable in the context of inductive transfer learning that we considered here,

and using the Fisher information with L2-SP, though being better at preserving the

memory of the source task, does not improve accuracy on the target task.

80



Chapter 4

Representation Regularizers for
Fine-Tuning

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 A Reminder on the Optimal Transport Problem and the
Sinkhorn Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Representation Regularizers . . . . . . . . . . . . . . . . . . . 86

4.4.1 Representation Regularization via Optimal Transport . . . 86

4.4.2 Two Baselines . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.2 Experimental Details . . . . . . . . . . . . . . . . . . . . 89

4.5.3 Comparison across Regularizers . . . . . . . . . . . . . . 90

4.6 Analyses and Discussions . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Comparison with Transporting Data . . . . . . . . . . . . 91

4.6.2 Possible Transport . . . . . . . . . . . . . . . . . . . . . 92

4.6.3 Effective Transport . . . . . . . . . . . . . . . . . . . . . 94

4.6.4 The Envelope Theorem . . . . . . . . . . . . . . . . . . . 95

4.7 Other Regularizers Tested . . . . . . . . . . . . . . . . . . . . 96

81



4.1. INTRODUCTION

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Prologue Fine-tuning pre-trained deep networks is a practical way of transferring

the knowledge learned from a source task to a target task. However, during fine-

tuning, this knowledge may be forgotten, and detrimental to the performance on the

target task, possibly leading to catastrophic forgetting. In the previous chapter, we fo-

cus on the parameter regularizers to counteract forgetting. In this chapter, we address

this problem by explicitly preserving the representations resulting from the pre-trained

network. Instead of freezing some intermediate representations during fine-tuning, we

penalize deviations from the initial representations. Since the representations are not

altered by transformations such as permutations of neurons at any layer of the net-

work, our regularization functional relies on optimal transport to punish the deviation

between the initial representations and the new ones. In practice, we rely on the op-

timal transport metrics to assess the deviations from the initial representations. The

proposed approach only requires a mild increase in computing for training, thanks

to the fast Sinkhorn algorithm, and improves the performance on visual recognition

tasks.

4.1 Introduction

Fine-tuning pre-trained deep networks is a practical way of transferring the knowledge

learned from a source task to a target task. During this transfer learning process,

some form of knowledge is believed to be extracted by learning from the large-scale

dataset of the source task. This knowledge is then transferred to the target task by

initializing the model with the pre-trained parameters, but the knowledge may easily

be forgotten during fine-tuning, and can harm the performance on the target task.

An inductive bias towards the learned knowledge has been proved to be beneficial to

address this problem, and can be implemented through regularizers. For example, the

parameter regularizers, as presented in Chapter 3, constrain the parameters to remain

in the vicinity of the initial values, in order to preserve the knowledge encoded in these

parameters.

However, regularizing in the parameter space is uncomfortable, since the relation-

ship between parameters and the function implemented by a deep convolutional net-

work is at best obscure. As a result, knowledge is stored in parameters in an inexplica-

82



4.1. INTRODUCTION

ble way, but it concretely incarnates in representations of the input data. Specifically,

we transform the input data through the parametric model and obtain the representa-

tions, based on which we then do the tasks, like classification or logistic regression.

Parameters are important for having good representations, but the representations are

in fact the decisive aspect for the task. So in this chapter, instead of working on

parameter regularizers for avoiding catastrophic forgetting, we propose to exploit reg-

ularizers of penalizing the deviations from the initial representations during transfer

learning through aligning the neuron distribution to the initial one.

We recall the notion of the neuron distribution as mentioned in Section 2.3.4. At

some layer of the neural network, we consider that neurons are samples drawn from

a conditional distribution given the neurons at the previous layer, and the parameters

at the current layer are responsible for generating the samples, i.e. the neurons at this

layer. This conditional distribution is the neuron distribution that we would like to pre-

serve during transfer learning. In our modeling, we consider the set of vectors, where

each vector is the activations of each neuron from a number of data examples. Each

neuron is a sample in our modeling and measured by a number of data examples. This

modeling has also been applied for analyzing the representations of neural networks

[Raghu et al., 2017].

During transfer training, matching directly each neuron to the original value is

often a suboptimal choice. Without any restriction or even with -SP regularizers,

some neurons will swap, that is, permutations or linear transformations of neurons

will happen during transfer learning, as shown in Section 4.6.2. We also note that any

permutation of neurons at any layer does not change the representations, neither affect

the expressive capacity of the network, due to the structure of neural networks. So

the regularization should be able to recognize or rectify these permutations. Thereby,

without punishing these permutations, our proposed representation regularizers focus

on aligning the neuron distribution to the initial one, where the difference between

distributions can be described by the optimal transport theory. In practice, we rely

on the smoothed solvers of the optimal transport problem to assess the deviations of

representations from the initial ones, and those solvers only require a mild increase in

computing for training, thanks to the fast Sinkhorn algorithm.

In this chapter, we still address the inductive transfer learning setting, where the

target data distribution is identical or similar to the source data distribution, and the

target task is different from the source task. We furthermore focus on the case where

a vast amount of data was available for training on the source problem, and some

83



4.2. RELATED WORK

limited amount of labeled data is available for solving the target problem. Under

this setting, we propose a novel regularizer of aligning the representations with the

initial ones during fine-tuning, with respect to neurons in the network. We compare

with two extreme baselines, i.e., (1) identity mapping (without transport), (2) random

transport (with a random matrix as the transport plan). From the comparison, we

show that the proposed regularizer based on the optimal transport is better than the

two baseline approaches. We then laterally compare the representation regularizers

with parameter regularizers, and conclude that representation regularizers outperform

parameter regularizers in most cases, at the cost of a mild increase in training time. We

also propose some analyses and discussions about the transport effect and the neuron

distributions, and share our attempts of other representation regularizers.

We present related work in Section 4.2, then a brief recall of the optimal transport

problem and the solutions. We introduce the proposed regularizer and two baselines

for comparison in Section 4.4. In Section 4.5, we show the experimental results in

favor of our proposed regularizer based on the optimal transport. More analyses and

discussions are provided in Section 4.6. Some other forms of regularizers that are also

based on the optimal transport and yet futile are also noted in Section 4.7. Finally we

conclude this chapter in Section 4.8.

4.2 Related Work

The regularizer we propose in this chapter is related to two parts of work. We first

review some approaches that work on representations for transfer learning. Then we

recall some applications based on the optimal transport theory.

Working on the network representations is not uncommon in transfer learning.

Hinton et al. [2015] transferred the knowledge to a smaller target model by using

a soft label for each training example that is computed by the source model in the

softmax output for the source task. Tzeng et al. [2015] proposed to encourage the

unlabeled target examples to approach the soft labels computed by the source model,

and applied to domain adaptation, where the source and target tasks are the same but

the domains are different, and usually only a few labeled data are available for the

target problem. Similarly, Li and Hoiem [2017] registered the soft responses of target

examples from the source model, and improved the performance in lifelong learning.

Tzeng et al. [2014]; Long et al. [2015b]; Rozantsev et al. [2019] proposed to encourage

the network to learn the domain-invariant representations via reducing the maximum

84



4.3. A REMINDER ON THE OPTIMAL TRANSPORT PROBLEM AND THE
SINKHORN SOLVERS

mean discrepancy between source and target data distributions.

The optimal transport theory has a wide range of applications. In terms of deep

networks, the optimal transport is quite popular in generative models [Arjovsky et al.,

2017; Gulrajani et al., 2017] with the Kantorovich-Rubinstein duality, which searches

an optimal function under 1-Lipschitz constraint for solving the OT problem. The

generative adversarial networks (GANs) model with deep networks the processing of

generating examples. Thus minimizing the distance between distributions is the ob-

jective of GANs, which matches the objective of the OT problem. Instead of reshap-

ing the OT problem to the duality form, Genevay et al. [2018]; Chen et al. [2018c];

Bousquet et al. [2017] and more directly exploit the regularized OT cost for training

GANs. Beyond GANs, Courty et al. [2017] transformed the domain adaptation prob-

lem to an optimal transport one by adding a group-sparsity term on the transport plan,

and solved it with Sinkhorn algorithm. The optimal transport theory is also helpful

in tag prediction [Frogner et al., 2015], comparing documents [Kusner et al., 2015;

Huang et al., 2016], dictionary learning [Rolet et al., 2016] etc.

4.3 A Reminder on the Optimal Transport Problem
and the Sinkhorn Solvers

Let µ and ν be two discrete probability distributions: µ =
∑n

i=1 µiδxi and ν =∑m
i=1 νiδyi , where

∑n
i=1 µi =

∑m
i=1 νi = 1, and δx is the Dirac delta function at

position x. Then with a defined cost function d and the cost matrix M ∈ Rn×m, where

Mij = d(xi,yj), we can give the optimal transport cost in the Kantorovich-relaxed

OT problem:

LM(µ,ν) = min
P∈U(µ,ν)

〈P,M〉F , (4.1)

where 〈 ·, ·〉F is the Frobenius inner product, U(µ,ν) is the set of all possible joint

distributions of µ and ν. The optimal joint distribution that minimizes the transport

cost is the optimal transport plan P0:

P0 = argmin
P∈U(µ,ν)

〈P,M〉F . (4.2)

Linear programming is a solver for the OT problem because of the linear objective

function and linear constraints, however, its computational budget increases in a cubic

rate or more [Pele and Werman, 2009] with the n or m increasing. It is difficult to

make it applicable in practice with a large model or a large dataset.

85



4.4. REPRESENTATION REGULARIZERS

Recently, Cuturi [2013] proposed to search for an approximate solution to the OT

problem by computing

Pλ
0 = argmin

P∈U(µ,ν)

〈P,M〉F −
1

λ
h(P), (4.3)

where λ ∈ (0,+∞) and h(P) = −
∑

i,j pij log pij is the entropy. The solver to the

problem 4.3 is the simple iterative method Sinkhorn-Knopp algorithm. The Sinkhorn

iterations are sometimes numerically unstable and sensible to the choice of λ. Our ex-

periments often encounter that instability, whereas it can be relieved by the proximal

point algorithm with any Bregman divergence, suffering from slightly more computa-

tion cost, as proposed by [Peyré and Cuturi, 2018, Remark 4.9] and Xie et al. [2018].

4.4 Representation Regularizers

In this section, we detail the proposed regularizer on representations. We also compare

the regularizer via the optimal transport theory with two baselines: one without any

transport, and another with a random matrix.

We consider a pre-trained neural network of L + 1 layers, which has L layers be-

fore the final classification/regression layer. Let A
(t)
l ∈ Rdl×n be the representations

after t fine-tuning iterations of the n examples of a given batch provided by the acti-

vations of the dl neurons at layer l, where 1 ≤ l ≤ L. For simplicity, we note A(t)

the representations at Lth layer A
(t)
L . We indicate that A(0) are the representations

computed from the pre-trained model on the (same) target examples.

4.4.1 Representation Regularization via Optimal Transport

We introduce the regularization approach based on the OT theory, by starting to define

the cost matrix for the transport:

M
(t)
ij =

∥∥∥A(t)
i� −A

(0)
j�

∥∥∥
2
, (4.4)

where A
(t)
i� ∈ Rn is the ith row of A(t), gathering the activations of the ith neuron

from n data examples, and ‖·‖p is the p-norm of a vector. Then we search the entropic

solution for the optimal transport problem as defined in Equation 4.3, via Sinkhorn-

Knopp algorithm [Cuturi, 2013] or IPOT algorithm [Xie et al., 2018] to obtain the

optimal transport matrix P(t)

P(t) = argmin
P∈Π(µ,ν)

〈P,M(t)〉F −
1

λ
h(P) . (4.5)

86



4.4. REPRESENTATION REGULARIZERS

The proposed representation regularizer is then given by the approximate optimal

transport cost:

ΩP =
∑
i,j

P
(t)
ij M

(t)
ij = 〈P(t),M(t)〉F . (4.6)

If there is no swap between neurons during learning, ΩP will be equivalent to pe-

nalizing the trace of M
(t)
ij since P(t) will be a scaled identity matrix. In the case of

a permutation of neurons, P(t) is able to indicate the permutation since it searches

for the minimal cost of transporting, and thus ΩP is invariant to the permutation of

neurons.

We have several comments on the proposed representation regularization.

• We would like to emphasize that we consider the neurons as samples from an

underlying neuron distribution. This is different from the data distribution as in

Arjovsky et al. [2017]; Genevay et al. [2018]. The number of neurons dL is thus

the effective number of samples in our case and the batch size n is the length of

each neuron.

• The cost matrix M(t) depends on the mini-batches, so does the optimal transport

plan P(t). Both of them will change along the updates. We can see them as a

noisy estimation of the similarity among the neurons at iteration t, in order to

learn a model that is more robust to the batch variability.

• For numerical stability of gradients through M
(t)
ij , we employ a small constant

ε for M
(t)
ij , i.e. M

(t)
ij = max

(∥∥∥A(t)
i� −A

(0)
j�

∥∥∥
2
, ε
)

, in order to avoid dividing by

zero during the computation of gradients when M
(t)
ij = 0.

• For numerical stability and fast computation, we do not compute the gradients

of ΩP through the Sinkhorn-Knopp iterations. This can be guaranteed by the

envelop theorem and the Theorem 4.1 from Bonnans and Shapiro [1998] in the-

ory, despite the numerical difference in practice. See the discussions in Section

4.6.4.

4.4.2 Two Baselines

Identity Mapping (No Transport) The situation where there is no transport, is

equivalent to the case where P(t) is always a scaled identity matrix, and the regu-

larizer boils down to

ΩI =

dL∑
i=1

∥∥∥A(t)
i� −A

(0)
i�

∥∥∥
2
. (4.7)

87



4.4. REPRESENTATION REGULARIZERS

It is a special case of the OT regularizer ΩP when P(t) = 1
dL

IdL for all t. This reg-

ularizer thus encourages with hard constraints each neuron to output similar activa-

tions, despite the transformations among neurons during fine-tuning. Mathematically,

this regularizer ΩI has two similar forms, Ωsquare =
∑

i,j(A
(t)
ij − A

(0)
ij )2, which re-

places the standard L2 norm in Equation 4.7 by the squared Euclidean distance, and

Ωdata =
∑n

j=1

∥∥∥A(t)
·j −A

(0)
·j

∥∥∥
2
, which encourages the network to yield similar repre-

sentations to the original ones for each data sample. These three regularizers basically

deliver the same performance according to our preliminary experiments, so we only

show the results of ΩI .

Random Transport During our experiments, we have observed that the optimal

transport plan P(t) does not show the convergence until the end of fine-tuning, see

Section 4.6.3. We thus would like to exclude the possibility that the improvement may

benefit from the randomness. Thereby, instead of searching the optimal transport plan

P(t) and resolving the optimal transport problem, we simply penalize the representa-

tions using a random matrix R(t) ∈ RdL×dL such that R
(t)
ij ≥ 0 and

∑
i,j R

(t)
ij = 1, and

the regularizer is

ΩR =
∑
i,j

R
(t)
ij M

(t)
ij = 〈R(t),M(t)〉F . (4.8)

Whereas ΩI considers that the role of each neuron should be kept during fine tun-

ing between the source and target task, ΩR performs random correspondence between

neurons at each step: ΩR can be interpreted as a randomized regularizer for driving

the mean (w.r.t. examples) averaged (w.r.t. neurons) activations close to their origi-

nal values. In other words, whereas ΩI is very stringent regarding neuron-to-neuron

correspondance, ΩR is extremely loose, which makes these two regularizers natural

baselines for comparing with ΩP regularization.

Note that there are algorithms for generating a random doubly stochastic matrix

by an iterative process [Sinkhorn, 1964; Cappellini et al., 2009]. However, for com-

putational reasons, we adopt a simpler scheme here, where we generate the entries

of R(t) from a uniform distribution followed by a single normalization ensuring that

the entries sum up to one. Our matrix R(t) is thus less constrained than a genuine

transport matrix but is a transport matrix in expectation.

88



4.5. EXPERIMENTAL RESULTS

4.5 Experimental Results

In this section, we evaluate the aforementioned regularizers for transfer learning on

five fine-grained datasets of visual recognition, and show the effectiveness of the OT

regularizer ΩP . We use the standard ResNet [He et al., 2016a] as the backbone net-

work because of its wide applicability on transfer learning tasks. Since all the target

tasks we consider are classification task, we start the conventional fine-tuning process

by replacing the last layer with a new one with the size being defined by the number

of classes in the target task.

4.5.1 Datasets

We choose ImageNet [Deng et al., 2009] as the source dataset for its large scale and

balanced distribution of all categories, ensuring that the source task is rich enough. As

for the target datasets, we choose several widely-applied datasets for transfer learning

on aircraft models [Maji et al., 2013], birds [Welinder et al., 2010], cars [Krause et al.,

2013], dogs [Khosla et al., 2011] and foods [Martinel et al., 2018]. Each target dataset

is split into training and test sets following the suggestion of their creators, except for

Stanford Dogs 120, whose original test set is a subset of the training set of ImageNet.

Since ImageNet training set is used as the source dataset, the evaluation in Dogs120

should avoid using the same images, so we use a part of ImageNet validation set,

which contains only those 120 breeds of dogs, for evaluating the performance on

Dogs120.

4.5.2 Experimental Details

We describe our experimental settings. For all details, readers can refer to the source

code, which will be publicly available soon for reproducibility purposes.

Pre-processing and Post-processing The pre-processing of images involves image

resizing and data augmentation. We keep the aspect ratio of images and resize the

images with the shorter edge being 256. We adopt random blur, random mirror and

random crop to 224×224 for data augmentation during training. Regarding testing,

we resize the image in the same ways as training, and then we average the scores of

10 cropped patches (the center patch, the four corner patches, and all their horizontal

reflections) as final decision.

89



4.5. EXPERIMENTAL RESULTS

Stochastic Gradient Descent with Momentum SGD with momentum 0.9 is used

for the optimization solver. We run 9000 iterations and divide the learning rate by

10 after 6000 iterations for all target tasks, except Foods101 for which we run 16000

iterations and divide the learning rate after 8000 and 12000 iterations. The batch size

is 64. As for the learning rates, we use the cross validation for choosing the best

learning among {0.005, 0.01, 0.02, 0.04}.

Regularizers Parameter regularizers follow the same experimental setup as in Chap-

ter 3, and we also evaluate the case where no regularizer is applied. As for the regu-

larizers on representations, we evaluate those described in Section 4.4, without con-

currently applying parameter regularizers. There are 33 three-layer residual units in

ResNet-101, and the penultimate layer we consider is effectively the output of the last

unit. In practice, besides regularizing the representations of the penultimate layer, we

penalize one additional layer in the middle of the network for a better effect of pre-

serving the presentations from the deep network. We apply the regularizer ΩP on the

output of the {9th, 19th, 29th} residual unit separately, compare their performances, and

find that penalizing the activations of the 19th residual unit is the best. The regular-

ization hyper-parameter is selected from a range of five logarithmically spaced values

from 10−4 to 1 by cross validation.

4.5.3 Comparison across Regularizers

Table 4.1 shows the results of fine-tuning with different regularizers on five different

target datasets. We report the average accuracies and their standard deviations on 5

different runs. Since we use the same data and the same starting point, runs differ only

due to the randomness of stochastic gradient descent and to the parameter initialization

of the last layer. Since Foods101 is a relatively large dataset and contains some noises,

regularizers barely vary on it.

The results of Table 4.1 confirm that the L2-SP regularizer is a better choice than

the standard weight decay or the absence of regularization. We also observe that the

identity transport ΩI behaves in general similarly to L2-SP, suggesting that penaliz-

ing directly the departures from the initial representations produces similar effects to

constraining on the parameters here.

For our propose of evaluating regularizers, we can notice that the benefits from

optimal transport are the largest among all regularizers. Compared to the identity

90



4.6. ANALYSES AND DISCUSSIONS

Table 4.1: Average classification precision (in %) of no-regularized, L2, L2-SP, ΩI ,

ΩR and ΩP using ten-crop test. Each experiment is repeated 5 times to obtain the

average and the standard deviation. We also provide the average accuracy of all five

tasks at the last column.

datasets Aircraft100 Birds200 Cars196 Dogs120 Foods101 mean

none 83.95±0.37 80.64±0.30 90.21±0.12 69.53±0.29 86.59±0.06 82.18

ΩL2 83.64±0.40 80.57±0.36 90.51±0.19 69.79±0.29 86.85±0.09 82.27

ΩL2-SP 83.94±0.39 81.10±0.24 90.73±0.12 77.05±0.19 87.15±0.14 83.99

ΩI 83.44±0.45 82.25±0.19 90.40±0.20 77.15±0.17 86.88±0.07 84.02

ΩR 84.68±0.26 81.50±0.30 91.55±0.12 71.28±0.61 86.88±0.04 83.18

ΩP 85.19±0.36 82.37±0.24 91.29±0.13 77.43±0.13 87.06±0.06 84.67

transport, the optimal transport ΩP is better on all five datasets: searching an opti-

mal transport plan helps to boost the performance ; in other words, penalizing the

deviations from initial representations in terms of distributions is beneficial to the per-

formance on the target task. Surprisingly, the random transport ΩR is sometimes quite

effective, even achieving the highest accuracy on Cars196, but not always, e.g. on

Birds200 and Dogs120, note that The random transport ΩR is not always an optimal

choice for transfer learning as it ignores the knowledge from the source task and vi-

olates the objective of transfer learning. On the contrary, the regularizer of optimal

transport ΩP yields stable and high performance on datasets that are either different

from or similar to the source dataset.

4.6 Analyses and Discussions

We provide some analyses and discussions about the proposed regularizer on repre-

sentations based on the optimal transport theory.

4.6.1 Comparison with Transporting Data

The regularizer ΩP does not apply on the data distribution as in other works [Arjovsky

et al., 2017; Genevay et al., 2018; Courty et al., 2017]. We propose to penalize the

distance between the neuron distributions based on their activations for two reasons.

91



4.6. ANALYSES AND DISCUSSIONS

First, at some layer of the deep network, especially at the penultimate layer, the

representations will not change if we permutate the neurons of that layer, and neither

will the capacity of the network. As we can see the possible transport during transfer

learning (shown in Figure 4.1), the regularizers should not punish these permutations.

Transporting on the activations of neurons seems appealing to work towards the goal,

while transporting data seems impossible.

Second, transporting data focuses on the data distribution. However, during trans-

fer learning, accessing to the source data is sometimes difficult and computational.

Neuron distributions on the target data may be changed because of the updates of

parameters, and we need to align the neuron distribution to the old one, in order to

preserve the knowledge from the source task.

In addition, in the situation where the optimal transport is based on data distribu-

tions, a small batch size may lead to an unreliable approximation of optimal transport

metrics, while a large batch size is beneficial to the estimation but increases quasi

quadratically the computation time with the iterative Sinkhorn-Knopp algorithm. The

batch size cannot be easily chosen. As for the regularizer ΩP , batch size is relatively

less important since we estimate the neurons with mini-batches for the learned model

being more robust to the batch variability, and we simply choose the batch size to

be the optimal value as in the standard fine-tuning process. As for the computation

burden, increasing the batch size linearly increases the computation of Euclidean dis-

tance, but not the Sinkhorn-Knopp algorithm.

4.6.2 Possible Transport

The permutations among neurons during transfer learning can be computed thanks to

the optimal transport on the representations of pre- and post-transfer. We start with

parameters being constrained by L2-SP during fine-tuning. Specifically, for each of

the five target datasets, we randomly choose 3 000 examples, then pass them through

the pre-trained model and the fine-tuned model with L2-SP, to obtain their represen-

tations at each residual unit of the network ResNet-101, based on which we compute

the optimal transport plans. Figure 4.1 shows the trace of the transport plans along the

network, noting that the maximum value for the trace is 1.0, where the transport plan

is evenly distributed in each diagonal element, that is, each neuron at that layer dur-

ing transfer learning entirely maintains the original position for the representations.

However, only one of the five target datasets, Dogs120 remains unchanged from the

92



4.6. ANALYSES AND DISCUSSIONS

0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

Sum of Diags

Aircraft100
Birds200
Cars196
Dogs120
Foods101

Figure 4.1: Traces of the optimal transport plans at the output of each ResNet-101 unit.

The transport is computed between representations obtained through the pre-trained

model and those obtained through the fine-tuned model by L2-SP.

beginning to the end of the network. That is because the training data distribution of

Dogs120 is exactly the same as that of ImageNet, and the categories in Dogs120 to

be classified are all in ImageNet. The dataset Birds200 has some images overlapped

with ImageNet, but the task of Birds200 focuses on a more detailed classification

of bird races. Thus for achieving a related but different task, the representations of

Birds200 after transfer learning have slightly varied at end and permutated some. As

for Foods101, Cars196 and Aircraft100, we can notice that the neurons all along the

network have been permutated, more or less, after transfer learning.

We believe that the knowledge from the source task is beneficial for the target task,

and an inductive bias towards the source knowledge is good for the transfer learning

problem. The neurons do not always remain at their initial positions, and hence simply

penalizing the Euclidean distances between them and their initial values is often a

suboptimal choice. We thus propose to exploit the optimal transport for bypassing the

permutations or linear transformations and encouraging the preservation of the source

knowledge.

93



4.6. ANALYSES AND DISCUSSIONS

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000

0

0.2

0.4

0.6

0.8

1

Aircraft100
Birds200
Cars196
Dogs120
Foods101

Figure 4.2: Traces of the optimal transport plans at the penultimate layer during train-

ing. Note that for Foods101, the fine-tuning process stops after 16 000 iterations,

while during the last 7 000 iterations, the trace of the optimal transport plan follows

the tendency as shown in this figure and converges around 0.11.

4.6.3 Effective Transport

Our regularizer scheme is based on the optimal transport, and able to take into account

the permutations among neurons. Figure 4.2 displays the evolution of the optimal

transport plans P(t) during fine-tuning, measured in traces. We can notice that the

computed optimal transport is very different from the identity transport on all target

datasets, except Dogs120. Even on Dogs120, the transport is not exactly the identity

and there are always a few neurons that are transformed during fine-tuning. These

traces demonstrate that the identity is not always the optimal choice for regularizing

the neurons during transfer learning, in order to preserve the representations, and the

choice from the optimal transport may be a better option for addressing this problem.

Comparing each curve in Figure 4.2, we can observe that the optimal transport does

not behave the same on these five target datasets, as these datasets differ from the

source dataset in different degrees, but the optimal transport is able to find the peculiar

transform to each of the five target datasets and obtain better results than the identity

or random transport.

94



4.6. ANALYSES AND DISCUSSIONS

4.6.4 The Envelope Theorem

The gradients of ΩP can be compued in two ways: either we compute the gradients

through the iterations of the Sinkhorn-Knopp algorithm, as proposed by Genevay et al.

[2018]; or we apply the envelop theorem to avoid tracing the gradients through these

iterations, as proposed by Xie et al. [2018]. For numerical stability and fast compu-

tation, we adopt the second option. We restate the two theorems and note that the

conditions of using the two theorems are not satisfied in practice because of the nu-

merical difference between the optimal solution and the computed one.

Theorem 4.1. Envelop theorem. Let f(p,w) and gj(p), j = 1, 2, . . . ,m be real-

valued continuously differentiable functions on Rn+l, where p ∈ Rn are choice vari-

ables, andw ∈ Rl are trainable parameters, and consider the problem of choosing p,

for a given w, so as to:

max
p

f(p,w) s.t. gj(p) ≥ 0, j = 1, 2, . . . ,m and m ≥ 0.

Now let p0 be the solution that maximizes the objective function f subject to the con-

straints and define the value function V (w) ≡ f(p0,w). If V is continuously differ-

entiable, then
dV (w)

dw
=
∂f(p0,w)

∂w

Thus the derivative of the optimal transport regularizer ΩP over w can be sim-

ply evaluated at P(t). However, the imperfection here is that P(t) is computed from

an iterative algorithm, and the difference between the true optimal solution and the

computed one always exists, due to the iteration stopping criteria and the numerical

precision. The approximate gradient problem was addressed by Bach et al. [2004]

with approximate optimality conditions.

The same conclusion can be drawn from the theorem below.

Theorem 4.2. (Bonnans and Shapiro [1998]) Let X be a metric space and U be a

normed vector space. Suppose that for all x ∈ X the function f(x, ·) is differentiable,

that f(x, u) and ∂f(x,u)
∂u

are continuous on X × U and let Φ be a compact subset of

X . Let define the optimal value function as v(u) = infx∈Φ f(x, u). The optimal value

function is directionally differentiable. Furthermore, if for u0 ∈ U , f(·, u0) has a

unique minimizer x0 over Φ then v(u) is differentiable at u0 and dv(u0)
du

= ∂f(x0,u)
∂u

.

95



4.7. OTHER REGULARIZERS TESTED

4.7 Other Regularizers Tested

Before we conclude this chapter, we introduce some regularizers that we have tested

without success.

Normalizing A(t) After checking the cost matrices M, we found that some neurons

have over ten times larger magnitude values than others. So an operation of normal-

ization was tested:

Ai� =
Ai� −mi

σi
, (4.9)

wheremi and σi are the mean and standard deviation of Ai�. This normalization harms

a little classification accuracy compared to ΩP .

Mapping from Source to Target Instead of reducing the distance between distri-

butions, we considered transforming the examples from the source task to the target

task and aligning the target examples with transported source examples:

Ω =
∥∥A(t) −A(0)P(t)

∥∥2

2
. (4.10)

However, it harms quite a lot the performance.

Mapping from Target to Source Similarly, we tried to align the transported target

examples to the source examples:

ΩOT−3 =
∥∥(P(t)A(t) −A(0)

∥∥2

2
, (4.11)

and use the transported neurons P(t)A(t) to do the classification. The problem is the

choice of the transport plan for inference. We tested transport plans among the last

iterations, none of them helped; the identity matrix wass the best among all choices,

but was not as good as ΩP .

Gromov-Wasserstein Instead of aligning the neuron distributions, we try to pre-

serve the structure of neurons from source to target via the Gromov-Wasserstein dis-

tance [Peyré et al., 2016]. The Gromov-Wasserstein problem is also an optimal trans-

port problem, but instead of transporting directly the examples from one domain to

another, it considers the inter-distances within one domain and transports to the inter-

distances in another domain. Intuitively, it compares the structure of one domain with

the structure of another domain. We didn’t get any results from this regularizer be-

cause the computation is too heavy and numerically unstable.

96



4.8. CONCLUSION

Gaussian Distribution within Each Neuron Instead of computing Euclidean dis-

tance between A
(0)
i� and A

(t)
j� , we computed their Wasserstein distance. We supposed

that samples from the set of scalars A
(t)
i� are drawn from a Gaussian distribution. The

order-2 Wasserstein distance, endowed with Euclidean distance, between two Gaus-

sian distributions has closed-form solution:

W 2(X, Y ) = ‖m1 −m2‖2
2 + Tr(Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2) , (4.12)

where X ∼ N (m1,Σ1) and Y ∼ N (m2,Σ2). In this way, ΩP computes the distance

between distributions of neurons in source and target domains of Gaussian distribu-

tions, estimated on examples in the mini-batch. However, one problem is ignored, that

the examples in the set of A
(t)
i� are in order and this order is followed for all neurons,

but W 2 distance does not care about this order.

4.8 Conclusion

In this chapter, we coped with the inductive transfer learning scenarios where a large

source database is available and fine-tuning is applied. We proposed to exploit the

source knowledge to help a better transfer learning through regularizers. Instead of

working on parameters as in Chapter 3, we focused on representations. We proposed

a novel regularizer ΩP of decreasing the distance of distributions on two sets of repre-

sentations, one is computed from the pre-trained model that stores the source knowl-

edge and another is from the training model, in order to more substantially benefit

from the source task. We focused on aligning the neuron distributions rather than data

distributions, since each neuron at some layer in the deep network can be considered as

an independent sample drawn from a conditional distribution given neurons from the

previous layer. Note that neurons may suffer from the permutations and transforma-

tions during transfer learning while these permutations do not harm the capacity of the

neural network, we thus proposed to employ the optimal transport theory to compute

the distance between distributions, in order to not punish the possible transformations

among neurons and preserve the source knowledge.

We conducted experiments on five different target problems, using the convolu-

tional network pre-trained on ImageNet, and compared the proposed regularizer with

parameter regularizers and two other baselines of representation regularizers, the iden-

tity transport and the random transport. From the experimental results, we observed

97



4.8. CONCLUSION

that the proposed regularizer ΩP globally outperforms the other regularizers, with be-

ing the best on three of five datasets, and the second best on the other two. The identity

transport is able to achieve the equal performance to L2-SP, showing that constrain-

ing the representations on the initial values produces similar effects to constraining

on the parameters on these five datasets. Despite that the random transport unexpect-

edly achieved the best on one dataset, it is very different from ΩP as it does not carry

any knowledge from source and the improvement is totally from the randomness. On

the contrary, ΩP searches an optimal transport for preserving the knowledge from

the source. Moreover, the increased computation from searching the optimal trans-

port plans is mild for training, thanks to the fast Sinkhorn algorithm, and nothing for

inference.

98



Chapter 5

Contributions and Perspectives

In this chapter we review the contributions of this thesis, and discuss possible tracks

for future research.

5.1 Contributions

Deep networks demonstrate excellent performance in computer vision, natural lan-

guage processing, speech recognition, machine translation as well as board games.

Training deep networks from scratch requires large computation resources and count-

less data examples, and difficult due to a delicate gradient-based optimization process.

Compared with training from scratch, transfer learning with deep networks relieves

the pain, facilitating the optimization process with a good initialization of parame-

ters, and alleviating the overfitting problem when few labeled data are available on the

target problem, thanks to the accumulated/learned knowledge from solving previous

source problems. However, transfer learning with deep networks may easily forget the

knowledge gained from the source, thus harm the performance on the target problem.

The main idea through this thesis is to preserve the knowledge gained from

the source problem, and implement an inductive bias encoded by regularization ap-

proaches. We address the transfer learning problems and focus on a practical setting

where a large-scale source database is available and fine-tuning is applied, and present

two different regularizers, those on parameters in Chapter 3 and those on extracted

features in Chapter 4.

The parameter regularizers are critical and efficient when (transfer) learning on

small databases. The traditional parameter regularizer is the standard L2, also called

99



5.1. CONTRIBUTIONS

weight decay, for decaying the norm of the parameter vector and driving the parame-

ters towards the origin. This, however, conflicts with the initialization of parameters

for the fine-tuning process, which adopts a pre-trained model from the source problem

as the starting point that is not necessarily close to the origin. We thus proposed a co-

herent parameter regularization approach, where the pre-trained model is both used as

the starting point of the optimization process and as the reference in the penalty that

encodes an explicit inductive bias, so as to help preserve the knowledge embedded

in the initial network during fine-tuning. The parameter regularizers that encourage

similarity with the starting point of the fine-tuning process were denoted with the SP

suffix.

We evaluated -SP regularizers based on the L2, Lasso and Group-Lasso penal-

ties, which can freeze some individual parameters or groups of parameters to the pre-

trained values. We also tested the L2-SP and Group-Lasso-SP variants that use the

Fisher information to measure similarity. They all encode an explicit bias towards the

solution learned on the source task, resulting in a trade-off between the solution to the

target task and the pre-trained parameter that is coherent with the original motivation

for fine-tuning, and they all obtain comparable results on the classification tasks. We

also provided theoretical hints and strong experimental evidence showing that L2-SP

retains the memory of the features learned on the source database. Based on L2-SP,

we conducted experiments with several state-of-the-art transfer learning approaches,

demonstrating that L2-SP is very effective and versatile: not a single comparison is in

favor of the standard L2 regularization. We thus believe that this simple L2-SP scheme

should be considered as the standard baseline in inductive transfer learning, and that

future improvements of transfer learning should rely on this baseline.

Good parameters are important for yielding good representations, but the repre-

sentations are in fact the decisive aspect for the task. Thereby, instead of penalizing

parameters, Chapter 4 focuses on penalizing the features that are computed through

the deep network, i.e. representations. We proposed a novel regularizer for penalizing

the distance of neuron distributions that encode the representations of the target ex-

amples before and during transfer. Representations are invariant to the permutations

of neurons, hence we propose to employ optimal transport to compute the distance

between distributions, in order to not penalize the possible transformations among

neurons and preserve the source knowledge. We compared the regularizer based on

the optimal transport with the identity mapping and the random transport, and parame-

ter regularizers. From the experiments, the proposed regularizer globally outperforms

100



5.2. PERSPECTIVES

the other regularizers.

5.2 Perspectives

In terms of parameter regularizers, there are several avenues of further research:

• L1-SP and GL-SP suffer from the undefined gradients at beginning of, or even

during, fine-tuning. The approximation of these regularizers is not an ideal so-

lution. More efforts can be done with forward-backward splitting algorithm and

proximal gradient descent [Duchi and Singer, 2009]. The sub-gradients w.r.t.

L1-SP and GL-SP can be derived in closed-form (hopefully), and update the pa-

rameters. However, the absence of a momentum term in the stochastic/proximal

gradient descent iterations, downgrades the performance. Thus some research

efforts on the momentum in proximal gradient descent may be needed.

• The Group-Lasso regularizer gives the same scale of gradients for the param-

eters in the same group, which suits well the convolutional kernel parameters

as they work together to extract a feature. Sadly, due to the instability of sub-

gradients, GL-SP is not the best among all -SP regularizers. Considering that

group-lasso matches well the convolutional kernel, it will be interesting to ex-

plore more on the GL-SP regularizer.

• Fisher information matrix (FIM) is a natural metric for computing the informa-

tional difference between probability measures, its diagonal elements indicate

the importance of parameters on the source problem. FIM is obviously the

Hessian of the Kullback-Leibler divergence, or equivalent to the cross-entropy

objective function when computing gradients of parameters, and relates to the

natural gradients, which should be interesting if combined with parameter reg-

ularizers or in other possible ways. In brief, FIM seems a perfect metric on the

parameter regularizer, especially when coupled with L2-SP. We are surprised

by the experimental results of L2-SP and L2-SP-Fisher, which states that FIM

is not much helpful. Maybe the usage of batch normalization affects the esti-

mate of Fisher information, maybe a more advanced coupling is needed. More

research could be based on FIM.

• Batch normalization (BN) complicates the usage of regularizers. For instance,

with BN, L2-SP can be relaxed to the cosine similarity, because the normaliza-

tion will eliminate the scale effect. We have compared the cosine similarity with

101



5.2. PERSPECTIVES

L2-SP, which is not reported in this thesis, and found no difference. Moreover,

the theory about BN is still lacking [Santurkar et al., 2018; Kohler et al., 2019],

and its impact on the regularization could be also interesting.

Possible future directions for representations/neurons are:

• The random transport regularizer is surprisingly good on a few datasets. Ac-

cording to additional experiments (which are not reported in this thesis), the

randomness is not the key to the improvement, because a random transport plan

without randomness at each step R(t) = R(0) can have the same performance.

Furthermore, a scaled all-ones matrix, i.e. P
(t)
ij = ( 1

dL
)2, which is the expec-

tation of the random transport, yields also the same performance. It should be

interesting and also surprising to deepen on the fact that the average transport is

beneficial for the final discrimination task.

• Optimal transport can be used for measuring the distance between data distribu-

tions, and thus for choosing the best source dataset for a specific target dataset.

• Not limited to transfer learning, we would like to evaluate some simple ap-

proaches of exploiting the entanglement of class manifolds in feature space, i.e.

the closeness of pairs of points from the same class and the distance of pairs

of points from different classes. The simple cosine similarity or the soft near-

est neighbor loss [Frosst et al., 2019] can be used to measure the entanglement.

This can be used not only for the objective of training models, but also as an

analytic tool for checking whether the learned representations are good or not

with respect to a learning problem.

• The capacity of deep networks is sometimes large enough to memorize the

whole dataset, even a large one [Zhang et al., 2017]. After training on the source

domain, there are already some neurons that do not contribute to the discrimi-

nation as much as others, and a few of them contribute nothing. Although the

regularizer ΩP searches an optimal transport plan for better transfer learning and

performs quite well, the performance could still be boosted by excluding the un-

activated neurons during the optimal transport, or assigning them new roles [Li

et al., 2019].

• Instead of aligning the distributions between source and target problems for pre-

serving the knowledge, we can also maximize the mutual information between

them during transfer learning, which is intuitively plausible. The estimation of

102



5.2. PERSPECTIVES

the mutual information between data distributions or neuron distributions can

be done by neural networks [Belghazi et al., 2018] through Donsker-Varadhan

representation [Donsker and Varadhan, 1983].

103



5.2. PERSPECTIVES

104



Publications

• Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for

transfer learning with convolutional networks. In International Conference on

Machine Learning (ICML), pages 2830–2839, 2018.

• Xuhong Li, Franck Davoine, and Yves Grandvalet. A simple weight recall for

semantic segmentation: Application to urban scenes. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 1007–1012. IEEE, 2018.

• Xuhong Li, Yves Grandvalet, Franck Davoine. A Baseline Regularization

Scheme for Transfer Learning with Convolutional Neural Networks. (submitted

to the Pattern Recognition journal with feedback for minor revisions)

• Xuhong Li, . Transfer Learning with CNN: Memory Improves Transferring

Skills. (conference paper under review)

105



5.2. PERSPECTIVES

106



Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-

den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

Muhammad Jamal Afridi, Arun Ross, and Erik M Shapiro. On automated source se-

lection for transfer learning in convolutional neural networks. Pattern Recognition,

73:65–75, 2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-

sarial networks. In International Conference on Machine Learning (ICML), pages

214–223, 2017.

Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object category

detection. In IEEE International Conference on Computer Vision (ICCV), pages

2252–2259, 2011.

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning,

conic duality, and the SMO algorithm. In International Conference on Machine

Learning (ICML), page 6. ACM, 2004.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolu-

tional encoder-decoder architecture for image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 39(12):2481–2495, 2017.

107

http://tensorflow.org/


BIBLIOGRAPHY

Antonio Valerio Miceli Barone, Barry Haddow, Ulrich Germann, and Rico Sennrich.

Regularization techniques for fine-tuning in neural machine translation. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 1489–1494, 2017.

Jonathan Baxter. A bayesian/information theoretic model of learning to learn via

multiple task sampling. Machine learning, 28(1):7–39, 1997.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Devon Hjelm, and Aaron Courville. Mutual information neural estimation.

In International Conference on Machine Learning (ICML), pages 530–539, 2018.

J Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturba-

tions: A guided tour. SIAM review, 40(2):228–264, 1998.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discrim-

inative components with random forests. In European Conference on Computer

Vision (ECCV), pages 446–461, 2014.

Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and

Bernhard Schoelkopf. From optimal transport to generative modeling: the vegan

cookbook. arXiv preprint arXiv:1705.07642, 2017.

Valerio Cappellini, Hans-Jürgen Sommers, Wojciech Bruzda, and Karol Życzkowski.

Random bistochastic matrices. Journal of Physics A: Mathematical and Theoreti-

cal, 42(36):365209, 2009.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Ciprian Chelba and Alex Acero. Adaptation of maximum entropy capitalizer: Little

data can help a lot. Computer Speech & Language, 20(4):382–399, 2006.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-

thinking atrous convolution for semantic image segmentation. arXiv preprint

arXiv:1706.05587, 2017.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 40(4):834–848, 2018a.

108



BIBLIOGRAPHY

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 801–818, 2018b.

Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen,

Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, and Lawrence Carin. Adversarial text

generation via feature-mover’s distance. In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 4666–4677, 2018c.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm:

Gradient normalization for adaptive loss balancing in deep multitask networks. In

International Conference on Machine Learning (ICML), pages 793–802, 2018d.

Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, and Ming-Hsuan Yang. SegFlow:

Joint learning for video object segmentation and optical flow. In IEEE International

Conference on Computer Vision (ICCV), pages 686–695. IEEE, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

Cityscapes dataset for semantic urban scene understanding. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3213–3223, 2016.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal trans-

port for domain adaptation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 39(9):1853–1865, 2017.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale

fine-grained categorization and domain-specific transfer learning. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 4109–4118,

2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in Neural Information Processing Systems (NIPS), pages 2292–2300,

2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 248–255, 2009.

109



BIBLIOGRAPHY

Zhengming Ding, Ming Shao, and Yun Fu. Incomplete multisource transfer learn-

ing. IEEE Transactions on Neural Networks and Learning Systems, 29(2):310–323,

2018.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,

and Trevor Darrell. Decaf: A deep convolutional activation feature for generic vi-

sual recognition. In International Conference on Machine Learning (ICML), pages

647–655, 2014.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain

markov process expectations for large time. iv. Communications on Pure and Ap-

plied Mathematics, 36(2):183–212, 1983.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.

FlowNet: Learning optical flow with convolutional networks. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2758–2766, 2015.

John Duchi and Yoram Singer. Efficient online and batch learning using forward

backward splitting. Journal of Machine Learning Research, 10:2899–2934, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12

(Jul):2121–2159, 2011.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. The PASCAL visual object classes (VOC) challenge. International

Journal of Computer Vision, 88(2):303–338, 2010.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 28(4):

594–611, 2006.

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A

Poggio. Learning with a wasserstein loss. In Advances in Neural Information

Processing Systems (NIPS), pages 2053–2061, 2015.

Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and improving

representations with the soft nearest neighbor loss. In International Conference on

Machine Learning (ICML), 2019.

110



BIBLIOGRAPHY

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer

learning through selective joint fine-tuning. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 10–19, 2017.

Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with

sinkhorn divergences. In International Conference on Artificial Intelligence and

Statistics (AISTATS), pages 1608–1617, 2018.

Ross Girshick. Fast R-CNN. In IEEE International Conference on Computer Vision

(ICCV), pages 1440–1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 580–587, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In International Conference on Artificial Intelligence and

Statistics (AISTATS), pages 249–256, 2010.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems (NIPS), pages 2672–2680,

2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive

Computation and Machine Learning. MIT Press, 2017.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset.

Technical report, California Institute of Technology, 2007.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 5767–5777, 2017.

Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra

Malik. Semantic contours from inverse detectors. In IEEE International Conference

on Computer Vision (ICCV), pages 991–998, 2011.

111



BIBLIOGRAPHY

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in

deep convolutional networks for visual recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 37(9):1904–1916, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep

residual networks. In European Conference on Computer Vision (ECCV), pages

630–645. Springer, 2016b.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.

In IEEE International Conference on Computer Vision (ICCV), pages 2980–2988.

IEEE, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural

network. In NIPS Deep Learning and Representation Learning Workshop, 2015.

URL http://arxiv.org/abs/1503.02531.

Matthias Holschneider, Richard Kronland-Martinet, Jean Morlet, and

Ph Tchamitchian. A real-time algorithm for signal analysis with the help of

the wavelet transform. In Wavelets, pages 286–297. Springer, 1990.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 7132–7141,

2018.

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q Weinberger.

Supervised word mover’s distance. In Advances in Neural Information Processing

Systems (NIPS), pages 4862–4870, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4700–4708, 2017.

112

http://arxiv.org/abs/1503.02531


BIBLIOGRAPHY

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and

Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep net-

works. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2462–2470, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Ma-

chine Learning (ICML), pages 448–456, 2015.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for

human action recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 35(1):221–231, 2013.

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in

deep neural networks. In AAAI Conference on Artificial Intelligence, 2018.

Leonid Kantorovich. On the transfer of masses (in russian). Doklady Akademii Nauk,

pages 227–229, 1942.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to

weigh losses for scene geometry and semantics. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 7482–7491, 2018.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel

dataset for fine-grained image categorization: Stanford dogs. In Proc. CVPR Work-

shop on Fine-Grained Visual Categorization (FGVC), 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Learning Representations (ICLR), 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou,

and Klaus Neymeyr. Exponential convergence rates for batch normalization: The

power of length-direction decoupling in non-convex optimization. In International

Conference on Artificial Intelligence and Statistics (ICAIS), pages 806–815, 2019.

113



BIBLIOGRAPHY

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations

for fine-grained categorization. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 554–561, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems (NIPS), pages 1097–1105, 2012.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embed-

dings to document distances. In International Conference on Machine Learning

(ICML), pages 957–966, 2015.

Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition:

A convolutional neural-network approach. IEEE Transactions on Neural Networks,

8(1):98–113, 1997.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten

zip code recognition. Neural computation, 1(4):541–551, 1989.

Erich L Lehmann and George Casella. Theory of point estimation. Springer, 2 edition,

1998.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, and Jun Huan.

Delta: Deep learning transfer using feature map with attention for convolutional

networks. In International Conference on Learning Representations (ICLR), 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 40(12):2935–2947, 2017.

Hank Liao. Speaker adaptation of context dependent deep neural networks. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 7947–7951. IEEE, 2013.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In International

Conference on Learning Representations (ICLR), 2014a.

114



BIBLIOGRAPHY

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-

manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects

in context. In European Conference on Computer Vision (ECCV), pages 740–755,

Zurich, September 2014b.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-

Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 21–37. Springer,

2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3431–3440, 2015a.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable

features with deep adaptation networks. In International Conference on Machine

Learning (ICML), pages 97–105, 2015b.

Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep learning for

stereo matching. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5695–5703, 2016.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi.

Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Niki Martinel, Gian Luca Foresti, and Christian Micheloni. Wide-slice residual net-

works for food recognition. In Winter Conference on Applications of Computer

Vision (WACV), pages 567–576, 2018.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey

Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks for

disparity, optical flow, and scene flow estimation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4040–4048, 2016.

John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Semantic-

fusion: Dense 3d semantic mapping with convolutional neural networks. In IEEE

International Conference on Robotics and automation (ICRA), pages 4628–4635.

IEEE, 2017.

115



BIBLIOGRAPHY

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch

networks for multi-task learning. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3994–4003, 2016.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de

l’Académie Royale des Sciences, pages 666–704, 1781.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee,

Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object de-

tection and semantic segmentation in the wild. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 891–898, 2014.

Yurii E Nesterov. A method for solving the convex programming problem with con-

vergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547,

1983.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over

a large mumber of classes. In Proceedings of the Indian Conference on Computer

Vision, Graphics and Image Processing, Dec 2008.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution net-

work for semantic segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1520–1528, 2015.

Tsubasa Ochiai, Shigeki Matsuda, Xugang Lu, Chiori Hori, and Shigeru Katagiri.

Speaker adaptive training using deep neural networks. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 6349–6353.

IEEE, 2014.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring

mid-level image representations using convolutional neural networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 1717–1724,

2014.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation

via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):

199–210, 2011.

116



BIBLIOGRAPHY

George Papandreou, Iasonas Kokkinos, and Pierre-André Savalle. Modeling local

and global deformations in deep learning: Epitomic convolution, multiple instance

learning, and sliding window detection. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 390–399, 2015.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In Pro-

ceedings of the IEEE International Conference on Computer Vision (ICCV), pages

460–467. IEEE, 2009.

Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks.

In Advances in Neural Information Processing Systems (NIPS), pages 1540–1548,

2015.

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross,

and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodol-

ogy for video object segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 724–732, 2016.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of

kernel and distance matrices. In International Conference on Machine Learning

(ICML), pages 2664–2672, 2016.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. arXiv preprint

arXiv:1803.00567, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-

ing on point sets for 3d classification and segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 652–660, 2017.

Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and Jiaya Jia. GeoNet:

Geometric neural network for joint depth and surface normal estimation. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 283–291,

2018.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 413–420, 2009.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA:

Singular vector canonical correlation analysis for deep learning dynamics and inter-

117



BIBLIOGRAPHY

pretability. In Advances in Neural Information Processing Systems (NIPS), pages

6076–6085, 2017.

Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525,

2017.

Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks. In Advances in Neural

Information Processing Systems (NIPS), pages 91–99, 2015.

Antoine Rolet, Marco Cuturi, and Gabriel Peyré. Fast dictionary learning with a

smoothed wasserstein loss. In International Conference on Artificial Intelligence

and Statistics (AISTATS), pages 630–638, 2016.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015.

Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights for

deep domain adaptation. IEEE Transactions on Pattern Analysis and Machine In-

telligence (TPAMI), 41(4):801–814, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks. arXiv preprint arXiv:1606.04671, 2016.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans

using optimal transport. In International Conference on Learning Representations

(ICLR), 2018.

118



BIBLIOGRAPHY

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY,

55:58–63, 2015.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does

batch normalization help optimization? In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 2483–2493, 2018.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann

LeCun. Overfeat: Integrated recognition, localization and detection using convolu-

tional networks. In International Conference on Learning Representations (ICLR),

2014.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN

features off-the-shelf: an astounding baseline for recognition. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) workshop, pages 806–813,

2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. In International Conference on Learning Representations

(ICLR), 2015.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly

stochastic matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance

of initialization and momentum in deep learning. In International Conference on

Machine Learning (ICML), pages 1139–1147, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

119



BIBLIOGRAPHY

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In AAAI Conference on Artificial Intelligence, 2017.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and Au-

tonomous Systems, 15(1-2):25–46, 1995.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Learning categories from

few examples with multi model knowledge transfer. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 36(5):928–941, 2014.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell.

Deep domain confusion: Maximizing for domain invariance. arXiv preprint

arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep

transfer across domains and tasks. In Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV), pages 4068–4076, 2015.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The

missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeiro-

tis, Pietro Perona, and Serge Belongie. Building a bird recognition app and large

scale dataset with citizen scientists: The fine print in fine-grained dataset collection.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

595–604, 2015.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard,

Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species classifi-

cation and detection dataset. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 8769–8778, 2018.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &

Business Media, 2008.

120



BIBLIOGRAPHY

Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. Deep-

flow: Large displacement optical flow with deep matching. In IEEE International

Conference on Computer Vision (ICCV), pages 1385–1392, 2013.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.

Caltech-UCSD birds 200. Technical Report CNS-TR-2010-001, California Institute

of Technology, 2010.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 3–19, 2018.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jef-

frey Pennington. Dynamical isometry and a mean field theory of CNNs: How to

train 10,000-layer vanilla convolutional neural networks. In International Confer-

ence on Machine Learning (ICML), pages 793–802, 2018.

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. A fast proximal point

method for computing wasserstein distance. arXiv preprint arXiv:1802.04307,

2018.

Jun Yang, Rong Yan, and Alexander G Hauptmann. Adapting SVM classifiers to

data with shifted distributions. In IEEE International Conference on Data Mining

Workshops (ICDMW), pages 69–76, 2007.

Yongxin Yang and Timothy Hospedales. Deep multi-task representation learning: A

tensor factorisation approach. In International Conference on Learning Represen-

tations (ICLR), 2017.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in Neural Information Processing

Systems (NIPS), pages 3320–3328, 2014.

Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via

convolutional neural networks. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4353–4361, 2015.

Jure Zbontar, Yann LeCun, et al. Stereo matching by training a convolutional neural

network to compare image patches. Journal of Machine Learning Research, 17

(1-32):2, 2016.

121



BIBLIOGRAPHY

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-

works. In European Conference on Computer Vision (ECCV), pages 818–833,

2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. In International

Conference on Learning Representations (ICLR), 2017.

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish

Tyagi, and Amit Agrawal. Context encoding for semantic segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 7151–

7160, 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyra-

mid scene parsing network. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2881–2890, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Tor-

ralba. Scene parsing through ADE20K dataset. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 633–641, 2017.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.

Places: A 10 million image database for scene recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 40(6):1452–1464, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.

In International Conference on Learning Representations (ICLR), 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transfer-

able architectures for scalable image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 8697–8710, 2018.

122


	PDT LI Xuhong
	manuscript-thesis-xuhong-li-26092019
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context and Motivation
	Contributions and Thesis Outline
	Terminology

	Background and Related Work
	Convolutional Neural Networks
	Elemental Units in Convolutional Networks
	Optimization Algorithms of Deep Networks
	Recent Advances in Convolutional Neural Network Structures
	Fully Convolutionalizing the Network
	Structure Modifications for Image Segmentation
	Structure Modifications for Other Vision Tasks

	Transfer Learning
	Domain Adaptation
	Multi-Task Learning
	Lifelong Learning (Continual Learning)
	Inductive Transfer Learning with CNN

	Optimal Transport
	Mathematical Definition
	Entropic Solvers
	Optimal Transport Applications in Deep Learning
	Optimal Transport on Neuron Distributions

	Regularization Approaches
	Regularizers Bringing Desirable Properties
	Regularizers Creating Synthetic Training Examples
	Regularizers with Good Randomness
	Regularizers as Inductive Bias for Better Learning


	Parameter Regularizers for Fine-Tuning
	Introduction
	Related Work
	-SP Regularizers
	Experimental Results in Image Classification
	Source and Target Databases
	Training Details
	Comparison across Penalties, Source and Target Databases
	Fine-Tuning from A Similar Source

	Analyses
	Behavior on the Source Task
	Fine-Tuning vs. Freezing the Network
	Layer-Wise Analysis
	Computational Efficiency
	Theoretical Insights

	Other Setups
	Transfer Learning Approaches
	Experimental Setup
	Experimental Results
	Analysis and Discussion

	Conclusion

	Representation Regularizers for Fine-Tuning
	Introduction
	Related Work
	A Reminder on the Optimal Transport Problem and the Sinkhorn Solvers
	Representation Regularizers
	Representation Regularization via Optimal Transport
	Two Baselines

	Experimental Results
	Datasets
	Experimental Details
	Comparison across Regularizers

	Analyses and Discussions
	Comparison with Transporting Data
	Possible Transport
	Effective Transport
	The Envelope Theorem

	Other Regularizers Tested
	Conclusion

	Contributions and Perspectives
	Contributions
	Perspectives

	Publications
	Bibliography


