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Introduction

In this thesis, we probe the azimuthal stability of axisymmetric ows developing at a water/air interface. Two systems serve as `radial sources' : (1) a slender tube lying at a short distance under water propels against the surface a jet that creates a centrifugal radial ow, (2) a hot microsphere sitting in partial wetting across the water/air interface that induces a divergent thermocapillary ow. In the latter case, the local temperature rise gives birth to surface stresses that put the liquid into motion, a phenomenon called the Marangoni eect. In both experimental situations, surface active impurities adsorbed at the water/air interface are repelled by the outward forced ow. When the jet [START_REF] Ashkin | Acceleration and Trapping of Particles by Radiation Pressure[END_REF] or heating [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF] is strong enough, a ower like azimuthal instability of the divergent ow arises in the form of counter rotating vortex pairs periodically distributed all around the source. It is this instability which motivates the present work, with potential applications for the propulsion of articial microswimmers within self induced Marangoni ows.

Historically, this project started with the manipulation of microparticles using an optical levitator [START_REF] Ashkin | Acceleration and Trapping of Particles by Radiation Pressure[END_REF] (Fig. 1) : a small sphere made of a light absorbing material, initially lying on the oor of a glass cuvette (a), is captured by a focused vertical laser beam that exerts on the latter a radiation pressure strong enough to push it against the water/air interface where it locks in partial wetting (b). Contrary to a hot sphere found in the bulk that would self centre on the laser beam axis, a hot sphere located at the surface gets out of the trap and describes quasi circular orbits around the laser beam axis past a threshold heating power P depending on the beam waist radius ω 0 [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF] (Fig. 2). While these quasi circular trajectories proved stable for any given couple (P, ω 0 ) in the explored range, with a fairly well reproducible radius r orb as the laser was repeatedly switched o/on, the orbital velocity v orb was absolutely not : its magnitude varied signicantly from one experiment to another, and it was not rare to see the laser heated particle reverse its direction of rotation many times in the course of a single experiment. A major interest of INTRODUCTION this device lies in its ability to eciently trap microspheres behaving as thermally driven Marangoni surfers [START_REF] Würger | Thermally driven Marangoni surfers[END_REF] that self propel very fast, at typical velocities up to 1 mm/s, with just a few milliwatts of laser power. The thermocapillary ow induced by the laser heated sphere was revealed using tracer particles. It was the rst time we observed the multipolar instability we are interested in, as counter rotating vortex pairs `escorting' the microsphere in its orbital motion (Fig. 3).

Since characterising the multipolar ow patterns generated by a hot free particle seems too challenging, primarily because of the diculty in describing the dynamic coupling between the temperature eld and the particle trajectory, we opted for a simpler approach. We decided to study the convective ow developing in the vicinity of a xed hot spot submitted to increasing heating. The rst tests we conducted in this direction would use the tip of a soldering iron or that of an acupuncture needle as rudimentary heat sources of spherical geometry (Fig. 4). We observed once again the same multipolar instability, with a growing number of convection cells with increasing temperature. 
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an instability, though at the macroscopic scale [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF]. The principle of their experiment is simple : a cylindrical pan of 280 mm in diameter and 40 mm in height is lled with distilled water. A 10% hydroalcoholic solution is supplied to the system through a slender tube at an extremely low mass rate, from 3 ¢ 10 ¡4 to 0.1 g/s (Fig. 5). Aluminium powder is spread onto the surface and time lapse photographs are taken to visualise the streamlines. 1) lled with distilled water through the capillary tube [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF]. Image from [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF].

Remarkably, Pshenichnikov and Yatsenko observed a multipolar instability which is at least qualitatively similar to the one destabilising the axisymmetric ow visible under low heating conditions in our experiments. On Fig. 6 is displayed a photograph of a dipole captured by the authors at low ow rates. They also noted that gradually increasing the ow rate results in a larger number of vortices, as illustrated by the octupole in Fig. 6. Scale bar : 5 cm. Image taken from [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF].

Mizev et al. [START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF] reproduced Pshenichnikov and Yatsenko's experiment and recovered the instability. They went further into the description of this phenomenon considering the eect of an adsorbed layer of insoluble surfactants on the concentration driven Marangoni ow. Two experimental parameters were introduced to study the structure and stability of the interfacial convective ow : the surface density of surfactants and the Marangoni ow intensity. A dimensionless ratio, called the (solutal) Marangoni number, was used to compare the magnitude of capillary forces to viscous dissipation

Ma S 9 = q Dη 2 dγ dC , (1) 
with q the mass ow rate of the ethanol solution, D the diusivity of ethanol in water, η the dynamic viscosity of water and dγ/dC the surface tension γ dependence upon the surface concentration of ethanol C. The Marangoni number, being proportional to the injection rate q, quanties the `strength' of the point source of surface active material.

While varying these parameters Mizev and his coworkers noted, as Pshenichnikov and Yatsenko before them, a growing number of convection cells as the Marangoni number increased. They also observed a decreasing number of vortices as the surface density of surfactants increased. Fig. 7 retraces the evolution of the `multivortex annulus' as the surface density of the impurity (oleic acid) increases and/or the Marangoni ow intensity decreases. As long as the impurity concentration remains moderate and the source ow is pretty intense, there exists a wide central region where the primary axisymmetric ow persists, surrounded by a secondary structure which consists of numerous vortices located at the cuvette periphery (a). The more surface contamination worsens and/or the ow weakens, the more this central region shrinks and even vanishes above some critical values of the governing parameters (b-d). Meanwhile, the vortices grow in size but their total number declines. With further increase in the surfactant concentration, one is left with a dipolar ow which disappears in its turn (e-f). Ultimately, a concentration threshold depending on the Marangoni number is reached beyond which surface motion is totally inhibited (the water/air interface is then in a `concrete like state').

INTRODUCTION

Figure 7: Evolution of the multivortex patterns with an increase in the surface density of impurities (oleic acid) and/or a decreasing ow intensity. Image taken from [START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF].

The authors' goal was to study how surfactant solubility (amphiphilic molecules were used) inuences the surfactant driven ow. Remarkably, they proved the universality of the interfacial velocity eld within the transparent zone and derived scaling laws based upon hydrodynamics and surfactant physicochemistry that capture the ow properties very accurately. Unfortunately, the authors did not study the ring of vortices arising beyond the transparent zone that interests us so much. However, their work is of great interest for the many processes in which surfactant induced transport phenomena play an essential role, such as emulsication and foaming, surface coating, or Marangoni drying.

Figure 8: A side view from above the water air interface of the Marangoni ow sustained by the local and continuous injection of an aqueous solution of surfactant on the surface of ultra pure water. Milky white regions are highly concentrated in oil droplets that intensely scatter light, contrary to dark regions. The stagnant zone beyond the ring of vortices is not shown. Surfactant molar ow rate Q a = 0.52 µmol.s ¡1 . Scale bar : 3 cm. Image taken from [START_REF] Roché | Marangoni Flow of Soluble Amphiphiles[END_REF].

The need for taking into account contamination from adsorbed molecules of surface active agents has become increasingly evident over the past few decades, and it is now well known that minute quantities of a surfactant material suce to drastically alter the interfacial hydrodynamics of a system. This is especially true for water which, owing to its high surface tension comparatively with many common liquids, acts as a receptacle for most surface active impurities inevitably present in the environment, making the contamination of the water/air interface a recurrent issue in interfacial science [START_REF] Kim | Solutal Marangoni ows of miscible liquids drive transport without surface contamination[END_REF][START_REF] Uematsu | Impurity eects at hydrophobic surfaces[END_REF]. For instance, the central role of surfactants in retarding the motion of a bubble rising in a liquid has been evidenced in [START_REF] Levich | Physicochemical Hydrodynamics[END_REF][START_REF] Takagi | Surfactant Eects on Bubble Motion and Bubbly Flows[END_REF]. Surface contamination is also suspected to aect the shape of `coee rings' in numerous experiments where evaporating droplets are present [START_REF] Deegan | Capillary ow as the cause of ring stains from dried liquid drops[END_REF] [START_REF] Kim | Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface Adsorbed Macromolecules[END_REF]. It has long been known that traces of surfactants can have a stabilising eect on convective instabilities [START_REF] Berg | The eect of surface active agents on convection cells induced by surface tension[END_REF].
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Obviously, interfacial contributions become increasingly signicant as the system gets smaller and smaller. As an example, microuidic experiments have brought to light that a tiny amount of surfactants is able to severely undermine the drag reduction potential of superhydrophobic surfaces [START_REF] Peaudecerf | Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces[END_REF]. Impurities can also aect the viscoelastic response of a water/air interface, as evidenced by AFM measurements [START_REF] Manor | Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces[END_REF][START_REF] Maali | Viscoelastic Drag Forces and Crossover from No Slip to Slip Boundary Conditions for Flow near Air Water Interfaces[END_REF]. Other experiments suggest that surface active contaminants can promote the rupture of µm-thick free liquid lms [START_REF] Néel | The spontaneous puncture of thick liquid lms[END_REF]. Interestingly, the inuence of surfactants manifests even down to nanoscales : the stability of surface nanobubbles is attributed to impurities [START_REF] Ducker | Contact Angle and Stability of Interfacial Nanobubbles[END_REF][START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF] and nanomolar concentrations of charged contaminants are invoked to explain anomalous surface tension variations (Jones Ray eect) in electrolyte solutions [START_REF] Uematsu | Charged Surface Active Impurities at Nanomolar Concentration Induce Jones Ray Eect[END_REF]. This non exhaustive list of examples puts the accent on the ubiquity of contaminants and the utmost need to take them into consideration while studying free surface ows. It explains why great importance is attached throughout this thesis to surfactants adsorbed at the water/air interface and to their role in modifying the dynamics of surface ows by providing the water/air interface with elasticity. Our work is structured as follows :

In chapter 1, we briey recall the fundamentals of surface tension, surfactants and Marangoni ows that are central to understanding this study.

In chapter 2, we present an experiment based on a tiny subaquatic fountain propelling a liquid jet towards the water surface. This is the simplest way we have imagined to create a divergent ow at the water/air interface with as little physical ingredients as possible. We shall see that this `mechanical generator' of centrifugal radial ows is a handy tool to study the azimuthal instability we are interested in and identify some of its features. Special focus will be put on the evolution of the toroidal base ow with both the injection speed and the injector to interface distance (the `gap') taken as tunable parameters.

In chapter 3, we present our `hot bead experiment' as an alternative way of producing a divergent ow through heating an absorbing microbead in partial wetting at the surface of water. Although this system may seem more involved at rst sight, due to the thermocapillary nature of the forced ow instead of a pressure driven one as previously, we shall discover that it leads to basically the same interfacial dynamics, yielding multivortex ow patterns as the bead is increasingly heated similar to those observed while strengthening the injection rate in the `water jet experiment'. Again, particular attention will be paid to the fate of the primary torus as the carbon sphere is heated to varying degrees.

Finally, the problem of the thermocapillary convection induced by a xed point source sitting across the water/air interface is addressed in chapter 4. Here, we essentially solve the incompressible Stokes equation within a half space and derive an analytical solution to the nonlinear regime in the presence of thermal advection, before laying the groundwork on which to develop an overall approach of the multipolar instability.

Chapter 1

The physics of interfacial ows In this opening chapter, we remind the reader of some basic notions regarding surface tension, surfactants and Marangoni ows. We rst dene surface tension from both the energy and the mechanical standpoint. We then recall surfactants' main properties and review everyday life situations wherein such chemical species are commonly encountered. To nish, we introduce the Marangoni eect, a ubiquitous phenomenon in interfacial hydrodynamics. The after presentation is inspired from the introduction of S. Le Roux's thesis [START_REF] Marangoni | Thèse de doctorat de Sébastien Le Roux sous la direction de Arnaud Saint Jalmes et la codirection de Isabelle Cantat[END_REF] with a few elements borrowed from the reference book [START_REF] De Gennes | Gouttes, bulles, perles et ondes[END_REF].

Surface tension 1.Energy approach

Consider a liquid/gas interface. Van der Waals intermolecular forces ensure the cohesion of the liquid. A molecule in the bulk undergoes attractive electrostatic interactions from neighbouring molecules located all around, so that this isotropic molecular distribution exerts no net force on it. By contrast, molecules right beneath the free surface experience about half as much attractive forces as molecules found deeper. This disbalance results in an excess energy at the interface that is called surface tension (Fig. 1.1).

Let us evaluate the typical order of magnitude of surface tension. Assume a cohesion energy U per molecule in the bulk. A molecule in the vicinity of the interface has an energy U/2. With a the size of a molecule and a 2 the surface exposed to the gas, the surplus energy per unit area scales as U/2a 2 . For oils, whose cohesion forces are Van der Waals', U k B T 1/40 eV at room temperature T room = 25°C. One nds a surface tension 20 mJ.m ¡2 for most common liquids, with the notable exception of water whose 11 surface tension is higher than this estimate due to strong hydrogen bonds signicantly increasing the cohesion energy. Still larger surface tension values exist for liquid metals, e.g. mercure whose surface tension approaches 500 mJ.m ¡2 (table 1.2). Surface tension decreases with increasing temperature : indeed, the stronger thermal agitation, the weaker intermolecular cohesion forces and thus the smaller surface tension. As a response to the unfavourable extra energy of the interface, a uid tends to minimise its energy by minimising its free surface (Fig. 1.3). In the eld of interfacial thermodynamics, a theory pioneered by American physical chemist J.W. Gibbs [START_REF] Rowlinson | Molecular theory of capillarity[END_REF] (see also [START_REF] Gibbs | On the Equilibrium of Heterogeneous Substances[END_REF]), surface tension is dened as the free energy F increase following an increase of interfacial area by dA, under xed temperature T , volume V and amount of substance n

γ 9 = ∂F ∂A § § § § T, V, n . (1.1)
As a complement to the above energy approach at the molecular level, let us now move to a description of surface tension in terms of forces. 

Mechanical approach

Denition (1.1) tells us that surface tension has the dimensions of an energy per unit area which is equivalent to a force per unit length. Let us mention a classic experiment wherein surface tension driven forces clearly manifest themselves. Consider a glass rod bent in such a way that it forms a rectangular frame open on one side. A second glass rod (length l) which is mobile and can roll on the two parallel `rails' closes the frame on its fourth side (Fig. 1.4). The latter is then dipped into soap solution so as to form a liquid lm perfectly tting its contour. Once the device taken out of the liquid, the rod starts moving spontaneously in the direction indicated by the big arrow. Spectacularly, if we tilt the frame, the rod can even climb back up the slope against gravity but would suddenly fall down if the soap lm is punctured. As a matter of fact, the liquid lamella naturally tends to minimise its energy through minimising its surface exposed to air. To balance the tensile force this liquid membrane exerts on the moving rod, the experimenter must perform a mechanical work which, given a small displacement dx of the rod, writes

δW 9 = Fdx = 2γldx ( γdA) , (1.2) 
with a factor 2 coming from the fact that we have a total of two liquid/air interfaces, one at the top of the soap lm and the other at its bottom. This expression shows us that # γ can be interpreted as a force applying per unit length of the rod. Bear in mind that the latter is an in plane force perpendicular to the rod and directed towards the liquid.

Surface tension driven forces are ubiquitous in nature. They explain for example the ability of certain insects to oat on the water, such as species of genus Gerris commonly called `water striders'. Likewise, it explains why it is possible to make a paperclip oat on the surface of water albeit it is made from steel denser than water (Fig. 1.5). But if washing up liquid is added to the water, both the insects and the paperclip immediately sink ! Explaining such a phenomenon is the purpose of the upcoming part. 

Surfactants

Surfactants (contraction of `Surface Active Agents') are often amphiphilic compounds, i.e. they possess a double anity owing to their specic molecular structure. Generally speaking, a surfactant molecule is composed of a hydrophylic polar head group, either ionic or not, combined with a long hydrophobic (and hence often lipophilic) carbon chain. This ambivalency is what gives surfactants their surface active properties. Sodium Dodecyl Sulfate (SDS) is a perfect example of an amphiphilic molecule having a 12 carbon chain bound to an anionic sulphate head group. Its full chemical formula is CH 3 (CH 2 ) 11 SO 4 Na (Fig. 1.6). SDS is today one of the most widely used surfactants in the industry and even this work is no exception to the rule as we use it in our own experiments. Consequently, a surfactant molecule adsorbed at the water/air interface puts its head under water whereas it keeps its tail in the air (Fig. 1.7). It follows a local drop in the surface tension at the adsorption sites. Indeed, while adsorbing at the water/air interface, surfactant molecules take up space that was initially occupied by water molecules. Since the former have a surface free energy weaker than the latter, the excess of interfacial energy is decreased, therefore resulting in a lower surface tension. In the case of soluble surfactants, molecules are shared between the interface and the bulk such that the system is at equilibrium. A key feature of surfactants in solution is their critical micelle concentration (CMC), i.e. the threshold concentration in surfactants beyond which self organising aggregates called micelles nucleate in the bulk and any additional surface active molecule joins them (Fig. 1.7). A steep decline of the surface tension with surfactant concentration is usually noted slightly before reaching the CMC, followed by a saturating surface tension above the CMC. The CMC of a given surfactant strongly depends on the temperature as micelle formation is only possible above the Krat temperature. It can also depend on pressure, on pH, on the presence of electrolytes in the solution ... Obviously, the CMC depends upon the surfactant's anity for the solvent.

As we have just seen, a uid interface is a place submitted to many stresses. This can be readily understood while compressing a monolayer of insoluble surfactants with the movable barrier of a Langmuir Blodgett trough. The surfactant laden interface is then conveniently described using the surface pressure dened as

Π(Γ ) 9 = γ water ¡ γ(Γ ) , (1.3)
where γ water is the surface tension of pure water (γ water = 72.8 mN/m at T room = 20°C) and γ(Γ ) the surface tension of water while a concentration Γ of insoluble surfactants covers the interface. Sizeable variations of this quantity are measured as the surfactant monolayer is gradually compressed. What occurs during compression is that surfactant molecules constantly self organise in a way that minimises their energy, going through phases reminiscent of the states of matter as the area available to each molecule shrinks (Fig. 1.8): rst a non cohesive and disordered gaseous phase under low compression, followed by a weakly cohesive though still disordered liquid phase, and nally a highly cohesive and ordered solid phase under high compression. The surfactant monolayer even ruptures if surface pressure exceeds a critical value Π c . To nish, note that surfactants support a wealth of industrial applications spanning from detergents (surfactant molecules attach to fatty compounds, thus removing stains when rinsing) to emulsions and foams (surface active agents usually serve as stabilisers in such multi interface systems). Surfactants can be encountered in biology as well. One example is the Infantile Respiratory Distress Syndrome (IRDS) which is a disease in premature infants due to developmental deciency of pulmonary surfactant production (Fig. 1.9). As a matter of fact, patients suering from IRDS sorely lack surfactants to `unglue' their pulmonary alveoli and thereby breathe normally. A common treatment consists in ventilating neonates articially along with injecting through the intubation cannula a dose of pulmonary surfactant extracted from bovine lungs (e.g. Beractant ® ). 

The Marangoni eect

In the above section, we described surfactants from a `static' viewpoint introducing their adsorption properties and the concept of CMC. Yet, as we shall see, surface active agents also play a role in interfacial hydrodynamics through the Marangoni eect [START_REF] Gibbs | On the Equilibrium of Heterogeneous Substances[END_REF] [START_REF] Scriven | The Marangoni Eects[END_REF]. The Marangoni eect denotes the driving of a ow at a uid interface under the action of a surface tension gradient (Fig. 1.10). The latter is caused by temperature or surfactant concentration inhomogeneities. Temperature driven Marangoni ows are referred to as thermocapillary ows and surfactant induced ones as solutocapillary ows.

Regarding solutocapillary ows, we make a distinction between an intrinsic and an extrinsic origin of the ow. In the intrinsic case, the total amount of surfactant molecules remains xed. An internal inhomogeneity of the surfactant concentration spontaneously arises and the Marangoni eect then tends to rehomogenise the system. One such example is what occurs in a soap lm. Capillary suction is responsible for uid migration towards the menisci which leads to lm thinning. As a result, the at central region of the lm is depleted of surfactants and a Marangoni eect then opposes capillary suction and `heals' the soap lm, a phenomenon known as `self cicatrisation' (Fig. 1.11). is out of equilibrium due to unequal surface tension forces γ ¡ /γ on the left and on the right. In response to this disbalance, the uids start owing and the viscous forces resulting from this relative motion eventually bring this portion of the interface back to equilibrium. Image taken from [START_REF] Marangoni | Thèse de doctorat de Sébastien Le Roux sous la direction de Arnaud Saint Jalmes et la codirection de Isabelle Cantat[END_REF]. A daily life example is that of tears of wine [START_REF] Thomson | On certain curious Motions observable at the Surfaces of Wine and other Alcoholic Liquors[END_REF][START_REF] Fournier | Tears of Wine[END_REF]. The latter manifests as a liquid lm lining the inner wall of a wine glass from which regularly spaced droplets detach and drop back into the wine (Fig. 1.12). This phenomenon is explained as follows. When wine is poured into a glass, a meniscus forms on its wettable walls by capillary adhesion. Wine is basically a water ethanol mixture. Ethanol, which acts as a surfactant, is continuously evaporating from the surface at a rate higher than water owing to a higher equilibrium vapour pressure in relation to water. The concentration of ethanol decreases faster in the meniscus than in the bulk of the wine because of the former comparatively larger surface to volume ratio. This nonhomogeneous evaporation of alcohol is what causes a surface driving force to push up the meniscus along the glass sides, from central regions of high alcohol concentration/low surface tension towards peripheral regions of low alcohol concentration/high surface tension. As the meniscus starts forming a thin lm on the surface of the walls, it gets even more depleted of alcohol, which in turn worsens the surface tension disbalance. More wine is driven up the walls until the growing lm gets too heavy, collapses under its own weight and teardrops nally run down. Another manifestation of the Marangoni eect can be observed at home. Fill a metal pie pan with water and sprinkle pepper evenly across the surface. Then soak the tip of a toothpick with washing up liquid. Gently touch the surface of the water right in the middle with the soapy toothpick and see the pepper akes suddenly chased away ! What happens is that surfactant molecules contained in the dish soap lower the surface tension at the deposition site. The surface tension is now higher at the periphery of the pan than at the centre. In reaction to this surface tension gradient, a centrifugal solutocapillary ow arises which drives the outward motion of the pepper akes (Fig. 1.13). By the way, this explains why insects oating on the water suddenly sink if soap is added to the pond, as the surface literally falls down under their feet due to the local drop of surface tension. Note that the Marangoni eect is involved in many industrial processes. For instance, this eect is used for the drying of silicon wafers during the manufacturing of integrated circuits. Droplets shall be thoroughly removed from the surface of the wafer to prevent oxidisation of its components. To do this, alcohol vapour is spread on the wet wafer. The resulting solutocapillary ow helps gravity eliminating water to get a perfectly dry surface. The Marangoni eect is also encountered in elds as varied as ne arts or life sciences. Suminagashi (literally `oating ink'), the 12th century ancestor of European paper marbling, relies on the Marangoni driven spreading of coloured inks (ox gall soap is deposited on water) to draw concentric circle patterns on the surface (Fig. 1.14). Stenus Comma (Fig. 1.15), nicknamed the `water skater rove beetle', leverages the Marangoni eect to achieve motion : its abdomen releases into water a surface active material called stenusin that locally lowers the surface tension and thus allows the rove beetle to quickly glide away from predators, a survival technique known as skimming. 

Chapter 2

The water jet experiment In this chapter, we characterise the divergent surface ow generated by a submerged jet perpendicularly impinging the water/air interface (Fig. 2.1). First of all, we present the materials and methods implemented in the course of our experiments. We then provide detailed observations of the axisymmetric ground ow state and the dipolar mode of the instability, paying particular attention to their morphological traits in function of two control parameters, the injection speed V inj and the gap H between the injector and the interface. Surface velocity measurements are given next. Finally, a few complementary studies are presented before discussing the main experimental ndings. Despite the apparent simplicity of this system, we shall see that the ow becomes more and more complex as the injection speed increases or the gap decreases.
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The water jet experiment 2.1 Materials and methods

The injection unit

Unless otherwise specied, we always use the same experimental vessel of radius R = 17.5 mm. The inner (resp. outer) radius of the injection tube is r ¡ = 0.275 mm (resp. r = 0.4 mm) in all experiments. The injection speed V inj ranges between a few mm.s ¡1 and a few cm.s ¡1 , while the gap H ranges from a few tenths of a mm up to 1 cm.

The injection setups

The `gravity ow' injection setup A tank lled with the working liquid is placed above the experimental cell in which it empties under the sole action of gravity. The injection rate Q inj is controlled by varying the height dierence ∆ between the tank and the cell. The hydraulic circuit is closed by a peristaltic pump (model Minipuls 2 from GILSON) that sends liquid back to the reservoir at an adjustable pumping rate Q pump (Fig. 2.2). This instrumentation results in a `feedback loop' that allows the experimenter keeping about constant the gap H by tuning the device such that |Q inj | |Q pump |.

The `head to tail syringes' injection setup Two syringes are mounted on a syringe pump (model BIOSEB 8000) in a head to tail layout. Once the apparatus activated, the plungers of the syringes move on block in their barrels : one syringe acts as an injector, the other one as an aspirator. This setup ensures almost perfect constancy of the gap, which is more dicult to achieve with the rst setup.

More technical aspects about both setups are provided in Appendix A. 

Preparation of the surfactant solutions

As will become clear in the following, the state of cleanliness of the free surface is crucial. To control the surface state, a given amount of a surfactant, Sodium Dodecyl Sulfate (Fig. 1.6) purchased from Sigma Aldrich, is mixed with water at a bulk concentration C SDS = 1.03 mM or 8.2 ¢ 10 ¡2 mM corresponding to CMC/8 and CMC/100, respectively.

The experimental cell is lled with the same SDS solution as in the reservoir (`gravity ow' setup) or the syringes (`head to tail syringes' setup). Unless otherwise specied, our SDS solutions are concentrated at C SDS = CMC/100. The latter are prepared with ultrapure water (resistivity 18.2 MΩ.cm at 25°C, TOC : 3 ppb) withdrawn from a Millipore Milli-Q A10 Gradient purication system. Before running any experiment, the glassware is carefully rinsed with pure water supplied by a Millipore Elix 10 purication system.

Surface tension measurements

The surface tension γ is measured with the pendant drop method, in which γ is computed tting a numerical solution of the Young Laplace equation to the prole of the drop [START_REF] Berry | Measurement of surface and interfacial tension using pendant drop tensiometry[END_REF].

We carry out pendant drop experiments using a single drop automatic tensiometer purchased from Teclis (measurement error ¨1 mN/m). The drops are enclosed into a small container partially lled with pure water to minimise their evaporation.

For comparison purposes, we measure experimentally the surface tension of pure water at room temperature T room = 20°C and we nd γ water = (72.8 ¨1) mN/m. Surface tension measurements of our SDS solutions yield γ CMC/100 = (72.5 ¨1) mN/m for the lower SDS bulk concentration C SDS = 8.2 ¢10 ¡2 mM, and a surface tension γ CMC/8 = (67 ¨1) mN/m for the higher bulk concentration C SDS = 1.03 mM. The latter values are in line with those of the specialist literature (see for example Fig. 3 in ref. [START_REF] Prosser | Adsorption and surface tension of ionic surfactants at the air water interface : review and evaluation of equilibrium models[END_REF]).

Flow visualisation and measurement techniques

Our visualisation setup is based on laser sheet illumination that goes together with the seeding of tracer particles in the system. Dye injection experiments are also performed as an alternative to the use of tracer particles. Particle Image Velocimetry (PIV) is achieved to obtain velocity eld measurements and the `hydraulic bump' generated by the upward water jet pushing the interface is characterised by shadowgraphy experiments.

Laser sheet illumination

We built up an optical setup to generate laser sheets that cut the sample along selected planes. Laser sheets are produced when laser light fans out through a cylindrical lens (focal length f 20). A spherical lens (f 200) is added to collimate and focus the laser sheet. The latter is a few tens of µm thick in the observation area. A rst horizontal laser sheet, that can be translated vertically, is positioned right beneath the water/air interface (z ¡0.1 mm) when we aim to visualise the surface ow. Note that, strictly speaking, we do not observe the ow at the water/air interface but rather the ow in a subsurface layer that extends down to a few tenths of a millimeter below the surface. Indeed, the deformation of the meniscus strongly impairs any proper observation of the interface with a laser sheet. A second vertical laser sheet provides cross sectional views of the bulk ow. An `azimuthal scan' can be performed rotating it around the injector. In practice, the vertical laser sheet is kept tangent to the injector because, in case of direct illumination, the latter cast shadow would prevent any observation in the half plane located behind it. We use a green laser light source (model Torus 532 from Laser Quantum, λ g = 532 nm). Laser light is sent into a single mode optical bre. A bre optic coupler (Thorlabs) ensures laser light transmission with moderate losses. The output power is P out 10 mW.

Red uorescent polystyrene microbeads (s 5.1 µm), extracted from a 5 mL colloidal suspension purchased from Magsphere (mass concentration 2.5% w/v), serve here as tracer particles. Tracer particles seeded in the sample emit a uorescent light when crossing the laser sheet. Only two droplets of the suspension in V 100 mL of distilled water (volume fraction of tracer particles, φ v 10 ¡5 ) are sucient to ensure proper ow visualisation.

Two cameras are used : one for the top views, the other one for the corresponding side views (Fig. 2.4). The setup is modular as the cameras are interchangeable and both the laser sources and the cameras are assembled on a rigid mounting, forming a block that can rotate around the axis of the cell. A full series of cross sections, preferentially captured along the symmetry axes of the multipolar ow patterns, can be thus obtained during a single experiment. A 2.8 megapixel digital camera, the ORCA-ash2.8 model, and the C5985 B/W chilled CCD camera (both from Hamamatsu) are utilised. For a qualitative exploration of the ows arising with varying gap or injection speed, a low rate of a few frames per second (FPS) is sucient (ows recorded at 4 FPS). Either the ORCA-ash2.8 camera or the C5985 camera are suited for this purpose. Still, only the former camera enables a PIV quantitative treatment which requires recording the ows at higher frame rates (we set 45.4 FPS, ORCA-ash2.8 maximum frame rate in full resolution). Image acquisition is achieved with `HCImage', Hamamatsu's software for the ORCA-ash2.8 camera, and `VideoHamamatsu.vi', a homemade software for the C5985 camera. Image processing is performed with ImageJ (open source software from the American National Institutes of Health). An average frame is generated out of a series of pictures called a stack. The average light intensity (encoded on a greyscale) of pixels located at the same position in each slice of the stack is computed. The resulting image shows streaks of light corresponding to the trajectories of the tracer particles averaged over time. More technical details are given in Appendix C.

Dye injection

In an auxiliary experiment, a uorescent dye (uorescein C 20 H 12 O 5 , molar mass M Fluo = 332 g/mol, density ρ Fluo = 1.602 g/mL) is injected in the sample to visualise the ow streamlines. A volume V Fluo 200 µL of dye is injected with a micropipette in the tank and dilutes rapidly in the carrier liquid. This mixture ows through the supply pipe for a few seconds before spilling out in the experimental cell. Precisions about the way dye injection experiments are performed are provided in Appendix D.1. The correlation of the `coloured cloud' with the underlying hydrodynamic structure is discussed in Appendix D.2.

Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV) is a technique which combines laser sheet illumination with image processing to derive velocity eld measurements as well as related dynamic properties of ows such as their vorticity, divergence and so on. In what follows, I briey recall the basic principles of PIV before introducing our own PIV studies.

The basic principles of PIV

PIV is based on the motion of seeding particles that must be chosen carefully as ow characterisation relies on their ability to closely follow the streamlines. One thus selects particles that are small compared with the ow length scales. The velocity of each tracer particle is then a reliable indicator of the local ow velocity.

Once ow visualisation done using laser sheet illumination, particle images captured by high resolution cameras are computer treated. Image pairs are cross correlated, which amounts to `superimposing' them until the best matching is found in terms of average particle displacement. Data post processing is nally achieved to eliminate and replace spurious vectors, a key step to ensure reliable computations of local derivatives [START_REF] Stamhuis | Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant ows[END_REF] [START_REF] Rael | Particle image velocimetry : a practical guide[END_REF].

Our PIV studies

Our objective is to gure out the orders of magnitude of the velocity eld associated with the dipolar surface ow. The MATLAB code we use, which is inspired from PIVlab, follows the processing steps mentioned above. PIVlab is a time resolved PIV software not limited to the computation of the velocity distribution based on particle image pairs, but equally used to derive, display and export many features of the ow pattern. A user friendly graphical interface (GUI) makes PIV analysis very fast and ecient. Developed by W. Thielicke and E. J. Stamhuis [START_REF] Thielicke | PIVlab : Towards User endly, Aordable and Accurate Digital Particle Image Velocimetry in MATLAB[END_REF], this program benets from regular updates. Running our code, we derive several ow properties such as the velocity magnitude, the spatial evolution of each velocity component, and the ow vorticity. Particular attention is given to the latter which is a key quantity in characterising the vortex pair of the dipole. Our PIV results are presented in sec. 2.3.2.

Shadowgraphy

Shadowgraphy is used to measure the dimensions of the interface deformation provoked by the upward water jet. A collimated light beam uniformly illuminates the surface over an area of about 1 cm in width centred on the injector's axis. The height h and extent ξ of the bulge are inferred from the features of the shadowgram (`shadowgraphy stain') it produces on a screen positioned above the interface. A comprehensive presentation of shadowgraphy applied to the present case can be found in Appendix E.

Shadowgraphy also tells us whether or not the multipolar instability is correlated with the interface deformation. Indeed, any symmetry breaking of the ow that accompanies the azimuthal instability must be reected in some symmetry breaking of the shadowgram. If not, this would be a cogent evidence of the lack of correlation between the interface deformation and the onset of the instability. This question is answered in sec. 2.5.2.

The axisymmetric base state 2.2.1 Description of the axisymmetric state

We describe the axisymmetric state observed at low injection speeds and/or big gaps. Given the cylindrical symmetry of our jet produced by a cylindrical injector in the middle of a cylindrical vessel, we naturally expect an axisymmetric surface ow. The streamlines displayed on Figs 2.5 and 2.6 support the existence of a toroidal base ow (Fig. 2.8). The radial streamlines on Fig. 2.5 diverge up to a certain distance from the source before sinking into the bulk and wrapping around a torus that sits upon the injector (hereafter referred to as the `injection torus'), a cross section of which clearly exhibits a pair of counter rotating vortices (Fig. 2.6). Interestingly, the injection torus is observed in the absence of SDS as well (Fig. 2.7). What is more, we remark that the centrifugal jet ow is surrounded by a centripetal ow. Beneath the injection torus usually arise multivortex ow patterns due to nite size eects (ow connement in the small experimental cell, plus the presence of the drain tube at its bottom), but the study of the whole 3D structure of the ow including these bulk components lies beyond the scope of this work. Here we focus on the hydrodynamic fate of the injection torus as the control parameters are varied. Figs 2.5 and 2.6 give the orders of magnitude of the velocity in various regions of the surface and the bulk ows, respectively. A neat decrease of the velocity as we move away from the source can be noted on Fig. 2.5 : the surface velocity reduces by 100 within a radius of about 1 cm, from V surf 1 mm/s close to the source down to V surf 10 µm/s at the frontier between the centrifugal and the centripetal ows. This observation holds true for the bulk ow, as shown on Fig. 2.6. Two regions appear : the `sphere of inuence' of the jet ow delimited by the injection torus, where the typical velocity is V bulk 1 mm/s (even up to V inj 1 cm/s at the tube outlet) and the far region near the sidewalls with

The water jet experiment a centripetal velocity as small as V bulk 10 µm/s. The magnitudes are here obtained by manually tracking the tracer particles. So the concentric circles drawn on the gure roughly delineate the ow regions of interest. Yet the relative positions of these borderlines slightly vary with the gap or the injection speed. Remarkably, the velocity magnitudes remain unchanged over the whole variation range of the control parameters.

A closer inspection of these pictures reveals that the axial symmetry of the `base ow' is not perfect : the diverging streamlines are never strictly radial but slightly curved along some preferential direction. Such a polarisation of the ow yet occurs at very low injection speeds V inj ¤ 7 mm/s. This phenomenon is described in further detail in sec. 2.2.3 and plausible explanations of its origin are discussed in sec. 2.6. Image from an experiment carried out with the `gravity ow' setup (Fig. 2.2). Experimental parameters : injection speed V inj 2.9 cm/s, gap H 7.38 mm. 

Evolution of the torus size with the control parameters

Let d t denote the torus diameter dened as the centre to centre distance between the two vortices visible on a cross section of the injection torus. Figs 2.9 and 2.10 display the evolution of d t with increasing gap H and at various injection speeds V inj , for a solution without SDS and a solution with a concentration C SDS = CMC/8, respectively. We see that the torus diameter grows linearly with the gap and independently of the injection speed in the absence of SDS. Strikingly, the torus diameter exhibits the same behaviour in the presence of SDS, the only dierence with the previous case lying in the dierent slope : the radius of the torus increases as r t 0.51H without SDS while r t 0.44H with SDS. These experimental facts will be discussed in detail in sec. 2.6.

Flow polarisation

I return to Figs 2.5 and 2.6 pointing out the lack of axisymmetry of the ow. Fig. 2.5 reveals a `binary ow' : a centripetal ow girdles the centrifugal source ow, the two being separated by a ring shaped dark area from which tracer particles are massively depleted. More precisely, the centrifugal ow is swept from left to right by the centripetal ow that drives it along a preferential direction. The `focal spot', the point of convergence of all the surface streamlines, is marked by a cross on both gures. The eect of ow polarisation on the bulk ow is visible on Fig. 2.6. The torus is not perfectly axisymmetric : the centres of its vortices are not at the same altitude, the centre of the clockwise rotating vortex on the right being shifted downwards compared with the counterclockwise vortex on the left. We view this quasi axisymmetric ow, usually observed at big gaps H ¥ 6 mm, as a precursor state on the route towards the multipolar instability.

Symmetry breaking of the axisymmetric base state

I present some observations regarding the instability of the axisymmetric ow, i.e. the symmetry breaking of the base torus resulting in multipolar patterns, especially a dipole.

Transition to a multipolar ow

Now that we have characterised the quasi axisymmetric base state, we aim at identifying the conditions leading to its destabilisation. We look for the transition to a multipolar ow by conducting experiments in which the gap H varies signicantly. After presenting the way we perform such experiments, a series of typical observations is displayed.

Experimental protocol

Either increasing or decreasing gap experiments are achieved. Injection is primed moving up the tank until the upper stop position is reached at an altitude ∆ 55 mm (Fig. 2.2), imposing this way the maximum injection speed attainable in our conguration. It then only remains to tune the pumping rate so that the liquid level in the cell either rises

(Q inj ¡ Q pump ) or lowers (Q pump ¡ Q inj )
at a rate |dH/dt| 0.1 mm/min, thus resulting in a typical variation of the gap |∆H| a few mms over an experiment time ∆t exp 1 h. Such a slowly varying gap ensures the generation of quasi steady ows. Let τ be the characteristic response time of a ow structure, either the time τ receding it needs to fade out after injection is switched o or τ onset the time it takes to regenerate after injection is turned on again. Let ∆H be the typical variation of the gap that separates two ow states, e.g. the quasi axisymmetric and the dipolar ows of Fig. 2.11. From Fig. 2.11, we learn that ∆H a few mms. With ∆t the time for the liquid level to change by ∆H, a necessary condition to go through a sequence of quasi stationary states as the gap is varied writes ∆t 4 τ . This is the case here, as `injection outage' experiments (a surgical clamp compresses the exible pipe strongly enough to block injection) conducted on a dipolar surface ow reveal that τ receding 1 min and τ onset a few s, whereas it takes ∆t 10 min 4 τ for the gap to change by 1 mm.

To compare the ows observed at dierent gaps, running increasing and decreasing gap experiments under similar conditions is crucial. So the tank is placed at its upper stop position in both cases, ensuring comparable injection speeds : increasing gap experiments are conducted at an average injection speed V inj 5.5 cm/s, while a bit stronger injection speed V inj 5.88 cm/s is set in decreasing gap experiments (see Appendix B.2 for details).

Transition from the quasi axisymmetric polarised state to a dipole Fig. 2.11 shows the step by step evolution from the quasi axisymmetric to a dipolar ow state. From H 10.5 mm, the gap is gradually decreased to very small positive values H a few tenths of a mm. At big gaps H ¥ 6 mm [ (a) (b) ], the ow is quasi axisymmetric, while a dipolar ow develops at suciently small gaps H ¤ 3 mm [ (f) (h) ]. For intermediate gap values 3 mm ¤ H ¤ 6 mm [ (c) (e) ], a hybrid state is observed in the sense that the base ow seems to coexist with a dipole at the embryonic stage. The three vortex bulk ow that exists at big gaps H ¥ 6 mm [ (a') (b') ] in the presence of a quasi axisymmetric ow persists at smaller gaps H ¤ 3 mm [ (f') (h') ] after the onset of a dipole (Fig. 2.12). The vortex pair of the torus becomes more symmetric as the torus gets smaller with decreasing gap : the centres of the vortex ring, vertically shifted relative to each other at big gaps (white lines), are located on the same line at smaller gaps H ¤ 4.5 mm (d'). Note that the `robustness' of the ow patterns has been tested through series of increasing/decreasing gap experiments. On this occasion, similar ow structures have been observed in both cases for comparable gaps. 

Thorough characterisation of the dipolar state

This part provides a qualitative as well as quantitative (PIV) description of the dipole. Let me precise that, even though high multipolar order ows are not forbidden in principle, we observe almost exclusively dipolar ows. Quadrupolar, hexapolar... ow patterns are expected at stronger injection rates, with gap dependent threshold values separating the dierent regimes. Actually, quadrupolar and even hexapolar ows are observed on rare occasions but they are uncontrolled short lifetime ows.

Description of the dipolar state Method M1 Collecting streamlines maps

The vertical laser sheet is aligned with the `dipole mirror symmetry plane' (DMSP) and along a perpendicular plane (PP) (see sec. 2.1.5 for technical details). Fig. 2.13 shows characteristic views of the bulk ow in these two planes.

On the top view (TV), we see a dipole with a peculiar arc shaped pattern joining one vortex centre to the other (rounded yellow rectangle).

The side view captured in the DMSP (SV DMSP) reveals a strong distortion of the streamlines on the right. The side position of the arc shaped surface pattern is marked by the rounded yellow rectangle. Locally, the streamlines `crash against' the rear part of the original torus before passing under it.

The bulk ow looks more symmetric when seen from the front (SV PP). Clusters of points instead of bright lines are found on the torus sides (rounded blue rectangles), since the streamlines are there perpendicular to the observation plane.

More information is acquired thanks to an azimuthal scanning : the `imaging block' (horizontal and vertical laser sheets plus the cameras) captures intermediate views while rotated around the injector. The dipole mirror symmetry plane (DMSP chosen as the reference plane O°), the plane perpendicular to it (90°), and intermediate planes at 45°a nd 60°from the DMSP are selected (Fig. 2.14). Starting from the DMSP, recognisable at rst glance with its strongly asymmetric ow pattern, the `laminar' streamlines seem to shorten (cyan stick) as we turn around the injector, suggesting the existence of a stretched structure in the direction of the ow. The toroidal symmetric structure appearing in a limited area of the back view reinforces this vision. We shall also pay attention to the whirlpools situated on both sides of the vortex ring (rounded blue rectangles).

It is instructive to cut the ow structure into slices by lifting down the horizontal laser sheet (Fig. 2.15). Let us examine the series of top views captured deeper and deeper in the bulk, focusing our attention on the orientation of the streamlines near the injector.

As long as the laser sheet is located a few tenths of a mm beneath the surface, the ow close to the injection point appears centrifugal (TV1).

If we now put our light blade deeper, at about half the gap, we see like a point cloud emerging in the middle (cyan circle on TV2). The bright spots forming this cloud glitter on the real time recordings. Here again, the streamlines ow perpendicularly through the recording plane and are hence seen from the top as a set of points.

As we bring the cut plane even closer to the tip of the injector, the streamlines suddenly reverse, becoming centripetal (red arrows on (TV3) (TV5)).

These three ow congurations, along with the side views, conrm the existence of a torus sitting upon the injection tube. Let us add a few words concerning the fate of the dipole vortex pair as the laser sheet is lifted down. The following trends can be reported : [START_REF] Ashkin | Acceleration and Trapping of Particles by Radiation Pressure[END_REF] the distance between the vortex centres grows, (2) these centres drift downstream and (3) the whirlpools become fainter and fainter. Given the information collected so far, we assume the existence of some elongated structure parallel to the dipole symmetry axis and anked by a whirlpool on each side. Method M2 Unveiling the 3D dipolar structure with uorescent dye Fig. 2.16 is an overview of the coloured cloud correlated to a dipolar surface ow. The colour pictures displayed on this plate are high resolution photographs oering an accurate view of the cloud shape. Although these images are only projections of the cloud volume, their transparent appearance sheds light on some morphological traits :

On the top view (TV), we see part of a `double air chamber' at the rear of the injector : the `inner air chamber' stretches forward in the form of two `coloured ribbons' symmetrically located on either side of the dipole axis, while the `outer air chamber' extends in the form of an envelope folded on itself that gives birth to a pair of counter rotating whirlpools whose ends come back to the injector.

On the side view (SV) captured in the symmetry plane of the dipole, we recover a ribbon with a multi layered inner structure. What is new and not evidenced by the top view (TV) is the large angle at which this `arm' sinks, separating from a thin dye layer conned to the surface that spreads forward as the colouring is ejected. Whirlpools passing under the `air chamber' are visible on the back view (BV).

Comparing streamlines views with dye distribution maps

We conclude this presentation by comparing streamlines views with dye distribution maps (Fig. 2.17). These diptych like views point out the structural matching that exists between the repartition of the streamlines and that, closely correlated, of the coloured cloud. Of particular interest is the overlay displayed on the side view, clearly showing that the width of the `dye ribbon' perfectly ts the locally sharp angled streamlines. Intriguingly, whilst the streamlines densely cover the entire viewing eld, the coloured cloud is rather localised within a subregion.

Computer reconstruction of the coloured cloud volume

A 3D reconstruction of the coloured cloud volume is achieved (for technical details, see Appendix D.1). Figs 2.18 2.19 provide a detailed view of the multi layered internal structure of the cloud. Following the cross sections of the `arms' throughout the back (or front) `peeling' (matter behind the cut plane is removed while the part of the structure located ahead is preserved) of the volume is instructive : one remarks that the `arms' gradually sink and spread apart as we move downstream. 

PIV based characterisation of the dipolar state

Now that the dipolar ow has been qualitatively described, we supplement our analysis with quantitative PIV data. A standard PIV procedure is implemented whose key steps are briey reminded in sec. 2.1.5. We aim at guring out the order of magnitude of the velocity in the dierent regions of the dipolar ow, together with the evolution of both velocity components v and v u along the dipole `eigenaxes'. Particular attention is also paid to vorticity which is essential in characterising the vortex pair of the dipole. More advanced aspects are next addressed, seeking an order parameter that would capture the `torus to dipole' symmetry breaking.

Unless otherwise specied, PIV results are derived from experiments performed in the `head to tail syringes' conguration (Fig. 2.3). We recall that the syringe pump we use sustains injection speeds V inj in the range 0.7 ¡ 14 cm/s. Small H 0.25 mm, moderate H 1.25 mm as well as big H 2.5 mm gaps are considered. The ORCA-ash2.8 camera being the only one suited for PIV, which requires high frame rates (45 images/s), it serves as the top camera. The calibration is 52.08 µm/pix in this new layout of the cameras.

Characteristic maps of the dipolar ow

Let us start with a few maps typical of the dipolar ow observed for H = 1.25 mm and V inj = 3.5 cm/s. For guidance, we provide an average frame showing the streamlines of the dipole (Fig. 2.20). Figs 2.21 2.23 give the associated velocity and vorticity maps. Fig. 2.21 reveals a strong velocity gradient extending over about 1 cm along the dipole symmetry axis (rainbow like region near the injection site). Note the velocity decline in the core of the vortices (deep blue) well captured by our PIV processing. Fig. 2. [START_REF] Uematsu | Charged Surface Active Impurities at Nanomolar Concentration Induce Jones Ray Eect[END_REF] shows typical elds of the velocity components v (a) and v u (b), the counterparts of v x and v y dened in the dipole reference frame. Their variation (a') along the symmetry axis of the dipole (black dashed line on g. (a)) and (b') the line perpendicular to it (blue dashed line on g. (b)) is displayed. One remarks that the prole (a') is double peaked : the most intense of the two peaks arises from the highest (positive) contributions to v in the dark red region located in front of the injection site, while the secondary peak is likely attributable to local acceleration, some streamlines winding around the rear part of the injection torus. is plotted rather than vorticity itself. This way we handle only positive values, whereas vorticity is an algebraic quantity. The vector eld is the one of the velocity map shown above, save that here all vectors have the same length normalised to unity so as to make the dipolar pattern more visible. The centres of the white circles coincide with the maxima of vorticity.

Order parameter of the `torus to dipole' transition

We are seeking an order parameter, i.e. some quantity switching from zero to a nite value above a critical threshold of the control parameters. Such a sharp change, which recalls the physics of phase transitions, would be here interpreted as the signature of symmetry breaking from the axisymmetric to the dipolar state.

A hydrodynamic counterpart to electrostatic dipolar moments, here below denoted D, is examined as a possible order parameter. Prior to computing D for a whole series of experiments run at various H and V inj , we dene a `total hydrodynamic charge' Q as

Q 9 = 1 S ¤ (I) dx dy ω(x, y) , (2.1) 
with S = £ (I) dx dy the surface of the viewing area (I) the vorticity eld ω(x, y) of the dipole is integrated over ( (I) is the illuminated region of the interface). The vorticity being dened as the curl of the ow velocity vector ω 9 = ∇ v, Q has the dimension of the inverse of a time. In principle, one expects Q to be zero : the positive denite vorticity of the clockwise rotating vortex shall exactly balance the negative vorticity of the anticlockwise rotating vortex, in a way analogous to the charges of an electrostatic dipole having the same absolute values but opposite signs. In practice, however, Q is not exactly zero but very small 6.70 ¢ 10 ¡5 s ¡1 ¤ |Q| ¤ 1.68 ¢ 10 ¡2 s ¡1 , as only a portion of the dipole is located inside the viewing area (I) and the dipole is not perfectly symmetric.

The total dipolar moment D is then computed using the relation

D 2 = D 2 x D 2
y where

D x 9 = 1 S ¤ (I) dx dy px ¡ x 0 q ω(x, y) , D y 9 = 1 S ¤ (I)
dx dy py ¡ y 0 q ω(x, y) .

(2.2)

D
x and D y have the dimension of a velocity. The couple (x 0 , y 0 ) denotes the coordinates of C, the midpoint of the segment of length L joining the centres O 1 and O 2 of the vortex pair. Note that

D x = x D x ¡ x 0 Q and D y = x D y ¡ y 0 Q .
We check numerically that the quantities tx 0 Q, y 0 Qu are negligible, being one to two orders of magnitude smaller than the `uncentered' dipolar moments t x D x , x D y u in the explored range of the control parameters (H,V inj ). Therefore, all PIV computations are indierently achieved in the natural frame (XCY ) that complies with the orientation of the dipole (Fig. 2.24). The computations of L and D necessitate a vortex locating tool implemented via a dedicated piece of code working out the coordinates (x 1 , y 1 ) (resp. (x 2 , y 2 )) of O 1 (resp. O 2 ) and deducing those of point C. To locate the centre of a vortex, an option is to evaluate the cross product of the velocity map with a radial `test eld' everywhere in (I). Curiously, the linear evolution of V max = f (V inj ) does not depend much upon the gap H, at least over the investigated range. The graph of the dipole maximum vorticity ω max in function of V inj exhibits the same (up to some numerical error in computing derivatives) threshold speed V inj (Fig. 2.25 (b)). Let me precise that to get V max and ω max for each couple of control parameters (H,V inj ), I just read the maximum values on the colour scales associated with the PIV maps of the velocity norm and the vorticity. Let us trace the dipolar order parameter D in function of the injection speed V inj , for various gaps H (Fig. 2.26). Contrary to Fig. 2.25, no threshold speed is identiable on this last plot and the dispersion of the points is important. Actually, the closest point to the origin P axi (H = 1.25 mm, V inj = 0.7 cm/s) (magenta circle) is the only one corresponding to the axisymmetric ow, any other point corresponding to the dipole. We shall see in sec. 2.4 that a threshold separating the axisymmetric ow regime from the dipolar state exists in the interval between the rst two points of the graph. Moreover, the point P axi should lie on the x axis, the axisymmetric state having a zero surface velocity (sec. 2.4 again). The reason why the interfacial velocity of the axisymmetric ow appears here very small but nite is probably due to the fact that our PIV measurements are based on a horizontal laser sheet. Indeed, the latter is never exactly at the interface but intercepts a thin subsurface layer wherein tracer particles move at an extremely low but nite speed. To conclude, both the maximum velocity V max and vorticity ω max seem to evidence that the dipolar instability arises at an injection speed threshold V inj 1.3 cm/s. Still, none of the points shown in Fig. 2.25 corresponds to the axisymmetric base state. To be completely rigorous, this analysis would ask for many points like P axi (Fig. 2.26). Unfortunately, even the smallest rate available on the syringe pump control unit, Q inj = 100 µL/min, is too strong to unfailingly generate an axisymmetric ow, a dipole appearing most often yet at such a low injection rate (in the explored range of gap values).

Interface unlocking

We present an experiment which uncovers some correlation between the interfacial ow morphology and the dynamics of surface/subsurface tracer particles. We will see that the interface is in a `locked' or in a `passing' state depending on the nature of the surface ow.

Experiments are realised with the `head to tail syringes' setup (sec. 2.1.2). We rst select a strong injection rate Q inj = 800 µL/min. The experiment is then repeated at lower injection rates Q inj = 700, 600... µL/min until a minimum value Q inj = 100 µL/min. A horizontal cut view is recorded each time to visualise the surface ow structure, along with a vertical (quasi diametrical) cross section on which surface and subsurface tracer particles are tracked with the aim of estimating their velocity. Tracking is achieved using ImageJ's `Manual Tracking' tool. Trajectories of interfacial tracer particles (z = 0) are reconstructed, as well as those of subsurface particles situated a few tenths of a mm below the surface. The depth of a subsurface tracer particle is evaluated based on its mirror image through the interface. In particular, tracer particles found exactly at the interface, in z = 0, do not produce mirror images. Despite a possible measurement error in the order of dz 30 µm (the size of a pixel), this method proves ecient as it is in fact easy to see if a tracer particle is at rest or driven by the ow together with other tracer particles located deeper. The bulk ow is captured by the ORCA-ash camera at a rate of 10 frames/s. The typical duration of `horizontal' and `vertical' recordings is ∆t 30 s. b. Q b = 300 µL/min : surface tracer particles start moving a bit, as evidenced by the red balls `jumping' out of the x axis. Here the red balls are all associated with positive velocities, contrary to the blue squares which alternate between negative velocities in the region x x inj to the left of the injector and positive ones in the region x ¡ x inj on the right. Surface tracer particles thus move collectively from the left to the right, whereas subsurface tracer particles are still entrained by the toroidal ow. In the region x x inj , the surface tracer particles move against the centrifugal ow imposed by the torus, which probably results in important shear stresses at a short distance beneath the surface.

c. Q c = 400 µL/min : the interfacial ow is fully dipolar. The polarisation stream, directed along the symmetry axis of the dipole from the left to the right, drives all the surface as well as the subsurface tracer particles. Both groups move at the same speed as suggested by the nearly coinciding red balls and blue squares. Positive velocities of subsurface tracer particles are measured now in the region x x inj , meaning that the inuence of the toroidal ow has completely faded out.

By the way, the fact that the velocities at the interface and those measured right below are very similar is good news for the PIV study of sec. 2.3.2 based on horizontal cut views, since in this case possible mistakes in segregating surface tracer particles from subsurface ones turn out to have little impact on velocity computations.

In conclusion, the interface switches from a `locked' state at low rates to a `passing' state at stronger injection rates. The transition, which takes place at Q tr 300 µL/min Ñ V tr 2 cm/s, is accompanied by the emergence of a surface dipole out of a toroidal ow. This phenomenon, which is of utmost importance, will be further discussed in sec. 2.6. Remarkably, dipolar ows of modest size compared with the radius of the wide cell spring up at injection speeds and gaps akin to those set in small cell experiments. Fig. 2.29 shows an example of a dipole arising in the large cell whose vortices are separated by a distance L 1 cm 3 s l . This observation suggests that ow connement is not the cause of the instability. Said dierently, the instability would develop even in an innite system, which is by the way a valuable information to simplify theoretical models. This, however, does not mean that containment exerts no inuence on the ow patterns. Clearly, the peripheral streamlines of the dipole are pressed against the cell wall beyond a certain injection speed, resulting in reshaped vortices. Fig. 2.30 illustrates this phenomenon : the aspect of the growing vortices changes as the jet ow strengthens, from a rounded shape at moderate injection speeds (a) to a more oblong shape at higher speeds (b). Fig. 2.31 compares the evolution of the intervortex separation L with the two control parameters (V inj , H) in the large (a) and in the small (b) cells. Clearly, in the large cell L increases with the gap whatever the injection speed. For a given gap, L tends to grow with the injection speed. In the small cell, L also increases with the gap H (though this becomes less obvious at small gaps H 0.1 mm). For a xed gap, however, the way L evolves now depends upon how large is the gap : L increases at small gaps H 0.1 mm, decreases at big gaps H a few mms (save what is likely an outlier) and, at intermediate gaps H 1 mm, reaches a maximum before declining past a high enough injection speed.

V a = 1.4 cm/s ; (b) Q b = 300 µL/min Ñ V b = 2.1 cm/s ; (c) Q c = 400 µL/min Ñ V c = 2.
The rst behaviour may seem counterintuitive. For a given injection speed, we expect the `eective pressure' exerted by the jet on the interface to be less and less experienced by the latter as the gap increases, resulting in weaker interfacial constraints and hence in a smaller dipolar pattern... Anyhow, this observation stresses the leading role the gap plays in setting the typical size of the ow patterns. The non monotonic behaviour at H 1 mm, as well as the decline of L at still bigger gaps, manifesting themselves in the small cell but not in the large one, are probably due to ow connement : the dipole would expand as the dilatational source ow is intensied but is prevented by the sidewalls from doing it, and at a certain point the `interaction' of the dipole with the walls becomes so strong that it shrinks if the injection speed or the gap is further increased.

Comparing the intervortex separations in the large and small cells for similar values of the control parameters, we nd that L ranges between 3 and 10 mm in both cases. For instance, with a gap H 0.25 mm and an injection speed V inj 9.1 cm/s, one measures L 5.38 mm in the small cell while in the large cell L 5.47 mm for H 0.35 mm and V inj 8.8 cm/s. This similarity seems to indicate that ow connement does not considerably aect the size of the dipole. 

The inuence of interface deformation over the instability

Our shadowgraphy results are presented below. We remind the reader that shadowgraphy serves us to measure the size of the `hydraulic bump' generated at the interface by the vertical water jet. This technique is also a tool for investigating the inuence of surface deformation over the instability : does it induce it or not ? This section is structured around these two axes. A comprehensive presentation of shadowgraphy applied to the present case is provided in Appendix E. Note that the experiments presented in this part are all conducted at a SDS concentration C SDS = CMC/8. Thus we see that the `bump' is extremely at, being tens to hundreds times more elongated than elevated : its typical height does not exceed a few tens of microns and its extent is comparable to (half) the capillary length l c = γ/ρg 2.7 mm of pure water at room temperature, the characteristic length that sets the scope of capillary forces shaping the interface at small scales. The fact that ξ 4 h validates a posteriori our assumption of a at interface |f I (a)| 3 1 , d a r¡A, As (see Appendix E.3). Although we cannot fathom that so tiny a deformation could inuence the multipolar ows, no cogent evidence has been brought so far to corroborate this point. We remedy this issue now.

Measuring the size of the bump like interface distortion

Probing a possible correlation between the surface deformation and the instability

To probe a possible correlation between the interfacial bump and the instability, the recording plane is placed at a critical distance D = 2.5 cm above the surface, covering half the cell and letting the other half clear for direct ow visualisation. This way, both the streamlines and the shadowgram are simultaneously captured. The uncovered part of the cell allows a glimpse of a dipolar ow pattern and the associated shadowgram is imaged on the screen covering the right half of the cell (Fig. 2.33). One remarks that the symmetry breaking of the ow leaves the shadowgram axisymmetric, which suggests that the surface deformation induced by the jet and the multipolar instability of the toroidal base ow are uncorrelated, the former not being at the origin of the latter. Average frame from a stack of 10 images (4 FPS Ñ ∆t = 2.5 s). `Glowing strip' in the middle probably due to stray light diused by the edge of the screen. Patch of light on the left due to the incident laser beam passing through the paper screen. V inj 2.7 cm/s, H 0 ( C SDS = CMC/8).

Flow reversibility

Another question that is worth raising concerns the reversibility of the ows. Although the littleness of our water jet device brings us closer to the eld of microuidics, inertial eects cannot be automatically discarded. Are we really working at low Reynolds numbers Re 3 1 (denition given in sec. 2.6 below) ? Two ways of investigating this point are considered experimentally :

With the `gravity ow' setup (Fig. 2.2) A minute volume of dye (V fluo 200 µL) is incorporated into the working liquid. At the very moment the colouring spurts out in the cell the reservoir is quickly lifted down from a height ∆, typically set at ∆ = 55 mm for which V inj 5.5 cm/s, to its symmetric position ¡∆ relative to the reference level of the liquid in the cell. The injector hence turns into an aspirator (the cell empties into the reservoir), the velocity switching from V inj = V to V asp = ¡V near the tube outlet. Does the tube swallow back the colouring ?

With the syringe pump (Fig. 2.3) One readily reverses the translational motion of the paired syringes on the syringe pump control unit, therefore turning the injector into a drain tube whereas the drain tube at the bottom of the cell becomes an injector. Are aspiration ows the `time reversed version' of injection ows ? Response elements about these questions are given in what follows.

Swallowing back the cloud

Several experiments of the rst type are run. On Fig. 2.34, the series of images (A) (G) displays side views of the perturbed coloured cloud in a vertical plane tangent to the injection tube. The side views (A') (F') focus on the jet evolution, the laser cut plane intercepting this time the injector. As the tank is driven down, there comes a moment when the structure gets destabilised by wavelets (B) (D) (rounded magenta rectangle) and breaks apart soon after (E) (G) : the front of the dye surface layer is `thrown against' the walls and, with some delay, part of the thin jet of dye is propelled forward (yellow ellipse), likely entrained by the inertia of the preexisting dipolar ow.

It might be that this disruptive wave train consists of `varicose waves' responsible for the breakup of the jet (see the rippling of the jet on picture (C')). Yet, we cannot exclude that the latter phenomenon is simply caused by parasitic mechanical vibrations, despite all the care taken in eliminating them while the reservoir moves on its rack and pinion. The ¡ sign denotes an anticlockwise rotation of the vortex above the injector (cyan tube). Arrows showing the ow direction. Gap H reported below each series of frames. V inj 5.5 cm/s ( C SDS = CMC/100).

Aspiration experiments

Aspiration experiments are achieved in the small cell (r 35 mm) at various gaps H 0.25, 1.25, 2.5... mm and injection speeds V inj 1.75, 3.5, 5.25, 7... cm/s. Note that above a certain injection speed, e.g. V inj = 7 cm/s at a gap H = 2.5 mm (even less at smaller gaps), the drain tube turned into an injector expulses so intense a jet towards the surface that the aspiration ow is strongly perturbed, preventing us from studying it.

Contrary to injection experiments, aspiration ows exhibit no multipolar instability, whatever the values of the control parameters. No counter rotating vortices are visible but a quasi axisymmetric ow with slightly curved centripetal streamlines (Fig. 2

.35).

The inertial drive of the dislocating coloured structure and the disparity between aspiration and injection ows suggest that the Reynolds numbers at play are not so small : Re 1 (resp. 10) for injection speeds of a few cm/s and the injector's radius r inj = 0.275 mm as the length scale (resp. the gap H 1 mm). In other words, inertial eects from the non linear term V.∇V of the Navier Stokes equation are not completely negligible. They are involved in the irreversibility of the ows. Still, we shall see in the next chapter that substantial grounds exist to believe that this instability is not inertial (in a model, inertial eects would be then set as `higher order corrective terms'). 

Discussion

In this chapter, we presented a simple experiment that consists in a small subaquatic fountain generating a centrifugal radial ow at the water surface (Fig. 2.1).

The 3D morphology of the base ow observed at low injection speeds (and/or big gaps) is that of a polarised torus, namely a toroidal ow whose streamlines are oriented along a preferential direction (Figs 2.5 2.6). Factors that can induce this `polarisation' (= departure from pure axisymmetry) of the base ow are at least of two types : (1) a parasitic temperature gradient between the cell boundaries; (2) geometric aws.

(1) We call `residual convection' the low thermocapillary ow, caused by a temperature gap ∆T between the cell sidewalls, that persists when injection is o. The Marangoni boundary condition, see Eq. (2.7), provides the after relation between orders of magnitude

∆T = η γ T U , (2.3) 
with U the velocity scale of the ow. The constant γ T 9

= |dγ/dΘ| 10 ¡4 N. m ¡1 . K ¡1 [START_REF] Birikh | Liquid Interfacial Systems[END_REF] quanties the variation of surface tension with the temperature. = d/h 1 represents the ratio of the cell diameter d = 3.5 cm to the height h 3 cm of liquid it contains. The dynamic viscosity of water is η 10 ¡3 Pa.s. Given the velocities measured in the toroidal base ow (Figs 2.5 and 2.6), ranging from U axi 10 µm/s in the outer area of the vessel up to U axi 1 mm/s within the torus, Eq. (2.3) yields a temperature gap ∆T 10 ¡4 ¡ 10 ¡2 K. Such modest temperature gradients are commonplace in a room where no special care is taken to control the temperature. Parasitic convection is thus systematically present in our experiments and may inuence the base ow as both are of comparable strength.

(2) Geometric aws may also impact the polarisation of the base ow. For instance, a careful inspection of the injector outlet reveals a rough surface (Fig. 2.36). This may alter surface ows, especially at very small gaps H 0.1 mm for which the size of the injection nozzle (outer diameter s 0.8 mm) is strongly `sensed' by the ow. At larger scales comparable to the cell size (inner diameter s 35 mm), the lack of verticality δθ of the injector biases the ow direction : turning the injector to reorient its tilt, we observe that the dipole symmetry axis is driven by the enforced rotation in most cases, albeit with some angular delay. At intermediate scales, the ow undergoes the combined eect of all these factors without the possibility of saying that one dominates the others. We have evidenced a linear growth of the torus diameter d t with the gap H at dierent injection speeds V inj , both in the absence of SDS and for a SDS solution at C SDS = CMC/8 (Figs 2.9 2.10). Note that this linear behaviour has been observed over a large interval of gap values 1 H 11 mm. However, to be fully conrmed, this nding would deserve further experiments over a wider range of injection speeds (here 2.31 ¤ V inj ¤ 3.74 cm/s).

The fact that the torus diameter increases linearly with the gap in the absence of SDS can be understood assuming an innitely thin injection tube in an innitely wide vessel. The gap H is then the only relevant length scale and the size of the injection torus is thus directly proportional to it. Yet a deviation from this linear behaviour is expected at very small gaps H 0.1 mm comparable with the injector's radius r inj = 0.275 mm, but also at very big gaps H R (R is the radius of the vessel, R = 17.5 mm), a scale at which the liquid enclosed in the cell experiences the presence of the boundaries (ow connement). Therefore, the size of the ow patterns is properly measured in terms of the sole gap H provided the latter is neither too small nor too large. Unfortunately, for gaps H 0.1 mm, the torus is so small that it is not clearly recognisable on the pictures and hence its diameter cannot be correctly measured. Regarding very big gaps H R, we simply did not examine such gap values.

It is instructive to introduce the Reynolds number Re. The latter, which compares the magnitudes of inertial and viscous forces, is dened as the following dimensionless ratio

Re 9 = U a ν , (2.4) 
with a some characteristic length scale of the system, U a typical velocity scale, and

ν 9
= η/ρ the water kinematic viscosity (ν 10 ¡6 m 2 /s under standard temperature and pressure, T room 20°C and P atm 1bar). In the limit r inj 3 r 3 R, the jet is regarded as spurting from a point source in a semi innite liquid. As mentioned above, the gap H is then the only relevant length scale and the velocity can be expressed under the simple form v(r, z) = V inj Φ(r/H, z/H). Since v = 0 at a vortex centre, it ensues that Φ = 0 regardless of V inj , and this explains why the slopes of Figs 2.9 2.10 are independent of the injection speed (at least in the explored range). Still, this factorisation makes sense only in the purely viscous regime Re = 0. Indeed, if inertial eects were to inuence the torus size, additional length scales would appear in the system. Taking U as the injection speed V inj , and thus identifying a with the radius r inj of the injector (r inj = 0.275 mm), the Reynolds numbers associated with the experiments of Figs 2.9 2.10 lie between Re min 6.4 and Re max 10.3. These non negligible Reynolds numbers suggest taking inertial eects into account, however, the linear scaling of Figs 2.9 2.10 informs us that this is irrelevant as far as the torus size is concerned. Besides, it is not obvious why the torus diameter keeps behaving the same way with the control parameters in the presence of SDS, as the latter uneven distribution at the interface should introduce supplementary length scales.

Most interestingly, surface velocity measurements revealed a `locked' interface in the quasi axisymmetric ow regime (Fig. 2.28 (a)).

The divergent ow at the interface proved very sensitive to azimuthal perturbations : when the jet is strong enough, the base torus turns into multipolar ows taking the form of counter rotating vortex pairs periodically distributed all around the source [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF][START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF]. Note that a dipole emerges at the surface in our practical conditions (Fig. 2.13). The onset of the instability seems to be marked by a threshold V inj 1.3 cm/s, as suggested by the abrupt behaviour of `order parameters' such as the maximum surface velocity (Fig. 2.25). Amazingly, the value of V inj does not seem to depend on the gap (at least in the explored range 0.2 mm ¤ H ¤ 2.5 mm). Velocity measurements on the dipole beyond V inj have shown that the interface is now in a `passing state' characterised by surface and subsurface tracer particles moving at the same speed (Fig. 2.28 (c)).

The transition of the interface, from a `locked state' in the quasi axisymmetric base ow to a `passing state' in the presence of a dipolar ow, can be considered the main nding of our water jet experiments. Such a phenomenon can be readily understood if we assume a surfactant laden interface. This assumption is all the more natural as it is well known that water, having a high surface tension compared with most common liquids (γ water = 72.8 mN/m at 20°C), gets easily contaminated by surfactant molecules from the ambient air, and presumably from an imperfect cleaning of the glassware [START_REF] Pockels | On the Relative Contamination of the Water Surface by Equal Quantities of Dierent Substances[END_REF].

But are the unfreezing of the interface and the onset of the multipolar instability two sides of the same coin characterised by a unique threshold speed ? This remains an open question. Finding a way to visualise in real time the distribution of surfactant molecules adsorbed at the water/air interface may be convenient to address this point.

The concentration Γ of insoluble surfactants obeys the advection diusion equation

∂ t Γ ∇ ¤ V Γ ¨= D∇ 2 Γ , (2.5)
where the projection of a vector a onto the plane of the interface (z = 0) is dened as a 9 = p11 ¡ e z e z q . a . D is the mass diusion constant. The equilibrium concentration (i.e. in the absence of ow) is denoted Γ 0 . While putting Eq. (2.5) in dimensionless form, a parameter quantifying the relative contribution of surfactant advection and diusion naturally appears. The latter, called the (solutal) Péclet number Pe, is dened as

Pe 9 = U a D . (2.6) 
a and U are the same length and velocity scales as those appearing in the denition (2.4) of the Reynolds number. Experimentally, the latter are identied with the radius r inj of the injector and the injection speed V inj . The diusion constant ranging from D 10 ¡9 m 2 . s ¡1 for smaller surfactant molecules, down to D 10 ¡12 m 2 . s ¡1 for bigger ones, very high experimental Péclet numbers Pe 10 3 ¡ 10 6 (r inj = 0.275 mm and V inj 1 cm/s) are expected. Surfactant transport along the interface is thus advection dominated.

While adsorbing at the water surface, surfactant molecules transform it into an `elastic membrane' undergoing Marangoni stresses. In general, the surface tension γ decreases with a local increase in the surfactant concentration. The interfacial ow velocity and the surfactant concentration elds are coupled through the Marangoni boundary condition

η ∂v r ∂z § § § § z= 0 = ∂γ ∂r , (2.7) 
where z = 0 marks the position of the interface assumed perfectly at (sec. 2.5.2). This relation states that an inhomogeneity of surface tension induces a shear stress along the interface and hence a ow in the aqueous phase [START_REF] Scriven | The Marangoni Eects[END_REF]. Interfacial stresses are conveniently discussed dening the surface pressure Π(Γ ) 9

= γ 0 ¡ γ(Γ ), with γ 0 = γ(Γ = 0) the surface tension of the pristine interface. At low surface density, γ(Γ ) = k B T Γ (k B : Boltzmann constant, T : absolute temperature) according to the 2D ideal gas equation of state.

The accumulation of surfactants near the edges of the vessel causes the interface to stien. The challenge is then to quantify the competition between the enforced shear stress and the resisting elastic interface. Following [START_REF] Elfring | Surface viscosity and Marangoni stresses at surfactant laden interfaces[END_REF], we dene the surface compressibility β as the dimensionless ratio of viscous over surface tension gradient forces

β 9 = ηV inj E 0 , (2.8) 
where E 0 denotes the reference Gibbs elasticity at equilibrium.

Restricting the analysis to the stationary regime, and since surfactant transport is here advection dominated Pe 4 1, Eq. (2.5) integrated once yields

v r (r, 0)Γ (r) = 0 . (2.9)
This equation is reminiscent of the stagnant cap condition rst considered by Levich [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] in the context of the buoyant motion of a bubble rising in a liquid [START_REF] Palaparthi | Theory and experiments on the stagnant cap regime in the motion of spherical surfactant laden bubbles[END_REF][START_REF] Ybert | Ascending air bubbles in protein solutions[END_REF] : due to the external ow on the rising bubble's sides, surfactants are driven down to its trailing pole where they accumulate and rigidify the bottom part of the bubble's surface, resulting in a `stagnant cap' that drastically slows down the ascending motion of the bubble.

Two distinct ow regimes ensue from the solving of Eq. (2.9) : (a) the compressibility β is small enough so that the surfactant concentration remains nite everywhere; (b) either the velocity or the concentration vanishes in some region of the interface (see [START_REF] Bickel | Hydrodynamic response of a surfactant laden interface to a radial ow[END_REF]).

In situation (a), Eq. (2.9) comes down to v r (r, 0) = 0 , dr , (2.10) meaning that, at low β, the interface appears as sti as a wall so that it remains perfectly still despite the ongoing bulk ow.

In case (b), we are naturally led to assume the existence of a critical radius r d which marks the border between a surfactant depleted inner region (r r d ) and a rigid outer region (r ¡ r d ), i.e.

Γ (r) = 0 , 0 ¤ r r d , (2.11a) v r (r, 0) = 0 , r ¡ r d . (2.11b)
This theoretical prediction of two interfacial regimes well separated by a crossover value β cross = 1 echoes our observations. At low injection speeds V inj V inj , the interface behaves as a rigid wall imposing a no slip boundary condition (= `locked' state). But as soon as V inj ¡ V inj , the shear stresses induced by the centrifugal forced ow overcome the elastic resistance of the contaminated interface. The no slip constraint is suddenly released, resulting in a jump of the surface velocity from zero to a nite value (= `passing' interface). It is this `unlocked' axisymmetric ow state that we believe is unstable. We think that the edge of the surfactant free region does not remain circular while subject to azimuthal disturbances. The unjamming of the interface probably takes place along a preferential direction, which results in the formation of a pair of counter rotating vortices (keep in mind that the mirror symmetry axis of the dipole does not necessarily coincide with the polarisation axis of the toroidal primary ow, see for example Fig. 2.11 (g)).

Assuming that the surfactant elastic layer behaves as a 2D ideal gas in the dilute regime Γ 3 Γ V (Γ V is the concentration at saturation dened through the nite area occupied by individual surfactant molecules), for which E 0 = k B T Γ 0 , the condition β cross = 1 leads to the following expression of the crossover surfactant concentration Γ cross

Γ cross = ηV inj k B T . (2.12) 
Considering an injection speed V inj 1 cm/s yields Γ cross 2400 molecules/µm 2 , a minute quantity comparable with that invoked by Hu and Larson to account for the suppression of Marangoni ows in evaporating droplets [START_REF] Hu | Analysis of the Eects of Marangoni Stresses on the Microow in an Evaporating Sessile Droplet[END_REF]. Note that such a small surface coverage induces a drop in the surface tension that lies far below the measurement accuracy of standard tensiometers (¨1 mN/m in our case). Given a maximum packing concentration in the order of 10 6 molecules/µm 2 [47], we are in the limit Γ cross 3 Γ V which justies why emphasis is put on the dilute regime. Even traces of surfactants are therefore sucient for a transition from no slip to slip conditions to occur at the interface [START_REF] Peaudecerf | Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces[END_REF][START_REF] Maali | Viscoelastic Drag Forces and Crossover from No Slip to Slip Boundary Conditions for Flow near Air Water Interfaces[END_REF][START_REF] Ybert | Ascending air bubbles in protein solutions[END_REF][START_REF] Arangalage | Dual Marangoni eects and detection of traces of surfactants[END_REF].

A prospect for upcoming works is to gure out theoretically the relationship between the occupancy rate of the interface by surface active molecules, the size of the injection torus, and the instability threshold which directly depends upon the surface elasticity. In this manner, the concentration of surfactant molecules adsorbed at the interface can be indirectly deduced from the torus dimensions, making our water jet setup an ultra sensitive hydrodynamic probe of traces of surfactants at a water/air interface [START_REF] Bickel | Hydrodynamic response of a surfactant laden interface to a radial ow[END_REF][START_REF] Arangalage | Dual Marangoni eects and detection of traces of surfactants[END_REF].

There exist in the literature systems falling within the same class as ours, namely systems involving pressure driven divergent ows that repel some elastic layer formed by surfactant molecules. For instance, Couder et al. [START_REF] Couder | On the hydrodynamics of soap lms[END_REF] observed a quadrupolar ow on the surface of a soap lm blown by a vertical air jet. The resemblance with our own water jet experiment is obvious. The authors do not develop any theory of this phenomenon but make valuable comments on the competition between the jet induced centrifugal ow and the Marangoni counterow arising from the accumulation of surfactant molecules in the outer region of the lm. We think that this competition between conicting ows exists in our system and that it leads to the multipolar instability we observe. Another example is the work by Liger Belair et al. [START_REF] Liger-Belair | Evidence for ascending bubble driven ow patterns in champagne glasses, and their impact on gaseous CO 2 and ethanol release under standard tasting conditions (review)[END_REF][START_REF] Beaumont | Unveiling self organized two dimensional (2D) convective cells in champagne glasses[END_REF] on ascending bubble driven ow patterns in champagne glasses. Strikingly, self organising 2D convective cells were evidenced at the surface of champagne as an ascending column of bubbly liquid was impinging the surface. The liquid column is created by a laser etched ring at the bottom of the champagne ute which acts as a bubble generator thanks to its many nucleation sites.

To nish, we should mention a slightly dierent class of `divergent ow generators' that enforce Marangoni ows. One can cite for example the works by M. Roché et al. [START_REF] Roché | Marangoni Flow of Soluble Amphiphiles[END_REF][START_REF] Le Roux | Soluble surfactant spreading : How the amphiphilicity sets the Marangoni hydrodynamics[END_REF]. The authors would continuously deposit a small amount of a hydrosoluble surfactant at the water/air interface through a thin needle in contact with the surface, unlike us who inject `pure water' with a tube lying at a short distance underwater. They would observe many vortices forming a corona far from the injection site (Mizev et al. [START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF] reported similar observations while reproducing Pshenichnikov and Yatsenko's experiment [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF]). We may wonder to what extent such vortical patterns are connected with the multipolar ows we observe, as in our case a `pure water jet' sweeps away some preexisting surfactant layer, whereas the surfactant enriched jet is itself the source of a Marangoni ow.

In the next chapter, we present what we call the `hot bead experiment' which is an alternative way of creating a divergent interfacial ow by heating an absorbing microbead in partial wetting at a liquid surface. Unlike in the case of the water jet experiment for which a centrifugal forced ow is generated pushing `mechanically' on the liquid surface, we now consider a thermally driven Marangoni ow. We shall see that this a priori more complex system produces similar multivortex ow patterns as the bead is increasingly heated, much like what is observed while increasing injection in the water jet experiment.

Chapter 3

The hot bead experiment A motionless hot bead sits in partial wetting across the water (W )/air interface (A) (Fig. 3.1). The temperature gradient arising in the vicinity of this heat source induces a local decline of the surface tension γ. The ensuing surface tension inhomogeneities are accompanied by the emergence of shear stresses along the interface that put the uid into motion : an outward thermocapillary ow appears that tends to rub out the surface tension disbalance. In other words, this hot spot serves as a xed source of divergent ows at the water/air interface, just as the water jet presented in chapter 2. Our main tunable parameter is the heating power P ranging from a few milliwatts up to a few tens of milliwatts. The heating power P plays here a role analogous to the one the injection speed V inj plays in the water jet experiment. The size of our bead slightly varies from one experiment to another around the typical diameter s b 295 µm.

In this chapter, I rst present our fully instrumented and tunable hot bead device. Then I review some of the ow patterns arising as the bead is heated to varying degrees. Finally, I discuss the experimental observations.

Materials and methods

Experimental setup Preparation of the samples

Our cell is a quartz cuvette purchased from Thuet France (Fig. 3.2). Opting for quartz is justied by its high visible light transmission along with its resistance to sulfochromic acid H 2 SO 4 ¡ (K 2 /Na 2 )Cr 2 O 7 , a very corrosive substance used to strip the impurities that settle on the cell walls. As we shall see, the uttermost responsiveness of the water surface to surfactant contamination strongly impacts the ow patterns. This is why great care is paid in cleaning the cuvette. After a few hours bathing in sulfochromic acid, the cuvette is thoroughly rinsed with pure water supplied by a Millipore Elix 10 purication system. The cuvette is then lled with ultrapure water (resistivity 18.2 MΩ.cm at 25°C, TOC : 3 ppb) from a Millipore Milli-Q A10 Gradient purication system. To slow down the adsorption of air contaminants on the water surface, a plate drilled with a 12 mm circular hole is placed a few millimeters above the interface (Fig. Hot sphere and heating system A carbon bead (200 ¤ s b ¤ 300 µm) is stuck onto the end of an optic bre stripped up to the cladding (see Appendix H for a presentation of the bead collage setup). Carbon is prized for its capacity to absorb the incident laser light while resisting photodegradation. We use a single mode bre (F-SA-C Newport) with a 488¡633 nm operating range. This bre guides a 532 nm green laser beam generated by a Quantum Opus source towards the surface of the bead so as to heat it up. A bre optic coupler (Thorlabs) ensures ecient light transmission. The maximum power delivered at the bre inlet is P max in 650 mW.

Above this value, there is a risk of damaging either the bre or the sphere. Because of transmission losses within the bre, we roughly estimate that its output eciency amounts to only 20% of the input power P in . The latter value is obtained through measuring with a power meter (model SP404 from Spectra Physics equipped with an attenuator having a calibration range [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF][START_REF] Liger-Belair | Evidence for ascending bubble driven ow patterns in champagne glasses, and their impact on gaseous CO 2 and ethanol release under standard tasting conditions (review)[END_REF] mW and ahead of which we add a light diuser) the power of the divergent laser beam fanning out from the optic bre at an angle of approximately 30°. Hence, the bead absorbs at most a power P max = P max in 130 mW. However, we cannot infer from the sole estimation of the bre eciency what is the power eectively heating the bead due to parasitic reections of the incident light.

Bead water contact

In order to minimise the number of factors inuencing the system, we endeavour to keep the interface as plane as possible : the cuvette is prelled to the brim and liquid is then removed up to the moment squares on a grid paper seen through the liquid surface appear undistorted. The smooth pinning of the meniscus on the cuvette edges results in a at interface at large distances from the source. Next, to orient the bre axis perpendicularly to the interface while passing through the lid, the bre is bent using a sewing thread tied around its coating and stretched (adjustable tension) between the latter xture point and the bre mounting plate (Fig. 3.3). The bead is displaced with a manual xyz translation stage till being partially immersed in water. Contrary to a free particle that would self position across the surface in such a way that the interface remains at in its vicinity, the tension the bre exerts upon the bead leads to the formation of a meniscus that wraps the sphere (Fig. 3.4). Here again, to restrict the number of physical parameters, we shall approach a perfectly planar interface which necessitates getting rid of such a steep meniscus. A ring encrusted with light emitting diodes (see Fig. 3.6 below), positioned under the cuvette, appears on the computer screen as a luminous circle whose radius is related to the deformation state of the meniscus (Fig. 3.5). In fact, due to intense evaporation at the contact line, the meniscus gets hollower and the circle hence grows as time goes by. As a practical consequence, the experimenter must repeatedly make sure that the meniscus remains as at as possible by reducing the radius of the circle until the light spots are all brought together behind the bead. Note that any accidental detachment of the bead from the surface would be signaled by the complete absence of this luminous circle.

Aligning the aiming line of the side camera with the ow symmetry axes is essential to construe the bulk ow structure properly. Therefore, a spinning mechanism must be implemented. However, only due to lack of space, the solution adopted was not as simple as grouping together in a single block the ensemble {vertical laser sheet side camera} like in the water jet experiment. Finally, the idea was to rotate the optic bre with the bead stuck onto it, this unit resting on a circular guide rail (angular excursion ∆θ exc 90 H ), while keeping xed the position of the side camera (see Fig. 

Flow visualisation

The small volume V 1.2 mL of solution lling the cuvette is seeded with exactly the same tracer particles as in the water jet experiment (uorescent polystyrene microbeads, s 5.1 µm). A couple of laser sheets powered by a 514 nm green laser source (Genesis CX 514 2000 STM from Coherent, maximum output power : 2W) ensures ow visualisation. A beamsplitter (Melles Griot) divides the incident laser beam into two secondary beams passing through combinations of cylindrical lenses. Our setup is thus made of two `optical channels' generating a horizontal and a vertical laser sheet (thickness e 50 µm), exactly as in the water jet experiment (Fig. 3.7).

The lighting power is directly tuned on the supply system and the relative intensity of each laser beam is adjusted with a half wave plate put right before the beamsplitter. To ensure an optimal operating eciency of the ensemble {λ/2 retarder + beamsplitter}, a quarter wave plate is added so as to restore a linear polarisation of the incident light, the latter being in general elliptically polarised at the bre outlet (Photonetics Finnova single mode optic bre). A plane parallel plate ensures an up and down translation of the horizontal laser sheet while a circular plane mirror redirects the vertical laser sheet towards the sample. Adjusting the tilt of the mirror relative to the cuvette, one achieves an approximate translation of the vertical laser sheet. In order to incrementally displace the laser sheets, both the plane parallel plate and the mirror are mounted on Thorlabs CR1/M motorised continuous rotation stages actuated by TDC001 T Cube DC servo motor controllers (software `APT User'). Note that for the horizontal laser sheet to travel a vertical distance ∆z = 3.5 mm within one minute, the rotation stage should rotate at a constant angular speed v rot 0.4 H /s (∆θ/∆z = 7 H /mm). In the same spirit, the mirror should rotate at v rot 0.062 H /s as a rotation by an angle of ∆θ 3.5 H is needed to travel in one minute the ∆x = 12 mm circular aperture of the lid (∆θ/∆x = 0.29 H /mm).

The horizontal laser sheet allows the experimenter to acquire cut views of the ow structure at various depths while the vertical laser sheet provides cross sectional views. Actually, this second laser sheet which travels from one end of the cuvette to the other is never rigorously vertical but slightly inclined, the whole setup being tuned in such a way that the laser sheet approaches perfect verticality as it gets closer to the bead. Indeed, the obstruction by the optic bre located in central position prevents us from performing diametral sections of the ows. Horizontal and vertical views of the ows are alternately captured thanks to a couple of remotely activated homemade beam stops, each beam stop assuming only two positions 0/1. We take advantage of this attribute to block either one or the other optical channel. The quality of the side views, impaired by astigmatism issues stemming from the curvature of the cuvette, is enhanced using a correction lens (focal length f 240), a trick that has already proven eective in the water jet experiment. The quality of the images, even it is moderate, suces to uncover the ow morphology. A technical description of the cameras used to record the ows can be found in Appendix G. 

Thermography

Here I introduce our thermography experiment presenting rst its goal and then the device we use. The interested reader is referred to the reference book [START_REF] Gaussorgues | Infrared Thermography[END_REF] for an excellent course on the basic principles of infrared thermography and its wealth of applications.

Goal of the experiment

Given the small scale thermocapillary ows investigated in the present work, we suspect thermal advection rather than inertia to be at the origin of the multipolar instability. The basic idea is that the ow inuences the temperature eld which in turn modies the ow etc ... this mechanism self amplifying until the onset of the instability. We thereby use thermography with the aim of probing `hydrothermal' coupling eects. Temperature maps will be superimposed on streamlines views characteristic of dierent ow states. Information about how strong thermal advection is in each hydrodynamic environment will be inferred from the relative orientation between the streamlines and the isotherms. We are also searching for some symmetry breaking in the thermal signal that would be closely correlated to the ow symmetry breaking and therefore to the instability. Note that our aim is not to measure absolute temperatures at any point of the surface, which calls for a blackbody based calibration. We focus on temperature gradients, so even if the temperature values are somewhat erroneous it does not matter for our purposes. What is more, errors on the actual temperature values are `systematic' (not random).

Thermographic device

The layout {optic bre bead} oers the opportunity to capture both the temperature and the ow elds in the course of a single experiment, contrary to earlier congurations. Indeed, the bottom of the cuvette as well as the liquid layer being highly IR absorbing media, any recording of the interfacial temperature eld from below is doomed to failure. From above, however, we are facing another issue : while using ne metal tips as heat sources, the thermography camera is `blinded' by the parasitic IR signal emitted by the imperfectly insulated heating resistor attached to the needle. This is not the case of our new conguration {optic bre bead} that connes heating solely to the source.

We borrowed from H. Kellay (Laboratoire Ondes et Matière d'Aquitaine, UMR5798 ) a highly sensitive and versatile IR camera, the FLIR SC7600 model (pixel resolution 640 ¢ 512, dynamic range 14 bit ; spectral band 1.5 ¡ 5.1 µm ; NETD : Noise Equivalent Temperature Dierence 20 mK, with a temperature measurement accuracy ¨1°C) (see Fig. 3.7 above). We equipped this camera with a medium wave infrared (MWIR) macro lens having a long working distance d 250 mm and a 1/3 lens magnication that allows for imaging a 3.3 ¢2.8 mm object on the sensor (scale : 11.20 µm/pix). The acquired data are processed using the software `FLIR tools'.

In sum, our full setup comprises the EO/PCO camera to capture views of the surface streamlines placed in bottom position, plus the FLIR camera to image the interfacial temperature eld placed in top position. Because the IR camera is located on the vertical laser sheet's path to the sample, we cannot capture simultaneously cross sectional views of the streamlines and surface temperature maps in our experimental conguration.

An overview of the multiple ow patterns 3.2.1 From a torus to a family of multipolar patterns

We now describe the dierent ow patterns arising as the bead is increasingly heated. Unsurprisingly, the base ow (bf) which emerges under slight heating conditions, namely for heating powers P bf 1 mW, takes the form of a torus extending over the whole width of the cell (Fig. 3.8). Seen from the surface, the latter appears as a centrifugal radial ow with a myriad of divergent streamlines (magenta arrows) surrounding the source up to a nite distance. In the bulk, these streamlines self organise into a pair of counter rotating convection rolls centred on the axis of the source, with an ascending column of accelerated liquid between them (yellow arrow). Thus the hot bead generates a base ow whose 3D structure is similar to that induced by the water jet presented in chapter 2.

Departing from the ideal case of the theory (see next chapter), the real interfacial streamlines are not strictly radial but slightly curved yet at very low heating powers. This `polarisation eect', analogous to the one reported in the water jet experiment, tends to get more pronounced for stronger heating. Just like what happens as the jet strengthens, the quasi axisymmetric ow destabilises into multipolar patterns (Fig. 3.9) as soon as heating is suciently intense, typically for powers P mf 10 mW (mf : multipolar ows).

We expect the total number of azimuthal cells to increase monotonically with increasing temperature of the source, but the practical reality turns out to be more intricate than this simple vision (see sec. 3.2.2). Interestingly, two types of quadrupolar patterns are visible on Fig. 3.9, the second being less symmetrical than the rst `square shaped' one. Also note that the size of each vortex pair may frequently change over time. 

The unpredictability of the ow state

Here we put the accent on the unpredictability of the ow state. Figs 3.10 and 3.11 display sequences of ow patterns that emerge at the interface as the heating power is increased from P 1 4 mW to P 2 60 mW, and next decreased from P 2 to P 1 , at a rate 9 P = ¨1 mW/min. Surface ows are recorded at a rate of 2 frames per second, all the pictures shown resulting from averaging over ∆t = 25 s.

Counterintuitively, the multipolarity of the ow patterns does not always burgeon with increasing heating : for instance, seeing a quadrupole followed by a dipole at a higher power is not so rare (e.g. transition (c) Ñ (d) on Fig. 3.10). Furthermore, sharp power thresholds separating the dierent ow regimes do not seem to exist (hence the interval boundaries on the friezes are approximate). Only can we state that the quasi axisymmetric base ow develops at typical powers P bf 1 mW whereas multipolar ows arise at P mf 10 mW. Rather stable phases are interspersed by transient states, the number of azimuthal cells (and/or their size) uctuating rapidly in a way that recalls mode competition (e.g. transitions (e) Ñ (f ), Fig. 3.10 and (a I ) Ñ (b I ), Fig. 3.11), a core concept in the study of dynamical systems. What is more, these `power up' and `power down' sequences reveal discrepancies in the `hydrothermal history' of the system, the sequence at decreasing power not being a `lm rewind' of the evolution at increasing power. Besides that, for a given heating power, you may observe a dipole in the morning but a quadrupole in the afternoon, and even something else the next day ! This great spatiotemporal variability of the ow patterns is briey discussed in sec. 3.6. 

Competing multipolar modes

Let me add a few words about the way competing multipolar modes manifest themselves after the onset of the instability. While several modes are competing against one another, we observe streamlines snaking between the convection cells surrounding the hot bead. These `snake like' streamlines mark the emergence of new vortex pairs. On Fig. 3.12, the `yellow snake' visible in state (a) gives birth to a counter rotating vortex pair in state (b), making the system transit from a dipole to a quadrupole. Still, the system fails to reach a hexapolar state : after a brief burst in (b), the `orange snake' eventually dies in (c). Note the substantial growth of both vortex pairs between the evolution phases (b) and (c). Often, the vortex in the outward looking portion of the serpentine curve would spring up at some distance from the heat source. Shortly after, this vortex would migrate to the surface of the bead whereon it would anchor. 

Quantitative study of the toroidal base state

This section is dedicated to a few quantitative features of the base torus. First, emphasis is placed on the velocity eld in this ground ow state. We will see how sensitive to surfactant contamination the interface dynamics is. Direct evidence of this contamination is then given through manifestations of the elasticity surfactants provide the interface with.

Characterisation of the velocity eld

This part is twofold : a `locked' interfacial state associated with the base ow regime is rst uncovered when comparing surface and subsurface velocities while, in a second step, the time evolution of the radial position of a surface tracer particle is studied. The inuence of surfactant contamination over the ow velocity is pointed out in both studies.

Boundary condition on the interfacial velocity

The quasi axisymmetric base ow is ordinarily observed under slight heating conditions. In the present case, the interface is `locked' in the sense that surface velocities are very low and markedly smaller than subsurface velocities. However, contrary to what happens in the water jet experiment, the velocity is not strictly zero but minimum at the interface. In fact, thermal diusion prevents here the interface from getting completely blocked.

To reach this conclusion, we compare the velocity of tracer particles moving at the interface with that of particles found in a shallow layer extending down to a few tenths of a millimetre underwater. In practice, the motion of a cluster of tracer particles (hereafter referred to as a `molecule') is monitored at regular time intervals τ in a cross section of the toroidal base ow (Fig. 3.13). The centrifugal motion of a molecule 2.5 mm far from the hot bead is tracked over time. The latter is composed of four `atoms': the one on top is situated at the interface (z = 0) while the other three lie at a shallow depth below the surface (z 0). On Fig. 3.14, the trajectories of the atoms we are tracking provide quantitative evidence of the above observation. The mean centrifugal velocity of each tracer particle is provided in table 3.15 : subsurface ow velocities are indeed noticeably higher than interfacial velocities, a visual proof being the counterclockwise rotation of the molecule well visible in the top insert of Fig. 3.14.

Let us now extract quantitative data from velocity proles in a vertical cross section of the toroidal base ow. These proles are obtained through the usual PIV processing (sec. 2.1.5). Figs 3.16 3.18 show a collection of PIV maps reecting the variations of the bulk velocity v b . The longitudinal velocity v x is especially signicant in a millimetre thick subsurface layer and, to a lesser extent, near the bottom of the cell. Most importantly, as foreshadowed by the preliminary study, |v x | goes through a maximum at a nite depth and not at the water/air interface as may have been expected. The transverse velocity v z takes important values in a region beneath the hot bead where a column of rapidly ascending liquid arises, but is negligible everywhere else. The transverse derivative of the longitudinal velocity ∂ z v x exhibits `stratied layers'. Generally speaking, the closer we are to the heat source, the higher the velocity. One also checks that the velocity declines while approaching a vortex centre. These features are even clearer on the evolution curves of the bulk velocity components displayed in Fig. 3.19. One notices that :

Both |v x | and |v z | diminish with increasing radial distance R to the heat source. The maximum longitudinal velocity |v x | max , between 100 µm/s and 200 µm/s, is reached at a depth z max such that ¡0.8 mm z max ¡0.4 mm in the investigated range of radial positions. The highest transverse velocity |v z | max is attained for ¡1.5 mm z max ¡1 mm. In both cases, z max increases with increasing R . The full v x curves are symmetrical with respect to the half depth z 1/2 . A reversal of the velocity is observed over there. In fact, v x is negative (resp. positive) in the upper half (resp. lower half) of the left convection roll. The v z curves are equally symmetrical with respect to z 1/2 but the transverse velocity is negative (vectors oriented upwards) everywhere within the explored region. 

Centrifugal motion of a surface tracer particle

We derive the time evolution of the centrifugal radial motion of a surface tracer particle in the toroidal ow regime. Experiments are thus achieved at low heating powers, in the range P [13.5, 14.4] mW. In practice, using vertical cut views rather than top views is by far preferable if one wants to spot surface tracer particles properly. Indeed, we notice on the side views that particles found exactly at the interface (z = 0) do not generate mirror images across the surface, contrary to particles located underwater (z 0). The trajectories of surface tracer particles situated at varying distances from the hot bead are `bound together' so as to reconstruct a complete radial trajectory. This `time shifting method' to obtain a single representative trajectory out of the trajectories of individual tracer particles assumes that the ow is stationary. Let me present the results of three experiments wherein this procedure has been applied :

1. Experiment with a freshly prepared sample. Heating power set at P = 13.5 mW.

A slightly polarised ow is observed (Fig. 3.20). In practice, we take care not to orient the laser sheet along the ow preferential direction, so as to keep a left/right symmetry and thus avoid an irrelevant bias in the position measurements. Fig. 3.21 displays trajectories of surface tracer particles in the base ow state of Fig. 3.20. These graphs demonstrate that the distance of the interfacial tracer particles to the hot bead varies as t 1/3 . The tracking of a tracer particle located at z ¡160 µm under the interface conrms that subsurface particles move faster than surface ones (`locked' interface), as evidenced by the upward deected red curves of Fig. 3.21 departing from the time behaviour typical of the motion of surface particles.

2. Experiment with an `aged' sample. Heating power set at P = 14.4 mW.

We let the system get more and more `aged' for nearly one hour and a half. Once this time elapsed, we note that the ow structure has remained qualitatively the same at the interface as well as in the bulk. Nonetheless, particle tracking reveals some oscillatory surface dynamics (Fig. 3.22). Smoothening the curve, one removes velocity uctuations and recovers approximately the above t 1/3 law. Note that the average slope value initially equal to 1.67 mm 3 /s (Fig. 3.21) has more than halved, now amounting to only 0.81 mm 3 /s.

3. Experiment with a renewed sample. Heating power set at P = 14.4 mW.

We thoroughly rinse the cuvette with ultrapure water. The experiment, run without delay, yields a quasi axisymmetric ow a bit more polarised than the one previously observed. The above results are recovered, especially the t 1/3 law of motion, the only dierence lying in a larger mean slope value now equal to 2.75 mm 3 /s (Fig. 3.23).

We check once again that subsurface tracer particles move faster than surface ones.

The targeted particle, located at z ¡65 µm underwater, seems to travel at the same speed as surface particles but actually a slight deviation appears after a while.

To conclude, surface tracer particles move along their centrifugal radial trajectories at a pace W t 1/3 provided a `fresh' sample is used. 

Direct evidence of surface elasticity

We provide direct evidence of surface elasticity through `power shutdown experiments', namely experiments wherein the laser power supply is alternately switched o/on.

Power shutdown experiments

In the experiment whose results are reported below, the laser source is turned on at a time t on = 4.50 s after we start recording the ow (at 10 fps). Approximately ∆t on Ñ off 44 s later, at t off = 48.33 s, the laser is suddenly turned o using a beam stop. The time interval ∆t on Ñ off (resp. ∆t off Ñ on ) during which the source is on (resp. o) is chosen suciently long for the ow to reach a steady state (resp. vanish). With a heating power set at a moderate value P 21 mW, for which the system is still in its polarised toroidal state, the characteristic onset τ onset and relaxation τ relax times are such that τ onset ! τ relax 20 s.

Note that to estimate these typical times, we monitor the repartition of the streamlines over time until no apparent change is noticeable, meaning that the ow is then `stabilised'. Fig. 3.24 shows a typical bulk ow, frequently seen in our thermocapillary experiments, that consists of two corotating tori : a small fast rotating torus located in the vicinity of the hot bead coaxial with a larger slowly rotating torus that sits at the bottom of the cell. Past a 20 s response time (in fact, τ onset 20 s is the onset time of the big torus, the small torus forming within a much shorter time not captured by our recordings at 10 fps), the ow remains in this initial (I) stationary state as long as P 21 mW of heating power feed the system. Once heating is interrupted, the small torus disappears in a split second while the big torus keeps owing outwards under the eect of its own inertia. Redrafting the Navier Stokes equation as a vorticity transport equation, one denes a diusion length l = c ντ where ν denotes the kinematic viscosity and τ is the vorticity diusion time.

With a kinematic viscosity of water ν 10 ¡6 m 2 . s ¡1 and writing that τ τ onset 20 s, one nds l 4.5 mm. This value, comparable to the size of the ow structure, leads to the conclusion that the dynamics of the big torus is essentially inertial. In addition, we observe a short lived ( 10 s) centripetal motion of surface tracer particles, so that important shear stresses arise within a few tenths of a millimetre thick subsurface layer. This is a concrete proof of the elastic response of the water/air interface to laser shutdown.

Tracking interfacial tracer particles conrms the occurrence of an `elastic retraction phenomenon' at the precise moment t = t off the laser is switched o. Fig. 3.25 clearly evidences how the speed of the tracer particles sharply (angular point) reverses at t = t off : after laser shutdown, the tracer particles move in the direction opposite to the one they had before, as revealed by a change in the sign of the slope being nothing but the radial velocity of the particles. The closer the tracer particle to the heat source, the sharper the peak of the curve, i.e. the higher its pre and post shutdown radial velocity. Fig. 3.26 displays trajectories of tracer particles situated in a thin subsurface layer. Following laser shutdown, the latter are driven by the convection rolls of the big torus. Save a eeting deceleration phase induced by the retracting elastic interface which does not last for more than a few seconds after t off (look at the little jumps followed by slight drops on the (A) or (C) curves of Fig. 3.26), subsurface tracer particles keep moving outwards contrary to interfacial ones. They also sink a bit while moving away from the source, as visible in (B). Again, we check that the interface is in a `locked state', i.e. that velocities are higher in the subsurface region (Z 0) than at the interface (Z = 0). For instance, at R = 2.3 mm to the right of the bre axis, a bulk velocity 80 µm/s ¤ v b ¤ 100 µm/s is measured for depths in the range ¡600 µm ¤ Z ¤ ¡190 µm, whereas the velocity drops to only v s = 43 µm/s at the interface. Bear in mind that, unlike the case of the water jet, the velocity does not fall to zero but to a minimum at the interface. This section is dedicated to the exploration, using laser tomography, of the 3D structure associated with a surface quadrupole (see technical details in sec. 2.1.5). Figs 3.27 and 3.28 provide, respectively, a series of cross sections and horizontal cut views of the structure under investigation (in practice, we perform automatic laser scans with the two Thorlabs rotation stages in `Sequencer' mode). One should examine the streamlines maps keeping in mind that the length of the luminous streaks left by the tracer particles is not only a gross indicator of the ow velocity in the region of interest, but also provides information on the local orientation of the streamlines relatively to the cut plane : the longer (resp. shorter) these luminous streaks, the more parallel (resp. perpendicular) to the cut plane the ow locally is. Note that streamlines simply reduce to twinkling spots in ow regions where they are rigorously perpendicular to the viewing plane.

What is presumably a couple of whirlpools develops quite symmetrically on either side of the source axis (see the two `orange pockets' on Fig. 3.27 1). Interestingly, we clearly remark that streamlines end in a point as they are rising back towards the hot bead. This fact is especially apparent in a vertical cut plane brushing the bead, as marked by cyan `chevrons' in Fig. 3.27 6. This remarkable morphological trait reminds us of the sharp streamlines observed previously in the water jet experiment (see again sec. 2.3.2).

Vortex centres move away from one another along one direction while getting closer in the perpendicular direction, as yet discernable on Fig. 3.28 and denitively attested while tracking them with increasing observation depth (Fig. 3.29). 

Boundary conditions on the interfacial velocity

Vertical cut views of a quadrupole are analysed in order to compare the velocities of a few tracer particles moving at the interface with those of particles located in a shallow layer extending down to a few tenths of a millimetre underwater. To enrich our study with visuals, `molecule tracking' is here again performed in the very same spirit as in sec. 3.3.1.

All results presented below come from an experiment conducted under strong heating conditions. Much like the one of Figs 3.27 3.28, the quadrupolar ow considered here exhibits two counter rotating vortex pairs with four vortices separated from one another by two `channels', one centrifugal and the other centripetal, intersecting at right angles. An intense ow is measured along these `hydrodynamic separators', by contrast with the vanishing ow observed in the core regions of the vortices. To come to this conclusion, the ow has been scrutinised in a couple of cross sectional planes : a rst viewing plane is located in the middle of the centrifugal channel and a second cut plane, parallel to the rst one, cuts through the whirlpools. More precisely, local velocities are measured in the immediate vicinity of points A D (Fig. 3.30). This study is supplemented by a rough estimate of the velocity near point E situated in the centripetal channel. 

Cut plane AB (centrifugal channel)

The temporal monitoring of bunches of subsurface tracer particles in the cross section AB reveals that `molecules' are tilting forward during their centrifugal motion (Fig. 3.31). This is a visual evidence of the fact that in this case, contrary to what is observed for the quasi axisymmetric base ow (sec. 3.3.1), the velocity is higher at the interface than in the subsurface region, in other words, that the interface is now in a `passing state'. The graphs of Fig. 3.32, corresponding to the trajectories of the atoms forming the two molecules, provide quantitative evidence of this last observation. Figure 3.31: Evolution of the velocities of tracer particles in a subsurface layer of cut plane AB. The centrifugal motion of two `molecules', found on the right and on the left of the hot bead, is tracked over time. Each molecular conguration at a given time t i is depicted by a single colour, orange/magenta/cyan in that order. For simplicity, the same colour scheme is adopted for the right (RM) and the left (LM) molecules, despite slightly dierent time intervals τ RM = 0.53 s/τ LM = 0.29 s between their successive positions. Data from the same experiment as in Fig. 3.30 except that stacks of 150 images captured at 17 fps over ∆t 9 s are processed to generate this streamlines view. A slight distortion eect, probably due to a liquid droplet covering the optics, impairs a bit the image quality on the left. To nish, the mean centrifugal velocity of each tracer particle considered above is given in the tables 3.33 (these values are the slopes of the curves displayed in Fig. 3.32). Clearly, the velocity of the tracer particles composing the right molecule (RM) declines with increasing depth. The situation is less obvious for the left molecule (LM) but still informative, as reected in the sharp velocity drop ∆v LM = ¡70 µm/s measured between the interface in z = 0 and an observation depth z = ¡104 µm. The uncertainty in the velocity of a tracer particle is δv = ¨40 µm/s. The centrifugal channel of a surface quadrupole is thus a region submitted to intense ows, with a typical velocity one order of magnitude higher than measured in the toroidal state. The fact that our measurements yield surface velocities larger in the left half than in the right half of the interface is seemingly due to the misalignment of the laser sheet with the centrifugal channel on the right, compared with their relative orientations in the left part of the surface (Fig. 3.30). Indeed, on the right side, the laser sheet cuts across streamlines located near a vortex centre, where the ow is slower than along the channels.

Point E (centripetal channel)

Here the vertical laser sheet is not oriented parallel to the centripetal channel and thus we cannot repeat as complete a particle tracking as previously. Yet, it is possible to estimate local ow velocities close to point E (Fig. 3.30) on the basis of top views. While surface tracer particles can be identied unambiguously on the side views, as they do not display mirror images across the interface, we do not have access to this information on the top views and hence cannot be absolutely sure that the particles we track are on the surface. However, even if the tracked particle is not exactly in z = 0, it may not be located deeper than a few tenths of a millimetre beneath the surface, that is within the subsurface area where the horizontal laser sheet is positioned. Fig. 3.34 shows the trajectory of a tracer particle along the portion of the centripetal channel near point E. The centripetal velocity values reported here are about half those measured along the centrifugal channel. Most likely, the situation is qualitatively the same for the centrifugal and the centripetal channels, namely the interface is in a `passing state' in both cases.

Cut plane CD (through the whirlpools)

To nish, let us examine the ow behaviour in the subsurface area of the cut plane CD. Both points C and D are located near vortex centres, in a region of the whirlpools where the ow is locally centripetal. Fig. 3.35 gives a rst glimpse of the motion of the `molecules' in the viewing plane CD, while Fig. 3.36 displays the trajectory of each `atom' in detail. To nish, the mean centripetal velocity of each tracer particle is given in the tables 3.37 (these values are the slopes of the curves displayed in Fig. 3.36). In this case, velocities are clearly lower than those measured in either the centrifugal (plane AB) or the centripetal (around point E) channel. Most importantly, in the swirling ow region CD, subsurface velocities are higher than interfacial ones, contrary to what happens in the centrifugal channel where an intense surface ow is observed. The interface is here in a `locked state', much like in the quasi axisymmetric ow regime. In summary, tracer particles move along the centrifugal channel AB at very large speeds in the order of v 1 mm/s, yet in a shallow subsurface layer and even more at the interface. In comparison with the toroidal base ow state, the relative increase in the ow velocity is more pronounced at the surface (¢30) than in the bulk (¢14), and signicantly higher than the laser powers ratio (¢3).

Remarkably, the regions between the vortices of the quadrupole are subject to strong ows characterised by velocities higher at the surface than in the bulk, in conjunction with a `passing interface'. Though the foregoing results clearly evidence this fact in the sole case of the centrifugal channel, no doubt that the same conclusion applies to the centripetal channel. By contrast, close to the centre of a whirlpool, the situation seems reminiscent of the `locked interface' reported earlier in the quasi axisymmetric base state.

Thermal imprint of the ow symmetry breaking

We present the ndings of our thermographic study of the interfacial ows induced by the hot bead at various heating levels. The results provided here are partly those of A. Mombereau, being thus anterior to this thesis work. Other results were obtained by B. Gorin, a Master student I had the opportunity to co supervise during his 2018 internship.

Since we suspect `hydrothermal' couplings, among other possible triggers, to play a key role in the activation of the instability, it is crucial to get a better grasp of how important thermal advection is in the dierent ow regimes. The ow acts on the temperature eld and the temperature gradient moulds the ow in turn, so that any symmetry breaking of the ow shall be reected in a symmetry breaking of the temperature eld itself. Fig. 3.38 compares thermography and streamlines maps of the surface ow at varying heating levels. The quasi axisymmetric states (A) and (B) exhibit a potato shaped distribution of their isotherms that slightly departs from the rotation invariant pattern expected for a perfectly axisymmetric base ow. The temperature map of the (unsteady) `pseudodipolar' ow (C) at P (C) 36.8 mW is crescent shaped. A dumbbell shaped repartition of the isotherms, which appears in state (D) (P (D) 36.8 mW) and ripens in state (E) (P (E) 53.6 mW), accompanies the development of a surface quadrupole. Thus, Fig. 3.38 can be regarded as a pictorial evidence of the correlation that exists between the ow and the temperature eld symmetry breakings. Better still, one can infer the morphology of the surface ow on the sole basis of the temperature (IR) maps.

Let us recall the advection diusion heat equation which, in dimensionless form, writes as follows

V.∇Θ = 1 Pe ∇ 2 Θ , (3.1)
where thermal advection is expressed as the scalar product between the ow velocity eld

V and the temperature gradient ∇Θ. The quantity Pe, named the Péclet number and dened as Pe 9 = aU/D (a and U denote respectively typical length and velocity scales and D the heat diusion constant, D 10 ¡7 m 2 . s ¡1 ), compares the magnitudes of thermal advection and diusion : the larger this dimensionless parameter, the stronger thermal advection with respect to heat diusion. One inference from Eq. (3.1) is that the strength of thermal advection depends upon the relative orientation of the streamlines and the isotherms, the ∇Θ vector being everywhere perpendicular to the Θ constant curves. This is precisely what we explore while superimposing the ow patterns onto the matching temperature maps (Fig. 3.39) in the base ow state (a) as well as in a multipolar state (b). Two salient features can be reported :

The streamlines of a surface multipole (e.g. quadrupole) are locally tangent to their isotherms, and hence perpendicular to the temperature gradient. The conguration V u ∇Θ implies that V.∇Θ = 0, a condition satised in the advection dominated limit Pe 4 1 (zero heat diusion) as readily checked on Eq. (3.1).

On the contrary, streamlines are perpendicular to the isotherms in the quasi axisymmetric state and therefore colinear with the temperature gradient. In this diusion dominated limit (Pe 3 1, no advection), the ow is driven solely by the surface tension gradient itself proportional to the temperature gradient. It ensues that the velocity V and the temperature gradient ∇Θ are parallel to each other.

To nish, Fig. 3.40 shows the superposition of the streamlines and the temperature maps of a dipolar interfacial ow. Interestingly, a `thermal plume' propagates in the ow direction, that is along the mirror symmetry axis of the dipole. 

Discussion

In this chapter, we studied the centrifugal thermocapillary ow that a partially wetted hot bead generates at the water/air interface (Fig. 3.1). In a way similar to what we did in the water jet experiment while increasing the injection speed, the focus was put here on the evolution with increasing heating of the convective ow which develops in the vicinity of the heat source. From a simple convection torus at low temperatures (Fig. 3.8), the ow destabilises into multipolar structures at suciently high heating powers (Fig. 3.9), much like what we reported in the water jet experiment. This (at least qualitative) analogy between the ows induced by the hot bead and the water jet is a priori far from being self evident, owing to the dierent nature of the ow enforced in each case, thermally driven with the hot bead but `pressure driven' with the water jet. Note that no SDS has been added here to the liquid. We actually learnt, from numerical simulations achieved by J-C. Loudet in the water jet conguration, that further adding a controlled amount of a surfactant material is of little avail as far as the ow structure and size are concerned.

The hot bead experiment exhibits a higher level of complexity compared with the water jet, since the temperature eld Θ is here coupled to the ow velocity V in addition to the surfactant concentration eld Γ. Therefore, one has to consider both heat and mass advection diusion equations

∂ t Θ V.∇Θ = D T ∇ 2 Θ Σ , ∂ t Γ ∇ . V Γ ¨= D S ∇ 2 Γ , (3.2a) (3.2b)
with D T and D S the heat and mass diusion constants, respectively. The notation `∇ ' denotes the 2D projection of the nabla operator onto the plane of the interface. I do not dwell on the `source term' Σ that will be specied in the next chapter. Note that there is no term accounting for mass exchanges between the surface and the bulk in the right hand side of Eq. (3.2b) as we consider only insoluble surfactants. When rewriting these equations in dimensionless form, two parameters quantifying the relative contribution of heat (resp. surfactant) diusion and advection naturally appear. The latter, called the thermal (resp. solutal) Péclet number Pe T (resp. Pe S ), are dened as

Pe T 9 = U a D T , and 
Pe S 9 = U a D S , (3.3) 
where a and U are typical length and velocity scales, respectively. Given that the mass diusion constant D S = 10 ¡9 ¡ 10 ¡10 m 2 . s ¡1 is two to three orders of magnitude smaller than the heat diusion constant D T = 10 ¡7 m 2 . s ¡1 , we have Pe S 4 Pe T meaning that the physics of the system is dominated by the advective transport of surfactant molecules along the interface. We recall that the Reynolds number, dened as the ratio of inertial to viscous forces Re 9

= U a/ν (ν : water kinematic viscosity, ν 10 ¡6 m 2 /s under standard conditions), is in the order of Re 10 ¡2 in the hot bead experiments (taking a bead radius a 100 µm and a Marangoni velocity U 100 µm/s) so that inertia is negligible.

The `hydrosolutal' (V, Γ ) coupling has been evidenced by the direct manifestation of surface elasticity in laser shutdown experiments : interfacial tracer particles reverse their motion, from centrifugal to centripetal, at the precise moment the laser is switched o (Fig. 3.25). As for the `hydrothermal' (V, Θ) coupling, thermography revealed the `thermal signature' of the ow symmetry breaking, with streamlines either perpendicular (in the quasi axisymmetric base state) or tangent (in the presence of multipoles) to the isotherms (Fig. 3.39). Yet, evaluating the prominence/negligibility of thermal advection in the dierent ow regimes and at varying distances from the heat source, through the value of V.∇Θ or, equivalently, that of the Péclet number Pe T , requires a comprehensive knowledge of the ow and the temperature elds that is currently lacking.

Again, we have shown that the base torus is in a `locked' interfacial state characterised by subsurface velocities signicantly higher than surface ones (Figs 3.14 3.15 and 3.19) which, due to thermal diusion, are not strictly zero contrary to the case of the jet. Tracking interfacial tracer particles along their centrifugal radial trajectories, we found that their distance r to the heat source evolves in time as t 1/3 (Figs 3.21 3.23), resulting in a decrease of the surface velocity 1/r 2 . Such experimental ndings go against the image of a pristine interface only subject to a thermocapillary ow, for which one naturally expects the ow velocity to be highest at the surface (z = 0) owing to maximum shear stresses out there. Moreover, in the viscous ow regime (Re 3 1) considered here, we have Pe S 4 1 but Pe T 3 1, so that Eq. (3.2a) simplies to the heat diusion equation and the steady state radial component of the interfacial velocity is then given by [START_REF] Würger | Thermally driven Marangoni surfers[END_REF] 

v r (r, z = 0) = U ¡ a r © , (3.4) 
a power decay dierent from the experimental one. This discrepancy between theoretical predictions and experimental observations can only be explained by the existence of a surfactant elastic layer at the interface that damps the surface dynamics.

Besides that, we characterised the quadrupolar ow mode, something not achieved in the water jet experiments. Sharp surface velocity gradients have been uncovered between the `intervortex channels', where intense inward/outward ows are visible, and the core regions near vortex centres where the ow almost vanishes (compare the experimental data of both tables 3.33 and 3.37). Most importantly, the channels are in a `passing' interfacial state characterised by a ow velocity higher at the surface than in the bulk, whereas a reversed `up down hierarchy' among velocities is noted in the central regions which is strongly reminiscent of the `locked' interfacial state reported for the base torus.

Surfactants are repelled by the dilatational ow towards the edges of the cell whether the source ow is thermocapillary like in the present experiment or `mechanical' like in the water jet experiment which induces a solutocapillary counterow in response to the inhomogeneous distribution of impurities along the interface. We conjecture that the instability results from the periodic azimuthal deformation of the elastic depletion front under the action of high shear stresses these competing ows induce locally (Fig. 3.41). Such an instability mechanism has been already proposed by Couder et al. [START_REF] Couder | On the hydrodynamics of soap lms[END_REF] to account for multipolar ow patterns developing on the surface of horizontal soap lms blown by a vertical air jet, a practical situation that closely resembles our water jet experiment. The experimental verication of this conjecture requires the direct visualisation of surfactant molecules. One can use some uorescence labeled surfactant, a standard approach in biological sciences. Note that it is possible to probe the state of the surfactant layer using Brewster angle microscopy (see [START_REF]Microscopie à l'angle de Brewster : transitions de phases et défauts d'orientation dans des lms monomoléculaires[END_REF] for a presentation of this technique). I also want to stress the unpredictability of the ow state marked by mode competition (Fig. 3.12). Tempting though it may be to ascribe the great spatiotemporal variability of the ow patterns to hysteresis in the `hydrothermal history' of the system, it could equally well be attributed to unsteady eects. Anyhow, all this results in poorly reproducible hot bead experiments. Factors which may explain this situation are numerous, starting with all physical mechanisms responsible for uctuations of the contact line, such as intense evaporation in the vicinity of the bead that aects its wetting conguration or asperities randomly distributed on its surface on which the contact line transiently gets pinned.

Let me add a few words about a serendipitous observation we made while changing the degree of immersion of the bead. A pulsatile ow would arise as the bead was fully immersed, a phenomenon that can be regarded as another manifestation of the elasticity of the surfactant laden interface (Fig. 3.42). Interestingly, varying either the heating power or the immersion depth of the bead allows modulating the pulse frequency of the ow. Further experiments are needed to underpin these observations. It is not the rst time that oscillatory regimes are reported in systems where Marangoni convection is at play, leading to both experimental [START_REF] Kamotani | Oscillatory thermocapillary ows in open cylindrical containers induced by CO 2 laser heating[END_REF] and theoretical [START_REF] Yu | Oscillating thermocapillary convection regimes driven by a point heat source[END_REF] investigations. Note the striking resemblance between our practical situation and the experimental setup depicted in Fig. 2 of ref. [START_REF] Kovalchuk | Spontaneous oscillations due to solutal Marangoni instability : air/water interface[END_REF], the only clear dierence being that there a surfactant droplet is immersed instead of a hot bead, meaning that in this case spontaneous oscillations arise from solutocapillary rather than thermocapillary convection. As a matter of fact, it may be that the ower like azimuthal instability we are interested in is related to hydrothermal waves (see for instance [START_REF] Ezersky | Hydrothermal waves in Marangoni convection in a cylindrical container[END_REF][START_REF]Ondes non linéaires à une et deux dimensions dans une mince couche de uide[END_REF]), a hypothesis suggested by the existence of star shaped standing waves as the one shown in Fig. 4 (c) of [START_REF] Yu | Oscillating thermocapillary convection regimes driven by a point heat source[END_REF].

To nish, I would like to mention Shtern and Hussain's theoretical analysis of the azimuthal instability [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF]. They defend the thesis of an inertial origin of the instability, basing their study on the exact solution of the `Navier Stokes Fourier' problem derived earlier by Bratukhin and Maurin [START_REF] Bratukhin | Thermocapillary convection in a uid lling a half space[END_REF]. Surprisingly, they predict that the quadrupole is the rst unstable mode (onset at a critical Reynolds Re c = 115), not the dipole. However, recent observations [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF] revealed that the ower like azimuthal instability studied in the present work exists including at very small scales (5 µm magnetic spheres were trapped in a two beam optical levitator), which seems to rule out the scenario proposed in [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF].

In the next chapter, we will address theoretically the problem of the thermocapillary convection induced by a point heat source localised at the water/air interface, solving the incompressible Stokes equation within the half space lled with water. An exact solution will also be derived in the nonlinear temperature advected regime and the theoretical groundwork on which to build a model of the instability will be laid down.

Problem formulation

We study the thermocapillary ow induced by a pointlike heat source at the water/air interface. The excess temperature arising in the vicinity of the hot spot creates surface stresses that drive the uid motion, a phenomenon called the Marangoni eect. Let water ll a cylindrical vessel of radius R and height h such that the upward oriented axis (unit vector e z ) coincides with its revolution axis. In the following, we assume a perfectly at interface located at z = 0 (see Appendix I for a justication of this hypothesis).

The Navier Stokes equation, which governs the evolution of the velocity V of a ow subjected to an internal pressure gradient ∇P, writes (Appendix I)

ρ p∂ t V V.∇Vq = η∇ 2 V ¡ ∇P , (4.1)
where η and ρ are the uid dynamic viscosity and mass density, respectively. Temperature variations are assumed slight enough for these quantities to be temperature independent.

At room temperature T room 20°C and under atmospheric pressure P atm 1bar (STP : Standard Temperature and Pressure conditions), η 10 ¡3 Pa.s and ρ 10 3 kg.m ¡3 . Let a be some characteristic length scale of the system and U denote the typical ow velocity scale. Dening the following quantities

r 9 = R a , v 9 = V U , p 9 = P pηU/aq , r t 9 = t pa/Uq , (4.2) 
enables one to rewrite Eq. (4.1) in dimensionless form

Re p∂ r t v v.∇vq = ∇ 2 v ¡ ∇p , (4.3) 
where ∇ 9 = d dr . The dimensionless parameter Re (a, U ) is called the Reynolds number.

The latter can be interpreted as the ratio between the magnitudes of the inertial ρV.∇V and the viscous η∇ 2 V terms or, equivalently, as the ratio between the characteristic times

τ diff = a 2 /ν (ν 9
= η/ρ : kinematic viscosity) and τ conv = a/U associated with momentum diusion and convection over the length a. The Reynolds number is therefore given by

Re = U a ν . (4.4)
In what follows, we focus our attention on stationary ow regimes so that we drop the partial time derivative in Eq. (4.3). Inertial eects are further disregarded (Re 3 1)

since we consider relatively small length and velocity scales (in the experiments, we have a 100 µm and U 100 µm/s yielding Re 10 ¡2 ). Consequently, the Navier Stokes equation ( 4.3) reduces to the much simpler Stokes equation

∇ 2 v = ∇p . (4.5)
We assume an incompressible uid. The continuity equation expressing the volume conservation of a ow subjected to pressure reads

∇. v = 0 . (4.6)
Eqs (4.5) (4.6) form the purely hydrodynamic part of the problem addressed here. These equations are supplemented by the advection diusion heat equation

ρc p p∂ t Θ V.∇Θq = κ∇ 2 Θ Q δ(R) , (4.7)
with Q the total heating power radiated by the pointlike heat source 1,2 . c p and κ stand for the specic heat capacity and thermal conductivity of the liquid, respectively. Both are assumed constant despite a non uniform temperature distribution. Along with the mass density ρ, they dene the thermal diusivity as D 9

= κ/(ρc p ). For water under STP conditions, c p 4.2 ¢ 10 3 J. kg ¡1 . K ¡1 and κ 0.6 W. m ¡1 . K ¡1 so that D 10 ¡7 m 2 . s ¡1 .

Using again denitions (4.2) together with a `temperature eld' ϑ 9 = Θ/∆T yields the following dimensionless form of Eq. (4.7)

Pe p∂ r t v v.∇ϑq = ∇ 2 ϑ q δ(r) , q = Q κ∆T a , (4.8) 
with the Péclet number Pe dened as

Pe = U a D . (4.9)
Note the strong similarity between Eqs (4.3) and (4.8) : the Péclet number Pe plays for heat transport a role analogous to the Reynolds number Re for momentum transport, the thermal diusivity D appearing as the counterpart of the kinematic viscosity ν. 1 We assume a `perfect source' in the sense that 100% of the energy it absorbs is supposed to heat the liquid. This explains why Q is here below indierently called the `injected power' or the `heating power'. 2 In fact, assuming a pointlike heat source amounts to making the hypothesis that its spatial extent a is much smaller than the radius R of the container, a 3 R. In the viewing area such that a 3 |R| 3 R, the source can be approximated as a point whose power density is expressed as Q v (R) = Qδ(R) introducing naturally the Dirac delta distribution δ(R), while the size of the vessel then becomes irrelevant.

Once again, attention is paid to steady ow regimes and thus Eq. (4.8) restricts to

Pe v.∇ϑ = ∇ 2 ϑ q δ(r) , (4.10) 
where the velocity eld v derived beforehand from Eqs (4.5) (4.6) appears as an input. Eq. (4.10) invites us to view the Péclet number Pe measuring the intensity of thermal advection as a control parameter that can be tuned by varying the amount of injected power Q. Thermal advection prevails in the asymptotic regime Pe 4 1. Conversely, in the diusive limit we have Pe 3 1 and one is then left with a set of purely linear equations.

As usual, boundary conditions specic to our framework `close' the dierential system. The boundary condition at the very heart of this study is the Marangoni condition

η ∇ V z ∂ z V ¨ § § z = 0 = ∇ γ , (4.11) 
where the projection of a vector a onto the horizontal (xy) plane of the interface (z = 0) is dened as a 9

= p11 ¡ e z e z q . a . This relation stating that surface tension inhomogeneities induce shear stresses at the interface that put the uid into motion is the mathematical expression of the Marangoni eect. A key ingredient of our study is the linearised equation of state satised by the temperature dependent surface tension γ(Θ) for slight deviations from its equilibrium value γ 0 = γ(Θ 0 )

γ(Θ) = γ 0 ¡ γ T pΘ ¡ Θ 0 q . (4.12)
As the constant γ T 9

= |dγ/dΘ| is in the order of γ T 10 ¡4 N. m ¡1 . K ¡1 [START_REF] Birikh | Liquid Interfacial Systems[END_REF], this equation is valid over a wide temperature range. The surface tension decreasing with increasing temperature, liquid is pulled from the hot to the cold regions of the interface at a typical speed U γ T ∆T /η. In the geometry under consideration, a centrifugal thermocapillary ow extends from the hot bead in central position to the edges of the cylindrical container.

On top of that, we assume a zero mass ux across the interface

V z | z = 0 = 0 . (4.13) 
The thermal conductivity of water being far larger than that of air (under STP conditions κ air 0.0234 W. m ¡1 . K ¡1 , κ water 26 κ air ) amounts to neglecting any heat ux through the interface

∂ z Θ| z = 0 = 0 . (4.14) 
Obviously, such assumptions no longer hold in the presence of evaporation (Appendix I).
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In sum, we aim at solving the (v, ϑ) coupled system of partial dierential equations

∇ 2 v = ∇p , ∇. v = 0 , Pe v.∇ϑ = ∇ 2 ϑ q δ(r) , (4.15a) (4.15b) (4.15c) 
with the additional requirements that far away from the heat source : (1) the temperature returns to its equilibrium value entailing the suppression of all Marangoni stresses and hence a zero thermocapillary velocity; (2) the overall ow velocity falls to zero and (3) the pressure eld tends to a constant value

ϑ, v, p ÝÑ |r|Ñ V ϑ 0 , 0, p 0 . (4.16) 
The latter equations are supplemented by the boundary conditions with the polar angle θ greatly simplies the calculations. For convenience, we consider that water lls the upper half space z ¥ 0 wherein c [0, 1], the position c I = 0 (θ I = π/2) corresponding to the interfacial plane (normal unit vector n e θ ). For later purposes, the equations are here written in dimensionless form with special emphasis on the `r and ϕ Marangoni' boundary conditions (4.17a) (4.17b).

1 r r ∂ r v θ ¡ v θ ¡ ∂ c v r % § § § § c I = 0 = ¡ ∂ r ϑ | c I = 0 , ∂ ϕ v θ ¡ ∂ c v ϕ % § § § c I = 0 = ¡ ∂ ϕ ϑ | c I = 0 , v θ | c I = 0 = 0 , ∂ c ϑ| c I = 0 = 0 , (4.17a) (4.17b) (4.17c) 

The base ow state

As an initial step, our goal is to derive the axisymmetric solution to the advection diusion problem in the far eld limit, i.e. for a pointlike heat source. This solution is considered as the base ow state whose stability in response to azimuthal perturbations shall be probed (sec. 4.4). For comparison's sake, we rst derive the temperature eld in the purely diusive regime Pe = 0 prior to addressing the nonlinear regime of nite Péclet numbers Pe $ 0 for which heat is also transported through advection.

Linear regime Pe = 0

Temperature eld

In the diusive regime Pe = 0, the dierential system (4.15a) (4.15c) becomes linear as the temperature eld is then fully decoupled from the ow. In this case, the temperature turns out to be a harmonic function, namely a function obeying the Laplace's equation

∇ 2 ϑ = 0 . (4.18) 
This equation is readily solved in spherical polar coordinates (r, θ, ϕ) using the method of separation of variables. Since the corresponding derivation can be found in any textbook of mathematical physics, let me simply recall the general solution

f (r, θ, ϕ) = V ļ=0 l m=¡l A lm r l B lm r l 1 & 4 C lm P m l (cos θ) D lm Q m l (cos θ) B e imϕ , (4.19) 
where the tP m l (cos θ)u and the tQ m l (cos θ)u are the associated Legendre polynomials of the rst and the second kind, respectively. We will discuss in sec. 4.3 how and why this general solution shall be modied in our study. Let us precise right now that the tQ m l u functions are irrelevant in most physics problems because of their diverging behaviour.

The terms r l in the radial part of expression (4.19), in addition to diverging at innity, are associated with the solution to the Laplace's equation inside a sphere (see refs [START_REF] Schmitt | Marangoni ow at droplet interfaces : Three dimensional solution and applications[END_REF][START_REF] Pak | Generalized squirming motion of a sphere[END_REF]) and are thus discarded from the current analysis which assumes a pointlike heat source.

In our case, expression (4.19) yields the following far eld axisymmetric temperature in the diusive regime (P 0 0 = 1)

Θ(|R|) = Θ 0 ∆T a c R 2 Z 2 , R = Re r Ze z , (4.20) 
which fullls the condition Θ Ñ Θ 0 far from the heat source (|R| Ñ V). For latter purposes, it is useful to dene a∆T 9 = Q/(2πκ). Even though no intrinsic length scale is considered in the model, this relation oers a convenient way of linking the injected power Q to the temperature elevation ∆T on the surface of the heat source. Evaluated at the interface Z = 0 and rewritten in dimensionless form, expression (4.20) becomes

ϑ (0) (r) = ψ (0) (0) r , (4.21) 
where ψ (0) (0) represents the interfacial temperature amplitude in the diusive regime Pe = 0 agged with the superscript `(0) '.

Velocity eld

Let us now derive the velocity eld v (0) . Although there is no coupling between the temperature and the velocity in the purely diusive regime Pe = 0, in the sense that the advective nonlinearity is then ruled out, both elds are related through the Marangoni boundary conditions (4.17a) (4.17b) at the interface where the temperature eld shapes the velocity. It is proper to seek velocity components that are 1/r, since this choice complies with the radial Marangoni boundary condition (4.17a) which then balances terms that are all 1/r 2 on both sides of the equation

1 r r ∂ r 1 r ¨¡ 1 r ¨¡ ∂ c 1 r ¨% § § § § c I = 0 loooooooooooooooooooooomoooooooooooooooooooooon 1/r 2 = ¡ ∂ r ϑ | c I = 0 looooomooooon 1/r 2 ,
where the temperature eld is the one given by (4.21). Note that the azimuthal Marangoni boundary condition (4.17b) yields v ϕ = 0 as a direct consequence of axisymmetry.

Solving the Stokes equation (4.15a) to work out the velocity eld v (0) requires deriving rst the pressure eld. The divergence of the Stokes equation reveals that the pressure eld is a harmonic function 3 (as the temperature in this regime) and thus satises

∇ 2 p = 0 . (4.22) 
We have just seen why it is appropriate to look for velocity components scaling as 1/r, in keeping with the r Marangoni boundary condition. In the same spirit, balancing the powers of 1/r on both sides of the Stokes equation

∇ 2 v lo omo on (1/r 2 )¢(1/r) = 1/r 3 = ∇p lo omo on (1/r)¢??? = 1/r 3
, calls for a pressure eld p 1/r 2 . The general solution (4.19) to the Laplace's equation elucidated in the case l = 1 then yields the pressure eld

p (10) (r, c) = π (10) r 2 P 0 1 (c) = π (10) r 2 c , (4.23) 
where the subscript `(10)' means l = 1 and m = 0 (axisymmetric state). The notation π [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] for the integration constant anticipates on the general derivation to come in sec. 4.3.

Projecting next the vector Stokes equation (4.15a) onto the axes of the spherical basis, we are left with the following dierential system for (lm) = ( 10)

s 2 v I r, (10) 
$ I = ¡2p (10) , s 2 v I θ, (10) $ I ¡ 1 s 2 v θ, (10) = 2sv I r, (10) ¡ sp I (10) , s 2 v I ϕ, (10) $ I ¡ 1 s 2 v ϕ, (10) = 0 , (4.24a) (4.24b) (4.24c)
where the primed quantities are derivatives with respect to c . These are equations for the polar part tv j, (10) (c)u jtr, θ, ϕu of the velocity components since the radial part, already set in our representation of the elds, here acts as a global prefactor which is ultimately ruled out. Eq. (4.24a) corresponds to the projection of the vector Stokes equation (4.15a) onto the radial direction, while Eqs (4.24b) (4.24c) are the polar (θ angular) and azimuthal (ϕ angular) Stokes equations, respectively. Due to axisymmetry, the latter equation is completely uncoupled from the rst two equations, so that the function v ϕ, (10) (c) can be derived in a fully independent way. With expression (4.23) for the pressure eld, the dierential equation we need to solve in order to derive the radial velocity component v r, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] writes

s 2 v I r, (10) 
$ I = ¡2π (10) c . 

c 2 1 ¡ c 2 K r, (10) 1 ¡ c 2 , (4.26) 
with K r, (10) R a second integration constant. Making use of the standard antiderivative

¡ 1/(1 ¡ c 2 ) dc = (1/2) ln[(1 c)/(1 ¡ c)] cst, we soon arrive to the expression v r, (10) (c) = π (10) c s K r, (10) 2 ln ¢ 1 c 1 ¡ c r K r, (10) . (4.27) 
But then regularising this form in c s = 1 necessarily imposes that s K r, (10) = 0. In fact, 00) associated Legendre polynomial of the second kind that has to be removed from the physical solution because of its logarithmic singularity at the branch point c s = 1. Finally, the radial velocity v r, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] is given by v r, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] 

(1/2) ln[(1 c)/(1 ¡c)] = Q 0 0 (c) is the (lm) = (
(c) = π (10) c ρ (¡10) , (4.28) 
where the constant r K r, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] is renamed ρ (¡10) to comply with forthcoming notations.

We next turn to Eq. (4.24b) for the polar velocity component v θ, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] . We have now everything that is needed to elucidate the right hand side of this equation and get

(1 ¡ c 2 ) v P θ, ( 10 
) (c) ¡ 2c v I θ, ( 10 
) (c) ¡ 1 1 ¡ c 2 v θ, ( 10 
) (c) = π (10) s . (4.29) 
By virtue of the linearity of the Stokes equation, the function v θ, (10) can be viewed as the superposition of the homogeneous solution v H θ, (10) and a particular solution v P θ, (10) of the whole equation (4.29), v θ, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF]

) (c) = v H θ, ( 10 
) (c) v P θ, (10) (c 
) . To lighten the notation, the subscript `(10)' is dropped for a while.

One can readily check that the homogeneous solution of Eq. (4.29) is of the form

v H θ (c) = 1 c 1 ¡ c 2 σ c σ $ . (4.30) 
This last form evidently diverges in c s = 1 and hence must be regularised in that point.

Regularisation is here straightforward and leads to the necessary condition σ = ¡σ and consequently to

v H θ (c) = ¡K H θ 1 ¡ c 1 c . (4.31) 
As usual, the particular solution v P θ is searched in the form of the right hand side v P θ (c) = K P θ s. Dierentiating this form twice with respect to c and inserting the results in Eq. (4.29) yields by identication K P θ = ¡π (10) /2, so that we end up with

v P θ (c) = ¡ π (10) 2 s , (4.32) 
and thereby

v θ, ( 10 
) (c) = ¡ π (10) 2 c 1 ¡ c 2 ¡ ρ (¡10) 1 ¡ c 1 c , (4.33) 
where the above integration constant K H θ has been renamed ρ (¡10) in order to match with the general expressions that we will derive in sec. 4.3.

To nish, one remarks that Eq. (4.24c) for the azimuthal velocity component v ϕ, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] exhibits exactly the same structure as the homogeneous equation for the polar velocity component v θ, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] , so that we immediately conclude

v ϕ, (10) (c) = σ (00) 1 ¡ c 1 c . (4.34) 
Before going further, a wise precaution is to check that the velocity components we have derived satisfy the incompressibility condition

s 2 v I θ ¡ cv θ = sv r . (4.35)
It then only remains to apply the interfacial boundary conditions, so as to relate the integration constants 2 π (10) , ρ (¡10) , σ (00) @ to one another and express each of them in terms of the sole temperature amplitude ψ (0) (0), a natural approach since this quantity controls the intensity of the thermally driven ow.

From the zero mass ux boundary condition across the interface (4.17c) one gets ρ (¡10) = ¡π (10) /2, while the radial Marangoni condition (4.17a) yields ρ (¡10) = ψ (0) (0)/2 and the azimuthal Marangoni condition (4.17b), which leads us to σ (00) = 0, conrms afterhand that v ϕ, (10) = 0 as expected from axisymmetry. Bringing all results together, we are ultimately left with the velocity vector

v (0) (10) (r, c) = ψ (0) (0) 2r ¤ ¦ ¦ ¦ ¥ 1 ¡ 2c c 1 ¡ c 1 c 0 per, e θ , eϕq , (4.36) 
that goes together with the pressure eld

p (0) (10) (r, c) = ¡ ψ (0) (0) r 2 c . (4.37) 

Nonlinear regime Pe 0

We now address the far eld axisymmetric state (lm) = (10) in the nonlinear regime of nite Péclet numbers Pe $ 0. The analysis gets more involved in this case due to thermal advection coupling the temperature to the ow velocity through the additional contribution 'Pe v.∇ϑ' in the heat equation.

Most importantly, we note that it is still adequate to seek long range temperature and velocity elds scaling as 1/r. Indeed, the structure of the advective coupling term is such that equal powers of 1/r are then ensured on both sides of the heat equation Pe v lo omo on . ∇ϑ lo omo on

(1/r) (1/r 2 ) = 1/r 3 = ∇ 2 ϑ lo omo on 1/r 3 .
Besides, since the velocity eld v [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] is governed in the nonlinear regime by exactly the same couple of equations (4.15a) (4.15b) as in the linear regime, its spatial dependence remains unchanged. Yet, one shall not forget the subtlety that the Marangoni stresses, expressed by the interfacial boundary conditions (4.17a) (4.17b), relate the temperature to the velocity in a way that impels us to distinguish between the interfacial temperature amplitude ψ(0) in the nonlinear regime Pe $ 0, and its counterpart in the linear regime Pe = 0 denoted ψ (0) (0), with the superscript `(0) ' to dispel any confusion. It ensues from this observation that the velocity eld v [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] plays the role of an input needed to derive the nonlinear temperature eld ϑ [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] .

In steady state conditions, the energy balance equation reads

∇. J = Q δ(R) , Q 9 = Q ρc p , (4.38) 
where we recall that Q is the total heating power released by the pointlike heat source. The heat current J can be expressed as the sum of two terms4 

J = J adv J diff = VΘ ¡ D∇Θ , (4.39) 
the contributions of thermal advection and diusion, respectively. Before proceeding any further, let us write Eq. (4.38) in dimensionless form

∇. j = q δ(r) , (4.40) 
with a dimensionless `heat current' j = Pe vϑ¡∇ϑ and the `heating power' q 9 = Q/(κ∆T a).

Temperature eld

Let us rst consider the continuity equation satised by the heat current, i.e. ∇. j = 0 . This equation writes in spherical coordinates

1 r 2 ∂ r r 2 j r ¨¡ 1 r ∂ c psj θ q 1 rs ∂ ϕ j ϕ = 0 . (4.41) 
However, in the far eld limit for which v [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] , ϑ (10) 1/r, the heat current j (10) 1/r 2 and the rst term of (4.41) thus vanishes. What is more, we focus on the axisymmetric state m = 0 which, by denition, does not depend on the azimuthal angle ϕ . As a result, Eq. (4.41) simply reduces to

∂ c sj θ, ( 10 
) ¨= 0 . (4.42) 
With both the velocity vector (4.36) taken as an input to upcoming calculations and a temperature eld scaling here again as 1/r, the ensuing dierential equation for the polar part of the temperature eld ψ (10) (c) is

1 ¡ c 2 ¨ψI (10) (c) Pe c p1 ¡ c q ψ (10) (c) $ I = 0 , Pe 9 = Pe 2 ψ (10) (0) . (4.43) 
This last equation integrated once with respect to c yields

ψ I (10) (c) Pe c 1 c ψ (10) (c) = K 1 ¡ c 2 , (4.44) 
with K R an integration constant which shall be set to zero so as to eliminate the singularity in c s = 1. We are then left with a separable dierential equation. Once the latter properly rewritten and integrated, we end up with the following non trivial form of the temperature eld

ϑ (10) (r, c) = ψ (10) (0) r p1 c q Pe e ¡Pe c , c [0, 1] , (4.45) 
where, for the sake of clarity, the `modied' Péclet number Pe will be simply denoted Pe from now on. Also bear in mind that ψ (10) (0) represents the temperature magnitude at the interface in the presence of thermal advection.

Though in a very specic case (lm) = (10), we have derived an analytical solution of the advection diusion heat equation. Interestingly, an exact solution of the `Navier Stokes Fourier' problem has been derived more than half a century ago by Bratukhin and Maurin in [START_REF] Bratukhin | Thermocapillary convection in a uid lling a half space[END_REF] (see also [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF]). We checked that the more general expression these authors got gives back the form (4.45) in the low Reynolds regime, as expected (see Appendix J).

Energy balance

The last step of the present derivation consists in determining the interfacial temperature amplitude ψ (10) (0). This can be done by integrating the energy balance equation (4.40) over a half sphere (S) of radius r S centred on the origin O in the upper half space c [0, 1]. We are then left with the surface integral 5 ¤ (S)

j . dS = 2πr 2 S ¢ 1 0 j r (r S , c) dc = Q κ∆T a , (4.46) 
where the innitesimal vector surface element dS of the half sphere (S), given by dS = r 2 S sin θdθdϕ e r , rewrites with respect to c 9 = cos θ as dS = ¡ r 2 S dc dϕ e r . 5 Actually, the initial volume integral is transformed into a ux integral over the closed surface (Σ ) 9

= t(S) (D)u by applying the Green Ostrogradski theorem. Yet the integral over D, dened as the disk corresponding to the intersection of the half sphere (S) with the interfacial plane (Π ), does not contribute here as neither heat nor mass uxes pass through the interface (this is a reasonable assumption insofar as the air being a gas has negligible thermal conductivity and viscosity compared with water).

Here below, both cases of nite and vanishing Péclet numbers are compared relating the parameters in the nonlinear regime to those dened in the diusive limit Pe 3 1. The latter parameters, taken as reference quantities, bear the superscript `(0) '.

Diusive limit Pe 3 1 :

This limit amounts to discarding the advection term in the heat equation (4.15c).

We have shown that the temperature eld writes in this case ϑ (0) (r) = ψ (0) (0)/r, so that the diusive heat current is j (0) (r) = ¡∇ϑ (0) = ψ (0) (0)/r 2 e r . This expression put in the integrand of (4.46) provides the reference temperature amplitude

ψ (0) (0) = Q 2πκ∆T a . (4.47) 
Let U (0) denote the typical Marangoni velocity in this diusion dominated regime. It is then convenient to dene a reference `Péclet number' as Pe 9

= aU (0) /D. Let us remind the reader that the temperature rise ∆T on the surface of the heat source has been yet specied through the relation a∆T = Q/(2πκ). According to (4.47), this amounts to xing ψ (0) (0) = 1. Finally considering that U (0) = γ T ∆T /η yields a reference `Péclet number'

Pe (0) = ρc p |γ T |Q 2πηκ 2 . (4.48) 
Unsurprisingly, both the temperature and the velocity are W Q in the linear regime :

the stronger the heating of the bead, the higher the ow velocity (Fig. 4.1).

Nonlinear regime Pe $ 1 :

The nonlinear regime corresponds to the physical situation wherein both diusive and advective heat transport occur, namely the regime of nite Péclet values. With the above velocity components (4.36) and the temperature eld (4.45), one is left with a total heat current of the form

j (10) (r, c) = ψ(0) r 2 1 Pe p1 ¡ 2cq $ p1 c q Pe e ¡Pe c e r , (4.49) 
where we remind that the notation Pe stands in fact for Pe 9 = (Pe/2) ψ (10) (0). In the nonlinear regime, the Marangoni velocity U can be thus expressed in function of the heating power Q or, equivalently, the Péclet number Pe 9

= aU/D be expressed in terms of Pe (0) W Q through the implicit relation

Pe (0) = Pe ¢ 1 0 1 Pe p1 ¡ 2cq $ p1 c q Pe e ¡Pe c dc , (4.50) 
according to Eq. (4.46).

The latter relation is tackled in the following situations :

Weakly nonlinear regime : for Pe 3 1, one can expand the integrand as follows

Pe (0) = Pe ¢ 1 0 2 1 Pe r1 ¡ 3c ln(1 c)s . . . @ dc = Pe ¡ δ Pe 2 . . . , (4.51) 
with δ = (3/2) ¡ 2 ln 2 0.11. Inverting this last relation yields

Pe = Pe (0) 1 δ Pe (0) . . . % , (4.52) 
showing that the velocity in the weakly nonlinear regime is slightly larger (δ ¡ 0)

than in the purely linear regime.

Strongly nonlinear regime : there is no other way than to invert the integral (4.50) numerically. For comparison, the Marangoni velocity is also plotted in this case on Fig. 4.1. The graph shows that heat is essentially dissipated by advection as the Péclet number increases. Dissipation proves much more ecient than in the linear regime, since it is here advection enhanced. This explains why the temperature increase now becomes a sublinear function of the injected power Q. Given that all parameter sets are proportional to Q, they are proportional to one another, which mathematically translates into the identity U/U (0) = Pe/Pe (0) = ψ(0)/ψ (0) (0), so that one obtains in the end 6

ϑ (10) (r, c) = ψ (0) (0) r p1 c q Pe e ¡Pe c ¢ 1 0 1 Pe p1 ¡ 2cq $ p1 c q Pe e ¡Pe c dc , ψ (0) (0) = Q 2πκ∆T a . (4.53) 
6 It can be demonstrated that the above integral is equal to , where E n (x) is the `generalised' exponential integral function dened as

E n (x) 9 = ¢ V 1 e ¡λx λ n dλ , (x, n) R 2 .
It is equally interesting to see how strongly the temperature and the velocity can inuence each other through advective coupling V.∇Θ. In this respect, Fig. 

The hemispherical Lamb's solution

The far eld axisymmetric solution (lm) = (10) derived above in the nonlinear regime is meant to model the base ow observed experimentally at low heating powers. In order to capture the azimuthal instability of this primary ow arising for a suciently strong heating of the bead, one should perturb the ground state by non axisymmetric states whose role is to break the initial rotational symmetry into an annulus of vortex pairs periodically distributed all around the source. These perturbative elds are to be selected among generic states of the `hemispherical' Lamb's solution that we derive now.

Generic forms of the elds

Our aim is to solve the `Stokes problem', namely the dierential equations (4.15a) (4.15b), within the upper half space c [0, 1]. As customary, we seek solutions with separated variables. Extending the former rationale to arbitrary powers of 1/r, we set temperature and velocity elds sharing in common generic terms 1/r l while the latter are 1/r l 1 for the pressure eld. Besides that, the 2π periodic azimuthal part of the solutions compels us to introduce a multipolar expansion with generic terms e imϕ . This explains why we take the elds in the ansatz forms p (r, c, ϕ) = The radial and azimuthal dependences of the elds being xed in the forms (4.54a) (4.54c), it therefore remains to derive the polar functions tp (lm) (c)u and tv j, (lm) (c)u jtr, θ, ϕu .

Let us start with the elucidation of the incompressibility condition (4.15b). The divergence of the velocity eld writes in spherical coordinates (using

∂ θ = ¡s∂ c ) ∇. v = 1 r 2 ∂ r r 2 v r ¨¡ 1 r ∂ c psv θ q 1 rs ∂ ϕ v ϕ . (4.55) 
One obtains after little algebra the dierential equation for the functions tv θ, (lm) (c)u

s 2 v I θ ¡ c v θ = ¡ pl ¡ 2q sv r imv ϕ . (4.56)
Next comes the explicitation of the Stokes equation (4.15a) yielding the hereafter set of coupled dierential equations for the velocity components tv j, (lm) (c)u jtr, θ, ϕu

s 2 v I r % I 4 (l ¡ 1)(l ¡ 2) ¡ m 2 s 2 B v r = ¡ (l 1) p , s 2 v I θ % I 4 l (l ¡ 1) ¡ 1 m 2 s 2 B v θ = 2sv I r 2im c s 2 v ϕ ¡ sp I , s 2 v I ϕ % I 4 l (l ¡ 1) ¡ 1 m 2 s 2 B v ϕ = ¡2 im s v r ¡ 2im c s 2 v θ im s p . (4.57a) (4.57b) (4.57c)
Remarkably, the symmetry of these equations is such that both angular functions v θ (c) and v ϕ (c) display the same prefactor (1 m 2 )/s 2 , whereas for the radial function v r (c) we only have m 2 /s 2 . The structure of these equations further reveals that the states (lm) = t(1m), (2m)u play a special role 7 . Indeed, one notices that the angular equations become simpler as l = 1, the same holding for the radial equation when l = 1 or l = 2. Technical details on how to obtain these equations are provided in Appendix K.

The dierential system still has to be `closed'. As seen previously, this requirement is fullled by taking the divergence of the Stokes equation (4.15a), which leads to the Laplace's equation (4.22) for the pressure eld. Elucidating it in spherical coordinates yields the canonical form of the associated Legendre dierential equation ( [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], 8.1.1)

1 ¡ c 2 ¨d2 p (lm) dc 2 ¡ 2c dp (lm) dc l(l 1) ¡ m 2 1 ¡ c 2 & p (lm) = 0 . (4.58)
In summary, the system of coupled dierential equations whose solving provides the expressions of the generic functions tp (lm) (c)u and tv j, (lm) (c)u jtr, θ, ϕu reads The solving strategy of this system for both the axisymmetric (lm) = (l0) and the non axisymmetric (lm) m$0 states is detailed in Appendix L. Keep in mind that Eq. (4.59a) is the cornerstone of the Stokes problem that makes its solving quite straightforward.

s 2 p I % I ¢ l (l 1) ¡ m 2 s 2 p = 0 , s 2 v I θ ¡ c v θ = ¡ pl ¡ 2q sv r imv ϕ , s 2 v I r % I 4 (l ¡ 1)(l ¡ 2) ¡ m 2 s 2 B v r = ¡ (l 1) p , s 2 v I θ % I 4 l (l ¡ 1) ¡ 1 m 2 s 2 B v θ = 2sv I r 2im c s 2 v ϕ ¡ sp I , s 2 v I ϕ % I 4 l (l ¡ 1) ¡ 1 m 2 s 2 B v ϕ = ¡2 im s v r ¡ 2im c s 2 v θ im s p .

Derivation of the hemispherical Lamb's solution

As just seen, the pressure eld obeys the associated Legendre dierential equation (4.58).

Still, the forthcoming analysis is not standard as we will explain it now.

In most situations commonly encountered in physics (e.g. in quantum mechanics), one is interested in solutions that are regular over the whole space c [¡1, 1]. The solution of Eq. (4.58) is then p (lm) (c) W P m l (c), where the tP m l (c)u are the associated Legendre polynomials of degree l and order m dened for m ¥ 0 as

P m l (c) = 1 ¡ c 2 ¨m/2 d m dc m P l (c) , (4.60) 
with tP l (c)u the Legendre polynomials of degree l. For negative orders, the associated Legendre polynomials 

P m l (c) = ¢ 1 ¡ c 1 c |m|/2 2 F 1 ¢ ¡l, l 1, 1 |m| ; 1 ¡ c 2 , c [0, 1] , (4.61) 
where the special function 2 F 1 pα, β, γ ; zq is known as the Gauss hypergeometric function (short presentation in Appendix M). As can be noticed, working in a half space results in the use of a rather unconventional denition of the Legendre functions. As a matter of fact, the azimuthal wavenumber m is no longer limited to (2l 1) integer values in the range 

Pressure eld

From the foregoing discussion one concludes that the c dependent part of the pressure eld p (lm) (c) satisfying the associated Legendre dierential equation (4.58) is given by

p (lm) (c) = 2 p2l ¡ 1q l 1 π (lm) P m l (c) , (4.62) 
with π (lm) an integration constant to be specied later applying the boundary conditions.

The prefactor 2 p2l ¡ 1q / pl 1q is introduced for convenience only, as will be clear below.

The introduction of an operatorial formalism is of great relevance to the simplication of analytical calculations. We dene what we call the Legendre dierential operator as

Lm 9 = 1 ¡ c 2 ¨d2 dc 2 ¡2c d dc ¡ m 2 1 ¡ c 2 .
(4.63)

The lower index `m' stresses the fact that L depends on the azimuthal wavenumber m but not on the parameter l. This denition is used to redraft The next step is to derive the velocity components. As the corresponding calculations are of no interest for the physics but purely technical, the interested reader is referred to Appendix O for a detailed derivation. Let us go straight to the general form of the Lamb's solution in the upper half space c [0, 1] : Pressure :

p (r, c, ϕ) = V ļ=1 V m =¡V 1 r l 1 2 p2l ¡ 1q l 1 π (lm) Y m l (c, ϕ) . (4.65)
Radial velocity :

v r (r, c, ϕ) = V ļ=1 V m =¡V 1 r l π (lm) Y m l (c, ϕ) ρ (l¡2, m) Y m l¡2 (c, ϕ) % . (4.66) 
Polar velocity :

v θ (r, c, ϕ) = ψ (10) (0) 2r c 1 ¡ c 1 c V m =¡V (m0)
1 rs

1 6 pm 2q π (1m) Y m 2 (c, ϕ) p1 mq ρ (¡1m) Y m 1 (c, ϕ) σ (0m) Y m 0 (c, ϕ) & V ļ=2 V m =¡V 1 r l l ¡ 2 l pl 1q π (lm) s ∂Y m l (c, ϕ) ∂c ρ (l¡2, m) l ¡ 1 s ∂Y m l¡2 (c, ϕ) ∂c imσ (l¡1, m) s Y m l¡1 (c, ϕ) & . (4.67) 
Azimuthal velocity :

v ϕ (r, c, ϕ) = ¡ V m =¡V (m0) 1 r is m 1 6 pm 2q π (1m) ∂Y m 2 (c, ϕ) ∂c p1 mq ρ (¡1m) ∂Y m 1 (c, ϕ) ∂c σ (0m) ∂Y m 0 (c, ϕ) ∂c ¡ π (1m) Y m 1 (c) ¡ ρ (¡1m) Y m 0 (c) & V ļ=2 V m =¡V 1 r l 4 ¡im l ¡ 2 l pl 1q π (lm) Y m l (c, ϕ) s ρ (l¡2, m) l ¡ 1 Y m l¡2 (c, ϕ) s & ¡ ¢ is m imσ (l¡1, m) ∂Y m l¡1 (c, ϕ) ∂c B . (4.68) 
We have introduced generalised spherical harmonics dened as Y m l (c, ϕ) 9 = P m l (c) e imϕ . We remind that the explicit forms of the associated Legendre functions are provided in Appendix N, if needed. Also note that the generic integration constant σ (l¡1, m) has been redened making a prefactor im appear explicitly (the latter originates in fact from

∂ ϕ Y m l )
, so as to obtain a form more in line with the usual writing of the Lamb's solution.

Both angular velocity components are split into several parts : rst the (lm) = (10) part of the solution which required a separate analysis, followed by the generic states (lm) = (1m) m$0 and ultimately the whole remaining part for l ¥ 2, dm. The (10) term of the polar velocity is given under the simplied form we end up with once all boundary conditions are applied. Besides, one remembers that axisymmetry imposes σ (00) = 0 which explains why no (10) term appears in the expression of the azimuthal velocity.

Comparison with precursor works

The above derivation evidences that the `hemispherical' solution to the Stokes equation contains the classical Lamb's solution [START_REF] Lamb | Hydrodynamics[END_REF], plus supplementary terms only regular in the half space c [0, 1]. Actually, some of these additional terms have been already discussed in previous works and we now verify that our results are consistent with these studies.

The far eld axisymmetric solution (lm) = [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] To our knowledge, the far eld axisymmetric solution (lm) = ( 10) was rst derived by Bratukhin and Maurin in their work [START_REF] Bratukhin | Thermocapillary convection in a uid lling a half space[END_REF] (see also [3] [59]), more than half a century ago. Our own analysis yields the velocity components v r, (10

) (c) = ρ (¡10) p1 ¡ 2cq , v θ, (10) (c) = ρ (¡10) cs 1 c , (4.69a) (4.69b) 
which turn out to be exactly the same expressions as those of Eq. (4.1) in ref. [START_REF] Würger | Thermally driven Marangoni surfers[END_REF].

The dipolar solution (lm) = ( 21)

Another salient state is the dipolar solution (lm) = ( 21) whose velocity components write

v r, ( 21 
) (c) = π (21) P 1 2 (c) ρ (01) P 1 0 (c) = 1 s ρ (01) ¡ π (21) 2 ¡ ρ (01) © c ¡ π (21) 2 c 3 % , v θ, ( 21 
) (c) = ρ (01) sP I 1 0 (c) iσ (11) s P 1 1 (c) = iσ (11) 2 ¡ ρ (01) 1 c , v ϕ, ( 21 
) (c) = ¡ iρ (01) s P 1 0 (c) σ (11) sP I 1 1 (c) = ¡i ρ (01) 1 c ¡ iσ (11) 2 c & , (4.70a) (4.70b) 
(4.70c) the latter being deliberately given in these unusual forms to allow for direct comparison with the expressions found in [START_REF] Würger | Thermally driven Marangoni surfers[END_REF] (adapted to our notations) 

v r, ( 21 
) (c) = t 3 1 s 1 ¡ c 3 ¨¡ t 4 cs = 1 s t 3 ¡ t 4 c pt 4 ¡ t 3 q c 3 $ , v θ, ( 21 
) (c) = t 5 ¡ t 3 1 c , v ϕ, ( 21 
) (c) = ¡i t 3 1 c ¡ t 5 c & . ( 4 

Representation of the ow modes

In this part, we focus our attention on the axisymmetric ow state (lm) = ( 10) and on the non axisymmetric ow state (lm) = [START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF]. In order to specify the `hemispherical' Lamb's solution in our physical framework, we rst apply the no ux interfacial boundary condition (4.17c) followed by the couple of Marangoni conditions (4.17a) (4.17b) which introduce the quantities 2 ψ (lm) (0) @ , namely the temperature magnitudes at the interface. Since the latter surely play a key role in the scenario of the instability, relating the integration constants 2 π (lm) , ρ (l¡2, m) , σ (l¡1, m) @ to the 2 ψ (lm) (0) @ is essential. In a second step, each ow state is plotted in the horizontal plane (xOy) of the interface as well as in the cross sectional plane (xOz) prior to superimposing both states [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] and [START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF].

Application of the interfacial boundary conditions

Axisymmetric ow state (lm) = [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] Let us start with the generic expression of the velocity vector v (10) (r, c)

v (10) (r, c) = 1 r ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ π (10) c ρ (¡10) ¡ π (10) 2 s ¡ ρ (¡10) 1 ¡ c 1 c σ (00) 1 ¡ c 1 c
per, e θ , eϕq The generic expression of the velocity vector v (21) (r, c, ϕ) writes 

. ( 4 
v (21) (r, c, ϕ) = e iϕ r 2 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ π (21) 2 cs ρ (01) 1 ¡ c 1 c ¡ ρ (01) 1 c iσ (11) 2 ¡ iρ (01) 1 c ¡ σ (11)
v (21) (r, c, ϕ) = ψ (21) (0) 2r 2 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ ¡ p3c 2 3c ¡ 1q 1 ¡ c 1 c cos ϕ c 1 c cos ϕ ¡ c 2 c ¡ 1 1 c sin ϕ per, e θ , eϕq , (4.76) 
where only the real part of the velocity vector has been kept (keeping instead the imaginary part simply amounts to rotating the elds by an angle π/2).

Plotting the ow states

Here are plotted in the interfacial plane (xOy) as well as in the vertical cut plane (xOz) the streamlines corresponding to the ow modes [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] and [START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF]. Separate plots are rst displayed, followed by plots of the superposed state t(10) (21)u. Each time, a density plot of the velocity norm is also shown so as to provide an insight into the variation of the ow intensity along these planes. The plots are realised with Wolfram Mathematica's functions `StreamPlot' and `DensityPlot' which, as a preliminary step, require converting all velocity components into cartesian coordinates (see Appendix P for details).

Axisymmetric ow state (lm) = [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] Unsurprisingly, this mode is axisymmetric with a surface ow consisting of diverging streamlines and a bulk ow consisting of what is seemingly a pair of counter rotating vortices (Fig. 4.3). However, since an unbounded medium is considered theoretically, these vortices close at innity. By virtue of axisymmetry, the `ow slices' have the same morphology in any cut plane around the vertical axis (Oz). Therefore, the overall ow structure is that of a torus whose revolution axis is centred on the source located at the origin (not sketched on the plots). The ow axisymmetry is also reected in the interfacial velocity norm whose map exhibits concentric circles of declining intensity. An ascending column of accelerated liquid, similar to the one observed experimentally, is evidenced by the map of the velocity norm displaying a plume like shape beneath the source. Non axisymmetric ow state (lm) = [START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF] Here the axisymmetry of the ow is clearly broken, with a preferential direction along the mirror symmetry axis of the interfacial dipole (Fig. 4.4). Remarkably, on the bulk view, a `third vortex' seems to emerge in the middle of the original torus (compare with Fig. 4.3). On top of that, streamlines located to the left of the point source are now oriented rightward. Such a ow reversal may be caused by various sources of asymmetry (sec. 2.6). Curiously, whereas this ow mode (21) is evidently non axisymmetric, the distribution map of its velocity norm keeps an axisymmetric structure. 

First steps towards grasping the instability

In this section, we make a short presentation geared to preparing the ground for the capture of the instability. Now that the exact solution to the (V, Θ) coupled problem in the far eld axisymmetric regime (lm) = [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] has been derived, we should perform its stability analysis. More precisely, the point is to probe the stability of the base ow (lm) = (10) in response to azimuthal perturbations.

The main diculty lies here in nding a correct approach to perform the stability analysis of the advection diusion heat equation : .

For this time dependent equation to admit a solution, all the terms on its left as well as on its right side must share in common the same radial dependence, which imposes the constraint l = 2l 1 = l 2. However, it is easy to be convinced that there exists no value of l satisfying both equalities simultaneously. We ought to conclude that trying to solve `order by order' the unsteady advection diusion equation is doomed to failure. Instead, one shall insert in the above equation the full series (4.54) dening the elds, next couple modes until a perfect matching of the radial powers is obtained, and nally solve the ensuing equation if possible. In the rst instance, however, we waive such a stability analysis.

Turning back to the steady advection diusion heat equation, we are left with .

Here the `matching condition' which writes 2l 1 = l 2 is fullled only for l = 1.

One thus sets perturbative elds scaling as 1/r. Examining the linear stability of far eld perturbations is what Shtern et al. did in [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF]. If the perturbation of the base ow state (p v, p ϑ) (expressions (4.36) and (4.45)) by generic non axisymmetric states (1m) m$0 does not trigger the instability, one should then try to destabilise it with higher order non axisymmetric states (2m) m$0 , (3m) m$0 and so on. This approach is not forbidden by the above equation. Indeed, considering a velocity eld v 1/r l and a temperature eld ϑ 1/r r l leads to the condition l r l 1 = r l 2 which holds d r l provided that l = 1.

Discussion

In this chapter, we essentially derived the solution to the incompressible Stokes equation within a half space. We saw how the classical Lamb's solution shall be generalised in this approach : restricting the solving to a half space yields the relaxation of the constraint Moreover, we derived the far eld axisymmetric (lm) = (10) solution to the nonlinear (V, Θ) coupled advective problem. The latter models the axisymmetric ow observed experimentally under slight heating conditions. A future work on our route towards a theory of the instability would be to study the response of this ground state to azimuthal perturbations. Still, the present case is complicated by the special way powers of 1/r are related through the advection diusion heat equation, entailing a strategy dierent from a standard linear stability analysis based on studying the sign of a time/spatial dependent growth rate. Intriguingly, the stability analysis carried out by Shtern and Hussain in [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF] does not predict the onset of a dipolar ow state (m = 1). According to their work, the quadrupolar ow (m = 2) is the rst unstable mode rather than the dipole. Anyhow, deriving the `hemispherical' Lamb's solution was a preliminary step that provided us with non axisymmetric ow states to serve as perturbative elds.

The fundamental ow states [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] and (21) plotted in sec. 4.3.5, though unveiling in a promising way the existence of multipolar modes in the `hemispherical' Lamb's solution, still dier from the ow patterns observed experimentally. This is actually not surprising since the current theoretical model is far from grasping the whole intricacy of the real system, e.g. it does not take into account the (almost) unavoidable presence of surface active impurities adsorbed on the water/air interface, nor does it address the generation of counterows due to liquid connement in our small experimental cell ... To nish, it should also be stressed that the no ux and the Marangoni boundary conditions are insucient for expressing all integration constants 2 π (lm) , ρ (l¡2, m) , σ (l¡1, m) @ in terms of the interfacial temperature amplitudes 2 ψ (lm) (0) @ . For instance, they do not yield any information regarding the constants π [START_REF] Takagi | Surfactant Eects on Bubble Motion and Bubbly Flows[END_REF] or π [START_REF] Uematsu | Charged Surface Active Impurities at Nanomolar Concentration Induce Jones Ray Eect[END_REF] . To x this issue, one should add a near eld boundary condition in the model, presumably the no slip condition on the surface of the hot bead which is then considered a spherical particle of nite radius a.

Conclusion

In this thesis, we studied the ow that a point source generates at the water/air interface. Given the rotationally invariant geometry of the system, one naturally expects a purely radial ow. Such a ow exists, but is only the `ground state'. As soon as perturbations become suciently strong, the axisymmetry of the base ow is broken giving place to pairs of counter rotating vortices periodically distributed all around the source. This azimuthal instability can be observed using various setups that are all based on axisymmetrically fed surface ows. We reviewed in the literature systems that harness the Marangoni eect, either chemical or thermal. The most common process uses some surface active material injected at a point of the interface or under it : a centrifugal ow is created this way through the chemical Marangoni eect [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF][START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF][START_REF] Roché | Marangoni Flow of Soluble Amphiphiles[END_REF][START_REF] Le Roux | Soluble surfactant spreading : How the amphiphilicity sets the Marangoni hydrodynamics[END_REF][START_REF] Arangalage | Dual Marangoni eects and detection of traces of surfactants[END_REF][START_REF] Bandi | Hydrodynamic Signatures of Stationary Marangoni Driven Surfactant Transport[END_REF][START_REF] Mandre | Axisymmetric spreading of a surfactant driven by self imposed Marangoni stress under simplied transport[END_REF][START_REF] Wodlei | Marangoni driven ower like patterning of an evaporating drop spreading on a liquid substrate[END_REF][START_REF] Keiser | Marangoni Bursting : Evaporation Induced Emulsication of Binary Mixtures on a Liquid Layer[END_REF]]. An alternative option to induce a divergent ow at the water surface consists in heating the interface locally so as to generate a thermally driven Marangoni ow [START_REF] Kuhlmann | Flow instabilities in thermocapillary buoyant liquid pools[END_REF] [START_REF]Convection thermocapillaire et thermogravitaire dans un uide chaué localement sur sa surface libre[END_REF].

As pointed out several times in this work, a key ingredient is here the state of the water/air interface under practical conditions. One cannot explain the hydrodynamic responses observed in the experiments without taking into account surfactant molecules adsorbed on the real interface. The surfactant elastic layer resists the centrifugal ow, which results in remarkable consequences : at low forcing, very weak ows develop on the interface and the latter may be even completely blocked; yet the interface unfreezes under strong enough forcing conditions, which gives rise to multipolar ow patterns, the most basic one being a dipole formed by a pair of counter rotating vortices. Similar hydrodynamic multipoles have already been reported by a few authors on the occasion of various experiments [START_REF] Pshenichnikov | Convective Diusion from a Concentrated Source of a Surfactant[END_REF] [START_REF] Le Roux | Soluble surfactant spreading : How the amphiphilicity sets the Marangoni hydrodynamics[END_REF], and even accidentally sometimes [START_REF] Couder | On the hydrodynamics of soap lms[END_REF]. However, to date, there exists no sound theory of this instability in the literature. The phenomenon investigated here is a priori very intricate as it involves the surfactant concentration Γ and the temperature Θ elds that are both coupled to the ow velocity V [75] [START_REF] Homsy | The eect of surface contamination on thermocapillary ow in a two dimensional slot[END_REF].

In this thesis, we contributed to the understanding of this general problem through addressing specic points. We designed two original experiments while, on the theoretical level, we focused on the ideal case of a thermocapillary ow devoid of surfactants.

Our water jet experiment (chapter 2) is certainly the most simple realisation of a divergent ow one may imagine. Its implementation is quite easy, this experiment being also `minimalist' in the sense that it only couples the surfactant concentration Γ to the ow velocity V. Despite its great simplicity, it seems we have been the rst to use such a tool for probing the elastic response of the surfactant laden interface. We have learnt many things from this experiment, especially the following points : At low jet speed V inj , the interface is blocked and the ow, which is conned to the bulk, takes the form of a torus centred on the axis of the source. We have seen that the morphology of the base ow as well as its dimensions are well captured by the recent theory of Bickel et al. and the numerical simulations performed by J-C. Loudet [START_REF] Bickel | Hydrodynamic response of a surfactant laden interface to a radial ow[END_REF]. The fact that the ow features are explained by the presence of a surfactant layer at the interface is now well established.

Above a threshold injection speed V inj , the axisymmetric base ow is destabilised and the ow becomes dipolar. The interface unlocks along the median axis of the dipole vortex pair, which is a region of high velocity. We characterised the dipolar ow measuring the maximum velocity V max along the interface. We have shown that V max plays the role of an `order parameter' which quanties the magnitude of the dipole. Surprisingly, the value of V max seems to depend solely upon the injection speed V inj , and not on the distance H separating the injector from the surface. This result is very counterintuitive, to such an extent that we do not know how to interpret the unlocking of the interface. It will be of utmost importance to see whether the upcoming theory of the instability grasps this point.

The originality of our hot bead experiment (chapter 3) lies in the way we implement it, with a laser heated carbon microbead stuck onto the end of an optic bre. From a qualitative point of view, the heating power P plays a role analogous to the injection speed V inj in the jet experiment, and strong similarities exist between the ow structures observed at varying P or V inj . A thermocapillary convection torus appears under low heating conditions and is replaced by multivortex ow patterns at higher heating levels.

Still, we did not observe a complete blockage of the interface : the surface ow velocity is not zero but decreases as 1/r 2 at low temperatures. Besides, the thermocapillary ow we observed at high powers was often quadrupolar. According to our observations, the `torus to multipole' transition occurs at some nite P but the system's behaviour is strongly hysteretic and the ows may vary a lot from one experiment to another, to such an extent that we are not able to construct a graph of V max in function of P that would be the thermal counterpart of what we plotted in the jet experiment.

The hot bead setup is rather easy to operate but oers a poor level of reproducibility. It must be noted that thermal excitation couples the elds V, Θ and Γ, leading to a higher level of complexity compared with the jet conguration. We probed the coupling between V and Γ through the elastic response to laser shutdown of the surfactant laden interface, and also the `hydrothermal' coupling (V, Θ) by the simultaneous observation of both the surface ow and the temperature maps. We checked that the streamlines align with the isotherms at high power P, which is the behaviour predicted by the theory when heat is essentially transported through advection, i.e. at large thermal Péclet numbers.

The advective coupling between V and Θ is the nonlinear framework we focused on in the theoretical part of the thesis (chapter 4). We derived an exact solution to this problem in the case of a pristine interface (Γ = 0). We have shown that a point heat source sitting across the water/air interface can trigger dierent ow modes. The purely radial ow appears as the `fundamental mode' independent of the azimuth ϕ. On the contrary, the structures of the `excited modes' explicitly depend on ϕ. We insisted on the particular mode (21) whose ow pattern recalls the vortex dipoles observed experimentally.

The reader has understood that explaining this instability is a dicult matter and that we are far from a complete theory of this phenomenon. The theory shall reproduce the ow structures observed in the experiments as elementary solutions of the governing equations and provide a detailed analysis of their stability. Numerical simulations may be a powerful tool in parallel with the theory but are also very dicult to achieve. Major eorts are needed to go further and the road promises to be long and winding, but it is worth taking on the challenge given the `universality' of this instability. To be convinced of this, one just has to glance at the examples gathered in Fig. 4.6. One notes that this instability appears over a broad spectrum of length scales and in a wealth of practical situations, from the optical manipulation of heat absorbing microparticles [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF] to the stunning vortical structures generated by a bubbly column in a champagne glass [START_REF] Liger-Belair | Evidence for ascending bubble driven ow patterns in champagne glasses, and their impact on gaseous CO 2 and ethanol release under standard tasting conditions (review)[END_REF][START_REF] Beaumont | Unveiling self organized two dimensional (2D) convective cells in champagne glasses[END_REF]. According to our observations, controlling both the nature and amount of surfactants adsorbed at the water/air interface is the prime area for improvement. Unfortunately, we cannot do much better with our setups, primarily due to contaminants inevitably present in the ambient air. The production of `zero surfaces', namely surfaces pure from molecules of foreign substances, is a delicate aair. One attempt in this direction is to work with silicone oil instead of water [START_REF] Mizev | Eect of an Insoluble Surfactant Film on the Stability of the Concentration Driven Marangoni Flow[END_REF][START_REF] Ezersky | Hydrothermal waves in Marangoni convection in a cylindrical container[END_REF], the latter being less prone to contamination owing to its lower surface tension. As for us, inspired by the `blowing' experiment of Couder et al. ( [START_REF] Couder | On the hydrodynamics of soap lms[END_REF], § 4), we propose an alternative to our water jet setup that consists in hitting the interface perpendicularly with a jet of an inert gas, e.g. argon, in a neutral atmosphere. One major asset of this approach is to dispense us from using pipes and syringes that are important sources of contamination. In future experiments, it will also be worth grafting the Milli Q water purication system directly onto the setup, to avoid contaminating the interface during the transport of the sample from one room to the other. We hope to attain this way purity levels comparable to those set in Langmuir Blodgett throughs, where the amount of surfactant material adsorbed at the interface is nely controlled.

To conclude, the take home message of this thesis is that even traces of a surfactant can alter surface tension driven ows at the water/air interface and set the elasticity conditions for the onset of the instability. In that respect, this work is complementary to the wealth of experimental and theoretical studies recently performed in a geometry similar to that of our water jet experiment [START_REF] Roché | Marangoni Flow of Soluble Amphiphiles[END_REF][START_REF] Bandi | Hydrodynamic Signatures of Stationary Marangoni Driven Surfactant Transport[END_REF][START_REF] Mandre | Axisymmetric spreading of a surfactant driven by self imposed Marangoni stress under simplied transport[END_REF]. Besides, this thesis contributes to a better understanding of how a free hot microsphere conned to a liquid surface can morph into an active particle able to self propel at large speeds, through harnessing the vortex pairs intrinsic to the azimuthal instability it has induced. Our hot bead experiment might also serve as a `toy model' to better apprehend the swimming of microorganisms. Finally, despite their apparent simplicity both systems explored in this work still harbour a plethora of amazing phenomena. Remark: Most of the time, we make the approximation dH/dt ! ∆H/∆t exp = pH f ¡ H i q /∆t exp with H i and H f the initial and nal values of the gap, and ∆t exp the experiment time. Although this a rough approach compared with meticulously tracking the gap over a long time, it captures the right order of magnitude of Q gap .

Calculation of Q pump

The calculation of the pumping rate Q pump is based on the counting of the average number of droplets Nd the peristaltic pump discharges in the tank per unit time. In fact, the numbers xed on the pump control box (denoted PR for `Pumping Rate') are related but not identical to the true pumping rates Q pump . A complementary experiment is hence needed in order to determine Nd for a whole set of `pumping rates' PR. A linear relationship is evidenced between these two quantities (Fig.

B.2).

A linear t yields the slope value ∆Nd /∆(PR) 0.1, meaning that on average one droplet more falls in the tank each time the pumping rate is increased by ten units. Eq. (B.1) yields Q inj 9.90 ¡ 2.02 7.9 mm 3 /s. The injection speed is V inj = Q inj /s (s : cross section of the injector, s = πr 2 inj 0.238 mm 2 ). One nds V inj 3.3 cm/s, a value typical of the injection speeds attainable in the `gravity ow' setup.

B.2 Increasing/decreasing gap experiments

In our conguration, pumping balances injection almost exactly, so that a slow variation of the gap |dH/dt| 0.1 mm/min is imposed yielding |Q gap | 1.6 mm 3 /s. Pumping rates Q pump set in the increasing gap experiments are in the range (9.9 ¡11.9) mm 3 /s and (14.4 ¡ 16.8) mm 3 /s in the decreasing gap experiments. We get an injection speed V inj 5.25 cm/s (resp. V inj 5.88 cm/s) in the increasing (resp. decreasing) gap experiments. Volume lighting The cloud is uniformly illuminated by blue laser light supplied by a Coherent Innova 300 argon ion laser source (λ Ar = 488 nm, 60 mW) and guided by a multimode bre. Speckle noise, which gives the emitted light a granular aspect, is suppressed shaking the bre with a vibrator at a suciently high frequency. Fluorescein shines bright green under ultraviolet lighting. The main absorption and emission peaks appear in water at λ abs = 494 nm and λ em = 521 nm, respectively. Projections of the coloured cloud volume are captured by the cameras. Either the top camera (TC) or the side camera (SC) can be replaced by a digital reex camera (model Nikon D300, settings : ISO 1000, high sensitivity for photography in dark environments; shutter speed 1/15 s with aperture iris diaphragm at f /5.6; camera lens f 85 mm + close up lens, namely a convergent lens used for macro photography) to take high resolution colour photographs of the cloud (scales : 11.45 µm/pix, with par = 1, for the top views and 8.83 µm/pixX, with par 1.082, for the side views).

Laser tomography Another way of looking at the coloured cloud is through a top down scanning of its structure. This technique called tomography yields additional information as slices of the cloud are now obtained instead of projections.

The volume lighting is turned into a horizontal laser sheet vertically displaced by a motor connected to a low frequency signal generator (Agilent's 33210A model, 10 MHz function/arbitrary waveform generator). A ν = 140 mHz square wave signal is selected. This way, it takes T sweep = p1/2q ¢ p1/νq 3.57 s to sweep the coloured structure from top to bottom. In steady state, the coloured structure extends over depths not exceeding twice the gap, that is a few mms, whereas the laser sheet travels a distance ∆h = 11 mm thus sweeping the whole coloured cloud. The success of such a laser sweeping experiment relies on one's ability to ensure uniform illumination as well as very regular motion of the laser sheet. One also needs to make sure that the sweeping velocity U sweep is neither too fast nor too slow. If U sweep were to be too fast, one would obtain a poor spatial resolution of the coloured structure with a 3D reconstruction based on an insucient number of frames. Conversely, if U sweep were to be too slow, the risk would be that some signicant change in the shape of the coloured cloud occurs before sweeping is completed.

Finally, a 3D reconstruction is achieved using the plugin `Volume Viewer' from ImageJ (the structure associated with a dipolar surface ow is presented in sec. 2.3.2). ImageJ creates a stack in which an `altitude' is assigned to each frame, so that two successive slices are separated by a distance δz dened as the ratio of the travelling distance ∆h = 11 mm of the laser sheet over the sweeping time T sweep = 3. 

D.2 Comments on transport mechanisms

In the dye injection experiments, the coloured cloud undergoes (1) advection, (2) thermal agitation which causes molecular diusion and (3) gravity responsible for sedimentation. In an ideal experiment, the cloud subject to the sole action of (1) traces the ow structure faithfully. Still, (2) and (3) cannot be ruled out in actual experiments, which introduces some discrepancy between the coloured cloud and the hydrodynamic structure it covers.

On the one hand, sedimentation makes the cloud collapse. This eect is delayed using a `light' uorescein solution. For instance, with a concentration C Fluo = 4 ¢ 10 ¡4 mol/L the sedimentation limited time is τ sed 1 min. Let τ feed be the typical feeding time over which dye is supplied to the bath. Writing that s V inj τ feed = V color (s = πr 2 inj 0.238 mm 2 , area of the injection nozzle ; V inj 1 cm.s ¡1 , typical injection speed and V color 200 µL, injected volume of dye), one nds τ feed τ sed 1 min. The cloud is thus fully visible over a convenient time ∆t 1 min , a crucial point for a correct analysis of its morphology.

On the other hand, diusion makes the cloud blurry. Let L be the typical distance separating two structural elements we shall dierentiate in order to gure out the cloud shape properly. Our observations yield L = 1 mm. If the colouring diuses over a length comparable to L during the time τ sed , it becomes impossible to get an accurate picture of the cloud structure. Let l be the distance a dye molecule submitted to diusion travels over τ sed . Its diusion constant D is estimated through the Stokes Einstein formula (taking a 1 nm as the size of a dye molecule). One nds D 2.2¢10 ¡10 m 2 /s. The mean square displacement obeying the law l 2 = 6Dτ sed , one ends up with a distance l 0.3 mm L over the time τ sed 1 min, meaning that diusion only slightly aects the coloured cloud whose structure remains interpretable over the observation time. Therefore, we expect the coloured cloud and the underpinning hydrodynamic structure to be strongly correlated, provided that the gap H is kept constant for the ow to be in a (quasi-)stationary state. The parasitic cast shadow visible next to the centre is probably due to some impurity.

E.2 Experimental protocol

One displaces the screen (OS) in the reected beam and seeks the critical distance D at which the caustic rst appears on it. However, if the observation plane intercepts the beam well before or after the reected rays intersect, the shadowgrams are blurry and thus harm a correct measurement of the deformation. Setting D = 40 cm turns out to be suited for capturing small deformations. In this regard, the minimum detectable height h min of the hydraulic bump is limited by the little space available in our laboratory. The greatest critical distances D that can be accessed do not exceed a few metres. Introducing the latter order of magnitude in the formulas (E.1) below yields h min 0.1 µm. D shall be substantially reduced to measure sharper deformations, in which case the screen is placed on top of the cell at D 2.5 cm above the free surface (Fig. All three unit vectors ûi , ûr and ûn (Figs E.4 and E.5) belong to the plane that is perpendicular to the deformed surface at point P (0, a, f (a)). By denition, ûr and ûi are mirror images of each other with respect to the axis the vector ûn is directed along. 

E.4 Application of the formulas

We present a concrete application of formulas (E.1). We consider an experiment achieved at an injection speed V inj 3.3 cm/s. The gap is decreased over ∆t 1h, from H 7.7 mm down to H 0.5 mm. The side camera is mounted on a xyz translation stage to enable focus correction each time the laser sheet is displaced. Another xyz stage is utilised for the centring of the cuvette on the bottom camera axis. The position of both cameras, as well as that of the experimental cell is read on dial test indicators (Mitutoyo's model 2046F) with a 0.01 mm accuracy. Red orange lters prevent the camera sensors from being damaged by direct exposure to intense laser light while allowing uorescent light to pass.

Image acquisition is done with `uEye Cockpit', a software from the IDS Software Suite adapted for the EO cameras, and with `Camware', a control application for the PCO camera systems. Just like in the water jet experiment, time lapse photography yields average frames whereon the distribution of the streamlines unveils the ow patterns. The buoyancy force stems from the uid mass density dependence on the temperature.

A linear relation is assumed : ρ(Θ) = ρ 0 r1 ¡ α pΘ ¡ Θ 0 qs , where α is the coecient of thermal expansion (thermodynamic stability imposes in general a positive constant α for pure liquids). Such a simple law only holds for slight deviations from the equilibrium mass density ρ 0 = ρ(Θ 0 ). Under STP conditions, α 1.5 ¢ 10 ¡4 K ¡1 for pure water. Taking a temperature gap ∆T 10 K between the hot bead and the quiescent ow at innity, a thermal diusivity D 10 ¡7 m 2 . s ¡1 and a cuvette height h = 3 mm, one nds Ra 10 3 .

The Marangoni number Ma comparing thermocapillarity to dissipation is dened as

Ma 9 = γ T ∆T R ηD , γ T 9 = § § § § dγ dΘ § § § § . (I.3)
With γ T 10 ¡4 N. m ¡1 . K ¡1 and a cuvette radius R 1 cm one gets Ma 10 5 , two orders of magnitude greater than Ra, which justies ruling out thermogravitary eects.

I.3 Neglecting evaporation

In our experiments with a hot bead of radius a 100 µm, there appears no clear sign of evaporation eects able to inuence the ow structure. Our hot particle is actually too big for evaporation to have a substantial impact on the thermocapillary ow. Indeed, as discussed by A. Girot in his master's thesis [START_REF] Girot | Flotteurs Marangoni auto propulsés dans un piège optique[END_REF], the evaporation speed scales as 1/a and is therefore expected to outweigh any other physical mechanism at very small scales.

In this regard, optical trapping experiments of tiny particles (a 5 µm) carried out by A. Girot during his internship revealed a stunning eect : tracer particles located close enough to the trapped sphere would be like attracted by it and get stuck to its surface at the precise moment the laser is switched on. This phenomenon is presumably attributable to evaporation which is especially intense in the vicinity of the heat source : as long as the air above the surface is not saturated with water vapour, local mass losses due to evaporation shall be continuously balanced by an inux of water, which explains the centripetal motion of tracer particles observed as the laser is switched on, i.e. when evaporation is active (and, conversely, why particles are `repelled' by the hot sphere when the laser is switched o). A more detailed discussion of this phenomenon can be found in [START_REF] Girot | Motion of Optically Heated Spheres at the Water Air Interface[END_REF]. Useful approaches to theoretical models of evaporation are reviewed in [START_REF] Cazabat | Evaporation of macroscopic sessile droplets[END_REF].

approximations which, once introduced in (J.1), yield where the prime I denotes dierentiation with respect to c .

We further need the vector laplacian of the velocity eld whose components write in spherical coordinates

∇ 2 v § § r 9 = ∇ 2 v . e r = ∆v r ¡ 2 r 2 v r 2 r 2 ∂ c (sv θ ) ¡ 2 r 2 s ∂ ϕ v ϕ , ∇ 2 v § § θ 9 = ∇ 2 v . e θ = ∆v θ ¡ 1 r 2 s 2 v θ ¡ 2s r 2 ∂ c v r ¡ 2c r 2 s 2 ∂ ϕ v ϕ , ∇ 2 v § § ϕ 9 = ∇ 2 v . e ϕ = ∆v ϕ ¡ 1 r 2 s 2 v ϕ 2 r 2 s ∂ ϕ v r 2c r 2 s 2 ∂ ϕ v θ , (K.3a) (K.3b) (K.3c)
with ∆v j the j component (j tr, θ, ϕu) of the scalar laplacian given by

∆v j = 1 r ∂ 2 r prv j q 1 r 2 ∂ c s 2 ∂ c v j $ 1 r 2 s 2 ∂ 2 ϕ v j . (K.4)
Inserting in (K.3a) (K.3c) velocity components in the form of (4.54b), one is left with Eq. (4.59a), which is now the only one to be completely uncoupled, plays the role of a `starter' and should thus be solved in the rst place. We then repeat the above solving process up to the moment we need to derive a new dierential equation satised by v θ, (lm) (c). Indeed, the polar Stokes equation (4.59d) cannot be solved as long as the still unknown functions tv ϕ, (lm) (c)u m$0 are not eliminated from its right hand side. This is readily achieved multiplying the incompressibility condition (4.59b) by 2c /s 2 prior to substituting the corresponding expression of the quantity 2im (c /s 2 ) v ϕ in (4.59d). Finally, we end up with The rest of the solving is completed in the same spirit as previously. In sum, the solving process presented here enables one to derive the functions tp (lm) (c)u m$0 , followed by the velocity components tv r, (lm) (c)u m$0 , tv θ, (lm) (c)u m$0 and tv ϕ, (lm) (c)u m$0 in that order.

∇ 2 v (lm) § § r = e imϕ r l 2
From the Gauss hypergeometric function to associated Legendre functions Below are provided a few important properties satised by 2 F 1 pα, β, γ ; zq :

One key trait of 2 F 1 pα, β, γ ; zq is that the above series (M.1) stops if either α or β is a negative integer, in which case it simply reduces to a z dependent polynomial of degree l. This is actually our case since α = ¡l (β = l 1) and the associated Legendre functions x x 2 ¡ z px 2 z 2 q 1/2 % px 2 z 2 q 3/2 z px 2 z 2 q 1/2 % ¡ z 2 px 2 z 2 q 3/2 pex, ezq .

(P.7a) (P.7b)

The interfacial temperature amplitude ψ (10) (0) is set to 1 in the plots of sec. 4.3.5.

P.2 Non axisymmetric state (lm) = (21)

Here the application of the boundary conditions (4.17a) (4.17c) leads us to x 2 ¡ y 2 px 2 y 2 q 2 2xy px 2 y 2 q 2 pex, eyq ,

v (21) (x, z) = ψ (21) (0) 2 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ x 2 £ 1 ¡ 3z px 2 z 2 q 1/2 ¡ 3z 2 x 2 z 2 z 2
px 2 z 2 q 3/2 z px 2 z 2 q 1/2 % ¡ 3xz 2 px 2 z 2 q 5/2 pex, ezq .

(P.9a) (P.9b)

The temperature constant ψ (21) (0) is also arbitrarily set to 1 in the plots of sec. 4.3.5.

P.3 Superposed state t(10) (21)u

The total vector eld that corresponds to the superposition of ow states t(10) (21)u is simply dened as v tot 9 = v (10) v (21) so that we obtain after little algebra

v tot (x, y) = ¤ ¦ ¦ ¦ ¦ ¦ ¥
x 2 px 1q y 2 px ¡ 1q 2 px 2 y 2 q 2 y x px 2q y 2 $ 2 px 2 y 2 q 2 , v tot (x, z)

= ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ x £ x x 2 ¡ 3xz px 2 z 2 q 1/2 ¡ 3xz 2 x 2 z 2 ¡ z x 2 z 2 ¨1/2 z 2
2 px 2 z 2 q 3/2 z px 2 z 2 q 1/2 % 3xz 4 

Figure 1 :

 1 Figure 1: Optical levitator. Radiation pressure forces, typically in the order of a few piconewtons, are suciently strong to levitate a microsphere. Image taken from [2].

Figure 2 :

 2 Figure 2: Closed orbital track of a light absorbing microsphere around the centre of an optical trap. We use tiny particles about 5 µm in diameter. Ibid.

Figure 3 :

 3 Figure 3: Vortex pair escorting the light absorbing microsphere along its circular trajectory. Tracer particles gathered into a rotating cluster reveal the presence of a vortex ahead of the orbiting microsphere. A close inspection of the video unveils the existence of a second vortex lagging behind the particle, slightly inside the orbit (red circle). Note the corona of tracer particles coating the surface of the microsphere. Time increases from left to right, with an interval δt = 24 ms between two successive frames. Laser beam axis marked by a black cross. The orbital motion of the heated microsphere (yellow circle) is clockwise, whereas the big vortex motion (black arrows) is anticlockwise. Experimental parameters : laser beam waist radius ω 0 = 6.3 µm, heating power P = 28 mW. Scale bar : 5 µm. Ibid.

Figure 4 :

 4 Figure 4: Hot tip of a soldering iron (a) and of an acupuncture needle (b) touching the water surface. Both tips are regarded as xed spherical heat sources in partial wetting at the water/air interface. The point of the soldering iron used in our experiments has a radius a si = 100 µm while the end of the acupuncture needle is a half sphere of radius a an = 6.5 µm. Images from A. Girot's and A. Mombereau's internship reports.

Figure 5 :

 5 Figure 5: Setup of Pshenichnikov & Yatsenko's experiment. A 10% alcohol water solution ows in the cylindrical pan (1) lled with distilled water through the capillary tube (2). Image from [4].

Figure 6 :

 6 Figure 6: Example of dipolar (left) and octupolar (right) ow patterns (top views).

Figure 1 . 1 :

 11 Figure 1.1: Molecular origin of surface tension. The electrostatic interactions of molecules found in the vicinity of the interface are less screened than those of molecules situated in the bulk, resulting in excess interfacial energy called surface tension. Image taken from [23].

Figure 1 . 2 :

 12 Figure 1.2: Surface tension values of some usual liquids. Note the signicant decrease of the surface tension of pure water with increasing temperature. Data from [25].

Figure 1 . 3 :

 13 Figure 1.3: Minimum liquid surfaces. Liquids tend to minimise their energy through minimising their surface exposed to air. (Left) Soap lm attached to twin circular rings taking the shape of a catenoid. (Right) Polyhedral bubble on a cubic frame. Sources : www.soapbubble.dk/en/articles/former (catenoid soap lm) & www.maths.tcd.ie/foams/gallery (cube soap bubble).

Figure 1 . 4 :

 14 Figure 1.4: Schematic layout of a simple experiment showing the existence of surface tension forces. Image taken from [24].

Figure 1 . 5 :

 15 Figure 1.5: Examples of otation enabled by surface tension. (Left) An insect of genus Gerris oating on the surface of water. (Right) A paperclip oating on the surface of water. Sources : www.thoughtco.com, Gerhard Schulz photographer (Gerris) & www.pixels.com (paperclip).

Figure 1 . 6 :

 16 Figure 1.6: A widespread surfactant molecule : Sodium Dodecyl Sulfate (SDS). SDS is an amphiphilic compound, thus consisting of a long hydrophobic carbon chain (black and white balls) and a hydrophilic polar head group (yellow and red balls). CMC = 8.2 mM in water at 25°C. Molar mass M SDS = 288 g/mol. Source : Wikimedia Commons.

Figure 1 . 7 :

 17 Figure 1.7: Interface/bulk equilibrium in the presence of soluble surfactants. (Top) Surfactant molecules adsorbed at the interface with their hydrophilic heads put under water and their hydrophobic tails in the air. (Bottom) Structure of a micelle. Source : www.dataphysics-instruments.com.

Figure 1 . 8 :

 18 Figure 1.8: Evolution of an insoluble surfactant monolayer under compression. The surfactant monolayer gets more and more compact as the Langmuir barrier is further displaced, from a gaseous state under low compression to a solid state under high compression. Image taken from [23].

Figure 1 . 9 :

 19 Figure 1.9: Infantile Respiratory Distress Syndrome. Opacication of the lungs visible on this radiograph. Source : www.soinped.ch/wiki/maladie-des-membranes-hyalines-mmh.

Figure 1 . 10 :

 110 Figure 1.10: Schematic layout explaining the Marangoni eect. The interface between uid 1 and uid 2 exhibits surface tension inhomogeneities. A small portion of the surface (black segment)

Figure 1 . 11 :

 111 Figure 1.11: Self cicatrising soap lm. A Marangoni counterow (red arrows) resists capillary suction (blue arrows) that tends to make the lm thinner and thence weaken it. Image taken from [23].

Figure 1 . 12 :

 112 Figure 1.12: Tears of wine. (Left) Photograph of the phenomenon. (Right) The Marangoni driven destabilising mechanism. Source : gigazine.net/gsc_news/en/20190307-physical-phenomena-make-winecrying (photograph) & www.comsol.com/blogs/tears-of-wine-and-the-marangoni-eect (schematic).

Figure 1 . 13 :

 113 Figure 1.13: Pepper and soap experiment showing the solutal Marangoni eect.Surfactant molecules contained in the drop of washing up liquid drive an outward solutocapillary ow repelling the pepper akes towards the edges of the dish. Source : sciencearoundus1.blogspot.com.

Figure 1 . 14 :

 114 Figure 1.14: Paper marbling through the countries and the ages. (Left) Suminagashi (Japan, 12th century). (Middle) Ebru (Turkey, 16th century). (Right) European marbling (detail of the binding of a 1880 book). Sources : www.japansociety.org/event/suminagashi-japanese-marbling, Linh Truong photographer (suminagashi), aregem.ktb.gov.tr (ebru) & Wikipedia's article on paper marbling.
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 115 Figure 1.15: The water skater rove beetle. (Left) Photograph of a Stenus Comma. (Right)The molecular structure of stenusin. Source : Wikimedia Commons.
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 21 Figure 2.1: Schematic layout of the water jet experiment.

Figure 2 . 2 :

 22 Figure 2.2: The `gravity ow' injection setup of the water jet experiment. (Top gure) Diagram of the closed loop hydraulic circuit (not to scale). (Bottom gure) Photograph of the setup under actual operating conditions. (I) cell; (II) tank; (III) pump (same numbering on both gures). (IP ) and (PP ) are the injection and pumping pipes, respectively. (i ) injection tube. (gl ) glass lid to limit the contamination of the sample.

Figure 2 . 3 :

 23 Figure 2.3: The `head to tail syringes' injection setup of the water jet experiment. (Top gure) Schematic of the device (not to scale). (Bottom gure) Photograph of the setup under actual operating conditions. (EC ) experimental cell; (P ) thin exible pipes; (A) and (B) are the two syringes assembled in a `head to tail' conguration. (SP ) syringe pump, not drawn on the schematic for clarity but shown on the photograph below. Injection rate Q inj directly tuned on the syringe pump control box.

Figure 2 . 4 :

 24 Figure 2.4: Flow visualisation based on laser sheet illumination. (a) A horizontal laser sheet (LS) is positioned just beneath the water/air interface to visualise surface ows. (b) A second vertical laser sheet is rotated (red double arrow) to get cross sectional views of the bulk ows. Top and side cameras, respectively denoted H-cam and V-cam, record the signals emitted by tracer particles (not drawn). Filters (red orange disks) prevent the cameras' sensors from being damaged by direct exposure to intense laser light while allowing uorescent light to pass.

Figure 2 . 5 :

 25 Figure 2.5: Axisymmetric ow caused by a submerged jet perpendicularly impinging the water surface (top view ). The green line marks the vertical laser sheet passing near the injection point (orange disk). Image selected from an experiment conducted with the `gravity ow' setup (Fig. 2.2). Experimental parameters : injection speed V inj 5.8 cm/s, gap H 10.5 mm ( C SDS = CMC/8).

Figure 2 . 6 :

 26 Figure 2.6: Axisymmetric ow caused by a submerged jet perpendicularly impinging the water surface (side view ). Cross sectional view along the vertical laser plane spotted by the green solid line on Fig. 2.5. Same experiment as before.

Figure 2 . 7 :

 27 Figure 2.7: Example of an injection torus observed in the absence of SDS (side view ).

Figure 2 . 8 :

 28 Figure 2.8: Schematic view of the axisymmetric base state. Our tiny subaquatic fountain generates a toroidal ow in its vicinity.

Figure 2 . 9 :

 29 Figure 2.9: Evolution of the torus diameter with the gap, for various injection speeds, in the absence of SDS.

Figure 2 . 10 :

 210 Figure 2.10: Evolution of the torus diameter with the gap, for various injection speeds, in the presence of SDS (C SDS = CMC/8).

Figure 2 . 11 :

 211 Figure 2.11: Transition from the quasi axisymmetric to a dipolar ow state with decreasing gap (top views). Clockwise (resp. counterclockwise) vortex rotation symbolised by a red (resp. ¡) sign. Strikingly, the orientation of the dipole (orange stick) makes a wide angle with the polarisation axis of the base ow (green stick) initially observed at big gaps. Gap H indicated in the bottom right corner of each picture. The dark strip visible on g. (h) is the drop shadow of the injector's tip intercepted by the horizontal laser sheet. Injection speed V inj 5.88 cm/s ( C SDS = CMC/8).

Figure 2 . 12 :

 212 Figure 2.12: Transition from the quasi axisymmetric to a dipolar ow state with decreasing gap (side views). Vertical laser sheet oriented along the polarisation axis of the quasi axisymmetric ow (green solid line on Fig. 2.5). (a') is the side view associated with the top view (a) displayed on Fig. 2.11, (b') with (b) etc. Clockwise (resp. counterclockwise) vortex rotation indicated by a magenta (resp. ¡) sign. Same experimental parameters as before.

Figure 2 . 13 :

 213 Figure 2.13: Typical views of the bulk ow associated with a dipolar surface ow. The orientations of the vertical laser sheet are spotted by the perpendicular green solid lines. The black disks mark the positions of the observer. The gap is reported below each side view. Even though both values are not the same, they are close enough to each other for the views to be comparable, at least qualitatively. The yellow lines point out structural links between the views. The magenta (resp. red) arrows (arbitrary lengths) indicate the direction of the surface (resp. bulk) ow. The orange sign (resp. ¡) denotes clockwise (resp. anticlockwise) vortex rotation. V inj 5.5 cm/s (C SDS = CMC/100).

Figure 2 . 14 :

 214 Figure 2.14: Azimuthal scan of the bulk structure associated with a dipolar surface ow. The top views on the left show the orientation (45°, 60°, 90°) of the laser sheet (bright strip) with respect to the axis of the dipole (0°). The corresponding side views are displayed on the right with their scale bar. The yellow disk marks the injection site. Other graphic elements are the same as in Fig. 2.13.The gap is about H 2 mm over ∆t exp = 10 min. V inj 5.5 cm/s (C SDS = CMC/100).

Figure 2 . 15 :

 215 Figure 2.15: Scanning in depth the structure of a dipolar ow. The successive positions of the laser sheet deeper and deeper in the bulk are indicated on the side view (SV). The latter is captured in the symmetry plane of the dipole spotted by the green solid line on the top view (TV1). The corresponding depths are indicated below each top view and the gap H is reported below the side view. For a better readability the scale of the top views is not harmonised with that of the side view. Other graphic elements are the same as previously, except that here red arrows indicate the ow direction in the vicinity of the injector. V inj 5.5 cm/s (C SDS = CMC/100).

Figure 2 . 16 :

 216 Figure 2.16: Photographs showing the 3D structure correlated to a dipolar surface ow, as revealed by dye injection. The arrow shows the ow direction along the symmetry axis of the dipole. The (resp. ¡) red sign denotes clockwise (resp. anticlockwise) rotation of the whirlpools.The gap is reported below each side view. Although both values are not the same, they are close enough to each other for the views to be at least qualitatively comparable. The magenta line points out structural links between the views. V inj 5.5 cm/s (C SDS = CMC/100).

Figure 2 . 17 :

 217 Figure 2.17: Comparison streamlines/dye distribution. The yellow (resp. ¡) sign denotes clockwise (resp. anticlockwise) vortex rotation. Arrows show the surface ow direction. Though the gaps are not the same on the streamlines and the coloured cloud views, they are close enough to each other for a proper structural comparison. Because of readability issues, both kind of maps are superimposed on the side view (SV) but simply juxtaposed on the top (TV) and back (BV) views. Harmonised top and side scales setting 25 µm/pix as the unique scale. V inj 5.5 cm/s (C SDS = CMC/100).

Figure 2 . 18 :

 218 Figure 2.18: Peeling the coloured cloud. Series of back (resp. front) `cut views' shown in column on the left (resp. right). (xy) denotes the horizontal plane of the top views and (xz) the vertical plane of the back/front views. Successive positions of the cut plane marked by blue lines. Volume `peeled' in the direction of the arrow. The perspective views in the header of the plate give a global insight of the cloud shape. To ensure good visibility, each voxel is rescaled to a size δx δy δz = p34.26 ¢ 34.26 ¢ 68.52q µm 3 by imposing an aspect ratio δz/δx = 2 instead of the initial 1.3 value and performing a zoom that multiplies all lengths by 1.52. The yellow (resp. ¡) sign denotes clockwise (resp. anticlockwise) vortex rotation.

Figure 2 . 19 :

 219 Figure 2.19: Peeling the coloured cloud. Series of parallel (resp. angular) side views shown in column on the left (resp. right). (xy) denotes the horizontal plane of the top views and (yz) the vertical plane of the side views. Same graphic codes as in Fig. 2.18.

Fig. 2 .

 2 [START_REF] Marangoni | Thèse de doctorat de Sébastien Le Roux sous la direction de Arnaud Saint Jalmes et la codirection de Isabelle Cantat[END_REF] reveals that the vorticity takes signicant values only close to the injection site and vanishes everywhere else. Similar series of maps are derived in Appendix F for many other values of the control parameters.

Figure 2 . 20 :

 220 Figure 2.20: Dipolar ow (top view). Average frame from a stack of 1000 images (45 FPS Ñ ∆t 22 s). Moderate gap H = 1.25 mm and injection speed V inj = 3.5 cm/s. The (resp. ¡) sign denotes clockwise (resp. anticlockwise) vortex rotation. The magenta arrows indicate the ow direction along the symmetry axis. Injection outlet visible in the middle. C SDS = CMC/100.

Figure 2 . 21 :

 221 Figure 2.21: Typical surface velocity eld. Black (resp. blue) dashed line aligned with (resp. perpendicular to) the dipole symmetry axis (Fig. 2.20). White arrows show the orientation of the dipole `eigenaxes' x and x u . The crosses mark the positions of the maxima of vorticity (see Fig.2.23 hereafter).
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  23 hereafter).

Figure 2 . 22 :

 222 Figure 2.22: Characteristic elds of the velocity components v (a) and v u (b), together with their evolution along the dipole axes (a') (b'). `d¡d 0 ' denotes the distance to the point of maximum vorticity (white cross) measured along the selected colour line.

Figure 2 . 23 :

 223 Figure 2.23: Typical interfacial vorticity eld. For convenience, the square of the vorticity ω 2

Figure 2 . 24 :

 224 Figure 2.24: Parametrisation of the dipole.

Figure 2 . 25 :

 225 Figure 2.25: Maximum velocity V max and vorticity ω max of the dipole in function of the injection speed V inj , for various gaps H. On both gures, a threshold speed V inj 1.29 cm/s appears below which we are in the axisymmetric state that has a zero surface velocity (sec. 2.4). Triangles and squares are used instead of dots to distinguish between superposed points. C SDS = CMC/100.

Figure 2 . 26 :

 226 Figure 2.26: Evolution of the dipolar order parameter D with the injection speed V inj , for dierent gaps H. Point P axi (H = 1.25 mm, V inj = 0.7 cm/s) associated with the axisymmetric ow surrounded by a magenta circle. The colour code is the same as in Fig. 2.25 since the dataset is the same. The blue curve is a guide to the eye. C SDS = CMC/100.

Fig. 2 .

 2 Fig.2.27 displays some surface ows observed at various injection rates Q inj . From the slightly polarised toroidal ow routinely observed at low injection rates (Q a = 200 µL/min), the surface ow becomes fully dipolar at stronger injection rates (Q inj ¥ Q c = 400 µL/min).On Fig.2.28 are reported measurements of the velocity of surface and subsurface tracer particles driven by these interfacial ows. The following observations can be made :

Figure 2 . 27 :

 227 Figure 2.27: Surface ows arising at various injection rates (top views). (a) Slightly polarised toroidal ow observed for an injection rate Q a = 200 µL/min corresponding to an injection speed V a = 1.4 cm/s. (b) Intermediate state. Q b = 300 µL/min, that is V b = 2.1 cm/s. (c) Dipolar surface ow. Q c = 400 µL/min Ñ V c = 2.8 cm/s. The vertical laser sheet (not represented) is aligned with the dipole symmetry axis. H 2.1 mm ( C SDS = CMC/100).

Figure 2 . 28 :

 228 Figure 2.28: Velocity of surface and subsurface tracer particles measured for various interfacial ows. The ows are those of Fig. 2.27. Injection rates/speeds : (a) Q a = 200 µL/min Ñ V a = 1.4 cm/s ; (b) Q b = 300 µL/min Ñ V b = 2.1 cm/s ; (c) Q c = 400 µL/min Ñ V c = 2.8 cm/s. Each red

  8 cm/s. Each red ball depicts a tracer particle at the interface while blue squares symbolise tracer particles found within a 0.2 mm thick subsurface layer. The numerical values reported next to three squares of g. (c) indicate the depths dz (in µm) at which the corresponding tracer particles are found. Measurements made in a cross section aligned with the dipole symmetry plane (Fig. 2.27 (c)). H 2.1 mm ( C SDS = CMC/100).
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 5 Complementary studies 2.5.1 The inuence of connement over the instability Two cell sizes are selected to probe the eects of connement on the instability : a small cell of inner diameter s s 35 mm and a large one s l 154 mm. Hitherto, we have focused on experiments achieved with the small cell. Let us now present the observations made with the large cell and compare them to the foregoing results.

Figure 2 . 29 :

 229 Figure 2.29: Dipolar ow in the large and the small cell. For comparison sake, the gap is set to H 1 mm and the injection speed is V inj 5.5 cm/s in both cases. Green arrows show the ow direction along the dipole symmetry axis. Cyan (resp. ¡) signs denote clockwise (resp. anticlockwise) vortex rotation. The sidewalls are out of the eld of view on the picture captured in the large cell but are visible on the picture taken in the small vessel (insert). Image from B. Gorin's internship report.

Figure 2 . 30 :

 230 Figure 2.30: Connement induced reshaping of a vortex pair. (a) Dipolar surface ow observed at a gap H 0.25 mm and an injection speed V inj 1.75 cm/s. (b) Same dipole for a much stronger jet ow at V inj 9.8 cm/s. Arrows show the ow direction. Orange (resp. ¡) signs denoting clockwise (resp. anticlockwise) vortex rotation. Small cell (s s 35 mm). C SDS = CMC/100.

Figure 2 . 31 :

 231 Figure 2.31: Evolution of the intervortex separation L with the control parameters (V inj , H) in the large (a) and in the small (b) cells. Curves are a guide to the eye. Large cell data from B. Gorin.

  Experiments aimed at measuring either small or large surface deformations are run, wherein the screen is placed at a critical distance D = 40 cm or D = 2.5 cm depending on the case (Fig.E.3). The height h and extent ξ of the bulge are inferred from the dimensions of its shadowgram and the value of D using the formulas (E.1). A concrete example of how to apply these formulas is detailed in Appendix E.4. Fig.2.32 summarises our shadowgraphy results on the dimensions of the jet induced interface deformation.

Figure 2 . 32 :

 232 Figure 2.32: Extent ξ of the jet induced interface deformation in function of its height h. The graph is divided into two point clouds. The blue one corresponding to low deformations (D = 40 cm), made up of measuring points obtained for gaps H ¥ 0.3 mm. The red one corresponding to large deformations (D = 2.5 cm), composed of measuring points derived at vanishing gap H 0. Aspect ratio ξ/h of the hydraulic bump indicated next to each point. V inj 3.3 cm/s ( C SDS = CMC/8).

Figure 2 . 33 :

 233 Figure 2.33: Comparing the symmetry of the dipolar surface ow with that of its shadowgram. (Left half ) The (resp. ¡) sign marks clockwise (resp. anticlockwise) vortex rotation. The arrow shows the ow direction along the dipole symmetry axis. Injection site depicted by a cyan disk. (Right half ) Shadowgram. Since the recording plane sits on top of the cell (D = 2.5 cm) the calibration of the shadowgram (21.74 µm/pix) diers from that of the streamlines views (37.81 µm/pix).

Figure 2 . 34 :

 234 Figure 2.34: Fate of the coloured cloud in the reversed ow experiments (side views).

Figure 2 .

 2 Figure 2.35: Aspiration ow (top view). Arrows showing the ow direction. Average frame from a stack of 1500 images (45 FPS Ñ ∆t 33 s). H 1.25 mm, V inj 3.5 cm/s ( C SDS = CMC/100).

Figure 2 . 36 :

 236 Figure 2.36: Microscopy image of the injection nozzle. The bevel on the left side of the injector's edges is caused by abrasion on a grinding wheel used to cut straight the point of a needle.

Figure 3 . 1 :

 31 Figure 3.1: Schematic layout of the hot bead experiment.

  [START_REF] Würger | Thermally driven Marangoni surfers[END_REF]

  .6).

Figure 3 . 2 :

 32 Figure 3.2: Quartz cuvette. On the left, photograph of a quartz cuvette used as the experimental cell. On the right, schematic layout of a cross section of the cuvette with its main dimensions. Images selected from A. Mombereau's internship report.

Figure 3 . 3 :

 33 Figure 3.3: Bending the optic bre. (1) optic bre ; (2) sewing thread of adjustable tension.Image selected from A. Mombereau's internship report.

Figure 3 . 4 :

 34 Figure 3.4: A partially wetted microbead stuck onto the end of an optic bre.

  3.6 below).

Figure 3 . 5 :

 35 Figure 3.5: Image of the LEDs on the computer screen. Here we can see the `light mark' the ring of LEDs leaves on the screen while reecting on the water surface acting as a mirror. The bead is the dark disk well visible in the middle.

Figs 3 .

 3 Figs 3.6 and 3.7 both provide schematic layouts and photographs of the `hot bead setup' described above.

Figure 3 . 6 :

 36 Figure 3.6: The core of the `hot bead setup'. (Left gure) Schematic of the central part of the device (not to scale). {(OF) + (st)}, optic bre + sewing thread (adjustable tension); CGR circular guide rail; (xyz) TS, xyz translation stage; {(BC) + (MO)}/(SC) bottom camera + microscope objective/side camera; (LEDs) ring encrusted with light emitting diodes. (Right gure) Photograph under actual operating conditions. Same abbreviations plus (CM) cuvette mounting; L lid; (CL) correction lens.

Figure 3 . 7 :

 37 Figure 3.7: Global view of the `hot bead setup'. (Top gure) Schematic of the device (not to scale). (EC) experimental cell; (OF) optic bre; LS H and LS L, laser sources for heating (H) and lighting (L); HLS /VLS, horizontal/vertical laser sheet; {λ/2 + BS}, half wave plate + beamsplitter; {(BOC) + (MO)}, bottom optical camera + microscope objective; (TTC) top thermography camera. (Bottom gure) Photograph of the setup under actual operating conditions. (BC)/(SC) bottom/side camera; (dti) dial test indicator. For clarity, the after components are not sketched : the automation system of the laser sheets, the position indicators, the lters, the control microscope, the quarter wave plate. Optical channels schematised as brackets. The `horizontal' optical channel consists of the series of components {(beam stop) + 2 cylindrical lenses + plane parallel plate} and the `vertical' channel of {(beam stop) + xed mirror + 2 cylindrical lenses + automatised swivelling mirror}.

Figure 3 . 8 :

 38 Figure 3.8: The toroidal base ow. (Left image) View of the centrifugal surface ow. (Right image) Cross section of the torus showing a pair of counter rotating convection rolls. Clockwise (resp. anticlockwise) vortex rotation marked by an orange (resp. ¡) sign. Hot bead spotted as a red disk (approximate position). Heating power : P 1 mW. Scale common to both views : 10 µm/pix.

Figure 3 . 9 :

 39 Figure 3.9: Examples of multipolar surface ows. (From left to right) Interfacial dipole followed by two types of quadrupoles. The approximate heating powers at which we observe these ow patterns are indicated below the pictures. Both quadrupoles arise within a few milliwatts power window centred on the value 50 mW. Hot bead (s b = 335 ¨10 µm) spotted by a red disk.

Figure 3 . 10 :

 310 Figure 3.10: Sequence of surface ow patterns arising with increasing heating. (Upper part) Bottom views of surface ow states denoted (a), (b)... (g). Hot bead (s b 295 µm) sketched by a red disk. Arrows of arbitrary length show the ow direction. The

Figure 3 . 11 :

 311 Figure 3.11: Sequence of surface ow patterns arising with decreasing heating. The corresponding bottom views are respectively denoted (a I )... (d I ). This `power down' sequence has been captured a few minutes after that of Fig. 3.10. Same graphic code as above.

Figure 3 . 12 :

 312 Figure 3.12: Serpentine surface streamlines (bottom views). /¡ : clockwise/anticlockwise vortex rotation. Arrows of arbitrary length show the ow direction. Hot bead (s b 295 µm) sketched by a red disk. Surface ows recorded at a rate of 2 frames per second and averaged over ∆t = 25 s. State (b) immediately follows (a) while ∆t (b)Ñ(c) = 100 s separate (c) from (b). The `shining square' on g. (a) is an `average' light mark left by a threadlike impurity. Bead's drop shadow forming a dark strip.

Figure 3 . 13 :

 313 Figure 3.13: Evolution of the subsurface velocities of tracer particles in a vertical cross section of the toroidal base ow. The arrows indicate the local bulk ow direction and the

Figure 3 . 14 :Figure 3 . 15 :

 314315 Figure 3.14: Time evolution of the distance to the hot bead x ¡ x b of surface and subsurface tracer particles in a vertical cross section of the toroidal base ow. t 0 denotes the instant at which we start tracking the molecule (Fig. 3.13) whose zoomed view is provided in the top insert. Note the counterclockwise rotation of the molecule as time goes by. The arrow marks the ow direction. `Travelling depth' of each atom indicated (in µm) next to its corresponding symbol in the bottom right insert. The colour scheme used for the curves has nothing to do with that of the top insert. The former permits us to discriminate between tracer particles found at dierent depths whereas the latter dierentiates between the conformations of the same molecule observed at dierent times.

Figure 3 . 16 :

 316 Figure 3.16: PIV map of the bulk velocity magnitude | v b | in a vertical cut plane of the toroidal base state. (Top part) Velocity map over a large portion of the sample. The red disk roughly marks the position of the hot bead partially wetted at the surface. Curiously, the latter is right shifted with respect to the column of quickly ascending liquid found in the intervortex region. The blue stripe (very weak ow) mapped in this area has no physical meaning : actually, a parasitic cast shadow prevents the PIV code from computing local velocities properly. (Bottom part) Magnied views of the velocity map in the left and right halves of a millimetre thick subsurface layer. PIV map from a record at 17.45 fps, with original scales 7.94 µm/pix (horiz.) and 9.43 µm/pix (vert.). Heating power : P 8 mW.
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 317 Figure 3.17: PIV maps of the longitudinal v x and the transverse v z bulk velocities (vertical cross section). Main gures : maps over a large part of the cell. Subgures : zoomed views in a millimetre thick subsurface layer. Raw data are those of Fig. 3.16.
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 318 Figure 3.18: PIV map showing the transverse derivative of the longitudinal velocity component ∂ z v x (vertical cut plane). (Top gure) Map over a large part of the cell. (Bottom gures) Zoomed left and right views in a 1 mm thick subsurface layer. Derivatives are computed based on local linear ts inside a three point sliding window. Same experiment as above.

Figure 3 . 19 :

 319 Figure 3.19: Bulk evolution of the longitudinal v x and the transverse v z velocities. (Left) Velocity proles in a millimetre thick subsurface layer. (Right) Proles over the whole height of the cell. Plots for various radial positions (see inserts) to the left of the hot bead.
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 320 Figure 3.20: Top view of the quasi axisymmetric base ow observed at P = 13.5 mW. Arrows mark the ow direction. Laser sheet sketched by a green line almost perpendicular to the direction of polarisation. Hot bead (s b 295 µm) depicted by a red disk. Average frame from a record at 9 fps.
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 321 Figure 3.21: Time evolution of the distance to the hot bead x¡x b of interfacial tracer particles in the quasi axisymmetric state (`fresh' sample). (Left) Distance px ¡ x b q in function of the temporal shift t shifted . (Right) Cube of px ¡ x b q in function of t shifted revealing a linear relationship. Successive positions of a tracer particle found at z ¡160 µm below the interface reported on the red curve, whereas other curves correspond to surface tracer particles found at various distances to the left of the hot bead. Heating power : P = 13.5 mW. Measurements from a record at 16.4 fps.

Figure 3 . 22 :

 322 Figure 3.22: Time evolution of the distance to the hot bead x ¡ x b of interfacial tracer particles in the quasi axisymmetric state (`aged' sample). Same comments as for Fig. 3.21 save that the subsurface tracer particle is now at z ¡95 µm below the interface. Heating power : P = 14.4 mW. Records at 24 fps.

Figure 3 . 23 :

 323 Figure 3.23: Time evolution of the distance to the hot bead x¡x b of interfacial tracer particles in the quasi axisymmetric state (new sample). Same comments as above except that the subsurface tracer particle (red curve) is closer to the interface, at z ¡65 µm. Heating power : P = 14.4 mW. Records at 9.75 fps (horizontal)/30.4 fps (vertical).

Figure 3 . 24 :

 324 Figure 3.24: Power shutdown. (Cross sections) (I) Doubly toroidal (quasi )axisymmetric ow. Laser switched on at t on = 4.50 s. Frame obtained by averaging over ∆t (I) = 10 s, from time t 1 = t on 25.5 s to t 2 = t on 35.5 s. (F ) Sheared toroidal ow immediately following power shutdown at t off = 48.33 s. Averaging over ∆t (F ) = 15 s after laser switching o. /¡ : clockwise/anticlockwise vortex rotation. Orange arrows show the bulk ow direction while magenta arrows depict the centripetal motion of tracer particles after laser interruption. Hot bead (s b 295 µm) sketched by a red disk. P 21 mW.

Figure 3 . 25 :

 325 Figure 3.25: Elastic retraction of interfacial tracer particles at laser shutdown. The radial position R of tracer particles moving at the water/air interface is plotted as a function of the interval separating the generic time t from the instant t off of laser shutdown (abrupt power decrease P 21 mW Ñ 0 mW). Tracer particles either left (red and black curves) or right (blue curve) from the hot bead are tracked. Clearly, the particle speed reverses at t = t off .

Figure 3 . 26 :

 326 Figure 3.26: Trajectories of tracer particles in a thin subsurface layer after laser shutdown. (A) & (B) Centrifugal motion of subsurface tracer particles in the near region (N R) = t1 mm R 2.5 mm, ¡0.5 mm Z ¡0.1 mmu, i.e. along streamlines belonging to the upper part of the big torus. Red circles (resp. black squares) mark the successive positions of a tracer particle originally found right (resp. left) from the hot bead. (C) Vertical motion of a tracer particle within the column of accelerated liquid rising between the big torus convection rolls, that is about the axis of the source. (R, Z) denote the radial position and the depth of a tracer particle in a cross sectional plane, respectively.
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 4 Quantitative study of a quadrupolar ow 3.4.1 Tomographic prospection of a quadrupolar ow

Figure 3 . 27 :

 327 Figure 3.27: Cross sectional views of the 3D structure of a surface quadrupole.Pictures captured in successive (following the ascending numerical order of the top view on the right) cut planes parallel to the `centrifugal symmetry axis' of the quadrupole. Yellow (resp. magenta) arrows show the local bulk (resp. surface) ow direction, but not its magnitude. /¡ : clockwise/anticlockwise vortex rotation, either in the bulk (deep blue colour) or at the surface (cyan colour). Hot bead (s b 295 µm) depicted as a red disk (rough vertical position). Heating power : P 57 mW. Average frames generated out of stacks containing 100 images captured at 17.5 fps (recording time : ∆t 6 s). The dark stripe of varying width (see for instance image 3) is the drop shadow of the optic bre end intercepted from dierent angles by the quasi vertical laser sheet scanning the sample.

Figure 3 . 28 :

 328 Figure 3.28: Series of horizontal cut views of the 3D structure associated with a surface quadrupole. Successive positions of the horizontal laser sheet in the bulk marked by parallel green lines on the bottom picture. On the right is a list giving the observation depths tz i u i J1, 9K . Same graphic codes as those of Fig. 3.27. Data from the very same experiment as in Fig. 3.27 except that stacks of 75 images captured at 17.5 fps over ∆t 4 s are processed here to generate these average frames.

Figure 3 . 29 :

 329 Figure 3.29: Evolution of the (xy) positions of the four vortex centres with depth. Each red circle represents a measuring point derived at a given depth. The latter is gradually increased in the direction indicated by the arrows, from z i = 0 (water/air interface) down to z f = ¡1.80 mm. The black cross right in the middle of the gure marks the reference position of the heat source, while the black arrows immediately surrounding it depict the centrifugal and the centripetal symmetry axes of the surface quadrupole. Same experiment as above.

Figure 3 . 30 :

 330 Figure 3.30: Velocity measurements in dierent regions of a surface quadrupole. Average top view from a stack containing 200 frames of a video at 17 fps, corresponding to a recording time ∆t 12 s. Local ow direction along both the centrifugal and the centripetal `channels' indicated by magenta arrows. /¡ : clockwise/anticlockwise vortex rotation. Vertical cut planes marked by green solid lines. Velocity measurement areas selected along these lines, in the immediate vicinity of points A D. The observation site associated with point E lies within the centripetal channel. Hot bead (s b 295 µm) depicted by a red disk. Heating power : P 70 mW.

Figure 3 . 32 :

 332 Figure 3.32: Time evolution of the distance to the hot bead x ¡ x b of the tracer particles forming the left and the right molecules selected in the cut plane AB. Top inserts are zoomed views of the two tracked molecules (Fig. 3.31). Note the clockwise rotation of the right molecule as time goes by. Arrows showing the ow direction. `Travelling depth' of each atom indicated (in µm) either in brackets below the trajectories of the right molecule constituents or inside an additional insert for the atoms of the left molecule. The colour scheme used for the curves has nothing to do with that of the top inserts. The former permits us to discriminate between tracer particles at dierent depths whereas the latter dierentiates between `molecular conformations' observed at dierent times.

Figure 3 . 33 :

 333 Figure 3.33: Centrifugal velocities v of both surface and subsurface tracer particles as a function of depth z (cut plane AB ). The table on the right (resp. on the left) provides data obtained by tracking the right molecule (RM) (resp. the left molecule (LM)) shown in Fig. 3.31.

Figure 3 . 34 :

 334 Figure 3.34: Time evolution of the distance to the hot bead y ¡y b of a tracer particle along the centripetal channel. t 0 denotes the instant at which particle tracking is initiated in the region next to point E (Fig. 3.30). Centripetal velocities indicated on the curve.

Figure 3 . 35 :

 335 Figure 3.35: Evolution of the velocities of tracer particles in a subsurface layer of cut plane CD. The centripetal motion of two molecules, on the right and on the left of the hot bead, is tracked over time. Same colour scheme adopted for the right (RM) and the left (LM) molecules, despite slightly dierent time gaps τ RM = 0.7 s/τ LM = 0.9 s between their successive positions. Data from the same experiment as in Fig. 3.30 except that stacks of 100 images captured at 17 fps over ∆t 6 s are processed to generate this streamlines view. Further information is the same as in the caption of Fig. 3.31.

Figure 3 . 36 :

 336 Figure 3.36: Time evolution of the distance to the hot bead x ¡ x b of the tracer particles forming the left and the right molecules selected in the cut plane CD. Same caption as that of Fig. 3.32 above.

Figure 3 . 37 :

 337 Figure 3.37: Centripetal velocities v of both surface and subsurface tracer particles as a function of depth z (cut plane CD). The table on the right (resp. on the left) provides data obtained by tracking the right molecule (RM) (resp. the left molecule (LM)) shown in Fig. 3.35.

Figure 3 .

 3 Figure 3.38: `Hydrothermal' symmetry breaking. Series of simultaneous temperature (left) and streamlines (right) maps at increasing power P. (A) Quasi axisymmetric steady state at P (A) 21.8 mW. (B) (D) Pictures captured t (B) = 1 min, t (C) = 2 min and t (D) = 4 min after the heating power is set to P (B)¡(D) 36.8 mW. (E) Stationary quadrupolar ow at P (E) 53.6 mW. Scale bar : 2 mm. Plate from A. Mombereau's internship report.

Figure 3 . 39 :

 339 Figure 3.39: Superposed streamlines and temperature maps. (a) quasi axisymmetric ow; (b) surface quadrupole (P (a) = P (b) = 36.8 mW). Maps superposed in (a) (resp. (b)) are those already shown in Fig. 3.38 (B) (resp. (D)). Very rough absolute temperature values reported next to the colour scales (in °C). Ibid.

Figure 3 . 40 :

 340 Figure 3.40: Superposed streamlines and temperature maps in the presence of a surface dipole. Heating power P 15.4 mW. /¡ : clockwise/anticlockwise vortex rotation. Arrow showing the ow direction. Here again, absolute temperatures (in °C) reported on the colour scale are `false' since temperature measurements are not calibrated. One can only trust temperature dierences. Scale of the temperature map harmonised with that of the streamlines optical views (pco.pixely used as the bottom camera : 8.22 µm/pix, zoom ¢0.75). Image from B. Gorin's internship report.

Figure 3 . 41 :

 341 Figure 3.41: Postulated instability mechanism. Surfactant molecules (orange balls) repelled beyond a depletion radius r d from the heat/matter source (red disk) lower the surface tension (γ low ) in the region close to the cell walls (not drawn). The competition between the centrifugal forced ow (deep blue arrows) and the solutocapillary counterow (light blue arrows) periodically bends the depletion front (four lobed grey line). The instability arises beyond a critical surface tension gradient ∇γ.

Figure 3 . 42 :

 342 Figure 3.42: Pulsatile ow. (Red curve) Jerky time evolution of the radial distance R of a tracer particle to the hot bead. (Blue curve) `Jumps' in the position of the tracer particle between frames n and n 1 used for estimating its speed (values ¢10 µm/s). Hot bead fully immersed at Z = ¡1 mm underwater. Heating power : P 97 mW. Pulse period : T pulse 2.25 s. Data from a record at 10 fps.
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 49912 17d) in spherical polar coordinates (r, θ, ϕ) including in general the azimuthal (ϕ) dependence. Introducing the parameters c instead of simply working
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 425 Integrating this equation once with respect to c and dividing all terms by s 2 (c $ 1) yields v I r, (10) (c) = ¡π[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] 
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  .2 clearly reveals to what point isotherms can deform with increasing Péclet number : from concentric circles in the linear regime (Pe = 0), the isotherms strongly deform at suciently high Péclet number (Pe = 5), nally taking a bilobate shape and getting closer and closer to the interface.

Figure 4 . 1 :

 41 Figure 4.1: Evolution of the Marangoni velocity with increasing heating. (Solid curve) Nonlinear regime including the eects of thermal advection. (Dashed line) Diusive limit Pe 3 1. Sincethe Péclet number Pe is proportional to the Marangoni velocity and Pe (0) is proportional to the injected power Q, we can as well plot in dimensionless units Pe = f (Pe (0) ) as we do here.

Figure 4 . 2 :

 42 Figure 4.2: Distortion of bulk isotherms with increasing heating. (From left to right) Pe = 0, 1 and 5. Hot bead depicted by a red ball (not to scale).

l 1 p 1 r

 11 (lm) (c) e imϕ , v j (r, c, ϕ) = ļ, m v j, (lm) = ļ, m l v j, (lm) (c) e imϕ , j tr, θ, ϕu , ϑ (r, c, ϕ) = ļ, m ϑ (lm) = ļ, m 1 r l ψ (lm) (c) e imϕ .that the c dependent part of the pressure and the velocity elds is written in italics, unlike the associated total elds denoted by straight letters. Here the parameter l labels the consecutive powers of 1/r while m is the azimuthal wavenumber.
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 32 Equations for the functions tp (lm) (c)u and tv j, (lm) (c)u jtr, θ, ϕu

  from the tP m l (c)u thanks to the relation P ¡m l (c) = (¡1) m pl ¡ mq! pl mq! P m l (c). From (4.60), it ensues that P m l (c) = 0 if |m| ¡ l . In the present case, however, regular solutions are required only in the upper half space c [0, 1]. As shown in Appendix M, the solution of Eq. (4.58) is then p (lm) (c) W P m l (c) with the associated Legendre function P m l (c) here dened as ([66], 8.1.2)

  J¡l, l K but fully unconstrained. A consequence of this is that the `hemispherical Lamb's solution' includes singular terms absent from its more classical version : for |m| ¤ l, one recovers (up to a normalising constant) the `usual' associated Legendre polynomials tP m l (c)u while the tP m l (c)u dened in (4.61) do not vanish for |m| ¡ l, by contrast with more standard studies. A few essential properties of the associated Legendre functions tP m l (c)u are summarised in Appendix M and several examples are listed in Appendix N.

  (4.58) as the following eigenvalue equation associated with the operator L Lm P m l = ¡l (l 1) P m l . (4.64) Hence we see that the associated Legendre functions tP m l (c)u are the eigenfunctions of the operator L with eigenvalues equal to l = ¡l (l 1).

. 73 )

 73 The no ux interfacial boundary condition (4.17c) immediately yields the relation among constants π (10) = ¡2ρ (¡10) . The `r Marangoni' boundary condition (4.17a) then states that π (10) = ¡ψ (10) (0), while the `ϕ Marangoni' condition (4.17b) leads to σ (00) = 0 in compliance with axisymmetry. So we have 2 π[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] , ρ (¡10) , σ (00) @ = 2 ¡ψ (10) (0), ψ (10) (0)/2, 0 @ and the velocity components (4.73) then simplify to v (10) (r, c) = ψ (10) state (lm) =[START_REF] Das | Eect of impurities in description of surface nanobubbles[END_REF] 

2 c 2 π ( 21 )= 2 ¡3ψ ( 21 )

 2221221 per, e θ , eϕq .(4.[START_REF] Shmyrov | On the extent of surface stagnation produced jointly by insoluble surfactant and thermocapillary ow[END_REF] In this case, the no ux condition (4.17c) yields σ (11) = ¡2iρ (01) . The `r Marangoni' condition (4.17a) gives next π (21) /2¡ρ (01) = ¡2ψ (21) (0), supplemented by ρ (01) = ψ (21) (0)/2 from the `ϕ Marangoni' condition (4.17b), so that we end up with , ρ (01) , σ (11) @ (0), ψ (21) (0)/2, ¡iψ (21) (0) @ and the velocity components (4.75) hence reduce to
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 43 Figure 4.3: Maps of the streamlines (arrows) and the velocity norm (density plot) associated with the ow state (10) in the interfacial plane (xOy) (left gure) and the vertical cut plane (xOz) (right gure). The abscissa is ¡10 ¤ x ¤ 10 and the ordinate ¡10 ¤ y ¤ 10. For convenience, we choose positive values of z in the range 0 ¤ z ¤ 10 (water lls the upper half space). Values on the colour scales are dimensionless.

Figure 4 . 4 :

 44 Figure 4.4: Maps of the streamlines (arrows) and the velocity norm (density plot) associated with the ow state (21) in the interfacial plane (xOy) (left gure) and the vertical cut plane (xOz) (right gure). Same comments as above.
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 45 Figure 4.5: Maps of the streamlines (arrows) and the velocity norm (density plot) of the superposed ow state t(10) (21)u in the interfacial plane (xOy). Here the abscissa is ¡2.5 ¤ x ¤ 2.5 and the ordinate ¡2.5 ¤ y ¤ 2.5. Dimensionless colour scale.
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 11112 Let us introduce time dependent amplitudes in the ansatz forms (4.54) of the elds.Considering then the complete, unsteady, advection diusion equation yields the following balance of powers of 1/r Pe ( ∂ t v
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  J¡l, l K and thus the substitution of the associated Legendre polynomials tP m l (c)u by associated Legendre functions tP m l (c)u dened also for |m| ¡ l. The on axis singularity in c s = 1 is tackled by a regularisation process consisting in an adequate factorisation of c dependent polynomials.

Figure 4 . 6 :

 46 Figure 4.6: A universal instability. The azimuthal instability studied in this work is observed in a wealth of practical situations, with a typical vortex size that can range over at least four decades. (A) Laser induced quadrupole around an optically trapped microsphere at the water/air interface [2]. (B) Quadrupolar ow pattern developing on the surface of a laser illuminated solution of photoswitchable surfactants [80]. (C) Example of a quadrupolar surface ow arising in our laser heated carbon bead experiment. (D) A dipole observed in our submerged jet experiment. (E) A quadrupolar pattern of 2D convective cells forming on the surface of champagne poured into a ute [50, 51]. (F) Quadrupole created by a thin air jet perpendicularly impinging the surface of a horizontal soap lm [49]. (G) Marangoni driven octupolar ow on a surfactant enriched water bath [4].

  The injection rate Q inj in the `gravity ow' congurationCalculation of Q gapThe calculation of Q gap is based on the time tracking of the gap. The graph H(t) reveals that the gap evolves linearly with time. Fig. B.1 shows an example of the regular decrease of the gap for an experiment lasting nearly fty minutes. A linear t yields the negative slope value dH/dt ¡0.13 mm/min. With a cross sectional area S of our cylindrical cell S = πR 2 962 mm 2 , we obtain Q gap ¡2.02 mm 3 /s.

Figure B. 1 :

 1 Figure B.1: Time evolution of the gap H.

Figure B. 2 :

 2 Figure B.2: Average number of droplets Nd released in the tank every minute in function of the pumping rate PR .

  Two observation modes are implemented (Fig. D.2) : a volume lighting (g. a) and laser tomography (g. b).

  57 s to the total number of recorded frames N frames = FPS ¢ T sweep = 45.4 ¢ 3.57 162. One nds δz = ∆h/N frames 67.90 µm. The reconstructed volume is thus a cluster of δx δy δz = p52.08 ¢ 52.08 ¢ 67.90q µm 3 voxels (3D pixels).

Figure D. 2 :

 2 Figure D.2: Dye injection experiments. (a) Projection views obtained via a volume lighting of the coloured cloud. (b) Laser tomography to cut up the coloured structure into slices. (L) and (LS) : blue laser light source and laser sheet, respectively. (TC) and (SC) are the top and the side cameras. (DC) is a digital camera used to capture high resolution colour photographs of the cloud.

Figure E. 1 :

 1 Figure E.1: Collimated light beam reecting on a hydraulic bump of height h and extent ξ (top gure). (Bottom left gure) Prole of the bump approximated by a series of parabolic mirrors of local curvature radii R i focusing light at a distance R i /2 above the interface. Three points of incidence A, B, C taken along the bump such that 1/R B ¡ 1/R A ¡ 1/R C . So the focal point F B of the parabolic mirror centred on point B is the closest to the interface and F C is the furthest. The minimum distance D B for which the focusing of the reected rays is the strongest sets the critical distance D . (Bottom right gure) Cross section of the caustic, namely the locus of all the focal points tF i u dened as the intersections of the multiple rays reecting on the parabolic mirrors. Two branches merge into a cusp (singularity) located in F B .

Figure E. 2 :

 2 Figure E.2: Evolution of the shadowgram with a growing bump like deformation of the interface. A poorly lit central area forms at a gap H 1.32 mm as a result of the reected light rays being angled outwards (Fig. E.1). A brilliant annular caustic appears at a gap H 0.8 mm.

  E.3).

Figure E. 3 :

 3 Figure E.3: Setups for measuring either small (a) or large (b) surface deformations.The top camera (C) focuses on the surface (point O). A at mirror (M ) is interposed on the optical path between the camera and the interface so that the camera sees the screen (OS). The distances P Q and P O must be equal to get a focused image on the screen. In conguration (a), the distance OQ between the surface and the recording plane is D = 40 cm. In (b), the screen is brought closer to the interface while preserving a focused image : a relay lens (RL) forms on (OS) a sharp image of the shadowgram captured on an auxiliary screen (OS') placed at D 2.5 cm from the interface. Note that both setups are suited for direct ow visualisation thanks to the swivelable mirror (M ).

  We start our experiments at a big gap H which is progressively decreased. As long as OQ 3 D the surface deformation is barely discernable. The gap getting smaller and smaller, a caustic rst appears on the shadowgram when OQ = D . Finally, the typical height h and extent ξ of the hydraulic bump are inferred from the dimensions of its shadowgram and the experimental value of D using the formulas α 0.446 and λ= β 1 e ¡β /α ¨ 1.836 (β 1.230) are prefactors derived from the curvature function f P of a gaussian deformation. γ is the ratio of the widths of the nal and the inital shadowgrams (Fig. E.2). x denotes the abscissa of the caustic on the recording plane. Details on the derivation of formulas (E.1) are given below.E.3 Derivation of the bump height h and extent ξHere we derive a simplied version of expressions (E.1) providing the geometric features of the `hydraulic bump', its height h and extent ξ, in function of the critical distance D and the shadowgram properties.Let f be the function representing the deformation prole in the vertical cut plane (y0z). The deformation state is calculated using the light slit method (Fig. E.4). Though in practice the laser beam exhibits a circular cross section, all the information about the deformation is preserved with this method. By virtue of axisymmetry, the totality of the shadowgram can be inferred from the light slit reection imaged on the screen. Fig. E.5 sketches top and side views of the surface deformation.
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 5 Assuming a gentle slope of the deformation prole, i.e. |f I (a)| 3 1 d a r¡A, As , the reected ray coming out from point P satises the system 2f I (a) z = a , x cos θ z sin θ = 0 , (E.2) derived from the condition PM ûr = 0, M being a generic point of the reected ray.

Figure E. 4 :

 4 Figure E.4: Calculating the interface deformation with the light slit method. A laser sheet, depicted by a set of parallel incident rays (angle of incidence θ), illuminates a segment of length2A located on the liquid surface along the axis (Oy). The reected beam is imaged on a screen (not sketched) and the deformation state deduced from the light slit reection. ûi and ûr are two unit vectors aligned with the directions of incidence and reection, respectively. For simplicity, since the deformation is axisymmetric relative to the vertical axis (Oz), only a half segment is represented.

Figure E. 5 :yFigure E. 7 :

 57 Figure E.5: Geometry of the deformation prole. (Left gure) Side view of the axisymmetric bump like deformation of the interface. ûn is the unit vector normal to the deformation prole z = f (y) at point P (0, a, f (a)). (Right gure) Top view of the hydraulic bump. Each circle corresponds to a set of points located at a given altitude z.

  Fig. E.8 gives the dimensions of shadowgrams captured in such conditions. The scale factor γ, i.e. the ratio of the sizes of shadowgrams A and B, has to be estimated. We have γ H = (2b) B /(2b) A = 3.71/8.32 0.446 along the horizontal axis and γ V = (2a) B /(2a) A 0.510 along the vertical direction. We keep the mean value γ 0.478. We also need x , the radius of the ring shaped caustic at the very moment the latter appears on the screen. On shadowgram B, we measure x = r(2c) B (2d) B s /4 1.08 mm. With α = 0.446, λ = 1.836 and D = 40 cm (cos θ 1), formulas (E.1) nally yield a bump extent ξ 1.23 mm and a height h 1.01 µm, that is an aspect ratio ξ/h 1218 ! More estimates of the bulge dimensions are gathered on Fig. 2.32.

Figure E. 8 :

 8 Figure E.8: Dimensions of typical shadowgrams. The gap is H 1.6 mm when the `critical shadowgram' B is captured (D = 40 cm).

Figure F. 1 :

 1 Figure F.1: Collection of PIV maps showing the normalised magnitude of the surface velocity | v s |/v M for dierent couples (H, V inj ) of the control parameters.

Figure F. 2 :

 2 Figure F.2: Collection of PIV maps showing the normalised velocity v /v M along the dipole symmetry axis, for dierent couples (H, V inj ).

Figure F. 3 :

 3 Figure F.3: Collection of PIV maps showing the normalised velocity v u /v M along the direction perpendicular to the dipole symmetry axis, for dierent couples (H, V inj ).

Figure F. 4 :Figure G. 2 :

 42 Figure F.4: Collection of PIV maps showing the normalised vorticity ω/ω M for various couples (H, V inj ). The velocity vector eld is the one displayed in Fig. F.1.

  topped by a Zeiss Luminar lens (focal length f 63) suited for photomacrography (working distance d 76 mm). Finally, the strength of the bonding is checked by shooting at the bead with a 5 bar air pressure gun. Fig. H.2 is a photograph of a glassy carbon microbead successfully stuck onto the end of the optic bre.

Figure H. 1 :

 1 Figure H.1: The bead collage setup. (Top gure) Schematic of the device (not to scale).

(

  MS) microscope slide; (OF) optic bre; (xyz) TS, xyz translation stage; (MO) microscope objective; {(CC) + (ET) + (L)}, control camera + extension tube + lens. Step (1) : soak the tip of the optic bre in the glue droplet gd. Step (2) : nd an isolated sphere in the carbon bead powder cbp and stick it onto the bre. Pay attention to the bead alignment with the bre axis. Step (3) : cure the adhesive with the `UV pistol' (image taken from Thorlabs ocial website). (Bottom gure) Photograph of the setup under actual operating conditions. Same abbreviations.

Figure H. 2 :

 2 Figure H.2: A carbon microbead stuck onto the end of an optic bre. The patch of light is probably stray light diused through the adhesive. Image from A. Mombereau's internship report.

1 γλ& 1 1 2 1 31 e

 111231 p1 cq µ ¡ µ p1 cq λ Re Re 2 rc ¡ ln(1 c)s O(Re 2 ) . (J.4) Finally, noting that at nite Péclet number Pe working in the viscous regime Re 3 1 amounts to taking the asymptotic limit Pr Ñ V, we write Re2 rc ¡ ln(1 c)s @ ¡2 pPe/Req = e ¡2 Pe Re ln Re 2 [c ¡ ln(1 c)] @ Re ¡Pe rc¡ln(1 c)s = p1 cq Pe e ¡Pe c , (J.5)which is exactly the same polar dependence as that of expression (4.45).Appendix KDerivation of the radial and the angular Stokes equationsThis appendix provides a detailed derivation of the Stokes equations (4.57a) (4.57c). What we do basically is elucidating the projections of the vector Stokes equation (4.15a) onto the directions of the spherical basis vectors pe r , e θ , e ϕ q.Let us rst recall the expression of the nabla operator in spherical coordinates eld p (lm) (r, c, ϕ) in the form of (4.54a) one nds∇p (lm) = ¡ e imϕ
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 421224122412241223 v I r % I ¢ (l ¡ 1)(l ¡ 2) ¡ m 2 incompressibility condition (4.56) is used to get the above form (K.5a).Finally, projecting the Stokes equation onto the axes∇ 2 v | j ¡ ∇p | j = 0 yields s 2 v I r % v r = ¡ (l 1) p , s 2 v I θ % v ϕ ¡ sp I ,s 2 v I ϕ % Compute p I (l0) (c) and v I r, (l0) (c). Next, substitute their expressions into the right hand side of the polar Stokes equation (L.1d) and solve it to derive v θ, (l0) (c) (you can equally solve the incompressibility equation (L.1b)).

4 .

 4 To nish, solve separately the azimuthal Stokes equation (L.1e) to determine v ϕ, (l0) (c).L.2 Solving strategy for non axisymmetric states (lm) m$0Solving the Stokes problem (4.59a) (4.59e) in non axisymmetric cases (lm) m$0 is a bit more tricky. The diculty essentially lies in the fact that we are compelled to derive an auxiliary equation for the tv θ, (lm) (c)u m$0 family of functions.
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 1162721221111212142222 (4.61) then explicitly write for m ¥ 0 and c [0, 1] (m N), the second fundamental solution of Eq. (4.58), namely the associated Legendre functions of the second kind tQ m l (c)u, exhibit logarithmic singularities of the form ln rp1 ¡ cq / p1 cqs and are thus discarded in our study.Bailey's theorem oers a simple way of calculating Gauss hypergeometric functions of the form 2 F 1 (α, 1 ¡ α , γ ; 1/2) using the relation2 FHere tα, γu = t¡l, 1 mu and z = 1/2 corresponds to the interface position c I = 0.M.2 Euler's hypergeometric dierential equationIt is also possible to dene the Gauss hypergeometric function 2 F 1 pα, β, γ ; zq on the basis of the equation it obeys, known as Euler's hypergeometric dierential equationz p1 ¡ zq d 2 F dz ¡ pα β 1q z % dF dz ¡ αβF = 0 .Let us demonstrate that the Gauss hypergeometric function we have to consider, in the upper half space c [0, 1] and for m ¥ 0 , is indeed the one for which α = ¡l,β = l 1, γ = 1 m and z = (1 ¡ c)/2 .Our starting point is the associated Legendre dierential equation (4.58) satised by the {P m l (c)} . Since we require the {P m l (c)} to be regular in the upper half space c [0, 1] , we naturally look for them in the form (m ¥ 0) (c) , (M.8)where Φ (c) is an unknown function to be identied.Coming back to the original eld v θ = r v θ /s, we draw the partial conclusion thatv θ, (lm) (c) = s l ¡ 2 l pl 1q π (lm) , m) P m l¡1 (c) , dl ¥ 2 .(O.8) In fact, another form of solution (O.8) valid including for l = 1 can be derived in a fairly simple way starting from expressions (O.6a) (O.6b). The latter suggest seeking a particular solution of the form r P m l¡3 . As previously, this decomposition is inserted in the left hand side of Eq. (O.3) and, after some algebra, onegets from the identication LHS 1, 2 RHS 1, ¡ pl ¡ 2q pl m 1q pl 1q p2l 1q π (lm) , K 2 = l ¡ m ¡ 2 2l ¡ 3 ρ (l¡2, m) . (O.9a) (O.9b)And so we are this time left with the following alternative representation of the solution to Eq. (O.3), valid even for l = 1,v θ, (lm) (c) = 1 s ¡ pl ¡ 2q pl m 1q pl 1q p2l 1q π (lm) P m l 1 (c) l ¡ m ¡ 2 2l ¡ 3 ρ (l¡2, m) P m l¡3 (c) σ (l¡1, m) P m l¡1 (c) & , dl ¥ 1 . (O.10)For later purposes, let us examine in greater detail the particular case l = 1. From expression (O.10), one readily obtainsv θ, (1m) (c) = 1 pm 2q π (1m) P m 2 (c) p1 mq ρ (¡1m) P m 1 (c) σ (0m) P m 0 (c) & , (O.11)where we have used P m Appendix M). The explicit form reads (Appendix N)v θ, (1m) (¡1m) pc mq σ (0m)This last expression is regular d c [0, 1] save in the axisymmetric case m = 0 for which it diverges in c s = 1 and needs thus to be regularised. Evaluating (O.12) in m = 0 yields v θ,[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] factorise in the following mannerv θ, (10) (c) = π (10) 2s c 2 2ρ (¡10) π (10) c ¢ 2σ (00) π(10)The interfacial plane (xOy) is characterised by θ I = π/2, i.e. c I = 0 (d r [0, V[ and ϕ [0, 2π]) such that x = r cos ϕ , y = r sin ϕ , and the after relations among spherical and cartesian basis vectors e r (θ = π/2) = cos ϕ e x sin ϕ e y = x r e x y r e y , e ϕ (θ = π/2) = ¡ sin ϕ e x cos ϕ e y = ¡ y r e x x r e y , (P.3a) (P.3b) and e θ (π/2) n is the unit vector normal to the plane (xOy). The vertical cut plane (xOz) is characterised by ϕ = 0 (d r [0, V[ and c [0, 1]). and e r (ϕ = 0) = sin θ e x cos θ e z = x r e x z r e z , e θ (ϕ = 0) = cos θ e x ¡ sin θ e z = z r e x ¡ x r e z , (P.5a) (P.5b) with now the unit vector e ϕ (0) normal to the plane (xOz).P.1 Axisymmetric state (lm) =[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] Once boundary conditions (4.17a) (4.17c) applied, one is left with v (10) (r, c) = ψ[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] per, e θ , eϕq .(P.6) Using then the above relations, one readily obtains the 2D vector elds v (10) (x, y) = ψ[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] 

v ( 21 )

 21 (r, c, ϕ) = ψ (21) part of the original velocity vector. This time, one is left with the after 2D vector eldsv (21) (x, y) = ψ(21)

4 px 2 z 2 q 4 ,

 4 choice ψ[START_REF] Levich | Physicochemical Hydrodynamics[END_REF] (0) = ψ (21) (0) = 1. Since there is no physical reason to assign the same weight to both the axisymmetric (10) and the dipolar (21) components, we encourage the interested reader to change the relative contribution of these ow states by xing unequal temperature magnitudes, e.g. ψ (10) (0) = 1 and ψ (21) (0) = 3.

  

  

  

  

  

The water jet experiment

The hot bead experiment

This property is actually a direct consequence of uid incompressibility. Indeed, we have ∇.∇ 2 v = ∇ 2 p∇. vq = 0 only because ∇. v = 0.

The reason why the expression of the advective current J adv is as simple as VΘ is due to ow incompressibility. Indeed, we have the identity ∇. pVΘq = V.∇Θ Θ p∇.Vq = V.∇Θ since ∇.V = 0.

The case l = 0 is tantamount to considering a uniform velocity eld preexisting the introduction of the heat source, which is not our physical framework.
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Chapter 4

The route towards a theory of the instability In this chapter, we lay the theoretical groundwork on which to build a description of the azimuthal instability observed in the hot bead experiment. In sec. 4.1, we provide the physical framework of our study by presenting the governing equations of the system accompanied by a set of boundary conditions. In sec. 4.2, an axisymmetric solution is worked out analytically in the presence of thermal advection. This particular solution is viewed as the ground state meant to model the base ow observed under slight heating conditions. A generalised form of the Lamb's solution [START_REF] Lamb | Hydrodynamics[END_REF], derived from a non standard solving of the Stokes equation within a half space, is provided in sec. 4.3. Finally, in order to grasp the azimuthal instability, the ground state derived in sec. 4.2 shall be perturbed by non axisymmetric states picked from this `hemispherical' Lamb's solution (sec. 4.4).

Complementary information on the setups

A.1 Dimensions of the dierent parts of the setups Either a small or a large cell is used (Fig. A.1). The wider cell serves us to study whether the instability is due to ow connement (sec. 2.5.1). The cells and the glass lid are made of optical glass. The tank has an inner diameter s in t 69.5 mm and a height h t = 42 mm. Its cover is pierced for passing the pumping pipe therethrough. The injection tube has an inner diameter s in inj 0.55 mm ¦ (outer diameter s out inj 0.8 mm). An outlying tube of same diameter is ush with the bottom of the cell to drain liquid while disturbing the bulk ow as little as possible. The hydraulic circuit consists of a 1.3 mm thick silicon tygon tubing. In the `head to tail syringes' setup, a pair of 2 mL capacity syringes (purchased from Chance) with an inner diameter s in s 8.9 mm is used. Complementary information on the setups ¦ Nota bene : The inner diameter of the injection nozzle is more precisely 546¨10 µm. This incertitude is obtained by a circular t of the nozzle on microscopy images (Fig. 2.36).

A.2 Typical values of the control parameters

A broad range of gap values is explored in the `gravity ow' setup, from slightly positive H 0.1 mm up to H 1 cm. Experiments at small H 0.25 mm, moderate H 1 mm and big H 2.5 mm gaps are conducted in the `head to tail syringes' conguration.

The `gravity ow' setup supplies injection rates Q inj in the order of a few mm 3 /s (detailed calculation of Q inj provided in Appendix B), that is injection speeds V inj of a few cm/s. A bit more intense jet ows are generated with the syringe pump : here Q inj ranges from 1.67 mm 3 /s up to 33.33 mm 3 /s, corresponding to V inj in the interval 0.7 ¡ 14 cm/s.

A.3 Special precautions

Special care has to be taken with the `head to tail syringes' setup. The latter main drawback is the diculty to remove air bubbles that nucleate within the syringe bodies and the exible pipes. Bubbles must be wiped out clearing the pipes thoroughly so as to inhibit parasitic pressure dierences that would cause the plungers to move irregularly. Moreover, stick slip issues appear at low injection rates. Another limitation while working with the syringe pump is the short experiment time, not exceeding the few minutes needed for the translating part of the apparatus to reach the mechanical stop.

Appendix B

The injection rate Q inj in the `gravity ow' conguration

B.1 General presentation

In the `gravity ow' conguration, the calculation of the injection rate Q inj is a problem of lling/emptying a container. Because of the close loop functioning of our hydraulic circuit, any variation of the liquid level in the cell results from the combined eects of injection and pumping : when injection is stronger (resp. weaker) than pumping, the level of liquid in the cell increases (resp. decreases) with time. The quantity Q gap = S pdH/dtq (S : cross sectional area of the cell) takes both evolutions into account, being positive or negative according to whether the gap H increases with time dH/dt ¡ 0 (resp. decreases with time dH/dt 0). The value of Q gap is set xing the height dierence ∆ between the liquid levels in the cell and in the reservoir.

Let Q inj be the injection rate we want to calculate and Q pump the pumping rate. Injection (resp. pumping) is a gain (resp. a loss) of liquid for the system. The outcome

between what the system gains and what it looses corresponds precisely to Q gap , so that we end up with the relation 

Technical information on ow visualisation

The exposure time (ET), i.e. the time over which the camera sensors are lit, is another parameter that must be tuned. The latter is xed according to FPS ¤ FPS max = 1/ ET, FPS max being the maximum attainable frame rate (for example, if ET = 0.04 s, it is impossible for the camera to run at a frame rate faster than 1/0.04 = 25 images/s). The ORCA-ash camera oers exposure times from 20 µs up to 10 s, while the exposure times of the C5985 camera are in the range 1/10 s ¡ 300 s. To ensure suciently bright images one can either increase the exposure time, but this restricts even more the maximum frame rate, or simply increase the gain (magnitude of light amplication). Scale bars are obtained from calibration (table C.1). The X and Y calibrations dier on the side views but are identical on the top views. In fact, the cell is astigmatic because of its curved sidewall having unequal curvatures in two perpendicular planes about the optical axis. This default of rotational symmetry results in two distinct foci. The tracer particles are thus imaged as lozenges rather than bright spots, especially those located far from the optical axis. A correction lens (CL) is placed between the sample and the side camera to x this issue (Fig. 2.4). This improves the quality of the pictures but a slight length distorsion between the X and Y directions remains, which explains the above discrepancy. Appendix D

Complementary information on dye injection

We rst detail the way dye injection experiments are realised. Then we comment on the correlation between the `coloured cloud' and the underpinning hydrodynamic structure.

D.1 Practical details

Dye injection slotting the end of a pipette into the drainage tube at the bottom of the tank causes an overpressure that strongly disturbs the multipolar ows. To bypass this issue, we design a minicup with a hole drilled into its bottom to t it to the drainage tube. Fluorescein is injected in the cup which channels most of the colouring until it gets aspired by the drainage tube and ows out in the cell (Fig 159

Complementary information on shadowgraphy

In this appendix, we rst present shadowgraphy principles adapted to our own situation and give the experimental protocol to characterise the `hydraulic bump' generated by the water jet. We next derive useful relations to calculate the bulge dimensions and conclude with a concrete example on how to apply them.

E.1 General presentation

The water jet induces a deformation of the interface above the injection point. Owing to the cylindrical geometry of the jet, assuming a bump like axisymmetric deformation of the interface is pretty natural. A collimated light beam uniformly illuminates the surface over an area of approximately 1 cm in width centred on the injector's axis. We consider a gaussian shape f (a) = h exp (¡a 2 /ξ 2 ) of the interface deformation which, by the way, is most probably a realistic assumption. With the reduced variables t = a/ξ and ps y(t), s z(t)q = py(t)/ξ , p4h/ξq ¢ z(t)/ξ q, one obtains the parametric equations 

(E. Appendix F

Portfolio of PIV maps

This appendix is a comprehensive collection of PIV maps for many dierent values of the control parameters. Double entry tables are provided, each square containing a map for a given couple (H, V inj ). On Figs F.1 F.4 are displayed maps of the surface velocity magnitude | v s |, its components v and v u along the symmetry axis of the dipole as well as a direction perpendicular to it, and also the vorticity eld ω. Velocity and vorticity maps are normalised by quantities denoted v M and ω M , the `maximum' velocity and vorticity computed from the 1 numerical points of highest intensity. The length of all velocity vectors is set to unity so as to better distinguish the dipolar ow pattern.

A natural question concerns the evolution of the ow properties as the water jet is intensied and/or the gap is varied. Unsurprisingly, for a given gap, both the surface velocity and the vorticity increase with increasing injection speed. Moreover, the velocity declines at large gaps H 2.5 mm probably due to ow connement. Also observe how the multicoloured area on the | v s | maps extends forward as the injection speed increases. As the gap grows, this high velocity area broadens and takes a crescent shape (clearly visible for V inj = 7 cm/s and H = 2.5 mm), while the red (positive) and blue (negative) regions of the vorticity elds get more and more oblong. Here again we attribute these facts to ow connement. 

Technical information on the cameras

Appendix H

The bead collage setup

Sticking a microbead onto the end of an optic bre is a delicate aair that requires a setup specially designed for this purpose ( We take care to clean well the edges of the bre paying particular attention to its cross section. In practice, impurities deposited on the bre are eciently removed after a few hours soaking in Hellmanex. Hellmanex is a liquid alkaline concentrate, produced by Hellma, to be diluted in water to a few percent before use as a detergent.

Then comes sticking. The bre is placed under a microscope (Olympus model IMT 2, magnication 20¢). We spread on one side of a microscope slide a tiny amount of a glassy carbon spherical powder (particle size between 200 and 400 µm) purchased from Alfa Aesar, while a droplet of photocrosslinkable glue (NOA 65, a UV curing adhesive from Norland) is deposited on the other side. With the manual xyz translation stage the bre is mounted on and the xy translational control knobs of the microscope, the tip of the bre is positioned right above the glue droplet prior to being soaked with it. Shortly after, the bre is placed vertically to an isolated carbon bead. A ne pre alignment of the bre axis with the carbon bead is crucial to ensure coaxial sticking. The bre is then lowered until a capillary bridge of glue forms between the surface of the microsphere and the extremity of the bre. At this precise moment, the curing of the adhesive is conducted by a ∆t 1 min exposure to UV light from a Thorlabs CS2010 high power UV curing LED system (surface power density delivered at λ = 365 nm and with a continuous mode tuned at 85% : P d = 167 mW/cm 2 ). The good completion of these steps is monitored by means of a CCD camera (Hamamatsu model C2400 XC 77) equipped with an extension tube Appendix I

Three simplifying assumptions

In this appendix we discuss the validity of three assumptions made to simplify our study : [START_REF] Ashkin | Acceleration and Trapping of Particles by Radiation Pressure[END_REF] the interface is at, (2) thermogravity is negligible and (3) evaporation is negligible.

I.1 The at interface hypothesis Assuming a at interface can be justied thanks to an estimation of the capillary number

Ca which quanties the eect of viscous drag forces relative to surface tension forces acting on a uid interface. This number is dened as the dimensionless ratio

with η the dynamic viscosity of water, γ its surface tension and U the ow velocity scale.

At room temperature T room 20°C and under atmospheric pressure P atm 1bar, the dynamic viscosity of pure water is η 10 ¡3 Pa.s . Its surface tension is γ 72.8 mN. m ¡1 . As for the typical ow velocity, our experiments provide U 100 µm/s. The capillary number involved in the present study is therefore in the order of Ca 10 ¡6 3 1, meaning that the ow is largely dominated by capillary forces that tend to minimise the interfacial area keeping it as plane as possible (contrary to viscous forces that would deform the interface). The simplifying assumption of a at interface is thus a good approximation.

I.2 Neglecting thermogravity

The reason why thermogravity (buoyancy force ρg) is neglected here becomes clear while comparing the orders of magnitude of two dimensionless parameters, the Rayleigh Ra and the Marangoni Ma numbers. The Rayleigh number Ra, comparing the `intensity' of

Consistency with Bratukhin's solution

In this appendix, we check that the nonlinear temperature eld (4.45) we obtained in the far eld axisymmetric regime (lm) = ( 10) is consistent, in the low Reynolds limit Re 3 1, with the solution derived by Bratukhin and Maurin [START_REF] Bratukhin | Thermocapillary convection in a uid lling a half space[END_REF].

Let us start with Shtern's writing [START_REF] Shtern | Azimuthal instability of divergent ows[END_REF] of Bratukhin's analytical solution to the steady state `Navier Stokes Fourier' problem (the general framework wherein inertia is also considered in addition to thermal advection)

with Pr the Prandtl number dened as Pr 9 = ν/D = Pe/Re and Appendix L

Strategy for solving the Stokes problem

The aim of this appendix is to prepare the ground for analytical calculations by providing `solving recipes' of the Stokes problem (4.59a) (4.59e). As will become clear, solving this dierential system is easier in axisymmetric (m = 0) than in non axisymmetric (m $ 0) cases, resulting in slightly dierent solving strategies.

L.1 Solving strategy for axisymmetric states (lm) = (l0)

In the case of axisymmetric states (lm) = (l0), the system (4.59a) (4.59e) simplies to

Two dierential equations are here uncoupled from the others, those for the functions {p (l0) (c)} and {v ϕ, (l0) (c)}, so that the latter can be derived in a fully independent way. On top of that, the right hand side of both the incompressibility (L.1b) and the polar Stokes equation (L.1d) no longer depend on v ϕ as a direct consequence of axisymmetry. The `solving recipe' of this system is hence quite straightforward : for a given value of l, 1. First, solve the dierential equation (L.1a) to work out p (l0) (c).

2. Insert the obtained expression of p (l0) (c) in the right hand side of the radial Stokes equation (L.1c) and solve it to get v r, (l0) (c).

Appendix M

From the Gauss hypergeometric function to associated Legendre functions This appendix inspired by chapter 15 of ref. [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] is devoted to a brief presentation of the Gauss hypergeometric function that stresses out its relation to the associated Legendre functions (4.61). The presentation ends with some useful properties.

M.1 The Gauss hypergeometric function as a series

The Gauss hypergeometric function 2 F 1 pα, β, γ ; zq is a special function dened by the hypergeometric series

with (.) k the Pochhammer symbol dened by

Remarkably, the Gauss hypergeometric function can also be expressed in terms of the Euler's Gamma function as follows

One dierentiates (M.8) twice and substitutes the expressions of P I (c) and P P (c) into the Legendre equation (4.58). Ultimately, one is left with 1

(M.10)

The last stage consists in changing the variable from c to z dened as z 9

= p1 ¡ cq / 2 . Rewriting Eq. (M.10) with respect to z yields nothing but Eq. (M.7) with α = ¡l, β = l 1, γ = 1 m so that Φ (c) F p¡l, l 1, 1 m ; p1 ¡ cq / 2q and nally

(M.11)

M.3 Properties of the associated Legendre functions

Here are reported some properties of the associated Legendre functions tP m l (c)u :

The tP m l (c)u are the eigenfunctions of the Legendre dierential operator L with eigenvalues equal to l = ¡l (l 1), i.e.

Note also that

As readily checked on the eigenvalue equation (M.12), P m ¡(l 1) (c) = P m l (c).

Recurrence relations (c ¥ 0 and m ¥ 0) :

) 1 The very same rationale is easily adaptable to the lower half space c [¡1, 0] and m ¥ 0 setting this time the regular form P ¡ (c) = r p1 cq / p1 ¡ cq s m/2 Φ ¡ (c) , where `c' is replaced by `¡c' according to the up down symmetry of the system. Next introducing the change of variable z ¡ 9 = p1 cq / 2 leads again to equation (M.7) with exactly the same values of the parameters. Finally, as Eq. (4.58) is invariant when `m' is transformed into `¡m', the solution for negative values of m is simply P ¡m l (c) = P m l (c), so that bringing everything together yields in the end 

p1 cq m Appendix O

Derivation of the velocity components

In this appendix we present in great detail the derivation of the velocity components tv j, (lm) (c)u jtr, θ, ϕu . By virtue of the linearity of the Stokes problem, the latter are of the form v = v H v P , i.e. the superposition of the homogeneous solution v H and of a particular solution v P of the complete equation to be solved.

Radial velocity

As a rst step, we prepare the ground for the application of the operatorial formalism rewriting the radial Stokes equation with ρ (l¡2, m) another integration constant to be determined.

Polar velocity

To render calculations easier, it is convenient to dene the auxiliary velocity eld r v θ 9 = sv θ . Inserting r v θ in the polar equation (L.2) yields the dierential equation

Derivation of the velocity components

For the very same reason as before, the homogeneous solution is v H θ (c) W P m l¡1 (c)/s which diverges on the z axis (c s = 1) for axisymmetric states (m = 0). The latter are thus to be handled separately in the upcoming analysis.

We now turn to the inhomogeneous equation. By virtue of the linearity of Eq. (O.3), the particular solution r v P θ can be written as the sum of two terms r v P 1 θ and r

) having yet to be determined.

The guiding idea is to transform all derivatives into linear combinations of associated Legendre functions, in order to apply Eq. (4.64) repeatedly. This can be achieved using the recurrence relation (M.14a) or (M.14b). This way, derivatives are eliminated and we ultimately get rid of the terms W c using the formula (M.14c). 

Comparing (O.5a) and (O.6a) on the one hand, (O.5b) and (O.6b) on the other hand, nally yields the constants

the expression of K 2 being obviously valid only if l $ 1.

For this last form to be regular everywhere, c = 1 must be a root of the quadratic polynomial enclosed by the square brackets, i.e. 

Azimuthal velocity

The modes To nish, we recall that a direct calculation yields the form (4.34) of v ϕ, [START_REF] Levich | Physicochemical Hydrodynamics[END_REF] .

Appendix P

Expressions of the (lm) = t( 10), (21)u velocity elds in cartesian coordinates

The velocity elds associated with the ow states (lm) = t( 10),