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Résumé/Abstract

Un écoulement axisymétrique à une interface eau-air s'avère instable azimutalement. Durant cette thèse,

nous avons mené deux expériences a�n d'étudier ce point : (1) une petite fontaine subaquatique propulse

un jet contre l'interface eau-air créant ainsi en surface un écoulement radial centrifuge; (2) une microbille

chau�ée par laser, en mouillage partiel à la surface de l'eau, engendre un écoulement thermocapillaire

divergent. Lorsque la vitesse du jet ou la puissance du laser est su�samment forte, il se produit une

brisure de symétrie de l'écoulement torique initial en paires de vortex contrarotatifs entourant la source.

Nous précisons les caractères morphologiques du tore ainsi que du dipôle par le biais d'expériences de

tomographie laser et d'injection de colorant. Dans l'expérience du jet d'eau, nous montrons que la taille

du tore est essentiellement déterminée par la distance séparant l'injecteur de la surface. Dans les deux

expériences, un état "bloqué" de l'interface en régime toroïdal mais "débloqué" en régime dipolaire est

mis en évidence par suivi de traceurs. Ce type de phénomène est piloté par l'élasticité de surface. Une

preuve convaincante est la réponse élastique, à l'extinction du laser, de la couche de surfactants adsorbés

à l'interface. Le principal intérêt de ce travail est de mettre en avant le rôle � clé que joue l'élasticité

interfaciale dans le scénario de l'instabilité. D'un point de vue théorique, nous étudions la convection

thermocapillaire induite par une source �xe ponctuelle à l'interface eau-air. Nous résolvons l'équation de

Stokes incompressible au sein du demi � espace contenant le liquide et déterminons la solution exacte du

problème advectif, non-linéaire, dans le régime axisymétrique en limite de champ lointain. En�n, nous

posons les bases sur lesquelles élaborer une théorie de l'instabilité. Ce travail de thèse devrait permettre

de comprendre comment une petite sphère chaude à la surface de l'eau déclenche le type d'instabilité

étudié ici, devenant de ce fait une "particule active" capable de s'autopropulser à grande vitesse.

Axisymmetric �ows on a water-air interface prove to be azimuthally unstable. In this thesis work, we

design two setups to explore this fact : (1) a small subaquatic fountain propelling a jet against the water-

air interface where it creates a centrifugal radial �ow, (2) a laser � heated microbead in partial wetting at

the surface of water that induces a divergent thermocapillary �ow. At su�ciently high jet speeds or laser

powers appears a symmetry � breaking of the toroidal base �ow in the form of counter � rotating vortex

pairs surrounding the source. Morphological traits of the torus and the dipole are uncovered through a

wealth of laser tomography and dye injection experiments. In the water jet experiment, we show that the

torus size is primarily �xed by the distance between the injector and the surface. In both experiments,

the tracking of tracer particles evidences a `locked' interface in the toroidal regime, whereas it `unlocks'

when a dipole sets in. Such a phenomenon is conditioned by surface elasticity. Cogent evidence is brought

by the elastic response to laser shutdown of a surfactant layer adsorbed at the water surface. Unveiling

the key role of surface elasticity in the scenario of the instability is the main achievement of this work.

On a theoretical level, we focus on thermocapillary convection induced by a �xed point source of heat

sitting across the water-air interface. We solve the incompressible Stokes equation within the water � �lled

half � space and derive an exact solution to the advective nonlinear regime in the far � �eld axisymmetric

limit. We then lay the groundwork on which to build a model of the instability. This thesis work paves

the way for understanding how a hot microsphere found on the water surface triggers such an instability,

thereby becoming an `active particle' able to achieve self � propulsion at large speeds.

Keywords/Mots clés : divergent �ows/écoulements divergents; azimuthal instability/instabilité azimutale;

surfactant � laden elastic interface/interface élastique chargée en tensioactifs; Marangoni e�ect/e�et.
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Introduction

In this thesis, we probe the azimuthal stability of axisymmetric �ows developing at a

water/air interface. Two systems serve as `radial sources' : (1) a slender tube lying at

a short distance under water propels against the surface a jet that creates a centrifugal

radial �ow, (2) a hot microsphere sitting in partial wetting across the water/air interface

that induces a divergent thermocapillary �ow. In the latter case, the local temperature

rise gives birth to surface stresses that put the liquid into motion, a phenomenon called

the Marangoni e�ect. In both experimental situations, surface active impurities adsorbed

at the water/air interface are repelled by the outward forced �ow. When the jet (1) or

heating (2) is strong enough, a �ower � like azimuthal instability of the divergent �ow

arises in the form of counter � rotating vortex pairs periodically distributed all around the

source. It is this instability which motivates the present work, with potential applications

for the propulsion of arti�cial microswimmers within self � induced Marangoni �ows.

Historically, this project started with the manipulation of microparticles using an

optical levitator [1] (Fig. 1) : a small sphere made of a light � absorbing material, initially

lying on the �oor of a glass cuvette (a), is captured by a focused vertical laser beam that

exerts on the latter a radiation pressure strong enough to push it against the water/air

interface where it locks in partial wetting (b). Contrary to a hot sphere found in the bulk

that would self � centre on the laser beam axis, a hot sphere located at the surface gets out

of the trap and describes quasi � circular orbits around the laser beam axis past a threshold

heating power P depending on the beam waist radius ω0 [2] (Fig. 2). While these quasi �

circular trajectories proved stable for any given couple (P , ω0) in the explored range,

with a fairly well reproducible radius rorb as the laser was repeatedly switched o�/on,

the orbital velocity vorb was absolutely not : its magnitude varied signi�cantly from one

experiment to another, and it was not rare to see the laser � heated particle reverse its

direction of rotation many times in the course of a single experiment. A major interest of

1
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this device lies in its ability to e�ciently trap microspheres behaving as thermally � driven

Marangoni surfers [3] that self � propel very fast, at typical velocities up to 1mm/s, with

just a few milliwatts of laser power.

Figure 1: Optical levitator. Radiation pressure forces, typically in the order of a few piconewtons,

are su�ciently strong to levitate a microsphere. Image taken from [2].

Figure 2: Closed orbital track of a light � absorbing microsphere around the centre

of an optical trap. We use tiny particles about 5µm in diameter. Ibid.

The thermocapillary �ow induced by the laser � heated sphere was revealed using tracer

particles. It was the �rst time we observed the multipolar instability we are interested in,

as counter � rotating vortex pairs `escorting' the microsphere in its orbital motion (Fig. 3).

Since characterising the multipolar �ow patterns generated by a hot free particle seems

too challenging, primarily because of the di�culty in describing the dynamic coupling

between the temperature �eld and the particle trajectory, we opted for a simpler approach.

We decided to study the convective �ow developing in the vicinity of a �xed hot spot

submitted to increasing heating. The �rst tests we conducted in this direction would use

the tip of a soldering iron or that of an acupuncture needle as rudimentary heat sources

of spherical geometry (Fig. 4). We observed once again the same multipolar instability,

with a growing number of convection cells with increasing temperature.
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Figure 3: Vortex pair escorting the light � absorbing microsphere along its circular

trajectory. Tracer particles gathered into a rotating cluster reveal the presence of a vortex ahead of

the orbiting microsphere. A close inspection of the video unveils the existence of a second vortex lagging

behind the particle, slightly inside the orbit (red circle). Note the corona of tracer particles coating the

surface of the microsphere. Time increases from left to right, with an interval δt = 24ms between two

successive frames. Laser beam axis marked by a black cross. The orbital motion of the heated microsphere

(yellow circle) is clockwise, whereas the big vortex motion (black arrows) is anticlockwise. Experimental

parameters : laser beam waist radius ω0 = 6.3µm, heating power P = 28mW. Scale bar : 5µm. Ibid.

Figure 4: Hot tip of a soldering iron (a) and of an acupuncture needle (b) touching

the water surface. Both tips are regarded as �xed spherical heat sources in partial wetting at the

water/air interface. The point of the soldering iron used in our experiments has a radius asi = 100µm

while the end of the acupuncture needle is a half � sphere of radius aan = 6.5µm. Images from A. Girot's

and A. Mombereau's internship reports.

Recently, during A. Mombereau's internship, we designed a more sophisticated setup

consisting of a carbon microbead stuck onto the end of an optic �bre. The `hot bead

experiments' that we will present later in this work were all achieved using this setup.

In fact, the azimuthal instability investigated in this project manifests in a wider range

of physical situations, as it is observed in the presence of solutocapillary �ows as well,

i.e. Marangoni �ows induced by a surfactant concentration gradient along the interface.

Almost half a century ago, Pshenichnikov and Yatsenko yet reported the existence of such
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an instability, though at the macroscopic scale [4]. The principle of their experiment is

simple : a cylindrical pan of 280mm in diameter and 40mm in height is �lled with distilled

water. A 10% hydroalcoholic solution is supplied to the system through a slender tube

at an extremely low mass rate, from 3 � 10�4 to 0.1 g/s (Fig. 5). Aluminium powder is

spread onto the surface and time � lapse photographs are taken to visualise the streamlines.

Figure 5: Setup of Pshenichnikov & Yatsenko's experiment. A 10% alcohol �water solution

�ows in the cylindrical pan (1) �lled with distilled water through the capillary tube (2). Image from [4].

Remarkably, Pshenichnikov and Yatsenko observed a multipolar instability which is at

least qualitatively similar to the one destabilising the axisymmetric �ow visible under low

heating conditions in our experiments. On Fig. 6 is displayed a photograph of a dipole

captured by the authors at low �ow rates. They also noted that gradually increasing the

�ow rate results in a larger number of vortices, as illustrated by the octupole in Fig. 6.

Figure 6: Example of dipolar (left) and octupolar (right) �ow patterns (top views).

Scale bar : 5 cm. Image taken from [4].
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Mizev et al. [5] reproduced Pshenichnikov and Yatsenko's experiment and recovered

the instability. They went further into the description of this phenomenon considering the

e�ect of an adsorbed layer of insoluble surfactants on the concentration � driven Marangoni

�ow. Two experimental parameters were introduced to study the structure and stability

of the interfacial convective �ow : the surface density of surfactants and the Marangoni

�ow intensity. A dimensionless ratio, called the (solutal) Marangoni number, was used to

compare the magnitude of capillary forces to viscous dissipation

MaS 9=
q

Dη2

dγ

dC
, (1)

with q the mass �ow rate of the ethanol solution, D the di�usivity of ethanol in water,

η the dynamic viscosity of water and dγ/dC the surface tension γ dependence upon the

surface concentration of ethanol C. The Marangoni number, being proportional to the

injection rate q, quanti�es the `strength' of the point source of surface � active material.

While varying these parameters Mizev and his coworkers noted, as Pshenichnikov and

Yatsenko before them, a growing number of convection cells as the Marangoni number

increased. They also observed a decreasing number of vortices as the surface density of

surfactants increased. Fig. 7 retraces the evolution of the `multivortex annulus' as the

surface density of the impurity (oleic acid) increases and/or the Marangoni �ow intensity

decreases. As long as the impurity concentration remains moderate and the source �ow

is pretty intense, there exists a wide central region where the primary axisymmetric �ow

persists, surrounded by a secondary structure which consists of numerous vortices located

at the cuvette periphery (a). The more surface contamination worsens and/or the �ow

weakens, the more this central region shrinks and even vanishes above some critical values

of the governing parameters (b-d). Meanwhile, the vortices grow in size but their total

number declines. With further increase in the surfactant concentration, one is left with

a dipolar �ow which disappears in its turn (e-f). Ultimately, a concentration threshold

depending on the Marangoni number is reached beyond which surface motion is totally

inhibited (the water/air interface is then in a `concrete � like state').
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Figure 7: Evolution of the multivortex patterns with an increase in the surface

density of impurities (oleic acid) and/or a decreasing �ow intensity. Image taken from [5].

Recently, S. Le Roux et al. [6, 7] studied axisymmetric Marangoni �ows induced at

the water/air interface by the local and continuous deposition of hydrosoluble surfactants.

They observed a complex interfacial �ow self � organised into concentric regions (Fig. 8):

� Immediately surrounding the injection point is an area of intense light scattering

(oil droplets served as tracer particles) of radius rs referred to as the source.

� A little further from the injection locus comes a transparent zone of radius rt ,

exhibiting faintly scattered light. Divergent Marangoni �ows are concentrated in

that region submitted to strong surface tension gradients.

� Beyond the distance rt develops a `belt' of vortex pairs.

� Still further, there is a region where tracer particles barely move, implying that

surface tension is spatially homogenous in this outer area.
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The authors' goal was to study how surfactant solubility (amphiphilic molecules were

used) in�uences the surfactant � driven �ow. Remarkably, they proved the universality of

the interfacial velocity �eld within the transparent zone and derived scaling laws based

upon hydrodynamics and surfactant physicochemistry that capture the �ow properties

very accurately. Unfortunately, the authors did not study the ring of vortices arising

beyond the transparent zone that interests us so much. However, their work is of great

interest for the many processes in which surfactant � induced transport phenomena play

an essential role, such as emulsi�cation and foaming, surface coating, or Marangoni drying.

Figure 8: A side view from above the water � air interface of the Marangoni �ow

sustained by the local and continuous injection of an aqueous solution of surfactant

on the surface of ultra � pure water. Milky �white regions are highly concentrated in oil droplets

that intensely scatter light, contrary to dark regions. The stagnant zone beyond the ring of vortices is

not shown. Surfactant molar �ow rate Qa = 0.52µmol.s�1. Scale bar : 3 cm. Image taken from [6].

The need for taking into account contamination from adsorbed molecules of surface �

active agents has become increasingly evident over the past few decades, and it is now

well � known that minute quantities of a surfactant material su�ce to drastically alter the

interfacial hydrodynamics of a system. This is especially true for water which, owing to

its high surface tension comparatively with many common liquids, acts as a receptacle

for most surface � active impurities inevitably present in the environment, making the

contamination of the water/air interface a recurrent issue in interfacial science [8, 9].

For instance, the central role of surfactants in retarding the motion of a bubble rising

in a liquid has been evidenced in [10, 11]. Surface contamination is also suspected to

a�ect the shape of `co�ee rings' in numerous experiments where evaporating droplets are

present [12] � [14]. It has long been known that traces of surfactants can have a stabilising

e�ect on convective instabilities [15].
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Obviously, interfacial contributions become increasingly signi�cant as the system gets

smaller and smaller. As an example, micro�uidic experiments have brought to light that

a tiny amount of surfactants is able to severely undermine the drag reduction potential

of superhydrophobic surfaces [16]. Impurities can also a�ect the viscoelastic response of

a water/air interface, as evidenced by AFM measurements [17, 18]. Other experiments

suggest that surface � active contaminants can promote the rupture of µm-thick free liquid

�lms [19]. Interestingly, the in�uence of surfactants manifests even down to nanoscales :

the stability of surface nanobubbles is attributed to impurities [20, 21] and nanomolar

concentrations of charged contaminants are invoked to explain anomalous surface tension

variations (Jones �Ray e�ect) in electrolyte solutions [22].

This non � exhaustive list of examples puts the accent on the ubiquity of contaminants

and the utmost need to take them into consideration while studying free surface �ows. It

explains why great importance is attached throughout this thesis to surfactants adsorbed

at the water/air interface and to their role in modifying the dynamics of surface �ows by

providing the water/air interface with elasticity. Our work is structured as follows :

1 In chapter 1, we brie�y recall the fundamentals of surface tension, surfactants and

Marangoni �ows that are central to understanding this study.

1 In chapter 2, we present an experiment based on a tiny subaquatic fountain propelling

a liquid jet towards the water surface. This is the simplest way we have imagined to

create a divergent �ow at the water/air interface with as little physical ingredients

as possible. We shall see that this `mechanical generator' of centrifugal radial �ows

is a handy tool to study the azimuthal instability we are interested in and identify

some of its features. Special focus will be put on the evolution of the toroidal base

�ow with both the injection speed and the injector � to � interface distance (the `gap')

taken as tunable parameters.

1 In chapter 3, we present our `hot bead experiment' as an alternative way of producing

a divergent �ow through heating an absorbing microbead in partial wetting at the

surface of water. Although this system may seem more involved at �rst sight, due

to the thermocapillary nature of the forced �ow instead of a pressure � driven one as

previously, we shall discover that it leads to basically the same interfacial dynamics,

yielding multivortex �ow patterns as the bead is increasingly heated similar to those

observed while strengthening the injection rate in the `water jet experiment'. Again,

particular attention will be paid to the fate of the primary torus as the carbon sphere

is heated to varying degrees.
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1 Finally, the problem of the thermocapillary convection induced by a �xed point source

sitting across the water/air interface is addressed in chapter 4. Here, we essentially

solve the incompressible Stokes equation within a half � space and derive an analytical

solution to the nonlinear regime in the presence of thermal advection, before laying

the groundwork on which to develop an overall approach of the multipolar instability.
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Chapter 1
The physics of interfacial �ows

In this opening chapter, we remind the reader of some basic notions regarding surface

tension, surfactants and Marangoni �ows. We �rst de�ne surface tension from both the

energy and the mechanical standpoint. We then recall surfactants' main properties and

review everyday life situations wherein such chemical species are commonly encountered.

To �nish, we introduce the Marangoni e�ect, a ubiquitous phenomenon in interfacial

hydrodynamics. The after presentation is inspired from the introduction of S. Le Roux's

thesis [23] with a few elements borrowed from the reference book [24].

1.1 Surface tension

1.1.1 Energy approach

Consider a liquid/gas interface. Van der Waals intermolecular forces ensure the cohesion

of the liquid. A molecule in the bulk undergoes attractive electrostatic interactions from

neighbouring molecules located all around, so that this isotropic molecular distribution

exerts no net force on it. By contrast, molecules right beneath the free surface experience

about half as much attractive forces as molecules found deeper. This disbalance results

in an excess energy at the interface that is called surface tension (Fig. 1.1).

Let us evaluate the typical order of magnitude of surface tension. Assume a cohesion

energy U per molecule in the bulk. A molecule in the vicinity of the interface has an

energy � U/2. With a the size of a molecule and a2 the surface exposed to the gas, the

surplus energy per unit area scales as � U/2a2. For oils, whose cohesion forces are Van

der Waals', U � kBT � 1/40 eV at room temperature Troom = 25°C. One �nds a surface

tension � 20mJ.m�2 for most common liquids, with the notable exception of water whose

11
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surface tension is higher than this estimate due to strong hydrogen bonds signi�cantly

increasing the cohesion energy. Still larger surface tension values exist for liquid metals,

e.g. mercure whose surface tension approaches 500mJ.m�2 (table 1.2). Surface tension

decreases with increasing temperature : indeed, the stronger thermal agitation, the weaker

intermolecular cohesion forces and thus the smaller surface tension.

Figure 1.1: Molecular origin of surface tension. The electrostatic interactions of molecules

found in the vicinity of the interface are less screened than those of molecules situated in the bulk,

resulting in excess interfacial energy called surface tension. Image taken from [23].

Figure 1.2: Surface tension values of some usual liquids. Note the signi�cant decrease of

the surface tension of pure water with increasing temperature. Data from [25].

As a response to the unfavourable extra energy of the interface, a �uid tends to

minimise its energy by minimising its free surface (Fig. 1.3). In the �eld of interfacial

thermodynamics, a theory pioneered by American physical chemist J.W.Gibbs [26] (see

also [27]), surface tension is de�ned as the free energy F increase following an increase of

interfacial area by dA, under �xed temperature T , volume V and amount of substance n

γ 9=
∂F

∂A

����
T, V, n

. (1.1)

As a complement to the above energy approach at the molecular level, let us now move

to a description of surface tension in terms of forces.
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Figure 1.3: Minimum liquid surfaces. Liquids tend to minimise their energy through minimising

their surface exposed to air. (Left) Soap �lm attached to twin circular rings taking the shape of a catenoid.

(Right) Polyhedral bubble on a cubic frame. Sources : www.soapbubble.dk/en/articles/former (catenoid

soap �lm) & www.maths.tcd.ie/�foams/gallery (cube soap bubble).

1.1.2 Mechanical approach

De�nition (1.1) tells us that surface tension has the dimensions of an energy per unit

area which is equivalent to a force per unit length. Let us mention a classic experiment

wherein surface tension � driven forces clearly manifest themselves. Consider a glass rod

bent in such a way that it forms a rectangular frame open on one side. A second glass rod

(length l) which is mobile and can roll on the two parallel `rails' closes the frame on its

fourth side (Fig. 1.4). The latter is then dipped into soap solution so as to form a liquid

�lm perfectly �tting its contour. Once the device taken out of the liquid, the rod starts

moving spontaneously in the direction indicated by the big arrow. Spectacularly, if we tilt

the frame, the rod can even climb back up the slope against gravity but would suddenly

fall down if the soap �lm is punctured. As a matter of fact, the liquid lamella naturally

tends to minimise its energy through minimising its surface exposed to air. To balance

the tensile force this liquid membrane exerts on the moving rod, the experimenter must

perform a mechanical work which, given a small displacement dx of the rod, writes

δW 9=Fdx = 2γldx (� γdA) , (1.2)

with a factor 2 coming from the fact that we have a total of two liquid/air interfaces, one

at the top of the soap �lm and the other at its bottom. This expression shows us that #�γ

can be interpreted as a force applying per unit length of the rod. Bear in mind that the

latter is an in � plane force perpendicular to the rod and directed towards the liquid.

Surface tension � driven forces are ubiquitous in nature. They explain for example the

ability of certain insects to �oat on the water, such as species of genus Gerris commonly
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called `water striders'. Likewise, it explains why it is possible to make a paperclip �oat

on the surface of water albeit it is made from steel denser than water (Fig. 1.5). But if

washing � up liquid is added to the water, both the insects and the paperclip immediately

sink ! Explaining such a phenomenon is the purpose of the upcoming part.

Figure 1.4: Schematic layout of a simple experiment showing the existence of surface

tension forces. Image taken from [24].

Figure 1.5: Examples of �otation enabled by surface tension. (Left) An insect of genus

Gerris �oating on the surface of water. (Right) A paperclip �oating on the surface of water. Sources :

www.thoughtco.com, Gerhard Schulz photographer (Gerris) & www.pixels.com (paperclip).

1.2 Surfactants

Surfactants (contraction of `Surface Active Agents') are often amphiphilic compounds,

i.e. they possess a double a�nity owing to their speci�c molecular structure. Generally

speaking, a surfactant molecule is composed of a hydrophylic polar head group, either ionic

or not, combined with a long hydrophobic (and hence often lipophilic) carbon chain. This

ambivalency is what gives surfactants their surface active properties. Sodium Dodecyl

Sulfate (SDS) is a perfect example of an amphiphilic molecule having a 12 � carbon chain

bound to an anionic sulphate head group. Its full chemical formula is CH3(CH2)11SO4Na

(Fig. 1.6). SDS is today one of the most widely used surfactants in the industry and even

this work is no exception to the rule as we use it in our own experiments.
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Figure 1.6: A widespread surfactant molecule : Sodium Dodecyl Sulfate (SDS). SDS

is an amphiphilic compound, thus consisting of a long hydrophobic carbon chain (black and white balls)

and a hydrophilic polar head group (yellow and red balls). CMC = 8.2mM in water at 25°C. Molar mass

MSDS = 288 g/mol. Source : Wikimedia Commons.

Consequently, a surfactant molecule adsorbed at the water/air interface puts its head

under water whereas it keeps its tail in the air (Fig. 1.7). It follows a local drop in the

surface tension at the adsorption sites. Indeed, while adsorbing at the water/air interface,

surfactant molecules take up space that was initially occupied by water molecules. Since

the former have a surface free energy weaker than the latter, the excess of interfacial

energy is decreased, therefore resulting in a lower surface tension.

Figure 1.7: Interface/bulk equilibrium in the presence of soluble surfactants. (Top)

Surfactant molecules adsorbed at the interface with their hydrophilic heads put under water and their

hydrophobic tails in the air. (Bottom) Structure of a micelle. Source : www.dataphysics-instruments.com.

In the case of soluble surfactants, molecules are shared between the interface and the

bulk such that the system is at equilibrium. A key feature of surfactants in solution is

their critical micelle concentration (CMC), i.e. the threshold concentration in surfactants

beyond which self � organising aggregates called micelles nucleate in the bulk and any

additional surface active molecule joins them (Fig. 1.7). A steep decline of the surface

tension with surfactant concentration is usually noted slightly before reaching the CMC,
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followed by a saturating surface tension above the CMC. The CMC of a given surfactant

strongly depends on the temperature as micelle formation is only possible above the Kra�t

temperature. It can also depend on pressure, on pH, on the presence of electrolytes in

the solution ... Obviously, the CMC depends upon the surfactant's a�nity for the solvent.

As we have just seen, a �uid interface is a place submitted to many stresses. This can

be readily understood while compressing a monolayer of insoluble surfactants with the

movable barrier of a Langmuir �Blodgett trough. The surfactant � laden interface is then

conveniently described using the surface pressure de�ned as

Π(Γ ) 9= γwater � γ(Γ ) , (1.3)

where γwater is the surface tension of pure water (γwater = 72.8mN/m at Troom = 20°C)

and γ(Γ ) the surface tension of water while a concentration Γ of insoluble surfactants

covers the interface. Sizeable variations of this quantity are measured as the surfactant

monolayer is gradually compressed. What occurs during compression is that surfactant

molecules constantly self � organise in a way that minimises their energy, going through

phases reminiscent of the states of matter as the area available to each molecule shrinks

(Fig. 1.8): �rst a non � cohesive and disordered gaseous phase under low compression,

followed by a weakly cohesive though still disordered liquid phase, and �nally a highly

cohesive and ordered solid phase under high compression. The surfactant monolayer even

ruptures if surface pressure exceeds a critical value Πc .

Figure 1.8: Evolution of an insoluble surfactant monolayer under compression. The

surfactant monolayer gets more and more compact as the Langmuir barrier is further displaced, from a

gaseous state under low compression to a solid state under high compression. Image taken from [23].
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To �nish, note that surfactants support a wealth of industrial applications spanning

from detergents (surfactant molecules attach to fatty compounds, thus removing stains

when rinsing) to emulsions and foams (surface active agents usually serve as stabilisers

in such multi � interface systems). Surfactants can be encountered in biology as well.

One example is the Infantile Respiratory Distress Syndrome (IRDS) which is a disease in

premature infants due to developmental de�ciency of pulmonary surfactant production

(Fig. 1.9). As a matter of fact, patients su�ering from IRDS sorely lack surfactants to

`unglue' their pulmonary alveoli and thereby breathe normally. A common treatment

consists in ventilating neonates arti�cially along with injecting through the intubation

cannula a dose of pulmonary surfactant extracted from bovine lungs (e.g. Beractant®).

Figure 1.9: Infantile Respiratory Distress Syndrome. Opaci�cation of the lungs visible on

this radiograph. Source : www.soinped.ch/wiki/maladie-des-membranes-hyalines-mmh.

1.3 The Marangoni e�ect

In the above section, we described surfactants from a `static' viewpoint introducing their

adsorption properties and the concept of CMC. Yet, as we shall see, surface active agents

also play a role in interfacial hydrodynamics through the Marangoni e�ect [27] � [32]. The

Marangoni e�ect denotes the driving of a �ow at a �uid interface under the action of a

surface tension gradient (Fig. 1.10). The latter is caused by temperature or surfactant

concentration inhomogeneities. Temperature � driven Marangoni �ows are referred to as

thermocapillary �ows and surfactant � induced ones as solutocapillary �ows.

Regarding solutocapillary �ows, we make a distinction between an intrinsic and an

extrinsic origin of the �ow. In the intrinsic case, the total amount of surfactant molecules

remains �xed. An internal inhomogeneity of the surfactant concentration spontaneously
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arises and the Marangoni e�ect then tends to rehomogenise the system. One such example

is what occurs in a soap �lm. Capillary suction is responsible for �uid migration towards

the menisci which leads to �lm thinning. As a result, the �at central region of the �lm is

depleted of surfactants and a Marangoni e�ect then opposes capillary suction and `heals'

the soap �lm, a phenomenon known as `self � cicatrisation' (Fig. 1.11).

Figure 1.10: Schematic layout explaining the Marangoni e�ect. The interface between

�uid 1 and �uid 2 exhibits surface tension inhomogeneities. A small portion of the surface (black segment)

is out of equilibrium due to unequal surface tension forces γ�/γ� on the left and on the right. In response

to this disbalance, the �uids start �owing and the viscous forces resulting from this relative motion

eventually bring this portion of the interface back to equilibrium. Image taken from [23].

Figure 1.11: Self � cicatrising soap �lm. A Marangoni counter�ow (red arrows) resists capillary

suction (blue arrows) that tends to make the �lm thinner and thence weaken it. Image taken from [23].

A daily life example is that of tears of wine [31, 33]. The latter manifests as a liquid

�lm lining the inner wall of a wine glass from which regularly spaced droplets detach and

drop back into the wine (Fig. 1.12). This phenomenon is explained as follows. When wine

is poured into a glass, a meniscus forms on its wettable walls by capillary adhesion. Wine

is basically a water � ethanol mixture. Ethanol, which acts as a surfactant, is continuously

evaporating from the surface at a rate higher than water owing to a higher equilibrium

vapour pressure in relation to water. The concentration of ethanol decreases faster in

the meniscus than in the bulk of the wine because of the former comparatively larger

surface � to � volume ratio. This nonhomogeneous evaporation of alcohol is what causes a

surface driving force to push up the meniscus along the glass sides, from central regions of

high alcohol concentration/low surface tension towards peripheral regions of low alcohol
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concentration/high surface tension. As the meniscus starts forming a thin �lm on the

surface of the walls, it gets even more depleted of alcohol, which in turn worsens the

surface tension disbalance. More wine is driven up the walls until the growing �lm gets

too heavy, collapses under its own weight and teardrops �nally run down.

Figure 1.12: Tears of wine. (Left) Photograph of the phenomenon. (Right) The Marangoni � driven

destabilising mechanism. Source : gigazine.net/gsc_news/en/20190307-physical-phenomena-make-wine-

crying (photograph) & www.comsol.com/blogs/tears-of-wine-and-the-marangoni-e�ect (schematic).

Another manifestation of the Marangoni e�ect can be observed at home. Fill a metal

pie pan with water and sprinkle pepper evenly across the surface. Then soak the tip of

a toothpick with washing � up liquid. Gently touch the surface of the water right in the

middle with the soapy toothpick and see the pepper �akes suddenly chased away ! What

happens is that surfactant molecules contained in the dish soap lower the surface tension

at the deposition site. The surface tension is now higher at the periphery of the pan than

at the centre. In reaction to this surface tension gradient, a centrifugal solutocapillary

�ow arises which drives the outward motion of the pepper �akes (Fig. 1.13). By the way,

this explains why insects �oating on the water suddenly sink if soap is added to the pond,

as the surface literally falls down under their feet due to the local drop of surface tension.

Figure 1.13: Pepper and soap experiment showing the solutal Marangoni e�ect.

Surfactant molecules contained in the drop of washing � up liquid drive an outward solutocapillary �ow

repelling the pepper �akes towards the edges of the dish. Source : sciencearoundus1.blogspot.com.
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Note that the Marangoni e�ect is involved in many industrial processes. For instance,

this e�ect is used for the drying of silicon wafers during the manufacturing of integrated

circuits. Droplets shall be thoroughly removed from the surface of the wafer to prevent

oxidisation of its components. To do this, alcohol vapour is spread on the wet wafer.

The resulting solutocapillary �ow helps gravity eliminating water to get a perfectly dry

surface. The Marangoni e�ect is also encountered in �elds as varied as �ne arts or life

sciences. Suminagashi (literally `�oating ink'), the 12th century ancestor of European

paper marbling, relies on the Marangoni � driven spreading of coloured inks (ox � gall soap

is deposited on water) to draw concentric circle patterns on the surface (Fig. 1.14). Stenus

Comma (Fig. 1.15), nicknamed the `water skater rove beetle', leverages the Marangoni

e�ect to achieve motion : its abdomen releases into water a surface active material called

stenusin that locally lowers the surface tension and thus allows the rove beetle to quickly

glide away from predators, a survival technique known as skimming.

Figure 1.14: Paper marbling through the countries and the ages. (Left) Suminagashi

(Japan, 12th century). (Middle) Ebru (Turkey, 16th century). (Right) European marbling (detail of

the binding of a 1880 book). Sources : www.japansociety.org/event/suminagashi-japanese-marbling, Linh

Truong photographer (suminagashi), aregem.ktb.gov.tr (ebru) & Wikipedia's article on paper marbling.

Figure 1.15: The water skater rove beetle. (Left) Photograph of a Stenus Comma. (Right)

The molecular structure of stenusin. Source : Wikimedia Commons.



Chapter 2
The water jet experiment

In this chapter, we characterise the divergent surface �ow generated by a submerged jet

perpendicularly impinging the water/air interface (Fig. 2.1). First of all, we present the

materials and methods implemented in the course of our experiments. We then provide

detailed observations of the axisymmetric ground �ow state and the dipolar mode of the

instability, paying particular attention to their morphological traits in function of two

control parameters, the injection speed Vinj and the gap H between the injector and the

interface. Surface velocity measurements are given next. Finally, a few complementary

studies are presented before discussing the main experimental �ndings.

Figure 2.1: Schematic layout of the water jet experiment.

Despite the apparent simplicity of this system, we shall see that the �ow becomes

more and more complex as the injection speed increases or the gap decreases.

21
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2.1 Materials and methods

2.1.1 The injection unit

Unless otherwise speci�ed, we always use the same experimental vessel of radius R =

17.5mm. The inner (resp. outer) radius of the injection tube is r� = 0.275mm (resp.

r� = 0.4mm) in all experiments. The injection speed Vinj ranges between a few mm.s�1

and a few cm.s�1, while the gap H ranges from a few tenths of a mm up to 1 cm.

2.1.2 The injection setups

The `gravity �ow' injection setup

A tank �lled with the working liquid is placed above the experimental cell in which it

empties under the sole action of gravity. The injection rate Qinj is controlled by varying

the height di�erence ∆ between the tank and the cell. The hydraulic circuit is closed

by a peristaltic pump (model Minipuls 2 from GILSON) that sends liquid back to the

reservoir at an adjustable pumping rate Qpump (Fig. 2.2). This instrumentation results

in a `feedback loop' that allows the experimenter keeping about constant the gap H by

tuning the device such that |Qinj| � |Qpump|.

The `head � to � tail syringes' injection setup

Two syringes are mounted on a syringe pump (model BIOSEB 8000) in a head � to � tail

layout. Once the apparatus activated, the plungers of the syringes move on block in their

barrels : one syringe acts as an injector, the other one as an aspirator. This setup ensures

almost perfect constancy of the gap, which is more di�cult to achieve with the �rst setup.

More technical aspects about both setups are provided in Appendix A.
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Figure 2.2: The `gravity �ow' injection setup of the water jet experiment. (Top �gure)

Diagram of the closed � loop hydraulic circuit (not to scale). (Bottom �gure) Photograph of the setup

under actual operating conditions. (I) cell; (II) tank; (III) pump (same numbering on both �gures). (IP)

and (PP) are the injection and pumping pipes, respectively. (i) injection tube. (gl) glass lid to limit the

contamination of the sample.
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Figure 2.3: The `head � to � tail syringes' injection setup of the water jet experiment.

(Top �gure) Schematic of the device (not to scale). (Bottom �gure) Photograph of the setup under actual

operating conditions. (EC ) experimental cell; (P) thin �exible pipes; (A) and (B) are the two syringes

assembled in a `head � to � tail' con�guration. (SP) syringe pump, not drawn on the schematic for clarity

but shown on the photograph below. Injection rate Qinj directly tuned on the syringe pump control box.
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2.1.3 Preparation of the surfactant solutions

As will become clear in the following, the state of cleanliness of the free surface is crucial.

To control the surface state, a given amount of a surfactant, Sodium Dodecyl Sulfate

(Fig. 1.6) purchased from Sigma �Aldrich, is mixed with water at a bulk concentration

C SDS = 1.03mM or 8.2� 10�2 mM corresponding to CMC/8 and CMC/100, respectively.

The experimental cell is �lled with the same SDS solution as in the reservoir (`gravity

�ow' setup) or the syringes (`head � to � tail syringes' setup). Unless otherwise speci�ed,

our SDS solutions are concentrated at C SDS = CMC/100. The latter are prepared with

ultrapure water (resistivity 18.2MΩ.cm at 25°C, TOC : 3 ppb) withdrawn from a Millipore

Milli-Q A10 Gradient puri�cation system. Before running any experiment, the glassware

is carefully rinsed with pure water supplied by a Millipore Elix 10 puri�cation system.

2.1.4 Surface tension measurements

The surface tension γ is measured with the pendant drop method, in which γ is computed

�tting a numerical solution of the Young �Laplace equation to the pro�le of the drop [34].

We carry out pendant drop experiments using a single drop automatic tensiometer

purchased from Teclis (measurement error �1mN/m). The drops are enclosed into a

small container partially �lled with pure water to minimise their evaporation.

For comparison purposes, we measure experimentally the surface tension of pure water

at room temperature Troom = 20°C and we �nd γwater = (72.8�1)mN/m. Surface tension

measurements of our SDS solutions yield γCMC/100 = (72.5� 1)mN/m for the lower SDS

bulk concentration C SDS = 8.2�10�2 mM, and a surface tension γCMC/8 = (67�1)mN/m

for the higher bulk concentration C SDS = 1.03mM. The latter values are in line with those

of the specialist literature (see for example Fig. 3 in ref. [35]).

2.1.5 Flow visualisation and measurement techniques

Our visualisation setup is based on laser sheet illumination that goes together with the

seeding of tracer particles in the system. Dye injection experiments are also performed as

an alternative to the use of tracer particles. Particle Image Velocimetry (PIV) is achieved

to obtain velocity �eld measurements and the `hydraulic bump' generated by the upward

water jet pushing the interface is characterised by shadowgraphy experiments.
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Laser sheet illumination

We built up an optical setup to generate laser sheets that cut the sample along selected

planes. Laser sheets are produced when laser light fans out through a cylindrical lens

(focal length f20). A spherical lens (f200) is added to collimate and focus the laser sheet.

The latter is a few tens of µm thick in the observation area. A �rst horizontal laser

sheet, that can be translated vertically, is positioned right beneath the water/air interface

(z � �0.1mm) when we aim to visualise the surface �ow. Note that, strictly speaking,

we do not observe the �ow at the water/air interface but rather the �ow in a subsurface

layer that extends down to a few tenths of a millimeter below the surface. Indeed, the

deformation of the meniscus strongly impairs any proper observation of the interface with

a laser sheet. A second vertical laser sheet provides cross � sectional views of the bulk �ow.

An `azimuthal scan' can be performed rotating it around the injector. In practice, the

vertical laser sheet is kept tangent to the injector because, in case of direct illumination,

the latter cast shadow would prevent any observation in the half � plane located behind it.

We use a green laser light source (model Torus 532 from Laser Quantum, λg = 532 nm).

Laser light is sent into a single mode optical �bre. A �bre optic coupler (Thorlabs) ensures

laser light transmission with moderate losses. The output power is Pout � 10mW.

Red �uorescent polystyrene microbeads (I 5.1µm), extracted from a 5mL colloidal

suspension purchased from Magsphere (mass concentration 2.5% w/v), serve here as tracer

particles. Tracer particles seeded in the sample emit a �uorescent light when crossing the

laser sheet. Only two droplets of the suspension in V � 100mL of distilled water (volume

fraction of tracer particles, φv � 10�5) are su�cient to ensure proper �ow visualisation.

Two cameras are used : one for the top views, the other one for the corresponding side

views (Fig. 2.4). The setup is modular as the cameras are interchangeable and both the

laser sources and the cameras are assembled on a rigid mounting, forming a block that can

rotate around the axis of the cell. A full series of cross � sections, preferentially captured

along the symmetry axes of the multipolar �ow patterns, can be thus obtained during a

single experiment. A 2.8 megapixel digital camera, the ORCA-�ash2.8 model, and the

C5985 B/W chilled CCD camera (both from Hamamatsu) are utilised. For a qualitative

exploration of the �ows arising with varying gap or injection speed, a low rate of a few

frames per second (FPS) is su�cient (�ows recorded at 4 FPS). Either the ORCA-�ash2.8

camera or the C5985 camera are suited for this purpose. Still, only the former camera

enables a PIV quantitative treatment which requires recording the �ows at higher frame

rates (we set 45.4 FPS, ORCA-�ash2.8 maximum frame rate in full resolution).
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Figure 2.4: Flow visualisation based on laser sheet illumination. (a) A horizontal laser

sheet (LS) is positioned just beneath the water/air interface to visualise surface �ows. (b) A second

vertical laser sheet is rotated (red double arrow) to get cross � sectional views of the bulk �ows. Top and

side cameras, respectively denoted H-cam and V-cam, record the signals emitted by tracer particles (not

drawn). Filters (red � orange disks) prevent the cameras' sensors from being damaged by direct exposure

to intense laser light while allowing �uorescent light to pass.

Image acquisition is achieved with `HCImage', Hamamatsu's software for the ORCA-

�ash2.8 camera, and `VideoHamamatsu.vi', a homemade software for the C5985 camera.

Image processing is performed with ImageJ (open source software from the American

National Institutes of Health). An average frame is generated out of a series of pictures

called a stack. The average light intensity (encoded on a greyscale) of pixels located at the

same position in each slice of the stack is computed. The resulting image shows streaks

of light corresponding to the trajectories of the tracer particles averaged over time. More

technical details are given in Appendix C.

Dye injection

In an auxiliary experiment, a �uorescent dye (�uorescein C20H12O5 , molar mass MFluo =

332 g/mol, density ρFluo = 1.602 g/mL) is injected in the sample to visualise the �ow

streamlines. A volume VFluo � 200µL of dye is injected with a micropipette in the tank

and dilutes rapidly in the carrier liquid. This mixture �ows through the supply pipe for

a few seconds before spilling out in the experimental cell. Precisions about the way dye

injection experiments are performed are provided in Appendix D.1. The correlation of the

`coloured cloud' with the underlying hydrodynamic structure is discussed in Appendix D.2.
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Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV) is a technique which combines laser sheet illumination

with image processing to derive velocity �eld measurements as well as related dynamic

properties of �ows such as their vorticity, divergence and so on. In what follows, I brie�y

recall the basic principles of PIV before introducing our own PIV studies.

The basic principles of PIV

PIV is based on the motion of seeding particles that must be chosen carefully as �ow

characterisation relies on their ability to closely follow the streamlines. One thus selects

particles that are small compared with the �ow length scales. The velocity of each tracer

particle is then a reliable indicator of the local �ow velocity.

Once �ow visualisation done using laser sheet illumination, particle images captured by

high � resolution cameras are computer treated. Image pairs are cross � correlated, which

amounts to `superimposing' them until the best matching is found in terms of average

particle displacement. Data post � processing is �nally achieved to eliminate and replace

spurious vectors, a key step to ensure reliable computations of local derivatives [36] � [38].

Our PIV studies

Our objective is to �gure out the orders of magnitude of the velocity �eld associated

with the dipolar surface �ow. The MATLAB code we use, which is inspired from PIVlab,

follows the processing steps mentioned above. PIVlab is a time � resolved PIV software

not limited to the computation of the velocity distribution based on particle image pairs,

but equally used to derive, display and export many features of the �ow pattern. A user �

friendly graphical interface (GUI) makes PIV analysis very fast and e�cient. Developed by

W.Thielicke and E. J. Stamhuis [39], this program bene�ts from regular updates. Running

our code, we derive several �ow properties such as the velocity magnitude, the spatial

evolution of each velocity component, and the �ow vorticity. Particular attention is given

to the latter which is a key quantity in characterising the vortex pair of the dipole. Our

PIV results are presented in sec. 2.3.2.

Shadowgraphy

Shadowgraphy is used to measure the dimensions of the interface deformation provoked

by the upward water jet. A collimated light beam uniformly illuminates the surface over

an area of about 1 cm in width centred on the injector's axis. The height h and extent
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ξ of the bulge are inferred from the features of the shadowgram (`shadowgraphy stain')

it produces on a screen positioned above the interface. A comprehensive presentation of

shadowgraphy applied to the present case can be found in Appendix E.

Shadowgraphy also tells us whether or not the multipolar instability is correlated with

the interface deformation. Indeed, any symmetry breaking of the �ow that accompanies

the azimuthal instability must be re�ected in some symmetry breaking of the shadowgram.

If not, this would be a cogent evidence of the lack of correlation between the interface

deformation and the onset of the instability. This question is answered in sec. 2.5.2.

2.2 The axisymmetric base state

2.2.1 Description of the axisymmetric state

We describe the axisymmetric state observed at low injection speeds and/or big gaps.

Given the cylindrical symmetry of our jet produced by a cylindrical injector in the middle

of a cylindrical vessel, we naturally expect an axisymmetric surface �ow. The streamlines

displayed on Figs 2.5 and 2.6 support the existence of a toroidal base �ow (Fig. 2.8).

The radial streamlines on Fig. 2.5 diverge up to a certain distance from the source before

sinking into the bulk and wrapping around a torus that sits upon the injector (hereafter

referred to as the `injection torus'), a cross � section of which clearly exhibits a pair of

counter � rotating vortices (Fig. 2.6). Interestingly, the injection torus is observed in the

absence of SDS as well (Fig. 2.7). What is more, we remark that the centrifugal jet �ow

is surrounded by a centripetal �ow. Beneath the injection torus usually arise multivortex

�ow patterns due to �nite size e�ects (�ow con�nement in the small experimental cell,

plus the presence of the drain tube at its bottom), but the study of the whole 3D structure

of the �ow including these bulk components lies beyond the scope of this work. Here we

focus on the hydrodynamic fate of the injection torus as the control parameters are varied.

Figs 2.5 and 2.6 give the orders of magnitude of the velocity in various regions of the

surface and the bulk �ows, respectively. A neat decrease of the velocity as we move away

from the source can be noted on Fig. 2.5 : the surface velocity reduces by 100 within a

radius of about 1 cm, from Vsurf � 1mm/s close to the source down to Vsurf � 10µm/s at

the frontier between the centrifugal and the centripetal �ows. This observation holds true

for the bulk �ow, as shown on Fig. 2.6. Two regions appear : the `sphere of in�uence' of

the jet �ow delimited by the injection torus, where the typical velocity is V bulk � 1mm/s

(even up to Vinj � 1 cm/s at the tube outlet) and the far region near the sidewalls with
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a centripetal velocity as small as Vbulk � 10µm/s. The magnitudes are here obtained

by manually tracking the tracer particles. So the concentric circles drawn on the �gure

roughly delineate the �ow regions of interest. Yet the relative positions of these borderlines

slightly vary with the gap or the injection speed. Remarkably, the velocity magnitudes

remain unchanged over the whole variation range of the control parameters.

A closer inspection of these pictures reveals that the axial symmetry of the `base �ow'

is not perfect : the diverging streamlines are never strictly radial but slightly curved along

some preferential direction. Such a polarisation of the �ow yet occurs at very low injection

speeds Vinj ¤ 7mm/s. This phenomenon is described in further detail in sec. 2.2.3 and

plausible explanations of its origin are discussed in sec. 2.6.

Figure 2.5: Axisymmetric �ow caused by a submerged jet perpendicularly impinging

the water surface (top view). The green line marks the vertical laser sheet passing near the injection

point (orange disk). Image selected from an experiment conducted with the `gravity �ow' setup (Fig. 2.2).

Experimental parameters : injection speed Vinj � 5.8 cm/s, gap H � 10.5mm ( C SDS = CMC/8).
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Figure 2.6: Axisymmetric �ow caused by a submerged jet perpendicularly impinging

the water surface (side view). Cross � sectional view along the vertical laser plane spotted by the

green solid line on Fig. 2.5. Same experiment as before.

Figure 2.7: Example of an injection torus observed in the absence of SDS (side view).

Image from an experiment carried out with the `gravity �ow' setup (Fig. 2.2). Experimental parameters :

injection speed Vinj � 2.9 cm/s, gap H � 7.38mm.
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Figure 2.8: Schematic view of the axisymmetric base state. Our tiny subaquatic fountain

generates a toroidal �ow in its vicinity.

2.2.2 Evolution of the torus size with the control parameters

Let d t denote the torus diameter de�ned as the centre � to � centre distance between the

two vortices visible on a cross � section of the injection torus. Figs 2.9 and 2.10 display the

evolution of d t with increasing gap H and at various injection speeds Vinj , for a solution

without SDS and a solution with a concentration C SDS = CMC/8, respectively.

Figure 2.9: Evolution of the torus diameter with the gap, for various injection

speeds, in the absence of SDS.
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Figure 2.10: Evolution of the torus diameter with the gap, for various injection

speeds, in the presence of SDS (C SDS = CMC/8).

We see that the torus diameter grows linearly with the gap and independently of the

injection speed in the absence of SDS. Strikingly, the torus diameter exhibits the same

behaviour in the presence of SDS, the only di�erence with the previous case lying in

the di�erent slope : the radius of the torus increases as rt � 0.51H without SDS while

rt � 0.44H with SDS. These experimental facts will be discussed in detail in sec. 2.6.

2.2.3 Flow polarisation

I return to Figs 2.5 and 2.6 pointing out the lack of axisymmetry of the �ow. Fig. 2.5

reveals a `binary �ow' : a centripetal �ow girdles the centrifugal source �ow, the two being

separated by a ring � shaped dark area from which tracer particles are massively depleted.

More precisely, the centrifugal �ow is swept from left to right by the centripetal �ow that

drives it along a preferential direction. The `focal spot', the point of convergence of all the

surface streamlines, is marked by a cross on both �gures. The e�ect of �ow polarisation on

the bulk �ow is visible on Fig. 2.6. The torus is not perfectly axisymmetric : the centres

of its vortices are not at the same altitude, the centre of the clockwise rotating vortex

on the right being shifted downwards compared with the counterclockwise vortex on the

left. We view this quasi � axisymmetric �ow, usually observed at big gaps H ¥ 6mm, as

a precursor state on the route towards the multipolar instability.
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2.3 Symmetry � breaking of the axisymmetric base state

I present some observations regarding the instability of the axisymmetric �ow, i.e. the

symmetry � breaking of the base torus resulting in multipolar patterns, especially a dipole.

2.3.1 Transition to a multipolar �ow

Now that we have characterised the quasi � axisymmetric base state, we aim at identifying

the conditions leading to its destabilisation. We look for the transition to a multipolar

�ow by conducting experiments in which the gap H varies signi�cantly. After presenting

the way we perform such experiments, a series of typical observations is displayed.

Experimental protocol

Either increasing or decreasing gap experiments are achieved. Injection is primed moving

up the tank until the upper stop position is reached at an altitude ∆ � 55mm (Fig. 2.2),

imposing this way the maximum injection speed attainable in our con�guration. It then

only remains to tune the pumping rate so that the liquid level in the cell either rises

(Qinj ¡ Qpump) or lowers (Qpump ¡ Qinj) at a rate |dH/dt| � 0.1mm/min, thus resulting

in a typical variation of the gap |∆H| � a few mms over an experiment time ∆t exp � 1 h.

Such a slowly varying gap ensures the generation of quasi � steady �ows. Let τ be the

characteristic response time of a �ow structure, either the time τreceding it needs to fade

out after injection is switched o� or τonset the time it takes to regenerate after injection

is turned on again. Let ∆H be the typical variation of the gap that separates two �ow

states, e.g. the quasi � axisymmetric and the dipolar �ows of Fig. 2.11. From Fig. 2.11,

we learn that ∆H � a few mms. With ∆t the time for the liquid level to change by ∆H,

a necessary condition to go through a sequence of quasi � stationary states as the gap is

varied writes ∆t " τ . This is the case here, as `injection outage' experiments (a surgical

clamp compresses the �exible pipe strongly enough to block injection) conducted on a

dipolar surface �ow reveal that τreceding � 1min and τonset � a few s, whereas it takes

∆t � 10min " τ for the gap to change by 1mm.

To compare the �ows observed at di�erent gaps, running increasing and decreasing

gap experiments under similar conditions is crucial. So the tank is placed at its upper stop

position in both cases, ensuring comparable injection speeds : increasing gap experiments

are conducted at an average injection speed Vinj � 5.5 cm/s, while a bit stronger injection

speed Vinj � 5.88 cm/s is set in decreasing gap experiments (see Appendix B.2 for details).
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Transition from the quasi � axisymmetric polarised state to a dipole

Fig. 2.11 shows the step � by � step evolution from the quasi � axisymmetric to a dipolar

�ow state. From H � 10.5mm, the gap is gradually decreased to very small positive

values H � a few tenths of a mm. At big gaps H ¥ 6mm [ (a) � (b) ], the �ow is quasi �

axisymmetric, while a dipolar �ow develops at su�ciently small gapsH ¤ 3mm [ (f) � (h) ].

For intermediate gap values 3mm ¤ H ¤ 6mm [ (c) � (e) ], a hybrid state is observed in

the sense that the base �ow seems to coexist with a dipole at the embryonic stage. The

three vortex bulk �ow that exists at big gaps H ¥ 6mm [ (a') � (b') ] in the presence of a

quasi � axisymmetric �ow persists at smaller gaps H ¤ 3mm [ (f') � (h') ] after the onset

of a dipole (Fig. 2.12). The vortex pair of the torus becomes more symmetric as the

torus gets smaller with decreasing gap : the centres of the vortex ring, vertically shifted

relative to each other at big gaps (white lines), are located on the same line at smaller

gaps H ¤ 4.5mm (d'). Note that the `robustness' of the �ow patterns has been tested

through series of increasing/decreasing gap experiments. On this occasion, similar �ow

structures have been observed in both cases for comparable gaps.
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Figure 2.11: Transition from the quasi � axisymmetric to a dipolar �ow state with

decreasing gap (top views). Clockwise (resp. counterclockwise) vortex rotation symbolised by a red

� (resp.�) sign. Strikingly, the orientation of the dipole (orange stick) makes a wide angle with the

polarisation axis of the base �ow (green stick) initially observed at big gaps. Gap H indicated in the

bottom right corner of each picture. The dark strip visible on �g. (h) is the drop shadow of the injector's

tip intercepted by the horizontal laser sheet. Injection speed Vinj � 5.88 cm/s ( C SDS = CMC/8).
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Figure 2.12: Transition from the quasi � axisymmetric to a dipolar �ow state with

decreasing gap (side views). Vertical laser sheet oriented along the polarisation axis of the quasi �

axisymmetric �ow (green solid line on Fig. 2.5). (a') is the side view associated with the top view (a)

displayed on Fig. 2.11, (b') with (b) etc. Clockwise (resp. counterclockwise) vortex rotation indicated by

a magenta � (resp.�) sign. Same experimental parameters as before.
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2.3.2 Thorough characterisation of the dipolar state

This part provides a qualitative as well as quantitative (PIV) description of the dipole. Let

me precise that, even though high multipolar order �ows are not forbidden in principle,

we observe almost exclusively dipolar �ows. Quadrupolar, hexapolar... �ow patterns are

expected at stronger injection rates, with gap � dependent threshold values separating the

di�erent regimes. Actually, quadrupolar and even hexapolar �ows are observed on rare

occasions but they are uncontrolled short � lifetime �ows.

Description of the dipolar state

Method M1�Collecting streamlines maps

The vertical laser sheet is aligned with the `dipole mirror symmetry plane' (DMSP)

and along a perpendicular plane (PP) (see sec. 2.1.5 for technical details). Fig. 2.13 shows

characteristic views of the bulk �ow in these two planes.

� On the top view (TV), we see a dipole with a peculiar arc � shaped pattern joining

one vortex centre to the other (rounded yellow rectangle).

� The side view captured in the DMSP (SV�DMSP) reveals a strong distortion of

the streamlines on the right. The side position of the arc � shaped surface pattern

is marked by the rounded yellow rectangle. Locally, the streamlines `crash against'

the rear part of the original torus before passing under it.

� The bulk �ow looks more symmetric when seen from the front (SV�PP). Clusters of

points instead of bright lines are found on the torus sides (rounded blue rectangles),

since the streamlines are there perpendicular to the observation plane.

More information is acquired thanks to an azimuthal scanning : the `imaging block'

(horizontal and vertical laser sheets plus the cameras) captures intermediate views while

rotated around the injector. The dipole mirror symmetry plane (DMSP chosen as the

reference plane O°), the plane perpendicular to it (90°), and intermediate planes at 45°

and 60° from the DMSP are selected (Fig. 2.14). Starting from the DMSP, recognisable at

�rst glance with its strongly asymmetric �ow pattern, the `laminar' streamlines seem to

shorten (cyan stick) as we turn around the injector, suggesting the existence of a stretched

structure in the direction of the �ow. The toroidal symmetric structure appearing in a

limited area of the back view reinforces this vision. We shall also pay attention to the

whirlpools situated on both sides of the vortex ring (rounded blue rectangles).
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It is instructive to cut the �ow structure into slices by lifting down the horizontal laser

sheet (Fig. 2.15). Let us examine the series of top views captured deeper and deeper in

the bulk, focusing our attention on the orientation of the streamlines near the injector.

� As long as the laser sheet is located a few tenths of a mm beneath the surface, the

�ow close to the injection point appears centrifugal (TV1).

� If we now put our light blade deeper, at about half the gap, we see like a point cloud

emerging in the middle (cyan circle on TV2). The bright spots forming this cloud

glitter on the real � time recordings. Here again, the streamlines �ow perpendicularly

through the recording plane and are hence seen from the top as a set of points.

� As we bring the cut plane even closer to the tip of the injector, the streamlines

suddenly reverse, becoming centripetal (red arrows on (TV3) � (TV5)).

These three �ow con�gurations, along with the side views, con�rm the existence of a torus

sitting upon the injection tube. Let us add a few words concerning the fate of the dipole

vortex pair as the laser sheet is lifted down. The following trends can be reported : (1)

the distance between the vortex centres grows, (2) these centres drift downstream and

(3) the whirlpools become fainter and fainter. Given the information collected so far, we

assume the existence of some elongated structure parallel to the dipole symmetry axis

and �anked by a whirlpool on each side.
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Figure 2.13: Typical views of the bulk �ow associated with a dipolar surface �ow.

The orientations of the vertical laser sheet are spotted by the perpendicular green solid lines. The black

disks mark the positions of the observer. The gap is reported below each side view. Even though both

values are not the same, they are close enough to each other for the views to be comparable, at least

qualitatively. The yellow lines point out structural links between the views. The magenta (resp. red)

arrows (arbitrary lengths) indicate the direction of the surface (resp. bulk) �ow. The orange sign � (resp.

�) denotes clockwise (resp. anticlockwise) vortex rotation. Vinj � 5.5 cm/s (C SDS = CMC/100).
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Figure 2.14: Azimuthal scan of the bulk structure associated with a dipolar surface

�ow. The top views on the left show the orientation (45°, 60°, 90°) of the laser sheet (bright strip) with

respect to the axis of the dipole (0°). The corresponding side views are displayed on the right with their

scale bar. The yellow disk marks the injection site. Other graphic elements are the same as in Fig. 2.13.

The gap is about H � 2mm over ∆texp = 10min. Vinj � 5.5 cm/s (C SDS = CMC/100).
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Figure 2.15: Scanning in depth the structure of a dipolar �ow. The successive positions

of the laser sheet deeper and deeper in the bulk are indicated on the side view (SV). The latter is

captured in the symmetry plane of the dipole spotted by the green solid line on the top view (TV1). The

corresponding depths are indicated below each top view and the gap H is reported below the side view.

For a better readability the scale of the top views is not harmonised with that of the side view. Other

graphic elements are the same as previously, except that here red arrows indicate the �ow direction in

the vicinity of the injector. Vinj � 5.5 cm/s (C SDS = CMC/100).
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Method M2�Unveiling the 3D dipolar structure with �uorescent dye

Fig. 2.16 is an overview of the coloured cloud correlated to a dipolar surface �ow.

The colour pictures displayed on this plate are high � resolution photographs o�ering an

accurate view of the cloud shape. Although these images are only projections of the cloud

volume, their transparent appearance sheds light on some morphological traits :

� On the top view (TV), we see part of a `double air chamber' at the rear of the

injector : the `inner air chamber' stretches forward in the form of two `coloured

ribbons' symmetrically located on either side of the dipole axis, while the `outer air

chamber' extends in the form of an envelope folded on itself that gives birth to a

pair of counter � rotating whirlpools whose ends come back to the injector.

� On the side view (SV) captured in the symmetry plane of the dipole, we recover a

ribbon with a multi � layered inner structure. What is new and not evidenced by the

top view (TV) is the large angle at which this `arm' sinks, separating from a thin

dye layer con�ned to the surface that spreads forward as the colouring is ejected.

Whirlpools passing under the `air chamber' are visible on the back view (BV).

Comparing streamlines views with dye distribution maps

We conclude this presentation by comparing streamlines views with dye distribution

maps (Fig. 2.17). These diptych � like views point out the structural matching that exists

between the repartition of the streamlines and that, closely correlated, of the coloured

cloud. Of particular interest is the overlay displayed on the side view, clearly showing

that the width of the `dye ribbon' perfectly �ts the locally sharp � angled streamlines.

Intriguingly, whilst the streamlines densely cover the entire viewing �eld, the coloured

cloud is rather localised within a subregion.

Computer reconstruction of the coloured cloud volume

A 3D reconstruction of the coloured cloud volume is achieved (for technical details,

see Appendix D.1). Figs 2.18 �2.19 provide a detailed view of the multi � layered internal

structure of the cloud. Following the cross � sections of the `arms' throughout the back (or

front) `peeling' (matter behind the cut plane is removed while the part of the structure

located ahead is preserved) of the volume is instructive : one remarks that the `arms'

gradually sink and spread apart as we move downstream.
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Figure 2.16: Photographs showing the 3D structure correlated to a dipolar surface

�ow, as revealed by dye injection. The arrow shows the �ow direction along the symmetry axis

of the dipole. The � (resp.�) red sign denotes clockwise (resp. anticlockwise) rotation of the whirlpools.

The gap is reported below each side view. Although both values are not the same, they are close enough

to each other for the views to be at least qualitatively comparable. The magenta line points out structural

links between the views. Vinj � 5.5 cm/s (C SDS = CMC/100).
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Figure 2.17: Comparison streamlines/dye distribution. The yellow � (resp. �) sign denotes

clockwise (resp. anticlockwise) vortex rotation. Arrows show the surface �ow direction. Though the gaps

are not the same on the streamlines and the coloured cloud views, they are close enough to each other

for a proper structural comparison. Because of readability issues, both kind of maps are superimposed

on the side view (SV) but simply juxtaposed on the top (TV) and back (BV) views. Harmonised top

and side scales setting 25µm/pix as the unique scale. Vinj � 5.5 cm/s (C SDS = CMC/100).
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Figure 2.18: Peeling the coloured cloud. Series of back (resp. front) `cut views' shown in column

on the left (resp. right). (xy) denotes the horizontal plane of the top views and (xz) the vertical plane of

the back/front views. Successive positions of the cut plane marked by blue lines. Volume `peeled' in the

direction of the arrow. The perspective views in the header of the plate give a global insight of the cloud

shape. To ensure good visibility, each voxel is rescaled to a size δx δy δz = p34.26� 34.26� 68.52qµm3 by

imposing an aspect ratio δz/δx = 2 instead of the initial 1.3 value and performing a zoom that multiplies

all lengths by 1.52. The yellow � (resp.�) sign denotes clockwise (resp. anticlockwise) vortex rotation.
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Figure 2.19: Peeling the coloured cloud. Series of parallel (resp. angular) side views shown in

column on the left (resp. right). (xy) denotes the horizontal plane of the top views and (yz) the vertical

plane of the side views. Same graphic codes as in Fig. 2.18.
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PIV�based characterisation of the dipolar state

Now that the dipolar �ow has been qualitatively described, we supplement our analysis

with quantitative PIV data. A standard PIV procedure is implemented whose key steps

are brie�y reminded in sec. 2.1.5. We aim at �guring out the order of magnitude of the

velocity in the di�erent regions of the dipolar �ow, together with the evolution of both

velocity components v‖ and vK along the dipole `eigenaxes'. Particular attention is also

paid to vorticity which is essential in characterising the vortex pair of the dipole. More

advanced aspects are next addressed, seeking an order parameter that would capture the

`torus � to � dipole' symmetry breaking.

Unless otherwise speci�ed, PIV results are derived from experiments performed in the

`head � to � tail syringes' con�guration (Fig. 2.3). We recall that the syringe pump we use

sustains injection speeds Vinj in the range 0.7 � 14 cm/s. Small H � 0.25mm, moderate

H � 1.25mm as well as big H � 2.5mm gaps are considered. The ORCA-�ash2.8 camera

being the only one suited for PIV, which requires high frame rates (45 images/s), it serves

as the top camera. The calibration is 52.08µm/pix in this new layout of the cameras.

Characteristic maps of the dipolar �ow

Let us start with a few maps typical of the dipolar �ow observed for H = 1.25mm

and Vinj = 3.5 cm/s. For guidance, we provide an average frame showing the streamlines

of the dipole (Fig. 2.20). Figs 2.21 � 2.23 give the associated velocity and vorticity maps.

Fig. 2.21 reveals a strong velocity gradient extending over about 1 cm along the dipole

symmetry axis (rainbow� like region near the injection site). Note the velocity decline

in the core of the vortices (deep blue) well captured by our PIV processing. Fig. 2.22

shows typical �elds of the velocity components v‖ (a) and vK (b), the counterparts of vx

and vy de�ned in the dipole reference frame. Their variation (a') along the symmetry

axis of the dipole (black dashed line on �g. (a)) and (b') the line perpendicular to it (blue

dashed line on �g. (b)) is displayed. One remarks that the pro�le (a') is double � peaked :

the most intense of the two peaks arises from the highest (positive) contributions to v‖

in the dark red region located in front of the injection site, while the secondary peak is

likely attributable to local acceleration, some streamlines winding around the rear part of

the injection torus. Fig. 2.23 reveals that the vorticity takes signi�cant values only close

to the injection site and vanishes everywhere else. Similar series of maps are derived in

Appendix F for many other values of the control parameters.
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Figure 2.20: Dipolar �ow (top view). Average frame from a stack of 1000 images (45 FPS

Ñ ∆t � 22 s). Moderate gap H = 1.25mm and injection speed Vinj = 3.5 cm/s. The � (resp.�) sign

denotes clockwise (resp. anticlockwise) vortex rotation. The magenta arrows indicate the �ow direction

along the symmetry axis. Injection outlet visible in the middle. C SDS = CMC/100.

Figure 2.21: Typical surface velocity �eld. Black (resp. blue) dashed line aligned with (resp.

perpendicular to) the dipole symmetry axis (Fig. 2.20). White arrows show the orientation of the dipole

`eigenaxes' x‖ and xK. The crosses mark the positions of the maxima of vorticity (see Fig. 2.23 hereafter).
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Figure 2.22: Characteristic �elds of the velocity components v‖ (a) and vK (b),

together with their evolution along the dipole axes (a') � (b'). `d�d0' denotes the distance

to the point of maximum vorticity (white cross) measured along the selected colour line.
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Figure 2.23: Typical interfacial vorticity �eld. For convenience, the square of the vorticity ω2

is plotted rather than vorticity itself. This way we handle only positive values, whereas vorticity is an

algebraic quantity. The vector �eld is the one of the velocity map shown above, save that here all vectors

have the same length normalised to unity so as to make the dipolar pattern more visible. The centres of

the white circles coincide with the maxima of vorticity.

Order parameter of the `torus � to � dipole' transition

We are seeking an order parameter, i.e. some quantity switching from zero to a �nite

value above a critical threshold of the control parameters. Such a sharp change, which

recalls the physics of phase transitions, would be here interpreted as the signature of

symmetry breaking from the axisymmetric to the dipolar state.

A hydrodynamic counterpart to electrostatic dipolar moments, here below denoted D,

is examined as a possible order parameter. Prior to computing D for a whole series of

experiments run at various H and Vinj, we de�ne a `total hydrodynamic charge' Q as

Q 9=
1

S

�
(I)

dx dy ω(x, y) , (2.1)

with S =
�

(I)
dx dy the surface of the viewing area (I) the vorticity �eld ω(x, y) of the

dipole is integrated over ( (I) is the illuminated region of the interface). The vorticity

being de�ned as the curl of the �ow velocity vector ω 9=∇ ^ v, Q has the dimension

of the inverse of a time. In principle, one expects Q to be zero : the positive de�nite

vorticity of the clockwise rotating vortex shall exactly balance the negative vorticity of

the anticlockwise rotating vortex, in a way analogous to the charges of an electrostatic

dipole having the same absolute values but opposite signs. In practice, however, Q is not
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exactly zero but very small 6.70� 10�5 s�1 ¤ |Q| ¤ 1.68� 10�2 s�1, as only a portion of

the dipole is located inside the viewing area (I) and the dipole is not perfectly symmetric.

The total dipolar moment D is then computed using the relation D 2 = D 2
x �D 2

y where

Dx 9=
1

S

�
(I)

dx dy px� x0q ω(x, y) , Dy 9=
1

S

�
(I)

dx dy py � y0q ω(x, y) . (2.2)

Dx and Dy have the dimension of a velocity. The couple (x0, y0) denotes the coordinates

of C, the midpoint of the segment of length L joining the centres O1 and O2 of the vortex

pair. Note that Dx = xDx � x0Q and Dy = xDy � y0Q . We check numerically that the

quantities tx0Q, y0Qu are negligible, being one to two orders of magnitude smaller than

the `uncentered' dipolar moments txDx,xDyu in the explored range of the control parameters

(H,Vinj). Therefore, all PIV computations are indi�erently achieved in the natural frame

(XCY ) that complies with the orientation of the dipole (Fig. 2.24). The computations

of L and D necessitate a vortex locating tool implemented via a dedicated piece of code

working out the coordinates (x1, y1) (resp. (x2, y2)) of O1 (resp. O2) and deducing those

of point C. To locate the centre of a vortex, an option is to evaluate the cross product of

the velocity map with a radial `test �eld' everywhere in (I).

Figure 2.24: Parametrisation of the dipole.

Plotting the maximum velocity Vmax in function of Vinj evidences a threshold speed

V �inj = 1.5684/0.1218 � 1.29 cm/s (Fig. 2.25 � (a)) below which we are in the axisymmetric

base �ow state characterised by a zero surface velocity (experimental proof in sec. 2.4).
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Curiously, the linear evolution of Vmax = f(Vinj) does not depend much upon the gap H,

at least over the investigated range. The graph of the dipole maximum vorticity ωmax in

function of Vinj exhibits the same (up to some numerical error in computing derivatives)

threshold speed V �inj (Fig. 2.25 � (b)). Let me precise that to get Vmax and ωmax for each

couple of control parameters (H,Vinj), I just read the maximum values on the colour scales

associated with the PIV maps of the velocity norm and the vorticity.

Figure 2.25: Maximum velocity Vmax and vorticity ωmax of the dipole in function of

the injection speed Vinj, for various gaps H. On both �gures, a threshold speed V �inj � 1.29 cm/s

appears below which we are in the axisymmetric state that has a zero surface velocity (sec. 2.4). Triangles

and squares are used instead of dots to distinguish between superposed points. C SDS = CMC/100.

Let us trace the dipolar order parameter D in function of the injection speed Vinj, for

various gaps H (Fig. 2.26). Contrary to Fig. 2.25, no threshold speed is identi�able on this

last plot and the dispersion of the points is important. Actually, the closest point to the

origin Paxi (H = 1.25mm, Vinj = 0.7 cm/s) (magenta circle) is the only one corresponding

to the axisymmetric �ow, any other point corresponding to the dipole. We shall see in

sec. 2.4 that a threshold separating the axisymmetric �ow regime from the dipolar state

exists in the interval between the �rst two points of the graph. Moreover, the point Paxi

should lie on the x � axis, the axisymmetric state having a zero surface velocity (sec. 2.4

again). The reason why the interfacial velocity of the axisymmetric �ow appears here

very small but �nite is probably due to the fact that our PIV measurements are based on

a horizontal laser sheet. Indeed, the latter is never exactly at the interface but intercepts

a thin subsurface layer wherein tracer particles move at an extremely low but �nite speed.
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Figure 2.26: Evolution of the dipolar order parameter D with the injection speed Vinj,

for di�erent gaps H. Point Paxi (H = 1.25mm, Vinj = 0.7 cm/s) associated with the axisymmetric

�ow surrounded by a magenta circle. The colour code is the same as in Fig. 2.25 since the dataset is the

same. The blue curve is a guide to the eye. C SDS = CMC/100.

To conclude, both the maximum velocity Vmax and vorticity ωmax seem to evidence

that the dipolar instability arises at an injection speed threshold V �inj � 1.3 cm/s. Still,

none of the points shown in Fig. 2.25 corresponds to the axisymmetric base state. To

be completely rigorous, this analysis would ask for many points like Paxi (Fig. 2.26).

Unfortunately, even the smallest rate available on the syringe pump control unit, Qinj =

100µL/min, is too strong to unfailingly generate an axisymmetric �ow, a dipole appearing

most often yet at such a low injection rate (in the explored range of gap values).

2.4 Interface unlocking

We present an experiment which uncovers some correlation between the interfacial �ow

morphology and the dynamics of surface/subsurface tracer particles. We will see that the

interface is in a `locked' or in a `passing' state depending on the nature of the surface �ow.

Experiments are realised with the `head � to � tail syringes' setup (sec. 2.1.2). We �rst

select a strong injection rate Qinj = 800µL/min. The experiment is then repeated at

lower injection rates Qinj = 700, 600... µL/min until a minimum value Qinj = 100µL/min.

A horizontal cut view is recorded each time to visualise the surface �ow structure, along

with a vertical (quasi � diametrical) cross � section on which surface and subsurface tracer
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particles are tracked with the aim of estimating their velocity. Tracking is achieved using

ImageJ's `Manual Tracking' tool. Trajectories of interfacial tracer particles (z = 0) are

reconstructed, as well as those of subsurface particles situated a few tenths of a mm below

the surface. The depth of a subsurface tracer particle is evaluated based on its mirror

image through the interface. In particular, tracer particles found exactly at the interface,

in z = 0, do not produce mirror images. Despite a possible measurement error in the

order of dz � 30µm (the size of a pixel), this method proves e�cient as it is in fact

easy to see if a tracer particle is at rest or driven by the �ow together with other tracer

particles located deeper. The bulk �ow is captured by the ORCA-�ash camera at a rate

of 10 frames/s. The typical duration of `horizontal' and `vertical' recordings is ∆t � 30 s.

Fig. 2.27 displays some surface �ows observed at various injection rates Qinj. From the

slightly polarised toroidal �ow routinely observed at low injection rates (Qa = 200µL/min),

the surface �ow becomes fully dipolar at stronger injection rates (Qinj ¥ Qc = 400µL/min).

On Fig. 2.28 are reported measurements of the velocity of surface and subsurface tracer

particles driven by these interfacial �ows. The following observations can be made :

a. Qa = 200µL/min : at low injection rate, surface tracer particles are motionless

whereas subsurface tracer particles are entrained by the toroidal base �ow, with

equal strength to the right and to the left of the injector (on Fig. 2.28 � (a), the blue

squares are distributed in such a way that |V min
200 | � |V max

200 |).

b. Qb = 300µL/min : surface tracer particles start moving a bit, as evidenced by the

red balls `jumping' out of the x � axis. Here the red balls are all associated with

positive velocities, contrary to the blue squares which alternate between negative

velocities in the region x   xinj to the left of the injector and positive ones in the

region x ¡ xinj on the right. Surface tracer particles thus move collectively from

the left to the right, whereas subsurface tracer particles are still entrained by the

toroidal �ow. In the region x   xinj, the surface tracer particles move against the

centrifugal �ow imposed by the torus, which probably results in important shear

stresses at a short distance beneath the surface.

c. Qc = 400µL/min : the interfacial �ow is fully dipolar. The polarisation stream,

directed along the symmetry axis of the dipole from the left to the right, drives all

the surface as well as the subsurface tracer particles. Both groups move at the same

speed as suggested by the nearly coinciding red balls and blue squares. Positive

velocities of subsurface tracer particles are measured now in the region x   xinj,

meaning that the in�uence of the toroidal �ow has completely faded out.
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By the way, the fact that the velocities at the interface and those measured right

below are very similar is good news for the PIV study of sec. 2.3.2 based on horizontal

cut views, since in this case possible mistakes in segregating surface tracer particles

from subsurface ones turn out to have little impact on velocity computations.

In conclusion, the interface switches from a `locked' state at low rates to a `passing' state

at stronger injection rates. The transition, which takes place at Qtr � 300µL/min Ñ
Vtr � 2 cm/s, is accompanied by the emergence of a surface dipole out of a toroidal �ow.

This phenomenon, which is of utmost importance, will be further discussed in sec. 2.6.

Figure 2.27: Surface �ows arising at various injection rates (top views). (a) Slightly

polarised toroidal �ow observed for an injection rate Qa = 200µL/min corresponding to an injection

speed Va = 1.4 cm/s. (b) Intermediate state. Qb = 300µL/min, that is Vb = 2.1 cm/s. (c) Dipolar

surface �ow. Qc = 400µL/min Ñ Vc = 2.8 cm/s. The vertical laser sheet (not represented) is aligned

with the dipole symmetry axis. H � 2.1mm ( C SDS = CMC/100).
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Figure 2.28: Velocity of surface and subsurface tracer particles measured for various

interfacial �ows. The �ows are those of Fig. 2.27. Injection rates/speeds : (a) Qa = 200µL/min Ñ

Va = 1.4 cm/s ; (b) Qb = 300µL/minÑ Vb = 2.1 cm/s ; (c) Qc = 400µL/minÑ Vc = 2.8 cm/s. Each red

ball depicts a tracer particle at the interface while blue squares symbolise tracer particles found within

a 0.2mm thick subsurface layer. The numerical values reported next to three squares of �g. (c) indicate

the depths dz (in µm) at which the corresponding tracer particles are found. Measurements made in a

cross � section aligned with the dipole symmetry plane (Fig. 2.27 � (c)). H � 2.1mm ( C SDS = CMC/100).
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2.5 Complementary studies

2.5.1 The in�uence of con�nement over the instability

Two cell sizes are selected to probe the e�ects of con�nement on the instability : a small

cell of inner diameter Is 35mm and a large one Il 154mm. Hitherto, we have focused

on experiments achieved with the small cell. Let us now present the observations made

with the large cell and compare them to the foregoing results.

Remarkably, dipolar �ows of modest size compared with the radius of the wide cell

spring up at injection speeds and gaps akin to those set in small cell experiments. Fig. 2.29

shows an example of a dipole arising in the large cell whose vortices are separated by a

distance L � 1 cm ! Il . This observation suggests that �ow con�nement is not the cause

of the instability. Said di�erently, the instability would develop even in an in�nite system,

which is by the way a valuable information to simplify theoretical models. This, however,

does not mean that containment exerts no in�uence on the �ow patterns. Clearly, the

peripheral streamlines of the dipole are pressed against the cell wall beyond a certain

injection speed, resulting in reshaped vortices. Fig. 2.30 illustrates this phenomenon : the

aspect of the growing vortices changes as the jet �ow strengthens, from a rounded shape

at moderate injection speeds (a) to a more oblong shape at higher speeds (b).

Fig. 2.31 compares the evolution of the intervortex separation L with the two control

parameters (Vinj, H) in the large (a) and in the small (b) cells. Clearly, in the large cell

L increases with the gap whatever the injection speed. For a given gap, L tends to grow

with the injection speed. In the small cell, L also increases with the gap H (though this

becomes less obvious at small gaps H � 0.1mm). For a �xed gap, however, the way L

evolves now depends upon how large is the gap : L increases at small gaps H � 0.1mm,

decreases at big gaps H � a few mms (save what is likely an outlier) and, at intermediate

gaps H � 1mm, reaches a maximum before declining past a high enough injection speed.

The �rst behaviour may seem counterintuitive. For a given injection speed, we expect

the `e�ective pressure' exerted by the jet on the interface to be less and less experienced

by the latter as the gap increases, resulting in weaker interfacial constraints and hence

in a smaller dipolar pattern... Anyhow, this observation stresses the leading role the gap

plays in setting the typical size of the �ow patterns. The non �monotonic behaviour at

H � 1mm, as well as the decline of L at still bigger gaps, manifesting themselves in the

small cell but not in the large one, are probably due to �ow con�nement : the dipole would
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expand as the dilatational source �ow is intensi�ed but is prevented by the sidewalls from

doing it, and at a certain point the `interaction' of the dipole with the walls becomes so

strong that it shrinks if the injection speed or the gap is further increased.

Comparing the intervortex separations in the large and small cells for similar values

of the control parameters, we �nd that L ranges between 3 and 10mm in both cases. For

instance, with a gap H � 0.25mm and an injection speed Vinj � 9.1 cm/s, one measures

L � 5.38mm in the small cell while in the large cell L � 5.47mm for H � 0.35mm

and Vinj � 8.8 cm/s. This similarity seems to indicate that �ow con�nement does not

considerably a�ect the size of the dipole.

Figure 2.29: Dipolar �ow in the large and the small cell. For comparison sake, the gap is

set to H � 1mm and the injection speed is Vinj � 5.5 cm/s in both cases. Green arrows show the �ow

direction along the dipole symmetry axis. Cyan � (resp. �) signs denote clockwise (resp. anticlockwise)

vortex rotation. The sidewalls are out of the �eld of view on the picture captured in the large cell but

are visible on the picture taken in the small vessel (insert). Image from B. Gorin's internship report.
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Figure 2.30: Con�nement � induced reshaping of a vortex pair. (a) Dipolar surface �ow

observed at a gap H � 0.25mm and an injection speed Vinj � 1.75 cm/s. (b) Same dipole for a much

stronger jet �ow at Vinj � 9.8 cm/s. Arrows show the �ow direction. Orange � (resp.�) signs denoting

clockwise (resp. anticlockwise) vortex rotation. Small cell (Is 35mm). C SDS = CMC/100.

Figure 2.31: Evolution of the intervortex separation L with the control parameters

(Vinj, H) in the large (a) and in the small (b) cells. Curves are a guide to the eye. Large cell

data from B.Gorin.
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2.5.2 The in�uence of interface deformation over the instability

Our shadowgraphy results are presented below. We remind the reader that shadowgraphy

serves us to measure the size of the `hydraulic bump' generated at the interface by the

vertical water jet. This technique is also a tool for investigating the in�uence of surface

deformation over the instability : does it induce it or not ? This section is structured

around these two axes. A comprehensive presentation of shadowgraphy applied to the

present case is provided in Appendix E. Note that the experiments presented in this part

are all conducted at a SDS concentration C SDS = CMC/8.

Measuring the size of the bump� like interface distortion

Experiments aimed at measuring either small or large surface deformations are run,

wherein the screen is placed at a critical distance D? = 40 cm or D? = 2.5 cm depending

on the case (Fig. E.3). The height h and extent ξ of the bulge are inferred from the

dimensions of its shadowgram and the value of D? using the formulas (E.1). A concrete

example of how to apply these formulas is detailed in Appendix E.4. Fig. 2.32 summarises

our shadowgraphy results on the dimensions of the jet � induced interface deformation.

Figure 2.32: Extent ξ of the jet � induced interface deformation in function of its

height h. The graph is divided into two point clouds. The blue one corresponding to low deformations

(D? = 40 cm), made up of measuring points obtained for gaps H ¥ 0.3mm. The red one corresponding

to large deformations (D? = 2.5 cm), composed of measuring points derived at vanishing gap H � 0.

Aspect ratio ξ/h of the hydraulic bump indicated next to each point. Vinj � 3.3 cm/s ( C SDS = CMC/8).
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Thus we see that the `bump' is extremely �at, being tens to hundreds times more

elongated than elevated : its typical height does not exceed a few tens of microns and its

extent is comparable to (half) the capillary length lc =
a
γ/ρg � 2.7mm of pure water at

room temperature, the characteristic length that sets the scope of capillary forces shaping

the interface at small scales. The fact that ξ " h validates a posteriori our assumption

of a �at interface |f 1(a)| ! 1 , @ a P r�A,�As (see Appendix E.3). Although we cannot

fathom that so tiny a deformation could in�uence the multipolar �ows, no cogent evidence

has been brought so far to corroborate this point. We remedy this issue now.

Probing a possible correlation between the surface deformation and the instability

To probe a possible correlation between the interfacial bump and the instability, the

recording plane is placed at a critical distance D? = 2.5 cm above the surface, covering

half the cell and letting the other half clear for direct �ow visualisation. This way, both

the streamlines and the shadowgram are simultaneously captured. The uncovered part

of the cell allows a glimpse of a dipolar �ow pattern and the associated shadowgram is

imaged on the screen covering the right half of the cell (Fig. 2.33). One remarks that the

symmetry breaking of the �ow leaves the shadowgram axisymmetric, which suggests that

the surface deformation induced by the jet and the multipolar instability of the toroidal

base �ow are uncorrelated, the former not being at the origin of the latter.

Figure 2.33: Comparing the symmetry of the dipolar surface �ow with that of its

shadowgram. (Left half ) The � (resp.�) sign marks clockwise (resp. anticlockwise) vortex rotation.

The arrow shows the �ow direction along the dipole symmetry axis. Injection site depicted by a cyan

disk. (Right half ) Shadowgram. Since the recording plane sits on top of the cell (D? = 2.5 cm) the

calibration of the shadowgram (21.74µm/pix) di�ers from that of the streamlines views (37.81µm/pix).

Average frame from a stack of 10 images (4 FPS Ñ ∆t = 2.5 s). `Glowing strip' in the middle probably

due to stray light di�used by the edge of the screen. Patch of light on the left due to the incident laser

beam passing through the paper screen. Vinj � 2.7 cm/s, H � 0 ( C SDS = CMC/8).
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2.5.3 Flow reversibility

Another question that is worth raising concerns the reversibility of the �ows. Although

the littleness of our water jet device brings us closer to the �eld of micro�uidics, inertial

e�ects cannot be automatically discarded. Are we really working at low Reynolds numbers

Re ! 1 (de�nition given in sec. 2.6 below) ? Two ways of investigating this point are

considered experimentally :

� With the `gravity �ow' setup (Fig. 2.2) � A minute volume of dye (Vfluo � 200µL)

is incorporated into the working liquid. At the very moment the colouring spurts

out in the cell the reservoir is quickly lifted down from a height �∆, typically set

at ∆ = 55mm for which Vinj � 5.5 cm/s, to its symmetric position �∆ relative

to the reference level of the liquid in the cell. The injector hence turns into an

aspirator (the cell empties into the reservoir), the velocity switching from Vinj = �V
to Vasp = �V near the tube outlet. Does the tube swallow back the colouring ?

� With the syringe pump (Fig. 2.3) � One readily reverses the translational motion of

the paired syringes on the syringe pump control unit, therefore turning the injector

into a drain tube whereas the drain tube at the bottom of the cell becomes an

injector. Are aspiration �ows the `time � reversed version' of injection �ows ?

Response elements about these questions are given in what follows.

Swallowing back the cloud

Several experiments of the �rst type are run. On Fig. 2.34, the series of images (A) �

(G) displays side views of the perturbed coloured cloud in a vertical plane tangent to the

injection tube. The side views (A') � (F') focus on the jet evolution, the laser cut plane

intercepting this time the injector. As the tank is driven down, there comes a moment

when the structure gets destabilised by wavelets (B) � (D) (rounded magenta rectangle)

and breaks apart soon after (E) � (G) : the front of the dye surface layer is `thrown against'

the walls and, with some delay, part of the thin jet of dye is propelled forward (yellow

ellipse), likely entrained by the inertia of the preexisting dipolar �ow.

It might be that this disruptive wave train consists of `varicose waves' responsible for

the breakup of the jet (see the rippling of the jet on picture (C')). Yet, we cannot exclude

that the latter phenomenon is simply caused by parasitic mechanical vibrations, despite

all the care taken in eliminating them while the reservoir moves on its rack and pinion.
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Figure 2.34: Fate of the coloured cloud in the reversed �ow experiments (side views).

The � sign denotes an anticlockwise rotation of the vortex above the injector (cyan tube). Arrows showing

the �ow direction. Gap H reported below each series of frames. Vinj � 5.5 cm/s ( C SDS = CMC/100).



2.5. Complementary studies 65

Aspiration experiments

Aspiration experiments are achieved in the small cell (H 35mm) at various gaps

H � 0.25, 1.25, 2.5...mm and injection speeds Vinj � 1.75, 3.5, 5.25, 7... cm/s. Note that

above a certain injection speed, e.g. Vinj = 7 cm/s at a gap H = 2.5mm (even less at

smaller gaps), the drain tube turned into an injector expulses so intense a jet towards the

surface that the aspiration �ow is strongly perturbed, preventing us from studying it.

Contrary to injection experiments, aspiration �ows exhibit no multipolar instability,

whatever the values of the control parameters. No counter � rotating vortices are visible

but a quasi � axisymmetric �ow with slightly curved centripetal streamlines (Fig. 2.35).

The inertial drive of the dislocating coloured structure and the disparity between

aspiration and injection �ows suggest that the Reynolds numbers at play are not so

small : Re � 1 (resp. 10) for injection speeds of a few cm/s and the injector's radius

rinj = 0.275mm as the length scale (resp. the gap H � 1mm). In other words, inertial

e�ects from the non � linear termV.∇V of the Navier � Stokes equation are not completely

negligible. They are involved in the irreversibility of the �ows. Still, we shall see in the

next chapter that substantial grounds exist to believe that this instability is not inertial

(in a model, inertial e�ects would be then set as `higher � order corrective terms').

Figure 2.35: Aspiration �ow (top view). Arrows showing the �ow direction. Average frame

from a stack of 1500 images (45 FPS Ñ ∆t � 33 s). H � 1.25mm, Vinj � 3.5 cm/s ( C SDS = CMC/100).
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2.6 Discussion

In this chapter, we presented a simple experiment that consists in a small subaquatic

fountain generating a centrifugal radial �ow at the water surface (Fig. 2.1).

The 3D morphology of the base �ow observed at low injection speeds (and/or big

gaps) is that of a polarised torus, namely a toroidal �ow whose streamlines are oriented

along a preferential direction (Figs 2.5 � 2.6). Factors that can induce this `polarisation'

(= departure from pure axisymmetry) of the base �ow are at least of two types : (1) a

parasitic temperature gradient between the cell boundaries; (2) geometric �aws.

(1) We call `residual convection' the low thermocapillary �ow, caused by a temperature

gap ∆T between the cell sidewalls, that persists when injection is o�. The Marangoni

boundary condition, see Eq. (2.7), provides the after relation between orders of magnitude

∆T = ε
η

γT
U , (2.3)

with U the velocity scale of the �ow. The constant γT 9= |dγ/dΘ| � 10�4 N.m�1.K�1 [40]

quanti�es the variation of surface tension with the temperature. ε = d/h � 1 represents

the ratio of the cell diameter d = 3.5 cm to the height h � 3 cm of liquid it contains.

The dynamic viscosity of water is η � 10�3 Pa.s. Given the velocities measured in the

toroidal base �ow (Figs 2.5 and 2.6), ranging from Uaxi � 10µm/s in the outer area

of the vessel up to Uaxi � 1mm/s within the torus, Eq. (2.3) yields a temperature gap

∆T � 10�4 � 10�2 K. Such modest temperature gradients are commonplace in a room

where no special care is taken to control the temperature. Parasitic convection is thus

systematically present in our experiments and may in�uence the base �ow as both are of

comparable strength.

(2) Geometric �aws may also impact the polarisation of the base �ow. For instance,

a careful inspection of the injector outlet reveals a rough surface (Fig. 2.36). This may

alter surface �ows, especially at very small gaps H � 0.1mm for which the size of the

injection nozzle (outer diameter I 0.8mm) is strongly `sensed' by the �ow. At larger

scales comparable to the cell size (inner diameter I 35mm), the lack of verticality δθ of

the injector biases the �ow direction : turning the injector to reorient its tilt, we observe

that the dipole symmetry axis is driven by the enforced rotation in most cases, albeit

with some angular delay. At intermediate scales, the �ow undergoes the combined e�ect

of all these factors without the possibility of saying that one dominates the others.
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Figure 2.36: Microscopy image of the injection nozzle. The bevel on the left side of the

injector's edges is caused by abrasion on a grinding wheel used to cut straight the point of a needle.

We have evidenced a linear growth of the torus diameter d t with the gap H at di�erent

injection speeds Vinj, both in the absence of SDS and for a SDS solution at C SDS = CMC/8

(Figs 2.9 �2.10). Note that this linear behaviour has been observed over a large interval

of gap values 1   H   11mm. However, to be fully con�rmed, this �nding would deserve

further experiments over a wider range of injection speeds (here 2.31 ¤ Vinj ¤ 3.74 cm/s).

The fact that the torus diameter increases linearly with the gap in the absence of SDS

can be understood assuming an in�nitely thin injection tube in an in�nitely wide vessel.

The gap H is then the only relevant length scale and the size of the injection torus is

thus directly proportional to it. Yet a deviation from this linear behaviour is expected

at very small gaps H � 0.1mm comparable with the injector's radius rinj = 0.275mm,

but also at very big gaps H � R (R is the radius of the vessel, R = 17.5mm), a scale

at which the liquid enclosed in the cell experiences the presence of the boundaries (�ow

con�nement). Therefore, the size of the �ow patterns is properly measured in terms of

the sole gap H provided the latter is neither too small nor too large. Unfortunately, for

gaps H � 0.1mm, the torus is so small that it is not clearly recognisable on the pictures

and hence its diameter cannot be correctly measured. Regarding very big gaps H � R,

we simply did not examine such gap values.

It is instructive to introduce the Reynolds number Re. The latter, which compares the

magnitudes of inertial and viscous forces, is de�ned as the following dimensionless ratio

Re 9=
Ua

ν
, (2.4)

with a some characteristic length scale of the system, U a typical velocity scale, and

ν 9= η/ρ the water kinematic viscosity (ν � 10�6 m2/s under standard temperature and
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pressure, Troom � 20°C and Patm � 1bar). In the limit rinj ! r ! R, the jet is regarded as

spurting from a point source in a semi � in�nite liquid. As mentioned above, the gap H is

then the only relevant length scale and the velocity can be expressed under the simple form

v(r, z) = Vinj Φ(r/H, z/H). Since v = 0 at a vortex centre, it ensues that Φ = 0 regardless

of Vinj , and this explains why the slopes of Figs 2.9 �2.10 are independent of the injection

speed (at least in the explored range). Still, this factorisation makes sense only in the

purely viscous regime Re = 0. Indeed, if inertial e�ects were to in�uence the torus size,

additional length scales would appear in the system. Taking U as the injection speed Vinj,

and thus identifying a with the radius rinj of the injector (rinj = 0.275mm), the Reynolds

numbers associated with the experiments of Figs 2.9 �2.10 lie between Remin � 6.4 and

Remax � 10.3. These non � negligible Reynolds numbers suggest taking inertial e�ects

into account, however, the linear scaling of Figs 2.9 �2.10 informs us that this is irrelevant

as far as the torus size is concerned. Besides, it is not obvious why the torus diameter

keeps behaving the same way with the control parameters in the presence of SDS, as the

latter uneven distribution at the interface should introduce supplementary length scales.

Most interestingly, surface velocity measurements revealed a `locked' interface in the

quasi � axisymmetric �ow regime (Fig. 2.28 � (a)).

The divergent �ow at the interface proved very sensitive to azimuthal perturbations :

when the jet is strong enough, the base torus turns into multipolar �ows taking the form

of counter � rotating vortex pairs periodically distributed all around the source [4, 5]. Note

that a dipole emerges at the surface in our practical conditions (Fig. 2.13). The onset of

the instability seems to be marked by a threshold V �inj � 1.3 cm/s, as suggested by the

abrupt behaviour of `order parameters' such as the maximum surface velocity (Fig. 2.25).

Amazingly, the value of V �inj does not seem to depend on the gap (at least in the explored

range 0.2mm ¤ H ¤ 2.5mm). Velocity measurements on the dipole beyond V �inj have

shown that the interface is now in a `passing state' characterised by surface and subsurface

tracer particles moving at the same speed (Fig. 2.28 � (c)).

The transition of the interface, from a `locked state' in the quasi � axisymmetric base

�ow to a `passing state' in the presence of a dipolar �ow, can be considered the main

�nding of our water jet experiments. Such a phenomenon can be readily understood if we

assume a surfactant � laden interface. This assumption is all the more natural as it is well

known that water, having a high surface tension compared with most common liquids

(γwater = 72.8mN/m at 20°C), gets easily contaminated by surfactant molecules from the

ambient air, and presumably from an imperfect cleaning of the glassware [41].
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But are the unfreezing of the interface and the onset of the multipolar instability two

sides of the same coin characterised by a unique threshold speed ? This remains an open

question. Finding a way to visualise in real time the distribution of surfactant molecules

adsorbed at the water/air interface may be convenient to address this point.

The concentration Γ of insoluble surfactants obeys the advection � di�usion equation

∂tΓ�∇‖ �
�
V‖Γ

�
= D∇2

‖Γ , (2.5)

where the projection of a vector a onto the plane of the interface (z = 0) is de�ned

as a‖ 9= p11� ezezq . a . D is the mass di�usion constant. The equilibrium concentration

(i.e. in the absence of �ow) is denoted Γ0. While putting Eq. (2.5) in dimensionless form,

a parameter quantifying the relative contribution of surfactant advection and di�usion

naturally appears. The latter, called the (solutal) Péclet number Pe, is de�ned as

Pe 9=
Ua

D
. (2.6)

a and U are the same length and velocity scales as those appearing in the de�nition (2.4) of

the Reynolds number. Experimentally, the latter are identi�ed with the radius rinj of the

injector and the injection speed Vinj. The di�usion constant ranging fromD � 10�9 m2. s�1

for smaller surfactant molecules, down to D � 10�12 m2. s�1 for bigger ones, very high

experimental Péclet numbers Pe � 103 � 106 (rinj = 0.275mm and Vinj � 1 cm/s) are

expected. Surfactant transport along the interface is thus advection � dominated.

While adsorbing at the water surface, surfactant molecules transform it into an `elastic

membrane' undergoing Marangoni stresses. In general, the surface tension γ decreases

with a local increase in the surfactant concentration. The interfacial �ow velocity and the

surfactant concentration �elds are coupled through the Marangoni boundary condition

η
∂vr
∂z

����
z= 0

=
∂γ

∂r
, (2.7)

where z = 0 marks the position of the interface assumed perfectly �at (sec. 2.5.2). This

relation states that an inhomogeneity of surface tension induces a shear stress along the

interface and hence a �ow in the aqueous phase [32]. Interfacial stresses are conveniently

discussed de�ning the surface pressure Π(Γ ) 9= γ0 � γ(Γ ), with γ0 = γ(Γ = 0) the surface

tension of the pristine interface. At low surface density, γ(Γ ) = kBTΓ (kB : Boltzmann

constant, T : absolute temperature) according to the 2D ideal gas equation of state.
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The accumulation of surfactants near the edges of the vessel causes the interface to

sti�en. The challenge is then to quantify the competition between the enforced shear stress

and the resisting elastic interface. Following [42], we de�ne the surface compressibility β

as the dimensionless ratio of viscous over surface tension gradient forces

β 9=
ηVinj

E0
, (2.8)

where E0 denotes the reference Gibbs elasticity at equilibrium.

Restricting the analysis to the stationary regime, and since surfactant transport is

here advection � dominated Pe " 1, Eq. (2.5) integrated once yields

vr(r, 0)Γ (r) = 0 . (2.9)

This equation is reminiscent of the stagnant cap condition �rst considered by Levich [10]

in the context of the buoyant motion of a bubble rising in a liquid [43, 44] : due to the

external �ow on the rising bubble's sides, surfactants are driven down to its trailing pole

where they accumulate and rigidify the bottom part of the bubble's surface, resulting in

a `stagnant cap' that drastically slows down the ascending motion of the bubble.

Two distinct �ow regimes ensue from the solving of Eq. (2.9) : (a) the compressibility β

is small enough so that the surfactant concentration remains �nite everywhere; (b) either

the velocity or the concentration vanishes in some region of the interface (see [45]).

In situation (a), Eq. (2.9) comes down to

vr(r, 0) = 0 , @r , (2.10)

meaning that, at low β, the interface appears as sti� as a wall so that it remains perfectly

still despite the ongoing bulk �ow.

In case (b), we are naturally led to assume the existence of a critical radius rd which

marks the border between a surfactant � depleted inner region (r   rd) and a rigid outer

region (r ¡ rd), i.e.

Γ (r) = 0 , 0 ¤ r   rd , (2.11a)

vr(r, 0) = 0 , r ¡ rd . (2.11b)

This theoretical prediction of two interfacial regimes well separated by a crossover

value βcross = 1 echoes our observations. At low injection speeds Vinj   V �inj , the interface
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behaves as a rigid wall imposing a no � slip boundary condition (= `locked' state). But

as soon as Vinj ¡ V �inj , the shear stresses induced by the centrifugal forced �ow overcome

the elastic resistance of the contaminated interface. The no � slip constraint is suddenly

released, resulting in a jump of the surface velocity from zero to a �nite value (= `passing'

interface). It is this `unlocked' axisymmetric �ow state that we believe is unstable. We

think that the edge of the surfactant � free region does not remain circular while subject

to azimuthal disturbances. The unjamming of the interface probably takes place along a

preferential direction, which results in the formation of a pair of counter � rotating vortices

(keep in mind that the mirror symmetry axis of the dipole does not necessarily coincide

with the polarisation axis of the toroidal primary �ow, see for example Fig. 2.11 � (g)).

Assuming that the surfactant elastic layer behaves as a 2D ideal gas in the dilute regime

Γ ! Γ8 (Γ8 is the concentration at saturation de�ned through the �nite area occupied

by individual surfactant molecules), for which E0 = kBTΓ0, the condition βcross = 1 leads

to the following expression of the crossover surfactant concentration Γcross

Γcross =
ηVinj

kBT
. (2.12)

Considering an injection speed Vinj � 1 cm/s yields Γcross � 2400molecules/µm2, a minute

quantity comparable with that invoked by Hu and Larson to account for the suppression

of Marangoni �ows in evaporating droplets [46]. Note that such a small surface coverage

induces a drop in the surface tension that lies far below the measurement accuracy of

standard tensiometers (�1mN/m in our case). Given a maximum packing concentration

in the order of 106 molecules/µm2 [47], we are in the limit Γcross ! Γ8 which justi�es why

emphasis is put on the dilute regime. Even traces of surfactants are therefore su�cient

for a transition from no � slip to slip conditions to occur at the interface [16, 18, 44, 48].

A prospect for upcoming works is to �gure out theoretically the relationship between

the occupancy rate of the interface by surface active molecules, the size of the injection

torus, and the instability threshold which directly depends upon the surface elasticity.

In this manner, the concentration of surfactant molecules adsorbed at the interface can

be indirectly deduced from the torus dimensions, making our water jet setup an ultra �

sensitive hydrodynamic probe of traces of surfactants at a water/air interface [45, 48].

There exist in the literature systems falling within the same class as ours, namely

systems involving pressure � driven divergent �ows that repel some elastic layer formed by

surfactant molecules. For instance, Couder et al. [49] observed a quadrupolar �ow on the

surface of a soap �lm blown by a vertical air jet. The resemblance with our own water jet
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experiment is obvious. The authors do not develop any theory of this phenomenon but

make valuable comments on the competition between the jet � induced centrifugal �ow and

the Marangoni counter�ow arising from the accumulation of surfactant molecules in the

outer region of the �lm. We think that this competition between con�icting �ows exists

in our system and that it leads to the multipolar instability we observe. Another example

is the work by Liger �Belair et al. [50, 51] on ascending bubble driven �ow patterns in

champagne glasses. Strikingly, self � organising 2D convective cells were evidenced at the

surface of champagne as an ascending column of bubbly liquid was impinging the surface.

The liquid column is created by a laser � etched ring at the bottom of the champagne �ute

which acts as a bubble generator thanks to its many nucleation sites.

To �nish, we should mention a slightly di�erent class of `divergent �ow generators' that

enforce Marangoni �ows. One can cite for example the works by M. Roché et al. [6, 7].

The authors would continuously deposit a small amount of a hydrosoluble surfactant at

the water/air interface through a thin needle in contact with the surface, unlike us who

inject `pure water' with a tube lying at a short distance underwater. They would observe

many vortices forming a corona far from the injection site (Mizev et al. [5] reported similar

observations while reproducing Pshenichnikov and Yatsenko's experiment [4]). We may

wonder to what extent such vortical patterns are connected with the multipolar �ows we

observe, as in our case a `pure water jet' sweeps away some preexisting surfactant layer,

whereas the surfactant � enriched jet is itself the source of a Marangoni �ow.

In the next chapter, we present what we call the `hot bead experiment' which is an

alternative way of creating a divergent interfacial �ow by heating an absorbing microbead

in partial wetting at a liquid surface. Unlike in the case of the water jet experiment for

which a centrifugal forced �ow is generated pushing `mechanically' on the liquid surface,

we now consider a thermally driven Marangoni �ow. We shall see that this a priori more

complex system produces similar multivortex �ow patterns as the bead is increasingly

heated, much like what is observed while increasing injection in the water jet experiment.
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The hot bead experiment

A motionless hot bead sits in partial wetting across the water (W )/air interface (A)

(Fig. 3.1). The temperature gradient arising in the vicinity of this heat source induces

a local decline of the surface tension γ. The ensuing surface tension inhomogeneities are

accompanied by the emergence of shear stresses along the interface that put the �uid

into motion : an outward thermocapillary �ow appears that tends to rub out the surface

tension disbalance. In other words, this hot spot serves as a �xed source of divergent

�ows at the water/air interface, just as the water jet presented in chapter 2.

Figure 3.1: Schematic layout of the hot bead experiment.

Our main tunable parameter is the heating power P ranging from a few milliwatts up

to a few tens of milliwatts. The heating power P plays here a role analogous to the one

the injection speed Vinj plays in the water jet experiment. The size of our bead slightly

varies from one experiment to another around the typical diameter Ib � 295µm.

In this chapter, I �rst present our fully instrumented and tunable hot bead device.

Then I review some of the �ow patterns arising as the bead is heated to varying degrees.

Finally, I discuss the experimental observations.

73
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3.1 Materials and methods

3.1.1 Experimental setup

Preparation of the samples

Our cell is a quartz cuvette purchased from Thuet France (Fig. 3.2). Opting for quartz

is justi�ed by its high visible light transmission along with its resistance to sulfochromic

acid H2SO4 � (K2/Na2)Cr2O7 , a very corrosive substance used to strip the impurities

that settle on the cell walls. As we shall see, the uttermost responsiveness of the water

surface to surfactant contamination strongly impacts the �ow patterns. This is why great

care is paid in cleaning the cuvette. After a few hours bathing in sulfochromic acid, the

cuvette is thoroughly rinsed with pure water supplied by a Millipore Elix 10 puri�cation

system. The cuvette is then �lled with ultrapure water (resistivity 18.2MΩ.cm at 25°C,

TOC : 3 ppb) from a Millipore Milli-Q A10 Gradient puri�cation system. To slow down

the adsorption of air contaminants on the water surface, a plate drilled with a 12mm

circular hole is placed a few millimeters above the interface (Fig. 3.6).

Figure 3.2: Quartz cuvette. On the left, photograph of a quartz cuvette used as the experimental

cell. On the right, schematic layout of a cross � section of the cuvette with its main dimensions. Images

selected from A. Mombereau's internship report.

Hot sphere and heating system

A carbon bead (200 ¤ Ib ¤ 300µm) is stuck onto the end of an optic �bre stripped up

to the cladding (see Appendix H for a presentation of the bead collage setup). Carbon is

prized for its capacity to absorb the incident laser light while resisting photodegradation.

We use a single �mode �bre (F-SA-C Newport) with a 488�633 nm operating range. This

�bre guides a 532 nm green laser beam generated by a Quantum Opus source towards the

surface of the bead so as to heat it up. A �bre optic coupler (Thorlabs) ensures e�cient
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light transmission. The maximum power delivered at the �bre inlet is P max
in � 650mW.

Above this value, there is a risk of damaging either the �bre or the sphere. Because of

transmission losses within the �bre, we roughly estimate that its output e�ciency amounts

to only ε � 20% of the input power Pin . The latter value is obtained through measuring

with a power meter (model SP404 from Spectra �Physics equipped with an attenuator

having a calibration range [2, 50]mW and ahead of which we add a light di�user) the power

of the divergent laser beam fanning out from the optic �bre at an angle of approximately

30°. Hence, the bead absorbs at most a power P max = εP max
in � 130mW. However, we

cannot infer from the sole estimation of the �bre e�ciency what is the power e�ectively

heating the bead due to parasitic re�ections of the incident light.

Bead �water contact

In order to minimise the number of factors in�uencing the system, we endeavour to keep

the interface as plane as possible : the cuvette is pre�lled to the brim and liquid is then

removed up to the moment squares on a grid paper seen through the liquid surface appear

undistorted. The smooth pinning of the meniscus on the cuvette edges results in a �at

interface at large distances from the source. Next, to orient the �bre axis perpendicularly

to the interface while passing through the lid, the �bre is bent using a sewing thread tied

around its coating and stretched (adjustable tension) between the latter �xture point and

the �bre mounting plate (Fig. 3.3).

Figure 3.3: Bending the optic �bre. (1) optic �bre ; (2) sewing thread of adjustable tension.

Image selected from A. Mombereau's internship report.

The bead is displaced with a manual xyz translation stage till being partially immersed

in water. Contrary to a free particle that would self � position across the surface in such

a way that the interface remains �at in its vicinity, the tension the �bre exerts upon the
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bead leads to the formation of a meniscus that wraps the sphere (Fig. 3.4). Here again, to

restrict the number of physical parameters, we shall approach a perfectly planar interface

which necessitates getting rid of such a steep meniscus.

Figure 3.4: A partially wetted microbead stuck onto the end of an optic �bre.

A ring encrusted with light � emitting diodes (see Fig. 3.6 below), positioned under

the cuvette, appears on the computer screen as a luminous circle whose radius is related

to the deformation state of the meniscus (Fig. 3.5). In fact, due to intense evaporation at

the contact line, the meniscus gets hollower and the circle hence grows as time goes by. As

a practical consequence, the experimenter must repeatedly make sure that the meniscus

remains as �at as possible by reducing the radius of the circle until the light spots are

all brought together behind the bead. Note that any accidental detachment of the bead

from the surface would be signaled by the complete absence of this luminous circle.

Aligning the aiming line of the side camera with the �ow symmetry axes is essential

to construe the bulk �ow structure properly. Therefore, a spinning mechanism must be

implemented. However, only due to lack of space, the solution adopted was not as simple

as grouping together in a single block the ensemble {vertical laser sheet� side camera} like

in the water jet experiment. Finally, the idea was to rotate the optic �bre with the bead

stuck onto it, this unit resting on a circular guide rail (angular excursion ∆θexc � 900),

while keeping �xed the position of the side camera (see Fig. 3.6 below).



3.1. Materials and methods 77

Figure 3.5: Image of the LEDs on the computer screen. Here we can see the `light mark'

the ring of LEDs leaves on the screen while re�ecting on the water surface acting as a mirror. The bead

is the dark disk well visible in the middle.

Flow visualisation

The small volume V � 1.2mL of solution �lling the cuvette is seeded with exactly the

same tracer particles as in the water jet experiment (�uorescent polystyrene microbeads,

I 5.1µm). A couple of laser sheets powered by a 514 nm green laser source (Genesis CX

514 � 2000 STM from Coherent, maximum output power : 2W) ensures �ow visualisation.

A beamsplitter (Melles Griot) divides the incident laser beam into two secondary beams

passing through combinations of cylindrical lenses. Our setup is thus made of two `optical

channels' generating a horizontal and a vertical laser sheet (thickness e � 50µm), exactly

as in the water jet experiment (Fig. 3.7).

The lighting power is directly tuned on the supply system and the relative intensity

of each laser beam is adjusted with a half �wave plate put right before the beamsplitter.

To ensure an optimal operating e�ciency of the ensemble {λ/2 retarder+beamsplitter},

a quarter �wave plate is added so as to restore a linear polarisation of the incident light,

the latter being in general elliptically polarised at the �bre outlet (Photonetics Finnova

single �mode optic �bre). A plane � parallel plate ensures an up � and � down translation

of the horizontal laser sheet while a circular plane mirror redirects the vertical laser sheet

towards the sample. Adjusting the tilt of the mirror relative to the cuvette, one achieves

an approximate translation of the vertical laser sheet. In order to incrementally displace

the laser sheets, both the plane � parallel plate and the mirror are mounted on Thorlabs

CR1/M motorised continuous rotation stages actuated by TDC001 T�Cube DC servo

motor controllers (software `APT User'). Note that for the horizontal laser sheet to travel

a vertical distance ∆z = 3.5mm within one minute, the rotation stage should rotate at a
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constant angular speed vrot � 0.4 0/s (∆θ/∆z = 7 0/mm). In the same spirit, the mirror

should rotate at vrot � 0.062 0/s as a rotation by an angle of ∆θ � 3.5 0 is needed to travel

in one minute the ∆x = 12mm circular aperture of the lid (∆θ/∆x = 0.29 0/mm).

The horizontal laser sheet allows the experimenter to acquire cut views of the �ow

structure at various depths while the vertical laser sheet provides cross � sectional views.

Actually, this second laser sheet which travels from one end of the cuvette to the other is

never rigorously vertical but slightly inclined, the whole setup being tuned in such a way

that the laser sheet approaches perfect verticality as it gets closer to the bead. Indeed,

the obstruction by the optic �bre located in central position prevents us from performing

diametral sections of the �ows. Horizontal and vertical views of the �ows are alternately

captured thanks to a couple of remotely � activated homemade beam stops, each beam

stop assuming only two positions 0/1. We take advantage of this attribute to block either

one or the other optical channel. The quality of the side views, impaired by astigmatism

issues stemming from the curvature of the cuvette, is enhanced using a correction lens

(focal length f240), a trick that has already proven e�ective in the water jet experiment.

The quality of the images, even it is moderate, su�ces to uncover the �ow morphology. A

technical description of the cameras used to record the �ows can be found in Appendix G.

Figs 3.6 and 3.7 both provide schematic layouts and photographs of the `hot bead

setup' described above.



3.1. Materials and methods 79

Figure 3.6: The core of the `hot bead setup'. (Left �gure) Schematic of the central part of the

device (not to scale). {(OF)+(st)}, optic �bre+ sewing thread (adjustable tension); CGR circular guide

rail; (xyz) �TS, xyz translation stage; {(BC)+ (MO)}/(SC) bottom camera+microscope objective/side

camera; (LEDs) ring encrusted with light � emitting diodes. (Right �gure) Photograph under actual

operating conditions. Same abbreviations plus (CM) cuvette mounting; L lid; (CL) correction lens.
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Figure 3.7: Global view of the `hot bead setup'. (Top �gure) Schematic of the device (not

to scale). (EC) experimental cell; (OF) optic �bre; LS �H and LS �L, laser sources for heating (H)

and lighting (L); HLS/VLS, horizontal/vertical laser sheet; {λ/2+BS}, half �wave plate+beamsplitter;

{(BOC)+ (MO)}, bottom optical camera+microscope objective; (TTC) top thermography camera.

(Bottom �gure) Photograph of the setup under actual operating conditions. (BC)/(SC) bottom/side

camera; (dti) dial test indicator. For clarity, the after components are not sketched : the automation

system of the laser sheets, the position indicators, the �lters, the control microscope, the quarter �wave

plate. Optical channels schematised as brackets. The `horizontal' optical channel consists of the series

of components {(beam stop)+2 cylindrical lenses+plane � parallel plate} and the `vertical' channel of

{(beam stop)+�xed mirror+ 2 cylindrical lenses+ automatised swivelling mirror}.
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3.1.2 Thermography

Here I introduce our thermography experiment presenting �rst its goal and then the device

we use. The interested reader is referred to the reference book [52] for an excellent course

on the basic principles of infrared thermography and its wealth of applications.

Goal of the experiment

Given the small � scale thermocapillary �ows investigated in the present work, we suspect

thermal advection rather than inertia to be at the origin of the multipolar instability.

The basic idea is that the �ow in�uences the temperature �eld which in turn modi�es the

�ow etc ... this mechanism self � amplifying until the onset of the instability. We thereby

use thermography with the aim of probing `hydrothermal' coupling e�ects. Temperature

maps will be superimposed on streamlines views characteristic of di�erent �ow states.

Information about how strong thermal advection is in each hydrodynamic environment

will be inferred from the relative orientation between the streamlines and the isotherms.

We are also searching for some symmetry � breaking in the thermal signal that would be

closely correlated to the �ow symmetry � breaking and therefore to the instability.

Note that our aim is not to measure absolute temperatures at any point of the surface,

which calls for a blackbody � based calibration. We focus on temperature gradients, so

even if the temperature values are somewhat erroneous it does not matter for our purposes.

What is more, errors on the actual temperature values are `systematic' (not random).

Thermographic device

The layout {optic �bre� bead} o�ers the opportunity to capture both the temperature

and the �ow �elds in the course of a single experiment, contrary to earlier con�gurations.

Indeed, the bottom of the cuvette as well as the liquid layer being highly IR absorbing

media, any recording of the interfacial temperature �eld from below is doomed to failure.

From above, however, we are facing another issue : while using �ne metal tips as heat

sources, the thermography camera is `blinded' by the parasitic IR signal emitted by the

imperfectly insulated heating resistor attached to the needle. This is not the case of our

new con�guration {optic �bre� bead} that con�nes heating solely to the source.

We borrowed from H.Kellay (Laboratoire Ondes et Matière d'Aquitaine, UMR5798 )

a highly sensitive and versatile IR camera, the FLIR SC7600 model (pixel resolution

640 � 512, dynamic range 14 bit ; spectral band 1.5 � 5.1µm ; NETD : Noise Equivalent
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Temperature Di�erence   20mK, with a temperature measurement accuracy �1°C) (see
Fig. 3.7 above). We equipped this camera with a medium�wave infrared (MWIR) macro

lens having a long working distance d � 250mm and a 1/3 lens magni�cation that allows

for imaging a 3.3�2.8mm object on the sensor (scale : 11.20µm/pix). The acquired data

are processed using the software `FLIR tools'.

In sum, our full setup comprises the EO/PCO camera to capture views of the surface

streamlines placed in bottom position, plus the FLIR camera to image the interfacial

temperature �eld placed in top position. Because the IR camera is located on the vertical

laser sheet's path to the sample, we cannot capture simultaneously cross � sectional views

of the streamlines and surface temperature maps in our experimental con�guration.

3.2 An overview of the multiple �ow patterns

3.2.1 From a torus to a family of multipolar patterns

We now describe the di�erent �ow patterns arising as the bead is increasingly heated.

Unsurprisingly, the base �ow (bf) which emerges under slight heating conditions, namely

for heating powers Pbf � 1mW, takes the form of a torus extending over the whole width

of the cell (Fig. 3.8). Seen from the surface, the latter appears as a centrifugal radial

�ow with a myriad of divergent streamlines (magenta arrows) surrounding the source up

to a �nite distance. In the bulk, these streamlines self � organise into a pair of counter �

rotating convection rolls centred on the axis of the source, with an ascending column

of accelerated liquid between them (yellow arrow). Thus the hot bead generates a base

�ow whose 3D structure is similar to that induced by the water jet presented in chapter 2.

Departing from the ideal case of the theory (see next chapter), the real interfacial

streamlines are not strictly radial but slightly curved yet at very low heating powers. This

`polarisation e�ect', analogous to the one reported in the water jet experiment, tends to

get more pronounced for stronger heating. Just like what happens as the jet strengthens,

the quasi � axisymmetric �ow destabilises into multipolar patterns (Fig. 3.9) as soon as

heating is su�ciently intense, typically for powers Pmf � 10mW (mf : multipolar �ows).

We expect the total number of azimuthal cells to increase monotonically with increasing

temperature of the source, but the practical reality turns out to be more intricate than

this simple vision (see sec. 3.2.2). Interestingly, two types of quadrupolar patterns are

visible on Fig. 3.9, the second being less symmetrical than the �rst `square � shaped' one.

Also note that the size of each vortex pair may frequently change over time.
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Figure 3.8: The toroidal base �ow. (Left image) View of the centrifugal surface �ow. (Right

image) Cross � section of the torus showing a pair of counter � rotating convection rolls. Clockwise (resp.

anticlockwise) vortex rotation marked by an orange � (resp.�) sign. Hot bead spotted as a red disk

(approximate position). Heating power : P � 1mW. Scale common to both views : 10µm/pix.

Figure 3.9: Examples of multipolar surface �ows. (From left to right) Interfacial dipole

followed by two types of quadrupoles. The approximate heating powers at which we observe these �ow

patterns are indicated below the pictures. Both quadrupoles arise within a few milliwatts power window

centred on the value 50mW. Hot bead (Ib = 335� 10µm) spotted by a red disk.
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3.2.2 The unpredictability of the �ow state

Here we put the accent on the unpredictability of the �ow state. Figs 3.10 and 3.11

display sequences of �ow patterns that emerge at the interface as the heating power is

increased from P1 � 4mW to P2 � 60mW, and next decreased from P2 to P1 , at a rate
9P = � 1mW/min. Surface �ows are recorded at a rate of 2 frames per second, all the

pictures shown resulting from averaging over ∆t = 25 s.

Counterintuitively, the multipolarity of the �ow patterns does not always burgeon

with increasing heating : for instance, seeing a quadrupole followed by a dipole at a

higher power is not so rare (e.g. transition (c) Ñ (d) on Fig. 3.10). Furthermore, sharp

power thresholds separating the di�erent �ow regimes do not seem to exist (hence the

interval boundaries on the friezes are approximate). Only can we state that the quasi �

axisymmetric base �ow develops at typical powers Pbf � 1mW whereas multipolar �ows

arise at Pmf � 10mW. Rather stable phases are interspersed by transient states, the

number of azimuthal cells (and/or their size) �uctuating rapidly in a way that recalls

mode competition (e.g. transitions (e) Ñ (f), Fig. 3.10 and (a1) Ñ (b1), Fig. 3.11), a

core concept in the study of dynamical systems. What is more, these `power � up' and

`power � down' sequences reveal discrepancies in the `hydrothermal history' of the system,

the sequence at decreasing power not being a `�lm rewind' of the evolution at increasing

power. Besides that, for a given heating power, you may observe a dipole in the morning

but a quadrupole in the afternoon, and even something else the next day ! This great

spatiotemporal variability of the �ow patterns is brie�y discussed in sec. 3.6.
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Figure 3.10: Sequence of surface �ow patterns arising with increasing heating. (Upper

part) Bottom views of surface �ow states denoted (a), (b)... (g). Hot bead (Ib � 295µm) sketched by

a red disk. Arrows of arbitrary length show the �ow direction. The � (resp.�) sign denotes clockwise

(resp. anticlockwise) vortex rotation. Bead's drop shadow forming a dark strip. (Lower part) Frieze giving

the power range over which each interfacial state is observed.
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Figure 3.11: Sequence of surface �ow patterns arising with decreasing heating. The

corresponding bottom views are respectively denoted (a1)... (d1). This `power � down' sequence has been

captured a few minutes after that of Fig. 3.10. Same graphic code as above.
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3.2.3 Competing multipolar modes

Let me add a few words about the way competing multipolar modes manifest themselves

after the onset of the instability. While several modes are competing against one another,

we observe streamlines snaking between the convection cells surrounding the hot bead.

These `snake � like' streamlines mark the emergence of new vortex pairs. On Fig. 3.12, the

`yellow snake' visible in state (a) gives birth to a counter � rotating vortex pair in state

(b), making the system transit from a dipole to a quadrupole. Still, the system fails to

reach a hexapolar state : after a brief burst in (b), the `orange snake' eventually dies in

(c). Note the substantial growth of both vortex pairs between the evolution phases (b)

and (c). Often, the vortex in the outward � looking portion of the serpentine curve would

spring up at some distance from the heat source. Shortly after, this vortex would migrate

to the surface of the bead whereon it would anchor.

Figure 3.12: Serpentine surface streamlines (bottom views). �/� : clockwise/anticlockwise

vortex rotation. Arrows of arbitrary length show the �ow direction. Hot bead (Ib � 295µm) sketched

by a red disk. Surface �ows recorded at a rate of 2 frames per second and averaged over ∆t = 25 s. State

(b) immediately follows (a) while ∆t(b)Ñ(c) = 100 s separate (c) from (b). The `shining square' on �g. (a)

is an `average' light mark left by a threadlike impurity. Bead's drop shadow forming a dark strip.
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3.3 Quantitative study of the toroidal base state

This section is dedicated to a few quantitative features of the base torus. First, emphasis is

placed on the velocity �eld in this ground �ow state. We will see how sensitive to surfactant

contamination the interface dynamics is. Direct evidence of this contamination is then

given through manifestations of the elasticity surfactants provide the interface with.

3.3.1 Characterisation of the velocity �eld

This part is twofold : a `locked' interfacial state associated with the base �ow regime

is �rst uncovered when comparing surface and subsurface velocities while, in a second

step, the time evolution of the radial position of a surface tracer particle is studied. The

in�uence of surfactant contamination over the �ow velocity is pointed out in both studies.

Boundary condition on the interfacial velocity

The quasi � axisymmetric base �ow is ordinarily observed under slight heating conditions.

In the present case, the interface is `locked' in the sense that surface velocities are very

low and markedly smaller than subsurface velocities. However, contrary to what happens

in the water jet experiment, the velocity is not strictly zero but minimum at the interface.

In fact, thermal di�usion prevents here the interface from getting completely blocked.

To reach this conclusion, we compare the velocity of tracer particles moving at the

interface with that of particles found in a shallow layer extending down to a few tenths of

a millimetre underwater. In practice, the motion of a cluster of tracer particles (hereafter

referred to as a `molecule') is monitored at regular time intervals τ in a cross � section of

the toroidal base �ow (Fig. 3.13). The centrifugal motion of a molecule 2.5mm far from

the hot bead is tracked over time. The latter is composed of four `atoms': the one on

top is situated at the interface (z = 0) while the other three lie at a shallow depth below

the surface (z   0). On Fig. 3.14, the trajectories of the atoms we are tracking provide

quantitative evidence of the above observation. The mean centrifugal velocity of each

tracer particle is provided in table 3.15 : subsurface �ow velocities are indeed noticeably

higher than interfacial velocities, a visual proof being the counterclockwise rotation of the

molecule well visible in the top insert of Fig. 3.14.

Let us now extract quantitative data from velocity pro�les in a vertical cross � section

of the toroidal base �ow. These pro�les are obtained through the usual PIV processing

(sec. 2.1.5). Figs 3.16 � 3.18 show a collection of PIV maps re�ecting the variations of the
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bulk velocity ~vb . The longitudinal velocity vx is especially signi�cant in a millimetre thick

subsurface layer and, to a lesser extent, near the bottom of the cell. Most importantly,

as foreshadowed by the preliminary study, |vx| goes through a maximum at a �nite depth

and not at the water/air interface as may have been expected. The transverse velocity

vz takes important values in a region beneath the hot bead where a column of rapidly

ascending liquid arises, but is negligible everywhere else. The transverse derivative of the

longitudinal velocity ∂zvx exhibits `strati�ed layers'. Generally speaking, the closer we

are to the heat source, the higher the velocity. One also checks that the velocity declines

while approaching a vortex centre. These features are even clearer on the evolution curves

of the bulk velocity components displayed in Fig. 3.19. One notices that :

� Both |vx| and |vz| diminish with increasing radial distance R to the heat source.

� The maximum longitudinal velocity |vx|max , between 100µm/s and 200µm/s, is

reached at a depth zmax such that �0.8mm   zmax   �0.4mm in the investigated

range of radial positions. The highest transverse velocity |vz|max is attained for

�1.5mm   zmax   �1mm. In both cases, zmax increases with increasing R .

� The full vx � curves are symmetrical with respect to the half � depth z1/2 . A reversal

of the velocity is observed over there. In fact, vx is negative (resp. positive) in the

upper half (resp. lower half) of the left convection roll. The vz � curves are equally

symmetrical with respect to z1/2 but the transverse velocity is negative (vectors

oriented upwards) everywhere within the explored region.
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Figure 3.13: Evolution of the subsurface velocities of tracer particles in a vertical

cross � section of the toroidal base �ow. The arrows indicate the local bulk �ow direction and

the � (resp. �) sign denotes clockwise (resp. anticlockwise) vortex rotation. Hot bead (Ib � 295µm)

represented as a red disk (approximate vertical position). Each molecular con�guration at a given time ti

is depicted by a single colour, orange/magenta/cyan in that order. Successive observation times separated

by τ = 1 s. Streamlines map from a stack containing 100 frames of a video at 10 fps, corresponding thus

to a recording time ∆t = 10 s. Average frame captured more than 30 s after laser switching on, so that

the �ow probably reached a steady state. Heating power : P � 21mW.

Figure 3.14: Time evolution of the distance to the hot bead x � xb of surface and

subsurface tracer particles in a vertical cross � section of the toroidal base �ow. t0

denotes the instant at which we start tracking the molecule (Fig. 3.13) whose zoomed view is provided

in the top insert. Note the counterclockwise rotation of the molecule as time goes by. The arrow marks

the �ow direction. `Travelling depth' of each atom indicated (in µm) next to its corresponding symbol

in the bottom right insert. The colour scheme used for the curves has nothing to do with that of the top

insert. The former permits us to discriminate between tracer particles found at di�erent depths whereas

the latter di�erentiates between the conformations of the same molecule observed at di�erent times.
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Depth z (µm) Velocity v (µm/s)

0 42

�195 81

�234 86

�292 92

Figure 3.15: Centrifugal velocities v of surface and subsurface tracer particles as a

function of depth z, in a vertical cross � section of the toroidal base �ow. The values

reported in this table are nothing but the slopes of the curves displayed in Fig. 3.14.

Figure 3.16: PIV map of the bulk velocity magnitude |~vb| in a vertical cut plane of

the toroidal base state. (Top part) Velocity map over a large portion of the sample. The red disk

roughly marks the position of the hot bead partially wetted at the surface. Curiously, the latter is right

shifted with respect to the column of quickly ascending liquid found in the intervortex region. The blue

stripe (very weak �ow) mapped in this area has no physical meaning : actually, a parasitic cast shadow

prevents the PIV code from computing local velocities properly. (Bottom part) Magni�ed views of the

velocity map in the left and right halves of a millimetre thick subsurface layer. PIV map from a record at

17.45 fps, with original scales 7.94µm/pix (horiz.) and 9.43µm/pix (vert.). Heating power : P � 8mW.
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Figure 3.17: PIV maps of the longitudinal vx and the transverse vz bulk velocities

(vertical cross � section). Main �gures : maps over a large part of the cell. Sub�gures : zoomed views

in a millimetre thick subsurface layer. Raw data are those of Fig. 3.16.

Figure 3.18: PIV map showing the transverse derivative of the longitudinal velocity

component ∂zvx (vertical cut plane). (Top �gure) Map over a large part of the cell. (Bottom �gures)

Zoomed left and right views in a 1mm thick subsurface layer. Derivatives are computed based on local

linear �ts inside a three � point sliding window. Same experiment as above.
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Figure 3.19: Bulk evolution of the longitudinal vx and the transverse vz velocities.

(Left) Velocity pro�les in a millimetre thick subsurface layer. (Right) Pro�les over the whole height of

the cell. Plots for various radial positions (see inserts) to the left of the hot bead.
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Centrifugal motion of a surface tracer particle

We derive the time evolution of the centrifugal radial motion of a surface tracer particle

in the toroidal �ow regime. Experiments are thus achieved at low heating powers, in the

range P P [13.5, 14.4]mW. In practice, using vertical cut views rather than top views is

by far preferable if one wants to spot surface tracer particles properly. Indeed, we notice

on the side views that particles found exactly at the interface (z = 0) do not generate

mirror images across the surface, contrary to particles located underwater (z   0). The

trajectories of surface tracer particles situated at varying distances from the hot bead are

`bound together' so as to reconstruct a complete radial trajectory. This `time � shifting

method' to obtain a single representative trajectory out of the trajectories of individual

tracer particles assumes that the �ow is stationary. Let me present the results of three

experiments wherein this procedure has been applied :

1. Experiment with a freshly prepared sample. Heating power set at P = 13.5mW.

A slightly polarised �ow is observed (Fig. 3.20). In practice, we take care not to

orient the laser sheet along the �ow preferential direction, so as to keep a left/right

symmetry and thus avoid an irrelevant bias in the position measurements. Fig. 3.21

displays trajectories of surface tracer particles in the base �ow state of Fig. 3.20.

These graphs demonstrate that the distance of the interfacial tracer particles to the

hot bead varies as t1/3. The tracking of a tracer particle located at z � �160µm
under the interface con�rms that subsurface particles move faster than surface ones

(`locked' interface), as evidenced by the upward de�ected red curves of Fig. 3.21

departing from the time behaviour typical of the motion of surface particles.

2. Experiment with an `aged' sample. Heating power set at P = 14.4mW.

We let the system get more and more `aged' for nearly one hour and a half. Once

this time elapsed, we note that the �ow structure has remained qualitatively the

same at the interface as well as in the bulk. Nonetheless, particle tracking reveals

some oscillatory surface dynamics (Fig. 3.22). Smoothening the curve, one removes

velocity �uctuations and recovers approximately the above t1/3 law. Note that the

average slope value initially equal to 1.67mm3/s (Fig. 3.21) has more than halved,

now amounting to only 0.81mm3/s.

3. Experiment with a renewed sample. Heating power set at P = 14.4mW.

We thoroughly rinse the cuvette with ultrapure water. The experiment, run without

delay, yields a quasi � axisymmetric �ow a bit more polarised than the one previously

observed. The above results are recovered, especially the t1/3 law of motion, the only
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di�erence lying in a larger mean slope value now equal to 2.75mm3/s (Fig. 3.23).

We check once again that subsurface tracer particles move faster than surface ones.

The targeted particle, located at z � �65µm underwater, seems to travel at the

same speed as surface particles but actually a slight deviation appears after a while.

To conclude, surface tracer particles move along their centrifugal radial trajectories at

a pace 9 t1/3 provided a `fresh' sample is used.

Figure 3.20: Top view of the quasi � axisymmetric base �ow observed at P = 13.5mW.

Arrows mark the �ow direction. Laser sheet sketched by a green line almost perpendicular to the direction

of polarisation. Hot bead (Ib � 295µm) depicted by a red disk. Average frame from a record at 9 fps.

Figure 3.21: Time evolution of the distance to the hot bead x�xb of interfacial tracer

particles in the quasi � axisymmetric state (`fresh' sample). (Left) Distance px� xbq in

function of the temporal shift t shifted. (Right) Cube of px� xbq in function of t shifted revealing a linear

relationship. Successive positions of a tracer particle found at z � �160µm below the interface reported

on the red curve, whereas other curves correspond to surface tracer particles found at various distances

to the left of the hot bead. Heating power : P = 13.5mW. Measurements from a record at 16.4 fps.
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Figure 3.22: Time evolution of the distance to the hot bead x � xb of interfacial

tracer particles in the quasi � axisymmetric state (`aged' sample). Same comments as

for Fig. 3.21 save that the subsurface tracer particle is now at z � �95µm below the interface. Heating

power : P = 14.4mW. Records at 24 fps.

Figure 3.23: Time evolution of the distance to the hot bead x�xb of interfacial tracer

particles in the quasi � axisymmetric state (new sample). Same comments as above except

that the subsurface tracer particle (red curve) is closer to the interface, at z � �65µm. Heating power :

P = 14.4mW. Records at 9.75 fps (horizontal)/30.4 fps (vertical).
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3.3.2 Direct evidence of surface elasticity

We provide direct evidence of surface elasticity through `power shutdown experiments',

namely experiments wherein the laser power supply is alternately switched o�/on.

Power shutdown experiments

In the experiment whose results are reported below, the laser source is turned on at a time

ton = 4.50 s after we start recording the �ow (at 10 fps). Approximately ∆t onÑ off � 44 s

later, at toff = 48.33 s, the laser is suddenly turned o� using a beam stop. The time interval

∆t onÑ off (resp. ∆t off Ñ on) during which the source is on (resp. o�) is chosen su�ciently

long for the �ow to reach a steady state (resp. vanish). With a heating power set at a

moderate value P � 21mW, for which the system is still in its polarised toroidal state,

the characteristic onset τonset and relaxation τrelax times are such that τonset � τrelax � 20 s.

Note that to estimate these typical times, we monitor the repartition of the streamlines

over time until no apparent change is noticeable, meaning that the �ow is then `stabilised'.

Fig. 3.24 shows a typical bulk �ow, frequently seen in our thermocapillary experiments,

that consists of two corotating tori : a small fast rotating torus located in the vicinity of

the hot bead coaxial with a larger slowly rotating torus that sits at the bottom of the cell.

Past a 20 s response time (in fact, τonset � 20 s is the onset time of the big torus, the small

torus forming within a much shorter time not captured by our recordings at 10 fps), the

�ow remains in this initial (I) stationary state as long as P � 21mW of heating power feed

the system. Once heating is interrupted, the small torus disappears in a split second while

the big torus keeps �owing outwards under the e�ect of its own inertia. Redrafting the

Navier � Stokes equation as a vorticity transport equation, one de�nes a di�usion length

l =
?
ντ where ν denotes the kinematic viscosity and τ is the vorticity di�usion time.

With a kinematic viscosity of water ν � 10�6 m2. s�1 and writing that τ � τonset � 20 s,

one �nds l � 4.5mm. This value, comparable to the size of the �ow structure, leads

to the conclusion that the dynamics of the big torus is essentially inertial. In addition,

we observe a short � lived (� 10 s) centripetal motion of surface tracer particles, so that

important shear stresses arise within a few tenths of a millimetre thick subsurface layer.

This is a concrete proof of the elastic response of the water/air interface to laser shutdown.

Tracking interfacial tracer particles con�rms the occurrence of an `elastic retraction

phenomenon' at the precise moment t = toff the laser is switched o�. Fig. 3.25 clearly

evidences how the speed of the tracer particles sharply (angular point) reverses at t = toff :
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after laser shutdown, the tracer particles move in the direction opposite to the one they

had before, as revealed by a change in the sign of the slope being nothing but the radial

velocity of the particles. The closer the tracer particle to the heat source, the sharper the

peak of the curve, i.e. the higher its pre � and post � shutdown radial velocity.

Fig. 3.26 displays trajectories of tracer particles situated in a thin subsurface layer.

Following laser shutdown, the latter are driven by the convection rolls of the big torus.

Save a �eeting deceleration phase induced by the retracting elastic interface which does not

last for more than a few seconds after toff (look at the little jumps followed by slight drops

on the (A) or (C) curves of Fig. 3.26), subsurface tracer particles keep moving outwards

contrary to interfacial ones. They also sink a bit while moving away from the source, as

visible in (B). Again, we check that the interface is in a `locked state', i.e. that velocities

are higher in the subsurface region (Z   0) than at the interface (Z = 0). For instance,

at R = 2.3mm to the right of the �bre axis, a bulk velocity 80µm/s ¤ vb ¤ 100µm/s is

measured for depths in the range �600µm ¤ Z ¤ �190µm, whereas the velocity drops

to only vs = 43µm/s at the interface. Bear in mind that, unlike the case of the water jet,

the velocity does not fall to zero but to a minimum at the interface.

Figure 3.24: Power shutdown. (Cross � sections) (I) Doubly toroidal (quasi � )axisymmetric �ow.

Laser switched on at ton = 4.50 s. Frame obtained by averaging over ∆t(I) = 10 s, from time t1 =

ton � 25.5 s to t2 = ton � 35.5 s. (F ) Sheared toroidal �ow immediately following power shutdown at

toff = 48.33 s. Averaging over ∆t(F ) = 15 s after laser switching o�. �/� : clockwise/anticlockwise vortex

rotation. Orange arrows show the bulk �ow direction while magenta arrows depict the centripetal motion

of tracer particles after laser interruption. Hot bead (Ib � 295µm) sketched by a red disk. P � 21mW.
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Figure 3.25: Elastic retraction of interfacial tracer particles at laser shutdown. The

radial position R of tracer particles moving at the water/air interface is plotted as a function of the

interval separating the generic time t from the instant toff of laser shutdown (abrupt power decrease

P � �21mW Ñ 0mW). Tracer particles either left (red and black curves) or right (blue curve) from the

hot bead are tracked. Clearly, the particle speed reverses at t = toff .

Figure 3.26: Trajectories of tracer particles in a thin subsurface layer after laser

shutdown. (A)& (B) Centrifugal motion of subsurface tracer particles in the near region (NR) =

t1mm   R   2.5mm,�0.5mm   Z   �0.1mmu, i.e. along streamlines belonging to the upper part of

the big torus. Red circles (resp. black squares) mark the successive positions of a tracer particle originally

found right (resp. left) from the hot bead. (C) Vertical motion of a tracer particle within the column of

accelerated liquid rising between the big torus convection rolls, that is about the axis of the source. (R,Z)

denote the radial position and the depth of a tracer particle in a cross � sectional plane, respectively.
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3.4 Quantitative study of a quadrupolar �ow

3.4.1 Tomographic prospection of a quadrupolar �ow

This section is dedicated to the exploration, using laser tomography, of the 3D structure

associated with a surface quadrupole (see technical details in sec. 2.1.5). Figs 3.27 and 3.28

provide, respectively, a series of cross � sections and horizontal cut views of the structure

under investigation (in practice, we perform automatic laser scans with the two Thorlabs

rotation stages in `Sequencer' mode). One should examine the streamlines maps keeping

in mind that the length of the luminous streaks left by the tracer particles is not only a

gross indicator of the �ow velocity in the region of interest, but also provides information

on the local orientation of the streamlines relatively to the cut plane : the longer (resp.

shorter) these luminous streaks, the more parallel (resp. perpendicular) to the cut plane

the �ow locally is. Note that streamlines simply reduce to twinkling spots in �ow regions

where they are rigorously perpendicular to the viewing plane.

What is presumably a couple of whirlpools develops quite symmetrically on either side

of the source axis (see the two `orange pockets' on Fig. 3.27 � 1). Interestingly, we clearly

remark that streamlines end in a point as they are rising back towards the hot bead. This

fact is especially apparent in a vertical cut plane brushing the bead, as marked by cyan

`chevrons' in Fig. 3.27 � 6. This remarkable morphological trait reminds us of the sharp

streamlines observed previously in the water jet experiment (see again sec. 2.3.2).

Vortex centres move away from one another along one direction while getting closer

in the perpendicular direction, as yet discernable on Fig. 3.28 and de�nitively attested

while tracking them with increasing observation depth (Fig. 3.29).
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Figure 3.27: Cross � sectional views of the 3D structure of a surface quadrupole.

Pictures captured in successive (following the ascending numerical order of the top view on the right) cut

planes parallel to the `centrifugal symmetry axis' of the quadrupole. Yellow (resp. magenta) arrows show

the local bulk (resp. surface) �ow direction, but not its magnitude. �/� : clockwise/anticlockwise vortex

rotation, either in the bulk (deep blue colour) or at the surface (cyan colour). Hot bead (Ib � 295µm)

depicted as a red disk (rough vertical position). Heating power : P � 57mW. Average frames generated

out of stacks containing 100 images captured at 17.5 fps (recording time : ∆t � 6 s). The dark stripe

of varying width (see for instance image 3) is the drop shadow of the optic �bre end intercepted from

di�erent angles by the quasi � vertical laser sheet scanning the sample.
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Figure 3.28: Series of horizontal cut views of the 3D structure associated with a

surface quadrupole. Successive positions of the horizontal laser sheet in the bulk marked by parallel

green lines on the bottom picture. On the right is a list giving the observation depths tziui P J1, 9K. Same

graphic codes as those of Fig. 3.27. Data from the very same experiment as in Fig. 3.27 except that stacks

of 75 images captured at 17.5 fps over ∆t � 4 s are processed here to generate these average frames.
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Figure 3.29: Evolution of the (xy) positions of the four vortex centres with depth.

Each red circle represents a measuring point derived at a given depth. The latter is gradually increased

in the direction indicated by the arrows, from zi = 0 (water/air interface) down to zf = �1.80mm. The

black cross right in the middle of the �gure marks the reference position of the heat source, while the

black arrows immediately surrounding it depict the centrifugal and the centripetal symmetry axes of the

surface quadrupole. Same experiment as above.

3.4.2 Boundary conditions on the interfacial velocity

Vertical cut views of a quadrupole are analysed in order to compare the velocities of a few

tracer particles moving at the interface with those of particles located in a shallow layer

extending down to a few tenths of a millimetre underwater. To enrich our study with

visuals, `molecule tracking' is here again performed in the very same spirit as in sec. 3.3.1.

All results presented below come from an experiment conducted under strong heating

conditions. Much like the one of Figs 3.27 � 3.28, the quadrupolar �ow considered here

exhibits two counter � rotating vortex pairs with four vortices separated from one another

by two `channels', one centrifugal and the other centripetal, intersecting at right angles.

An intense �ow is measured along these `hydrodynamic separators', by contrast with the

vanishing �ow observed in the core regions of the vortices. To come to this conclusion,

the �ow has been scrutinised in a couple of cross � sectional planes : a �rst viewing plane

is located in the middle of the centrifugal channel and a second cut plane, parallel to the

�rst one, cuts through the whirlpools. More precisely, local velocities are measured in the

immediate vicinity of points A �D (Fig. 3.30). This study is supplemented by a rough

estimate of the velocity near point E situated in the centripetal channel.
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Figure 3.30: Velocity measurements in di�erent regions of a surface quadrupole.

Average top view from a stack containing 200 frames of a video at 17 fps, corresponding to a recording

time ∆t � 12 s. Local �ow direction along both the centrifugal and the centripetal `channels' indicated by

magenta arrows. �/� : clockwise/anticlockwise vortex rotation. Vertical cut planes marked by green solid

lines. Velocity measurement areas selected along these lines, in the immediate vicinity of points A �D.

The observation site associated with point E lies within the centripetal channel. Hot bead (Ib � 295µm)

depicted by a red disk. Heating power : P � 70mW.

Cut plane AB (centrifugal channel)

The temporal monitoring of bunches of subsurface tracer particles in the cross � section

AB reveals that `molecules' are tilting forward during their centrifugal motion (Fig. 3.31).

This is a visual evidence of the fact that in this case, contrary to what is observed for

the quasi � axisymmetric base �ow (sec. 3.3.1), the velocity is higher at the interface than

in the subsurface region, in other words, that the interface is now in a `passing state'.

The graphs of Fig. 3.32, corresponding to the trajectories of the atoms forming the two

molecules, provide quantitative evidence of this last observation.
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Figure 3.31: Evolution of the velocities of tracer particles in a subsurface layer of

cut plane AB. The centrifugal motion of two `molecules', found on the right and on the left of the hot

bead, is tracked over time. Each molecular con�guration at a given time ti is depicted by a single colour,

orange/magenta/cyan in that order. For simplicity, the same colour scheme is adopted for the right (RM)

and the left (LM) molecules, despite slightly di�erent time intervals τRM = 0.53 s/τLM = 0.29 s between

their successive positions. Data from the same experiment as in Fig. 3.30 except that stacks of 150 images

captured at 17 fps over ∆t � 9 s are processed to generate this streamlines view. A slight distortion e�ect,

probably due to a liquid droplet covering the optics, impairs a bit the image quality on the left.

Figure 3.32: Time evolution of the distance to the hot bead x � xb of the tracer

particles forming the left and the right molecules selected in the cut plane AB. Top

inserts are zoomed views of the two tracked molecules (Fig. 3.31). Note the clockwise rotation of the right

molecule as time goes by. Arrows showing the �ow direction. `Travelling depth' of each atom indicated

(in µm) either in brackets below the trajectories of the right molecule constituents or inside an additional

insert for the atoms of the left molecule. The colour scheme used for the curves has nothing to do with

that of the top inserts. The former permits us to discriminate between tracer particles at di�erent depths

whereas the latter di�erentiates between `molecular conformations' observed at di�erent times.



106 The hot bead experiment

To �nish, the mean centrifugal velocity of each tracer particle considered above is

given in the tables 3.33 (these values are the slopes of the curves displayed in Fig. 3.32).

Clearly, the velocity of the tracer particles composing the right molecule (RM) declines

with increasing depth. The situation is less obvious for the left molecule (LM) but still

informative, as re�ected in the sharp velocity drop ∆vLM = �70µm/s measured between

the interface in z = 0 and an observation depth z = �104µm. The uncertainty in the

velocity of a tracer particle is δv = � 40µm/s.

Figure 3.33: Centrifugal velocities v of both surface and subsurface tracer particles

as a function of depth z (cut plane AB). The table on the right (resp. on the left) provides data

obtained by tracking the right molecule (RM) (resp. the left molecule (LM)) shown in Fig. 3.31.

The centrifugal channel of a surface quadrupole is thus a region submitted to intense

�ows, with a typical velocity one order of magnitude higher than measured in the toroidal

state. The fact that our measurements yield surface velocities larger in the left half than

in the right half of the interface is seemingly due to the misalignment of the laser sheet

with the centrifugal channel on the right, compared with their relative orientations in the

left part of the surface (Fig. 3.30). Indeed, on the right side, the laser sheet cuts across

streamlines located near a vortex centre, where the �ow is slower than along the channels.

Point E (centripetal channel)

Here the vertical laser sheet is not oriented parallel to the centripetal channel and thus we

cannot repeat as complete a particle tracking as previously. Yet, it is possible to estimate

local �ow velocities close to point E (Fig. 3.30) on the basis of top views. While surface

tracer particles can be identi�ed unambiguously on the side views, as they do not display

mirror images across the interface, we do not have access to this information on the top

views and hence cannot be absolutely sure that the particles we track are on the surface.

However, even if the tracked particle is not exactly in z = 0, it may not be located deeper

than a few tenths of a millimetre beneath the surface, that is within the subsurface area

where the horizontal laser sheet is positioned. Fig. 3.34 shows the trajectory of a tracer

particle along the portion of the centripetal channel near point E.
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Figure 3.34: Time evolution of the distance to the hot bead y�yb of a tracer particle

along the centripetal channel. t0 denotes the instant at which particle tracking is initiated in the

region next to point E (Fig. 3.30). Centripetal velocities indicated on the curve.

The centripetal velocity values reported here are about half those measured along the

centrifugal channel. Most likely, the situation is qualitatively the same for the centrifugal

and the centripetal channels, namely the interface is in a `passing state' in both cases.

Cut plane CD (through the whirlpools)

To �nish, let us examine the �ow behaviour in the subsurface area of the cut plane CD.

Both points C and D are located near vortex centres, in a region of the whirlpools where

the �ow is locally centripetal. Fig. 3.35 gives a �rst glimpse of the motion of the `molecules'

in the viewing plane CD, while Fig. 3.36 displays the trajectory of each `atom' in detail.

Figure 3.35: Evolution of the velocities of tracer particles in a subsurface layer of

cut plane CD. The centripetal motion of two molecules, on the right and on the left of the hot bead, is

tracked over time. Same colour scheme adopted for the right (RM) and the left (LM) molecules, despite

slightly di�erent time gaps τRM = 0.7 s/τLM = 0.9 s between their successive positions. Data from the

same experiment as in Fig. 3.30 except that stacks of 100 images captured at 17 fps over ∆t � 6 s are

processed to generate this streamlines view. Further information is the same as in the caption of Fig. 3.31.
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Figure 3.36: Time evolution of the distance to the hot bead x � xb of the tracer

particles forming the left and the right molecules selected in the cut plane CD. Same

caption as that of Fig. 3.32 above.

To �nish, the mean centripetal velocity of each tracer particle is given in the tables 3.37

(these values are the slopes of the curves displayed in Fig. 3.36). In this case, velocities are

clearly lower than those measured in either the centrifugal (plane AB) or the centripetal

(around point E) channel. Most importantly, in the swirling �ow region CD, subsurface

velocities are higher than interfacial ones, contrary to what happens in the centrifugal

channel where an intense surface �ow is observed. The interface is here in a `locked state',

much like in the quasi � axisymmetric �ow regime.

Figure 3.37: Centripetal velocities v of both surface and subsurface tracer particles

as a function of depth z (cut plane CD). The table on the right (resp. on the left) provides data

obtained by tracking the right molecule (RM) (resp. the left molecule (LM)) shown in Fig. 3.35.

In summary, tracer particles move along the centrifugal channel AB at very large

speeds in the order of v � 1mm/s, yet in a shallow subsurface layer and even more at

the interface. In comparison with the toroidal base �ow state, the relative increase in

the �ow velocity is more pronounced at the surface (�30) than in the bulk (�14), and
signi�cantly higher than the laser powers ratio (�3).
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Remarkably, the regions between the vortices of the quadrupole are subject to strong

�ows characterised by velocities higher at the surface than in the bulk, in conjunction

with a `passing interface'. Though the foregoing results clearly evidence this fact in the

sole case of the centrifugal channel, no doubt that the same conclusion applies to the

centripetal channel. By contrast, close to the centre of a whirlpool, the situation seems

reminiscent of the `locked interface' reported earlier in the quasi � axisymmetric base state.

3.5 Thermal imprint of the �ow symmetry � breaking

We present the �ndings of our thermographic study of the interfacial �ows induced by

the hot bead at various heating levels. The results provided here are partly those of A.

Mombereau, being thus anterior to this thesis work. Other results were obtained by B.

Gorin, a Master student I had the opportunity to co � supervise during his 2018 internship.

Since we suspect `hydrothermal' couplings, among other possible triggers, to play a key

role in the activation of the instability, it is crucial to get a better grasp of how important

thermal advection is in the di�erent �ow regimes. The �ow acts on the temperature �eld

and the temperature gradient moulds the �ow in turn, so that any symmetry � breaking

of the �ow shall be re�ected in a symmetry � breaking of the temperature �eld itself.

Fig. 3.38 compares thermography and streamlines maps of the surface �ow at varying

heating levels. The quasi � axisymmetric states (A) and (B) exhibit a potato � shaped

distribution of their isotherms that slightly departs from the rotation invariant pattern

expected for a perfectly axisymmetric base �ow. The temperature map of the (unsteady)

`pseudodipolar' �ow (C) at P(C) � 36.8mW is crescent � shaped. A dumbbell � shaped

repartition of the isotherms, which appears in state (D) (P(D) � 36.8mW) and ripens in

state (E) (P(E) � 53.6mW), accompanies the development of a surface quadrupole. Thus,

Fig. 3.38 can be regarded as a pictorial evidence of the correlation that exists between

the �ow and the temperature �eld symmetry � breakings. Better still, one can infer the

morphology of the surface �ow on the sole basis of the temperature (IR) maps.

Let us recall the advection � di�usion heat equation which, in dimensionless form,

writes as follows

V.∇Θ =
1

Pe
∇2Θ , (3.1)

where thermal advection is expressed as the scalar product between the �ow velocity �eld

V and the temperature gradient ∇Θ. The quantity Pe, named the Péclet number and
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de�ned as Pe 9= aU/D (a and U denote respectively typical length and velocity scales and

D the heat di�usion constant, D � 10�7 m2. s�1), compares the magnitudes of thermal

advection and di�usion : the larger this dimensionless parameter, the stronger thermal

advection with respect to heat di�usion. One inference from Eq. (3.1) is that the strength

of thermal advection depends upon the relative orientation of the streamlines and the

isotherms, the ∇Θ � vector being everywhere perpendicular to the Θ � constant curves.

This is precisely what we explore while superimposing the �ow patterns onto the matching

temperature maps (Fig. 3.39) in the base �ow state (a) as well as in a multipolar state

(b). Two salient features can be reported :

� The streamlines of a surface multipole (e.g. quadrupole) are locally tangent to their

isotherms, and hence perpendicular to the temperature gradient. The con�guration

V K∇Θ implies that V.∇Θ = 0, a condition satis�ed in the advection � dominated

limit Pe " 1 (zero heat di�usion) as readily checked on Eq. (3.1).

� On the contrary, streamlines are perpendicular to the isotherms in the quasi �

axisymmetric state and therefore colinear with the temperature gradient. In this

di�usion � dominated limit (Pe ! 1, no advection), the �ow is driven solely by the

surface tension gradient itself proportional to the temperature gradient. It ensues

that the velocity V and the temperature gradient ∇Θ are parallel to each other.

To �nish, Fig. 3.40 shows the superposition of the streamlines and the temperature

maps of a dipolar interfacial �ow. Interestingly, a `thermal plume' propagates in the �ow

direction, that is along the mirror � symmetry axis of the dipole.
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Figure 3.38: `Hydrothermal' symmetry � breaking. Series of simultaneous temperature (left)

and streamlines (right) maps at increasing power P. (A) Quasi � axisymmetric steady state at P(A) �

21.8mW. (B) � (D) Pictures captured t(B) = 1min, t(C) = 2min and t(D) = 4min after the heating

power is set to P(B)�(D) � 36.8mW. (E) Stationary quadrupolar �ow at P(E) � 53.6mW. Scale bar :

2mm. Plate from A. Mombereau's internship report.
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Figure 3.39: Superposed streamlines and temperature maps. (a) quasi � axisymmetric

�ow; (b) surface quadrupole (P(a) = P(b) = 36.8mW). Maps superposed in (a) (resp. (b)) are those

already shown in Fig. 3.38 � (B) (resp. (D)). Very rough absolute temperature values reported next to the

colour scales (in °C). Ibid.

Figure 3.40: Superposed streamlines and temperature maps in the presence of a

surface dipole. Heating power P � 15.4mW. �/� : clockwise/anticlockwise vortex rotation. Arrow

showing the �ow direction. Here again, absolute temperatures (in °C) reported on the colour scale are

`false' since temperature measurements are not calibrated. One can only trust temperature di�erences.

Scale of the temperature map harmonised with that of the streamlines optical views (pco.pixel�y used as

the bottom camera : 8.22µm/pix, zoom �0.75). Image from B. Gorin's internship report.
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3.6 Discussion

In this chapter, we studied the centrifugal thermocapillary �ow that a partially wetted hot

bead generates at the water/air interface (Fig. 3.1). In a way similar to what we did in the

water jet experiment while increasing the injection speed, the focus was put here on the

evolution with increasing heating of the convective �ow which develops in the vicinity of

the heat source. From a simple convection torus at low temperatures (Fig. 3.8), the �ow

destabilises into multipolar structures at su�ciently high heating powers (Fig. 3.9), much

like what we reported in the water jet experiment. This (at least qualitative) analogy

between the �ows induced by the hot bead and the water jet is a priori far from being

self � evident, owing to the di�erent nature of the �ow enforced in each case, thermally

driven with the hot bead but `pressure � driven' with the water jet. Note that no SDS has

been added here to the liquid. We actually learnt, from numerical simulations achieved

by J-C. Loudet in the water jet con�guration, that further adding a controlled amount of

a surfactant material is of little avail as far as the �ow structure and size are concerned.

The hot bead experiment exhibits a higher level of complexity compared with the

water jet, since the temperature �eld Θ is here coupled to the �ow velocity V in addition

to the surfactant concentration �eld Γ. Therefore, one has to consider both heat and mass

advection � di�usion equations

∂tΘ�V.∇Θ = DT∇2Θ�Σ ,

∂tΓ�∇‖.
�
V‖Γ

�
= DS∇2

‖Γ ,

(3.2a)

(3.2b)

with DT and DS the heat and mass di�usion constants, respectively. The notation `∇‖'

denotes the 2D projection of the nabla operator onto the plane of the interface. I do not

dwell on the `source � term' Σ that will be speci�ed in the next chapter. Note that there

is no term accounting for mass exchanges between the surface and the bulk in the right �

hand side of Eq. (3.2b) as we consider only insoluble surfactants. When rewriting these

equations in dimensionless form, two parameters quantifying the relative contribution of

heat (resp. surfactant) di�usion and advection naturally appear. The latter, called the

thermal (resp. solutal) Péclet number PeT (resp. PeS), are de�ned as

PeT 9=
Ua

DT
, and PeS 9=

Ua

DS
, (3.3)

where a and U are typical length and velocity scales, respectively. Given that the mass

di�usion constant DS = 10�9 � 10�10 m2. s�1 is two to three orders of magnitude smaller

than the heat di�usion constant DT = 10�7m2. s�1, we have PeS " PeT meaning that
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the physics of the system is dominated by the advective transport of surfactant molecules

along the interface. We recall that the Reynolds number, de�ned as the ratio of inertial

to viscous forces Re 9=Ua/ν (ν : water kinematic viscosity, ν � 10�6 m2/s under standard

conditions), is in the order of Re � 10�2 in the hot bead experiments (taking a bead

radius a � 100µm and a Marangoni velocity U � 100µm/s) so that inertia is negligible.

The `hydrosolutal' (V, Γ ) � coupling has been evidenced by the direct manifestation

of surface elasticity in laser shutdown experiments : interfacial tracer particles reverse

their motion, from centrifugal to centripetal, at the precise moment the laser is switched

o� (Fig. 3.25). As for the `hydrothermal' (V, Θ) � coupling, thermography revealed the

`thermal signature' of the �ow symmetry � breaking, with streamlines either perpendicular

(in the quasi � axisymmetric base state) or tangent (in the presence of multipoles) to the

isotherms (Fig. 3.39). Yet, evaluating the prominence/negligibility of thermal advection

in the di�erent �ow regimes and at varying distances from the heat source, through the

value of V.∇Θ or, equivalently, that of the Péclet number PeT , requires a comprehensive

knowledge of the �ow and the temperature �elds that is currently lacking.

Again, we have shown that the base torus is in a `locked' interfacial state characterised

by subsurface velocities signi�cantly higher than surface ones (Figs 3.14 � 3.15 and 3.19)

which, due to thermal di�usion, are not strictly zero contrary to the case of the jet.

Tracking interfacial tracer particles along their centrifugal radial trajectories, we found

that their distance r to the heat source evolves in time as t1/3 (Figs 3.21 � 3.23), resulting

in a decrease of the surface velocity � 1/r2. Such experimental �ndings go against the

image of a pristine interface only subject to a thermocapillary �ow, for which one naturally

expects the �ow velocity to be highest at the surface (z = 0) owing to maximum shear

stresses out there. Moreover, in the viscous �ow regime (Re ! 1) considered here, we

have PeS " 1 but PeT ! 1, so that Eq. (3.2a) simpli�es to the heat di�usion equation

and the steady � state radial component of the interfacial velocity is then given by [3]

vr(r, z = 0) = U
�a
r

	
, (3.4)

a power decay di�erent from the experimental one. This discrepancy between theoretical

predictions and experimental observations can only be explained by the existence of a

surfactant elastic layer at the interface that damps the surface dynamics.

Besides that, we characterised the quadrupolar �ow mode, something not achieved in

the water jet experiments. Sharp surface velocity gradients have been uncovered between

the `intervortex channels', where intense inward/outward �ows are visible, and the core
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regions near vortex centres where the �ow almost vanishes (compare the experimental

data of both tables 3.33 and 3.37). Most importantly, the channels are in a `passing'

interfacial state characterised by a �ow velocity higher at the surface than in the bulk,

whereas a reversed `up � down hierarchy' among velocities is noted in the central regions

which is strongly reminiscent of the `locked' interfacial state reported for the base torus.

Surfactants are repelled by the dilatational �ow towards the edges of the cell �whether

the source �ow is thermocapillary like in the present experiment or `mechanical' like in

the water jet experiment �which induces a solutocapillary counter�ow in response to the

inhomogeneous distribution of impurities along the interface. We conjecture that the

instability results from the periodic azimuthal deformation of the elastic depletion front

under the action of high shear stresses these competing �ows induce locally (Fig. 3.41).

Such an instability mechanism has been already proposed by Couder et al. [49] to account

for multipolar �ow patterns developing on the surface of horizontal soap �lms blown by a

vertical air jet, a practical situation that closely resembles our water jet experiment. The

experimental veri�cation of this conjecture requires the direct visualisation of surfactant

molecules. One can use some �uorescence � labeled surfactant, a standard approach in

biological sciences. Note that it is possible to probe the state of the surfactant layer using

Brewster angle microscopy (see [53] for a presentation of this technique).

Figure 3.41: Postulated instability mechanism. Surfactant molecules (orange balls) repelled

beyond a depletion radius rd from the heat/matter source (red disk) lower the surface tension (γlow) in

the region close to the cell walls (not drawn). The competition between the centrifugal forced �ow (deep

blue arrows) and the solutocapillary counter�ow (light blue arrows) periodically bends the depletion front

(four � lobed grey line). The instability arises beyond a critical surface tension gradient ∇γ.
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I also want to stress the unpredictability of the �ow state marked by mode competition

(Fig. 3.12). Tempting though it may be to ascribe the great spatiotemporal variability of

the �ow patterns to hysteresis in the `hydrothermal history' of the system, it could equally

well be attributed to unsteady e�ects. Anyhow, all this results in poorly reproducible hot

bead experiments. Factors which may explain this situation are numerous, starting with

all physical mechanisms responsible for �uctuations of the contact line, such as intense

evaporation in the vicinity of the bead that a�ects its wetting con�guration or asperities

randomly distributed on its surface on which the contact line transiently gets pinned.

Let me add a few words about a serendipitous observation we made while changing

the degree of immersion of the bead. A pulsatile �ow would arise as the bead was fully

immersed, a phenomenon that can be regarded as another manifestation of the elasticity

of the surfactant � laden interface (Fig. 3.42). Interestingly, varying either the heating

power or the immersion depth of the bead allows modulating the pulse frequency of the

�ow. Further experiments are needed to underpin these observations.

Figure 3.42: Pulsatile �ow. (Red curve) Jerky time evolution of the radial distance R of a tracer

particle to the hot bead. (Blue curve) `Jumps' in the position of the tracer particle between frames n

and n � 1 used for estimating its speed (values �10µm/s). Hot bead fully immersed at Z = �1mm

underwater. Heating power : P � 97mW. Pulse period : Tpulse � 2.25 s. Data from a record at 10 fps.

It is not the �rst time that oscillatory regimes are reported in systems where Marangoni

convection is at play, leading to both experimental [54] and theoretical [55] investigations.

Note the striking resemblance between our practical situation and the experimental setup
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depicted in Fig. 2 of ref. [56], the only clear di�erence being that there a surfactant droplet

is immersed instead of a hot bead, meaning that in this case spontaneous oscillations arise

from solutocapillary rather than thermocapillary convection. As a matter of fact, it may

be that the �ower � like azimuthal instability we are interested in is related to hydrothermal

waves (see for instance [57, 58]), a hypothesis suggested by the existence of star � shaped

standing waves as the one shown in Fig. 4 � (c) of [55].

To �nish, I would like to mention Shtern and Hussain's theoretical analysis of the

azimuthal instability [59]. They defend the thesis of an inertial origin of the instability,

basing their study on the exact solution of the `Navier � Stokes �Fourier' problem derived

earlier by Bratukhin and Maurin [60]. Surprisingly, they predict that the quadrupole is

the �rst unstable mode (onset at a critical Reynolds Rec = 115), not the dipole. However,

recent observations [2] revealed that the �ower � like azimuthal instability studied in the

present work exists including at very small scales (5µm magnetic spheres were trapped

in a two � beam optical levitator), which seems to rule out the scenario proposed in [59].

In the next chapter, we will address theoretically the problem of the thermocapillary

convection induced by a point heat source localised at the water/air interface, solving the

incompressible Stokes equation within the half � space �lled with water. An exact solution

will also be derived in the nonlinear temperature � advected regime and the theoretical

groundwork on which to build a model of the instability will be laid down.
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Chapter 4
The route towards a theory of the instability

In this chapter, we lay the theoretical groundwork on which to build a description of

the azimuthal instability observed in the hot bead experiment. In sec. 4.1, we provide

the physical framework of our study by presenting the governing equations of the system

accompanied by a set of boundary conditions. In sec. 4.2, an axisymmetric solution is

worked out analytically in the presence of thermal advection. This particular solution is

viewed as the ground state meant to model the base �ow observed under slight heating

conditions. A generalised form of the Lamb's solution [61], derived from a non � standard

solving of the Stokes equation within a half � space, is provided in sec. 4.3. Finally, in order

to grasp the azimuthal instability, the ground state derived in sec. 4.2 shall be perturbed

by non � axisymmetric states picked from this `hemispherical' Lamb's solution (sec. 4.4).
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4.1 Problem formulation

We study the thermocapillary �ow induced by a pointlike heat source at the water/air

interface. The excess temperature arising in the vicinity of the hot spot creates surface

stresses that drive the �uid motion, a phenomenon called the Marangoni e�ect. Let water

�ll a cylindrical vessel of radius R and height h such that the upward oriented axis (unit

vector ez) coincides with its revolution axis. In the following, we assume a perfectly �at

interface located at z = 0 (see Appendix I for a justi�cation of this hypothesis).

The Navier � Stokes equation, which governs the evolution of the velocity V of a �ow

subjected to an internal pressure gradient ∇P, writes (Appendix I)

ρ p∂tV �V.∇Vq = η∇2V �∇P , (4.1)

where η and ρ are the �uid dynamic viscosity and mass density, respectively. Temperature

variations are assumed slight enough for these quantities to be temperature � independent.

At room temperature Troom � 20°C and under atmospheric pressure Patm � 1bar (STP :

Standard Temperature and Pressure conditions), η � 10�3 Pa.s and ρ � 103 kg.m�3.

Let a be some characteristic length scale of the system and U denote the typical �ow

velocity scale. De�ning the following quantities

r 9=
R

a
, v 9=

V

U
, p 9=

P

pηU/aq ,
rt 9=

t

pa/Uq , (4.2)

enables one to rewrite Eq. (4.1) in dimensionless form

Re p∂
rt v � v.∇vq = ∇2v �∇p , (4.3)

where ∇ 
 9= d
dr

 . The dimensionless parameter Re (a, U) is called the Reynolds number.

The latter can be interpreted as the ratio between the magnitudes of the inertial ρV.∇V

and the viscous η∇2V terms or, equivalently, as the ratio between the characteristic times

τdiff = a2/ν (ν 9= η/ρ : kinematic viscosity) and τconv = a/U associated with momentum

di�usion and convection over the length a. The Reynolds number is therefore given by

Re =
Ua

ν
. (4.4)

In what follows, we focus our attention on stationary �ow regimes so that we drop

the partial time derivative in Eq. (4.3). Inertial e�ects are further disregarded (Re ! 1)

since we consider relatively small length and velocity scales (in the experiments, we have
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a � 100µm and U � 100µm/s yielding Re � 10�2). Consequently, the Navier � Stokes

equation (4.3) reduces to the much simpler Stokes equation

∇2v = ∇p . (4.5)

We assume an incompressible �uid. The continuity equation expressing the volume

conservation of a �ow subjected to pressure reads

∇.v = 0 . (4.6)

Eqs (4.5) � (4.6) form the purely hydrodynamic part of the problem addressed here.

These equations are supplemented by the advection � di�usion heat equation

ρcp p∂tΘ�V.∇Θq = κ∇2Θ�Qδ(R) , (4.7)

with Q the total heating power radiated by the pointlike heat source1,2. cp and κ stand

for the speci�c heat capacity and thermal conductivity of the liquid, respectively. Both

are assumed constant despite a non � uniform temperature distribution. Along with the

mass density ρ, they de�ne the thermal di�usivity as D 9=κ/(ρcp). For water under STP

conditions, cp � 4.2� 103 J. kg�1.K�1 and κ � 0.6W.m�1.K�1 so that D � 10�7 m2. s�1.

Using again de�nitions (4.2) together with a `temperature �eld' ϑ 9=Θ/∆T yields the

following dimensionless form of Eq. (4.7)

Pe p∂
rt v � v.∇ϑq = ∇2ϑ� q δ(r) , q =

Q

κ∆Ta
, (4.8)

with the Péclet number Pe de�ned as

Pe =
Ua

D
. (4.9)

Note the strong similarity between Eqs (4.3) and (4.8) : the Péclet number Pe plays for

heat transport a role analogous to the Reynolds number Re for momentum transport, the

thermal di�usivity D appearing as the counterpart of the kinematic viscosity ν.

1We assume a `perfect source' in the sense that 100% of the energy it absorbs is supposed to heat the

liquid. This explains why Q is here below indi�erently called the `injected power' or the `heating power'.
2 In fact, assuming a pointlike heat source amounts to making the hypothesis that its spatial extent a

is much smaller than the radius R of the container, a ! R. In the viewing area such that a ! |R| ! R, the

source can be approximated as a point whose power density is expressed as Qv(R) = Qδ(R) introducing

naturally the Dirac delta distribution δ(R), while the size of the vessel then becomes irrelevant.
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Once again, attention is paid to steady �ow regimes and thus Eq. (4.8) restricts to

Pev.∇ϑ = ∇2ϑ� q δ(r) , (4.10)

where the velocity �eld v derived beforehand from Eqs (4.5) � (4.6) appears as an input.

Eq. (4.10) invites us to view the Péclet number Pe measuring the intensity of thermal

advection as a control parameter that can be tuned by varying the amount of injected

power Q. Thermal advection prevails in the asymptotic regime Pe " 1. Conversely, in

the di�usive limit we have Pe ! 1 and one is then left with a set of purely linear equations.

As usual, boundary conditions speci�c to our framework `close' the di�erential system.

The boundary condition at the very heart of this study is the Marangoni condition

η
�
∇‖Vz � ∂zV‖

���
z= 0

= ∇‖ γ , (4.11)

where the projection of a vector a onto the horizontal (xy) � plane of the interface (z = 0) is

de�ned as a‖ 9= p11� ezezq . a . This relation stating that surface tension inhomogeneities

induce shear stresses at the interface that put the �uid into motion is the mathematical

expression of the Marangoni e�ect. A key ingredient of our study is the linearised equation

of state satis�ed by the temperature � dependent surface tension γ(Θ) for slight deviations

from its equilibrium value γ0 = γ(Θ0)

γ(Θ) = γ0 � γT pΘ�Θ0q . (4.12)

As the constant γT 9= |dγ/dΘ| is in the order of γT � 10�4 N.m�1.K�1 [40], this equation

is valid over a wide temperature range. The surface tension decreasing with increasing

temperature, liquid is pulled from the hot to the cold regions of the interface at a typical

speed U � γT∆T/η. In the geometry under consideration, a centrifugal thermocapillary

�ow extends from the hot bead in central position to the edges of the cylindrical container.

On top of that, we assume a zero mass �ux across the interface

Vz|z= 0 = 0 . (4.13)

The thermal conductivity of water being far larger than that of air (under STP conditions

κair � 0.0234W.m�1.K�1, κwater � 26κair) amounts to neglecting any heat �ux through

the interface

∂zΘ|z= 0 = 0 . (4.14)

Obviously, such assumptions no longer hold in the presence of evaporation (Appendix I).



4.2. The base �ow state 123

In sum, we aim at solving the (v, ϑ) � coupled system of partial di�erential equations

∇2v = ∇p ,

∇.v = 0 ,

Pev.∇ϑ = ∇2ϑ� q δ(r) ,

(4.15a)

(4.15b)

(4.15c)

with the additional requirements that far away from the heat source : (1) the temperature

returns to its equilibrium value entailing the suppression of all Marangoni stresses and

hence a zero thermocapillary velocity; (2) the overall �ow velocity falls to zero and (3)

the pressure �eld tends to a constant value

ϑ,v, p ÝÑ
|r|Ñ�8

ϑ0,0, p0 . (4.16)

The latter equations are supplemented by the boundary conditions

1

r

�
r ∂rvθ � vθ � ∂cvr

�����
cI= 0

= � ∂rϑ |cI= 0 ,�
∂ϕvθ � ∂cvϕ

����
cI= 0

= � ∂ϕϑ |cI= 0 ,

vθ|cI= 0 = 0 ,

∂cϑ|cI= 0 = 0 ,

(4.17a)

(4.17b)

(4.17c)

(4.17d)

in spherical polar coordinates (r, θ, ϕ) including in general the azimuthal (ϕ) dependence.

Introducing the parameters c 9=cos θ and s 9=sin θ =
?
1� c2 instead of simply working

with the polar angle θ greatly simpli�es the calculations. For convenience, we consider that

water �lls the upper half � space z ¥ 0 wherein c P [0, 1], the position cI = 0 (θI = π/2)

corresponding to the interfacial plane (normal unit vector n � eθ). For later purposes,

the equations are here written in dimensionless form with special emphasis on the `r � and

ϕ �Marangoni' boundary conditions (4.17a) � (4.17b).

4.2 The base �ow state

As an initial step, our goal is to derive the axisymmetric solution to the advection �

di�usion problem in the far � �eld limit, i.e. for a pointlike heat source. This solution is

considered as the base �ow state whose stability in response to azimuthal perturbations

shall be probed (sec. 4.4). For comparison's sake, we �rst derive the temperature �eld

in the purely di�usive regime Pe = 0 prior to addressing the nonlinear regime of �nite

Péclet numbers Pe � 0 for which heat is also transported through advection.
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4.2.1 Linear regime Pe = 0

Temperature �eld

In the di�usive regime Pe = 0, the di�erential system (4.15a) � (4.15c) becomes linear as

the temperature �eld is then fully decoupled from the �ow. In this case, the temperature

turns out to be a harmonic function, namely a function obeying the Laplace's equation

∇2ϑ = 0 . (4.18)

This equation is readily solved in spherical polar coordinates (r, θ, ϕ) using the method of

separation of variables. Since the corresponding derivation can be found in any textbook

of mathematical physics, let me simply recall the general solution

f(r, θ, ϕ) =
�8̧

l=0

�ļ

m=�l

�
Almr

l � Blm

rl�1

�"
ClmP

m
l (cos θ)�DlmQ

m
l (cos θ)

*
eimϕ , (4.19)

where the tP m
l (cos θ)u and the tQm

l (cos θ)u are the associated Legendre polynomials of

the �rst and the second kind, respectively. We will discuss in sec. 4.3 how and why this

general solution shall be modi�ed in our study. Let us precise right now that the tQm
l u

functions are irrelevant in most physics problems because of their diverging behaviour.

The terms � rl in the radial part of expression (4.19), in addition to diverging at in�nity,

are associated with the solution to the Laplace's equation inside a sphere (see refs [64, 65])

and are thus discarded from the current analysis which assumes a pointlike heat source.

In our case, expression (4.19) yields the following far � �eld axisymmetric temperature

in the di�usive regime (P 0
0 = 1)

Θ(|R|) = Θ0 �∆T
a?

R2 � Z2
, R = Rer � Zez , (4.20)

which ful�lls the condition Θ Ñ Θ0 far from the heat source (|R| Ñ �8). For latter

purposes, it is useful to de�ne a∆T 9=Q/(2πκ). Even though no intrinsic length scale is

considered in the model, this relation o�ers a convenient way of linking the injected power

Q to the temperature elevation ∆T on the surface of the heat source. Evaluated at the

interface Z = 0 and rewritten in dimensionless form, expression (4.20) becomes

ϑ(0)(r) =
ψ(0)(0)

r
, (4.21)

where ψ(0)(0) represents the interfacial temperature amplitude in the di�usive regime

Pe = 0 �agged with the superscript `(0)'.
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Velocity �eld

Let us now derive the velocity �eld v(0). Although there is no coupling between the

temperature and the velocity in the purely di�usive regime Pe = 0, in the sense that the

advective nonlinearity is then ruled out, both �elds are related through the Marangoni

boundary conditions (4.17a) � (4.17b) at the interface where the temperature �eld shapes

the velocity. It is proper to seek velocity components that are � 1/r, since this choice

complies with the radial Marangoni boundary condition (4.17a) which then balances terms

that are all � 1/r2 on both sides of the equation

1

r

�
r ∂r

�
1
r

�� �

1
r

�� ∂c

�
1
r

������

cI= 0loooooooooooooooooooooomoooooooooooooooooooooon
� 1/r2

= � ∂rϑ |cI= 0looooomooooon
� 1/r2

,

where the temperature �eld is the one given by (4.21). Note that the azimuthal Marangoni

boundary condition (4.17b) yields vϕ = 0 as a direct consequence of axisymmetry.

Solving the Stokes equation (4.15a) to work out the velocity �eld v(0) requires deriving

�rst the pressure �eld. The divergence of the Stokes equation reveals that the pressure

�eld is a harmonic function3 (as the temperature in this regime) and thus satis�es

∇2p = 0 . (4.22)

We have just seen why it is appropriate to look for velocity components scaling as 1/r,

in keeping with the r �Marangoni boundary condition. In the same spirit, balancing the

powers of 1/r on both sides of the Stokes equation

∇2vloomoon
� (1/r2)�(1/r) = 1/r3

= ∇ploomoon
� (1/r)�??? = 1/r3

,

calls for a pressure �eld p � 1/r2. The general solution (4.19) to the Laplace's equation

elucidated in the case l = 1 then yields the pressure �eld

p(10)(r, c) =
π(10)

r2
P 0

1 (c) =
π(10)

r2
c , (4.23)

where the subscript `(10)' means l = 1 and m = 0 (axisymmetric state). The notation

π(10) for the integration constant anticipates on the general derivation to come in sec. 4.3.

3 This property is actually a direct consequence of �uid incompressibility. Indeed, we have ∇.∇2v =

∇2 p∇.vq = 0 only because ∇.v = 0.
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Projecting next the vector Stokes equation (4.15a) onto the axes of the spherical basis,

we are left with the following di�erential system for (lm) = (10)�
s2v1r, (10)

�1
= �2p(10) ,�

s2v1θ, (10)

�1 � 1

s2
vθ, (10) = 2sv1r, (10) � sp1(10) ,�

s2v1ϕ, (10)

�1 � 1

s2
vϕ, (10) = 0 ,

(4.24a)

(4.24b)

(4.24c)

where the primed quantities are derivatives with respect to c . These are equations for the

polar part tvj, (10)(c)ujPtr, θ, ϕu of the velocity components since the radial part, already set

in our representation of the �elds, here acts as a global prefactor which is ultimately ruled

out. Eq. (4.24a) corresponds to the projection of the vector Stokes equation (4.15a) onto

the radial direction, while Eqs (4.24b) � (4.24c) are the polar (θ � angular) and azimuthal

(ϕ � angular) Stokes equations, respectively. Due to axisymmetry, the latter equation is

completely uncoupled from the �rst two equations, so that the function vϕ, (10)(c) can be

derived in a fully independent way.

With expression (4.23) for the pressure �eld, the di�erential equation we need to solve

in order to derive the radial velocity component vr, (10) writes�
s2v1r, (10)

�1
= �2π(10)c . (4.25)

Integrating this equation once with respect to c and dividing all terms by s2 (c � 1) yields

v1r, (10)(c) = �π(10)
c2

1� c2
� Kr, (10)

1� c2
, (4.26)

with Kr, (10) P R a second integration constant. Making use of the standard antiderivative�
1/(1� c2) dc = (1/2) ln[(1� c)/(1� c)]� cst, we soon arrive to the expression

vr, (10)(c) = π(10)c�
sKr, (10)

2
ln

�
1� c

1� c



� rKr, (10) . (4.27)

But then regularising this form in cs = 1 necessarily imposes that sKr, (10) = 0. In fact,

(1/2) ln[(1� c)/(1� c)] = Q 0
0 (c) is the (lm) = (00) associated Legendre polynomial of the

second kind that has to be removed from the physical solution because of its logarithmic

singularity at the branch point cs = 1. Finally, the radial velocity vr, (10) is given by

vr, (10)(c) = π(10)c� ρ(�10) , (4.28)

where the constant rKr, (10) is renamed ρ(�10) to comply with forthcoming notations.
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We next turn to Eq. (4.24b) for the polar velocity component vθ, (10) . We have now

everything that is needed to elucidate the right � hand side of this equation and get

(1� c2) v2θ, (10)(c)� 2c v1θ, (10)(c)�
1

1� c2
vθ, (10)(c) = π(10)s . (4.29)

By virtue of the linearity of the Stokes equation, the function vθ, (10) can be viewed as

the superposition of the homogeneous solution vHθ, (10) and a particular solution vPθ, (10) of

the whole equation (4.29), vθ, (10)(c) = vHθ, (10)(c) � vPθ, (10)(c) . To lighten the notation, the

subscript `(10)' is dropped for a while.

One can readily check that the homogeneous solution of Eq. (4.29) is of the form

vHθ (c) =
1?

1� c2

�
σ?c� σ??

�
. (4.30)

This last form evidently diverges in cs = 1 and hence must be regularised in that point.

Regularisation is here straightforward and leads to the necessary condition σ?? = �σ?
and consequently to

vHθ (c) = �KH
θ

c
1� c

1� c
. (4.31)

As usual, the particular solution vPθ is searched in the form of the right � hand side

vPθ (c) = KP
θ s. Di�erentiating this form twice with respect to c and inserting the results

in Eq. (4.29) yields by identi�cation KP
θ = �π(10)/2, so that we end up with

vPθ (c) = �π(10)

2
s , (4.32)

and thereby

vθ, (10)(c) = �π(10)

2

?
1� c2 � ρ(�10)

c
1� c

1� c
, (4.33)

where the above integration constant KH
θ has been renamed ρ(�10) in order to match with

the general expressions that we will derive in sec. 4.3.

To �nish, one remarks that Eq. (4.24c) for the azimuthal velocity component vϕ, (10)

exhibits exactly the same structure as the homogeneous equation for the polar velocity

component vθ, (10), so that we immediately conclude

vϕ, (10)(c) = σ(00)

c
1� c

1� c
. (4.34)

Before going further, a wise precaution is to check that the velocity components we

have derived satisfy the incompressibility condition

s2v1θ � cvθ = svr . (4.35)
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It then only remains to apply the interfacial boundary conditions, so as to relate the

integration constants
 
π(10), ρ(�10), σ(00)

(
to one another and express each of them in terms

of the sole temperature amplitude ψ(0)(0), a natural approach since this quantity controls

the intensity of the thermally � driven �ow.

From the zero mass �ux boundary condition across the interface (4.17c) one gets

ρ(�10) = �π(10)/2, while the radial Marangoni condition (4.17a) yields ρ(�10) = ψ(0)(0)/2

and the azimuthal Marangoni condition (4.17b), which leads us to σ(00) = 0, con�rms

afterhand that vϕ, (10) = 0 as expected from axisymmetry. Bringing all results together,

we are ultimately left with the velocity vector

v
(0)
(10)(r, c) =

ψ(0)(0)

2r

�����
1� 2c

c

c
1� c

1� c

0

����

per, eθ, eϕq

, (4.36)

that goes together with the pressure �eld

p
(0)
(10)(r, c) = �ψ

(0)(0)

r2
c . (4.37)

4.2.2 Nonlinear regime Pe � 0

We now address the far � �eld axisymmetric state (lm) = (10) in the nonlinear regime

of �nite Péclet numbers Pe � 0. The analysis gets more involved in this case due to

thermal advection coupling the temperature to the �ow velocity through the additional

contribution ‘Pev.∇ϑ' in the heat equation.

Most importantly, we note that it is still adequate to seek long � range temperature

and velocity �elds scaling as 1/r. Indeed, the structure of the advective coupling term is

such that equal powers of 1/r are then ensured on both sides of the heat equation

Pe vloomoon . ∇ϑloomoon
� (1/r) � (1/r2)

= 1/r3

= ∇2ϑloomoon
� 1/r3

.

Besides, since the velocity �eld v(10) is governed in the nonlinear regime by exactly the

same couple of equations (4.15a) � (4.15b) as in the linear regime, its spatial dependence

remains unchanged. Yet, one shall not forget the subtlety that the Marangoni stresses,

expressed by the interfacial boundary conditions (4.17a) � (4.17b), relate the temperature
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to the velocity in a way that impels us to distinguish between the interfacial temperature

amplitude ψ(0) in the nonlinear regime Pe � 0, and its counterpart in the linear regime

Pe = 0 denoted ψ(0)(0), with the superscript `(0)' to dispel any confusion. It ensues from

this observation that the velocity �eld v(10) plays the role of an input needed to derive

the nonlinear temperature �eld ϑ(10).

In steady � state conditions, the energy balance equation reads

∇. J = Q δ(R) , Q 9=
Q

ρcp
, (4.38)

where we recall that Q is the total heating power released by the pointlike heat source.

The heat current J can be expressed as the sum of two terms4

J = Jadv � Jdiff = VΘ�D∇Θ , (4.39)

the contributions of thermal advection and di�usion, respectively. Before proceeding any

further, let us write Eq. (4.38) in dimensionless form

∇. j = q δ(r) , (4.40)

with a dimensionless `heat current' j = Pevϑ�∇ϑ and the `heating power' q 9=Q/(κ∆Ta).

Temperature �eld

Let us �rst consider the continuity equation satis�ed by the heat current, i.e. ∇. j = 0 .

This equation writes in spherical coordinates

1

r2
∂r

�
r2jr

�� 1

r
∂c psjθq � 1

rs
∂ϕ jϕ = 0 . (4.41)

However, in the far � �eld limit for which v(10), ϑ(10) � 1/r, the heat current j(10) � 1/r2

and the �rst term of (4.41) thus vanishes. What is more, we focus on the axisymmetric

state m = 0 which, by de�nition, does not depend on the azimuthal angle ϕ . As a result,

Eq. (4.41) simply reduces to

∂c
�
sjθ, (10)

�
= 0 . (4.42)

With both the velocity vector (4.36) taken as an input to upcoming calculations and a

temperature �eld scaling here again as 1/r, the ensuing di�erential equation for the polar

part of the temperature �eld ψ(10)(c) is��
1� c2

�
ψ1

(10)(c)� Pe c p1� c qψ(10)(c)
�1
= 0 , Pe 9=

Pe

2
ψ(10)(0) . (4.43)

4 The reason why the expression of the advective current Jadv is as simple as VΘ is due to �ow

incompressibility. Indeed, we have the identity ∇. pVΘq = V.∇Θ�Θ p∇.Vq = V.∇Θ since ∇.V = 0.
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This last equation integrated once with respect to c yields

ψ1
(10)(c)� Pe

c

1� c
ψ(10)(c) =

K

1� c2
, (4.44)

with K P R an integration constant which shall be set to zero so as to eliminate the

singularity in cs = 1. We are then left with a separable di�erential equation. Once the

latter properly rewritten and integrated, we end up with the following non � trivial form

of the temperature �eld

ϑ(10)(r, c) =
ψ(10)(0)

r
p1� c qPe e�Pe c , c P [0, 1] , (4.45)

where, for the sake of clarity, the `modi�ed' Péclet number Pe will be simply denoted Pe

from now on. Also bear in mind that ψ(10)(0) represents the temperature magnitude at

the interface in the presence of thermal advection.

Though in a very speci�c case (lm) = (10), we have derived an analytical solution of

the advection � di�usion heat equation. Interestingly, an exact solution of the `Navier �

Stokes �Fourier' problem has been derived more than half a century ago by Bratukhin and

Maurin in [60] (see also [59]). We checked that the more general expression these authors

got gives back the form (4.45) in the low Reynolds regime, as expected (see Appendix J).

Energy balance

The last step of the present derivation consists in determining the interfacial temperature

amplitude ψ(10)(0). This can be done by integrating the energy balance equation (4.40)

over a half � sphere (S) of radius rS centred on the origin O in the upper half � space

c P [0, 1]. We are then left with the surface integral 5

�
(S)

j .dS = 2πr2
S

� 1

0

jr(rS , c) dc =
Q

κ∆Ta
, (4.46)

where the in�nitesimal vector surface element dS of the half � sphere (S), given by

dS = r2
S sin θdθdϕ er, rewrites with respect to c 9=cos θ as dS = � r2

S dc dϕ er.

5Actually, the initial volume integral is transformed into a �ux integral over the closed surface

(Σ ) 9= t(S)Y (D)u by applying the Green �Ostrogradski theorem. Yet the integral over D, de�ned as

the disk corresponding to the intersection of the half � sphere (S) with the interfacial plane (Π ), does not

contribute here as neither heat nor mass �uxes pass through the interface (this is a reasonable assumption

insofar as the air being a gas has negligible thermal conductivity and viscosity compared with water).
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Here below, both cases of �nite and vanishing Péclet numbers are compared relating

the parameters in the nonlinear regime to those de�ned in the di�usive limit Pe ! 1. The

latter parameters, taken as reference quantities, bear the superscript `(0)'.

� Di�usive limit Pe ! 1 :

This limit amounts to discarding the advection term in the heat equation (4.15c).

We have shown that the temperature �eld writes in this case ϑ(0)(r) = ψ(0)(0)/r, so

that the di�usive heat current is j(0)(r) = �∇ϑ(0) = ψ(0)(0)/r2 er. This expression

put in the integrand of (4.46) provides the reference temperature amplitude

ψ(0)(0) =
Q

2πκ∆Ta
. (4.47)

Let U (0) denote the typical Marangoni velocity in this di�usion � dominated regime.

It is then convenient to de�ne a reference `Péclet number' as Pe 9= aU (0)/D. Let us

remind the reader that the temperature rise ∆T on the surface of the heat source

has been yet speci�ed through the relation a∆T = Q/(2πκ). According to (4.47),

this amounts to �xing ψ(0)(0) = 1. Finally considering that U (0) = γT∆T/η yields

a reference `Péclet number'

Pe(0) =
ρcp|γT|Q
2πηκ2

. (4.48)

Unsurprisingly, both the temperature and the velocity are 9Q in the linear regime :

the stronger the heating of the bead, the higher the �ow velocity (Fig. 4.1).

� Nonlinear regime Pe � 1 :

The nonlinear regime corresponds to the physical situation wherein both di�usive

and advective heat transport occur, namely the regime of �nite Péclet values. With

the above velocity components (4.36) and the temperature �eld (4.45), one is left

with a total heat current of the form

j(10)(r, c) =
ψ(0)

r2

�
1� Pe p1� 2cq� p1� c qPe e�Pe c er , (4.49)

where we remind that the notation Pe stands in fact for Pe 9=(Pe/2)ψ(10)(0). In the

nonlinear regime, the Marangoni velocity U can be thus expressed in function of the

heating power Q � or, equivalently, the Péclet number Pe 9= aU/D be expressed in

terms of Pe(0)9Q � through the implicit relation

Pe(0) = Pe

� 1

0

�
1� Pe p1� 2cq� p1� c qPe e�Pe c dc , (4.50)

according to Eq. (4.46).
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The latter relation is tackled in the following situations :

+ Weakly nonlinear regime : for Pe ! 1, one can expand the integrand as follows

Pe(0) = Pe

� 1

0

 
1� Pe r1� 3c� ln(1� c)s � . . .

(
dc = Pe� δ Pe2 � . . . , (4.51)

with δ = (3/2)� 2 ln 2 � 0.11. Inverting this last relation yields

Pe = Pe(0)
�
1� δ Pe(0) � . . .

�
, (4.52)

showing that the velocity in the weakly nonlinear regime is slightly larger (δ ¡ 0)

than in the purely linear regime.

+ Strongly nonlinear regime : there is no other way than to invert the integral (4.50)

numerically. For comparison, the Marangoni velocity is also plotted in this case on

Fig. 4.1. The graph shows that heat is essentially dissipated by advection as the

Péclet number increases. Dissipation proves much more e�cient than in the linear

regime, since it is here advection � enhanced. This explains why the temperature

increase now becomes a sublinear function of the injected power Q. Given that all

parameter sets are proportional to Q, they are proportional to one another, which

mathematically translates into the identity U/U (0) = Pe/Pe(0) = ψ(0)/ψ(0)(0), so

that one obtains in the end 6

ϑ(10)(r, c) =
ψ(0)(0)

r

p1� c qPe e�Pe c� 1

0

�
1� Pe p1� 2cq� p1� c qPe e�Pe c dc

, ψ(0)(0) =
Q

2πκ∆Ta
.

(4.53)

6 It can be demonstrated that the above integral is equal to

� 1

0

�
1� Pe p1� 2cq

�
p1� c q

Pe
e�Pe c dc = ePe pPe� 1q ζ(Pe)� 2 2�Pe e�Pe�2 ,

with the quantity ζ(Pe) given by

ζ(Pe) = E�Pe pPeq � 2 1�Pe E�Pe p2Peq ,

where En(x) is the `generalised' exponential integral function de�ned as

En(x) 9=

� �8

1

e�λx

λn
dλ , (x, n) P R2 .
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It is equally interesting to see how strongly the temperature and the velocity can

in�uence each other through advective coupling V.∇Θ. In this respect, Fig. 4.2

clearly reveals to what point isotherms can deform with increasing Péclet number :

from concentric circles in the linear regime (Pe = 0), the isotherms strongly deform

at su�ciently high Péclet number (Pe = 5), �nally taking a bilobate shape and

getting closer and closer to the interface.

Figure 4.1: Evolution of the Marangoni velocity with increasing heating. (Solid curve)

Nonlinear regime including the e�ects of thermal advection. (Dashed line) Di�usive limit Pe ! 1. Since

the Péclet number Pe is proportional to the Marangoni velocity and Pe(0) is proportional to the injected

power Q, we can as well plot in dimensionless units Pe = f(Pe(0)) as we do here.

Figure 4.2: Distortion of bulk isotherms with increasing heating. (From left to right)

Pe = 0, 1 and 5. Hot bead depicted by a red ball (not to scale).
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4.3 The hemispherical Lamb's solution

The far � �eld axisymmetric solution (lm) = (10) derived above in the nonlinear regime

is meant to model the base �ow observed experimentally at low heating powers. In order

to capture the azimuthal instability of this primary �ow arising for a su�ciently strong

heating of the bead, one should perturb the ground state by non � axisymmetric states

whose role is to break the initial rotational symmetry into an annulus of vortex pairs

periodically distributed all around the source. These perturbative �elds are to be selected

among generic states of the `hemispherical' Lamb's solution that we derive now.

4.3.1 Generic forms of the �elds

Our aim is to solve the `Stokes problem', namely the di�erential equations (4.15a) �

(4.15b), within the upper half � space c P [0, 1]. As customary, we seek solutions with

separated variables. Extending the former rationale to arbitrary powers of 1/r, we set

temperature and velocity �elds sharing in common generic terms � 1/rl while the latter

are � 1/rl�1 for the pressure �eld. Besides that, the 2π � periodic azimuthal part of the

solutions compels us to introduce a multipolar expansion with generic terms � eimϕ. This

explains why we take the �elds in the ansatz forms

p (r, c, ϕ) =
¸
l,m

p (lm) =
¸
l,m

1

rl�1
p (lm)(c) e

imϕ ,

vj (r, c, ϕ) =
¸
l,m

vj, (lm) =
¸
l,m

1

rl
vj, (lm)(c) e

imϕ , j P tr, θ, ϕu ,

ϑ (r, c, ϕ) =
¸
l,m

ϑ (lm) =
¸
l,m

1

rl
ψ (lm)(c) e

imϕ .

(4.54a)

(4.54b)

(4.54c)

Note that the c � dependent part of the pressure and the velocity �elds is written in

italics, unlike the associated total �elds denoted by straight letters. Here the parameter

l labels the consecutive powers of 1/r while m is the azimuthal wavenumber.

4.3.2 Equations for the functions tp (lm)(c)u and tvj, (lm)(c)ujPtr, θ, ϕu

The radial and azimuthal dependences of the �elds being �xed in the forms (4.54a) �

(4.54c), it therefore remains to derive the polar functions tp (lm)(c)u and tvj, (lm)(c)ujPtr, θ, ϕu.
Let us start with the elucidation of the incompressibility condition (4.15b). The divergence

of the velocity �eld writes in spherical coordinates (using ∂θ
 = �s∂c
)

∇.v =
1

r2
∂r

�
r2vr

�� 1

r
∂c psvθq � 1

rs
∂ϕvϕ . (4.55)
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One obtains after little algebra the di�erential equation for the functions tvθ, (lm)(c)u
s2v1θ � c vθ = �pl � 2q svr � imvϕ . (4.56)

Next comes the explicitation of the Stokes equation (4.15a) yielding the hereafter set

of coupled di�erential equations for the velocity components tvj, (lm)(c)ujPtr, θ, ϕu�
s2v1r

�1
�
"
(l � 1)(l � 2)� m2

s2

*
vr = � (l � 1) p ,�

s2v1θ

�1
�
"
l (l � 1)� 1�m2

s2

*
vθ = 2sv1r � 2im

c

s2
vϕ � sp1 ,�

s2v1ϕ

�1
�
"
l (l � 1)� 1�m2

s2

*
vϕ = �2 im

s
vr � 2im

c

s2
vθ � im

s
p .

(4.57a)

(4.57b)

(4.57c)

Remarkably, the symmetry of these equations is such that both angular functions vθ(c)

and vϕ(c) display the same prefactor (1 � m2)/s2, whereas for the radial function vr(c)

we only have m2/s2. The structure of these equations further reveals that the states

(lm) = t(1m), (2m)u play a special role7. Indeed, one notices that the angular equations

become simpler as l = 1, the same holding for the radial equation when l = 1 or l = 2.

Technical details on how to obtain these equations are provided in Appendix K.

The di�erential system still has to be `closed'. As seen previously, this requirement

is ful�lled by taking the divergence of the Stokes equation (4.15a), which leads to the

Laplace's equation (4.22) for the pressure �eld. Elucidating it in spherical coordinates

yields the canonical form of the associated Legendre di�erential equation ([66], 8.1.1)�
1� c2

� d2p(lm)

dc2
� 2c

dp(lm)

dc
�
�
l(l � 1)� m2

1� c2

�
p(lm) = 0 . (4.58)

In summary, the system of coupled di�erential equations whose solving provides the

expressions of the generic functions tp (lm)(c)u and tvj, (lm)(c)ujPtr, θ, ϕu reads�
s2p1

�1
�
�
l (l � 1)� m2

s2



p = 0 ,

s2v1θ � c vθ = �pl � 2q svr � imvϕ ,�
s2v1r

�1
�
"
(l � 1)(l � 2)� m2

s2

*
vr = � (l � 1) p ,�

s2v1θ

�1
�
"
l (l � 1)� 1�m2

s2

*
vθ = 2sv1r � 2im

c

s2
vϕ � sp1 ,�

s2v1ϕ

�1
�
"
l (l � 1)� 1�m2

s2

*
vϕ = �2 im

s
vr � 2im

c

s2
vθ � im

s
p .

(4.59a)

(4.59b)

(4.59c)

(4.59d)

(4.59e)

7 The case l = 0 is tantamount to considering a uniform velocity �eld preexisting the introduction of

the heat source, which is not our physical framework.
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The solving strategy of this system for both the axisymmetric (lm) = (l0) and the non �

axisymmetric (lm)m�0 states is detailed in Appendix L. Keep in mind that Eq. (4.59a) is

the cornerstone of the Stokes problem that makes its solving quite straightforward.

4.3.3 Derivation of the hemispherical Lamb's solution

As just seen, the pressure �eld obeys the associated Legendre di�erential equation (4.58).

Still, the forthcoming analysis is not standard as we will explain it now.

In most situations commonly encountered in physics (e.g. in quantum mechanics), one

is interested in solutions that are regular over the whole space c P [�1, 1]. The solution

of Eq. (4.58) is then p (lm)(c)9P m
l (c), where the tP m

l (c)u are the associated Legendre

polynomials of degree l and order m de�ned for m ¥ 0 as

P m
l (c) =

�
1� c2

�m/2 dm

dcm
Pl(c) , (4.60)

with tPl(c)u the Legendre polynomials of degree l. For negative orders, the associated

Legendre polynomials
 
P�m
l (c)

(
can be inferred from the tP m

l (c)u thanks to the relation
P�m
l (c) = (�1)m pl �mq!

pl �mq! P
m
l (c). From (4.60), it ensues that P m

l (c) = 0 if |m| ¡ l .

In the present case, however, regular solutions are required only in the upper half �

space c P [0, 1]. As shown in Appendix M, the solution of Eq. (4.58) is then p (lm)(c)9P m
l (c)

with the associated Legendre function P m
l (c) here de�ned as ([66], 8.1.2)

P m
l (c) =

�
1� c

1� c


|m|/2

2F1

�
�l, l � 1, 1� |m| ; 1� c

2



, c P [0, 1] , (4.61)

where the special function 2F1 pα, β, γ ; zq is known as the Gauss hypergeometric function

(short presentation in Appendix M). As can be noticed, working in a half � space results

in the use of a rather unconventional de�nition of the Legendre functions. As a matter of

fact, the azimuthal wavenumberm is no longer limited to (2l�1) integer values in the range
J�l, l K but fully unconstrained. A consequence of this is that the `hemispherical Lamb's

solution' includes singular terms absent from its more classical version : for |m| ¤ l,

one recovers (up to a normalising constant) the `usual' associated Legendre polynomials

tP m
l (c)u while the tP m

l (c)u de�ned in (4.61) do not vanish for |m| ¡ l, by contrast with

more standard studies. A few essential properties of the associated Legendre functions

tP m
l (c)u are summarised in Appendix M and several examples are listed in Appendix N.
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Pressure �eld

From the foregoing discussion one concludes that the c � dependent part of the pressure

�eld p(lm)(c) satisfying the associated Legendre di�erential equation (4.58) is given by

p (lm)(c) =
2 p2l � 1q
l � 1

π(lm) P m
l (c) , (4.62)

with π(lm) an integration constant to be speci�ed later applying the boundary conditions.

The prefactor 2 p2l � 1q / pl � 1q is introduced for convenience only, as will be clear below.

The introduction of an operatorial formalism is of great relevance to the simpli�cation

of analytical calculations. We de�ne what we call the Legendre di�erential operator as

L̂m 
 9=
�
1� c2

� d2

dc2

 �2c d

dc

 � m2

1� c2

 . (4.63)

The lower index `m' stresses the fact that L̂ depends on the azimuthal wavenumber m but

not on the parameter l. This de�nition is used to redraft (4.58) as the following eigenvalue

equation associated with the operator L̂

L̂mP m
l = �l (l � 1)P m

l . (4.64)

Hence we see that the associated Legendre functions tP m
l (c)u are the eigenfunctions of

the operator L̂ with eigenvalues equal to εl = �l (l � 1).

The next step is to derive the velocity components. As the corresponding calculations

are of no interest for the physics but purely technical, the interested reader is referred

to Appendix O for a detailed derivation. Let us go straight to the general form of the

Lamb's solution in the upper half � space c P [0, 1] :

� Pressure :

p (r, c, ϕ) =
�8̧

l=1

�8̧

m=�8

1

rl�1

2 p2l � 1q
l � 1

π(lm) Y m
l (c, ϕ) . (4.65)

� Radial velocity :

vr (r, c, ϕ) =
�8̧

l=1

�8̧

m=�8

1

rl

�
π(lm) Y m

l (c, ϕ)� ρ(l�2,m) Y m
l�2(c, ϕ)

�
. (4.66)
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� Polar velocity :

vθ (r, c, ϕ) =
ψ(10)(0)

2r
c

c
1� c

1� c

�
�8̧

m=�8
(m�0)

1

rs

�
1

6
pm� 2q π(1m) Y m

2 (c, ϕ)� p1�mq ρ(�1m) Y m
1 (c, ϕ)� σ(0m) Y m

0 (c, ϕ)

�

�
�8̧

l=2

�8̧

m=�8

1

rl

�
l � 2

l pl � 1q π(lm) s
∂Y m

l (c, ϕ)

∂c
� ρ(l�2,m)

l � 1
s
∂Y m

l�2(c, ϕ)

∂c

� imσ(l�1,m)

s
Y m
l�1(c, ϕ)

�
. (4.67)

� Azimuthal velocity :

vϕ (r, c, ϕ) =

�
�8̧

m=�8
(m�0)

1

r

is

m

�
1

6
pm� 2q π(1m)

∂Y m
2 (c, ϕ)

∂c
�p1�mq ρ(�1m)

∂Y m
1 (c, ϕ)

∂c
�σ(0m)

∂Y m
0 (c, ϕ)

∂c

� π(1m)Y m
1 (c)� ρ(�1m)Y m

0 (c)

�
�

�8̧
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We have introduced generalised spherical harmonics de�ned as Y m
l (c, ϕ) 9=P m

l (c) eimϕ.

We remind that the explicit forms of the associated Legendre functions are provided

in Appendix N, if needed. Also note that the generic integration constant σ(l�1,m) has

been rede�ned making a prefactor im appear explicitly (the latter originates in fact from

∂ϕY m
l ), so as to obtain a form more in line with the usual writing of the Lamb's solution.

Both angular velocity components are split into several parts : �rst the (lm) = (10)

part of the solution which required a separate analysis, followed by the generic states

(lm) = (1m)m�0 and ultimately the whole remaining part for l ¥ 2, @m. The (10) � term

of the polar velocity is given under the simpli�ed form we end up with once all boundary

conditions are applied. Besides, one remembers that axisymmetry imposes σ(00) = 0 which

explains why no (10) � term appears in the expression of the azimuthal velocity.
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4.3.4 Comparison with precursor works

The above derivation evidences that the `hemispherical' solution to the Stokes equation

contains the classical Lamb's solution [61], plus supplementary terms only regular in the

half � space c P [0, 1]. Actually, some of these additional terms have been already discussed

in previous works and we now verify that our results are consistent with these studies.

The far � �eld axisymmetric solution (lm) = (10)

To our knowledge, the far � �eld axisymmetric solution (lm) = (10) was �rst derived by

Bratukhin and Maurin in their work [60] (see also [3] � [59]), more than half a century

ago. Our own analysis yields the velocity components

vr, (10)(c) = ρ(�10) p1� 2cq ,
vθ, (10)(c) = ρ(�10)

cs

1� c
,

(4.69a)

(4.69b)

which turn out to be exactly the same expressions as those of Eq. (4.1) in ref. [3].

The dipolar solution (lm) = (21)

Another salient state is the dipolar solution (lm) = (21) whose velocity components write

vr, (21)(c) = π(21)P 1
2 (c)� ρ(01)P 1

0 (c) =
1

s

�
ρ(01) �

�π(21)

2
� ρ(01)

	
c� π(21)

2
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�
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(4.70a)

(4.70b)

(4.70c)

the latter being deliberately given in these unusual forms to allow for direct comparison

with the expressions found in [3] (adapted to our notations)

vr, (21)(c) = t3
1

s

�
1� c3

�� t4 cs =
1

s

�
t3 � t4 c� pt4 � t3q c3

�
,

vθ, (21)(c) = t5 � t3
1� c

,

vϕ, (21)(c) = �i
�

t3
1� c

� t5 c

�
.

(4.71a)

(4.71b)

(4.71c)
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As we can see, there exists a perfect matching between both sets of expressions (4.70)

and (4.71) if one makes the following identi�cation between coe�cients

t3 = ρ(01) ,

t4 = �π(21)

2
� ρ(01) ,

t5 =
iσ(11)

2
.

(4.72a)

(4.72b)

(4.72c)

4.3.5 Representation of the �ow modes

In this part, we focus our attention on the axisymmetric �ow state (lm) = (10) and

on the non � axisymmetric �ow state (lm) = (21). In order to specify the `hemispherical'

Lamb's solution in our physical framework, we �rst apply the no � �ux interfacial boundary

condition (4.17c) followed by the couple of Marangoni conditions (4.17a) � (4.17b) which

introduce the quantities
 
ψ(lm)(0)

(
, namely the temperature magnitudes at the interface.

Since the latter surely play a key role in the scenario of the instability, relating the

integration constants
 
π(lm), ρ(l�2,m), σ(l�1,m)

(
to the

 
ψ(lm)(0)

(
is essential. In a second

step, each �ow state is plotted in the horizontal plane (xOy) of the interface as well as in

the cross � sectional plane (xOz) prior to superimposing both states (10) and (21).

Application of the interfacial boundary conditions

Axisymmetric �ow state (lm) = (10)

Let us start with the generic expression of the velocity vector v(10)(r, c)

v(10)(r, c) =
1

r

������������

π(10) c� ρ(�10)

�π(10)

2
s� ρ(�10)

c
1� c

1� c

σ(00)

c
1� c

1� c

�����������

per, eθ, eϕq

. (4.73)

The no � �ux interfacial boundary condition (4.17c) immediately yields the relation among

constants π(10) = �2ρ(�10). The `r �Marangoni' boundary condition (4.17a) then states

that π(10) = �ψ(10)(0), while the `ϕ �Marangoni' condition (4.17b) leads to σ(00) = 0 in

compliance with axisymmetry. So we have
 
π(10), ρ(�10), σ(00)

(
=
 �ψ(10)(0), ψ(10)(0)/2, 0

(
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and the velocity components (4.73) then simplify to

v(10)(r, c) =
ψ(10)(0)

2r

�����
1� 2c

c

c
1� c

1� c

0

����

per, eθ, eϕq

. (4.74)

Non � axisymmetric �ow state (lm) = (21)

The generic expression of the velocity vector v(21)(r, c, ϕ) writes

v(21)(r, c, ϕ) =
eiϕ

r2

�������������

π(21)

2
cs� ρ(01)

c
1� c

1� c
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. (4.75)

In this case, the no � �ux condition (4.17c) yields σ(11) = �2iρ(01). The `r �Marangoni'

condition (4.17a) gives next π(21)/2�ρ(01) = �2ψ(21)(0), supplemented by ρ(01) = ψ(21)(0)/2

from the `ϕ �Marangoni' condition (4.17b), so that we end up with
 
π(21), ρ(01), σ(11)

(
= �3ψ(21)(0), ψ(21)(0)/2,�iψ(21)(0)

(
and the velocity components (4.75) hence reduce to

v(21)(r, c, ϕ) =
ψ(21)(0)

2r2

������������

�p3c2 � 3c� 1q
c

1� c

1� c
cosϕ

c

1� c
cosϕ

�c
2 � c� 1

1� c
sinϕ

�����������

per, eθ, eϕq

, (4.76)

where only the real part of the velocity vector has been kept (keeping instead the imaginary

part simply amounts to rotating the �elds by an angle �π/2).

Plotting the �ow states

Here are plotted in the interfacial plane (xOy) as well as in the vertical cut plane (xOz)

the streamlines corresponding to the �ow modes (10) and (21). Separate plots are �rst

displayed, followed by plots of the superposed state t(10)� (21)u. Each time, a density
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plot of the velocity norm is also shown so as to provide an insight into the variation of

the �ow intensity along these planes. The plots are realised with Wolfram Mathematica's

functions `StreamPlot' and `DensityPlot' which, as a preliminary step, require converting

all velocity components into cartesian coordinates (see Appendix P for details).

Axisymmetric �ow state (lm) = (10)

Unsurprisingly, this mode is axisymmetric with a surface �ow consisting of diverging

streamlines and a bulk �ow consisting of what is seemingly a pair of counter � rotating

vortices (Fig. 4.3). However, since an unbounded medium is considered theoretically,

these vortices close at in�nity. By virtue of axisymmetry, the `�ow slices' have the same

morphology in any cut plane around the vertical axis (Oz). Therefore, the overall �ow

structure is that of a torus whose revolution axis is centred on the source located at the

origin (not sketched on the plots). The �ow axisymmetry is also re�ected in the interfacial

velocity norm whose map exhibits concentric circles of declining intensity. An ascending

column of accelerated liquid, similar to the one observed experimentally, is evidenced by

the map of the velocity norm displaying a plume � like shape beneath the source.

Figure 4.3: Maps of the streamlines (arrows) and the velocity norm (density plot)

associated with the �ow state (10) in the interfacial plane (xOy) (left �gure) and

the vertical cut plane (xOz) (right �gure). The abscissa is �10 ¤ x ¤ 10 and the ordinate

�10 ¤ y ¤ 10. For convenience, we choose positive values of z in the range 0 ¤ z ¤ 10 (water �lls the

upper half � space). Values on the colour scales are dimensionless.
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Non � axisymmetric �ow state (lm) = (21)

Here the axisymmetry of the �ow is clearly broken, with a preferential direction along

the mirror symmetry axis of the interfacial dipole (Fig. 4.4). Remarkably, on the bulk

view, a `third vortex' seems to emerge in the middle of the original torus (compare with

Fig. 4.3). On top of that, streamlines located to the left of the point source are now

oriented rightward. Such a �ow reversal may be caused by various sources of asymmetry

(sec. 2.6). Curiously, whereas this �ow mode (21) is evidently non � axisymmetric, the

distribution map of its velocity norm keeps an axisymmetric structure.

Figure 4.4: Maps of the streamlines (arrows) and the velocity norm (density plot)

associated with the �ow state (21) in the interfacial plane (xOy) (left �gure) and the

vertical cut plane (xOz) (right �gure). Same comments as above.

Superposed state t(10)� (21)u

Fig. 4.5 shows the superposed �ow state t(10)� (21)u. The �ow is dipolar close to the

source and tends to an axisymmetric shape (Fig. 4.3) at in�nity. Contrary to the `pure

dipole' of Fig. 4.4, the streamlines enveloping the present dipole seem `brushed back' with

a `polarisation tail' pointing towards the region xÑ �8. This asymmetry also appears in

the distribution of the velocity norm whose density plot exhibits a potato � shaped central

region of high velocity `squashed' in its rear part, and a localised area of minimum velocity

in the back of the dipole. When plotting the total state t(10)� (21)u, the same weight has

been arbitrarily given to both the axisymmetric (10) and the dipolar (21) contributions

(Appendix P). By changing the amplitude of either component, one can exacerbate either

the axisymmetric or the dipolar �ow without modifying the general aspect of the maps.
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Figure 4.5: Maps of the streamlines (arrows) and the velocity norm (density plot) of

the superposed �ow state t(10)� (21)u in the interfacial plane (xOy). Here the abscissa

is �2.5 ¤ x ¤ 2.5 and the ordinate �2.5 ¤ y ¤ 2.5. Dimensionless colour scale.

4.4 First steps towards grasping the instability

In this section, we make a short presentation geared to preparing the ground for the

capture of the instability. Now that the exact solution to the (V, Θ) � coupled problem

in the far � �eld axisymmetric regime (lm) = (10) has been derived, we should perform

its stability analysis. More precisely, the point is to probe the stability of the base �ow

(lm) = (10) in response to azimuthal perturbations.

The main di�culty lies here in �nding a correct approach to perform the stability

analysis of the advection � di�usion heat equation :

� Let us introduce time � dependent amplitudes in the ansatz forms (4.54) of the �elds.

Considering then the complete, unsteady, advection � di�usion equation yields the

following balance of powers of 1/r

Pe ( ∂tvloomoon
� 1/rl

� vloomoon
� 1/rl

. ∇ϑloomoon)
� 1/rl�1loooooooomoooooooon

= 1/r2l�1

= ∇2ϑloomoon
� 1/rl�2

.

For this time � dependent equation to admit a solution, all the terms on its left as

well as on its right side must share in common the same radial dependence, which

imposes the constraint l = 2l � 1 = l � 2. However, it is easy to be convinced that
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there exists no value of l satisfying both equalities simultaneously. We ought to

conclude that trying to solve `order � by � order' the unsteady advection � di�usion

equation is doomed to failure. Instead, one shall insert in the above equation the

full series (4.54) de�ning the �elds, next couple modes until a perfect matching of

the radial powers is obtained, and �nally solve the ensuing equation if possible. In

the �rst instance, however, we waive such a stability analysis.

� Turning back to the steady advection � di�usion heat equation, we are left with

Pe vloomoon
� 1/rl

. ∇ϑloomoon
� 1/rl�1looooooooomooooooooon

= 1/r2l�1

= ∇2ϑloomoon
� 1/rl�2

.

Here the `matching condition' which writes 2l � 1 = l � 2 is ful�lled only for l = 1.

One thus sets perturbative �elds scaling as 1/r. Examining the linear stability of

far � �eld perturbations is what Shtern et al. did in [59]. If the perturbation of the

base �ow state (pv, pϑ) (expressions (4.36) and (4.45)) by generic non � axisymmetric

states (1m)m�0 does not trigger the instability, one should then try to destabilise

it with higher � order non � axisymmetric states (2m)m�0 , (3m)m�0 and so on. This

approach is not forbidden by the above equation. Indeed, considering a velocity �eld

v � 1/rl and a temperature �eld ϑ � 1/r
rl leads to the condition l � rl � 1 = rl � 2

which holds @rl provided that l = 1.

4.5 Discussion

In this chapter, we essentially derived the solution to the incompressible Stokes equation

within a half � space. We saw how the classical Lamb's solution shall be generalised in this

approach : restricting the solving to a half � space yields the relaxation of the constraint

m P J�l, l K and thus the substitution of the associated Legendre polynomials tP m
l (c)u by

associated Legendre functions tP m
l (c)u de�ned also for |m| ¡ l. The on � axis singularity

in cs = 1 is tackled by a regularisation process consisting in an adequate factorisation of

c � dependent polynomials.

Moreover, we derived the far � �eld axisymmetric (lm) = (10) solution to the nonlinear

(V, Θ) � coupled advective problem. The latter models the axisymmetric �ow observed

experimentally under slight heating conditions. A future work on our route towards a

theory of the instability would be to study the response of this ground state to azimuthal

perturbations. Still, the present case is complicated by the special way powers of 1/r
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are related through the advection � di�usion heat equation, entailing a strategy di�erent

from a standard linear stability analysis based on studying the sign of a time/spatial �

dependent growth rate. Intriguingly, the stability analysis carried out by Shtern and

Hussain in [59] does not predict the onset of a dipolar �ow state (m = 1). According

to their work, the quadrupolar �ow (m = 2) is the �rst unstable mode rather than the

dipole. Anyhow, deriving the `hemispherical' Lamb's solution was a preliminary step that

provided us with non � axisymmetric �ow states to serve as perturbative �elds.

The fundamental �ow states (10) and (21) plotted in sec. 4.3.5, though unveiling in a

promising way the existence of multipolar modes in the `hemispherical' Lamb's solution,

still di�er from the �ow patterns observed experimentally. This is actually not surprising

since the current theoretical model is far from grasping the whole intricacy of the real

system, e.g. it does not take into account the (almost) unavoidable presence of surface �

active impurities adsorbed on the water/air interface, nor does it address the generation

of counter�ows due to liquid con�nement in our small experimental cell ...

To �nish, it should also be stressed that the no � �ux and the Marangoni boundary

conditions are insu�cient for expressing all integration constants
 
π(lm), ρ(l�2,m), σ(l�1,m)

(
in terms of the interfacial temperature amplitudes

 
ψ(lm)(0)

(
. For instance, they do not

yield any information regarding the constants π(11) or π(22). To �x this issue, one should

add a near � �eld boundary condition in the model, presumably the no � slip condition on

the surface of the hot bead which is then considered a spherical particle of �nite radius a.



Conclusion

In this thesis, we studied the �ow that a point source generates at the water/air interface.

Given the rotationally invariant geometry of the system, one naturally expects a purely

radial �ow. Such a �ow exists, but is only the `ground state'. As soon as perturbations

become su�ciently strong, the axisymmetry of the base �ow is broken giving place to

pairs of counter � rotating vortices periodically distributed all around the source.

This azimuthal instability can be observed using various setups that are all based on

axisymmetrically � fed surface �ows. We reviewed in the literature systems that harness

the Marangoni e�ect, either chemical or thermal. The most common process uses some

surface active material injected at a point of the interface or under it : a centrifugal �ow

is created this way through the chemical Marangoni e�ect [4, 5, 6, 7, 48, 67, 68, 69, 70].

An alternative option to induce a divergent �ow at the water surface consists in heating

the interface locally so as to generate a thermally driven Marangoni �ow [71] � [74].

As pointed out several times in this work, a key ingredient is here the state of the

water/air interface under practical conditions. One cannot explain the hydrodynamic

responses observed in the experiments without taking into account surfactant molecules

adsorbed on the real interface. The surfactant elastic layer resists the centrifugal �ow,

which results in remarkable consequences : at low forcing, very weak �ows develop on the

interface and the latter may be even completely blocked; yet the interface unfreezes under

strong enough forcing conditions, which gives rise to multipolar �ow patterns, the most

basic one being a dipole formed by a pair of counter � rotating vortices.

Similar hydrodynamic multipoles have already been reported by a few authors on the

occasion of various experiments [4] � [7], and even accidentally sometimes [49]. However,

to date, there exists no sound theory of this instability in the literature. The phenomenon

147
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investigated here is a priori very intricate as it involves the surfactant concentration Γ

and the temperature Θ �elds that are both coupled to the �ow velocity V [75] � [79].

In this thesis, we contributed to the understanding of this general problem through

addressing speci�c points. We designed two original experiments while, on the theoretical

level, we focused on the ideal case of a thermocapillary �ow devoid of surfactants.

Our water jet experiment (chapter 2) is certainly the most simple realisation of a

divergent �ow one may imagine. Its implementation is quite easy, this experiment being

also `minimalist' in the sense that it only couples the surfactant concentration Γ to the

�ow velocity V. Despite its great simplicity, it seems we have been the �rst to use such

a tool for probing the elastic response of the surfactant � laden interface. We have learnt

many things from this experiment, especially the following points :

� At low jet speed Vinj, the interface is blocked and the �ow, which is con�ned to the

bulk, takes the form of a torus centred on the axis of the source. We have seen

that the morphology of the base �ow as well as its dimensions are well captured

by the recent theory of Bickel et al. and the numerical simulations performed by

J-C. Loudet [45]. The fact that the �ow features are explained by the presence of a

surfactant layer at the interface is now well established.

� Above a threshold injection speed V �inj, the axisymmetric base �ow is destabilised

and the �ow becomes dipolar. The interface unlocks along the median axis of the

dipole vortex pair, which is a region of high velocity. We characterised the dipolar

�ow measuring the maximum velocity Vmax along the interface. We have shown that

Vmax plays the role of an `order parameter' which quanti�es the magnitude of the

dipole. Surprisingly, the value of Vmax seems to depend solely upon the injection

speed Vinj, and not on the distance H separating the injector from the surface.

This result is very counterintuitive, to such an extent that we do not know how

to interpret the unlocking of the interface. It will be of utmost importance to see

whether the upcoming theory of the instability grasps this point.

The originality of our hot bead experiment (chapter 3) lies in the way we implement

it, with a laser � heated carbon microbead stuck onto the end of an optic �bre. From

a qualitative point of view, the heating power P plays a role analogous to the injection

speed Vinj in the jet experiment, and strong similarities exist between the �ow structures

observed at varying P or Vinj. A thermocapillary convection torus appears under low

heating conditions and is replaced by multivortex �ow patterns at higher heating levels.
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Still, we did not observe a complete blockage of the interface : the surface �ow velocity

is not zero but decreases as 1/r2 at low temperatures. Besides, the thermocapillary �ow

we observed at high powers was often quadrupolar. According to our observations, the

`torus � to �multipole' transition occurs at some �nite P but the system's behaviour is

strongly hysteretic and the �ows may vary a lot from one experiment to another, to such

an extent that we are not able to construct a graph of Vmax in function of P that would

be the thermal counterpart of what we plotted in the jet experiment.

The hot bead setup is rather easy to operate but o�ers a poor level of reproducibility.

It must be noted that thermal excitation couples the �elds V, Θ and Γ, leading to a

higher level of complexity compared with the jet con�guration. We probed the coupling

between V and Γ through the elastic response to laser shutdown of the surfactant � laden

interface, and also the `hydrothermal' coupling (V, Θ) by the simultaneous observation of

both the surface �ow and the temperature maps. We checked that the streamlines align

with the isotherms at high power P , which is the behaviour predicted by the theory when

heat is essentially transported through advection, i.e. at large thermal Péclet numbers.

The advective coupling between V and Θ is the nonlinear framework we focused on in

the theoretical part of the thesis (chapter 4). We derived an exact solution to this problem

in the case of a pristine interface (Γ = 0). We have shown that a point heat source sitting

across the water/air interface can trigger di�erent �ow modes. The purely radial �ow

appears as the `fundamental mode' independent of the azimuth ϕ. On the contrary, the

structures of the `excited modes' explicitly depend on ϕ. We insisted on the particular

mode (21) whose �ow pattern recalls the vortex dipoles observed experimentally.

The reader has understood that explaining this instability is a di�cult matter and that

we are far from a complete theory of this phenomenon. The theory shall reproduce the �ow

structures observed in the experiments as elementary solutions of the governing equations

and provide a detailed analysis of their stability. Numerical simulations may be a powerful

tool in parallel with the theory but are also very di�cult to achieve. Major e�orts are

needed to go further and the road promises to be long and winding, but it is worth taking

on the challenge given the `universality' of this instability. To be convinced of this, one

just has to glance at the examples gathered in Fig. 4.6. One notes that this instability

appears over a broad spectrum of length scales and in a wealth of practical situations,

from the optical manipulation of heat absorbing microparticles [2] to the stunning vortical

structures generated by a bubbly column in a champagne glass [50, 51].
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Figure 4.6: A universal instability. The azimuthal instability studied in this work is observed in

a wealth of practical situations, with a typical vortex size that can range over at least four decades. (A)

Laser � induced quadrupole around an optically trapped microsphere at the water/air interface [2]. (B)

Quadrupolar �ow pattern developing on the surface of a laser � illuminated solution of photoswitchable

surfactants [80]. (C) Example of a quadrupolar surface �ow arising in our laser � heated carbon bead

experiment. (D) A dipole observed in our submerged jet experiment. (E) A quadrupolar pattern of 2D

convective cells forming on the surface of champagne poured into a �ute [50, 51]. (F) Quadrupole created

by a thin air jet perpendicularly impinging the surface of a horizontal soap �lm [49]. (G) Marangoni �

driven octupolar �ow on a surfactant � enriched water bath [4].
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According to our observations, controlling both the nature and amount of surfactants

adsorbed at the water/air interface is the prime area for improvement. Unfortunately, we

cannot do much better with our setups, primarily due to contaminants inevitably present

in the ambient air. The production of `zero surfaces', namely surfaces pure from molecules

of foreign substances, is a delicate a�air. One attempt in this direction is to work with

silicone oil instead of water [5, 57], the latter being less prone to contamination owing to

its lower surface tension. As for us, inspired by the `blowing' experiment of Couder et al.

([49], § 4), we propose an alternative to our water jet setup that consists in hitting the

interface perpendicularly with a jet of an inert gas, e.g. argon, in a neutral atmosphere.

One major asset of this approach is to dispense us from using pipes and syringes that are

important sources of contamination. In future experiments, it will also be worth grafting

the Milli �Q water puri�cation system directly onto the setup, to avoid contaminating

the interface during the transport of the sample from one room to the other. We hope

to attain this way purity levels comparable to those set in Langmuir �Blodgett throughs,

where the amount of surfactant material adsorbed at the interface is �nely controlled.

To conclude, the take � home message of this thesis is that even traces of a surfactant

can alter surface tension driven �ows at the water/air interface and set the elasticity

conditions for the onset of the instability. In that respect, this work is complementary

to the wealth of experimental and theoretical studies recently performed in a geometry

similar to that of our water jet experiment [6, 67, 68]. Besides, this thesis contributes

to a better understanding of how a free hot microsphere con�ned to a liquid surface can

morph into an active particle able to self � propel at large speeds, through harnessing the

vortex pairs intrinsic to the azimuthal instability it has induced. Our hot bead experiment

might also serve as a `toy model' to better apprehend the swimming of microorganisms.

Finally, despite their apparent simplicity both systems explored in this work still harbour

a plethora of amazing phenomena.
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Appendix A
Complementary information on the setups

A.1 Dimensions of the di�erent parts of the setups

Either a small or a large cell is used (Fig. A.1). The wider cell serves us to study whether

the instability is due to �ow con�nement (sec. 2.5.1). The cells and the glass lid are made

of optical glass. The tank has an inner diameter I in
t 69.5mm and a height ht = 42mm.

Its cover is pierced for passing the pumping pipe therethrough. The injection tube has an

inner diameter I in
inj 0.55mm� (outer diameter I out

inj 0.8mm). An outlying tube of same

diameter is �ush with the bottom of the cell to drain liquid while disturbing the bulk �ow

as little as possible. The hydraulic circuit consists of a 1.3mm thick silicon tygon tubing.

In the `head � to � tail syringes' setup, a pair of 2mL capacity syringes (purchased from

Chance) with an inner diameter I in
s 8.9mm is used.

Figure A.1: Dimensions of the small (a) and large (b) cells (not to scale). Diameters

and heights expressed in mm. The injection nozzle (i) has an inner diameter I in
inj 0.55mm.
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�Nota bene : The inner diameter of the injection nozzle is more precisely 546�10µm. This

incertitude is obtained by a circular �t of the nozzle on microscopy images (Fig. 2.36).

A.2 Typical values of the control parameters

A broad range of gap values is explored in the `gravity �ow' setup, from slightly positive

H � 0.1mm up to H � 1 cm. Experiments at small H � 0.25mm, moderate H � 1mm

and big H � 2.5mm gaps are conducted in the `head � to � tail syringes' con�guration.

The `gravity �ow' setup supplies injection rates Qinj in the order of a few mm3/s (detailed

calculation of Qinj provided in Appendix B), that is injection speeds Vinj of a few cm/s.

A bit more intense jet �ows are generated with the syringe pump : here Qinj ranges from

1.67mm3/s up to 33.33mm3/s, corresponding to Vinj in the interval 0.7� 14 cm/s.

A.3 Special precautions

Special care has to be taken with the `head � to � tail syringes' setup. The latter main

drawback is the di�culty to remove air bubbles that nucleate within the syringe bodies and

the �exible pipes. Bubbles must be wiped out clearing the pipes thoroughly so as to inhibit

parasitic pressure di�erences that would cause the plungers to move irregularly. Moreover,

stick � slip issues appear at low injection rates. Another limitation while working with the

syringe pump is the short experiment time, not exceeding the few minutes needed for the

translating part of the apparatus to reach the mechanical stop.



Appendix B
The injection rate Qinj in the `gravity �ow'

con�guration

B.1 General presentation

In the `gravity �ow' con�guration, the calculation of the injection rate Qinj is a problem

of �lling/emptying a container. Because of the close � loop functioning of our hydraulic

circuit, any variation of the liquid level in the cell results from the combined e�ects of

injection and pumping : when injection is stronger (resp. weaker) than pumping, the level

of liquid in the cell increases (resp. decreases) with time. The quantity Qgap = S pdH/dtq
(S : cross � sectional area of the cell) takes both evolutions into account, being positive or

negative according to whether the gap H increases with time dH/dt ¡ 0 (resp. decreases

with time dH/dt   0). The value of Qgap is set �xing the height di�erence ∆ between

the liquid levels in the cell and in the reservoir.

Let Qinj be the injection rate we want to calculate and Qpump the pumping rate.

Injection (resp. pumping) is a gain (resp. a loss) of liquid for the system. The outcome

∆Q = �Qinj � Qpump between what the system gains and what it looses corresponds

precisely to Qgap , so that we end up with the relation

Qinj �Qpump � Qgap = S
dH

dt
. (B.1)

If H increases with time then dH/dt ¡ 0 leading to Qinj ¡ Qpump as expected. If H

decreases with time, this means dH/dt   0 and corresponds to the case Qpump ¡ Qinj.

Let us treat an example to get a better idea of how Qinj is computed. The calculation

is divided into two main stages :
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� Calculation of Qgap

The calculation of Qgap is based on the time tracking of the gap. The graph H(t)

reveals that the gap evolves linearly with time. Fig. B.1 shows an example of the

regular decrease of the gap for an experiment lasting nearly �fty minutes. A linear

�t yields the negative slope value dH/dt � �0.13mm/min. With a cross � sectional

area S of our cylindrical cell S = πR2 � 962mm2, we obtain Qgap � �2.02mm3/s.

Figure B.1: Time evolution of the gap H.

Remark: Most of the time, we make the approximation dH/dt � ∆H/∆t exp =

pHf �Hiq /∆t exp with Hi and Hf the initial and �nal values of the gap, and ∆t exp

the experiment time. Although this a rough approach compared with meticulously

tracking the gap over a long time, it captures the right order of magnitude of Qgap.

� Calculation of Qpump

The calculation of the pumping rate Qpump is based on the counting of the average

number of droplets Nd the peristaltic pump discharges in the tank per unit time. In

fact, the numbers �xed on the pump control box (denoted PR for `Pumping Rate')

are related but not identical to the true pumping rates Qpump. A complementary

experiment is hence needed in order to determine Nd for a whole set of `pumping

rates' PR. A linear relationship is evidenced between these two quantities (Fig. B.2).

A linear �t yields the slope value ∆Nd /∆(PR) � 0.1, meaning that on average one

droplet more falls in the tank each time the pumping rate is increased by ten units.
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Figure B.2: Average number of droplets Nd released in the tank every minute in

function of the pumping rate PR .

The pumping rate is PR = 150 in the experiment considered here. One reads on

Fig. B.2 the value Nd = 20 for PR = 150. We still have to express this volume rate

in mm3/s. This is possible thanks to a preliminary experiment in which a container

is used to collect a known number N of droplets. This amount of N droplets is

weighed to deduce the mass md of a single droplet. We �nd md � 29.7mg. It is

then straightforward to determine the total mass of Nd = 20 droplets. With the

density of water ρwater = 103 kg/m3, one obtains Qpump � 9.90mm3/s.

Eq. (B.1) yields Qinj � 9.90 � 2.02 � 7.9mm3/s. The injection speed is Vinj = Qinj/s

(s : cross � section of the injector, s = πr2
inj � 0.238mm2). One �nds Vinj � 3.3 cm/s, a

value typical of the injection speeds attainable in the `gravity �ow' setup.

B.2 Increasing/decreasing gap experiments

In our con�guration, pumping balances injection almost exactly, so that a slow variation

of the gap |dH/dt| � 0.1mm/min is imposed yielding |Qgap| � 1.6mm3/s. Pumping

rates Qpump set in the increasing gap experiments are in the range (9.9�11.9)mm3/s and

(14.4� 16.8)mm3/s in the decreasing gap experiments. We get an injection speed Vinj �
5.25 cm/s (resp. Vinj � 5.88 cm/s) in the increasing (resp. decreasing) gap experiments.



Appendix C
Technical information on �ow visualisation

The exposure time (ET), i.e. the time over which the camera sensors are lit, is another

parameter that must be tuned. The latter is �xed according to FPS ¤ FPSmax = 1/ET,

FPSmax being the maximum attainable frame rate (for example, if ET = 0.04 s, it is

impossible for the camera to run at a frame rate faster than 1/0.04 = 25 images/s). The

ORCA-�ash camera o�ers exposure times from 20µs up to 10 s, while the exposure times

of the C5985 camera are in the range 1/10 s� 300 s. To ensure su�ciently bright images

one can either increase the exposure time, but this restricts even more the maximum

frame rate, or simply increase the gain (magnitude of light ampli�cation). Scale bars are

obtained from calibration (table C.1). The X and Y calibrations di�er on the side views

but are identical on the top views. In fact, the cell is astigmatic because of its curved

sidewall having unequal curvatures in two perpendicular planes about the optical axis.

This default of rotational symmetry results in two distinct foci. The tracer particles are

thus imaged as lozenges rather than bright spots, especially those located far from the

optical axis. A correction lens (CL) is placed between the sample and the side camera

to �x this issue (Fig. 2.4). This improves the quality of the pictures but a slight length

distorsion between the X and Y directions remains, which explains the above discrepancy.

TC : C5985/SC : ORCA�ash-2.8 TC : ORCA�ash-2.8/SC : C5985

Top views 37.81µm/pix (par= 1) 52.08µm/pix (par= 1)

Side views 33.04µm/pixX (par� 1.142) 31.90µm/pix (average)

Figure C.1: Calibrations of the cameras. TC : top camera/SC : side camera. `par' : `pixel aspect

ratio'. par � 1.142 corresponds to X� pixels (pixX) and Y�pixels (pixY) such that pixY/pixX � 1.142.

`average' indicates that the corresponding scale is obtained by averaging both X and Y calibrations.
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Appendix D
Complementary information on dye injection

We �rst detail the way dye injection experiments are realised. Then we comment on the

correlation between the `coloured cloud' and the underpinning hydrodynamic structure.

D.1 Practical details

Dye injection slotting the end of a pipette into the drainage tube at the bottom of the

tank causes an overpressure that strongly disturbs the multipolar �ows. To bypass this

issue, we design a minicup with a hole drilled into its bottom to �t it to the drainage

tube. Fluorescein is injected in the cup which channels most of the colouring until it gets

aspired by the drainage tube and �ows out in the cell (Fig. D.1).

Figure D.1: The minicup. (mp) : micropipette ; (MC ) : minicup ; (dt) : drainage tube ; (T) : tank.
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Two observation modes are implemented (Fig. D.2) : a volume lighting (�g. a) and

laser tomography (�g. b).

� Volume lighting � The cloud is uniformly illuminated by blue laser light supplied by

a Coherent Innova 300 argon ion laser source (λAr = 488 nm, 60mW) and guided by

a multimode �bre. Speckle noise, which gives the emitted light a granular aspect,

is suppressed shaking the �bre with a vibrator at a su�ciently high frequency.

Fluorescein shines bright green under ultraviolet lighting. The main absorption and

emission peaks appear in water at λabs = 494 nm and λem = 521 nm, respectively.

Projections of the coloured cloud volume are captured by the cameras. Either the

top camera (TC) or the side camera (SC) can be replaced by a digital re�ex camera

(model Nikon D300, settings : ISO 1000, high sensitivity for photography in dark

environments; shutter speed 1/15 s with aperture iris diaphragm at f/5.6; camera

lens f85mm+ close � up lens, namely a convergent lens used for macro photography)

to take high � resolution colour photographs of the cloud (scales : 11.45µm/pix, with

par = 1, for the top views and 8.83µm/pixX, with par � 1.082, for the side views).

� Laser tomography � Another way of looking at the coloured cloud is through a top �

down scanning of its structure. This technique called tomography yields additional

information as slices of the cloud are now obtained instead of projections.

The volume lighting is turned into a horizontal laser sheet vertically displaced by

a motor connected to a low frequency signal generator (Agilent's 33210A model, 10

MHz function/arbitrary waveform generator). A ν = 140mHz square �wave signal

is selected. This way, it takes Tsweep = p1/2q � p1/νq � 3.57 s to sweep the coloured

structure from top to bottom. In steady state, the coloured structure extends over

depths not exceeding twice the gap, that is a few mms, whereas the laser sheet travels

a distance ∆h = 11mm thus sweeping the whole coloured cloud. The success of such

a laser sweeping experiment relies on one's ability to ensure uniform illumination as

well as very regular motion of the laser sheet. One also needs to make sure that the

sweeping velocity Usweep is neither too fast nor too slow. If Usweep were to be too

fast, one would obtain a poor spatial resolution of the coloured structure with a 3D

reconstruction based on an insu�cient number of frames. Conversely, if Usweep were

to be too slow, the risk would be that some signi�cant change in the shape of the

coloured cloud occurs before sweeping is completed.

Finally, a 3D reconstruction is achieved using the plugin `Volume Viewer' from

ImageJ (the structure associated with a dipolar surface �ow is presented in sec. 2.3.2).
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ImageJ creates a stack in which an `altitude' is assigned to each frame, so that two

successive slices are separated by a distance δz de�ned as the ratio of the travelling

distance ∆h = 11mm of the laser sheet over the sweeping time Tsweep = 3.57 s to

the total number of recorded frames Nframes = FPS � Tsweep = 45.4 � 3.57 � 162.

One �nds δz = ∆h/Nframes � 67.90µm. The reconstructed volume is thus a cluster

of δx δy δz = p52.08� 52.08� 67.90qµm3 voxels (3D pixels).

Figure D.2: Dye injection experiments. (a) Projection views obtained via a volume lighting of

the coloured cloud. (b) Laser tomography to cut up the coloured structure into slices. (L) and (LS) :
blue laser light source and laser sheet, respectively. (TC) and (SC) are the top and the side cameras.

(DC) is a digital camera used to capture high � resolution colour photographs of the cloud.

D.2 Comments on transport mechanisms

In the dye injection experiments, the coloured cloud undergoes (1) advection, (2) thermal

agitation which causes molecular di�usion and (3) gravity responsible for sedimentation.

In an ideal experiment, the cloud subject to the sole action of (1) traces the �ow structure

faithfully. Still, (2) and (3) cannot be ruled out in actual experiments, which introduces

some discrepancy between the coloured cloud and the hydrodynamic structure it covers.

On the one hand, sedimentation makes the cloud collapse. This e�ect is delayed using

a `light' �uorescein solution. For instance, with a concentration CFluo = 4 � 10�4 mol/L

the sedimentation � limited time is τsed � 1min. Let τ feed be the typical feeding time over
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which dye is supplied to the bath. Writing that s Vinj τ feed = Vcolor (s = πr2
inj � 0.238mm2,

area of the injection nozzle ; Vinj � 1 cm.s�1, typical injection speed and Vcolor � 200µL,

injected volume of dye), one �nds τ feed � τsed � 1min. The cloud is thus fully visible

over a convenient time ∆t � 1min , a crucial point for a correct analysis of its morphology.

On the other hand, di�usion makes the cloud blurry. Let L be the typical distance

separating two structural elements we shall di�erentiate in order to �gure out the cloud

shape properly. Our observations yield L = 1mm. If the colouring di�uses over a length

comparable to L during the time τsed , it becomes impossible to get an accurate picture of

the cloud structure. Let l be the distance a dye molecule submitted to di�usion travels over

τsed. Its di�usion constant D is estimated through the Stokes �Einstein formula (taking

a � 1 nm as the size of a dye molecule). One �nds D � 2.2�10�10 m2/s. The mean square

displacement obeying the law l2 = 6Dτsed , one ends up with a distance l � 0.3mm   L

over the time τsed � 1min, meaning that di�usion only slightly a�ects the coloured cloud

whose structure remains interpretable over the observation time. Therefore, we expect the

coloured cloud and the underpinning hydrodynamic structure to be strongly correlated,

provided that the gap H is kept constant for the �ow to be in a (quasi-)stationary state.



Appendix E
Complementary information on

shadowgraphy

In this appendix, we �rst present shadowgraphy principles adapted to our own situation

and give the experimental protocol to characterise the `hydraulic bump' generated by the

water jet. We next derive useful relations to calculate the bulge dimensions and conclude

with a concrete example on how to apply them.

E.1 General presentation

The water jet induces a deformation of the interface above the injection point. Owing to

the cylindrical geometry of the jet, assuming a bump� like axisymmetric deformation of

the interface is pretty natural. A collimated light beam uniformly illuminates the surface

over an area of approximately 1 cm in width centred on the injector's axis. Fig. E.1 depicts

the way a collimated light beam re�ects o� a bump� like deformation. The direction of

re�ection of each incident ray of light depends essentially upon the local curvature of the

deformed surface in a region close to the point of incidence. This explains the variations of

the light intensity collected on a screen placed above the surface, with alternating brighter

and darker areas compared with the uniform distribution of the re�ected light observed

for unde�ected rays in the presence of a perfectly planar interface.
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Figure E.1: Collimated light beam re�ecting on a hydraulic bump of height h and

extent ξ (top �gure). (Bottom left �gure) Pro�le of the bump approximated by a series of parabolic

mirrors of local curvature radii Ri focusing light at a distance Ri/2 above the interface. Three points of

incidence A, B, C taken along the bump such that 1/RB ¡ 1/RA ¡ 1/RC . So the focal point FB of the

parabolic mirror centred on point B is the closest to the interface and FC is the furthest. The minimum

distance DB for which the focusing of the re�ected rays is the strongest sets the critical distance D?.
(Bottom right �gure) Cross � section of the caustic, namely the locus of all the focal points tFiu de�ned

as the intersections of the multiple rays re�ecting on the parabolic mirrors. Two branches merge into a

cusp (singularity) located in FB.
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The vision of a hydraulic bump is corroborated by the quasi � circular caustic imaged

on the shadowgrams (`shadowgraphy stains') of the deformed surface (Fig. E.2).

� State (1) corresponds to a planar surface. The shadowgram is thus uniformly bright.

� The intermediate state (2) is observed for a slightly deformed interface. The water

jet is too weak to strongly perturb the surface and/or the gap H is too big. Yet this

minor deformation of the interface results in a lowered light intensity in the central

part of the shadowgram. At this stage of the evolution this darker region does not

have a sharp edge but is quite blurry.

� As soon as the surface deformation becomes su�ciently important, the shadowgram

switches to state (3). A caustic appears in the centre of the shadowgram as a ring

of intense brightness circumscribing a light extinction area.

� In the case of still larger deformations (not shown on Fig. E.2), the annular caustic

expands until the dark disk covers the entire shadowgram.

Note that the incident laser beam, viewed as a cylinder of light impacting the surface with

an angle of incidence θ, leaves on the interface a light spot whose outer shape is elliptic.

Figure E.2: Evolution of the shadowgram with a growing bump� like deformation

of the interface. A poorly lit central area forms at a gap H � 1.32mm as a result of the re�ected

light rays being angled outwards (Fig. E.1). A brilliant annular caustic appears at a gap H � 0.8mm.

The parasitic cast shadow visible next to the centre is probably due to some impurity.
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E.2 Experimental protocol

One displaces the screen (OS) in the re�ected beam and seeks the critical distance D? at

which the caustic �rst appears on it. However, if the observation plane intercepts the beam

well before or after the re�ected rays intersect, the shadowgrams are blurry and thus harm

a correct measurement of the deformation. Setting D? = 40 cm turns out to be suited

for capturing small deformations. In this regard, the minimum detectable height hmin of

the hydraulic bump is limited by the little space available in our laboratory. The greatest

critical distances D? that can be accessed do not exceed a few metres. Introducing the

latter order of magnitude in the formulas (E.1) below yields hmin � 0.1µm. D? shall be

substantially reduced to measure sharper deformations, in which case the screen is placed

on top of the cell at D? � 2.5 cm above the free surface (Fig. E.3).

Figure E.3: Setups for measuring either small (a) or large (b) surface deformations.

The top camera (C) focuses on the surface (point O). A �at mirror (M) is interposed on the optical path

between the camera and the interface so that the camera sees the screen (OS). The distances PQ and

PO must be equal to get a focused image on the screen. In con�guration (a), the distance OQ between

the surface and the recording plane is D? = 40 cm. In (b), the screen is brought closer to the interface

while preserving a focused image : a relay lens (RL) forms on (OS) a sharp image of the shadowgram

captured on an auxiliary screen (OS') placed at D? � 2.5 cm from the interface. Note that both setups

are suited for direct �ow visualisation thanks to the swivelable mirror (M).

We start our experiments at a big gap H which is progressively decreased. As long

as OQ ! D? the surface deformation is barely discernable. The gap getting smaller

and smaller, a caustic �rst appears on the shadowgram when OQ = D?. Finally, the
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typical height h and extent ξ of the hydraulic bump are inferred from the dimensions of

its shadowgram and the experimental value of D? using the formulas

h =
1

4αλ2γ

x? 2

D? cos θ
, (E.1a)

ξ =
x?

λγ
, (E.1b)

where α � 0.446 and λ =
a
β
�
1� e�β /α

� � 1.836 (β � 1.230) are prefactors derived

from the curvature function f2 of a gaussian deformation. γ is the ratio of the widths of

the �nal and the inital shadowgrams (Fig. E.2). x? denotes the abscissa of the caustic on

the recording plane. Details on the derivation of formulas (E.1) are given below.

E.3 Derivation of the bump height h and extent ξ

Here we derive a simpli�ed version of expressions (E.1) providing the geometric features

of the `hydraulic bump', its height h and extent ξ, in function of the critical distance D?

and the shadowgram properties.

Let f be the function representing the deformation pro�le in the vertical cut plane

(y0z). The deformation state is calculated using the light slit method (Fig. E.4). Though

in practice the laser beam exhibits a circular cross � section, all the information about the

deformation is preserved with this method. By virtue of axisymmetry, the totality of the

shadowgram can be inferred from the light slit re�ection imaged on the screen. Fig. E.5

sketches top and side views of the surface deformation.

All three unit vectors ûi , ûr and ûn (Figs E.4 and E.5) belong to the plane that is

perpendicular to the deformed surface at point P (0, a, f(a)). By de�nition, ûr and ûi

are mirror images of each other with respect to the axis the vector ûn is directed along.

Assuming a gentle slope of the deformation pro�le, i.e. |f 1(a)| ! 1 @ a P r�A,�As , the
re�ected ray coming out from point P satis�es the system#

y � 2f 1(a) z = a ,

x cos θ � z sin θ = 0 ,
(E.2)

derived from the condition PM ^ ûr = 0, M being a generic point of the re�ected ray.
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Figure E.4: Calculating the interface deformation with the light slit method. A laser

sheet, depicted by a set of parallel incident rays (angle of incidence θ), illuminates a segment of length

2A located on the liquid surface along the axis (Oy). The re�ected beam is imaged on a screen (not

sketched) and the deformation state deduced from the light slit re�ection. ûi and ûr are two unit vectors

aligned with the directions of incidence and re�ection, respectively. For simplicity, since the deformation

is axisymmetric relative to the vertical axis (Oz), only a half � segment is represented.

Figure E.5: Geometry of the deformation pro�le. (Left �gure) Side view of the axisymmetric

bump� like deformation of the interface. ûn is the unit vector normal to the deformation pro�le z = f(y)

at point P (0, a, f(a)). (Right �gure) Top view of the hydraulic bump. Each circle corresponds to a set

of points located at a given altitude z.

The next stage is to determine the caustic, i.e. the envelope drawn by the intersection

points of all re�ected rays. Deriving y � 2f 1(a) z � a = 0 with respect to a yields$''&''%
y = a� f 1(a)

f2(a)
,

z =
1

2f2(a)
.

(E.3)
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We consider a gaussian shape f(a) = h exp (�a2/ξ2) of the interface deformation which,

by the way, is most probably a realistic assumption. With the reduced variables t = a/ξ

and psy(t), sz(t)q = py(t)/ξ , p4h/ξq � z(t)/ξ q, one obtains the parametric equations$''&''%
sy(t) = � 2t3

1� 2t2
,

sz(t) = � 1

1� 2t2
et

2

.
(E.4)

On Fig. E.6, we see two branches merging into a cusp S (singularity) whose coordinates

are S (sy? � 1.836 � λ, sz? � 2.242 � 1/α) so that

ξ =
y?

λ
, (E.5a)

h =
1

4αλ2

y? 2

D?
. (E.5b)

Figure E.6: Cross � sectional plot of the caustic (sy(t), sz(t)) in the cut plane (yOz).

The latter expressions are not exactly the same as Eqs (E.1) (apart from the fact that

x? is arbitrarily renamed y?). Actually, Eqs (E.1) are more general being valid whatever

the angle of incidence θ (not only in the particular plane (y0z) for which θ = 0) and

taking into account correction e�ects due to the parabolic curvature of the meniscus at

larger distances from the source, through the introduction of the scale factor γ (Fig. E.7).
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Figure E.7: Correction e�ects due to the curved meniscus. As the gap decreases, the

meniscus gets hollower. Its concave shape is approximated by a parabolic mirror (radius of curvature R)

that makes the re�ected rays converge, resulting in extra light in the peripheral region of the shadowgrams.

E.4 Application of the formulas

We present a concrete application of formulas (E.1). We consider an experiment achieved

at an injection speed Vinj � 3.3 cm/s. The gap is decreased over ∆t � 1h, from H �
7.7mm down to H � 0.5mm. Fig. E.8 gives the dimensions of shadowgrams captured in

such conditions. The scale factor γ, i.e. the ratio of the sizes of shadowgrams A and B,

has to be estimated. We have γH = (2b)B/(2b)A = 3.71/8.32 � 0.446 along the horizontal

axis and γV = (2a)B/(2a)A � 0.510 along the vertical direction. We keep the mean value

γ � 0.478. We also need x?, the radius of the ring � shaped caustic at the very moment the

latter appears on the screen. On shadowgram B, we measure x? = r(2c)B � (2d)Bs /4 �
1.08mm. With α = 0.446, λ = 1.836 and D? = 40 cm (cos θ � 1), formulas (E.1) �nally

yield a bump extent ξ � 1.23mm and a height h � 1.01µm, that is an aspect ratio

ξ/h � 1218 ! More estimates of the bulge dimensions are gathered on Fig. 2.32.

Figure E.8: Dimensions of typical shadowgrams. The gap is H � 1.6mm when the `critical

shadowgram' B is captured (D? = 40 cm).
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Portfolio of PIV maps

This appendix is a comprehensive collection of PIV maps for many di�erent values of

the control parameters. Double entry tables are provided, each square containing a map

for a given couple (H,Vinj). On Figs F.1 �F.4 are displayed maps of the surface velocity

magnitude |~vs|, its components v‖ and vK along the symmetry axis of the dipole as well as

a direction perpendicular to it, and also the vorticity �eld ω. Velocity and vorticity maps

are normalised by quantities denoted vM and ωM , the `maximum' velocity and vorticity

computed from the 1� numerical points of highest intensity. The length of all velocity

vectors is set to unity so as to better distinguish the dipolar �ow pattern.

A natural question concerns the evolution of the �ow properties as the water jet is

intensi�ed and/or the gap is varied. Unsurprisingly, for a given gap, both the surface

velocity and the vorticity increase with increasing injection speed. Moreover, the velocity

declines at large gaps H � 2.5mm probably due to �ow con�nement.

Also observe how the multicoloured area on the |~vs| �maps extends forward as the

injection speed increases. As the gap grows, this high velocity area broadens and takes a

crescent shape (clearly visible for Vinj = 7 cm/s and H = 2.5mm), while the red (positive)

and blue (negative) regions of the vorticity �elds get more and more oblong. Here again

we attribute these facts to �ow con�nement.
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Figure F.1: Collection of PIV maps showing the normalised magnitude of the surface

velocity |~vs|/vM for di�erent couples (H, Vinj) of the control parameters.
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Figure F.2: Collection of PIV maps showing the normalised velocity v‖/vM along the

dipole symmetry axis, for di�erent couples (H, Vinj).
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Figure F.3: Collection of PIV maps showing the normalised velocity vK/vM along the

direction perpendicular to the dipole symmetry axis, for di�erent couples (H, Vinj).
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Figure F.4: Collection of PIV maps showing the normalised vorticity ω/ωM for

various couples (H, Vinj). The velocity vector �eld is the one displayed in Fig. F.1.



Appendix G
Technical information on the cameras

This appendix is devoted to a technical presentation of the cameras used to record the

�ows in the hot bead experiments.

Two EO� 1312M cameras (Edmund Optics) capture either horizontal (HV) or side

(SV) views of the �ows. The EO� 1312M is a 1.3 megapixel (full resolution 1280 � 1024

pixels), 8 bit, B/W CCD camera o�ering exposure times in the range 0.053 � 57.245ms

and frame rates in the interval 6.10� 17.45 fps. Spatial calibration experiments yield, for

the bottom and the side camera, the X and Y scales reported in table G.1.

Bottom Camera Side Camera

X scale (µm/pixX) 7.10 7.94

Y scale (µm/pixY) Idem 9.43

Pixel Aspect Ratio (par) 1 9.43/7.94 � 1.188

Figure G.1: Spatial calibrations of the bottom and the side EO cameras.

The bottom EO camera is replaced when necessary by a pco.pixel�y camera from

PCO, the latter being a 1.4 megapixel (full resolution 1392 � 1040 pixels) 14 bit CCD

camera with available exposure times in the range 1µs � 1min and frame rates in the

interval 7.3�13.5 fps. The bottom camera is further equipped with a microscope objective

from Edmund Optics, so that the calibration is now a function of the zoom (table G.2).

Extension tubes are also added to the objectives of the cameras where relevant. The �ows

are usually recorded at a rate of 10 frames per second.
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Zoom Scale (µm/pix)

0.75 8.22

1 6.19

1.5 4.21

2 3.20

2.5 2.53

3 2.11

Figure G.2: Zoom�dependent scales of the bottom camera.

The side camera is mounted on a xyz translation stage to enable focus correction each

time the laser sheet is displaced. Another xyz stage is utilised for the centring of the

cuvette on the bottom camera axis. The position of both cameras, as well as that of the

experimental cell is read on dial test indicators (Mitutoyo's model 2046F) with a 0.01mm

accuracy. Red � orange �lters prevent the camera sensors from being damaged by direct

exposure to intense laser light while allowing �uorescent light to pass.

Image acquisition is done with `uEye Cockpit', a software from the IDS Software Suite

adapted for the EO cameras, and with `Camware', a control application for the PCO

camera systems. Just like in the water jet experiment, time � lapse photography yields

average frames whereon the distribution of the streamlines unveils the �ow patterns.



Appendix H
The bead collage setup

Sticking a microbead onto the end of an optic �bre is a delicate a�air that requires a

setup specially designed for this purpose (Fig. H.1). The �rst step is to use a �bre optic

stripper (e.g. the model NN203 from the No �Nik series of Clauss strippers) to strip the

�bre to the cladding (Icladding = 125µm). Next, the extremity of the �bre should be

cleanly cut o� by the diamond blade of a �bre optic cleaver such as Fujikura's CT� 05

model. We take care to clean well the edges of the �bre paying particular attention to its

cross � section. In practice, impurities deposited on the �bre are e�ciently removed after

a few hours soaking in Hellmanex. Hellmanex is a liquid alkaline concentrate, produced

by Hellma, to be diluted in water to a few percent before use as a detergent.

Then comes sticking. The �bre is placed under a microscope (Olympus model IMT�

2, magni�cation 20�). We spread on one side of a microscope slide a tiny amount of a

glassy carbon spherical powder (particle size between 200 and 400µm) purchased from

Alfa Aesar, while a droplet of photocrosslinkable glue (NOA 65, a UV� curing adhesive

from Norland) is deposited on the other side. With the manual xyz translation stage the

�bre is mounted on and the xy translational control knobs of the microscope, the tip of

the �bre is positioned right above the glue droplet prior to being soaked with it. Shortly

after, the �bre is placed vertically to an isolated carbon bead. A �ne pre � alignment of

the �bre axis with the carbon bead is crucial to ensure coaxial sticking. The �bre is then

lowered until a capillary bridge of glue forms between the surface of the microsphere and

the extremity of the �bre. At this precise moment, the curing of the adhesive is conducted

by a∆t � 1min exposure to UV light from a Thorlabs CS2010 high power UV curing LED

system (surface power density delivered at λ = 365 nm and with a continuous mode tuned

at 85% : Pd = 167mW/cm2). The good completion of these steps is monitored by means

of a CCD camera (Hamamatsu model C2400 XC� 77) equipped with an extension tube
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topped by a Zeiss Luminar lens (focal length f63) suited for photomacrography (working

distance d � 76mm). Finally, the strength of the bonding is checked by shooting at the

bead with a 5 bar air pressure gun. Fig. H.2 is a photograph of a glassy carbon microbead

successfully stuck onto the end of the optic �bre.

Figure H.1: The bead collage setup. (Top �gure) Schematic of the device (not to scale).

(MS) microscope slide; (OF) optic �bre; (xyz) �TS, xyz translation stage; (MO) microscope objective;

{(CC)+ (ET)+ (L)}, control camera+ extension tube+ lens. Step (1) : soak the tip of the optic �bre in

the glue droplet gd. Step (2) : �nd an isolated sphere in the carbon bead powder cbp and stick it onto

the �bre. Pay attention to the bead alignment with the �bre axis. Step (3) : cure the adhesive with the

`UV pistol' (image taken from Thorlabs o�cial website). (Bottom �gure) Photograph of the setup under

actual operating conditions. Same abbreviations.
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Figure H.2: A carbon microbead stuck onto the end of an optic �bre. The patch of light

is probably stray light di�used through the adhesive. Image from A. Mombereau's internship report.



Appendix I
Three simplifying assumptions

In this appendix we discuss the validity of three assumptions made to simplify our study :

(1) the interface is �at, (2) thermogravity is negligible and (3) evaporation is negligible.

I.1 The �at interface hypothesis

Assuming a �at interface can be justi�ed thanks to an estimation of the capillary number

Ca which quanti�es the e�ect of viscous drag forces relative to surface tension forces

acting on a �uid interface. This number is de�ned as the dimensionless ratio

Ca 9=
ηU

γ
, (I.1)

with η the dynamic viscosity of water, γ its surface tension and U the �ow velocity scale.

At room temperature Troom � 20°C and under atmospheric pressure Patm � 1bar, the

dynamic viscosity of pure water is η � 10�3 Pa.s . Its surface tension is γ � 72.8mN.m�1.

As for the typical �ow velocity, our experiments provide U � 100µm/s. The capillary

number involved in the present study is therefore in the order of Ca � 10�6 ! 1, meaning

that the �ow is largely dominated by capillary forces that tend to minimise the interfacial

area keeping it as plane as possible (contrary to viscous forces that would deform the

interface). The simplifying assumption of a �at interface is thus a good approximation.

I.2 Neglecting thermogravity

The reason why thermogravity (buoyancy force ρg) is neglected here becomes clear while

comparing the orders of magnitude of two dimensionless parameters, the Rayleigh Ra

and the Marangoni Ma numbers. The Rayleigh number Ra, comparing the `intensity' of
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thermogravity to dissipation (thermal di�usion � viscosity), is given by

Ra 9=
ρgα∆Th3

ηD
, α 9=� 1

ρ0

∂ρ

∂Θ

����
Θ=Θ0

. (I.2)

The buoyancy force stems from the �uid mass density dependence on the temperature.

A linear relation is assumed : ρ(Θ) = ρ0 r1� α pΘ�Θ0qs , where α is the coe�cient of

thermal expansion (thermodynamic stability imposes in general a positive constant α for

pure liquids). Such a simple law only holds for slight deviations from the equilibrium mass

density ρ0 = ρ(Θ0). Under STP conditions, α � 1.5 � 10�4 K�1 for pure water. Taking

a temperature gap ∆T � 10K between the hot bead and the quiescent �ow at in�nity,

a thermal di�usivity D � 10�7 m2. s�1 and a cuvette height h = 3mm, one �nds Ra � 103.

The Marangoni number Ma comparing thermocapillarity to dissipation is de�ned as

Ma 9=
γT∆TR

ηD
, γT 9=

���� dγdΘ
���� . (I.3)

With γT � 10�4 N.m�1.K�1 and a cuvette radius R � 1 cm one gets Ma � 105, two

orders of magnitude greater than Ra, which justi�es ruling out thermogravitary e�ects.

I.3 Neglecting evaporation

In our experiments with a hot bead of radius a � 100µm, there appears no clear sign of

evaporation e�ects able to in�uence the �ow structure. Our hot particle is actually too

big for evaporation to have a substantial impact on the thermocapillary �ow. Indeed, as

discussed by A. Girot in his master's thesis [62], the evaporation speed scales as 1/a and

is therefore expected to outweigh any other physical mechanism at very small scales.

In this regard, optical trapping experiments of tiny particles (a � 5µm) carried out

by A. Girot during his internship revealed a stunning e�ect : tracer particles located

close enough to the trapped sphere would be like attracted by it and get stuck to its

surface at the precise moment the laser is switched on. This phenomenon is presumably

attributable to evaporation which is especially intense in the vicinity of the heat source :

as long as the air above the surface is not saturated with water vapour, local mass losses

due to evaporation shall be continuously balanced by an in�ux of water, which explains

the centripetal motion of tracer particles observed as the laser is switched on, i.e. when

evaporation is active (and, conversely, why particles are `repelled' by the hot sphere when

the laser is switched o�). A more detailed discussion of this phenomenon can be found

in [2]. Useful approaches to theoretical models of evaporation are reviewed in [63].



Appendix J
Consistency with Bratukhin's solution

In this appendix, we check that the nonlinear temperature �eld (4.45) we obtained in

the far � �eld axisymmetric regime (lm) = (10) is consistent, in the low Reynolds limit

Re ! 1, with the solution derived by Bratukhin and Maurin [60].

Let us start with Shtern's writing [59] of Bratukhin's analytical solution to the steady �

state `Navier � Stokes �Fourier' problem (the general framework wherein inertia is also

considered in addition to thermal advection)

ϑ = ϑ0

�
λ

γ
p1� cqµ � µ

γ
p1� cqλ

��2Pr

, (J.1)

with Pr the Prandtl number de�ned as Pr 9= ν/D = Pe/Re and

γ 9= p1� 2Req1/2 ,
λ = p1� γq / 2 ,
µ = p1� γq / 2 .

(J.2a)

(J.2b)

(J.2c)

Note that we use c 9=cos θ instead of Shtern's notation x. In the low Reynolds limit Re ! 1

we have the �rst � order approximations

γ �
Re!1

1� Re ,

λ � 1� Re

2
,

µ � �Re

2
,

(J.3a)

(J.3b)

(J.3c)
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approximations which, once introduced in (J.1), yield

1

γ

�
λ p1� cqµ � µ p1� cqλ

�
�

Re!1
p1� Req  �1� Re

2

� �
1� Re

2
ln(1� c)

�� Re
2
p1� cq �1� Re

2
ln(1� c)

�(
= 1� Re

2
rc� ln(1� c)s �O(Re2) . (J.4)

Finally, noting that at �nite Péclet number Pe working in the viscous regime Re ! 1

amounts to taking the asymptotic limit PrÑ �8, we write

ϑ

ϑ0
ÝÑ
Re!1

 
1� Re

2
rc� ln(1� c)s(�2 pPe/Req

= e�2
Pe
Re

ln
 
1� Re

2
[c� ln(1� c)]

(
�

Re!1
e�Pe rc�ln(1�c)s = p1� cqPe e�Pe c , (J.5)

which is exactly the same polar dependence as that of expression (4.45).



Appendix K
Derivation of the radial and the angular

Stokes equations

This appendix provides a detailed derivation of the Stokes equations (4.57a) � (4.57c).

What we do basically is elucidating the projections of the vector Stokes equation (4.15a)

onto the directions of the spherical basis vectors per, eθ, eϕq.

Let us �rst recall the expression of the nabla operator in spherical coordinates

∇
 =

����������

∂r


�s
r
∂c


1

rs
∂ϕ


���������

per, eθ, eϕq

, (K.1)

With a pressure �eld p (lm)(r, c, ϕ) in the form of (4.54a) one �nds

∇p (lm) = �eimϕ

rl�2

����
(l � 1) p

sp1

�im
s
p

���

per, eθ, eϕq

, (K.2)

where the prime 1 denotes di�erentiation with respect to c .
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We further need the vector laplacian of the velocity �eld whose components write in

spherical coordinates

∇2v
��
r

9=∇2v . er = ∆vr � 2

r2
vr � 2

r2
∂c(svθ)� 2

r2s
∂ϕvϕ ,

∇2v
��
θ

9=∇2v . eθ = ∆vθ � 1

r2s2
vθ � 2s

r2
∂cvr � 2c

r2s2
∂ϕvϕ ,

∇2v
��
ϕ

9=∇2v . eϕ = ∆vϕ � 1

r2s2
vϕ � 2

r2s
∂ϕvr � 2c

r2s2
∂ϕvθ ,

(K.3a)

(K.3b)

(K.3c)

with ∆vj the j � component (j P tr, θ, ϕu) of the scalar laplacian given by

∆vj =
1

r
∂ 2
r prvjq �

1

r2
∂c
�
s2∂cvj

�� 1

r2s2
∂ 2
ϕvj . (K.4)

Inserting in (K.3a) � (K.3c) velocity components in the form of (4.54b), one is left with

∇2v (lm)

��
r
=

eimϕ

rl�2

"�
s2v1r

�1
�
�
(l � 1)(l � 2)� m2

s2



vr

*
,

∇2v (lm)

��
θ
=

eimϕ

rl�2

"�
s2v1θ

�1
�
�
l (l � 1)� 1�m2

s2



vθ � 2sv1r � 2im

c

s2
vϕ

*
,

∇2v (lm)

��
ϕ
=

eimϕ

rl�2

"�
s2v1ϕ

�1
�
�
l (l � 1)� 1�m2

s2



vϕ � 2

im

s
vr � 2im

c

s2
vθ

*
.

(K.5a)

(K.5b)

(K.5c)

Note that the incompressibility condition (4.56) is used to get the above form (K.5a).

Finally, projecting the Stokes equation onto the axes ∇2v |j � ∇p |j = 0 yields

�
s2v1r

�1
�
"
(l � 1)(l � 2)� m2

s2

*
vr = � (l � 1) p ,�

s2v1θ

�1
�
"
l (l � 1)� 1�m2

s2

*
vθ = 2sv1r � 2im

c

s2
vϕ � sp1 ,�

s2v1ϕ

�1
�
"
l (l � 1)� 1�m2

s2

*
vϕ = �2 im

s
vr � 2im

c

s2
vθ � im

s
p .

(K.6a)

(K.6b)

(K.6c)



Appendix L
Strategy for solving the Stokes problem

The aim of this appendix is to prepare the ground for analytical calculations by providing

`solving recipes' of the Stokes problem (4.59a) � (4.59e). As will become clear, solving this

di�erential system is easier in axisymmetric (m = 0) than in non � axisymmetric (m � 0)

cases, resulting in slightly di�erent solving strategies.

L.1 Solving strategy for axisymmetric states (lm) = (l0)

In the case of axisymmetric states (lm) = (l0), the system (4.59a) � (4.59e) simpli�es to�
s2p10

�1
� l (l � 1) p0 = 0 ,

s2v1θ, 0 � c vθ, 0 = �(l � 2) svr, 0 ,�
s2v1r, 0

�1 � (l � 1)(l � 2) vr, 0 = � (l � 1) p0 ,�
s2v1θ, 0

�1 � "
l (l � 1)� 1

s2

*
vθ, 0 = 2sv1r, 0 � sp10 ,�

s2v1ϕ, 0
�1 � "

l (l � 1)� 1

s2

*
vϕ, 0 = 0 .

(L.1a)

(L.1b)

(L.1c)

(L.1d)

(L.1e)

Two di�erential equations are here uncoupled from the others, those for the functions

{p(l0)(c)} and {vϕ, (l0)(c)}, so that the latter can be derived in a fully independent way.

On top of that, the right � hand side of both the incompressibility (L.1b) and the polar

Stokes equation (L.1d) no longer depend on vϕ as a direct consequence of axisymmetry.

The `solving recipe' of this system is hence quite straightforward : for a given value of l,

1. First, solve the di�erential equation (L.1a) to work out p(l0)(c).

2. Insert the obtained expression of p(l0)(c) in the right � hand side of the radial Stokes

equation (L.1c) and solve it to get vr, (l0)(c).
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3. Compute p1(l0)(c) and v1r, (l0)(c). Next, substitute their expressions into the right �

hand side of the polar Stokes equation (L.1d) and solve it to derive vθ, (l0)(c) (you

can equally solve the incompressibility equation (L.1b)).

4. To �nish, solve separately the azimuthal Stokes equation (L.1e) to determine vϕ, (l0)(c).

L.2 Solving strategy for non � axisymmetric states (lm)m�0

Solving the Stokes problem (4.59a) � (4.59e) in non � axisymmetric cases (lm)m�0 is a bit

more tricky. The di�culty essentially lies in the fact that we are compelled to derive an

auxiliary equation for the tvθ, (lm)(c)um�0 family of functions.

Eq. (4.59a), which is now the only one to be completely uncoupled, plays the role

of a `starter' and should thus be solved in the �rst place. We then repeat the above

solving process up to the moment we need to derive a new di�erential equation satis�ed

by vθ, (lm)(c). Indeed, the polar Stokes equation (4.59d) cannot be solved as long as the

still unknown functions tvϕ, (lm)(c)um�0 are not eliminated from its right � hand side. This

is readily achieved multiplying the incompressibility condition (4.59b) by 2c /s2 prior

to substituting the corresponding expression of the quantity 2im (c /s2) vϕ in (4.59d).

Finally, we end up with

s2v2θ � 4c v1θ �
�
l (l � 1)� 1�m2 � 2c2

s2



vθ = 2sv1r � 2 (l � 2)

c

s
vr � sp1 . (L.2)

The rest of the solving is completed in the same spirit as previously. In sum, the solving

process presented here enables one to derive the functions tp (lm)(c)um�0 , followed by the

velocity components tvr, (lm)(c)um�0 , tvθ, (lm)(c)um�0 and tvϕ, (lm)(c)um�0 in that order.



Appendix M
From the Gauss hypergeometric function to

associated Legendre functions

This appendix inspired by chapter 15 of ref. [66] is devoted to a brief presentation of the

Gauss hypergeometric function that stresses out its relation to the associated Legendre

functions (4.61). The presentation ends with some useful properties.

M.1 The Gauss hypergeometric function as a series

The Gauss hypergeometric function 2F1 pα, β, γ ; zq is a special function de�ned by the

hypergeometric series

2F1 pα, β, γ ; zq 9=
�8̧

k=0

(α)k (β)k
(γ)k

zk

k!
, |z|   1 , (M.1)

with (.)k the Pochhammer symbol de�ned by

(q)k 9=

$&%1 for k = 0 ,

q pq � 1q ... pq � k � 1q for k ¡ 0 ,
(M.2)

so that 2F1 pα, β, γ ; zq writes explicitly

2F1 pα, β, γ ; zq = 1� αβ

γ

z

1!
� α pα � 1q β pβ � 1q

γ pγ � 1q
z2

2!
� . . . (M.3)

Remarkably, the Gauss hypergeometric function can also be expressed in terms of the

Euler's Gamma function as follows

2F1 pα, β, γ ; zq = Γ (γ)

Γ (α)Γ (β)

�8̧

k=0

Γ (α � k)Γ (β � k)

Γ (γ � k)

zk

k!
. (M.4)
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Below are provided a few important properties satis�ed by 2F1 pα, β, γ ; zq :

� One key trait of 2F1 pα, β, γ ; zq is that the above series (M.1) stops if either α or β

is a negative integer, in which case it simply reduces to a z � dependent polynomial

of degree l. This is actually our case since α = �l (β = l � 1) and the associated

Legendre functions (4.61) then explicitly write for m ¥ 0 and c P [0, 1]

P m
l (c) =

�
1� c

1� c


m/2 ļ

k=0

p�1qk
�
l

k


 pl � 1qk
p1�mqk

�
1� c

2


k

. (M.5)

� For γ = 1 � m (m P N), the second fundamental solution of Eq. (4.58), namely

the associated Legendre functions of the second kind tQm
l (c)u, exhibit logarithmic

singularities of the form ln rp1� cq / p1� cqs and are thus discarded in our study.

� Bailey's theorem o�ers a simple way of calculating Gauss hypergeometric functions

of the form 2F1(α, 1� α , γ ; 1/2) using the relation

2F1

�
α, 1� α , γ ;

1

2



=

Γ
�γ
2

	
Γ

�
γ � 1

2



Γ
�γ � α

2

	
Γ

�
γ � α � 1

2


 . (M.6)

Here tα, γu = t�l, 1�mu and z = 1/2 corresponds to the interface position cI = 0.

M.2 Euler's hypergeometric di�erential equation

It is also possible to de�ne the Gauss hypergeometric function 2F1 pα, β, γ ; zq on the

basis of the equation it obeys, known as Euler's hypergeometric di�erential equation

z p1� zq d
2F

dz2
�
�
γ � pα � β � 1q z

�dF
dz

� αβF = 0 . (M.7)

Let us demonstrate that the Gauss hypergeometric function we have to consider, in

the upper half � space c P [0, 1] and for m ¥ 0 , is indeed the one for which α = �l, β =

l � 1, γ = 1 � m and z� = (1 � c)/2 . Our starting point is the associated Legendre

di�erential equation (4.58) satis�ed by the {P m
l (c)} . Since we require the {P m

l (c)} to be

regular in the upper half � space c P [0, 1] , we naturally look for them in the form (m ¥ 0)

P�(c) =

�
1� c

1� c


m/2

Φ�(c) , (M.8)

where Φ�(c) is an unknown function to be identi�ed.
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One di�erentiates (M.8) twice and substitutes the expressions of P 1
�(c) and P2

�(c)

into the Legendre equation (4.58). Ultimately, one is left with1�
1� c2

�
Φ2�(c)� 2 pc�mqΦ1�(c)� l pl � 1qΦ�(c) = 0 . (M.10)

The last stage consists in changing the variable from c to z� de�ned as z� 9= p1� cq / 2 .
Rewriting Eq. (M.10) with respect to z� yields nothing but Eq. (M.7) with α = �l, β =

l � 1, γ = 1�m so that Φ�(c) � F p�l, l � 1, 1�m ; p1� cq / 2q and �nally

P�(c) =

�
1� c

1� c


m/2

2F1

�
�l, l � 1, 1�m ;

1� c

2



. (M.11)

M.3 Properties of the associated Legendre functions

Here are reported some properties of the associated Legendre functions tP m
l (c)u :

� The tP m
l (c)u are the eigenfunctions of the Legendre di�erential operator L̂ with

eigenvalues equal to εl = �l (l � 1), i.e.

L̂P m
l 9=

"�
1� c2

� d2

dc2
� 2c

d

dc
� m2

1� c2

*
P m
l (c) = �l (l � 1)P m

l . (M.12)

Note also that

L̂ rcP m
l s = 2

�
1� c2

� dP m
l

dc
� �

l2 � l � 2
�
cP m

l . (M.13)

� As readily checked on the eigenvalue equation (M.12), P m
�(l�1)(c) = P m

l (c).

� Recurrence relations (c ¥ 0 and m ¥ 0) :�
1� c2

� dP m
l

dc
= pl �mqP m

l�1 � lcP m
l ,�

1� c2
� dP m

l

dc
= pl � 1q cP m

l � pl �m� 1qP m
l�1 ,

pl �mqP m
l = p2l � 1q cP m

l�1 � pl �m� 1qP m
l�2 .

(M.14a)

(M.14b)

(M.14c)

1 The very same rationale is easily adaptable to the lower half � space c P [�1, 0] and m ¥ 0 setting

this time the regular form P�(c) = r p1� cq / p1� cq s
m/2

Φ�(c) , where `c' is replaced by `�c' according

to the up � down symmetry of the system. Next introducing the change of variable z� 9= p1� cq / 2 leads

again to equation (M.7) with exactly the same values of the parameters. Finally, as Eq. (4.58) is invariant

when `m' is transformed into `�m', the solution for negative values of m is simply P�m
l (c) = P m

l (c), so

that bringing everything together yields in the end

P m
l (c) =

�
1� |c|

1� |c|


|m|/2
2F1

�
�l, l � 1, 1� |m| ;

1� |c|

2



, (M.9)

as the general solution of the Legendre equation (4.58), @m P Z and c either in [0, 1] or [�1, 0].



Appendix N
Associated Legendre functions of interest

Here are tabulated the explicit forms of the tP m
l (c)u appearing in the derivation of the

generalised Lamb's solution, as well as their �rst derivatives tP 1m
l (c)u.

P m
l (c) P 1m

l (c)

l = 0

�
1� c

1� c


m
2

�m p1� cqm2 �1

p1� cqm2 �1

l = 1
c�m

1�m

�
1� c

1� c


m
2

�pc
2 �mc�m2 � 1q

1�m

p1� cqm2 �1

p1� cqm2 �1

l = 2
3c2 � 3mc�m2 � 1

p1�mq p2�mq
�
1� c

1� c


m
2

�

�
6c3 � 6mc2 � 3 pm2 � 2 q c�m pm2 � 4 q

�
p1�mq p2�mq

p1� cqm2 �1

p1� cqm2 �1

Figure N.1: Associated Legendre functions tP m
l (c)ul P t0, 1, 2u and their �rst derivatives.
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Appendix O
Derivation of the velocity components

In this appendix we present in great detail the derivation of the velocity components

tvj, (lm)(c)ujPtr, θ, ϕu. By virtue of the linearity of the Stokes problem, the latter are of

the form v = vH � vP , i.e. the superposition of the homogeneous solution vH and of a

particular solution vP of the complete equation to be solved.

Radial velocity

As a �rst step, we prepare the ground for the application of the operatorial formalism

rewriting the radial Stokes equation (4.59c) in the following way

L̂vr � pl � 1q pl � 2q vr = �pl � 1q p . (O.1)

One recognises on the left � hand side the Legendre di�erential equation of degree l � 2,

which means that the homogeneous solution is vHr (c)9P m
l�2(c) . Besides, as in the right �

hand side of (O.1) only appears p(lm)(c)9P m
l (c), a particular solution vPr is searched

under the form vPr (c) = Kr P m
l (c), with Kr a constant to work out. Making use of the

eigenvalue equation (4.64), one �nally comes to the result

vr, (lm)(c) = π(lm) P m
l (c)� ρ(l�2,m) P m

l�2(c) , (O.2)

with ρ(l�2,m) another integration constant to be determined.

Polar velocity

To render calculations easier, it is convenient to de�ne the auxiliary velocity �eld rvθ 9= svθ.

Inserting rvθ in the polar equation (L.2) yields the di�erential equation

L̂ rvθ � l pl � 1q rvθ = 2s2v1r � 2 pl � 2q c vr � s2p1 . (O.3)
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194 Derivation of the velocity components

For the very same reason as before, the homogeneous solution is vHθ (c)9P m
l�1(c)/s

which diverges on the z � axis (cs = 1) for axisymmetric states (m = 0). The latter are

thus to be handled separately in the upcoming analysis.

We now turn to the inhomogeneous equation. By virtue of the linearity of Eq. (O.3),

the particular solution rv Pθ can be written as the sum of two terms rv P1
θ and rv P2

θ with

rv P1
θ = K1 s

2dP m
l

dc
,

rv P2
θ = K2 s

2dP m
l�2

dc
,

(O.4a)

(O.4b)

the constants K19π(lm) and K29 ρ(l�2,m) having yet to be determined.

The guiding idea is to transform all derivatives into linear combinations of associated

Legendre functions, in order to apply Eq. (4.64) repeatedly. This can be achieved using

the recurrence relation (M.14a) or (M.14b). This way, derivatives are eliminated and we

ultimately get rid of the terms 9 c using the formula (M.14c).

Inserting successively the above forms (O.4a) � (O.4b) in the left � hand side (LHS) of

Eq. (O.3), one �nds LHS = LHS1 � LHS2 where

LHS1 = 2 l pl �m� 1qK1 P m
l�1 ,

LHS2 = 2 pl � 1q pl �m� 2qK2 P m
l�3 .

(O.5a)

(O.5b)

Using then the solutions (4.62) for the pressure �eld and (O.2) for the radial velocity, one

rewrites the right � hand side (RHS) of Eq. (O.3) as RHS = RHS1 � RHS2 with

RHS1 = 2
l � 2

l � 1
pl �m� 1q π(lm) P m

l�1 ,

RHS2 = 2 pl �m� 2q ρ(l�2,m) P m
l�3 .

(O.6a)

(O.6b)

Comparing (O.5a) and (O.6a) on the one hand, (O.5b) and (O.6b) on the other hand,

�nally yields the constants

K1 =
l � 2

l pl � 1q π(lm) ,

K2 =
1

l � 1
ρ(l�2,m) ,

(O.7a)

(O.7b)

the expression of K2 being obviously valid only if l � 1.
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Coming back to the original �eld vθ = rvθ/s, we draw the partial conclusion that

vθ, (lm)(c) = s

�
l � 2

l pl � 1q π(lm)
dP m

l

dc
� ρ(l�2,m)

l � 1

dP m
l�2

dc

�
� 1

s
σ(l�1,m) P m

l�1(c) , @l ¥ 2 .

(O.8)

In fact, another form of solution (O.8) valid including for l = 1 can be derived in a

fairly simple way starting from expressions (O.6a) � (O.6b). The latter suggest seeking a

particular solution of the form rv Pθ = rv P1
θ � rv P2

θ = �K1 P m
l�1 � �K2 P m

l�3 . As previously, this

decomposition is inserted in the left � hand side of Eq. (O.3) and, after some algebra, one

gets from the identi�cation LHS1, 2 � RHS1, 2

�K1 = �pl � 2q pl �m� 1q
pl � 1q p2l � 1q π(lm) ,

�K2 =
l �m� 2

2l � 3
ρ(l�2,m) .

(O.9a)

(O.9b)

And so we are this time left with the following alternative representation of the solution

to Eq. (O.3), valid even for l = 1,

vθ, (lm)(c) =
1

s

�
�pl � 2q pl �m� 1q

pl � 1q p2l � 1q π(lm) P m
l�1(c)�

l �m� 2

2l � 3
ρ(l�2,m) P m

l�3(c)

� σ(l�1,m) P m
l�1(c)

�
, @l ¥ 1 . (O.10)

For later purposes, let us examine in greater detail the particular case l = 1. From

expression (O.10), one readily obtains

vθ, (1m)(c) =
1

s

�
1

6
pm� 2q π(1m) P m

2 (c)� p1�mq ρ(�1m) P m
1 (c)� σ(0m) P m

0 (c)

�
, (O.11)

where we have used P m
�2 = P m

1 (Appendix M). The explicit form reads (Appendix N)

vθ, (1m)(c) =
1

s

�
π(1m)

6 p1�mq
�
3c2 � 3mc�m2 � 1

�� ρ(�1m) pc�mq � σ(0m)

��
1� c

1� c


m
2

.

(O.12)

This last expression is regular @ c P [0, 1] save in the axisymmetric case m = 0 for which

it diverges in cs = 1 and needs thus to be regularised. Evaluating (O.12) in m = 0 yields

vθ, (10)(c) =
1

s

�π(10)

6

�
3c2 � 1

�� ρ(�10)c� σ(00)

�
, (O.13)

expression that we factorise in the following manner

vθ, (10)(c) =
π(10)

2s

�
c2 � 2ρ(�10)

π(10)

c�
�
2σ(00)

π(10)

� 1

3


�
. (O.14)
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For this last form to be regular everywhere, c = 1 must be a root of the quadratic

polynomial enclosed by the square brackets, i.e.

r . . . s = pc� 1q
�
c�

�
2ρ(�10)

π(10)

� 1


�
. (O.15)

This regularisation process �xes the constant σ(00) to σ(00) = � �p1/3q π(10) � ρ(�10)

�
, so

that we end up with the well � behaved function

vθ, (10)(c) = �π(10)

2

?
1� c2 � ρ(�10)

c
1� c

1� c
, (O.16)

which is exactly the one (4.33) already derived in the separate treatment of sec. 4.2.1.

Azimuthal velocity

The modes
 
vϕ, (lm)(c)

(
are easily inferred from the incompressibility condition (4.56)

vϕ = � is
m

�
drvθ
dc

� pl � 2q vr
�
. (O.17)

Of course, this expression holds solely for m � 0 . As a result, we will have to treat once

again the axisymmetric states separately.

Starting from rvθ 9= svθ with expression (O.8) for vθ (only valid for l ¥ 2), the trick to

make calculations straightforward is using twice on the expression of rv 1

θ � once for P 1m
l

and once more for P 1m
l�2 � the relation rs2P 1m

l (c)s1 = tm2/ s2 � l pl � 1quP m
l (c) which is

simply a redraft of the Legendre equation (4.58). In doing so, one obtains

vϕ, (lm)(c) = �im
s

�
l � 2

l pl � 1q π(lm) P m
l (c)� ρ(l�2,m)

l � 1
P m
l�2(c)

�
� is
m
σ(l�1,m)

dP m
l�1

dc
, @l ¥ 2 .

(O.18)

It is worth stressing the fact that where derivatives of Legendre functions appear in the

expression (O.8) of vθ, here they do not, and vice versa.

It is clear that once again the case l = 1 has to be handled separately. The form (O.2)

and the expression (O.11) inserted in (O.17) yield (P m
�1 = P m

0 , Appendix M)

vϕ, (1m)(c) = � is
m

�
1

6
pm� 2qπ(1m)

dP m
2

dc
� p1�mq ρ(�1m)

dP m
1

dc
� σ(0m)

dP m
0

dc

� π(1m)P m
1 (c)� ρ(�1m)P m

0 (c)

�
, m � 0 . (O.19)

To �nish, we recall that a direct calculation yields the form (4.34) of vϕ, (10) .



Appendix P
Expressions of the (lm) = t(10), (21)u

velocity �elds in cartesian coordinates

The velocity �elds associated with the �ow states (lm) = t(10), (21)u are converted into

cartesian coordinates in the interfacial plane (xOy) and in the vertical cut plane (xOz).

Figure P.1: Spherical coordinates.

According to the way angles are de�ned in Fig. P.1, the cartesian coordinates (x, y, z)

can be expressed in terms of the spherical coordinates (r, θ, ϕ) as follows

x = r sin θ cosϕ = rs cosϕ ,

y = r sin θ sinϕ = rs sinϕ ,

z = r cos θ = rc .

(P.1a)

(P.1b)

(P.1c)
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� The interfacial plane (xOy) is characterised by θI = π/2, i.e. cI = 0 (@ r P [0,�8[

and ϕ P [0, 2π]) such that

x = r cosϕ ,

y = r sinϕ ,

z = 0 ,

(P.2a)

(P.2b)

(P.2c)

with r2 = x2�y2 and the after relations among spherical and cartesian basis vectors

er(θ = π/2) = cosϕ ex � sinϕ ey =
x

r
ex � y

r
ey ,

eϕ(θ = π/2) = � sinϕ ex � cosϕ ey = �y
r
ex � x

r
ey ,

(P.3a)

(P.3b)

and eθ(π/2) � n is the unit vector normal to the plane (xOy).

� The vertical cut plane (xOz) is characterised by ϕ = 0 (@ r P [0,�8[ and c P [0, 1]).

This time we have

x = rs ,

y = 0 ,

z = rc ,

(P.4a)

(P.4b)

(P.4c)

where r2 = x2 � z2 and

er(ϕ = 0) = sin θ ex � cos θ ez =
x

r
ex � z

r
ez ,

eθ(ϕ = 0) = cos θ ex � sin θ ez =
z

r
ex � x

r
ez ,

(P.5a)

(P.5b)

with now the unit vector eϕ(0) normal to the plane (xOz).

P.1 Axisymmetric state (lm) = (10)

Once boundary conditions (4.17a) � (4.17c) applied, one is left with

v(10)(r, c) =
ψ(10)(0)

2r

�����
1� 2c

c

c
1� c

1� c

0

����

per, eθ, eϕq

. (P.6)
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Using then the above relations, one readily obtains the 2D vector �elds

v(10)(x, y) =
ψ(10)(0)

2

���
x

x2 � y2

y

x2 � y2

��

pex, eyq

,

v(10)(x, z) =
ψ(10)(0)

2

�������
x
�
x2 � z px2 � z2q1/2

�
px2 � z2q3/2

�
z � px2 � z2q1/2

�
� z2

px2 � z2q3/2

������

pex, ezq

.

(P.7a)

(P.7b)

The interfacial temperature amplitude ψ(10)(0) is set to 1 in the plots of sec. 4.3.5.

P.2 Non � axisymmetric state (lm) = (21)

Here the application of the boundary conditions (4.17a) � (4.17c) leads us to

v(21)(r, c, ϕ) =
ψ(21)(0)

2r2

������������

�p3c2 � 3c� 1q
c

1� c

1� c
cosϕ

c

1� c
cosϕ

�c
2 � c� 1

1� c
sinϕ

�����������

per, eθ, eϕq

, (P.8)

taking the real part of the original velocity vector. This time, one is left with the after

2D vector �elds

v(21)(x, y) =
ψ(21)(0)

2

�����
x2 � y2

px2 � y2q2
2xy

px2 � y2q2

����

pex, eyq

,

v(21)(x, z) =
ψ(21)(0)

2

���������
x2

�
1� 3z

px2 � z2q1/2
� 3z2

x2 � z2

�
� z2

px2 � z2q3/2
�
z � px2 � z2q1/2

�
� 3xz2

px2 � z2q5/2

��������

pex, ezq

.

(P.9a)

(P.9b)

The temperature constant ψ(21)(0) is also arbitrarily set to 1 in the plots of sec. 4.3.5.
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P.3 Superposed state t(10)� (21)u

The total vector �eld that corresponds to the superposition of �ow states t(10)� (21)u is
simply de�ned as vtot 9=v(10) � v(21) so that we obtain after little algebra

vtot(x, y) =

�������
x2 px� 1q � y2 px� 1q

2 px2 � y2q2

y
�
x px� 2q � y2

�
2 px2 � y2q2

������
 ,

vtot(x, z) =

�����������

x

�
x� x2 � 3xz

px2 � z2q1/2
� 3xz2

x2 � z2
� z

�
x2 � z2

�1/2

�
� z2

2 px2 � z2q3/2
�
z � px2 � z2q1/2

�
3xz4

4 px2 � z2q4

����������

,

(P.10a)

(P.10b)

making the arbitrary choice ψ(10)(0) = ψ(21)(0) = 1. Since there is no physical reason to

assign the same weight to both the axisymmetric (10) and the dipolar (21) components,

we encourage the interested reader to change the relative contribution of these �ow states

by �xing unequal temperature magnitudes, e.g. ψ(10)(0) = 1 and ψ(21)(0) = 3.
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