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Thèse de doctorat de l’Université Paris-Saclay
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Professeur, Università degli Studi di Firenze Examinateur

Vittorio Sansalone
Professeur, Université Paris-Est Examinateur
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Introduction (English)



This PhD thesis has been prepared in the MΞDISIM team at Inria and École polytech-
nique, funded by École polytechnique, under the supervision of Dr. Dominique Chapelle
and Dr. Matthieu Caruel. I have also been co-advised by Dr. Philippe Moireau through-
out this project.

Context

This thesis deals with the mathematical description of the micro-scale muscle contraction
mechanisms with the aim of proposing and integrating our models into a multiscale heart
simulation framework.

Digital medicine
This thesis is part of a worldwide trend towards the development of a so-called digital

medicine through the use of numerical tools and in particular numerical models. The
hopes raised by this set of technologies are enormous: a personalized medicine with more
accurate treatments and an early detection of diseases, which is associated with a reduced
mortality but also the safer and faster development of new drugs. A wide array of research
programs are conducted on this topic.

Following the development of technologies, medical data acquisition tools have long
been developed. Milestones in this process are the invention of the electrocardiogram
(ECG) [Waller, 1887; Einthoven, 1895], the sonography, the CT-scan [Cormack, 1963;
Hounsfield, 1973], and MR imaging [Lauterbur, 1973; Mansfield & Maudsley, 1977]. The
development of computing power and information systems, which make the data more eas-
ily available and useable along with the development of physiological signal measurement
tools take this approach to a new level of development.

These research and development efforts in digital medicine aim at taking up the triple
challenge of improving the understanding of the physiology and the pathologies, enhancing
the diagnosis and optimizing the treatment of patients.

• The understanding of the physiology can be improved by numerically testing phys-
iological hypotheses and see which ones correspond to the reality. Moreover, well
calibrated models allow to obtain in silico the reconstruction of data that are diffi-
cult or impossible to measure on living subjects. Naturally, this challenge can only
be achieved with models that are able to establish causal links between physiological
events.

• The enhancement of diagnosis is believed to be achieved through a quantification
of the patient analysis enabling the physicians to take more informed and more
objective decisions. The models are here used as a filter to look at the data and
augment the amount of information that can be extracted from these data and
present them in a more meaningful way.

• The optimization of treatment is probably the most difficult step. The ability to
model not only the basal behavior but also to capture the effects of the treatment
– impact of drugs, change of the organ geometry – is a prerequisite to the imple-
mentation of a this procedure.

Note that in all three challenges, the need of quantitative predictive models and their
proper calibration are crucial. Another central point is the interaction between the model
and the measured data. The latter are used to patient-specifically calibrate the models so
that personalized model outputs can be obtained.
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The complex nature of physiological mechanisms make the process of building mod-
els intrinsically multi-disciplinary mixing biology, chemistry, physics, mathematics and
computer science.

An important point is the diversity of models that are required in this process. Indeed,
the choice of the modeling ingredients to address a specific physiological or clinical question
has to be carefully made. It results from the trade-off between the accuracy of the model
prediction, the associated computational cost and the availability of the measurements
required to feed the model in order to get a relevant calibration. For instance, an analysis
targeting global indicators of an organ may be performed on a reduced geometry, especially
if the conditions on the boundary of the geometry cannot be assessed specifically. On the
contrary, if propagation phenomena or localized physiological parameter variations are
studied, the use of a geometrically extended model is required.

The research efforts in digital medicine resulted for instance in development of models
of the lungs [Howatson Tawhai et al., 2000; Roth et al., 2017] or the growth of tumors
[Quaranta et al., 2005; Clatz et al., 2005; Ribba et al., 2006; Enderling & Chaplain, 2014].
Some outstanding breakthroughs have also already been achieved in the fields of drug
discovery where models help predict the effects of molecules [Sliwoski et al., 2013; Tanrikulu
et al., 2013]. Moreover, in the process of drug development, numerical tools have already
been accepted by regulators as a substitute to pre-clinical animal testing in the context of
diabetes treatment design [Dalla Man et al., 2014; Visentin et al., 2017].

The cardiovascular system has not escaped the trend of personalized medicine.
The pioneer work of Hodgkin & Huxley [1952] for the description of the action potential

and of Huxley [1957a] for the striated muscle contraction led the way to more global and
specific descriptions of the cardiovascular system. One can cite here, the early work of
Noble [1962] for the description of the muscle cell membrane electrophysiological activity
along with the Purkinje fibers (see next section), of Mirsky [1969]; Ghista et al. [1973] and
P.J. Hunter [Hunter, 1975; Hunter & Smaill, 1988] on the modeling of the heart muscle
tissue and C.S. Peskin for both the tissue modeling [Peskin, 1975] and the blood flow
modeling [Peskin, 1972, 1977].

Since then, many research teams have engaged in the development of heart and vascular
physical models [Guccione & McCulloch, 1993; Nash & Hunter, 2000; Chapelle et al., 2001;
Sainte-Marie et al., 2006; Taylor & Figueroa, 2009; Nordsletten et al., 2011; Trayanova,
2011; Chapelle et al., 2012; Sugiura et al., 2012; Caruel et al., 2013b; Baillargeon et al.,
2014; Pant et al., 2014; Hirschvogel et al., 2017; Quarteroni et al., 2017]. A review of
the development of cardiovascular models and their applicability to clinical questions is
presented in [Chabiniok et al., 2016].

Models of subpart of the heart have also been developed to target specific phenomena
such as the growth and remodeling of the muscle tissue [Rodriguez et al., 1994; Humphrey
& Rajagopal, 2002], which have then been applied in the context of aortic aneurysms
[Cyron et al., 2014] or the growth and remodeling of the whole heart [Kroon et al., 2009;
Kerckhoffs et al., 2012]. The function of the valves and the flow around them [Astorino
et al., 2009; Stella & Sacks, 2007], the blood flow in the arteries [Quarteroni et al., 2002;
Formaggia et al., 2003] and the behavior of the arterial wall [Gasser et al., 2005] have been
specifically studied as well. These model elements can naturally be used as a part of a
whole organ model if required.

The community focusing on the cardiovascular system has presented promising proofs
of concept for the three main challenges of the digital medicine. Models have proven to
be able to give a better insight into the physiology [Hyde et al., 2015; McDowell et al.,
2013]. Regarding the improvement of diagnosis, the estimation from MRI data using data
assimilation techniques of the arterial wall contractility [Chabiniok et al., 2012; Genet
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et al., 2015] or the aortic wall stiffness [Bertoglio et al., 2014] could be achieved. In
the domain of electrophysiology, the evaluation of the electrical state in a heart beat
contraction [Corrado et al., 2015] was performed. Some research works also deal with the
challenge of optimizing the treatment as a theoretical analysis or even completed by a
validation on real in vivo data. In the first category, one can mention the work of Rausch
et al. [2017] displaying the theoretical ability of a heart model to help select the design
of implantable mitral annuloplasty rings. An example of the latter category is the work
of Sermesant et al. [2012] who presented a computational framework able to find a priori
the optimal position of pacemaker electrodes, therefore having the potential to replace
the current practice of trial and error and thus shorten the duration of the procedure and
increase safety.

The promises of the academic research have already started to translate into the clin-
ical practice. Indeed, companies such as HeartFlow and Arterys have already received
clearance from the public health authorities to commercialize products relying on cardio-
vascular models to assess blood flows in the cardiovascular tree.

The human heart
The heart is the main object of study of this thesis. We give here a brief presentation

of its structure and functioning. A more complete description of the heart can be found
for instance in [Silverthorn et al., 2009].

The heart is an organ located in the thorax between the lungs. It is integrated into the
cardiovascular circulatory system, which allows the movement of blood through the body
to supply the organs with oxygen, nutriments and hormones and to handle the transport
of waste products. The heart serves as a blood pump in this circulatory system. There
are three distinct blood circulations:

• the pulmonary circulation, which corresponds to the part of the blood traveling
through the lungs so that gas exchanges can be performed leading to the blood
oxygenation;

• the coronary circulation, which supplies blood to the heart itself through the coro-
nary arteries;

• the systemic circulation, which provides blood to the rest of the body.

A presentation of the heart structure is given in Figure 1. It is composed of four
chambers: the left and right atria and the left and right ventricles. The septum separates
the left and right ventricles. The valves are the interface between the ventricles and the
atria on the one hand, and from the circulatory system on the other hand. They also
allow to give a direction to the blood circulation. The triscupid valve is located between
the right atrium and the right ventricle; the pulmonary valve separates the right ventricle
from the pulmonary artery. The left ventricle is also connected with adjacent elements by
two valves: the mitral valve for the left atrium and the aortic valve for the aorta.

The heart tissue, called myocardium, is contractile, which allows to generate pressure
in the cavities and to eject blood. It is composed of fibers coiled around the cavities. This
arrangement of fibers creates a twist in the ventricle, which enhances the contraction. At
a microscopic scale, these fibers form a branching network (see Figure 2). The muscle
contraction is triggered by an electrical signal originating from the right atrium. This
signal travels in the whole heart through the Purkinje fibers and by means of a propagation
from one contractile cell to another.

In a cardiac cycle, the blood from the systemic circulation (that contains less oxygen)
enters the heart through the right atrium, while the oxygenated blood coming from the
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lungs enters in the left atrium. The atria contraction is triggered first ensuring the filling
of the ventricles. The contraction triggering signal then reaches the ventricles, which eject
the blood into the pulmonary artery towards the lungs and into the aorta towards the
rest of the body. The fluxes of blood inside the heart are illustrated in Figure 1. The
main cavity of interest is the left ventricle. We present the typical evolution of its pressure
and its volume in a cardiac cycle in Figure 3. At the beginning of the cycle, the left
atrium contracts, its pressure increases and blood flows inside the ventricle. Then, the
ventricle starts to contract and the pressure inside the cavity increases and the mitral valve
closes. When the ventricular pressure reaches the aortic pressure, the aortic valve opens
and the blood is ejected into the aorta. Simultaneously, the cavity volume decreases.
After reaching a peak, the ventricular pressure decreases. The relaxation begins and
the aortic valve closes. When the ventricular pressure falls to the level of the atrium
pressure, the mitral valve opens and a new cycle can take place. The function of heart as
a pump is illustrated here. Indeed, the left ventricle brings a volume of blood from a low
atrium pressure to a high aortic pressure. A useful representation of these data for the
understanding of the cardiac function is the pressure-volume relation. It forms a loop due
to the cyclic nature of the heart functioning. An illustration is presented in Figure 4. The
contraction period of the cycle is called systole and the relaxation period is called diastole.
Note that the diastole and systole are not synchronized for atria and ventricles.
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Figure 3 – Typical evolution of the left ventricle pressure and volume in a cardiac cycle.

Cardiac muscles being the main point of interest of this thesis, we give here a quick
anatomy description. The muscle fibers are composed of a series arrangement of small
(∼2 µm) contractile units called sarcomeres. The latter are mainly made of two arrays
of protein filaments: myosin filament (thick filament) and actin filament (thin filament).
Components of myosin filament, myosin heads, interact with the actin monomers (also
called actin sites) in a cyclic manner while consuming metabolic fuel provided by ATP
hydrolysis. The myosin head attaches to an actin site forming a so-called cross-bridge.
While a myosin head is attached, a fast conformation change occurs leading to the gener-
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Figure 4 – Typical left ventricle pressure-volume loop (PV loop) in a cardiac cycle.

ation of a contraction force. This phase is called the power stroke. The force generated by
cross-bridges is said to be an active force as the force generation process involves energy
consumption. As a result of the force development, the sarcomere may shorten by the
relative sliding between the actin and myosin filaments.

Modeling of muscle contraction
The study and modeling of the muscle behavior started over a century ago and has

been very active in the last fifty years. A historical review, written by one of the main
protagonist, H.E. Huxley, is available [Huxley, 2004]. We refer to [Caruel & Truskinovsky,
2018] for a review of recent theoretical modeling work.

From the pioneer work of A.V. Hill [Hill, 1938], immense efforts have been made by
biologists and physiologists to experimentally characterize the structure of muscle, the
mechanism of muscle contraction and its regulations. The scientific community can be
decomposed in two groups. The first one, led by A.F. Huxley and H.E. Huxley from
the 50’s, and then in particular by V. Lombardi, focuses on the fine characterization of
the structure and the microscopic interactions underlying the macroscopic contraction
in skeletal muscle, and recently applies their experimental protocol to cardiac muscles.
The second one, led by H.E.D.J. ter Keurs and P.P. de Tombe from the 80’s and 90’s,
respectively, concentrates on the characterization of cardiac muscles contraction and the
associated regulation mechanisms.

Modelers have worked in parallel of the experimental breakthroughs, taking advantage
of the latest physiological discoveries to enhance the models. The first model of muscle
contraction was formulated by A.V. Hill in 1938 alongside his landmark experimental work
on the macroscopic thermodynamics of muscle contraction [Hill, 1938]. He observed the
relation between the muscle shortening speed and the developed force, along with the
associated heat fluxes. This force-velocity relation is the main feature of the actin-myosin
interaction. It is now often termed the Hill’s curve. The model that A.V. Hill proposed
to account for his experimental observations is a simple rheological model composed of a
spring and an “active element” having the force-velocity relation as a constitutive equa-
tion. This model targets the muscle macro-scale. It is still used nowadays because of its
simplicity [Quarteroni et al., 2017].

In the early 50’s, it was believed that the contraction occurs as a results of the coil-
ing of a single actomyosin filament. A change of paradigm started in 1954. The group
of A.F. Huxley (in Cambridge, England) and the group of H.E Huxley (in Cambridge,
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Massachusetts) publish, in the same issue of Nature, two experimental studies observ-
ing the variations of the striations in skeletal muscle with the muscle stretch [Huxley &
Niedergerke, 1954; Huxley & Hanson, 1954]. From these results emerges the idea that
muscle shortening originates from the relative sliding of the myosin and actin filaments
and that a force is created by the interaction between these components. This constitutes
the sliding filament theory.

Based on a (at the time speculative) mechanism involving the formation of cross-
bridges by myosin heads and actin sites Huxley [1957a] proposed a new model of muscle
contraction. This model describes the behavior of a population of myosin heads interacting
with localized actin sites. Each myosin head is modeled as a linear spring. The rates at
which the myosin heads attach and detach vary with the distance between the myosin
head and the actin site. The generation of a force results from the modeling assumption
that the myosin heads attach preferentially in a position where the spring is stretched,
while detachment occurs when the spring is compressed. Despite the simple assumptions
chosen here, the Huxley’57 model is already able to account for the essential feature of the
actin-myosin interaction: the force-velocity curve first observed by [Hill, 1938]. This model
was later extended, in particular by Podolsky et al. [1969], by Julian [1969] to incorporate
the calcium activation process, and also by Deshcherevskiǐ [1971], who, conversely to the
original model, considers non-localized actin binding sites. The Huxley’57 model remains
today the basis for the modeling of muscle contraction.

In the same year, H.E. Huxley obtained the first observation of cross-bridges as part of
a high resolution observation of the actin and myosin filaments that definitely confirms the
sliding filament theory as the correct mechanism underlying muscle contraction [Huxley,
1957b].

A decade later, H.E. Huxley’s structural measurements suggest that the attached
myosin heads change their angle of attachment during the contraction process. This change
between two stable conformations is now named power stroke [Huxley, 1969]. The initial
and final conformations are called pre-power stroke and post-power stroke conformations,
respectively.

In 1971, A.F. Huxley and R.M. Simmons observe the behavior of skeletal muscles under
a quick change of length (the time scale considered here is below 1 ms and is thus shorter
than the time scale of the attachment-detachment process, which is around 100 ms in their
experimental conditions). The response in force displays several phases: an instantaneous
force drop followed by a quick force recovery. These experiments suggest that phenomena
with different time scales occur in the interaction between myosin heads and actin sites.
A.F. Huxley and R.M. Simmons proposed a model to account for this experimental ob-
servation [Huxley & Simmons, 1971]. Their description assumes that cross-bridges behave
like a bistable snap-spring. The energy of the bistable element is modeled as two infinitely
narrow energy wells of different depth. If the spring is stretched enough the bistable el-
ement can transition from one state to the other recreating a positive force generation
capability. This model thus incorporates the idea of the power stroke suggested by experi-
mental results of H.E. Huxley two years before. Note that this model does not include the
attachment-detachment dynamics and only focuses on the description of the cross-bridges.

The same year, a basic cycle for the interaction in solution between actin, myosin and
the energy supply in the form of ATP in this interaction was presented [Lymn & Taylor,
1971]. It consists in two attached and two detached states. The transition between the
two attached states can be identified with the power stroke. The detachment is associated
with the hydrolysis of ATP and thus with an input of energy.

One issue raised by the Huxley-Simmons’71 model is the dynamics of the transition
between the two states of the bistable element. Indeed, the transition occurs when the
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energy of the current state is equal to the energy of the future state (after transitioning).
During the transition, an exchange of energy between the bi-stable element and the spring
occurs, the total energy remaining constant. It is equivalent to define the energy barrier
between the two states as the energy depth of the current energy well. This energy has to
be provided by the thermal fluctuations and this results in a slow transition between the
two states compared to that observed experimentally.

This issue was solved by T.L. Hill in the 70’s through his tremendous effort of model
formalization [Hill, 1974, 1976, 1977]. He proposed to describe the transition between
the two discrete states by an independent energy landscape that defines the transition
energy barrier. At the level of discrete chemical states, it is equivalent to say that the
transition rates (or equivalently the transition energy landscape) can be chosen arbitrarily.
The consistency with thermodynamics is maintained by considering for each transition a
reverse whose rate that is defined by the detailed balance

k

krev = exp
[−∆w

kBT

]
where k is the transition rate of the forward reaction, krev the transition rate of the reverse
reaction, ∆w is the free energy difference between the final state and the initial state for
the forward reaction, kB is the Boltzmann constant and T is the absolute temperature.
The change between states of the cross-bridge is thus analogous to transition between
chemical states. With this “purely chemical” formalism, it is natural to incorporate, in a
single model, the idea of the attachment-detachment dynamics proposed by Huxley [1957a]
and the description of the power stroke introduced by Huxley & Simmons [1971]. This
class of model is called chemico-mechanical models. Based on his framework, T.L. Hill and
his co-authors formulated a model that is capable of capturing the behavior in response
to fast length changes– with the correct dynamics – along with the force-velocity relation
[Eisenberg & Hill, 1978; Eisenberg et al., 1980]. The power stroke is modeled by the
transition between two discrete states.

Since then, many modeling ingredients have been incorporated in the class of chemico-
mechanical models to embed additional aspects of the muscle contraction physiology dis-
covered experimentally. Piazzesi & Lombardi [1995] added an intermediate state in the
power stroke from which the complete cycle can be aborted to improve the energy con-
sumption prediction of the model. The idea of a series of discrete chemical states to
represent the power stroke was extended using up to five chemical states [Linari et al.,
2009] (in this case without the attachment-detachment process). Moreover, some model
refinements integrating the cycle of ATP to the actin-myosin interaction have been de-
veloped [Linari et al., 2010; Caremani et al., 2015]. The family of chemico-mechanical
models is the most used in the community of physiologists to analyze a growing corpus of
experimental results. These models became very complex to remain comprehensive.

An effort of simplification was undertaken by G.I. Zahalak from the 80’s. He intro-
duced the idea that computing the probability of all the myosin head configurations may
not be always necessary since the main quantity of interest – the active force – only de-
pends on one moment of this probability. He showed that, under a hypothesis on the
spatial variation of attachment probability, the force evolution could be computed from
the dynamics of a few moments of this probability only [Zahalak, 1981]. The set of par-
tial differential equations governing the chemico-mechanical models becomes here a set of
ordinary differential equations. Building on a similar idea but using a slightly different
assumption – based on the spatial variation of the transition rates, which then affect the
binding states probabilities of all the myosin heads – Bestel et al. [2001] proposed a rel-
evant reduction of the Huxley’57 model. G.I. Zahalak also suggested to take advantage
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from the different time scales to derive simplified models [Zahalak, 2000]. His procedure
aggregates the – possibly many – transitions representing the power stroke into a single
transition through relevant approximations.

Note that another broad family of models called Brownian ratchets has been developed
by a physics community to study collective effects with a high level of abstraction in
parallel of the development of new experimental techniques on single myosin heads [Kron
& Spudich, 1986; Molloy et al., 1995; Veigel et al., 1998]. The idea here is to use the
representation of molecules subjected to thermal fluctuations diffusing in a periodic energy
potential [Magnasco, 1993; Prost et al., 1994]. These purely mechanical models were
originally targeting the behavior of molecular motors but have then been applied to muscle
contraction [Jülicher et al., 1997; Wang & Oster, 2002; Esaki et al., 2003].

The most recent improvement of muscle contraction models came from the work of
L. Truskinovsky and his collaborators. The succession of discrete chemical states repre-
senting the power stroke in chemico-mechanical is here replaced by a continuous manifold
[Marcucci & Truskinovsky, 2010; Caruel et al., 2013a]. In a sense, this is an approach that
is parallel to the description of T.L. Hill and his collaborators. The latter assume that
the discrete states are separated by an arbitrary energy landscape, which is associated
with the conformation changes occurring between the discrete states and which then only
appears in the model through the transition rates between the discrete states. The model
is purely chemical but the evolution between the discrete states is governed by a hidden
mechanical energy. With the continuous power stroke models, the whole energy landscape
of the system is directly provided. It is constructed from the coupling of a quadratic
mechanical energy – representing the linear elastic behavior of the cross-bridges – with
a mechanical double-well potential associated with the myosin head pre- and post-power
stroke stable conformations. Note that additional energy wells could be added to represent
additional stable conformations [Marcucci et al., 2016]. The models are purely mechanical
without discrete chemical states.

The continuous power stroke models were first restricted to the description of the
power-stroke (as the Huxley-Simmons’71 model). They were then extended to also take
into account the attachment-detachment process by Caruel et al. [2019] who model at-
tachment and detachment as jump processes between two energy landscapes (possibly
associated with a simultaneous myosin head position change). This approach has the par-
ticularity to reconcile a fully mechanical approach for the description of the power stroke
and a chemical description of the attachment-detachment process. The models proposed
and studied in this manuscript fall within this sub-family of models.

An alternative approach to incorporate the formation and destruction of cross-bridges
to the continuous description of the power stroke was proposed by Sheshka [2012]; Sheshka
& Truskinovsky [2014] extending the Brownian ratchets models. The resulting model is
purely mechanical description of the actin-myosin interaction.

Very recently, the fine properties of cardiac muscles have been measured [Caremani
et al., 2016].

Despite the abundant research on muscle contraction conducted in the last sixty years,
this field is still very active. Experiments using X-ray diffraction patterns (using the reg-
ular structure of the sarcomere as a diffractor) allow to better understand the structural
variations occurring in the contraction [Reconditi et al., 2003; Piazzesi et al., 2007; Re-
conditi et al., 2014; Ait-Mou et al., 2016], pathologies [Ait-Mou et al., 2018] or to better
identify the various chemical states appearing in the cycle [Houdusse & Sweeney, 2016]. In
particular, a new state of the myosin head, called off-state, has recently been discovered in
skeletal muscle [Reconditi et al., 2011; Linari et al., 2015] and cardiac muscles [Reconditi
et al., 2017]. This opens new opportunities for the development of dedicated models and
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the refinement of existing ones.

Theoretical challenges
Despite the large amount of efforts already put into the modeling of muscle contraction,
many questions remain open.

First, the sixty years of actin-myosin model developments have not succeeded in mak-
ing the model predictions match with all experimental data. In particular, the energetics
aspects of the actin-myosin interaction remain difficult to reconcile with the kinetics as-
pects, the ATP consumption predicted with classical models being usually higher than
that actually measured.

Secondly, most of the fine description of the actin-myosin interaction at the origin of
muscle contraction has been performed for skeletal muscles, the development of model
targeting specifically cardiac muscles being only very recent. Experimental data with
cardiac muscles show similar qualitative behavior but the quantitative results differ. This
discrepancy may be explained by intrinsic differences between skeletal and cardiac muscle,
by differences between species but also by the fact that the experiments with cardiac
muscles are usually performed at higher temperatures. There is thus a need for models
specifically targeting the behavior of cardiac muscles.

Thirdly and most importantly, the need of modeling elements for medical applications
does not imply a search of a single model that could capture many different aspects of
the studies phenomenon. It is rather a collection of models having different degrees of
complexity that is required. For each particular application, the rightful model, which
best satisfies the trade-off between ability of the model to bring meaningful elements to
solve the investigated question and the computational cost, should be selected. The issue
of computational cost is crucial for medical applications because real-time simulations may
be required in some cases, for instance if the model is embedded in a tool used to assist
a surgical intervention. Note that faster-than-real-time may be the relevant simulation
time scale, if for instance several scenarios have to be tested or if the quantification of
uncertainties is furthermore performed. The consistency between the different models is
a decisive point. Indeed, to transfer a calibration made with one model to another or to
bridge space and time scales, the models need to be rigorously and systematically related.
For instance, in the framework of heart modeling, a detailed analysis of a pathology may be
performed with a refined model and ex vivo data so that the model of the pathology may be
used in a more global description at the tissue level or the heart level, where using of this
refined model is impossible. The ability to link the models and to control the conservation
and loss of properties through this transition from one model to another is therefore an
essential feature that should be sought in modeling efforts within the framework of digital
medicine. This gives rise to the first goal of this thesis that can be stated as follows:

Propose a hierarchical modeling framework of the cardiac
actin-myosin interaction underlying cardiac muscle contraction.

To tackle this issue, we pursue the following strategy. We start from a complex model,
which was only validated for skeletal muscle [Caruel et al., 2019], and we show the appli-
cability of this model to cardiac muscles, trying to match as many physiological indicators
as possible. This model is governed by stochastic differential equations (SDEs). Then, we
perform the adiabatic elimination of the faster internal variable, which corresponds to the
power stroke, obtaining from the Fokker-Planck equation associated with the stochastic
model a description of the state of the myosin head under the form of a partial differential
equation (PDE). Finally, building on the ideas of Zahalak [2000] and Bestel et al. [2001],
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we propose, under a specific assumption for the spatial variability of the attachment and
detachment rates, further simplifications of the model by considering only the moments
of the PDE solution that are of interest for the computation of the force and the stiffness.
The dynamics is then only governed by ordinary differential equations (ODEs). The cali-
bration of the models, that may look like a secondary element, should not be neglected. It
is indeed a key element to prove the validity of the proposed models and is a highly time
consuming process.

The proposed models describe a situation where all myosin heads and all actin sites
are available for the formation of cross-bridges (we say equivalently that the thick and thin
filament are fully activated). This is not the case in the living heart. To be able to use
the models in the context of heart modeling, these regulation mechanisms taking place in
vivo have to be incorporated in the model. This motivates the introduction of our second
goal:

Enhance the classical actin-myosin interaction models to incorporate
the regulation mechanisms taking place at the heart level.

Our approach here is to establish new PDEs describing the system dynamics from the
conservation of matter. It is used to handle both varying availability of myosin heads and
actin sites.

Finally, these complete models have to be properly coupled with a model of tissue so
that they can eventually used in an organ model. The third goal of this work is thus
naturally defined as:

Link these newly proposed models in a heart multi-scale simulation
framework.

The goal is two-fold: it consists in linking the continuous equations of the microscopic
model and that of the macroscopic (organ model) from a theoretical standpoint, but also
to propose adapted numerical methods to carry out the organ simulation in a rigorous
way. Here, thermodynamics will play a crucial role serving as a guideline for the design of
the link between scales and the development of numerical methods.

To achieve the three goals presented above, several challenges have to be addressed.
There is first a challenge of understanding the nature and the functioning of the system
we are trying to describe. The second challenge concerns the multi-scale nature of the
considered problems. Indeed, the heart contraction from the actin-myosin interaction to
the organ response involves time scales spanning over four orders of magnitude (from
100 µs to 1 s) and space scales covering eight orders of magnitude (from 1 nm to 10 cm).

Structure of this work
This thesis is composed of five chapters.

Chapter 1 – Review of muscle contraction physiology
This chapter tackles the first challenge identified for this work, namely the understanding

of the physiology. We review the elements of the muscle contraction physiology available
in the literature that are of interest for the development of actin-myosin interaction models
and the incorporation of the contraction regulation mechanisms. No experiment has been
performed for this work; there are therefore no new experimental data among that pre-
sented in this chapter. However, some interpretations of experimental data are original.
Moreover, to the best of my knowledge, a recent global physiology review with the focus
on the relevant elements for the development of heart models did not exist before.
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Chapter 2 – Thermodynamic properties of muscle contraction models and
associated discrete-time principles

In Chapter 2, we reformulate the chemico-mechanical models, which have as a common
root the Huxley’57 model [Huxley, 1957a], into a unifying framework. We establish some
mathematical properties with a particular emphasis on the thermodynamical properties.
The first main contribution of this work is the introduction of a new rheological scheme
to incorporate the micro-scale chemico-mechanical model into a macroscopic mechanical
tissue model and the establishment of the thermodynamical properties of the coupled
system. This part was already well advanced before the beginning of my PhD work
and I have only a contribution in the establishment of some properties of the coupled
system. The second main contribution is the design of numerical methods for chemico-
mechanical models satisfying the thermodynamics and the enhancement of previously
proposed methods for the coupled system so that the discrete thermodynamics balance
can be tracked from the micro to the macro-scale.

The chapter takes the form of an article co-authored by François Kimmig, Dominique
Chapelle and Philippe Moireau, published in AMSES and entitled Thermodynamics prop-
erties of muscle contraction models and associated discrete-time principles. It is referred to
as [Kimmig et al., 2019a] in the rest of the manuscript. Note that the appendix presented
in this chapter is not part of the published article.

Chapter 3 – Hierarchical modeling of force generation in cardiac muscle
In this chapter, we present the derivation of a hierarchy of actin-myosin interaction

models. We start from a refined stochastic model [Caruel et al., 2019] and display the
ability of this model to describe the behavior of cardiac muscles before applying several
steps of simplification.

A strong emphasis is put on the calibration process of these models that take advan-
tage of the hierarchical structure in which they are embedded. The models outputs are
evaluated against data obtained on rat cardiac cells at 25 ◦C. The proposed calibration
allows the most refined model to match many physiological indicators, while simplified
models are restricted to the indicators that correspond to their time scale of validity. This
validates the relevance of the proposed models and their predictive ability. This chapter
takes the form of a pre-print article co-authored by François Kimmig and Matthieu Caruel,
entitled Hierarchical modeling of force generation in cardiac muscle. It is referred to as
[Kimmig & Caruel, 2019] in the rest of the manuscript.

Chapter 4 – Activation-contraction coupling in a multiscale heart model cap-
turing the Frank-Starling effect

This chapter concerns the incorporation into the model of a first regulation mechanism:
the variation of the myosin heads availability. We consider two groups of myosin heads
(available and not available). Using the conservation of myosin heads, we establish the
PDE that governs the system dynamics. It is an extension of that of the Huxley’57 model
with additional terms accounting for the exchanges between the two groups of myosin
heads. The numerical methods proposed in Chapter 2 are extended to take the additional
terms into account. The activation of the thin filament is, in this chapter, treated phe-
nomenologically. Linking the newly proposed models to a cardiac simulation environment,
we perform heartbeat simulations and demonstrate the ability of our model to capture the
key features of the Frank-Starling mechanism, which takes place at the organ level and
originates from the myosin and actin availability variations.

This chapter takes the form of a pre-print article co-authored by François Kimmig,
Philippe Moireau and Dominique Chapelle, entitled Activation-contraction coupling in a
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multiscale heart model capturing the Frank-Starling effect. It is referred to as [Kimmig
et al., 2019b] in the rest of the manuscript.

Chapter 5 – Varying thin filament activation in the framework of the Huxley’57
model

To complete our modeling framework, we need to properly integrate the activation of
actin sites into the model. Applying a similar strategy as in Chapter 4, we obtain a system
of equations describing the actin-myosin interaction and the variation of activation of the
thick and thin filament. The calibration of the model is performed with ex vivo data. Our
model has the capability of producing important physiological data.

Main contributions
To conclude this introduction, an overview of the scientific productions during this thesis
is given. This work was also presented in several conferences in poster sessions or oral
presentations.

Published articles and pre-prints

• Kimmig, F., Chapelle, D., and Moireau, P. (2019). Thermodynamic properties of
muscle contraction models and associated discrete-time principles. Advanced Mod-
eling and Simulation in Engineering Sciences, 6(1), 6.

• Kimmig, F., and Caruel, M. Hierarchical modeling of force generation in cardiac
muscle. Pre-print

• Kimmig, F., Moireau, P., and Chapelle, D. Activation-contraction coupling in a
multiscale heart model capturing the Frank-Starling effect. Pre-print

Oral communications

• 8th World Congress of Biomechanics – WCB 2018 – Dublin, Ireland
Poster session: Multi-scale modeling of muscle contraction.

• 6ème rencontre du GDR Mécabio – Université Montpellier 2, France
Oral presentation: Multi-scale modeling of muscle contraction.

• 6th International conference on computational and mathematical biomedical engi-
neering – CMBE 2019 – Tohoku University, Sendai City, Japan
Oral presentation: Activation-contraction coupling in a multi-scale heart model.

• Symposium Jean Mandel 2019 – École Polytechnique, Palaiseau, France
Oral presentation: Activation-contraction coupling in a multi-scale heart model.

Software development The models presented in chapters 3, 4 and 5 have been imple-
mented in the heart simulation library CardiacLab, which is developed internally in the
MΞDISIM team. This library has been used to perform all cardiac simulations presented
in this thesis.

Moreover, the chemico-mechanical contraction model developed by [Piazzesi & Lom-
bardi, 1995] has also been implemented into this environment. Altogether, these contri-
butions represent about 10 000 lines of codes.

14



Bibliography

Bibliography
Ait-Mou, Y., Hsu, K., Farman, G.P., Kumar, M., Greaser, M.L., Irving, T.C., & de Tombe,

P.P. (2016). Titin strain contributes to the Frank–Starling law of the heart by structural
rearrangements of both thin- and thick-filament proteins. Proceedings of the National
Academy of Sciences, 113(8), 2306–2311.

Ait-Mou, Y., Lacampagne, A., Irving, T., Scheuermann, V., Blot, S., Ghaleh, B.,
de Tombe, P.P., & Cazorla, O. (2018). Altered myofilament structure and function
in dogs with Duchenne muscular dystrophy cardiomyopathy. Journal of molecular and
cellular cardiology, 114, 345–353.

Astorino, M., Gerbeau, J.-F., Pantz, O., & Traoré, K.-F. (2009). Fluid–structure interac-
tion and multi-body contact: Application to aortic valves. Computer Methods in Applied
Mechanics and Engineering, 198(45-46), 3603–3612.

Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., & Kuhl, E. (2014). The Living Heart
Project: A robust and integrative simulator for human heart function. European Journal
of Mechanics / A Solids, 48(C), 38–47.

Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., Moireau,
P., Hose, R., & Gerbeau, J.-F. (2014). Identification of artery wall stiffness: in vitro
validation and in vivo results of a data assimilation procedure applied to a 3D fluid-
structure interaction model. Journal of Biomechanics, 47 (5), 1027–1034.

Bestel, J, Clément, F, & Sorine, M (2001). A Biomechanical Model of Muscle Contraction.
In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001, (pp.
1159–1161). Berlin, Heidelberg: Springer, Berlin, Heidelberg.

Caremani, M., Melli, L., Dolfi, M., Lombardi, V., & Linari, M. (2015). Force and number
of myosin motors during muscle shortening and the coupling with the release of the
ATP hydrolysis products. The Journal of Physiology, 593(15), 3313–3332.

Caremani, M., Pinzauti, F., Reconditi, M., Piazzesi, G., Stienen, G.J.M., Lombardi, V.,
& Linari, M. (2016). Size and speed of the working stroke of cardiac myosin in situ.
Proceedings of the National Academy of Sciences, 113(13), 3675–3680.

Caruel, M., Allain, J.-M., & Truskinovsky, L. (2013a). Muscle as a Metamaterial Operating
Near a Critical Point. Physical review letters, 110(24), 248103.

Caruel, M., Chabiniok, R., Moireau, P., Lecarpentier, Y., & Chapelle, D. (2013b). Di-
mensional reductions of a cardiac model for effective validation and calibration. Biome-
chanics and Modeling in Mechanobiology, 13(4), 897–914.

Caruel, M., Moireau, P., & Chapelle, D. (2019). Stochastic modeling of chemical-
mechanical coupling in striated muscles. Biomechanics and Modeling in Mechanobiology,
18(3), 563–587.

Caruel, M., & Truskinovsky, L. (2018). Physics of muscle contraction. Reports on Progress
in Physics, (pp. 1–98).

Chabiniok, R, Moireau, Philippe, Lesault, P F, Rahmouni, A, Deux, J F, & Chapelle,
Dominique (2012). Estimation of tissue contractility from cardiac cine-MRI using a
biomechanical heart model. Biomechanics and Modeling in Mechanobiology, 11(5),
609–630.

15



Bibliography

Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., Asner, L., Lee, J., Sermesant, M.,
Kuhl, E., Young, A.A., Moireau, P., Nash, M.P., Chapelle, D., & Nordsletten, D.A.
(2016). Multiphysics and multiscale modelling, data-model fusion and integration of
organ physiology in the clinic: ventricular cardiac mechanics. Interface focus, 6(2),
20150083.

Chapelle, D., Clément, F., Génot, F., Le Tallec, P., Sorine, M., & Urquiza, J.M. (2001). A
Physiologically-Based Model for the Active Cardiac Muscle Contraction. In Functional
Imaging and Modeling of the Heart, (pp. 128–133). Berlin, Heidelberg: Springer, Berlin,
Heidelberg.

Chapelle, D., Le Tallec, P., Moireau, P., & Sorine, M. (2012). Energy-preserving mus-
cle tissue model: formulation and compatible discretizations. Journal for Multiscale
Computational Engineering.

Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G.,
& Ayache, N. (2005). Realistic simulation of the 3-D growth of brain tumors in MR im-
ages coupling diffusion with biomechanical deformation. IEEE Transactions on Medical
Imaging, 24(10), 1334–1346.

Cormack, A.M. (1963). Representation of a function by its line integrals, with some
radiological applications. Journal of applied physics, 34(9), 2722–2727.

Corrado, Cesare, Gerbeau, Jean-Frédéric, & Moireau, Philippe (2015). Identification of
weakly coupled multiphysics problems. application to the inverse problem of electrocar-
diography. Journal of Computational Physics, 283, 271–298.

Cyron, C.J., Wilson, J.S., & Humphrey, J.D. (2014). Mechanobiological stability: a new
paradigm to understand the enlargement of aneurysms? Journal of The Royal Society
Interface, 11(100), 20140680–11.

Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., & Cobelli, C. (2014).
The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Tech-
nology, 8(1), 26–34.

Deshcherevskiǐ, V I (1971). A kinetic theory of striated muscle contraction. Biorheology,
7 (3), 147–170.

Einthoven, W. (1895). Ueber die Form des menschlichen Electrocardiogramms. Pflügers
Archiv - European Journal of Physiology, 60(3-4), 101–123.

Eisenberg, E., & Hill, T.L. (1978). A cross-bridge model of muscle contraction. Progress
in biophysics and molecular biology, 33(1), 55–82.

Eisenberg, E., Hill, T.L., & Chen, Y. (1980). Cross-bridge model of muscle contraction.
Quantitative analysis. Biophysical Journal, 29(2), 195–227.

Enderling, H., & Chaplain, M.A.J. (2014). Mathematical modeling of tumor growth and
treatment. Current pharmaceutical design, 20(30), 4934–4940.

Esaki, S., Ishii, Y., & Yanagida, T. (2003). Model describing the biased Brownian move-
ment of myosin. Proceedings of the Japan Academy, Series B, 79B(1), 9–14.

Formaggia, Luca, Lamponi, Daniele, & Quarteroni, Alfio (2003). One-dimensional models
for blood flow in arteries. Journal of Engineering Mathematics, 47 (3-4), 251–276.

16



Bibliography

Gasser, T.C., Ogden, R.W., & Holzapfel, G.A. (2005). Hyperelastic modelling of arte-
rial layers with distributed collagen fibre orientations. Journal of The Royal Society
Interface, 3(6), 15–35.

Genet, M., Lee, LC, Ge, L., Acevedo-Bolton, G., Jeung, N., Martin, A., Cambronero, N.,
Boyle, A., Yeghiazarians, Y., Kozerke, S., & Guccione, J.M. (2015). A Novel Method
for Quantifying Smooth Regional Variations in Myocardial Contractility Within an In-
farcted Human Left Ventricle Based on Delay-Enhanced Magnetic Resonance Imaging.
Journal of Biomechanical Engineering, 137 (8), 081009.

Ghista, D.N., Patil, K.M., Gould, P., & Woo, K.B. (1973). Computerized left ventricular
mechanics and control system analyses models relevant for cardiac diagnosis. Computers
in Biology and Medicine, 3(1), 27–46.

Guccione, J.M., & McCulloch, A.D. (1993). Mechanics of Active Contraction in Cardiac
Muscle: Part I—Constitutive Relations for Fiber Stress That Describe Deactivation.
Journal of Biomechanical Engineering, 115(1), 72–81.

Hill, A.V. (1938). The heat of shortening and the dynamic constants of muscle. Proc. R.
Soc. Lond. B, 126(843), 136–195.

Hill, T.L. (1974). Theoretical formalism for the sliding filament model of contraction of
striated muscle Part I. Progress in biophysics and molecular biology, 28, 267–340.

Hill, T.L. (1976). Theoretical formalism for the sliding filament model of contraction of
striated muscle part II. Progress in biophysics and molecular biology, 29, 105–159.

Hill, T.L. (1977). Free Energy Transduction in Biology. Academic Press.

Hirschvogel, M., Bassilious, M., Jagschies, L., Wildhirt, S.M., & Gee, M.W. (2017). A
monolithic 3D-0D coupled closed-loop model of the heart and the vascular system:
Experiment-based parameter estimation for patient-specific cardiac mechanics. Inter-
national Journal for Numerical Methods in Biomedical Engineering, 84(3), e2842–22.

Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of Physiology,
117 (4), 500–544.

Houdusse, A., & Sweeney, H.L. (2016). How Myosin Generates Force on Actin Filaments.
Trends in Biochemical Sciences, 41(12), 989–997.

Hounsfield, G.N. (1973). Computerized transverse axial scanning (tomography): Part 1.
Description of system. The British journal of radiology, 46(552), 1016–1022.

Howatson Tawhai, M., Pullan, A.J., & Hunter, P.J. (2000). Generation of an anatomi-
cally based three-dimensional model of the conducting airways. Annals of Biomedical
Engineering, 28(7), 793–802.

Humphrey, J.D., & Rajagopal, K.R. (2002). A constrained mixture model for growth and
remodeling of soft tissues. Mathematical models and methods in applied sciences, 12(03),
407–430.

Hunter, P.J. (1975). Finite Element Analysis of Cardiac Muscle Mechanics.. Ph.D. thesis,
University of Oxford.

17



Bibliography

Hunter, P.J., & Smaill, B.H. (1988). The analysis of cardiac function: a continuum
approach. Progress in biophysics and molecular biology, 52(2), 101–164.

Huxley, A.F. (1957a). Muscle structures and theories of contraction. Progr. Biophys.
Chem..

Huxley, A.F., & Niedergerke, R. (1954). Structural changes in muscle during contraction;
interference microscopy of living muscle fibres. Nature, 173(4412), 971–973.

Huxley, A.F., & Simmons, R.M. (1971). Proposed mechanism of force generation in
striated muscle. Nature.

Huxley, H.E. (1957b). The double array of filaments in cross-striated muscle. The Journal
of biophysical and biochemical cytology, 3(5), 631–648.

Huxley, H.E. (1969). The mechanism of muscular contraction. Science, 164(3886),
1356–1365.

Huxley, H.E. (2004). Fifty years of muscle and the sliding filament hypothesis. European
Journal of Biochemistry, 271(8), 1403–1415.

Huxley, H.E., & Hanson, J. (1954). Changes in the cross-striations of muscle during
contraction and stretch and their structural interpretation. Nature, 173(4412), 973–976.

Hyde, E.R., Behar, J.M., Claridge, S., Jackson, T., Lee, A.W.C., Remme, E.W., Sohal,
M., Plank, G., Razavi, R., Rinaldi, C.A., & Niederer, S.A. (2015). Beneficial Effect
on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated
by Early Access to High Conduction Velocity Tissue: Electrophysiological Simulation
Study. Circulation. Arrhythmia and electrophysiology, 8(5), 1164–1172.

Julian, Fred J (1969). Activation in a skeletal muscle contraction model with a modification
for insect fibrillar muscle. Biophysj, 9(4), 547–570.

Jülicher, F., Ajdari, A., & Prost, J. (1997). Modeling molecular motors. Reviews of
Modern Physics, 69(4), 1269–1282.

Kerckhoffs, R.C.P., Omens, J.H., & McCulloch, A.D. (2012). A single strain-based growth
law predicts concentric and eccentric cardiac growth during pressure and volume over-
load. Mechanics research communications, 42, 40–50.

Kimmig, F., & Caruel, M. (2019). Hierarchical modeling of muscle contraction. submitted.

Kimmig, F., Chapelle, D., & Moireau, P. (2019a). Thermodynamic properties of muscle
contraction models and associated discrete-time principles. Advanced Modeling and
Simulation in Engineering Sciences, 6(1), 6.

Kimmig, F., Moireau, P., & Chapelle, D. (2019b). Activation-contraction coupling in a
multiscale heart model, an element for capturing the frank-starling effect. to be submit-
ted.

Kron, Stephen J, & Spudich, James A (1986). Fluorescent actin filaments move on myosin
fixed to a glass surface. Proceedings of the National Academy of Sciences, 83(17),
6272–6276.

Kroon, W., Delhaas, T., Arts, T., & Bovendeerd, P. (2009). Computational modeling of
volumetric soft tissue growth: application to the cardiac left ventricle. Biomechanics
and Modeling in Mechanobiology, 8(4), 301–309.

18



Bibliography

Lauterbur, P.C. (1973). Image Formation by Induced Local Interactions: Examples Em-
ploying Nuclear Magnetic Resonance. Nature, 242(5394), 190–191.

Linari, M., Brunello, E., Reconditi, M., Fusi, L., Caremani, M., Narayanan, T., Piazzesi,
G., Lombardi, V., & Irving, M. (2015). Force generation by skeletal muscle is controlled
by mechanosensing in myosin filaments. Nature, 528(7581), 276–279.

Linari, M., Caremani, M., & Lombardi, V. (2010). A kinetic model that explains the effect
of inorganic phosphate on the mechanics and energetics of isometric contraction of fast
skeletal muscle. Proceedings. Biological sciences, 277 (1678), 19–27.

Linari, M., Piazzesi, G., & Lombardi, V. (2009). The Effect of Myofilament Compliance
on Kinetics of Force Generation by Myosin Motors in Muscle. Biophysj, 96(2), 583–592.

Lymn, R.W., & Taylor, E.W. (1971). Mechanism of adenosine triphosphate hydrolysis by
actomyosin. Biochemistry, 10(25), 4617–4624.

Magnasco, M.O. (1993). Forced thermal ratchets. Physical review letters, 71(10),
1477–1481.

Mansfield, P., & Maudsley, A.A. (1977). Medical imaging by NMR. The British journal
of radiology, 50(591), 188–194.

Marcucci, L., & Truskinovsky, L. (2010). Mechanics of the power stroke in myosin II.
Physical Review E , 81(5), 051915–8.

Marcucci, L., Washio, T., & Yanagida, T. (2016). Including thermal fluctuations in acto-
myosin stable states increases the predicted force per motor and macroscopic efficiency
in muscle modelling. PLoS Computational Biology, 12(9).

McDowell, K.S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R.S.,
& Trayanova, N.A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in
Fibrotic Lesions in Human Atrial Fibrillation. Biophysj, 104(12), 2764–2773.

Mirsky, I. (1969). Left ventricular stresses in the intact human heart. Biophysj, 9(2),
189–208.

Molloy, J E, Burns, J E, Kendrick-Jones, J, Tregear, R T, & White, DCS (1995). Movement
and force produced by a single myosin head. Nature, 378(6553), 209.

Nash, M.P., & Hunter, P.J. (2000). Computational Mechanics of the Heart. Journal of
elasticity and the physical science of solids, 61(1), 113–141.

Noble, D. (1962). A modification of the Hodgkin—Huxley equations applicable to Purkinje
fibre action and pacemaker potentials. The Journal of Physiology, 160(2), 317–352.

Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., & Smith, N.P. (2011). Cou-
pling multi-physics models to cardiac mechanics. Progress in biophysics and molecular
biology, 104(1-3), 77–88.

Pant, S., Fabrèges, B., Gerbeau, J.-F., & Vignon-Clementel, I. (2014). A methodological
paradigm for patient-specific multi-scale CFD simulations: from clinical measurements
to parameter estimates for individual analysis. International Journal for Numerical
Methods in Biomedical Engineering, 30(12), 1614–1648.

19



Bibliography

Peskin, C.S. (1972). Flow patterns around heart valves: a numerical method. Journal of
Computational Physics, 10(2), 252–271.

Peskin, C.S. (1975). Mathematical aspects of heart physiology. Courant Institute of Math-
ematical Sciences.

Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. Journal of Computa-
tional Physics, 25(3), 220–252.

Piazzesi, G., & Lombardi, V. (1995). A cross-bridge model that is able to explain mechan-
ical and energetic properties of shortening muscle. Biophysical Journal, 68, 1966–1979.

Piazzesi, G., Reconditi, M., Linari, M., Lucii, L., Bianco, P., Brunello, E., Decostre, V.,
Stewart, A., Gore, D.B., Irving, T.C., Irving, M., & Lombardi, V. (2007). Skeletal
muscle performance determined by modulation of number of myosin motors rather than
motor force or stroke size. Cell, 131(4), 784–795.

Podolsky, R J, Nolan, A C, & Zaveler, S A (1969). Cross-bridge properties derived from
muscle isotonic velocity transients. Proceedings of the National Academy of Sciences,
64(2), 504–511.

Prost, J., Chauwin, J.-F., Peliti, L., & Ajdari, A. (1994). Asymmetric pumping of particles.
Physical review letters, 72(16), 2652–2655.

Quaranta, V., Weaver, A.M., Cummings, P.T., & Anderson, A.R.A. (2005). Mathematical
modeling of cancer: The future of prognosis and treatment. Clinica Chimica Acta,
357 (2), 173–179.

Quarteroni, A., Lassila, T., Rossi, S., & Ruiz-Baier, R. (2017). Integrated Heart-Coupling
multiscale and multiphysics models for the simulation of the cardiac function. Computer
Methods in Applied Mechanics and Engineering, 314, 345–407.

Quarteroni, A., Veneziani, A., & Zunino, P. (2002). Mathematical and numerical modeling
of solute dynamics in blood flow and arterial walls. SIAM , 39(5), 1488–1511.

Rausch, M.K., Zöllner, A.M., Genet, M., Baillargeon, B., Bothe, W., & Kuhl, E. (2017).
A virtual sizing tool for mitral valve annuloplasty. International Journal for Numerical
Methods in Biomedical Engineering, 33(2).

Reconditi, M., Brunello, E., Fusi, L., Linari, M., Martinez, M.F., Lombardi, V., Irving,
M., & Piazzesi, G. (2014). Sarcomere-length dependence of myosin filament structure
in skeletal muscle fibres of the frog. The Journal of Physiology, 592(5), 1119–1137.

Reconditi, M., Brunello, E., Linari, M., Bianco, P., Narayanan, T., Panine, P., Piazzesi, G.,
Lombardi, V., & Irving, M. (2011). Motion of myosin head domains during activation
and force development in skeletal muscle. Proceedings of the National Academy of
Sciences, 108(17), 7236–7240.

Reconditi, M., Caremani, M., Pinzauti, F., Powers, J.D., Narayanan, T., Stienen, G.J.M.,
Linari, M., Lombardi, V., & Piazzesi, G. (2017). Myosin filament activation in the heart
is tuned to the mechanical task. Proceedings of the National Academy of Sciences, (pp.
3240–3245).

Reconditi, M., Koubassova, N., Linari, M., Dobbie, I., Narayanan, T., Diat, O., Piazzesi,
G., Lombardi, V., & Irving, M. (2003). The conformation of myosin head domains in
rigor muscle determined by X-ray interference. Biophysj, 85(2), 1098–1110.

20



Bibliography

Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., & Boissel, J.P. (2006). A multiscale
mathematical model of avascular tumor growth to investigate the therapeutic benefit of
anti-invasive agents. Journal of Theoretical Biology, 243(4), 532–541.

Rodriguez, E.K., Hoger, A., & McCulloch, A.D. (1994). Stress-dependent finite growth in
soft elastic tissues. Journal of Biomechanics, 27 (4), 455–467.

Roth, C.J., Ismail, M., Yoshihara, L., & Wall, W.A. (2017). A comprehensive com-
putational human lung model incorporating inter-acinar dependencies: Application to
spontaneous breathing and mechanical ventilation. International Journal for Numerical
Methods in Biomedical Engineering, 33(1).

Sainte-Marie, J., Chapelle, D., Cimrman, R., & Sorine, M. (2006). Modeling and es-
timation of the cardiac electromechanical activity. Computers & Structures, 84(28),
1743–1759.

Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P.,
Peyrat, J.M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette,
H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., & Ayache, N. (2012). Patient-
specific electromechanical models of the heart for the prediction of pacing acute effects
in CRT: A preliminary clinical validation. Medical Image Analysis, 16(1), 201–215.

Sheshka, Raman (2012). The power stroke driven muscle contraction. Ph.D. thesis, École
polytechnique.

Sheshka, R, & Truskinovsky, L (2014). Power-stroke-driven actomyosin contractility. Phys-
ical review. E, Statistical, nonlinear, and soft matter physics, 89(1), 012708.

Silverthorn, D.U., Ober, W.C., Garrison, C.W., & Silverthorn, A.C. (2009). Human
physiology: an integrated approach. Pearson.

Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E.W. (2013). Computational Methods in
Drug Discovery. Pharmacological Reviews, 66(1), 334–395.

Stella, J.A., & Sacks, M.S. (2007). On the Biaxial Mechanical Properties of the Layers of
the Aortic Valve Leaflet. Journal of Biomechanical Engineering, 129(5), 757–10.

Sugiura, S., Washio, T., Hatano, A., Okada, J., Watanabe, H., & Hisada, T. (2012). Multi-
scale simulations of cardiac electrophysiology and mechanics using the University of
Tokyo heart simulator. Progress in biophysics and molecular biology, 110(2-3), 380–389.

Tanrikulu, Y., Krüger, Bj., & Proschak, E. (2013). The holistic integration of virtual
screening in drug discovery. Drug Discovery Today, 18(7-8), 358–364.

Taylor, C.A., & Figueroa, C.A. (2009). Patient-specific modeling of cardiovascular me-
chanics. Annual Review of Biomedical Engineering, 11, 109–134.

Trayanova, N.A. (2011). Whole-heart modeling: applications to cardiac electrophysiology
and electromechanics. Circulation Research, 108(1), 113–128.

Veigel, Claudia, Bartoo, Marc L, White, David CS, Sparrow, John C, & Molloy, Justin E
(1998). The stiffness of rabbit skeletal actomyosin cross-bridges determined with an
optical tweezers transducer. Biophysj, 75(3), 1424–1438.

21



Bibliography

Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D., Vettoretti, M., Breton, M., Ko-
vatchev, B.P., Dalla Man, C., & Cobelli, C. (2017). The UVA/Padova Type 1 Diabetes
Simulator Goes From Single Meal to Single Day. Journal of Diabetes Science and Tech-
nology, 12(2), 273–281.

Waller, A.D. (1887). A Demonstration on Man of Electromotive Changes accompanying
the Heart’s Beat. The Journal of Physiology, 8(5), 229–234.

Wang, H., & Oster, G. (2002). Ratchets, power strokes, and molecular motors. Applied
Physics A, 75(2), 315–323.

Zahalak, G.I. (1981). A distribution-moment approximation for kinetic theories of mus-
cular contraction. Elsevier , 55(1-2), 89–114.

Zahalak, G I (2000). The two-state cross-bridge model of muscle is an asymptotic limit of
multi-state models. Journal of Theoretical Biology.

22



Introduction (Français)



Cette thèse a été préparée dans l’équipe Inria MΞDISIM et à l’École polytechnique,
financée par l’École polytechnique, sous la direction de Dominique Chapelle et Matthieu
Caruel. Philippe Moireau m’a également conseillé tout au long de ce projet.

Contexte
Cette thèse s’intéresse à la modélisation mathématique des mécanismes de contraction
musculaire à l’échelle microscopique, dans le but de proposer et d’intégrer nos modèles à
un environnement de simulation cardiaque multi-échelles.

Médecine numérique
Ce travail s’inscrit dans un mouvement mondial de développement d’une médecine dite

numérique à travers l’utilisation d’outils numériques et notamment de modèles. Les espoirs
suscités par cet ensemble de technologies sont énormes : une médecine personnalisée avec
des traitements plus précis et un dépistage précoce des maladies, qui est associée à une
réduction de la mortalité mais également au développement plus sûr et plus rapide de
nouveaux traitements. Un large éventail de programmes de recherche sont menés sur ce
sujet.

Le développement de technologies nouvelles a depuis longtemps conduit à la mise
au point d’outils d’acquisition de données médicales innovants [Chapelle et al., 2012].
Des étapes clés de ce processus sont l’invention de l’électrocardiogramme (ECG) [Waller,
1887 ; Einthoven, 1895], de l’échographie, du scanner [Cormack, 1963 ; Hounsfield, 1973] et
de l’imagerie par résonance magnétique [Lauterbur, 1973 ; Mansfield et Maudsley, 1977].
L’augmentation de la puissance de calcul et des systèmes d’information, qui rendent les
données plus facilement disponibles et exploitables, ainsi que la multiplication des outils
de mesure de signaux physiologiques amènent cette approche à un nouveau niveau de
développement.

Les efforts de recherche et développement dans le domaine de la médecine numérique
visent à relever le triple défi d’améliorer la compréhension de la physiologie et des patho-
logies, d’améliorer le diagnostic et d’optimiser le traitement des patients.

• La compréhension de la physiologie peut être améliorée en testant numériquement
des hypothèses physiologiques afin de déterminer lesquelles correspondent à la réalité.
De plus, des modèles bien calibrés permettent d’obtenir in silico la reconstruction de
données difficiles ou impossibles à mesurer sur des sujets vivants. Naturellement, ce
défi ne peut être atteint qu’avec des modèles capables d’établir des liens de causalité
entre des événements physiologiques.

• Nous pensons que l’amélioration du diagnostic passe par une quantification de l’ana-
lyse du patient permettant aux médecins de prendre des décisions plus informées et
plus objectives. Les modèles servent ici de filtres à travers lesquels les données sont
examinées augmentant ainsi la quantité d’information pouvant en être extraite et
permettant de donner plus de sens à ces données.

• L’optimisation du traitement est probablement le défi le plus difficile. La capacité de
modéliser non seulement le comportement basal, mais également de capturer dans
le modèle les effets du traitement (l’impact des médicaments ou de la modification
de la géométrie de l’organe par exemple) est une condition préalable à la mise en
œuvre de cette procédure.

Notons que, dans les trois défis, le besoin de modèles quantitatifs prédictifs et leur cali-
bration sont des éléments cruciaux. Un autre point central concerne l’interaction entre le
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modèle et les données, ces dernières étant utilisées pour calibrer les modèles de manière
spécifique à un patient afin d’obtenir des prédictions personnalisées.

La complexité des mécanismes physiologiques rend le processus de construction de mo-
dèles intrinsèquement multidisciplinaire mêlant biologie, chimie, physique, mathématiques
et informatique, et impose le développement d’une large variété des modèles. En effet, le
choix des ingrédients de modélisation pour répondre à une question physiologique ou cli-
nique spécifique doit être soigneusement défini. Ce choix résulte d’un compromis entre la
précision de la prédiction du modèle, le coût de calcul associé et la disponibilité des mesures
nécessaires à la calibration de ce modèle. Par exemple, une analyse ciblant les indicateurs
globaux d’un organe peut être effectuée sur une géométrie réduite, en particulier si les
conditions sur les limites de la géométrie ne peuvent pas être évaluées spécifiquement. Au
contraire, si l’on étudie des phénomènes de propagation ou des variations de paramètres
physiologiques localisés, l’utilisation d’un modèle géométriquement étendu est nécessaire.

Les efforts de recherche en médecine numérique ont abouti, par exemple, au dévelop-
pement de modèles de poumons [Howatson Tawhai et al., 2000 ; Roth et al., 2017] ou à
la croissance de tumeurs [Quaranta et al., 2005 ; Clatz et al., 2005 ; Ribba et al., 2006 ;
Enderling et Chaplain, 2014]. Des avancées remarquables ont également déjà été réalisées
dans les domaines de la découverte de médicaments, où les modèles permettent de pré-
dire les effets de molécules [Sliwoski et al., 2013 ; Tanrikulu et al., 2013]. De plus, dans
le processus de développement de médicaments, les régulateurs ont déjà validé l’utilisa-
tion d’outils numériques en remplacement de tests pré-cliniques sur les animaux pour la
conception d’un traitement du diabète [Dalla Man et al., 2014 ; Visentin et al., 2017].

Le système cardiovasculaire n’a pas échappé au développement de la médecine person-
nalisée. Le travail précurseur de Hodgkin et Huxley [1952] pour la description du potentiel
d’action et de Huxley [1957a] pour la contraction des muscle striés ont ouvert la voie à des
descriptions plus globales et spécifiques du système cardiovasculaire. Nous pouvons citer
ici les travaux de Noble [1962] pour la description de l’activité électrophysiologique de la
membrane des cellules musculaires ainsi que des fibres de Purkinje (voir section suivante),
de Mirsky [1969] ; Ghista et al. [1973] et P.J. Hunter [Hunter, 1975 ; Hunter et Smaill, 1988]
sur la modélisation du tissu musculaire cardiaque et C.S. Peskin pour la modélisation des
tissus [Peskin, 1975] et le flux sanguin [Peskin, 1972, 1977].

Depuis lors, de nombreuses équipes de recherche se sont consacrées à la mise au point
de modèles physiques cardiaques et vasculaires [Guccione et McCulloch, 1993 ; Nash et
Hunter, 2000 ; Chapelle et al., 2001 ; Sainte-Marie et al., 2006 ; Taylor et Figueroa, 2009 ;
Nordsletten et al., 2011 ; Trayanova, 2011 ; Chapelle et al., 2012 ; Sugiura et al., 2012 ;
Caruel et al., 2013b ; Baillargeon et al., 2014 ; Pant et al., 2014 ; Hirschvogel et al., 2017 ;
Quarteroni et al., 2017]. Nous faisons référence également à Chabiniok et al. [2016] qui
présentent une synthèse du développement des modèles cardiovasculaires et de leur appli-
cabilité aux questions cliniques.

Des modèles de sous-parties du cœur ont également été développés pour cibler des phé-
nomènes spécifiques tels que la croissance et le remodelage du tissu musculaire [Rodriguez
et al., 1994 ; Humphrey et Rajagopal, 2002], qui ont ensuite été appliqués dans le contexte
des anévrismes aortiques [Cyron et al., 2014] ou la croissance et le remodelage du coeur
entier [Kroon et al., 2009 ; Kerckhoffs et al., 2012]. La fonction des valves et le flux qui
les entoure [Astorino et al., 2009 ; Stella et Sacks, 2007], le flux sanguin dans les artères
[Quarteroni et al., 2002 ; Formaggia et al., 2003] et le comportement de la paroi artérielle
[Gasser et al., 2005] ont également été spécifiquement étudiés. Ces éléments de modèle
peuvent naturellement être utilisés en tant que partie d’un modèle d’organe complet si
nécessaire.

La communauté travaillant sur le système cardiovasculaire a elle aussi présenté des
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preuves de concept prometteuses pour les trois principaux défis de la médecine numérique.
Les modèles se sont révélés capables de mieux faire comprendre la physiologie [Hyde et al.,
2015 ; McDowell et al., 2013]. En ce qui concerne l’amélioration du diagnostic, l’estimation
à partir de données IRM utilisant des techniques d’assimilation de données de la contrac-
tilité [Chabiniok et al., 2012 ; Genet et al., 2015] ou de la raideur de la paroi aortique
[Bertoglio et al., 2014] a été réalisée. Dans le domaine de l’électrophysiologie, l’évaluation
de l’état électrique dans une contraction de battement de coeur [Corrado et al., 2015] a
été réalisée. Certains travaux de recherche traitent également du défi de l’optimisation du
traitement, d’un point de vue uniquement théorique ou complétés par une validation sur
des données réelles in vivo. Dans la première catégorie, on peut mentionner le travail de
Rausch et al. [2017], qui montre la capacité théorique d’un modèle cardiaque à aider à
sélectionner le design des implants pour une annuloplastie mitrale. Un exemple de la se-
cond catégorie est le travail de Sermesant et al. [2012], qui ont présenté un cadre de calcul
capable de trouver a priori la position optimale des électrodes de stimulateur cardiaque,
pouvant ainsi remplacer la pratique actuelle fonctionnant par essais et erreurs et donc
raccourcir la durée de la procédure et augmenter les taux de succès.

Les promesses de la recherche universitaire ont déjà commencé à se traduire dans
la pratique clinique. En effet, des entreprises telles que HeartFlow et Arterys ont déjà
reçu l’autorisation de la part des autorités régulatrices de commercialiser des produits
s’appuyant sur des modèles cardiovasculaires pour évaluer les flux sanguins dans le réseau
cardiovasculaire.

Le cœur humain
Le cœur est l’objet principal de cette thèse. Nous donnons ici une brève présentation de

son anatomie et de son fonctionnement. Une description plus complète du coeur peut être
trouvée par exemple chez [Silverthorn et al., 2009].

Le cœur est un organe situé dans le thorax, entre les poumons. Il est intégré dans le
système circulatoire cardiovasculaire, permettant au sang de circuler dans le corps pour
alimenter les organes en oxygène, en nutriments et en hormones, et d’assurer le transport
des déchets. Le cœur pompe le sang dans ce système circulatoire. Il y a trois circulations
sanguines distinctes :

• la circulation pulmonaire, qui correspond à la partie du sang circulant dans les
poumons afin de permettre des échanges gazeux conduisant à l’oxygénation du sang ;

• la circulation coronaire qui alimente le coeur lui-même en sang par les artères coro-
naires ;

• la circulation systémique, qui fournit du sang au reste du corps.

L’anatomie du cœur est présentée sur la Figure 5. Il est composé de quatre chambres :
les deux oreillettes (nommées droite et gauche) et les deux ventricules (nommés droit et
gauche égalenent). Le septum sépare les deux ventricules. Les valves constituent l’interface
entre les ventricules et les oreillettes d’une part, et les ventricules et le système circulatoire
de l’autre. Elles permettent également de donner une direction à la circulation sanguine. La
valve triscupide est située entre l’oreillette droite et le ventricule droit ; la valve pulmonaire
sépare le ventricule droit de l’artère pulmonaire. Le ventricule gauche est également relié
aux éléments voisins par deux valves : la valve mitrale pour l’oreillette gauche et la valve
aortique pour l’aorte.

Le tissu cardiaque, appelé myocarde, est contractile, ce qui permet de générer une
pression dans les cavités et ainsi d’éjecter le sang. Il est composé de fibres enroulées autour
des cavités. Cet arrangement de fibres crée une torsion dans le ventricule, ce qui améliore
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Figure 5 – Représentation schématique du coeur. Le sang oxygéné est représenté en rouge et le
sang désoxygéné en bleu. Les flux sanguins sont représentés par des flèches noires et blanches.
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la contraction. À l’échelle microscopique, ces fibres forment un réseau de ramifications
(voir la Figure 6). La contraction musculaire est déclenchée par un signal chimique et

Coupe d’une  
f ibre musculaire

Cellule musculaire 
(cardiomyocite)

Cœur

Figure 6 – Réseau de fibres musculaires cardiaques. Cette illustration est une modification de
Cardiac Muscle par BruceBlaus, sous licence CC BY 4.0.

électrique provenant de l’oreillette droite. Ce signal traverse tout le cœur à travers les
fibres de Purkinje et se propage d’une cellule contractile à une autre.

Dans un cycle cardiaque, le sang désoxygéné pénètre dans le cœur par l’oreillette
droite, tandis que le sang oxygéné provenant des poumons entre dans l’oreillette gauche.
La contraction atriale se déclenche la première, permettant le remplissage des ventricules.
Le signal déclenchant la contraction atteint ensuite les ventricules, qui éjectent le sang
dans l’artère pulmonaire en direction des poumons et dans l’aorte vers le reste du corps.
Les flux de sang dans le cœur sont illustrés à la Figure 5. La principale cavité d’intérêt pour
notre étude est le ventricule gauche. Nous présentons l’évolution typique de sa pression
et de son volume dans un cycle cardiaque à la Figure 7. Au début du cycle, l’oreillette
gauche se contracte, sa pression augmente et le sang coule dans le ventricule. Ensuite, le
ventricule commence à se contracter, la pression à l’intérieur de la cavité augmente et la
valve mitrale se ferme. Lorsque la pression ventriculaire atteint la pression aortique, la
valve aortique s’ouvre et le sang est éjecté dans l’aorte. Simultanément, le volume de la
cavité diminue. Après avoir atteint un pic, la pression ventriculaire diminue. La relaxation
commence et la valve aortique se ferme. Lorsque la pression ventriculaire tombe au niveau
de la pression de l’oreillette, la valve mitrale s’ouvre et un nouveau cycle peut avoir lieu.
La fonction du cœur en tant que pompe est illustrée ici. En effet, le ventricule gauche
amène un volume de sang d’une pression auriculaire basse à une pression aortique élevée.
Une représentation utile de ces données pour la compréhension de la fonction cardiaque
est la relation pression-volume. Cette relation forme une boucle en raison de la nature
cyclique du fonctionnement du cœur. Une illustration est présentée à la Figure 8. La
période de contraction du cycle s’appelle la systole et la période de relaxation s’appelle la
diastole. Notons que la diastole et la systole des oreillettes et des ventricules ne sont pas
synchronisées.

Les muscles cardiaques étant l’objet d’étude principal de cette thèse, nous donnons
ici une description de leur anatomie. Les fibres musculaires sont composées d’une série de
petites unités contractiles appelées sarcomères (∼2 µm). Ces derniers sont principalement
constitués de deux réseaux de filaments de protéines : le filament de myosine (filament
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épais) et le filament d’actine (filament fin). Des composants spécifiques du filament de
myosine, les têtes de myosine, interagissent avec les monomères d’actine (également appelés
sites d’actine) de manière cyclique entraînant la consommation de carburant métabolique
fourni par l’hydrolyse de l’ATP. La tête de myosine se fixe à un site d’actine formant un
pont. Lorsqu’une tête de myosine est attachée, un changement rapide de conformation se
produit, conduisant à la génération d’une force de contraction. Cette phase est appelée le
power stroke. La force générée par les ponts actine-myosine est dite active car le processus
de génération de cette force implique une consommation d’énergie. Une conséquence du
développement de cette force est le raccourcissement de la longueur du sarcomère – si
les conditions limites le permettent – via le glissement relatif des filaments d’actine et de
myosine.

Modélisation de la contraction musculaire
L’étude et la modélisation du comportement musculaire ont débuté il y a plus d’un siècle

et a été très active au cours des cinquante dernières années. Un compte-rendu historique
a été écrit par l’un des principaux protagonistes : H.E. Huxley [Huxley, 2004]. Nous ren-
voyons vers [Caruel et Truskinovsky, 2018] pour une synthèse de travaux de modélisation
théoriques récents.

Après les travaux précurseurs de A.V. Hill [Hill, 1938], les biologistes et physiologistes
ont déployé des efforts considérables pour caractériser de manière expérimentale la struc-
ture du muscle, le mécanisme de contraction musculaire et ses régulations. La communauté
scientifique peut être décomposée en deux groupes. Le premier, conduit par A.F. Huxley et
H.E. Huxley depuis les années 50, puis notamment par V. Lombardi, s’intéresse à la carac-
térisation fine de la structure et des interactions microscopiques sous-jacentes à la contrac-
tion macroscopique du muscle squelettique, et les protocoles expérimentaux développés ont
récemment été appliqués aux muscles cardiaques. Le second, mené par H.E.D.J. ter Keurs
et P.P. de Tombe depuis les années 80 et 90 respectivement, se concentre sur la caractéri-
sation de la contraction des muscles cardiaques et des mécanismes de régulation associés.

Les modélisateurs ont travaillé en parallèle des avancées expérimentales, tirant parti
des dernières découvertes physiologiques pour améliorer les modèles. Le premier modèle
de contraction musculaire est formulé par A.V. Hill en 1938, parallèlement à ses tra-
vaux expérimentaux sur la thermodynamique macroscopique de la contraction musculaire
[Hill, 1938]. Il observe la relation entre la vitesse de raccourcissement musculaire et la
force développée, ainsi que les flux de chaleur associés. Cette relation force-vitesse est
la caractéristique principale de l’interaction actine-myosine. Elle est aujourd’hui souvent
nommée courbe de Hill. Le modèle proposé par A.V. Hill pour rendre compte de ses ob-
servations expérimentales est un modèle rhéologique simple composé d’un ressort et d’un
“élément actif” ayant la relation force-vitesse comme équation constitutive. Ce modèle
cible la macro-échelle musculaire. Il est toujours utilisé dans des travaux récent en raison
de sa simplicité [Quarteroni et al., 2017].

Au début des années 50, la théorie dominante suppose que la contraction résulte de
l’enroulement d’un seul filament d’actomyosine. Un changement de paradigme commence
en 1954. Le groupe d’A.F. Huxley (à Cambridge en Angleterre) et le groupe d’H.E. Hux-
ley (à Cambridge dans le Massachusetts) publient, dans le même numéro de Nature, deux
études expérimentales observant les variations des stries du muscle squelettique avec l’éti-
rement musculaire [Huxley et Niedergerke, 1954 ; Huxley et Hanson, 1954]. De ces résultats
émerge l’idée que le raccourcissement musculaire provient du glissement relatif des fila-
ments de myosine et d’actine et qu’une force est créée par l’interaction de ces composants.
Ceci constitue la théorie des filaments glissants.

En utilisant un mécanisme (spéculatif à l’époque) impliquant la formation de ponts
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actine-myosine entre les têtes de myosine et les sites d’actine Huxley [1957a], propose
un nouveau modèle de contraction musculaire. Ce modèle décrit le comportement d’une
population de têtes de myosine en interaction avec des sites d’actine localisés. Chaque tête
de myosine est modélisée par un ressort linéaire et la vitesse à laquelle les têtes de myosine
s’attachent et se détachent varie en fonction de la distance entre la tête de myosine et
le site d’actine. La génération d’une force résulte de l’hypothèse de modélisation selon
laquelle les têtes de myosine s’attachent préférentiellement dans une position où le ressort
est tendu, tandis qu’un détachement se produit lorsque le ressort est comprimé. Malgré
les hypothèses simples choisies ici, le modèle Huxley’57 est déjà en mesure de prendre
en compte la caractéristique essentielle de l’interaction actine-myosine : la courbe force-
vitesse de Hill [1938]. Ce modèle a ensuite été étendu, en particulier par Podolsky et al.
[1969], par Julian [1969] pour intégrer le processus d’activation par le calcium, et également
par Deshcherevskiǐ [1971], qui, à l’inverse du modèle d’origine, considère les sites d’actine
non localisés. Le modèle Huxley’57 reste aujourd’hui la base de la modélisation de la
contraction musculaire.

Au cours de la même année, H.E. Huxley a obtenu la première observation de ponts
actine-myosine dans le cadre d’une observation à haute résolution des filaments d’actine
et de myosine, ce qui a confirmé la théorie des filaments glissants [Huxley, 1957b].

Une décennie plus tard, les mesures structurelles de H.E. Huxley suggèrent que les têtes
de myosine attachées changent d’angle d’attachement pendant le processus de contrac-
tion. C’est ce changement entre deux conformations stables qui est maintenant appelé
power stroke [Huxley, 1969]. Les conformations initiales et finales sont respectivement
appelées conformations pré-power stroke et post-power stroke.

En 1971, A.F. Huxley et R.M. Simmons observent le comportement des muscles sque-
lettiques à la suite d’un changement de longueur rapide (l’échelle de temps considérée ici est
inférieure à 1 ms et est donc plus courte que l’échelle de temps du processus d’attachement-
détachement, qui est d’environ 100 ms dans leurs conditions expérimentales). La réponse
en force affiche plusieurs phases : une chute de force instantanée suivie d’une récupéra-
tion de force rapide. Ces expériences suggèrent que des phénomènes à différentes échelles
de temps se produisent dans l’interaction entre les têtes de myosine et les sites d’actine.
A.F. Huxley et R.M. Simmons proposent un modèle pour prendre en compte cette obser-
vation expérimentale [Huxley et Simmons, 1971]. Leur description suppose que les ponts
actine-myosine se comportent comme un ressort bistable. L’énergie de l’élément bistable
est modélisée comme deux puits d’énergie infiniment étroits de profondeurs différentes.
Si le ressort est suffisamment étiré, l’élément bistable peut passer d’un état à l’autre,
créant ainsi une capacité de génération de force positive. Ce modèle intègre donc l’idée du
power stroke suggérée par les résultats expérimentaux de H.E. Huxley deux ans plus tôt.
Notons que ce modèle n’inclut pas la dynamique attachement-détachement et se concentre
uniquement sur la description des ponts actine-myosine.

La même année, un cycle de base pour l’interaction en solution entre l’actine, la myosine
et l’alimentation en énergie sous forme d’ATP dans cette interaction est proposé [Lymn et
Taylor, 1971]. Il comprend deux états attachés et deux états détachés. La transition entre
les deux états attachés peut être identifiée au power stroke. Le détachement est associé à
l’hydrolyse de l’ATP et donc à un apport d’énergie.

Une difficulté du modèle Huxley-Simmons’71 est la dynamique de la transition entre
les deux états de l’élément bistable. En effet, la transition se produit lorsque l’énergie de
l’état actuel est égale à l’énergie de l’état futur (après la transition). Pendant la transition,
il se produit un échange d’énergie entre l’élément bi-stable et le ressort, l’énergie totale
restant constante. Cela revient à définir la barrière d’énergie entre les deux états comme la
profondeur d’énergie du puits d’énergie actuel. Cette énergie doit être fournie par les fluc-
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tuations thermiques, ce qui entraîne une transition lente entre les deux états par rapport
à celle observée expérimentalement.

Ce problème a été résolu par T.L. Hill dans les années 70 grâce à son formidable effort
de formalisation du modèle [Hill, 1974, 1976, 1977]. Il propose de décrire la transition
entre les deux états discrets par un paysage énergétique indépendant définissant la barrière
énergétique de transition. Au niveau des états chimiques discrets, cela revient à dire que
les taux de transition (ou le paysage énergétique de transition) peuvent être choisis de
manière arbitraire. La cohérence avec la thermodynamique est maintenue en considérant
pour chaque transition un retour dont le taux est défini par la balance détaillée

k

krev = exp
[−∆w

kBT

]
où k est le taux de transition de la réaction directe, krev le taux de transition de la réac-
tion inverse, ∆w est la différence d’énergie libre entre l’état final et l’état initial état pour
la réaction directe, kB est la constante de Boltzmann et T est la température absolue.
Le changement entre les états du pont actine-myosine est donc analogue à la transition
entre des états chimiques. Avec ce formalisme “purement chimique”, il est naturel d’inté-
grer, dans un même modèle, l’idée de la dynamique d’attachement-détachement proposée
par Huxley [1957a] et la description du power stroke introduit par Huxley et Simmons
[1971]. Les modèles de cette classe sont dits modèles chimico-mécaniques. Sur la base de
son formalisme, T.L. Hill et ses co-auteurs formulent un modèle capable de capturer le
comportement en réponse à des changements rapides de longueur – avec la bonne dyna-
mique – ainsi que la relation force-vitesse [Eisenberg et Hill, 1978 ; Eisenberg et al., 1980].
Le power stroke est modélisé ici par la transition entre deux états discrets.

Depuis, de nombreux ingrédients de modélisation ont été incorporés à la classe des mo-
dèles chimico-mécaniques afin d’intégrer d’autres aspects de la physiologie de la contrac-
tion musculaire découverts expérimentalement. Piazzesi et Lombardi [1995] ajoutent un
état intermédiaire dans le power stroke à partir duquel le cycle complet peut être inter-
rompu pour améliorer la prévision de consommation d’énergie du modèle. L’idée d’une
série d’états chimiques discrets pour représenter le power stroke est étendue en utilisant
jusqu’à cinq états chimiques [Linari et al., 2009] (dans ce cas, sans processus d’attachement-
détachement). De plus, certaines améliorations de modèle intégrant le cycle de l’ATP à
l’interaction actine-myosine sont développées [Linari et al., 2010 ; Caremani et al., 2015].
La famille des modèles chimico-mécaniques est la plus utilisée dans la communauté des
physiologistes pour analyser un corpus croissant de résultats expérimentaux. Ces modèles
sont devenus très complexes pour rester complets.

Un effort de simplification a été entrepris par G.I. Zahalak à partir des années 80.
Il a introduit l’idée que le calcul de la probabilité de toutes les configurations des têtes
de myosine peut ne pas être toujours nécessaire, car la principale quantité d’intérêt – la
force active – ne dépend que des premiers moments de cette probabilité. Il montre que,
sous une hypothèse sur la variation spatiale de la probabilité d’attachement, l’évolution
de la force peut être calculée à partir de la dynamique de quelques moments de cette
probabilité seulement [Zahalak, 1981]. L’ensemble des équations aux dérivées partielles
régissant les modèles chimico-mécaniques devient ici un ensemble d’équations différentielles
ordinaires. S’appuyant sur une idée similaire mais en utilisant une hypothèse légèrement
différente – fondée sur la variation spatiale des taux de transition, qui affectent ensuite
les probabilités d’états de toutes les têtes de myosine – Bestel et al. [2001] proposent une
autre réduction pertinente du modèle Huxley’57. G.I. Zahalak suggère également de tirer
parti des différentes échelles de temps pour obtenir des modèles simplifiés [Zahalak, 2000].
Pour cela, il regroupe les transitions représentant le power stroke en une seule transition
par des approximations pertinentes.
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Notons qu’une autre famille de modèles appelée cliquets browniens a été développée
par une communauté de physiciens pour étudier les effets collectifs avec un niveau d’abs-
traction élevé suite au développement de nouvelle techniques expérimentales sur des têtes
de myosine individuelles [Kron et Spudich, 1986 ; Molloy et al., 1995 ; Veigel et al., 1998].
L’idée est ici d’utiliser la représentation de molécules soumises à des fluctuations ther-
miques diffusant dans un potentiel d’énergie périodique [Magnasco, 1993 ; Prost et al.,
1994]. Ces modèles purement mécaniques ciblaient à l’origine le comportement des mo-
teurs moléculaires, mais ont ensuite été appliqués à la contraction musculaire [Jülicher
et al., 1997 ; Wang et Oster, 2002 ; Esaki et al., 2003].

L’amélioration la plus récente des modèles de contraction musculaire provient des tra-
vaux de L. Truskinovski et de ses collaborateurs. La succession d’états chimiques discrets
représentant le power stroke dans les modèles chimico-mécaniques est ici remplacée par
une variété continue [Marcucci et Truskinovsky, 2010 ; Caruel et al., 2013a]. En un sens,
il s’agit d’une approche parallèle à la description de T.L. Hill et de ses collaborateurs.
Ces derniers supposent que les états discrets sont séparés par un paysage énergétique
arbitraire, qui est associé aux changements de conformation qui se produisent entre les
états discrets et qui n’apparaît alors dans le modèle que via les taux de transition entre
les états discrets. Le modèle est purement chimique mais l’évolution entre les états dis-
crets est régie par une énergie mécanique cachée. Avec les modèles à power stroke continu,
tout le paysage énergétique du système est directement fourni. Il est construit à partir du
couplage d’une énergie mécanique quadratique – représentant le comportement élastique
linéaire des ponts actine-myosine – avec un potentiel mécanique à double puits associé aux
conformations stables de la tête de myosine avant et après le power stroke. Notons que des
puits d’énergie supplémentaires pourraient être ajoutés pour représenter des conformations
stables supplémentaires [Marcucci et al., 2016]. Ces modèles sont purement mécaniques
sans états chimiques discrets.

Les modèles de power stroke continus ont d’abord été restreints à la description du
power stroke (comme le modèle Huxley-Simmons’71). Ils ont ensuite été étendus pour
prendre également en compte le processus d’attachement-détachement par Caruel et al.
[2019] qui modélisent l’attachement et le détachement sous forme de processus de saut
entre deux paysages énergétiques (éventuellement associés à un changement simultané de
la position de la tête de myosine). Cette approche a la particularité de réconcilier une
approche entièrement mécanique pour la description de le power stroke et une description
chimique du processus de attachement-détachement. Les modèles proposés et étudiés dans
ce manuscrit appartiennent à cette sous-famille de modèles.

Sheshka [2012] ; Sheshka et Truskinovsky [2014] proposent une autre approche pour
incorporer la formation et la destruction de ponts actine-myosine à la description continue
du power stroke, en élargissant les modèles à cliquet brownien. Le modèle résultant est
une description purement mécanique de l’interaction actine-myosine.

Récemment, les propriétés fines des muscles cardiaques ont été mesurées expérimenta-
lement [Caremani et al., 2016].

Malgré l’abondante recherche sur la contraction musculaire menée au cours des soixante
dernières années, ce domaine est toujours très actif. Des expériences utilisant des motifs
de diffraction de rayons X (en utilisant la structure régulière du sarcomère comme diffrac-
teur) permettent de mieux comprendre les variations structurelles se produisant dans la
contraction [Reconditi et al., 2003 ; Piazzesi et al., 2007 ; Reconditi et al., 2014 ; Ait-Mou
et al., 2016], les pathologies [Ait-Mou et al., 2018] ou de mieux identifier les différents états
chimiques apparaissant dans le cycle [Houdusse et Sweeney, 2016]. En particulier, un nou-
vel état de la tête de myosine, appelé off-state, a récemment été découvert dans les muscles
squelettiques [Reconditi et al., 2011 ; Linari et al., 2015] et dans les muscles cardiaques
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[Reconditi et al., 2017]. Cela ouvre de nouvelles opportunités pour le développement de
modèles dédiés et le raffinement des modèles existants.

Enjeux théoriques
Malgré les efforts considérables déjà déployés dans la modélisation de la contraction mus-
culaire, de nombreuses questions restent ouvertes.

Premièrement, les soixante années de développement de modèles d’actine-myosine
n’ont pas permis de faire correspondre les prévisions du modèle avec toutes les données
expérimentales. En particulier, les aspects énergétiques de l’interaction actine-myosine res-
tent difficiles à concilier avec les aspects cinétiques, la consommation d’ATP prédite par
les modèles classiques étant généralement supérieure à celle réellement mesurée.

Deuxièmement, la majeure partie de la description détaillée de l’interaction actine-
myosine à l’origine de la contraction musculaire a été réalisée pour les muscles squelet-
tiques, le développement de modèles ciblant spécifiquement les muscles cardiaques n’étant
que très récents. Les données expérimentales sur les muscles cardiaques montrent un com-
portement qualitatif similaire, mais les résultats quantitatifs diffèrent. Cette différence
peut s’expliquer par les différences intrinsèques entre le muscle squelettique et le muscle
cardiaque, par les différences entre les espèces animales utilisées pour les expériences, mais
également par le fait que les expériences sur les muscles cardiaques sont généralement ef-
fectuées à des températures plus élevées. Il existe donc un besoin de modèles ciblant
spécifiquement le comportement des muscles cardiaques.

Troisièmement et de manière plus importante encore, le besoin d’éléments de modé-
lisation pour des applications médicales n’implique pas la recherche d’un modèle unique
capable de prendre en compte de nombreux aspects du phénomène des études. Il s’agit plu-
tôt d’obtenir une collection de modèles ayant différents degrés de complexité. Pour chaque
application particulière, le modèle adéquat, qui propose le meilleur compromis entre la
capacité du modèle à apporter des éléments pertinents pour résoudre la question exami-
née et le coût de calcul, doit être sélectionné. La question du coût de calcul est cruciale
pour les applications médicales car des simulations en temps réel peuvent être nécessaires
dans certains cas, par exemple si le modèle est intégré à un outil utilisé pour faciliter
une intervention chirurgicale. Notons que l’échelle de temps de simulation pertinente peut
être plus rapide que le “temps réel”, par exemple si plusieurs scénarios doivent être testés
ou si la quantification des incertitudes est par ailleurs effectuée. La cohérence entre les
différents modèles est un point décisif. En effet, pour transférer un étalonnage réalisé avec
un modèle à un autre ou pour relier les échelles d’espace et de temps, il est nécessaire de
relier les modèles de manière rigoureuse et systématique. Par exemple, dans le cadre de
la modélisation du cœur, une analyse détaillée d’une pathologie peut être réalisée avec un
modèle raffiné et des données ex vivo afin que le modèle de la pathologie puisse être utilisé
dans une description plus globale au niveau tissulaire, où l’utilisation de ce modèle raffiné
est impossible car trop couteuse en temps de calcul. La capacité de lier les modèles et de
contrôler la conservation et la perte de propriétés à travers la transition d’un modèle à
l’autre est donc une caractéristique essentielle à rechercher dans les efforts de modélisation
dans le cadre de la médecine numérique. Cela donne lieu au premier objectif de cette thèse
qui peut être formulé comme suit :

Proposer un cadre de modélisation hiérarchique de l’interaction
cardiaque actine-myosine sous-jacente à la contraction du muscle

cardiaque.
Pour résoudre ce problème, nous poursuivons la stratégie suivante. Nous partons d’un
modèle complexe, qui n’a été validé que pour les muscles squelettiques [Caruel et al.,
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2019], et nous montrons l’applicabilité de ce modèle aux muscles cardiaques, en essayant
de faire correspondre avec les données expérimentales autant d’indicateurs physiologiques
que possible. Ce modèle est régi par des équations différentielles stochastiques (EDS).
Nous effectuons ensuite l’élimination adiabatique des variables internes les plus rapides,
qui correspondent à la paramétrisation du power stroke, en obtenant à partir de l’équation
de Fokker-Planck associée au modèle stochastique une description de l’état de la tête
de myosine sous la forme d’une équation aux dérivées partielles (EDP). Enfin, en nous
fondant sur les idées de Zahalak [2000] et de Bestel et al. [2001], nous proposons, sous une
hypothèse spécifique sur la variation spatiale des taux d’attachement et de détachement,
des simplifications supplémentaires de ce modèle en considérant uniquement les moments
de la solution de l’EDP qui présentent un intérêt pour le calcul de la force et de la raideur.
La dynamique n’est alors régie que par des équations différentielles ordinaires (EDO). La
calibration des modèles, qui peut sembler être un élément secondaire, ne doit pas être
négligée. Il s’agit en effet d’un élément clé pour prouver la validité des modèles proposés
et d’un processus complexe.

Les modèles proposés décrivent une situation dans laquelle toutes les têtes de myosine
et tous les sites d’actine sont disponibles pour la formation de ponts actine-myosine (nous
disons de manière équivalente que les filaments épais et fins sont complètement activés).
Ce n’est pas le cas dans le cœur. Pour pouvoir utiliser les modèles dans le contexte de la
modélisation cardiaque, les mécanismes de régulation prenant place in vivo doivent être
incorporés dans le modèle. Ceci motive l’introduction de notre deuxième objectif :

Améliorer les modèles classiques d’interaction actine-myosine pour
incorporer les mécanismes de régulation ayant lieu à l’échelle du

cœur.

Notre approche consiste ici à établir de nouvelles EDPs décrivant la dynamique du système
à partir de la conservation de la matière. Elle est utilisée pour gérer la disponibilité variable
des têtes de myosine et des sites d’actine.

Enfin, ces modèles complets doivent être correctement couplés à un modèle de tissu
afin de pouvoir finalement être utilisés dans un modèle d’organe. Le troisième objectif de
ce travail est donc naturellement défini comme suit :

Lier les nouveaux modèles proposés dans un environnement de
simulation multi-échelle de cœur.

L’objectif ici est double : il consiste à relier d’un point de vue théorique les équations
continues du modèle microscopique et celles du macroscopique (modèle d’organe), mais
aussi à proposer des méthodes numériques adaptées pour réaliser la simulation de l’organe
de manière rigoureuse. La thermodynamique joue ici un rôle crucial en tant que guide pour
la conception du lien entre les échelles et le développement des méthodes numériques.

Pour atteindre les trois objectifs présentés ci-dessus, plusieurs défis doivent être re-
levés. Il nous faut d’abord comprendre la nature et le fonctionnement du système que
nous essayons de décrire. Le deuxième défi concerne la nature multi-échelle des problèmes
examinés. En effet, la contraction cardiaque depuis l’interaction actine-myosine jusqu’à la
réponse de l’organe implique des échelles de temps couvrant quatre ordres de grandeur (de
100 µs à 1 s) et des échelles d’espace couvrant huit ordres de grandeur (de 1 nm à 10 cm).

Structure du manuscrit

Cette thèse est composée de cinq chapitres.
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Chapter 1 – Physiologie de la contraction musculaire
Ce chapitre aborde le premier défi identifié pour ce travail, à savoir la compréhension

de la physiologie. Nous passons en revue les éléments de la physiologie de la contraction
musculaire disponibles dans la littérature qui présentent un intérêt pour le développement
de modèles d’interaction actine-myosine et l’intégration des mécanismes de régulation de
cette interaction. Aucune expérience n’a été réalisée pour ce travail, il n’y a donc pas
de nouvelles données expérimentales parmi celles présentées dans ce chapitre. Cependant,
certaines interprétations des données expérimentales sont originales. De plus, à ma connais-
sance, il n’existait pas de bilan physiologique global récent mettant l’accent sur les éléments
pertinents pour le développement de modèles cardiaques.

Chapter 2 – Propriétés thermodynamiques des modèles de contraction mus-
culaire et principes discrets associés

Au Chapitre 2, nous reformulons les modèles chimico-mécaniques, qui ont pour racine
commune le modèle Huxley’57 [Huxley, 1957a], dans un cadre unifié. Nous établissons des
propriétés mathématiques avec une attention particulière pour les propriétés thermodyna-
miques. Le première contribution principale de ce travail est l’introduction d’un nouveau
schéma rhéologique visant à incorporer le modèle chimico-mécanique microscopique dans
un modèle tissulaire macroscopique et l’établissement des propriétés thermodynamiques
du système couplé. Cette partie était déjà bien avancée avant le début de ma thèse et je n’ai
contribué qu’à établir certaines propriétés du système couplé. La deuxième contribution
principale est la conception de méthodes numériques pour les modèles chimico-mécaniques
satisfaisant la thermodynamique et l’amélioration des méthodes précédemment proposées
pour le système couplé, de sorte que l’équilibre thermodynamique discret puisse être vérifié
de l’échelle microscopique à l’échelle macroscopique.

Le chapitre se présente sous la forme d’un article co-écrit par François Kimmig, Do-
minique Chapelle et Philippe Moireau, publié dans AMSES et intitulé Thermodynamics
properties of muscle contraction models and associated discrete-time principles. Il est réfé-
rencé par [Kimmig et al., 2019a] dans le reste du manuscrit. Notons que l’annexe présentée
dans ce chapitre ne fait pas partie de l’article publié.

Chapter 3 – Modélisation hiérarchique du développement de la force dans les
muscles cardiaques

Dans ce chapitre, nous présentons une hiérarchie de modèles d’interaction actine-myosine.
Nous partons d’un modèle stochastique fin [Caruel et al., 2019] et montrons la capacité
de ce modèle à décrire le comportement des muscles cardiaques avant d’effectuer plusieurs
étapes de simplification.

Nous nous intéressons particulièrement au processus de calibration de ces modèles qui
tirent parti de la structure hiérarchique dans laquelle ils sont intégrés. Les prédictions de
ces modèles sont évaluées par rapport aux données obtenues sur des muscles cardiaques
de rat à 25 ◦C. L’étalonnage proposé permet au modèle le plus raffiné de correspondre à
de nombreux indicateurs physiologiques, tandis que les modèles simplifiés se limitent aux
indicateurs correspondant à leur domaine de validité. Ceci valide la pertinence des modèles
proposés et leur capacité prédictive. Ce chapitre prend la forme d’un article à soumettre
co-écrit par François Kimmig et Matthieu Caruel, intitulé Hierarchical modeling of force
generation in cardiac muscle. Il est appelé [Kimmig et Caruel, 2019] dans le reste du
manuscrit.

Chapter 4 – Couplage activation-contraction dans un modèle multi-échelle de
cœur reproduisant l’effet Frank-Starling
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Ce chapitre traite de l’incorporation dans nos modèles d’un premier mécanisme de régu-
lation : la variation de la disponibilité des têtes de myosine. Nous considérons deux groupes
de têtes de myosine (disponibles et non disponibles). En utilisant la conservation des têtes
de myosine, nous établissons l’EDP qui régit la dynamique du système. Nous obtenons
une extension du modèle Huxley’57 avec des termes supplémentaires rendant compte des
échanges entre les deux groupes de têtes de myosine. Les méthodes numériques proposées
au Chapitre 2 sont étendues pour prendre en compte ces termes supplémentaires. L’ac-
tivation du filament fin est, dans ce chapitre, traitée de manière phénoménologique. En
reliant les modèles nouvellement proposés à un environnement de simulation cardiaque,
nous effectuons des simulations de battements cardiaques et démontrons la capacité de
notre modèle à saisir les principales caractéristiques du mécanisme de Frank-Starling, qui
se manifeste au niveau de l’organe et provient des variations de disponibilité des têtes de
myosine et des sites d’actine.

Ce chapitre prend la forme d’un article à soumettre co-écrit par François Kimmig,
Philippe Moireau et Dominique Chapelle, intitulé Activation-contraction coupling in a
multiscale heart model capturing the Frank-Starling effect. Il est référencé par [Kimmig
et al., 2019b] dans le reste du manuscrit.

Chapter 5 – Variation du l’activation du filament fin dans le cadre des modèles
Huxley’57

Pour compléter notre cadre de modélisation, nous devons intégrer rigoureusement l’ac-
tivation des sites d’actine dans le modèle. En appliquant une stratégie similaire à celle du
Chapitre 4, nous obtenons un système d’équations décrivant l’interaction actine-myosine
et la variation d’activation des filaments épais et minces. La calibration du modèle est
effectuée avec les données ex vivo. Notre modèle a la capacité de produire des données
physiologiques importantes.

Contributions principales
Pour conclure cette introduction, nous donnons un aperçu des productions scientifiques
réalisées au cours de cette thèse. Ce travail a également été présenté lors de plusieurs
conférences sous forme de posters ou de présentations orales.

Articles publiés et à soumettre

• Kimmig, F., Chapelle, D., and Moireau, P. (2019). Thermodynamic properties of
muscle contraction models and associated discrete-time principles. Advanced Mode-
ling and Simulation in Engineering Sciences, 6(1), 6.

• Kimmig, F., and Caruel, M. Hierarchical modeling of force generation in cardiac
muscle. à soumettre

• Kimmig, F., Moireau, P., and Chapelle, D. Activation-contraction coupling in a
multiscale heart model capturing the Frank-Starling effect. à soumettre

Conférences

• 8th World Congress of Biomechanics – WCB 2018 – Dublin, Ireland
Session posters : Multi-scale modeling of muscle contraction.

• 6ème rencontre du GDR Mécabio – Université Montpellier 2, France
Présentation orale : Multi-scale modeling of muscle contraction.
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• 6th International conference on computational and mathematical biomedical engi-
neering – CMBE 2019 – Tohoku University, Sendai City, Japan
Présentation orale : Activation-contraction coupling in a multi-scale heart model.

• Symposium Jean Mandel 2019 – École polytechnique, Palaiseau, France
Présentation orale : Activation-contraction coupling in a multi-scale heart model.

Dévelopment logiciel Les modèles présentés dans les chapitres 3, 4 et 5 ont été implé-
mentés dans la librairie de simulation de coeur CardiacLab, qui est développée en interne
dans l’équipe MΞDISIM. Cette librairie a été utilisée pour effectuer toutes les simulations
cardiaques présentées dans cette thèse.

De plus, le modèle de contraction chimico-mécanique développé par Piazzesi et Lom-
bardi [1995] a également été implémenté dans cet environnement. Au total, ces contribu-
tions représentent environ 10 000 lignes de codes.
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CHAPTER 1

Physiology of muscle contraction

In this chapter, we present a literature review of the experimental works targeting the
actin-myosin interaction and its regulations with the aim of compiling the relevant infor-
mation for the development of the models. We first give a general qualitative review of
the heart function and the associated underlying mechanisms following a top-down ap-
proach. In a second part, we focus on the quantitative properties of the cardiac muscle.
We first analyze the experimental results aiming at characterizing the interaction between
myosin heads and actine sites and then focus on the characterization of the regulation
mechanisms.
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1.1. Description of muscle contraction

In this chapter, we give a synthetic review of the structure of muscles in animals and
the physiology of muscle contraction with some personal interpretation.

Our presentation will be organized in two main parts. We will start by a qualitative
description of the muscle excitation-contraction mechanism, mainly focused on the phys-
iology of cardiac muscles. Skeletal muscles, which share essential features with cardiac
muscles, will be briefly introduced as a variation of the cardiac muscle and sometimes
used as a benchmark for cardiac muscles, although the characterization of skeletal muscles
has historically been performed first. Then, we will present the state of the art on the
quantitatively properties of cardiac muscles.

A particular emphasis will be put on the levels of physiology that will be used to
support the development of our models (actin-myosin interaction, thin filament activation,
microscopic mechanisms underlying the Frank-Starling macroscopic regulation).

Our presentation of general physiology mainly relies on [Silverthorn et al., 2009]. For
more details on the sarcomere structure we refer to [Craig and Padrón, 2004] and to [Craig
and Woodhead, 2006] for a detailed description of the myofilaments. A presentation of
the excitation mechanisms can by found in [Bers, 2002]. Our review of the quantitative
properties of the excitation will be two-fold. First, to present the actin-myosin interac-
tion, we use the extensive work of the group of Vincenzo Lombardi at the University of
Florence. Second, the description of the thick and thin filaments activation and the as-
sociated regulation is mainly supported by the works of Henk ter Keurs, Peter de Tombe
and their co-authors (see e.g. [de Tombe et al., 2010; de Tombe and ter Keurs, 2016]).
The physiological latter mechanisms are at the origin of one of the main regulation at
organ level called the Frank-Starling mechanism, which makes the left ventricular pressure
at the end of the contraction vary as a function of the ventricular volume. For a general
presentation on this topic, we refer to the reviews by Allen and Kentish [1985], ter Keurs
[1996] de Tombe et al. [2010] and Sequeira and Velden [2017].

1.1 Description of muscle contraction

To qualitatively present the various mechanisms involved in muscle contraction, we follow
a top-down approach from the macroscopic description of the tissue to the nanometric
events occurring at the level of individual proteins.

1.1.1 Anatomy of muscles

Muscles are one of the four types of soft tissues in animals along with connective tissues,
nervous tissues and epithelial tissues. Their function is to transform a signal from the
nervous system into a mechanical force. They are made of the association of proteins
taking care of the structure integrity, the generation of force and the regulation of the
generated force. There are two categories of muscles in animals: striated muscles and
smooth muscles.

1.1.1.1 Different types of muscles in human body

Striated muscles, which group together cardiac and skeletal muscles, contract in response
to electrical pulse signals resulting from conscious or unconscious control. Their normal
functioning is a succession of contraction and relaxation phases paced by the electrical
stimulations. Smooth muscles are found in the walls of organs such as the stomach or
blood vessels. As opposed to striated muscles, they contract under unconscious control
and generate near permanent contractions. Only striated muscles will be studied in this
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manuscript and we will restrict the presentation to this type of muscle, and in particular
to cardiac muscles, in what follows.

1.1.1.2 Multiscale structure of striated muscle in space

Cardiac muscle are a multi-scale structure in space. They are made of an arrangement
of cardiac cells, called cardiomyocytes, which form an array of branching fibers. The cells
are branching in an irregular way (see Figure 1.1). They are linked between each other
by intercalated disks which allow the force developed to be transferred throughout the
whole muscle. Muscle fibers are themselves composed of a bundle of myofibrils. The
myofibrils are made up of a small contraction unit, called sarcomere, which is periodically
repeated along the fibre. The sarcomeres are linked together by protein structures called
Z-disks. The length of the sarcomere is typically 2 µm. The very ordered structure of
the sarcomeres gives rise to bands that can be seen when observing myofibrils under
the microscope, which gave their name to this type of muscle. Inside the sarcomere, two
protein filaments – myosin filaments and actin filaments – interact with each other creating
bonds between myosin heads and actin sites. The contraction originates from a protein
conformational change whose size is typically 10 nm (see Section 1.1.2). The structure of
striated muscle thus allows the transformation of nanometric displacements at the protein
scale into the observed macroscopic contraction at the organ scale.

Nucleus

Cell junction 
(intercalated disks)

Z-disks (striations)

Muscle f ibre

Figure 1.1 – Cardiac fibers organization. (a) Schematic. (b) Microscope image. The cells are linked
together by the junctions called intercalated disks. They form an array of branching fibers. The
striation appearing on the image originate from the sarcomeres. The right panel is a modification
of the work of Dr. S. Girod, Anton Becker, licensed under CC BY 2.5.

1.1.1.3 Anatomy of a cardiomyocyte

Cardiomyocytes contain all the materials needed to perform the activation-contraction
coupling (also called the excitation-contraction coupling). It is the transformation of a
local electrical signal into a mechanical force.

The cell membrane contains ion channels and ion exchangers that allow the transfer of
ions inwards and outwards. These elements react as a function of the membrane electrical
potential and are affected by the ions concentrations on both sides of the membrane. The
ions exchangers of interest for the muscle contraction are the calcium sodium exchangers
(denoted NCX). They exchange one Ca2+ ion against three Na+ ions. The NCX has a
threshold potential that depends on the calcium and sodium concentrations. When the
membrane potential is higher than the NCX potential, calcium is brought into the cell,
and vice versa.

The sarcomeres in series span across the cell and are linked on the boundaries to the
intercalated disks in order to transmit the force to the neighboring cells.
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1.1. Description of muscle contraction

The cell is also equipped with a reservoir of calcium ion called the sarcoplasmic retic-
ulum (sarcoplasmic reticulum). It captures calcium ions from the cell cytosol with ATP-
driven Ca2+-pumps and releases them quickly and in a large amount when activated. The
activation is triggered by inwards calcium fluxes detected by receptors denoted RyRs. The
RyRs also act as release channels for calcium ions. The released calcium ions are captured
by the sarcomere, where they trigger the contraction. Under the action of the calcium
Ca2+-pumps, calcium is liberated by the sarcomere and uptaken by the sarcoplasmic retic-
ulum. The transfer of ions through the membranes is an active process in the sense that it
consumes energy brought by ATP. It uses between 30% and 40% of the energy consumed
by the cell [Barclay, 2015].

The structure of a cardiomyocyte is schematically displayed in Figure 1.2.

⇠ 1 µm

Sarcomere

Cardiomyocyte 
membrane

Ion channelSub-membrane 
region

NCX

Sarcoplamic  
reticulum

Pump

Ca2+

R
yR

1

2
3

4

5

NCX

6

7

[Ca2+]ext

[Ca2+]in

Figure 1.2 – Schematic of a cardiomyocyte. The sequence of events occurring during activation
(red arrows) and relaxation (green arrows) is also presented: (1) the action potential travels on
the membrane, (2) calcium ion channels are activated and let calcium ions in, (3) this calcium
flux triggers the sarcoplasmic reticulum, (4) calcium is released in the cytosol, (5) calcium ions are
captured by the sarcomere, (6) calcium ions are taken from the sarcomere, (7) calcium ions are
uptaken by the sarcoplasmic reticulum or removed from the cells by the exchangers.

We now define the calcium concentrations that will be used through the entire manuscript.
The external calcium concentration is denoted by [Ca2+]ext. In the cell, we distinguish
between the membrane ion concentration, which is related to the ions linked to the mem-
brane and the intracellular calcium concentration depending on the amount of ion in the
cytosol. The intracellular calcium concentration is denoted by [Ca2+]i.

1.1.1.4 Anatomy of a sarcomere and the myofilaments

The elementary unit of the contractile apparatus is the sarcomere. The sarcomere is a
highly organized structure (see Figure 1.3). It has a longitudinal symmetry and can thus
be seen as two half-sarcomeres contracting in opposite directions. A sarcomere is delimited
by protein components appearing as thick black lines on microscope images called Z-disks.
Our description of the sarcomere structure relies on Craig and Padrón [2004], completed
by [Kobayashi et al., 2008] for the description of the thin filament.

The sarcomere is mainly composed of two family of parallel filaments overlapping
themselves in a crystalline-like arrangement (see Figure 1.3). The first family is made
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Sarcomere

Z-line Z-lineM-line

I-band I-bandA-band

H-band

Figure 1.3 – Illustration of the sarcomere and of its structure. The crystalline structure of the
sarcomere appears. The link between the thick filaments appears in the M-line. Inspired from
[Craig and Padrón, 2004].
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of the actin filaments, which are anchored on the Z-disks. The second family is made of
myosin filaments spanning in both directions from the sarcomere median plan on which
they are linked. In the middle of the sarcomere, a protein structure connects the thick
filaments. It is the M-line that appears in the microscope image.

The actin filaments form the so-called thin filaments, which are polymers made of actin
monomers forming a double helix (see illustration in Figure 1.4.). The spatial periodicity of
the double helix is 37–40 nm, while the actin monomer is 5.5 nm long. Each actin monomer
has a myosin binding site. At rest, these binding sites are covered by a tropomyosin
molecule (Tm), which prevents myosin binding. Tm is a 40 nm long polymer that is
wrapped around the actin filaments. The thin filament is thus covered by a set of Tm
that overlap in their head and tail regions. The part of the thin filament that is covered
by one Tm molecule is called a Regulatory Unit (RU). A regulatory unit thus includes
seven actin monomers and has a length of 38.5 nm. In each RU, a troponin complex (Tn)
is bound to Tm and block its position in front of the actin sites. The troponin complex is
made of three proteins: the troponin-T (TnT) that actually binds to Tm, the troponin-C
(TnC) that binds to calcium and a troponin-I (TnI). At rest, a domain of TnI binds to
actin, which strongly fixes the Tm with respect to actin. In the presence of calcium, the
affinity of TnI for another part of the troponin complex increases, TnI detaches from the
actin filament. The tropomyosin is liberated and this allows the access to some actin sites
of the regulatory unit for the myosin heads. Note that due to the varying orientation of
the actin site along the actin filament helix, it is likely that the myosin head can not bind
to all actin sites but only to those that have the appropriate orientation. The question of
how many actin sites actually have the “appropriate orientation” remains open.

Actine 
monomer

Regulatory unit

Tropomyosin (Tm)
Troponin 

complex (Tn)
Tropomyosin 

head-tail interaction

Figure 1.4 – Schematic of an actin filament.

The myosin filaments form the the so-called thick filaments. They contain 294 myosin
molecules [Reconditi et al., 2017], each of which is made of a head, which is exposed
towards the outside of the filaments, and a tail, which is anchored in the backbone of the
filament. The heads are organized in a regular array forming helices. The periodicity of
the helix is 43 nm, meaning that the myosin heads are separated by this distance along
the longitudinal direction. Along the helix direction, the myosin heads are separated by
14.3 nm [Craig and Padrón, 2004] (see Figure 1.5). In the central region of the thick
filament, there is no myosin head; it is called the bare zone. The density of thick filament
in a cross section is 424 filaments/m2 [Pinzauti et al., 2018]. The thin and thick filaments
are regrouped under the term myofilaments.
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Figure 1.5 – Schematic of a myosin filament.

In addition to these two types of filaments, another element, called titin, plays an
important role in muscle contraction. It is a giant protein spanning from the Z-disks,
wrapping around the thin filament and anchored in the M-line. Titin allows the sarcomere
to recover its original length in the relaxation phase. Titin also contributes to the passive
stiffness of the tissue [Fukuda et al., 2008; Mateja et al., 2013; Methawasin et al., 2014]. In
addition, it may play a role in many regulatory mechanisms such as the on-off transition
(see Section 1.4.2.2) and the modulation of the thin filament sensitivity to calcium (see
Section 1.4.2.3).

The rest length of the sarcomere is called the slack length. The slack length of cardiac
sarcomeres, is commonly reported to be 1.85 µm [ter Keurs et al., 1980] for rat and 1.70 µm
for humans [van der Velden et al., 2000]. We can note that a negligible stiffness is measured
around the slack length which explains the difficulty to define the stress-free state of cardiac
fibers [Caruel et al., 2013].

1.1.1.5 Anatomy of a myosin head

As already mentioned above, the myosin has two main components: its tail and its head.
The head is named the S1 domain and the tail can itself be split into two parts: the
light meromyosin (LMN), which is anchored in the myosin filament, and the S2 domain
that sticks out of the filament core (see Figure 1.6). Electron-microscopy and X-ray
crystallographic analyses reveal the complex 3D structure of the myosin heads [Rayment
et al., 1993; Irving et al., 2000]. The myosin head has two stable positions corresponding
to two conformations of the protein. The angle between the head and the tail changes
between these two conformations by 70°. It corresponds to a longitudinal displacement
(projected along the filament direction) of 11 nm [Irving et al., 2000] (see Figure 1.6). Note
that this value is sometimes also reported to be 8 nm [Kaya and Higuchi, 2010].

When bound together the actin site and the myosin head form a cross-bridge. Ex-
periments on individual molecules show that the cross-bridge has elastic properties. The
compliance is concentrated in the head or at the connection point between the actin site
and the myosin head, the tail part of the myosin being much stiffer [Kaya and Higuchi,
2010].

When a myosin head is attached, the change between the two stable conformations
generates a force and the transition is then called the power stroke. The initial and
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Figure 1.6 – Two stable angular positions of the myosin head. These positions are separated by an
angle of 70°, which corresponds to a longitudinal displacement of 11 nm

final conformation are naturally referred to as pre-power stroke and post-power stroke,
respectively.

1.1.2 Origin of contraction - the actin-myosin interaction

The actin-myosin interaction occurs in a cyclic manner. A commonly accepted description
of this cycle has been proposed by Lymn and Taylor [1971]. It is illustrated in Figure 1.7.
The Lymn-Taylor cycle is composed of four stages:

• in the first stage, the myosin head in the pre-power stroke conformation attaches to
an actin site.

• in the second stage, the myosin undergoes a conformation change, which generate a
force. This is the power stroke.

• in the third stage, the myosin head, which is now in the post-power stroke conforma-
tion, detaches. The use of chemical energy brought by ATP molecules is necessary
for the detachment. In each cycle, this consumes an energy of 100 zJ [Barclay, 2015].

• in the fourth stage, the detached myosin head recovers its power stroke capability
by transitioning back to the pre-power stroke conformation. The myosin head can
then enter in a new cycle.

Note that experiments in solution indicate that the power stroke is a fast step – its
duration is of the order of 1 ms – compared to the whole cycle duration, which is of the
order of 100 ms [Linari et al., 2010]. Conclusions drawn for experiments in solution must
be transposed with care to intact muscle, where geometric and mechanical constraints
are drastically different. Nevertheless, this still shows a separation of time scales between
a fast power stroke stage compared to the rest of the cycle comprising the attachment-
detachment process. A confirmation of this property is given by mechanical experiments
on individual cardiac muscle cells, which display the same separation of time scales (see
Section 1.3.2.1). The Lymn-Taylor cycle gives a correct picture of the interaction between
myosin heads and actin sites but there is still a lot of unknowns in this molecular inter-
action. Intense research activities are dedicated to the description of all the structural
changes occurring during this cycle [Houdusse and Sweeney, 2016].

1.1.3 Thick filament activation

In the above presentation of the interaction between a myosin head and an actin site, we
suppose that the myosin head is always available for attachment and that the actin site is
always accessible for the myosin head. However, in physiological conditions, this may not
be the case.
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Figure 1.7 – Illustration of the Lymn-Taylor cycle [Lymn and Taylor, 1971].

It has recently been observed in skeletal muscles with X-ray crystallographic measure-
ments, that the myosin head can be in a position where the S2 domain does not point out
of the thick filament backbone anymore, but is instead aligned along the filament back-
bone [Reconditi et al., 2011] and the myosin heads is folded back towards the M-line. This
state is called off-state, as opposed to on-states when the S2 domain points towards the
thin filament. Additional investigation with skeletal muscles, showed that the on-off tran-
sition is triggered by a mechanosensing mechanism [Linari et al., 2015]. More recently, the
off-state was also observed in cardiac muscles but only at rest and in isometric conditions
[Reconditi et al., 2017].

Moreover, when stretching the sarcomere, the level of activation of the thick filament
varies (see Section 1.4.2.2).

1.1.4 Thin filament activation

As for the myosin filament, the level of activation of the thin filament is controlled and
regulated. The cardiac cycle is an alternation of contractions and relaxations, both of
which are solely triggered, in physiological conditions, by the presence or the absence of
Ca2+ ions in the cytosol, which serve to activate the thin filament. Pacemaker cells in the
atria create a depolarization wave that propagates in the heart in a controlled manner.
When the depolarization wave reaches a cardiomyocyte, it induces the release of calcium
in the cytosol of the contractile cells. The calcium ions then interact with the thin filament
to activate the actin sites and allow the binding of myosin heads. This activation signal
transduction is regulated extrinsically by the neuroendocrine system (see Section 1.1.5)
and intrinsically by the extension at the scale of the sarcomere (see Section 1.4.2.3).

The variations of the level of thin filament activation act as a command to switch the
muscle cell between the contraction and relaxation phases.

In this section we present the different stages of the signal transduction between the
pacemaker signal to the activation of the actin site keeping our top-down approach. We
then introduce the regulation mechanisms. Note that an illustration of the events of the
activation process occurring at the cell level is presented in Figure 1.2.

1.1.4.1 Macroscopic activation signal propagation

We will first consider the basal behavior, that is in the absence of the extrinsic regulation
(see [Bers, 2002] for more details). At the level of the sinoatrial node (in the right atrium)
special cardiac muscles cells, called pacemaker cells, generate an electrical signal. The
proteins across the cell membrane allow a inflow of calcium which results in increasing the
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amount of positive charges inside the cell. As a result, the originally negative membrane
potential is increasing. When the potential reaches a threshold, the membrane depolarizes.
In response to depolarization, a sequence of events involving the movement of ions into and
out of the cell occurs, thus changing the membrane potential. This behavior is spontaneous
(is not necessarily triggered by a signal from the nervous system) and occurs at a constant
frequency (60–80 bpm). The sinoatrial mode is a natural pacemaker.

As part of the sequence of events resulting from the depolarization, ion currents appear
toward the neighboring cells thus changing their own membrane potential. At some point
the potential reaches a threshold and the neighboring cells depolarizes. The depolarization
of the pacemaker cells thus triggers the depolarization of the surrounding cells in the
atrium. The depolarization wave propagates and reaches the atrioventricular node which
acts like a synchronizer.

The depolarization wave propagates then through the bundle of His and the Purkinje
fibers to the apex of the heart and triggers the depolarization of the contractile cells. From
the apex, the depolarization spreads to the ventricular contracting cells and travels to the
top of the ventricle (towards the valves).

1.1.4.2 Interactions at the cell membrane - the action potential

We will now describe in more detail the sequence of events occurring in the contractile
cells leading to the action potential.

At rest, the contractile cell membrane is polarized. It contains more negative charges
inside the cell than the outside environment which creates a negative potential. ATP-fueled
pumps maintain this potential by bringing sodium and calcium ions out and potassium
ions in.

The activation is initiated from the Purkinje fibers or a neighboring cell. In response
to the stimulation, the sodium ion channels open causing a large flux of sodium ions
towards the inside of the cell. The potential increases; the cell is depolarizing (phase 0).
Following the depolarization (phase 1), the potassium channels open and a small amount
of potassium ions goes out of the cell, and causes a slight decreases of the potential. It
is the early repolarization (phase 2). In a subsequent step, the fluxes of calcium ions
into the cell and potassium ions out of the cell balance, causing a plateau phase in the
evolution of the membrane potential (phase 3). In the last phase, calcium channels close
and potassium ions keep leaving the cell. The potential decreases to its original value; this
is the repolarization of the cell (phase 4). The shape of the action potential in a contractile
cell is presented in Figure 1.8(a). Note that the action potential in pacemakers cell has a
different shape. Note also that the superposition of the action potentials gives rise to the
macroscopic ECG signal.

The sodium channels that intervene in the early phase of the action potential need time
after being activated to reach their initial configuration and be active again [Silverthorn
et al., 2009]. The time during which the sodium channel cannot be activated is called the
refractory period. In this period an electrical stimulation will have no effect on the sodium
channels and thus will not trigger an action potential. In cardiac muscles the refractory
period ends as the force relaxation is well advanced. Therefore, a new contraction cannot
be initiated until the current contraction is finished. As a result, tetanus is prevented
under physiological conditions. Preventing tetanus in cardiac muscle is physiologically
relevant because the cardiac cycle consists in alternating periods of contraction (ejection
phase) and relaxation (filling phase). A tetanised state would thus stop the cardiac cycle.
However, note that under specific non-physiological conditions, a tetanised state is still
possible in cardiac muscle (see Section 1.1.6.1).
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Figure 1.8 – Membrane action potential and force developed in cardiac muscle cells. (a) Action
potential of a contractile cardiac muscle cell. (b) Action potential and force development by a
cardiomyocyte. Reproduced from [Silverthorn et al., 2009].

1.1.4.3 Ion fluxes in the bulk cytosol

We will now look in more detail at the mechanisms underlying the different phases of the
action potential with a focus on the parts that are involved in the activation-contraction
coupling.

Two elements are of particular importance for muscle contraction and relaxation: the
Ca2+-channels and the Na+-Ca2+-exchangers (NCX). The depolarization of the membrane
leads to the opening of Ca2+-channels creating an inward current of calcium ions.

Calcium ions release in the cytosol In the first phase of the action potential, Na+

ions enter the cell leading to the increase of the membrane potential, which becomes
positive. As a result, the NCX and the Ca2+-channels work in “calcium-intake mode”.
The amount of calcium brought into the cell by the Ca2+-channels and the NCXs is not
sufficient to induce the activation of the thin filament. As it has been revealed by [Fabiato,
1983], the flux of calcium through the membrane is actually only a triggering signal for
the release of calcium contained in the sarcoplasmic reticulum in large quantities. It is
thus a Ca2+-induced-Ca2+-release. The sarcoplasmic reticulum release is fast; it reaches
its peak in 2 ms - 3 ms [Puglisi et al., 1999]. The activation mechanisms of the calcium
release has been understood but, conversely, the origin of the termination of the release
remains subject to debate [Bers, 2002]. The closing of the RyRs is not fully elucidated.

Calcium ions uptake in the sarcoplasmic reticulum Once the release of calcium is
completed, the dominant effect regarding calcium ions in the cytosol is the removal from
the cytosol trough different paths: re-uptake in the sarcoplasmic reticulum or outwards
flux from the cell through the Na/Ca2+ exchangers. The relative importance of these paths
for calcium uptake varies among species and can be affected by diseases [Bers, 2002].

1.1.4.4 Mechanisms at sarcomere-level

We will now describe how calcium interacts with the thin filament to make the actin sites
available for myosin attachment.

Actin site activation In the presence of calcium, Ca2+ binds to TnC, which induces a
structural change leading to the exposition of a site on TnC of high affinity for the switch
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domain of TnI. The switch domain of TnI attaches to TnC and the inhibitory part of
TnI, which was bound to an actin site, is moved. This prevents its attachment to actin.
The troponin complex is now detached from the actin filament and so is the tropomyosin,
which is linked to the troponin complex by the TnT. When the tropomyosin is free to
move, some actin sites become available for the formation of cross-bridges with myosin
heads [Gordon et al., 2000].

Note that TnC has three actin binding sites (2 high affinity sites and 1 low affinity
site) [Kobayashi et al., 2008]. According to Kobayashi et al. [2008], the two high-affinity
sites do not contribute to contraction regulation so that the contraction is only regulated
through the binding to the low-affinity binding site.

Actin site de-activation The detachment of the calcium ions from the troponin com-
plex is less understood than its attachment. Two paths are possible: either calcium
detaches first from the TnC while the myosin head stays attached or the myosin heads
detaches before calcium. Sun and Irving [2010] state that the two paths are possible,
the choice of one or another being determined by their respective kinetics, i.e. whether
myosin head or calcium detach faster. The rates of those dynamics depend on the amount
of elements in each state (attached or detached for the myosin head and attached to an
actin site or in the cytosol for calcium ions) and the respective transition rates between
these states. For instance the more calcium ions are attached to the thin filament, the
higher is the detachment rate towards the cytosol.

1.1.4.5 Length-dependent activation

Some of the cell elements involved in the transduction of the calcium-induced calcium re-
lease by the sarcoplasmic reticulum to the activation of the actin sites are length sensitive.
It results in a higher level of thin filament activation when the sarcomere is stretched. This
effect is called the length dependent activation (LDA). The length dependent activation is
analyzed in more details in Section 1.4.2.3.

1.1.5 Neuroendocrine regulation

The behavior described above occurs spontaneously in the presence of the required ions,
but at the constant frequency imposed by the pacemaker cells. This is the basal func-
tioning of the heart. The actual functioning of the heart is regulated by the autonomous
nervous system, which produces two antagonist effects acting simultaneously. The rel-
ative importance of these two regulation mechanisms sets the actual state of the heart
contraction.

The sympathetic (or orthosympathetic) nervous system “enhances” the activity of the
heart, increasing the beating pace and the inotropic state. It acts through two path-
ways: a neuronal pathway and an endocrine pathway. In the neuronal pathway, the signal
is transported by action potential in the nerves ultimately leading to the liberation of
neuromediator at the vicinity of the contractile cell. In the endocrine pathway, the sym-
pathetic system activates the adrenal cortex which liberates catecholaminergic endocrines
in the blood. Both neurotransmitter and endocrines interacts with receptors located on
the outer surface of the muscle cell, triggering a signaling cascade inside the cell. Typi-
cal catecholamine endocrines involved in the sympathetic system are the adrenaline (also
called epinephrine) and the noradrenaline (also called norepinephrine).

As opposed to the sympathetic nervous system, the parasympathetic nervous system
activation results in a reduction of the heart rate and a decrease in contractility. It works
only through a neuronal pathway. A typical neuromediator of the parasympathetic system
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is acetylcholine. We insist again on the fact that the neuromediators and endocrines of
the sympathetic nervous system and the neuromediators of the parasympathetic nervous
system are present at the same time but a group dominates the other.

In pacemaker cells, the signaling cascade induced by both sympathetic and parasympa-
thetic systems modifies the functioning of the ion channels, thus changing the ions fluxes,
which ultimately impacts the produced paced action potential. The sympathetic system
also acts on the contractile cells. In reaction to its activation, the dynamics of Ca2+-
channels and exchangers is modified, increasing the amount of calcium brought inside
the cell. Simultaneously, the activity of the ATP-driven Ca2+-pumps of the sarcoplasmic
reticulum is enhanced. Combined with the increased amount of calcium present inside the
cell, the amount of calcium stored in the sarcoplasmic reticulum is increased. Therefore,
more calcium is available to be released in the cell. This leads to a higher activation level
and thus an increased contractility. Moreover, the enhanced activity of the Ca2+-pumps
of the sarcoplasmic reticulum results in a more efficient calcium re-uptake. Therefore, the
twitch duration is reduced [Silverthorn et al., 2009]. Each modification of the ion fluxes
through the membrane will induce a change in the action potential. These changes can
then be observed in the general ECG.

Note also that the action of the neuroendocrine regulation is not restricted to variations
of the amount of calcium released inside the cell. It also directly affects proteins that are
involved in the activation-contraction coupling (see Section 1.4.3).

1.1.6 Additional information

1.1.6.1 Tetanus in intact cardiac cells

We have seen that, in normal physiological conditions, cardiac muscles cells cannot be
tetanised. However, it is possible to artificially induce a tetanus in intact cells, for instance
with high excitation frequency in the presence of chemical agent impairing the functioning
of the sarcoplasmic reticulum [Schouten et al., 1990; ter Keurs et al., 2008; Gao et al.,
1998]. Alternatively, one can block the Ca2+-channel of the sarcoplasmic reticulum in the
open position or inhibit the Ca2+-pump of the sarcoplasmic reticulum [Pery-Man et al.,
1993]. Note also that a treatment with caffeine allows to trigger the complete release of the
calcium ions contained in the sarcoplasmic reticulum, which leads to a large concentration
of calcium in the cytosol [Fabiato and Fabiato, 1975].

1.1.6.2 Rigor state

The rigor is the state of the muscle in the absence of ATP. It has been suggested that in
this state, all 294 heads of each half-thick filament are attached [Cooke and Franks, 1980].
The energy needed for detachment, which is normally brought by ATP, is indeed missing.

Knowing that all heads are attached allows to perform stiffness measurements [Linari
et al., 1998; Piazzesi et al., 2007; Pinzauti et al., 2018].

Note that in rigor state the molecular structure of the myosin head is different from the
cycling myosin head (the angle of between the S1- and the S2-domains can reach greater
values than that observed in physiological conditions) [Reconditi et al., 2003].

1.1.6.3 Skinned cells

Skinned cells are cells whose membrane has been degraded and in which only the contrac-
tile apparatus remains. They are used in experimental protocols because they allow to
have a perfectly controlled ionic environment. The drawback is that this environment is,
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at best, only an approximation of the physiological conditions. The calcium environment
corresponds to the intracellular calcium concentration in intact cells, we will thus denote
it [Ca2+]i as well.

An extensive review of the properties of skinned cells compared to intact cells and the
methods that can be used to produce them is given by Kentish et al. [1986].

1.1.7 Skeletal muscles

Skeletal and cardiac muscles differ in their function. Indeed, skeletal muscle must be able
to move the body and maintain the posture while cardiac muscles have to fulfill their
role as a blood pump. Moreover, cardiac muscle should be able to work without any
interruption throughout the course of life (without fatigue).

Similarly to cardiac muscles, skeletal muscles are organized in sarcomeres. They thus
also belong to the group of striated muscles. The organization of the sarcomere is qual-
itatively similar in cardiac and skeletal muscles cells, and in both case, the contraction
originates from the interaction between actin and myosin filaments.

However, important differences can be observed. In terms of anatomy, skeletal muscle
cells are much longer and may have several nuclei. Their structure is more regular than
cardiac muscles as they are organized in long parallel cylindrical fibers without branching.

The main difference between skeletal and cardiac muscles lies in the activation signal
transduction. The activation is mediated, like cardiac muscles, by a Ca2+-induced-Ca2+-
release, ultimately liberating the actin site for myosin heads binding. The triggering
of the activation signal occurs, however, in a much different way. In skeletal muscles,
the cells receive a signal from motor neurons, which triggers an action potential that
propagates inside the cells. In the cascade of events following the initiation of this action
potential, calcium ions enter the cells, triggering the release of the calcium ions stored in
the sarcoplasmic reticulum. Unlike cardiac cells, the activation signal does not propagate
between the cells; each cell is in contact with motor neurons. Moreover, there is no
neuroendocrine regulation by the autonomous nervous system in the skeletal muscle cells.

Unlike cardiac muscles, skeletal muscles often work a the maximum level of thin fila-
ment activation, conditions in which variations of the sensitivity to calcium do not matter.
Moreover, skeletal muscles express a different form of the TnI, which makes the thin fil-
ament activation less sensitive to the sarcomere length [Tachampa et al., 2007]. The
developed force is thus less sensitive to variation in the sarcomere length.

The force development also display differences in skeletal compared to cardiac muscles.
It is faster in skeletal muscles. Furthermore, the refractory period is shorter in skeletal
muscles, which allows to re-activate the muscle before the end of the contraction. When
doing so, other action potentials are generated, triggering contraction twitches that add
up to each other. At sufficiently high activation frequency, the developed tension reaches
a maximal value which is maintained continuously in a so called tetanised state or tetanus.

1.2 Passive properties of muscle cells

The passive mechanical behavior corresponds to the muscle response in the absence of
calcium activation, that is, when no cross-bridge is formed.

In this work, the focus is put on the modeling of the active component of muscle
contraction. Therefore, we will only briefly present the passive properties.

We present in Figure 1.9 the passive force with respect to the sarcomere length mea-
sured on cardiac muscle samples along the fibre direction by different groups [ter Keurs
et al., 1980; Van Heuningen et al., 1982; Caremani et al., 2016]. Several general comments
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Figure 1.9 – Passive properties of muscle samples along the fibre direction. Data from [Caremani
et al., 2016] (rat cardiac cell at 27 ◦C), [Kentish et al., 1986] (rat cardiac cell at 22–24 ◦C) and [ter
Keurs et al., 1980] (rat cardiac cells at 25 ◦C).

can be made from these experimental data. First, all experiments present a strong in-
crease in the passive force when the sarcomere is stretched at lengths greater than 2.3 µm.
Muscles display non-linear elastic properties. Second, one can note that the stiffness near
zero passive force is very low. This explains that measuring the sarcomere slack length is
a difficult challenge.

The main components of the muscle cell that contribute the the passive behavior are
collagen fibers embedded into a polymer matrix and the titin filaments in the sarcomeres.
Passive muscles can thus be seen as a fibre reinforced material. The soft increase in
passive force corresponds to the stretch of the polymer matrix, which uncoils the collagen
fibers. The steep increase in passive force starts with the stretching of the collagen fibers
themselves, which are much stiffer than the matrix [Holzapfel and Ogden, 2009]. Recently,
a substantial number of works have also highlighted the contribution of titin to the passive
properties of the cardiac muscle cells [Fukuda et al., 2008; Mateja et al., 2013; Methawasin
et al., 2014].

In physiological conditions during a heart cycle, the sarcomere length spans on average
between 1.90 µm and 2.20 µm although lower or higher values may also be observed at
special locations in the tissue [Rodriguez et al., 1992]. The range of sarcomere lengths is
limited by the passive force in tension for large sarcomere lengths. One can add that in
vivo the pericardium (fibrous bag in which the heart is located) also limits the extension
of the ventricles and thus of the sarcomere length.

Additionally to its elastic properties, muscles also display a viscous behavior [Hill,
1938; Noble, 1977; de Tombe and ter Keurs, 1992].

1.3 Characterization of fast muscles activation-contraction
coupling

We now quantitatively characterize the elements of the activation-contraction coupling
that are of interest for the development of our models. In this section, we want to describe
the baseline behavior, that is, independently from the regulation mechanisms. We thus
consider experiments in which the mechanisms modulating the force are maintained con-
stant through the duration of the measurement of interest. In particular, the sarcomere
length must be properly maintained constant.

In a first part, we give a macroscopic description of the cardiac muscle cell contrac-
tion. Then, we present in detail experiments characterizing the actin-myosin interaction.

62



1.3. Characterization of fast muscles activation-contraction coupling

Finally, we present the state of the art knowledge on the thin filament activation.
This presentation is based on experiments performed ex vivo on isolated cells, which are

therefore disconnected from the autonomous nervous system. The behaviors characterized
in these experiments thus correspond to the basal functioning of the cell. Some comments
about the impact of the neuroendocrine system are presented in Section 1.4.3. This is a
limitation for our goal of modeling the contraction in the context of heart modeling since
we have seen in Section 1.1.5 that this impacts many step of the excitation-contraction
process.

1.3.1 Muscle twitch contraction

The first way to characterize the contraction is to observe a muscle cell contracting as a
response to an excitation signal. Three types of control can be applied on muscle samples.
In fixed ends (FE) conditions, the sample of muscle is maintained between clamps that do
not move. The sarcomere length in the central region of the sample is measured through
time. In length clamped (LC) conditions, the measurement of the sarcomere length is used
to apply a feedback signal to the clamps position controlling system such that the length
of the sarcomeres remains constant. Instead, by controlling the length at certain scales
of the muscle sample, one can also control the after-load that the muscle must sustain
[Lecarpentier et al., 1979]. We call the latter condition after-load control.

A typical cardiac muscle twitch contraction in length clamped conditions is presented
in Figure 1.10. The twitch contraction can be decomposed into two phases. The first phase
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Figure 1.10 – Cardiac muscle twitch contraction obtain on rat cardiomyocyte at 23–24 ◦C. Data
from [Janssen and Hunter, 1995]. The sarcomere length is maintained constant throughout the
experiment by a feedback loop and is equal to 2.00 µm. The extracellular calcium concentration
[Ca2+]ext is equal to 2 mM.

from the excitation of the cell to the peak is the tension rise and lasts about 100 ms. The
remaining part is called relaxation. The latter phase lasts about 200 ms.

Note that the use of twitch contraction measurements is not adapted to the charac-
terization of the actin-myosin interaction because it mixes many other mechanisms: the
dynamics of calcium uptake and release in the cell, the thin filament activation dynamics,
the attachment-detachment process. More specific experiments isolating the dynamics of
the actin-myosin interaction have been designed (see Section 1.3.2). The twitch contrac-
tion measurement can nevertheless be used as an element to understand the thin filament
activation because dedicated experiments do not exist (see Section 1.3.3).

Comparing the maximum twitch force with passive experiments presented in Fig-
ure 1.9, one can note that the passive force is negligible with respect to the active force
for the most part of the contraction twitch. Indeed, at the sarcomere length used in this
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experiment (SL = 2.00 µm), the average passive tension among the experiments presented
in Section 1.2 is 2 kN. It is much smaller than the active tension of 76 kPa measured
at the twitch peak. We will see in Section 1.4 that this observation remains true for all
physiological regulation conditions.

1.3.2 Actin-myosin interaction

In this section we review several classes of experiments targeting the different processes
composing the actin-myosin interaction. It is here essential to note that these different
processes occur at vastly different time scales.

We distinguish two classes of experiments. First, the so-called fast transient response
to quick load or length changes provides the main set of data to investigate the actin-
myosin interaction. The idea of this type of experiment is to observe molecular processes
whose characteristic time scales are short compared to the typical time of completion of
the Lymn-Taylor cycle. For that, a load change, whose timescale is short enough to reveal
the finest time scales, is applied.

On the contrary, the second class of experiments aims at longer time scales phenom-
ena, which involve the whole actin-myosin interaction cycle. We can distinguish first the
protocols aiming at the steady-state dynamics and second the protocols aiming at the
transient dynamics.

Note that the viscous intrinsic properties may play a role in the responses to all ex-
periments.

1.3.2.1 Fast time scale response to fast load changes (phase 1, phase 2)

To investigate the fast time scales of the muscle contraction mechanism, two “dual” ex-
perimental protocols have been designed. Both protocols use as an initial condition an
activated isometric muscle sample under length clamped conditions. The preparation
contracts and generates a steady-state isometric force. From this initial steady-state, two
different maneuvers may be used. In one case, a step in length is applied and the ten-
sion response is measured [Huxley and Simmons, 1971; Piazzesi and Lombardi, 1995]. In
the other case, a step in force is applied and the length response per half-sarcomere (hs)
is measured [Piazzesi et al., 2002; Caremani et al., 2016]. In both experimental setups,
the step is performed quickly with respect to the cross-bridge fastest response time scale
(∼100 µs in length control and ∼200 µs in force control). Applying a step allows to syn-
chronize the myosin heads so that their individual behavior can be investigated with the
measured macroscopic response immediately following the applied step [Lombardi et al.,
1992].

A typical response following a step in force from the isometric tension T0 to a tension
Tc = 0.6T0 for skeletal muscles is shown in Figure 1.11(a). The initial response displays
two phases:

• an initial elastic phase (phase 1);

• a fast shortening phase, corresponding to the power stroke (phase 2) [Huxley and
Simmons, 1971];

• a pause in the shortening (phase 3);

• a slow shortening phase, which involves the attachment-detachment dynamics (phase
4) [Piazzesi et al., 2002].
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Figure 1.11 – Typical transient responses obtained experimentally from frog skeletal muscle at 4 ◦C
in both force control (a) and length control (b) conditions. The different phases of the response are
indicated by circled numbers. Data from (a) [Piazzesi et al., 2002] and (b) [Piazzesi and Lombardi,
1995].

Phase 1 and phase 2 are characterized by the amount of shortening at the end of the
respective phases. These shortening are denoted L1 and L2, respectively. The steady-
state dynamics in phase 4 corresponds to the regime from which the force-velocity curve
– first observed by Hill [1938] – is constructed. More details are given in Section 1.3.2.2.

The response following a length step per half-sarcomere δL for skeletal muscles is pre-
sented in Figure 1.11(b). The response displays two fast phases: first an abrupt drop in
force – up to a level T1 – almost synchronized with the step itself, and second a partial
recovery towards the initial tension – up to a level T2 – within ∼ 2 ms. The equivalence
between the force-length relation at the end of phases 1 and phase 2 with the two ex-
perimental setups has been demonstrated experimentally. Piazzesi et al. [2002] show with
skeletal muscles that the curves L1(Tc/T0) and T1(δL)/T0, on the one hand, and L2(Tc/T0)
and T2(δL)/T0, on the other end, are superimposed. We insist, that the equivalence only
concerns the force-length relation at the end of the phases. The dynamics in phase 2, which
is not instantaneous, is not the same in length control and in force control conditions.

For cardiac muscle, the characterization of phase 1 and phase 2 has been first per-
formed by [Caremani et al., 2016] with rat cardiac muscles cells at 25 ◦C using the force
control setup (see Figure 1.12). Cardiac muscles differ from measurements for frog skeletal
muscle at 4 ◦C by the absence of phase 3. Note that a first characterization of rat cardiac
muscle cells in length control conditions was also performed by [Pinzauti et al., 2018].
The signature of phase 1 and phase 2, namely the curves L1(Tc/Ťc) and L2(Tc/Ťc), are
presented in Figure 1.13(a). The rate of shortening in phase 2 (which is the inverse of the
time between the end of phase 1 and the end of phase 2 and is denoted by r2) is presented
in Figure 1.13(b).

1.3.2.2 Steady-state properties

Isometric state Substantial information about the molecular contraction mechanism
can be recovered from the analysis of isometric contractions. Note that a sustained iso-
metric contraction state does not exist in intact cardiac muscles in physiological conditions
(see Figure 1.10). We refer to isometric conditions when the developed force reaches its
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Figure 1.12 – Transient response obtained experimentally with rat cardiac muscle at 27 ◦C in force
control conditions. Data from [Caremani et al., 2016].
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Figure 1.13 – (a)Shortening at the end of phase 1 and 2 in fast load change experiments. (b) Rate
of shortening in phase 2. (a) & (b) Experimental data obtained by Caremani et al. [2016] with rat
cardiac muscles cell at 27 ◦C. Figure reproduced from [Caremani et al., 2016].
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peak in a twitch contraction in which the length of the fibre is maintained constant (spe-
cific experimental apparatus have been designed for that purpose [ter Keurs et al., 1980;
Van Heuningen et al., 1982; Caremani et al., 2016]).

The isometric force developed by cardiac muscles cells depends on the level of sarcomere
stretch and thin filament activation. In maximal activation conditions, the force can reach
the value 118 kPa [Caremani et al., 2016]. On the contrary, the force per attached head
does not depend on the thick and thin filament activation. From the ratio of attached
head in several activation conditions [Pinzauti et al., 2018], we can derive the ratio of
attached heads when the developed force is maximal (see Table 1.1).

In addition to the force measurement, energetics measurements can be performed in
isometric conditions. A quantity of interest, that we call the ATP tension cost and that
we denote AT , corresponds to the energy flux consumed per myosin head in the sarcom-
ere per unit of force produced (note that some myosin heads may not contribute to the
force production). To compute this quantity, one can use the ATP consumption per unit
volume measured by de Tombe and Stienen [2007] at 25 ◦C. Reconditi et al. [2017] pro-
vide geometrical data, which allow to derive a density of myosin heads per unit volume of
1.246 × 1023 heads/m3 (choosing a reference length of 1 µm for the half sarcomere). Note
that “per head” means here per heads in the half-sarcomere and not per cycling head. Ne-
glecting the ATP consumption in the relaxed state, we obtain from the data of [de Tombe
and Stienen, 2007] a tension cost of 0.0928 /s/head/kPa. Note that these measurements
use skinned cells. The ATP consumption is thus exclusively related to the actin-myosin
interaction, whereas 30% to 40 % of the energy brought by ATP is used to pump ions
through the different membranes in intact cells [Barclay, 2015].

The isometric indicators are summarized in Table 1.1.

Isometric indicators symbol Exp. value Reference

Maximal ratio of
ňatt 0.15 [Pinzauti et al., 2018]

attached heads

Force per attached head τ̌ thc / ňatt 6.14 pN [Pinzauti et al., 2018]

Maximal total stress T0 118 kPa [Caremani et al., 2016]

Energetics indicator

ATP tension cost AT 0.0928 /s/head/kPa [de Tombe and Stienen, 2007]

Table 1.1 – Properties of rat cardiac muscle cells in isometric conditions at 27 ◦C.

Steady-state shortening The force-velocity curve is defined as the signature of the
phase 4 of the response following a step in force (see Figure 1.12). However, it is also
possible to measure a force-velocity curve in length control conditions by imposing a
constant shortening velocity and measuring the steady-state force developed by the muscle
(note that this is not part of the transient response following a step in length). For the
force-velocity curve as well, the equivalence between length control and force control setups
has been established experimentally. Daniels et al. [1984] registered the force-velocity curve
in both control conditions with the same cardiac sample and obtain a single master curve.
The dynamics of phase 4 involves to the attachment and detachment processes.

The force-velocity curve of cardiac muscles has been measured by several groups in var-
ious levels of sarcomere stretch and thin filament calcium activation conditions [Van He-
uningen et al., 1982; Daniels et al., 1984; de Tombe and ter Keurs, 1990, 1992; Caremani
et al., 2016]. A comparison of the experimental data obtained on rat cardiac muscles at
25 ◦C, with all curves scaled by the individual isometric tension T0, is presented in Fig-
ure 1.14. The different experimental works display a good level of consistency, considering
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the possibility of inter-individual variability. All curves scale to a single master curve.
Note that in a finer analysis, de Tombe and ter Keurs [1992] observe that the unloaded
shortening velocity decreases when the isometric tension T0 is low. This effect may be due
to the viscous load that is relatively more important when the overall active force is low
(since it is itself independent on the active force).

One can note that, in a physiological cycle, the heart is always working against an
external load – namely, the blood pressure inside the ventricle. Therefore, the low load
regime of the force-velocity curve is not of primary importance in the context of organ
modeling.
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Figure 1.14 – Summary of experimental force-velocity curve measured on rat cardiac muscles. The
steady-state force is denoted by Tc and the isometric force by T0. We collect here all data points
obtained in various sarcomere stretch and thin filament activation conditions. All experiments are
performed on rat trabeculae. Data from (black) [Van Heuningen et al., 1982] at 25 ◦C, (yellow)
[Daniels et al., 1984] at 25 ◦C, (lilac) [de Tombe and ter Keurs, 1990] at 25 ◦C, (orange) [de Tombe
and ter Keurs, 1992] at 25 ◦C, (blue) [Caremani et al., 2016] at 27 ◦C.

1.3.2.3 Slow time transients

As we explain in Section 1.3.1, the tension rise does not straightforwardly give insight into
the actin-myosin interaction because it is also affected by the thin filament activation.
However, if the myosin heads can be detached while the thin filament remains activated,
the tension evolution can be linked to the attachment and detachment transition rates.
The following experimental setup has been designed to achieve this aim. Starting from
an isometric condition, a release quickly followed by a restretch of the sample allows to
break most of the cross-bridges, which sets the force to zero, while a priori letting the thin
filament activation unchanged. The evolution of the force after this maneuver is thus linked
to the attachment and detachment transition rates that can be extracted from the data
through a model. As opposed to the load and length step experiments (see Section 1.3.2.1),
this transient experiment targets the events of the actin-myosin interaction occurring at
slow time scales.

A typical experimental time evolution obtained with skinned rat cardiac cells [de Tombe
and Stienen, 2007] are presented in Figure 1.15(a). The rate of force development can then
be computed for various values of the initial tension (see Figure 1.15(b)).
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Figure 1.15 – (a) Typical tension redevelopment after a quick release-restretch maneuver. Data
obtained with skinned rat cardiac cells at 20 ◦C with [Ca2+]i = 3.16 mM. Note that the sarcomere
length was not controlled throughout the experiment. (b) Rate of tension redevelopment as a
function of the isometric force. Data measured at 25 ◦C for skinned rat cardiac cells, the various
level of force are obtained by varying the environment calcium concentration. (a) & (b) Data from
[de Tombe and Stienen, 2007].

1.3.2.4 Concluding remarks

The above presented experimental data show that muscles are not only a multi-scale
structure in space but are also multi-scale in time. Indeed, for cardiac muscles the tran-
sient response to force steps displays three different time scales: an instantaneous elastic
response (phase 1), a quick shortening response corresponding to a synchronized power
stroke performance of the attached heads, which has a characteristic time of ∼2 ms (phase
2), and a slow shortening response of time scale ∼10 ms involving the attachment and
detachment of the myosin heads (phase 4). The shortening velocity in phase 2 is one order
of magnitude higher than that registered in phase 4 [Caremani et al., 2016].

1.3.3 Activation of the thin filament

The thin filament activation is triggered by the binding of calcium on the troponin-C
ultimately freeing the actin site for the attachment of myosin heads. This mechanism
involves several intermediate stages and regulations mechanisms.

The difficulty to quantitatively characterize the thin filament activation relies in the
fact that it cannot be isolated from other phenomena in the measurements. The variations
of the calcium concentration in the cytosol or the average force can be measured but none
of them is directly linked to the level of activation of the thin filament (the ratio of actin
sites that are available to form cross-bridges with myosin heads). The evolution of the
intracellular calcium concentration [Ca2+]i depends on the uptake and release of calcium
by the thin filament but also by the other cellular elements: sarcoplasmic reticulum, ion
channels and ion exchangers.

Structural changes in the thin filament can be tracked with the addition of fluores-
cent elements [Sun et al., 2009; Ait-Mou et al., 2016] but here again the link with the
activation of thin filament is not straightforward (the observed structural changes may
only be intermediate steps towards the actin site activation). An option could be the use
of X-ray diffraction patterns as for the characterization of the thick filament properties
[Linari et al., 2015; Reconditi et al., 2017]. However, the size of the thin filament structure
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and the time scale of its activation dynamics are not compatible with the use of X-rays1.
A possibility to address this difficulty of isolating the level of thin filament activation

is to consider the steady-state behavior. We will start our presentation with these ex-
periments that reveal the presence of cooperativity effects in the activation process. We
will thus discuss the hypotheses proposed to explain the observed behavior. Finally, the
dynamics of the thin filament activation will be investigated.

1.3.3.1 Steady-state conditions

To get access to the thin filament activation level with force measurement, muscle can be
observed in steady-state conditions. In this way, the dynamical effects coming from the
actin-myosin interaction and the thin filament activation dynamics are removed and the
force relates to the number of activated actin sites – we will see in Section 1.4.2.1 that the
force per attached head is independent from the calcium supply; the relation between the
level of thin filament activation and the force is thus linear.

To obtain steady-state conditions, one needs to block the thin filament in the activated
state. It can be obtained by using skinned cells or tetanised intact cells (see Section 1.1.6.3
and Section 1.1.6.1, respectively). To vary the level of thin filament activation, experi-
ments at various surrounding calcium concentrations are performed (intracellular calcium
concentration for skinned cell and extracellular calcium concentration for intact tetanised
cells). Typical results for skinned cells and tetanised intact cells are presented in Fig-
ure 1.16. The relation between the calcium supply and the developed force – or equiva-
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Figure 1.16 – Force developed by cardiomyocytes in steady-state conditions. (a) Tetanised in-
tact cells from mice trabeculae at room temperature (20–22 ◦C). From [Gao et al., 1998]. The
extracellular calcium concentration [Ca2+]ext is controlled and the resulting intracellular calcium
concentration [Ca2+]i is measured. The sarcomere length is set to 2.1–2.2 µm but not strictly
maintained constant. (b) Skinned cells from rat at 15 ◦C at various level of myofilaments compres-
sion. From [Dobesh et al., 2002]. Here the intracellular calcium concentration [Ca2+]i is directly
imposed, the sarcomere length is maintained at 2.25 µm

lently the thin filament activation – is strongly non-linear. At a certain level of calcium
supply, the force sharply increases. The experimental curve has the shape of a sigmoid.
It can be fitted by a function of the form

Force ∝ [Ca2+]nH

[Ca2+]nH
50 + [Ca2+]nH

. (1.1)

1Vincenzo Lombardi, personal communication
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This particular relation is the indication of the presence of cooperativity effects, i.e. the
fact that an actin site is more easily activated or a cross-bridge is more easily formed if the
neighboring actin sites are already activated or involved in the formation of cross-bridges.

Evidence of cooperativity The activation of the thin filament involves a binding
process of calcium on the troponin-C. The troponin has 3 binding sites but two have
a very high affinity with calcium resulting in an actual one site binding reaction (see
Section 1.1.4.4). We now consider an analogy with the Hill equation, which originally
describes the cooperative binding of oxygen to hemoglobin (see Appendix 1.6.1). In this
model, the static solution is also of the form of (1.1). The parameter nH is called the
Hill number and is interpreted as an indicator of the level of cooperativity of the binding
process. It corresponds to the number of oxygen binding sites. The parameter [Ca2+]50
is an indicator of the sensitivity to calcium. It corresponds to the intracellular calcium
concentration that allows to develop half of the maximal tension. Note that an increase
in sensitivity to calcium is represented by a decrease of the parameter [Ca2+]50. The
sensitivity and the cooperativity are different concepts and can vary independently.

Applying this model to the binding of calcium to troponin, a static ([Ca2+]i, Force)
curve with a Hill number of one is predicted. Experimental data fitting the force-calcium
relation with the sigmoid equation (1.1) show a large discrepancy in the value obtained
for the Hill number. With skinned cells, Gao et al. [1994] obtain a Hill number of 2.7,
Dobesh et al. [2002] find 7, Konhilas et al. [2002a] find 6, Sun et al. [2009] obtain 3.1 and
Kentish et al. [1986] find values around 4. With tetanised intact cells, Gao et al. [1994]
obtain a Hill number of 5 or 7. Despite the large variability, two trends can be noticed:

• apart from the data obtained by Dobesh et al. [2002], it seems that the level of
cooperativity is higher in tetanised intact cells than in skinned cells. This was
also observed by Gao et al. [1994] although Dobesh et al. [2002] notice that the
significance of their results may be undermined by the absence of rigorous sarcomere
length control;

• the Hill number is always greater than one.

Interpreting these results in the light of the Hill equation, the cooperativity effects are
stronger than that expected for the binding of calcium to troponin. It is commonly
admitted in the literature [de Tombe et al., 2010] that this analogy with the Hill equation
is valid and that it demonstrates the presence of cooperativity mechanisms in the thin
filament activation that add to the binding cooperativity. It means that the activation of
the thin filament involves positive feedbacks loops leading to a magnification of the level
of activation.

Another observation that can be made when comparing intact and skinned cells is the
difference in the calcium concentrations. In intact cells, the force saturates at [Ca2+]i ∼
2 µM while in saturates at [Ca2+]i ∼ 8 µM in skinned cells. Naturally, the skinned cells
solution is only “an approximation” of the physiological intracellular solution so it is not
surprising that differences appear. It can be noted that a compression of the myofilaments
lattice in skinned cells reduces the discrepancy between intact and skinned cells [Kentish
et al., 1986; Konhilas et al., 2002b]. Results obtained with this type of cells remain
nevertheless valuable to get insight into the cell physiology.

1.3.3.2 Origin of the cooperativity

Static experiments let appear that cooperativity effects are at play in the activation of
the thin filament. In this section, we investigate the potential origins of this cooperativity
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effect. In general, the underlying mechanisms can be regrouped in four categories:

• Ca2+-Ca2+cooperativity in which the binding of a calcium ion on an actin site in-
crease the rate of binding to the neighboring actin sites. A possible mechanism could
be that when tropomyosin is not blocked by the troponin C (event that follows the
binding of calcium on the troponin C), it destabilizes the neighboring tropomyosin
and indirectly the troponin C through tropomyosin head-tail interactions increasing
the affinity for calcium of the neighboring actin sites. Electromagnetic interactions
could also be at play.

• Ca2+-RU cooperativity in which the binding of a calcium ion increases the probabil-
ity of activating the neighboring sites (maybe without a calcium binding). A possible
mechanism could be that when tropomyosin is not blocked by the troponin C (event
that follows the binding of calcium on the troponin C) through tropomyosin head-tail
interactions, it destabilizes the neighboring tropomyosin enabling the attachment on
the neighboring RU without calcium binding.

• Xb-Ca2+cooperativity in which the attachment of a myosin head increases the prob-
ability of binding of calcium on the neighboring actin site. A possible mechanism
could be that an attached myosin head pushes the tropomyosin further and through
tropomyosin head-tail interactions changes the structure of the troponin C on the
neighboring RU increasing the affinity for calcium.

• Xb-RU cooperativity in which the attachment of a myosin head increases the prob-
ability of attachment on the neighboring actin site without calcium binding on the
actin sites. A possible mechanism could be that an attached myosin head pushes
the tropomyosin further and through tropomyosin head-tail interactions destabilizes
the neighboring tropomyosin enabling the attachment on the neighboring RU.

To investigate the origin of cooperativity, one has to decompose the different steps of
the thin filament activation. A possible intermediate measure is the structural changes
of the TnC, using the cardiomyocyte having a modified TnC such that it has fluorescent
properties and that structural changes can be observed by mean of changes in the po-
larization of the light emitted. With this technique, and using blebbistatin to prevent
myosin binding, Sun et al. [2009] showed that the myosin heads attachment has only a
very limited effect on the thin filament activation cooperativity for rat skinned trabecu-
lae. Indeed, the level of cooperativity observed in the relation between the force and the
calcium concentration and that observed in the relation between the average structural
indicator (computed through a structural model from the fluorescence data) are the same:
the Hill numbers are respectively 3 and 2.85. One can note that several papers reporting
that the binding of myosin heads contribute to the thin filament activation using cross-
bridges in rigor conditions [Robinson et al., 2004]. These works are not in contradiction
with the above mentioned results. Indeed, [Sun et al., 2009] demonstrate that in rigor,
cross-bridges contribute to the thin filament cooperative activation. Therefore, it seems
that the Xb-Ca2+and Xb-RU cooperativity mechanisms are excluded in physiological con-
ditions and that the thin filament cooperativity is an intrinsic property [Sun et al., 2009;
Sun and Irving, 2010].

Moreover, Ait-Mou et al. [2016] state that “there is no indication of cooperativity” in
the binding of Ca2+to TnC. It would mean that the cooperativity mechanism is positioned
in the interaction between TnC and Tm or between adjacent Tm. The cooperativity is
thus most probably related to Ca2+-RU mechanisms although no definitive conclusion can
be drawn yet [de Tombe and ter Keurs, 2016; Ait-Mou et al., 2016].
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1.3. Characterization of fast muscles activation-contraction coupling

1.3.3.3 In dynamical conditions

Steady-state analysis is not enough to get a full picture of the thin filament activation,
which is a dynamical process. Dynamical experiments, such as twitch contractions, have
thus to be used to fully characterize it. Using fluorescent proteins that interact with cal-
cium, a measure of the intracellular calcium concentration [Ca2+]i can be obtained. The
fluorescent proteins (fura-2 [Backx et al., 1995; Janssen et al., 2002; Gao et al., 1998] or
fluo-3 [Caputo et al., 1994]) bind to calcium, which results in a change of their emission
spectrum. After excitation, the emitted light signal is measured and is converted into the
calcium concentration by solving the dynamical equation governing the binding and un-
binding of the protein to calcium. Typical results from [Janssen et al., 2002] are presented
in Figure 1.17. Note that this experiment is not performed with a proper sarcomere length
control feedback loop. Therefore, their quantitative significance is limited. Similar results
are also obtained by Backx et al. [1995] and Gao et al. [1998]. The transient evolution of
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Figure 1.17 – Typical force and intracellular calcium concentration evolution in twitch contractions.
Note that here the sarcomere length is not properly maintained constant. Data from [Janssen et al.,
2002] from rat cardiac cells at 30 ◦C.

the calcium concentration is faster than the force evolution and almost exclusively occurs
in the tension rise phase of the twitch contraction.

The interpretation of the twitch contraction signal in terms of information on the
thin-filament activation is difficult. Indeed, the observed cytosolic calcium concentration
transient is the result of competing dynamics:

• the calcium release and uptake from the sarcoplasmic reticulum,

• the calcium flow inwards and outwards through the channels and exchangers and
the interaction between the membrane concentration and and the cytosolic concen-
tration,

• the calcium binding and unbinding to and from the thin filament, which involves not
well characterized cooperativity effects (see Section 1.3.3.2).

Therefore, a low concentration does not imply anything on the flux of calcium trough the
cytosol, it only means that there is no storage of calcium in the cytosol.

The main part of the calcium ions released in the cytosol are then captured by the
actin filament. The cytosolic calcium concentration [Ca2+]i observed during the release
is thus only the part of the released calcium that is not captured by the thin filament.
Indeed, the full activation of the thin filament requires 120 µM of calcium [ter Keurs, 1996]
(allowing to generate an active tension of 120 kPa). Even if we consider a sub-maximal
level of thin filament activation, the peak calcium concentration observed in the cytosol
(∼1 µM) remains much lower the amount of calcium linked to the filament.
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With this element in mind, a possible interpretation of the calcium transient is the
following. The release of calcium by the sarcoplasmic reticulum is brutal, peaking in less
than 5 ms (see Section 1.1.4.3). Simultaneously, calcium ions are being captured by the
thin filament in a fast manner – also with a time scale of 1 ms [Allen and Kentish, 1985].
These two antagonist phenomena equilibrate when the calcium transient peaks. Later,
the release of calcium stops and the action of Ca2+-pumps start, which take calcium ions
back to the sarcoplasmic reticulum and the calcium concentration decreases. The calcium
that is liberated by the actin sites in the relaxation process is either regularly liberated
or quickly captured in the sarcoplasmic reticulum so that is does not change the trend in
the calcium evolution. Note that the actin sites are not necessarily immediately activated,
there may also be an internal dynamics between the calcium binding and the actin site
activation.

However, some properties have been inferred experimentally. The thin filament activa-
tion and not the actin-myosin interaction is the limiting reaction in the tension rise phase
of a twitch contraction [Regnier et al., 2004], except in maximal calcium supply conditions
where the attachment dynamics dominates [de Tombe et al., 2006; Campbell, 2014]. In
the relaxation phase, it seems more likely that the two mechanisms contribute together to
the tension evolution [Davis et al., 2007]. The time between the peak of calcium release
and the peak of force is thus probably an estimation of the activation dynamics.

An important point is that, in a twitch contraction, the force does not have time
to reach what would be its steady-state value2. This can be explained by the fact that
the amount of calcium released by the sarcoplasmic reticulum allows a sub-saturating
activation only, or by the fact that the activation dynamics is not fast enough before
calcium starts to be up-taken in the sarcoplasmic reticulum or transferred outside of the
cell. This point is illustrated in Figure 1.29, which compares the peak force obtained in a
twitch contraction in “large activation conditions” and the steady-state force in maximal
activation conditions (tetanus).

The characterization of the cooperativity effects is non resolved in steady-state condi-
tions and the interpretability of dynamical measurements is difficult. Therefore, charac-
terization of the potential dynamical effects of cooperativity have not been investigated
yet. Moreover experiments with a simultaneous strict sarcomere length control and a
measurement of the transient calcium concentration have never been performed to the
best of my knowledge. As a result, the interpretability of the dynamical measurements
of the force and the calcium concentration in terms of the level of activation of the thin
filament remains limited. To be able to get a full understanding of the thin filament acti-
vation (which would then allow to build models), a dynamic measurement of the calcium
released in the cytosol or captured by the thin filament would be required.

1.4 Characterization of the muscle active contraction regu-
lation

We have so far presented the baseline functioning of the actin-myosin interaction and the
thin filament activation. We now characterize the regulation mechanisms that are at play
in the cell through the variation of the sarcomere length and the neuroendocrine system.

In a first step, we will present the manifestation of the regulation mechanisms at the
scale of the sarcomere. The effect of varying calcium supply, which is a path of action
for the neuroendocrine regulation, will be described as well. In a second step, we will
focus on the origin of the contraction regulation mechanisms starting from the impact of

2Pieter P. de Tombe, personal communication
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sarcomere length extension on both the thick and the thin filaments. The effect of the
neuroendocrine regulation as a modulation of protein activity will only be briefly discussed
at the end because this aspect is not considered in our models.

1.4.1 Effect of the regulation at the scale of the sarcomere

As a first step, we focus on the regulation of the developed force by the sarcomere length.
We present the effect of this regulation and then analyze the mechanisms underlying this
regulation.

1.4.1.1 Developed force

From the pioneer work of ter Keurs et al. [1980], who first measured twitch contractions
at constant sarcomere length, several groups have investigated the relation between the
twitch peak force and the sarcomere length. Additional measurements with steady-state
contraction can also be considered. We present in Figure 1.18 (closed symbols) the varia-
tion of the developed force as a function of the sarcomere length at various levels of calcium
supply. Different experimental setups are presented: measure of the peak force in intact
cell twitch contractions (panels (a)-(d)), measure of the steady-state force in tetanised
intact cells (panel (e)) and skinned cells (panel (f)). In each of these setups, the sarcomere
length is carefully maintained constant until at least the measure of the force. All of these
experiments consistently display an increase of the force with increasing sarcomere length.
The force is thus regulated by the sarcomere length. The presence of this relation is for
all experiment types show that this regulation is intrinsic to the sarcomere.

Furthermore, this regulation is dependent on the calcium activation. An increase in
the calcium supply is consistently correlated with an increase of the force and there is a
unique force-length relation for each level of calcium supply. It is important to note that
the force-length relations obtained at various level of calcium supply do not scale to a
single master curve. This is particularly clear on the data obtained with skinned cells (in
panel (f)). The non-scalability property indicates that the regulation results from complex
mechanisms mixing the variations of sarcomere length, the recruitment of myosin heads
and the calcium induced activation of the thin filament.

On panel (b), (c) and (d), the passive force is also represented. We see here that the
passive force is negligible with respect to the peak active force in the physiological range
of sarcomere length

To analyze more closely the interaction between the regulation and the calcium supply,
we present in Figure 1.19 the variation of the force developed by cardiac skinned cells as
a function of the environment calcium concentration at various sarcomere lengths. Here
again, we see that increasing the calcium supply does not result in a simple scaling of the
force. An increase in sarcomere length is thus correlated with changes in the handling
of calcium by the cell. The same conclusion is also drawn by other experimental works
[Kentish et al., 1986; Konhilas et al., 2002a; Farman et al., 2010].

1.4.1.2 Force dynamics

Sarcomere length also has an impact on the force development dynamics. We present in
Figure 1.20 contraction twitches obtained at different sarcomere lengths in various cal-
cium supply conditions. In each experiment, the sarcomere length is maintained constant
throughout the contraction twitch.

The experimental results show a clear correlation between the sarcomere length and
the duration of the relaxation phase. At higher sarcomere length, which is associated with
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Figure 1.18 – Relation between force and sarcomere length in cardiac muscle cells. Data point
represented by closed symbols correspond to experiments in length clamped conditions (LC), open
symbols represent experiments in fixed ends conditions (FE), see Section 1.3.1. (a) - (d) Measure
of the peak force in intact cardiac cell twitch contractions; (a) data from [Janssen and Hunter,
1995] from rat cells at 25 ◦C, (b) data from [Caremani et al., 2016] from rat cells at 27 ◦C, (c) data
from [Van Heuningen et al., 1982] from rat cells at 25 ◦C, (d) data from [Kentish et al., 1986] from
rat cells at 22–24 ◦C. (e) Steady-state force in tetanised intact cardiac cells. Data from [ter Keurs
et al., 2008] from rat cells at 26 ◦C. Several sets of data points are obtained using different levels
of extracellular calcium concentration, the corresponding intracellular calcium concentration are
indicated next to each set of data point. (f) Steady-state force in skinned cardiac cells from [Kentish
et al., 1986] from rat cells at 22–24 ◦C. The environment calcium concentration is indicated next
to each data set. (a) - (f) Note that the tension presented here is the active tension only, that is,
the measured tension minus the passive tension.
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Figure 1.19 – Relation between the force developed by skinned cardiac cells with respect to the
environment calcium concentration at different sarcomere lengths. Data from [Dobesh et al., 2002]
obtained with rat skinned cell at 15 ◦C.

a higher force, the relaxation lasts longer. A small increase of the tension rise duration
with increasing sarcomere length is also observed in the data from [Janssen and Hunter,
1995]. This effect is however not present in the data from [Van Heuningen et al., 1982].

When the sarcomere length is not maintained constant, the actin and myosin filaments
slide past each other. This shortening is associated with a drop in force according to
the force-velocity curve (see Section 1.3.2.2). This adds up to the reduction of force
following the force-length relation (see Section 1.3.2.2). Twitch contractions illustrating
this situation are presented in Figure 1.21. As expected, when the sarcomere length
reduces during the twitch, the peak force is reduced and the twitch duration is shortened.

1.4.1.3 Time scale of the length dependent regulation

An important element to investigate the regulation of the force with sarcomere length is
its dynamics.

Comparing the peak force obtained at a given – instantaneous – sarcomere length in
various experimental conditions gives insight into the dynamics of the regulation mecha-
nism. Indeed, we can compare whether the history of sarcomere length evolution matters
or if the force depends only on the instantaneous sarcomere length. Caremani et al. [2016]
and Van Heuningen et al. [1982] performed twitch contractions in both length clamped
and fixed ends – i.e. with varying sarcomere length. In Figure 1.18(b) and (c), data points
represented by closed circles are obtained in length clamped conditions and data points
represented by open circles with fixed end conditions.

Moreover, Van Heuningen et al. [1982] also performed experiments in which the muscle
sample contracts against a fixed after-load. The minimum sarcomere length that allows
the muscle to sustain the load is measured. The data points corresponding to these
experimental conditions are represented in the panel (c) by open diamonds.

We observe that with all three types of experimental conditions, the points lie on the
same force-length relation. First, this supports the idea that the regulation is an intrinsic
direct link between the force and the sarcomere length. Second, it shows that the regulation
quickly adapt to the current sarcomere length at the time scale of the contraction twitch.

Note that, although they display the same force-length relation, the length clamped,
fixed end (and probably the after-load control) setups are not equivalent when dealing
with the dynamical aspects as shown in Section 1.4.1.2.

Additional investigation by Mateja and de Tombe [2012] endorse the same conclusion
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Figure 1.20 – Twitch contraction of rat trabeculae at 25 ◦C. (a) & (b) Respectively absolute
and normalized data from [Van Heuningen et al., 1982]. The extracellular calcium concentration
is unspecified. (c) & (d) Respectively absolute and normalized data from [Janssen and Hunter,
1995] with an extracellular calcium concentration of 2.0 mM. (e) & (f) Respectively absolute
and normalized data from [Janssen and Hunter, 1995] obtained with an extracellular calcium
concentration of 1.0 mM.
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Figure 1.21 – Twitch contraction of cardiac muscle with various boundary conditions. (a) Sarcomere
length variation and twitch contraction in length clamped conditions (LC, black curve) and in
fixed ends conditions (FE, blue curve) starting from the same initial condition (see Section 1.3.1).
Data from [ter Keurs et al., 1980] with rat cardiac cells at 25 ◦C. (b) Sarcomere length variation
and twitch contraction in open loop sarcomere length control (resulting in a clamped conditions
followed by an active increase of the sarcomere length) (black curve) and in fixed ends conditions
(blue curve) starting from the same initial condition. Note that in the first conditions, the stretch
of the sarcomere lead to a non-zero passive force that remains at the end of the twitch. Data from
[Caremani et al., 2016] from rat cardiac cells at 27 ◦C. Note that the tension presented here is the
active tension only, that is, the measured tension minus the passive tension.
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that regulation is “virtually instantaneous”. In their work, they observe the tension rise
dynamics in two case: in the first case the initial sarcomere length is maintained at the
initial value long before the contraction start, in the second case, the sarcomere length is
brought to the initial sarcomere length by a quick sarcomere length ramp (lasting 5 ms)
just before the contraction start. With this time scale for sarcomere length variations, they
observe no differences in the time evolution of the tension between the two experimental
conditions. They thus state that 5 ms is an upper bound for the regulation time scale.
However, the fact that no differences could be observed suggests that the actual time may
be much shorter than this upper bound.

In summary, the regulation of the muscle developed force appears to be instantaneous
at the time scale of a contraction twitch and is probably also very fast compared to the
attachment-detachment time scale, which is, in the fastest case, of the order of 5 ms. In
particular, in the heart the regulation is able to adapt in a beat-to-beat manner.

Note that there exists a second variation of the force with the sarcomere length observed
ex vivo at the time scale of 10 min [Allen and Kentish, 1985]. It consists of an increase
in the amount of calcium released in the cytosol when the tissue is stretched leading to
an increase of the developed force. The origin of this effect is only partly understood
[Cingolani et al., 2013]. At the scale of the heart, this regulation translates into the
so-called Anrep effect.

1.4.1.4 Summary of the intrinsic force regulation effects

At the sarcomere level, the force is regulated by a mechanism that makes it directly linked
to the stretch of the sarcomere. The force increases monotonically with the sarcomere
length (up to a sarcomere length of about 2.4 µm). The force-length relation depends on
the level of calcium supply, a higher amount of calcium made available in the cell being
associated with an increase of the force.

This regulation of the force occurs at a fast time scale with respect to the attachment
detachment time scale and thus a fortiori with respect to the contraction twitch time scale.

1.4.2 Origin of the observed regulation mechanisms

We have seen in Section 1.4.1 that in cardiac muscle the force-length relation combines
a double dependency on the sarcomere length and the calcium supply. Although many
studies have been conducted on this topic for the last four decades, the origin of the force-
length relation in cardiac muscles remains partially unsolved [de Tombe and ter Keurs,
2016; de Tombe et al., 2010; Sequeira and Velden, 2017].

In all generality, the variation of the force with sarcomere length may come from
an increase of the force developed per attached myosin heads, from an increase in the
number of attached myosin heads or from both. The latter factor itself may result from
the combination of an increase in the number of available myosin heads, and an increase
in the level of activation of the thin filament.

In this section, we will give a review of the different directions that have been explored
to account for the observed behaviors that we then use as a guideline for the choice of our
modeling ingredients in the following chapters.

1.4.2.1 Variation of the force developed per cross-bridge

We first consider the assumption that the variation of force with sarcomere length results
from a variation of the average force developed by each attached head. Note that a change
of the average force per attached head would come from an alteration of the actin-myosin
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interaction. Information on the actin-myosin interaction with varying sarcomere length or
the level of calcium supply can thus be used to investigate the impact of the variation in
force per attached head on the force-length relation.

Some elements of answer are given by Amiad Pavlov and Landesberg [2016], who
show, with experiments targeting the force redevelopment time after a length step, that
the cycling rate, and thus a priori the attachment and detachment rates, of the cross-
bridges is independent of the sarcomere length. Similarly, de Tombe and Stienen [2007]
show that the detachment rate in independent on the level of calcium supply. Moreover,
studies based on ATPase rate measurement concluded that the rate of detachment was not
sarcomere length dependent [Wannenburg et al., 1997]. These works do not measure the
force per attached head but would thus tend to indicate that the force per attached head
does not vary with sarcomere length since other myosin head properties are not affected.

An additional element supporting the same conclusion – with accurate sarcomere
length and [Ca2+]ext control – is given by Caremani et al. [2016] who show that the
“mechanokinetic properties of the motors” do not depend on the sarcomere length and
the extracellular calcium concentration. Indeed, we know from Section 1.3.2 that the four
phases of the transient mechanical response in force or length control conditions can be
used to characterize the actin-myosin interaction. In particular, phase 2 is a reflexion of
the power stroke and phase 4 originates from the attachment-detachment mechanism. In
[Caremani et al., 2016], the shortening after a step in force in force control conditions is
recorded for various initial sarcomere length and extracellular calcium concentration. The
variation of LT = L2−L1 – which is the signature of the power stroke – and the shortening
velocity in phase 4 as a function of the normalized force are presented in [Caremani et al.,
2016, Fig. 3C] and in Figure 1.14, respectively. We can observe that, in both phases, the
data for all conditions lie on the same master curve showing that the intrinsic behavior is
the same. These observations thus support the idea that the dynamics of the cross-bridges
is not affected by changes in sarcomere length or contractile state. One should note that
in force control conditions, the sarcomere undergo shortening, therefore its length varies
during the experiment. However, the magnitude of the variations remains below 30 nm
(see Figure 1.12) leading to a relative variation of the force of 4 %, which is probably of
the order of the uncertainty on the force in the data.

A definitive answer is brought by Pinzauti et al. [2018] regarding the role of the con-
tractile state. Indeed they directly show that when changing the contractile state (with a
change of extracellular calcium concentration), the average force per myosin head remains
constant. Considering the results of [Caremani et al., 2016] it is likely that the same would
be observed with variations of the sarcomere length.

We should nevertheless mention that some other groups obtained opposite results.
Milani-Nejad et al. [2013] and Adhikari et al. [2004] measure a decrease of the cycling rate
with increasing sarcomere length. However de Tombe and ter Keurs [2016] attribute these
results to unadapted experimental conditions (in particular lacking of a correct control of
the sarcomere length).

In conclusion, experimental results show that the myosin head properties are not af-
fected by the sarcomere length nor by the calcium supply. The assumption that the
force-length relation originates from a variation of the force per attached head is thus
rejected. The variation of the force with sarcomere length and the contractile state is only
the result of a change in the number of attached myosin heads.
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1.4.2.2 Variation of the thick filament activation

A first way to vary the number of attached heads is to change the availability of the myosin
heads (we will also say the activation level of the thick filament).

Quantification of the thick filament contribution To investigate the part of the
force-length relation that is due to the variation of the number of available myosin heads,
we need to isolate this effect from other contributions and in particular, from the variation
of the thin filament activation level and transient effects that may not allow the force to
reach its maximum value.

To do so, the thin filament needs to be saturated with calcium, so that an increase
in the calcium sensitivity would have no effect. We know that the cardiac cell is not
“designed” to work in a thin filament maintained activation. Several techniques can be
used to overcome this difficulty. A first option is to perform experiments on skinned cells,
so that the calcium concentration surrounding the thin filaments can be directly controlled
(see Section 1.1.6.3). A second option is to artificially induce the saturation of the thin
filament in intact cells (see Section 1.1.6.1)

The first characterization of force variation with sarcomere length was performed by
[Kentish et al., 1986] and [Dobesh et al., 2002]. The muscle fibers are directly activated
by a high – unphysiological – increase of the calcium concentration [Ca2+]i to “saturate”
the thin filament with calcium. The statement that the thin filament is saturated with
calcium is supported by the fact that the obtained force-length relation is not further
enhanced with increasing environment calcium concentration. Other groups also worked
with skinned cells Fabiato and Fabiato [1975] and with intact tetanised cells [ter Keurs
et al., 2008]. In the latter experiments, the saturation of thin filament is ensured by
checking that an increase of the extra-cellular calcium concentration does not lead to an
increase in the force. The results are presented in Figure 1.22.
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Figure 1.22 – Variation of force with sarcomere length in saturation thin filament activation condi-
tions. (Triangle) intact tetanised rat cardiac cell at 26 ◦C [ter Keurs et al., 2008], (Square) skinned
rat cardiac cells at 22–24 ◦C [Kentish et al., 1986], (Diamond) skinned rat cardiac cells at 15 ◦C
[Dobesh et al., 2002]. The solid lines trend lines of the data.

In the experimental conditions presented here, the force can only be varied by a change
in the number of available myosin heads. These experiments thus demonstrate that the
sarcomere length has a direct impact on the myosin heads availability.

Origin of the thick filament activation variations Several mechanisms have been
proposed to explain the variation of the thick filament activation with sarcomere length.
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1.4. Characterization of the muscle active contraction regulation

Overlap effect The first mechanism imagined to account for variations of the myosin
availability with the sarcomere length has been proposed by Gordon et al. [1966], originally
for skeletal muscles. It explains the change in force by the variations of the size of the
overlap region between the actin and the myosin filament. It is motivated by the fact that
the overlap between the filaments is visibly changed when the sarcomere length varies (see
Figure 1.23).

Overlap

Figure 1.23 – Illustration of the variation of overlap with the sarcomere length for skeletal muscles.
(Top) Extended sarcomere. (Bottom) Shortened sarcomere. Here a shortening of the sarcomere
leads to a increase of the overlap region.

The overlap is defined as the ratio of the thick filament which is “covered”’ by the thin
filament. It can be analytically computed from the length of the different filaments. The
various regimes of this models are presented in Figure 1.24. Each state corresponding to
a transition between two “regimes of overlap” is numbered as presented in the figure. To
relate the overlap to the force, Gordon et al. [1966] assume that the force is proportional to
the size of the single overlap region, that is, the region of the thick filament that is covered
by one and only one actin. In particular, they make the assumption that in double overlap
region the myosin heads generate no force on average. Two explanations may support this
assumption:

• in the double overlap region the myosin heads attach in a non-specific manner on
a thin filament link either to the left or the right Z-disc of the sarcomere, which
will result in the generation of a positive or negative active force. This leads to an
average zero force.

• due to some steric constraints, there is no attachment possible in the double overlap
region.

Note that the first hypothesis would be disadvantageous from an efficiency point of view
because in the double overlap region the zero force would be generated with an non-zero
ATP consumption. For sarcomere length corresponding to a state between state 5 and
state 4, increasing the sarcomere length reduces the degree of double overlap between the
thin filaments which increases the number of available myosin heads allowing to generate
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Figure 1.24 – Variation of overlap with sarcomere length. Each state corresponding to a transition
between two “regimes of overlap” are indexed by a number as presented in Figure. Inspired from
[Gordon et al., 1966]. For sarcomere length lower than that corresponding to index 5, the thick
filament is compressed by the Z-discs. The overlap model cannot describe alone the variation of
force because of the contribution of compression forces.

a higher tension. When further increasing the sarcomere length (between state 4 and
state 2), the overlap between the thin filaments is only located in the central region of the
sarcomere in which there is no myosin head. The number of available myosin heads thus
stays constant and the developed force reaches a plateau. In the last range of sarcomere
lengths (between state 2 and state 1), a region, where the thin and thick filaments do not
overlap, appears. The number of available cross-bridges is reduced and so is the force.
For sarcomere lengths lower than that of the state indexed by 5, the overlap alone cannot
explain the variation of the force because the thick filament is compressed between the
Z-discs and the resulting compression forces have to be taken into account.

The hypothesis of varying overlap to account for the variation of force with sarcom-
ere length can be transposed to cardiac muscles, which have a similar structure. The
comparison between the analytical overlap, computed from cardiac filament length mea-
surements taken from [ter Keurs et al., 2008], and the experimental force-length relations
in saturated thin filament activation conditions (presented in Figure 1.22) is displayed
in Figure 1.25(a). The overlap variation correlates to a certain extend with the force
variations but the predicted plateau of force that is not really observed experimentally.
Therefore, no clear conclusion can be drawn. Moreover, some limitations to the approach
can be mentioned. The overlap model does not truly account for the three-dimensional
nature of the sarcomere, where the notion of “double overlap” is not as clearly defined as
in a 2D representation. Moreover, the behavior of the myosin head in the double overlap
region is only speculative.

To put this results in perspective, we present in Figure 1.25(b) the comparison of
the analytical overlap computed from skeletal muscle data of [Gordon et al., 1966]. In
skeletal muscle, the sarcomere length is not limited by the passive force and a larger range
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Figure 1.25 – Comparison between the overlap model prediction with experimental data in satu-
rated thin filament activation conditions. Each state corresponding to a transition between two
“regimes of overlap” are indexed by a number as presented in Figure 1.24. (a) Data from cardiac
muscle. (Triangle) intact tetanised rat cell at 26 ◦C [ter Keurs et al., 2008], (Square) skinned
rat cells at 22–24 ◦C [Kentish et al., 1986], (Diamond) skinned rat cells at 15 ◦C [Dobesh et al.,
2002]. (Orange line) Analytical overlap computed from cardiac myofilament measurements from
[ter Keurs et al., 2008]. (b) Data from frog skeletal muscle at 3–5 ◦C. Data and analytical overlap
from [Gordon et al., 1966].
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of sarcomere lengths can be explored. The experimental curve shows three regimes: an
ascending limb, a plateau, and a descending limb. As stated by the authors of the original
paper [Gordon et al., 1966], the analytical variation of overlap is only able to precisely
account for the variation of force in the plateau region and in the descending limb of the
force-length relation. The prediction regarding the ascending limb, which corresponds to
the double overlap regime, has a lower quality. The good adequacy of the overlap model
with the data on specific regimes led the community to accept the variation of filament
overlap as the origin of the force-length relation in skeletal muscles, and by extension, it
popularized the idea that the myosin heads in the double overlap region do not contribute
to the force. However, the latter assumption is not clearly validated by the experimental
results.

In conclusion, the variation of overlap between the thick and thin filament with sar-
comere length may have an impact on the observed force-length relation but no definitive
conclusion can be drawn without additional experimental studies.

Inter-filament spacing The inter-filament spacing has long been considered as a
possible explanation of the force variation with the sarcomere length. Indeed, when the
muscle is stretched the global Poisson effect creates a compression in the radial directions.
This compression of the muscle implies a compression of the sarcomeres, bringing the actin
and myosin filaments closer together and potentially changing the component structure
(see Figure 1.26). Note that, since it is linked to both the thin and the thick filament,
titin may also play a role in bringing them closer together [Sequeira and Velden, 2017].

Myosin f ilamentActin f ilament

Stretch

Figure 1.26 – Stretching reduces the lateral spacing. Figure reproduced from [Shiels and White,
2008].

First experiments using dextran to compress the structure and assessing the level of
compression from the muscle width found a correlation between the level of compression
and the calcium sensitivity [Godt and Maughan, 1981; Fuchs and Wang, 1996]. However,
more recent work measuring directly the inter-filament spacing with X-ray measurements,
drew the opposite conclusion showing that the inter-filament spacing has no impact on
the force-length relation [Konhilas et al., 2002b].

This finding has been recently confirmed by Ait-Mou et al. [2016]. They show that no
correlation could be found between the movement of the myosin head towards the thin
filament and the developed force on the one hand and between the filament spacing and
the developed force on the other hand.

Transition between the on- and the off-state The transition between the off-
and on-states of the myosin head (see Section 1.1.3) has also been proposed to explain the
variation of the thick filament activation with the sarcomere length [Reconditi et al., 2017;
Piazzesi et al., 2018], but no definitive conclusion can be drawn at this time. A reason for
that is that the dynamical tracking of the on-off transition has never been performed with
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1.4. Characterization of the muscle active contraction regulation

cardiac muscle cells. Therefore, it is still unknown whether the on-off transition dynam-
ics would be compatible with the dynamics of the myosin filament activation variations
observed when stretching the sarcomere.

This mechanism is believed to be the limiting stage of the tension rise implying that
its operating time scale is the order of the time scale of the tension rise ( 100 ms) [Linari
et al., 2015]. This seems a priori incompatible with the fast time scale observed for the
regulation of the force with sarcomere length (see Section 1.4.1.3).

Note however that this mechanism could work as an amplifier of another mechanism
leading to the recruitment of myosin heads with increasing sarcomere length. Indeed, an
increase in the number of available myosin heads will result in an increase of the force
further increasing the number of available heads through the transition from the off-state
to the on-state (the transition being affected by the force in the thick filament).

Structural rearrangement of the filament Generally, experiments using X-ray
diffraction measurements have proven that increasing sarcomere length causes rearrange-
ments in the thick filament structure [Ait-Mou et al., 2016]. These rearrangements are
different from that observed in the transition between the on- and off-states. They may
be related to titin, which is a natural candidate to explain the link between the sarcomere
length and the structural rearrangements. It is indeed linked to the Z-disks and connects
to the M-line (and thus to the thick filament). Titin is thus extended when the sarcomere
is stretched and simultaneously the apparition of a passive force is induced. This extension
and the force are transmitted to the thick filament, whose structure may as a result be
affected.

Conclusion on the thick filament contribution analysis The thick filament alone
contributes to the variations of the active force with the sarcomere length. Several mech-
anisms may explain this phenomenon: a variation of the single overlap between the actin
and myosin filaments or structural rearrangements of the thick filaments induced by the
stretch of titin.

Note that cardiac muscle has a less regular structure than skeletal muscle. The branch-
ings between the cells give a two-dimensional nature to the structure that is never consid-
ered when interpreting the experimental results. This may explain why it is more difficult
to transfer individual sarcomere theory to macroscopic force values.

1.4.2.3 Variation of the thin filament activation

Experimental data show a variation of the force-length relation with the level of calcium
supply (see Figure 1.18) in a way that excludes the possibility of a simple scaling effect.

This variation may originate from changes in the number of available myosin heads,
although myosin heads do not directly interact with calcium, through a positive feedback
of the myosin heads. In this case, an increase in calcium supply, which leads to an increase
in the thin filament activation and thus in the number of attached myosin heads, would
result in an even higher number of attached heads.

However, having concluded from Section 1.3.3.2 that the cooperativity mechanisms in
the thin filament activation do not involve a contribution from formed cross-bridges and
having a priori excluded the on-off transition as a possible origin of the thick filament
activation variation with the sarcomere length (see Section 1.4.2.2), this hypothesis is not
probable. We will thus assume that there is not effect of calcium on the thick filament
and that the alteration of the force-length relation with the calcium supply only results
from variations in the thin filament level of activation.
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Quantification of the thin filament contribution In this section, we will quantify
the thin filament activation variations with the sarcomere length and investigate its origin.
As we have seen in Section 1.3.3, the level of thin filament activation cannot be directly
accessed with the current experimental techniques making it difficult to draw definitive
conclusions.

Static case As in Section 1.3.3, a first step is to consider the impact of sarcomere
length variations on the steady-state behavior.

If the thin filament activation were not affected by the sarcomere length (i.e. it de-
pends only on the surrounding calcium concentration), then the curves at different level
of calcium activation could be scaled to a single master curve. We see in the experimen-
tal data that this is not the case, showing that the level of calcium activation is indeed,
modulated by the sarcomere length.

To better see the impact of variations in sarcomere length on the level of activation of
the thin filament, we try to decorrelate the contribution of the change in the number of
available myosin heads from the level of thin filament activation. We assume, as justified
in Section 1.4.2.1, that the steady-state force is proportional to the number of available
myosin heads and the number of activated actin sites. We denote the level of thick fil-
ament activation by n0 and the level of thin filament activation by na. In steady-state
conditions, they are both functions of the sarcomere length `hs. We estimate the function
n0(`hs) from the data from [Kentish et al., 1986; Dobesh et al., 2002; ter Keurs et al.,
2008] in maximal thin filament conditions (see Figure 1.27(a)). We then consider the data
from intact tetanised rat cells obtained by ter Keurs et al. [2008] at sub-maximal levels
of calcium supply. We obtain an estimation of na at different level of calcium supply (see
Figure 1.27(b)). At each sub-maximal calcium supply level, the force per available myosin
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Figure 1.27 – (a) Estimation of the thick filament activation function n0 with respect to sarcomere
length. (Triangle) intact tetanised rat cardiac cell at 26 ◦C [ter Keurs et al., 2008], (Square) skinned
rat cardiac cells at 22–24 ◦C [Kentish et al., 1986], (Diamond) skinned rat cardiac cells at 15 ◦C
[Dobesh et al., 2002]. (b) Normalized force per available myosin head as a function of the sarcomere
length for tetanised intact cardiomyocytes at various level of calcium supply. Data from [ter Keurs
et al., 2008] obtained with tetanized rat cardiac cells at 26 ◦C.

head increases with the increase in sarcomere length while the intracellular calcium con-
centration remains constant. This estimation shows that independently from the variation
of the availability of the myosin heads, the force is also increased by an enhancement of
the thin filament activation when the sarcomere length increases.

We have seen in Section 1.3.3.1 that the thin filament activation is characterized by the
sensitivity to calcium and the level of cooperativity. They thus constitute a good metric

88



1.4. Characterization of the muscle active contraction regulation

to investigate the impact of the sarcomere length on the thin filament activation.
Performing experiments on skinned cells with a control of the sarcomere length during

the contraction, Konhilas et al. [2002a,b]; Dobesh et al. [2002] report that the sensitivity
to calcium is increased with increasing sarcomere length while the level of cooperativity
remains unchanged (see Figure 1.28). This conclusion has later been confirmed by Farman
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Figure 1.28 – Variation of the normalized force as a function of the sarcomere length at various
[Ca2+]i for rat cardiac skinned cardiomyocytes at 15 ◦C. Data from [Dobesh et al., 2002]. Note
that the raw data used here are the same as in Figure 1.19.

et al. [2010].

Dynamical case The sarcomere length has an impact on the dynamics of the twitch
contraction (see Section 1.4.1.2). The duration of the twitch is indeed longer at higher
sarcomere length. This variation comes from a variation in the thin filament activation
dynamics since the myosin head dynamics is not affected by the sarcomere length (see
Section 1.4.2.1).

We conclude from the previous paragraphs that the level of thin filament activation
is varied with the sarcomere length statically and dynamically. We will now present the
different direction that have been explored to account for this variation.

To better understand the impact of the thin filament transient activation on the twitch
peak force, we compare, at various sarcomere lengths, the force obtained in maximal
thin filament activation steady state conditions and the peak force obtained in twitch
contraction at “high” level of calcium supply.

Assuming that these “high” levels of calcium supply would correspond to a full thin
filament activation in steady-state conditions, this comparison give an indication of the
level of activation actually reached at the peak of a twitch. The results are presented
in Figure 1.29. The peak force is always lower than the steady-state counterpart. Since
the thin filament activation is the limiting reaction in the tension rise phase, it strongly
suggests that, in a twitch contraction, the thin filament does not have time to reach the
asymptotic level of activation that the environment conditions would allow in a steady-
state contraction.

Origin of the thin filament activation variations

Variation of the calcium fluxes through the cellular membrane A first mech-
anism that can vary the level of thin filament activation is a variation of the amount of
calcium that enters the cells, that could possibly then affect the calcium induced calcium
release or directly contribute to the thin filament activation. Such a change of calcium

89



Chapter 1. Physiology of muscle contraction

1.6 1.8 2 2.2
0

0.5

1

Steady-state
Twitch peak
n0(SL)

Sarcomere length (µm)
N

or
m

al
iz

ed
fo

rc
e

Figure 1.29 – Comparison of steady-state force in saturation calcium conditions with twitch con-
traction peak force at high level of calcium supply. (Black closed circle) Peak force in twitch
contractions for intact rat cardiac cells at 27 ◦C with [Ca2+]ext = 2.5 mM. Data from [Caremani
et al., 2016]. (Black closed square) Peak force in twitch contractions for intact rat cardiac cells at
23–24 ◦C with [Ca2+]ext = 2.0 mM. Data from [Janssen and Hunter, 1995]. (Gray line) Estimation
of the thick filament activation function n0 with respect to sarcomere length. (Blue triangle) intact
tetanised rat cardiac cell at 26 ◦C [ter Keurs et al., 2008], (Blue square) skinned rat cardiac cells
at 22–24 ◦C [Kentish et al., 1986], (Blue diamond) skinned rat cardiac cells at 15 ◦C [Dobesh et al.,
2002].

flux through the cell membrane would affect the action potential. Allen [1977] show that
the action potentials do not significantly vary after changes of sarcomere length, thus
disproving this hypothesis.

Moreover, the increase in calcium sensitivity with sarcomere length is also observed
with skinned cells (see Section 1.4.1.1). It is therefore unlikely, that the mechanism un-
derlying the variations of the thin filament activation involves the cell membrane.

Variation of the calcium fluxes inside the cell A second mechanism may lie
on the fact that the calcium released from the sarcoplasmic reticulum to the cytosol is
increased with increasing sarcomere length allowing a higher amount of calcium to bind
to the thin filament. Backx and ter Keurs [1993] show that the evolution of [Ca2+]i
observed in a twitch contraction is not significantly affected by the sarcomere length
(see Figure 1.30). In the intracellular calcium concentration rising phase, the evolutions
of [Ca2+]i at long and short sarcomere lengths are the same and they reach the same
peak concentration. In the decrease phase, variations between different sarcomere length
conditions are observed but they are of a much lower order than differences in the force,
showing that they are probably not significant. The same observation was also obtained by
[Allen and Kurihara, 1982]. This observation can be explained by two mechanisms: either
the release of calcium in the cytosol and the binding of calcium to the thin filament vary
in a similar manner (in this case, a potential increase in the amount of calcium released
induced by the variation of sarcomere length could be compensated by an increase in
the amount of calcium captured by the thin filament) or they are both unaffected by the
sarcomere length.

The first mechanism is advocated by ter Keurs [1996], who thus assumes that the
affinity of calcium for troponin-C is increased with increasing sarcomere length. This
explanation is coherent with the fact that a muscle length release during the twitch is
associated with an immediate small increase of [Ca2+]i, directly linking the sarcomere
length and the number of calcium ions bound on the thin filament [Allen and Kurihara,
1982; Backx and ter Keurs, 1993].

However, more recent experimental data show that the affinity of calcium for troponin-
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Figure 1.30 – Intracellular calcium concentration transient in a twitch contraction performed on
rat cardiomyocytes at two different sarcomere lengths (1.6 µm and 2.15 µm) at 22 ◦C. Note that
these experiments are not performed in length clamped condition. From [Backx and ter Keurs,
1993].

C is not affected by sarcomere length [Ait-Mou et al., 2016] making unlikely, in my opinion,
that the net uptake and release of calcium at different sarcomere lengths vary and exactly
compensate. Therefore, the variation of the thin filament activation level most probably
relies on a variation of its response to calcium.

Variation of the sensitivity to calcium A second mechanism that can change
the level of thin filament activation is the variation of the sensitivity to calcium, which
has been observed experimentally.

To understand the variation of sensitivity, Farman et al. [2010] observed the thin fila-
ment structural changes while blocking myosin head binding at various sarcomere lengths.
It appears that the variations in sensitivity are not affected by the formation of cross-
bridges. Cross-bridge binding is not involved in the increase in sensitivity [Farman et al.,
2010]. The length-dependent activation is thus intrinsic to the thin filament.

Furthermore, Ait-Mou et al. [2016] observe that stretching the sarcomere induces a
structural change in the thin filament that is different from the structural change observed
with the binding of calcium. They also observe that this structural change is not present
for cardiomyocyte having a mutant titin. The role of titin is also highlighted by some other
works which show that the replacement of titin with a longer isoform reduces the maximal
force developed by the cardiomyocyte in saturated calcium conditions [Ait-Mou et al.,
2016, ref 9, 13, 21 & 24]. The implication of titin in the variation of calcium sensitivity
with sarcomere length thus seems well established.

Moreover, Ait-Mou et al. [2016] state that the binding affinity of Ca2+to TnC is not
affected by changes in sarcomere length. The variation of sensitivity has thus its origin in
a mechanism occurring after the binding of calcium in the signal transduction.

Although the underlying principle of the change in sensitivity with sarcomere length
are not well elucidated, the implication of titin has been considered as a vector of the
modulation of the mechanisms involved in the thin filament activation [Farman et al.,
2010] and is now more strongly established [Ait-Mou et al., 2016].

Impact of sarcomere length on the twitch contraction dynamics Comparing
the twitch contractions obtained at different level of calcium supply in Figure 1.31(a), it
appears that the duration of the relaxation is correlated with the sarcomere length but not
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with the absolute force. Moreover, comparing two twitch contractions reaching the same
peak force but obtained at different sarcomere lengths (by also varying the level of calcium
supply) we also observe that the relaxation duration increases with increasing sarcomere
length.

These two observations suggest that the longer relaxation duration is not related to
the bound myosin heads but could be directly induced by the sarcomere length. In the
same way as for the variations of the thin filament calcium sensitivity with sarcomere
length, one can envision that the stretch of the sarcomere induces structural changes that
prolongate the activation of the actin sites.
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Figure 1.31 – (a) Comparison of twitch contractions at the same sarcomere length with different
levels of calcium supply. Two sets of data are presented. (b) Comparison of twitch contraction
reaching the same peak force but obtained at different sarcomere lengths and levels of calcium
supply. (a) & (b) Data from [Janssen and Hunter, 1995] obtained with intact rat cardiac cells at
23–24 ◦C. In these experiments, the sarcomere length is carefully maintained constant throughout
the measurement.

1.4.2.4 Conclusion on the origin of the force-length relation

The force-length relation originates from a variation of the number of attached myosin
heads but not of the force that an individual cross-bridge develops. The fundamental
origin of this regulation has been identified to be intrinsic to both the actin and myosin
filaments but the exact mechanisms remain partially unknown. This intrinsic regulation
also impact the dynamics of the force in a twitch contraction

Titin plays a fundamental role in the emergence of a force-length relation. Indeed, it
is believed to contribute to the alterations of both the thick and the thin filament that
lead to the variations of the number of available myosin heads and of the sensitivity to
calcium of the actin sites, respectively.

1.4.3 Regulation by the neuroendocrine system

The developed force can also be modulated extrinsically by the neuroendocrine system.
This regulation is of great important physiologically but constitutes in itself a broad topic
of research that is out of the scope of this work. We will only present a brief overview of
some of its effects.
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1.4. Characterization of the muscle active contraction regulation

This regulation path acts through the modulation of the protein activity. It may thus
potentially an effect all aspects of the activation-contraction coupling.

It increases the amount of calcium release in the cell by changing the properties of the
calcium ion channels and the ATP-powered Ca2+-pumps [Silverthorn et al., 2009]. The
neuroendocrine system also modulates the thin filament activation, and in particular, the
behavior of the troponin complex and the tropomyosin [Solaro and Rarick, 1998] and it
may affect the myosin heads cycling rate as well [de Tombe, 2003].

Moreover, the regulation of the activation-contraction coupling driven by the varia-
tion of the sarcomere length (see Section 1.4.2) is also affected. On the one hand, the
responsiveness of the thin filament to calcium is modulated [Solaro, 2001; Kumar et al.,
2015]. On the other hand, the “length sensor” is affected by the neuroendocrine regulation
through its phosphorylation [Komukai and Kurihara, 1997; Hanft et al., 2013] (although
the exact nature of this element has not been elucidated at this time).

1.4.4 Link with the Frank-Starling mechanism

The original works of Otto Frank [Frank, 1895] and Ernest Starling [Patterson and Starling,
1914] report a regulation mechanism in the heart allowing to adapt the output pressure
(and thus the stroke volume) to the end diastolic ventricular volume. This mechanism,
now termed Frank-Starling mechanism, is essential because it allows the cardiac output
to be adapted to the venous return so that no blood is stored in the heart.

It consists in an increase in the left ventricle “strength” when the ventricle is dilated.
If the venous return increases, the left ventricle end-diastolic volume increases as well. As
a result, the contraction capability of the heart is enhanced, which allows the heart to
eject this larger volume. The Frank-Starling regulation can trivially be summarized by
the following statement: there is a monotone relation between the volume of blood that
enters the heart and the ejected volume.

A modern formulation of the Frank-Starling effect, as stated by [de Tombe et al., 2010],
reads as follows: the heart has a unique end-systolic pressure-volume relation (ESPVR)
for each contractile state. Note that the ESPVR gives the maximal static pressure that
can be generated inside a ventricle contracting at constant volume. The Frank-Starling
mechanism thus ensures that the developed pressure in the ventricle directly depends on
the volume.

At the microscopic level, the Frank-Starling effect originates from the variation of
the force with sarcomere length. Indeed, increasing the ventricle volume stretches the
sarcomere leading to a higher developed force and thus an enhanced ventricle contracting
capability.

An increase in the contractile state at the organ level is induced through the neu-
roendocrine regulation either by an increase of the calcium supply or the modification of
proteins involved in the activation-contraction coupling. It partially corresponds to the
variations of the calcium supply in the ex vivo experiments.

The link between the microscopic and the macroscopic Frank-Starling mechanism is
illustrated in Figure 1.32. Two heart cycles are represented at both sarcomere and organ
level. The force length relation limits the active-force and translate to the ESPVR, which
gives the range of reachable pressures (region below the curve). An element supporting
the direct link between the is the following: the changes in convexity of the force-length
relation with the level of calcium supply at the sarcomere level are also observed at the
organ level in the ESPVR with varying level of contractility [Burkhoff et al., 1987; Sato
et al., 1998] (note that the level of contractility is driven by the neuroendocrine regulation,
which amongst others varies the level of calcium supply).
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Figure 1.32 – (Left) Force-length relation at sarcomere level. (Right) End-systolic pressure-volume
relation of the left ventricle. The blue lines schematically represent the physiological heart cycle
from two different initial volumes at both sarcomere and organ level. Inspired from [de Tombe
et al., 2010].

Note that the Frank-Starling effect is not the only way for the heart to adjust the
output flow. It can alternatively change its beating rate — possibly simultaneously with
a change in stroke volume.

1.5 Limitations of our presentation

The conclusions from this presentation of the contraction physiology suffers from limita-
tions. Here we list a series of topics that are not covered by the above review.

First, the experiments are performed at 25–27 ◦C and not at body temperature for
technical reasons. A second aspect lies in the fact that all experiments present in this
review are performed on muscle cells that are disconnected from the neuroendocrine system
although the latter is known to have a significant impact on the behavior of cardiac muscles.
Our models will therefore not be calibrated to reproduce in vivo physiological behavior
but the experimental behavior observed ex vivo. Finally, the actin-myosin interaction
quantitative properties vary between species. Experiments performed on animal samples
will therefore not give precise information about the behavior of human cardiac muscles.

In this section, we will briefly present some (non-exhaustive) illustrations of the three
points mentioned above.

1.5.1 Influence of temperature

A strong limitation of all the experimental works presented here and of their applicability
to the calibration of physiological models is that they are not performed at body temper-
ature. Most of the experiments are performed around room temperature (usually between
22 ◦C and 27 ◦C). The reason for that is manyfold:

• the first reason is historical. Since many studies have been performed at room
temperature, using the same range of temperature allows to position the new results
with respect to the literature.

94



1.5. Limitations of our presentation

• the second reason is technical. Indeed, biological and chemical processes are sped
up by an increase in temperature. For instance, [Gao et al., 1998] state that “the
calcium indicators were quickly lost at 37 ◦C” (note that Janssen et al. [2002] using
the same fluorescent protein write that it has a very little sensitivity to temperature).
Furthermore, Janssen et al. [2002] observed that they could not obtain a tetanised
state for intact cardiac cells at 37 ◦C presumably because of a too strong activity of
the Ca2+-pumps of the sarcoplasmic reticulum. Conversely, at 22 ◦C they obtain a
tetanus state at high activation frequencies due to the slowdown in the detachment
and Ca2+re-uptake mechanisms.

A significant effect of temperature has been reported for many aspects of the excitation-
contraction mechanism: the myosin head attachment-detachment dynamics [de Tombe and
Stienen, 2007], the sarcoplasmic reticulum calcium release [Puglisi et al., 1999], the intra-
cellular calcium transient in a twitch contraction [Janssen et al., 2002], the thin filament
sensitivity to calcium (unlike the level of cooperativity in the thin filament activation
which seems to be independent of temperature) [de Tombe and Stienen, 2007].

The impact of temperature on the intracellular calcium transient is illustrated in Fig-
ure 1.33. At higher temperature, the calcium concentration evolutions in the decreasing
phase occur at a higher pace, while the peak occurs approximately at the same time. The
force twitch is also affected with a reduction of the duration of both the tension rise and
the relaxation. These experimental results on the calcium concentration may indicate
an enhanced activity of the Ca2+-pumps, which will speed up the calcium flux from the
cytosol toward the sarcoplasmic reticulum and the exterior of the cell and thus reduce
the duration of the calcium concentration decreasing phase. A faster uptake of calcium,
combined with the previously suspected increase of the attachment and detachment rates,
would naturally lead to a reduction of the twitch duration. The duration reduction is
more pronounced in the relaxation, where the effect of a faster calcium uptake and faster
detachment potentially add up, than in the tension rise where the faster attachment does
not play a role because it is not the limiting reaction (see Section 1.3.3.3).

The analysis of the influence of temperature on the power-stroke dynamics has not
been investigated yet (to the best of my knowledge) but it is likely that it will be affected.

These changes in the activation-contraction coupling mechanism have impact on the
indicators used to characterize the muscle behavior. In steady-state shortening, the force
developed at a given sliding velocity increases with temperature affecting the whole shape
of the force-velocity curve. The unloaded shortening velocity V0 is particularly changed
(see Figure 1.34). Moreover, the rate of tension redevelopment is also increased with
temperature (see Figure 1.35). These two observations suggest that the attachment and
detachment rates are enhanced with increasing temperature.

The isometric peak force is also affected is a non monotone manner. Indeed, the
variation of the peak force in a twitch contraction obtained by de Tombe and ter Keurs
[1990] (Figure 1.36) first increases with temperature at “low” level of calcium supply but
then decreases with temperature at “high” level of calcium supply. Note that other papers
observe either a monotone increase of the peak force, for instance [Fujita and Kawai,
2002] with skinned bovine cardiac cells or a non-monotone variation with intact rat cells
[Janssen et al., 2002] (note however that the experiments are performed without a proper
sarcomere length control).

The origin of isometric force variation with temperature remains subject to debate.
Indeed, Linari et al. [2005] conclude that the increase of force with temperature is linked
with a myosin head structural change leading to think that the force per attached head is
modified in frog skeletal muscle. On the contrary, Kawai et al. [2006] state that the force
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Figure 1.33 – Impact of temperature on the force and intracellular calcium concentration evolution
in twitch contractions. Note that the sarcomere length is not properly maintained constant. Data
from [Janssen et al., 2002] obtained with intact rat cardiac cells.
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Data from [de Tombe and ter Keurs, 1990].
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per cross-bridge is constant while the number of attached heads increases with temperature
for rabbit skeletal muscle.

The non-monotonicity of the force variation with temperature shows that competing
effect underlying the observed behavior have a different dependency on temperature. It
is thus not straightforward to extrapolate the outcomes of experimental work at different
temperatures.
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Figure 1.36 – Variation of the peak force with the cellular calcium concentration for various tem-
peratures. The initial sarcomere length is 1.9 µm and is maintained constant throughout the
experiment. Data from [de Tombe and ter Keurs, 1990] obtained with intact rat cardiac cells.

Note that a first set of data gathered on human skinned myocardium cells at body
temperature has recently been presented in [Land et al., 2017]. Steady-state shortening
and force development experiment are performed, as well as the observation of the steady-
state force variation with the calcium supply. However, the very high discrepancy between
the different cells characterized makes it difficult to draw definitive conclusions from these
data.

Moreover, to the best of my knowledge, the only range of temperature at which all
types of quantitative characterization of the cardiac muscle behavior are available is around
25 ◦C. We will therefore perform the calibration of our models with data measured at this
temperature. However, using data obtained at non physiological temperature we are
running the risk of misevaluating the relative contribution of the different ingredients in
our models.
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1.5.2 Variability between species

Variations in the activation-contraction coupling appear between species, even among
mammals. We mention here several differences but the list is surely not exhaustive.

The method used for the adaption of the cardiac output varies among species [Shiels
and White, 2008]. Mammals heart tissue experiences a higher passive tension for a similar
stretch than for instance fish’s tissue, which therefore can adapt their volume within a
larger range. Mammals compensate the “lack of adaptability” of the ventricle volume by
a greater ability to adjust their heart rate. Thus the relative importance of the Frank-
Starling effect varies among species. We therefore expect the sarcomere length-tension
relationship to also vary among species. In particular, Shiels and White [2008] report
that amphibian myocardium has a broader and shifted sarcomere length working range
compared to mammals (2 µm - 3 µm for amphibians against 1.85 µm - 2.3 µm for mammals).

Variations have also been reported in the calcium uptake by the sarcoplasmic reticulum
and the membrane ion channels and exchangers [Bers, 2002] or the energy exchanges
involved during contraction [Loiselle and Gibbs, 1979]. In mammals, the average heart
beat is inversely correlated with the body size (data for various species can be found
in [Noujaim et al., 2004]). The transition rate are also varying as suggested by results
obtained by [Milani-Nejad et al., 2013] showing that rat and rabbit cardiac cells display
different force redevelopment rates.

All of these results reflect the fact that there exist differences between species at many
stages of the activation-contraction coupling. Therefore, the muscle contraction charac-
terization with animal data should be considered with caution when aiming at obtaining
quantitative data for human hearts.

1.5.3 Isolation from the neuroendocrine regulation

In vivo, the heart muscle contraction is regulated by the neuroendocrine system, which
enhances or reduces the activity of the heart (contractility, beating pace, ...), see Sec-
tion 1.1.5. The experiments however are performed ex vivo and thus isolated from the
nervous system. Therefore, they only characterize a baseline behavior (without the action
of the neuroendocrine system), which does not reflect the whole spectrum of physiological
conditions.

An example of the difficulties that can appear when working with isolated cells is pre-
sented in what follows. Various twitch contractions obtained at varying level of calcium
supply display an increase of the twitch duration when the extracellular calcium concen-
tration increases (see Figure 1.37). In physiological conditions, the amount of calcium
released inside the cell is increased as a result of the activation of the sympathetic nervous
system to strengthen the contraction, by increasing the activity of the Ca2+-pump of the
sarcoplasmic reticulum. The result of this is twofold: it increases the developed force but
simultaneously reduces the twitch duration. Hence, the experimental conditions do not
reproduce the physiological conditions.

The response observed in the experiments is surely of great importance to understand
the functioning of muscle cells but we should be aware that it may not correspond to the
physiological in vivo behavior.

1.5.4 Conclusion of the limitations

The above-mentioned experimental works suffer from some limitations in the context
of building models to simulate a human heart. Indeed, they are mostly performed at
non-physiological temperature, with non-human samples isolated from the neural system.
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Figure 1.37 – Twitch contraction at different levels of external calcium concentration. Data from
[Gao et al., 1998] from mouse cardiac cells at 20–22 ◦C. Note that these experiments are performed
without a proper sarcomere length control system.

These three factors are been proven to strongly affect the experiment outputs. Therefore,
there shouldn’t be too much expectation that the models exclusively calibrated with ex
vivo experimental data directly reproduce the physiological behavior at organ level. These
data provide qualitative and semi-quantitative information only.

1.6 Appendix

1.6.1 Hill’s cooperativity models

A classical way of describing cooperativity consist in using the phenomenological model
of Hill originally designed to express the fraction of binding sites of a macromolecule
saturated by ligand [Hill, 1910]. In this framework, we consider the following formal
chemical reaction between an actin site with nH calcium ion Ca2+forming an activated
actin site ACan:

A + nH Ca2+ k+−−⇀↽−−
k−

ACanH ,

with the hypothesis that the calcium concentration is buffered. At equilibrium, we have

K =
k+
k−

=
[ACanH ]

[A][Ca2+]nH

with K the reaction constant. The mass conservation gives that [A] + [ACanH ] = Cst is a
constant. The dynamics of the system is given by

d
dt

[ACanH ] = k+[A][Ca2+]nH − k−[ACanH ]

= −(k+ + k−[Ca2+]n)[ACanH ] + k+Cst[Ca2+]nH .

Solving this ordinary differential equation with the initial condition [ACan](t = 0) = 0 for
each calcium concentration [Ca2+], we obtain the fraction of activated actin sites

na([Ca2+])
def
===

lim
t→∞

[ACanH ]([Ca2+], t)

Cst
=

k+[Ca2+]nH

k− + k+[Ca2+]n
.

Note that na([Ca2+] → ∞) = 1 and we can compute [Ca2+]50, the calcium concentration
which allows an equilibrium at half the saturation ratio. We obtain [Ca2+]50 =

(
1/K

)1/nH .
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The fraction of activated actin sites is given by

na([Ca2+]) =
[ACanH ]

[ACanH ] + [A]
=

K[A][Ca2+]nH

K[A][Ca2+]nH + [A]
=

[Ca2+]nH

[Ca2+]nH + 1/K
.

Thus, we obtain the classical Hill’s equation

na([Ca2+]) =
[Ca2+]nH

[Ca2+]nH
50 + [Ca2+]nH

.

The coefficient nH represents the level of cooperativity and is called the Hill coefficient.
Note that in the case of calcium binding to troponin, it is rather an analogy with the
Hill’s model because there is only one regulatory binding site on TnC. However, since the
macroscopic behavior (force measurement) shows cooperativity, we can use Hill’s equation
to fit the experimental curve and use the Hill coefficient as a measure of the level of
cooperativity although it has, unlike Hill’s model, no direct link with the underlying
mechanism.
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CHAPTER 2

Thermodynamic properties of muscle contraction
models and associated discrete-time principles

Considering a large class of muscle contraction models accounting for actin-myosin in-
teraction, we present a mathematical setting in which solution properties can be estab-
lished, including fundamental thermodynamic balances. Moreover, we propose a com-
plete discretization strategy for which we are also able to obtain discrete versions of the
thermodynamic balances and other properties. Our major objective is to show how the
thermodynamics of such models can be tracked after discretization, including when they
are coupled to a macroscopic muscle formulation in the realm of continuum mechanics.
Our approach allows to carefully identify the sources of energy and entropy in the system,
and to follow them up to the numerical applications.
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2.1. Introduction

Thermodynamic properties of muscle contraction models and
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Abstract

Considering a large class of muscle contraction models accounting for actin-myosin
interaction, we present a mathematical setting in which solution properties can be es-
tablished, including fundamental thermodynamic balances. Moreover, we propose a com-
plete discretization strategy for which we are also able to obtain discrete versions of the
thermodynamic balances and other properties. Our major objective is to show how the
thermodynamics of such models can be tracked after discretization, including when they
are coupled to a macroscopic muscle formulation in the realm of continuum mechanics.
Our approach allows to carefully identify the sources of energy and entropy in the system,
and to follow them up to the numerical applications.

Keywords— muscle contraction, sliding filaments, thermodynamically consistent time-
discretization, Clausius-Duhem inequality
Mathematics Subject Classification (2010)— 74F25, 74H15, 65M12, 35Q79 and
92C45

2.1 Introduction
The modeling of the active mechanical behavior of muscles has been the object of intense
research since the seminal work of A.F. Huxley Huxley [1957] modeling the attachment-
detachment process in the actin-myosin interaction responsible for sarcomere contraction.
Then, numerous extensions – mostly based on refinements of the chemical process intro-
duced by Huxley – of the previous model have been proposed in order to take into account
different time scales of the actin-myosin interaction. In particular several models have
been developed to account for the power stroke phenomenon Eisenberg and Hill [1978];
Eisenberg et al. [1980]; Huxley and Simmons [1971]; Piazzesi and Lombardi [1995]. In par-
allel, the question of the thermodynamic balances associated with the chemical machinery
was intensively studied, notably with the fundamental contributions of T.L. Hill Hill [1977,
2004]. Note that these models are specific cases of molecular motors models without the
natural diffusion introduced by the Fokker-Plank equation Julicher et al. [1997]; Chipot
et al. [2004]; Mirrahimi and Souganidis [2012]; Chapelle et al. [2012]. In this paper, our
objective is to develop a formalism allowing to derive these thermodynamic balances for
Huxley’s model and its extensions with an additional tracking of these balances at the
discrete level after time-discretizing the model dynamics. Moreover, we present how these
microscopic models can be incorporated into a macroscopic model of muscle fibers in the
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spirit of Chapelle et al. [2012] with the aim of following these thermodynamic balances
at the macroscopic level for the continuous-time dynamics but also after adequate time
discretization. This last part is general with respect to the chemical microscopic model of
interest and could also be extended to similar types of models Peskin [1975]; Chipot et al.
[2004], or those mixing mechanical and chemical modeling elements, for instance Sheshka
and Truskinovsky [2014]; Marcucci et al. [2016]; Caruel et al. [2019].

The outline of the paper is as follows. The first section presents the modeling ingredi-
ents of the microscopic models of actin-myosin interaction and we derive in a second section
the fundamental properties of these models with the associated thermodynamic balances,
up to the coupling with the macroscopic mechanical formulation. The third section then
describes the discretization scheme and justifies its thermodynamic compatibility. Finally,
the last section illustrates our results with numerical investigations.

2.2 Modeling of muscle contraction

2.2.1 Physiology of muscle contraction

Muscles are multi-scale structures in which motion is initiated at the cellular level by the
relative sliding between two types of filaments: actin filaments and myosin filaments. At
the surface of the myosin filament, myosin heads can bind to the actin filament. The actin
filament has a periodic structure with regularly spaced attachment sites. The interaction
between myosin heads and actin sites occurs in a cyclic manner Lymn and Taylor [1971],
see Figure 2.1. The cycle includes attachment and detachment of the myosin head to
and from an actin site and a conformation change of the attached myosin head called
the power stroke. The detachment stage requires an energy input obtained from ATP
molecules buffered inside the cell.

power stroke

conformation
recovery

attachmentdetachment

Figure 2.1 – Lymn-Taylor cycle representation. Each stage of the cycle can be seen as a change of
chemical state.

Different levels of description of the actin-myosin interaction can be considered ben-
efiting from the fact that the power stroke occurs much faster than the attachment and
detachment processes.

2.2.2 Huxley’57 model

In his seminal work Huxley [1957], Huxley describes the myosin head with two chemical
states representing the attached and detached configurations. Each myosin can interact
with its closest actin site only. The transition rates – for attachment and detachment
– depend only on the distance from the myosin head rest position to its nearest attachment
site denoted by s. We denote by da the distance between two consecutive attachment sites.
The distance s thus lies in an interval of width da, not necessarily symmetric but containing
0, that we denote by [s−, s+] – see Figure 2.2.

Considering, in a population of myosin heads, the subset of heads with rest position
located at distance s from their nearest attachment site, we define by a(t, s) the ratio of
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actually attached heads at time t. Equivalently, the ratio of detached heads is denoted
by d(s, t) = 1− a(s, t), due to the assumption that both types of filaments are rigid. The
sliding velocity ẋc between the filaments is a macroscopic variable, hence independent of
s and often quasi-static with respect to the microscopic time scales. We refer to Section
2.3.5 for an illustrating example of coupling between a macroscopic formulation and such
a microscopic model.

The detached state is associated with a constant energy level w0 and the attached
state with an energy w1 that depends on the distance s – the myosin head bound to actin
is modeled as an elastic spring. This is where mechanics enters the model, and we point
out that we extend here the original Huxley’57 model by allowing the spring to have a
non-linear behavior. The myosin head is brought back to the initial detached energy level
by the ATP energy input µT .

Transition rates between the states satisfy the detailed balance, i.e. for a transition
i (i = 1, 2, see Figure 2.2) from a state of energy wj(s) to a state of energy wk(s), the
forward and reverse rates – respectively denoted by ki and k−i – must satisfy the relation

ki(s)

k−i(s)
= exp

(wk(s)− wj(s)

kBT

)
, (2.1)

where kB is the Boltzmann constant and T is the absolute temperature. A schematic of
the model is presented in Figure 2.2.

D

A

12

vc

(s = 0)

s

s+s−
vc

(s = 0)

s

s+s−

Figure 2.2 – Huxley’57 model representation. Top: definition of the transitions between the at-
tached state (A) and the detached state (D). Bottom left: model parametrization, representation
in the detached state. Bottom right: model parametrization, representation in the attached state.
The position of the actin site corresponding to s = 0 is represented by a thick dashed line.

The conservation of matter, assuming that there is no coupling between the myosin
heads, leads to the following dynamical system, for all t > 0 and all s ∈ [s−, s+]

∂a(s, t)

∂t
=
(
k1(s) + k−2(s)

)
d(s, t)−

(
k2(s) + k−1(s)

)
a(s, t)− ẋc

∂a(s, t)

∂s

∂d(s, t)

∂t
=
(
k2(s) + k−1(s)

)
a(s, t)−

(
k1(s) + k−2(s)

)
d(s, t)− ẋc

∂d(s, t)

∂s

(2.2)

from adequate initial conditions a(s, 0) = a0(s) and d(s, 0) = d 0(s), to be specified later.
The assumption that the myosin head can only interact with its nearest actin site imposes
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that the probability of being attached on the boundaries of the interval [s−, s+] must be
zero. Physically, the property a(s−, t) = a(s+, t) = 0 appears when the attachment rates
k1(s) and k−2(s) vanish, while the detachment rates k−1(s) and k2(s) go to infinity on the
boundaries of the interval [s−, s+]. Note that the energy levels and the transition rates are
linked by the detailed balance (2.1), which implies that the energy of the attached level
goes to infinity on the boundaries of the interval [s−, s+]. In a nutshell, the parameter
functions must satisfy∣∣∣∣∣∣∣∣∣

lim
s→s−

k1(s) = lim
s→s+

k1(s) = lim
s→s−

k−2(s) = lim
s→s+

k−2(s) = 0,

lim
s→s−

0∫
s

(
k−1 + k2

)
ds = lim

s→s+

s∫
0

(
k−1 + k2

)
ds = +∞,

(2.3)

the second line enforcing that all heads are detached at the boundaries, see Section 2.3
(Equations (2.9) and (2.10)). This implies energetically that

lim
s→s−

w1(s) = lim
s→s+

w1(s) = +∞.

Actin sites and myosin heads are located at discrete locations separated by regular
intervals along their respective filaments. The spatial periodicities are, however, different
on each filament. Therefore, for a large population of heads, the distribution of their
distance to the nearest actin site can be assumed to be uniform in the interval [s−, s+],
and the average tension developed per myosin head is given by

τc(t) =
1

da

s+∫
s−

a(s, t)
∂w1

∂s
(s)ds. (2.4)

This force can then typically lead to a macroscopic active stress tensor and link to macro-
scale models of muscle tissue as presented in Chapelle et al. [2012] or in Section 2.3.5.

2.2.3 Extension of Huxley’57 model

To obtain a behavior closer to physiology, and in particular to capture the power stroke,
various extensions of Huxley’57 model have been proposed Eisenberg and Hill [1978];
Eisenberg et al. [1980]; Huxley and Simmons [1971]; Piazzesi and Lombardi [1995]. These
extensions can use more than two states to describe the myosin head and allow interac-
tions with an arbitrary number of attachment sites. In this section, our objective is to
present these models in a general form, albeit close to the initial 2-state Huxley’s model,
in particular concerning their general mathematical and mechanical properties.

Multi-state models – A general formulation of these models considers Ns chemical
states {Xp}1≤p≤Ns , that we can separate into two categories: attached states and detached
states. The states are involved in Nr reactions between the states in the form

Xpi
ki−−⇀↽−−

k−i
Xqi . (2.5)

The collection of reactions between the states can be represented by a complete directed
graph G. A complete directed graph is a set of vertices connected by edges, in which:
edges have a direction; for each edge of the graph, the edge connecting the same vertices
in the inverse direction also belongs to the graph; no vertex is connected to itself. We
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respectively denote by V and E the sets of vertices and edges of the complete directed
graph, and we write G = (V,E). This graph is made of Ns vertices and 2Nr edges. A
transition Xpi → Xqi is associated with the edge Epiqi , whereas the reverse transition
Xqi → Xpi is associated with the edge Eqipi . The reaction presented in (2.5), which
is bidirectional, is associated with the edges Epiqi and Eqipi . The subsets of vertices
corresponding to attached and detached states are respectively denoted by Va and Vd.

The ratio of heads in state Xq located at s at time t is denoted by xq(s, t). We define
the chemical flux between states Xpi and Xqi through transition i by

Jpiqi(s, t) = ki(s)xpi(s, t)− k−i(s)xqi(s, t).

Note that we have

Jqipi(s, t) = −Jpiqi(s, t) = k−i(s)xqi(s, t)− ki(s)xpi(s, t).

The system dynamics is then governed by

∂xq
∂t

(s, t) =
∑

p|Epq∈G

Jpq(s, t)− ẋc
∂xq
∂s

(s, t), ∀q ∈ [[1, Ns]].

The Huxley’57 model presented in Section 2.2.2 can naturally be seen as a particular
case of multi-state models with only one attached state and one detached state. The graph
G associated with the Huxley’57 model is given by∣∣∣∣∣∣∣∣∣∣

V = {A,D},
Va = {A},
Vd = {D},
E = {E1

AD, E
2
AD, E

1
DA, E

2
DA}.

Here, we use superscripts in the edges definition to denote that there are two reactions
between the same vertices.

Multi-site models – In this further generalization, it is assumed that a myosin head
can interact not only with its nearest actin site – located by definition at distance s – but
also with all other actin sites located at distance {s+ jda}j∈Z∗ . A myosin head can thus
be detached in state q – with a probability xq(s) – or attached in state q at a distance
s + jda of its rest position – with a probability xq(s + jda). We extend the definition
of the ratio of heads in detached states by periodicity, i.e. if state q is a detached state
xq(s+ jda) = xq(s), ∀j. We also refine the description of the graph defined for multi-site
models, by splitting the set of edges E between the edges linking two detached states Ê and
the remaining edges E. We define the associated complete directed graphs Gd = (V, Ê)
and Ga = (V,E). The system dynamics is governed by

∂xq
∂t

(s+jda, t) =
∑

p|Epq∈G

Jpq(s+jda, t)− ẋc
∂xq
∂s

(s+jda, t), ∀Vq∈Va, j∈Z,

∂xq
∂t

(s, t) =
∑

p|Epq∈Ga

∑
j∈Z

Jpq(s+jda, t) +
∑

p|Epq∈Gd

Jpq(s, t)− ẋc
∂xq
∂s

(s, t), ∀Vq∈Vd.

(2.6)

The ratios of attached head xq for Vq ∈ Va are defined on R and must vanish at infinity.
By contrast, the ratios of detached head xq for Vq ∈ Vd are defined on [s−, s+] with periodic
boundary conditions.
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Example of a multi-state, multi-site model: Piazzesi-Lombardi’95 – A specific
representative – denoted PL95 – of this family of models has been derived in Piazzesi and
Lombardi [1995] with the aim of accounting for the energetics of muscle contraction. It
describes the myosin head with five states arranged in two cycles of chemical reactions, see
Figure 2.3. The five states are composed of three attached states A1, A2 and A3 and two
detached states D1 and D2. A first long cycle (cycle a) is meant to represent a complete
power stroke, while a short cycle (cycle b) allows the myosin head to cycle at small or zero
sliding velocity with incomplete power stroke.

A1

V1

A2
V2

A3
V3

D1

V4

D2

V5

2

3

4

1

5

6

cycle a

cycle b vc

(s = 0)

s

s+s−

s− da s+ jda

Figure 2.3 – Left: graph associated with the model Piazzesi-Lombardi’95. The vertex indices
are given in red. The transition indices are given in blue. Right: Piazzesi-Lombardi’95 model
parametrization. The position of the actin site corresponding to s = 0 is represented by a thick
dashed line.

An energy µT is brought to the myosin head by ATP in the transitions 2 → 5 and
3 → 4.

The graph G associated with this model is given by∣∣∣∣∣∣∣∣∣∣
V = {V1, V2, V3, V4, V5},
Va = {V1, V2, V3},
Vd = {V4, V5},
E = E = {E12, E21, E23, E32, E34, E43, E41, E14, E25, E52, E51, E15}.

Moreover, it is assumed in this model that the myosin can attach to an arbitrary number
of actin sites, hence it is also multi-site.

We denote by wq the energy associated with the state of vertex q.

2.3 Model properties based on thermodynamics principles

2.3.1 From conservation of matter to boundary conditions and mono-
tonicity properties

Let us consider the Huxley’57 model and derive its fundamental properties. System (2.2)
was derived from the conservation of matter, hence we directly verify that for all (s, t),
a(s, t) + d(s, t) = 1 as soon as we choose our initial condition ∀s ∈ [s−, s+], a0(s) ∈ [0, 1]
and d0(s) = 1− a0(s), since

∀s ∈ [s−, s+],
d
dt
(
a(s, t) + d(s, t)

)
= 0,

where we defined the total derivative by d/dt(•) = ∂/∂t(•) + ẋc∂/∂s(•). Therefore, we
can rewrite the system (2.2) in the form of a single equation

∂a

∂t
(s, t) = k+(s)

(
1− a(s, t)

)
− k−(s)a(s, t)− ẋc

∂a

∂s
(s, t), (2.7)

where we denote the aggregated transition rates k+(s) = k1(s) + k−2(s) and k−(s) =
k2(s) + k−1(s).
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Boundary values – As explained in our model presentation, we expect the myosin head
to only interact with the nearest actin site, which imposes that the probability of being
attached must vanish on the boundaries of the interval [s−, s+]. However, the dynamics
(2.2) is a first-order transport equation associated with only one boundary condition.
Therefore, we can either consider one single Dirichlet boundary condition at one end of
the interval – i.e., in s− if ẋc > 0 and s+ if ẋc < 0 – and then rely on the conditions (2.3) to
obtain the proper value of the solution at the other end – as a property – or alternatively
consider periodic boundary conditions. As the first option yields a periodic solution, it
is clear that the two options are equivalent. However, they differ at the discrete level, in
which case we will have to make a choice, see Section 2.4.1.

In fact, closed-form expressions can be obtained for the solution. To fix the ideas in
this derivation, we consider the case ẋc ≥ 0, although the same result can be obtained
similarly for ẋc < 0. As ẋc is assumed to be constant, the method of characteristic lines
gives regular C1 solutions from regular enough initial condition a0. Considering a(s, t)
solution of (2.7), we define the function ã by

ã(s, t) = a(s, t) exp
( 1

ẋc

s∫
0

(k+(ξ) + k−(ξ))dξ
)
,

which satisfies the equation

∂ã

∂t
(s, t) + ẋc

∂ã

∂s
(s, t) = k+(s)e

1/ẋch(s), (2.8)

where we define h(s) =
∫ s
0 (k+(ξ)+ k−(ξ))dξ. Solving (2.8) along a characteristic line and

pulling back the result to a(s, t) we obtain, defining t0 = max(0, t− s−s−

ẋc
),

a(s, t) = a0(s− ẋct) exp
(−1

ẋc

s∫
s−ẋct

(
k+(ξ) + k−(ξ)

)
dξ
)

+

t∫
t0

k+(s− ẋct+ ẋcτ) exp
(−1

ẋc

s∫
s−ẋct+ẋcτ

(
k+(ξ) + k−(ξ)

)
dξ
)

dτ.
(2.9)

We know that the aggregated attachment rate k+ is a continuous function on [s−, s+]
and goes to zero on the boundaries of [s−, s+]. Therefore, under the condition on the
aggregated detachment rate

∫ s+

0 k−(ξ)dξ = ∞, we deduce that

lim
s→s+

a(s, t) = 0 (2.10)

using the dominated convergence theorem for the second term of (2.9). Likewise, the
property lims→s− a(s, t) = 0 is obtained for ẋc < 0, and a similar result can be obtained
in a similar manner with periodic boundary conditions.

Positivity and boundedness properties – We want to check that the solution has
values consistent with ratio quantities. More specifically, we want that, with an initial
condition a0(s) ∈ [0, 1], the property a(s, t) ∈ [0, 1] holds. Again, we rely on the solution
obtained by the method of characteristic lines (2.9). As the transition rates and the initial
condition are positive, we find that a(s, t) ≥ 0. Then, noting that 1−a(s, t) is governed by
an equation of the same form as (2.7) with the initial condition 1−a0(s) ≥ 0, we similarly
deduce that a(s, t) ≤ 1.

117



Chapter 2. Thermodynamic properties of muscle contraction models and associated
discrete-time principles

2.3.2 First principle

We now want to establish a first thermodynamic property of the Huxley’57 system (2.2),
namely, a first principle, and in this respect we follow the approach proposed by Hill [1977].
We consider a system made of a population of myosin heads and define the average energy
per myosin head, namely

U(t) = 1

da

s+∫
s−

[
w1(s)a(s, t) + w0d(s, t)

]
ds. (2.11)

We then define the chemical fluxes∣∣∣∣∣J1(s, t) = k1(s)d(s, t)− k−1(s)a(s, t),

J2(s, t) = k2(s)a(s, t)− k−2(s)d(s, t).

We will henceforth make the natural assumption that the reaction rates are chosen in
order for w1a, k2a and k−1a to tend to zero when s tends to s− and s+, with the physical
interpretation that no finite energy (w1a) is stored and no detachment flux (k2a and k−1a)
occurs at the ends of the interval. We will see in Section 2.5 that this assumption is easily
satisfied in practice when (2.3) holds. Then, computing the time derivative, we obtain

d
dt

U(t) = 1

da

s+∫
s−

[
w1(s)

∂a(s, t)

∂t
+ w0

∂d(s, t)

∂t

]
ds

=
1

da

s+∫
s−

[
(J1(s, t)− J2(s, t))w1(s)− w1(s) ẋc

∂a(s, t)

∂s

+ (J2(s, t)− J1(s, t))w0 − w0ẋc
∂d(s, t)

∂s

]
ds.

Using integrations by parts for the transport terms, the boundary properties of the solution
– w1(s)a(t, s

−) = w1(s)a(t, s
+) = 0 and d(t, s−) = d(t, s+) – and considering that

detachment is associated with the consumption of one ATP, we obtain

d
dt

U(t) = 1

da

s+∫
s−

[
(w1(s)− w0) J1(s, t) + (w0 − (w1(s) + µT )) J2(s, t)

+ ẋc a(s, t)
∂w1(s)

∂s

]
ds+ µTJ2(t),

where we denoted by

J2(t) =
1

da

s+∫
s−

J2(s, t)ds

the mean net influx of ATP. Finally, we derive the following formulation of the first
principle

U̇(t) = Ẇ(t) + Ė(t) + Q̇(t),
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where∣∣∣∣∣∣∣∣∣∣∣∣

Ẇ(t) = ẋcτc(t),

Ė(t) = µTJ2(t),

Q̇(t) =
1

da

s+∫
s−

[
(w1(s)− w0) J1(s, t) + (w0 − (w1(s) + µT )) J2(s, t)

]
ds,

(2.12a)
(2.12b)

(2.12c)

with the active force τc defined in (2.4). The quantity Ẇ is the rate of work given to
the system and Ė(t) = µTJ2(t) corresponds to the input flux in energy brought by ATP
hydrolysis. The remaining term Q̇ can be identified with a heat flux. In steady-state
shortening (τc > 0 and ẋc < 0), the work is negative and in physiological conditions, we
expect the energy input term to be positive, and the heat transfer to be negative (see
numerical illustrations in Section 2.5). The energy balance can be interpreted as follows:
the energy brought by ATP is for one part converted into work, the other part being
dissipated as heat production.

2.3.3 Second principle

Let us now derive a second principle thermodynamic balance. We introduce the system
entropy as

S(t) = −kB
da

s+∫
s−

[
a(s, t) ln(a(s, t)) + d(s, t) ln(d(s, t))

]
ds,

where kB is the Boltzmann constant. The system remains at a constant temperature, the
outside environment playing the role of a thermostat. We introduce the Helmholtz free
energy

F(t) = U(t)− TS(t),

which therefore corresponds to

F(t) =
1

da

s+∫
s−

[
µ1(s, t)a(s, t) + µ0(s, t)d(s, t)

]
ds. (2.13)

where ∣∣∣∣∣µ1(s, t) = w1(s) + kBT ln(a(s, t)),
µ0(s, t) = w0 + kBT ln(d(s, t)),

are the chemical potentials. Computing the time derivative, we get

d
dt

F(t) =
1

da

s+∫
s−

[(
J1(s, t)− J2(s, t)− ẋc

∂

∂s
a(s, t)

)
·
[
w1(s) + kBT ln(a(s, t)) + kBT

]
+
(
J2(s, t)− J1(s, t)− ẋc

∂

∂s
d(s, t)

)
·
[
w0 + kBT ln(d(s, t)) + kBT

]]
ds. (2.14)
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Using again integrations by part for the transport terms and the boundary properties of
the solution, we obtain

d
dt

F(t) = τc(t)ẋc + µTJ2(t) +
1

da

s+∫
s−

[
J2(s, t)

(
µ0(s, t)−

(
µ1(s, t) + µT

))
+ J1(s, t)

(
µ1(s, t)− µ0(s, t)

)]
ds. (2.15)

Independently, we also have

d
dt

F(t) =
d
dt

U(t)− T
d
dt

S(t). (2.16)

Combining equations (2.15) and (2.16) and the first principle, we can write

d
dt

S(t) = Q̇(t)

T
− 1

T

1

da

s+∫
s−

J2(s, t)
(
µ0(s, t)−

(
µ1(s, t) + µT

))
+ J1(s, t)

(
µ1(s, t)− µ0(s, t)

)
ds. (2.17)

The second principle then reads

d
dt

S(t) = Q̇(t)

T
+ Ṡprod(t), (2.18)

where we naturally associate the second term of (2.17) with the entropy production
Ṡprod(t).

The model will be compatible with the second principle if this entropy production is
always positive. Using the relation (2.1) deduced from the detailed balance, we recall that

k1(s, t)

k−1(s, t)
= exp

(w0 − w1(s, t)

kBT

) k2(s, t)

k−2(s, t)
= exp

(w1(s, t) + µT − w0

kBT

)
. (2.19)

Thus, when introducing the ratio of the one-way fluxes for transition 1, J1+ and J1−,
defined by J1+(s, t) = k1(s, t)d(s, t) and J1−(s, t) = k−1(s, t)a(s, t), we find

J1+
J1−

=
k1(s)d(s, t)

k−1(s)a(s, t)

= exp
(w0 − w1(s, t)

kBT

)
· exp

(
kBT

[ ln(d(s, t))− ln(a(s, t))
kBT

])
= exp

(µ0(s, t)− µ1(s, t)

kBT

)
.

(2.20)

As a consequence, we have two cases. If µ1(s, t) ≥ µ0(s, t), we find that

J1+
J1−

(s, t) ≤ 1 ⇒ J1(s, t) = J1+(s, t)− J1−(s, t) ≤ 0.

Conversely, µ1(s, t) ≤ µ0(s, t) implies that J1(s, t) ≥ 0. Proceeding in the same way for
the second reaction, we finally have∣∣∣∣∣ J1(s, t)

(
µ1(s, t)− µ0(s, t)

)
≤ 0,

J2(s, t)
(
µ0(s, t)− µ1(s, t)− µT

)
≤ 0.

(2.21)
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We thus obtain the conclusion that the entropy production term

Ṡprod(t) = − 1

Tda

s+∫
s−

J2(s, t)
(
µ0(s, t)−

(
µ1(s, t) + µT

))
+ J1(s, t)

(
µ1(s, t)− µ0(s, t)

)
ds ≥ 0, (2.22)

hence that the model is compatible with the second principle. We can summarize this
property using (2.15) by the free energy balance

d
dt

F(t) = τc(t)ẋc + µTJ2(t)− T Ṡprod(t) ≤ τc(t)ẋc + µTJ2(t). (2.23)

2.3.4 Extension to multi-state, multi-site models

Let us now consider the Piazzesi-Lombardi’95 model. We want to establish the thermo-
dynamic balances associated with this model.

Fundamental properties of the solution – in particular the monotonicity properties of
the results established for the Huxley’57 model, see Section 2.3.1 – can be extended to
this model. In particular, conservation of matter here reads

∀s ∈ [s−, s+]
d
dt

[ ∑
Vq∈Va

∑
j∈Z

xq(s+ jda, t) +
∑

Vq∈Vd

xq(s, t)

]
= 0. (2.24)

First principle – We define the energy as

U(t) = 1

da

s+∫
s−

[ ∑
Vq∈Va

∑
j∈Z

xq(s+ jda, t)wq(s+ jda) +
∑

Vq∈Vd

xq(s, t)wq

]
ds.

The time derivative reads, after integrating by parts the transport term

d
dt

U(t) = 1

da

s+∫
s−

∑
Epq∈G

∑
j∈Z

Jpq(s+ jda, t)Wpq(s+ jda)ds+ ẋcτc(t),

with Wpq = wq − wp and the active force defined as

τc(t) =
1

da

s+∫
s−

∑
Vq∈Va

∑
j∈Z

xq(s+ jda, t)
∂wq

∂s
(s+ jda)ds.

We then obtain

d
dt

U(t) = µT
(
J25(t) + J34(t)

)
+ ẋcτc(t)

+
1

da

s+∫
s−

∑
Epq∈G

∑
j∈Z

Jpq(s+ jda, t)W̃pq(s+ jda)ds,
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where the mean fluxes are given by

Jpq(t) =
1

da

s+∫
s−

∑
j∈Z

Jpq(s+ jda, t)ds,

and W̃pq = Wpq − µT δpq={25,34} as an energy µT is brought to the myosin head by ATP
during the transitions 2 → 5 and 3 → 4. Note that the introduction of the modified energy
increments W̃ brings out the input energy fluxes µT

(
J25(t) + J34(t)

)
. The first principle

then naturally reads
U̇(t) = Ẇ(t) + Ė(t) + Q̇(t), (2.25)

with ∣∣∣∣∣∣∣∣∣∣∣∣∣

Ẇ(t) = ẋcτc(t),

Ė(t) = µT
(
J25(t) + J34(t)

)
,

Q̇(t) =
1

da

s+∫
s−

∑
Epq∈G

∑
j∈Z

Jpq(s+ jda, t)W̃pq(s+ jda)ds.

Second principle – Following the work done for the Huxley’57 model, we here define
the entropy of the system as

S(t) = −kB
da

s+∫
s−

∑
Vq∈Va

∑
j∈Z

xq(s+ jda, t) ln(xq(s+ jda, t))

+
∑

Vq∈Vd

xq(s, t) ln(xq(s, t))ds.

Then, we define the Helmholtz free energy as F(t) = U(t)− TS(t), which can be written
as

F(t) =
1

da

s+∫
s−

∑
Vq∈Va

∑
j∈Z

µq(s+ jda, t)xq(s+ jda, t) +
∑

Vq∈Vd

µq(s, t)xq(s, t)ds,

with the definitions∣∣∣∣∣µq(s+ jda, t) = wq(s+ jda) + kBT ln(xq(s+ jda, t)), ∀Vq ∈ Va, j ∈ Z,

µq(s, t) = wq(s) + kBT ln(xq(s, t)), ∀Vq ∈ Vd.

We here define the entropy production as

Ṡprod(t) = − 1

Tda

s+∫
s−

∑
Epq∈G

∑
j∈Z

Jpq(s+ jda, t)M̃pq(s+ jda, t)ds,

where M̃pq = µq − µp − µT δpq={34,25}. Then, combining the first principle (2.25) with the
identity Ḟ = U̇ − T Ṡ, we finally obtain the second principle

d
dt

S(t) = Q̇(t)

T
+ Ṡprod(t).
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Similarly as in the Huxley’57 model, the detailed balance ensures that the entropy pro-
duction is always positive and the model is thus thermodynamically compatible. We have,
as in (2.23), the free energy balance

d
dt

F(t) = τc(t)ẋc + µT
(
J25(t) + J34(t)

)
− T Ṡprod(t)

≤ τc(t)ẋc + µT
(
J25(t) + J34(t)

)
. (2.26)

2.3.5 Coupling with a macroscopic model of muscle fiber

R

Ω0

τ

L

Γ0
N

tNx

Figure 2.4 – Muscle fiber configuration.

The thermodynamic properties of these classes of models are very useful when cou-
pling them with a macroscopic model, typically to represent a muscle fiber, as it will
ensure a global consistent thermodynamic balance between macroscopic and microscopic
contributions. Let us consider, indeed, a macroscopic model of muscle fiber modeled in
the realm of non-linear continuum mechanics, as large deformations frequently occur in
muscle fibers. The material points coordinates are denoted by x ∈ Ω0 in the reference
configuration. The displacement field associated with the deformation map is denoted by
y. We denote by e the Green-Lagrange strain tensor, i.e.

e =
1

2

(
∇y + (∇y)T + (∇y)T · ∇y

)
,

and the second Piola-Kirchhoff stress tensor is denoted by Σ. The fiber as shown in
Figure 2.4 is subjected to a boundary force tN on a boundary Γ0

N . The principle of virtual
work (PVW) then reads: for any admissible virtual displacement field w ∈ Vad,∫

Ω0

ρ0ÿ · w dΩ+

∫
Ω0

Σ : dye · w dΩ =

∫
Γ0
N

tN · w dΓ,

where the differential of the Green-Lagrange strain tensor with respect to the displacement
field is given by

dye · w =
1

2

(
∇w + (∇w)T + (∇y)T · ∇w + (∇w)T · ∇y

)
.

In this formulation, we want to associate with each material point an active microscopic
model based on the Huxley’57 model or its extensions. Typically, we want to incorporate
the microscopic model into a 3D visco-hyperelastic constitutive behavior of hyperelastic
potential Ψ and viscous pseudo-potential Ψv – taken here as Ψv(ė) = η

2 tr(ė2) – where
η denotes a viscosity modulus – to simplify the presentation. Following Chapelle et al.
[2012], which extends the classical Hill-Maxwell scheme Hill [1938] to nonlinear behav-
ior, we gather all the constitutive ingredients by defining an adequate rheological scheme
– presented in Figure 2.5 – valid for large deformations. The upper branch represents
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Figure 2.5 – Fiber rheology combining a 1D active element (upper branch) and a 3D visco-
hyperelastic element (lower branch).

the sarcomere – including the above active behavior visualized by the collection of myosin
heads in the figure – namely, constituents acting in the muscle fibre direction τ . The
lower branch represents a 3D passive matrix, associated with the cellular envelope and the
extracellular matrix. Each branch contains elastic and viscous constituents, respectively
visualized by springs and dashpots, with specific constitutive equations given below.

We consider the following natural rheological rule for the parallel branch

3D parallel law : e = e
p
= e

a
, Σ = Σ

p
+Σ

a
, (2.27)

where e, e
a
, e

p
denote Green-Lagrange tensors (global, active and passive) and Σ, Σ

a
, Σ

p

second Piola-Kirchhoff stress tensors (global, active and passive). However, we will depart
from Chapelle et al. [2012] for the series branch.

In fact, the natural view of muscle fibers made of a succession of active and passive
segments points to a one-dimensional homogenization type of rheological interpretation.
Let us denote by efib the total (local) extension of a fiber, i.e the ratio of length change
over initial length

efib =
δ`hs
`hs

,

where we will take for `hs the length of a half-sarcomere at rest and δ`hs the variation
thereof. Then, the length change of the half-sarcomere can be decomposed into

δ`hs = xc + δ`s,

where xc and δ`s respectively denote the contributions of the active (rigid filaments) and
passive parts in this length change. Note that xc then represents the relative displace-
ment of the actin and myosin filaments considered above, indeed. We also introduce the
corresponding dimensionless extension quantities ec = xc/`hs and es = xc/`hs, so that
efib = ec + es. Of course, the two components carry the same tension, which we denote
by Tfib and define as the force – in the fiber direction – per unit area of transverse cross-
section of tissue considered in the reference configuration. Therefore, we can summarize
as

1D series law : efib = ec + es, Tfib = T̂c = Ts. (2.28)
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Note that the reason why such a simple additive rule holds for efib in this nonlinear frame-
work is that we are considering extension quantities – scaled in an ad hoc manner – and
not Green-Lagrange strains. Moreover, (2.28) must be complemented by relationships
between 3D and 1D quantities. Considering the component of the Green-Lagrange strain
tensor in the fiber direction, we directly have

1 + efib =
(
1 + 2τ · e · τ

) 1
2 . (2.29)

Then, the tension Tfib corresponds to a contribution in the first Piola-Kirchhoff stress
tensor given by

T
a
= Tfib

F · τ
‖F · τ‖

⊗ τ , (2.30)

where F = 1 + ∇y is the classical deformation gradient tensor, as can be easily verified
by computing the resulting traction in the fiber direction T

a
· τ . Hence, the associated

contribution in the second Piola-Kirchhoff stress tensor reads

Σ
a
= F−1 · T

a
=

Tfib
1 + efib

τ ⊗ τ , (2.31)

since ‖F · τ‖ = 1 + efib.
Finally, the constitutive equations considered are

Σ
p
=
∂Ψ

∂e
+
∂Ψv

∂ė
, Ts = Eses, T̂c = νėc + Tc, (2.32)

where Ťc represents the aggregation of forces contributed by actin-myosin cross-bridges
as described above, i.e. Ťc = ρsurfτc with ρsurf the number of myosin heads in a layer of
thickness `hs per unit of cross-section area. The series elastic element is here assumed to
have a linear constitutive equation of elasticity modulus Es. Note that a nonlinear hyper-
elastic behavior could be considered, at the price of having to deal with the dimensionless
extension es as an additional internal variable. Nevertheless, in physiological conditions
the extension es remains small and a linear behavior is adequate Caruel et al. [2019]. As
regards viscosity, we here incorporate a simple component of viscous modulus ν in parallel
with the active part in the sarcomere branch, and we recall that viscosity is also present
in the parallel branch as provided by the term ∂Ψv

∂ė = ηė.
We can now summarize the 3D equations as

∫
Ω0

ρ0ÿ · w dΩ+

∫
Ω0

Σ : dye · w dΩ =

∫
Γ0
N

tN · w dΓ, ∀w ∈ Vad

with Σ =
∂Ψ

∂e
+ ηė+

Tfib

(1 + 2τ · e · τ)
1
2

τ ⊗ τ

Tfib = νėc + Tc = Eses

with Tc(x, t) =
ρsurf
da

s+∫
s−

a(x, s, t)∂w1

∂s
(s, t)ds

∂a

∂t
(x, s, t) = k+(s)

(
1− a(x, s, t)

)
− k−(s)a(x, s, t)− `hsėc(x, t)

∂a

∂s
(x, s, t)

(2.33a)

(2.33b)

(2.33c)

where (2.33c) is based on the Huxley’57 model with sliding velocity ẋc = `hsėc. This
velocity is independent of the microscopic variable s, which justifies our above study. Note,
however, the dependency of a(x, s, t) on x, which means that the microscopic model must

125



Chapter 2. Thermodynamic properties of muscle contraction models and associated
discrete-time principles

be solved everywhere in the domain, i.e. at all numerical quadrature points in numerical
simulations.

In order to establish a macroscopic energy balance for the system (2.33), we take the
velocity field ẏ as an admissible virtual displacement field in (2.33a). We thus get

dK
dt

+

∫
Ω0

Σ : ėdΩ = Pext,

where K = 1
2

∫
Ω0 ρ0|ẏ|2 dΩ stands for the kinetic energy and Pext =

∫
Γ0
N
tN · ẏ dΓ is the

power of external forces. Then, we decompose∫
Ω0

Σ : ėdΩ =
d
dt

[∫
Ω0

ΨdΩ

]
+

∫
Ω0

η|ė|2 dΩ+

∫
Ω0

Tfib
τ · ė · τ

(1 + 2τ · e · τ)
1
2

dΩ,

where the first term is associated with the stored hyperelastic energy, the second term is a
macroscopic viscous dissipation, and the last term – denoted Pfib – is the power of internal
forces in the sarcomere. Then, using the rheological rules we find

Pfib =

∫
Ω0

Tfib
τ · ė · τ

(1 + 2τ · e · τ)
1
2

dΩ

=

∫
Ω0

Tfibėfib dΩ =

∫
Ω0

[
Tsės + T̂cėc

]
dΩ =

∫
Ω0

[
Esesės + νė2c + Tcėc

]
dΩ

=
d
dt

[∫
Ω0

Es

2
e2s dΩ

]
︸ ︷︷ ︸

(1)

+

∫
Ω0

νė2c dΩ︸ ︷︷ ︸
(2)

+

∫
Ω0

Tcėc dΩ︸ ︷︷ ︸
(3)

,

where we recognize (1) an elastic energy stored in the series element of the sarcomere, (2)
a viscous dissipation term in the sarcomere, and (3) the mechanical work of the actin-
myosin bridges. Therefore, combining this energy balance with the free energy balance
(2.23) computed from the Huxley’57 model – or identically from (2.26) for the extensions
– we finally obtain a form of macroscopic Clausius-Duhem relation

d
dt

[
K +

∫
Ω0

Ψ+
Es

2
e2s + ρvF dΩ

]

= Pext −
∫
Ω0

[
η|ė|2 + νė2c

]
dΩ−

∫
Ω0

ρvT Ṡprod dΩ+

∫
Ω0

ρvĖ dΩ, (2.34)

where ρv = ρsurf/`hs is the density of myosin head per unit volume in the reference config-
uration, and where we recall that F is the internal free energy of the bridges introduced
in (2.13), Ṡprod is the entropy production term defined in (2.22) corresponding to en-
ergy dissipation associated with chemical transitions, and Ė = µT J̄2 as defined in (2.12b)
corresponds to the input flux in energy provided by ATP hydrolysis.

2.4 Discretization and thermodynamic principles at discrete
level

We now present the proposed discretization scheme for the muscle contraction models.
Classical schemes are sufficient for our purposes, and the main originality of this work
is to show their compatibility with discrete versions of the thermodynamical principles.
Nevertheless, for the sake of completeness, some basic properties of the schemes are quickly
re-established before focusing on thermodynamics.
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2.4.1 A numerical scheme for Huxley’57 model

To discretize the dynamics (2.2), we consider a regular grid for the simulation range
[s−, s+] of discretization length δs and with the convention s0 = s− and s` = s+. We then
choose an upwind implicit scheme, that for the sake of simplicity we only present for a
positive sliding velocity ẋc, with a natural extension to negative sliding velocities ẋc by
inverting the shift in space for the transport term to keep an upwind scheme. We initiate
the discretization from an initial condition such that a00 = a0` = 0 and with the natural
condition a0i ∈ [0, 1]. The discretization scheme then reads

an+1
i − ani
δt

= k+,id
n+1
i − k−,ia

n+1
i − ẋc

an+1
i − an+1

i−1

δs
, ∀i ∈ [[1, `]]

dn+1
i = 1− an+1

i , ∀i ∈ [[1, `]]

(2.35)

with the definition ∣∣∣∣∣∣∣
k+,i = k+(s

− + iδs), i ∈ [[1, `]],

k−,i = k−(s
− + iδs), i ∈ [[1, `− 1]],

k−,` = 2k−,`−1.

(2.36a)
(2.36b)
(2.36c)

Note that the exact aggregated detachment rate goes to infinity on the boundary of the
interval [s−, s+]. Numerically, we use a finite value defined as given in (2.36c), and we
prove in the following section that this choice does not affect the convergence of the scheme.

For the numerical scheme (2.35), we also need to prescribe adequate boundary con-
ditions. As the analytical solution of (2.7) vanishes on the boundaries of the interval
[s−, s+], we here again can choose: either a Dirichlet condition on one side, and check the
consistency on the other side, or choose periodic boundary conditions and again ensure
the consistency on the boundary of the interval [s−, s+]. From a numerical point of view,
it is in fact more convenient for energy estimates to choose periodic boundary conditions
for a, i.e. an0 = an` . Note that, with this choice, we do not strictly have an0 = an` = 0. This
property is only satisfied approximately, or asymptotically when the spatial discretization
length goes to zero.

Defining α = ẋcδt/δs and ki = k+,i + k−,i, the scheme can be written in a matrix form

on the state vector an =
[
an1 . . . an`

]T

Dan+1 = an + δtk+,

where

D =


1 + δtk1 + α −α

−α 1 + δtk2 + α
. . . . . .

−α 1 + δtk` + α

 , k+ =


k+,1

k+,2

...
k+,`

 .

2.4.2 Some fundamentals properties

We first present the basic – but essential – properties of the proposed scheme. This is done
using classical strategies for the analysis of transport equations schemes (see for instance
Richtmyer and Morton [1967]).
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Uniform positivity and boundedness – One first important property that must be
satisfied by the discretization is that the natural bounds for ratio quantities be preserved
at the discrete level, namely ∀n, ∀i ∈ [[1, `]], ani ∈ [0, 1]. To obtain this property, we need D
to preserve the positivity – i.e. for a ∈ R`,Da ≥ 0 ⇒ a ≥ 0 (where we use the convention
that a vector is positive if all its coefficients ai are positive). Let us then take a ∈ R` such
that Da ≥ 0. We have ∀i ∈ [[1, `]](

1 + δt ki + α
)
ai − αai−1 ≥ 0, (2.37)

with the boundary condition a0 = a`. Multiplying (2.37) by αl−1 for i = 1 and by
α`−i

∏i−1
j=1

(
1 + kj + α

)
for i ∈ [[2, `]], and summing, we obtain

∑̀
i=2

[
α`−i

i∏
j=1

(
1 + kj + α

)
ai − α`−i+1

i−1∏
j=1

(
1 + kj + α

)
ai−1

]
+ αl−1

(
1 + k1 + α

)
a1 − αlal ≥ 0

⇔
∏̀
j=1

(
1 + kj + α

)
a` +

∑̀
i=3

α`−i+1
[ i−1∏
j=1

(
1 + kj + α

)
ai−1

]

−
∑̀
i=2

α`−i+1
[ i−1∏
j=1

(
1 + kj + α

)
ai−1

]
+ αl−1

(
1 + k1 + α

)
a1 − αlal ≥ 0.

Noting that the middle term is a telescoping series, we obtain as expected

[ ∏̀
j=1

(
1 + kj + α

)
− α`

]
︸ ︷︷ ︸

≥0

a` ≥ 0.

Then, recursively from (2.37), we get ∀i ∈ [[1, `]], ai ≥ 0, which shows that the matrix oper-
ator D preserves the positivity. Knowing that the initial condition and the transition rates
are positive, we obtain ∀n ≥ 0, ∀i ∈ [[1, `]], ani ≥ 0. Writing the numerical scheme for the
variable 1−ani from (2.35), we similarly obtain that ∀n ≥ 0,∀i ∈ [[1, `]], ani ≤ 1. Therefore,
the proposed numerical scheme preserves the adequate positivity and boundedness.

Consistency – Let us here denote a a sufficiently regular solution of (2.7). Note that
this solution satisfies a Dirichlet boundary condition on one side of the simulation interval
(i.e. a(s−, t) = 0) and that we showed in (2.10) that lims→s+ a(s, t) = 0. We denote
by a the vector of the values of a at the spatial discretization points at time n δt, an =[
a(δs, n δt) . . . a(` δs, n δt)

]T
. We define, as usual, the convergence error by

en = an − an.

We have Den+1 = en − δt ηn, where the consistency error ηn is given by

ηn =
1

δt

[
Dan+1 −

(
an + δtk+

)]
.

Evaluating the continuous equation (2.7) at s = s− + iδs and t = (n+ 1)δt, we obtain

∂ā

∂t

(
s− + iδs, (n+ 1)δt

)
= k+,i − kiā

n+1
i − ẋc

∂ā

∂s

(
s− + iδs, (n+ 1)δt

)
,
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and this also holds for i = ` with the finite numerical value chosen for k`, due to the fact
that ā(s+) = 0 and k−(s)ā(s) tends to zero in s+. We directly infer, ∀i ∈ [[1, `]],

ηni =
ā
(
s− + iδs, (n+ 1)δt

)
− ā
(
s− + iδs, nδt

)
δt

− ∂ā

∂t

(
s− + iδs, (n+ 1)δt

)
+ẋc

{ ā(s− + iδs, (n+ 1)δt
)
− ā
(
s− + (i− 1)δs, (n+ 1)δt

)
δs

−∂ā
∂s

(
s− + iδs, (n+ 1)δt

)}
= O(δs+ δt).

The numerical scheme is thus consistent at the first order with the continuous equation
(2.7), although different – but compatible – boundary conditions are used. Note that a
well-known result by Godunov states that we cannot have more than first-order conver-
gence in time with a discrete scheme that satisfies the positivity and boundedness property
Godunov [1959].

L2-Stability – We now analyze the L2-stability by justifying the `2-stability of the
operator D−1. Multiplying (2.35) without the source term by an+1

i , we have

an+1
i − ani
δt

an+1
i + ẋc

an+1
i − an+1

i−1

δs
an+1
i = −ki(an+1

i )2.

Using the identity −ab = 1
2

(
a− b

)2 − 1
2a

2 − 1
2b

2, we obtain

1

2δt

(
(an+1

i )2 − (ani )
2
)
+

1

2δt

(
an+1
i − ani

)2
= − ẋc

2δs

(
(an+1

i )2 − (an+1
i−1 )

2
)
− ẋc

2δs

(
an+1
i − an+1

i−1

)2
− ki(a

n+1
i )2.

Summing over i, and using the periodic boundary conditions (an+1
` )2 = (an+1

0 )2, we find∥∥D−1an
∥∥
`2

≤ ‖an‖`2 .

Note that this stability property is just a mathematical property.

Convergence – The stability analysis coupled to the consistency analysis gives directly
the convergence error. Indeed, we find

en =
(
D−1

)n
e0 − δt

n−1∑
k=0

(
D−1

)n−k−1
ηk,

so that there exist C, T > 0 such that

‖en‖`2 ≤ Cδt

n−1∑
k=0

(δs+ δt) = CT
(
δs+ δt

)
.

2.4.3 First principle

Our objective is more ambitious than numerical convergence, as we want in fine to establish
thermodynamic balances at the discrete level. In this respect, let us first consider the
energy balance. We recall that the average energy of a myosin head is given at the
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continuous level by (2.11). Similarly to (2.36), we assign a finite value to the energy of
the attached state on the boundary of the interval [s−, s+]. With the notation∣∣∣∣∣w1,i = w1(s

− + iδs), ∀i ∈ [[1, l − 1]],

w1,l = 2w1,l−1,

the energy is discretized as

Un =
δs

da

∑̀
i=1

w1,ia
n
i + w0d

n
i .

Then, defining the fluxes as ∣∣∣∣∣J
n
1,i = k1,id

n
i − k−1,ia

n
i ,

Jn
2,i = k2,ia

n
i − k−2,id

n
i ,

we have

Un+1 − Un

δt
=
δs

da

∑̀
i=1

[
w1,i

(an+1
i − ani
δt

)
+ w0

(dn+1
i − dni
δt

)]
=
δs

da

∑̀
i=1

[
w1,i

(
Jn+1
1,i − Jn+1

2,i − ẋc
an+1
i − an+1

i−1

δs

)
+ w0

(
Jn+1
2,i − Jn+1

1,i + ẋc
an+1
i − an+1

i−1

δs

)]
=
δs

da

∑̀
i=1

[
Jn+1
1,i

(
w1,i − w0

)
+ Jn+1

2,i

(
w0 − w1,i − µT

)
+ µTJ

n+1
2,i

]
− ẋcδs

da

`−1∑
i=1

w1,i − w1,i+1

δs
an+1
i +

δs

da

ẋc
δs
an+1
0 w1,1

− δs

da

ẋc
δs
an+1
` w1,` +

δs

da

ẋc
δs
w0(a

n+1
` − an+1

0 ). (2.38)

With the definition of the discrete force

τn+1
c =

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs
an+1
i ,

where we define w1,`+1 = w1,1, and using the periodicity of the solution, (2.38) becomes

Un+1 − Un

δt
= ẋcτ

n+1
c

+
δs

da

∑̀
i=1

[
Jn+1
1,i

(
w1,i − w0

)
+ Jn+1

2,i

(
w0 − w1,i − µT

)
+ µTJ

n+1
2,i

]
.

We thus obtain the discretized version of the first principle, namely

Un+1 − Un

δt
=

Wn+1 −Wn

δt
+

Qn+1 −Qn

δt
+

En+1 − En

δt
, (2.39)
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with ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn+1 −Wn

δt
= ẋcτ

n+1
c ,

Qn+1 −Qn

δt
=
δs

da

∑̀
i=1

[
Jn+1
1,i

(
w1,i − w0

)
+ Jn+1

2,i

(
w0 − w1,i − µT

)]
,

En+1 − En

δt
= µT

δs

da

∑̀
i=1

Jn+1
2,i .

2.4.4 Second principle

Let us now establish a discrete entropy balance. In this respect, we introduce the discrete
entropy

Sn = −kB
δs

da

∑̀
i=1

(
ani ln ani + dni ln dni

)
,

and the free energy Fn = Un − TSn, which can be rewritten as

Fn =
δs

da

∑̀
i=1

(
µn1,ia

n
i + µn0,id

n
i

)
,

by introducing the discrete chemical potentials∣∣∣∣∣µ
n
1,i = w1,i + kBT ln ani ,
µn0,i = w0 + kBT ln dni .

We then rewrite the previous calculation in a manner that closely follows the calculation
in the continuous case. We have

Fn+1 −Fn

δt
=

1

δt

δs

da

∑̀
i=1

[
µn+1
1,i a

n+1
i − µn1,ia

n
i + µn+1

0,i d
n+1
i − µn0,id

n
i

]

=
δs

da

∑̀
i=1

[
µn+1
1,i

(an+1
i − ani
δt

)
+ ani

(µn+1
1,i − µn1,i

δt

)
+ µn+1

0,i

(dn+1
i − dni
δt

)
+ dni

(µn+1
0,i − µn0,i

δt

)]
.

Hence,

Fn+1 −Fn

δt
=
δs

da

∑̀
i=1

[
µn+1
1,i

(
Jn+1
1,i − Jn+1

2,i − ẋc
an+1
i − an+1

i−1

δs

)
+ ani

(w1,i + kBT ln(an+1
i )−

(
w1,i + kBT ln(ani )

)
δt

)
+ µn+1

0,i

(
Jn+1
2,i − Jn+1

1,i + ẋc
an+1
i − an+1

i−1

δs

)
+ dni

(w0 + kBT ln(dn+1
i )−

(
w0 + kBT ln(dni )

)
δt

)]
.
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Developing the expression of the chemical potentials, performing Abel transformations
and using the periodic boundary conditions, we obtain

Fn+1 −Fn

δt
= ẋcτ

n+1
c

+
δs

da

∑̀
i=1

[
Jn+1
1,i

(
µn+1
1,i − µn+1

0,i

)
+ Jn+1

2,i

(
µn+1
0,i − µn+1

1,i − µT

)
+ µTJ

n+1
2,i

]

+
ẋc
da
kBT

∑̀
i=1

[
an+1
i

(
ln(an+1

i+1 )− ln(an+1
i )

)]

+
ẋc
da
kBT

∑̀
i=1

[
dn+1
i

(
ln(dn+1

i+1 )− ln(dn+1
i )

)]

+
kBTδs

da

∑̀
i=1

[
ani

( ln(an+1
i )− ln(ani )

δt

)]
+
kBTδs

da

∑̀
i=1

[
dni

( ln(dn+1
i )− ln(dni )

δt

)]
.

Since x 7→ lnx is a concave function, we have ln aj − ln ai ≤ ln′(ai)
(
aj − ai

)
so that

Fn+1 −Fn

δt
≤ ẋcτ

n+1
c

+
δs

da

∑̀
i=1

[
Jn+1
1,i

(
µn+1
1,i − µn+1

0,i

)
+ Jn+1

2,i

(
µn+1
0,i − µn+1

1,i − µT

)
+ µTJ

n+1
2,i

]

+
ẋc
da
kBT

∑̀
i=1

[
an+1
i+1 − an+1

i

]
+
ẋc
da
kBT

∑̀
i=1

[
dn+1
i+1 − dn+1

i

]
+
kBTδs

da δt

∑̀
i=1

[
an+1
i − ani

]
+
kBTδs

da δt

∑̀
i=1

[
dn+1
i − dni

]
.

Using the fact that the scheme imposes ∀n, ∀i ∈ [[1, `]], ani + dni = 1, the sums vanish two
by two. We finally find

Fn+1 −Fn

δt
≤ ẋcτ

n+1
c

δs

da

∑̀
i=1

[
Jn+1
1,i

(
µn+1
1,i − µn+1

0,i

)
+ Jn+1

2,i

(
µn+1
0,i − µn+1

1,i − µT

)
+ µTJ

n+1
2,i

]
.

As a point-wise evaluation of the continuous expression (2.21), we have ∀i ∈ [[1, `]]

∣∣∣∣∣∣
Jn+1
1,i

(
µn+1
1,i − µn+1

0,i

)
≤ 0,

Jn+1
2,i

(
µn+1
0,i − µn+1

1,i − µT

)
≤ 0.

Hence, in our case where ẋc > 0, we finally obtain

Fn+1 −Fn

δt
− ẋcτ

n+1
c − µT

δs

da

∑̀
i=1

Jn+1
2,i ≤ 0. (2.40)
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To relate the decrease of the free energy to the creation of entropy, we first note

Fn+1 −Fn

δt
− ẋcτ

n+1
c − µT

δs

da

∑̀
i=1

Jn+1
2,i =

Fn+1 −Fn

δt

−
[Un+1 − Un

δt
− Qn+1 −Qn

δt

]
= −T Sn+1 − Sn

δt
+

Qn+1 −Qn

δt
. (2.41)

Comparing (2.41) with the formal expression of the second principle (2.18), we define the
discrete entropy creation by

Sn+1
prod − Sn

prod
δt

=
Sn+1 − Sn

δt
− 1

T

Qn+1 −Qn

δt
≥ 0. (2.42)

Note that the entropy creation is formally given by

Sn+1
prod − Sn

prod
δt

= − 1

T

(
δs

da

∑̀
i=1

[
Jn+1
1,i

(
µn+1
1,i − µn+1

0,i

)
+ Jn+1

2,i

(
µn+1
0,i − µn+1

1,i − µT

)]

+
ẋckBT

da

∑̀
i=1

[(
ln(dn+1

i )− ln(an+1
i )

)[
an+1
i − an+1

i−1

]]

+
kBTδs

da

∑̀
i=1

[
ani

( ln(an+1
i )− ln(ani )

δt

)]

+
kBTδs

da

∑̀
i=1

[
dni

( ln(dn+1
i )− ln(dni )

δt

)])
.

and finally combining (2.40),(2.41) and (2.42) we have the time-discrete counterpart of
the free energy balance (2.23)

Fn+1 −Fn

δt
= ẋcτ

n+1
c + µT

δs

da

∑̀
i=1

Jn+1
2,i − T

Sn+1
prod − Sn

prod
δt

≤ ẋcτ
n+1
c + µT

δs

da

∑̀
i=1

Jn+1
2,i .

(2.43)

2.4.5 Extension to multi-state, multi-site models

The case of multiple states and sites derives from the same principles, hence justifying
that we developed precisely the computations for the Huxley’57 model. The developments
are, however, not straightforward because the multi-site assumption implies an infinite
number of attachment and detachment fluxes, which has to be properly integrated into
the discrete thermodynamical balances. Indeed, in the case of a positive sliding velocity
ẋc, we discretize the system (2.6) with the following implicit upwind numerical scheme

xn+1
q,i+j` − xnq,i+j`

δt
=
∑

p|Epq∈G

Jn+1
pq,i+j` − ẋc

xn+1
q,i+j` − xn+1

q,i+j`−1

δs
,∀Vq ∈ Va,

∀i ∈ [[1, `]], j ∈ Z
xn+1
q,i − xnq,i

δt
=
∑

p|Epq∈G

∑
j∈Z

Jn+1
pq,i+j` − ẋc

xn+1
q,i − xn+1

q,i−1

δs
,∀Vq ∈ Vd, i ∈ [[1, `]]

(2.44)
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with the notation xnq,i+j` = xq(s
− + (i + j`)δs, nδt) for Vq ∈ Va, xnq,i = xq(s

− + iδs, nδt)

for Vq ∈ Vd and Jn
pq,i+j` = Jpq(s

− + (i+ j`)δs, nδt). Note that xq for Vq ∈ Vd has periodic
boundary conditions and thus xq,i+j` = xq,i, ∀j ∈ Z, and we keep j ∈ Z, albeit in practice
we will bound the attachment zone, introducing a boundary consistency error.

Mass conservation – Defining the total quantity of matter

mn
i =

∑
Vq∈Va

∑
j∈Z

xnq,i+j` +
∑

Vq∈Vd

xnq,i,

– which has the periodicity mn
0 = mn

` – and using the scheme (2.44), we find the classical
implicit transport equation

mn+1
i −mn

i

δt
= −ẋc

mn+1
i −mn+1

i−1

δs
,

hence, we retrieve, as in the Huxley’57 model, the conservation of matter∑
Vq∈Va

∑
j∈Z

xnq,i+j` +
∑

Vq∈Vd

xnq,i = 1 ∀n, ∀i ∈ [[1, `]]. (2.45)

First principle – Concerning the energy balance, the internal energy is now defined as

Un =
δs

da

∑̀
i=1

[ ∑
Vq∈Va

∑
j∈Z

wq,i+j`x
n
q,i+j` +

∑
Vq∈Vd

wqx
n
q,i

]
.

and we find this time, with the notation W̃pq,i+j` = W̃pq(s
− + (i+ j`)δs), that

Un+1 − Un

δt
=
δs

da

[∑̀
i=1

∑
Epq∈G

∑
j∈Z

Jn+1
pq,i+j`W̃pq,i+j`

+ µT
∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)]

− ẋcδs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

wq,i+j`

xn+1
q,i+j` − xn+1

q,i+j`−1

δs

− ẋcδs

da

∑̀
i=1

∑
Vq∈Vd

wq

xn+1
q,i − xn+1

q,i−1

δs
.

The last term vanishes with the periodic boundary conditions. Performing an Abel trans-
formation on the penultimate term and defining the discrete force as

τn+1
c =

δs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

xq,i+j`

wn+1
q,i+j`+1 − wn+1

q,i+j`

δs
,

we obtain the discrete first principle

Un+1 − Un

δt
=

Wn+1 −Wn

δt
+

Qn+1 −Qn

δt
+

En+1 − En

δt
,
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with ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn+1 −Wn

δt
= ẋcτ

n+1
c ,

Qn+1 −Qn

δt
=
δs

da

∑̀
i=1

∑
Epq∈G

∑
j∈Z

Jn+1
pq,i+j`W̃pq,i+j`,

En+1 − En

δt
= µT

δs

da

∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)
.

Second principle – We now define the discrete entropy as

Sn = −kB
δs

da

∑̀
i=1

[ ∑
Vq∈Va

∑
j∈Z

xnq,i+j` lnxnq,i+j` +
∑

Vq∈Vd

xnq,i lnxnq,i
]
,

and the free energy Fn = Un − TSn, that we rewrite as

Fn =
δs

da

∑̀
i=1

[ ∑
Vq∈Va

∑
j∈Z

µnq,i+j`x
n
q,i+j` +

∑
Vq∈Vd

µnq,ix
n
q,i

]
,

using discrete chemical potentials∣∣∣∣∣µ
n
q,i+j` = wq,i+j` + kBT lnxnq,i+j`, Vq ∈ Va,

µnp,i = wq + kBT lnxnq,i, Vq ∈ Vd.

The discrete time derivative of the free energy is

Fn+1 −Fn

δt
=
δs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
µn+1
q,i+j`

(xn+1
q,i+j` − xnq,i+j`

δt

)

+ xnq,i+j`

(µn+1
q,i+j` − µnq,i+j`

δt

)]
+
∑̀
i=1

∑
Vq∈Vd

[
µn+1
q,i

xn+1
q,i − xnq,i

δt
+ xnq,i

µn+1
q,i − µnq,i

δt

]
.

Using the notation M̃n
pq,i+j` = µnq,i+j` − µnp,i+j` − µT δpq={25,34} and the results of the first

principle, we get

Fn+1 −Fn

δt
=
δs

da

[∑̀
i=1

∑
Epq∈G

∑
j∈Z

Jn+1
pq,i+j`M̃

n+1
pq,i+j`

+ µT
∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)]

− ẋc
δs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

kBT ln
(
xn+1
q,i+j`

)xn+1
q,i+j` − xn+1

q,i+j`−1

δs

− ẋc
δs

da

∑̀
i=1

∑
Vq∈Vd

kBT ln
(
xn+1
q,i

)xn+1
q,i − xn+1

q,i−1

δs

+
kBTδs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
xnq,i+j`

( ln(xn+1
q,i+j`)− ln(xnq,i+j`)

δt

)]

+
kBTδs

da

∑̀
i=1

∑
Vq∈Vd

[
xnq,i

( ln(xn+1
q,i )− ln(xnq,i)

δt

)]
+ ẋcτ

n+1
c .
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Performing an Abel transformation on the transport terms, we obtain

Fn+1 −Fn

δt
=
δs

da

[∑̀
i=1

∑
Epq∈G

∑
j∈Z

Jn+1
pq,i+j`M̃

n+1
pq,i+j`

+ µT
∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)]

+
ẋc
da
kBT

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
xn+1
q,i+j`

(
ln(xn+1

q,i+j`+1)− ln(xn+1
q,i+j`)

)]

+
ẋc
da
kBT

∑̀
i=1

∑
Vq∈Vd

[
xn+1
q,i

(
ln(xn+1

q,i+1)− ln(xn+1
q,i )

)]

+
kBTδs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
xnq,i+j`

( ln(xn+1
q,i+j`)− ln(xnq,i+j`)

δt

)]

+
kBTδs

da

∑̀
i=1

∑
Vq∈Vd

[
xnq,i

( ln(xn+1
q,i )− ln(xnq,i)

δt

)]
+ ẋcτ

n+1
c .

Using again that lnxj − lnxi ≤ ln′(xi)
(
xj −xi

)
, the detailed balance and the conservation

of matter (2.45), we finally obtain

Fn+1 −Fn

δt
− ẋcτ

n+1
c − µT

∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)
≤ 0. (2.46)

As in Section (2.4.4) this property is equivalent to

Sn+1
prod − Sn

prod
δt

=
Sn+1 − Sn

δt
− 1

T

Qn+1 −Qn

δt
≥ 0. (2.47)

Moreover, the entropy production is in fact given by

Sn+1
prod − Sn

prod
δt

= − 1

T

(
δs

da

∑̀
i=1

∑
Epq∈G

∑
j∈Z

Jn+1
pq,i+j`M̃

n+1
pq,i+j`

− ẋckBT

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
ln(xn+1

q,i+j`)
[
xn+1
q,i+j` − xn+1

q,i+j`−1

]]

− ẋckBT

da

∑̀
i=1

∑
Vq∈Vd

[
ln(xn+1

q,i )
[
xn+1
q,i − xn+1

q,i−1

]]

+
kBTδs

da

∑̀
i=1

∑
Vq∈Va

∑
j∈Z

[
xnq,i+j`

( ln(xn+1
q,i+j`)− ln(xnq,i+j`)

δt

)]

+
kBTδs

da

∑̀
i=1

∑
Vq∈Vd

[
xnq,i

( ln(xn+1
q,i )− ln(xnq,i)

δt

)])
.

and, by recombining (2.46) and (2.47), we finally get

Fn+1 −Fn

δt
− ẋcτ

n+1
c − µT

∑̀
i=1

∑
j∈Z

(
J25,i+j` + J34,i+j`

)
+ T

Sn+1
prod − Sn

prod
δt

= 0. (2.48)
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2.4.6 Discretization of the macroscopic model coupling

We can derive a full discretized version of the macroscopic model presented in Figure 2.4
and modeled by the dynamics (2.33). Here, we will rely – as in Chapelle et al. [2012] – on
mid-point rules for the discretization of the PVW, with additional corrections in order to
guarantee the energy balance. Therefore, we will typically denote vn+

1
2 = vn+1+vn

2 for any
variable v and the notation n+ 1

2] will allow to indicate when we depart from this classical
rule. First, as recommended in Gonzales [2000]; Le Tallec and Hauret [2003]; Hauret and
Le Tallec [2006]; Chapelle et al. [2012], we will consider the following non-standard – albeit
classical – mid-point quantities

en+
1
2
] = e(yn+

1
2 ), ėn+

1
2
] =

en+1 − en

δt
,

dy e
n+ 1

2
] · w =

1

2

(
∇w + (∇w)T + (∇yn+

1
2 )T · ∇w + (∇w)T · ∇yn+

1
2

)
,

and a passive hyperelastic stress law discretization that includes an energy correction term,
namely

∂Ψ

∂e

∣∣∣n+ 1
2
]
=
∂Ψ

∂e
(en+

1
2
])

+

(
Ψ(en+1)−Ψ(en)

δt
− ∂Ψ

∂e
(en+

1
2
]) : ėn+

1
2
]

)
ėn+

1
2
]

ėn+
1
2
] : ėn+

1
2
]
. (2.49)

Then, we propose the following discretization of (2.33)

yn+1 − yn

δt
= vn+

1
2 =

vn+1 + vn

2∫
Ω0

ρ0
vn+1 − vn

δt
· w dΩ+

∫
Ω0

Σn+ 1
2
] :dye

n+ 1
2
] · w dΩ = Pn+ 1

2
ext (w), ∀w ∈ Vad

with Σn+ 1
2
] =

∂Ψ

∂e

∣∣∣n+ 1
2
]
+ η

en+1 − en

δt
+

T
n+ 1

2
]

fib

(1 + 2τ · en · τ)
1
2

τ ⊗ τ

T
n+ 1

2
]

fib = ν
en+1
c − enc
δt

+ Tn+1
c = Ese

n+ 1
2

s

with Tn+1
c = ρsurf

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs
an+1
i

an+1
i − ani
δt

= k+,i(1− an+1
i )− k−,ia

n+1
i − `hs

en+1
c − enc
δt

an+1
i − an+1

i−1

δs

(2.50a)

(2.50b)

(2.50c)

(2.50d)

Note here that (2.50c) and (2.50d) are defined at each quadrature point xm, albeit we
omit – for the sake of brevity – this explicit dependence in the equations. If the 1D
elastic element is chosen nonlinear hyperelastic, the corresponding term in (2.50c) has to
be treated as proposed for the 3D elastic element in (2.49).

To obtain a complete energy balance, we now proceed as in Chapelle et al. [2012] by
considering the mid-point velocity vn+

1
2 as an admissible displacement field and recalling

that dy e
n+ 1

2
] · vn+

1
2 =

en+1−en

δt . The balance associated with the hyperelastic contribu-
tion is handled by our choice in (2.49), and the viscous part directly gives a negative
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contribution, so that we have

Kn+1 −Kn

δt
+

∫
Ω0

Ψn+1 −Ψn

δt
dΩ

+
1

δt

∫
Ω0

T
n+ 1

2
]

fib
τ · (en+1 − en) · τ

(1 + 2τ · en · τ)
1
2

dΩ = Pn+ 1
2

ext −
∫
Ω0

η
|en+1 − en|2

δt2
dΩ.

The function x 7→ (1 + 2x)
1
2 is concave of derivative (1 + 2x)−

1
2 , hence

τ · en+1 · τ − τ · en · τ

(1 + 2τ · en · τ)
1
2

≥ (1 + 2τ · en+1 · τ)
1
2 − (1 + 2τ · en · τ)

1
2 = en+1

fib − enfib.

Therefore we have, recalling that we have defined es such that efib = es + ec,

Pfib =
1

δt

∫
Ω0

T
n+ 1

2
]

fib
τ · (en+1 − en) · τ

(1 + 2τ · en+1 · τ)
1
2

dΩ

≥
∫
Ω0

T
n+ 1

2
]

fib
en+1

fib − enfib
δt

dΩ =

∫
Ω0

T
n+ 1

2
]

fib

[en+1
s − ens
δt

+
en+1
c − enc
δt

]
dΩ

≥
∫
Ω0

Ese
n+ 1

2
s

en+1
s − ens
δt

dΩ+

∫
Ω0

[
ν
(en+1

c − enc )
2

δt2
+ Tn+1

c

en+1
c − enc
δt

]
dΩ.

We now incorporate the Huxley’57 discrete-time free energy balance (2.43) – and we could
proceed identically with the other models using (2.48) – to get

Kn+1 −Kn

δt
+

∫
Ω0

[Ψn+1 −Ψn

δt
+ Es

|en+1
s |2 − |ens |2

2δt
+ ρv

Fn+1 −Fn

δt

]
dΩ

≤ Pn+ 1
2

ext −
∫
Ω0

[
η
|en+1 − en|2

δt2
+ ν

(en+1
c − enc )

2

δt2
+ Tρv

Sn+1
prod − Sn

prod
δt

]
dΩ

+

∫
Ω0

ρvµT
δs

da

∑̀
i=1

Jn+1
2,i dΩ, (2.51)

which is the discrete-time counterpart of the Clausius-Duhem relation (2.34), with here
an inequality only due to numerical dissipation and consistent in δt. Note finally that
in the case of models capturing the power stroke dynamics such as Piazzesi-Lombardi’95,
time sub-iterations may be required. In this case it can be shown that the energy balance
is preserved provided the active tension Tn+1

c is redefined by weighing the intermediate
states over all sub-iterations.

2.5 Numerical results and discussion
In this section, our goal is to illustrate the analysis of the discrete system presented in
the previous section for the Huxley’57 model and the Piazzesi-Lombardi’95 model, which
we chose as a representative of the multi-site, multi-state models. These illustrations
serve several purposes. We first want to demonstrate that the thermodynamics identities
established at the discrete level are satisfied in the numerical simulations. Then, we want
to show that the ability to compute the thermodynamical balances numerically allows to
gain additional insight into the physiology of muscle contraction. Additionally, for the
Piazzesi-Lombardi’95 model, we compare our simulation results with that obtained in the
original paper as a further validation of our approach.
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2.5.1 Huxley’57 model

The choice of model parameters must satisfy the conditions (2.3) and the assumption that
w1a and k−a tend to zero when s tends to s− and s+. We choose the energy levels and
transition rates as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1(s) = κw(s− s∗)2 +
αw

s+ − s
+

αw

s− s−
,

k1(s) = kmax exp
(
− λ1

[
(s− s̄)8 +

αk1

(s+ − s)2
+

αk1

(s− s−)2
])
,

k2(s) = kmid −
(
kmid − kmin

)
exp

(
− λ2(s− s̄)8

)
+

αk2

(s+ − s)2
+

αk2

(s− s−)2
.

(2.52)

We choose here to prescribe k1 and k2 in addition to the energies w1 and w0. The reverse
rates k−1 and k−2 are then derived from the detailed balance (2.1). The energy levels
parametrization is shown in Figure 2.6. The transition rates are depicted in Figure 2.7.
The models parameters used in the following simulations are presented in Table 2.1.
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Figure 2.6 – Energy levels parametrization for
the Huxley’57 model.
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Figure 2.7 – Transition rates parametrization
for the Huxley’57 model.

Model parameters

µT 100 zJ

s+ 20 nm

s− −20 nm

s∗ 0

s̃ 9 nm

s̄ 5 nm

κw 1.1 pN nm−1

kmax 41.3 × 10−3 ms−1

kmin 10 × 10−3 ms−1

kmid 30 kmax

λ1 6.21 × 10−5 nm−8

λ2 3 λ1

αw
1
2κw(s̃− s̄)2

αk1
kmid/λ1

αk2 kmid

Table 2.1 – Model parameters used in the simulations with the Huxley’57 model.

The asymptotic properties of the chosen transition rates and of the associated solutions
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can be easily obtained using the analytical solution (2.9) and the theorem of dominated
convergence.

We consider two simulation cases. First, we simulate the tension rise in isometric
conditions (ẋc = 0). Then, we compute the muscle response in contraction at constant
shortening velocity (ẋc < 0) starting from the isometric steady-state solution.

Validation of the thermodynamical identities at discrete level – We first want to
verify that the discrete versions of the first principle (2.39) and the second principles (2.43)
are satisfied numerically. To do so, we compute respectively the expressions

Un+1 − Un

δt
−
[Wn+1 −Wn

δt
+

Qn+1 −Qn

δt
+

En+1 − En

δt

]
,

and
Fn+1 −Fn

δt
− Wn+1 −Wn

δt
− En+1 − En

δt
.

The results for both simulation cases is presented in Figure 2.8. We notice that the first
expression is ten orders of magnitude smaller that the individual terms that compose it
(see Figures 2.9 and 2.10), showing that the first principle is satisfied at discrete level. The
second expression is always negative showing the validity of the discrete second principle.
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Figure 2.8 – Validation of the discrete thermodynamical balances in two test cases for the Huxley’57
model.

Tension rise – In our first illustration of the results obtained for the Huxley’57 model,
we simulate the tension rise in isometric conditions (ẋc = 0). We initialize all heads in the
detached state and let the myosin heads evolve. Along the usual tension evolution, our
scheme allows us to compute the thermodynamic fluxes associated with muscle contraction
– see Figure 2.9. In the steady-state regime, the energy input remains positive and heat is
dissipated. The force is sustained through the continuous cycling of the myosin heads in
interaction with the actin filament. This process is fueled by the energy brought by ATP.
We see here the active nature of muscle contraction. Force is produced when the muscle
is supplied with energy. Naturally, as the velocity is zero no work is produced.
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Figure 2.9 – Average tension and thermodynamic fluxes per myosin head in an isometric tension
rise simulation with the Huxley’57 model. The isometric tension is denoted by τ0.

Constant velocity contraction – We now show a second illustrative example with a
contraction at constant shortening velocity (ẋc < 0) starting from the isometric steady-
state solution. The simulation results are presented in Figure 2.10. After a transient
phase, the system reaches a permanent regime in which the classical force-velocity curve is
measured Hill [1938] (note that in the original experimental protocol force and not length
is controlled). In this regime, we observe the energy mechano-transduction performed by
the molecular motors: the energy input brought by ATP is for one part converted into
work produced by the system (W < 0), and for the other part dissipated by entropy
production.

2.5.2 Piazzesi-Lombardi’95 model

The Piazzesi-Lombardi’95 model reproduces the physiology of muscle contraction more
precisely. In particular, it is able to capture the power stroke fast dynamics observed in
length step experiments.

We simulate such an experiment starting from the isometric steady state with a length
step of 8 nm. As in the experimental conditions, the length step is made by a ramp of
duration 100 µs. Note that, here, the compliance of the myosin and actin filaments is
neglected as in the original paper. We choose the energy levels as defined in Piazzesi and
Lombardi [1995]. We use modified transition rates to ensure that detachment rates diverge
at infinity. The energy brought by ATP is set to 50 zJ following the model assumption
that an ATP molecule can be used for the detachment of several myosin heads.

The results are presented in Figure 2.11. They match the results presented in the
original paper Piazzesi and Lombardi [1995], which shows the consistency of our approach
with the original model, hence completed with thermodynamic balances.
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2.6 Concluding remarks

Considering a large class of muscle contraction models based on actin-myosin interac-
tion – i.e. the Huxley’57 model and various extensions thereof, including the Piazzesi-
Lombardi’95 model – we have presented a mathematical setting in which solution prop-
erties can be established, including fundamental thermodynamic balances. Moreover, we
have proposed a complete discretization strategy for which we were also able to obtain dis-
crete versions of the thermodynamic balances and other properties. In addition, we have
also shown how these models can be coupled with a macroscopic continuum mechanics
formulation in such a way that these balances carry over to the macroscopic level, includ-
ing for the discrete versions of the models. As muscle energetics are of major relevance
in physiology, this is an important achievement, both from a fundamental and numeri-
cal point of view. This paves the way, indeed, for detailed numerical studies of energy
exchanges in various applications, such as with a complete realistic heart model.

2.7 Appendix

2.7.1 Numerical scheme for negative sliding velocities

In this section, we present the discrete thermodynamical balances obtained with negative
sliding velocities without developing the proofs.

2.7.1.1 The Huxley’57 model

We first consider the Huxley’57 model. With negative sliding velocities ẋc, the numerical
scheme reads


an+1
i − ani
δt

=
(
k1,i + k−2,i

)
︸ ︷︷ ︸

k+,i

dn+1
i −

(
k2,i + k−1,i

)
︸ ︷︷ ︸

k−,i

an+1
i − ẋc

an+1
i+1 − an+1

i

δs
∀i ∈ [[1, p]]

dni = 1− ani ∀i ∈ [[1, p]].

First principle We still define the energy as

Un =
δs

da

p∑
i=1

w1,ia
n
i + w0d

n
i =

δs

da

p−1∑
i=0

w1,ia
n
i + w0d

n
i .

and the fluxes as {
Jn
1,i = k1,id

n
i − k−1,ia

n
i ,

Jn
2,i = k2,ia

n
i − k−2,id

n
i .

We obtain the the discretized version of the first principle

Un+1 − Un

δt
=
Wn+1 −Wn

δt
+
Qn+1 −Qn

δt
+
En+1

int − En
int

δt
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with 

Wn+1 −Wn

δt
= ẋcτ

n+1
c

Qn+1 −Qn

δt
=
δs

da

p∑
i=1

[
Jn+1
1,i

(
w1,i − w0

)
+ Jn+1

2,i

(
w0 − w1,i − µT

)]
En+1

int − En
int

δt
= µT

δs

da

p∑
i=1

Jn+1
2,i .

and the definition of the discrete force

τn+1
c =

δs

da

p∑
i=1

w1,i − w1,i−1

δs
an+1
i ,

which is adapted to the numerical scheme for negative sliding velocities.

Second principle To establish a discrete entropy balance, we define the discrete entropy

Sn = −kB
p∑

i=1

ani ln ani + dni ln dni

and the free energy Fn = Un − TSn. The free energy can be rewritten

Fn =

p∑
i=1

µn1,ia
n
i + µn0,id

n
i

by introducing the discrete chemical potentials

µn1,i = w1,i + kBT ln ani
µn0,i = w0 + kBT ln dni .

We obtain

Fn+1 − Fn

δt
− ẋcτ

n+1
c − µT

δs

da

p∑
i=1

Jn+1
2,i ≤ 0.

or in terms of an entropy balance

Sn+1
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δt

=
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− 1

T
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δt
,

where the entropy creation is formally given by
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,

and satisfies the inequality

T
Sn+1

prod − Sn
prod

δt
≥ 0.
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2.7.1.2 Piazzesi-Lombardi’95 model

We now consider the Piazzesi-Lombardi’95 model.

Numerical scheme The numerical scheme with ẋc ≤ 0 is given by

xn+1
q,i+j` − xnq,i+j`

δt
=
∑

p|Epq∈G

Jn+1
pq,i+j` − ẋc

xn+1
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xn+1
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δs
,∀Vq ∈ Vd, i ∈ [[1, `]].

First principle We define the internal by the same expression as with positive sliding
velocitites
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The discrete force is defined by
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and we obtain the discrete first principle
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Second principle As before, we define the discrete entropy as
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using discrete chemical potentials∣∣∣∣∣µ
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q,i+j` = wq,i+j` + kBT lnxnq,i+j`, Vq ∈ Va,

µnp,i = wq + kBT lnxnq,i, Vq ∈ Vd.
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We finally obtain
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As in Section (2.4.4) this property is equivalent to
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with the entropy production given by
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CHAPTER 3

Hierarchical modeling of force generation in car-
diac muscle

Chemico-mechanical models are commonly used to describe the myosin heads within the
sarcomeres of cardiac muscles. Our main objective is to propose a hierarchy of cardiac
muscle contraction models that are rigorously and systematically related with each other.
Starting from a refined model, which considers the stochastic dynamics of the myosin heads
and, in particular, captures the power stroke, we propose two stages of simplification. We
first perform the asymptotic elimination of the fast degrees of freedom, which are asso-
ciated with the myosin internal configuration. This transforms the governing stochastic
differential equation into a partial differential equation and allows us to derive a formula-
tion that falls into the family of the Huxley’57 model, while embedding some ingredients
of power stroke description. Then, making assumptions on the attachment and detach-
ment rates and the cross-bridge mechanical energy, the model is further reduced to a set
of ordinary differential equations. These models are validated with the experimental data
corresponding to their range of validity. A particular emphasis is put on the calibration
process, which takes advantage of the tight links between the models. The calibration is
indeed an essential element for the use of models in clinical applications. The proposed
modeling framework offers a way to select, for a specific application, the model that yields
the best trade-off between the fidelity of the model, the associated computational cost and
the availability of the data that are required for the model calibration.
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Abstract

Chemo-mechanical models are commonly used to describe the myosin heads within the
sarcomeres of cardiac muscles. Our main objective is to propose a hierarchy of cardiac
muscle contraction models that are rigorously and systematically related with each other.
Starting from a refined model, which considers the stochastic dynamics of the myosin heads
and, in particular, captures the power stroke, we propose two stages of simplification. We
first perform the asymptotic elimination of the fast degrees of freedom, which are asso-
ciated with the myosin internal configuration. This transforms the governing stochastic
differential equation into a partial differential equation and allows us to derive a formula-
tion that falls into the family of the Huxley’57 model, while embedding some ingredients of
power stroke description. Then, making assumptions on the attachment and detachment
rates and the cross-bridge mechanical energy, the model is further reduced to a set of
ordinary differential equations. Theses models are validated with the experimental data
corresponding to their range of validity. A particular emphasis is put on the calibration
process, which takes advantage from the tight links between the models. The calibration
is indeed an essential element for the use of models in clinical applications. The proposed
modeling framework offers a way to select, for a specific application, the model that yields
the best trade-off between the fidelity of the model, the associated computational cost and
the availability of the data that are required for the model calibration.

Keywords— muscle modeling; sarcomere; sliding filament; cross-bridge; power stroke;
model reduction

3.1 Introduction
Mechanical modeling of micro-scale muscle contraction mechanisms is an essential step
towards the implementation of patient-specific physiologically relevant in silico heart sim-
ulations, providing an effective diagnosis and treatment planning tool. The effectiveness of
the developed models relies primarily on their ability to reproduce the biological processes
at the origin of muscle contraction with a level of detail adapted to the clinical situation.
The usual approach is to design a multi-scale and multi-physics framework that establishes
the coupling between the microscopic active force production and regulation mechanisms
at the molecular scale with the macroscopic, organ scale, indicators that can be utilized
in a clinical context.

The active force to be modeled results from the conversion of the metabolic energy ex-
tracted from ATP hydrolysis into mechanical work [Alberts, 2015]. This operation is done
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through the cyclic enzymatic interaction between groups of ATPase Myosin II molecular
motors forming a thick filament and the surrounding parallel (thin) actin filaments. The
force is produced while Myosin heads are attached to actin, via a large conformational
change, the power stroke, which induces a relative displacement (∼10 nm at zero load)
between the Myosin filament and the actin filament. The energy necessary to recock the
power-stroke mechanism is provided by ATP hydrolysis within the myosin molecule.

The thick and thin filaments are spatially organized in parallel within micrometer-sized
contractile units called sarcomeres [Huxley, 1957, 1969].

The sarcomeres themselves are arranged in series along the longitudinal direction of
the muscle cells forming a dense elastic fibers network which transmits force to the whole
tissue.

The active force production is subjected to physiological mechanisms that regulate the
degree of activation of the force producing units. The main regulation pathways are the
actin filament activation (through the calcium sensitive troponin-tropomyosin complex)
and the availability of myosin heads. Both pathways have been shown to be modulated
by the degree of sarcomere stretch [Kentish et al., 1986; de Tombe et al., 2010]. The
activation of actin sites is, in addition, sensitive to the level of calcium supply in the cell.

These regulations are at the core of the so-called Franck-Starling effect at the macro-
scopic scale [Allen & Kentish, 1985; de Tombe et al., 2010]. Notice that, at the organ level,
the intracellular calcium concentration and many other aspects of the muscle contraction
are also controlled by the neuroendocrine system.

Even though both contraction and regulation mechanisms are essential for the physio-
logical heart contraction, recent experimental studies have demonstrated that these regu-
lation mechanisms do not affect the characterization of the intrinsic mechanical properties
of the actomyosin system [Caremani et al., 2016; Pinzauti et al., 2018]. Indeed, the reg-
ulation mechanisms only affect the number of attached myosin heads. Hence the basal
contraction mechanism can presumably be studied at any nominal sarcomere length and
any level of calcium activation by properly normalizing the experimental results. In par-
ticular, this finding allows to study in detail the force generation molecular mechanisms on
ex-vivo preparations disconnected from the regulation apparatus. In this paper, we focus
on of the force production mechanism alone (without regulation), and use the results of
these experimental studies for calibration of the proposed models.

The most widely used experiment of this type allowing to characterize the mechanical
output of the contractile system – and calibrate the model parameters – consists in mea-
suring at the sarcomere level, the transient isotonic shortening in response to a sudden
force step applied within ∼ 100 µs from an isometric state [Caremani et al., 2016]. Remark-
ably, the reaction to this perturbation allows to identify, from a single experiment, the
contribution of three essential physical characteristics of the actomyosin system – namely
elasticity, conformational change and actomyosin attachment and detachment processes
– by using the fact that they operate at three different timescales: 100 µs, 1 ms and 30 ms,
respectively [Caremani et al., 2016]. To reproduce this benchmark experiment, theoretical
models should be built from ingredients representing all the involved processes.

Most of the available modeling attempts derive from the seminal work of A.F. Huxley
[Huxley, 1957] later thermodynamically formalized by T.L. Hill [Hill, 1977]. The frame-
work is a spatially unidimensional system where myosin II is modeled as a spring that
can reversibly attach to specific binding sites on the surrounding actin filaments. The
spring itself has internal – discrete or continuous – degrees of freedom that represent the
conformational – and ligand-binding – state of the protein. A single motor is therefore
characterized by (i) its position relative to the binding sites (strain) (ii) its internal confor-
mation and (iii) its attachment state. The force generated by the motor directly derives
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from the energy of the spring, which then depends on the distance to the binding site
and the internal conformation. The myofilaments themselves are usually modeled as an
independent spring in series with the motor system [Linari et al., 1998]. The molecular
motors then effectively bridge two rigid backbones.

In this context, the thermodynamics properties of the system depend on three cat-
egories of model parameters. The first category characterizes the intrinsic mechanical
properties of the myosin motor system such as the geometric lengths, the transition rates
between discrete attached states, the stiffnesses and more generally the energy landscapes
associated with the degrees of freedom representing the protein state. The second cat-
egory contains the model input that determine the kinetic properties of the contraction
mechanism. This set includes the attachment and detachment rates, and the viscosity-
type parameters characterizing the dynamics of continuous internal degrees of freedom
[Marcucci & Truskinovsky, 2010]. The last category concerns the energetic properties of
the system related to both the intrinsic energy landscapes (mechanical properties) and
the free energy changes associated with the metabolic reactions among which the most
important one is the ATP hydrolysis.

A major challenge faced by all modeling attempts is to calibrate these parameters. We
point out that since some of them may be functions (in the case of transition rates), the
number of parameters is virtually infinite, and the calibration of complex models is likely
not unique. Therefore, the space of function should be chosen such as to leave a minimal
number of free parameters and the available data that the model intends to reproduce
would ideally impose strong constraints on them.

Moreover, increasingly complex models are inevitably accompanied by higher CPU
costs. Hence, their use in finite elements simulations of heart contraction on realistic
geometries, may reveal inefficient, for instance, when real-time simulation are required,
indeed. The use of theoretical modeling of heart contraction should then results from a
compromise between a high degree of model refinement – to reproduce the micro-scale
physiology – and the possibility to identify – in a reasonable time – the effects of the
modeling assumptions on the observable macro-scale. For instance, a model that is ca-
pable of reproducing the physiological phenomena occurring at the molecular level at a
sub-millisecond timescale in the isotonic shortening in-vitro experiments is likely to be
unnecessarily detailed and too difficult to calibrate to simulate the ∼ 1 s heart beat of a
specific outpatient.

In this paper, we propose a hierarchical approach to this problem by formulating a
series of interrelated models, from the more refined, calibrated on single cell experiments,
to the more coarse grained aimed at efficient organ simulation. Each coarse graining step is
obtained from simplifications of the more refined model, such that the loss of information
is well controlled. All models are calibrated using the benchmark isotonic shortening
experiment, which again provide the essential mechanical information about the micro-
scale contractile apparatus. For each model of our hierarchy, we discuss its ability to
reproduce the experimental data and its relevance for heart simulations as a guidance for
appropriate model choosing depending on the application sought.

Our starting point is the stochastic model formulated in [Caruel et al., 2019] to re-
produce the fundamental four steps of the force generating Lymn-Taylor cycle [Lymn &
Taylor, 1971] i.e. (i) the attachment of myosin to actin, (ii) the myosin conformational
change that corresponds to the force generating power-stroke, (iii) the detachment from
actin, and (iv) the re-cocking of the power-stroke while the myosin is detached from actin.
This model combines a standard Hill-type approach to describe the attachment and de-
tachment processes with a more recently developed continuous stochastic dynamics for
the internal conformational variables [Marcucci & Truskinovsky, 2010].
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We show that our model can be almost univocally calibrated using available isotonic
shortening experimental data from rat cardiomyocytes [Caremani et al., 2016], by restrict-
ing the space of function describing the energy landscapes of the conformational variables
and the strain dependence of the transition rates.

The first level of simplification is obtain by adiabatically eliminating the internal vari-
able characterizing the force-generating conformational change (power-stroke). The re-
laxation of this internal rearrangement towards equilibrium has been shown to be at the
origin of the milli-second timescale phase of the response to sudden force changes [Huxley
& Simmons, 1971; Lombardi et al., 1992], which can be considered to be fast compared
to the ∼ 30 ms timescale associated with the completion of the ATPase cycle [Caremani
et al., 2015]. Hence at each time one can make the approximation approximate that
internal degrees of freedom are in thermal equilibrium.

This procedure has already been used in [Zahalak, 2000; Hill, 1977; Caruel et al.,
2019]. The obtained power-stroke equilibrated mode (PSE model) is a simple two-state
model that can be viewed as an instance of the Huxley’57 framework. This model can be
calibrated alongside the stochastic model. Our procedure allows to put the calibration into
perspective and illustrate that the experimental constraints define the calibration almost
uniquely for this type of model. We show that the PSE model is able to reproduce the
most relevant markers of the mechanical performance of cardiac fibers Caremani et al.
[2016]; Pertici et al. [2018]; de Tombe & Stienen [2007]. A particular emphasis is put on
the fact that the ATP consumption is not calibrated but predicted by the model.

Both the stochastic and the PSE models describe the evolution of the population of
the available myosin motors – either from stochastic differential equations (SDE) or de-
terministic partial differential equations (PDE) – from which the mechanical macroscopic
outputs such as force, stiffness, thermodynamic yield, can be derived by direct statistical
averaging. In the context of 3D finite element simulations of the heart, these equations
have to be solved at each integration points of the mesh, which dramatically increases the
computational time.

The next level of simplification is based on the classical expansion of the population
densities into an infinite series of macroscopic moments, whose dynamics are obtained by
solving an infinite set of coupled Ordinary Differential Equation (ODE) [Chapelle et al.,
2012; Zahalak, 2000, 1981]. Simple closure relations can be formulated in order to limit
the size of the system at an arbitrary – ideally low – number of equations. Solving
ODEs instead of PDEs at each integration point leads to a dramatic decrease on the
computational time, which makes this type of coarse-grained models particularly fit for
3D heart simulation in clinical context [Chapelle et al., 2012; Chabiniok et al., 2011]. We
propose two simplifying assumptions of the PSE model allowing to derive two moment
based “macroscopic models”. These models are derived by restraining the PSE model
space of functions for the attachment-detachment process and for the internal equilibrium
energy landscape. These restrictions are on the model parameters rather than on the form
of the solution as it was done in [Zahalak, 1981].

Finally, our method is not restricted to a single refined model, it can be applied to any
state-of-the-art chemico-mechanical models [Smith et al., 2008; Smith & Mijailovich, 2008;
Månsson, 2010; Mijailovich et al., 2016]. We show that the obtained macroscopic models
are in good agreement with the PSE model over the range of loading conditions that
is relevant for the heart functioning during a typical PV loop, the differences becoming
significant only in regimes that are non-physiological. Hence, despite their simplicity and
the fact that they are not able to fully reproduce the behavior of the contractile system as
observed ex vivo, the macroscopic models appears to be an adequate tool for an efficient
simulation of the basal contraction mechanics at the macro-scale. The originality of our
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Figure 3.1 – Summary of the full model and its reduction to a two state model. (a) Stochastic
model. The states are indexed as follows. 1 detached pre-power stroke; 2 attached pre-power
stroke, 3 attached post-power stroke, 4 detached post-power stroke. (b) PSE model obtained by
the adiabatic elimination of the stochastic model power stroke degrees of freedom.

approach is that the loss of information brought by the sequence of simplifying assumptions
is well controlled, so that the simpler models can be consistently enriched if need be.

The paper is organized as follows. In Section 3.2 we derive our hierarchy of models,
starting with the population models. Note that we only give here a summary of the
stochastic model, which is presented in full detail in [Caruel et al., 2019]. Section 3.3
presents the calibration and the comparison of the models using the isotonic shortening
experimental data. First, the two population models, namely the stochastic model and the
PSE model are discussed, before the PSE model is compared with the macroscopic models.
Sections 3.4 and 3.5 present a discussion of the results and our conclusion, respectively.

3.2 Hierarchy of models

3.2.1 Population models

3.2.1.1 Stochastic model

Our core model on which our hierarchy is built was already formulated in [Caruel et al.,
2019], and calibrated using data from frog skeletal muscle experiments. The model relies
on the sliding filament theory introduced by [Huxley, 1957], based on the hypothesis that
the myosin heads and actin sites are regularly distributed along their respective filaments
within a sarcomere and that the distance to their neighbors is constant. The compliance
of the myofilaments is assumed to be lumped into an effective linear elastic element in
series with a set of myosin motors interacting with two rigid backbones [Ford et al., 1981].
We consider a single actin site model, meaning that the myosin head can bind to the
nearest actin site only, which is located at a distance s from the anchor point of the head
in the myosin filament. In this framework, the description of the actomyosin interaction
can be reduced to that of a single representative myosin head because of the high number
of myosin heads in a sarcomere.

The state of the myosin head is parametrized by three dynamical variables (see Fig-
ure 3.1(a)):

• Xt, a continuous variable representing the displacement between the position of tip
of the head in the current state and at rest;
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• Y t, a continuous internal variable representing the internal conformation of the head
(power-stroke)

• αt, a discrete variable accounting for the attachment state of the head, taking the
value αt = 1 when the myosin head is attached, and the value αt = 0 when it is
detached.

Following [Marcucci & Truskinovsky, 2010] the myosin head is modeled as a bistable snap-
spring comprising an elastic spring representing the compliance of the macromolecule in
series with a bi-stable element accounting for the power-stroke conformational change, see
Figure 3.1(a). The internal energy of the head in state α is then defined as

w(x, y, α) = wα(x, y) =
κ

2
(x+ y)2 + uα(y), (3.1)

where κ is the stiffness of the macromolecule and uα is a double well potential associated
with the bistable element. The force developed by the attached myosin head on the thin
filament is thus τc(x, y) = ∂xw1(x, y) = κ(x+y). Undergoing the power stroke is equivalent
to stretching this elastic element, see Figure 3.1(a). When the myosin is detached, no force
is developed.

In the over-damped regime, the dynamics of an individual myosin head is governed by
the following system of stochastic equations [Caruel et al., 2019]

dXt =
[
αtẋc − (1− αt)η−1∂xwα(X

t, Y t)
]
dt

+ δ(t− ts)[s(t)−Xt]dt+ (1− αt)
√
2DdBt

x

dY t = −η−1∂ywα(X
t, Y t)dt+

√
2DdBt

y

P
[
αt+dt = 1|αt = 0

]
= k+(X

t, Y t, s, t)dt

P
[
αt+dt = 0|αt = 1

]
= k−(X

t, Y t, s, t)dt

(3.2a)

(3.2b)

(3.2c)

(3.2d)

where η is a drag coefficient, ẋc is the sliding velocity (ẋc being positive for an extending
sarcomere) and D = kBT/η is a diffusion coefficient. Here T is the absolute temperature
and kB is the Boltzmann constant1. In (3.2a), ts denotes the time where a transition from
the detached to the attached state occurs and the term δ(t− ts)[s(t)−Xt]dt ensures that
between ts and ts + dt, the variable Xt jumps from its current value Xts to the value
s(ts + dt).

Following the approach presented in [Caruel et al., 2019], we now consider the popula-
tion of heads in a section that has the thickness of half-sarcomere. The density of myosin
heads in such a section is 1.25 × 1017 m−2 [Pinzauti et al., 2018], a statistical description
of the system can thus be used. We denote by p(x, y, α; s, t) the probability distribution
of the myosin head state for a subpopulation of the heads located at distance s of the
nearest actin site at time t. This probability distribution mixing continuous and discrete
variables is normalized in the following way∑

α={0,1}

∫∫
p(x, y, α; s, t)dxdy = 1, ∀t ∀s. (3.3)

Since, in the attached state, the tip of the myosin head can only be located at the position
of the actin site (Xt = s(t)), the probability distribution p(x, y, α = 1; s, t) is degenerated
and becomes

p(x, y, α = 1; s, t) = δ(x− s)p(y; s, t). (3.4)
1kB = 1.38 × 10−23 J K−1
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The Fokker-Planck equations associated to the system of SDEs (3.2) are (see [Caruel et al.,
2019] for the detailed derivation of the equations)

∂tp(x, y, 0; s, t) + ẋc∂sp(x, y, 0; s, t) =

∂y

[
η−1∂yw0(x, y)p(x, y, 0; s, t) +D∂yp(x, y, 0; s, t)

]
+ ∂x

[
η−1∂xw0(x, y)p(x, y, 0; s, t) +D∂xp(x, y, 0; s, t)

]
+ k−(y, s)δ(x− s)p(y; s, t)− k+(x, y, s)p(x, y, 0; s, t),

∂tp(y; s, t) + ẋc∂sp(y; s, t) =

∂y

[
η−1∂yw1(x, y)p(y; s, t) +D∂yp(y; s, t)

]
+

∫
k+(x, y, s)p(x, y, 0; s, t)dx− k−(y, s)p(y; s, t).

(3.5)

In this framework, the active force is given by

τc(t) =
1

da

s+∫
s−

+∞∫
−∞

∂sw1(s, y)p(y; s, t)dyds, (3.6)

where da is the distance between two consecutive actin sites. The interval of reachable
actin sites is denoted by [s−, s+] with s+− s− = da. The cross-bridges working in parallel
in the sarcomere, the macroscopic tension developed by a muscle fiber is given by

Tc(t) = ρsurfτc(t), (3.7)

where ρsurf is the number of myosin heads in a layer that has a thickness equal to the
half-sarcomere length `hs per cross-section area.

As noted by T.L. Hill [Hill, 1977], the assumption of a single actin site available at
a given time for each myosin head imposes that the probability that a myosin head is
attached on the boundary of the interval [s−, s+] vanishes. We should thus have∫∫

p(x, y, α; s−, t)dxdy =

∫∫
p(x, y, α; s+, t)dxdy = 0, for α ∈ {0, 1}. (3.8)

This property is ensured by a proper choice of the attachment and detachment rates k+
and k−, respectively.

Note that this model does not take into account the calcium-induced thin filament
activation [Kobayashi et al., 2008]. The recently observed OFF-state in which the myosin
head is folded on the back bone of the thick filament and do not undergo the Lymn-Taylor
cycle [Linari et al., 2015], [Reconditi et al., 2017] is also not considered. All myosin heads
are supposed to be available for attachment and all actin sites are activated, meaning that
they can form cross-bridges with myosin heads.

The main purpose of the the stochastic model is to capture all the timescales of the
response of a fiber submitted to rapid load changes, see Section 3.3. In particular, the
rapid transient corresponding to the second phase will be associated with the relaxation
of the internal degree of freedom Y towards its equilibrium distribution, which will allow
to calibrate the energy w1(x, y).

In the following section, we formulate a simplified model whose formulation is obtained
by eliminating the dynamics of this relaxation.
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Chapter 3. Hierarchical modeling of force generation in cardiac muscle

3.2.1.2 Adiabatic elimination of the power stroke: the PSE model

The first level of simplification of the stochastic model can be obtained by considering the
experimental evidence of a separation of timescale between the power-stroke transition
(∼ 1 ms) and the characteristic timescale for the completion of the Lymn-Taylor cycle
(∼ 100 ms). A detailed analysis of the response of a muscle fiber to rapid change in
loading condition revealed the ability for the contractile apparatus to quickly adjust to
the new load through the synchronization of the power-stroke transitions of attached cross-
bridges [Huxley & Simmons, 1971]. After this fast transient the attachment-detachment
process gets involved and the system eventually reaches a steady state.

Building on this separation of timescale, one can adiabatically eliminate the internal
degrees of freedom X and Y – characterizing the power-stroke conformational change – by
assuming that their dynamics is infinitely fast compared to the timescale associated with
the other variable dynamics (αt). In this limit, the distribution of the random variable X
and Y follows the classical Boltzmann equilibrium distribution

pth0 (x, y) =
exp

(
− w0(x, y)/(kBT )

)
∫∫

exp
(
− w0(x, y)/(kBT )

)
dydx

,

pth1 (y; s) =
exp

(
− w1(s, y)/(kBT )

)
∫

exp
(
− w1(s, y)/(kBT )

)
dy
.

(3.9a)

(3.9b)

The probability densities p(x, y, α; s, t) can then be decomposed as follows{
p(x, y, 0; s, t) = P0(s, t)p

th
0 (x, y),

p(x, y, 1; s, t) = P1(s, t)δ(s− x)pth1 (y; s),

(3.10a)
(3.10b)

where ∣∣∣∣∣∣∣∣
P0(s, t) =

∫∫
p(x, y, 0; s, t)dxdy,

P1(s, t) =

∫∫
p(x, y, 1; s, t)dxdy = 1− P0(s, t)

(3.11)

(3.12)

are the population probabilities for a myosin head to be detached and attached respectively.
We name them the population probability of being attached and detached, respectively.
The resulting models have only two states corresponding to α = {1, 0}, characterized by
the equilibrium free energies

wth
0 (s) =

∫∫ [
w0(x, y)p

th
0 (x, y) + kBTp

th
0 (x, y) ln

(
a2 pth0 (x, y)

)]
dxdy,

wth
1 (s) =

∫ [
w1(s, y)p

th
1 (y; s) + kBTp

th
1 (y; s) ln

(
a pth1 (y; s)

)]
dy,

(3.13a)

(3.13b)

where we remind that a is the size of the power stroke and is used as the reference length
in our system.

To obtain the dynamics of the transition between the two states, we integrate the
Fokker-Planck equation (3.5) with the explicit definition of the internal energy levels (3.1)
and the equilibrium distributions (3.9). We obtain{

∂tP1(s, t) + ẋc∂sP1(s, t) = f th(s)
(
1− P1(s, t)

)
− gth(s)P1(s, t),

P0(s, t) = 1− P1(s, t)

(3.14)
(3.15)
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where (3.14) corresponds to the classical Huxley [Huxley, 1957] conservation equation with
the averaged transition rates

f th(s) =

∫∫
k+(x, y, s)p

th
0 (x, y)dydx,

gth(s) =

∫
k−(y, s)p

th
1 (y; s)dy.

(3.16a)

(3.16b)

Note that the transition rates (3.16) are not defined per se but are instead derived
from the rates k+ and k− defined within the stochastic framework.

The average force per head generated by a population of myosin heads (3.6) is now
given by

τ thc (t) =
1

da

s+∫
s−

P1(s, t)τ
th(s)ds. (3.17)

The term τ th(s) is the average equilibrium tension which derives from the thermal equi-
librium free energy in the attached state wth

1 :

τ th(s) =
dwth

1

ds
(s).

With the assumption of a linear neck elasticity used in our model, we simply have

τ th(s) =

∫
κ(y + s)pth1 (y; s)dy. (3.18)

The equivalence between the two formulation is given in Appendix (3.6.4).
We can also define the equilibrium stiffness per head, which is given by

κthc (t) =
1

da

∫ s+

s−
P1(y, t)∂sτ

th(s), ds.

The boundary conditions requirement (3.8) becomes here

P1(s
−, t) = P (s+, t) = 0. (3.19)

This property is ensured by a suitable choice of the transition rates f th and gth or their
antecedent k+ and k−. A more detailed assessment of the mathematical properties of the
Huxley’57 equation solutions is presented in [Kimmig et al., 2019] (Chapter 2).

Similarly to (3.7), the tension developed by a muscle fiber is

Tc(t) = ρsurfτ
th
c (t). (3.20)

3.2.1.3 Generalized Huxley’57 model

The PSE model can be seen as an instance of a larger family of models within the Huxley’57
framework. These models are characterized by only two states associated with the free
energies wh

1,0 and the transition rates f and g, which are the inputs of the model. The
probability of being attached is ruled by the PDE

∂tP1(s, t) + ẋc∂sP1(s, t) = f(s)
(
1− P1(s, t)

)
− g(s)P1(s, t), (3.21)

and the active tension is given by

τc(t) =
1

da

∫
dwh

1

ds
(s)P1(s, t)ds. (3.22)
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We see that our PSE model pertains to this larger family with the inputs derived from a
more refined model and not prescribed directly as parameters.

Finally, we mention that the more widely used modeling approach can be retrieved
by replacing the continuous internal degree of freedom y by a discrete variable i that is
defined only in the attached state, the detached state being characterized by a constant
(space independent) energy [Hill, 1977; Eisenberg et al., 1980]. In that case, the internal
energy of state i is usually written as

wh
1 (x, i) =

κxb
2

(x+ xi)
2 + u1(i).

The original Huxley’57 model has only one of such state.
In this framework, the adiabatic elimination of the fast variable i leads to the definition

of the equilibrium probabilities

ath(i; s) =
exp[−w1(s, i)/(kBT )]∑
i exp[−w1(s, i)/(kBT )]

,

The resulting two state model is then characterized by the free energy

wth
1 (s) =

∑
i

[
w1(s, i)a

th(y; s) + kBTa
th(i; s) ln

(
a · ath(i; s)

)]
,

as an analog to (3.13b) and the tension

τ th(t) =
∑
i

κxb(x+ xi) a
th(i; s)

as an analog to (3.18).

3.2.2 Macroscopic models

A further reduction of the model from Huxley’57 equations has been proposed in [Bestel
et al., 2001; Chapelle et al., 2012] and reused in [Caruel et al., 2019]. It aims at establishing
dynamics equations for relevant macroscopic quantities such as the tension developed by
the population of myosin heads in a half-sarcomere. It has the advantage of reducing the
partial differential equation (3.14) of Huxley’57 model into a set of ordinary differential
equations, thus strongly reducing the computational cost. We give here a brief summary
of the steps required to obtain these equations following [Caruel et al., 2019].

We consider in all generality a multi-site model, i.e. the myosin head can bind to any
actin sites, which are regularly located along the thin filament at distances s+ jda ∀j ∈ Z.
The geometry of the system is defined by the half-sarcomere of length `hs and the surface
myosin head density ρsurf, both defined in the reference configuration. We define the
moment

Mp(t) =
1

da

∫ s+

s−

∑
j∈Z

(s+ jda)
pP1(s+ jda, t)ds. (3.23)

Integrating (3.14) and performing an integration by parts – with the boundary condi-
tions (3.19) – , we have for p ≥ 1

Ṁp(t) = pẋcMp−1(t)+fp−
1

da

∫ s+

s−

∑
j∈Z

(
f(s+ jda)+g(s+ jda)

)
(s+ jda)

pP1(s+ jda, t)ds,

(3.24)
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with

fp =
1

da

∫ s+

s−

∑
j∈Z

(s+ jda)
pf(s+ jda)ds.

Assuming that the sum of the transition rates f(s) + g(s) does not depend on the space
variable s, we can close the moment equation (3.24) and we obtain{

Ṁ0(t) = −
(
f + g

)
M0(t) + f0,

Ṁp(t) = pẋcMp−1(t)−
(
f + g

)
Mp(t) + fp for p > 0.

(3.25)

3.2.2.1 Linear elastic cross-bridge : BCS model

Assuming that the cross-bridges can be modeled as a linear spring, it has a quadratic
energy of the form

wh
1 (s) = wL

1 (s) =
κxb
2

(s+ s0)
2. (3.26)

where s0 is the length of the unloaded spring. We retrieve here the original the Bestel-
Clément-Sorine model (BCS). The macroscopic first Piola-Kirchhoff stress developed by
the muscle fiber is given by

Tc(t) =
ρsurf
da

∫ s+

s−

∑
j∈Z

κxb(s+jda+s0)P1(s+jda, t)ds = ρsurfκxb
(
s0M0(t)+M1(t)

)
. (3.27)

The macroscopic stiffness per unit surface is similarly given by

Kc(t) =
ρsurf
da

∫ s+

s−

∑
j∈Z

κxbP1(s+ jda, t)ds = ρsurfκxbM0(t). (3.28)

From the moment dynamics (3.25), we obtain{
K̇c(t) = −

(
f + g

)
Kc(t) + f0K∞,

Ṫc(t) = −
(
f + g

)
Tc(t) + ẋcKc(t) + (s0f0 + f1)K∞,

(3.29)

with K∞ = ρsurfκxb the stiffness in the rigor state where all cross-bridges are attached.
The relation between the force and the sliding velocity in steady-state shortening is

classically measured by experimentalists and is usually termed force-velocity relation. With
the macroscopic models, a closed form expression of the force-velocity relation can be given.
The steady-state tension is given by

T∞
c =

f0K∞
(f + g)2

ẋc +
s0f0 + f1
f + g

K∞. (3.30)

The force velocity curve is thus a straight line whose slope is a balance between the stiffness
of the cross-bridges and the transition rates of the myosin heads. A high stiffness of the
cross-bridge results in a high tension when the myosin head attaches since the myosin
head attaches in a stretched state. Similarly, a larger rate of attachment and detachment
decreases the slope. Indeed, with a higher cycling rate, the myosin head will detach faster
from the state where it develops a low or negative force and reattach on another actin site
where it will develop a high positive force.
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3.2.2.2 Non-linear cross-bridge : extended BCS model

We now consider a non linear spring, associated with a polynomial internal energy. The
related model is named extended BCS model. The energy of the cross-bridge is defined
by

wh
1 (s) = wNL

1 (s) =

n∑
i=0

ci
max(i, 1)

si.

The force is then given by

Tc(t) =
ρsurf
da

∫ s+

s−

∑
j∈Z

d
ds
wNL
1 (s)P1(s+ jda, t)ds,

=
ρsurf
da

∫ s+

s−

∑
j∈Z

n∑
i=1

cis
i−1P1(s+ jda, t)ds,

=

n−1∑
i=0

Ci+1Mi(t), (3.31)

where we defined
Ci = ρsurfci.

The dynamics of the force is given by

Ṫc(t) =
n−1∑
i=0

Ci+1Ṁi(t).

In the permanent regime, and using the moment dynamics (3.25), we obtain the relation

0 = C1

[
− (f + g)M∞

0 + f0

]
+

n−1∑
i=1

Ci+1

[
iẋcM

∞
i−1 − (f + g)M∞

i + fi

]
,

where M∞
i is the steady-state value of the moments given by the recursive relation deduced

from (3.25). They are given by
M∞

0 =
f0

f + g
,

M∞
i (ẋc) =

i

f + g

[
ẋcM

∞
i−1(ẋc) + fi

]
, for i ≥ 1.

(3.32)

Applying recursively (3.32), we obtain a general form of the steady-state moment value

M∞
i (ẋc) =

i∑
j=0

i!
j!fi

(f + g)i+1−j
ẋi−j
c . (3.33)

Noting that the steady-state is defined from (3.31) by T∞
c =

∑n
i=1CiM

∞
i−1, we have

T∞
c =

1

f + g

[
ẋc

n−1∑
i=1

iCi+1M
∞
i−1(ẋc) +

n−1∑
i=0

Ci+1fi

]
. (3.34)

which gives the explicit expression of force-velocity curve as a function of the model pa-
rameters using (3.33). Note that the steady-state force is a polynomial function of the
shortening velocity.
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3.3 Results

In this section we show to what extend the different models of our hierarchy succeed in
reproducing the experimental results.

We have derived two classes of models: the population models containing our most
refined stochastic model (see Section 3.2.1.1) and the PSE model (see Section 3.2.1.2)
and the macro-models containing the BCS model and its extensions (see Section 3.2.2).
In what follows, we will first present the calibration and the results for the population
models and compare the stochastic model to the PSE model; then we will present the
calibration of the macro model and study how they compare to the PSE model, the latter
being considered at the pivot of the whole model hierarchy.

3.3.1 Population models

3.3.1.1 Calibration

The model calibration procedure based here on cardiac experimental data is extensively
described in [Caruel et al., 2019]. It uses the hierarchical link between the stochastic
and the PSE model – the PSE model being an approximation of the stochastic model for
external loads of slow time scale. The calibration of the two models is thus performed
simultaneously and in a consistent manner.

The behavior of the population models relies on the definition of two families of func-
tions: the energy landscapes (wα, see (3.1)) and the attachment-detachment transition
rates (k+ and k− for the stochastic model or f th and gth for the PSE model).

Having functions as model parameter leaves, in general, a lot of freedom to calibrate
the model with the experimental data. However, we will show that within the function
family that we will choose and with the set of data used, there is actually not much leeway
for changes in the calibration.

For the energy landscapes, wα we will consider a simple bi-quadratic form in combina-
tion with an elastic element which, in addition to being analytically simple, have proven
efficient in reproducing the fast transient response of skeletal muscle fibers, see [Marcucci
& Truskinovsky, 2010; Caruel et al., 2013a] and Table 3.5.

For attachment and detachment transitions, kinetics are described by (minimally)
regularized piece-wise constant functions over the interior of the [s−, s+] interval. Near
the boundaries, the transitions rates either tend to zero or grow to infinity, exponentially
to ensure that the boundary property (3.8) and (3.19) are satisfied (see Table 3.5).

The most widely used experimental setup from which most of the currently used models
are calibrated consist in measuring the sarcomere shortening in response to a sudden force
step applied on an isometrically contracting muscle cell.

We first show that our choice of parameter functions allows to simplify the calibration
of the isometric population probability of being attached P̌1, which is the cornerstone of
the PSE model calibration, to the tuning of a reduced set of parameters only. Then, we
detail how each element of the isotonic response brings strong constraints on the model
calibration due to the direct relationship between the stochastic and the PSE model, the
constraints on the parameters of one model directly transpose to the other model.

Note that the calibration elements are general and can apply to any model derived
from the seminal Huxley’57 model. In particular, for model representing the power stroke
as a transition between several discrete chemical states [Eisenberg et al., 1980; Piazzesi &
Lombardi, 1995; Caremani et al., 2015], one can also compute the power stroke thermal
equilibrium tension τ th and use the same calibration procedure.
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Figure 3.2 – Illustration of the calibration ground principles. Note that the model elements rep-
resented here are chosen for illustration purposes and do not reflect the actual calibration. (a)
Isometric conditions. The ratio of attached heads ňatt depends on the width and the height of
the isometric population probability P̌1 (see orange area). The force per attached head τ̌ thc is a
function of the isometric population probability P̌1 and the equilibrium tension τ th. (b) Illus-
tration of the situation at the end of phase-II. The isometric distribution is shifted due to the
applied step in length. Note that the legend is the same as in panel (a). (c) Computation of the
stiffness in isometric conditions. The stiffness depends on the width of the isometric population
probability P̌1 and the asymptotic stiffnesses of the two potential wells κ1pre and κ1post. (d) When
the filaments slide past each other, the population probability population probability P1 is spread
towards negative values of s (see solid red curve). For the PSE model, the force is then given by
the integral of P1(s) against the thermal equilibrium tension τ th(s) (see area in blue).

Isometric indicators for cardiomyocytes symbol Value Reference
Power stroke characteristic length a 11 nm [Holmes and Geeves, 2000]
Distance between two actin sites da 40 nm [Craig and Padrón, 2004]
Cross-bridge stiffness κ 1.07 pNnm−1 [Pinzauti et al., 2018]
Density of thick filament in the
cross-section of thickness `hs

ρsurf 1.25× 1017 m−2 [Pinzauti et al., 2018]

Myofilament compliance Cm 17 nmMPa−1 [Pinzauti et al., 2018]

Table 3.1 – Parameters whose value is not adjusted in the calibration process but directly taken
from the literature.
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Fixed parameters Before turning to the calibration procedure per se, we mention that
some of the model parameters are not chosen through a calibration process but are directly
taken from experimental measurements. These parameters are listed in Table 3.1.

Isometric indicators The initial state of the fiber, in isotonic shortening experiments
is the so-called steady state isometric contraction. As we have already mentioned in the
introduction, at the heart level, the developed force is subjected to regulation mecha-
nisms, which, in particular prevents tetanization hence a sustained isometric contraction
in physiological conditions. Indeed, the heart acts as a blood pump alternating ejection
and filling phases corresponding to the contraction and relaxation of the cardiac muscles,
respectively. A sustained contraction would interrupt this cycle and is thus prevented
in physiological conditions. We refer to isometric conditions when the developed force
reaches its peak in a twitch contraction in which the length of the fiber is maintained
constant (specific experimental apparatus have been designed for that purpose [ter Keurs
et al., 1980; Van Heuningen et al., 1982; Caremani et al., 2016]

The main indicator of the isometric state is the maximal isometric tension (or stress) T0
generated by the fraction ňatt of the myosin motors bound to actin. In maximal activation
conditions, it has been experimentally shown that this tension can reach the value 118 kPa
and that it corresponds to a maximal ratio of attached heads ňatt = 0.15 and to a tension
per head of 6.14 pN [Caremani et al., 2016; Pinzauti et al., 2018].

For the PSE model, the isometric population probability P̌1 is the steady state solution
of (3.14) with ẋc = 0,

P̌1(s) =
f th(s)

f th(s) + gth(s)
=

f th(s)/gth(s)

1 + f th(s)/gth(s)
, (3.35)

which only depends on the ratio f th(s)/gth(s).
Our strategy consists in a parallel and interdependent calibration of the transition rates

k+ and k− and the attached energy landscape w1(s, y), or their PSE model counterparts
the equilibrium transition rates f th and gth and the equilibrium tension τ th.

To limit the number of parameters that characterize this ratio, we assume, first that
the attachment rate k+ is non-zero only in an interval Sf = [−`+, `+] around the near-
est binding site; second, that k+ is almost constant in this interval; and third that the
detachment rate k− is strictly constant on this interval. Using these hypotheses in the
definitions of f th and gth (see Equation (3.16)) together with the (regularized) piecewise
constant shapes proposed in Table 3.5 leads to the following approximations: for the
attachment rate

f th(s) ≈

{
f
th

= kmaxα0pre if s ∈ [−`+, `+],
0 otherwise,

where α0pre denotes the fraction of detached myosin heads in the pre-power-stroke con-
formation, which is independent of s but depends on the energy landscape w0. For
the detachment rate we have gth(s) ≈ gth = kmin for s ∈ [−`+, `+]. These two ap-
proximations illustrate the direct link between the calibration of the two models. In
summary, to define the isometric population probability P̌1, it is sufficient to prescribe
directly the ratio f

th
/gth and the support width df = 2`+ (see illustration in Fig-

ure 3.2(a)). If we carry on with these assumption, we obtain the following approximation:

(i) for the isometric ratio of attached heads ňatt =
1

da

∫ s+

s−
P̌1(s)ds ≈

df
da

f
th
/gth

1 + f
th
/gth

165



Chapter 3. Hierarchical modeling of force generation in cardiac muscle

[see the orange area in Figure 3.2(a] and (ii) for the isometric force per attached head
τ thc
ňatt

=
1

ňatt

1

da

∫ s+

s−
τ th(s)P̌1(s)ds ≈ 1

df

∫ `+

−`+

τ th(s)ds.

Given the bi-quadratic form postulated for the energy landscapes, the equilibrium
tension τ th basically depends on three parameters (see Figure 3.2(a)): the asymptotic
stiffnesses κ1pre and κ1post and the position of the negative slope part, which is directly
linked to the position of the potential barrier `1 of the attached energy landscape, see
Table 3.5. Note that the stiffness κ1post will be univocally determined from the fast
isotonic transients (see next paragraph), which leaves only 3 parameters (`+, κ1pre and
`1) to adjust in order to obtained the measured tension per attached heads. Once `+ is
fixed, the ratio f

th
/gth is calibrated to obtain the measured fraction of attached heads,

see Table 3.2.
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Figure 3.3 – Experimental data from fast transient experiments in force control conditions. (a)
Imposed sample tension. (b) Transient response following the tension drop. The response display
three different phases indexed by 1, 2 and 4 (see text for more explanations). (c) Signature of phase
I and phase II. The amount of shortening at the end of phase I and phase II, denoted respectively
by L1 and L2 is reported as a function of the relative tension drop. (d) Rate of shortening in phase
II as a function of the relative tension drop. Data from [Caremani et al., 2016] obtained with rat
cardiac muscle at 27 ◦C.

Fast isotonic transients A typical response of a cardiac muscle fiber to a sudden
force drop applied at the peak force T0 of an isometric twitch contraction is illustrated in
Figure 3.3(a) & (b). The step in force is applied within ∼ 200 µs, and the length response
is measured afterwards [Caremani et al., 2016].

The response displays three phases. First (phase I) an instantaneous shortening – L1

– is observed alongside the load step itself. Second (phase II), after the force has stabilized
to its new value, a second shortening – up to L2 – happens within the next ∼ 2 ms. After
this second phase, the system enters a steady state characterized by a constant load-
dependent shortening velocity (phase IV). In frog skeletal muscle at 4 ◦C, a pause in the
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shortening is observed between phase II and phase IV [Piazzesi et al., 2002]. This phase
is named phase III but is not observed with rat cardiac muscles at 27 ◦C.

The signature of phase I and phase II, namely the curves L1(Tc) and L2(Tc), are
presented in Figure 3.3(c). Observe that the measured amount of shortening after both
phases depends linearly on the load step.

To reproduce these experimental results, we exploit the fact that experimental studies
have shown that the relation L1(Tc) and L2(Tc) can also be obtained following a dual
protocol where the sarcomere length `hs is controlled while the tension Tc is recorded
[Piazzesi et al., 2002]. In this case a step in length δ`hs is applied and the fast transient
responses are characterized by the relations T1(δ`hs) (phase I) and T2(δ`hs) (phase II),
which are identical to L1(Tc) and L2(Tc), respectively.

To reproduce L1(Tc) and L2(Tc) with our model we will then compute the response
of our system to a rapid change in the filament relative position δs and compute T1(δs)
(phase 1) and T2(δs) (phase II).

Note however, that due to the filament compliance, the length displacement per half
sarcomere seen by the cross-bridges δs is different from the length displacement per half-
sarcomere δ`hs that is measured or imposed in experiments. To account for this difference,
we map the length displacement δs applied in our simulations for phase 1 and phase 2
to its δ`hs counterpart, which corresponds to the measured L1 and L2, using L1,2(δs) =
δs+Cm[T1,2(δs)− T0] [Caruel et al., 2019], where the filament compliance Cm is given in
Table 3.1.

The first phase (from δ`hs = 0 to δ`hs = L1) happens along with the applied load
step. At this timescale, all internal conformational degrees of freedom can be considered
“frozen”, and the fraction of attached heads is assumed constant. Hence phase I is a
purely elastic response to which both the myofilament and the cross-bridges contribute to.
Therefore, we model the tension T1(δs) as T1(δs) ∼ T0 +κρsurfňattδs, (see Appendix 3.6.2
for the details about how to obtain this approximation), which allows to calibrate the
parameter κ, [Linari et al., 1998].

The duration of the second phase immediately following the step is of about 1 ms which
can be considered to be much faster than the ATPase cycle timescale (∼ 30 ms). Hence,
one can assume that the amount of detachment and attachment events is low during
phase II before the shortening has reached the length L2. Consequently, the observed
rapid shortening in phase II is attributed to the thermal relaxation of the internal degrees
of freedom parametrizing the conformational change [Huxley & Simmons, 1971; Lombardi
et al., 1992] and so the tension at the end of this phase can be computed by shifting the
population of attached heads approximated by δs, (see Figure 3.2(b)).

T2(δs) ≈
ρsurf
da

∫ s+

s−
P̌1(s− δs)τ th(s)ds = ρsurf

da

∫ s+

s−
P̌1(s)τ

th(s+ δs)ds. (3.36)

For large shortening, one can further assume that the whole population of attached
cross-bridges are in the post-power-stroke conformation. The fact that the observed rela-
tion L2(Tc) is linear (see Figure 3.3(c)) suggests that the energy characterizing this state
is harmonic, hence the choice of the bi-quadratic form of u1, see (3.1) and Table 3.5.
Using the parametrization of Table 3.5, we can then derive the following large shortening
approximation (see Appendix 3.6.3 for the details about how to obtain this approximation)

T2(δs) =
ρsurf
da

∫ s+

s−
P̌1(s)τ

th(s+ δs)ds ≈ ρsurfňatt
κκ1post
κ+ κ1post

(δs+ s̃1 + a), (3.37)

which allows to univocally calibrate both κ1post and s̃1. The direct connexion between
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the two models is again fully explicit here through the link between τ th and the stiffnesses
defining the attached energy potential w1.

Note importantly that the above calibration on the linear portion of the L2(Tc) is
independent of the form of the population probability P̌1.

The slope of the T2(δ`hs) curve at the origin, which is given by ρsurf
da

∫ s+

s− P̌1(y)∂sτ
th(s)ds =

ρsurfκ̌
th
c , aggregates the contributions of the isometric population probability P̌1 and the

attached energy landscape through the equilibrium average tension τ th. Its value results
from the balance between heads contributing with a negative stiffness and heads contribut-
ing with a positive stiffness, see Figure 3.2(c).

Increasing the width (df ) of P̌1 leads to an increase in the stiffness while decreasing
the width of P̌1 decreases the stiffness, possibly to negative values. This puts a constraint
on the support of the attachment rate df and thus indirectly helps choosing a value of
the ratio f th/gth through the constraint on the isometric ratio of attached heads ňatt, see
above. Furthermore, an increase of the stiffnesses κ1pre and κ1post has a positive impact
on the slope at origin.

An additional element characterizing the response in phase II is the rate of tension
recovery r2 (in length control conditions). The rate of phase II is determined by the
shape of the attached energy landscape w1 and the viscosity η. The former being fully
constrained by the T2-curve and the isometric indicators, we use the information about
the rate of force recovery to adjust the value of the parameter η.

At this stage, the isometric population probability P̌1 is fully defined. The energy
landscape associated with the attached state parametrized by κ, κ1pre, κ1post, s̃, `1, is also
completely determined. If the ratio f th/gth is fixed, a particularization of the attachment
rates f th and gth is still to be done. The shape of the detachment rate gth for value of
s non close to the origin s = 0, along with the detached energy landscape w0(x, y) also
remain to the calibrated.

The parameters of w0(x, y) are less constrained than the other parameters of the model.
Indeed, only few data characterizing the behavior of the detached myosin heads are avail-
able, most of them being obtained with solutions of myosin heads and actin sites ex vivo,
whose applicability in the context of modeling the actin-myosin interaction in the sarcom-
ere may not be straightforward. We choose to calibrate the detached double well potential
positions y0post and y0pre so that they correspond to that of the attached double well po-
tential y1post and y1pre, respectively. The stiffness of the two wells κ0post and κ0pre and
the position of the barrier between the two wells `0 is set such that the jumps occurring
between the attached and detached state are associated with a “maximal” energy loss
given the constraint that w1 is now fixed and that the energy brought by ATP in the
detachment process µT is equal to 100 zJ [Barclay, 2015].

Shape of the force-velocity relation The force-velocity curve is the last element
that will allow to close the calibration. This data is obtained with a high certainty; it has
indeed been registered for decades with a great consistency in the results (see Figure 3.4).
There three main components in this data: the general shape, the high shortening velocity
behavior and the near isometric behavior (stall force).

The global shape of the force-velocity curve is mainly the result of a balance between
two effects. First, the shortening of the sarcomere reduces the force generated by attached
myosin heads. We call this effect the “stiffness effect”. Second, the ability of the myosin
heads to cycle regenerate the force generation capability – the myosin heads can detach
from a position where they exert low or even negative force and to reattach somewhere else
on the thin filament where they generate a positive force; we call this effect the “cycling
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Figure 3.4 – Summary of steady-state shortening experimental data measured on rat cardiac mus-
cles. We collect here all data point obtained in various sarcomere stretch and thin filament ac-
tivation conditions. All experiments are performed on trabeculae. (a) Force-velocity curve. (b)
Produced work. (Black) Data from [Van Heuningen et al., 1982] at 25 ◦C. (Yellow) Data from
[Daniels et al., 1984] at 25 ◦C. (Lilac) Data from [de Tombe & ter Keurs, 1990] at 25 ◦C. (Orange)
Data from [de Tombe & ter Keurs, 1992] at 25 ◦C. (Blue) Data from [Caremani et al., 2016] at
27 ◦C.
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Figure 3.5 – Parametric study on the force-velocity curve predicted by the PSE model. (a) &
(b) Illustration of the “cycling effect”. (a) The attachment rate kmax is varied while the ratio
kmax/kmin is maintained constant. The condition kmax/kmin constant also implies that f th/gth is
constant. (b) Variation of the position `−,l, which varies in the same way as the position of gth
pseudo-asymptote `l (see Figure 3.2(d)). (c) & (d) Illustration of the “stiffness effect”. Variation
of the stiffness κ and subsequent effects on the T2-curve (c) and the force-velocity curve (d). The
slope of the T2-curve constitutes the apparent stiffness for slow time scale responses (as it is the
case in steady-state shortening).
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effect”. Both effects are illustrated in Figure 3.5.
The cycling effect (see Figure 3.5(a)), is illustrated by the force-velocity curves pre-

dicted by the PSE model for varying the isometric attachment and detachment rates
kmax and kmin (thus augmenting the cycling rate) while maintaining the ratio kmax/kmin
constant. Note that these variations also translate into a variation of the thermal equilib-
rium transition rates f th and gth with a ratio f th/gth that remains constant. Notice that
since the heads always bind in a region where they exert a high force (see Figure 3.2(a)),
increasing the cycling rate increases the steady-state force produced at a given velocity.

In the PSE model, the equilibrium state in the energy potentials wα is assumed to
be always reached. Therefore the apparent force-shortening relation is thus always given
by the T2(δs) curve whose slope is an apparent stiffness, see (3.36) and Figure 3.2(a).
To illustrate the “stiffness effect”, we vary this apparent stiffness by changing the cross-
bridge neck stiffness κ, see Figure 3.5(c). Since the value δs = −(a + s̃1) corresponding
to T2(δs) = 0 (see Equation (3.37)) is independent from κ, increasing κ increases the
tension for low shortening (δs > −(a+ s̃1)) and decreases the tension for large shortening
( δs < −(a+ s̃1)).

At low shortening velocity, the heads experience a moderate displacement before de-
tachment and therefore exert a higher force at higher macromolecule stiffnesses. Con-
versely for high shortening velocity, the attached heads can reach a region where they start
to be under compression (negative forces) before they detach, and a higher macromolecule
stiffness then lowers the average force. These tendencies are illustrated in Figure 3.5(d).

In the calibration process, the stiffness parameters are already fixed, we can only adjust
the transition rates to make the model prediction of the force-velocity curve match the
experimental data. In particular, the global shape of the force-velocity curve is used to
particularize the parameters f th and gth.

Large shortening velocity behavior In steady state isotonic shortening, while
the myosin and actin filaments slide pass each other, the population probability P1(s) is
spread towards negative values of s. A zero force is obtained when the contributions of
heads exerting a negative force and that of heads exerting a positive force balance. This
behavior is illustrated in Figure 3.2(d).

In the PSE model, unloaded shortening sliding velocity is determined mainly by the
position `l of the vertical pseudo-asymptote of the detachment rate gth for negative values
of s, see illustration in Figure 3.2(d). The value of `l itself depends the position of the
detachment rate k− pseudo-asymptote – denoted `−,l – and on the reciprocal spatial
characteristic length λ3 for the stochastic model (see Table 3.5). Hence, different couples
(`−,l, λ3) may lead to the same force-velocity relation, and we present here only the effect
of `−,l, see Figure 3.5(b). When the vertical pseudo-asymptote of the detachment rate
is located at a higher position `−,l, the detachment rate is increased for all value of s at
the vicinity of s−. This results in an increase in the cycling rate, which, as presented in
Figure 3.5(b), leads to an increase of the developed force. Hence the maximum shortening
velocity is increased by increasing `l through an increase of `−,l.

Similarly, the position `rof the vertical pseudo-asymptote of the detachment rate gth for
positive values of s – parametrized by `−,r and λ3 – is chosen such that we can numerically
ensure that P1(s = s+) ≈ 0 when the sliding velocity is positive and corresponds to the
maximal physiological value observed in the filling phase of the heart or in the relaxation
phase of a fiber twitch contraction (ẋc ∼ 2 µm s−1).

Near isometric behavior – The shape of the force-velocity curve in near isometric
conditions – ie. for shortening with characteristic time `hs/ẋc that is small with respect
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Figure 3.6 – Investigation of the force-velocity curve in near isometric conditions obtained with
the PSE model. We compare three values of k∗ – black line: k∗ = 0, orange dashed line:
k∗ = 0.25(kmax − kmin) and blue dashed line: k∗ = 0.5(kmax − kmin). (a) Transition rates for the
considered value of k∗. (b) Global force-velocity curve with focus on the near isometric region of
the force-velocity curve. (c) Ratio of attached heads as a function of the shortening velocity. (d)
Force per attached head as a function of the shortening velocity.
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to the transition rates – is determined by a balance between two effects : a change in the
number of attached heads and a change in the averaged force per attached head. This
balance can lead to an increase or a decrease of the force at slow sliding velocities with
respect to the isometric force. In our calibration, the near isometric properties of the
force-velocity curve are adjusted with the function k∗, which is part of the detachment
rate k− definition (see Table 3.5).

In our reference model (k∗ = 0), the detachment function gth = kmin is constant
over the whole [s+, s+] except near the boundary where where it diverges. With this
detachment function, we observe that the tension actually increases at slow shortening
velocities compared to the isometric configuration, see Figure 3.5 and Figure 3.6(b, black
line). This behavior is not visible in the experimental data because of a lack at very slow
shortening velocities. Therefore, the introduction of such a feature in the model would
only be speculative. We thus present a variation of the transition rate that allows to
modulate the model behavior in this region.

The influence of a possible variation of the function k∗ is presented in Figure 3.6.
The function k∗ has three parameters: the position of the transition between the two
detachment rate regions `∗, the reciprocal characteristic length λ∗ and the detachment
rate value k∗.

In Figure 3.6, we show the effect of k∗. Increasing the detachment rate compared to
the attachment rate f th has two effects: it reduces the fraction of attached heads (see
Figure 3.6(c)) but it also increases the tension per attached heads (see Figure 3.6(d)).
The first effect has to be stronger than the second to eliminate the increase of the overall
tension at low shortening velocity. Furthermore, this increase of the detachment rate only
marginally affects the rest of the F-V curve, as shown in Figure 3.6(b). Therefore this
introduction of a s-dependence in the detachment rate can be adjusted only at the end
of the calibration procedure. Note that similar effect can be obtained by adjusting the
parameters `∗ and λ∗, also without affecting the global shape of the F-V curve.

In summary, the isometric indicators and the fast transients allow to unambiguously
determine the isometric population probability P̌1 and the attached energy landscape
w1. Adding information from the force-velocity curve leads to the unique definition of
the transition rates f th and gth. Only the detached potential w0 remains subjected to
variability in the calibration. More experimental data targeting the detached state would
be needed to reduce this variability.

3.3.1.2 PSE model vs Stochastic model

The list of functions and parameters obtained after the calibration procedure presented
in the previous section are listed and illustrated in Section 3.6.1. The detailed model
calibration is given in Table 3.5.

The PSE model is derived as the asymptotic limit of the stochastic model by perform-
ing the adiabatic elimination of the fastest time scales. We analyze here in detail the
consequences of this adiabatic elimination and the differences between the two population
models.

Isometric indicators We first consider isometric and energetics indicators. In isometric
condition, the PSE model and the stochastic model are almost equivalent as already
observed in [Caruel et al., 2019] with skeletal muscles indicator. We show in Table 3.2
that similar results are obtained in the case of cardiac data. The force per attached head
obtained in both models are consistent with the experimental data. The ratio of attached
head is over-estimated by 5%, leading also to a slight over-evaluation of the maximal
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Isometric indicators symbol Exp. value PSE model value
Ratio of attached heads ňatt 0.15 0.158

Force per attached head τ̌ thc / ňatt 6.14 pN 6.16 pN

Maximal total stress T0 118 kPa 121 kPa

ATP tension cost AT 0.0928 /s/head/kPa 0.0835 /s/head/kPa

Table 3.2 – Target isometric physiological indicators for the calibration on cardiac data. Further-
more, knowing that the relationship between the developed force and the ratio of attached heads is
linear on the one hand, the force [Caremani et al., 2016] in maximal activation conditions and the
ratio of attached heads in several activation conditions [Pinzauti et al., 2018] on the other hand,
maximal ratio of attached heads ňatt = 0.15 can be derived.

isometric stress.
In addition to the force and fraction of attached motors, our model can be used to

predict the energetic properties of the contractile system in isometric condition. We chose
as an indicator of the energetic performance the “ATP tension cost”, which is defined
by the ATP consumption rate per myosin head in the sarcomere per unit of produced
force. From the data of [de Tombe & Stienen, 2007] measured on rat cardiac cells at
25 ◦C, which give the ATP consumption per unit volume and geometrical data of Re-
conditi et al. [2017], which allow to derive a density of myosin heads per unit volume of
1.246 × 1023 heads/m3 (choosing a reference length of 1 µm for the half sarcomere), we ob-
tain a experimental tension cost of 0.0928 /s/head/kPa. Note that the ATP consumption
obtained experimentally is indeed only linked to the cycling myosin heads since experi-
ments are performed on skinned cells (in intact cells 30% to 40% of the energy is used to
transfer ions through membranes [Barclay, 2015]). In the Lymn-Taylor cycle, the ATP is
consumed when the detachment of the myosin head occurs. The ATP consumption rate
per myosin head is therefore equal to the flux of detachment per myosin head. For the
PSE model, the tension cost is given by

AT =
detachment flux per myosin head

produced force
=

1

da

∫ s+

s−
gth(s)P̌1(s)ds

ρsurf
da

∫ s+

s−
τ th(s)P̌1(s)ds

,

and we obtain a value of 0.0835 /s/head/kPa in relatively good agreement with the ex-
perimental data. It is important to note that in our calibration framework, the ATP
tension cost is not calibrated but predicted by the model. The fact that the model re-
produces this indicator without further adjustments confirms that our parametrization is
well constrained.

Fast isotonic transients We continue by comparing the calibrated models predictions
of the fast transient response with experimental data. The calibration results are presented
in Figure 3.7.

While the relation T2(δ`hs) is explicitly defined in the PSE model (see Equation (3.36)),
it has to be inferred from the average trajectory of the stochastic model internal variables
Xt, Y t and αt. We used the method proposed in [Ford et al., 1981; Caruel et al., 2019] to
reconstruct the T2(δ`hs) relation.

The fundamental assumption underlying the derivation of the PSE model is precisely
to neglect the time required for the equilibration of the internal mechanical degrees of
freedom corresponding to the power stroke. There is thus a theoretical equivalence between
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Figure 3.7 – Comparison of the calibrated model prediction and experimental data for the fast
transient response. (a) Signature of the transient response in phases 1 and 2 in length control
conditions. The model predictions are obtained with a length step applied in 100 µs (marks in
green). We also present the relation between the length step and the force T1 with a fast step of
10 µs (marks in black). (b) Recovery rate in phase 2 in length control conditions. Experimental
data and stochastic model prediction for various values of the viscosity. The experimental data are
extrapolated from force control conditions data (see Appendix 3.6.5 for a detailed explanation).
(c) Influence of viscosity on the force T1- and T2-curves predicted by the stochastic model.
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the end of phase II for the stochastic model and the PSE model. This translates into the
numerical simulations (see Figure 3.7) showing that the (δ`hs, T2)-curves obtained with the
stochastic and the PSE models are the same. As a result, the elastic response of the PSE
model aggregates the dynamics of these two – fast – elements into a single – instantaneous
– non-linear elastic dynamics.

The accordance between the predictions of the calibrated PSE model (blue line in
Figure 3.7(a)) and the predictions of the stochastic model (green triangles in Figure 3.7(a))
validates the hypotheses of the PSE model, that the force length relation characterizing the
end of phase II corresponds to the thermal relaxation of the internal degrees of freedom.

The response in phase I, which corresponds to the fastest time scale, can only be
captured by the stochastic model. Indeed, the linear elastic element, which models this
initial response phase in the stochastic model, is incorporated into the equilibrium non-
linear elastic element of the PSE model (blue line in Figure 3.7(a)). Note that with a length
step of 100 µs the model predictions match the experimental for short steps only (up to
−3 nm). The complete experimental data trend can nevertheless be obtained with a fast
length step. This discrepancy is due to viscosity effect and is discussed in Section 3.4.1.1.

The relation T1(δ`hs) is obtained simply by reporting the value of the tension at the
end of the applied length step. In Figure 3.7(c), we show different T1(δ`hs) obtained with
the stochastic model for different values of η. The reference value is chosen so that the
rate of recovery – from phase I to phase II – matches the experimental observations (green
symbols Figure 3.7(b), see Table 3.5). We see that with this reference value, the T1(δ`hs)
relation does not match the experimental data, which means that the timescale of phase
II is not large enough compared to the timescale of the elastic response. To increase the
timescale separation, one can increase the viscosity parameter. The results presented in
Figure 3.7(c) show that the experimental T1(δ`hs) relation can be recovered by increasing
4-fold the viscosity, but this deteriorate the fit of the rate of phase II. Notice however that
modifying the viscosity marginally affects the T2(δ`hs) relation.

Isotonic shortening velocity The force-velocity relations obtained with both the
stochastic model and the PSE model are shown in Figure 3.8(a).

In phase IV, the developed force is the result of the balance between the “stiffness
effect” and the “cycling effect” as presented in Section 3.3.1.1.

In the stochastic model, the “cycling effect” mentioned in Section 3.3.1.1 is limited by
the ability of the myosin heads that detach to regain the power stroke capability. This
corresponds to the transition from the post-power stroke state to the pre-power stroke
state in the detached energy landscape. The time scale of this transition is defined by
the energy landscape itself (mainly through the sharpness of the energy barrier) and the
viscosity. With a lower viscosity, the transition time between the energy wells is reduced
and the myosin heads recover their power stroke capability faster, thus reinforcing their
ability to cycle.

The PSE model corresponds to the limit of this process with an instantaneous power-
stroke capability recovery. It implies that the heads that detach are immediately available
for reattachment. Therefore, the thermal equilibrium assumption strengthens the “cycling
effect”. For this reason, the force developed in phase IV by the PSE model at a given
shortening velocity is always higher than that of the stochastic model, as illustrated in
Figure 3.8((a) and (d)). This effect is reduced by a decrease in the internal viscosity η,
see Figure 3.8(d).

Note that at the time scale of a cardiac contraction twitch – about 100 ms – , the time
to reach the end of phase II – on average 0.1 ms – is negligible. Moreover, the physiological
load in vivo ranges between 45 % and 65 % of the maximal load (see Section 3.3.2.2). In
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−ẋc (µm s−1)

Ė,
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Figure 3.8 – Steady state isotonic shortening response. (a) Force-velocity curve for the stochastic
model and the PSE model. (b) Produced work rate and energy input rate per myosin head in
steady state shortening conditions. (c) Efficiency of the transduction of ATP energy into work
for the PSE model in steady state shortening conditions. (d) Influence of the viscosity on the
force-velocity curve computed with the stochastic model.
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this region, the force-velocity curve of the stochastic model and the PSE model are similar,
see Figure 3.8(a).

Finally, as in isometric contraction, we are able to predict the mechanical power and the
ATP consumption rate during the steady state isotonic shortening, see Figure 3.8(b). The
work production rate and the associated ATP energy consumption rate per myosin head
can straightforwardly be computed from the steady state isotonic shortening response.
They are defined respectively by

Ẇ = ẋcτc,

Ė =
µT
da

∫ s+

s−
gth(s)P̌1(s)ds,

where µT is the chemical potential brought by ATP. From the latter the yield ηT = Ẇ/Ė
can be calculated (see Figure 3.8(c)).

Again without any particular adjustment of the parameter and using the validated
ATP hydrolysis energy µT = 100 zJ, our model recovers the ATP consumption rate in iso-
metric conditions. Our prediction of the consumption rate and the yield during shortening
remains to be validated experimentally.

Equilibration time As observed in the previous paragraphs, the accuracy of the PSE
model relies principally on the assumption of an ultra-fast relaxation of the internal degrees
of freedom, which means assuming that the variables Xt and Y t are distributed according
to the thermal equilibrium distribution at any time. Qualitatively, this assumption is valid
if the “external effects” vary with a time scale that is longer than that requested to reach
the thermal equilibrium. We have shown in particular that decreasing the value of the
internal viscosity η tends to reduce the differences between the two population models,
see Figure 3.7 and 3.8.

To quantitatively test the limit of validity of the thermal equilibrium assumption, we
numerically estimate the equilibration time in the attached and detached potentials for
the calibration proposed in Table 3.5. We perform this estimation with the convergence
time of the first and second moments of the probability distributions p(x, y, 0; s, t) and
p(x, y, 1; s, t) computed for a population of myosin heads evolving in the attached and
detached energy landscapes wα without jumps from a initial random distribution. The
detached energy landscape is the same for all value of s and we thus compute a single
estimate. On the contrary, the attached energy landscape depends on s. We therefore
estimate the equilibration time for different values of this parameter.

The numerical results are presented in Figure 3.9. They show that the equilibration is
faster in the attached potential than in the detached potential, the latter is therefore the
limiting reaction in the global equilibration process.

We can then use the equilibration time in the detached potential to estimate that the
global equilibration time τeq is τeq = 3.4 ms (see Figure 3.9). We can then define a limit
shortening velocity vt at the scale of the myosin head taking the power stroke distance a
as characteristic length by vt = a/τeq = 3.24 µm s−1. A comparison of the force-velocity
curves for the PSE model and the stochastic model (Figure 3.8(a)) shows indeed that the
two curves diverge from one another around the limit shortening velocity vt.

For shortening velocities ẋc lower than vt, the contraction rate ẋc/a is slow compared
to the equilibration rate in the energy landscape. A myosin head that detaches has time to
recover its power stroke capability and to attach to the next actin site (head can only attach
when they are in the pre-power stroke configuration). For shortening velocities higher than
vt, the contraction rate is higher and a myosin head that detaches may not recovery its
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Figure 3.9 – Estimation of the equilibration time in the attached and detached potentials with the
first and second moments of the respective probability distributions. (a) & (b) Detached potential.
(c) & (d) Attached potential.

ability to reattach fast enough to bind to the next actin. It thus loses opportunity to
attach, reducing the apparent cycling rate.

The discrepancy between the force-velocity curve of the PSE model and that of the
stochastic model at high shortening velocities is thus due to a lower relative cycling capa-
bility in the stochastic model compared to the PSE model.

3.3.2 Macro models

3.3.2.1 Calibration

We recall that the main assumption made to obtain the simplified “macro models” was to
consider that the sum f(s)+g(s) was constant over the whole [s−, s+] interval. To compare
the PSE model with the macro-models we thus need to define “equivalent” transition rates
for the different versions of the macroscopic models.

We chose the attachment rates of the macro models such that the maximal value f
of the attachment rate is equal to f

th of the PSE model and we adjusted the width of
region where the attachment function f(s) does not vanish, such that the isometric ratio
of attached heads ňatt matches the data while verifying the condition that f+g is constant
(see Figure 3.10(a)). The minimal value of the detachment rate g is denoted by g.

The first macro-model (BCS model) assumes a linear elastic cross-bridges characterized
by two parameters: a stiffness κxb and a reference length s0. We consider two cases for the
definition of these constants. In the first cases, we chose the value of the stiffness measured
experimentally κxb = κ = 1.07 pN nm−1 and the pre-strain s̃ = 5.74 nm that leads to an
isometric force per attached head of 6.14 pN (see free energy profile in Figure 3.10(b)). In
the second case, we aim at approximating the response at the end of phase II (δs, T2) with a
linear elastic response. The cross-bridge stiffness is then taken equal to κxb = 0.52 pN nm−1
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Figure 3.10 – (a) Transition rates used for the macroscopic models. (b) Free energy of the cross-
bridge for the various macroscopic models considered. Note that the energy levels are defined up
to a constant. (c) Elastic response of the different macroscopic models considered and the PSE
model. (d) Force-velocity relation for the the different macroscopic models considered along with
experimental data (same data as in Figure 3.4).
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Isometric indicators Symbol PSE model BCS model
recalibrated extended
BCS model BCS model

Ratio of
ňatt 0.158 0.152 0.152 0.152

attached head
Force per

τ̌ thc / ňatt 6.16 pN 6.14 pN 6.32 pN 6.14 pN
attached head

Maximal total
T0 121 kPa 116 kPa 120 kPa 116 kPa

stress
ATP tension cost

AT 0.0835 0.110 0.106 0.110
(/s/head/kPa)

Table 3.3 – Target isometric physiological indicators for the calibration on cardiac data of the PSE
model and the macro models.

and the pre-strain s̃ is then set to 12.15 nm to obtain an isometric force per attached head
of 6.31 pN (see free energy profile in Figure 3.10(b)). We call this model the re-calibrated
BCS model.

The second macroscopic model (extended BCS model) assumes a non-linear elastic
energy for the cross-bridge. We choose to define the free energy of the attached state with
a polynomial of order 6 (n = 6) and calibrate the model so that the elastic response follows
the (δs, T2) response (the model parameters are given in Table 3.6), see Figure 3.10((b)
and (c)).

3.3.2.2 PSE model vs macro models

Isometric indicators The isometric indicators are presented in Table 3.3. With the
proposed calibrations, all models are able to reproduce the key isometric indicators.

Effective elastic response By construction, the PSE model and the macro-models
cannot reproduce the fast transients. The parameters of the stochastic model has been
chosen such that the effective elastic response of the PSE model reproduces the (δ`hs, T2)
relation obtained from the isotonic fast transients.

With the calibration choices made in the previous section, the elastic response of the
BCS model corresponds to the (δs, T1)-curve, while the elastic response of the re-calibrated
BCS model corresponds to a linear approximation of the (δs, T2)-curve (see Figure 3.10(c)).
As expected the extended BCS model best reproduces the results of the PSE model as
regards to the effective elasticity.

Steady state isotonic shortening We compare the steady-state isotonic behavior of
the macro-models in Figure 3.10(d). The force-velocity relation corresponding to both
BCS models are straight lines given by (3.30), see Figure 3.10(d, purple and green lines).
In accordance with the “stiffness effect”, the force of the re-calibrated BCS model (green
dashed line) is larger at any fixed shortening velocity than that of the BCS model, which
has a larger stiffness. Note that with linear macroscopic models, the “stiffness effect”
appears straightforwardly in the equation (3.30).

For the non-linear model (extended BCS model), the force-velocity curve is given
by (3.34). It remains close to the PSE model at low shortening velocity as expected from
the higher force at small displacements. However the polynomial approximation leads to
a dramatic force drop for s < 20 nm therefore, as the velocity increases, the non-linear
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BCS model rapidly looses force and thus has a low maximum shortening velocity, again
because of the “stiffness effect”.

Macro-models as effective heart contraction models To put the development of
the macro models into perspective, we compare the implication of the behavior differences
between the two proposed versions (linear elastic and non-linear elastic) in the context
of heart modeling. Within the heart cycle, the active contraction takes place during the
ejection phase.

Considering experimental pressure-volume loop and end-systolic pressure-volume re-
lation obtained on rats [Sato et al., 1998; Pacher et al., 2004], the range of physiological
loads can be estimated to be between 45 % and 65 % of the maximal load (the physiolog-
ical region is indicated in blue in Figure 3.10(d)). In this region the shortening velocity
measured experimentally has an average value of 2 µm s−1. The same value is predicted
by the PSE model and the re-calibrated BCS model, whereas the BCS model predicts a
shortening velocity of 0.6 µm s−1.

Denoting the duration of ejection τe and assuming that the heart cavity is spherical
and that the thickness is negligible, we obtain a end-systolic volume VES of

VES = VED

(
1 + ẋc

τe
`hs

)3
.

The ejection fraction being defined by (VED − VES)/VED and taking a duration of ejection
equal to 45 ms and an end-diastolic volume of 200 mL, the BCS model would predict an
ejection fraction of 8 % whereas the re-calibrated BCS model would give a value of 35 %.
Note that the ejection fractions estimated with the PSE model and the re-calibrated BCS
model are outside of the physiological range at 37 ◦C, which is 50–65 % [Pacher et al., 2004].
This is because the models are calibrated on data obtained at 25 ◦C, the results can thus
not be physiological. Considering the data measured by de Tombe & ter Keurs [1990]
at 30 ◦C, we see that the shortening speed in the physiological range is approximately
5 µm s−1, which leads to an ejection fraction of 53 %.

The BCS model is thus not applicable in the context of heart modeling. On the
contrary, the re-calibrated BCS model has good properties to be used in heart simulations.
Its force-velocity curve presents a good match with the data over the whole physiological
range and the elastic response is in good agreement with the experimental (δs, T2)-curve.

The PSE model has the capability of reproducing the end of phase 2 response and the
whole force-velocity curve. The computational complexity is further increased because the
dynamics is governed by a partial differential equation. Note that a curved force-velocity
relation can also be obtained with a macroscopic model using a linear elastic cross-bridge
with the addition of a velocity dependent term in the definition of the detachment rate
[Chapelle et al., 2012; Månsson, 2010].

The use of one or other of the models will naturally depend on the goal of the simula-
tion. For a heart simulation in which a default physiological active behavior is sufficient,
the re-calibrated BCS model is probably the best trade-off between the physiological con-
sistency and the computational cost. However, if the heart simulation is targeting the
active behavior of the cardiac tissue, the PSE model should be recommended. Indeed,
with its tighter link to the physiology, the PSE model main advantage is to be able to
give a better physiological interpretation of the simulated behavior. Moreover, it can
consistently transfer properties across time and space scales, for instance the impact of a
cardiomyopathy that affect the actin-myosin interaction can then be incorporated in the
model by an adjustment of the calibration and then brought to the macroscopic space
scale.
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3.4 Discussion

Building macroscopic mechanical models of the heart contraction that are compatible with
the micro-scale physiology is a major step toward the use of numerical simulation in clini-
cal situations. Achieving this goal requires overcoming two difficulties. First, formulating
comprehensive models of the molecular mechanisms necessarily requires to define an in-
creasing number of model parameters that cannot be unambiguously calibrated. Second,
implementing these complex models into a standard finite element simulation framework
implies solving the classical continuum mechanics dynamic equations coupled with the
local equation of the micro-scale physiological models. Since the local equations have to
be solved at each integration points of the macroscopic structure (finite element mesh),
increasing the contraction models complexity can dramatically increase the CPU time,
making the simulation tool impractical.

We proposed a method to circumvent these drawbacks by formulating a hierarchy of
interconnected mechanical models of the actomyosin contractile system. At the base of
this hierarchy are two population based models, which we have shown to be almost uni-
vocally calibrated using data from classical benchmark experiment. We put forward that
these models, once calibrated, can reproduce the most important mechanical indicators
(isometric force, force-velocity relation, ...) of the actomyosin system.

In this section we put our results in perspective with other theoretical and experimental
works.

3.4.1 Limitations of the models

As we have shown in Section 3.3, our model is able to reproduce the most fundamental
physiological indicators of muscle contraction with a rather limited number of parameters
compared to other models. However, our models face some limitations.

3.4.1.1 Viscoelasticity

Internal viscous damping controlling the kinetics of the relaxation of the conformational
variables Y is the essential link between the stochastic model and the PSE model. The
lower the internal viscosity parameter η, the more valid the PSE approximation. With
our calibrated model the characteristic time of the relaxation of Y towards equilibrium is
γstoch = η/κ = 45 µs (see Table 3.5), a value obtained by adjusting the parameter η to
match the timescale of the rapid force recovery following a length step (see Section 3.3.1.1
and Figure 3.7). This value is smaller than the duration of the force step used in exper-
iments [Caremani et al., 2016], which suggest that the T1 response is viscoelastic rather
than elastic, partially involving the internal damping. We checked that a good agreement
with the experimental points can be recovered either by reducing the step duration or
increasing η, see Figure 3.7.

Two comments can be made in light of these results. First, the data we used to
calibrate our parameter η are extrapolated from measurement performed in force controlled
conditions [Caremani et al., 2016], while our simulations are done in length controlled
conditions. There is a known difference between the two rates of phase II, which has been
linked to the nonequivalence of the two loading protocols [Caruel et al., 2013a]. It is thus
possible that our extrapolation is not accurate.

Second, and more importantly, the assumption that phase I is a purely elastic response
may be erroneous, which implies that the stiffness κ ∼ 1 pN nm−1 obtained in [Caremani
et al., 2016; Pinzauti et al., 2018] is underestimated, because it includes viscosity effects.
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New experiments with faster load changes, typically about twice as fast, would be needed
to confirm or contradict this value.

This conclusion is also supported by the fact that the myosin stiffness in skeletal muscle
is larger, about 2.7 pN nm−1 [Piazzesi et al., 2007]. A new calibration is required to assess
how a higher value of κ would affect the results obtained with our models.

However, we mention that experiments on rat cardiomyocytes are performed at 25 ◦C
while skeletal muscles are tested at 4 ◦C, and therefore such comparison of the stiffnesses
is not straightforward. It is expected that all physiological processes are speeded up by
an increase of temperature and, indeed, the measured rate of phase 2 is about four times
larger on cardiac sample than on skeletal samples, and the transition rates needed with
our model to match the measured power-output of a fiber are about six times larger on
cardiac sample than on skeletal samples [Caruel et al., 2019].

3.4.1.2 Rate of tension redevelopment

In the calibration process, we adjust the transition rates k+ and k− to fit the experimental
force-velocity curve. In particular, the parameters kmax and kmin, or equivalently the
value of the equilibrium transition rate f

th and gth, influence the global shape of the
force-velocity curve (see Section 3.3.1.1).

de Tombe & Stienen [2007] propose an alternative way to calibrate these model param-
eters. They measure the tension redevelopment characteristic time in isometric conditions
after applying a fast release-restretch maneuver to force the detachment of some myosin
heads. With this loading protocol, the dynamics of the tension rise is supposedly not
affected by the thin filament activation process. For the family of models derived from the
Huxley’57 model, this characteristic time τtr is given by τtr =

1

f + g
. Coupling these data

with the ATP consumption measurement, which is linked to the detachment rate g, they
obtain an estimation of the transition rates f and g. For rat cardiac muscle at 25 ◦C, they
obtain f = 35.0 s−1 and g = 14.4 s−1. These values are different from the ones obtained
after our calibration. We have f th = 251 s−1 and gth = 63.2 s−1, which means that our
model would fail to reproduce the kinetics of force redevelopment reported in de Tombe
& Stienen [2007]. Nevertheless, if we use the value proposed by [de Tombe & Stienen,
2007] – all other things remaining equal – , we obtain the force-velocity curve presented in
Figure 3.11, which does not match the experimental data. This comparison illustrates one
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Figure 3.11 – Force-velocity curve using the transition rate values given in [de Tombe & Stienen,
2007], all other model parameters remain as given in Table 3.5.

of the current challenges in the understanding and modeling of muscle contraction: How a
given model can match both the observed power-output of the fiber – which necessitates
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a high cycling rate – and the rather low rate of force redevelopment – which necessitates
low cycling rate? For a discussion of this conundrum, we refer to Mansson et al. [2015].

To resolve this issue Pertici et al. [2018] (simplified version of Caremani et al. [2015])
proposed a model that is able to capture the physiological cardiac force-velocity curve
without involving a cycling rate as high as in our calibration. To do so, they introduce
the possibility for the attached myosin heads to slide to a neighbor actin site without
detaching, thus restoring a part of their force generation capability without consuming
ATP. Another attempt consisting in prescribing a phenomenological dependence of the
attachment rate on the shortening velocity is considered in Månsson [2010]. While both
attempts successfully reconcile the two apparently contradicting observations within a
single model, to our best knowledge, further studies are required to assess the validity of
their assumptions.

3.4.1.3 Compatibility with X-ray diffraction

As we discussed in Section 3.3.1.1, the width df of the equilibrium attachment rate support
Sf (see Figure 3.2) is adjusted to match the indicators of the isometric contraction. We
have df ≈ 8 nm, which is larger to values reported for instance in [Piazzesi & Lombardi,
1995; Caremani et al., 2015; Mansson et al., 2015] but comparable to the values reported
in [Smith et al., 2008]. According to [Reconditi, 2006], the dispersion of the projected
mass of the attached myosin heads on the actin filament in isometric contraction is about
5 nm, which is incompatible with a wide distribution of the attachment rate. To reconcile
our model with these observations, one can consider a chain of half-sarcomeres as the
elementary unit of the contraction instead of a single representative motor as it is done
most of the time. While the tension-elongation relation τ thc (s) of a single motor shows a
region of negative slope, Caruel & Truskinovsky [2018] have shown that, with the same
parameters, the tension-elongation relation of a series arrangement of half-sarcomere is
necessarily larger or equal to 0. If we take such a relation as a “constitutive behavior” of
the PSE model, we would need a much lower value of df to match the isometric contraction
indicators, indeed.

3.4.1.4 Comparison with other models

Our model can be compared to two other Huxley’57-type models, the first one developed
in [Pertici et al., 2018] and the other in [de Tombe & Stienen, 2007], see Table 3.4.

One of the major differences is that our models consider the actin periodicity to be
da = 38 nm, which corresponds to the periodicity of the double helix, whereas the other
models consider the distance between monomers: da = 5.5 nm. To match the experimental
indicators of the isometric contraction both Pertici et al. [2018] and de Tombe & Stienen
[2007] define a positive attachment rate over the interval df = da whereas our model has
df < da. The consequence of this choice is that the fraction of the heads that are attached
in isometric contraction ňatt can, in the PSE model, be decorrelated from the duty ratio
r, i.e. the fraction of the cycle that a motor spends bound to actin. Indeed, the fraction
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Table 3.4 – Model comparison in isometric conditions. Note that we consider in this table the
model proposed by Pertici et al. [2018] without the possibility of actin shifting so that we can
compare the calibration of the transition.

Pertici et al. [2018] PSE model de Tombe & Stienen [2007]
da 5.5 nm 40 nm 5.5 nm
df 5.5 nm 8 nm 5.5 nm
f 15 s−1 250 s−1 35 s−1

g 40 s−1 60 s−1 14 s−1

ňatt 0.3 0.2 0.7
r 0.3 0.8 0.7
JATP
µT

12 s−1 12 s−1 9.8 s−1

τtr 2 × 10−2 s  3 × 10−3 s  2 × 10−2 s 

F-V curve   

of attached heads and the duty ratio are given by

ňatt =
1

da

s+∫
s−

P̌1(s)ds =
df
da

f

f + g

r =

1
da

s+∫
s−

1
g(s) P̌1(s)ds

1
da

s+∫
s−

(
1

f(s) +
1

g(s)

)
P̌1(s)ds

=
f

f + g
,

so that having df = da necessarily implies r = ňatt. Another consequence of having
df 6= da is that, a significant fraction of heads cannot attach and therefore do not consume
energy. The consumption of ATP is defined by

JATP
µT

=
1

da

s+∫
s−

g(s)P̌1(s)ds = g ňatt = g
df
da

f

f + g

which shows that, even with high attachment/detachment frequencies, the energy con-
sumption of the PSE model can be kept low, again by tuning the ratio df/da.

As explained above the two-state models presented in Table 3.4 cannot reproduce
both the rate of force recovery τtr and the force velocity relation at the same time. In the
case of Pertici et al. [2018], the two state model as to be supplemented by the addition
of the possibility for actin shifting without detachment in order to reproduce the power
output. We chose to concentrate on reproducing the force-velocity relation assuming
that other physiological mechanisms may play a role in the specific kinetics of the force
redevelopment.

3.4.2 Limitations of our calibration

First, the isotonic shortening protocols target either rapid transient or steady state dy-
namics. One can also consider the protocols aiming at the transient dynamics such as the
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response to applied shortening and immediate restretch to study the kinetics of the non-
steady-state force development [de Tombe & Stienen, 2007]. We have shown show that the
classical models cannot both reproduce this force redevelopment dynamics and the steady
state force-velocity relation without adding new still experimentally unvalidated modeling
assumptions.

Second, the experiments are performed at 25–27 ◦C and not at body temperature for
technical reasons. Temperature is known to affect the shape of the force-velocity curve,
the value of the unloaded shortening velocity V0 and the value of the force developed in
isometric conditions [de Tombe & ter Keurs, 1990], but also the apparent cycling rates of
the cross-bridges [de Tombe & Stienen, 2007]. However, the only range of temperature,
at which all types of quantitative characterization of the cardiac muscle behavior are
available, is around 25 ◦C. We will therefore perform the calibration of our models with
data measured at this temperature.

Finally, the actin-myosin interaction quantitative properties vary between species. Ex-
periments performed on rat trabeculae will therefore not give precise information and the
behavior of human cardiac muscles.

3.5 Conclusion
The acto-myosin interaction is a fundamental force generation mechanism, present in a
wide range of biological processes, from cell motility to muscle contraction. Its physical
modeling has been the object of intense research activities over the last decades, resulting
in increasingly comprehensive simulations of its physiology. In parallel, the development
of numerical medicine and the associated patient-specific simulations, now open the way
to enriched clinical procedures, where adequate models of the microscopic physiological
mechanisms play a crucial role.

To be fully operational in practice, patient specific simulations need to be computa-
tionally efficient to obtain results in real time, which is usually incompatible with a high
degree of model refinement. Increasing computational cost is, on the one hand, a direct
consequence of the multi-scale – in time and space – nature of the physical phenomena,
requiring sophisticated and time consuming algorithms for their simulation. On the other
hand, comprehensive model usually require finely calibrating a large number of parame-
ters, based on a limited set of data. Even though substantial progresses have been made
in data assimilation techniques [Moireau & Chapelle, 2011], the identifiability of com-
plex active models with data obtained from current standard acquisition technics remains
limited.

In this paper we have addressed this issue in the context of the modeling of the acto-
myosin mechanical behavior in heart contraction. Our approach is to develop a hierarchy
of interconnected models of the actomyosin system, from the more refined, accounting for
a large number of physiological indicators, to the more coarse-grained, allowing for fast
simulation at the organ scale.

We started with a stochastic mechanical model of a population of molecular motors
constitutive of a sarcomere, which was developed in [Caruel et al., 2019] but only validated
for skeletal muscle. We have shown that this model can be calibrated to reproduce essential
mechanical indicators of the cardiac contractile unit that can be obtained experimentally.
The calibration procedure leads to a robust definition of the parameters value, which allow,
in particular, for specifically identifying the effect of a parameter value on the output of
the model.

The stochastic model is formulated to reproduce the fastest molecular processes in-
volved in the transient isotonic shortening of cardiomyocytes ex vivo, providing essential

186



3.6. Appendices

information about the mechanical characteristics of the cross-bridges. Since theses pro-
cesses are characterized by timescales of the order of 1 ms, their direct simulation will
dramatically impair the computational efficiency of a 3D organ simulation.

We propose a first coarse graining step by building on the separation of timescales
between the power-stroke mechanism, playing a major role in the isotonic fast transient,
and the attachment-detachment process of the myosin motor on actin, whose timescale is
at least one order of magnitude larger than that of the power stroke. By assuming that
the internal stochastic variables parametrizing the power-stroke conformational change
quickly relax towards their equilibrium distribution, we formulated the PSE model, which
appears as an instance of the landmark Huxley’57 family of models whose parameters
are directly inherited from the stochastic model and not postulated a priori. This model
however requires solving a population density, whose dynamics still takes the form of a
local PDE in a finite element simulation environment.

The contraction model can be further simplified by considering that the quantities
of interest at the macro-scale are only the moments of this density, representing average
physiological indicators (force, stiffness, ATP consumption rate etc...) over a large pop-
ulation of motors. By imposing specific constrains on the parameters of the PSE model,
we derived the system of ordinary differential equations, accounting for the moments dy-
namics. This type of moment-based approach can be combined with standard geometrical
simplification of the heart to construct reduced dimensional models of the organ that can
be simulated in real time and therefore used as a primary estimation tool or for rapid
pre-calibration purposes [Caruel et al., 2013b] or in clinical contexts [Le Gall et al., 2019].

The advantage of our approach is that the hierarchical relation between the models
allow to predict the consequences of microscopic actin-myosin constitutive behavior varia-
tions, for instance as a result of a disease, at the larger time and spaces scales. In addition
the coarse graining approach is well controlled i.e. the loss of information inherent to the
simplifications is quantified and the associated hypothesis can always be tested. There-
fore, a more refined model can be called upon if needed for a specific application, without
having to start over a tedious calibration procedure. Moreover, the method is not specific
to our starting stochastic model: it can be applied to the widely used chemical-mechanical
modeling framework [Eisenberg et al., 1980], which, through elimination of the fastest
chemical-like reaction, can be also reduced to simple population model and further to
moment-based model [Zahalak, 1981].

Finally, we recall that only the basal mechanical behavior of the actomyosin system
have been addressed in this work. In particular, all the regulation aspects, essential for a
relevant simulation of the organ behavior, remain out of the scope of our study. Detailed
activation models also involve the simulation of the dynamics of populations of active and
inactive agents – actin sites or myosin heads – using similar chemical analogy. Therefore
building a similar model hierarchy, might also be a solution for an organ-scale simulation
of the microscopic activation and regulation physiology.

3.6 Appendices

3.6.1 Reference calibration

The double quadratic well potentials uα are presented in Figure 3.12. Combining them
with the myosin neck potential energy, we obtain the energy landscapes wα of the attached
and detached states. They are depicted in Figure 3.13. The transition rates k+ and k−
are presented in Figure 3.14.

From these calibration choices, we derive the constitutive elements of the PSE model.
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The energy landscapes uα allow to compute the equilibrium probability densities pth0 and
pth1 . Then, the integration against the transition rates k+ and k− leads to the derivation
of the thermal equilibrium transition rates f th and gth. The elements of the PSE model
are presented in Figure 3.15.
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Figure 3.12 – Double well potential in both attached (u1) and detached state (u0) in our calibration
for cardiac fibers.

post

pre

w0(x, y)

−20 −10 0 10

0

10

x (nm)

y
(n

m
)

80 100 120 140 160 180[zJ]

post

pre

w1(s, y)

−20 −10 0 10

0

10

s (nm)

y
(n

m
)

20 40 60 80 [zJ]

Figure 3.13 – Contour lines of the myosin head energy landscape. The thin dashed line represent
the separation between the pre-power stroke and post-power stroke conformations. (Left) Detached
potential w0(x, y). (Right) Attached potential w1(s, y).

3.6.2 Asymptotic calculation of the T1-curve

At the time scale of the phase I (assuming that this phase is instantaneous), the force
predicted by the stochastic model (3.6) becomes

T1(δs) =
ρsurf
da

s+∫
s−

+∞∫
−∞

κ(s+ δs+ y)p̌(y; s)dyds, (3.38)

where p̌(y; s) is the isometric probability density of being attached. Equation (3.38) be-
comes

T1(δs) = T0 + κρsurfδs
1

da

s+∫
s−

+∞∫
−∞

p̌(y; s)dyds.
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Parameter Symbol Value
Power stroke potentials

Power stroke characteristic length a 11 nm
Bistable element in attached state (α = 1)

u1(y) =

{
κ1pre/2 (y − y1pre)

2 + v1 if y < `1,

κ1post/2 (y − y1post)
2 otherwise,

κ1pre 5.60 pN nm−1

κ1post 1.40 pN nm−1

`1 1.55 nm

v1 = κ1post/2 (`1 − y1post)
2 − κ1pre/2 (`1 − y1pre)

2 y1post a

y1pre 0
Bistable element in detached state (α = 0)

u0(y) =

{
κ0pre/2 (y − y0pre)

2 + v0 + E if y < `0,

κ0post/2 (y − y0post)
2 + E otherwise,

κ0pre 2.72 pN nm−1

κ0post 1.54 pN nm−1

`0 1.55 nm

v0 = κ0post/2 (`0 − y0post)
2 − κ0pre/2 (`0 − y1pre)

2 y0post 6 nm
y0pre 0
E 80 zJ

Energy landscapes wα(y) = uα(y) +
1
2κ(x+ y)2 (see Figure 3.12)

uα(y) = uα(y + s̃α)

κ 1.07 pN nm−1

s̃0 1.2 nm
s̃1 1.2 nm
µT 100 zJ

Stochastic dynamics
Drag coefficient η 0.0486 ms pN nm−1

Microscopic timescale γstoch = η/κ 0.0454 ms
Temperature T 298 K

Attachment / detachment rates (Figure 3.14)
ψ0α(y) = 1/2 {1 + tanh [λ1 (`α − y)]} , ψ1α = 1− ψ0α

k+(s, y) = ψ00 (y) k+(s)

k−(s, y) = ψ01 (y) kpre (s, y) + ψ11 (y) kpost (s, y) + k∗ (s, y) λ1 7.28 nm−1

k̄+(s) =
kmax

2

[
tanh

(
λ2(s+ `+)

)
1]−∞,0](s)

+ tanh
(
λ2(s− `+)

)
1]0,∞[(s)

]
kpost (s, y) = k0 exp

(
− λ3(s+ y − `−,l)

)
kpre (s, y) = k0 exp

(
λ4(s+ y − `−,r)

)
k∗ (s, y) = kmin +

k∗
2

[
2 + tanh

(
λ∗(s− `∗)

)
− tanh

(
λ∗(s+ `∗)

)]

kmax 374 s−1

λ2 1.60 nm−1

`+ 3.5 nm
k0 1400 s−1

λ3 5 nm−1

λ4 5 nm−1

`−,l −8 nm
`−,r 9 nm
kmin 63.3 s−1

k∗ 155 s−1

λ∗ 72.8 nm−1

`∗ 4.5 nm−1

Scaling parameter
Reference length of a half sarcomere `hs 0.925 µm
Lower bound of the reachable actin sites interval s− −30 nm
Upper bound of the reachable actin sites interval s+ 10 nm

Table 3.5 – Calibration of the model for cardiac data.
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Figure 3.14 – Transition rates k+(s, y) and k−(s, y). The contours represent the energy landscape
of the myosin head. The thin dashed line represent the separation between the pre-power stroke
and post-power stroke conformations. (Left) Attachment rate k+ (color map) and detached energy
landscape (contour line). (Right) Detachment rate k− (color map) and attached energy landscape
(contour line).
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Figure 3.15 – Constitutive elements of the PSE model. (a) Equilibrium energy levels. (b) Equilib-
rium average tension. (c) Equilibrium transition rates.

Model parameter Value Model parameter Value
c0 0.349 κa2 c4 0.213 κa2/a4

c1 0.534 κa2/a c5 0.234 κa2/a5

c2 0.155 κa2/a2 c6 0.0511 κa2/a6

c3 −0.286 κa2/a3

Table 3.6 – Model parameter of the extended BCS model.
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By definition, we have

1

da

s+∫
s−

+∞∫
−∞

p̌(y; s)dyds = ňatt,

and thus the tension T1 is given by

T1(δs) = T0 + κρsurfňattδs.

3.6.3 Asymptotic calculation of the T2-curve

We want to establish the equation of the asymptotic branch of τ th for large and negative
s. We consider the energy landscape w1 defined with the quadratic double well potential
u1 by w1(s, y) = κ/2(s+ y)2 + u1(y). We have

τ th(s) ≈
∞∫

−∞

κ(s+ y)pth1 (y; s)dy =

∞∫
−∞

κ(s+ y)
e−w1(s,y)/kBT

∞∫
−∞

e−w1(s,y′)/kBT dy′
dy,

= κs+
κ

∞∫
−∞

e−w1(y′,s)/kBT dy′

∞∫
−∞

ye−w1(y,s)/kBT dy. (3.39)

The integral over the internal variable y can be split into two parts, one for each well
of the attached potential. For large and negative s, all the heads are concentrated in
the post-power stroke well of the energy landscape (see Figure 3.13). Therefore, we can
neglect the contribution of the pre-power stroke well to the integral and we approximate
the whole bistable potential by the post power stroke well. We have

∞∫
−∞

e−w1(s,y′)/kBT dy′ ≈
∞∫

`1

e−w1(s,y′)/kBT dy′,

≈
∞∫

−∞

exp

[
− 1

kBT

[κ
2
(s+ y′)2 +

κ1post
2

(y′ − y1post)
2
]]

dy′.
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Writing the quadratic potential in the canonical form, we have
∞∫

−∞

e−w1(s,y′)/kBT dy′ ≈

∞∫
−∞

exp

[
− κ+ κ1post

2kBT

[
(y′ +

κs− κ1posty1post
κ+ κ1post

)2 − (
κs− κ1posty1post

κ+ κ1post
)2
]]

· exp

[
− 1

2kBT

[
κs2 + κ1posty

2
1post

]]
dy′,

= exp

[
κ+ κ1post
2kBT

(
κs− κ1posty1post

κ+ κ1post
)2

]
exp

[
− 1

2kBT

[
κs2 + κ1posty

2
1post

]]

·
∞∫

−∞

exp
[
− κ+ κ1post

2kBT
(y′ +

κs− κ1posty1post
κ+ κ1post

)2
]

dy′,

= exp

[
− 1

2kBT

κ1postκ

κ1post + κ
(s+ y1post)

2

]√
2πkBT

κ+ κ1post
.

We define the stiffness κ and the two lengths y′0(s) and Lref by

κ =
κκ1post
κ+ κ1post

, y′0(s) =
κs− κ1posty1post

κ+ κ1post
, and Lref =

√
kBT

κ+ κ1post
.

Using the previous calculation and its result, (3.39) becomes

τ th(s) ≈ κs+
κ

exp
[
− 1

2kBT κ(s+ y1post)2
]√

2πLref

· exp
[
− 1

2kBT
κ(s+ y1post)

2
] ∞∫
−∞

y exp
[
− 1

2L2
ref

(
y + y′0(s)

)2]dy.

With the change of variable u = 1
Lref

(y + y′0(s)), we obtain

τ th(s) ≈ κs+
κ√

2πLref

∞∫
−∞

(
Lrefu− y′0(s)

)
exp

[
− u2

2

]
Lref du.

Noting that
∞∫

−∞

u exp
[
− u2

2

]
du = 0,

and expanding y′0(s), we obtain

τ th(s) ≈ κs− κ√
2π

√
2π
κs− κ1posty1post

κ+ κ1post
.

Finally, the asymptotic expression of τ th(s) for large and negative values of s is

τ th(s) ∼
s→−∞

κκ1post
κ+ κ1post

(s+ y1post).
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Similarly, we obtain the asymptotic branch for large and positive values of s, neglecting
the contribution of myosin heads in the post-power stroke conformation, as

τ th(s) ∼
s→+∞

κκ1pre
κ+ κ1pre

(s+ y1pre).

In a nutshell, the T2-curve being given by

T2(δs) =
ρsurf
da

∫ s+

s−
P̌1(s)τ

th(s+ δs)ds,

the its asymptotic slopes are given by∣∣∣∣∣∣∣∣∣
∂T2
∂δs

∣∣∣∣
δs→−∞

= ρsurfňatt
κκ1post
κ+ κ1post

,

∂T2
∂δs

∣∣∣∣
δs→+∞

= ρsurfňatt
κκ1pre
κ+ κ1pre

.

3.6.4 Computation of the PSE tension

To show the equivalence of the two expression of the equilibrium tension τ th(s), let us
compute the derivation of the equilibrium attached free energy wth

1 (s).

dwth
1

ds
(s) =

∫
∂sw1(s, y)p

th
1 (y; s)dy

+

∫
∂sp

th
1 (y; s)

[
w1(s, y) + kBT

(
ln
(
a pth1 (y; s)

)
+ 1
)]

dy︸ ︷︷ ︸
≡A(s)

.

Defining Z1(s) =
∫

exp
(
− w1(s, y)/(kBT )

)
dy, we have

A(s) =

∫ [[
− 1

kBT
∂sw1(s, y)

e−w1(s,y)/(kBT )

Z1(s)

+
1

kBT

e−w1(s,y)/(kBT )

Z1(s)

∫
∂sw1(s, y

′)
e−w1(s,y′)/(kBT )

Z1(s)
dy′
]

·
[
����w1(s, y) + kBT

(
−
�
�
�

��w1(s, y)

kBT
− ln

(
Z1(s)/a

)
+ 1
)]]

dy,

= kBT
(
1− ln

(
Z1(s)/a

))[
−
∫
∂sw1(s, y)

e−w1(s,y)/(kBT )

Z1(s)
dy

+

∫
∂sw1(s, y

′)
e−w1(s,y′)/(kBT )

Z1(s)
dy′
∫
pth1 (y, s)dy︸ ︷︷ ︸

=1

]
,

= 0.

From the expression (3.1) of w1, we thus finally obtain

τ th(s) =

∫
κ(y + s)pth1 (y; s)dy =

∫
∂sw1(s, y)p

th
1 (y; s)dy =

dwth
1

ds
(s).

Note that, naturally, a calculation with the free energy F(s) = −kBT ln(Z(s)), the par-
tition function defined as Z(s) =

∫
e−w1(s,y)/(kBT ) dy and a definition of τ th as τ th(s) =

−∂sF(s) leads to the same result.
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3.6.5 Extrapolation of the rate of phase II in length control conditions
for cardiac cells

The rate of force development and of shortening in phase II have been measured for frog
skeletal muscles at 4 ◦C in length control [Huxley & Simmons, 1971; Piazzesi & Lombardi,
1995; Linari et al., 2009] and force control conditions [Piazzesi et al., 2002], respectively.
On the contrary, for cardiac muscles, experiments have only been performed in force
control conditions (at 27 ◦C) [Caremani et al., 2016]. Tough non-equivalent, the dynamics
in phase II in the two setups are nevertheless linked. We will use an analogy between them
to extrapolate the behavior of cardiac muscle cells in length control conditions, which is
important for our calibration process. We first compare the rate in force control conditions
for cardiac and skeletal muscle cells (see Figure 3.16(a)). The experimental data show that,
in their respective experimental conditions, the rate of shortening in phase II is four times
faster for rat cardiac muscle cells at than for frog skeletal muscle. We apply the same
proportionality factor to extrapolate the rate of force recovery in phase II for rat cardiac
fibers at 27 ◦C from measurements of the same rate of recovery for frog skeletal muscles
at 4 ◦C. The results are presented in Figure 3.16(b).
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Figure 3.16 – Extrapolation of the rate of force recovery in phase 2 in length control conditions
for cardiac muscle cell from the comparison of the rate of shortening in phase 2 in force control
conditions between cardiac and skeletal experimental data. (a) Rate of shortening in phase II in
force control conditions. (Black circles) Frog skeletal muscle cells at 4 ◦C, data from [Piazzesi et al.,
2002]. (Blue circles) Rat cardiac muscle cells at 27 ◦C, data from [Caremani et al., 2016]. (Black
triangles) Rate measured for frog skeletal muscle cells at 4 ◦C multiplied by 4. (b) Rate of force
recovery in phase II in length control conditions. (Black symbols) Frog skeletal muscle cells at
4 ◦C. (Black circles) Data from [Piazzesi & Lombardi, 1995]. (Black squares) Data from [Linari
et al., 2009]. (Blue symbols) Extrapolation of the rate of force recovery in phase 2 in length control
conditions for cardiac muscle cells. The data measured for skeletal muscle cells are multiplied by 4
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CHAPTER 4

Activation-contraction coupling in a multiscale heart
model capturing the Frank-Starling effect

In the context of cardiac muscle modeling, the availability of the myosin heads in the
sarcomeres varies over the heart cycle contributing to the Frank-Starling mechanism at
the organ level. In this paper, we propose a new approach that allows to incorporate this
variation into the Huxley’57 muscle contraction model equations in a thermodynamically
consistent way. We also develop adapted numerical methods enabling to follow-up the
thermodynamical balances at the discrete level. Coupling our model with a previously
developed simplified heart model, this simulation framework displays its ability to capture
the essential features of the Frank-Starling mechanism.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.2 Physiological review . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4.2.1 Frank-Starling effect . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2.2 Evidence of a regulation mechanism intrinsic to the thick filament 204
4.2.3 Dynamics of the regulation . . . . . . . . . . . . . . . . . . . . . 204

4.3 Model presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.3.1 Contraction model - Huxley’57 model family . . . . . . . . . . . 205
4.3.2 Incorporation of the variations in myosin availability level in the

model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.3.3 Comparison with previous formulations . . . . . . . . . . . . . . 210

4.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.4.1 Myosin heads conservation . . . . . . . . . . . . . . . . . . . . . 212
4.4.2 First principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.4.3 Second principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.4.4 Coupling with a macroscopic model . . . . . . . . . . . . . . . . 218

4.5 Range of validity and limitations . . . . . . . . . . . . . . . . . . . 220
4.5.1 Impact of the homogenized description in the pool model . . . . 220
4.5.2 Comparison with individual description of the myosin heads . . . 221
4.5.3 Comparison with previously proposed formulation . . . . . . . . 227

4.6 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.6.1 Microscopic numerical scheme . . . . . . . . . . . . . . . . . . . . 228
4.6.2 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . 234
4.6.3 Link with discrete macro model: a multi-time step strategy . . . 236

4.7 Physiological simulation of a heart beat . . . . . . . . . . . . . . 238
4.7.1 Modification to account for the thin filament activation . . . . . 238
4.7.2 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
4.7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



Chapter 4. Activation-contraction coupling in a multiscale heart model capturing the
Frank-Starling effect

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.9.1 Some properties of the Chapelle’12 Frank-Starling model . . . . 244
4.9.2 Proof of the equivalence between the random exchange model and

the homogenized pool model . . . . . . . . . . . . . . . . . . . . 245
4.9.3 Proof of the discrete thermodynamics identities . . . . . . . . . . 247
4.9.4 Numerical scheme for negative sliding velocities . . . . . . . . . . 252
4.9.5 Validation of the discrete thermodynamics balance illustration . 254
4.9.6 Moment equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

200



4.1. Introduction

Activation-contraction coupling in a multiscale heart model
capturing the Frank-Starling effect

François Kimmig1,2, Philippe Moireau2,1, Dominique Chapelle2,1

1LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay
2Inria, Université Paris-Saclay

to be submitted

Abstract

In the context of cardiac muscle modeling, the availability of the myosin heads in the
sarcomeres varies over the heart cycle contributing to the Frank-Starling mechanism at the
organ level. In this paper, we propose a new approach that allows to extend the Huxley’57
muscle contraction model equations to incorporate this variation. This extension is built
in a thermodynamically consistent way. We also develop adapted numerical methods
enabling to follow-up the thermodynamical balances at the discrete level. Coupling our
model with a previously developed simplified heart model, this simulation framework
displays its ability to capture the essential features of the Frank-Starling mechanism.

Keywords— muscle contraction, sliding filaments, Frank-Starling effect, thermodynam-
ically consistent time-discretization, Clausius-Duhem inequality

4.1 Introduction
Cardiac muscles are made of a set of fibers themselves composed of sarcomeres in series.
The sarcomeres are the elementary units of contraction. They are mainly made of two
types of protein filaments: myosin filaments (also called thick filaments) and actin filaments
(also called thin filaments). The myosin heads of the thick filaments interact with the actin
sites of the thin filament in a cycle that involves, among other stages, the attachment of
the myosin head on an actin site, the production of force and the detachment of the myosin
heads that can then enter in a new cycle [Lymn & Taylor, 1971]. The macroscopic muscle
shortening is then the result of the microscopic relative sliding between the myosin and
actin filaments. At rest, the binding of the myosin heads on the actin sites is prevented.
The contraction is triggered by a release of calcium ions in the muscle cell cytosol that
bind to the actin sites and activate them. This ultimately allows the attachment of myosin
heads. The thin filament activation is a transient process. When calcium is released, the
actin sites are activated by the calcium ions and the myosin heads can attach. Then, the
calcium ions are taken from the cytosol, the actin sites deactivate and the myosin heads
detach.

In cardiac muscles, not all myosin heads are available for attachment (we also say that
the thick filament is not fully activated) and the release of calcium may not be sufficient
to activate all actin sites (even at the maximum of the transient activation). The variation
of these levels of activation is affected by the length of the sarcomeres and can be used to
regulate the value of the developed force. Note that both the myosin heads availability and
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the actin sites activation contribute simultaneously to this regulation (see Section 4.2). It
is an essential element of the contraction since it allows the emergence at the organ level
of the Frank-Starling mechanism [de Tombe et al., 2010].

Muscle contraction is often described by a family of models deriving from the seminal
Huxley’57 model [Huxley, 1957; Eisenberg et al., 1980; Caruel et al., 2019; Kimmig &
Caruel, 2019]. To account for the regulation mechanisms involving the variation of the
thick and thin filament level of activation, modifications of the Huxley’57 model equa-
tions have been previously proposed [Zahalak & Motabarzadeh, 1997; Chapelle et al.,
2012]. It consists in modifying the expression of the law of mass action that describes the
attachment-detachment process. However, this approach suffers from some limitations,
in particular, it fails to be thermodynamically compatible. An alternative approach has
been proposed by Marcucci et al. [2017] to model the varying thick filament activation.
It considers the newly discovered myosin head state called off-state (as opposed to the
classical on-state) in which the myosin head is folded back on the thick filament backbone.
The on- and off- states are related by chemical transitions. A myosin head in the off-state
cannot participate in the attachment-detachment process; to do so it must first transition
to the on-state. In the model, the transition rates between the on- and off-states are mod-
ulated by the force exerted in the thick filament, a higher force favoring the transition to
the on-state. Variations of the sarcomere length change the value of the passive force in
the thick filament through the contribution of titin (a giant protein linked with both the
thick and thin filament). These variations thus affect the transition rates between the on-
and off-states and therefore change the availability of the myosin heads. This mechanism
theoretically allows to account for the thick filament activation level variations with the
sarcomere length. It remains nevertheless unclear, because of a lack of data for cardiac
muscle, whether the time scale of the on-off transition is compatible with the time scale
of the length dependent thick filament activation.

In this paper, we propose a new paradigm that extend the Huxley’57 model equations
to include the varying myosin heads availability. We introduce two groups of myosin heads
and deduce the governing equations from conservation laws. The consistency with the
thermodynamic principles of this modeling framework is then demonstrated and associated
numerical methods are developed. Note that we focus on the modeling of the thick filament
activation mechanism, the thin filament activation being phenomenologically represented.
Some elements of validation of our model are presented with the simulation of heart beats.
These results are obtained through the coupling of our model with a simplified heart model
[Caruel et al., 2013].

This paper is organized as follows. We first present in Section 4.2 the experimental
results that support the assumption chosen for the development of our model. Section 4.3
briefly recalls the Huxley’57 model and presents the derivation of our new paradigm. The
thermodynamic principles associated with this new model are established in Section 4.4.
In Section 4.5, we explore the limits of our model and its relation with the previously
proposed formulations. The numerical methods developed for our model are presented in
Section 4.6 and the thermodynamic compatibility of the discretization scheme is justified.
The model calibration and the numerical results illustrating the ability of the model to
reproduce the Frank-Starling mechanism are finally presented in Section 4.7.

4.2 Physiological review

In living conditions, the heart contraction is regulated by two main regulation pathways:
an intrinsic pathway, which varies the force as a function of the sarcomere stretch – a
higher sarcomere length being associated with a higher force – and an extrinsic pathway

202



4.2. Physiological review

corresponding the control of the nervous system through neuroendocrine mediators [Sil-
verthorn et al., 2009]. These two regulations modulate the force developed by the muscle
tissues ultimately impacting the volume of blood ejected by the heart (called stroke vol-
ume). At the organ level, this regulation is called the Frank-Starling effect. Note that
the neuroendocrine regulation also affects the proteins involved in the intrinsic regulation.
Note also that varying the muscle contraction level is not the only option to vary the
cardiac output. Variations of the heart beating rate also affect the average stroke volume.

4.2.1 Frank-Starling effect

The Frank-Starling effect has been discovered more than a century ago [Frank, 1895;
Patterson & Starling, 1914]. It is a regulation at the heart level that ensures that no
blood is stored inside the heart by increasing the contractile capability of the muscle
tissues when the filling volume is increased. This regulation originates from the variations,
at the sarcomere (micro-metric) level, of the force with the sarcomere length defining the
force-length relation (see Figure 4.1) [de Tombe et al., 2010]. The force increases with
increasing sarcomere lengths up to a certain extension. The shape of the force-length
relation is affected by the extrinsic regulation through a variation of the calcium supply
or the change of some proteins functioning through phosphorylation.
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contractility
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Figure 4.1 – Illustration of the Frank-Starling mechanism and its microscopic origin. Figure inspired
by [de Tombe et al., 2010].

The exact origin of these variations still remains partially unknown despite large re-
search efforts [de Tombe & ter Keurs, 2016; Sequeira & Velden, 2017]. In all generality, the
variation of the force with the sarcomere length may result either from an increase of the
force generated by each cross-bridge or from an increase of the number of attached cross-
bridges (or from both mechanisms combined). The works of Wannenburg et al. [1997],
Amiad Pavlov & Landesberg [2016], Caremani et al. [2016] and Pinzauti et al. [2018] show
that the cross-bridge properties are not affected by variations of the sarcomere length or
the level of calcium supply leading to the conclusion that neither is the force developed by
each cross-bridge. Note that a direct assessment of the non-variation of the cross-bridge
force with the level of thin filament activation has been performed by Pinzauti et al. [2018].

As a result, the force variation with the sarcomere length is only due to a change in
the number of formed cross-bridges. This effect itself may have two distinct origins: a
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variation of the number of available myosin heads or a change in the level of the thin
filament activation.

4.2.2 Evidence of a regulation mechanism intrinsic to the thick filament

In this paper, we focus on the variation of the number of available myosin heads as a
function of the sarcomere length.

To justify that this regulation exists, we present experimental data in which the possi-
bility of a variation of the thin filament activation is eliminated. To create these conditions,
experimentalists either used skinned cells so that they can artificially maintain the “intra-
cellular” calcium concentration at a high value ensuring that all actin sites are activated
[Kentish et al., 1986; Dobesh et al., 2002], or force a large enough release of calcium in
intact cells and maintain this state [ter Keurs et al., 2008], in which case the cells are said
to be in a tetanised state.

The experimental results showing the variation of the developed force in these two ex-
perimental conditions are presented in Figure 4.2. They indeed show that the contraction
force is modulated as a function of the sarcomere length. Note that the force is obtained
in a steady-state isometric state that may not exist in physiological conditions if the force
does not have enough time to reach its maximum value in a transient contraction. The
origin of the number of available myosin heads variation as a function of the sarcomere
length is not elucidated.
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Figure 4.2 – Variation of the force with the sarcomere length. The data are obtained in maximal
thin filament activation. The variation observed is thus solely due to the thick filament activation
variation. Closed diamonds: experimental data from skinned rat cells [Dobesh et al., 2002]. Closed
triangles: experimental data from intact tetanised rat cardiac muscle cells [ter Keurs et al., 2008].
Closed square: experimental data from skinned rat ventricular trabeculae [Kentish et al., 1986].
The solid lines represent a fit of the data.

4.2.3 Dynamics of the regulation

The time scale of the force adaptation to the sarcomere length is a critical element for
the development of models. It has been studied by [Mateja & de Tombe, 2012] with the
measurement of the force development dynamics in contractions triggered after change of
muscle length with various waiting durations between the length change maneuver and the
initiation of the contraction. They establish an upper bound of 5 ms for the time scale of
this regulation. The attachment and detachment time scale can be estimated in the light
of Huxley’57 model family [Huxley, 1957]. A debate remains about the calibration of these
models depending which experimental data are used for the calibration. If the focus is put
on the tension rise rate, experimental data yield a time scale of 25 ms for attachment and
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100 ms for detachment [de Tombe & Stienen, 2007]. In contrast, if the estimation is made
on the force-velocity curve, which is a typical indicator of the muscle behavior relating the
force developed by the muscle in a steady-state shortening at various speed of shortening
(see for instance [de Tombe & ter Keurs, 1990; Caremani et al., 2016]), we obtain time
scales of 4 ms and 16 ms for attachment and detachment, respectively [Kimmig & Caruel,
2019] (see Chapter 3). In the first case, the fastest time scale is significantly higher than
the upper bound for the regulation mechanism time scale provided by [Mateja & de Tombe,
2012]. In the second case, they are of the same order. However, the established upper
bound is not a maximum, meaning that it does not correspond to the time scale from
which the dynamics of the regulation started to be visible but it is simply the fastest time
scale that could be tested. Therefore, we can confidently estimate that the regulation
occurs actually at an even faster time scale and is possibly instantaneous. Note that the
same conclusion is drawn by Mateja & de Tombe [2012]. We will thus assume that the
regulation mechanism time scale is much faster than that of attachment and detachment
and that it can be considered as instantaneous. Therefore, the relations presented in
Figure 4.2 will be supposed to hold at all time.

4.3 Model presentation

Our goal is to propose a modeling framework that is able to incorporate the variation of
myosin heads availability into the classical equations describing the actin-myosin interac-
tion. We first shortly present the muscle contraction models based on the seminal work of
A.F. Huxley [Huxley, 1957]. Then, we introduce our formalism and derive the equations
governing the dynamics of the system from the conservation of matter. Finally, we put
our new approach into perspective by comparing it to existing formulations.

4.3.1 Contraction model - Huxley’57 model family

The mathematical description of muscle contraction has its origin in the seminal work of
Huxley [1957], which has been abundantly extended since then [Huxley & Simmons, 1971;
Eisenberg & Hill, 1978; Eisenberg et al., 1980; Piazzesi & Lombardi, 1995; Zahalak, 2000]
but remains the standard framework of modern models [Caremani et al., 2015; Marcucci
et al., 2016]. In particular, this approach has proven to be well-adapted to the modeling
of mammals cardiac muscles [Månsson, 2010; Pertici et al., 2018; Kimmig & Caruel, 2019].
This family of models considers a collection of chemical states representing attached and
detached myosin heads, interacting with each other according to the law of mass action. A
general presentation of the Huxley’57 model and its extensions can be found in [Kimmig
et al., 2019] (see Chapter 3).

We will restrict our presentation to a two-state model – with one attached state and one
detached state – , which is sufficiently refined to capture the essential features of cardiac
muscle contraction [Kimmig & Caruel, 2019] (see Chapter 3). However, the modeling
ingredient presented in this work could be easily extended to any model derived from
the Huxley’57 model. The dynamics of attachment and detachment is described in the
framework of the so-called sliding filament theory. The myosin and actin filaments are
assumed to be rigid, meaning that the distance between consecutive myosin heads or
consecutive actin sites is constant. We assume moreover that each myosin head interacts
with its nearest actin site only. Actin sites are uniformly distributed along the actin
filament and are separated by a distance da. Myosin heads are also uniformly distributed
along the myosin filament but with a different spatial periodicity. The approach is centered
on the myosin heads and a myosin head is characterized by the distance between its rest

205



Chapter 4. Activation-contraction coupling in a multiscale heart model capturing the
Frank-Starling effect

position and its nearest actin site. This distance is denoted by s (see Figure 4.3) and
we denote the interval of possible values of s by [s−, s+] with s+ − s− = da. Note that
this interval may be non-symmetric. Due to the difference in spatial periodicity between
the actin and the myosin filaments, all positions s ∈ [s−, s+] of the myosin heads are
equiprobable in the population.

Detached

Attached

k+krev
+k− krev

−

ẋc

(s = 0)

s

s+s−
ẋc

(s = 0)

s

s+s−

Figure 4.3 – Presentation of the two-state model. Top: transitions between the attached state
and the detached state and the associated transition rates. Bottom left: detached state model
parametrization. Bottom right: attached state model parametrization.

We now consider the subset of myosin heads located at distance s to their nearest actin
site. The energy of the attached heads is given by w1(s) and that of the detached heads by
w0, which does not depend on the spatial variable. When a myosin head detaches, it uses
an energy input µT brought by ATP to retrieve its original energy level. The transitions
between the attached and the detached states are governed by the transition rate k+(s)
for the attachment and k−(s) for the detachment. We assume that these two transitions
are associated respectively with a reverse transition (see Figure 4.3) whose rate is given
by the detailed balance

k+(s)

krev
+ (s)

= exp
[w0 − w1(s)

kBT

]
,

k−(s)

krev
− (s)

= exp
[w1(s) + µT − w0

kBT

]
, (4.1)

where T is the temperature and kB is the Boltzmann constant.
The probability of being attached for a head in this subset at time t is given by P1(s, t)

and we denote by P0(s, t), the probability of being detached. The conservation of matter
leads to the following dynamics equations, for all t > 0 and all s ∈ [s−, s+]{

∂tP1(s, t) + ẋc∂sP1(s, t) =
(
k+(s) + krev

− (s)
)
P0(s, t)−

(
k−(s) + krev

+ (s)
)
P1(s, t),

∂tP0(s, t) + ẋc∂sP0(s, t) =
(
k+(s) + krev

− (s)
)
P0(s, t)−

(
k−(s) + krev

+ (s)
)
P1(s, t).

(4.2)

Note that the Eulerian nature of this description leads to the presence of transport
terms which take into account the change in position when the myosin and actin filaments
slide pass each other with a velocity ẋc.

The single actin site assumption implies that the probability of being attached must
vanish on the boundaries of the interval [s−, s+]. As proposed by Kimmig et al. [2019] (see
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Chapter 2), we choose periodic boundary conditions P1(s
−, t) = P1(s

+, t) and enforce the
property P1(s

−, t) = P1(s
+, t) = 0 through an appropriate choice of the transition rates.

Choosing the initial conditions P1(s, t = 0) + P0(s, t = 0) = 1, ∀s ∈ [s−, s+], the
probability P0 is given by P0(s, t) = 1− P1(s, t), ∀s ∈ [s−, s+],∀t > 0 and (4.2) becomes{

∂tP1(s, t) + ẋc∂sP1(s, t) =
(
k+(s) + krev

− (s)
)
P0(s, t)−

(
k−(s) + krev

+ (s)
)
P1(s, t),

P0(s, t) = 1− P1(s, t).
(4.3)

Note that the original Huxley’57 model equations can be straightforwardly retrieved
by defining the aggregated attachment rate f and detachment rate g by∣∣∣∣∣f(s) = k+(s) + krev

− (s),

g(s) = k−(s) + krev
+ (s).

4.3.2 Incorporation of the variations in myosin availability level in the
model equations

As shown in Section 4.2.2, the sarcomere stretch directly influences the level of availability
of the myosin heads and this regulation mechanism occurs instantaneously.

To build our model, we extend the two-state model presented in Section 4.3.1. In
addition to its natural assumptions, we assume that a part of the myosin heads population
is available for attachment, while the remaining part is not and that the ratio of heads
belonging to each pool depends on the sarcomere stretch. For thermodynamical reasons,
heads that are not available for attachment are not strictly prevented from attaching,
but their attachment rate is much reduced compared to heads available for attachment.
We also assume that heads can change from one pool to the other independently of their
attachment state (attached or detached). Since we know that the thick filament regulation
occurs at a fast time scale compared to the cycling time scale, the transfers between pools
are supposed to take place instantaneously. We do not track the myosin heads individually
but instead focus on average quantities. We thus proposed a homogenized description of
the myosin heads within the pools.

Note that this modeling framework is not specific to the mechanism underlying the
regulation of the myosin heads availability.

To describe the state of a myosin head, we introduce an additional – discrete and
deterministic – internal variable γ that is equal to one if the head is available for attachment
and equal to zero if it is not. As a consequence, we are now considering the probability
P1(s, t, γ). Note that γ is somewhat comparable to s meaning that both can change when
following actual myosin heads, albeit γ is discrete while s is continuous. The constraint
of normalization becomes

P1(s, t, γ) + P0(s, t, γ) = 1 ∀s ∈ [s−, s+], ∀t > 0, ∀γ ∈ {0, 1}. (4.4)

The ratio of available heads is denoted by n0(ec). It solely depends on the active
extension ec, which is linked to the relative displacement of the rigid filaments xc by
xc = `hsec, where `hs is the half-sarcomere slack length. The latter is defined as the half-
sarcomere length corresponding to zero passive force in the sarcomere. The total ratio of
attached heads is obtained as the average between the two pools. It is given by

P1(s, t) = n0P1(s, t, 1) + (1− n0)P1(s, t, 0). (4.5)

The energy levels of the attached and detached states are the same in each pool because
the transfer of a myosin head from one pool to the other is not associated with any energy
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input. The attached state and detached state energy levels are still denoted w1 and w0,
respectively. However, myosin heads experience two distinct chemical cycles in the two
pools. The transitions rates are still defined as in Figure 4.3 but are now indexed by the
variable γ. They satisfy the detailed balance in each pool, i.e.

k+,γ(s)

krev
+,γ(s)

= exp
[w0 − w1(s)

kBT

]
,

k−,γ(s)

krev
−,γ(s)

= exp
[w1(s) + µT − w0

kBT

]
, ∀γ ∈ {0, 1}. (4.6)

To model the non-availability of the myosin heads in the pool γ = 0, we choose k+,1 � k+,0.
To describe the dynamics of the system, we write the conservation of matter on a

closed system. For that purpose, we consider the sub-ensemble of heads that, in each
pool, are located at a distance s to their nearest actin site. We describe the dynamics of
these heads following them in their “motion”. We obtain the following dynamics for all
s ∈ [s−, s+]

d
dt
P1(s, t, 1) =

(
k+,1(s) + krev

−,1(s)
)
P0(s, t, 1)−

(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1),

d
dt
P1(s, t, 0) =

(
k+,0(s) + krev

−,0(s)
)
P0(s, t, 0)−

(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(4.7)

The equation (4.7) uses total derivatives, which follow the myosin heads in their evo-
lution. To fully establish the system dynamics, we need to explicit these total derivatives.
Note that γ is a discrete parameter and it thus cannot be treated with the classical chain
rule formula. We consider the ensemble of head located at distance s of the nearest actin
site, and that are in the pool γ = 1. The probability of being attached for the ensemble
of heads at time t is given by P1(s, t, 1).

At time t + dt, we denote by P̂1 the probability of being attached for this very same
ensemble of heads. Because of the system evolution happening between t and t+dt, some
of the heads in the considered ensemble, which are in the pool of available heads (γ = 1)
at time t may move to the pool of unavailable heads (γ = 0) at time t + dt. This has to
be taken into account in the computation of P̂1.

We define

|x|+ =

{
x if x ≥ 0,

0 otherwise,
and |x|− =

{
−x if x ≤ 0,

0 otherwise.

Note that, from the definition of | • |±, we can directly derive the following property

x = |x|+ − |x|−. (4.8)

The ratio of heads in the considered ensemble that are in the pool γ = 1 being given by
n0, the ratio of heads switching from the pool γ = 0 to the pool γ = 1 between the times
t and t + dt is given by |ṅ0|+dt and the ratio of heads switching from the pool γ = 1 to
the pool γ = 0 in the same time interval is given by −|ṅ0|−dt.

We first consider the case where ṅ0 > 0 – note that we assume that there is no head
switching from the pool γ = 1 to the pool γ = 0. At time t+ dt, the myosin heads in the
considered ensemble are the heads of the pool γ = 1 minus the heads that switched from
the pool γ = 0 in the time interval dt. We thus have

n0P̂1 =
[
n0 + |ṅ0|+dt

]
P1(s+ ds, t+ dt, 1)− |ṅ0|+dtP1(s, t, 0). (4.9)
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At first order, (4.9) becomes

n0P̂1 = n0P1(s+ ds, t+ dt, 1) + |ṅ0|+dt
[
P1(s, t, 1)− P1(s, t, 0)

]
. (4.10)

We now consider the case where ṅ0 < 0. At time t + dt, the myosin heads in the
considered ensemble are the heads of the pool γ = 1 plus the heads that switched to the
pool γ = 0 in the time interval dt. We thus have

n0P̂1 =
[
n0 − |ṅ0|−dt

]
P1(s+ ds, t+ dt, 1) + |ṅ0|−dtP1(s, t, 1). (4.11)

At first order, (4.11) becomes

P̂1 = P1(s+ ds, t+ dt, 1). (4.12)

Altogether, (4.10) and (4.12) yield

P̂1 = P1(s+ ds, t+ dt, 1) + |ṅ0|+
n0

dt
[
P1(s, t, 1)− P1(s, t, 0)

]
Defining dP1(s, t, 1)

dt
by lim

dt→0

P̂1(s, t)− P1(s, t, 1)

dt
, we obtain

dP1(s, t, 1)

dt
= ∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
.

Considering the sub-ensemble of heads that are located at distance s, at time t and in
the pool γ = 0, we similarly establish that

dP1(s, t, 1)

dt
= ∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
.

Altogether, we obtain
d
dt
P1(s, t, 1) = ∂tP1(s, t, 1) + ẋc ∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
,

d
dt
P1(s, t, 0) = ∂tP1(s, t, 0) + ẋc ∂sP1(s, t, 0) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
,

(4.13)

Finally, combining (4.7) and (4.13), we obtain the complete system of evolution equa-
tions

∂tP1(s, t, 1) + ẋc ∂sP1(s, t, 1) +
|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
=(

k+,1(s) + krev
−,1(s)

)
P0(s, t, 1)−

(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1),

∂tP1(s, t, 0) + ẋc ∂sP1(s, t, 0) +
|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
=(

k+,0(s) + krev
−,0(s)

)
P0(s, t, 0)−

(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(4.14)

Note that, as in the original two-state mode, the boundary conditions are chosen peri-
odic for both pools, i.e. P1(s

−, t, γ) = P1(s
+, t, γ). The property that no head should

be attached on the boundaries of interval [s−, s+], which intrinsically comes with the as-
sumption that the myosin heads can only attach to their nearest actin site, is ensured by
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the choice of appropriate transition rate parameter functions satisfying the conditions for
all γ ∈ {0, 1} [Kimmig et al., 2019] (see Chapter 2)∣∣∣∣∣∣∣∣∣∣

lim
s→s−

k+,γ(s) = lim
s→s+

k+,γ(s) = lim
s→s−

krev
−,γ(s) = lim

s→s+
krev
−,γ(s) = 0,

lim
s→s−

0∫
s

(
k−,γ(s) + krev

+,γ(s)
)
= lim

s→s+

s∫
0

(
k−,γ(s) + krev

+,γ(s)
)
= +∞.

(4.15)

The active force per myosin head developed by the system aggregates the contributions
of the myosin heads in the two pools. It is given by

τc(t) =
1

da

s+∫
s−

[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
∂sw1(s)ds.

Note that, in the framework presented here, we do not track the availability of the
myosin heads individually, but we consider instead an average behavior for the population
of myosin heads. Moreover, we assume that the heads switch pools randomly, i.e. all
heads have the same probability to switch from one pool to another. A comparison with
such models is presented in Section 4.5.

4.3.3 Comparison with previous formulations

In this section, we compare our model with previous attempts of incorporating the thick
filament activation mechanisms into the Huxley’57 model equation. Since it is the orig-
inal choice made by the authors, we will write the two-state model equations with the
aggregated transition rates, i.e.

∣∣∣∣∣fγ(s) = k+,γ(s) + krev
−,γ(s),

gγ(s) = k−,γ(s) + krev
+,γ(s).

(4.16)
(4.17)

As in our model, Zahalak & Motabarzadeh [1997] and Chapelle et al. [2012] consider
that the fraction of myosin heads that are available for attachment is n0. In the matter
conservation, the flux of attachment is then assumed to be f

[
n0−P1

]
. The model dynamics

is thus governed by the equation

∂tP1(s, t) + ẋc
∂

∂s
P1(s, t) = f(s)

[
n0(ec)− P1(s, t)

]
− g(s)P1(s, t). (4.18)

We can first note that the modeling assumption underlying the definition of the at-
tachment flux is only valid if n0−P1 represents the apparent activity of the myosin heads,
i.e. n0−P1 ≥ 0. However, the latter property may not be ensured by the dynamics (4.18)
(see Appendix 4.9.1) possibly leading to the non-validity of the model in phases of the
simulated contraction.

We assume that the property n0 ≥ P1 holds in the rest of this section. The probability
of attachment P1 is given by (4.5) in our proposed formulation using two pools of myosin
heads. We differentiate P1 with respect to time. We obtain

∂tP1(s, t) = ṅ0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ n0∂tP1(s, t, 1) + (1− n0)∂tP1(s, t, 0).
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Substituting the time derivatives from (4.14), we obtain

∂tP1(s, t) + ẋc
∂

∂s
P1(s, t) = ṅ0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ n0

(
f1(s)

(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1)

− |ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

])
+ (1− n0)

(
f0(s)

(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0)

− |ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

])
.

(4.19)

Using the property (4.8), (4.19) becomes

∂tP1(s, t) + ẋc
∂

∂s
P1(s, t) = n0

(
f1(s)

(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1)

)
+ (1− n0)

(
f0(s)

(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0)

)
.

(4.20)

The spirit of our model is that the myosin heads belonging to the pool γ = 0 have a
reduced probability of being attached, i.e. P1(s, t, 0) ≈ 0. This property can be obtained
with various choices of the transition rates, for instance with f1 = f , f0 = 0 and g1 =
g0 = g or with f1 = f0 = f and g1 = g � g0.

With the approximation P1(s, t, 0) ≈ 0, we have P1(s, t) ≈ n0P1(s, t, 1). Equa-
tion (4.20) yields

∂tP1(s, t) + ẋc
∂

∂s
P1(s, t) ≈ f(s)

(
n0 − P1(s, t)

)
+ g(s)P1(s, t), (4.21)

and we retrieve the origin modified Huxley equation (4.18).
The previously proposed formulations are thus enclosed in our model and are equiv-

alent at the limit when P1(s, t, 0) goes to zero. Our approach provides a more rigorous
modeling framework having all apparent activities of the myosin heads considered in the
flux of matter unconditionally positive. Moreover, as we will see in the next section, it
is thermodynamically consistent, whereas previously proposed formulations do not satisfy
the second principle because they break the detailed balance. Another interpretation of
the last comment is the following: decreasing n0 from the value one puts a fraction of
myosin heads in a state where they are not allowed to attach. They are constrained in a
single state: the detached state. Putting the heads in this situation increases the level of
information on the system and is thus associated with a negative entropy creation, which
is in contradiction with the second principle.

4.4 Thermodynamics
We now want to derive, from the proposed evolution equations, the first and second ther-
modynamic balances for our system, which shows the coherence of the newly introduced
modeling ingredients. For that, we extend, for equations containing the pool exchange
term, the approach proposed by Hill [1977] for the original family of Huxley’57 models.

We emphasize on a property that is fundamental in our analysis: the choice of transi-
tions rates (4.15) ensures that

P1(s = s−, t, γ) = P1(s = s+, t, γ) = 0 ∀t, ∀γ ∈ {0, 1}.
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4.4.1 Myosin heads conservation

The model equations (4.14) have been derived from the conservation of the myosin heads
being thus equivalent to the latter. However, because of the unusual form of the equations
in (4.14), we recall the myosin heads conservation identities of the model before exhibiting
its thermodynamical properties.

From (4.7), we have the conservation of matter in each pool

P1(s, t, γ) + P0(s, t, γ) = 1, ∀s ∈ [s−, s+], ∀t > 0, ∀γ ∈ {0, 1}. (4.22)

It directly ensures the conservation of the total quantity of matter

m(s, t) = n0
(
P1(s, t, 1) + P0(s, t, 1)

)
+ (1− n0)

(
P1(s, t, 0) + P0(s, t, 0)

)
.

Moreover, the pool exchange operator alone does not alter the total probability of
being attached P (s, t) = n0P (s, t, 1) + (1 − n0)P (s, t, 0), as it only transfers attached
and detached heads from one pool to another. Indeed, in the absence of attachment and
detachment, i.e. with k+,γ(s) = k−,γ(s) = 0, ∀s ∈ [s−, s+], ∀t > 0, ∀γ ∈ {0, 1}, we obtain
from (4.18)

∂

∂t
P1(s, t) + ẋc

∂

∂s
P1(s, t) = 0.

4.4.2 First principle

To establish the thermodynamic balances, we consider a population of myosin heads. The
average energy per myosin head is defined by

U(t) = 1

da

s+∫
s−

[
w1(s)P1(s, t) + w0P0(s, t)

]
ds,

=
1

da

s+∫
s−

[
w1(s)

(
n0(t)P1(s, t, 1) +

(
1− n0(t)

)
P1(s, t, 0)

)
+ w0

(
n0(t)P0(s, t, 1) +

(
1− n0(t)

)
P0(s, t, 0)

)]
ds.

We have

d
dt

U(t) = 1

da

s+∫
s−

(
ṅ0

[
w1(s)

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

[
P0(s, t, 1)− P0(s, t, 0)

]]
+ n0(t)

[
w1(s) ∂tP1(s, t, 1) + w0 ∂tP0(s, t, 1)

]
+
(
1− n0(t)

)[
w1(s) ∂tP1(s, t, 0) + w0 ∂tP0(s, t, 0)

])
ds.

(4.23)

The treatment of the chemical reaction and the transport terms arising from ∂tP1(s, t, γ)
and ∂tP0(s, t, γ) is given in [Hill, 1977] (see also [Kimmig et al., 2019] in Chapter 2 for the
detailed calculation). Therefore, we just detail here the contribution arising from the pool
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exchange term. Equation (4.23) becomes
d
dt

U(t) = µTJ−(t) + ẋcτc(t)

+
1

da

s+∫
s−

(
n0

[
(w1(s)− w0)J+(s, t, 1) + (w0 − (w1(s) + µT ))J−(s, t, 1)

]
+ (1− n0)

[
(w1(s)− w0)J+(s, t, 0) + (w0 − (w1(s) + µT ))J−(s, t, 0)

])
ds

+
1

da

s+∫
s−

ṅ0

[
w1(s)

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

[
P0(s, t, 1)− P0(s, t, 0)

]]
ds

− 1

da

s+∫
s−

(
n0

[
w1(s)

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

|ṅ0|+
n0

[
P0(s, t, 1)− P0(s, t, 0)

]]
+ (1− n0)

[
w1(s)

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+ w0

|ṅ0|−
1− n0

[
P0(s, t, 0)− P0(s, t, 1)

]])
ds.

(4.24)
where we defined∣∣∣∣∣∣∣∣∣∣∣∣

J+(s, t, γ) = k+,γ(s)P0(s, t, γ)− krev
+,γ(s)P1(s, t, γ),

J−(s, t, γ) = k−,γ(s)P1(s, t, γ)− krev
−,γ(s)P0(s, t, γ),

J−(t) =
1

da

s+∫
s−

[
n0(t)J−(s, t, 1) +

(
1− n0(t)

)
J−(s, t, 0)

]
ds.

Using the property (4.8), the last two integrals in (4.24) cancel out. We finally have
U̇(t) = Ẇ(t) + Ė(t) + Q̇(t), (4.25)

with∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ẇ(t) = ẋcτc(t),

Ė(t) = µTJ−(t),

Q̇(t) =
1

da

s+∫
s−

(
n0

[
(w1(s)− w0)J+(s, t, 1) + (w0 − (w1(s) + µT ))J−(s, t, 1)

]
+ (1− n0)

[
(w1(s)− w0)J+(s, t, 0)

+ (w0 − (w1(s) + µT ))J−(s, t, 0)
])

ds.

(4.26a)
(4.26b)

(4.26c)

The variation of energy is thus separated into different contributions: a flux of work Ẇ, a
flux of chemical energy brought by ATP Ė and a thermal transfer flux Q̇. Note that all the
terms are counted positive when the flux of energy is entering the system. As expected,
the pool exchange terms do not contribute in the energy balance since the state energy
levels are the same in both pools.
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4.4.3 Second principle

The establishment of the second principle requires convexity inequalities that we present
first.

Lemma 4.4.1 (Convexity inequalities) For all (x, y) ∈]0, 1[2, we have the classical
convexity inequalities ∣∣∣∣∣∣∣∣

ln y − lnx ≤ 1

x

[
y − x

]
ln y − lnx ≥ 1

y

[
y − x

] (4.27a)

(4.27b)

Moreover, using (4.27b) we also have

ln(1− y)− ln(1− x) ≥ 1

1− y

[
x− y

]
(4.28)

Multiplying (4.27b) by y and (4.28) by 1− y and summing, we obtain

y ln
(y
x

)
+ (1− y) ln

(
1− y

1− x

)
≥ 0 (4.29)

or equivalently

y ln
(
x

y

)
+ (1− y) ln

(
1− x

1− y

)
≤ 0. (4.30)

The average entropy per myosin head is defined by the weighted average between the
entropy in each pool. It is given by

S(t) = −kB
da

s+∫
s−

(
n0

[
P1(s, t, 1) lnP1(s, t, 1) + P0(s, t, 1) lnP0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0) lnP1(s, t, 0) + P0(s, t, 0) lnP0(s, t, 0)

])
ds.

Our system is maintained at constant temperature by the environment, it can thus be more
easily described by the adapted thermodynamics potential: the Helmholtz free energy. It
is given by

F(t) = U(t)− TS(t),

We thus formally have
d
dt

F(t) =
d
dt

U(t)− T
d
dt

S(t). (4.31)

The free energy can be also expressed in terms of the chemical potentials∣∣∣∣∣µ1(s, t, γ) = w1(s) + kBT ln[P1(s, t, γ)], ∀γ ∈ {0, 1}
µ0(s, t, γ) = w0 + kBT ln[P0(s, t, γ)], ∀γ ∈ {0, 1}.

as

F(t) =
1

da

s+∫
s−

(
n0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0)µ1(s, t, 0) + P0(s, t, 0)µ0(s, t, 0)

])
ds.
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We have

d
dt

F(t) =
1

da

s+∫
s−

(
ṅ0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

− P1(s, t, 0)µ1(s, t, 0)− P0(s, t, 0)µ0(s, t, 0)
]

+ n0

[
P1(s, t, 1) ∂tµ1(s, t, 1) + µ1(s, t, 1) ∂tP1(s, t, 1)

+ P0(s, t, 1) ∂tµ0(s, t, 1) + µ0(s, t, 1) ∂tP0(s, t, 1)
]

+ (1− n0)
[
P1(s, t, 0) ∂tµ1(s, t, 0) + µ1(s, t, 0) ∂tP1(s, t, 0)

+ P0(s, t, 0) ∂tµ0(s, t, 0) + µ0(s, t, 0) ∂tP0(s, t, 0)
])

ds.

(4.32)

The time derivative of the chemical potentials times the probability Pα being given by

Pα(s, t, γ) ∂tµα(s, t, γ) = kBT ∂tPα(s, t, γ)∀α ∈ {0, 1} and ∀γ ∈ {0, 1}.

We obtain that

n0

[
P1(s, t, 1) ∂tµ1(s, t, 1) + P0(s, t, 1) ∂tµ0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0) ∂tµ1(s, t, 0) + P0(s, t, 0) ∂tµ0(s, t, 0)

]
= n0kBT ∂t

[
P1(s, t, 1) + P0(s, t, 1)

]
+ (1− n0)kBT ∂t

[
P1(s, t, 0) + P0(s, t, 0)

]
= 0,

from the matter conservation (4.22). The time derivative of the free energy becomes

d
dt

F(t) =
1

da

s+∫
s−

(
ṅ0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

− P1(s, t, 0)µ1(s, t, 0)− P0(s, t, 0)µ0(s, t, 0)
]

+ n0

[
µ1(s, t, 1)

(
− ẋc∂sP1(s, t, 1)−

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+
(
k+,1(s) + krev

−,1(s)
)(
1− P1(s, t, 1)

)
−
(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1)

)
+ µ0(s, t, 1)

(
ẋc∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
−
(
k+,1(s) + krev

−,1(s)
)(
1− P1(s, t, 1)

)
+
(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1)

)]
+ (1− n0)

[
µ1(s, t, 0)

(
− ẋc∂sP1(s, t, 0)−

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+
(
k+,0(s) + krev

−,0(s)
)(
1− P1(s, t, 0)

)
−
(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0)

)
+ µ0(s, t, 0)

(
ẋc∂sP1(s, t, 0) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
−
(
k+,0(s) + krev

−,0(s)
)(
1− P1(s, t, 0)

)
+
(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0)

)])
ds.

(4.33)
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Adapting the calculation performed in [Kimmig et al., 2019] (Chapter 2) for the derivation
of the second principle in the usual family of Huxley’57 models, we obtain

1

da

s+∫
s−

(
n0

[
µ1(s, t, 1)

((
k+,1(s) + krev

−,1(s)
)(
1− P1(s, t, 1)

)
−
(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1)− ẋc ∂sP1(s, t, 1)

)
+ µ0(s, t, 1)

(
−
(
k+,1(s) + krev

−,1(s)
)(
1− P1(s, t, 1)

)
+
(
k−,1(s) + krev

+,1(s)
)
P1(s, t, 1) + ẋc ∂sP1(s, t, 1)

)]
+ (1− n0)

[
µ1(s, t, 0)

((
k+,0(s) + krev

−,0(s)
)(
1− P1(s, t, 0)

)
−
(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0)− ẋc ∂sP1(s, t, 0)

)
+ µ0(s, t, 0)

(
−
(
k+,0(s) + krev

−,0(s)
)(
1− P1(s, t, 0)

)
+
(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0) + ẋc ∂sP1(s, t, 0)

)])
ds

= Ẇ(t) + Ė(t)

+
1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds.

Using the calculation made for the derivation of the energy balance, we have

ṅ0

[
P1(s, t, 1)w1(s) + P0(s, t, 1)w0 − P1(s, t, 0)w1(s)− P0(s, t, 0)w0

]
−
(
n0

[
w1(s)

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
− w0

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]]
+(1−n0)

[
w1(s)

|ṅ0|−
1− n0

[
P1(s, t, 0)−P1(s, t, 1)

]
−w0

|ṅ0|−
1− n0

[
P1(s, t, 0)−P1(s, t, 1)

]])
= 0.
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Finally, we have using the property (4.8)

ṅ0kBT
[
P1(s, t, 1) ln

[
P1(s, t, 1)

]
+ P0(s, t, 1) ln

[
P0(s, t, 1)

]
− P1(s, t, 0) ln

[
P1(s, t, 0)

]
− P0(s, t, 0) ln

[
P0(s, t, 0)

]]
− n0kBT

[
ln
[
P1(s, t, 1)

] |ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ ln

[
P0(s, t, 1)

] |ṅ0|+
n0

[
P0(s, t, 1)− P0(s, t, 0)

]]
− (1− n0)kBT

[
ln
[
P1(s, t, 0)

] |ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+ ln

[
P0(s, t, 0)

] |ṅ0|−
1− n0

[
P0(s, t, 0)− P0(s, t, 1)

]]
= kBT

(
P1(s, t, 1)|ṅ0|−

[
− ln

[
P1(s, t, 1)

]
+ ln

[
P1(s, t, 0)

]]
+ P0(s, t, 1)|ṅ0|−

[
− ln

[
P0(s, t, 1)

]
+ ln

[
P0(s, t, 0)

]]
+ P1(s, t, 0)|ṅ0|+

[
− ln

[
P1(s, t, 0)

]
+ ln

[
P1(s, t, 1)

]]
+ P0(s, t, 0)|ṅ0|+

[
− ln

[
P0(s, t, 0)

]
+ ln

[
P0(s, t, 1)

]])
= −kBT

[
|ṅ0|+

[
ln
(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0) + ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln
(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1) + ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
.

Altogether, (4.33) becomes

d
dt

F(t) = Ẇ(t) + Ė(t)

+
1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds

− kBT

da

s+∫
s−

[
|ṅ0|+

[
ln
(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0)

+ ln
(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln
(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1)

+ ln
(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
ds.

(4.34)

217



Chapter 4. Activation-contraction coupling in a multiscale heart model capturing the
Frank-Starling effect

Joining (4.34) with (4.31) and the first principle (4.25), we obtain second principle

d
dt

S(t) = Q̇
T

+ Ṡprod(t), (4.35)

defining the rate of entropy production as

Ṡprod(t) = − 1

T

1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds

+
kB
da

s+∫
s−

[
|ṅ0|+

[
ln
(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0) + ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln
(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1) + ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
ds.

(4.36)

The second principle is thus satisfied if the above defined entropy production rate is always
positive. As was shown in [Hill, 1977], the integrand of the first integral term of Ṡprod is
always positive if the transition rates satisfy the detailed balance (4.6). Indeed, we have

k+,γ(s)P0(s, t, γ)

krev
+,γ(s)P1(s, t, γ)

= exp
(w0 − w1(s)

kBT

)
exp

(
kBT

ln
[
P0(s, t, γ)− P1(s, t, γ)

]
kBT

)
= exp

(µ0(s, t, γ)− (µ1(s, t, γ) + µT
)

kBT

)
. (4.37)

Since we have J−(s, t, γ) = k−,γ(s)P1(s, t, γ) − krev
−,γ(s)P0(s, t, γ), we conclude from (4.37)

that J− and µ0(s, t, 1)−
(
µ1(s, t, 1) + µT

)
are of opposite sign. Therefore, the product of

these two factors is negative and contribute positively to the entropy production with the
minus sign in front of the integral. Similarly, the product of J+ and µ1(s, t, 1)−µ0(s, t, 1)
is also always negative and contributes positively to the entropy production. Moreover,
using the convexity inequality (4.29), we deduce that the second integral term of Ṡprod is
always positive. As a consequence, we have Ṡprod ≥ 0 and the model is compatible with
the second principle.

One can note that the entropy creation is composed of two contributions. The first one
involves the attachment and detachment fluxes and corresponds to the physical creation
of entropy. The second one is an entropy creation term induced by the averaging process
introduced in our model by the pool exchange terms. Indeed, at each time, we mix the
probability of being attached (resp. detached) of the heads switching from one pool to
another and the heads remaining in their initial pool. There is a loss of information on the
system and thus a creation of entropy. An illustration of this phenomenon is presented in
Section 4.5.1.

4.4.4 Coupling with a macroscopic model

We now want to couple our model describing the microscopic interaction between actin
and myosin to the macroscopic model of a muscle fibre. Let us define a domain Ω0 for the
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reference configuration. We assume that the domain is subjected to a boundary traction
tN on the subpart of the boundary ΓN . We introduce the rheology proposed in [Kimmig
et al., 2019] (Chapter 2) in the realm of finite strains as presented in Figure 4.4. The
upper branch models the one dimensional half-sarcomere of direction τ . The displacement
xc represent the relative sliding between the actin and the myosin filaments considered
rigid. The length change of the filaments due to their passive properties is accounted for
by es. Defining the extensions

ec =
xc
`hs

and es =
`s
`hs

,

the rheology assumes the following additive law to define the total 1D extension efib =
es + ec. The tension in the branch is naturally given by

Tfib = Eses = Tc + νėc.

In this context, the filament sliding velocity ẋc, which appear in microscopic dynamic
equation, is given by `hsėc.

The remaining part of the rheology models the 3D visco-hyperelastic passive properties
of the tissue. The total second Piola-Kirchhoff stress tensor is given by Σ = Σ

p
+Σ

a
with

Σ
p
=
∂Ψ

∂e
+ ηė and Σ

a
=

Tfib
1 + efib

τ ⊗ τ ,

where Ψ is the constitutive hyperelastic potential, η the 3D viscosity coefficient, e is the
Green-Lagrange deformation tensor and τ the local fiber direction. Note that the 1D
extension and the 3D Green-Lagrange tensor are linked through the relation

1 + efib = (1 + 2τ · e · τ)
1
2 . (4.38)
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The principle of virtual work written on Ω0 yields the macro-micro coupled model

∫
Ω0

ρ0ÿ · w dΩ+

∫
Ω0

Σ : dye · w dΩ =

∫
ΓN

tN · w dΓ, ∀w ∈ Vad,

with Σ =
∂Ψ

∂e
+ ηė+

Tfib

(1 + 2τ · e · τ)
1
2

τ ⊗ τ ,

Tfib = νėc + Tc = Eses,

with Tc(x, t) =
ρsurf
da

s+∫
s−

[
n0(x, ec)P1(x, s, t, 1)

+
(
1− n0(x, ec))P1(x, s, t, 0)

]∂w1

∂s
(s, t)ds, ∀x ∈ Ω0,

∂P1

∂t
(x, s, t, 1) = −|ṅ0|+

n0

[
P1(x, s, t, 1)− P1(x, s, t, 0)

]
− `hsėc(x, t)

∂P1

∂s
(x, s, t, 1)

+
(
k+,1(s) + krev

−,1(s)
)(
1− P1(x, s, t, 1)

)
−
(
k−,1(s) + krev

+,1(s)
)
P1(x, s, t, 1)

∂P1

∂t
(x, s, t, 0) = − |ṅ0|−

1− n0

[
P1(x, s, t, 0)− P1(x, s, t, 1)

]
− `hsėc(x, t)

∂P1

∂s
(x, s, t, 0)

+
(
k+,0(s) + krev

−,0(s)
)(
1− P1(x, s, t, 0)

)
−
(
k−,0(s) + krev

+,0(s)
)
P1(x, s, t, 0)

(4.39a)

(4.39b)

(4.39c)

4.5 Range of validity and limitations
We want to gain a deeper understanding of our model and in particular of the conse-
quences of the homogenized myosin heads description in the pools instead of an individual
description. For that, we first numerically investigate the behavior of the pool exchange
term in our equations. Then, to put our model in perspective, we compare our formulation
with two ways of treating the myosin heads individually. Finally, we numerically compare
our newly proposed formulation to the state of the art integration of the thick filament
activation into the Huxley’57 model equations [Zahalak & Motabarzadeh, 1997; Chapelle
et al., 2012].

To put the focus on the variations of myosin head availability, we assume that the
filaments do not slide past each other (ẋc = 0). In these conditions, the distance to the
nearest actin site s is a parameter. We consider the representative subset of the myosin
heads population that is located at distance s to its nearest actin site and the reference
to the parameter s will be omitted in the rest of this section.

4.5.1 Impact of the homogenized description in the pool model

We first want to isolate the effect of the pool exchange operator, We thus assume that the
attachment-detachment dynamics is prevented (k+,γ(s) = k−,γ(s) = 0, ∀α ∈ {0, 1}, ∀γ ∈
{0, 1}).
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Figure 4.4 – Tissue rheology. The upper branch represents the 1D filaments inside the sarcomere,
which comprises the active cross-bridges represented here by the attached myosin heads. The
lower branch represents the 3D passive visco-hyperelastic contribution of the remaining muscle cell
constituents to the mechanical behavior. The rheology is constructed in the framework of finite
strains, the constitutive elements are thus assembled together in a non-linear way.

The only effect at play is a transfer between the two pools when n0 varies. We will
assume here that n0 has an explicit dependency on time. We choose that, in the initial
situation, P1(t, 1) = 0.90 and P1(t, 0) = 0.10.

We impose a periodic oscillatory evolution for n0 (see Figure 4.5), i.e. in each period,
we alternatively transfer heads from one pool to the other. The simulation results are
presented in Figure 4.5.

When n0 increases, heads are transferred from the pool γ = 0 to the pool γ = 1. Since
P1(s, t, 0) ≤ P1(s, t, 1), the heads arriving in the pool γ = 1 have a lower probability of
being attached than the myosin heads that they join in the pool. As a result the average
probability of being attached in the pool γ = 1 decreases. Heads remaining in the pool
γ = 0 are not mixed with any transferring myosin heads. Their probability of being
attached P1(s, t, 0) is left unchanged. When n0 increases, the opposite effect takes place.
Heads are transferred from the pool γ = 1 to the pool γ = 0 and P1(s, t, 0) increases.
Since the attachment-detachment dynamics is prevented, the total probability of being
attached P1(t) = n0(t)P1(s, t, 1) +

(
1− n0(t)

)
P1(s, t, 0) remains constant over a period.

Repeating this process, the probability of being attached in the two pools converges
to the total probability of being attached P1(t). The exchanges between the pools tend to
homogenize the probability of being attached between the two pools. This mixing effect
is associated with a loss of information that is revealed in the thermodynamic second
balance.

4.5.2 Comparison with individual description of the myosin heads

Our formulation (4.14) proposes an homogenized description of the myosin heads within
the pools. To assess the impact of this assumption, we compare this homogenized for-
mulation with stochastic individual descriptions of the myosin heads when the myosin
heads availability varies. The heads are still separated in two pools, which defines their
attachment-detachment dynamics, but their probability of being attached is tracked indi-
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Figure 4.5 – Illustration of the homogenization effect of the pool model. We consider here that
the sliding velocity ẋc vanishes and the attachment-detachment dynamics is blocked k+,γ(s) =
k−,γ(s) = 0. (a) Imposed evolution for n0. (b), (c) & (d) Model outputs.

vidually.
This is not only an opportunity to put our modeling assumptions into perspective but

also a way to determine if the distinction between different potential underlying mecha-
nisms matters in physiological conditions.

Note that, for the sake of compactness, we will use the aggregated transition rates fγ
and gγ in this section.

4.5.2.1 Heads switching pool chosen randomly

We first assume that the heads switching from one pool to the other are randomly chosen
(i.e. all heads in the pool have the same probability to switch pool). The heads in the
sarcomere therefore do not interact with each other. Any myosin head in the considered
subset can attach and detach (the internal variable α is equal to one when the myosin
head is attached, and to zero if it is detached) and switch between the pool of available
head (γ = 1) and the pool of non-available myosin heads (γ = 0). Its state at time t is
described by (αt, γt).

In our modeling framework, we want the ratio of heads in the pool γ = 1 to be
controlled and equal to n0(t). In this stochastic model, this translates into the expected
property P

[
γt = 1

]
= n0(t).

Let us assume that this property holds and examine the resulting requirements on
transition probabilities for the variable γt. We would have

P
[
γt+dt = 1|γt = 0

]
=

P
[
γt+dt = 1, γt = 0

]
P
[
γt = 0

] =
|ṅ0(t)|+
1− n0(t)

dt.

Similarly, we would also obtain

P
[
γt+dt = 0|γt = 1

]
=

P
[
γt+dt = 0, γt = 1

]
P
[
γt = 0

] =
|ṅ0(t)|−
n0(t)

dt.
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We choose these transition probabilities for the variable γ so that the property P
[
γt =

1
]
= n0(t) holds and we choose the initial condition P

[
γ0 = 1

]
= n0(0).

The complete system of probability transitions for the state of the myosin head is given
by ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P
[
αt+dt = 1, γt+dt = 1|αt = 0, γt = 1

]
= f1 dt,

P
[
αt+dt = 0, γt+dt = 1|αt = 1, γt = 1

]
= g1 dt,

P
[
αt+dt = 1, γt+dt = 0|αt = 0, γt = 0

]
= f0 dt,

P
[
αt+dt = 0, γt+dt = 0|αt = 1, γt = 0

]
= g0 dt,

P
[
αt+dt = 1, γt+dt = 1|αt = 1, γt = 0

]
=

|ṅ0(t)|+
1− n0(t)

dt,

P
[
αt+dt = 0, γt+dt = 1|αt = 0, γt = 0

]
=

|ṅ0(t)|+
1− n0(t)

dt,

P
[
αt+dt = 1, γt+dt = 0|αt = 1, γt = 1

]
=

|ṅ0(t)|−
n0(t)

dt,

P
[
αt+dt = 0, γt+dt = 0|αt = 0, γt = 1

]
=

|ṅ0(t)|−
n0(t)

dt.

(4.40)

The various states, in which a myosin heads can be, and the transitions between them are
summarised in Figure 4.6.

α = 1
γ = 1

α = 1
γ = 0

α = 0
γ = 1

α = 0
γ = 0

f1g1f0g0

|ṅ0|+
1− n0

|ṅ0|−
n0

|ṅ0|+
1− n0

|ṅ0|−
n0

Figure 4.6 – Diagram representation of the stochastic model tracking the myosin heads individually
in the pools and using the random exchange paradigm.

We now want to analytically compare this model and the homogenized pool model. For
this, we establish a Kolmogorov-forward-like equation associated with (4.40) (the detailed
calculus are presented in Appendix (4.9.2)).

Noting that the probabilities of the random exchange stochastic model states P
[
αt, γt

]
can be related to the homogenized pool model probabilities Pα(t, γ) by

∣∣∣∣∣∣∣∣∣∣
P
[
αt = 1, γt = 1

]
= P

[
αt = 1|γt = 1

]
P
[
γt = 1

]
= P1(t, 1)n0(t),

P
[
αt = 1, γt = 0

]
= P

[
αt = 1|γt = 0

]
P
[
γt = 0

]
= P1(t, 0) ·

(
1− n0(t)

)
,

P
[
αt = 0, γt = 1

]
= P

[
αt = 0|γt = 1

]
P
[
γt = 1

]
= P0(t, 1)n0(t),

P
[
αt = 0, γt = 0

]
= P

[
αt = 0|γt = 0

]
P
[
γt = 0

]
= P0(t, 0) ·

(
1− n0(t)

)
.
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the system (4.40) is associated with the partial differential equations∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
P1(1) = −|ṅ0(t)|+

n0(t)

[
P1(1)− P1(0)

]
− g1P1(1) + f1P0(1),

∂

∂t
P1(0) = − |ṅ0(t)|−

1− n0(t)

[
P1(0)− P1(1)

]
− g0P1(0) + f0P0(0),

P0(1) = 1− P1(1),

P0(0) = 1− P1(0),

which are identical to (4.14) in the considered conditions (no filament sliding). The random
exchange stochastic model and the homogenized pool model are thus equivalent.

4.5.2.2 Last-in first-out

It is also possible to consider that the heads are switching from one pool to the other in a
last-in first-out manner. This would be a natural mechanism if the overlap effect is at the
origin of the variations of myosin heads availability. In this case, the heads are, in some
ways, interacting with each other through the memory of the transition order.

We assume that the considered subset of myosin heads contains N elements indexed
by i of state (αt

i, γ
t
i ). They are shared in the two pools in the following manner

γti =

1, if i ≤
⌊
n0(t)

N

⌋
0, otherwise,

(4.41)

where b•c denotes the floor function. Then, in each pool, we have the dynamics∣∣∣∣∣∣∣∣∣∣∣

P
[
αt+dt
i = 1|αt

i = 0, γti = 1
]
= f1 dt,

P
[
αt+dt
i = 0|αt

i = 1, γti = 1
]
= g1 dt,

P
[
αt+dt
i = 1|αt

i = 0, γti = 0
]
= f0 dt,

P
[
αt+dt
i = 0|αt

i = 1, γti = 0
]
= g0 dt.

(4.42)

4.5.2.3 Numerical simulation

We have formally proven the equivalence between the homogenized description of the
myosin heads availability and the individual description with a random pool exchange
paradigm. In this section, we will additionally numerically compare the homogenized
pool descriptions with the individual description of the myosin head availability using the
last-in first-out exchange paradigm.

To simulate stochastically the latter model with an individual description of the myosin
heads, we consider N myosin heads. We approximate the probabilities Pt

[
α, γ

]
= P

[
αt =

α, γt = γ
]

with the empirical probabilities

Pt

[
α, γ

]
=

1

N

N∑
i=1

1{αt=α,γt=γ}(α
t
i, γ

t
i ).

We impose the time evolution of n0 with variations that reproduce that of a heart beat
with physiological time scales. Starting from a steady-state where n0 is constant with a
value of 0.80 – heads are mainly available for attachment – , the ratio of available myosin
heads is decreased to the value 0.20 – heads are mainly not available for attachment – in
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0.1 s corresponding to the stystole. This phase is then followed by a plateau in which n0
is maintained constant for 0.2 s. The thick filament activation n0 is then brought back to
its original value in 0.1 s. This corresponds to the diastole.

For a physiological simulation, we also need to select meaningful values for the transi-
tion rates. The physiological values of the attachment f and detachment g rates for cardiac
muscle remain subject to debate [Månsson, 2010; Kimmig & Caruel, 2019] (see Chapter 3).
Indeed, classically, muscle contraction models – deriving from Huxley’57 model – cannot
reproduce at the sarcomere level both the force-velocity relation and the tension rise dy-
namics, showing that this description of the cycling process actually encompasses other
molecular mechanisms whose dynamics is aggregated to the attachment and detachment
rates. Depending on which physiological indicators is privileged for the model calibration,
different values of the transition rates are obtained with a factor six difference. In this
section, we will here test both possibilities.

On the one hand, we have the transition rates proposed by [Kimmig et al., 2019] when
favoring the force-velocity curve. The attachment rate is f1(s) = f1 = 250 s−1 and the
detachment rate is g1(s) = g1 = 60 s−1. To take into account that heads in the pool γ = 0
attach with a lower probability, we use f0 = 0.01f1 and g0 = g1. We call this choice of
parameters the reference. On the other hand, if we focus on the tension rise dynamics, we
typically have f1(s) = f1/6 = 41.6 s−1 and the detachment rate is g1(s) = g1/6 = 10 s−1

(see for instance [de Tombe & Stienen, 2007]) and again with the assumption f0 = 0.01f1
and g0 = g1. We additionally consider a non-physiological calibration for illustration
purposes with f1(s) = f1/50 = 5 s−1 and g1(s) = g1/50 = 1.2 s−1 The simulation results
for the two models considered and the three tested calibrations are presented in Figure 4.7.

We first comment on the evolution of the system with the two sets of physiological
rates (Figure 4.7 left and middle columns). In the initial state, heads in both pools are
attached with the steady-state probability P1(γ, t) = fγ/(fγ + gγ). In the systole, some
heads switch from the pool γ = 1 to the pool γ = 0. Since the probability of being attached
is higher in the pool γ = 1 than in the pool γ = 0, P1(γ = 0) increases. The probability of
being attached in the pool γ = 1 remains unchanged. For both models, heads that change
pool are equivalent, therefore, the way of choosing them does not matter and the evolution
of P1(γ = 0) is the same for the two models. As soon as the heads are transferred in the
other pool, the attachment-detachment dynamics leads to a return to the steady-state
value of P1(γ = 0). Here, the time scale of the attachment-detachment dynamics is short
compared to the duration of the plateau, at the end of the latter phase the heads thus
have a probability of being attached in both pools that is almost equal to the steady-state
probability. There is no memory of the “pool of origin”. In the diastole, heads switch
from the pool γ = 0 to the pool γ = 1. We have P1(γ = 1) > P1(γ = 0), which implies
that P1(γ = 1) decreases while P1(γ = 0) is almost constant (it is only varied by the
attachment-detachment process). Since the state in the two models were the same at the
end of the plateau, the evolution of P1(γ = 1) is the same for the two models.

The situation is different with the non-physiological transition rates (Figure 4.7 right
column). The attachment-detachment dynamics time scale is not short compared to the
plateau duration. Therefore, in the pool γ = 0 heads that swapped pools during the systole
have a higher probability of being attached than the other heads of the pool. With the
homogenized model, the probability P1(γ = 0) is not affected by the pool exchange in the
diastole, since heads that leave the pool have the average probability of being attached and
it is governed solely by the attachment-detachment dynamics. With the last-in first-out
paradigm, the heads that switch from the pool γ = 0 to the pool γ = 1 are exactly those
that were in the pool γ = 1 at the beginning of the simulation, they are precisely the heads
that have a higher probability of being attached. As a result, the probabilities P1(γ = 1)
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Figure 4.7 – Model comparison between the homogenized treatment of the myosin heads changing
pool, and individual tracking of those head with the last-in first-out paradigm (quantities computed
from 10000 stochastic trajectories). Note that the time scale of the transition between the pools
is 0.15 s. The time scale of the attachment-detachment process is given by the duration of a cycle,
which is given by f−1 + g−1. Left column: simulation with reference transition rates targeting
the force-velocity curve [Kimmig & Caruel, 2019] (Chapter 3). The time scale of the attachment-
detachment process is 0.02 s. Center column: reference transition rates divided by a factor six to
mimic the calibration proposed by [de Tombe & Stienen, 2007] aiming at capturing the force rise
dynamics. The time scale of the attachment-detachment process is 0.12 s. Right column: reference
transition rates divided by a factor fifty to illustrate the competition between the attachment-
detachment time scale and the pool exchange time scale in the model. The time scale of the
attachment-detachment process is 1 s.
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and P1(γ = 0) retrieve their initial level – up to attachment-detachment transitions that
have occurred in the plateau. In this configuration, the last-in first-out paradigm and
the homogenized pool model provide different outputs that affect the total probability of
being attached P1 which will lead variations of the ultimate quantity of interest: the active
force.

In a nutshell, the last-in first-out pool exchange paradigm differs from the homogenized
model (or equivalently the random pool exchange paradigm) when the dynamics of the
exchanges between the pools is fast compared to the attachment-detachment dynamics.
The two paradigms are equivalent otherwise. It is a priori not possible to know which
exchange paradigm – random, last-in first-out, or another paradigm – is at play at the
microscopic level. However, this does not harm our modeling approach because the two
pools are equivalent when physiological values of the transition rates and physiological
variation time scales of the parameter function n0 are considered. Therefore, our homog-
enized formulation is fully valid in the context of cardiac muscle modeling, independently
of the uncertainty on the physiological transition rates.

In another situation where the difference between both paradigms may matter, ad-
ditional experimental data should be sought. It would require structural experimental
measurements that are capable of distinguishing the behavior of neighboring heads in a
dynamical manner. To the best of our knowledge, state of the art structural measurements
for cardiac muscle cells can only deal with steady states and describe the global behavior
of the myosin heads population [Reconditi et al., 2017].

4.5.3 Comparison with previously proposed formulation

We now compare our formulation (4.14), aiming at a proper treatment of the myosin
heads availability in the realm of the Huxley’57 contraction model family, with standard
previous attempts (4.18) [Zahalak & Motabarzadeh, 1997; Chapelle et al., 2012].

We consider again a system where n0 is imposed and we use the same time evolution
of this input function as in Section 4.5.2.3. The results are presented in Figure 4.8. We
can note that the two formulations depart from each other when P1(γ = 0) becomes
significant.

With the model proposed by [Chapelle et al., 2012], a fraction 1−n0 of myosin heads is
not allowed to attach. In the new formulation, it is equivalent to assume that P1(γ = 0) =
0. When the attachment-detachment dynamics is fast compared to the pool dynamics,
the myosin heads in the pool γ = 0 quickly detach and this assumption is approximately
valid (see Figure 4.8(a)). The two formulations provide results that differ by about 10%
at mid-end-systole.

However, when the cycling time scale is large compared to the myosin availability
variations, we may have P1(γ = 0) significantly different from 0. In this case, the two
formulation differ (see Figure 4.8(b)).

4.6 Discretization

To simulate numerically our model, we propose a dedicated discretization scheme. We
base our analysis on the work done by Kimmig et al. [2019] (see Chapter 2) for the usual
family of Huxley’57 models. The originality here is the addition of the pool exchange term
in the numerical scheme and the introduction of a multi-step time scheme. As in [Kimmig
et al., 2019], we establish a discretized version of the thermodynamical principles (4.25)
and (4.35).
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Figure 4.8 – Comparison between the proposed thick filament activation description and the lit-
erature standard. (a) Transition rates given by [Kimmig & Caruel, 2019] (Chapter 3). (b) Non-
physiological transition rates that are 50 times slower than that of [Kimmig & Caruel, 2019].

To account for the different time scale in the muscle contraction, we propose here a
multi-time-step numerical scheme. We consider here two time steps: a global time step
∆t and a intermediate time step δt with Nδt = ∆t. The small time step is used at the
microscopic level while the large time step is used to discretize the macroscopic dynamics.
We index the global time iterations with n and, inside a global iteration, we index the
intermediate iteration by k with the convention

an,k=0 = an and an,k=N = an+1,

for any variable a. The macroscopic internal variables – the variables of equations (4.39a)
and (4.39b) – are only defined at the global time steps. The microscopic variables – the
variables of equations (4.39c) – are defined at local time steps.

Note that we apply the following general notation rule: for any physical quantity,
exponents designate discrete time instant and indices designate discrete space location.

4.6.1 Microscopic numerical scheme

We first present the numerical scheme for the microscopic dynamics.
The simulation range [s−, s+] is discretized by a regular grid of discretization length

δs and with the choice s0 = s− and s` = s+. For the sake of compactness of the notation,
we approximate P1(s

− + iδs, n∆t+ kδt, 1) by an,ki and P1(s
− + iδs, n∆t+ kδt, 0) by bn,ki .

For the chemical reaction term we use an implicit scheme, and an upwind implicit
scheme for the transport term as proposed by [Kimmig et al., 2019] (Chapter 2). The pool
exchanges terms are treated with a semi-explicit, semi-implicit scheme. The choice of such
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a scheme is justified by the fact that it allows to establish a discrete energy balance (see
Section (4.6.1.2)).

Note that the presentation will be restricted to positive sliding velocities ẋc but the
results can be straightforwardly extended to negative sliding velocities by reversing the
space shift in the transport term so that the scheme keeps its upwind nature. The results
for negative sliding velocities are given in Appendix (4.9.4).

We denote the discrete sliding velocity by

v
n+ 1

2
]

c = `hs(e
n+1
c − enc )/∆t (4.43)

and we assume that it is positive (i.e. en+1
c − enc ≥ 0). We define nn0 = n0(e

n
c ).

The discretization scheme then reads

an,k+1
i − an,ki

δt
= −|nn+1

0 − nn0 |+
nn,k+1
0 ∆t

[
an,ki − bn,ki

]
+ (k+,1,i + krev

−,1,i)(1− an,k+1
i )

− (k−,1,i + krev
+,1,i)a

n,k+1
i − v

n+ 1
2
]

c
an,k+1
i − an,k+1

i−1

δs
, ∀i ∈ [[1, `]]

bn,k+1
i − bn,ki

δt
= − |nn+1

0 − nn0 |−
(1− nn,k+1

0 )∆t

[
bn,ki − an,ki

]
+ (k+,0,i + krev

−,0,i)(1− bn,k+1
i )

− (k−,0,i + krev
+,0,i)b

n,k+1
i − v

n+ 1
2
]

c
bn,k+1
i − bn,k+1

i−1

δs
,∀i ∈ [[1, `]]

(4.44)

with the definition∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k+,1,i = k+,1(s
− + iδs) and krev

+,1,i = krev
+,1(s

− + iδs), ∀i ∈ [[1, `]]

k+,0,i = k+,0(s
− + iδs) and krev

+,0,i = krev
+,0(s

− + iδs), ∀i ∈ [[1, `]]

k−,1,i = k−,1(s
− + iδs) and krev

−,1,i = krev
−,1(s

− + iδs), ∀i ∈ [[1, `− 1]]

k−,0,i = k−,0(s
− + iδs) and krev

−,0,i = krev
−,0(s

− + iδs), ∀i ∈ [[1, `− 1]]

k−,1,` = 2k−,1,`−1 and krev
+,1,` = 2krev

+,1,`−1,

k−,0,` = 2k−,0,`−1 and krev
+,0,` = 2krev

+,0,`−1,

(4.45)

and
nn,k0 = nn0 + k

δt

∆t

(
nn+1
0 − nn0

)
.

We define the aggregated attachment and detachment rate by fγ,i = k+,γ,i + krev
−,γ,i and

gγ,i = k−,γi + krev
+,γ,i, respectively. Note that the numerical aggregated detachment rates

differ from their analytical counterparts, which go to infinity on the boundaries of the
interval [s−, s+]. Indeed, as proposed by Kimmig et al. [2019] (Chapter 2), we use instead
a consistent finite approximation. The choice of the boundary conditions follows that of
Kimmig et al. [2019] as well. We impose periodic boundary conditions for an,k and bn,k. We
have an,k0 = an,k` and bn,k0 = bn,k` . The initialisation of the discretization is done such that
a00 = a0` = 0 and b00 = b0` = 0. Moreover, we impose that a0i and b0i ∈ [0, 1], ∀n, ∀i ∈ [[1, `]]
to be consistent with the definition of a0i and b0i as probabilities.

Defining ∣∣∣∣∣∣∣∣∣∣
αn+ 1

2
] = `hs(e

n+1
c − enc )/∆t · δt/δs,

β
n+ 1

2
]

1,i = δt
(
k+,1,i + krev

+,1,i + k−,1,i + krev
−,1,i

)
+ αn+ 1

2
],

β
n+ 1

2
]

0,i = δt
(
k+,0,i + krev

+,0,i + k−,0,i + krev
−,0,i

)
+ αn+ 1

2
],
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the numerical scheme can be written in a vectorial form using the state vector

Pn,k =
[
an,k1 . . . an,k` bn,k1 . . . bn,k`

]T
.

The system (4.45) becomes

(Id + In+
1
2
])Pn,k+1 = (Id − En,k+1)Pn,k + δtf,

where Id is the 2`× 2` identity matrix

In+
1
2
]=



β
n+ 1

2
]

1,1 −αn+ 1
2
]

−αn+ 1
2
] β

n+ 1
2
]

1,2
. . . . . .

−αn+ 1
2
] β

n+ 1
2
]

1,`

β
n+ 1

2
]

0,1 −αn+ 1
2
]

−αn+ 1
2
] β

n+ 1
2
]

0,2
. . . . . .

−αn+ 1
2
] β

n+ 1
2
]

0,`



,

E1 =



1 −1

1 −1

1 −1

1 −1


, E0 =


−1 1

−1 1

−1 1

−1 1


,

f=
[
f1,1, f1,2, . . . , f1,`, f0,1, f0,2, . . . , f0,`

]T
,

and En,k+1 =
|nn+1

0 − nn0 |+
nn,k+1
0

δt

∆t
E1 +

|nn+1
0 − nn0 |−
1− nn,k+1

0

δt

∆t
E0.

4.6.1.1 Uniform positivity and - boundness

We want to ensure that, at all time steps and all spatial positions, the numerical solutions
an,ki and bn,ki satisfy the property

0 ≤ an,ki ≤ 1 and 0 ≤ bn,ki ≤ 1 ⇐⇒ 0 ≤ Pn,k ≤ 1, ∀n ∈ N, ∀k ∈ [[0, N ]],

with the convention that a vector is positive if each of its components are positive. This
property allows to keep the interpretation of an,ki and bn,ki as probabilities but it is also
essential from a numerical point of view since some thermodynamic quantities that are
involves in thermodynamic, requires to evaluate the logarithm of the probabilities of being
attached. We proceed recursively and we assume that

0 ≤ Pn,k ≤ 1. (4.46)
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We introduce the vector 1− Pn,k, whose dynamics is governed by

(Id + In+
1
2
])(1− Pn,k+1) = (Id − En,k+1)(1− Pn,k) + δtg.

We want to show that ∣∣∣∣∣ 0 ≤ Pn,k+1,

0 ≤ 1− Pn,k+1.
(4.47)

We know from [Kimmig et al., 2019] (Chapter 2), that the matrix Id+ In+
1
2
] preserves the

positivity – ie. ∀P ∈ R2`, (Id + In+
1
2
])P ≥ 0 ⇒ P ≥ 0. Therefore, the desired property

0 ≤ Pn,k+1 ≤ 1 is obtained if

(Id − En,k+1)Pn,k + δtf ≥ 0 and (Id − En,k+1)(1− Pn,k) + δtg ≥ 0.

A sufficient condition is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤
(
1− δt

|nn+1
0 − nn0 |+
nn,k+1
0 ∆t

)
an,ki + δt

|nn+1
0 − nn0 |+
nn,k+1
0 ∆t

bn,ki + δtf1,i

0 ≤ δt
|nn+1

0 − nn0 |+
nn,k+1
0 ∆t

an,ki +
(
1− δt

|nn+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

)
bn,ki + δtf0,i

0 ≤
(
1− δt

|nn+1
0 − nn0 |+
nn,k+1
0 ∆t

)
(1− an,ki ) + δt

|nn+1
0 − nn0 |+
nn,k+1
0 ∆t

(1− bn,ki ) + δtg1,i

0 ≤ δt
|nn+1

0 − nn0 |+
nn,k+1
0 ∆t

(1− an,ki ) +
(
1− δt

|nn+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

)
(1− bn,ki ) + δtg0,i.

(4.48)

Knowing that 0 ≤ an,ki ≤ 1 and 0 ≤ bn,ki ≤ 1 from (4.46), we have the property (4.48) if
δt satisfies the (not optimal) CFL-like condition

δt ≤ min
( nn+1

0

|nn+1
0 − nn0 |+

∆t,
1− nn+1

0

|nn+1
0 − nn0 |−

∆t
)
. (4.49)

In all numerical results presented in what follows, we will make sure that this conditions
is satisfied.

4.6.1.2 First principle

We now aim at establishing a discrete counterpart to the continuous first principle (4.25).
We only present here the main results; their detailed proof is given in Section 4.9.3.1. We
discretise the attached state energy level on [s−, s+] by∣∣∣∣∣w1,i = w1(s

− + iδs), ∀i ∈ [[1, `− 1]]

w1,` = 2w1,`−1.

We define the discrete average energy per myosin head by

Un,k =
δs

da

∑̀
i=1

[
w1,i

(
nn,k0 an,ki + (1− nn,k0 )bn,ki

)
+w0

(
nn,k0 (1− an,ki ) + (1− nn,k0 )(1− bn,ki )

)]
.

(4.50)
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Defining the attachment-detachment fluxes as∣∣∣∣∣∣∣∣∣∣∣

Jn,k
+,1,i = k+,1,ia

n,k
i − krev

+,1,i(1− an,ki ),

Jn,k
+,0,i = k+,0,ib

n,k
i − krev

+,0,i(1− bn,ki ),

Jn,k
−,1,i = k−,1,i(1− an,ki )− krev

−,1,ia
n,k
i ,

Jn,k
−,1,i = k−,0,i(1− bn,ki )− krev

−,0,ib
n,k
i ,

(4.51)

we obtain the first principle formulation at local time steps

Un,k+1 − Un,k

δt
=

Wn,k+1 −Wn,k

δt
+

Qn,k+1 −Qn,k

δt
+

En,k+1 − En,k

δt
, (4.52)

with∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn,k+1 −Wn,k

δt
= v

n+ 1
2
]

c τn,k+1
c ,

Qn,k+1 −Qn,k

δt
=
δs

da

∑̀
i=1

[(
nn,k+1
0 Jn,k+1

+,1,i + (1− nn,k+1
0 )Jn,k+1

+,0,i

)
(w1,i − w0)

+
(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)(
w0 − (w1,i + µT )

)]
,

En,k+1 − En,k

δt
= µT

δs

da

∑̀
i=1

(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)
,

(4.53)

(4.54)

(4.55)

where the force per myosin head τn,k+1
c is defined by

τn,k+1
c =

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1
0 an,k+1 + (1− nn,k+1

0 )bn,k+1
)
.

4.6.1.3 Second principle

As for the first principle, we only present here the results; their detailed proof is given in
Section 4.9.3.2.

To derive a discrete version of the second principle, we first define the chemical poten-
tials in each pool ∣∣∣∣∣∣∣∣∣∣∣∣

µn,kα=1,γ=1,i = µn,k1,1,i = w1,i + kBT ln an,ki ,

µn,kα=1,γ=0,i = µn,k1,0,i = w1,i + kBT ln bn,ki ,

µn,kα=0,γ=1,i = µn,k0,1,i = w0 + kBT ln(1− an,ki ),

µn,kα=0,γ=0,i = µn,k0,0,i = w0 + kBT ln(1− bn,ki ).

(4.56a)

(4.56b)

(4.56c)

(4.56d)

We define the entropy per myosin head as

Sn,k

kB
= − δs

da

∑̀
i=1

[
nn,k0

(
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

)
+ (1− nn,k0 )

(
bn,ki ln bn,ki + (1− bn,ki ) ln(1− bn,ki )

)]
.

Note that the entropy is well defined for an,k ∈ [0, 1] and bn,k ∈ [0, 1].
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Using the numerical scheme (4.44), we obtain the second principle inequality

Sn,k+1 − Sn,k

δt
≥ 1

T

Qn,k+1 −Qn,k

δt
, for an,k ∈ [0, 1] and bn,k ∈ [0, 1], ∀n,∀k. (4.57)

If the property an,k ∈]0, 1[ and bn,k ∈]0, 1[, ∀n, ∀k holds, we can give an explicit expression
of the the entropy creation and we have

Sn,k+1 − Sn,k

δt
=

Sn,k+1
prod − Sn,k

prod
δt

+
1

T

Qn,k+1 −Qn,k

δt
, (4.58)

with

Sn,k+1
prod − Sn,k

prod
δt

=

−

(
nn,k+1
0

1

T

δs

da

∑̀
i=1

[
Jn,k+1
+,1,i

(
µn,k+1
1,1,i − µn,k+1

0,1,i

)
+ Jn,k+1

−,1,i

(
µn,k+1
0,1,i − µn,k+1

1,1,i − µT

)]

+ (1− nn,k+1
0 )

1

T

δs

da

∑̀
i=1

[
Jn,k+1
+,0,i

(
µn,k+1
1,0,i − µn,k+1

0,0,i

)
+ Jn,k+1

−,0,i

(
µn,k+1
0,0,i − µn,k+1

1,0,i − µT

)])

− v
n,k+ 1

2
]

c kB

(
nn,k+1
0

1

da

∑̀
i=1

[
an,k+1
i ln

(
an,k+1
i+1

an,k+1
i

)
+ (1− an,k+1

i ) ln

(
1− an,k+1

i+1

1− an,k+1
i

)]

+ (1− nn,k+1
0 )

1

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i+1

bn,k+1
i

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i+1

1− bn,k+1
i

)])

− kB
δt

(
nn,k+1
0

δs

da

∑̀
i=1

[
an,ki ln

(
an,k+1
i

an,ki

)
+ (1− an,ki ) ln

(
1− an,k+1

i

1− an,ki

)])

+ (1− nn,k+1
0 )

δs

da

∑̀
i=1

[
bn,ki ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− bn,k+1

i

1− bn,ki

)])

− kB
|nn,k+1

0 − nn,k0 |+
δt

δs

da

∑̀
i=1

[
bn,ki ln

(
an,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− an,k+1

i

1− bn,ki

)]

− kB
|nn,k+1

0 − nn,k0 |−
δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

bn,k+1
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− bn,k+1
i

)]

satisfying the inequality
Sn,k+1

prod − Sn,k
prod

δt
≥ 0.

If we re-write the second principle under the form of an inequality on the free energy,
we have for an,k ∈ [0, 1] and bn,k ∈ [0, 1]

Fn,k+1 −Fn,k

δt
=

Un,k+1 − Un,k

δt
− T

Sn,k+1 − Sn,k

δt

≤ Wn,k+1 −Wn,k

δt
+

En,k+1 − En,k

δt
. (4.59)
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4.6.2 Numerical illustration

To illustrate the discrete thermodynamic balance, we perform a simulation of the equa-
tions (4.44) in a single time step scheme, i.e. δt = ∆t. The evolution of the sliding velocity
is imposed over time. Note that this is equivalent to imposing the extension enc from an
initial condition e0c because these two quantities are linked through (4.43). We choose here
the initial condition e0c = 0.06 and a time step ∆t = 0.01 ms. The myosin head population
is initially in a configuration in which all heads are detached.

The simulation starts with an isometric tension rise phase; the extension enc remains
constant. After a duration that is sufficient for the active force to reach its peak isometric
value, the sarcomere is progressively shortened until reaching a steady-state shortening
velocity of −1 µm s−1.

The dependency between the ratio of available heads n0 and the extension ec is the
same as the function that will be used for the simulation of physiological heart beats,
which is presented in Figure 4.11(a). For the simulation, we use the transition rates and
energy levels presented in Figure 4.9. Note that these input parameters function are not
meant to match experimental data characterizing the physiological behavior of cardiac
muscles. They are only designed to provide reasonable input parameters.
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Figure 4.9 – Input parameter functions for the numerical illustration. (a) Forward transition rates
for the pool γ = 1. The reverse transition rates are determined from the forward transition rate
along with the energy levels by the detailed balance (4.6). The transition rates in the pool γ = 0
are obtained with the relations k+,0 = 0.01k+,1 and k−,0 = k−,1. (b) Energy levels of the attached
and detached states.

The results are presented in Figure 4.10. It can first be checked that the CFL con-
dition (4.49) is satisfied in this simulation. In the initial isometric phase, myosin heads
attach and the developed force increases. In the shortening phase, the tension decreases
due to two factors. When the sarcomere shortens, the force is reduced compared to isomet-
ric conditions following the classical force-velocity relation. Simultaneously, the decreases
of the sarcomere extension implies a decrease in the number of available myosin heads (as
shown by the decrease of n0(ec)) and thus of the force.

Being able to write consistent thermodynamical balances at discrete level allows to
investigate the elements of the energy transduction performed by the molecular motors.
The work production, which is zero in the absence of displacement, grows as the muscle
starts to shorten. Note that the work rate is negative because, in our length controlled
numerical experiment, the mechanical energy is transferred from the system to the en-
vironment. We now consider the consumption of chemical energy brought by ATP. As
myosin heads start to cycle in the tension rise phase, the consumption of ATP increases.
In the shortening phase, myosin heads are transported in a region where the detachment
rate is higher. The cycling rate increases, leading to a higher consumption of ATP. We
can note that the consumption of ATP is always strictly positive, even when no work is
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produced. This highlights the active nature of muscle contraction, i.e. the force is devel-
oped “in exchange” of a continuous supply in chemical energy. One can also note that,
as expected, the entropy production term is always positive. Note that with the initial
conditions (a0i = b0i = 0, ∀i ∈ [[1, `]]) and the entropy creation term is thus not defined.
After the first time step, the numerical noise combined with the non-divergence of the
detachment rates on the boundaries of the interval [s−, s+] induce that we have, for all
n > 0 and all i ∈ [[0, `]], the property ani ∈]0, 1[ and bni ∈]0, 1[. The entropy creation term
is thus defined for n > 0.
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Figure 4.10 – Simulation of the microscopic contraction model (4.14) with an imposed extension enc
time evolution. (a) Sliding velocity. (b) Ratio of heads in the pool γ = 1. (c) Normalized average
force per myosin head. (d) Work rate per myosin head. (e) Energy input rate per myosin head.
(f) Entropy production rate per myosin head multiplied by the temperature.

Note that a validation of the established discrete thermodynamic principles is presented
in Appendix 4.9.5.
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4.6.3 Link with discrete macro model: a multi-time step strategy

4.6.3.1 Macroscopic time scheme

We recall here the time scheme proposed in Kimmig et al. [2019] (Chapter 2) to discretize
the macroscopic part of the system (4.39) and we extend it to embed the microscopic time
scale dynamics in a multi-time step manner.

The numerical scheme reads
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2 =
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where we define
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The question that arises, when linking the time micro- and macro-dynamics, is how to
properly define the macroscopic active tension Tn+1

c as a function of the microscopic
variables. The choice made in (4.60c) will be motivated in Section (4.6.3.2) with a use of
the discrete thermodynamic balance to tackle this issue.

It is important to note that the equations in (4.60) must be written at each quadrature
point. For the sake of compactness, this spatial dependency is omitted here.

4.6.3.2 First principle at global time steps

At global time step, we have

Un+1 − Un

∆t
=

δt

∆t

N−1∑
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Un,k+1 − Un,k

δt
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Using the micro time step energy balance (4.52), we have
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where we define the macroscopic force by

Tn+1
c =

δt

∆t

N−1∑
k=0

τn,k+1
c =

δt

∆t

N−1∑
k=0

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1
0 an,k+1 + (1− nn,k+1

0 )bn,k+1
)

(4.61)
and the global time step work flux per myosin head by
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2
]

c Tn+1
c .

We can note that the force at macro time instant is not the force corresponding to the
simultaneous microscopic time instant but the time average of the microscopic time force
over the macro time step. The energy balance allows to properly perform the link between
time scales.

4.6.3.3 Second principle at global time steps

At global time step, we have

Fn+1 −Fn

∆t
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k=0

Fn,k+1 −Fn,k
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.

Using the micro time step free energy inequality (4.57), we have
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with the definition of the global time step energy input flux
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=
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δt
.

The inequality on the free-energy is thus straightforwardly transferred to the macroscopic
time scale.

4.6.3.4 Discrete time Clausius-Duhem relation for the complete model

Having a discrete model, which satisfies the global time step inequality (4.62), we can apply
and adapt the thermodynamic balance obtained in [Kimmig et al., 2019] (Chapter 2) for
the micro-macro coupled model. We have
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where the density of myosin head per unit volume is defined as ρv = ρsurf/`hs.
In summary, the proposed numerical scheme satisfies discrete thermodynamical bal-

ances at the local time step. A definition of the macroscopic active force guided by the
thermodynamics allows to extend this discrete thermodynamic balances to the micro-
macro coupled model.

4.7 Physiological simulation of a heart beat

We now want to show the ability of our model to produce a physiologically relevant
behavior in the context of cardiovascular system modeling. To this end, we incorporate
our model in a heart model with a simplified geometry [Caruel et al., 2013].

We first need to embed into the model the regulation of the thin filament activation.
It is done here in a phenomenological way. Then, we present the physiological calibration
used in our simulations and the simulation results.

In this section, we use the aggregated transition rates f and g because we want to use
the calibration given in papers proposing models of the cardiac muscle contraction, which
is generally provided with this convention [Pertici et al., 2018; Kimmig & Caruel, 2019].

4.7.1 Modification to account for the thin filament activation

We have presented here a model allowing to capture the varying levels of thick filament
activation in the sarcomere. However, it is not the only regulation mechanism in a physi-
ological contraction. The thin filament activation level is also varied as a function of the
sarcomere stretch and the intracellular calcium dynamics depends on the inputs of the
neuroendocrine system [de Tombe et al., 2010].

In this paper, we focus our modeling effort on the activation of the thick filament and we
treat the activation of the thin filament phenomenologically. Following the idea proposed
by Zahalak & Motabarzadeh [1997] and Chapelle et al. [2012], we place the impact of
this regulation on the transition rates. We assume that the aggregated attachment rate
f(s) is modulated multiplicatively by a phenomenological activation function u. The
complexity of the underlying mechanisms is incorporated into the freedom in the choice of
the activation function u. This function varies between zero and one, representing a level
of activation that modulates the rate of attachment. The model dynamics equation (4.14)
becomes
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[
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[
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=
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(
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(
k−,0(s) + krev

+,0(s)
)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(4.64)

Naturally, multiplying the attachment rate without modifying the detachment rate
breaks the detailed balance (4.6). The modified model is thus no more compatible with
the second principle.

Note that an alternative choice has been proposed by Zahalak [1981] consisting in
applying the activation as a multiplicative factor of the force.
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4.7.2 Model calibration

We now want to calibrate our model. Our objective is to show the ability of the model
to qualitatively capture the Frank-Starling mechanism and not to precisely match physi-
ological pressure-volume data for a given individual. We thus allow ourselves to use data
coming from different species. The heart model parameters, except for the active element,
and the blood circulation parameters are calibrated to represent a human physiological
behavior (patient specific calibrations can be found in [Le Gall et al., 2019]). The proposed
micro-scale model of the actin-myosin interaction and its regulation provided a detailed
description of the involved mechanisms. The model calibration thus requires accurate
data obtained ex vivo targeting the short time and space scales of the muscle contrac-
tion. These data are not available for human to the best of our knowledge and we will
use instead measurements from rats obtained at sub-physiological temperatures. For the
actin-myosin interaction model, we rely on the calibration proposed in [Kimmig & Caruel,
2019] (Chapter 3) based on data obtained by Caremani et al. [2016] for the pool γ = 1.
For the pool γ = 0, we use the modeling assumption f0 = 0.01f1 and g0 = g1. Note
that to get a calibration that satisfies the detailed balance, it would be easier to make
assumptions and the non-aggregated transition rates instead of then having to solve an
inverse problem to obtain the non-aggregated rates from the aggregated transition rates.
However, the aggregated rates are easier to link with the physiology and that is why we
use this formalism here. We then calibrate the input function n0(ec). For that, we com-
pare our model with experimental data coming from ex vivo muscle cells, which are either
intact tetanised cells or skinned cells, displaying the variations of the isometric force with
variations of the sarcomere length. We make sure to use only data obtained in conditions
where the thin filament is fully activated. In this way, the variation of force is solely due
to variations in the thick filament level of activation. Finally, we define the thin filament
activation function u(t).

4.7.2.1 Myosin activation function

To relate the measured force to the ratio of available myosin heads n0, we use experiments
measuring the relation between the steady-state isometric peak force and the sarcomere
length in full thin filament activation conditions, so that the variation in force can be
attributed solely to variations in the myosin heads availability. We aggregate here data
collected by Kentish et al. [1986], ter Keurs et al. [2008] and Dobesh et al. [2002].

Note the extension ec, which we consider as the argument of the thick filament activa-
tion function n0, adds up to the filament self extension es, which depends on the developed
active force, to give the sarcomere extension efib. The latter quantity is the extension that
can be directly linked to the sarcomere length. We thus need to consider the experimental
data in the light of the rheology model. The range of sarcomere length that is used in
experimental conditions spans between 1.65 µm and 2.25 µm. In this range, the passive
force is small compared to the active force (see for instance [ter Keurs et al., 2008, Fig.
2] or [Caremani et al., 2016, Fig. 1B]). We thus interpret the measured force as resulting
solely from the upper branch of the rheology (the rheology is presented in Figure 4.4).
Recalling the sarcomere length corresponding to zero passive force – called slack length
– is denoted by `hs, the half-sarcomere length in steady-state contraction conditions is
given by `hs(efib) = `hs

(
1 + efib

)
with{

efib = ec + es,

Eses = Tc
(
n0(ec)

)
,

(4.65)

239



Chapter 4. Activation-contraction coupling in a multiscale heart model capturing the
Frank-Starling effect

denoting by Ťc the steady state value of Tc given by

Ťc
(
n0(ec)

)
= ρsurf

1

da

s+∫
s−

[
n0P̌1(s, 1) + (1− n0)P̌1(s, 0)

]
∂sw1(s)ds,

where P̌1(γ) =
fγ

fγ+gγ
is the steady-state solution of (4.64) with ẋc = 0 and in maximal

activation conditions (n0 = 1 and u = 1). Normalising the tensions by the maximal
isometric tension

T0 = ρsurf
1

da

s+∫
s−

P̌1(s, 1)∂sw1(s)ds,

we seek a function n0(ec) such that the model predicted
(
`hs(efib), Ťc

(
n0(ec)

)
/T0
)
-curve

matches the experimental data. This data corresponding to a complete thin filament
activation, the corresponding function u is maintain equal to one here and we simulate
the steady-state response in force of the model. As for the most elements of the rheology,
the slack length is taken from measurements on human cardiac cells. We use the value
`hs = 1.7 µm [van der Velden et al., 2000]. The calibration results and the validation are
presented in Figure 4.11.
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Figure 4.11 – (a) Calibrated input parameter function n0(ec). (b) Validation of the calibration
with the relation between the sarcomere length and the isometric force in maximal thin filament
activation conditions. Solid line: model prediction. Closed diamonds: experimental data from
skinned rat cells [Dobesh et al., 2002]. Closed triangles: experimental data from intact tetanised
rat cardiac muscle cells [ter Keurs et al., 2008]. Closed square: experimental data from skinned
rat ventricular trabeculae [Kentish et al., 1986].

4.7.2.2 Actin activation function

The actin activation function u is phenomenologically defined to mimic the transient acti-
vation of the thin filament following the triggering of the action potential in the cell. In a
first phase, calcium is released from the sarcoplasmic reticulum and transiently adsorbed
by the thin filament, the level of activation increases and reaches its maximal value – as-
sumed here to be equal to one. The calcium ions are then re-uptaken by the sarcoplasmic
reticulum and the level of activation decreases until it vanishes. The liberation of calcium
is then prevented during a so-called refractory period, which ensures that the ventricle
has time to relax before the next contraction. The proposed function u(t) is presented in
Figure 4.12.
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Figure 4.12 – Phenomenological thin filament activation function.

4.7.3 Numerical results

At the macroscopic level, de Tombe et al. [2010] characterize the Frank-Starling mechanism
by two features: the stroke volume is increasing with an increase of the end-diastolic
volume and the stroke volume can be maintained in case of an increased after-load by
increasing the end-diastolic volume (i.e. increasing the pre-load). Altogether, they state
that a comprehensive view of this mechanism is to say that there is a single end-systolic
pressure-volume relation (EVPVR).

4.7.3.1 Physiological pressure-volume loop

The simulation results with the previously calibrated thick and thin filament activation
functions are presented in Figure 4.13. We see in the panel (a) that an increase in the
pre-load results in an increase of the ejected blood volume. Our model thus captures the
first feature of the Frank-Starling mechanism. In the panel (b), we show that the second
feature is also encompassed in our model.

Additionally, we plot the static (ESPVR) that can be computed from the simplified
0D-model equation in static case (see [Caruel et al., 2013]). The ESPRV (V, PV ) is given
in a parametric form by

V =
4

3
πR3

0

(
1 + efib − h(1 + efib)

−2

2R0

)3
,(

1 + efib − ε

2
(1 + efib)

−2
)2(

1 + ε(1 + efib)
−3
)
PV = ε

(
1 + efib

)
Σsph,

Σsph =
Ťc
(
n0(ec)

)
1 + efib

+ 4
(
1− (1 + efib)

−6
) ∂Ψ
∂J1

+ 2
∂Ψ

∂J4
,

J1 = 2(1 + efib)
2 + (1 + efib)

−4,

J4 = (1 + efib)
2,

efib = ec + es,

Eses = Tc
(
n0(ec)

)
,

where R0 is the radius of the ventricle in rest conditions, efib is the local homogeneous
stretch of the muscle tissue (as defined in (4.38)), h is the ventricle wall thickness in the
reference configuration, Σsph the local stress in the heart wall, J1 and J4 are the first and
fourth reduced invariant of the Cauchy-Green strain tensor, respectively, and ε is the ratio
between the ventricle wall thickness and the ventricle radius. The first equation gives the
volume of the spherical ventricle as a function of the fiber extension accounting for the wall
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thickness variation, the second one is the relation between the pressure inside the ventricle
and the stress in the ventricular wall (it is a sort of Laplace’s Law), the third equation gives
the total – active and passive – stress as prescribed by the rheology, the fourth and fifth
equations yield the tensor invariants for the chosen kinematics assumptions, and the sixth
and seven equations reflect the kinematical assumptions and the mechanical equilibrium
introduced by the one dimensional half-sarcomere part of the rheology, respectively.

Note that due to inertia, the ESPVR is slightly exceeded by the PV-loop but it shows
that the dynamic ESPVR almost coincides with the static ESPVR and is thus unique

50 100 150 200 250

0

100

200

Volume (mL)

Pr
es

su
re

(m
m

H
g) EDPVR

ESPVR
Reference
Low pre-load
High pre-load

50 100 150 200 250

0

100

200

Volume (mL)

EDPVR
ESPVR
Reference
Compensated

(a) (b)

Figure 4.13 – Relation between the ventricular pressure and the ventricular volume during a simu-
lated heart beat (PV-loop). (a) Variation of the pre-load, which increases the end-diastolic volume.
(b) Comparison between a reference and a case where a higher after-load is compensated by an
increased pre-load to maintain the ejected blood volume constant. (a) & (b) The dashed line
represents the static End-Systolic Pressure Volume Relation (ESPVR). The dotted line represents
the End-Diastolic Pressure Volume Relation (EDPVR).

In a nutshell, our model based on a microscopic description of the actin-myosin inter-
action coupled with a macroscopic description of the muscle tissue and embedded into a
cardiovascular model is able to capture the key features of the Frank-Starling mechanism
at the macroscopic level.

4.7.3.2 Impact of the micro models on the macroscopic physiology

In this section, we want to highlight the impact of the force-velocity captured by the model
on a physiological heart beat.

We compare the simulations of a heart beat with two different calibrations of the tran-
sition rates. The isometric values of the transitions rates are either taken from [Kimmig
& Caruel, 2019] (Chapter 3) or mimic that proposed in [de Tombe & Stienen, 2007] (see
Figure 4.14(a) & (b)). The force-velocity relation associated with this two model calibra-
tions are presented in Figure 4.14(c). With the calibration from [Kimmig & Caruel, 2019],
the steady-state force is higher for all velocities than the same relation computed with the
calibration inspired by [de Tombe & Stienen, 2007]. We thus denote this first calibration
high force-velocity (HFV) and as opposed to the low force-velocity calibration (LFV).

Note that both simulations use the calibration of n0 and u presented in Section 4.7.2.1.
In the early contraction phase, the aortic valve is closed and the muscle works in isometric
conditions. As soon as the valve opens, the heart cavity volume decreases and the sarcom-
ere shortens. This shortening results in a decrease in the force following the force-velocity
curve, under the approximation that the population probability P1(s, t) quickly converges
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to its steady-state counterpart (this is true if the cycling time scale is shorter than the
duration of the systole).

We now compare the pressure-volume loops obtained with the two calibrations. When
the force-velocity relation predicts a strong decrease of the force with increasing shortening
velocities, the opening of the valve (and the beginning of the sarcomere shortening) leads
to a drastic decrease of the active force. As a result, the pressure that can be created in
the heart cavity is limited due to the limited time of activation (see Figure 4.14(d)). This
further leads to a reduction of the stroke volume because the heart is not able to oppose
the aortic pressure long enough.
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Figure 4.14 – Comparison of high force-velocity calibration (HFV) with low force-velocity calibra-
tion (LFV). The two calibrations only differ by the choice of the transition rates. (a) Aggregated
attachment rates for both calibrations. (b) Aggregated detachment rates for both calibrations. (c)
Resulting force-velocity relation with both calibrations. (d) Force-velocity relation obtained in a
heart beat simulation with both calibrations.

The force-velocity is thus important in the calibration to allow the heart to eject blood
while maintaining a high enough blood pressure to avoid the closing of the aortic valve.

4.8 Conclusion
In this paper, we have presented a new paradigm that extend the family of models derived
from the seminal work of A.F. Huxley [Huxley, 1957] to take into account the activation
of the thick filament. The thermodynamical compatibility of the newly proposed model is
established. A discrete counterpart of the thermodynamics balances is also obtained with
a dedicated discretization scheme.

As a consequence of the investigation of our model limits, we showed that the inclusion
of a memory effect in the transition between the available and non-available states for the
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myosin heads is not useful in physiological conditions. Indeed, the attachment-detachment
process occurs fast enough to eliminate this memory effect.

This work suffers from two main limitations in the context of physiological heart model-
ing. First, the activation of the thin filament has been incorporated in a phenomenological
way. There remains a need for the development of a rigorous thin filament activation mod-
eling. Secondly, the extrinsic regulation controlled by the the neuroendocrine system is not
considered in this model. A limitation in this regards is the difficulty to obtain sarcomere
level data – on which the microscopic level model can be calibrated – that also consider the
impact of the neuroendocrine system, because extraction of muscle samples from the body
separate them from this system. In our approach, we get around these two limitations
by incorporating these effects phenomenologically into the activation function u. We are
then able to display the ability of our model to capture the two essential features of the
Frank-Starling mechanism.

Note that a physiological pressure-volume relation can also be obtained with less refined
models of the actomyosin interaction, for instance models that only track the first two
moments of the population probability P1 [Chapelle et al., 2012]. This is because the
heartbeat time scale is long compared to the actin-myosin interaction time scales and
thus capturing the details of this interaction is enough to produce physiological results at
the heartbeat time scale. However, our framework allows to better describe the physical
mechanisms underlying the contraction and thus allows to take into account changes of
these mechanisms – for instance as a result of pathologies – more easily.

4.9 Appendix

4.9.1 Some properties of the Chapelle’12 Frank-Starling model

The modified two-state model equation as proposed by [Zahalak & Motabarzadeh, 1997;
Chapelle et al., 2012] defines the attachment flux by f(n0 − P1), thus assuming that
n0 − P1) ≥ 0. In this section, we investigate whether this property is indeed satisfied.

We consider the modified two-state model equation in the case where there is no
filament sliding (ẋc = 0)

∂tP1(s, t) = f(s)
(
n0(t)− P1(s, t)

)
− g(s)P1(s, t), (4.66)

where the ratio n0 depends explicitly on time and not on the active fibre stretch. The
distance to the nearest actin site appears here as a parameters (and not a variable). We
choose a value of this parameter such that f 6= 0 and we then omit this parameters in the
equations in what follows. There exist an analytical solution to the equation (4.66) given
by

P1(t) = P1(t = t0)e
−(f+g)(t−t0) + f

t∫
t0

n0(τ)e
−(f+g)(t−τ) dτ

If n0 is fixed, and with the initial condition P1(t = t0) < n0, we have the property

P1(t) ≤ n0, ∀t ≥ t0.

However, the latter property is not ensured if n0(t) varies. Let us consider the initial
condition P1(t = 0) = 1 and a linearly decreasing ratio

n0(t) =

1− t

T
if t ∈ [0, T ],

0 otherwise.
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For t ∈ [0, T ], the function P1(t) is given by

P1(t) = e−(f+g)t + f

t∫
0

(
1− τ

T

)
e−(f+g)(t−τ) dτ,

=
(
1− f

f + g

)
e−(f+g)t +

1

T

f

(f + g)2

(
1− e−(f+g)t

)
+

f

f + g

(
1− τ

T

)
.

We thus have

P1(t)− n0(t) =
(
1− f

f + g

)
e−(f+g)t +

1

T

f

(f + g)2

(
1− e−(f+g)t

)
+
( f

f + g
− 1
)(

1− τ

T

)
.

We consider short evolutions times such that t(f + g) � 1, we have

P1(t)− n0(t) =
( 1
T

− g
)
t+O(t2). (4.67)

For short evolution times, we thus have the desired property P1(t) ≤ n0(t) if and only if
g ≥ 1/T , namely when the detachment characteristic time is lower than the characteristic
time of the variation of n0.

We have thus shown that the property P1(t) ≤ n0(t) underlying the establishment of
Equation (4.66) is not self-contained in the dynamics prescribed by this equation and most
be ensured by a suitable choice of the model parameters.

4.9.2 Proof of the equivalence between the random exchange model and
the homogenized pool model

We detail here the proof that the stochastic model described by (4.40) and the homogenized
pool model (4.14).

Let φ(α, γ) be a test function. Denoting the joint probability P
[
αt = α, γt = γ

]
by

Pt

[
α, γ

]
, we have

d
dt

E
[
φ(αt, γt)

]
=
[
φ(0, 1)− φ(1, 1)

]
g1Pt

[
1, 1
]
+
[
φ(1, 1)− φ(0, 1)

]
f1Pt

[
0, 1
]

+
[
φ(0, 0)− φ(1, 0)

]
g0Pt

[
1, 0
]
+
[
φ(1, 0)− φ(0, 0)

]
f0Pt

[
0, 0
]

+
[
φ(1, 0)− φ(1, 1)

] |ṅ0(t)|−
n0(t)

Pt

[
1, 1
]
+
[
φ(0, 0)− φ(0, 1)

] |ṅ0(t)|−
n0(t)

Pt

[
0, 1
]

+
[
φ(1, 1)− φ(1, 0)

] |ṅ0(t)|+
1− n0(t)

Pt

[
1, 0
]

+
[
φ(0, 1)− φ(0, 0)

] |ṅ0(t)|+
1− n0(t)

Pt

[
0, 0
]
.

(4.68)

Furthermore, the time derivative of the expectation is also given by

d
dt

E
[
φ(αt, γt)

]
=

∑
α={0,1}

∑
γ={0,1}

(
φ(αt, γt)

∂

∂t
P
[
αt, γt

])
. (4.69)

Since the test function can be chosen arbitrary, we can identify the coefficients of (4.68)
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and (4.69). We obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
Pt

[
1, 1
]
= −g1Pt

[
1, 1
]
+ f1Pt

[
0, 1
]
+

|ṅ0(t)|+
1− n0(t)

Pt

[
1, 0
]
− |ṅ0(t)|−

n0(t)
Pt

[
1, 1
]
,

∂

∂t
Pt

[
1, 0
]
= −g0Pt

[
1, 0
]
+ f0Pt

[
0, 0
]
− |ṅ0(t)|+

1− n0(t)
Pt

[
1, 0
]
+

|ṅ0(t)|−
n0(t)

Pt

[
1, 1
]
,

∂

∂t
Pt

[
0, 1
]
= g1Pt

[
1, 1
]
− f1Pt

[
0, 1
]
+

|ṅ0(t)|+
1− n0(t)

Pt

[
0, 0
]
− |ṅ0(t)|−

n0(t)
Pt

[
0, 1
]
,

∂

∂t
Pt

[
0, 0
]
= g0Pt

[
1, 0
]
− f0Pt

[
0, 0
]
− |ṅ0(t)|+

1− n0(t)
Pt

[
0, 0
]
+

|ṅ0(t)|−
n0(t)

Pt

[
0, 1
]
.

(4.70)

Noting that we have∣∣∣∣∣∣∣∣∣∣
Pt

[
1, 1
]
= Pt

[
1|1
]
Pt

[
γ = 1

]
= P1(t, 1)n0(t),

Pt

[
1, 0
]
= Pt

[
1|0
]
Pt

[
γ = 0

]
= P1(t, 0) ·

(
1− n0(t)

)
,

Pt

[
0, 1
]
= Pt

[
0|1
]
Pt

[
γ = 1

]
= P0(t, 1)n0(t),

Pt

[
0, 0
]
= Pt

[
0|0
]
Pt

[
γ = 0

]
= P0(t, 0) ·

(
1− n0(t)

)
.

and with the property
ṅ0(t) = |ṅ0(t)|+ − |ṅ0(t)|−,

the system (4.70) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
P1(t, 1) = −g1P1(t, 1) + f1P0(t, 1) +

|ṅ0(t)|+
n0(t)

P1(t, 0)−
|ṅ0(t)|+
n0(t)

P1(t, 1),

∂

∂t
P1(t, 0) = −g0P1(t, 0) + f0P0(t, 0)−

|ṅ0(t)|−
1− n0(t)

P1(t, 0) +
|ṅ0(t)|−
1− n0(t)

P1(t, 1),

∂

∂t
P0(t, 1) = g1P1(t, 1)− f1P0(t, 1) +

|ṅ0(t)|+
n0(t)

P0(t, 0)−
|ṅ0(t)|+
n0(t)

P0(t, 1),

∂

∂t
P0(t, 0) = g0P1(t, 0)− f0P0(t, 0)−

|ṅ0(t)|−
1− n0(t)

P0(t, 0) +
|ṅ0(t)|−
1− n0(t)

P0(t, 1).

(4.71)

Moreover, we also have

P1(t, 1) + P0(t, 1) =
Pt

[
1, 1
]
+ Pt

[
0, 1
]

n0(t)
= 1,

P1(t, 0) + P0(t, 0) =
Pt

[
1, 0
]
+ Pt

[
0, 0
]

1− n0(t)
= 1.

The system (4.71) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
P1(t, 1) = −|ṅ0(t)|+

n0(t)

[
P1(t, 1)− P1(t, 0)

]
− g1P1(t, 1) + f1P0(t, 1),

∂

∂t
P1(t, 0) = − |ṅ0(t)|−

1− n0(t)

[
P1(t, 0)− P1(t, 1)

]
− g0P1(t, 0) + f0P0(t, 0),

P0(t, 1) = 1− P1(t, 1),

P0(t, 0) = 1− P1(t, 0).

and we retrieve the equation system (4.14) in the absence of filament sliding. Our aver-
aging assumption in the homogenized pool formulation is thus equivalent to an individual
description of the myosin heads if the myosin heads that change pool are selected randomly.
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4.9.3 Proof of the discrete thermodynamics identities

In this section, we detailed the proof of the discrete thermodynamic balances presented in
Section 4.6.

4.9.3.1 First principle

We now aim at establishing a discrete counterpart to the continuous first principle (4.25).
We discretise the attached state energy level on [s−, s+] by

∣∣∣∣∣w1,i = w1(s
− + iδs), ∀i ∈ [[1, `− 1]]

w1,` = 2w1,`−1.

We define the discrete average energy per myosin head by

Un,k =
δs

da

∑̀
i=1

[
w1,i

(
nn,k0 an,ki + (1− nn,k0 )bn,ki

)
+w0

(
nn,k0 (1− an,ki ) + (1− nn,k0 )(1− bn,ki )

)]
.

We have at local time steps

Un,k+1 − Un,k

δt
=
δs

da

∑̀
i=1

(
w1,i

[
nn,k+1
0

(
an,k+1
i − an,ki

δt

)
+ an,ki

(
nn,k+1
0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
bn,k+1
i − bn,ki

δt

)
+ bn,ki

(
(1− nn,k+1

0 )− (1− nn,k0 )

δt

)]

+ w0

[
nn,k+1
0

(
(1− an,k+1

i )− (1− an,ki )

δt

)
+ (1− an,ki )

(
nn,k+1
0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
(1− bn,k+1

i )− (1− bn,ki )

δt

)

+ (1− bn,ki )

(
(1− nn,k+1

0 )− (1− nn,k0 )

δt

)])
.

With the fluxes defined in (4.51) and the calculations done in [Kimmig et al., 2019] (Chap-
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ter 2) we obtain, using the periodicity of the solution to handle the discrete transport term,

Un,k+1 − Un,k

δt
=

δs

da

∑̀
i=1

(
w1,i

[
nn,k+1
0

(
− |nn+1

0 − nn0 |+
nn,k+1
0 ∆t

[
an,ki − bn,ki

])
+ an,ki

(
nn,k+1
0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
− |nn+1

0 − nn0 |−
(1− nn,k+1

0 )∆t

[
bn,ki − an,ki

])
+ bn,ki

(
nn,k+1
0 − nn,k0

δt

)]

+ w0

[
nn,k+1
0

( |nn+1
0 − nn0 |+
nn,k+1
0 ∆t

[
an,ki − bn,ki

])
+ (1− an,ki )

(
nn,k+1
0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

( |nn+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

[
an,ki − bn,ki

])
+ (1− bn,ki )

(
nn,k+1
0 − nn,k0

δt

)])

+ v
n+ 1

2
]

c
δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1
0 an,k+1 + (1− nn,k+1

0 )bn,k+1
)

+
δs

da

∑̀
i=1

[(
nn,k+1
0 Jn,k+1

+,1,i + (1− nn,k+1
0 )Jn,k+1

+,0,i

)
(w1,i − w0)

+
(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)(
w0 − (w1,i + µT )

)]
+ µT

δs

da

∑̀
i=1

(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)
.

Noting that
nn,k+1
0 − nn,k0

δt
=
nn+1
0 − nn0

∆t
and with the property (4.8), the pool exchange terms cancel out. We define the force per
myosin head by

τn,k+1
c =

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1
0 an,k+1 + (1− nn,k+1

0 )bn,k+1
)
.

It is the average of the force between the two pools weighted by n0. We finally obtain the
first principle formulation at local time steps

Un,k+1 − Un,k

δt
=

Wn,k+1 −Wn,k

δt
+

Qn,k+1 −Qn,k

δt
+

En,k+1 − En,k

δt
, (4.72)

with∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn,k+1 −Wn,k

δt
= v

n+ 1
2
]

c τn,k+1
c ,

Qn,k+1 −Qn,k

δt
=
δs

da

∑̀
i=1

[(
nn,k+1
0 Jn,k+1

+,1,i + (1− nn,k+1
0 )Jn,k+1

+,0,i

)
(w1,i − w0)

+
(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)(
w0 − (w1,i + µT )

)]
,

En,k+1 − En,k

δt
= µT

δs

da

∑̀
i=1

(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)
.

(4.73)

(4.74)

(4.75)
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4.9.3.2 Second principle

To derive a discrete version of the second principle, we recall the definition of the chemical
potentials in each pool

∣∣∣∣∣∣∣∣∣∣∣∣

µn,kα=1,γ=1,i = µn,k1,1,i = w1,i + kBT ln an,ki ,

µn,kα=1,γ=0,i = µn,k1,0,i = w1,i + kBT ln bn,ki ,

µn,kα=0,γ=1,i = µn,k0,1,i = w0 + kBT ln(1− an,ki ),

µn,kα=0,γ=0,i = µn,k0,0,i = w0 + kBT ln(1− bn,ki ).

We define the entropy per myosin head as

Sn,k

kB
= − δs

da

∑̀
i=1

[
nn,k0

(
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

)
+ (1− nn,k0 )

(
bn,ki ln bn,ki + (1− bn,ki ) ln(1− bn,ki )

)]
.

Note that the entropy is well defined for an,k ∈ [0, 1] and bn,k ∈ [0, 1]. For the derivation
of the discrete second principle, we first assume that an,k ∈]0, 1[ and bn,k ∈]0, 1[. We have

− 1

kB

Sn,k+1 − Sn,k

δt
=
δs

da

∑̀
i=1

[
nn,k+1
0

(an,k+1
i − an,ki

δt
ln an,k+1

i + an,ki

ln an,k+1
i − ln an,ki

δt

)
+ an,ki ln an,ki

nn,k+1
0 − nn,k0

δt

+ nn,k+1
0

((1− an,k+1
i )− (1− an,ki )

δt
ln(1− an,k+1

i )

+ (1− an,ki )
ln(1− an,k+1

i )− ln(1− an,ki )

δt

)
+ (1− an,ki ) ln(1− an,ki )

nn,k+1
0 − nn,k0

δt

+ (1− nn,k+1
0 )

(bn,k+1
i − bn,ki

δt
ln bn,k+1

i + bn,ki

ln bn,k+1
i − ln bn,ki

δt

)
+ bn,ki ln bn,ki

(1− nn,k+1
0 )− (1− nn,k0 )

δt

+ (1− nn,k+1
0 )

((1− bn,k+1
i )− (1− bn,ki )

δt
ln(1− bn,k+1

i )

+ (1− bn,ki )
ln(1− bn,k+1

i )− ln(1− bn,ki )

δt

)
+ (1− bn,ki ) ln(1− bn,ki )

(1− nn,k+1
0 )− (1− nn,k0 )

δt

]
.

(4.76)

We now introduce the numerical scheme (4.44). Using the calculation made in [Kimmig
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et al., 2019] (Chapter 2), we have

− 1

kB

Sn,k+1 − Sn,k

δt
=

− 1

kB

S̃n,k+1
prod − S̃n,k

prod
δt

− 1

kBT

Qn,k+1 −Qn,k

δt

+
nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

− bn,ki ln bn,ki − (1− bn,ki ) ln(1− bn,ki )

]
− |nn,k+1

0 − nn,k0 |+
δt

δs

da

∑̀
i=1

[[
an,ki − bn,ki

]
ln an,k+1

i

+
[
(1− an,ki )− (1− bn,ki )

]
ln(1− an,k+1

i )

]
− |nn,k+1

0 − nn,k0 |−
δt

δs

da

∑̀
i=1

[[
bn,ki − an,ki

]
ln bn,k+1

i

+
[
(1− bn,ki )− (1− an,ki )

]
ln(1− bn,k+1

i )

]
+
nn,k+1
0 δs

daδt

∑̀
i=1

[
an,ki ln

(
an,k+1
i

an,ki

)
+ (1− an,ki ) ln

(
1− an,k+1

i

1− an,ki

)]

+
(1− nn,k+1

0 )δs

daδt

∑̀
i=1

[
bn,ki ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− bn,k+1

i

1− bn,ki

)]
,

with

S̃n,k+1
prod − S̃n,k

prod
δt

=

− nn,k+1
0

T

(
δs

da

∑̀
i=1

[
Jn,k+1
+,1,i

(
µn,k+1
1,1,i − µn,k+1

0,1,i

)
+ Jn,k+1

−,1,i

(
µn,k+1
0,1,i − µn,k+1

1,1,i − µT

)]

+
v
n+ 1

2
]

c kBT

da

∑̀
i=1

[
an,k+1
i ln

(
an,k+1
i+1

an,k+1
i

)
+ (1− an,k+1

i ) ln

(
1− an,k+1

i+1

1− an,k+1
i

)])

− 1− nn,k+1
0

T

(
δs

da

∑̀
i=1

[
Jn,k+1
+,0,i

(
µn,k+1
1,0,i − µn,k+1

0,0,i

)
+ Jn,k+1

−,0,i

(
µn,k+1
0,0,i − µn,k+1

1,0,i − µT

)]

+
v
n+ 1

2
]

c kBT

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i+1

bn,k+1
i

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i+1

1− bn,k+1
i

)])

which is positive from the calculation made in [Kimmig et al., 2019] (Chapter 2), given
that 1− nn,k+1

0 ≥ 0 and nn,k+1
0 ≥ 0.
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We first assume that nn,k+1
0 ≥ nn,k0 . We have

1

kB

Sn,k+1 − Sn,k

δt
=

1

kB

S̃n,k+1
prod − S̃n,k

prod
δt

+
1

kBT

Qn,k+1 −Qn,k

δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
an,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− an,k+1

i

1− bn,ki

)]

+
nn,k+1
0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

an+1,k
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− an,k+1
i

)]

+
1− nn,k+1

0

δt

δs

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i

bn,ki

)

+ (1− bn,k+1
i ) ln

(
1− bn,k+1

i

1− bn,ki

)]
.

With the property that an,k ∈]0, 1[ and bn,k ∈]0, 1[, we can use the convexity inequali-
ties (4.29) and (4.30), and, noting that we have∣∣∣∣∣∣∣∣

nn,k+1
0 − nn,k0 ≥ 0,

1− nn,k+1
0 ≥ 0,

nn,k+1
0 ≥ 0,

we obtain

Sn,k+1 − Sn,k

δt
=

Sn,k+1
prod − Sn,k

prod
δt

+
1

T

Qn,k+1 −Qn,k

δt
, (4.77)

with the entropy creation term

1

kB

Sn,k+1
prod − Sn,k

prod
δt

=
1

kB

S̃n,k+1
prod − S̃n,k

prod
δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
an,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− an,k+1

i

1− bn,ki

)]

+
nn,k+1
0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

an,k+1
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− an,k+1
i

)]

− 1− nn,k+1
0

δt

δs

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i

1− bn,ki

)]

satisfying the inequality
Sn,k+1

prod − Sn,k
prod

δt
≥ 0. (4.78)
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Similarly, we have, for nn,k+1
0 < nn,k0 , the second principle (4.77) with

1

kB

Sn,k+1
prod − Sn,k

prod
δt

=

1

kB

S̃n,k+1
prod − S̃n,k

prod
δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

bn,k+1
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− bn,k+1
i

)]

− nn,k+1
0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,k+1
i

an,ki

)
+ (1− an,ki ) ln

(
1− an,k+1

i

1− an,ki

)]

− 1− nn,k+1
0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− bn,k+1

i

1− bn,ki

)]
,

which satisfies the positivity of the entropy creation property (4.78). In summary, we have

Sn,k+1 − Sn,k

δt
≥ 1

T

Qn,k+1 −Qn,k

δt
, for an,k ∈]0, 1[ and bn,k ∈]0, 1[, ∀n, ∀k. (4.79)

Noting that the heat transfer rate term and the entropy rate term are properly defined
for an,k ∈ [0, 1] and bn,k ∈ [0, 1], we pass to the limit the inequality (4.79) and we obtain

Sn,k+1 − Sn,k

δt
≥ 1

T

Qn,k+1 −Qn,k

δt
, for an,k ∈ [0, 1] and bn,k ∈ [0, 1], ∀n, ∀k. (4.80)

4.9.4 Numerical scheme for negative sliding velocities

In this section, we present the results of the numerical analysis for negative sliding veloc-
ities.

4.9.4.1 Numerical scheme

The numerical scheme is the same as that for positive velocities with the exception of the
transport term. To keep an upwind treatment of the transport term, we shift the spatial
discretization by one spatial increment. The discretization scheme becomes

an,k+1
i − an,ki

δt
= −|nn+1

0 − nn0 |+
nn,k+1
0 ∆t

[
an,ki − bn,ki

]
+ (k+,1,i + krev

−,1,i)(1− an,k+1
i )

− (k−,1,i + krev
+,1,i)a

n,k+1
i − v

n+ 1
2
]

c
an,k+1
i+1 − an,k+1

i

δs
,∀i ∈ [[1, `]]

bn,k+1
i − bn,ki

δt
= − |nn+1

0 − nn0 |−
(1− nn,k+1

0 )∆t

[
bn,ki − an,ki

]
+ (k+,0,i + krev

−,0,i)(1− bn,k+1
i )

− (k−,0,i + krev
+,0,i)b

n,k+1
i − v

n+ 1
2
]

c
bn,k+1
i+1 − bn,k+1

i

δs
, ∀i ∈ [[1, `]]

(4.81)

4.9.4.2 First principle

The energy remains defined by (4.50). Computing the time increment between two local
time steps, we obtain the first principle

Un,k+1 − Un,k

δt
=

Wn,k+1 −Wn,k

δt
+

Qn,k+1 −Qn,k

δt
+

En,k+1 − En,k

δt
, (4.82)
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with

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn,k+1 −Wn,k

δt
= v

n+ 1
2
]

c τn,k+1
c ,

Qn,k+1 −Qn,k

δt
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δs

da
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[(
nn,k+1
0 Jn,k+1

+,1,i + (1− nn,k+1
0 )Jn,k+1

+,0,i

)
(w1,i − w0)

+
(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i
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En,k+1 − En,k
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da

∑̀
i=1

(
nn,k+1
0 Jn,k+1

−,1,i + (1− nn,k+1
0 )Jn,k+1

−,0,i

)
,

where the force is now defined by

τn,k+1
c =

δs

da

∑̀
i=1

w1,i − w1,i−1

δs

(
nn,k+1
0 an,k+1 + (1− nn,k+1

0 )bn,k+1
)
.

4.9.4.3 Second principle

The inequality still holds (4.80) with negative sliding velocities.

If we have the property an,k ∈]0, 1[ and bn,k ∈]0, 1[, ∀n,∀k, we can give an explicit
expression of the the entropy creation and we have

Sn,k+1 − Sn,k

δt
=

Sn,k+1
prod − Sn,k

prod
δt

+
1

T

Qn,k+1 −Qn,k

δt
,
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with a new definition of the entropy creation term by

Sn,k+1
prod − Sn,k

prod
δt

=

−

(
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0

1
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satisfying the inequality
Sn,k+1

prod − Sn,k
prod

δt
≥ 0.

This expressions contains terms that are consistent with the continuous formulation (4.36)
for the attachment and detachment fluxes and the pool averaging process contributions
and additional terms corresponding to positive numerical entropy creation.

4.9.5 Validation of the discrete thermodynamics balance illustration

We present in this section the numerical computation of the residual corresponding to the
discrete thermodynamics balances (4.52) and (4.58) defined as∣∣∣∣∣∣∣∣∣

Un,k+1 − Un,k

δt
− Wn,k+1 −Wn,k

δt
− Qn,k+1 −Qn,k

δt
− En,k+1 − En,k

δt
,

Fn+1 −Fn

δt
− Wn+1 −Wn

δt
− En+1 − En

δt
− T

Sn+1
prod − Sn

prod
δt

.

(4.83)

It may serve as a validation of the algebraic derivation of the first and second thermo-
dynamic balances, as well as a validation of the correct implementation of the proposed
numerical scheme. The results are presented in Figure 4.15.
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Figure 4.15 – Numerical evaluation of the discrete thermodynamic residuals (4.83) during the
simulation presented in Figure 4.10. For this simulation, we used ∆t = 0.001 s and δt = ∆t.

We can notice that the value of the residuals is eight orders of magnitude lower that
the various terms that composed them (see Figure 4.10). We conclude that the observed
oscillations solely reflect the numerical noise. It therefore validates our derivation of the
discrete thermodynamics principles.

4.9.6 Moment equation

We have seen in Section 3.2.2, that under a simple mathematical assumption, the active
force associated with Huxley’57 models can be obtained from the resolution of a finite
set of ordinary differential equations. In this section, we extend this approach to the
system (4.14). As in Chapter 3, we use the aggregated transition rates fγ and gγ defined
in (4.16). Moreover, we will restrict to the case of a quadratic energy potential for the
attached state w1 =

κxb
2 (s+s0)

2 but the results can be extended to any polynomial energy
potential. For that, we derive the dynamics of the moment of the distributions P1(s, t, 1)
and P1(s, t, 0). We define the moments of order p as Mp(t, γ) = 1

da

∫ +∞
−∞ spPγ(s, t, γ)ds.
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Using the dynamic equations (4.14) we obtain



Ṁ0(t, 1) = −|ṅ0(t)|+
n0

[M0(t, 1)−M0(t, 0)] + f0,1

− 1

da

+∞∫
−∞

[f1(s) + g1(s)]P1(s, t, 1)ds,

Ṁ0(t, 0) = −|ṅ0(t)|−
1− n0

[M0(t, 0)−M0(t, 1)] + f0,0

− 1

da

+∞∫
−∞

[f0(s) + g0(s)]P1(s, t, 0)ds,

Ṁp(t, 1) = ẋc pMp−1(t, 1)−
|ṅ0(t)|+
n0

[Mp(t, 1)−Mp(t, 0)] + fp,1

− 1

da

+∞∫
−∞

[f1(s) + g1(s)] s
pP1(s, t, 1)ds,

Ṁp(t, 0) = ẋc pMp−1(t, 0)−
|ṅ0(t)|−
1− n0

[Mp(t, 0)−Mp(t, 1)] + fp,0

− 1

da

+∞∫
−∞

[f0(s) + g0(s)] s
pP1(s, t, 0)ds,

with fp,γ = 1
da

∫ +∞
−∞ spfγ ds. If we use the usual assumption fγ + gγ is independent of s,

we have



Ṁ0(t, 1) = −|ṅ0(t)|+
n0

[M0(t, 1)−M0(t, 0)] + f0,1 − [f1 + g1]M0(t, 1),

Ṁ0(t, 0) = −|ṅ0(t)|−
1− n0

[M0(t, 0)−M0(t, 1)] + f0,0 − [f0 + g0]M0(t, 0),

Ṁp(t, 1) = ẋc pMp−1(t, 1)−
|ṅ0(t)|+
n0

[Mp(t, 1)−Mp(t, 0)] + fp,1 − [f1 + g1]Mp(t, 1),

Ṁp(t, 0) = ẋc pMp−1(t, 0)−
|ṅ0(t)|−
1− n0

[Mp(t, 0)−Mp(t, 1)] + fp,0 − [f0 + g0]Mp(t, 0).

As for the original Huxley’57 model, the dynamics of any moment give by a closed system
of ordinary differential equations.

The dynamics of the fraction of attached cross-bridges natt(t) = n0M0(t, 1) + (1 −
n0)M0(t, 0) is directly given by that of the moments of order zero

ṅatt(t) = n0(t)
(
f0,1 − [f1 + g1]M0(t, 1)

)
+
(
1− n0(t)

)(
f0,0 − [f0 + g0]M0(t, 0)

)
,

= −
(
n0(t) [f1 + g1]M0(t, 1) +

(
1− n0(t)

)
[f0 + g0]M0(t, 0)

)
+ f0(t).

defining fp by fp(t) = n0(t)fp,1(t) +
(
1− n0(t)

)
fp,0(t).
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The active force reads

τc(t) =
1

da

s+∫
s−

[
n0(t)P1(s, t, 1) +

(
1− n0(t)

)
P0(s, t, 0)

]
κxb(s+ s0)ds,

= κxb

(
n0(t)M1(t, 1) +

(
1− n0(t)

)
M1(t, 0)

)
+ κxbs0

(
n0(t)M0(t, 1) +

(
1− n0(t)

)
M0(t, 0)

)
.

Its dynamics is given by

τ̇c(t) = −n0(t)
[
f1 + g1

](
κxbM1(t, 1) + κxbs0M0(t, 1)

)
−
(
1− n0(t)

)[
f0 + g0

](
κxbM1(t, 0) + κxbs0M0(t, 0)

)
+ ẋcκxbnatt(t) + κxb

(
s0f0(t) + f1(t)

)
and can therefore be computed from that of the moments of order zero and one only.
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CHAPTER 5

Varying thin filament activation in the framework
of the Huxley’57 model

Muscle contraction is triggered by the activation of the actin sites of the thin filament by
calcium ions. It results that the thin filament activation level varies over time. Moreover,
this activation process is also used as a regulation mechanism of the force developed. Our
main objective is to propose a rigorous framework to account for the varying actin sites
activation level in chemico-mechanical models of the actin-myosin contraction. Our new
model is obtained as an enhancement of our previously proposed formulation extending
the Huxley’57 model, which considers the varying thick filament activation (presented in
the previous chapter). We assume that the states of an actin site depends on whether it
is activated or not and whether it forms a cross-bridge with the associated myosin head,
resulting in four possible states or not. The transitions between the actin site states are
controlled by the global actin sites activation level and the dynamics of these transitions is
coupled to the attachment-detachment process. A preliminary validation of the model with
experimental twitch contraction data obtained at varying sarcomere lengths is performed.
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Chapter 5. Varying thin filament activation in the framework of the Huxley’57 model

5.1 Abstract

5.2 Introduction

Cardiac muscle contraction originates from the interaction between two types of filaments:
myosin filaments (also called thick filaments) and actin filaments (also called thin fila-
ments). These two filaments are regrouped in sarcomeres that are the elementary con-
tractile units of the muscle fibers. The myosin heads of the thick filaments attach on the
actin sites of the thin filaments – forming the so-called cross-bridges – generate a force,
and detach. At rest, the actin sites are blocked by the troponin-tropomyosin complex and
the myosin heads cannot attach. When calcium ions are released inside the cell, these
ions bind to the troponin-tropomyosin complex resulting in the unblocking of the actin
sites. The myosin heads can attach and the tension can rise. The activation of the thin
filament is a transient process, and shortly after the release, calcium ions are taken off the
cytosol, which contributes to the detachment of the calcium ions from the thin filament.
As the myosin heads detach (and because they cannot reattach) the force decreases. In
vivo, this corresponds to a heartbeat. At the scale of the sarcomere we talk about a twitch
contraction, which can be observed experimentally.

In physiological conditions, the availability of the myosin heads and the activation of
the actin sites are regulated in order to modulate the developed force [de Tombe et al.,
2010]. As a result of this regulation, not all myosin heads may be available and not all
actin sites may be activated, even at the peak of the activation. We say that the thick
and thin filaments have a varying activation level. The level of activation of the thick
filament depends on the sarcomere extension only. The thin filament activation level is
also impacted by the sarcomere extension – this effect is called the length dependent
activation (LDA). For both filaments, an extension of the sarcomere is associated with
an increase of the level of activation and thus an increase of the developed force. Note
that in vivo, in addition to this intrinsic regulation with the sarcomere length, the thin
filament is also subjected to an extrinsic regulation driven by the neuroendocrine system,
which affects the way the thin filament responds to variations of the sarcomere length and
modulates the supply of calcium ions. The latter regulation is not active in experiments
performed ex vivo as the cells are separated from the neuroendocrine system.

To better understand the mechanisms of the thin filament activation, models have
been developed. Two paths have been pursued: a phenomenological description of the
thin filament state and description related to the thin filament structure.

The phenomenological description originate from the work of [Landesberg & Sideman,
1994a,b; Rice et al., 1999]. The actin sites are grouped into regulatory units (made of
the seven consecutive actin sites that are covered by a single troponin-tropomyosin com-
plex) and it is assumed that there is only one attachment site for the myosin heads per
regulatory unit (RU). Having thus paired myosin heads and regulatory units, these for-
mulations propose continuous-time Markov models mixing the description of the myosin
heads (attached or not) and the description of the regulatory unit (linked with calcium
or not, activated or not, state of associated proteins). They use a mean-field approach,
representing the whole filaments with a single regulatory unit.

A major contribution is the model of Rice et al. [2003], which focuses on the description
of the thin filament alone. They suppose that each regulatory unit can exist in four
different states corresponding to the four combinations of the two following properties:
the regulatory unit is linked to a calcium ion or not and the regulatory unit is activated
(available for the attachment of a myosin head) or not. To account for the cooperativity
effect observed experimentally – the fact the activation of some regulatory units has a
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positive feedback effect on the other regulatory units, favoring their activation – Rice
et al. [2003] propose to link the value of the transition rates between the states to the
state of the direct neighbors regulatory units, with an increase of the probability of begin
activated when the neighboring regulatory units are already activated. With this new
modeling ingredient, the thin filament cannot be modeled by a representative regulatory
unit anymore. Instead, all regulatory units must be considered. This model was extended
by Rice & de Tombe [2004] to incorporate a simplified myosin attachment-detachment
process that does not take into account the strain of the cross-bridges. A difficulty that
arises with this modification of the model is the large number of possible states. Indeed,
a thin filament is made of 26 regulatory units [Rice et al., 2003], which leads to a number
of possible states of 426 = 4.5 × 1015 .

A first method to overcome this difficulty (proposed in the original paper) consists
in assuming that the thin filament is periodic (although it does not correspond to the
actual structure). This assumption allows an analytical resolution of the system steady-
state. Several other approaches have then been proposed to tackle the issue. They include
simulating the whole system using high performance computing [Hussan et al., 2006] or
a reduction of the model again a single representative regulatory unit but with adjusted
transitions rate so that cooperativity effects can be reproduced [Rice et al., 2008]. Washio
et al. [2011] have introduced an hypothesis assuming that the an level of overlap between
the thick and thin filaments impacts the transition rates in the thin filament model. This
hypothesis can lead to relevant model predictions and thus making mechanisms linked
to the level of overlap between the thin and the thick filaments potential origin of the
length-dependent activation. Recently, a novel and powerful technique for the efficient
simulation of the latter model has been proposed along with an improvement of the model
formalization [Regazzoni et al., 2018].

A large collection of models have been developed based on the model proposed by
Rice et al. [2003] to simulate the force transient development and relaxation [Land &
Niederer, 2015; Dupuis et al., 2016]. They can be grouped into three categories depending
on whether they consider the thin filament only or they are linked to a model of myosin
heads attachment and whether this model is reduced (the whole filament is represented by
a single myosin head) or considers the various spatial positions of the myosin heads (which
allows to take into account the relative sliding between the thick and thin filaments). For
a review of the models proposed and a summary of their fundamental assumption, we
refer to [Trayanova & Rice, 2011].

The inclusion of the actin-myosin dynamics with a contribution of the filament sliding
is important for two reasons. First, the sliding of the filaments is a key phenomena of the
cardiac muscle behavior, in particular – in the context of heart modeling – in the blood
ejection phase when the left ventricle shrinks. Second, there does not exist experimental
protocols capable of measuring the time transient variations of the thin filament activation
happening in a twitch contraction. Therefore, models have to be calibrated from force
transient measurements. There is thus an additional dynamics between the regulatory
units activation and the myosin heads binding that has to be considered. Models that do
not consider the actin-myosin interaction as a dynamical process and identify the level of
thin filament activation with the developed force (up to a multiplicative factor) are thus
calibrated on biased data.

An alternative approach to the phenomenological models has been proposed to model
the thin filament activation. It consists in considering the proteins as a single long flexible
chain whose deformations are associated with an elastic energy. This approach may seem
more appealing than the phenomenological approach because it is related to the actual
structure of the thin filament. However, since the origin of the length-dependent activation
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remains partially unknown, the establishment of non-phenomenological models and their
evaluation with respect to phenomenological models is difficult.

Our approach in this chapter is slightly alternative – and at the same time comple-
mentary – to that proposed in the works mentioned above. We are here interested in
investigating how models targeting the level of thin filament activation can be linked with
the family of the Huxley’57 model in a rigorous way in order to build a complete contrac-
tion model taking into account the actin-myosin and the regulations of the contraction.
Our approach thus focuses on the description of the myosin whereas previously mentioned
approaches are based on a description of the actin (or the regulatory unit). The thin fila-
ment activation is taken as a model input, which contains the effects of cooperativity, but
could also potentially be given by the output of one of the above mentioned thin filament
activation models.

This chapter focuses on the modeling of the twitch contraction observed in isolated
cells. We do not consider a direct model input for the extrinsic regulation. First, the
experiments performed on isolated cells do not allow to see this effect of this regulation.
They can only mimic its effect by varying the level of calcium supply, which is one of
the consequences of the extrinsic regulation. Secondly, there are potentially many other
mechanisms in between the sarcomere-level contraction and the organ behavior. Therefore,
the translation of microscopic level contraction models to the organ level is a research topic
in itself that is beyond the scope of this work.

Several works have already followed that path but use a phenomenological approach;
a limitation that we propose to overcome in this work. Classically, the thin filament ac-
tivation is introduced as a multiplicative modulation of the attachment rate [Zahalak &
Motabarzadeh, 1997; Chapelle et al., 2012; Kimmig et al., 2019] (see Chapter 4) or as an
ad hoc modification directly put in factor of the active force [Zahalak, 1981]. However,
these paradigms suffer from modeling limitations. In particular, formulations using a mul-
tiplicative modulation of the attachment rate disregard the fact that attachment induces a
reduction of the number of activated actin sites that are actually available for attachment.

This chapter is organized as follows. Section 5.3 presents the experimental data that
support modeling ingredient choices and on which the model calibration is performed. In
Section 5.4, we first present a review of the Huxley’57 model and the previously proposed
extension to account for the thick filament activation. Then, we present our description
of the thin filament and we derive our further enhancement of these models from the
conservation of conservation of matter. In Section 5.5, we exhibit a possible calibration of
our model that we validate with experimental data.

5.3 Physiological review

We recall here the essential properties of the thin filament activation that we will need for
the development of our model. A more detailed investigation is presented in Chapter 1.
Note that in this chapter, we neglect the passive compliance of the thick and thin filaments.
Therefore, the link between the sarcomere length SL and the active contribution to the
sarcomere extension ec is simply given by SL = 2`hs(1 + ec), where `hs is the reference
half-sarcomere length taken equal to 0.925 µm for rat cardiac muscle [ter Keurs et al.,
1980].

5.3.1 Activation of the thin filament

The baseline evolution of the thin filament activation is a transient process. It cannot be
directly measured experimentally and must therefore be inferred from the force transient
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measurement through models. The transient thin filament activation results in a transient
variation of the force. The typical force evolution observed ex vivo is shown in Figure 5.1.
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Figure 5.1 – Typical force transient evolution. In this experiment the sarcomere length is main-
tained constant. Data from [Janssen & Hunter, 1995].

5.3.2 Regulation mechanisms

In vivo, the basal force transient is regulated by the extension of the sarcomere (or equiva-
lently the sarcomere length) and the neuroendocrine regulation. In experiments (ex vivo),
the variation of the sarcomere length can be reproduced but not all the effects of the
neuroendocrine regulation. One effect of the latter regulation that can be indirectly re-
produced experimentally is the modulation of the calcium supply ultimately affecting the
level of thin filament activation.

The sarcomere length regulation affects both the thick and thin filaments activation
but leaves the properties of the cross-bridges unchanged and in particular does not affect
the force generated by a cross-bridge. We present in Chapter 4 the effect of the sarcom-
ere length on the thick filament activation and how to extend the Huxley’57 model to
incorporate this regulation.

The regulation of the thin filament activation level by the sarcomere length and the
level of calcium supply can in general affect both the maximum level of thin filament
activation and the shape of the transient activation evolution. We first analyze the impact
on the maximum level of activation. For that, we consider the steady-state conditions
to remove the dynamics effects. In these conditions, the force is proportional to the
level of thick filament activation and the level of thin filament activation. Therefore, to
extract information on the thin filament activation from the force experimental data, the
contribution of the varying thick filament activation must be eliminated.

We present in Figure 5.2(b), the variation of the thin filament activation with the sar-
comere length at various levels of calcium supply for tetanised intact cells (see Chapter 1),
assuming that the thick filament activation dependency on the sarcomere length extension
ec is given by the function n0(ec) presented in Figure 5.2(a). Note that the variations of
the calcium supply are obtained here by varying the extracellular calcium concentration.
These data show that the thin filament activation level increases with the level of calcium
supply. Moreover, the sarcomere length changes the manner in which the calcium ions
are handled by the thin filament. The origin of this effect remains partially unknown
[de Tombe & ter Keurs, 2016] but there are now evidences that it is a mechanism intrinsic
to the thin filament [Ait-Mou et al., 2016].

The sarcomere length has also an impact on the time evolution of the thin filament
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Figure 5.2 – (a) Steady-state force obtained in maximal thin filament activation. The force variation
thus only depends on the variation of the thick filament activation and it allows to calibrate the
function n0(ec). (Triangle) intact tetanised rat cardiac cell at 26 ◦C [ter Keurs et al., 2008], (Square)
skinned rat cardiac cells at 22–24 ◦C [Kentish et al., 1986], (Diamond) skinned rat cardiac cells
at 15 ◦C [Dobesh et al., 2002]. (b) Variation of the thin filament activation with respect to the
sarcomere extension for various levels of calcium supply obtained from intact tetanised rat cell force
measurement using the function n0(ec) presented in (a). In the experimental conditions, the latter
parameter is varied by changing the extracellular calcium concentration. The resulting measured
intracellular concentration is reported near the curves. Data from [ter Keurs et al., 2008].

activation as assessed by the observed variations of the force transient evolution presented
in Figure 5.3 (we recall that the dynamics of the myosin heads is left unchanged by
sarcomere length variations). The time to peak is not strongly affected by the sarcomere
length but the relaxation duration is increased with increasing sarcomere lengths. These
data also show that the level of calcium activation only affects a little the time evolution
of force, in particular with a delay of the peak time at higher levels of calcium supply
but this feature is not observed in all experimental data [Van Heuningen et al., 1982] (see
Figure 1.20).
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Figure 5.3 – Twitch contraction of rat cardiac cells at 25 ◦C at various level of calcium supply
(controlled through the extracellular concentration [Ca2+]ext). The sarcomere length is maintained
constant throughout the experiment. Data from [Janssen & Hunter, 1995].

Note that the transient activation may not have time to reach a full level of activation
in a twitch contraction. Indeed, comparing the peak force obtained in a twitch contraction
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in high level of calcium supply and the steady-state force obtained in similar condition a
discrepancy appears (see Figure 5.4).

−0.2 0 0.2 0.4
0

0.5

1

Steady-state
Twitch peak
n0(ec)

ec (-)

N
or

m
al

iz
ed

fo
rc

e

Figure 5.4 – Comparison of the twitch peak force and the steady-state force in high level of calcium
supply. In steady-state conditions, the variation of the force originates from the variation of the
thick filament activation. All experiments are performed on rats cardiac cells around 25 ◦C unless
otherwise stated. (Black closed symbols) Peak force in twitch contractions for intact cells at high
external calcium concentration; data from [Caremani et al., 2016] (circles) and [Janssen & Hunter,
1995] (squares). (Gray line) Estimation of the thick filament activation function n0 with respect to
the sarcomere extension. (Blue triangle) intact tetanised cell [ter Keurs et al., 2008], (blue square)
skinned cells with data from [Kentish et al., 1986], (blue diamond) skinned cells at 15 ◦C with data
from [Dobesh et al., 2002].

From the experiment analysis of Mateja & de Tombe [2012], we conclude, as for the
thick filament activation, that the thin filament activation variation due to changes in the
sarcomere length are assumed to be instantaneous (see more details in Section 4.2.3).

5.4 Model presentation

We start our model presentation by briefly presenting the models that serve as a basis
for the building of our actin-myosin interaction formulation that considers a varying level
of thin filament activation. The seminal Huxley’57 model and the extension accounting
for the thick filament activation have been presented in more detail in Chapter 2 and 4,
respectively.

5.4.1 Actine-myosin interaction and thick filament activation

The original Huxley’57 model considers that all myosin heads and all actin sites are acti-
vated. Describing a group of myosin heads located at distance s from their nearest actin
site, the ratio of these heads that are attached at time t is denoted P1(s, t). The actin
sites accessible for the myosin heads are supposed to be regularly located along the thin
filament with a spatial period da, and therefore the value of the parameter s can vary in a
possibly non-symmetric interval [s−, s+] with s+ − s− = da. The dynamics of the system
is given by

∂tP1(s, t) + ẋc∂sP1(s, t) = f(s)
(
1− P1(s, t)

)
− g(s)P1(s, t),

where ẋc is the relative sliding velocity between the myosin and actin filaments (taken
positive when the sarcomere length increases), f and g are the attachment and detachment
rates, respectively. The active stress developed in a muscle cross section of thickness `hs
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is given by

Tc =
ρsurf
da

s+∫
s−

dw1

ds
(s)P1(s, t)ds,

where w1 is the free energy of the attached state and ρsurf is the surface myosin head
density in a muscle cross section of thickness `hs.

The availability of the myosin heads is then introduced by considering two pools of
heads: heads that are available for attachment and those that are not. Heads that are
not available can still attach but with a much slower rate. The fraction of heads that
are available is given by n0. In each pool, the probability of being attached is denoted
P1(s, t, γ), where an additional discrete parameter γ describing the belonging to one of the
two pools that has been introduced. The parameter γ takes the value 1 in the pool of the
available heads and takes the value 0 in the other pool. We also define the attachment
and detachment rates in each pool by fγ and gγ , respectively. Defining

|x|+ =

{
x, if x ≥ 0,

0, otherwise,
and |x|− =

{
−x, if x ≤ 0,

0, otherwise,

the dynamics of the system is now given by

∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +
|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
=

f1(s)
(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1),

∂tP1(s, t, 0) + ẋc∂sP1(s, t, 0) +
|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
=

f0(s)
(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0).

On can note that additional terms appear in the equation to account for the transfer
of myosin heads from one pool to the other as the thick filament activation function n0
varies. In our modeling framework, the latter is assumed to depend only on the sarcomere
extension ec. The active tension is given as the weighted average between the two pools,
hence we have

Tc =
ρsurf
da

s+∫
s−

dw1

ds
(s)
[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
ds.

5.4.2 Thin filament activation

We now extend this model to rigorously incorporate the variation of the thin filament
activation.

A first step is to describe the geometry of our system. The longitudinal periodicity
of the myosin heads along the thick filament is 43 nm while the periodicity along the
helix direction is 14.3 nm [Craig & Padrón, 2004] (see Figure 5.5). Similarly, the thin
filament also has two types of periodicity: the longitudinal periodicity is 38.5 nm while the
periodicity along the helix direction is 5.5 nm. The thin filament is organized in regulatory
units of length 38.5 nm. Note that the regulatory unit length corresponds to the distance
da that was considered for the distance between accessible actin sites.

The thick and thin filament are organized in a pseudo-crystalline structure (see Fig-
ure 5.6). Possibly, a myosin head could interact with several different actin filaments and,
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Figure 5.5 – Myosin filament

conversely, an actin filament could be linked to multiple myosin filaments. In these con-
ditions, it is not straightforward to define what are the relevant periodicity lengths that
should be considered when describing a group of myosin heads and actin sites interacting
with each other.

Myosin f ilamentActin f ilament

Figure 5.6 – Filaments array structure

In this work, we consider that for a group of actin sites and myosin heads interacting
with each other, the periodicity of the myosin heads is 43 nm and that of the actin sites
is 38.5 nm. Moreover, we consider that a myosin head can interact with its closest actin
site only. Since the periodicity length is larger for the myosin heads some actin sites are
not paired with any myosin head (see Figure 5.7). These actin sites do not interact with
myosin heads, their states can thus be easily described. Indeed, they are necessarily not
part of a cross-bridge and their probability of being activated is equal to the global thin
filament activation level. It is therefore more convenient to centre our description on the
myosin heads. Note that in this description, the number of considered actin sites is the
same as the number of myosin heads although there are more actins site in the real physical
system.

Note also that if it turns out that the relevant periodicity length is larger for actin sites
than for myosin heads, the point of view of the description should be moved to the actin
sites – as is done in [Regazzoni, 2020] – but the modeling principles would not change.

The signed distance between a myosin head rest position and its nearest actin site
is still denoted by s. This relation pairs a myosin head and an actin site. The signed
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Figure 5.7 – Model parametrization. For each myosin head, the interval in which it can reach
actin sites is represented in blue. Due to the difference in length of periodicity between myosin
heads and actin sites, some actin actin sites are thus not paired with any myosin head (actin site
represented in gray).

distance between the actin site and its paired myosin head is denoted by s and satisfies
the relation s = −s (see Figure 5.7). Since we only considered actin sites that are paired
with a myosin head, we can express every quantity as a function of the distance s.

To derive our model, we add to the dynamics of the myosin heads a description of the
actin sites. We establish, in each pool of myosin heads, the governing system of equations.
The actin site exists in four possible states

• it is non activated and non occupied by a myosin head,

• it is activated and non occupied,

• it is non activated but occupied a myosin head,

• it is activated and occupied.

For the subset of actin sites located at distance s of their paired myosin head, we denote
the respective ratios of each state at time t: n̂a(s, t, γ), na(s, t, γ), ňa(s, t, γ) and ña(s, t, γ).
Naturally, these ratios must satisfy the condition

n̂a(s, t, γ) + na(s, t, γ) + ña(s, t, γ) + ňa(s, t, γ) = 1, ∀t.

We represent the four states of our model and the fluxes between them in Figure 5.8.
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Figure 5.8 – Actin site representation. The ratio associated with each state is indicated in blue.

The ratio of activated actin sites is given by na = na(s, t, γ) + ña(s, t, γ) ∀γ ∈ {0, 1}.
It is the controlled input in our system and we assume that it is homogeneous over the
whole filaments, that is na(s, t, γ) = na(t) ∀s ∈ [−s+,−s−], ∀γ ∈ {0, 1}. Note that na
may depend explicitly on time and on other macro-scale variables. We consider that when
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na(t) varies, the changes occur indistinctly between occupied and non-occupied actin sites.
With this assumption, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Jna,xb→a,xb(s, t, γ) =
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
ňa(s, t, γ),

Ja,xb→na,xb(s, t, γ) =
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
ña(s, t, γ),

Jna,nxb→a,nxb(s, t, γ) =
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
n̂a(s, t, γ),

Ja,nxb→na,nxb(s, t, γ) =
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
na(s, t, γ).

The remaining transition rates are linked to the attachment-detachment process. Sim-
ilarly to the fact that it is possible for a myosin head to attach when it is in the pool
γ = 0, we do not assume that is impossible to bind on a non-activated actin site. How-
ever, the rate of this transition is lower than when the actin site is activated. We define
the attachment rates with an activated actin site by fγ,a and by fγ,na when the actin site
is not activated.

We now consider the flux of actin sites changing from an activated non-occupied state
to an activated occupied state. This flux is equal to the flux of myosin heads attaching
to activated actin sites. Myosin heads that can undergo this transition are a subgroup of
the detached heads (the detached heads represent a ratio of 1− P1), that are paired with
an activated actin site. The ratio of myosin heads that, among the detached heads, are
paired with an activation actin site is denoted ra|nxb. We thus have

Ja,nxb→a,xb(s, t, γ) = fγ,a
(
1−P1(s, t, γ)

)
ra|nxb = fγ,a

(
1−P1(s, t, γ)

) na(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)
.

Similarly, we obtain

Jna,nxb→na,xb(s, t, γ) = fγ,na
(
1− P1(s, t, γ)

)
rna|nxb

= fγ,na
(
1− P1(s, t, γ)

) n̂a(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)
.

Using the same reasoning for the actin sites paired with attached myosin heads (the
attached myosin heads represent a ratio of P1), we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ja,xb→a,nxb(s, t, γ) = gγ,a(s)P1(s, t, γ)ra|xb

= gγ,a(s)P1(s, t, γ)
ña(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)
,

Jna,xb→na,nxb(s, t, γ) = gγ,na(s)P1(s, t, γ)rna|xb

= gγ,na(s)P1(s, t, γ)
ňa(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)
.
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Altogether, the system dynamics equation is

d
dt
P1(s, t, γ) = fγ,a(s)

na(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

(
1− P1(s, t, γ)

)
+ fγ,na(s)

n̂a(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

(
1− P1(s, t, γ)

)
− gγ,a(s)P1(s, t, γ)

ña(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)

− gγ,na(s)P1(s, t, γ)
ňa(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)
,

d
dt
na(s, t, γ) = −fγ,a

(
1− P1(s, t, γ)

) na(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

+ gγ,a(s)P1(s, t, γ)
ña(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)

+
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
n̂a(s, t, γ)

− |ṅa|−
ña(s, t, γ) + na(s, t, γ)

na(s, t, γ),

d
dt
ña(s, t, γ) = fγ,a

(
1− P1(s, t, γ)

) na(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

− gγ,a(s)P1(s, t, γ)
ña(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)

+
|ṅa|+

ňa(s, t, γ) + n̂a(s, t, γ)
ňa(s, t, γ)

− |ṅa|−
ña(s, t, γ) + na(s, t, γ)

ña(s, t, γ),

d
dt
ňa(s, t, γ) = fγ,na

(
1− P1(s, t, γ)

) n̂a(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

− gγ,na(s)P1(s, t, γ)
ňa(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)

+
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
ña(s, t, γ)

− |ṅa|+
ňa(s, t, γ) + n̂a(s, t, γ)

ňa(s, t, γ),

d
dt
n̂a(s, t, γ) = −fγ,na

(
1− P1(s, t, γ)

) n̂a(s, t, γ)

na(s, t, γ) + n̂a(s, t, γ)

+ gγ,na(s)P1(s, t, γ)
ňa(s, t, γ)

ña(s, t, γ) + ňa(s, t, γ)

+
|ṅa|−

ña(s, t, γ) + na(s, t, γ)
na(s, t, γ)

− |ṅa|+
ňa(s, t, γ) + n̂a(s, t, γ)

n̂a(s, t, γ).

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

From the dynamics equation, we obtain the, desired, relations
n̂a(s, t, γ) + na(s, t, γ) + ña(s, t, γ) + ňa(s, t, γ) = 1,

ña(s, t, γ) + na(s, t, γ) = na,

ña(s, t, γ) + ňa(s, t, γ) = P1(s, t, γ).
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The first one is the conservation of actin sites. The second one corresponds to the definition
that the ratio of activated actin sites (occupied or not) is given by na. The third one reflects
the fact that the ratio of attached head and the ratio of occupied actin sites is the same.

The system (5.1) can thus be reduced to

d
dt
P1(s, t, γ) = fγ,a(s)na(s, t, γ) + fγ,na(s)

(
1− P1(s, t, γ)− na(s, t, γ)

)
− gγ,a(s)

(
na − na(s, t, γ)

)
− gγ,na(s)

(
na(s, t, γ)− na + P1(s, t, γ)

)
,

d
dt
na(s, t, γ) =

|ṅa|+
1− na

(
1− P1(s, t, γ)− na(s, t, γ)

)
+ gγ,a(s)

(
na − na(s, t, γ)

)
− |ṅa|−

na
na(s, t, γ)− fγ,a(s)na(s, t, γ),

n̂a(s, t, γ) = 1− na(s, t, γ)− P1(s, t, γ),

ña(s, t, γ) = na − na(s, t, γ),

ňa(s, t, γ) = P1(s, t, γ)− na − na(s, t, γ).

(5.2a)

(5.2b)

(5.2c)
(5.2d)
(5.2e)

The derivative used here is a total time derivative, meaning that it describes the time
variations following a group of myosin heads. To fully establish the system dynamics,
these total time derivative needs to be made explicit. The system is described from the
point of view of the myosin heads, therefore the pool exchange terms are written as in
Chapter 4 and the total time derivatives in (5.2) are given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d
dt
P1(s, t, 1) = ∂tP1(s, t, 1) + ẋc∂sP1(s, t, γ) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
,

d
dt
P1(s, t, 0) = ∂tP1(s, t, 1) + ẋc∂sP1(s, t, γ) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
,

d
dt
na(s, t, 1) = ∂tna(s, t, γ) + ẋc∂s na(s, t, γ) +

|ṅ0|+
n0

[
na(s, t, 1)− na(s, t, 0)

]
,

d
dt
na(s, t, 1) = ∂tna(s, t, γ) + ẋc∂s na(s, t, γ) +

|ṅ0|−
1− n0

[
na(s, t, 0)− na(s, t, 1)

]
.

The active tension is still given by

Tc =
ρsurf
da

s+∫
s−

dw1

ds
(s)
[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
ds.

5.4.3 Model steady-state

To check the consistence of our modeling assumptions, we consider the steady-state regime
of our model. We assume that ṅ0 = 0 and ṅa = 0. We also suppose that ẋc = 0. The
system (5.2) yields∣∣∣∣∣∣∣∣∣

na(s, γ) =
gγ,a(s)

fγ,a(s) + gγ,a(s)
na,

P1(s, t, γ) = na
fγ,a(s)

fγ,a(s) + gγ,a(s)
+ (1− na)

fγ,na(s)

fγ,na(s) + gγ,na(s)
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Chapter 5. Varying thin filament activation in the framework of the Huxley’57 model

The global probability of being attached is then given by

P1(s) = n0P1(s, 1) + (1− n0)P1(s, 0),

= n0

[
na

f1,a(s)

f1,a(s) + g1,a(s)
+ (1− na)

f1,na(s)

f1,na(s) + g1,na(s)

]
+ (1− n0)

[
na

f0,a(s)

f0,a(s) + g0,a(s)
+ (1− na)

f0,na(s)

f0,na(s) + g0,na(s)

]
.

The probability of being attached is the weighted average of the probability of being
attached in each configuration (actin site activated or not, myosin head attached or not).
With the natural approximations

f0,a
g0,a

� 1,
f0,na
g0,na

� 1,
f1,na
g1,na

� 1,

we obtain
P1(s) = n0na

f1,a(s)

f1,a(s) + g1,a(s)
.

The ratio of attached heads is given by

natt =
1

da

∫ s+

s−
P1(s)ds = n0na

∫ s+

s−

f1,a(s)

f1,a(s) + g1,a(s)
ds.

The number of attached heads is thus proportional to the the level of thick filament
activation and the level of thin filament activation, which is consistent with our modeling
objective.

5.5 Model calibration and validation
To validate our proposed model extension that take into account the variation of the
thin filament activation level, we need to specify the form of the thin filament activation
function na. We propose here a function na that mimics the physiology. To account for
the experimental data, the thin filament activation must be a function of the time, the
sarcomere extension and the level of calcium supply. In experiments, the extracellular or
intracellular calcium concentrations may be controlled. Since we do not model here the
interaction between the thin filament and the calcium ions, we cannot use these quantities
as model variables. Instead, we introduce a variable C for the “level of calcium supply”.
This variable does not have a direct physical interpretation, and it indeed corresponds
to an indicator between zero and one of the force variation that can be achieved with a
variation of the calcium supply (when C = 0, there is no calcium supply and the force
is zero; when C = 1, the calcium supply is maximal). It can however be related in a
bijective manner to the contractility Σ0, which is the relevant variable for the medical
doctors. This link is done as follows: the contractility is defined as the maximal tension
that can be developed for a given level of calcium supply – this tension is naturally obtained
at the highest possible sarcomere extension and in steady-state conditions.

We assume that the thin filament activation can be multiplicatively decomposed as

na(ec, t, C) = na,∞(ec, C)na,t(ec, t)

where na,∞ accounts for the steady-state variation of the thin filament activation with
the sarcomere extension and the level of calcium supply, and where na,t accounts for the
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5.5. Model calibration and validation

transient evolution, which is affected by the sarcomere extension. To avoid the overfitting
of the twitch contraction data presented in Figure 5.3, we choose to have a time evolution
that does not depend on the level of calcium supply.

Getting inspired from experiments on skinned cells showing that the force varies with
a sigmoid shape with respect to the level of calcium supply [Kentish et al., 1986; Dobesh
et al., 2002], we choose a family of sigmoid functions to represent the variation of the force
with respect to the contractility, parametrized by the sarcomere extension. We have

na,∞(ec, C) =

(
C
)nHa(

C
)nHa +

(
C50(ec)

)nHa ,

C50(ec) =
CH
50 − CL

50

eH
c,50 − eL

c,50

(ec − eL
c,50) + CL

50,

where C50 represents the effect of the sarcomere extension on the thin filament activation.
It is assumed to vary linearly with ec. The transient part of the thin filament activation
function is defined by

na,t(ec, t) = na,peak(ec)na,t,norm(ec, t),

na,t,norm(ec, t) =



1− na,0
2

(
sin
( π

τrise
(t− t0)−

π

2

)
+ 1
)
+ na,0,

if t0 ≤ t ≤ t0 + τrise,

1− na,0
2

(
sin
( π

τrelax(ec)
(t− t0 − τrise) +

π

2

)
+ 1
)
+ na,0,

if t0 + τrise ≤ t ≤ t0 + τrise + τrelax(ec),

0, otherwise,

τrelax(ec) =
τH

relax − τL
relax

eH
c,relax − eL

c,relax
(ec − eL

c,relax) + τL
relax,

na,peak(ec) =


nM
a,peak − nL

a,peak

eM
c,t − eL

c,t

(ec − eM
c,t) + nL

a,peak, if ec < eM
c,t,

1, if ec ≥ eM
c,t,

where τrise it the constant activation rising time, τrelax accounts for the varying relaxation
duration, na,peak represents the fact that the thin filament may not have time to reach
the complete activation state for non-maximal sarcomere extensions and na,0, satisfying
0 < na,0 � 1, ensures that na is never equal to zero, which is forbidden in the system (5.2).

We choose the transition rates and the attached free energy level as calibrated in
[Kimmig & Caruel, 2019] (see Chapter 3). They are presented in Figure 5.9. Moreover,
we choose the modeling assumption∣∣∣∣∣∣fγ,na =

1

500
fγ,a ∀γ ∈ {0, 1}, f1,a =

1

100
f0,a, f1,na =

1

100
f0,na,

g1,a = g1,na = g0,a = g0,na.

The parameters of the thin filament activation function are given in Appendix 5.7. The
functions na,∞, na,t,norm and na,peak defined with these parameters along with the link
between the level of calcium supply C and the contractility Σ0 are presented in Figure 5.10.
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Figure 5.9 – (a) Attached state free energy level w1. (b) Transition rates. The derivation of these
parameters functions is presented in [Kimmig & Caruel, 2019] (Chapter 3).
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Figure 5.10 – (a) Steady-state thin filament activation function na,∞ for various sarcomere exten-
sions. (b) Relation between the contractility Σ0 and the level of calcium supply C. (c) Normalized
thin filament activation function na,t,norm for various sarcomere extensions. (d) Function na,peak
compared with experimental data (C̃ = 0.95 is the value of the level of calcium supply C calibrated
to match the maximal tension developed in the experimental data in maximal calcium activation
conditions). (Closed symbols) Peak twitch forces in high calcium supply conditions for cardiac rat
cells; (circle) data from [Caremani et al., 2016], (square) data from [Janssen & Hunter, 1995].
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5.5. Model calibration and validation

We validate our model by comparing its outputs with the experimental data presented
in Figures 5.2 and 5.3. We first compare the steady-state model prediction with experi-
mental data (see Figure 5.11) and note that our model displays a good match with the
data. We then simulate twitch contractions in “high” and “low” contractility conditions
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N
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e c
)

C = 0.25 C = 0.41 C = 0.56
C = 0.73 C = 1

Figure 5.11 – Comparison between the model steady-state force predictions at various level of
calcium supply as a function of the sarcomere extension and experimental data from [ter Keurs
et al., 2008] (black symbols). Each symbol corresponds to a single level of extracellular calcium
concentration; the black lines are fit of the data. Note that the values of the variable C chosen in
the simulations are adjusted to match the data (there is not rule to link the experimental calcium
concentration and the value of the level of calcium supply C).

(we use a level of calcium supply C of 0.95 and 0.33, respectively) in isometric conditions,
i.e. with ẋc = 0. The results are presented in Figure 5.12. Note that with C = 0.33, the
contractility is Σ0 = 110 kPa but the peak maximal peak force is only equal to 94 kPa
because the experimental conditions do not use the maximal sarcomere length and, at this
level of calcium supply, the decrease of the force with the sarcomere length is steep. The
results match well the experimental data in high contractility conditions. However, in low
contractility conditions, the decreases of the peak force with the sarcomere extension is
faster in the simulations than in the data. We see here a limitation of our calibration.
One can note that the strong decrease of the force with the sarcomere extension originates
from the constraints imposed on the function na,∞ by the steady-state data (Figure 5.11).
However these data are obtained on a range of sarcomere extensions between -0.15 and
0.05 whereas the twitch contractions are performed at sarcomere extensions between 0.02
and 0.19, i.e. in a region where the function na,∞ extrapolates the data. The correspon-
dence with the experimental data may thus be improved by adjusting the function na,∞
such that the steady-state force varies more gently with the sarcomere extension in the
latter region of sarcomere extensions for “low” values of C. Moreover, the data in steady-
state conditions and the experimental twitch contractions have not been obtained in the
same study, and there may thus be some intrinsic incompatibilities between them due to
different experimental conditions.

We can now compare the dynamics of the thin filament activation and the tension
development. There is no consensus on the calibration of the transition rates of the
Huxley’57 model family [Kimmig & Caruel, 2019] (Chapter 3). If the calibration favors the
match with the force-velocity relation observed in a steady-state shortening contraction,
the transition rates are six times faster than if the tension development rate is favored. We
test both cases here without changing the calibration of the thin filament activation na (the
point is not to match experimental data). The results for a representative contraction are
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Figure 5.12 – Comparison of simulated twitch contractions at various sarcomere extension with
experimental data (from top to bottom, ec = {0.19, 0.162, 0.135, 0.108, 0.081, 0.054, 0.027}).
(Left) high contractility conditions, (right) low contractility conditions. The experimental data
are obtained with a strict sarcomere length control throughout the experiment [Janssen & Hunter,
1995].

presented in Figure 5.13. Not surprisingly, the delay between the thin filament activation
and the active tension is longer when the attachment-detachment rate is slower. What we
can conclude from this simulation is that, in physiological conditions, the delay between
the thin filament activation and the force development is non-negligible and can even
become significant depending on the choices made in the actin-myosin interaction model
calibration. A rigorous incorporation of both dynamics in the model is thus necessary.
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Figure 5.13 – Comparison of the time evolution of the thin filament activation function na and
the active tension Tc. The simulation is performed in isometric conditions (ẋc = 0). We have
ec = 0.108 and C = 0.33. We choose two sets of transitions rates. (a) Transition rates based
on the force-velocity calibration from [Kimmig & Caruel, 2019] (Chapter 3). (b) Transition rates
divided by a factor six with respect to (a). These rates are similar to that proposed by [de Tombe
& Stienen, 2007] that are calibrated on the tension development dynamics.

5.6 Conclusion
In this chapter, we proposed a novel framework to rigorously incorporate the varying actin
sites activation level into the Huxley’57 model family. This framework may be coupled
to a separately defined thin filament activation models or, as done in this work, used as
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a standalone model with the time-dependent thin filament activation being provided as
a model input. The model is calibrated on experimental twitch contractions obtained in
controlled sarcomere length conditions and a preliminary validation is performed. How-
ever, additional validations are required to fully assess the capabilities of the model, in
particular in conditions where the sarcomere extension varies during the contraction as it
is the case in a heartbeat.

Our new framework opens new possibilities to develop thin filament activation models
by allowing to couple them with an actin-myosin interaction model, therefore enabling a
rigorous calibration. Moreover, in the context of heart simulation, our model may also
prove to be an important element. It indeed bridges the electrophysiological part and
the mechanical part of the description. Once properly calibrated and coupled within the
heart simulation framework, our model may allow to investigate the relation between the
force and calcium concentration measured ex vivo and that required in vivo in a normal
functioning. If a discrepancy appears (potentially due to the absence of neuroendocrine
regulation in the model apart from its effects on the level of calcium supply), it will
encourage the development of new experimental protocols to understand this discrepancy
and allow the development of the associated models.

5.7 Appendix
The model parameters used in this chapter are presented in Table 5.1.

Parameter Value Parameter Value

nHa 5.5 eHc,relax 0.18

CH
50 0.21 eLc,relax 6.5e-3

CL
50 0.60 t0 0.4

eHc,50 0.252 eLc,t 0.028

eLc,50 -0.177 eMc,t 0.1895

τrise 0.14 nMa,peak 1

τHrelax 0.38 nLa,peak 0.50

τLrelax 0.15 na,0 1e-3

Table 5.1 – Model parameters for the thin filament activation function.
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Conclusions

Digital medicine has raised a growing interest in the last decade due to the multiplication
of data acquisition devices, allowing to better quantify the state of the patients, and the
development of powerful tools to store and share the acquired data that make them easier
to use. As a corollary, there is an increasing demand for the development of predictive
models that are capable to help answer clinical questions. Models indeed enhance the
amount of information that can be extracted from the data, allowing for instance to
reconstruct non-measurable physiological quantities, to test and evaluate in silico different
therapeutic strategies before an intervention, or to build medically relevant indicators. The
cardiovascular system is naturally at the center of these new research efforts and this work
has been done as part of it.

The main objective of this thesis was to propose a model of molecular motors that is
relevant in the context of cardiac modeling, with a particular emphasis on the multi-scale
aspects of this system. The interest in the fine description of the microscopic molecular
motors is explained by the fact that they are at the core of the active force generation
and their disfunction often leads to severe pathological conditions. Indeed, mutations of
the myosin heads that induce variations of the cross-bridges force generation capability
have been associated with the development of cardiomyopathies [Moore et al., 2012; Spu-
dich, 2014]. In a more general point of view, being able to model the molecular motors
contributes to better understand the physiology and the diseases, and may potentially
help design more efficient treatments. In this regard, it is essential to be able to link
the microscopic models with the whole heart description so that the effect of microscopic
modifications can be evaluated on the heart performance, which is the ultimate objective
to take care of.

In the last fifty years, great research efforts have been made to develop cardiovascular
models [Peskin, 1975, 1977; Hunter & Smaill, 1988; Chapelle et al., 2012; Quarteroni et al.,
2017] and meaningful simplifications [Caruel et al., 2013] on the one hand, and to create a
vast variety of models with different level of refinements, from models capturing the finest
time scales [Eisenberg et al., 1980; Piazzesi & Lombardi, 1995; Sheshka & Truskinovsky,
2014; Caruel et al., 2019] to coarser models [Hill, 1938; Bestel et al., 2001] on the other
hand. Our work fell at the interface between these two areas of research with the aim
of building a bridge between them to incorporate various levels of the microscopic actin-
myosin interaction into a heart simulation framework.

More precisely, we aimed at deriving a hierarchy of models starting from a refined
model [Caruel et al., 2019] by performing successive simplification stages. To integrate
these descriptions into a heart simulation framework, the models needed to be extended
to take into account the force regulation mechanisms that are of high significance in vivo.
Then, the link between the microscopic contraction models and the macroscopic organ
model had to be performed. To do so, we needed to deal with the multi-scale nature
in time and space of the muscle tissue at the continuous and at the discrete level. We
followed for that an approach based on the thermodynamical principles. The main results
of this work can be grouped into the following categories.

Understanding of the actin-myosin interaction physiology

• We have first performed a literature review of the experimental works characterizing
the actin-myosin interaction and its regulations to put information in a useable form
for the development of models. Compiling the available experimental data in a com-
prehensive manner was important for the development of models and their validation.
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Indeed, it allows to distinguish the general trend from the experiment-specific varia-
tions (due for instance to temperature differences or species differences). To the best
of my knowledge, no review aggregating and presenting quantitative data has been
published since the work of Allen & Kentish [1985]. Moreover, our work is broader
than the latter paper because we have not restricted our presentation to the force
regulation mechanisms.

Multi-scale modeling of the actomyosin interaction

• We have built a hierarchy of muscle contraction models starting from a refined stochas-
tic model [Caruel et al., 2019], which was only validated for skeletal muscles. Perform-
ing the asymptotic elimination of the fastest time scale, we have derived a simplified
model that falls into the Huxley’57 model family [Huxley, 1957]. With additional as-
sumptions on the attachment and detachment rates and the attached state mechanical
energy, we have further simplified this model using moment techniques proposed by
Zahalak [1981]; Bestel et al. [2001]. These models have been validated on experimental
data obtained on cardiac muscle cells. This model hierarchy provides a representa-
tive model – validated for the description of cardiac muscles – of the model families
introduced by Caruel et al. [2019] for a complete model capturing all time scales of
the microscopic contraction, by Huxley [1957] for an intermediate model describing
the slower time scale only, and by Bestel et al. [2001] for a simplified model targeting
the slow time scales in the range of validity that is relevant in physiological heart con-
ditions. We have emphasized on the comparison between these models to rigorously
highlight the loss of properties when performing the simplifying assumptions. Further-
more, a generic calibration procedure, which is fundamental to prove the validity of
the model and for the use in patient-specific clinical applications, has been designed.

• We have proposed a first extension of the Huxley’57 model family to take into ac-
count the variation of the myosin heads availability. Following an original approach
considering two pools of myosin heads, grouping available and non-available heads, we
established a new partial differential equation governing the dynamics of a population
of myosin heads. The fundamental thermodynamical balances are established. The
validity of this new modeling ingredient has been demonstrated, with a phenomenolog-
ically modified model to add the calcium activation, by showing its ability to capture
the essential features of the Frank-Starling effect.

• We have developed the last missing block in our modeling framework, i.e. the account
of the activation of the thin filament. To be able to naturally integrate this extension
into our modeling framework, we have chosen an original approach that centers the
description on the myosin head, whereas alternative formulations are often written
from the point of view of the actin site. This formulation can be used as a standalone
model or be linked to a thin filament activation model. In the latter case, it provides
a way to bridge the electrophysiology and the mechanical contraction.

Numerical methods

• We have proposed a discretization strategy, valid for a large class of microscopic
chemico-mechanical contraction models extending the seminal Huxley’57 model [Hux-
ley, 1957], that carries over to the discrete level the microscopic thermodynamical
balances established at the continuous level. Furthermore, we have demonstrated that
this property could be extended to the system coupling the microscopic contraction
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model to a macroscopic muscle description derived in the framework of continuum
mechanics. This ability to rigorously compute thermodynamical quantities at the dis-
crete level could open the way to the use of thermodynamical measurements (such as
the liberated heat) to further calibrate and validate the models.

• We have further extended these numerical methods by also considering the additional
terms appearing in the partial differential equation governing the extended model
that takes into account the thick filament activation. Moreover, we have proposed
a thermodynamically consistent multi-time step numerical scheme taking advantage
from the separation of time scales to perform numerical simulations in an efficient way.

Perspectives
These elements mostly meet the objectives that we set at the beginning of this work.
However, many points could be improved to strengthen its significance.

• The main area to improve is the validation of the models incorporating the force
regulation. This is due to the lack of comprehensive data set that would allow to
confront the different parts of the models to data that should all be obtained in the
same conditions (same temperature, same species, same part of the heart muscle tissue,
same chemical environment, ...). We hope that this work could help raise the interest
of the physiologists community in re-performing well established experiments to create
a database for modeling purposes.

• Many questions remain open regarding the origin of the thick and thin filament acti-
vation. This limits the possibilities of developing physical models. To overcome this
issue, collaborations with experimentalists are essential. Indeed, the data feed the
model for calibration and validation, which in return helps identify the area where
our understanding does not correspond to the reality and help design appropriate
experiments to test new hypotheses.

• The thermodynamics properties of the model incorporating the thin filament activa-
tion have not been established yet. We believe however that our rigorous modeling
framework should allow to naturally derive these properties. If the thermodynamics
balances can indeed be obtained, a straightforward follow-up question is whether we
could design a discretization strategy that would be able to derive a discrete counter-
part to this continuous level thermodynamical properties.

This research work has also been an opportunity to identify some open subjects that
may constitute future research topics.

• One of the goal of the fine molecular motors behavior modeling is to be able to follow-up
modifications of the micro-scale behavior up to the organ behavior. These modifica-
tions may typically be related to diseases. A natural extension of our work could be
to model abnormal myosin heads and to investigate whether the effects predicted at
the heart level indeed correspond to that happening in living subjects. This project
would require new experimental work to quantitively characterize the diseased myosin
heads properties. In the same vein, the introduction of pharmacological inputs in the
model to capture the effect of drugs is a promising research area. Together, these two
topics may enable the development of a platform to select therapeutic strategies in
silico and therefore to reduce the development time of new drugs or even allow the
personalization of the treatment for each patient.
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• Several theoretical questions are also opened by this work. The newly proposed equa-
tions for the extension of the Huxley’57 model may become the object of mathematical
analysis. This may improve the level of understanding that we have on these models
and bring new ideas to design model simplifications. Moreover, the asymptotic elimi-
nation of the stochastic model fast variables has been done here in a heuristic way only.
A more formal derivation of the simplified model could be obtained by demonstrating
the asymptotic convergence of the solution of one model to the other. The work of
Tugaut [2018] may constitute a starting point to tackle this question.

• Finally, a major challenge concerns the identifiability of the model parameters. This
question is essential for the use of these models in real clinical applications since it is a
prerequisite for the development of automatic calibration algorithms. The associated
issues are which type of data should be provided, can they be obtained minimally
invasively, or up to which level of refinement can reasonably hope to identify param-
eters. The multi-scale and multi-physics nature of the cardiovascular system makes
the resolution of inverse problems difficult. Classical approaches to solve them are
data assimilation methods [Chapelle et al., 2009; Moireau & Chapelle, 2011] that have
already proven their relevance in the framework of personalized medicine [Sermesant
et al., 2012; Chabiniok et al., 2012].

From a broader point of view, this work brings new theoretical modeling elements that
are, in part due to their lack of validation, not meant to be used in clinical applications
in the coming years. However, it is perfectly in line with the challenges that digital
medicine offers. The development of a model hierarchy having various levels of refinement
meets the requirements of this research area. Building models for clinical applications is
indeed not about developing the most comprehensive model but to identify and select the
modeling elements that are at play in a given situation to design the relevant model for
this particular question. Moreover, the focus on the numerical methods associated with
the proposed models is also essential. The vision of making new numerical medical tools
broadly available can indeed not be achieved if these tools only run on high performance
computing clusters. Being able to design robust and efficient discretization strategies is
therefore of major importance.

Today, a large scientific community is convinced by the potential of predictive models
in clinical practice, as shown by the vast research efforts on this topic – we can mention
in particular the VPH initiative [Viceconti & Dall’Ara, 2019]. Medical doctors, who are
at the core of this topic, are joining the research efforts and the clinical world starts to be
aware of the improvements that these techniques could bring, as shown by the progressive
adoption of some early developed products making use of models. The conditions seem
thus favorable for a broader development of these techniques and to move from the proof-
of-concepts to the clinical reality.
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Résumé : L’objectif de cette thèse est la modélisation
mathématique des mécanismes de contraction mus-
culaire à l’échelle microscopique dans le but de pro-
poser et d’intégrer ces modèles dans un environne-
ment de simulation cardiaque multi-échelle. Ce tra-
vail est réalisé dans le contexte de la médecine
numérique, qui propose d’améliorer le traitement
des patients par l’utilisation d’outils numériques.
La première contribution de cette thèse est une
analyse bibliographique des travaux expérimentaux
caractérisant l’interaction actine-myosine et ses
régulations afin de compiler les informations sous une
forme utilisable pour le développement de modèles.
Cette étape est une condition préalable essentielle
à la modélisation. Nous proposons ensuite une
hiérarchie de modèles de contraction musculaire à
partir d’un modèle stochastique raffiné existant, mais
validé uniquement pour les muscles squelettiques,
en appliquant des hypothèses de simplification suc-
cessives. Les étapes de simplification transforment
l’équation différentielle stochastique initiale en une
équation aux dérivées partielles avec une descrip-
tion qui fait partie de la famille de modèles dérivée du

modèle Huxley’57. Une simplification supplémentaire
conduit ensuite à un modèle décrit par un en-
semble d’équations différentielles ordinaires. La perti-
nence des modèles proposés, qui ciblent différentes
échelles de temps, est démontrée en les compa-
rant aux données expérimentales obtenues avec des
muscles cardiaques, et leur domaine de validité est
étudié. Pour intégrer ces descriptions dans un en-
vironnement de simulation cardiaque, nous avons
étendu ces modèles afin de prendre en compte
les mécanismes de régulation de la force qui se
produisent in vivo. Cela conduit à de nouvelles
équations aux dérivées partielles. Ensuite, nous lions
les modèles de contraction microscopiques à un
modèle d’organe macroscopique. Nous suivons pour
cela une approche fondée sur les principes thermody-
namiques pour traiter la nature multi-échelle en temps
et en espace du tissu musculaire aux niveaux continu
et discret. La validité de cet environnement de simula-
tion est démontrée en présentant sa capacité à repro-
duire le comportement du cœur et en particulier les
caractéristiques essentielles de l’effet Frank-Starling.

Title: Multi-scale modeling of muscle contraction - From stochastic dynamics of molecular motors to contin-
uum mechanics.
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Abstract: This PhD thesis deals with the mathemat-
ical description of the micro-scale muscle contraction
mechanisms with the aim of proposing and integrating
our models into a multiscale heart simulation frame-
work. This research effort is made in the context of
digital medicine, which proposes to improve the treat-
ment of patients with the use of numerical tools. The
first contribution of this thesis is a literature review
of the experimental works characterizing the actin-
myosin interaction and its regulations to compile infor-
mation in a useable form for the development of mod-
els. This stage is an essential prerequisite to mod-
eling. We then propose a hierarchy of muscle con-
traction models starting from a previously proposed
refined stochastic model, which was only validated for
skeletal muscles, and applying successive simplifica-
tion assumptions. The simplification stages transform
the initial stochastic differential equation into a partial
differential equation with a model that is part of the
Huxley’57 model family. A further simplification then

leads to a description governed by a set of ordinary
differential equations. The relevance of these mod-
els, targeting different time scales, is demonstrated
by comparing them with experimental data obtained
with cardiac muscles and their range of validity is in-
vestigated. To integrate these microscopic descrip-
tions into a heart simulation framework, we extend the
models to take into account the force regulation mech-
anisms that take place in vivo, leading to the deriva-
tion of new partial differential equations. Then, we
link the microscopic contraction models to the macro-
scopic organ model. We follow for that an approach
based on the thermodynamical principles to deal with
the multi-scale nature in time and space of the mus-
cle tissue at the continuous and at the discrete levels.
The validity of this simulation framework is demon-
strated by showing its ability to reproduce the heart
behavior and in particular to capture the essential fea-
tures of the Frank-Starling effect.
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