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Maı̂tre de Conférences, Université de Versailles Saint-Quentin-en-
Yvelines (LMV) Co-directeur de Thèse
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In his novel Cat's Cradle (1963), Kurt Vonnegut wrote �Any scientist who can't
explain to an eight-year old what he is doing is a charlatan.�. If this sentence
sounds familiar, it is probably because similar statements are sometimes attributed
to Albert Einstein (but there is no evidence he said that). Anyway, based on this
principle, the �rst challenge I will try to address in the next few paragraphs is how
to explain computer arithmetic to an eight-year old.

Around that age, one learns how to multiply integers: multiply each digit of
the �rst operand by each digit of the second, then apply appropriate shifts and
add everything together. This procedure is su�ciently systematic to be executable
by a machine as in the old mechanical calculators, or an electronic circuitry as in
modern-day computers. I chose this example because computer algebra is precisely
about �nding systematic methods, or �algorithms�, to perform mathematical opera-
tions (such as multiplying integers, solving equations, or manipulating mathematical
expressions in general). This allows mathematicians to delegate such calculations
to computers, which are much faster and less error-prone than human beings for
repetitive tasks.

Closely related to the concept of algorithm is the notion of �complexity�, that is
the measure of how e�cient a procedure is. For instance, the schoolbook version is
only one of the possible methods to multiply integers, and some are more e�cient
than others when the numbers get large.
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• By de�nition, 12 × 34 = 12 + 12 + · · · + 12 is a very simple procedure that
could be executed by a machine. But of course, nobody would ever use this
method except maybe to multiply by 2 or 3, because this is too ine�cient.
Indeed, when the numbers to multiply get one digit larger, there are ten times
more operations to do!

• The schoolbook method says 12×34 = 12×4+(12×3)×10 and the subproducts
are decomposed as (1×4)×10+2×4 = 48 and (1×3)×10+2×3 = 36 so the
result is 48 + 360 = 408. All in all, this example requires 4 products of 1-digit
numbers. More generally, doubling the number of input digits multiplies the
number of operations by 4. This is much more e�cient than the method above,
but one can still do better.

• A method due to Karatsuba [KO63] allows to perform the product 12 × 34

using only 3 single-digit products. Start by computing 1× 3 = 3 (tens digits),
2× 4 = 8 (units digits) and (1 + 2)× (3 + 4) = 3× 7 = 21 (sum tens+units).
The �nal result is then

3× 100 + (21− 3− 8)× 10 + 8 = 3× 100 + 10× 10 + 8 = 408.

More generally, to multiply two large numbers, split them in two, then multiply
the upper halves together, the lower halves together, and the sums �upper
half + lower half� together. Obtaining the �nal result now requires a few
substractions, shifts and additions; which are much easier than multiplications.
With this method, doubling the number of input digits only multiplies the
number of operations by 3. This is not very interesting for 2-digit numbers
because there are more additions, but for larger numbers, this method becomes
faster than the schoolbook algorithm.

There are even better algorithms [SS71, Für09, HH19a], but the mathematics in-
volved are way out of the scope of this introduction. As these few references show,
even the simple question of integer multiplication does not have a de�nitive answer1

because algorithms are constantly improved. Recently, a new algorithm has been
proposed [HH19d], and it is believed to be optimal. Indeed, it matches the widely
accepted conjecture from the 1971 paper [SS71]; however, nobody has rigorously
proven yet that doing better is impossible. For more details on computer algebra in
general, and to get an overview of the numerous aspects of this research area, one
can refer to textbooks like [GG13, BCG+17].

After this very short introduction to computer arithmetic, let me explain more
speci�cally what this work Fast Finite Fields Arithmetic is about. Of course, when
designing algorithms, one expects them to be fast, in the sense of complexity analysis
and/or when running the program and measuring the execution time. If an eight-
year old were to say that my thesis is about multiplying large numbers, he or she

1See https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#

Other_algorithmic_problems. In May 2019, the �rst entry states �What is the fastest algorithm

for multiplication of two n-digit numbers?�

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#Other_algorithmic_problems
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#Other_algorithmic_problems
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would not be that far from the truth, hence the arithmetic part. In fact, I do not
multiply integers but more complex mathematical objects, that are still �numbers�
in some sense. More precisely, the numbers I consider are elements of �nite �elds
and certain objects built on them called polynomials. For example, (3 mod 7) is an
element of the �nite �eld Z/7Z, and (4X3 + 2X + 5 mod 7) is a polynomial in one
variable X with coe�cients in Z/7Z. Notice that polynomials over Z/pZ (where p
is a prime number) behave just like numbers written in base p without carry. It
is also worth mentioning that more complex �nite �elds are typically constructed
using polynomials over Z/pZ.

Applications of �nite �elds and polynomials over �nite �elds include notably
cryptography and error correcting codes. In most cases, the security of an encryption
scheme (if based on such objects) is linked to the size of the �nite �elds/polynomials
being used; the same is also true for the capacity of a code to correct many errors.
This is a motivation to design e�cient algorithms to compute with �nite �elds: there
is no point in securing a communication and making it reliable if doing so slows it
down so much it becomes impractical.

1.1 Background

Taking into account that large integers with n digits behave essentially like poly-
nomials of degree n, up to the additional complication of handling the carry, it is
not surprising that the history of polynomial multiplication follows closely that of
integer multiplication. Obviously, naive O(n2) and Karatsuba's O(nlog2 3) multipli-
cation algorithms as above are also valid for polynomials over any ring. Similarly,
the O(n log n log logn) algorithm by Schönhage and Strassen [SS71] extends quite
straightforwardly to polynomials over a (commutative) �eld, with a slight adaptation
required in characteristic 2 [Sch77]. For general rings (not necessarily commutative
or associative), the same O(n log n log logn) bound was established by Cantor and
Kaltofen in [CK91].

At the time of writing, the story stops there for polynomials over general rings,
but it continues in the case of �nite �elds, and more generally �elds of positive char-
acteristic. Indeed, the technique known as Kronecker substitution (found in [Kro82,
�4] for multivariate polynomials) shows an equivalence between the multiplication of
integers and polynomials over �nite �elds; a direct application introduces however
unwanted logarithmic factors. Nevertheless, techniques for integer multiplication
often also work for polynomials over �nite �elds and conversely. Therefore, a new
algorithm in one case can generally be translated (more or less easily) into an algo-
rithm in the other case, with comparable complexity. For instance, Fürer [Für09]
gave the bound O(n log nK log∗ n) for integer multiplication, for an unspeci�ed con-
stant K and where log∗ denotes the iterated logarithm (number of times the loga-
rithm must be applied until the result is < 1). A few years later, Harvey, van der
Hoeven and Lecerf [HHL16b, HHL17] showed that Fürer's bound holds with K = 8,
both for integers and polynomials over �nite �elds.
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This result was the starting point of my thesis, with the goal to study the
practical implications of this theoretical complexity bound. In particular, Harvey,
van der Hoeven and Lecerf gave a practical application of their new ideas to multiply
polynomials in F2[X], by using the properties of the extension �eld F260 [HHL16a].
This last paper provided important cases of interest for my work.

The Fast Fourier Transform. Starting with the Schönhage-Strassen algorithm
[SS71], fast multiplication algorithm are based on the evaluation-interpolation prin-
ciple and the Fast Fourier Transform (FFT). Multiplying polynomials by evaluation-
interpolation simply consists in evaluating both input polynomials at su�ciently
many points, multiplying the evaluations term-by-term, and interpolating the re-
sult. This extends to integers by seeing large integers as polynomials with small
integer coe�cients (for example, 123 = P (10) where P := X2 + 2X + 3). Given a
n-th root of unity ω ∈ K (with ωn = 1), the Discrete Fourier Transform (DFT) of P
is the tuple

(
P (1), P (ω), . . . , P (ωn−1)

)
. The expression Fast Fourier Transform de-

notes any algorithm to compute a DFT and its inverse e�ciently. In other words,
the Fast Fourier Transform provides an e�cient evaluation-interpolation scheme.

The �rst contributions of my thesis are improved variants of the FFT to achieve
a faster multiplication. Although those work in a general setting, they are initially
motivated by the example of F260 from [HHL16a].

Polynomial system solving. As a natural follow-up when writing about polyno-
mials, the second topic treated in this thesis is the resolution of systems of algebraic
equations. In the everyday language, �solving� means �nding all roots that are com-
mon to all polynomials in the system. In other words, given a system of polynomials
S(1), . . . , S(`) ∈ K[X1, . . . , Xr], for which values of X1, . . . , Xr (in the algebraic clo-
sure of K) do we have S(1) = · · · = S(`) = 0 ? Unfortunately, a formal resolution as
in �the solutions of aX2 + bX + c = 0 are X := (−b±

√
b2 − 4ac)/2a� is not always

possible: even for just one univariate polynomial, such general formulas exist only
up to degree 4 [Abe12]. In computer algebra, the de�nition is more permissive; in
fact there are several ways to answer the question.

One may expect an approximate value within the convergence radius of Newton's
iteration for each root (which can then be computed with arbitrary precision), or a
description of the zero set as an algebraic variety (dimension of the hypersurface,
number of irreducible components,. . . ). Sometimes, one is only interested in knowing
the number of solutions if it is �nite (zero-dimensional case). Alternatively, one
may want to know whether a given polynomial P cancels on each of the common
roots. By Hilbert's Nullstellensatz [Hil90], this is equivalent to P k being in the ideal
I := 〈S(1), . . . , S(`)〉 generated by S (for some integer k). For this reason, designing
algorithms to compute modulo I can be considered as a resolution of the system in
some sense, or at least a �rst step towards a complete resolution.

In the second set of contributions, I consider the problem of polynomial system
solving from the arithmetic point of view. More speci�cally, I am interested in the
sub-problem of the computation modulo the ideal I.
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1.2 State of the art

This section reviews some of the classical algorithms related to my work, in particular
on the topics of polynomial arithmetic and system solving.

1.2.1 Integer and polynomial arithmetic

Let us �rst conclude the story of integer and polynomial multiplication where we
left it in the previous section. Recall that since [HHL16b, HHL17]), multiplying
integers or polynomials over �nite �elds requires O(n log n 8log∗ n) operations.

For integer multiplication, several authors [HHL16b, CT19, HH19a] improved the
bound to O(n log n 4log∗ n) (thus improving K = 8 to K = 4 in Fürer's bound), as-
suming various unproved conjectures of number theory. Shortly after, the bound was
obtained inconditionally in [HH19b]. In the same time, a bound O(n log n 4log∗ n)

was similarly obtained for polynomials over �nite �elds [HH19c] (assuming a plau-
sible number theoretic conjecture).

Finally, Harvey and van der Hoeven showed in two companion papers, that
multiplication can be done in O(n log n) operations for integers [HH19d] and poly-
nomials over �nite �elds [HH19e] (again under a conjecture of number theory for
the latter). This closes the gap with the conjectured lower bound by Schönhage
and Strassen almost 50 years earlier [SS71]. It remains to prove that one cannot
go below n log n, and this would be the end of the journey. The contrary would be
very surprising, but a proof is really needed: Kolmogorov had conjectured in the
early sixties that the complexity of multiplication was intrinsically quadratic, and
Karatsuba who heard this talk published his algorithm shortly after, proving the
conjecture wrong.

The Fast Fourier Transform. As mentioned earlier, fast multiplication algo-
rithms rely on the Fast Fourier Transform. The most popular FFT algorithm is
based on a formula known to Gauss around 1800 [Gau66] and rediscovered by Coo-
ley and Tukey in 1965 [CT65]; see Chapter 2 for more details. This method allows us
to decompose a DFT of size n = n1n2 into n1 DFTs of size n2 followed by n2 DFTs
of size n1, in a divide-and-conquer fashion. It is typically used if n is a power of
two, in this case its complexity is O(n log n) operations. An earlier version known
as the Good-Thomas FFT [Goo58, Tho63] is also used in some situations, but it is
limited to the case where n1 and n2 are coprime so it cannot be used when n is a
power of 2.

If n is even, the most natural approach in the divide-and-conquer decomposition
is to choose n1 := n/2 and n2 := 2. In general, one will try to set n1 large and n2

small or conversely. However, it was shown in [Bai89] that choosing n1 ≈ n2 ≈
√
n

leads to better cache e�ciency. Notice that this applies for both the Cooley-Tukey
and the Good-Thomas FFT.

For coe�cients in a �nite �eld, there are restrictions on the admissible sizes for
a FFT: in a �eld with q elements, the size n must divide q − 1. Then, sizes cannot
always be chosen to be a large prime power, but there may be a large smooth mixed-
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radix size (for example with q = 260, the size 32 · 52 · 7 · 11 · 13 · 31 · 41 · 61 ≈ 17× 109

is a divisor of q − 1). Alternatively, there is an additive variant of the FFT that
exploits the structure of a �nite �eld as an additive group [WZ88, Can89, GM10];
this technique is especially useful in small characteristic.

Using only FFT sizes that are powers of 2 causes a jump phenomenon in multi-
plication algorithms: whenever the degree gets above a power of two, the runtime
increases abruptly, and remains essentially the same for degrees below the next
power of two. The Truncated Fourier Transform (TFT) [Hoe04] was designed to
mitigate this drawback. The idea is to discard some of the evaluation points (to
keep only as many as needed), which leads to a smoother behavior. Further versions
of this algorithm have been proposed to improve cache e�ciency [Har09] or decrease
memory requirement [HR10]. Also an additive version of the TFT has been given
in [Mat08, Chapter 6].

Another family of improved variants tries to exploit symmetries in the input to
speed-up the computation. For example the FFT for real coe�cients is about twice
as fast as a FFT of the same size with complex coe�cients [Ber68, SJHB87]. Other
types of symmetries have been studied in [Ten73, AJJ96, KRO07, VZ07, Ber13].

An e�cient implementation of the FFT (more precisely Schönhage-Strassen al-
gorithm) is used for long integer multiplication in GMP [Gra91]. The FFT and the
TFT over a prime �eld are typically used for their polynomial arithmetic in software
like FLINT [Har10], Mathemagix [HLM+02] and NTL [Sho01]. Also, the FFTW
library [FJ05] provides an e�cient implementation of the FFT for real and complex
coe�cients, typically for applications in physics and signal processing.

Multiplication in F2[X]. The case of polynomials over the �eld with 2 elements
is of particular interest, with several applications to geometric error correcting codes
and algebraic crypto-systems. However, this case raises a speci�c di�culty: over
such a small �eld, FFT techniques cannot be applied directly because of the lack
of evaluation points. Solutions include the triadic version of Schönhage-Strassen
algorithm [Sch77], or to use a well-chosen �eld extension with su�ciently large size.
The reference software gf2x [BGTZ08] implements the �rst strategy by default,2

and implementations of the second can be found in [HHL16a] (FFT over F260) and
[CCK+17] (additive FFT over F2128 or F2256). Later, the authors of [CCK+17]
improved their work by adapting the results of Chapter 4 to the setting of additive
FFT [LCK+18, CCK+18].

Applications of fast multiplication. The multiplication of univariate polyno-
mials is a fundamental operation in the sense that many higher-level arithmetic tasks
depend directly on it. Let us review quickly a few examples of problems whose com-
plexity is usually expressed as a function of the complexity of multiplication; more
details are given in section 2.3. First we need the notation M(n) for the cost of
multiplying polynomials of degree n, and for technical reasons we need to assume
that this function increases faster than linearly but slower than quadratically.

2
gf2x also implements the additive FFT (over F2128) for certain applications.
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After multiplication, the next nontrivial operation is the Euclidean division.
Cook [CA69] gave aO(M(n)) algorithm for integers, and Strassen [Str73, Lemma 3.5]
adapted it for polynomials, using a result from Sieveking [Sie72]. In other words,
Euclidean division costs the same as a multiplication, up to a constant factor. The
big-Oh constant can be re�ned by reusing some intermediate results [Hoe10, Har11].

Another classical operation is the multi-point evaluation and interpolation. In
the special case of Discrete Fourier Transform, both require M(n)+O(n) operations
by [Blu70]. Notice that this is only helpful if n is not smooth, otherwise the FFT
is already e�cient enough. In the extreme case where n is prime, Rader gave an
alternative method [Rad68] with the same complexity. For general sets of points, this
requiresO(M(n) log n) operations (see [GG13, section 10.1] for a classical algorithm);
the big-Oh constant has been improved in [BLS03, Ber04] using duality techniques.
If the evaluation points are known beforehand and some precomputation on them
is allowed, then one may also gain a factor log log n [Hoe16]. If the points form
a geometric progression α, α2, . . . (this is slightly more general than a DFT), then
evaluation and interpolation are possible in O(M(n)) operations, by [RSR69, Mer74].
Improved algorithms [BS05] give M(n) +O(n) and 2M(n) +O(n) respectively.

A third interesting observation is that the arithmetic of multivariate polynomials
can be reduced to the univariate case. If A,B ∈ K[X1, . . . , Xr] have degree di in
the variable Xi, then their product can be computed in M(2r−1

∏
di) operations by

the technique of Kronecker substitution [Kro82, �4]. Notice that the product has
degree 2di in the variable Xi, hence essentially 2r

∏
di coe�cients. Alternatively,

such polynomials can be multiplied using a multidimensional generalization of the
Discrete Fourier Transform, see for example [GM86, Pan94].

1.2.2 Polynomial system solving

The next paragraphs present some of the techniques used for polynomial system
solving, and complexity bounds when available. A particular attention is given to
Gröbner bases because they are used more speci�cally in this work, but other com-
mon tools are mentioned for completeness. For simplicity, the complexity bounds
are given assuming a well-determined system (` = r), with a �nite number of
solutions N , and the polynomials S(i) having degree d (Bézout's theorem states
that N 6 dr with equality in general). The bounds are valid under the technical as-
sumption that the homogenized polynomials S(i) are in Noether position and form
a regular sequence (see e.g. [BCG+17, sections 26.4 and 26.5] for the de�nition).
Although the problem is EXPSPACE-complete in the worst case [May89], such reg-
ularity assumptions give meaningful complexity bounds to compare the algorithms.

Gröbner bases. A classical tool for polynomial system solving is given byGröbner
bases; the precise de�nition is recalled in Chapter 6. The modern de�nition is due to
Buchberger [Buc65] who also implemented the �rst algorithm (but its complexity is
hard to estimate). A very similar de�nition can be found in [Ros59]. Also, standard
bases were independently introduced by Hironaka [Hir64] for formal power series.
Currently, the state-of-the art algorithms are Faugère's F4 and F5 [Fau99, Fau02].
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Actually, partial results from the Gröbner basis theory also appeared in the
prior work of Riquier [Riq10], Janet [Jan20], and Thomas [Tho37], in the context of
partial di�erential equations. More recently, Pommaret bases [PH91] and involutive
bases [ZB96, GB98] are extensions of these works. Let us also mention that Ritt's
characteristic sets [Rit32, Rit50] present some similarities as well; they initiated the
theory of triangular sets presented below.

Initially, Gröbner bases are designed to allow e�ective computation modulo I,
but they also give information about the dimension of the variety or the number
of solutions if it is �nite. A given ideal admits several Gröbner bases: one reduced
basis for each monomial ordering. The grevlex basis is the easiest to compute [BS88];
the lex basis is harder to obtain but provides more information, including a way to
e�ectively compute the solutions. In practice, a complete resolution using Gröbner
bases starts by computing the grevlex basis, which is then converted into the lex
basis using for example the FGLM algorithm [FGLM93] or a Gröbner walk [CKM97].

The F4 algorithm relies on linear algebra on Macaulay matrices [Mac02], then
its complexity can be estimated as

O

(
rD

(
r +D

D

)Ω
)

(1.1)

where D := 1 +
∑

(degS(i) − 1) = 1 + r × (d − 1) is the Macaulay bound [BFS14,
Proposition 1]. Here Ω denotes the exponent of matrix multiplication: two n×n ma-
trices can be multiplied in O(nΩ) operations (the current record is Ω ≈ 2.37 [LG14],
but in practice one rather has Ω = log2(7) [Str69], or even Ω = 3 by the naive
algorithm). For the F5 algorithm, we have by [BFS14, Theorem 2] the following
complexity estimate:

O

(
r(3d3)r

d

)
. (1.2)

Finally, the FGLM algorithm requires O(rN3) operations, and the bound was re-
cently re�ned toO(rNΩ) [FGHR14]. Notice that, under the aforementioned assump-
tions, the complexity of F4, F5 and FGLM is polynomial (in fact essentially cubic)
in the number N of solutions. Let us mention that fast Gröbner basis algorithms
have been used to break certain algebraic cryptosystems [FJ03, FHK+17].

Triangular sets. Characteristic or triangular sets constitute another popular tool
with a vast dedicated literature. The historical introduction is due to Ritt in di�er-
ential algebra [Rit32, Rit50] and Wu in geometry [Wu78].3 More recent references
with a particular focus on polynomial equations can be found in the work of Lazard,
Moreno Maza and Schost, see for example [Laz92, ALM99, Sch03].

The complexity of Wu-Ritt algorithm has been estimated to O(rΩ+1(d+1)O(r2))

in the zero-dimensional case, and O(`O(r)(d + 1)O(r3)) in general [GM91a, GM91b]
(here the regularity assumptions are a bit di�erent from the usual Noether position

3Similar ideas appear already in the ancient Chinese monograph Siyuan yujian (1303, also

known as the Jade Mirror of the Four Unknowns) by Zhu Shijie [Hoe77].
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/ regular sequence). Also the algorithm from [Laz92] computes a triangular set from
a lex Gröbner basis (in the zero-dimensional case); this algorithm is polynomial in
the input/output size but its complexity is not precisely analyzed. Apart from these,
there are few complexity results about the computation of triangular sets, but they
do perform well in practice. For instance, [AM99] compares four algorithms for direct
computation of triangular sets, The methods that are considered there are from
[Wu87, Laz91, Kal91, Wan93], or in some cases an improved variant (see [AM99]
and references therein for more details). Unlike [Laz92], these algorithms are valid
for any system of polynomials (including non zero-dimensional case) and do not
compute a Gröbner basis �rst. Depending on the system, one or the other method
is most adapted; in some cases it is even faster than computing a Gröbner basis.

Triangular sets are particularly attractive to represent the zero set of a poly-
nomial systems, because they reduce the resolution of a multivariate system to a
succession of univariate problems. Moreover, the special case of triangular systems
gives a simple representation of the quotient algebra K[X1, . . . , Xr]/I. A triangular
system is a family T = T (1), . . . , T (r) such that T (i) ∈ K[X1, . . . , Xi], is monic as
a polynomial in Xi, and I = 〈T (1), . . . , T (r)〉 (such a system is also a lex Gröbner
basis). Triangular systems are often used to represent towers of ring extensions
[HL18c, HL19b]. It was also shown that any zero-dimensional system is equivalent
to a union of triangular systems [Laz92, Proposition 2].

Unlike the computation of the triangular set itself, computation modulo a tri-
angular system is well-studied: for ∆ :=

∏
deg T (i), multiplication modulo T has

Õ(3r∆) complexity [Leb15]. The complexity decreases to O(Kε∆
1+ε) for any ε > 0

(for some constantKε depending on ε) if each T (i) is in fact univariate inXi [LMS09].
If the system de�nes a separable tower over a su�ciently large �eld, then the com-
plexity decreases to ∆1+O(1/

√
log ∆), by [HL19b, Corollary 2] for towers of �elds, and

[HL18c, Theorem 7.13] for towers of rings.

Homotopy continuation. A third important family of solvers is based on homo-
topy methods; the idea is to deform continuously a system with known solutions into
the target system. Historically, Gauss used such arguments to prove the fundamen-
tal theorem of algebra [Gau99]. Later Drexler [Dre77] and Smale [Sma81, Sma86]
applied this principle to solve multivariate systems algorithmically. Unlike the other
methods listed in this section, homotopy techniques are purely numerical and there-
fore a bit far from the topic of the present work; the reader should refer to classical
books such as [AG90, Mor09] for more details. Nevertheless, this method is very
e�cient in practice when the goal is to obtain numerical approximations of the solu-
tions. In fact, software such as PHCpack [Ver99] and Bertini [BHSW06] achieve
unmatched performances for many systems.

Geometric resolution. Using an algebraic geometry point of view, Giusti and
Heintz introduced a new technique of geometric resolution [GH91, GHM+98]. Again,
the focus is on the e�ective computation of the solutions: the output of the method
is a parametric representation of the zero set. This was formalized into the Kro-
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necker solver [GLS01], with a complexity of (rdr + r4)Õ(N2). An improved variant
over �nite �elds [HL18b] reduces the complexity to Õ(d(r−1)(1+ε)N). An important
remark on these complexity bounds is that the algorithms for geometric resolution
are probabilistic (Las Vegas type), while methods based on Gröbner bases or tri-
angular sets are deterministic. For the last bound from [HL18b], it is important to
mention that the gain is only theoretical as it assumes fast modular composition
[KU11], of which no e�cient implementation is known.

Resultants. Another method to solve a system is to eliminate variables one after
the other until reduction to a univariate problem. This is typically done using the
resultant, as in [AS88] for example. It is worth mentioning that geometric resolution
also uses the resultant, and more speci�cally the bivariate resultant. Given two bi-
variate polynomials of degree d, classical algorithms to compute their resultant have
cubic complexity Õ(d3) (see [GG13, Section 11.2] for more details and references).
Recently, Villard [Vil18] gave a sub-cubic algorithm for generic polynomials, with
complexity O(d(3−1/Ω)(1+ε)) where Ω is again the exponent of matrix multiplication.
Villard's algorithm was implemented in [HNS19]. Finally, as an application of the
result from Chapter 8, van der Hoeven and Lecerf gave a d2+o(1) algorithm for the
generic bivariate resultant over �nite �elds [HL19c], but again this complexity bound
requires fast modular composition.

Rational univariate representation. In the case of zero-dimensional systems,
the solutions admit a rational univariate representation (RUR) [Rou99]: each root t
of some univariate polynomialG de�nes a solution of the system given byXi := ri(t),
where ri ∈ K(X) is a rational function. Such a representation can be computed
in polynomial time (with respect to N) assuming the multiplicative structure of
K[X1, . . . , Xr]/I is known. A variant of the RUR based on the transposition princi-
ple achieves O(r2rN5/2) complexity [BSS03], also taking the multiplicative structure
of the quotient algebra as input.

1.3 Contributions

The results of this thesis can be sorted in two main topics, namely polynomial
multiplication and the resolution of polynomial systems.

The �rst part studies the multiplication of univariate polynomials from a practi-
cal point of view. The purpose is not to �nd better asymptotic complexity bounds,
but rather to improve the big-Oh constant, which could lead to faster implemen-
tations. Recall that the complexity of many other operations depends directly on
the e�ciency of the multiplication, then any practical improvement here directly
improves the other operations as well.

The second part is dedicated to the arithmetic of multivariate polynomials mod-
ulo an ideal (as a subproblem of system solving). For simplicity, the study is limited
to the case of bivariate polynomials and under certain genericity assumptions on
the ideal. In this case, there are optimal (up to logarithmic factors) reduction algo-
rithms; this greatly improves upon the more general classical results.
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1.3.1 Multiplication of univariate polynomials

As mentioned earlier, fast multiplication algorithms are based on the Fast Fourier
Transform (FFT). For this reason, the improved algorithms take the form of new
variants for the FFT. Before presenting the results, it is important to recall the basics
on evaluation-interpolation and FFT techniques; Chapter 2 gives some reminders
on these classical topics.

The Truncated Fourier Transform. FFT multiplication is well-known for its
staircase e�ect: there are typically jumps in the complexity when the size is a power
of two, and little increase between jumps. The Truncated Fourier Transform (TFT)
attempts to mitigate this phenomenon; if a FFT of size n can be computed in F(n)

operations for some highly composite n, then one can evaluate and interpolate at
` < n well-chosen points in time

`

n
F(n) +O(n) .

This fact was already known when n is a prime power [Hoe04, Mat08]. Chapter 3
gives a generalization for any (composite) n, such mixed radices being common in
a �nite �eld setting: for example over F260 (as in [HHL16a]), the size n must be
a divisor of 260 − 1 = 32 · 52 · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321. This result was
published in [Lar17] and presented at the international conference ISSAC in 2017.

The Frobenius FFT. The second contribution is an algorithm named the Frobe-
nius FFT to speed-up FFT computations in extensions of �nite �elds. To multiply
polynomials over a small �nite �eld, it may be necessary to compute FFTs over a
larger extension �eld, which causes an overhead. However, using the symmetries
provided by the Frobenius automorphism, it is in theory possible to eliminate this
overhead. For instance, assume that P is a polynomial with coe�cients in Fq and
one needs to compute its Fourier transform in the extension �eld Fqd . Then this
operation can be done essentially d times faster than if P had coe�cients in Fqd (see
Chapter 4). This result was published in [HL17] and presented at the international
conference ISSAC in 2017.

Multiplication in F2[X]. A nice application of the Frobenius FFT is for the
multiplication of polynomials over F2. It turns out that this technique works partic-
ularly well for the extension F260 of the �eld F2 and can be implemented e�ciently
in this case. Combining this with the existing implementation from [HHL16a] led
to a speedup by a factor of 2 with respect to previous software. More details are
given in Chapter 5. This result was published in [HLL17] and presented at the
international conference MACIS in 2017. The implementation can be found in the
package justinline of the Mathemagix software [HLM+02].
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1.3.2 Reduction of polynomials in two variables

Consider the problem of computing with polynomials modulo an ideal; this is typi-
cally used to solve systems of polynomial equations or to construct rings with certain
algebraic properties.

The main di�culty is: given a polynomial, compute a normal form, that is a
canonical representative of its residue class. In one variable (over a �eld), this is easy
because every ideal is principal, so that �nding the generator is a GCD computation
and the normal form is simply a Euclidean division; all these operations can be done
in softly-linear time (i.e. linear up to logarithmic factors). However, this is no longer
true for polynomials with several variables, and no optimal algorithm is known in
general. Chapters 6-8 present a solution for a simpli�ed situation: we consider
polynomials in two variables, zero-dimensional ideals (there is a �nite set of isolated
common roots), and some regularity assumptions are made.

Reduction techniques. Let A,B ∈ K[X,Y ] be degree n polynomials in two
variables. They have generically n2 coe�cients and n2 common roots; also the al-
gebra K[X,Y ]/I of polynomials modulo the ideal I := 〈A,B〉 generated by A,B
has dimension n2 (as a K-vector space). Therefore, one could design algorithms to
manipulate these structures whose complexity is quadratic in n, but classical algo-
rithms are at least cubic. Chapter 6 presents the major new ingredients (common
to Chapters 7 and 8) to achieve (softly-)quadratic complexity.

Vanilla Gröbner bases Chapter 7 deals with a setting of so-called vanilla Gröb-
ner bases. In this situation, the structure of K[X,Y ]/I can be precomputed and
once it is done, any polynomial P can be reduced in normal form within quasi-
quadratic complexity. In particular, operations like multiplication in K[X,Y ]/I

have quasi-optimal algorithms. This result was published in [HL18a] and presented
at the international conference ISSAC in 2018. A proof-of concept implementation
for SageMath is also available here:

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

Case of the Grevlex order. Chapter 8 considers generating polynomials with
a speci�c shape, that follows the usual degree-lexicographic order. This case is not
covered by the previous vanilla situation, but a similar result does hold. Like before,
once the structure ofK[X,Y ]/I has been precomputed (notice that its representation
is di�erent from that of the previous case), any polynomial can be reduced in normal
form within quasi-quadratic complexity. But unlike the vanilla case, the structure
itself can be computed e�ciently: there is a softly-quadratic algorithm to compute
the concise Gröbner basis that de�nes the structure of K[X,Y ]/I. Notice that it
corresponds (at least in some sense) to a resolution of the bivariate system.

This result was presented at the international conference ACA in 2018 and pub-
lished in the journal �Applicable Algebra in Engineering, Communication and Com-
puting� [HL19a]. Also, the algorithm was implemented in the larrix package of

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
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the Mathemagix software [HLM+02]. The package was presented as a software
demonstration in ISSAC 19, and the report will appear in the �ACM SIGSAM
Communications in Computer Algebra� [Lar19].

1.3.3 List of publications

This section gives a list of the publications produced while preparing this thesis. All
research articles were published in peer-reviewed conference proceedings or scienti�c
journals. All software packages are freely available under the terms of the GNU
General Public License (version 2 or later).

Research papers

[Lar17] Robin Larrieu. The Truncated Fourier Transform for mixed radices.
In Proceedings of the 2017 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC '17, pages 261�268, New York, NY,
USA, 2017. ACM

[HL17] Joris van der Hoeven and Robin Larrieu. The Frobenius FFT. In
Proceedings of the 2017 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC '17, pages 437�444, New York, NY,
USA, 2017. ACM

[HLL17] Joris van der Hoeven, Robin Larrieu, and Grégoire Lecerf. Implement-
ing fast carryless multiplication. In J. Blömer, I. Kotsireas, T. Kutsia,
and D. Simos, editors, Proceedings of Mathematical Aspects of Com-
puter and Information Sciences, pages 121�136, Cham, 2017. Springer

[HL18a] Joris van der Hoeven and Robin Larrieu. Fast reduction of bivariate
polynomials with respect to su�ciently regular Gröbner bases. In Pro-
ceedings of the 2018 ACM International Symposium on Symbolic and
Algebraic Computation, ISSAC '18, pages 199�206, New York, NY,
USA, 2018. ACM

[HL19a] Joris van der Hoeven and Robin Larrieu. Fast Gröbner basis computa-
tion and polynomial reduction for generic bivariate ideals. Applicable
Algebra in Engineering, Communication and Computing, June 2019

[Lar19] Robin Larrieu. Computing generic bivariate Gröbner bases with Math-
emagix, 2019. ISSAC software demonstration, to appear in ACM
SIGSAM Communications in Computer Algebra

Software

• Routines for the multiplication of polynomials in F2[X] (see [HLL17]), in
collaboration with Grégoire Lecerf and Joris van der Hoeven. Part of the
justinline package of Mathemagix [HLM+02]. http://www.mathemagix.org

• A proof of concept implementation in SageMath [Sag17] of the algorithms
for generic bivariate Gröbner bases [HL18a, HL19a]. Available at
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

http://www.mathemagix.org
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
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• An e�cient library for computations with generic bivariate Gröbner bases in
the setting of [HL19a]. Included in Mathemagix [HLM+02] as the package
larrix. http://www.mathemagix.org

• An experimental implementation for �nite �eld embeddings, in collaboration
with Luca De Feo. Available at https://gitlab.inria.fr/rlarrieu/tower.
The method and partial results are given in Appendix A.

1.4 Notations and terminology

To avoid any ambiguity, let us review brie�y the most useful mathematical concepts
for this thesis and the related notations. Let us also de�ne the setting regarding
the representation of objects and the complexity model. Table 1.1 summarizes the
notations for reference.

1.4.1 Elementary algebra

The reader should be familiar with the usual algebraic notions such as rings, ideals,
polynomials, linear algebra and so on; these classical concepts are recalled for exam-
ple in [GG13, Chapter 25] and references therein (or in fact any algebra textbook).

A ring or �eld is said to be e�ective if elements can be represented on a com-
puter or Turing machine, and if there are algorithms to perform the ring operations
(including exact and Euclidean division when it makes sense) and the zero test.
In other words, this means that computations with e�ective rings or �elds can be
carried exactly. For example the ring Z of integers and the �eld Q of rational num-
bers are e�ective, but the �elds R and C of real and complex numbers are not
(a Turing machine has only countably many con�gurations). This does not mean
that computing over R or C is impossible, but it requires a speci�c analysis (see
e.g. [FHL+07, Moo66] for more details). In the following, all rings and �elds are
supposed to be e�ective, and the notation K denotes an arbitrary e�ective �eld.

For �nite �elds, recall that the number q of elements must be the power of
some prime p called the characteristic. The �nite �eld with q elements is unique
up to isomorphism and it is usually designated by the notation Fq. Recall that Fpd
contains (a sub�eld isomorphic to) Fpe if and only if e divides d. The prime �eld Fp
is the �eld Z/pZ of integers modulo p, and the extension Fpd can be represented
as the �eld Fp[X]/〈µ(X)〉 of polynomials over Fp modulo some degree d irreducible
polynomial µ. In particular, this means that �nite �elds are e�ective.

To avoid confusions, we use parentheses for tuples of elements, and angle brackets
for generating elements. For example, (a, b) denotes the pair composed of a and b,
while 〈a, b〉 denotes the group or ideal (will be clear from the context) generated by a
and b. For the same reason, (a mod b) denotes the residue class of amodulo b, while
(a rem b) is the remainder in the Euclidean division of a by b. Also, the quotient in
the Euclidean division will be denoted by (a quo b). There are non-Euclidean rings
(for example multivariate polynomials) that have standard reduction procedures; in
this case we will reuse the rem notation for the result of this reduction operation.

http://www.mathemagix.org
https://gitlab.inria.fr/rlarrieu/tower
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1.4.2 Computer representation of mathematical objects

There are several ways to represent polynomials, by giving explicitly their coe�cients
or by a straight-line program to evaluate the associated polynomial function. The
latter can be interesting for polynomials like (X + 1)100, but in general the former
is easier to manipulate. An explicit description with the coe�cients can be dense
when giving all coe�cients, or sparse when giving only the nonzero coe�cients (but
an additional information on the position is then required). Similarly, matrices can
be given either in dense or sparse representation.

In this thesis, we always assume dense representation; then the complexity of
algorithms will depend on the degree of the polynomials and the size of the ma-
trices. The set of univariate polynomials over K of degree less than d is denoted
by K[X]<d. Similarly, the set of matrices with a rows and b columns is denoted
by Ka×b. For polynomials in several variables, the degree is by default the total de-
gree; when something else is meant, the notation will be self-explaining, for example
K[X,Y ]degX<u,degY <v.

As usual, coe�cients of polynomials or matrices are accessed with subscript
indices, for example Pi is the coe�cient of Xi in P . For families of polynomials or
matrices, a speci�c element is denoted by a parenthesized superscript, as in P (i).
For other families, typically arrays of integers, a speci�c element is designated by a
subscript as usual.

1.4.3 Complexity model

In this work, we assume the algebraic complexity model [GG13]: operations in the
base �eld have unit cost, also tasks like manipulation of indices and memory man-
agement are neglected. Indeed, this simpli�es the analysis (compared for example to
multi-tapes Turing machines [Pap94]) and this is especially pertinent in the context
of �nite �elds because elements have a �xed size.

If we were to work with integers or rational numbers, we should additionally
take coe�cient growth into account to get an accurate estimate of the running time.
Another situation where the algebraic complexity model is less pertinent is when
we work in di�erent �elds simultaneously, because operations in larger �elds are
more expensive. In particular, the whole point of Chapter 4 is to exploit this fact to
achieve a speedup for FFTs over Fqd if the input is in Fq. For this reason, the analysis
there will exceptionally use the Turing complexity model for Turing machines with
a �nite number of tapes [Pap94].

Complexity functions will be typeset using sans-serif font and mention the base
�eld, for example MK(n) is the complexity of multiplying two polynomials of degree n
in K[X] (counting the number of operations in K, or steps of Turing machines in
Chapter 4). When K is clear from the context, the subscript can be dropped; also
to avoid nested subscripts, Mq is used as a shorthand for MFq . The complexity of
operations other than multiplication is denoted similarly by replacing the letter M

(for example F for the Fourier Transform, C for modular composition, and so on).
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Finally, recall the Landau notations f(n) = O(g(n)) and f(n) = o(g(n)) for
|f(n)| 6 C|g(n)| and |f(n)| 6 c(n)|g(n)| respectively for large enough n, where C
is some constant and c(n) → 0. The notation f(n) = Θ(g(n)) (for f(n) = O(g(n))

and g(n) = O(f(n))) is also useful to outline that f and g are of the same order.
Moreover, the soft-Oh notation f(n) = Õ(g(n)) is commonly used in computer
algebra [GG13, Chapter 25]. It means essentially the same as the big-Oh notation,
up to logarithmic factors: more precisely, it means f(n) = g(n) logO(1) g(n).

Table 1.1: Summary of notations

Typesetting conventions

Font Example Meaning

Blackboard bold K Rings and �elds
Bold M Matrices and vectors
Calligraphic I Sets of indices or ring elements
Typewriter foo(a, b) Call to a function in an algorithm
Sans-serif M(n) Complexity functions

Algebraic structures

A, K An arbitrary e�ective ring or �eld respectively
N,Z,Q Set of natural integers, ring of integers, �eld of rational numbers
R,C Fields of real and complex numbers
Fq Finite �eld with q elements
A/I Quotient structure (typically I is an ideal of the ring A)

Mathematical operations

〈a, b〉 Group or ideal (clear from the context) generated by a, b.
quo, rem Quotient and remainder in the Euclidean division
a mod I Residue class of a in the quotient A/I

Polynomials and matrices

Note. Assume dense representation (i.e. a vector of coe�cients).
K[X]<d The set of polynomials (in 1 variable X) over K with degree less

than d
Ka×b The set of matrices over K with a rows and b columns
Pi,Mi,j The coe�cient of Xi in P , the coe�cient in row i and column j in M

P (i),M(i) The i-th element in the family of polynomials P or matrices M

Complexity

Note. Assume the algebraic complexity model (number of operations in K),
except for Chapter 4 where the Turing complexity model is used instead.
MK(n) Cost for the multiplication in K[X]6n

M,Mq When K is clear from the context, shorthand for MFq
Θ(·) The same order: f = Θ(g)⇔ f = O(g) and g = O(f)

Õ(·) Big-Oh up to logarithmic factors: f = Õ(g)⇔ f = g logO(1) g
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This chapter aims to recall classical techniques related to polynomial multiplication.
This material can be found in most computer algebra textbooks, such as [GG13,
BCG+17]; it does not contain new contributions but is useful to understand the next
chapters. In particular, the de�nitions and notations from section 2.2 are essential
to Chapters 3 and 4.

2.1 The evaluation-interpolation principle

The naive quadratic algorithm and Karatsuba's method are based on symbolic ma-
nipulation of the coe�cients. The technique used in asymptotically fast algorithms
(i.e. with quasi-linear Õ(n) complexity) is slightly di�erent. The idea is to manip-
ulate values of the polynomial functions (at various well-chosen points) instead of
the coe�cients of the polynomials. Indeed:

• A polynomial of degree less than n is uniquely determined by its values at any
n distinct points. (If A is not an integral domain, the di�erence of any two of
those points must not be a zero divisor.)

• If the ring A is commutative, operations on polynomials translate directly into
operations on the values:

(P ×A[X] Q)(x) = P (x)×A Q(x).

(If A is not commutative, the above equality is only valid for certain values
of x: those that commute with every element of A.)
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• Collections of values are easier to manipulate than polynomials: they can be
added or (more importantly) multiplied term-by-term, therefore with linear
complexity.

Because of these elementary mathematical properties, polynomials can be mul-
tiplied using the so-called evaluation-interpolation principle: evaluate both input
polynomials P,Q at a common su�ciently large set of points (if degPQ < n, then
n points are enough), multiply term-by-term these evaluations to get the values of
the product, and �nally reconstruct the result by interpolation.

Remark 2.1. We need to assume that A contains at least n distinct elements.

The challenge is now to perform the evaluation and the interpolation e�ciently.
Evaluation by Horner's rule (· · · ((Pn−1x + Pn−2)x + Pn−3)x + · · · )x + P0 requires
O(n) operations, so repeating this n times would take quadratic time. Similarly,
interpolation using the Lagrange polynomials

L(j)(X) :=

∏
i 6=j(X − xi)∏
i 6=j(xj − xi)

is at least quadratic because each each L(j) is a degree n− 1 polynomial.

Remark 2.2. In fact, interpolation using the Lagrange polynomials is quadratic
only if the L(j) have been precomputed. Indeed, computing just one of them naively
would already be quadratic so the overall complexity would be cubic. Even with
fast multiplication (which is precisely what we want to build!) and reusing the
intermediate results, the complexity could be made close to quadratic but there
would be extra logarithmic factors.

Apparently, this evaluation-interpolation technique is therefore even slower than
the naive multiplication algorithm. The solution is to choose carefully the set of
evaluation points, to perform both operations more e�ciently.

2.2 The Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) is the operation of evaluating a polynomial
at a special set of points, namely the n-th roots of unity.

Recall that for a ring A, an element ω ∈ A is a principal n-th root of unity
if ωn = 1 and

n−1∑
k=0

ωjk = 0 for all j ∈ {1, . . . , n− 1}.

If moreover n is invertible in A, then in particular 1, ω, . . . , ωn−1 are all distinct and
the DFT

P ∈ A[X]<n →
(
P (1), P (ω), . . . , P (ωn−1)

)
(2.1)
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can be inverted. Indeed, let F(ω) be the DFT matrix given by F
(ω)
i,j := ωij . Since ω

is principal, we have

(
F(ω−1)F(ω)

)
i,j

=

n−1∑
k=0

ω(j−i)k =

{
0 if i 6= j

n if i = j

so that
F(ω−1) = n(F(ω))−1 . (2.2)

In particular, inverting the discrete Fourier transform with respect to some root ω
reduces to the computation of the direct DFT with respect to the root ω−1.

Remark 2.3. If A is a �eld, then it is su�cient to have a primitive root of unity
(ωn = 1 and ωj 6= 1 for all j ∈ {1, . . . , n − 1}). Indeed, any primitive root of
unity in an integral ring is principal, and the characteristic cannot divide n (in
characteristic p, we have Xp − 1 = (X − 1)p so there is no primitive p-th root).

2.2.1 The Cooley-Tukey FFT

The Fast Fourier Transform (FFT) denotes an algorithm to compute DFTs e�-
ciently. It is based on the divide-and-conquer principle and the following formula:

P (ωu+n1v) =

n2−1∑
i=0

ωiu ·
(n1−1∑
j=0

Pi+n2j(ω
n2)ju

)
· (ωn1)iv (if n = n1n2) (2.3)

for all u < n1 and v < n2. This formula was already known to Gauss around 1805
[Gau66], and it was later rediscovered by Cooley and Tukey [CT65]. In formula (2.3),
notice that the inner sum corresponds to a DFT of size n1 and the outer sum to
a DFT of size n2. In other words, a DFT of size n = n1n2 can be decomposed into n2

DFTs of size n1 followed by n1 DFTs of size n2; an example is given in Figure 2.1
for n1 = 3 and n2 = 5. The reindexing around the inner DFT and the order of the
output are technical details; this is of practical interest in some implementations,
see for example [Bai89, FJ05, HHL16a], and it also simpli�es the design of variants
in Chapters 3 and 4. We will analyze this more precisely in the next subsections.

Moreover, the smaller DFTs can be decomposed recursively if n1 and/or n2 are
composite. Then, computing the DFT ultimately boils down to the computation
of many DFTs of much smaller order (n/p DFTs of order p for each prime factor p
of n). If n decomposes into many small prime factors, then this FFT algorithm is
very e�cient. Typically, when n is a power of 2, the FFT has O(n log n) complexity
by the classical analysis of divide-and-conquer algorithms. This is also visible when
representing on an arithmetic circuit (obtained by fully expanding the recursion)
as in Figure 2.2: each elementary DFT of size 2 is represented by a butter�y-like
graph (on), each row of butter�ies then takes O(n) operations and there are log n

rows. Notice that the butter�ies in the top rows are interlaced as a consequence of
the reindexing (as in Figure 2.1); also, notice again the permutation of the output
that will be made explicit in the next subsection. Clearly, the O(n log n) complexity
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Reindexing

Reindexing,
mult by ωiu

Outer DFT
(3× size 5)

Inner DFT
(5× size 3)

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P (1)

P (ω3)

P (ω6)

P (ω9)

P (ω12)
P (ω)

P (ω4)

P (ω7)

P (ω10)

P (ω13)

P (ω2)

P (ω5)

P (ω8)

P (ω11)

P (ω14)

Figure 2.1: Example of Fast Fourier Transform of size 15 = 3× 5.

is also valid when n is any prime power, or more generally if its prime factors
are bounded, although larger prime factors increase the big-Oh constant. For more
details on the complexity analysis, see for example [CT65] or [GG13, Theorem 8.15].

2.2.2 Generalized bitwise mirrors

When the size of the FFT is a power of 2, it is classical to order the output according
to bit-reversed indices, as in Figure 2.2. This de�nition can be generalized to any
composite size and this subsection makes it explicit because the FFT variants in
Chapters 3 and 4 rely on this ordering.

In this subsection and in the next, we identify the polynomial P ∈ K[X]<n with
its vector of coe�cients P ∈ Kn. Also, we denote by P̂ its DFT: P̂i := P (ωi). The
purpose of this subsection is to de�ne a permutation i → [i]v called the v-mirror,
that generalizes the bit-reversed indexation and such that FFT(P)i = P̂[i]v .

Let the vector v = (p0, . . . , pd−1) be a decomposition of n (i.e. n =
∏
j<d pj),

with non necessarily prime factors pj . Then, any index i < n can be uniquely
written in the form:

i = i0 · p1 · · · pd−1 + i1 · p2 · · · pd−1 + · · ·+ id−2 · pd−1 + id−1

with ij < pj for all j. With these notations, the v-mirror of i is de�ned as

[i]v = i0 + i1 · p0 + i2 · p0p1 + · · ·+ id−1 · p0 · · · pd−2 .

Notice that when all pj are 2, this de�nition coincides with the usual bitwise mirror
for the radix-2 FFT. For h 6 d, let v(L) = (p0, . . . , ph−1), v(R) = (ph, . . . , pd−1),
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P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P (1)

P (ω8)
P (ω4)

P (ω12)
P (ω2)

P (ω10)
P (ω6)

P (ω14)

P (ω)

P (ω9)
P (ω5)

P (ω13)
P (ω3)

P (ω11)
P (ω7)

P (ω15)

Figure 2.2: A Fast Fourier Transform of size 16 as an arithmetic circuit.

n(L) =
∏h−1
j=0 pj and n

(R) =
∏d−1
j=h pj (so that n = n(L)n(R)). It is easy to show the

following basic properties of the v-mirror:

[[i]v]v̄ = i with v̄ = (pd−1, . . . , p0), (2.4)

[i]v = i if d = 1 i.e. v = (n), (2.5)

[I + n(R) J ]v = [J ]v(L) + n(L) [I]v(R) for I < n(R), J < n(L). (2.6)

2.2.3 Further notations for the steps of the FFT

Now consider an execution of the FFT algorithm as in section 2.2.1. The recursive
calls of the algorithm de�ne a decomposition n = p0 · · · pd−1 of n, with

n1 = n(L) := p0 · · · ph−1 and n2 = n(R) := ph · · · pd−1.

As in the previous subsection, set

v := (p0, . . . , pd−1), v(L) := (p0, . . . , ph−1) and v(R) = (ph, . . . , pd−1).

Assume also that the output veri�es FFT(P )i = P̂[i]v (that is, the Discrete Fourier
Transform that is returned is reordered according to the v-mirror).

For clarity, we will introduce di�erent input and output vectors. These vectors
are actually just names to represent speci�c parts of the working vector at di�erent
steps of the algorithm, but no duplication of data should occur.

• Let Q (of size n) be the output vector of the algorithm:

Qi := FFT(P )i = P̂[i]v .

• For each i < n2, let α(i) and β(i) be the input and output vectors of the i-th
inner DFT (recursive call of the FFT algorithm, each vector has size n1).

• For each j < n1, let γ(j) and δ(j) be the input and output vectors of the j-th
outer DFT (each vector has size n2).
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P

α

β

γ

δ
Q

Figure 2.3: Notations for the steps of the FFT.

These notations are illustrated in Figure 2.3. By de�nition, we have the following
properties for all i, j:

α
(i)
j = Pi+n2j , (2.7)

β
(i)
j = FFT(α(i))j = (α̂(i))[j]

v(L)
, (2.8)

γ
(j)
i = ωi[j]v(L) × β

(i)
j , (2.9)

δ
(j)
i = FFT(γ(j))i = (γ̂(j))[i]

v(R)
, (2.10)

Qi+n2j = δ
(j)
i . (2.11)

To verify that Qi+n2j = P̂[i+n2j]v as expected, let us rewrite the above equations
so that the indices match section 2.2.1 and equation (2.3). Let U, u < n1 and
V, v < n2 such that U = [u]v(L) and V = [v]v(R) . Then, we have

α
(i)
j = Pi+n2j ,

β(i)
u = FFT(α(i))u = (α̂(i))U ,

γ
(u)
i = ωiU × β(i)

u ,

δ(u)
v = FFT(γ(u))v = (γ̂(u))V ,

This means Qv+n2u = P̂U+n1V by formula (2.3), and we conclude by rewriting (2.6)
as U + n1V = [v + n2u]v.

Remark 2.4. In practice, the inverse Fourier transform is computed by reverting
the FFT algorithm rather than using equation (2.2). More precisely, for a composite
n, the FFT steps are performed in reverse order (i.e. bottom-up in Figure 2.1
or 2.2), and each base case (prime size) is inverted with equation (2.2), or even by
direct computation. Notice that doing so tackles directly the issue of the mirrored
indexation.
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To design variants of the FFT in the next chapters, we assume that we have at
our disposal the algorithms for the plain FFT and its inverse:

Algorithm 2.1. Fast Fourier Transform

Prototype: FFT(v,P, ω)

Input: A vector v = (p0, . . . , pd−1), a vector P ∈ Kn, and a primitive n-th root of
unity ω (with n =

∏
i<d pi).

Output: The vector Q with Qi = P̂[i]v .

Algorithm 2.2. Inverse Fast Fourier Transform

Prototype: IFFT(v,Q, ω)

Input: A vector v = (p0, . . . , pd−1), a vector Q ∈ Kn, and a primitive n-th root of
unity ω (with n =

∏
i<d pi).

Output: The vector P such that Qi = P̂[i]v .

2.2.4 The case of �nite �elds

The �eld of complex numbers C contains suitable roots of unity for any order n
(exp(2iπ/n) ∈ C is a primitive n-th root). However, the situation is more compli-
cated for �nite �elds: they are �nite, so there can be only �nitely many n ∈ N such
that there is a primitive n-th root! Also, as we have already mentioned, there is
no primitive p-th root in characteristic p. Actually, the roots of unity present in
a given �nite �eld are easy to describe: Fq contains a primitive n-th root if and
only if n divides q − 1. Indeed, it is classical that the multiplicative group F×q is
cyclic of order q − 1.

Remark 2.5. Using the fact that F×q is cyclic, it is easy to compute primitive roots
for a given order. First, one precomputes g ∈ Fq that generates the group F×q . Then,
for any n that divides q− 1, the root ω := g(q−1)/n is a primitive n-th root of unity.

Since the order nmust divide q−1, some �nite �elds are more suitable than others
for the FFT, depending on whether q−1 is smooth (meaning it has many small prime
factors) or not. This brings another complication: the degree of the polynomials
to multiply is now bounded by the order of available roots. When the degrees
become too large, the solution proposed by Schönhage and Strassen [SS71] (valid
for any �eld K, then generalized to arbitrary rings by Cantor and Kaltofen [CK91])
is to add �virtual� roots of unity. They consider the ring K[ξ]/〈ξn + 1〉, so that
ω := ξ mod (ξn + 1) is a primitive 2n-th root of unity, with an adaptation if K has
characteristic 2 [Sch77].

Another solution is to embed Fq into a well-chosen extension Fqd as in [HHL17].
On the one hand, if d is smooth, then there is a root ω ∈ Fqd of smooth order
qd − 1. On the other hand, if d is small (say d = Θ(log n)), then the overhead of
computing in Fqd instead of Fq is not too large. By the combination of these two
ideas, we get a recursive algorithm where the size decreases exponentially with each
call; this leads to a complexity of the type O(n log nK log∗ n) operations in Fq. The
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main di�culty is to �nd a d that is both su�ciently small and such that qd − 1 is
su�ciently smooth. In fact, the constant K depends on how small d can be chosen
with the right properties, which gives di�erent bounds assuming di�erent number
theoretic conjectures [HHL17, HH19c]. Even more work is needed to achieve the
bound O(n log n) as in [HH19e].

In practice, the extension Fqd can be chosen and �xed once and for all as long as
it is large enough to cover any realistic input. For example, to multiply polynomials
in F2[X], the paper [HHL16a] suggests to work with the extension �eld F260 . This
�eld was chosen because

• an element �ts in 60 bits (that is almost a machine word),

• the polynomial µ := (X61−1)/(X−1) is irreducible over F2 of degree 60 (one
can represent F260 as F2[Z]/〈µ(Z)〉 and the special form of µ gives e�cient
modular arithmetic),

• the multiplicative order 260 − 1 is smooth:

260 − 1 = 32 · 52 · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321

(so that FFT in F260 is e�cient).

Notice that 260 ' 1018 is so large it allows for inputs of billions of gigabytes, which
is more than enough for any practical application.

Remark 2.6. It is also possible to use a redundant representation F2[Z]/〈Z61 − 1〉,
where α and α + µ(Z) represent the same element. This has the advantage that
arithmetic modulo Z61 − 1 is even more e�cient; in practice for sequences of ad-
ditions and multiplications in F260 , one will use the redundant representation for
the intermediate results and the non-ambiguous representation for the return value.
Notice that the representation modulo Z61 − 1 requires 61 bits, which also �ts in a
machine word.

For �nite �elds, there is a variant of the fast Fourier transform called the additive
FFT [GM10] that is also used in practice. Without giving much details (only the
Cooley-Tukey FFT from section 2.2.1 is used in the next chapters), let us brie�y
review how it works. Instead of evaluating at the set of roots of unity, the additive
FFT considers a Fp-vector-space V ⊂ Fq and evaluates the polynomial at each point
of V. If V has dimension d (hence pd elements), then the additive FFT with respect
to V decomposes in a divide-and-conquer fashion into p additive FFTs with respect
to some W of dimension d − 1. The complexity of the additive FFT is then again
O(n log n), with n = pd. Of course, it is still necessary to work in a �eld extension
(introducing an overhead) if the degrees of the polynomials get too large.

2.3 Some applications of fast multiplication

Multiplication is a fundamental operation that is often used as a basic building block
for more complex tasks. In fact, complexity bounds are generally given in terms of
the complexity of multiplication. This section gives a few classical examples.
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De�nition 2.1. A multiplication time for a ring A is a function MA : N → R
such that polynomials of degree less than n can be multiplied in at most MA(n)

operations in A.
Moreover, we make the classical assumption that MA is somewhere between

linear and quadratic; more precisely

MA(n)/n 6 MA(m)/m if n 6 m, MA(mn) 6 m2MA(n) (2.12)

which implies in particular MA(m+n) > MA(n)+MA(m), and MA(cn) = O(MA(n))

for any positive constant c.

Remark 2.7. To simplify notations, the subscript A will be dropped when A is
clear from the context, also Mq will be used as a shorthand for MFq . Recall that
for a su�ciently large C, one may take MA(n) = Cn2 by the naive algorithm, or
MA(n) = Cn log n log log n by [SS71, CK91], or MFq(n) = Cn log n for �nite �elds
by [HH19e]. Notice that all these functions verify the hypotheses (2.12).

2.3.1 Euclidean division

Let A,B ∈ K[X] of degrees n > m respectively. Let Ā, and B̄ be the polynomials
obtained by reversing the order of the coe�cients (Ā := XnA(1/X) and similarly
for B̄). By Newton's iteration

P (0) := 1/B̄0,

P (i+1) := (2P (i) − B̄(P (i))2) remX2i+1
,

we �nd a polynomial P# := P (dlog2(n−m)e) such that P#B̄ ≡ 1 mod Xn−m.
Then, Q̄ := ĀP# remXn−m is a degree n − m polynomial that veri�es the

relation Q̄B̄ ≡ Ā mod Xn−m. Reversing the order of coe�cients, we get that A
and QB (with Q := Xn−mQ̄(1/X)) have the same n −m leading terms. In other
words, A quoB = Q, and therefore A remB = A−BQ.

This algorithm is sometimes known as the Cook-Sieveking-Kung algorithm.
Cook [CA69] �rst described it for integers, followed by Sieveking [Sie72] and Kung
[Kun74] for the inversion of power series. Strassen [Str73, Lemma 3.5] then reduced
the Euclidean division of polynomials to the inversion of power series as before. We
can check that this algorithm has complexity O(M(n)). For a more precise descrip-
tion of the algorithm and a complete complexity analysis, see for example [GG13,
section 9.1].

Re�nements are also possible in the so-called FFT model : assuming FFT mul-
tiplication, if there is a common operand in several multiplication, then its Fourier
transform is computed only once. Using this principle in the above Newton iteration
leads to an improvement in the big-Oh constant [Hoe10, Har11].

2.3.2 Multi-point evaluation and interpolation

Consider a polynomial A ∈ K[X]<n and n points x0, . . . , xn−1. It is possible to
compute the evaluations (A(xi))i<n e�ciently with a divide-and-conquer algorithm.
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Indeed, let M (l) :=
∏
i<n/2(X − xi) and M (r) :=

∏
n/26i(X − xi); then A remM (l)

has the same values on x0, . . . , x(n+1) quo 2−1 and has half the degree (and similarly
for A remM (r)).

Conversely, given n (distinct) points x0, . . . , xn−1 and n values y0, . . . , yn−1, there
is a divide-and-conquer algorithm to �nd A ∈ K[X]<n such that A(xi) = yi for all i.
Indeed, if A(l), A(r) ∈ K[X]<n/2 are such that

A(l)(xi) = yi for i < n/2 and A(r)(xi) = yi for n/2 6 i,

then A := M (l)A(r) +M (r)A(l) is a solution to the problem.
Assuming the results are suitably reused, both the evaluation and interpolation

can be done using O(M(n) log n) operations. For more details, see for example
[GG13, Chapter 10].

A general algorithmic theorem known as the transposition principle [Bor57,
Fid72] states that given an algorithm to compute x 7→ Mx for a matrix M, one
may �nd an algorithm for the transposed map y 7→ M>y with essentially the
same complexity. Applied to the problem of multi-point evaluation and interpola-
tion, this result led to improvements in the complexity bound by a constant fac-
tor [BLS03, Ber04].

Alternatively, the FFT model is helpful if the set of evaluation points is �xed be-
forehand [Hoe16]: assuming precomputation of the Fourier transforms forM (l),M (r)

(and their recursive splitting, all of which only depend on the evaluation points), it
is possible to gain a factor log logn.

Special sets of points. The above method is valid for any set of points, but
there are more e�cient algorithms if the evaluation points have a special structure.
A typical example is the case of a geometric progression xi = αi for some α. In this
case, there are O(M(n)) complexity bounds, that is better by a logarithmic factor
than the general case.

If α is a primitive n-th root (that is, we need to compute a DFT), then Bluestein's
transform [Blu70] allows to perform the evaluation in M(n)+O(n) operations. Also,
the interpolation has the same complexity by formula (2.2). Notice that this is useful
if n is not smooth, otherwise the FFT algorithm is e�cient enough. When n is prime,
Rader's reduction [Rad68] is another way to compute DFTs with this complexity.

More generally for any geometric progression, evaluation and interpolation can
be done using O(M(n)) operations. Such algorithms are found in [RSR69, Blu70]
(evaluation) and [Mer74] (interpolation), and recalled in [BCG+17, section 5.4]. The
current best bounds are due to Bostan and Schost [BS05], who gave algorithms of
complexity M(n) +O(n) for the evaluation and 2M(n) +O(n) for the interpolation.

Comparison of evaluation and interpolation. It was shown that, over a �eld
of characteristic 0, evaluation and interpolation are essentially equivalent [BS04].
More precisely, let E(n) and I(n) denote the complexity of multipoint evaluation
and interpolation respectively (possibly assuming special sets of points). Then we
have E(n) 6 2I(n) +O(M(n)) and conversely I(n) 6 3E(n) +O(M(n)).
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2.3.3 Multiplication in several variables

Let A,B ∈ K[X1, . . . , Xr] be polynomials in r variables, with degree less than di in
each variable Xi. By the technique of Kronecker substitution [Kro82], it is possible
to compute the product AB as one product ÃB̃ in one variable Y and degrees less
than 2r−1d1 · · · dr. The product AB then requires M(2r−1d1 · · · dr) operations in K.
Notice that the polynomial ÃB̃ has degree less than 2rd1 · · · dr, which is essentially
the number of coe�cients of AB; therefore the factor 2r−1 should not be considered
as an overhead.

The technique consists in rewriting Xr as X
2dr−1

r−1 to eliminate the variable Xr,
and repeating until just one variable remains. In other words, one sets

Ã(Y ) := A(Y, Y 2d1 , Y 4d1d2 , . . . , Y 2r−1d1···dr−1),

of degree less than 2r−1d1 · · · dr, and similarly for B̃. Clearly, the multivariate
product AB veri�es

AB(Y, Y 2d1 , Y 4d1d2 , . . . , Y 2r−1d1···dr−1) = Ã(Y )B̃(Y ).

Since AB has degree less than 2di in each variable Xi, the result AB can be recon-
structed from the univariate product ÃB̃.

Remark 2.8. As an alternative, one could consider A = K[X1, . . . , Xr−1], use the
canonical isomorphism K[X1, . . . , Xr] ∼= A[Xr], and reduce recursively to perform
operations in A. However, most computer algebra systems feature highly-optimized
univariate polynomial multiplication for the basic rings (such as Z, Q, Fq, . . . ),
therefore Kronecker substitution is generally more e�cient in practice.

Let us mention that the evaluation-interpolation principle extends to the multi-
variate setting [Pan94, HS13]. Applying this method directly can also be useful in
some situations.
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The standard version of FFT-based multiplication algorithms uses transforms
whose size n is a power of two. This requirement causes the following drawback:
when a polynomial of degree less than d is considered (or when d evaluation points
are needed) with d slightly larger than 2k, one must perform a FFT of order 2k+1.
This causes a signi�cant overhead since up to twice as many values are computed
as what is actually needed.

This jump phenomenon can be mitigated by allowing a more precise choice of
n > d. For example, instead of requiring n = 2k, one can allow more general
products of small primes such as n = 2k3`5m. FFTs of such sizes reduce to DFTs
of sizes 2, 3 and 5, for which e�cient codelets are implemented e.g. in the FFTW3
library [FJ05]. Alternatively, optimized radix-2 methods may be preferred because of
their simplicity (fewer base cases to handle). For example, the FFT pruning [Mar71]
aims to reduce the overhead for a zero-padded sequence. Another example is Cran-
dall and Fagin's Discrete Weighted Transform [CF94], which reduces a problem of
size d < 2k to two problems of size 2` and 2m with d < 2` + 2m < 2k.
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Another elegant solution to this jump phenomenon is to use the Truncated
Fourier Transform [Hoe04]. The TFT behaves as a usual FFT of order 2k, but
it performs a multipoint evaluation with exactly the desired length, while avoiding
the computation of all intermediate values that are not needed for obtaining the
output. Moreover, the interpolation can be performed with the same complexity us-
ing the inverse TFT. Improvements to this algorithm were made to reduce memory
usage [HR10], and improve cache friendliness [Har09]. Mateer [Mat08, Chapter 6]
also proposed a di�erent formulation of the TFT inspired by Crandall and Fagin's
reduction. He mentions that this alternative formulation can be used with a few
adaptations when n = 3k, or another prime power; he also shows that the additive
FFT (as in [GM10]) admits a truncated variant as well.

The methods discussed above rely on a choice of n with a very speci�c form. This
requires the base �eld K to contain primitive n-th roots of unity for all such n. This
is true for K = C, but in general, the choice of roots of unity is restricted. It is always
possible to add virtual roots of unity (with certain restrictions on their order if the
�eld has non-zero characteristic) as in the Schönhage-Strassen algorithm [SS71], but
this extension causes computational overhead.

Assume that the choice of roots of unity is restricted by both our base �eld K
and practical considerations. Let S ⊂ N denote the set of orders n for the roots of
unity that can be used in FFTs. For example, the use cases mentioned above assume
K = C, and the only criterion is n having small prime factors. This leads to sets of
the form S = {2k|k ∈ N}, or S = {2k3`5m|k, `,m ∈ N}. In a �nite �eld Fq, there are
roots of unity only for speci�c orders, so one would have S = {n|n divides q − 1}.
As discussed previously, there is a jump phenomenon at elements of S; the present
chapter aims to mitigate this drawback.

Overview of the results: This chapter presents a generalization of van der Ho-
even's algorithm [Hoe04] for any FFT size n. Recall that [Hoe04] requires n = 2k,
and Mateer [Mat08, Chapter 6] extended it to n = pk for all primes p, but the case
of mixed radices remained open.

Here we focus on the usual Cooley-Tukey FFT as in section 2.2; we do not
consider the case of additive FFTs. Notice that this is not an issue since the size
of an additive FFT is by de�nition a power of the characteristic, so that Mateer's
work [Mat08, Chapter 6] is already complete in this case.

3.1 The Truncated Fourier Transform for mixed radices

This section generalizes the Truncated Fourier Transform (TFT) [Hoe04] for an ar-
bitrary order n = p0p1 · · · pd−1. Given a vector P of length n, the TFT computes
` 6 n well chosen values of the Discrete Fourier Transform of P. Note that these
are not necessarily the �rst ` values of P̂: actually, we consider the mirrored index-
ation (section 2.2.2) with respect to v = (p0, p1, . . . , pd−1). The Truncated Fourier
Transform of P with size n and length ` is the vector

T = (Ti)i<` = (P̂[0]v , . . . , P̂[`−1]v) .
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The algorithm presented in this section aims to perform less computation than by
simply computing the DFT of P and discarding the unused values.

3.1.1 Atomic transforms

At �rst we consider the following base case: given P := (P0, . . . , Pp−1) for p prime
or reasonably small, we want to compute directly the TFT (P̂0, . . . , P̂`−1). To do
so, one can naively apply Horner's rule for each value as in formula (2.1), which
is especially e�cient for small p (principle of a specialized codelet). For larger p,
it becomes more interesting to compute the full DFT, then discard unused values.
A full DFT of a such size can be computed using e�cient transformations such as
Rader's algorithm [Rad68] and Bluestein's transform [Blu70].

Remark 3.1. We do not use a mirrored indexation in the base case because of
property (2.5), which states that the mirror operation with respect to a vector of
length 1 is the identity.

We assume that these considerations translate into the following algorithm:

Algorithm 3.1. Truncated Fourier Transform (base case)

Prototype: atomicTFT(n, `,P, ω)

Input: Integers n ∈ N and ` < n, a vector P ∈ Kn, and a primitive n-th root of
unity ω.

Output: The vector T = (P̂i)i<`.

3.1.2 General idea

Consider the Cooley-Tukey FFT and its recursive formulation as in sction 2.2.1 for
a composite n = n1n2. Assume that only ` 6 n values of the output are actually
needed. Then the plain FFT algorithm can be modi�ed to avoid computation of
irrelevant intermediate values.

size n

length `

α

β

γ

δ

Values marked by a white dot are not needed in the case of a TFT.

Figure 3.1: Overview of the Truncated Fourier Transform (TFT)
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Recall the notations from section 2.2.3: α(i) and β(i) are the input/output of
the i-th inner FFT; similarly γ(j) and δ(j) are the input/output of the j-th outer
FFT. If we want to return the vector (P̂[i]v)06i<`, then according to relation (2.11),

the vectors δ(j) need to be computed only for j < m := d`/n2e. This means by
de�nition (2.10) that only the γ(j) with j < m are needed. From formula (2.9), we
conclude that for every i < n2, only the �rst m values of β(i) need to be computed.
Moreover, if q := (` quon2) < m, only the r = (` remn2) �rst values of δ(q) are
needed. Figure 3.1 gives a visual representation of which values are actually needed.

3.1.3 Presentation of the algorithm

The previous discussion suggests that a TFT of order n = n1n2 can be decomposed
into n2 TFTs of order n1 followed by m TFTs of order n2 (as for the usual FFT).
If the top-level TFT has length `, then the inner TFTs have length m = d`/n2e.
Most of the outer TFTs are actually usual FFTs; only the last one may be a TFT of
length r = (` remn2) (unless r = 0). This leads to the following recursive algorithm:

Algorithm 3.2. Truncated Fourier Transform

Prototype: TFT(v, `,P, ω)

Input: a vector v = (p0, . . . , pd−1), an integer ` 6 n, a vector P = (Pi)i<n, and a
primitive n-th root of unity ω (with n :=

∏
i<d pi).

Output: the vector T = (P̂[i]v)i<`.

1: if d = 1 then return atomicTFT(p0, `,P, ω). . Algorithm 3.1
2: else if ` = n then return FFT(v,P, ω). . Algorithm 2.1
3: else

4: Choose h ∈ {1, . . . , d− 1}.
5: Set n1 := n(L) =

∏
i<h pi and v(L) := (pi)i<h.

6: Set n2 := n(R) =
∏
h6i pi and v(R) := (pi)h6i.

7: Set m := d`/n2e, q := ` quon2 and r := ` remn2.
8: for 0 6 i < n2 do . n2 TFTs of size n1

9: Set α(i)
j := Pi+n2j for all j < n1.

10: Compute β(i) := TFT(v(L),m,α(i), ωn2).
11: Set (γ(j))i := ωi[j]v(L) × (β(i))j for all j < m.
12: end for

13: for 0 6 j < m do . m TFTs of size n2

14: if j < q then

15: Set δ(j) := FFT(v(R),γ(j), ωn1). . Algorithm 2.1
16: else

17: Compute δ(j) := TFT(v(R), r,γ(j), ωn1).
18: end if

19: end for

20: return T := (δ(0), . . . , δ(m−1)).
21: end if
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Theorem 3.1. Assuming the correctness of Algorithms 2.1 and 3.1, Algorithm 3.2
is correct.

Proof. Case ` = n corresponds to a full FFT, then Algorithm 2.1 returns the ex-
pected result. If d = 1 (typically when n is prime), the Discrete Fourier Transform
is computed directly and unnecessary outputs are discarded. The results are or-
dered as expected because of property (2.5), as in Remark 3.1. In the other cases,
the algorithm is called recursively, and its correctness results by induction from the
discussion in the previous subsection (section 3.1.2).

Remark 3.2. As for the in-place Cooley-Tukey FFT presented in [HHL16a], the
result depends on the vector v, but not on the choice of h. For this reason, h can
be chosen to optimize cache access (typically h ∼ d/2), as it was done in [Har09]
for the radix-2 TFT. This strategy may lead to better performance since it spares
frequent data exchanges with the RAM.

3.2 The inverse TFT for mixed radices

The formula (2.2) to invert the usual FFT cannot be used in the case of the TFT
because not all values of the transform are known. As for the standard radix-2
TFT [Hoe04], we revert the algorithm computing the TFT instead.

The inversion of a TFT is to be understood as follows: assume that the values
(Ti)06i<` of the output, and (Pi)`6i<n of the input are known. Then, the goal is
to retrieve the missing values (Pi)06i<` of the input. Typically, the values Pi (for
i > `) are known to be 0 because of a simple analysis regarding the degree, but
the coe�cients of highest degree of a polynomial can also be deduced from a limit
analysis.

At �rst, we provide a method to solve the base case of size p by direct com-
putation (here p is not necessarily prime, but it should be reasonably small, so the
problem can be solved without further decomposition). Then, we present a recursive
algorithm that reduces the TFT inversion to such a base case.

3.2.1 Atomic inverse transforms

In this section, we consider the following skew butter�y problem: given the ` �rst
values of the transform T, and the p−` last coe�cients of the vector P (representing
a polynomial P ), how can we compute the missing values ? More precisely, given

T(1) := (P̂0, . . . , P̂`−1) and P(2) := (P`, . . . ,Pp−1) ,

we wish to compute

T(2) := (P̂`, . . . , P̂p−1) and P(1) := (P0, . . . ,P`−1) .
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Recall that the Discrete Fourier Transform is given by the following matrix-
vector product:

P̂0

P̂1
...

P̂p−1

 =


1 1 · · · 1

1 ω · · · ωp−1

...
...

. . .
...

1 ωp−1 · · · ω(p−1)(p−1)




P0

P1
...

Pp−1

 ,

or, in a more compact form,

P̂ = F(ω) ·P .

For any m 6 p, we de�ne the submatrices

V(ω,m) := (ωij)06i,j<m ,

Ṽ(ω,m) := (ω(i+m)(j+m))06i,j<p−m ,

W(ω,m) := (ωi(j+m))i<m ; j<p−m .

Notice that V(ω,m) has size m × m, also Ṽ(ω,m) has size (p − m) × (p − m) and
W(ω,m) has size m× (p−m). Then by de�nition, we have

F(ω) =

(
V(ω,m) W(ω,m)

(W(ω,m))> Ṽ(ω,m)

)
. (3.1)

The considered skew butter�y problem is equivalent to the resolution of the following
matrix equation with parameters P(2),T(1) and unknowns P(1),T(2):(

T(1)

T(2)

)
=

(
V(ω,`) W(ω,`)

(W(ω,`))> Ṽ(ω,`)

)
·
(

P(1)

P(2)

)
(3.2)

The matrix V(ω,`) has determinant
∏

06i<j<`(ω
i − ωj) 6= 0 (Vandermonde ma-

trix), hence it is invertible. Therefore,

P(1) = (V(ω,`))−1(T(1) −W(ω,`) ·P(2)) . (3.3)

Once P(1) is known, it is easy to compute T(2) as

T(2) = (W(ω,`))> ·P(1) + Ṽ(ω,`) ·P(2) . (3.4)

Often, it is not necessary to compute T(2) entirely, but only speci�c values. In
this case, equation (3.4) reduces to a much smaller computation. For the inverse
TFT, we are interested only in the computation of P(1). The computation of T(2)

is only needed to propagate information about P(2) for the recursive calls. It turns
out that returning the �rst value of T(2) is actually su�cient for this purpose. For
our usage, we assume that the results from this section translate into the following
algorithm:
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Algorithm 3.3. Inverse Truncated Fourier Transform (base case)

Prototype: atomicITFT(n, `,P(2),T(1), ω)

Input: Integers n ∈ N and ` < n, vectors P(2) ∈ Kn−` and T(1) ∈ K`, and a
primitive n-th root of unity ω.

Output: The vector P(1) and the value t` = T
(2)
0 , where P(1),T(2) are the solutions

of equation (3.2)

3.2.2 Recursive algorithm

In a similar way as in the case n = 2k [Hoe04], intermediate results are not always
computed in an order corresponding to the recursion depth. In a usual FFT, all
outer FFTs are inverted, then the inner FFTs are inverted. On the contrary for the
TFT, some of the inner TFTs must be inverted �rst, and these inversions provide
additional values that allow the outer TFT to be inverted. Therefore, the algorithm
will return some of the missing output values (Ti)`6i<n in addition to the desired
input values (Pi)06i<`. It turns out that the outer TFT needs only one value from
each inner TFT before it can be inverted, so returning T` is actually su�cient for
the functioning of the recursive algorithm. Algorithm 3.4 describes more precisely
this behavior, and the overall idea is illustrated in Figure 3.2.

IFFT

ITFT ITFT

ITFT

ITFT* ITFT* ITFT*

1 2
3 4

Black (resp. white) dots represent known (resp. unknown) values at each step;
cyan dots represent the output of the algorithm. ITFT* does not return additional
output values and may be a usual IFFT.

Figure 3.2: The four steps of the inverse TFT.
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Algorithm 3.4. Inverse Truncated Fourier Transform

Prototype: ITFT(v, `,P(2),T, ω)

Input: A vector v = (p0, . . . , pd−1), an integer ` < n, vectors P(2) = (Pi)`6i<n and
T = (ti)i<`, and a primitive n-th root of unity ω (with n :=

∏
i<d pi).

Output: The vector P(1) = (Pi)i<` and the value t` such that

• T = TFT(v, `,P, ω), with P := (Pi)i<n and TFT as in Algorithm 3.2,

• t` = P̂[`]v , again with P := (Pi)i<n.

1: if ` = 0 then return ∅,
∑n−1

i=0 Pi.
2: else if d = 1 then return atomicITFT(p0, `,P

(2),T, ω). . Algorithm 3.3
3: else

4: Choose h ∈ {1, . . . , d− 1}.
5: Set n1 := n(L) =

∏
i<h pi and v(L) := (pi)i<h.

6: Set n2 := n(R) =
∏
h6i pi and v(R) := (pi)h6i.

7: Set m := d`/n2e, q := ` quon2 and r := ` remn2.
8: for j < q do . "Step 1"

9: Set δ(j)
i := Ti+n2j for all i < n1.

10: Compute γ(j) := IFFT(v(R), δ(j), ωn1). . Algorithm 2.2

11: Set β(i,1)
j := ω−i[j]

(L)
v × γ

(j)
i for all i < n1.

12: end for

13: for r 6 i < n2 do . "Step 2"

14: Set α(i,2)
j := Pi+n2j for all j > q. . i+ n2j > `

15: Compute (α(i,1), βi,q) := ITFT(v(L), q,α(i,2),β(i,1), ωn2). . q < n1

16: Set γ(q)
i := ωi[q]v(R) × βi,q.

17: Set P
(1)
i+n2j

:= α
(i,1)
j for all j < q.

18: end for

19: Set δ(q,1) := (Ti+n2q)i<r. . "Step 3"

20: Set γ(q,2) := (γ
(q)
i )r6i<n2 .

21: Compute (γ(q,1), δq,r) := ITFT(v(R), r,γ(q,2), δ(q,1), ωn1).

22: for i < r do . "Step 4"

23: Set β(i,1)
q := ω−i[q]w1 × γ

(q,1)
i .

24: if q + 1 < n1 then

25: Set α(i,2)
j := Pi+n2j for all j > q. . i+ n2j > `

26: Compute (α(i,1), dummy) := ITFT(v(L), q + 1,α(i,2),β(i,1), ωn2).
27: else

28: Compute α(i,1) := IFFT(v(L),β(i,1), ωn2). . Algorithm 2.2
29: end if

30: Set P
(1)
i+n2j

:= α
(i,1)
j for all j 6 q.

31: end for

32: return (P(1), δq,r).
33: end if
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Theorem 3.2. Assuming the correctness of Algorithms 2.2 and 3.3, Algorithm 3.4
is correct.

Proof. We show that equations (2.7-2.11) are satis�ed, by induction over d. The
case ` = 0 is clearly correct. For d = 1, the result is computed directly using
Algorithm 3.3, which is supposed to be correct. As for Algorithm 3.2, the result is
ordered as expected (Remark 3.1).

In Step 1, the γ(j) are computed for all j < q using a full reverse FFT. This
means γ(j) and δ(j) verify equation (2.10) for j < q. Then, the �rst part of every
vector β(i) is computed according to equation (2.9).

At this point, the vectors α(i) and β(i) are partially known. More precisely, we
know the values α(i)

j with j > q, and the values β(i)
j with j < q. Moreover, α(i)

q is
known for i > r (by de�nition, ` = n2 q + r). In Step 2, a recursive call computes

the missing part of α(i) for these i, as well as the value βi,q = β
(i)
q . This means α(i)

and (β
(i)
j )j6q verify equation (2.8) for all i > r (the recursive call is correct by the

induction hypothesis).

At the end of Step 2, the second part of γ(q,2) := (γ
(q)
i )i>r is computed according

to equation (2.9). The �rst part δ(q,1) := (δ
(q)
i )i<r is also known from the input (T).

In Step 3, the missing part γ(q,1) := (γ
(q)
i )i<r of γ(q) is computed, as well as δ

(q)
r ,

through a recursive call. Then, γ(q) and (δ
(q)
i )i6r verify equation (2.10).

Finally in Step 4, the values β(i)
q are computed for i < r. The values (α

(i)
j )j>q be-

ing given on input, and the (β
(i)
j )j<q being known from Step 1, the missing (α

(i)
j )j6q)

can be computed using a recursive call. Since this call is correct by the induction
hypothesis, α(i) and (β

(i)
j )j6q verify equation (2.8) for i < r (hence for all i because

of Step 2.
All in all, the vectors (some truncated) α(i), (β

(i)
j )j6q, γ(j) (for j 6 q), δ(j) (for

j < q) and (δ
(q)
i )i6r verify equations (2.7-2.11). This is su�cient to prove correctness

as seen in section 3.1 (where ` is replaced by `′ = `+ 1)

3.2.3 Practical remarks

Remark 3.3. Algorithm 3.4 can be used to compute the unique polynomial P of
degree less than n such that ` evaluation points are given by the vector T and the
coe�cients of degree at least ` are given by P(2):

∀i < `, P (ω[i]v) = Ti and P(2) = (Pi)`6i<n .

In particular, it can be used to interpolate a polynomial of degree less than ` by
setting P(2) = (0, . . . , 0).

Remark 3.4. In section 3.2.1, the order p may be composite (which can happen
if an element of the vector v from Algorithm 3.4 is composite), but the resolution
of equation (3.3) is not e�cient if p is large. Algorithm 3.4 shows that the problem
can be reduced to smaller sizes as long as its order is composite. However, it seems
di�cult to solve a skew butter�y problem if its size is a large prime.
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For example, in F260 , we have primitive roots of unity of order

260 − 1 = 32 · 52 · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321 .

It is feasible to perform the inversion using linear algebra for size up to 13 e�ciently,
but direct computation may become too costly for p = 331 or 1321 for example.

Remark 3.5. An inverse TFT of length 0 is actually very simple: it reduces to
the computation of t0. For this reason, if (` remn2) = 0, then the recursive call in
Algorithm 3.4 at Step 3 becomes trivial. This partially solves the problem mentioned
in the previous remark: assume the prime factors of n are sorted in the vector v

(in increasing order). If for example an inversion by direct computation is possible
for p0, . . . , pk−1 but not for pk, . . . , pd−1 (because these primes are too large), then
a TFT of length ` can still be reverted if ñ = pk × · · · × pd−1 divides `.

Remark 3.6. It is important that the recursive calls in Step 2 return the additional
output value βi,q = β

(i)
q . However, it is not necessary that Algorithm 3.4 always

returns the additional output value t`. For example, this value is simply discarded in
the recursive calls from Step 4. Another typical case where this value is not needed
is for the interpolation a polynomial of degree less than ` from the ` values (P̂[i]v)i<`.
It is possible to adapt Algorithm 3.4 to avoid this unnecessary computation when
the value t` is not needed.

3.2.4 A remarkable duality for atomic inverse transforms

Direct resolution of the skew butter�y problem from section 3.2.1 requires the in-
version of the matrix V(ω,`) of size ` × `, which becomes expensive if ` is large. In
this section, we present a dual problem that can be solved through the inversion of
matrix V(ω−1,p−`), that has size (p− `)× (p− `). This duality ensures that the skew
butter�y problem can always be solved through the inversion of a matrix V(φ,m)

(and a few matrix-vector products), where m 6 p/2 and φ is either ω or ω−1. In
the upcoming complexity analysis, we will then be able to assume that ` 6 p/2.

Property (2.2) gives the inverse matrix (F(ω))−1 = (1/p) · F(ω−1). Then, with
a decomposition of (F(ω))−1 as in formula (3.1), equation (3.2) can be rewritten as
follows: (

P(1)

P(2)

)
=

1

p
·
(

V(ω−1,`) W(ω−1,`)

(W(ω−1,`))> Ṽ(ω−1,`)

)(
T(1)

T(2)

)
.

We want to solve the equation above with parameters P(2),T(1) and unknowns
P(1),T(2). We have

T(2) = (Ṽ(ω−1,`))−1 · (pP(2) − (W(ω−1,`))>T(1)) . (3.5)

Once T(2) is known, it is easy to compute P(1) since

P(1) =
1

p
(V(ω−1,`)T(1) + W(ω−1,`)T(2)) . (3.6)

Except for the factor 1/p, these formulas are symmetric to the formulas (3.3)
and (3.4). This shows the duality between these two problems.
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Proposition 3.3. The dual problem with parameter ` is equivalent to the direct
problem from section 3.1.1 with parameter p− `, up to O(p) additional �eld opera-
tions.

Proof. The matrix V(ω−1) is obtained from V(ω) by a simple row (or column) per-
mutation, so no �eld operation is needed to compute the di�erent sub-matrices. To
reduce notations, let φ = ω−1.

The main di�erence between the two problems is therefore that the dual prob-
lem involves the inversion of Ṽ(φ,`) in equation (3.5), instead of V(ω,`) as in equa-
tion (3.3). Here Ṽ(φ,`) has size (p− `)× (p− `) and V(ω,`) has size `× `. It appears
however that the inversion of Ṽ(φ,`) is not harder than the inversion of V(φ,p−`).
Indeed, we have the following property:

(Ṽ(φ,`))i,j = φ(`+i)(`+j) = φ`(`+j) · φij · φ`i for all i, j ,

hence,

Ṽ(φ,`) = D(φ,`) ·V(φ,p−`) · D̃(φ,`) , (3.7)

where D(φ,`) and D̃(φ,`) are diagonal matrices of size (p− `)× (p− `).

3.3 Complexity analysis

This section aims to evaluate the �eld operation count for a TFT of size n and length
` 6 n, and to compare it with the cost for a full FFT of size n. In the following, we
note these costs T(`, n) and F(n) respectively. Asymptotic bounds involve the �eld
operation count for common arithmetic operations on polynomials of degree n: M(n)

for the multiplication and C(n) for the cyclic convolution (multiplication modulo
Xn − 1).

Let n = p0 · · · pd−1 be the size of the Discrete Fourier Transform (FFT or TFT)
that is considered. If we develop completely the recursive calls of the FFT algorithm
as in section 2.2, the execution decomposes into d successive transformations of a
vector of length n (see Figure 3.3). At each row, the working vector is transformed
using n/pi independent DFTs of size pi, which are computed directly.

3.3.1 Complexity of a full FFT

In a full FFT, all n/pi atomic DFTs are computed at each row. If we note
f(p) := F(p)/p the normalized operation count (per intermediate value), then each
of the atomic DFTs has an operation count of pif(pi). Summing for all i, we get the
following result:

Theorem 3.4 (Complexity of the usual Cooley-Tukey FFT). We have

F(n) = n · (f(p0) + f(p1) + · · ·+ f(pd−1)) +O(nd) . (3.8)
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size n = p0p1 · · · pd−1

length `
d

d− 1

2

1

0

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

pd−1

p1

p0

Figure 3.3: The TFT algorithm with unfolded recursive calls

Remark 3.7. The term O(nd) is the cost for the operations between rows of atomic
DFTs, that is the multiplications by twiddle factors. The multiplicative constant is
actually small; in fact, with a precomputed table of twiddle factors, this represents
n(d − 1) multiplications, and even less if we take into account that some of the
twiddle factors are equal to 1.

Remark 3.8. For small p, it is most e�cient to compute the atomic DFTs using spe-
cialized codelets that perform naive matrix-vector products. This yields F(p) ∼ p2,
or f(p) ∼ p. For larger p, methods like Rader's or Bluestein's algorithms are more
e�cient. In this case, F(p) ∼ p log p, or f(p) ∼ log p (with a larger constant factor
than for the naive method).

3.3.2 Complexity of atomic TFTs

Recall the notations F and T for the costs of the FFT and TFT respectively (while
f and t represent the corresponding normalized costs). As discussed in section 3.1.1,
there are two simple methods to compute an atomic TFT:

• for very small `, one can naively compute the ` �rst values of the Fourier trans-
form using Horner's rule (p additions and p multiplications for each evaluation
point). This method has a cost of T(`, p) = 2`p.

• for ` near p, it is interesting to compute the full atomic DFT and discard the
last p− ` values, at a cost of T(`, p) = F(p).

For intermediate values of `, notice that the TFT points form a geometric pro-
gression. Then, a polynomial of degree less than p can be evaluated on these ` points
using p/`M(`)+O(p) �eld operations. This is a consequence of the following result,
already mentioned in Section 2.3.2:
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Lemma 3.5 (Bostan, Schost [BS05, Section 5]). Let (1, ω, . . . , ω`−1) be a geometric
progression such that the points ωi are pairwise distinct. Then, a polynomial of
degree less than ` can be evaluated on these points in M(`) +O(`) �eld operations.

As in the previous subsection, we normalize the operation count per intermedi-
ate value: t(`, p) = T(`, p)/`. We introduce the overhead for the atomic TFT as
k(`, p) := t(`, p)/f(p). Since k(`, p) decreases with `, it is meaningful to also intro-
duce

K(p) := sup
`6p

` · k(`, p) .

By de�nition, we have:

t(`, p) = k(`, p)f(p) ,

T(`, p) = ` · t(`, p) 6 K(p)f(p) .
(3.9)

Remark 3.9. Consider to simplify that all evaluations are equally hard (though
evaluation at 1 is slightly easier). We get F(p) 6 p/`T(`, p), so that k(`, p) > 1.
On the other hand, a TFT is immediately obtained from a full FFT, which gives
T(`, p) 6 F(p) hence K(p) 6 p. The extreme case ` = p gives actually K(p) = p.
However, we keep the notation K(p) to respect the symmetry with the inverse TFT.

3.3.3 Complexity of atomic inverse TFTs

Similarly, we introduce the corresponding costs for the inverse TFT: let T∗(`, p) be
the cost for the inverse TFT, and t∗(`, p) := T∗(`, p)/` the normalized cost. The
corresponding overhead is k∗(`, p) := t∗(`, p)/f(p) and K∗(p) := sup`6p ` · k∗(`, p).

Without loss of generality, we consider only the direct resolution from sec-
tion 3.2.1 and we assume ` 6 p/2. Indeed, if ` > p/2, then we can reduce to the dual
problem, which causes only O(p) additional operations because of Proposition 3.3.

We �rst need to evaluate the cost of the matrix-vector products:

Lemma 3.6. The products W(ω,`) ·P(2) and (W(ω,`))> ·P(1) +Ṽ(ω,`) ·P(1) can each
be done in F(p) �eld operations.

Proof. Computing the function X 7→ F(ω) ·X correspond to a FFT of size p, which
needs by de�nition F(p) �eld operations. Notice that the desired products are re-
spectively the upper and lower parts of

F(ω) ·
(

0

P(2)

)
and F(ω) ·

(
P(1)

P(2)

)
.

Let us now examine the cost of the inversion of the matrix V(ω,`). Actually,
it is not necessary to compute (V(ω,`))−1; it is su�cient to compute the function
Y 7→ (V(ω,`))−1Y, which is a polynomial interpolation on the points 1, ω, . . . , ω`−1.
Recall the following upper bound mentioned in section 2.3.2:
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Lemma 3.7 (Bostan, Schost [BS05, Section 5]). Let (1, ω, . . . , ω`−1) be a geometric
progression such that the points ωi are pairwise distinct. Then, the interpolation of
a polynomial of degree less than ` on these points can be performed in 2M(`) +O(`)

operations.

We are now able to bound the cost of an atomic inverse TFT:

Proposition 3.8. We have T∗(`, p) 6 4F(p) +O(p) for large p. Hence,

K∗(p) 6 4p(1 + o(1)) .

Proof. At �rst, we compute Y := T(1) −W(ω,`)P(2), which costs F (p) + O(p) by
Lemma 3.6.

Then, the computation of P(1) = (V(ω,`))−1Y can be done using 2M(`) + O(`)

base �eld operations by Lemma 3.7. This is not more than 2F(p) +O(p) for large p.
Indeed, since ` 6 p/2, a multiplication of size ` can be seen as a cyclic convolution
of size p, that is M(`) 6 C(p). Moreover, Bluestein's transform [Blu70] is an e�cient
method to compute the DFT for a large p, which gives F(p) = C(p) + O(p) and in
particular C(p) 6 F(p) asymptotically.

Finally, T(2) = (W(ω,`))> ·P(1)+Ṽ(ω,`) ·P(2) can be computed in F(p) operations
because of Lemma 3.6.

3.3.4 Complexity of the TFT and its inverse

When computing row i + 1 from row i in the TFT, some of the atomic DFTs are
not performed, most of the remaining are full DFTs and only a few are TFTs. More
precisely, we can isolate the i → i + 1 transform as follows: split the TFT as in
section 3.1.2, �rst at h = i + 1 (n1 = p0 · · · pi), then each of the n2 inner TFTs is
split at h′ = i (n′1 = p0 · · · pi−1). This shows that the i → i + 1 transform consists
in πib`′/pic atomic (full) DFTs and πi atomic TFTs, where πi = pi+1 · · · pd−1(= n2)

and `′ = d`/πie. The atomic TFTs have length ri = (`′ rem pi).
As a consequence, the complexity of the complete TFT is given by

T(`, n) =
d−1∑
i=0

(
πi

⌊d`/πie
pi

⌋
pif(pi) + πirit(ri, pi) +O(πid`/πie)

)
,

where f and t represent the corresponding normalized costs of the TFT and FFT as
before. Recall also the notations k(r, p) := t(t, p)/f(p) and K(p) := sup rk(r, p) for
the overhead of an atomic TFT. Since b`′/picpi + ri = `′ (Euclidean division), the
above formula rewrites as

T(`, n) 6
d−1∑
i=0

(
πi

⌈
`

πi

⌉
f(pi) +O(πid`/πie)

)

+
d−1∑
i=0

πiri(k(ri, pi)− 1)f(pi) .
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We have d`/πie 6 (`/πi) + 1. Moreover, the term O(πid`/πie) = O(`) + O(πi)

corresponds to the multiplication by twiddle factors at each step, as in Theorem 3.4.
We then have the (otherwise abusive) simpli�cation

d−1∑
i=0

(
` f(pi) +O(`)

)
=
`

n
F(n) .

This yields

T(`, n) 6
`

n
F(n) +

d−1∑
i=0

(πif(pi) +O(πi)) +

d−1∑
i=0

πiri(k(ri, pi)− 1)f(pi) .

By de�nition, we have rik(ri, pi) 6 K(pi), and it is clear that K(pi) > k(1, pi) > 1.
Then, handling the cases ri = 0 and 1 6 ri 6 pi − 1 separately shows easily that
ri(k(ri, pi)− 1) + 1 6 K(pi). Finally, using equation (3.8), we get the bound:

Theorem 3.9 (Complexity of the TFT). The Truncated Fourier Transform can be
performed using

T(`, n) 6
`

n
F(n) +

d−1∑
i=0

(pi+1 · · · pd−1)
(

K(pi)f(pi) +O(1)
)

(3.10)

�eld operations.

For the inverse TFT, all atomic inverse TFTs (at a given row of atomic trans-
form) do not necessarily have the same length. However the above reasoning still
applies, and we get a similar bound (though with a larger overhead K∗(p) > K(p)

than for the direct transform):

Theorem 3.10 (Complexity of the Inverse TFT). The Inverse Truncated Fourier
Transform can be performed using

T∗(`, n) 6
`

n
F(n) +

d−1∑
i=0

(pi+1 · · · pd−1)
(

K∗(pi)f(pi) +O(1)
)

(3.11)

�eld operations.

Remark 3.10. The bound (3.10) can be rewritten as

T(`, n) 6
`

n
F(n) + n ·

(
d−1∑
i=0

K(pi)f(pi)

p0 · · · pi

)
+O(n) .

Since K(p)f(p) increases with p, this shows that it is best to sort the prime factors
of n in increasing order (p0 6 p1 6 · · · 6 pd−1) to minimize the overhead. Moreover,
assuming n is highly composite, p0 · · · pi grows much faster than K(pi)f(pi), so that
the predominant term in the linear factor is K(p0)f(p0)/p0. In the simple case where
all pi are equal, the bound can be simpli�ed as

T(`, n) 6
`

n
F(n) +

nK(p)f(p)

p− 1
+O(n) .
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Implementation issues

The original algorithm [Hoe04] for the radix-2 TFT is well understood and actually
implemented in practice. For example, software like FLINT [Har10],Mathemagix

[HLM+02] andNTL [Sho01] use the truncated Fourier transform in their polynomial
arithmetic over Z and Fp (p > 2), achieving a noticeable gain with respect to plain
FFT-multiplication. However, it seems unlikely to observe a similar improvement
in the general case with mixed-radix TFT.

Indeed, the complex structure of atomic transforms would often lead to low-level
code that is less e�cient than the highly optimized codelets used in plain FFT. This
is particularly true for the skew butter�y problem of section 3.2.1, that involves
nontrivial linear algebra. Additionally, we remark that the complexity analysis in
sections 3.3.2-3.3.3 relies on arti�cial reductions to other arithmetic problems, which
is another illustration of the di�culty of these low-level tasks. For this reason, there
was little interest in trying to implement a generic version of the algorithm from the
present chapter: it would certainly not be competitive with traditional fast Fourier
transform.

Nevertheless, it is possible that a partial implementation with a speci�c appli-
cation in mind could lead to practical improvements in certain situations. It was
initially planned to implement the TFT in F260 (motivated by the paper [HHL16a]),
to get a smoother behavior for the multiplication in F2[X]. This idea was abandoned
because the Frobenius FFT presented in the next chapter was more promising.
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Consider a FFT-based multiplication algorithm over a �nite �eld. If the �eld is
small but the polynomials have large degree, then there are simply not enough points
to use the evaluation-interpolation strategy. As mentioned earlier, one solution is to
embed the base �eld into a suitable extension; however computations in the larger
�eld are more expensive. The goal of this chapter is to show that this induced
overhead can be compensated using the symmetries provided by the Frobenius map.

To help with the intuition, let us start by an analogy with the complex numbers.
Let n = 2` and let ω = exp(2iπ/n) be a primitive n-th root of unity in C. The tra-
ditional algorithm for computing discrete Fourier transforms [CT65] takes a polyno-
mial P ∈ C[X] of degree < n on input, and returns the vector (P (ω0), . . . , P (ωn−1)).
If P actually admits real coe�cients, then we have P (ω−i) = P (ωi) for all i, so
roughly n/2 of the output values are super�uous. Because of this symmetry, it is
well known that such �real FFTs� can be computed roughly twice as fast as their
complex counterparts [Ber68, SJHB87].

More generally, there exists an abundant literature on the computation of FFTs
of polynomials with various types of symmetry. Crystallographic FFT algorithms
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date back to [Ten73], with contributions as recent as [KRO07], but are dedicated to
crystallographic symmetries. So called lattice FFTs have been studied in a series
of papers initiated by [GM86] and continued in [VZ07, Ber13]. A more general
framework due to [AJJ96] was recently revisited from the point of view of high-
performance code generation [JX07]. Further symmetric FFT algorithms and their
truncated versions were developed in [HLS13].

In this chapter, we focus on discrete Fourier transforms of polynomials P ∈ Fq[X]

with coe�cients in the �nite �eld with q elements. In general, primitive n-th roots
of unity ω only exist in extension �elds of Fq, say ω ∈ Fqd . This puts us in a similar
situation as in the case of real FFTs: our primitive root of unity ω lies in an larger
�eld than the coe�cients of the polynomial. This time, the degree of the extension
is d = [Fqd : Fq] instead of 2 = [C : R]. As in the case of real FFTs, it is natural to
search for algorithms that allow us to compute the DFT of a polynomial in Fq[X]

approximately d times faster than the DFT of a polynomial in Fqd [X]. The idea is
to use the Frobenius automorphism

φq : Fqd → Fqd
x 7→ xq

as the analogue of complex conjugation.
If P ∈ Fq[X], then we will exploit the fact that P (φkq (ω

i)) = φkq (P (ωi)) for all
0 6 i < n and 0 6 k < d. The set of evaluation points (that is the cyclic group
〈ω〉 generated by ω) can be partitioned into roughly n/d orbits for the action of the
Frobenius map. Because of the above fact, it su�ces to keep one element in each
of these orbits, and still have all the information. Moreover, as for DFTs over R,
the operation is invertible directly, without computing the �missing� values. We will
design an e�cient algorithm to do this, called the Frobenius FFT (section 4.3).

Alternatively, it is possible to reduce the computation of d discrete Fourier trans-
forms of polynomials P (0), . . . , P (d−1) ∈ Fq[X]<n to a single discrete Fourier trans-
form of a polynomial P̃ ∈ Fqd [X]<n. This technique is useful if many transforms
have to be computed, and it is detailed in section 4.4.

4.1 Finite �eld arithmetic

In this section, we �rst recall some basic operations in �nite �elds and the associated
complexity functions. Throughout this chapter, we need to work with polynomials
over various �elds: a base �eld Fq and several extensions Fqd , Fqe , . . . Unlike the
other chapters that use the algebraic complexity model, we assume in this chapter
the Turing complexity model with a �nite number of tapes [Pap94]. We do this to
ensure a common framework in the complexity analysis and to take into account
that operations in Fqd are more expensive than in Fq (counting operations in Fq
is also possible, but more technical). Recall our notation Mq for the complexity of
polynomial multiplication over Fq, and similarly for other operations.

Remark 4.1. Bounds in the algebraic complexity model generally remain valid
with Turing machines, up to the size of the coe�cient that becomes explicit. For
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example, the currently best known bound [HH19e] for polynomial multiplication is

Mq = O(n log q log(n log q))

in the Turing complexity model (under certain assumptions on the distribution
of prime numbers). The counterpart in the algebraic complexity model is simply
O(n log n). The Turing complexity model requires however a careful analysis to
achieve a bound that is uniform in n and q.

Using the representation Fq ∼= Fp[Y ]/〈µ(Y )〉 where q = pδ and µ is an irre-
ducible polynomial of degree δ, a multiplication in Fq reduces to a constant number
of multiplications in Fp[Y ]<δ. Similarly, a multiplication in Fq[X]<n reduces to
a multiplication in Fp[Y ]<2nδ by Kronecker substitution, followed by O(n) multi-
plications in Fp[Y ]<δ to reduce each coe�cient modulo µ. In particular, we get
Mq(n) = O(Mp(nδ)), uniformly in n and δ.

The computation of the Frobenius automorphism φq in Fqd requires O(log q)

multiplications in Fqd when using binary powering, so this operation has complexity
Φq(d) = O(Mq(d) log q). This cost can be lowered by representing elements of Fqd
with respect to so-called normal bases [Ble07]. However, multiplication in Fqd be-
comes more expensive for this representation.

Another important operation in �nite �elds is modular composition: given poly-
nomials P,Q ∈ Fq[X]<n and a monic polynomial R ∈ Fq[X] of degree n, the aim
is to compute (P ◦ Q) remR. If R is the minimal polynomial of the �nite �eld
Fqn ∼= Fq[Y ]/〈R(Y )〉, then this operation also corresponds to the evaluation of the
polynomial P ∈ Fq[X]<n at a point in Fqn . If R and R′ are two distinct monic
irreducible polynomials in Fq[X] of degree n, one may wish to convert an element
in Fq[Y ]/〈R(Y )〉 to an element in Fq[Z]/〈R′(Z)〉. This operation also boils down
to one modular composition of degree n over Fq. Indeed, assume given as pre-
computation Q(Z) ∈ Fq[Z]/〈R′(Z)〉 being the image of Y . Then the image of
P (Y ) ∈ Fq[Y ]/〈R(Y )〉 is P (Q(Z)) mod R′(Z).

We will denote by Cq(n) the cost of a modular composition as above. Theoreti-
cally speaking, Kedlaya and Umans proved the upper bound Cq(n) = (n log q)1+o(1)

[KU11]. From a practical point of view, one rather has Cq(n) = O(nMq(n)) using
Horner's rule, or slightly better using fast linear algebra (see e.g. [BK78]). If n
is smooth and one needs to compute several modular compositions for the same
modulus, then algorithms of quasi-linear complexity do exist [HL18d].

Remark 4.2. The complexity of Kedlaya-Umans's algorithm has a rather theoreti-
cal �avor because no e�cient implementation is known at the time of writing. To be
aware of this issue, it seems important to highlight any dependency on fast modular
composition of this type.

The discrete Frobenius Fourier transform potentially involves computations in
all intermediate �elds Fqe where e divides d. The necessary minimal polynomials
µ(e) for these �elds can be kept in a precomputed table. Notice that the size of this
table is

∑
e | d e (that is O(d log log d) by [NR97]) coe�cients in Fq.
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Now, given µ(e) and µ(d), we wish to compute the conversions (embedding or
projection)

Fqe ∼= Fq[Y ]/〈µ(e)〉 ↔ Fqd ∼= Fq[Y ]/〈µ(d)〉 . (4.1)

The paper [HL18d] also contains e�cient algorithms for this task: using modular
composition, we notice that this problem reduces in time

Cq(d) + (d/e)Cq(e) + Cqe(d/e)

to the case where we are free to choose µ(e) and µ(d) that suit us. We let Vq(d, e)

be a cost function for conversions as in (4.1). We also denote

Wq(d) := max
e | e′ | d

(d/e′)Vq(e
′, e) .

The notations are summarized in Table 4.1 for future reference throughout this
chapter. For convenience, the complexity of a twiddled DFFT de�ned in section 4.2.1
is also included in this table.

Table 4.1: Notations for the complexity of various operations.
Note: In this chapter, we use the Turing complexity model.
Mq(n) Polynomial multiplication in degree n over Fq
Fq(n) Discrete Fourier Transform of size n over Fq
Cq(n) Modular composition in degree n over Fq
Ψq(n, d) Twiddled DFFT of size n over Fq, output in Fqd (section 4.2.1).
Φq(d) Computation of one Frobenius map φq in Fqd
Vq(d, e) Conversion between Fqd and Fqe with e | d, as in (4.1)
Wq(d) Shortcut for maxe | e′ | d(d/e′)Vq(e

′, e)

4.2 Frobenius Fourier transforms

Let Fq ⊆ Fqd be an extension of �nite �elds. Let φq : Fqd → Fqd ;x 7→ xq denote the
Frobenius automorphism of Fqd over Fq. We recall that the group 〈φq〉 generated
by φq has size d and that it coincides with the Galois group of Fqd over Fq.

Let ω ∈ Fqd be a primitive n-th root of unity. Recall that n must verify
n | qd − 1 and gcd(n, q) = 1. The Frobenius automorphism φq naturally acts on
〈ω〉 = (1, ω, . . . , ωn−1), and we denote by rq(ωi) the order of an element ωi under
this action. Notice that rq(ωi) | d. A subset S ⊆ 〈ω〉 is called a cross section if
for every ωj ∈ 〈ω〉, there exists exactly one ωi ∈ S such that ωi = φkq (ω

j) for
some k ∈ N. We will denote this element ωi by πS(ωj). We will also denote the
corresponding set of indices by I := {i < n : ωi ∈ S}.

Now consider a polynomial P ∈ Fq[X]<n. Recall that its discrete Fourier trans-
form with respect to ω is de�ned to be the vector

DFTω(P ) := (P (1), P (ω), . . . , P (ωn−1)) .
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Since P admits coe�cients in Fq, we have

P (φkq (ω
j)) = φkq (P (ωj)) for all j, k ∈ N.

For any ωj ∈ 〈ω〉, this means that we may retrieve P (ωj) from P (πS(ωj)). Indeed,
setting ωi = πS(ωj) with ωi = φkq (ω

j), we obtain P (ωj) = φ−kq (P (ωi)). We call

DFFTω,S(P ) = (P (ωi))i∈I

the discrete Frobenius Fourier transform of P with respect to ω and the section S.
Let ωi ∈ S and r = rq(ω

i). Then φrq leaves ωi invariant, whence φrq(P (ωi)) =

P (φrq(ω
i)) = P (ωi). Since Fqr is the sub�eld of Fqd that is �xed under the action of

φrq, this yields
P (ωi) ∈ F

qrq(ω
i) .

It follows that the number of coe�cients in Fq needed to represent DFFTω,S(P ) is
given by ∑

i∈I
rq(ω

i) = n .

In particular, the output and input size n of the discrete Frobenius Fourier transform
coincide.

4.2.1 Twiddled transforms

For a transform of size n = n1n2, let us rewrite the Cooley-Tukey formula (2.3) as
follows:

P (ωu+n1v) =

n2−1∑
i=0

ωiu ·
(n1−1∑
j=0

Pi+n2j(ω
n2)ju

)
· (ωn1)iv

=

n2−1∑
i=0

(n1−1∑
j=0

Pi+n2j(ω
n2)ju

)
· (ωu(ωn1)v)i

= P (R,u)(ωu(ωn1)v)

One way to see this is to consider that the second wave of FFTs operates on �twid-
dled� polynomials P̃ (R,u)(X) := P (R,u)

(
ωuX

)
. Notice that it corresponds to the

presentation from section (2.2.1): ignoring the mirrored indexation in u, the coef-
�cients of P̃ (R,u) are given by the vector γ(u). An alternative point of view is to
directly consider the evaluation of P (R,u) at the points η(ωn1)v with v < n2 and
where η = ωu. We will call this operation a twiddled DFT (with respect to the
n2-th root ωn1).

The twiddled DFFT is de�ned in a similar manner. More precisely, assume that
we are given an s-th root of unity η ∈ Fqd such that the set η〈ω〉 is globally stable
under the action of φq. Assume also that we have a cross section S of η〈ω〉 under this
action and the corresponding set of indices I := {i < n : ηωi ∈ S} ⊆ {0, . . . , n− 1}.
Then the twiddled DFFT computes the family

DFFTη,ω,S(P ) := (P (ηωi))i∈I .
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Again, we notice that ∑
i∈I

rq(ηω
i) = n . (4.2)

This operation will serve as the base case for the Frobenius FFT algorithm in sec-
tion 4.3; we assume the following prototype:

Algorithm 4.1. Twiddled Discrete Frobenius Fourier Transform

Prototype: TDFFT(q, n, η, ω,S, P )

Input: A prime power q = pδ and an integer n, roots of unity η, ω ∈ Fqd (with
ω of order n and η〈ω〉 globally stable under the action of φq), an index set
I := {i < n : ηωi ∈ S} (where S is a cross-section of η〈ω〉), and a polynomial
P ∈ Fq[X]<n.

Output: The vector (P (ηωi))i∈I .

We will denote by Ψq(n, d) the complexity of computing a twiddled DFFT of
this kind. We expect Ψq(n, d) ≈ 1/dFqd(n). The next subsections give examples of
twiddled DFFTs in various situations and analyze the speed-up factor in each case.

4.2.2 The naive strategy

If n is a small number, it is most e�cient to compute ordinary DFTs of order n
in a naive fashion, by evaluating P (ωi) for i < n using Horner's method. From an
implementation point of view, one may do this using specialized codelets for various
small n.

The same naive strategy can also be used for the computation of DFFTs and
twiddled DFFTs. Given a cross section S ⊆ η〈ω〉 and the corresponding set of indices
I, it su�ces to evaluate P (ηωi) separately for each i ∈ I. Let ri := rq(ηω

i) | d be
the order of ηωi under the action of φq. Then ηωi actually belongs to Fqri , so
the evaluation of P (ηωi) can be done in time nMqri (1) + O(nri log q). With the
customary assumption that Mqn(1)/n is increasing as a function of n, it follows
using (4.2) that the complete twiddled DFFT can be computed in time

Ψq(n, d) 6 n
∑
i∈I

Mqri (1) +O(n2 log q)

6
n2

d
Mqd(1) +O(n2 log q) .

Assuming that full DFTs of order n over Fqd are also computed using the naive
strategy, this yields

Ψq(n, d) 6
1

d
Fqd(n)(1 + o(1)) . (4.3)

In other words, for small n, we have achieved our goal to gain a factor d.

4.2.3 Full Frobenius action

The next interesting case for study is when n is prime and the action of φq on η〈ω〉
is either transitive, or has only two orbits and one of them is trivial. If η ∈ 〈ω〉,
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then ω0 = 1 always forms an orbit of its own in η〈ω〉, but we can have |S| = 2.
If η /∈ 〈ω〉, then it can happen that S is a singleton. This happens for instance for
a 9-th primitive root of unity η ∈ F43 , for ω = η3 ∈ F4, and n = 3.

If S is a singleton, say S = {η}, then we necessarily have rq(η) = n and the
DFFT reduces to a single evaluation P (η) with P ∈ Fq[X]<n and η ∈ Fqn . This is
precisely the problem of modular composition that we encountered in section 4.1,
whence Ψq(n, n) = Cq(n). The speed-up Fqn(n)/Cq(n) with respect to a full DFT is
comprised between 1 and n, depending on the e�ciency of our algorithm for modular
composition. Theoretically speaking, we recall that Cq(n) = (n log q)1+o(1), which
allows us to gain a factor n/(n log q)ε for any ε > 0.

In a similar way, if η ∈ 〈ω〉 and |S| = 2, then the computation of one DFFT
reduces to n additions (in order to compute P (1)) and one composition modulo
a polynomial of degree n− 1 (instead of n).

Remark 4.3. Assume that n is prime, η ∈ 〈ω〉 and |S| = 2. If we are free to
choose the representation of elements in Fqn , then the DFFT becomes particularly
e�cient if we take Fqn = Fq[ω]. In other words, if µ ∈ Fq[Y ] is the monic minimal
polynomial of ω over Fq (so that degµ = d = n− 1), then we represent elements of
Fqn as polynomials in Fq[Y ] modulo µ, so that ω = Y mod µ. Given P ∈ Fq[X]<n,
just writing down P (ω) = (P−Pdµ)(Y ) then yields the evaluation of P at ω, whence

Ψq(n, n) = nMq(1) +O(n log q) .

4.3 The Frobenius FFT

Let n = p0 · · · p`−1 and v = (p0, . . . , p`−1) be as in section 2.2.3, and let ω ∈ Fqd
be a primitive n-th root of unity. This section presents a variant of the FFT from
section 2.2.1: the Frobenius FFT (or FFFT). This algorithm uses the same mirrored
indexation as the Cooley-Tukey FFT: given P ∈ Fq[X]<n, it thus returns the family
(P (ω[i]v))i∈I . We start with the description of the index set I = {i < n : ω[i]v ∈ S}
that corresponds to the so-called �privileged cross section� S of 〈ω〉.

4.3.1 Privileged cross sections

Given i < n, consider the orbit Oq(ω[i]v) := 〈φq〉(ω[i]v) of ω[i]v under the action of
〈φq〉. In this orbit, we keep the leftmost element in mirrored indexation: we de�ne

πq,v(ω[i]v) := ω[j]v ,

where j := min{0 6 k < n : ω[k]v ∈ Oq(ω[i]v)} .
Then S := imπq,v is a cross section of 〈ω〉 under the action of φq; we call it the
privileged cross section for φq (and v).

As in the previous chapters, let v(L) := (p0, . . . , ph−1) and v(R) := (ph, . . . , p`−1)

for some h 6 d; de�ne also n(L) := p0 · · · ph−1 and n(R) := ph · · · p`−1. Then
ω(L) := ωn

(R)
is a primitive n(L)-th root of unity. Let S(L) := imπq,v(L) be the

corresponding privileged cross section of 〈ω(L)〉.
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Lemma 4.1. Let i = an(R) + b (with a < n(L) and b < n(R)) and α < n(L). To
simplify notations, we set ı̄ := [i]v, ā := [a]v(L) , b̄ := [b]v(R) , and ᾱ := [α]v(L). We
have the equivalence

(ω(L))ᾱ ∈ O
(
(ω(L))ā

)
⇔ ω[αn(R)+β]v ∈ O

(
ωı̄
)
for some β < n(R) .

Proof. Let j := αn(R) + β, and de�ne ̄ := [j]v and β̄ := [β]v(R) . Assume that
ω̄ = φkq (ω

ı) for some k. Since

(ωı̄)n
(R)

=
(
ωb̄ n

(L)+ā
)n(R)

=
(
ωā
)n(R)

= (ω(L))ā .

and similarly (ω̄)n
(R)

= (ω(L))ᾱ, it follows that (ω(L))ᾱ = φkq
(
(ω(L))ā

)
.

Inversely, given α < n(L) with (ω(L))α = φkq
(
(ω(L))ā

)
for some k, we claim

that there exists a β < n(R) such that ω̄ = φkq (ω
ı̄) for j = αn(R) + β. Indeed,

(ω(L))ᾱ = φkq
(
(ω(L))ā

)
implies that(
ωᾱ
)n(R)

=
(
φkq (ω

ā)
)n(R)

=
(
φkq (ω

ı̄)
)n(R)

,

whence ωᾱ/φkq (ω
ı̄) is an n(R)-th root of unity. This means that there exists

a β < n(R) with ωᾱ/φkq (ω
ı̄) = (ωn

(L)
)−β̄ , i.e.

ω̄ = ωᾱ+β̄n(L)
= φkq (ω

ı̄) .

This leads to an expression of S(L) as a function of S:
Proposition 4.2. We have

S(L) = S n(R)
:= {un(R)

: u ∈ S}.

Proof. Assume that j is minimal with ω̄ = φkq (ω
ı̄) for some k. Given γ < n(L) such

that (ω(L))γ̄ ∈ Oq
(
(ω(L))ā

)
, Lemma 4.1 shows that there exists a δ < n(R) such that

ω
¯̀ ∈ Oq(ωı̄) for ` = γn(R) + δ. But then j 6 `, whence α 6 γ. This shows that

ω̄ ∈ S implies (ω̄)n
(R)

= (ω(L))ᾱ ∈ S(L).
Inversely, assume that α < n(L) is minimal such that (ω(L))ᾱ ∈ Oq((ω(L))ā).

Then Lemma 4.1 implies that there exists a β < n(R) such that ω̄ ∈ Oq(ωı̄) for
j = αn(R)+β. Without loss of generality we may assume that β was chosen minimal
while satisfying this property. Given γ < n(L), δ < n(R) and ` = γn(R) + δ with
ω

¯̀ ∈ Oq(ωı̄), we have (ω(L))
¯̀ ∈ Oq

(
(ω(L))ā

)
. Consequently, α 6 γ, and β 6 δ

whenever α = γ. In other words, j 6 `. This shows that (ω(L))ᾱ ∈ S(L) implies the
existence of a β < n(R) with ω̄ ∈ S and (ω̄)n

(R)
= (ω(L))ᾱ.

4.3.2 The main algorithm

We are now in a position to adapt the Cooley-Tukey FFT. In the case when ` = 1

(in particular if n is prime), we will use one of the algorithms from section 4.2 for
the computation of twiddled DFFTs. This leads to Algorithm 4.2 below. Recall
the notations α(i), β(i), γ(j), δ(j) from section 2.2.3 for the intermediate working
vectors in the FFT algorithm.
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Algorithm 4.2. Frobenius Fast Fourier Transform

Prototype: FFFT(q,v, ω, P )

Input: A prime power q = pδ, a vector v = (p0, . . . , p`−1), a n-th root of unity
ω ∈ Fqd and a polynomial P ∈ Fq[X]<n.

Output: The vector (P (ω[i]v))i∈I , where I is the index set corresponding to the
privileged cross-section S for φq.

1: if ` = 1 then return TDFFT(q, n, 1, ω, I, P ). . Algorithm 4.1
2: end if

3: Take h = `− 1. . see Remark 4.4
4: Set n1 := n(L) =

∏
i<h pi and v(L) := (pi)i<h.

5: Set n2 := n(R) =
∏
h6i pi and v(R) := (pi)h6i.

6: Set ω(L) := ωn
(R)

and ω(R) := ωn
(L)

7: Let I(L) :=
{
a < n(R) : (ω(L))ā ∈ S(L) := Sn(R)}

. cross-section for inner DFFTs

8: for 0 6 i < n(R) do

9: Set P (L,i)(X) :=
∑

j<n(L) Pi+n(R)jX
j . . ≈ α(i)

10: Compute β(i) := FFFT(q,v(L), ω(L), P (L,i)). .
(
P (L,i))((ω(L))ā)

)
a∈I(L)

11: end for

12: for a ∈ I(L) do

13: Set r(a) := rq((ω
(L))ā).

14: Set P (R,a)(X) :=
∑

i<n(R) β̃
(i)
a X

i. . P (R,a) ∈ Fqr(a) [X]

15: Set I(R,a) :=
{
b < n(R) : ā n(R) + b̄ ∈ I

}
. . i.e. ω[i]v ∈ S for i := a+ n(L)b

16: if ωā, ω(R) ∈ Fqr(a) then . I(R,a) = {0, . . . , n(R) − 1}
17: Set γ(a)

i := (ωā)i P
(R,a)
i .

18: Compute δ(a) := FFT(v(R),γ(a), ω(R)). . Algorithm 2.1
19: else

20: Compute δ(a) := TDFFT
(
qr(a), n(R), ωā, I(R,a), P (R,a)

)
. . Algorithm 4.1

21: end if

22: end for

23: return (δ(a))a∈I(L) .

Theorem 4.3. Assuming the correctness of Algorithms 4.1 and 2.1, Algorithm 4.2
is correct.

Proof. This is a consequence of section 4.2.1 and Proposition 4.2.

Remark 4.4. For the usual FFT, it was possible to choose h in such a way that
n(L) ≈ n(R), and we recall that this improves the cache e�ciency of practical im-
plementations. However, this optimization is more problematic in our setting since
it would require the development of an e�cient recursive algorithm for twiddled
FFFTs. This is an interesting topic, but raises serious technical di�culties.

Let us now say a word about inverse transforms. For composite sizes, inverse
FFFTs can be computed in a straightforward way by reversing the main Algo-
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rithm 4.2. It remains to handle the base case, that is inverting the various algo-
rithms from section 4.2. This requires a bit more e�ort, but does not raise any
serious di�culties (as a fallback algorithm, one can always write the matrix of the
direct transform and precompute its inverse). The same holds for the algorithms
from section 4.4 below to compute multiple DFTs.

Remark 4.5. Following the publication of the original paper [HL17], Li et al.
showed that the Frobenius Fourier Transform extends to the case of additive FFTs
[LCK+18, CCK+18].

4.3.3 Complexity analysis

Let us now perform the complexity analysis of Algorithm 4.2. For k ∈ {0, . . . , `−1},
we �rst focus on all FFTs and twiddled DFFTs that are computed �at stage k� using
a fallback algorithm. These FFTs and twiddled DFFTs are all of length pk. Given
e | e′ | d, let νk,e,e′ be the number of transforms of a polynomial in Fqe [X]<pk over Fqe′ .
From (4.2), it follows that ∑

e | e′ | d
pkνk,e,e′e = n.

Now a naive bound for the cost of an FFT or twiddled DFFT of a polynomial in
Fqe [X]<pk over Fqe′ is

Ψqe(pk, e
′/e) 6 Fqe′ (pk) + pkMqe(1) . (4.4)

This means that the cost of all FFTs and twiddled DFFTs at stage k is bounded by

Ψ̄k :=
∑
e | e′ | d

νk,e,e′Ψqe(pk, e
′/e)

6
∑
e | e′ | d

νk,e,e′Fqe′ (pk) + n
Mqd(1)

d
.

Now νk,e,e′ can only be non zero if e′ 6 pke. Consequently,

Ψ̄k 6
∑
e | e′ | d

νk,e,e′ · e ·
e′

e
·

Fqe′ (pk)

e′
+ n

Mqd(1)

d

6
∑
e | e′ | d

νk,e,e′ e pk
Fqd(pk)

d
+ n

Mqd(1)

d

6
n

d

(
Fqd(pk) + Mqd(1)

)
.

The total cost of all FFTs and twiddled DFFTs of prime length is therefore bounded
by

Ψ̄0 + · · ·+ Ψ̄`−1 6
n`

d

(
Fqd(max pi) + Mqd(1)

)
.

Notice that all twiddled DFFTs are not necessarily over the base �eld Fq: some
of them are applied to polynomials with coe�cients in Fqe , over an extension Fqe′ .
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In this case, the output uses the representation Fqe′ ∼= Fqe [X]/〈µe′,e〉, which is not
the �standard� representation of Fqe′ . This means the result needs to be converted;
the cost of all such conversions at stage k is bounded by

V̄k :=
∑
e6=e′ | d

νk,e,e′Vq(e
′, e)

6
∑
e 6=e′ | d

pkνk,e,e′e
Wq(d)

d

For a number a with prime factorization a = pi11 · · · pirr , let λ(a) := i1 + · · ·+ ir. We
also denote Nk,e =

∑
e′∈eZ pkνk,e,e′e for the total size of the transforms �at stage k�

that take inputs in Fqe (in terms of the number of coe�cients in Fq). We observe
that

∑
e | e′ pkνk,e,e′e is the total size of the transforms �at stage k� that have their

outputs in Fqe′ , hence Nk+1,e′ =
∑

e | e′ pkνk,e,e′e. Let us show by induction over k
that

V̄0 + · · ·+ V̄k−1 6
∑
e | d

Nk,eλ(e)
Wq(d)

d
.

This is clear for k = 0, since N0,1 = n and N0,e = 0 for e > 1. Assuming that the
relation holds for a given k, we get

V̄0 + · · ·+ V̄k 6
∑
e | e′ | d

pkνk,e,e′eλ(e)
Wq(d)

d
+
∑
e6=e′ | d

pkνk,e,e′e
Wq(d)

d

6
∑
e | e′ | d

pkνk,e,e′e λ(e′)
Wq(d)

d

=
∑
e′ | d

Nk+1,e′λ(e′)
Wq(d)

d
.

This completes the induction and we conclude that the total conversion cost is
bounded by

V̄0 + · · ·+ V̄`−1 6 nλ(d)
Wq(d)

d
.

This concludes the proof of the following result:

Theorem 4.4. If n = p0 · · · p`−1 where p0, . . . , p`−1 are all prime, then

Ψq(n, d) 6
n

d

(
`Fqd(max pi) + `Mqd(1) + λ(d)Wq(d)

)
,

Remark 4.6. If the pi are very small, then we have shown in section 4.2.2 that (4.4)
can be further sharpened into Ψqe(pi, e

′/e) ∼ e/e′ Fqe′ (pi), hence

Ψ̄k .
n

d

(
Fqd(pk)

pk
+ Mqd(1)

)
.

As a consequence, the bound for Ψq(n, d) becomes

Ψq(n, d) .
1

d
Fqd(n) +

n

d
λ(d)Wq(d) .
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Remark 4.7. It is also possible to treat separately the case when e = e′ in the
bound for Ψ̄k, thereby avoiding the factor pk > e′/e whenever possible. A similar
analysis as for the cost of the conversions then yields

Ψq(n, d) 6
n

d

(
`

Fqd(max pi)

max pi
+ `Mqd(1) + λ(d)Fqd(max pi) + λ(d)Wq(d)

)
.

Whenever we can manage to keep max pi and Wq(d)/d small with respect to `, this
means that we gain a factor d with respect to a full DFT.

4.4 Multiple Fourier transforms

In this section, we present an alternative approach that packs d Fourier transforms
over Fq into one transform over Fqd . As an analogy with the complex number,
assume A,B ∈ R[X]; then the two DFTs of A,B can be computed from the single
DFT of P := A+ iB.

4.4.1 Parallel lifting

Let Fqd ∼= Fq[T ]/〈µ(T )〉 be an extension of Fq. Consider the primitive element
α := T mod µ ∈ Fqd ; that is 1, α, . . . , αd−1 is a basis of Fqd . Given d polynomials
P (0), . . . , P (d−1) ∈ Fq[X]<n, we may then form the polynomial

P̃ := P (0) + P (1)α+ · · ·+ P (d−1)αd−1 ∈ Fqd [X] .

If n | q−1 and ω is a primitive n-th root of unity in the base �eld Fq, then we notice
that

DFTω(P ) = DFTω(P (0)) + · · ·+ DFTω(P (d−1))αd−1 . (4.5)

In other words, the discrete Fourier transform operates coe�cientwise with respect
to the basis 1, α, . . . , αd−1 of Fqd .

The map P (0), . . . , P (d−1) 7→ P (0) +P (1)α+ · · ·+P (d−1)αd−1 and its inverse boil
down to matrix transpositions in memory as follows:(∑

i<n

P
(0)
i Xi, . . . ,

∑
i<n

P
(d−1)
i Xi

)
↔
∑
i<n

(∑
j<d

P
(j)
i αj

)
Xi

On a Turing machine, they can therefore be computed in time O(nd log d log q). If
F̃q(n, t) stands for the cost of computing t Fourier transforms of length n over Fq,
then it follows from (4.5) that

F̃q(n, d) 6 Fqd(n) +O(nd log d log q) . (4.6)

4.4.2 Symmetric multiplexing

Let us next consider an s-th root of unity η and a primitive n-th root of unity ω in
the extension �eld Fqd . Now reconstructing the DFTs of each P (i) from the DFT
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of P̃ requires a bit more work than in the previous subsection. Given u = ηωi, we
have for all k,

φkq (P (φ−kq (u))) = P (0)(u)φkq (1) + · · ·+ P (d−1)(u)φkq (α
d−1).

Abbreviating ΦP,k(u) := φkq (P (φ−kq (u))) and setting

B :=

 1 · · · αd−1

...
...

φd−1
q (1) · · · φd−1

q (αd−1)



Φ(P )(u) :=

 ΦP,0(u)
...

ΦP,d−1(u)

 V(P )(u) :=

 P (0)(u)
...

P (d−1)(u)


it follows that

Φ(P )(u) = BV(P )(u) . (4.7)

Now given the twiddled discrete Fourier transform DFTη,ω(P ) := (P (ηωi))i<n of P ,
we in particular know the values P (u), . . . , P (φd−1

q (u)). Letting the Frobenius auto-
morphism φq act on these values, we obtain the vector Φ(P )(u). Using one matrix-
vector product V(P )(u) = B−1Φ(P )(u), we may then retrieve the values of the
individual twiddled transforms DFTη,ω(Pi) at u. Doing this for each u ∈ S in a
cross section of η〈ω〉 under the action of φq, this yields a way to retrieve the twiddled
DFFTs of P0, . . . , Pd−1 from the twiddled DFT of P .

Since B is a Vandermonde matrix, the matrix-vector product B−1Φ(P )(u) can
be computed in time O(Mq(d) log d) using polynomial interpolation [GG13, Chap-
ter 10]. Given DFTη,ω(P ), we may compute each individual vector ΦP (u) in time
O(dMq(d) log(dq)) using the Frobenius automorphism φq. Since there are |S| or-
bits in 〈ω〉 under the action of φq, we may thus retrieve the DFFTη,ω(Pi) from
DFTη,ω(P ) in time O(|S| dMq(d) log qd). In other words, if Ψ̃q(n, d, t) denotes the
complexity of computing the DFFTs of t elements of Fq[X]<n over Fqd , we have

Ψ̃q(n, d, d) 6 Fqd(n) +O
(
|S| dMq(d) log qd

)
. (4.8)

4.4.3 Multiplexing over an intermediate �eld

In the extreme case when η, ω ∈ Fq, every ηωi ∈ η〈ω〉 has order one under the action
of φq and |S| = n. In that case, the bound (4.8) is not very sharp, but (4.6) already
provides us with a good alternative bound for this special case. For r /∈ {1, d}
with r | d, let us now consider the case when u = ηωi has order at most r under
the action of φq for all i, so that u ∈ Fqr . Let β ∈ Fqr be a primitive element
in Fqr over Fq, so that Fqr = Fq[β] and Fqd = Fqr [α]. Given our d polynomials
P (0), . . . , P (d−1) ∈ Fq[X]<n, we may form

P̃ (i) = P (ir) + · · ·+ P (ir+r−1)βr−1 ∈ Fqr [X]<n (i < d/r) ,

P̄ = P̃ (0) + P̃ (1)α+ · · ·+ P̃ (d/r−1)αd/r−1 ∈ Fqd [X]<n .
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Then we have

DFTη,ω(P̄ ) = DFTη,ω(P̃ (0)) + · · ·+ DFTη,ω(P̃ (d/r−1))αd/r−1 .

Moreover, we may compute (DFFTη,ω(P (ir+j)))j<r from DFTη,ω(P̃ (i)) for each
i < d/r, using the algorithm from the previous subsection. Notice the additional
property that at least one u ∈ η〈ω〉 has maximal order r = [Fqr : Fq] under the
action of φq.

If n is prime and η ∈ 〈ω〉, then the above discussion shows that, without loss of
generality, we may assume that ω has order d under the action of φq. This means
that ωi has maximal order d for every i ∈ {1, . . . , n− 1}, whereas ω0 = 1 has order
one. Hence, |S| = (n−1)/d+1. Similarly, if n is prime and η /∈ 〈ω〉, then we obtain
a reduction to the case when ηωi has maximal order d for all i ∈ {0, . . . , n − 1},
whence |S| = n/d. In both cases, we obtain the following:

Proposition 4.5. If n is prime, then

Ψ̃q(n, d, d) = Fqd(n) +O
(
nMq(d) log qd

)
.

Remark 4.8. We recall that n 6 qd − 1, whence log n 6 log qd. When using the
best known bound Mq(n) = Θ(n log q log(n log q)) and Fqd(n) � Mqd(n), it follows
for some constant C > 0 that

Ψ̃q(n, d, d)

Fqd(n)
> 1 + C

d log q log(d log q)

log(nd log q)

> 1 + C
log(d log q)

2
.

In other words, we cannot hope to gain more than an asymptotic factor of d/ log d

with respect to a full DFT.

If n is not necessarily prime, then the technique from this section can still be
used for every individual u. However, the rewritings of elements in Fqd as elements
in Fqr [α] and Fq[β][α] have to be done individually for each u using modular com-
positions. Denoting by ri the order of ηωi under φq, it follows that

Ψ̃q(n, d, d) = Fqd(n) +
∑
i∈I

Vq(d, ri) +
∑
i∈I

O
(
riMqri (d/ri) log qd

)
6 Fqd(n) + nWq(d) +O

(
nMq(d) log qd

)
.

Notice that conversions of the same type correspond to modular compositions with
the same modulus. If n is smooth, then it follows that we may use the algorithms
from [HL18d] and keep the cost of the conversions quasi-linear (as a more practical
alternative to Kedlaya-Umans, see Remark 4.2).
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Note. The results from this chapter were published in [HLL17]. The implemen-
tation is part of the justinline package of Mathemagix [HLM+02], available at
http://www.mathemagix.org. Compared to the paper [HLL17], section 5.3 includes
an additional comparison with a software released in 2018; also section 5.4 adds a
discussion about other special cases where the same technique would work.

A situation where the Frobenius FFT would be especially useful is for the multi-
plication of polynomials over small �nite �elds. Indeed, the lack of evaluation points
limits evaluation-interpolation strategies and forces to work in a certain extension,
which implies an overhead. However, the theoretical speedup promised by the Frobe-
nius FFT seems hard to achieve in practice: the algorithm from the previous chapter
involves a lot of technicalities, in particular computations in all intermediate �elds
Fqe between Fq and Fqd . For this reason, making the Frobenius FFT competitive
with highly-optimized plain FFT implementations is a real challenge in general, but
in the speci�c case of the extension F260 over F2, it turns out that the Frobenius
FFT adapts particularly well.

As mentioned earlier, the �eld F260 has remarkable properties that can be used for
an e�cient multiplication in F2[X], as shown in [HHL16a]. Naturally, one cannot af-
ford the factor 60 overhead that comes from the naive embedding F2[X] ↪→ F260 [X].

http://www.mathemagix.org
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The traditional solution is to pack 30 = 60/2 input coe�cients into one element of
the extension �eld using Kronecker substitution

F2[X] ↪→ F2[Y ]<30[Z] ↪→ F260 [Z] .

With this method (already used in [HHL16a]), the overhead is reduced to a factor 2.
Then, if we were able to eliminate the overhead completely using the Frobenius
FFT, we would obtain an implementation that is twice as e�cient as the previous
one. This chapter shows that such a speedup is actually possible in practice, in the
speci�c case of F260 .

5.1 Fast reduction from F2[X] to F260[X]

This section describes a variant of the Frobenius FFT for the special extension F260

over F2. Using a single rewriting step, this new algorithm reduces the computation
of a Frobenius DFT to the computation of an ordinary DFT over F260 , thereby
avoiding computations in any intermediate �elds F2e with 1 < e < 60 and e | 60.

5.1.1 Variant of the Frobenius DFT

To e�ciently reduce a multiplication in F2[X] into DFTs over F260 , we use an order n
that divides 260 − 1 and such that n = 61m for some integer m. We perform the
Cooley-Tukey decomposition (2.3) with n1 = 61 and n2 = m. Let ω be a primitive
n-th root of unity in F260 . The discrete Fourier transform of P ∈ F2[X]<n, given by
(P (1), P (ω), P (ω2), . . . , P (ωn−1)) ∈ Fn260 , can be reorganized into 61 slices as follows

DFTω(P ) =
(
(P (ω61i))06i<m, (P (ω61i+1))06i<m, . . . , (P (ω61i+60))06i<m

)
.

The variant of the Frobenius DFT of P that we introduce in the present chapter
corresponds to computing only the second slice:

Eω : F2[X]<60m → Fm260
P 7→

(
P (ω61i+1)

)
06i<m

Let us show that this transform is actually a bijection. The following lemma shows
that the slices (P (ω61i+2))06i<m, . . . , (P (ω61i+60))06i<m can be deduced from the
second slice (P (ω61i+1))06i<m using the action of the Frobenius map φ2.

Lemma 5.1. Let Ωi = {ω61j+i : 0 6 j < m} for 1 6 i < 61. Then the action of
〈φ2〉 is transitive on the pairwise disjoint sets Ω1, . . . ,Ω60.

Proof. Let 1 6 i < 61 and 0 6 j < m, we have φ2(ω61j+i) = ω61j′+(2i rem 61) for
some integer 0 6 j′ < m, so the action of 〈φ2〉 onto Ω1, . . . ,Ω60 is well de�ned.
Notice that 2 is primitive for the multiplicative group F×61. This implies that for
any 1 6 i < 61 there exists k such that 2k ≡ i mod 61. Consequently we have
φ◦k2 (ω61j+1) = ω61j′+i for some 0 6 j′ < m, whence φ◦k2 (Ω1) ⊆ Ωi. Since φ2 is
injective, the latter inclusion is an equality.
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If we needed the complete DFTω(P ), then we would still have to compute the
�rst slice (P (ω61i))06i<m. The second main new idea with respect to Chapter 4 is
to discard this �rst slice, and to restrict ourselves to input polynomials A of degrees
< 60m. In this way, Eω can be inverted, as proved in the following proposition.

Proposition 5.2. Eω is bijective.

Proof. The dimensions of the source and destination spaces of Eω over F2 being the
same, it su�ces to prove that Eω is injective. Let P ∈ F2[X]<60m be such that
Eω(P ) = 0. By construction, P vanishes at m distinct values, namely ω61i+1 for
0 6 i < m. Under the action of 〈φ2〉 it also vanishes at 60(m − 1) other values by
Lemma 5.1, whence P = 0.

Remark 5.1. The transformation Eω being bijective is due to the fact that 2 is
primitive in the multiplicative group F×61. Among the prime divisors of 260 − 1, the
factors 3, 5, 11 and 13 also have this property, but taking n1 = 61 allows us to
divide the size of the evaluation-interpolation scheme by 60, which is optimal.

5.1.2 Frobenius encoding

We decompose the computation of Eω into two routines. The �rst routine is written
Fω and called the Frobenius encoding :

Fω : F2[X]<60m → F260 [X]<m

P =
∑

06k<60m

PkX
k 7→

∑
06k<m

ωk

 ∑
06l<60

Pk+mlθ
l

Xk, where θ = ωm (5.1)

Below, we will choose θ in such a way that Fω is essentially a simple reorganization
of the coe�cients of P .

We observe that the coe�cients of Fω(P ) are part of the values of the inner
DFTs of P in the Cooley�Tukey formula (2.3), applied with n1 = 61 and n2 = m.
The second task is the computation of the corresponding outer DFT of order m:

DFTω̃ : F260 [X]<m → Fm260
P̃ 7→ (P̃ (ω̃i))06i<m, where ω̃ = ω61

Proposition 5.3. Eω = DFTω̃ ◦Fω.

Proof. This formula follows from (2.3):

P (ω61i+1) =
∑

06k<m

ωk

 ∑
06`<61

Pk+m`θ
`

 ω̃ki = Fω(P )(ω̃i) .

Summarizing, we have reduced the computation of a DFT of size 60n/61 over F2

to a DFT of size m = n/61 over F260 . Notice that this reduction preserves data size.
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5.1.3 Direct transforms

The computation of Fω involves the evaluation of m polynomials in F2[X]<60 at
θ = ωm ∈ F260 . In order to perform these evaluations fast, we �x the representation
of F260 = F2[Z]/〈µ(Z)〉 and the primitive root ζ of unity of maximal order 260 − 1

to be given by

µ(Z) := (Z61 − 1)/(Z − 1) , (5.2)

ζ := Z18 + Z6 + 1 mod µ(Z) . (5.3)

Setting ω = ζ(260−1)/n and θ = ζ(260−1)/61, it can be checked that θ = Z mod µ(Z).
Evaluation of a polynomial in F2[X]<60 at θ can now be done e�ciently.

Algorithm 5.1. Frobenius Encoding

Prototype: encode(n, P, ω)

Input: An integer m, a polynomial P ∈ F2[X]<60m, and the n-root ω as above,
with n := 61m divides 260 − 1.

Output: The polynomial P̃ := Fω(P ) ∈ F260 [X]<m.

1: Set P̃i :=
∑

06j<60 Pi+mjZ
j mod µ(Z) ∈ F260 for each i ∈ {0, . . . ,m− 1}.

2: return P̃ := P̃0 + ωP̃1X + ω2P̃2X
2 + · · ·+ ωm−1P̃m−1X

m−1.

Proposition 5.4. Algorithm 5.1 is correct.

Proof. This follows immediately from the de�nition of Fω in formula (5.1), using
the fact that θ = Z mod µ(Z) in our representation.

Notice that Algorithm 5.1 corresponds to a matrix transposition in memory, up
to the alignment for elements of F260 . Combining this with the FFT algorithm, we
get a variant of the Frobenius FFT:

Algorithm 5.2. Frobenius FFT (variant for F260)

Prototype: FFFT_2_60(v, P )

Input: A vector v = (p0, . . . , pd−1), and a polynomial P ∈ F2[X]<60m, with m :=

p0 · · · pd−1 and n := 61m | 260 − 1.
Output: The vector E :=

(
P (ω61[i]v+1

)
i<m

(this is Eω(P ) in mirrored indexation),
with ω as above.

1: Set ζ as in (5.3) and n := 61p0 · · · pd−1.
2: Set ω := ζ(260−1)/n and ω̃ := ω61.
3: Compute P̃ := encode(n, P, ω). . Algorithm 5.1
4: return FFT(v, P̃, ω̃) with P̃ the vector of coe�cients of P̃ . . Algorithm 2.1

Proposition 5.5. Algorithm 5.2 is correct.

Proof. The correctness simply follows from Propositions 5.3 and 5.4.
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5.1.4 Inverse transforms

Inverting the above algorithms is straightforward

Algorithm 5.3. Frobenius decoding

Prototype: decode(n, P̃ , ω)

Input: An integer m, a polynomial P̃ ∈ F260 [X]<m, and the n-root ω as above,
with n := 61m divides 260 − 1.

Output: The polynomial P := F−1
ω (P ) ∈ F2[X]<60m.

1: Let P (i)(Z) ∈ F2[Z]<60 be the preimage of ω−iP̃i ∈ F260
∼= F2[Z]/〈µ(Z)〉, for

each i < m.
2: return

∑
06i<m

∑
06j<60 P

(i)
j Xi+mj .

Proposition 5.6. Algorithm 5.3 is correct.

Algorithm 5.4. Inverse Frobenius FFT (variant for F260)

Prototype: IFFFT_2_60(v,E)

Input: A vector v = (p0, . . . , pd−1), and a vector E ∈ Fm260 , with m := p0 · · · pd−1

and n := 61m | 260 − 1.
Output: The polynomial P such that E = FFFT_2_60(v, P ).

1: Set ζ as in (5.3) and n := 61p0 · · · pd−1.
2: Set ω := ζ(260−1)/n and ω̃ := ω61.
3: Compute P̃ := IFFT(v,E, ω̃). . Algorithm 2.2
4: Let P̃ be the corresponding polynomial.
5: return decode(n, P̃ , ω). . Algorithm 5.3

Proposition 5.7. Algorithm 5.4 is correct.

5.1.5 Multiplication in F2[X]

Using the standard technique of multiplication by evaluation-interpolation, we may
now compute products in F2[X] as follows:

Algorithm 5.5. Multiplication in F2[X]

Prototype: mul(A,B)

Input: Polynomials A,B ∈ F2[X] with 60(degA+ degB)/61 < 260 − 1.
Output: The polynomial AB.

1: Choose m > (degA+ degB)/60 such that n = 61m divides 260 − 1.
2: Set v := (p0, . . . , pd−1) with m = p0 · · · pd−1 a factorization of m.
3: Compute Â := FFFT_2_60(v, A) and B̂ := FFFT_2_60(v, B). . Algorithm 5.2
4: Compute Ĉ := (Âi × B̂i)i<m
5: return IFFFT_2_60(v, Ĉ) . Algorithm 5.4

Proposition 5.8. Algorithm 5.5 is correct.
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Proof. The correctness simply follows from Propositions 5.5 and 5.7, and using the
fact that Eω(AB) = Eω(A)Eω(B), since m > (degA+ degB)/60.

For step 1, the actual determination of m has been discussed in [HHL16a, sec-
tion 3]. In fact it is often better not to pick the smallest possible value for m but a
slightly larger one that is also very smooth. Since 260− 1 admits many small prime
divisors, such smooth values of m usually indeed exist.

5.2 Implementation details

This section presents a practical implementation of the above algorithm, with a
practical speedup close to two with respect to the previous work [HHL16a] (the
timings are given in section 5.3). Notice that in both cases, DFTs over F260 rep-
resent the bulk of the computation, but the lengths of the DFTs are halved for
the new algorithm: they have size d/30 with Kronecker substitution and d/60 with
the Frobenius variant (where d is the degree of the output). Hence, the observed
acceleration is due to our new algorithm and not the result of ad hoc code tuning
or hardware speci�c optimizations.

We follow Intel's terminology and use the term quad word to denote a unit of
64 bits of data. The source code is presented using the C99 standard. In particular,
a quad word representing an unsigned integer is considered of type uint64_t.

The new polynomial product is implemented in the justinline library of Math-

emagix [HLM+02] (http://www.mathemagix.org). The source code is freely avail-
able from revision 10681 of the SVN server (https://gforge.inria.fr/projects/
mmx/). The main source �les are

• justinline/src/frobenius_encode_f2_60.cpp for the Frobenius encoding,

• justinline/mmx/polynomial_f2_amd64_avx2_clmul.mmx for the top level
functions.

Related test and bench �les are also available from dedicated directories of the
justinline library. Recall that Mathemagix functions may be easily exported to
C++ [HL13a, HL13b].

The implementation targets a modern processor supporting the AVX/AVX2
and CLMUL instruction sets, and an operating system compliant to System V
Application Binary Interface. The C++ library numerix of Mathemagix de�nes
wrappers for AVX types. In particular, avx_uint64_t represents an SIMD vector of
4 elements of type uint64_t. Recall that the platform disposes of 16 AVX registers
which must be allocated accurately in order to minimize read and write accesses to
the memory.

5.2.1 Packed representations

Polynomials over F2 are supposed to be given in packed representation, which means
that coe�cients are stored as a vector of contiguous bits in memory. For instance, a

http://www.mathemagix.org
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
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polynomial of degree `− 1 is stored into d`/64e quad words, starting with the low-
degree coe�cients: the constant term is the least signi�cant bit of the �rst word.
The last word is suitably padded with zeros.

Reading or writing one coe�cient or a range of coe�cients of a polynomial in
packed representation must be done carefully to avoid invalid memory access. Let P
be such a polynomial of type uint64_t*. Reading the coe�cient Pi of degree i in P
is done as (P[i >> 6] >> (i & 63)) & 1. However, reading or writing a single
coe�cient should be avoided as much as possible for e�ciency, so we prefer handling
ranges of 256 bits. In the sequel the function of prototype

void load (avx_uint64_t& d, const uint64_t* P ,

const uint64_t& `, const uint64_t& i,

const uint64_t& e);

returns the e 6 256 bits of P starting from i into d; bits beyond position ` are
considered to be zero.

Implementation of arithmetic operations in F260 is presented in [HHL16a, sec-
tion 3.1]. In the sequel we only make use of the function

uint64_t f2_60_mul (const uint64_t& a, const uint64_t& b);

that multiplies the two elements a and b of F260 in packed representation.
We also use a packed column-major representation for matrices over F2. For

instance, an 8×8 bit matrix (Mi,j)i<8, j<8 is encoded as a quad word whose (8j+i)-th
bit is Mi,j . Similarly, a 256 × ` matrix (Mi,j)i<256, j<` may be seen as a pointer
avx_uint64_t* v, so Mi,j corresponds to the i-th bit of v[j].

5.2.2 Matrix transposition

The Frobenius encoding essentially boils down to matrix transpositions. Our main
building block is 256×64 bit matrix transposition. We decompose this transposition
in a suitable way with regards to data locality, register allocation and vectorization.

For the computation of general transpositions, we repeatedly make use of the
well-known divide and conquer strategy: to transpose an n × ` matrix M , where

n and ` are even, we decompose M =

(
A B

C D

)
, where A,B,C,D are n/2× `/2

matrices; we swap the anti-diagonal blocks B and C and recursively transpose each
block A,B,C,D.

Transposing packed 8× 8 bit matrices

The basic task we begin with is the transposition of a packed 8× 8 bit matrix. The
solution used here is borrowed from [War12, Chapter 7, section 3]. In steps 8 and 9,
the anti-diagonal 4×4 blocks are swapped. In steps 10 and 11, the matrix N is seen
as four 4 × 4 matrices whose anti-diagonal 2 × 2 blocks are swapped. In steps 12
and 13, the matrix N is seen as sixteen 2× 2 matrices whose anti-diagonal elements
are swapped.
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1 uint64_t

2 packed_matrix_bit_8x8_transpose (const uint64_t& M) {

3 uint64_t N = M;

4 static const uint64_t mask_4 = 0x00000000f0f0f0f0;

5 static const uint64_t mask_2 = 0x0000cccc0000cccc;

6 static const uint64_t mask_1 = 0x00aa00aa00aa00aa;

7 uint64_t a;

8 a = ((N >> 28) ^ N) & mask_4; N = N ^ a;

9 a = a << 28; N = N ^ a;

10 a = ((N >> 14) ^ N) & mask_2; N = N ^ a;

11 a = a << 14; N = N ^ a;

12 a = ((N >> 7) ^ N) & mask_1; N = N ^ a;

13 a = a << 7; N = N ^ a;

14 return N;

15 }

All in all, 18 instructions, 3 constants and one auxiliary variable are needed to
transpose a packed 8×8 bit matrix in this way. One advantage of the above algorithm
is that it admits a straightforward AVX vectorization that we will denote by

avx_uint64_t

avx_packed_matrix_bit_8x8_transpose (const avx_uint64_t& M);

This routine transposes four 8×8 bit matrices M[0],M[1],M[2],M[3] that are packed
successively into an AVX register of type avx_uint64_t. Notice that this task is
not the same as transposing a 32× 8 or 8× 32 bit matrices.

Remark 5.2. The BMI2 technology gives another method for transposing 8×8 bit
matrices:

uint64_t mask = 0x0101010101010101;

uint64_t N = 0;

for (unsigned i = 0; i < 8; i++)

N |= _pext_u64 (M, mask << i) << (8 * i);

The loop can be unrolled while precomputing the shift amounts and masks, which
leads to a faster sequential implementation. Unfortunately this approach cannot be
vectorized with the AVX2 technology. Other sequential solutions also exist, based
on lookup tables or integer arithmetic, but their vectorization is again problematic.
Practical e�ciencies are reported in section 5.3.

Transposing four 8× 8 byte matrices simultaneously

Our next task is to design a transposition algorithm of four packed 8 × 8 byte
matrices simultaneously. More precisely, it performs the following operation on a
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packed 32× 8 byte matrix:
M(0)

M(1)

M(2)

M(3)

 −→


(M(0))>

(M(1))>

(M(2))>

(M(3))>

 ,

where the M(i) are 8× 8 blocks. This operation has the following prototype in the
sequel:

void avx_packed_matrix_byte_8x8_transpose

(avx_uint64_t* dest , const avx_uint64_t* src);

This function works as follows. First the input src is loaded into eight AVX registers
r_0, . . . ,r_7. Each r_i is seen as a vector of four uint64_t: for j ∈ {0, . . . , 3},
r_0[j], . . . ,r_7[j] thus represent the 8 × 8 byte matrix M(j). Then we transpose
these four matrices simultaneously in-register by means of AVX shift and blend
operations over 32, 16 and 8 bits entries in the spirit of the aforementioned divide
and conquer strategy.

Transposing 256× 64 bit matrices

Having the above subroutines at our disposal, we can now present the algorithm to
transpose a packed 256×64 bit matrix. The input bit matrix of type avx_int64_t*
is written (Mi,j)i<256, j<64. The transposed output matrix is written (Ni,j)i<256, j<64

and has type avx_int64_t*.
We �rst compute the auxiliary byte matrix T as follows:

static avx_uint64_t T[64];

for (int i = 0; i < 8; i++) {

avx_packed_matrix_byte_8x8_transpose (T+8*i, M+8*i);

for (int k = 0; k < 8; k++)

T[8*i+k] =

avx_packed_matrix_bit_8x8_transpose(T[8*i+k]);

}

If we write Mi,k:l for the byte representing the packed bit vector (Mi,k, . . . ,Mi,l),
and T(i,k:l) for the 8× 8 byte matrix given by

T(i,k:l) :=

 Mi,k:l · · · Mi+56,k:l
...

...
Mi+7,k:l · · · Mi+63,k:l

 ,

then T contains the following 32× 64 byte matrix:

T =


T(0,0:7) T(0,8:15) · · · T(0,56:63)

T(64,0:7) T(64,8:15) · · · T(64,56:63)

T(128,0:7) T(128,8:15) · · · T(128,56:63)

T(192,0:7) T(192,8:15) · · · T(192,56:63)

 .
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Now, for all 0 6 i 6 7, we load column 8i into the AVX register r_i. We
interpret these registers as forming a 32 × 8 byte matrix that we transpose in-
registers. This transposition is again performed in the spirit of the aforementioned
divide and conquer strategy and makes use of various speci�c AVX2 instructions.
We obtain the matrix

M0,0:7 M1,0:7 · · · M7,0:7 M64,0:7 M65,0:7 · · · M71,0:7 · · ·
M0,8:15 M1,8:15 · · · M7,8:15 M64,8:15 M65,8:15 · · · M71,8:15 · · ·

...
...

...
...

...
...

M0,56:63 M1,56:63 · · · M7,56:63 M64,56:63 M65,56:63 · · · M71,56:63 · · ·

 ,

where each avx_uint64_t register contains 4 consecutive columns. We save the
registers r_0, . . . ,r_7 at the addresses N, N + 4, N + 64, N + 68, N + 128, N + 132,
N + 192 and N + 196.

This operation is then repeated similarly: for each k = 1, . . . , 7, we build a
similar 32× 8 byte matrix from the columns k, 8 +k, . . . , 56 +k of T, and transpose
this matrix using the same algorithm. This time the result is saved at the addresses
N′, N′ + 4, N′ + 64, N′ + 68, N′ + 128, N′ + 132, N′ + 192 and N′ + 196, where
N′ := N + 8k. This yields an e�cient routine for transposing M into N, whose
prototype is given by

void packed_matrix_bit_256x64_transpose}

(uint64_t* N, (const avx_uint64_t *) M);

5.2.3 Frobenius encoding

If the input polynomial P has degree less than ` 6 60m and is in packed represen-
tation, then it can also be seen as a m× 60 matrix in packed representation (except
a padding with zeros could be necessary to adjust the size).

In this setting, the elements P̃i ∈ F260 of Algorithm 5.1 are simply read as the
rows of the matrix. Therefore, to compute the Frobenius encoding Fω(P ), we only
need to transpose this matrix, then add 4 rows of zeros for alignment (because we
store one element of F260 per quad word), and �nally multiply by twiddle factors.
This leads to the following implementation:

1 void encode (uint64_t* d, const uint64_t& m,

2 const uint64_t* P , const uint64_t& `) {

3 uint64_t c = 1, i = 0, e = 0;

4 avx_uint64_t v[64]; uint64_t w[256];

5 while (i < m) {

6 e = min (m - i, 256);

7 for (int j = 0; j < 64; j++)

8 load (v[j], P , `, i + m * j, e);

9 packed_matrix_bit_256x64_transpose (w, v);

10 for (int j = 0; j < e; j++) {

11 d[i + j] = f2_60_mul (w[j], c);

12 c = f2_60_mul (c, ω); }

13 i += e; }
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Remark 5.3. To optimize read accesses, it is better to run loop 7 for j < d`/me
and to initialize the remaining v[j] to zero. Indeed, for a product of degree d, we
typically multiply two polynomials of degree ' d/2, which means ` < 30m when
computing the direct transform.

The Frobenius decoding consists in inverting the encoding. The implementation
issues being the same, the reader should refer to the source code for further details.

5.3 Timings

In this section, we compare performances between the implementation from the pre-
vious section and other reference libraries. As references, we consider in particular
the gf2x library [BGTZ08], and the original F260-FFT from [HHL16a]. We also
compare with the additive FFT implementations by Chen et al.: the initial ver-
sion [CCK+17] using Kronecker substitution, and the improved version [LCK+18,
CCK+18] based on Frobenius DFTs.

The platform considered in this work is equipped with an Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4 memory. This CPU
features AVX2, BMI2 and CLMUL technologies (family number 6 and model num-
ber 94). The platform runs the Stretch GNU Debian operating system with a
64 bit Linux kernel version 4.3. We compile with GCC [GCC87] version 5.4. The
precise version of the software to be compared are the following:

• Mathemagix/justinline with svn revision 10681 (this work: Frobenius FFT
over F260). svn://scm.gforge.inria.fr/svn/mmx

• gf2x version 1.2 (July 2017). https://gforge.inria.fr/projects/gf2x/

• Mathemagix/justinline with svn revision 10663 (previous version: FFT
over F260 with Kronecker). svn://scm.gforge.inria.fr/svn/mmx

• bitpolymul with version from september 5, 2017 / commit cfb42ab (additive
FFT with Kronecker). https://github.com/fast-crypto-lab/bitpolymul

• bitpolymul2 with version from july 2nd, 2019 / commit 09cc6df (Frobenius
additive FFT)1. https://github.com/fast-crypto-lab/bitpolymul2

Frobenius encoding

Concerning the cost of the Frobenius encoding and decoding, the transposition
of 8 × 8 bit matrices (function packed_matrix_bit_8x8_transpose) takes about
20 CPU cycles when compiled with the sole -O3 option. With the additional op-
tions -mtune=native -mavx2 -mbmi2, the BMI2 version of Remark 5.2 takes about
16 CPU cycles. The vectorized version avx_packed_matrix_bit_8x8_transpose)

1Comparison with this work was not included in the paper [HLL17].

svn://scm.gforge.inria.fr/svn/mmx
https://gforge.inria.fr/projects/gf2x/
svn://scm.gforge.inria.fr/svn/mmx
https://github.com/fast-crypto-lab/bitpolymul
https://github.com/fast-crypto-lab/bitpolymul2
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Figure 5.1: Products in F2[X]<`, input size d`/64e quad words, timings in millisec-
onds.

transposes four packed 8× 8 bit matrices simultaneously in about 20 cycles, which
makes an average of 5 cycles per matrix.

It is interesting to examine the performance of the sole transpositions made
during the Frobenius encoding and decoding (that is discarding products by twiddle
factors in F260). From sizes of a few kilobytes this average cost per quad word
is about 8 cycles with the AVX2 technology, and it is about 23 cycles without.
Unfortunately the vectorization speed-up is not as close to 4 as we would have liked.

Since the encoding and decoding costs are linear, their relative contribution to
the total computation time of polynomial products decreases for large sizes. For
two input polynomials in F2[X] of 216 quad words, the contribution is about 15%;
for 222 quad words, it is about 10%.

Polynomial product

Figure 5.1 gives timings in milliseconds for multiplying two polynomials in F2[X]<`,
hence each of input size d`/64e quad words (indicated in abscissa). The results are
obtained from justinline/bench/polynomial_f2_bench.mmx. The �gf2x� curve
corresponds to the library with the same name. The �F260 (Fr)� curve corresponds
to FFTs in F260 with Frobenius encoding (this work). The �F260 (KS)� curve
corresponds to the previous version with Kronecker substitution [HHL16a]. The
�AFFT (KS/Fr)� curves correspond to the additive FFT strategy, with Kronecker
substitution [CCK+17] and Frobenius FFT [LCK+18, CCK+18] respectively.

The previous implementation F260 (KS) was faster than version 1.1 of gf2x,
but is now of speed similar to version 1.2. The additive FFT strategy (Kronecker
substitution) achieves a noticeable speed-up in favorable cases, but because of its
staircase-e�ect its runtime is roughly similar to the one of gf2x in average.

The new implementation based on the Frobenius FFT is faster than the one
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based on Kronecker substitution, with a speed-up that is not far from the factor
of 2 predicted by the complexity analysis. Notice that the same is also true for the
Additive FFT strategy: the Frobenius version is about twice as fast as the Kronecker
substitution version. Also, the two Frobenius-based implementation (F260 (Fr) and
AFFT (Fr)) achieve similar performances. Let us mention that the F260 (Fr) imple-
mentation becomes faster than gf2x for input sizes larger than 2048 quad words
(d`/64e > 2048).

Polynomial matrix product

As in [HHL16a], one major advantage of DFTs over the �eld F260 is the compactness
of the evaluated FFT-representation of polynomials. This makes linear algebra over
F2[X] particularly e�cient: instead of multiplying r × r matrices over F2[X]<`

naively by means of r3 polynomial products of degree < `, we use the standard
evaluation-interpolation approach. In our context, this comes down to:

1. computing the 2r2 Frobenius encodings followed direct DFTs of all entries of
the two matrices to be multiplied

2. performing the ≈ 2`/60 products of r × r matrices over F260

3. computing the r2 inverse DFTs and Frobenius decodings of the so-computed
matrix products.

Timings for matrices over F2[X] are are reported in Table 5.1; The related
code is found in justinline/bench/matrix_polynomial_f2_bench.mmx. The row
�Evaluation-interpolation� corresponds to the above fast approach (within our im-
plementation). The row �naive� is obtained by doing r3 polynomial multiplications
using gf2x. This con�rms the practical gain even for rather small matrices.

Notice that the evaluation-interpolation method can be used similarly with the
additive FFT as implemented by bitpolymul. Besides Schönhage's algorithm,
gf2x also implements an additive FFT, which is used within the cado-nfs soft-
ware [CAD17] for polynomial matrix products. In principle, even Schönhage's algo-
rithm can be combined with an evaluation-interpolation approach for matrix prod-
ucts [Hoe10, Section 2], but the implementation e�ort would be considerable.

r 1 2 4 8 16 32
Evaluation-interpolation 12 51 212 896 3969 18953

Naive 22 182 1457 11856 92858 745586

Table 5.1: Products of r× r matrices over F2[X], for degree 64 · 216, in milliseconds.

5.4 Extension to other �nite �elds

As an attempt of generalization, let us brie�y discuss in which cases the new tech-
niques could apply. This can be useful if one wants to multiply polynomials over
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another small �nite �eld (for example in characteristic > 2). Moreover, processor
architecture might have increased word size in the future, then there could be better
choices of extension �eld than F260 to multiply polynomials in F2[X].

The �eld F260 was initially chosen [HHL16a] because its order 260 − 1 is smooth
(a consequence of 60 being smooth), and because the polynomial (Z61− 1)/(Z − 1)

is irreducible over F2 (which gives a privileged representation of F260 for e�cient
arithmetic). �Fortunately�, it turned out that the Frobenius FFT also adapted
especially well: there is a primitive 61-th root of unity θ, and 〈θ〉 has two orbits for
the action of the Frobenius map (the trivial orbit {1}, and the orbit {θ, . . . , θ60} of
size 60 = [F260 : F2]). Notice that it corresponds to the �full Frobenius action� case
from section 4.2.3.

In fact, the reason why F260 was chosen in the �rst place is precisely why the
Frobenius FFT works so well. First, recall that if d+1 is prime and not a divisor of q,
then d+ 1 divides qd−1 by Fermat's theorem, so that there is a primitive (d+ 1)-th
root of unity θ ∈ Fqd . Also, the polynomial (Zd+1−1)/(Z−1) is irreducible over Fq
if and only if its roots θ, . . . , θd are conjugates for the action of φq; in other words
if 〈θ〉 has two orbits for the action of the Frobenius map (the trivial orbit {1}, and
the orbit {θ, . . . , θd} of size d = [Fqd : Fq]). Notice that this is also equivalent to q
being a generator of (Z/(d+ 1)Z)×, which is easy to check.

Remark 5.4. It is always possible to choose θ = Z modµ(Z) where µ is the de�ning
polynomial µ(Z) := (Zd+1 − 1)/(Z − 1). Indeed, let ξ be a primitive (qd − 1)-th
root of unity in Fqd , and let α := ξ(qd−1)/(d+1). By de�nition, θ and α are primitive
(d+ 1)-th roots, i.e. roots of µ. Since all roots of µ are conjugates under the action
of φq, there is k ∈ N such that θ = φkq (α). Now let ζ := φkq (ξ). By construction, ζ
is a primitive (qd − 1)-th root of unity in Fqd and we have

ζ(qd−1)/(d+1) = θ = Z modµ(Z) .

In fact, this is how the root ζ := Z18 + Z6 + 1 mod µ(Z) as in (5.3) was found
for F260 ; initially, the paper [HHL16a] used the root ξ := Z3 + Z + 1 mod µ(Z).

Summarizing, the variant of the Frobenius DFT described in section 5.1.1 will
work similarly in the extension [Fqd : Fq] if d + 1 is prime and does not divide q,
and q generates (Z/(d + 1)Z)×. Also, d should be chosen smooth for the FFT
over Fqd to be e�cient. For example, candidates for multiplication in F2[X] with
128/256/512-bits architectures are:

128-bits F2100

256-bits F2210

512-bits F2460 , or F2490 but the order is not as smooth.

Unfortunately, these do not �t as tightly as F260 in the corresponding machine word.
Notice that F2106 , F2226 , F2466 and F2508 would also work but the order is not smooth
(only 3 prime factors < 10000).
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Note. This chapter introduces the formalism common to Chapters 7 and 8; the
corresponding results were published in [HL18a] and [HL19a] respectively.

In this chapter and the next two, we consider an algebra A := K[X1, . . . , Xr]/I,
where I is a �nitely generated ideal. For actual computations in A, we have three
main tasks:

T1 de�ne a non-ambiguous representation for elements in A;

T2 design a multiplication algorithm for A;

T3 show how to convert between di�erent representations for elements in A.

Fast polynomial arithmetic based on FFT-multiplication allows for a quasi-optimal
solution in the univariate case, because the ring K[X] is principal so

I = 〈P (0), . . . , P (`)〉 = gcd(P (0), . . . , P (`)) ·K[X] .

Therefore, computations in A as above reduce to GCD computations and Euclidean
divisions, which are quasi-optimal. However, K[X1, . . . , Xr] is no longer principal if
r > 1 so reduction modulo an ideal of multivariate polynomials is non-trivial.
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The most common approach for computations modulo ideals of polynomials
is based on Gröbner bases (a short presentation is given next in section 6.1). This
immediately solves the �rst task, using the fact that any polynomial admits a unique
normal form modulo a given Gröbner basis [Buc65]. The second task is solved by
reducing the product of two polynomials modulo the Gröbner basis. Finally, given
a Gröbner basis with respect to a �rst term ordering, one may use the FGLM
algorithm [FGLM93] to compute a reduced Gröbner basis with respect to a second
term ordering; algorithms for the corresponding conversions are obtained as a by-
product.

Most (if not all) currently known fast algorithms for Gröbner basis computations
rely on linear algebra. At this point, one may wonder whether there is an intrinsic
reason for this fact, or whether quasi-optimal FFT-based arithmetic might be used to
accelerate Gröbner basis computations (after all, this is a problem on polynomials!).
Instead of directly addressing this di�cult problem, one may investigate whether
such accelerations are possible for simpler problems in this area. One good candidate
for such a problem is the reduction of a polynomial P with respect to a �xed reduced
Gröbner basis G := (G(0), . . . , G(n)). In that case, the algebra A is given once and
for all, so it becomes a matter of precomputation to obtain G and any other data
that could be useful for e�cient reductions modulo G.

One step in this direction was made in [Hoe15]. Using relaxed multiplication
[Hoe02], it was shown that the reduction of P with respect to G can be computed
in quasi-linear time in terms of the size of the equation

P = Q(0)G(0) + · · ·+Q(n)G(n) +R .

However, even in the case of bivariate polynomials, this is not necessarily optimal.
To see the reason for this fact, consider A := K[X,Y ]/I, where I is an ideal generated
by two generic polynomials of total degree δ. Then dimKA = δ2, but the Gröbner
basis for I with respect to the usual total degree ordering contains δ+1 polynomials
with Θ(δ2) coe�cients. This means that we need Θ(δ3) space, merely to write
down G. One crucial prerequisite for even faster algorithms is therefore to design a
terser representation for Gröbner bases; section 6.2 sketches the main ideas of the
proposed solution.

Structure of this chapter. First of all, section 6.1 gives a general presentation
of Gröbner bases, to introduce the required de�nitions and provide some context
for the contributions. Then, section 6.2 explains the techniques at the core of the
new algorithms. Also, section 6.3 shows brie�y how the results of Chapters 7 and 8
compare with each other. Finally, section 6.4 reviews the classical algorithmic tools
that will be needed in the complexity analysis.

6.1 Introduction to Gröbner basis theory

This section aims to recall generalities about Gröbner bases and some useful no-
tations. More details can be found in [GG13, Chapter 21] or [BW93, CLO92] and
references therein.



6.1. Introduction to Gröbner basis theory 79

6.1.1 De�nition and basic properties

Let M := {Xi1
1 · · ·Xir

r : i1, . . . , ir ∈ N} denote the set of monomials in r vari-
ables. A monomial ordering ≺ is a total well-order on M that is compatible with
multiplication; that is M1 4M1M2 for any monomials M1,M2 ∈M.

Given a polynomial in r variables P =
∑

M∈M PMM ∈ K[X1, . . . , Xr], its sup-
port suppP is the (�nite) set of monomials M ∈ M with PM 6= 0. If P 6= 0,
then suppP admits a maximal element for ≺ that is called its leading monomial
denoted by lm(P ). If M ∈ suppP , then we say that PMM is a term in P ; in
particular the leading term is the term corresponding to the leading monomial
(lt(P ) := Plm(P ) lm(P )).

Given a tuple A := (A(0), . . . , A(n)) of polynomials in K[X1, . . . , Xr], we say
that P is reduced with respect to A if suppP contains no monomial that is a multiple
of the leading monomial of one of the A(i). Otherwise, a family (Q(0), . . . , Q(n), R)

such that

P = Q(0)A(0) + · · ·+Q(n)A(n) +R and R is reduced w.r.t. A (6.1)

is called an extended reduction of P ; the polynomials Q(i) are called the quotients
and R is the remainder. In this case, we also say that P reduces to R. Such an
extended reduction always exist, because of the following naive algorithm (notice
that it is not unique because of the arbitrary choice in line 4) :

Algorithm 6.1. Naive reduction of a multivariate polynomial

Input: A polynomial P and a tuple of polynomials A := (A(0), . . . , A(n)).
Output: An extended reduction (Q(0), . . . , Q(n), R) as in (6.1).

1: Set (Q(0), . . . , Q(n), R) := (0, . . . , 0) and S := P

2: while S 6= 0 do . lt(S) decreases strictly at each step
3: if ∃i : lm(A(i)) divides lm(S) then

4: Choose one such i.
5: Set T := lt(S)/ lt(A(i)).
6: Update Q(i) += T and S −= TA(i).
7: else

8: Update R+= lt(S) and S −= lt(S).
9: end if

10: end while

11: return (Q(0), . . . , Q(n), R)

A Gröbner basis of an ideal I is a �nite family G := (G(0), . . . , G(n)) ⊂ I such
that if P is reduced with respect to G and P ∈ I, then P = 0. In particular, it
implies that the remainder is unique and we call it the normal form of P : if

P = Q(0)G(0) + · · ·+Q(n)G(n) +R = Q̃(0)G(0) + · · ·+ Q̃(n)G(n) + R̃

are two extended reductions of P , then

R− R̃ = (Q̃(0) −Q(0))G(0) + · · ·+ (Q̃(n) −Q(n))G(n)
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is an element of I that is reduced with respect to G, that is R − R̃ = 0. Also,
any polynomial P ∈ I reduces to 0 with respect to G; this provides a test for ideal
membership.

Remark 6.1. There is another de�nition of Gröbner bases: a Gröbner basis is a
�nite family G := (G(0), . . . , G(n)) such that the ideals 〈lt(G(0)), . . . , lt(G(n))〉 and
〈(lt(P ))P∈I〉 coincide. For polynomials with coe�cients in a �eld, the two de�ni-
tions are equivalent. For polynomials with coe�cients in a ring, they correspond
respectively to the notions of strong and weak Gröbner bases [Möl88].

The similar concept of standard bases was introduced by Hironaka [Hir64] for
multivariate power series; the de�nition of Gröbner bases as above is due to Buch-
berger [Buc65], he named them after his thesis advisor. In both cases, the de�nition
was accompanied by a proof that such bases actually exist.

6.1.2 Classical algorithms

The �rst algorithm to compute Gröbner bases, due to Buchberger [Buc65], is as
follows. First, for any A,B ∈ K[X1, . . . , Xr], de�ne their S-polynomial

S(A,B) :=
lcm(lm(A), lm(B))

lt(A)
A− lcm(lm(A), lm(B))

lt(B)
B .

Then, initialize a partial basis G with the generators of the ideal (given as input).
Now, compute all S-polynomials for elements of G and reduce them with respect
to G; the remainders that are not zero are added to G. Finally, repeat this last step
until all S-polynomials reduce to 0. More formally (see [GG13, Theorem 21.34] for
a correctness proof):

Algorithm 6.2. Buchberger's algorithm

Input: A family of polynomials P (0), . . . , P (`).
Output: A Gröbner basis of the ideal I := 〈P (0), . . . , P (`)〉
1: Set G := (P (0), . . . , P (`)).
2: while true do

3: Write G = (G(0), . . . , G(k)).
4: for 0 6 i < j 6 k do

5: Set R := S(G(i), G(j)) remG.
6: if R 6= 0 then add R to G.
7: end if

8: end for

9: if #G = k then return G. . No S-polynomial was added
10: end if

11: end while

Re�nements of this algorithm reduce the number of critical pairs to be considered
at each step, by eliminating the S-polynomials that are known a priori to reduce to 0

[Buc79]. Also, it was noticed that the runtime of the algorithm strongly depends on
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the order in which the pairs are considered; there are di�erent strategies to choose
an appropriate order [GMN+91].

Faugère's F4 algorithm [Fau99] improves this again by expressing the reduc-
tion of S-polynomials as a linear algebra problem. This allows us to handle several
S-polynomials at once, and to implement the algorithm more e�ciently (linear alge-
bra is easier to optimize than polynomial arithmetic, especially in the sparse case).
In this algorithm, many S-polynomials are still reduced to 0, then the F5 algo-
rithm [Fau02] aims to spare some of these computations with additional criteria
to eliminate more critical pairs; a reference implementation is found in the FGb
software [Fau10]. At the time of writing, many computer algebra systems, such as
Macaulay2 [GS], Magma [BCP97] or Maple [MGH+05] implement at least one
of F4 or F5 algorithms. Other systems like Singular [DGPS17] feature a highly
optimized implementation of Buchberger's algorithm.

Remark 6.2. The monomial ordering ≺ plays also an important role in the com-
plexity of Gröbner basis algorithms. In general, the degree reverse lexicographic
order gives the fastest computation, while the lexicographic order is the hardest to
solve [BS88]. On the other hand, the lexicographic basis often provides the most
information about the actual solutions of the system. In practice, to compute the
lexicographic basis, one rather starts with the degree reverse lexicographic one, then
uses a Gröbner walk [CKM97] or FGLM algorithm [FGLM93] to change the mono-
mial ordering.

Although the problem of computing a Gröbner basis requires exponential space
in the worst case [May89], it is actually tractable for many practical instances, and
the computer algebra systems mentioned previously generally give a result within
acceptable time. In fact, Faugère's algorithms are very e�cient if the system has
su�cient regularity. In this case, as mentioned in section 1.2.2, we have bounds of

O

(
rD

(
r +D

D

)Ω
)

and O

(
r(3δ3)r

δ

)
(6.2)

�eld operations for F4 and F5 respectively [BFS14], whereD is the Macaulay bound,
Ω is the exponent of matrix multiplication, and δ is the degree of the input polyno-
mials. Notice that this is polynomial in terms of the expected output size.

6.1.3 Case of bivariate systems

The zero set of a bivariate polynomial in R[X,Y ] is a plane algebraic curve; then
a bivariate system corresponds to the intersection of two curves. The solution of
such systems has been extensively studied from a numerical point of view, see for
example [BK12, GVK96, GVN02, DET09]. From a complexity point of view, a
bound of O(δ8 + δ7τ) bit operations has been established in [ES12], where τ is
the bit size of input coe�cients). The bound was later improved to Õ(δ6 + δ5τ)

deterministic, or Õ(δ5 + δ4τ) probabilistic Las Vegas [BLM+16]. For non-singular
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solutions, a better bound of Õ(δ(Ω+7)/2+δ(Ω+5)/2τ) bit operations (deterministic), or
Õ(δ4+ε+δ3+ετ) (probabilistic) has been established in [LMS13]. Also, the algebraic
complexity is Õ(δ3) by this last paper.

It is also interesting to observe what the bounds (6.2) for Gröbner basis algo-
rithms become in this case. Setting r := 2, we obtain O(δ2Ω+1) for F4 and O(δ5)

for F5 (experimentally, the actual runtime is in fact slightly above cubic). Similarly,
the bound for the Kronecker solver [GLS01] (geometric resolution) becomes Õ(δ6),
or O(δ3+ε) for the variant from [HL18b]. Notice that the latter bound assumes fast
modular composition, which impairs its practicality as mentioned earlier. Since elim-
ination methods and geometric resolution are based on this tool, recall the bound
O(δ(3−1/Ω)(1+ε)) for the generic bivariate resultant [Vil18]. An implementation of
this last algorithm has been proposed in [HNS19].

6.2 Reduction of large polynomials in two variables

In this chapter and the next two, the polynomials de�ning I have a �xed number of
variables and their degrees becomes large. (Another possibility would be to consider
�xed degrees and an increasing number of variables, but polynomial arithmetic is
less e�cient in this setting.) More precisely, we will only consider the �rst non-trivial
case of two variables X,Y . We then wish to compute in the ring A := K[X,Y ]/I.

In the following, G := (G(0), . . . , G(n)) is a Gröbner basis of I with respect to
a (possibly weighted) degree lexicographic order, and ordered such that the leading
monomials have increasing degree in X (and decreasing degree in Y ).

Recall that a major obstruction in designing quasi-optimal algorithms is the size
of the Gröbner basis: if I is generated by two generic polynomials of total degree δ,
then dimKA = δ2, but we need Θ(δ3) space merely to write down G. As shown in
Chapters 7 and 8, it is possible to compress the relevant information within Õ(δ2)

space. For both chapters, the compression relies essentially on the same techniques.
This section aims to give the intuition behind these new techniques.

6.2.1 The dichotomic selection strategy

When reducing a multivariate polynomial, its terms are reduced one after the other
against some basis element. As mentioned in Algorithm 6.1, there may be several
possibilities to choose this basis element. When this happens, the usual strategy
is to select the �rst valid choice, however this strategy gives quotients all with
roughly the same degree. It would be better if we could control the degrees of the
quotients. Ideally, we want to ensure that most quotients are very small and only
a few have potentially high degree (the exact bounds may be di�erent depending on
the situation).

To do so, we assume that the leading monomials of the Gröbner basis have
a certain regularity, and we introduce the so-called dichotomic selection strategy.
Recall that the 2-adic valuation of an integer i is the largest λ ∈ N such that 2λ

divides i; the usual notation is λ = val2(i). The idea of the dichotomic selection
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗

0

2
4

6
8

n

Figure 6.1: The dichotomic selection strategy.

strategy is to reduce each monomial preferably against one end of the Gröbner
basis (G(0) or G(n)), or the G(i) such that i has the highest 2-adic valuation. More
precisely, the selection strategy is determined by the following function ΦG on terms:

ΦG(τ) :=


(0, τ/ lt(G(0))) if lt(G(0)) divides τ
(n, τ/ lt(G(n))) if lt(G(n)) divides τ (and lt(G(0)) does not)
(i, τ/ lt(G(i))) if lt(G(i)) divides τ with val2(i) maximal
(−1, τ) if no lt(G(i)) divides τ

Notice that this de�nition is non-ambiguous: there is only one index i with val2(i)

maximal such that lt(G(i)) divides τ . Indeed, if i < j have the same valuation λ,
then there is some k with i < k < j and val2(k) > λ. Moreover, if lt(G(i)) and
lt(G(j)) both divide τ , then so does lt(G(k)), because

degX τ > degX lt(G(j)) > degX lt(G(k)) ,

degY τ > degY lt(G(i)) > degY lt(G(k)) .

This dichotomic selection strategy is illustrated in Figure 6.1. White dots (©)
represent the leading term of each basis element. The asterisks (∗) below the stair
denote monomials that are already in normal form with respect to G (i.e. the
canonical basis of A). Finally, the areas above the stair are the sets of terms that
will be reduced against each given basis element: the area labelled with the number i
contains the monomials that are reduced against G(i).

6.2.2 Truncated Gröbner basis elements

The second ingredient is to truncate to an appropriate precision each basis element,
according to the degree bounds established before. The goal is to keep as little
information as possible and still be able to perform the operation e�ciently. For
example over the integers, we may notice that the quotient

125 231 546 432 quo 12 358 748 151 = 10

depends only on the three most signi�cant digits of each operand.



84 Chapter 6. Towards faster polynomial reduction

Q3 Q3G(3) G(3,#)

Figure 6.2: Truncated Gröbner basis elements.

Similarly, consider an extended reduction of multivariate polynomials as in (6.1).
If we know that degQ(i) 6 δ, then Q(i) depends only on the terms of G(i) with degree
at least degG(i)−δ and the remaining terms may be discarded. This allows to store
signi�cantly fewer coe�cients, as shown for example in Figure 6.2. Black dots (•)
represent the terms in the basis element (here G(3)) and its truncated analogue
(denoted G(3,#)). Again, white dots represent the leading monomials of each G(i).

These truncated elements constitute the �rst part of the compressed represen-
tation of the Gröbner basis.

6.2.3 Rewriting the equation

The third idea is to rewrite equation (6.1). to ensure that the �nal result is correct
despite the aforementioned truncations. This is done by keeping track of the rela-
tions that exist among the G(i): recall that G contains far more coe�cients than
the two generators of I, so there must be some redundancy.

For example, Figure 6.3 shows the substitutions that happen in the algorithm
of Chapter 7. Initially, equation P = Q(0)G(0) + · · · + Q(n)G(n) + R involves every
element in the basis. Using linear combinations among the basis elements, about
half of the terms are replaced, to keep only those with even indices (plus 0, 1, n

for technical reasons). The coe�cients in the linear combinations are polynomials
C(1,i,j) ∈ K[X,Y ] of small degree δ. Then, the number of terms is halved again and
only indices that are multiples of 4 remain; now the coe�cients C(2,i,j) are a bit
larger, with degree 2δ. Repeating this dlog ne times, we are left with the formula

P = S(0)G(0) + S(1)G(1) + S(n)G(n) +R ,

where S(0), S(1), S(n) are linear combinations of Q(0), . . . , Q(n). Now this equation
has su�ciently few terms to be evaluated directly. The substitutions used in the
algorithm of Chapter 8 have a di�erent shape but they serve the same purpose.

The collection of coe�cients C(`,i,j) as above allow to compute S(0), S(1), S(n)

from Q(0), . . . , Q(n). These coe�cients constitute the second part of the compressed
representation of the Gröbner basis.
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Figure 6.3: Rewriting the equation.

6.3 Summary of the results

The results from chapters 7 and 8 may seem similar at �rst: both give reduction
algorithms with Õ(dimKA+ |P |) complexity, and both use the techniques described
in the previous section. However, there are certain fundamental di�erences that
need to be outlined.

Chapter 7 de�nes a class of so-called vanilla Gröbner bases, that verify certain
regularity assumptions for the reduction algorithm to work. Experimentally, it turns
out that for many types of input polynomials and many monomial orderings, the
resulting basis is vanilla. Such bases admit a terse representation that may be
precomputed once, then it becomes faster to obtain the normal form of any given
polynomial. Since this precomputation is rather expensive, one must perform many
operations in A before the initial cost is amortized.

Chapter 8 considers only the degree-lexicographic order, and requires the support
of the input polynomials to match this ordering. In this case, the corresponding basis
is not vanilla and has no terse representation. Yet the structure of the system allows
us to construct a concise representation, with the same advantages. The major
di�erence is that obtaining the concise representation is possible with quasi-optimal
complexity from the input polynomials.
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Moreover, the structures of terse and concise representations are slightly di�er-
ent. The design of the reduction algorithm also varies between the two settings,
in fact the algorithm from Chapter 8 is more complicated. These details will be
treated more extensively in the corresponding chapters.

Summarizing, the results from chapters 7 and 8 are in fact complementary. On
the one hand, the algorithm from Chapter 7 applies to a wider variety of settings, but
it requires expensive precomputation. On the other hand, the result of Chapter 8
is considerably stronger because there is no precomputation this time, but its scope
is more restrictive. Notice also that the hypotheses of the two chapters cannot be
satis�ed simultaneously.

6.4 Algorithmic prerequisites

In this section, we quickly review some fundamental operations on polynomials
that will be useful for the reduction algorithms in the next chapters. Notice that
complexity results presented in this section are not speci�c to the bivariate case.

6.4.1 Polynomial multiplication

Recall the notation M(d) for the cost of multiplying two dense univariate polynomials
of degree d in K[X]. As seen in Section 2.3.3, multiplication of �block� polynomials
in several variables reduces to the univariate case through Kronecker substitution.
However, we need to manipulate polynomials with more general supports, typically
the truncated bivariate polynomials from section 6.2.2.

Such polynomials are in fact dense polynomials in K[X,Y ] whose supports are
contained in sets of the form Sl,h := {M ∈ M : l 6 degM 6 h}. Modulo
the change of variables XaY b 7→ T h−a−bU b, such a polynomial can be rewritten
as P (X,Y ) = P̃ (T,U), where P̃ ∈ K[T,U ]degT6h−l,degU6h is a block polynomial.
Notice that the block has size (h − l + 1) × (h + 1), which is essentially the size
of Sl,h. For a product of two truncated polynomials with a support of size d, this
means that the product can again be computed in time O(M(d)).

6.4.2 Relaxed multiplication

For the above polynomial multiplication algorithms, we assume that the input poly-
nomials are entirely given from the outset. In speci�c settings, the input polynomials
may be only partially known at some point, and it can be interesting to anticipate
the computation of the partial output. This is particularly true when working with
formal power series f = f0 + f1z + · · · ∈ K[[z]] instead of polynomials, where it is
common that the coe�cients are given as a stream.

In this so-called �relaxed� (or �online�) computation model, the coe�cient (fg)d
of a product of two series f, g ∈ K[[z]] must be output as soon as f0, . . . , fd and
g0, . . . , gd are known. This model has the advantage that subsequent coe�cients
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fd+1, fd+2, . . . and gd+1, gd+2, . . . are allowed to depend on the result (fg)d. This of-
ten allows us to solve equations involving power series f by rewriting them into recur-
sive equations of the form f = Ψ(f), with the property that the coe�cient Ψ(f)d+1

only depends on earlier coe�cients f0, . . . , fd for all d. For instance, in order to invert
a power series of the form 1+zg with g ∈ K[[z]], we may take Ψ(f) = 1−zfg. Sim-
ilarly, if K has characteristic zero, then the exponential of a power series g ∈ K[[z]]

with g0 = 0 can be computed by taking Ψ(f) = 1 +
∫
fg′.

From a complexity point of view, let R(d) denote the cost of the relaxed multipli-
cation of two polynomials of degree< d. The relaxed model prevents us from directly
using fast �zealous� multiplication algorithms from the previous section; those being
typically based on FFT-multiplication. Fortunately, it was shown in [Hoe02, FS74]
that

R(d) = O (M(d) log d) . (6.3)

This relaxed multiplication algorithm admits the advantage that it may use any zeal-
ous multiplication as a black box. Through the direct use of FFT-based techniques,
the following bound has also been established in [Hoe14]:

R(d) = d log deO(
√

log log d) .

We make the same usual assumptions (R(d)/d is increasing and R(2d) = O (R(d)))
as for classical multiplication. This implies in particular that R(d)+R(e) 6 R(d+e).
It is also natural to assume that M(d) 6 R(2d), since ordinary multiplications can
be done in a relaxed manner.

6.4.3 Multivariate polynomial reduction

The computation of an extended reduction as in Algorithm 6.1 is a good example of
a problem that can be solved e�ciently using relaxed multiplication and recursive
equations [Hoe15]. With an appropriate change of variable and Kronecker substi-
tution, we may transform P ∈ K[X1, . . . , Xr] into P̃ ∈ K[Z] where the coe�cients
of P appear in P̃ in decreasing order with respect to ≺. In other words, there is a
decreasing function σP :M→ Z such that σP (lmP ) = 0 and PM = P̃σP (M). Now,
the extended reduction as in equation (6.1) may be rewritten as a recursive equation
on power series

(Q̃(0), . . . , Q̃(n), R̃) = ΨP,A(Q̃(0), . . . , Q̃(n), R̃) .

For a multivariate polynomial T with dense support of any of the types discussed
in section 6.4.1, let |T | denote a bound for the size of its support. In this case, the
extended reduction can be computed by [Hoe15] in time

R(|Q(0)A(0)|) + · · ·+ R(|Q(n)A(n)|) +O(|R|). (6.4)

This implies in particular that the extended reduction can be computed in quasi-
linear time in the size of the equation P = Q(0)A(0) + · · ·+Q(n)A(n) +R. However,
recall that this equation is in general much larger than the input polynomial P .
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As mentioned in section 6.2.1, there are various selection strategies that may
lead to di�erent quotients, and in particular the size of their support depends on
the chosen strategy. The initial formulation [Hoe15] assumed the simple strategy
�select the �rst valid choice�; mutatis mutandis, the results remain correct with any
selection strategy (in particular the dichotomic one from section 6.2.1).

Remark 6.3. The results from [Hoe15] were actually stated for more general types
of supports, and not only those discussed in section 6.4.1. However, it relies on a
multivariate generalization of the relaxed multiplication, so bound (6.4) is only valid
with R as in (6.3).

On the other hand, with su�ciently dense supports (like the truncated bivariate
polynomials from section 6.2.2), the equivalence with univariate arithmetic as in the
beginning of this subsection is more straightforward, then any fast relaxed algorithm
could be used.

For comparison, assume again the setting of an ideal generated by two bivariate
polynomials of degree δ. As a naive algorithm, one may precompute the matrix
of size O(δ2)×O(δ2) corresponding to the linear map of reduction to normal form
(assuming input of degree at most 2δ for example). Then actually computing a
normal form boils down to a matrix-vector product of cost O(δ4). Since the product
of two normal forms can be computed in quasi-linear time Õ(δ2), it follows that
multiplications in A take time O(δ4). Similarly, changes of monomial orderings
lead to δ2 × δ2-matrices for representing the corresponding base changes. Naive
conversions can then be performed in time O(δ4).

Summarizing, the naive algorithm has complexity O(δ4) for each of the three
tasks given at the beginning of this chapter. The bound (6.4) reduces the complexity
to Õ(δ3). The next two chapters will give Õ(δ2) algorithms (which is quasi-optimal),
under certain regularity assumptions.
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Note. The results in this chapter were published in [HL18a]. A proof-of-concept
implementation of the algorithms for SageMath is available at
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip.

This chapter presents a �rst situation where it is actually possible to perform
polynomial reductions with quasi-optimal complexity. For simplicity, we will restrict
our attention to bivariate polynomials and to ideals that satisfy suitable regularity
conditions; the concept of a �vanilla Gröbner basis� captures the assumptions that
are needed for the new algorithms.

For such bases, it is possible to precompute a more compact description called
the terse representation, that holds all necessary information in Õ(dimKA) space.
Given this terse representation, a polynomial of degree d can be reduced in normal
form in Õ(d2 + dimKA) operations. In particular, multiplication in A can be done
in time Õ(dimKA), which is intrinsically quasi-optimal. Similarly, one can convert
between normal forms with respect to vanilla Gröbner bases for di�erent monomial
orderings in time Õ(dimKA): the idea is based on a Gröbner walk [CKM97] with a
logarithmic number of intermediate monomial orderings.

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
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7.1 Vanilla Gröbner bases

As mentioned earlier, various monomial orderings are suitable for Gröbner basis
computations. It is convenient to restrict our attention to a speci�c type of bivariate
monomial ordering; the following order will allow us to explicitly describe certain
Gröbner stairs and to explicitly compute certain dimensions.

De�nition 7.1. Let k ∈ N \ {0}. We de�ne the k-degree of a monomial XaY b with
a, b ∈ N by

degk(X
aY b) = a+ kb .

Similarly, the k-order is the monomial order ≺k such that

XaY b ≺k XuY v ⇔
{

either a+ kb < u+ kv ,

or a+ kb = u+ kv and a < u .

The k-order ≺k is also known as the weighted degree lexicographic order for the
weight vector (1, k). Similarly, ≺1 corresponds to the usual total degree order.

In the following, k is �xed and G = (G(0), . . . , G(n)) is the reduced Gröbner basis
of some zero-dimensional ideal I ⊂ K[X,Y ] with respect to the k-order ≺k. Also,
the degree of the ideal denotes the dimension of A := K[X,Y ]/I as a K vector space,
for simplicity we de�ne D := dimKA.

7.1.1 Vanilla Gröbner stairs

Let NG be the set of monomials XaY b that are in normal form with respect to G. In
other words, NG corresponds to the set of D monomials �under the Gröbner stair�.
For a su�ciently generic ideal of degree D, we expect NG to consist exactly of the
smallest D elements ofM with respect to ≺k.

De�nition 7.2. We say that the leading monomials of G form a vanilla Gröbner
stair if NG coincides with the setMk,D of the D smallest elements ofM for ≺k.

Figure 7.1 shows an example of a Gröbner basis whose leading monomials form
a vanilla Gröbner stair (white dots (©) represent the leading monomials of G, and
asterisks (∗) represent monomials in NG). We observe that the stair admits almost
constant slope k. In fact, the setMk,D can be described explicitly:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

Figure 7.1: A vanilla Gröbner stair with respect to ≺4.
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Proposition 7.1. Let I be an ideal of degree D with Gröbner basis G for ≺k with
k > 2. Assume that the leading monomials of G form a vanilla Gröbner stair and
de�ne1

n :=

⌈√
8D/k + 1− 1

2

⌉
,

u := D − kn(n− 1)

2
,

q := u quon,

r := u remn.

Then G has n+ 1 elements G(0), . . . , G(n) and for 0 6 i 6 n, the leading monomial
of G(i) (denoted by Mi) can be expressed in terms of n, k, q, r. Assuming the basis
elements are ordered such that the Mi's have increasing degree in the variable X, we
have:

• M0 = Y n.

• For all i ∈ {1, . . . , r}, Mi = Xq+k(i−1)+1Y n−i.

• For all i ∈ {r + 1, . . . , n}, Mi = Xq+k(i−1)Y n−i.

Proof. With this expression of Mi, we �rst notice that this sequence M0, . . . ,Mn

can indeed be the leading monomials for a reduced Gröbner basis, that is Mi does
not divide Mj for any i 6= j. This is clear for (i, j) 6= (1, 0), so let us prove that M1

does not divide M0. We have D = kn′(n′ + 1)/2 with n′ :=
(√

8D/k + 1− 1
)
/2,

so that
kn(n− 1)

2
< D 6

kn(n+ 1)

2
.

In particular, this implies u > 0, whence q > 0 or r > 0.
It remains to prove that the sequence M0, . . . ,Mn form a vanilla Gröbner stair

for degree D ideal as claimed. Notice that a monomial XaY b is under the stair
M0, . . . ,Mn (i.e. in normal form w.r.t. G) if and only if b < n and XaY b does not
divide Mn−b (that is a < q+k(n− b− 1) + 1). Knowing this, it is not hard to check
that there are D monomials under the stair, and that a monomial M is under the
stair if and only if M ≺k Mr+1.

Corollary 7.2. Let G = (G(0), . . . , G(n)) be as above, and let Mi be the leading
monomial of G(i) for 0 6 i 6 n. With q, r as in Proposition 7.1, the k-degree of Mi

is given by

degkMi =


kn if i = 0 ,

k(n− 1) + q + 1 if 0 < i 6 r ,

k(n− 1) + q if r < i 6 n .

In particular, for all i ∈ {1, . . . , n}, we have

degkMi 6 degkMi−1, and degkM1 − 1 6 degkMi 6 degkM1.
1In the example of Figure 7.1, the parameters are D = 100 and k = 4, hence (n, q, r) = (7, 2, 2).
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Remark 7.1. The results of Proposition 7.1 and Corollary 7.2 remain valid for ≺1

with some precautions: if r > 1, one has to leave out G(r) since Mr is divisible by
Mr+1 with the given formulas. Then G consists of n elements

G(0), . . . , G(r−1), G(r+1), . . . , G(n) .

Knowing the shape of the stair, it is now possible to bound the degrees of the
quotients obtained with the dichotomic selection strategy from section 6.2.1:

Lemma 7.3. Assume that the leading monomials of (G(0), . . . , G(n)) form a vanilla
Gröbner stair, and let Q(0), . . . , Q(n) be the quotients obtained with the dichotomic
selection strategy from section 6.2.1. Then the bound

degk(Q
(i)) < 2k2val2 i

holds for all 0 < i < n.

Proof. Let XaY b ∈ suppQ(i) with 0 < i < n, so that ΦG(M) = (i,XaY b) for
M := XaY b lm(G(i)), and denote ` := 2val2 i. Then we observe that b < `: if not,
then lm(G(i−`)) would divide M , whereas val2(i − `) > val2 i. A similar reasoning
with G(i+`) (or G(n), whenever i + ` > n) shows that a < k`. It follows that
degk(X

aY b) < 2k`.

7.1.2 Existence of relations

As mentioned in section 6.2.3, one ingredient of the fast reduction algorithm is to
rewrite the equation P = Q(0)G(0) + · · ·+Q(n)G(n) +R into another linear combi-
nation with much fewer terms. In particular, it should be possible to express each
G(i) as a linear combination of elements in a suitable subset Σ of {G(0), . . . , G(n)}
(this subset then generates the ideal I), with degrees that can be controlled.

It turns out that two elements are generally not enough, but that the subset
Σ := {G(0), G(1), G(n)} generically works. In order to control the degrees in the linear
combinations, we may also consider intermediate sets between {G(0), G(1), G(n)} and
the full set {G(0), . . . , G(n)}, such as

Σ` := {G(0), G(1), G(`), G(2`), . . . , G(bn/`c`), G(n)}

for various integer �step lengths� ` > 2. This leads us to the following de�nition:

De�nition 7.3. Let ` > 1 be an integer and consider the set of indices

I` := {0, 1, n} ∪ {`, 2`, . . . , bn/`c`}. (7.1)

We say that a family of polynomials P (0), . . . , P (n) ∈ K[X,Y ] is retractive for step
length ` and k-degree δ if for all i ∈ {0, . . . , n} we can write

P (i) =
∑
j∈I`

A(i,j)P (j)

for some (A(i,j))j∈I` ∈ K[X,Y ]|I`| with degk A
(i,j) 6 δ.
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Consider a Gröbner basis G(0), . . . , G(n) as in Proposition 7.1 and a linear com-
bination C =

∑
j∈I` A

(j)G(j) with degk A
(j) 6 δ for all j ∈ I`. Making rough

estimates, the number of monomials in M of k-degree 6 d is d2/(2k), whence the
number of monomials of k-degree between d and d + δ is bounded by (d + δ)δ/k.
The set NG = Mk,D roughly corresponds to the set of monomials of k-degree at
most nk, whence the support of C contains at most (nk+ δ)δ/k monomials that are
not in NG. Notice that such a combination C is uniquely determined by its terms
not in NG: if all the terms of C − C ′ ∈ I are in NG, then C − C ′ = 0 by de�nition
of a Gröbner basis.

On the other hand the polynomials A(j) with j ∈ I` are determined by approx-
imately (n/`)δ2/(2k) coe�cients. As soon as δ > 2k`, it follows that

(n/`)δ2/(2k) > (nk + δ)δ/k ,

and it becomes likely that non-trivial relations of the type G(i) =
∑

j∈I` A
(j)G(j)

indeed exist. A re�ned analysis and practical experiments show that the precise
threshold is located at

δ > k(2`− 1)− 1 ,

although this empirical fact has not been formally proven.

7.1.3 Vanilla Gröbner bases

We are now in a position to describe the class of Gröbner bases with enough regu-
larity for the fast reduction algorithm to work.

De�nition 7.4. Let G = (G(0), . . . , G(n)) be the reduced Gröbner basis for an ideal
I ⊂ K[X,Y ] with respect to ≺k. We say that G is a vanilla Gröbner basis if

1. the leading monomials of G form a vanilla Gröbner stair;

2. for each ` = 2, . . . , n, the family G(0), . . . , G(n) is retractive for step length `
and k-degree k(2`− 1)− 1.

It seems that reduced Gröbner bases of su�ciently generic ideals are always of
vanilla type, although this statement is only empirical so far. It is not even clear
whether vanilla Gröbner bases exist for arbitrary �elds K (with su�ciently many
elements) and degrees D. Nevertheless, practical computer experiments suggest
that su�ciently random ideals of degree D admit Gröbner bases of this kind. More
precisely, this was checked for ideals that are generated as follows by two random
polynomials:

• for I = 〈A(X), Y −B(X)〉, where A and B are random univariate polynomials
of degrees D and D − 1, and for any ordering ≺k;

• for I = 〈A,B〉, where A and B are random bivariate polynomials of total
degree δ (in this case the degree of the ideal is D = δ2), and for any ordering
≺k with k > 2;
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• for I = (A,B), where A and B are random bivariate polynomials of degree δ
in both variables (in this case the degree of the ideal is D = 2δ2), and for any
ordering ≺k with k > 2.

The tests were made in Zp (with p a 16-bit prime) and for a degree D in the range
of a few hundreds, using the proof-of-concept implementation mentioned at the
beginning of this chapter.

Remark 7.2. In each of these cases, the threshold k(2`− 1)− 1 seems to be sharp.
Nevertheless, for our complexity bounds, a threshold of the type Kk` would su�ce,
for any constant K > 0.

7.2 Terse representations of vanilla Gröbner bases

Notice that the de�nition of vanilla Gröbner basis was precisely made to match the
ingredients from section 6.2. Then by de�nition, if G := (G(0), . . . , G(n)) is vanilla,
it admits a terse representation (in Õ(dimKA) space) as described in this section.
Recall that D := dimKA = Θ(kn2) by Proposition 7.1.

7.2.1 Retraction coe�cients

For each ` > 1, let I` be as in (7.1). Also, for λ ∈ {0, . . . , dlog2 ne}, let Jλ be
a shorthand for I2λ . Since G is a vanilla Gröbner basis, De�nition 7.4 ensures in
particular the existence of coe�cients C(λ,i,j) ∈ K[X,Y ] for λ ∈ {0, . . . , dlog2 ne−1}
and i ∈ Jλ \ Jλ+1 and j ∈ Jλ+1, such that

G(i) =
∑

j∈Jλ+1

C(λ,i,j)G(j) , (7.2)

degk C
(λ,i,j) 6 k(2λ+2 − 1)− 1. (7.3)

We call these C(λ,i,j) the retraction coe�cients for G. For each given i, λ, the
computation of the retraction coe�cients C(λ,i,j) reduces to a linear system of size
u× v with u, v = O(kn2λ) (for the image space, consider only the monomials that
are above the Gröbner stair). This system is easily solved by Gaussian elimination.
Notice that the space needed to write the retraction coe�cients is much smaller
than the Gröbner basis:

Lemma 7.4. The family of all retraction coe�cients for G takes space O(kn2 log n).

Proof. For every `, there are dn/`e + 1 indices in I`, and we notice that I2` ⊆ I`.
For any given λ, the retraction coe�cients involve at most n/2λ+1 + 1 indices i and
n/2λ+1 + 2 indices j, whence at most n2/4λ+1 + 3n/2λ+1 + 2 pairs (i, j). Since the
support of C(λ,i,j) has size O(k4λ) by (7.3), it follows that all retraction coe�cient
together require space O(kn2 log n).

We observe that the space needed to write all relations has the same order of
magnitude as dimKA, up to a logarithmic factor.
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7.2.2 Upper truncations

As per the second ingredient (section 6.2.2), we wish to keep only enough coe�cients
in G(i) to compute the associated quotient Q(i). This is done by �truncating� the
basis element G(i) as follows:

De�nition 7.5. Given a polynomial P ∈ K[X,Y ], we de�ne its upper truncation
with k-precision p as the polynomial P# such that

• all terms of P# of k-degree less than degk P − p are zero;

• all terms of P# of k-degree at least degk P − p are equal to the corresponding
terms in P .

Notice that this upper truncation P# has only O((degk P )p/k) coe�cients. For
the dichotomic selection strategy from section 6.2.1, we have for 0 < i < n

degkQ
(i) < 2k2val2 i

by Lemma 7.3, so this is the precision required for G(i). Combining this with the
retraction coe�cients from the previous subsection, it becomes natural to de�ne the
terse representation as follows:

De�nition 7.6. Let G = (G(0), . . . , G(n)) be a vanilla Gröbner basis for an ideal
I ⊂ K[X,Y ] with respect to ≺k. The terse representation of G consists of the
following data:

• the sequence of truncated elements G(0,#), . . . , G(n,#), where

� G(i,#) := G(i) for i ∈ {0, 1, n};
� G(i,#) is the upper truncation of G(i) at precision 2k2val2 i for all other i;

• the collection of all retraction coe�cients C(λ,i,j) as in section 7.2.1.

Proposition 7.5. The terse representation of G �ts in space O(kn2 log n).

Proof. The upper truncation G(i,#) requires space O(kn2val2 i) for all 1 < i < n.
For each λ < log2 n, there are at most n/2λ indices i such that val2 i = λ; there-
fore, G(2,#), . . . , G(n−1,#) take O(kn2 log n) space. The elements G(0,#), G(1,#) and
G(n,#) require O(kn2) additional space, whereas the coe�cients C(λ,i,j) account for
O(kn2 log n) more space by Lemma 7.4.

Figure 7.2 shows an example of vanilla Gröbner basis with D = 237 and k = 4

(hence n = 11), together with its terse representation. As usual, the large white dots
(©) represent the leading monomials of G, and black dots (•) represent monomials
in the support of each polynomial. Notice that the terse representation has much
fewer coe�cients than G.
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G(0) G(1) G(2)

G(3) G(4) G(5)

G(6) G(7) G(8)

G(9) G(10) G(11)

G(0,#) G(1,#) G(2,#)

+ the linear combination

G2 = f2(Gi, i ∈ {0, 1, 4, 8, 11})
(5 polynomials of 4-degree 27)

G(3,#)

+ the linear combination

G3 = f2(Gi, i ∈ {0, 1, 2, 4, 6, 8, 10, 11})
(8 polynomials of 4-degree 11)

G(4,#)

+ the linear combination

G4 = f4(Gi, i ∈ {0, 1, 8, 11})
(4 polynomials of 4-degree 59)

G(5,#)

+ the linear combination

G5 = f5(Gi, i ∈ {0, 1, 2, 4, 6, 8, 10, 11})
(8 polynomials of 4-degree 11)

G(6,#)

+ the linear combination

G6 = f6(Gi, i ∈ {0, 1, 4, 8, 11})
(5 polynomials of degree 27)

G(7,#)

+ the linear combination

G7 = f7(Gi, i ∈ {0, 1, 2, 4, 6, 8, 10, 11})
(8 polynomials of degree 11)

G(8,#)

+ the linear combination

G8 = f8(Gi, i ∈ {0, 1, 11})
(3 polynomials of degree 123)

G(9,#)

+ the linear combination

G9 = f9(Gi, i ∈ {0, 1, 2, 4, 6, 8, 10, 11})
(8 polynomials of 4-degree 11)

G(10,#)

+ the linear combination

G10 = f10(Gi, i ∈ {0, 1, 4, 8, 11})
(5 polynomials of 4-degree 27)

G(11,#)

Figure 7.2: Example of vanilla Gröbner basis (above) and its terse representation
(below). Parameters are D = 237 and k = 4, hence (n, q, r) = (11, 2, 6).
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7.3 Fast reduction

In this section, we assume that G := (G(0), . . . , G(n)) is vanilla and that its terse
representation has been precomputed. Also, let P be a polynomial of k-degree d,
that is with Θ(d2/k) coe�cients. In this case, we can design an algorithm to compute
an extended reduction

P = Q(0)G(0) + · · ·+Q(n)G(n) +R

in Õ(kn2 +d2/k) = Õ(dimKA+ |P |) operations. In particular, this gives the normal
form of P w.r.t. G with quasi-optimal complexity.

The reduction algorithm proceeds in two steps: in a �rst stage, we compute the
quotients Q(0), . . . , Q(n); we next evaluate the remainder R := P −Q(0)G(0) − · · · −
Q(n)G(n) by rewriting the linear combination Q(0)G(0) + · · ·+Q(n)G(n) using fewer
and fewer terms, as in section 6.2.3.

7.3.1 Computing the quotients

To compute the quotients, we compute an extended reduction of P with respect to
the truncated basis G# := (G(0,#), . . . , G(n,#)), assuming the dichotomic selection
strategy. This is done using the algorithm from [Hoe15], with a straightforward
adaptation to use the dichotomic selection strategy instead of the naive one. The
complexity of this step is given by the following lemma:

Lemma 7.6. The extended reduction P = Q(0)G(0,#)+· · ·+Q(n)G(n,#)+R# (with P
of degree d) can be computed in time

O
(
R(kn2) log n+ R(d2/k)

)
using the algorithm from [Hoe15] and a dichotomic selection strategy. Moreover, the
total size of the quotients is

|Q(0)|+ · · ·+ |Q(n)| = O(d2/k + kn2)

Proof. Recall that degkQ(i) < 2k2val2 i by Lemma 7.3. Denoting ` := 2val2 i, we get
|Q(i)| < 2`(2k` + 1) = O(k`2) for any 0 < i < n. Since the number of indices
0 < i < n with ` = 2val2 i is bounded by n/`, we get

|Q(1)|+ · · ·+ |Q(n−1)| = O(2kn+ 4kn+ · · ·+ 2blog2 nckn) = O(kn2) .

Also, |Q(i)G(i,#)| = O(kn`) for any 1 < i < n, and |Q(1)G(1,#)| = O(kn2); therefore

R(|Q(1)G(1,#)|) + · · ·+ R(|Q(n−1)G(n−1,#)|) = O
(
R(kn2) log n

)
.

On the other hand, degk(Q
(0)G(0,#)) 6 degk P and similarly for Q(n)G(n,#),

whence |Q(0)|+ |Q(n)| = O(d2/k) and

R(|Q(0)G(0,#)|) + R(|Q(n)G(n,#)|) = O
(
R(d2/k)

)
.
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The next important observation is that the quotients Q(0), . . . , Q(n) with respect
to G# are also valid quotients with respect to G:

Proposition 7.7. Let Q(0), . . . , Q(n) be as in Lemma 7.6 and consider

R := P −Q(0)G(0) − · · · −Q(n)G(n) .

Then R is reduced with respect to G.

Proof. Let R# := P−Q(0)G(0,#)−· · ·−Q(n)G(n,#). By construction, R# is reduced
with respect to G# and whence with respect to G, since lm(G(i)) = lm(G(i,#)) for
all i. For any 0 < i < n, we also have degk(G

(i) −G(i,#)) < degkG
(i) − 2k2val2 i, so

that

degk
(
Q(i)G(i) −Q(i)G(i,#)

)
< degkG

(i) − 1 6 min
06j6n

degkG
(j)

by Lemma 7.3 and Corollary 7.2. Since G(0) = G(0,#) and G(n) = G(n,#), this means
that

degk(R−R#) < degkG
(i) for all 0 6 i 6 n.

In other words, the polynomials R#, R−R#, and therefore R are all reduced with
respect to G.

Remark 7.3. Here we have used the fact that all basis elements G(i) have roughly
the same degree, so it is crucial that the monomials under the stair are the minimal
elements with respect to ≺k.

7.3.2 Computing the remainder

Once the quotients Q(0), . . . , Q(n) are known, we need to compute the remainder
R := P − Q(0)G(0) − · · · − Q(n)G(n). We do this by rewriting (or retracting) the
linear combination Q(0)G(0) + · · ·+Q(n)G(n) into a linear combination

S(0)G(0) + S(1)G(1) + S(n)G(n)

as in section 6.2.3.

More precisely, we replace about half of the terms using the relations provided
by C(1,i,j), to keep only the terms with indices in J1. Then, using the relations
provided by C(2,i,j), the number of terms is halved again and only indices in J2

remain. Repeating this for every λ < log2 n, we are left with the expected linear
combination. This leads to Algorithm 7.1 below.

Lemma 7.8. Algorithm 7.1 is correct and runs in time O
(
M(kn2) log n

)
.
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Algorithm 7.1. Retraction of the extended reduction for vanilla Gröbner bases

Prototype: retrac(Q,C)

Input: Quotients Q = (Q(0), . . . , Q(n)) as in Lemma 7.6, and a family C of retrac-
tion coe�cients as in section 7.2.1:

C :=
(
C(λ,i,j)

)
λ<log2 n,i∈Jλ\Jλ+1,j∈Jλ+1

Output: S(0), S(1), S(n) ∈ K[X,Y ] such that

Q(0)G(0) + · · ·+Q(n)G(n) = S(0)G(0) + S(1)G(1) + S(n)G(n) .

1: Set Q(0,j) := Q(j) for j = 0, . . . , n; set ` := dlog2 ne.
2: for λ = 1, . . . , `− 1 do

3: for j = 0, . . . , n do

4: if 1 < j < n and val2 j 6 λ then

5: Set Q(λ+1,j) := 0

6: else

7: Set Q(λ+1,j) := Q(λ,j) +
∑

i∈Jλ\Jλ+1
Q(λ,i)C(λ,i,j).

8: end if

9: end for

10: end for

11: return (S(0), S(1), S(n)) := (Q(`,0), Q(`,1), Q(`,n)).

Proof. By construction, we notice that Q(λ,j) = 0 if 1 < j < n and val2 j < λ (that
is j /∈ Jλ). Let us now show by induction over λ that

Q(λ,0)G(0) + · · ·+Q(λ,n)G(n) = Q(0)G(0) + · · ·+Q(n)G(n) .

This is clearly true for λ = 0, and we have

∑
j∈Jλ+1

Q(λ+1,j)G(j) =
∑

j∈Jλ+1

Q(λ,j) +
∑

i∈Jλ\Jλ+1

Q(λ,i)C(λ,i,j)

G(j)

=
∑

j∈Jλ+1

Q(λ,j)G(j) +
∑

i∈Jλ\Jλ+1

Q(λ,i)
∑

j∈Jλ+1

C(λ,i,j)G(j)

=
∑

j∈Jλ+1

Q(λ,j)G(j) +
∑

i∈Jλ\Jλ+1

Q(λ,i)G(i)

=
∑
j∈Jλ

Q(λ,i)G(i) ,

which proves the correctness of Algorithm 7.1.
Recall that by de�nition (7.3), degk C

(λ,i,j) < 4k2λ. Again by induction over λ,
it is not hard to see that this bound implies

degk(Q
(λ,i)) 6 max(4k2λ, 2k2val2 i) for 1 < i < n. (7.4)
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Now, for i ∈ Jλ \ Jλ+1 and j ∈ Jλ, the product Q(λ,i)C(λ,i,j) is computed in time
O(k4λ), and there are O(n2/4λ) such products (see the proof of Lemma 7.4). Using
the classical assumption that M(d)/d is non-decreasing, we conclude that each step
can be computed in time O(M(kn2)).

Combining our subalgorithms, we obtain the algorithm for extended reduction
in quasi-linear time:

Algorithm 7.2. Extended reduction w.r.t. a vanilla Gröbner basis

Prototype: reduce_vanilla(P,G#, C)

Input: A polynomial P ∈ K[X,Y ], and G#, C the terse representation of a vanilla
Gröbner basis G.

Output: An extended reduction (Q(0), . . . , Q(n), R) of P modulo G.

1: Compute the extended reduction (Q(0), . . . , Q(n), R#) with respect to G#, using
the algorithm from [Hoe15] and the dichotomic selection strategy.

2: Compute S(0), S(1), S(n) := retrac(Q,C).
3: Compute R := P − S(0)G(0,#) − S(1)G(1,#) − S(n)G(n,#)

4: return (Q(0), . . . , Q(n), R).

Theorem 7.9. Algorithm 7.2 is correct and runs in time

O
(
R(kn2) log n+ R(d2/k)

)
.

Proof. Because of Lemma 7.6, the extended reduction with respect to G# in step 1
is computed in time

O
(
R(kn2) log n+ R(d2/k)

)
.

Proposition 7.7 ensures that the quotients are also valid with respect to G.
The next step is to evaluate the remainder R := P −Q(0)G(0) − · · · −Q(n)G(n).

The S(i) are computed in time O
(
M(kn2) log n

)
using Lemma 7.8, and we have

S(0)G(0,#) + S(1)G(1,#) + S(n)G(n,#) = S(0)G(0) + S(1)G(1) + S(n)G(n)

= Q(0)G(0) + · · ·+Q(n)G(n) .

For i ∈ {0, 1, n}, it follows from (7.4) that degk(S
(i)G(i,#)) 6 max(d, 5kn). Conse-

quently, the evaluation of R takes time

O
(
M(d2/k) + M(kn2)

)
.

7.4 Applications

This section presents two immediate consequences of Theorem 7.9: multiplication
in A and conversion between di�erent normal forms can be done in time Õ(dimKA).



7.4. Applications 101

7.4.1 Multiplications in the quotient algebra

Let G = (G(0), . . . , G(n)) be a vanilla Gröbner basis for an ideal I ⊂ K[X,Y ] with
respect to ≺k, and assume that we have precomputed a terse representation for G.
Elements in the quotient algebra A := K[X,Y ]/I can naturally be represented as
polynomials in K[X,Y ] that are reduced with respect to G. An immediate appli-
cation of Theorem 7.9 is a multiplication algorithm for A that runs in quasi-linear
time.

More precisely, with the notations from Proposition 7.1, given two polynomials
P,Q ∈ K[X,Y ] that are reduced with respect to G, we have degk P 6 kn and
degkQ 6 kn, whence degk PQ 6 2kn and |PQ| = O(kn2) = O(D). It follows that
PQ can be computed in time O (M(D)), whereas the reduction of PQ with respect
to G takes time O (R(D) logD). This yields:

Theorem 7.10. For I as above, multiplication in A := K[X,Y ]/I can be performed
in time O (R(D) logD), with D := dimKA.

7.4.2 Changing the monomial ordering

Let us now assume that our ideal I ⊂ K[X,Y ] admits a vanilla Gröbner basis G[k]

with respect to the ordering ≺k for all k. The notation A[k] = K[X,Y ]/I denotes
the quotient algebra when representing elements using normal forms with respect
to G[k]. If k > D = dimKA, then we notice that G[k] is also a Gröbner basis with
respect to the lexicographical monomial ordering ≺∞. In order to e�ciently convert
between A[k] and A[`] with k < `, we �rst consider the case when ` 6 2k:

Lemma 7.11. With the above notations and k < ` 6 2k, assume that we have
precomputed terse representations for G[k] and G[`].

Then back and forth conversions between A[k] and A[`] can be computed in time
O (R(D) logD).

Proof. Assume that G[k] has n+ 1 elements G([k],0), . . . , G([k],n) and G[`] has m+ 1

elements G([`],0), . . . , G([`],m). We know from Proposition 7.1 that

kn(n− 1) < 2D 6 kn(n+ 1)

and similarly
`(m− 1)m < 2D 6 `m(m+ 1) .

Now given P ∈ K[X,Y ] that is reduced with respect to G[k], we have degk P 6
kn, whence deg` P 6 `n and (deg` P )2/` 6 `n2 6 2kn2 = O(D). Theorem 7.9
therefore implies that the normal form of P w.r.t. G[`] can be computed in time

O
(
R(`m2) logm+ R(D)

)
and we conclude using `m2 = O(D). The proof for the backward conversion is
similar.
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For general k < `, let a 6 b be such that 2a−1 < k 6 2a and 2b−1 < ` 6 2b.
Then we may perform conversions between A[k] and A[`] using a Gröbner walk

A[k] ↔ A[2a] ↔ · · · ↔ A[2b−1] ↔ A[`] .

All G[k] coincide for k > D, so we can assume that 1 6 k < ` 6 D + 1. Then there
are at most logD conversions as above, so that:

Theorem 7.12. With the above notations and k < ` 6 D+ 1, assume that we have
precomputed terse representations for the bases G[k], G[2a], . . . , G[2b], G[`].

Then back and forth conversions between A[k] and A[`] can be computed in time
O(R(D) log2D).

Perspectives

The setting of vanilla Gröbner bases is rather restrictive, so it is natural to ask
whether some of the assumptions may be relaxed. An extension to more general
term orders (starting with ≺k for k ∈ Q) should be rather straightforward. Similarly,
there is no apparent reason to think that vanilla Gröbner bases are limited to two
variables (although they may be less frequent with r > 2 variables); however the
implicit dependency in the number r of variables is likely to be r!. Indeed, the
dichotomic selection strategy de�nes a parallelepiped based on the extremities of
the Gröbner basis, while the monomials under the stair form a pyramid; and there
is a ratio of r! between the volumes of such shapes in r dimensions.

Another interesting question would be to prove that vanilla Gröbner bases are
generic in the usual sense, that is for all inputs in an open subset of Zariski topology.
In other words, we wish to �nd a nontrivial algebraic equation

E : (K̄[X,Y ]× K̄[X,Y ])→ K̄

(K̄ being the algebraic closure of K) such that the Gröbner basis of I := 〈A,B〉
is vanilla as long as E(A,B) 6= 0. This hypothesis is supported by the fact that
random polynomials A,B give a vanilla Gröbner basis, but this does not constitute
a proof.
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tually possible. The previous chapter made regularity assumptions on the Gröb-
ner basis itself, but one may focus on the generating polynomials instead. If the
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then the Gröbner basis presents a particular structure, as studied for example
in [Gal74, FH94, Mor03]. This situation is often used as a benchmark for polynomial
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Table 8.1: Asymptotic complexities for various problems on the ideal 〈A,B〉,
assuming n := degA 6 m := degB and A,B su�ciently generic.

Operation This work Previous best

Deglex Gröbner basis G O(R(m2) + R(nm)n log n) O(n2R(nm))

= Õ(|A,B,G|)
Structure of A := K[X,Y ]/〈A,B〉 O(R(m2) + M(nm) log n) O(n2R(nm))

= Õ(|A,B|)
Normal form of P O(R(d2) + R(nm) log n) O(R(d2) + nR(nm))

with degP = d = Õ(|P |+ dimK A)

Multiplication in A O(R(nm) log n) O(nR(nm))

= Õ(dimK A)

Notations: M and R represent cost functions for zealous and relaxed multipli-
cation respectively (see section 6.4).
In the last two rows, for the computation of normal forms and multiplication in
A := K[X,Y ]/〈A,B〉, we assume that the structure of A has been precomputed
using the algorithm from the second row. Notice that the algorithm for the normal
form (third line) also yields an ideal membership test for 〈A,B〉.

system solving: see the PoSSo problem [FGHR13]. As in the previous chapter, we
restrict ourselves to the bivariate case, as studied for example in [LMS13].

In what follows, A,B ∈ K[X,Y ] are generic polynomials of total degree n,m
respectively. We consider the Gröbner basis of 〈A,B〉 with respect to the graded
lexicographic order. Under these very particular assumptions, the Gröbner basis
admits a concise representation; its structure is slightly di�erent from the terse
representation of vanilla bases (previous chapter), but it can similarly be used in
fast reduction algorithms. In particular, this allows us to compute the normal form
of any polynomial P ∈ K[X,Y ] in Õ(|P | + dimKA) operations, and to perform
multiplications in A in time Õ(dimKA).

A major di�erence with the results from Chapter 7 is that it does not rely
on expensive precomputations. Indeed, unlike terse representations, the concise
representation can be computed directly from the generators in quasi-linear time
Õ(|A,B|). In fact, determining a Gröbner basis in concise representation essentially
boils down to a univariate gcd computation. Summarizing, the results in this chapter
require more restrictive assumptions than Chapter 7 (only the total degree order is
considered, and the generators must be of a speci�c shape), but they are considerably
stronger as they are valid without precomputations.

Combining these two algorithms, we obtain an ideal membership test (given
P,A,B, decide whether P ∈? 〈A,B〉) in quasi-linear time Õ(|P,A,B|). Also if
needed1, the reduced Gröbner basis in the classical sense can be computed in quasi-
linear time with respect to the output size. These complexity results are summarized
in Table 8.1, and compared with the complexity of classical algorithms from Chap-

1For most purposes, the concise representation is actually su�cient.
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ter 6. For clarity, the algorithms are �rst presented in a simpli�ed form, with slightly
weaker complexity results; then the analysis is re�ned in section 8.5.

8.1 Presentation of the setting

This section aims to describe more formally the hypotheses made above, and shows
how to construct a Gröbner basis with the expected properties. The monomial
ordering used in this chapter is the usual degree lexicographic order with X ≺ Y ,
that is

XaY b ≺ XuY v ⇔ a+ b < u+ v or (a+ b = u+ v and b < v) .

8.1.1 Reduced Gröbner bases

We consider an ideal I ⊂ K[X,Y ] generated by two generic polynomials A,B of
total degree n,m and we assume n 6 m. Here the adjective �generic� should be
understood as �no accidental cancellation occurs during the computation�. This is
typically the case if A,B are chosen at random: assuming that K has su�ciently
many elements, the probability of an accidental cancellation is small. In this generic
bivariate setting, a clever application of Buchberger's algorithm [Buc65] gives the
reduced Gröbner basis Gred = (G(red,0), . . . , G(red,n)) of I with respect to ≺ as fol-
lows:

• Set G(red,1) := B remA and G(red,0) := A remG(red,1).

• G(red,i) := S(G(red,i−2), G(red,i−1)) rem (G(red,0), . . . , G(red,i−1)) for i = 2, . . . , n.

• For all i = 0, . . . , n, divide G(red,i) by its leading coe�cient to make it monic.

It is well known [Gal74] that the Gröbner stair has steps of height 1, so the algorithm
stops when i = n = degA, or equivalently when the leading term of G(red,i) is
a power of X. It can also be checked that the width of each step is 2, except for
the �rst one that has width n − m + 1. In other words, the leading monomials
lm(G(red,i)) of Gred are given by

lm(G(red,0)) = Y n (8.1)

lm(G(red,i)) = Xm−n−1+2iY n−i, i = 1, . . . , n. (8.2)

There are nm monomials under the stair; since the Bézout bound is reached for
generic ideals, this ensures that Gred is indeed a reduced Gröbner basis.

8.1.2 From Euclidean division to Gröbner bases

The reduced Gröbner basis as above veri�es relatively simple recurrence relations.
In fact, it is possible to construct another (non-reduced) Gröbner basis

G = (G(0), . . . , G(n))
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with even simpler recurrence relations. These recurrence relations will later be used
to rewrite the equation as in section 6.2.3.

De�nition 8.1. For a polynomial P =
∑
Pi,jX

iY j ∈ K[X,Y ] of total degree d, we
de�ne its dominant diagonal Diag(P ) ∈ K[Z] by Diag(P ) =

∑
j6d Pd−j,jZ

j .

We have the trivial properties that Diag(XP ) = Diag(P ) and Diag(Y P ) =

Z Diag(P ). For generic A and B, the diagonals Diag(A) and Diag(B) are also
generic. Applying the Euclidean algorithm to these diagonals, it follows that the
successive remainders follow a �normal sequence�, i.e. their degrees decrease by ex-
actly one at each step.

Now consider the sequence G(0), . . . , G(n) with n = degA de�ned by

G(0) := A (8.3)

G(1) := B remA (8.4)

G(i) := XdiG(i−2) − (uiY + viX)G(i−1), i = 2, . . . , n, (8.5)

where

uiZ + vi := Diag(G(i−2)) quo Diag(G(i−1)), di :=

{
m− n+ 1 if i = 2 ,

2 if i > 2 .
.

Let us �rst notice that the term XdiG(i−2) − uiY G
(i−1) corresponds to the S-

polynomial of G(i−2) and G(i−1), as in the classical Buchberger algorithm. Setting
D(i) := Diag(G(i)) for i = 0, . . . , n, we next observe that

D(1) = Diag(B) rem Diag(A)

D(i) = D(i−2) remD(i−1), i = 2, . . . , n,

so the diagonals are the successive remainders in the Euclidean algorithm and the
corresponding quotients indeed all have degree 1. By induction on i, we deduce:

Lemma 8.1. The G(i) as in (8.3�8.5) have the same leading monomials (8.1�8.2)
as the G(red,i), so G := (G(0), . . . , G(n)) is a Gröbner basis of 〈A,B〉 with respect
to ≺.

Corollary 8.2. Any P ∈ K[X,Y ] has the same normal form with respect to G

and Gred.

Remark 8.1. The genericity assumptions on A andB can also be made more precise
now: on the one hand, we need that degD(i) = n− i for i = 0, . . . , n and degG(i) =

m+ i−1 for i = 1, . . . , n. On the other hand, we need X2G(n−1)−(unY +vnX)G(n)

to reduce to zero with respect to G, where unZ + vn := D(n−1) quoD(n). This
in particular provides us with an a posteriori sanity check for ensuring that the
genericity assumptions are indeed satis�ed.
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8.1.3 Examples

Example 1. Consider A := Y +aX+ b and B := Y 4 + · · · , then G(0) = Y +aX+ b

and G(1) = B(X,−aX − b) = cX4 + · · · for some c. The sequence stops here since
n := degA = 1. Notice that (G(0), G(1)/c) is actually the reduced Gröbner basis in
this case.

Example 2. Consider A,B ∈ F11[X,Y ] de�ned as

A := Y 4 − 3XY 3 +X2Y 2 − 3X3Y + 5X4 + 3Y 3 + 2XY 2 − 3X2Y − 4X3 ,

B := Y 4 + 2XY 3 − 3X2Y 2 + 4X3Y − 3X4 − 5Y 3 − 3XY 2 + 5X2Y − 5X3 .

The reader's favorite computer algebra system gives the following reduced Gröbner
basis:

G(red,0) =Y 4 + 3X2Y 2 −X3Y − 2X4 − 4Y 3 −XY 2 + 4X2Y + 2X3 ,

G(red,1) =XY 3 − 3X2Y 2 − 3X3Y + 5X4 + 5Y 3 −XY 2 − 5X2Y + 2X3 ,

G(red,2) =X3Y 2 − 2X4Y + 4X5 + 3X2Y 2 − 5X3Y − 3X4 + Y 3 − 3XY 2

−X2Y − 5X3 ,

G(red,3) =X5Y −X6 − 4X4Y − 4X5 − 5X2Y 2 − 3X3Y − 4X4 + Y 3

+ 5XY 2 −X2Y +X3 ,

G(red,4) =X7 − 5X6 − 5X4Y + 2X5 + 5X2Y 2 −X3Y −X4 − 3Y 3 − 4XY 2

+ 3X2Y − 3X3 .

Computing the basis G as in (8.3�8.5), we obtain

G(0) = Y 4 − 3XY 3 +X2Y 2 − 3X3Y + 5X4 + 3Y 3 + 2XY 2 − 3X2Y − 4X3 ,

G(1) = 5XY 3 − 4X2Y 2 − 4X3Y + 3X4 + 3Y 3 − 5XY 2 − 3X2Y −X3 ,

G(2) = 4X3Y 2 + 3X4Y + 5X5 − 5Y 4 + 4XY 3 − 4X2Y 2 − 5X3Y − 4X4 ,

G(3) = −X5Y +X6 − 2Y 5 − 3XY 4 + 2X2Y 3 −X3Y 2 + 4X4Y + 5X5 ,

G(4) = X7 + 3Y 6 − 4XY 5 + 4X2Y 4 + 3X3Y 3 + 5X4Y 2 −X5Y − 2X6 .

Notice that G(i) and G(red,i) have the same leading monomial, so (G(0), . . . , G(4)) is
a Gröbner basis as well. However, it is not reduced: G(4) contains the term 3Y 6,
which is divisible by the leading monomial of G(0) = Y 4 + · · · .
Example 3. Figure 8.1 shows a schematic representation of the behavior when A
and B have degree 11; the same example will be used in the rest of the chapter.
Recall that black dots (•) represent the supports of the polynomials, while larger
white dots (©) give the shape of the Gröbner stair. Notice again that G(i) and
G(red,i) have the same leading monomial.

Remark 8.2. The second example already involves a lot of coe�cients, even for the
modest degree 4. Such low degrees are not su�cient for the ingredients presented
in section 6.2. This explains why examples are preferably given in a schematic form
as in Figure 8.1.
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G(red,0) G(red,1) G(red,2) G(red,3)

G(red,4) G(red,5) G(red,6) G(red,7)

G(red,8) G(red,9) G(red,10) G(red,11)

G(0) G(1) G(2) G(3)

G(4) G(5) G(6) G(7)

G(8) G(9) G(10) G(11)

Figure 8.1: The di�erence between the reduced Gröbner basis (above) and the non-
reduced one obtained as in (8.3�8.5) (below).
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8.2 Concise representations of Gröbner bases

Unlike in the vanilla setting where suitable relations among elements of G were
assumed to exist, for the grevlex basis considered here, we explicitly know them
thank to the simple recurrence relations (8.3�8.5). This allows us to construct a
concise representation in Õ(dimKA) space on the same principle, but now we are
even able to compute this representation e�ciently.

8.2.1 Preparing the construction

The �rst task is to determine at which precision we can truncate the basis ele-
ments, depending on the degrees of the quotients. With the leading monomials as
in (8.1�8.2), the dichotomic selection strategy from section 6.2.1 gives the following
bound:

Lemma 8.3. Let (G(0), . . . , G(n)) be a grevlex Gröbner basis as in (8.3�8.5), and let
Q(0), . . . , Q(n) be the quotients obtained with the dichotomic selection strategy from
section 6.2.1. Then the bound

degQ(i) < 3× 2val2 i

holds for all 0 < i < n.

Proof. Denote ` := 2val2 i. With the same arguments as for Lemma 7.3, we have
degX Q

(i) < 2` and degY Q
(i) < `.

Naturally, the truncations are done according to the analogue of De�nition 7.5
for the total degree order (i.e. k = 1 with the notations from De�nition 7.5):

De�nition 8.2. Given a polynomial P ∈ K[X,Y ], we de�ne its upper truncation
with precision p as the polynomial P# such that

• all terms of P# of degree less than degP − p are zero;

• all terms of P# of degree at least degP − p are equal to the corresponding
terms in P .

The second task is to make the relations consistent with these degree bounds,
so that each time a substitution happens, the precision actually increases. The
formulas (8.3�8.5) are not satisfactory on this matter: for example G(8) would be
expressed as a function of G(7), which is known with lower precision. However, from
relations of the type

G(k+2) = U (k)G(k) + V (k)G(k+1) for k = 0, . . . , n− 2 ,

it is easy to deduce higher order recurrence relations

G(k+`) = U (k,`)G(k) + V (k,`)G(k+1) for any k and ` with k + ` 6 n.
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With such relations, it is now possible to increase val2 i (hence the precision) at each
substitution. It is convenient to write such recurrences in matrix form(

G(k+`)

G(k+`+1)

)
= M(k,`)

(
G(k)

G(k+1)

)
, (8.6)

where, by convention, G(n+1) := 0 to avoid case distinction. This presentation has
the advantage that the M(k,`) can be computed from one another using

M(k,`+t) = M(k+`,t)M(k,`) .

Moreover, the size of the coe�cients of the M(k,`) can be controlled as a function
of k, `. Notice that similar matrices appear in the half gcd algorithm [GG13, Chap-
ter 11], which is the fastest known method for the computation of gcds.

Remark 8.3. To ensure that the precision increases after substitutions like (8.6),
it is necessary that G(k) and G(k+1) have higher precision than G(k+`), G(k+`+1).
Because of this, the precision of G(i,#) will be 3× 2v(i) with

v(i) := max(val2 i, val2(i− 1)) .

Notice that it changes the asymptotic number of required coe�cients only by a
constant factor.

More formally, the matrices M(k,`) are de�ned as follows.

De�nition 8.3. For k = 2, . . . , n, let ukZ + vk := D(k−2) quoD(k−1) be the succes-
sive quotients in the Euclidean algorithm for the dominant diagonals

D(0) := Diag(G(0)) and D(1) := Diag(G(1))

as in section 8.1. For each k, ` with k + ` 6 n, de�ne the matrix M(k,`) by

M(0,1) :=

(
0 1

Xm−n+1 −u2Y − v2X

)
,

M(k,1) :=

(
0 1

X2 −uk+2Y − vk+2X

)
, for 0 < k < n− 1 ,

M(n−1,1) :=

(
0 1

0 0

)
,

M(k,`+1) := M(k+`,1)M(k,`).

As promised, they verify equation (8.6) and the degrees of the coe�cients can
be controlled:
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Proposition 8.4. Let the matrices M(k,`) be as in De�nition 8.3. For all k, ` with
k + ` 6 n, we then have(

G(k+`)

G(k+`+1)

)
= M(k,`)

(
G(k)

G(k+1)

)
.

Also, M(k,`+t) = M(k+`,t)M(k,`) for all k, `, t with k + `+ t 6 n.
Now consider the polynomials U (k,`), V (k,`), Ũ (k,`), Ṽ (k,`) such that

M(k,`) =

(
U (k,`) V (k,`)

Ũ (k,`) Ṽ (k,`)

)
.

With the convention that the zero polynomial is homogeneous of any degree, we have

• For all k, V (k,`) is homogeneous of degree `− 1 and Ṽ (k,`) is homogeneous of
degree `.

• U (0,`) is homogeneous of degree m − n − 1 + ` and Ũ (0,`) is homogeneous of
degree m− n+ `.

• For all k > 1, U (k,`) is homogeneous of degree ` and Ũ (k,`) is homogeneous of
degree `+ 1.

Proof. This is immediate, by induction on `, while using the formula

M(k,`+1) = M(k+`,1)M(k,`) .

8.2.2 De�nition of the concise representation

Following remark 8.3 on the precision of the truncations, we can now de�ne the
concise representation.

De�nition 8.4. The concise representation of G := (G(0), . . . , G(n)) consists of the
following data:

• The sequence of truncated elements G(0,#), . . . , G(n,#), where

� G(i,#) := G(i) for i ∈ {0, 1, n};
� G(i,#) is the upper truncation of G(i) at precision 3× 2max(val2 i,val2(i−1))

for all other i;

• For each λ = 0, . . . , dlog2 ne, the collection of rewriting matrices

M̄(λ) := (M(0,2λ),M(2λ,2λ), . . . ,M(2λq,r)),

with q := (n − 1) quo 2λ, r := (n − 1) rem 2λ + 1, and the matrices M(k,`) as
in De�nition 8.3.
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G(0,#) G(1,#) G(2,#) G(3,#)

G(4,#) G(5,#) G(6,#) G(7,#)

G(8,#) G(9,#) G(10,#) G(11,#)

+ the matrix M(0,2)

+ the matrix M(0,4) + the matrix M(4,2)

+ the matrix M(0,8) + the matrix M(8,2)

Figure 8.2: The concise representation of the Gröbner basis when degA = degB = 11.

An example of a concise representation is given in Figure 8.2. Notice that the
truncated polynomial G(2,#) contains much fewer terms than the corresponding G(2)

(as seen in Figure 8.1). Notice also that the rewriting matrices allow us to ex-
press some elements in terms of others known with higher precision: for example
G(6) and G(7) are expressed in terms of G(4) and G(5), themselves written as a func-
tion of G(0) and G(1).

The concise representation requires quasi-linear space with respect to the degree
of the ideal:

Proposition 8.5. The concise representation requires O(nm log n) space.

Proof. It is easy to see that G(i) has degree at most n + i 6 2n in the variable Y ,
and at most m+ i 6 2m in the variable X and in total degree. Then for i = 0, 1, n,
each non-truncated element G(i,#) := G(i) takes O(nm) space. Similarly, for each
i = 2, . . . , n− 1, each truncated element G(i,#) requires O(mp(i)) space, with

p(i) := 3× 2max(val2 i,val2(i−1)) .

For λ = 1, . . . , dlog2 ne, there are roughly 2n/2λ indices i such that

max(val2 i, val2(i− 1)) = λ ,

so all elements together require O(mn log n) space.
There are dn/2λe elements in M̄(λ), each consisting of four homogeneous poly-

nomials of degree roughly 2λ (by Proposition 8.4), except for M(0,2λ) that has two
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polynomial entries of degree roughly 2λ and two entries of degree roughlym−n+2λ.
Hence M̄(λ) requires O(m) space and the collection of all M̄(λ) takes O(m log n)

space.

8.2.3 Computing concise Gröbner bases

The de�nition of the concise representation as above is constructive, but the order
of the computation must be carefully chosen to achieve the desired quasi-linear
complexity. First, by exploiting the recurrence relations M(k,`+t) = M(k+`,t)M(k,`),
it is easy to compute M̄(λ+1) from M̄(λ) using the following auxiliary function:

Algorithm 8.1. Computation of rewriting matrices

Prototype: rewriting_2l(M̄(λ))

Input: The vector of matrices M̄(λ) as in De�nition 8.4.
Output: The vector of matrices M̄(λ+1) as in De�nition 8.4.

1: Set L := #M̄(λ).
2: for all i < L quo 2 do

3: Set M̄
(λ+1)
i := M̄

(λ)
2i+1M̄

(λ)
2i .

4: end for

5: if L rem 2 = 1 then

6: Set M̄
(λ+1)
L quo 2 := M̄

(λ)
L−1.

7: end if

8: return M̄(λ+1).

Lemma 8.6. Algorithm 8.1 is correct and takes time O(M(m)).

Proof. Recall that M(k,`+t) = M(k+`,t)M(k,`) for all k, `, t with k + ` + t 6 n. In
particular, taking ` = t = 2λ shows that

M̄
(λ+1)
i = M̄

(λ)
2i+1M̄

(λ)
2i

if 2i+ 1 < L− 1. Concerning the last element of M̄(λ+1) (that is, j = L quo 2− 1 if
L is even, j = L quo 2 otherwise), de�ne

q := (n− 1) quo 2λ,

r := (n− 1) rem 2λ + 1,

q′ := (n− 1) quo 2λ+1,

r′ := (n− 1) rem 2λ+1 + 1.

If L rem 2 = 0, then q is odd, that is q′ = (q − 1)/2 and r′ = r + 2λ, so that
M(2λ+1q′,r′) = M(2λq,r)M(2λ(q−1),2λ) is indeed the product of the last two elements
of M̄(λ). Conversely if L rem 2 = 1, then q′ = q/2 and r′ = r so that M̄(λ) and
M̄(λ+1) have the same last element.

The complexity bound is obtained with the same argument as for Proposition 8.5.
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The algorithm to compute the concise representation can be decomposed into
three steps. First a Euclidean algorithm gives recurrence relations of order 1. Then
we deduce higher order relations using the above algorithm. Finally, one has to
compute the truncated basis elements G(i,#). Starting with those of highest pre-
cision avoids computing unnecessary terms, so that quasi-linear complexity can be
achieved.

Algorithm 8.2. Computation of a concise Gröbner basis

Prototype: concise_repr(A,B)

Input: Two generic polynomials A,B ∈ K[X,Y ] of total degrees n and m with
n 6 m.

Output: (G#, M̄), the concise representation of a Gröbner basis of I := 〈A,B〉
with respect to ≺.

1: Set G(0,#) := A and G(1,#) := B remA.
2: Set D(0) := Diag(G(0,#)) and D(1) := Diag(G(1,#)).
3: for i = 2, . . . , n do . Fail if the quotient has degree > 1

4: Set D(i) := D(i−2) remD(i−1) and uiZ + vi := D(i−2) quoD(i−1).
5: if i = 2 then set di := m− n+ 1 else set di := 2. end if

6: Set M(i−2,1) :=

(
0 1

Xdi −uiY − viX

)
.

7: end for

8: Set M(n−1,1) :=

(
0 1

0 0

)
and M̄(0) := (M(0,1), . . . ,M(n−1,1)).

9: for λ = 0, . . . , dlog2 ne − 1 do

10: Compute M̄(λ+1) := rewriting_2l(M̄(λ)).
11: end for

12: Compute

(
G(n,#)

0

)
:= M0,n

(
G(0,#)

G(1,#)

)
. . use M̄(dlog2 ne) = (M0,n)

13: for λ = dlog2 ne − 1, . . . , 1 do

14: for j = 2, . . . , n− 1 with val2 j = λ do

15: Set k := j − 2λ.
16: Set G̃(k,#), G̃(k+1,#) := G(k,#), G(k+1,#), truncated at precision 3× 2λ.
17: Compute G(j,#), G(j+1,#) by . use M̄(λ) = (M(0,2λ),M(2λ,2λ), . . .)(

G(j,#)

G(j+1,#)

)
:= M(k,2λ)

(
G̃(k,#)

G̃(k+1,#)

)
.

18: Truncate G(j,#), G(j+1,#) at precision 3× 2λ.
19: end for

20: end for

21: return G# := (G(0,#), . . . , G(n,#)) and M̄ := (M̄(0), . . . , M̄(dlog2 ne)).

Theorem 8.7. Algorithm 8.2 is correct and takes time O
(
R(m2) + M(nm) log(n)

)
.

Proof. The reduction G(1,#) := B remA can be done in a relaxed way in time
O
(
R(m2)

)
. The �rst loop (lines 3-7) is clearly correct and each step requires
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O (M(n)) operations. Alternatively, the successive quotients can all be computed
with the fast �half gcd� algorithm (see for example [GG13, Chapter 11]) using
O (M(n) log n) operations.

For a polynomial P , denote π#
p (P ) for the upper truncation of P at precision p.

In the last loop on λ (lines 13-20), since the precision decreases at each step and
since there is no accidental cancellation, the invariant(

G(j,#)

G(j+1,#)

)
= π#

3×2λ

(
G(j)

G(j+1)

)
for all j with val2 j = λ

holds. Indeed, regarding upper truncations, it is clear that π#
u (P ) = π#

u (π#
v (P )) as

soon as u 6 v, and also that π#
u (PQ) = π#

u (π#
u (P )Q). Then we have

(G̃(k,#), G̃(k+1,#)) = π#
3×2λ

(G(k), G(k+1)) ,

hence

π#
3×2λ

(
M(k,2λ)

(
G̃(k,#)

G̃(k+1,#)

))
= π#

3×2λ

(
M(j−2λ,2λ)

(
G(j−2λ)

G(j−2λ+1)

))
,

which proves the correctness. Let us now evaluate the complexity of this loop. For
each index j such that val2 j = λ, the support of G̃(k,#), G̃(k+1,#) has size O(m2λ).
Consequently, each iteration of the loop requires O (M(nm)) operations.

8.3 Fast reduction with respect to concise Gröbner bases

In this section, we design an algorithm to compute an extended reduction with
quasi-optimal complexity, using the concise representation. Recall that the major
obstruction for such a result was that the equation

P = Q(0)G(0) + · · ·+Q(n)G(n) +R . (8.7)

is much larger than the intrinsic complexity of the problem (i.e. the size of A,B, P ).
On the one hand, the concise representation solves this issue by providing essential
information about G = (G(0), . . . , G(n)) using much less space. On the other hand,
recall that for vanilla Gröbner bases as in Chapter 7, all G(i) had roughly the same
degree, and notice that this is not the case here. Therefore, quotients with respect
to G# are not valid with respect to G and the algorithm from [Hoe15] can no longer
be used in a blackbox manner.

8.3.1 Revisiting the relaxed reduction algorithm

The reduction algorithm for concise Gröbner bases is based on a modi�cation of the
algorithm from [Hoe15]. The present subsection gives more details about [Hoe15]
to help understanding the modi�cations required later.

As mentioned in section 6.4.3, the idea is to rewrite equation (8.7) in terms of
power series arithmetic. As an introductory example, let us perform a Euclidean
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division in one variable using this method. So, let f(Z), g(Z) be univariate polyno-
mials with deg f > deg g, and assume to simplify that g is monic. We wish to �nd
q(Z), r(Z) such that f = gq + r and deg g > deg r. This can also we written as

Zdeg gq + r = f − (g − Zdeg g)q ,

and we notice that the term of degree k in q is the term of degree k + deg g in
f − (g−Zdeg g)q, that depends only on qk+1, qk+2, . . . , qdeg q. Seeing q as a stream of
coe�cients starting with the terms of highest degree, we get an equation on power
series that is indeed recursive.

The algorithm from [Hoe15] is the multivariate generalization of this idea: for
an extended reduction as in (8.7), we have

Q(0) lt(G(0)) + · · ·+Q(n) lt(G(n)) +R =P −Q(0)T (0) − · · · −Q(n)T (n)

with T (i) := G(i) − ltG(i).

Assuming the streams of coe�cients of each Q(i) are given in decreasing order with
respect to ≺, the equation above is recursive and can be evaluated with series
arithmetic (more precisely, by computing each product Q(i)T (i) using relaxed mul-
tiplications).

8.3.2 Exploiting the concise representation

The concise representation contains only truncated variants G(i,#) of the G(i). We
can set similarly T (i,#) := G(i,#) − lt(G(i,#)), then we observe that the formula

P −Q(0)T (0,#) − · · · −Q(n)T (n,#)

is much smaller than the formula

P −Q(0)T (0) − · · · −Q(n)T (n)

so that relaxed multiplications will compute the former polynomial much faster.
However, since the terms of lower degree are dropped, the two streams of coe�cients
will diverge at some point. To avoid this, we will progressively rewrite equation (8.7)
before this happens. More precisely, as soon as the quotient Q(j) is known, the
product Q(j)G(j) is replaced by some S(k)G(k) + S(k+1)G(k+1), where G(k), G(k+1)

are known with precision larger than G(j).

Remark 8.4. As in Chapter 7, we use truncated elements to speed-up the compu-
tation, followed by substitutions to maintain the correctness of the result. However,
the substitutions are now done on-the-�y during the reduction algorithm, because
it is not possible to wait until all quotients are known.

The concise representation contains the necessary information to perform these
substitutions in the form of recurrence relations among the G(k): for any indices k, `
with k + ` 6 n, we have(

G(k+`)

G(k+`+1)

)
= M(k,`)

(
G(k)

G(k+1)

)
. (8.8)
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For the correctness of the algorithm, we will need the following result:

Lemma 8.8. Let G(0), . . . , G(n) be a Gröbner basis and let the matrices M(k,`) be
as in De�nition 8.3 (for all indices k, ` such that k + ` 6 n). Given quotients
Q(j), Q(j+1) with j := k + `, de�ne

(S(k), S(k+1)) := (Q(j), Q(j+1))M(k,`) .

Then we have

S(k)G(k) + S(k+1)G(k+1) = Q(j)G(j) +Q(j+1)G(j+1) . (8.9)

Assume now that λ is such that Q(j), Q(j+1) have degree less than 3× 2λ−1 − 1 and
` < 2λ. Then:

• If k > 0, then S(k), S(k+1) have degree less than 3×2λ−1, and can be computed
in time O

(
M(4λ)

)
.

• If k = 0, then degS(k) < m−n+ 3× 2λ, degS(k+1) < 3× 2λ− 1 and they can
be computed in time O

(
M((m− n)2λ + 4λ)

)
.

Proof. Equation (8.9) is an immediate consequence of the recurrence relations (8.8)
among the G(i). Similarly, the bounds on degS(k) are consequences of the degree
bounds from Proposition 8.4.

8.3.3 Reduction algorithm

We can now adapt the extended reduction algorithm from [Hoe15] to perform these
replacements during the computation. This leads to Algorithm 8.3 below and sum-
marized in Figure 8.3. The reduction algorithm consists of two main tasks.

First one has to reduce terms one after the other and update the quotients
accordingly (loop in lines 7-12). For example in Figure 8.3.a), the current term to
be reduced is t := αX14Y 6, marked by a square; it is reduced against G(6) (with
ltG(6) = βX11Y 5) because of the dichotomic selection strategy, then we update the
quotient Q(6) +=α/βX3Y to cancel this term. During the next step of the loop, the
term to be reduced is γX15Y 5 marked by a diamond; this time it is reduced against
G(8) which implies an update of Q(8), and so on.

For the second task, one has to rewrite the equation to maintain su�cient pre-
cision (loop in lines 13-25); this is possible because a new quotient is now entirely
known. In our example on Figure 8.3.b), we just completed the computation of
Q(10), so we �nd S(8), S(9) such that

Q(10)G(10) = S(8)G(8) + S(9)G(9)

and we perform the replacement in equation (8.7); this is represented by the green
arrows in the picture.
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a) b)

Figure 8.3: Summary of the reduction algorithm.

Algorithm 8.3. Extended reduction w.r.t. a concise Gröbner basis

Prototype: reduce_concise(P,G#, M̄)

Input: A bivariate polynomial P of degree d, and a concise representation (G#, M̄)

as in De�nition 8.4.
Output: (Q(0), . . . , Q(n), R), the extended reduction of P with respect to G.

1: Set (Q(0), . . . , Q(n), R) := (0, . . . , 0) and P subs := P .
2: Set (S(0), . . . , S(n)) := (0, . . . , 0) . substitutions as in Lemma 8.8

3: Set I := {i 6 n : degG(i) 6 d} ∪ {n}. . active indices for relaxed mult.

4: Set T (i,#) := G(i,#) − ltG(i,#) for each i = 0, . . . , n.
5: for d′ = d, . . . , 0 do . J : active indices with Q(i) 6= 0

6: Set J := {i ∈ I : (i = 0) ∨ (i = n) ∨ (d′ < deg(G(i)) + 3× 2val2(i))}.
7: for a = 0, . . . , d′ do
8: Set c := P subs

a,d′−a.

9: For each i ∈ J , update c−= (Q(i)T (i,#))a,d′−a . relaxed mult.

10: Let (i, τ) := ΦG(cXaY d′−a). . dichotomic selection (section 6.2.1)

11: if i < 0 then update R+= τ else update Q(i) := Q(i) + τ . end if

12: end for

13: for all j (in decreasing order) such that d′ = degG(j) do . cf. Remark 8.5

14: if j < n then

15: Update S(j) +=Q(j) and I := I \ {j} and P subs −=Q(j)G(j,#)

16: end if

17: if 1 < j < n and λ := val2(j) > 0 then

18: Set k := j − 2λ.
19: Set (∆(k),∆(k+1)) := (S(j), S(j+1))M(k,2λ).
20: Update P subs −= ∆(k)G(k,#) + ∆(k+1)G(k+1,#).
21: Update P subs += S(j)G(j,#) + S(j+1)G(j+1,#).
22: Update (S(k), S(k+1)) += (∆(k),∆(k+1)).
23: Set (S(j), S(j+1)) := (0, 0).
24: end if

25: end for

26: end for

27: return (Q(0), . . . , Q(n), R).
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Remark 8.5. Recall that G(0) has degree n and G(i) has degree m+ i−1 for i > 1.
Therefore, the loop on j such that d′ = degG(j) in lines (13-25) is trivial: the set
of such j contains at most 1 element, except when d′ = n = m in which case there
are 2 elements (0 and 1).

Theorem 8.9. Algorithm 8.3 is correct and runs in time

O
(
R(d2) + R(nm) log n+ M(nm) log2 n

)
.

Proof. Let us �rst notice that the relaxed strategy can indeed be used. The quo-
tients Q(i) are regarded as streams of coe�cients. These coe�cients are produced
by the updates Q(i) += τ and consumed in the relaxed evaluation of the products
Q(i)T (i,#). We see that the coe�cients are consumed in decreasing order w.r.t. ≺,
and in this case the equation

Q(0) lt(G(0)) + · · ·+Q(n) lt(G(n)) +R = P −Q(0)T (0) − · · · −Q(n)T (n) (8.10)

is recursive as seen in 8.3.1. This ensures that the production of coe�cients always
occurs before their consumption.

For the correctness, we must check that Algorithm 8.3 actually evaluates equa-
tion (8.10), despite the truncations and substitutions. More precisely, we must show
that for each d′, at the start of each iteration of the loop on a (line 7), we have(

P subs −
∑
i∈J

Q(i)T (i,#)

)
a,d′−a

=

(
P −

∑
i6n

Q(i)T (i)

)
a,d′−a

(8.11)

Informally, equation (8.11) means that Algorithm 8.3 (left-hand side) and the al-
gorithm from [Hoe15] (right-hand side) produce the same streams of coe�cients;
hence the correctness of [Hoe15] implies the correctness of Algorithm 8.3.

Let us start with the description of a few invariants at the start of the main loop
on d′ (line 6):

I1 P subs = P −∑i6n S
(i)G(i,#).

I2
∑

i6n S
(i)G(i) =

∑
i/∈I Q

(i)G(i).

I3 degS(i) and degS(i+1) are at most 3× 2val2(i)− 1 for all even i ∈ {1, . . . , n− 1}.

I4 For some i0 6 n+ 1, we have I = {0, . . . , i0 − 1} ∪ {n}.

I5 With i0 as above, if i = n or i > i0 or (i > i0 with i0 even), then S(i) = 0.

Invariant I1 is immediate. Invariants I2 and I3 follow from Lemma 8.8, using
deg(Q(i)) < 3×2val2(i)−1 by Lemma 8.3. For invariant I4, we recall that degG(i′)) 6
degG(i′+1) for all i′ < n. Finally, invariant I5 is preserved by the loop on lines 13-25:
whenever j is removed from I, S(j) and S(j+1) are set to 0 if j is even.
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Let us now prove the main claim (8.11). Notice �rst that if 0 < i < n and i ∈ I,
then degG(i) 6 d′. Recall also that degQ(i) < 3 × 2val2(i) − 1 for 0 < i < n. This
means deg(Q(i)G(i)) < d′ for i ∈ I \ J . Since by de�nition

G(0,#) = G(0), G(n,#) = G(n), and G(i,#) = π#

3×2v(i)
(G(i)) for 0 < i < n ,

again where π#
p (P ) denotes the upper truncation of P at precision p, and v(i) de�ned

as max
(
val2(i), val2(i− 1)

)
, we deduce that(∑

i∈J
Q(i)T (i,#)

)
a,d′−a

=

(∑
i∈I

Q(i)T (i,#)

)
a,d′−a

=

(∑
i∈I

Q(i)T (i)

)
a,d′−a

.

To complete the proof (by invariant I1), we show that(∑
i6n

S(i)G(i,#)

)
a,d′−a

=

(∑
i6n

S(i)G(i)

)
a,d′−a

=

(∑
i/∈I

Q(i)G(i)

)
a,d′−a

=

(∑
i/∈I

Q(i)T (i)

)
a,d′−a

.

For the �rst identity, we contend that S(i)G(i) and S(i)G(i,#) have the same terms
of degree d′ because of invariants I3 and I5. This is clear if S(i) = 0, or if i 6 1

since G(0) = G(0,#) and G(1) = G(1,#). Assume therefore that i > 1 and S(i) 6= 0.
By invariant I5, the index i0 := min{i ∈ N, i /∈ I} veri�es i 6 i0 < n, hence i0 was
removed from I during a previous iteration of the loop on d′. Since degG(i′+1) =

degG(i′) + 1 for all 0 < i′ < n, this actually happened during the previous iteration
(with d′ + 1 instead of d′). It follows that degG(i) 6 d′ + 1 = degG(i0). By
de�nition of G(i,#) and invariant I3, the polynomials S(i)G(i) and S(i)G(i,#) have
the same terms of degree at least degG(i) − 3 × 2val2 i + degS(i) if i is even, or at
least degG(i) − 3× 2val2(i−1) + degS(i) if i is odd. In both cases, this degree bound
is 6 d′.

The second identity follows immediately from invariant I2. The last identity
follows from the implication i /∈ I ⇒ d′ < degG(i), so that Q(i)G(i) and Q(i)T (i)

have the same terms of degree d′.
For the complexity, relaxed multiplications are used to compute the coe�cients

of the Q(i)T (i,#), whose support is a subset of the support of Q(i)G(i,#). Then the
relaxed multiplications take time

R(|Q(0)G(0,#)|) + · · ·+ R(|Q(n)G(n,#)|) = O
(
R(d2) + R(nm) log n

)
.

It remains to evaluate the cost of the zealous multiplications during the rewriting
steps. To avoid case distinctions, given an even index k ∈ {0, . . . , n− 1}, let val2(k)

be de�ned as

val2k :=

{ dlog2 ne if k = 0,
val2 k otherwise.
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Then for every such index k and for every λ < val2k, there is an update of
S(k), S(k+1), of cost O

(
M(4λ)

)
, followed by the evaluation of the products S(k)G(k,#)

and S(k+1)G(k+1,#), which takes

O
(

M
(
m2val2k

))
operations. This leads to a total of O

(
M
(
m2val2k

)
log2 n

)
operations. Summing

over all k, we get a total cost of O
(
M(nm) log2 n

)
for all rewriting steps.

8.4 Applications

Under some regularity assumptions, we designed a quasi-linear algorithm for poly-
nomial reduction, but unlike Chapter 7, it does not rely on expensive precompu-
tations. This leads to signi�cant improvements in the asymptotic complexity for
various problems. To illustrate the gain, let us assume to simplify that n = m,
and neglect logarithmic factors. Then, ideal membership test and modular multi-
plication are essentially quadratic in n. Also, computing the reduced Gröbner basis
has cubic complexity. In all these examples, the bound is intrinsically optimal, and
corresponds to a speed-up by a factor n compared to the best previously known
algorithms.

8.4.1 Ideal membership

From any fast algorithms for Gröbner basis computation and (multivariate) poly-
nomial reduction, it is immediate to construct an ideal membership test:

Algorithm 8.4. Ideal membership in two variables

Input: (A,B, P ), bivariate polynomials of degrees n, m, and d with n 6 m and
A,B generic.

Output: true if P ∈ 〈A,B〉, false otherwise.

1: Compute (G#, M̄) := concise_repr(A,B). . Algorithm 8.2
2: Compute (Q(0), . . . , Q(n), R) := reduce_concise(P,G#, M̄). . Algorithm 8.3
3: return true if R = 0, false otherwise.

Theorem 8.10. Algorithm 8.4 is correct and takes time

O
(
R(m2 + d2) + R(nm) log n+ M(nm) log2 n

)
.

8.4.2 Multiplication in the quotient algebra

The concise Gröbner basis provides a practical representation of the quotient algebra
A := K[X,Y ]/〈A,B〉, that does not need more space (up to logarithmic factors) than
the algebra itself, while still allowing for e�cient computation. But unlike the terse
representation from Chapter 7, it is easy to compute, so that multiplication in A
can be done in quasi-linear time, including the cost for the precomputation:
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Algorithm 8.5.

Input: (A,B, P,Q), bivariate polynomials, with A,B generic of degrees n 6 m and
P,Q ∈ A in normal form.

Output: PQ ∈ A in normal form.

1: Compute (G#, M̄) := concise_repr(A,B). . Algorithm 8.2
2: Compute PQ using any (zealous) multiplication algorithm.
3: Compute (Q(0), . . . , Q(n), R) := reduce_concise(P,G#, M̄). . Algorithm 8.3
4: return R.

Theorem 8.11. Algorithm 8.5 is correct and takes time

O
(
R(m2) + R(mn) log n+ M(nm) log2 n

)
.

8.4.3 Reduced Gröbner basis

Since we can reduce polynomials in quasi-linear time, we deduce a new method to
compute the reduced Gröbner basis: �rst compute the non-reduced basis, together
with additional information to allow the e�cient reduction (which can be done fast);
then reduce each element with respect to the others.

Algorithm 8.6. Reduced Gröbner basis in two variables

Input: (A,B), generic bivariate polynomials of total degrees n and m with n 6 m.
Output: Gred := (G(red,0), . . . , G(red,n)) the reduced Gröbner basis of 〈A,B〉 with

respect to ≺.
1: Compute (G#, M̄) := concise_repr(A,B).
2: for i = 0, . . . , n do

3: Set t0 := Y n = lmG(0) or ti := Xm−n−1+2iY n−i = lmG(i) if i > 0.
4: Compute (Q(0,i), . . . , Q(n,i), R(i)) := reduce_concise(ti, G

#, M̄).
5: Set G(red,i) := ti −R(i).
6: end for

7: return (G(red,0), . . . , G(red,n)).

Theorem 8.12. Algorithm 8.6 is correct and takes time

O
(
R(m2)n log n+ nM(nm) log2 n

)
.

Proof. Clearly G(red,i) is in the ideal and has the same leading monomial as G(i).
Moreover, G(red,i) is monic and none of its terms is divisible by the leading term
of any G(j), j 6= i. This proves Gred is indeed the reduced Gröbner basis of 〈A,B〉
with respect to ≺.

8.5 Re�ned complexity analysis

The algorithms from sections 8.3 and 8.4 were purposely simpli�ed to separate
the main ideas of more technical details. Although the complexity bounds are
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satisfactory, there are speci�c cases in which they are not optimal, and a more subtle
analysis is required to improve them. This section presents the missing ingredients
and proves the complexity bounds announced in Table 8.1.

8.5.1 Optimized algorithm using lazier substitutions

The bound given in Theorem 8.9 contains an unwanted term O
(
M(nm) log2(n)

)
that corresponds to the rewriting steps. This contribution is absorbed by the term
O (R(nm) log(n)) when using traditional relaxed multiplication [FS74, Hoe02] with
R(d) � M(d) log d, but this is no longer true for faster relaxed algorithms, such
as the one from [Hoe14]. With some optimizations, it is possible to decrease by a
logarithmic factor the cost of the rewriting steps. Then this contribution can be ab-
sorbed into the term O (R(nm) log(n)), independently of the relaxed multiplication
algorithm being used.

For the general idea, notice that each time a new quotient Q(j) is known, we
perform a substitution (S(k), S(k+1)) += (S(j), S(j+1))M(k,2λ) (j = k+ 2λ), followed
by a few products of the form S(k)G(k,#). This means that there are a logarithmic
number of products S(k)G(k,#) for each k. Now up to a few adaptations, it is possible
to reduce this to a constant number. Summing over all k, the total cost of rewriting
the equation then drops from O

(
M(nm) log2 n

)
down to O (M(nm) log n).

The modi�cation is essentially as follows:

1. instead of rewriting as soon as Q(j) is known, we delay the substitution until
Q(k) is known;

2. we then perform all substitutions (S(k), S(k+1)) += (S(j), S(j+1))M(k,2λ) for
each λ, j = k + 2λ;

3. we only perform the multiplications by G(k,#), G(k+1,#) after this loop.

Since the substitution is delayed, it is necessary to increase the precision of
G(j,#), to ensure a correct result up to the degree of G(k). If k > 0, then we have
degG(j) = degG(k) + 2λ, so increasing the precision by 2λ is su�cient. However,
if k = 0, then degG(j) = degG(k) + 2λ + m − n, and m − n may be large; a naive
increase of the precision would thus cause an undesirable overhead. A possible
workaround is to add a �virtual� basis element G(1/2) := Xm−nG(0), that is used
only for the substitutions (and we have degG(j) = degG(1/2) + 2λ − 1 so now the
increased precision remains reasonable).

De�nition 8.5. The augmented concise representation has the same content as the
concise representation, up to the following:

• The basis elements G(i,#) are truncated at precision 4 × 2max(val2 i,val2(i−1))

(instead of 3× 2...);

• An additional element G(1/2,#) := Xm−nG(0);
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• Additional matrices M(1/2,2λ) := M(0,2λ)

(
1/Xm−n

1

)
for each λ 6 blog2 nc.

The following theorem is a straightforward adaptation of Proposition 8.5 and
Theorem 8.7.

Theorem 8.13. The augmented concise representation requires O(mn log n) space
and can be computed in time O

(
R(m2) + M(nm) log(n)

)
using a suitable adaptation

of Algorithm 8.2.

Assuming from now on the augmented concise representation, the loop in lines
13-25 of Algorithm 8.3 can be modi�ed as follows:

Algorithm 8.7. (Replaces the loop in lines 13-25 of Algorithm 8.3)

13: for k (in decreasing order) such that d′ = degG(k) do . See Remark 8.5
14: if k < n then set S(k) := Q(k) end if

15: if k < n and bkc is even then
16: if k + 1 < n then

17: Update I := I \ {k, bk + 1c}.
18: else

19: Update I := I \ {k}.
20: end if

21: end if

22: if k = 0 then update P subs −= S(0)G(0,#) end if

23: if (1 < k < n and Λ := val2(k) > 0) or k = 1/2 then

24: if k = 1/2 then set Λ := dlog2 ne. end if

25: for λ ∈ {1, 2, . . . ,Λ− 1} such that j := bkc+ 2λ < n do

26: Update (S(k), S(bk+1c)) += (S(j), S(j+1))M(k,2λ).
27: Update P subs += S(j)G(j,#) + S(j+1)G(j+1,#).
28: Set (S(j), S(j+1)) := (0, 0).
29: end for

30: Update P subs −= S(k)G(k,#) + S(bk+1c)G(bk+1c,#).
31: end if

32: end for

Theorem 8.14. The above modi�cation of Algorithm 8.3 is correct and runs in
time

O
(
R(d2) + R(nm) log n

)
.

Proof. The correctness proof is essentially the same as for Theorem 8.9, although a
bit more technical. Invariant I5 must be modi�ed as follows:

I5* With i0 as in Invariant I4, if i even with i− 2val2 i > i0 or i = n, then S(i) = 0

and S(i+1) = 0.

The rest of the proof is as before except for some degree bounds: if i is even,
then the polynomials S(i)G(i) and S(i)G(i,#) have the same terms of degree at least
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degG(i)−4×2val2 i+degS(i) (notice the term 4×2val2 i instead of 3×2val2 i because
the precision in the concise representation was increased). Assuming S(i) 6= 0, that
is i− 2val2 i < i0, we have degG(i) − 4× 2val2 i + degS(i) 6 d′. Similarly if i is odd,
then the polynomials S(i)G(i) and S(i)G(i,#) have the same terms of degree at least
degG(i) − 4× 2val2(i−1) + degS(i), which is again 6 d′.

As for the complexity, it is clear that for each k, there are at most 2 products
S(k)G(k,#): one during the substitution at step k (line 30 in Algorithm 8.7) and
possibly one at step k − 2val2 k (line 27). The complexity of the rewriting steps
therefore drops to O (M(nm) log n), as announced.

8.5.2 Improved complexity analysis using re�ned support bounds

The bound given in Theorem 8.14 assumes that the input polynomial P has a
�triangular� support of degree d; typically the bound is tight if lmP = Y d. However,
it may happen that the degree in the variable Y is much smaller than the total
degree: this is in particular the case in sections 8.4.2 and 8.4.3.

Let us �rst notice that the degree in the variable Y during the execution of
Algorithm 8.3 can be controlled using the following elementary properties:

Lemma 8.15. We have that for all i, degY G
(i) 6 n+ i.

Corollary 8.16. If the input polynomial P (in Algorithm 8.3) veri�es degY P 6 Kn

for some K > 3, then for each i we have degY (Q(i)G(i)) 6 Kn.

Proof. The dichotomic selection strategy imposes that degY Q
(i) 6 n for i > 0,

hence degY (Q(i)G(i)) 6 3n. The result for i = 0 is obtained from

Q(0)G(0) = P −
∑
i>0

Q(i)G(i) −R .

We next extend the discussion from section 6.4.1 to a new type of supports.
Initially, we restricted ourselves to supports of the form

Sl,h := {M ∈M : l 6 degM 6 h} ,

for which |Sl,h| = Θ(h(h− l)). We now need to bound the degree in the variable Y
independently of the total degree, so we consider supports of the form

Sl,h,s := {M ∈M : l 6 degM 6 h and degY M 6 s} .

Using the same change of variables as before with XaY b 7→ T h−a−bU b, it is not hard
to check that multiplication can still be done in time O (M(|Sl,h,s|)) for such more
general supports, and similarly for relaxed multiplication. This allows us to prove
the following result:

Proposition 8.17. If K > 3 is such that degY (P ) 6 Kn, then the improved variant
of Algorithm 8.3 (from Theorem 8.14) runs in time

O (R(Knd) + R(nm) log n) .
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Proof. By Corollary 8.16, the supports appearing during Algorithm 8.3 are all of
the form Sl,h,s with s 6 Kn, and we have |Sl,h,s| = Θ(s(h− l)), so that the cost of
the relaxed multiplications is

R(|Q(0)G(0,#)|) + · · ·+ R(|Q(n)G(n,#)|) = O (R(Knd) + R(nm) log n) ,

and the cost of the rewriting steps is

O (M(nm) log n) = O (R(nm) log n)

as in Theorem 8.14.

8.5.3 Consequences of the re�ned complexity bounds

We are now in a position to improve the results from section 8.4. Given a �xed ideal
〈A,B〉, we may precompute an augmented concise Gröbner basis (G#, M̄) once and
for all; by Theorem 8.13, this precomputation takes time O

(
R(m2) + R(mn) log n

)
.

Theorem 8.14 then leads to the following improved complexity bound for the ideal
membership test from section 8.4.1.

Theorem 8.18. Given P ∈ K[X,Y ] with degP 6 d, we may test whether P ∈
〈A,B〉 in time

O
(
R(d2) + R(mn) log n

)
,

using Algorithm 8.4, when regarding step 1 as a precomputation.

If P,Q ∈ K[X,Y ] are in normal form with respect toG, then deg(PQ) 6 2(n+m)

and degY (PQ) 6 2n. Proposition 8.17 then implies the following quasi-optimal
complexity bound for multiplication in the quotient algebra K[X,Y ]/〈A,B〉.

Theorem 8.19. Using Algorithm 8.5, one multiplication in K[X,Y ]/〈A,B〉 can be
performed in time

O (R(mn) log n) ,

when regarding step 1 as a precomputation.

Remark 8.6. The new bound is quasi-linear in the dimension mn of the quotient
algebra. If n� m, then the new bound improves upon the one from Theorem 8.11
due to the term R(m2). Notice that this term occurred for two reasons. First of all,
the computation of the concise Gröbner basis in particular involves the computation
of B remA; we now regard this as a precomputation. The reduction of PQ, which
has degree d = 2(m+ n), also lead to a cost O

(
R(d2)

)
in Theorem 8.9. Exploiting

the reduced degrees in Y of P and Q, the cost of this reduction is reduced to
O (R(mn) log n) by Proposition 8.17.

Similarly, applying the improved bound from Proposition 8.17 to Algorithm 8.6,
the reduction of t0 := Y n = lmG(0) or ti := Xm−n−1+2iY n−i = ltG(i) with i > 0

takes time O (R(nm) log n). This yields:
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Theorem 8.20. Using Algorithm 8.6, the reduced deglex Gröbner basis of 〈A,B〉
can be computed in time

O
(
R(m2) + R(nm)n log n

)
.

Remark 8.7. This bound is quasi-linear inm2+n2m, which is indeed quasi-optimal
if we take into account both the input and output sizes.

8.6 Experimental results

The above algorithms were implemented in the Mathemagix software [HLM+02],
whose source code can be downloaded from svn://scm.gforge.inria.fr/svnroot/

mmx/. The implementation of the bivariate Gröbner basis and normal form algo-
rithms is gathered in the package larrix. The main algorithms are found in the
�le include/larrix/ggg.hpp (the abbreviation ggg stands for �generic Gröbner
grevlex�). We run the following experiment:

• pick random bivariate polynomials A,B of degree n with coe�cients in the
prime �eld Z/65521Z. This �eld is su�ciently large so that random elements
satisfy the genericity assumptions with very high probability.

• compute a Gröbner basis G in concise representation with our algorithm and
measure the time needed for this task. If the genericity hypothesis is not
satis�ed, this can be detected at this point and the computation fails (but it
does not happen in practice).

• pick a random polynomial P of degree 2n, compute its normal form with
respect to G and measure the time needed for this task.

First, let us check that the implementation achieves the announced complexity
from Table 8.1 (notice that n = m in this experiment). To do so, we compare the
time needed for the concise Gröbner basis with the theoretical bound M(n2) log n,
where M(n2) is estimated simply by multiplying polynomials of the appropriate de-
gree with the builtinMathemagix functions. Similarly, the cost of the normal form
is compared with R(n2) log n (with R corresponding to the builtin series arithmetic).
The results are given in Figure 8.4; we see that the implementation has the expected
complexity, with a big-Oh constant around 4.

Now it is interesting to compare the absolute timings for this implementation
and other reference software. So let us run the above experiment again, and com-
pare with the equivalent functionalities in FGb [Fau10] (Gröbner basis) and Sage-
Math [Sag17] (Gröbner basis and normal form) in the same situation. Let us
mention that SageMath relies on Singular [DGPS17] as a backend for multi-
variate polynomials. The �les corresponding to this experiment are ggg_bench.cpp
for Mathemagix, ggg_FGb_bench.cpp for FGb, and ggg_sage_bench.sage for
Sage); all in the bench/ directory.

svn://scm.gforge.inria.fr/svnroot/mmx/
svn://scm.gforge.inria.fr/svnroot/mmx/
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Figure 8.4: Measured execution time compared with the expected complexity bound.

All timings were measured on a platform equipped with an Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4 memory. The benchmarks
are done using the svn revision 10718 of Mathemagix, FGb/modp version 14538
and SageMath version 8.0 (which includes the version 4-1-0 of Singular); in each
case the program uses a single thread.

The results are given in Figure 8.5 (a solid line represents the Gröbner basis com-
putation, and a dashed line represents the reduction in normal form). We observe
that the Mathemagix implementation becomes faster than the others for degrees
as low as 20. For larger degrees, the speedup becomes really signi�cant: for n = 200,
the concise Gröbner basis is obtained in 188ms and the normal form in 1.4s with
the new algorithms, while FGb and Sage need around 30s for each task. Notice
however that FGb and Sage are designed to solve more general problems (including
non generic systems in > 2 variables).
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Figure 8.5: Comparison of the Mathemagix implementation with other software
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Finally, to �nd out the most computationally expensive subtasks in each algo-
rithm, we run the experiment for n in the order of a few thousands, and we measure
the time needed for each part. (Let us mention that for n = 1000, FGb ran for
28 hours before running out of memory.) For the concise representation, we see that
computing the truncated basis (matrix-vector products of bivariate polynomials)
represent more than 99% of the time. This means that the univariate gcd and the
computation of the matrices M(k,`) require less than 1% of the time. For the normal
form, evaluating the products Q(i)G(i) using series arithmetic takes about 80-85%
of the time, and the substitutions represents 14-18%.

degree n 1000 2000 4000
Truncated basis (s) 10.2 55.6 310
Total concise repr. (s) 10.3 56.0 312
Relaxed products (s) 74.4 447 2603
Substitutions (s) 16.3 83 422
Total normal form (s) 91.9 535 3046

Perspectives

As in the previous chapter, it would be desirable to relax some of the genericity
assumptions.

One possibility would be to look at the univariate Euclidean algorithm while
computing the concise Gröbner basis. Recall that the algorithm fails if one of the
quotients is larger than 1. Generically this should not happen, but the probability of
an accidental cancellation increases when working over a small �nite �eld. It might
be possible to adapt the algorithm if the number of accidental cancellations is small
(say O(log n) in total), but this would be much more technical. Notice however that
the algorithm cannot work if gcd(DiagA,DiagB) 6= 1 or when S(G(n−1), G(n)) does
not reduce to zero, because the recurrence relations between the G(i) are lost after
that. Also, it is not clear how to handle non-zero-dimensional ideals.

As another possibility, an intuitive result would be that the algorithms work
modulo a generic linear change of variables, as long as the Bézout bound of n2

solutions is reached. For example, the algorithm fails with A := Xn and B := Y n,
but it works with Ã := (aX+ bY )n and B̃ := (cX+dY )n. However, this conjecture
seems out of reach for now.

Regarding an extension to more than 2 variables, this seems also out of reach
at the moment. Some of the ideas still apply; for example the dichotomic selec-
tion strategy and the associated truncation extend quite naturally (for this reason,
vanilla Gröbner bases as in Chapter 7 are likely to exist with r > 2 variables). Sim-
ilarly, it is possible to construct a non-reduced Gröbner basis by regarding only the
terms of highest degree, as a generalization of the dominant diagonal. However, the
recurrence relations that appear are not small like in the bivariate case: ideally we
would like r× r matrices, but already in 3 variables, recurrence relations with Θ(n)

terms appear. To maintain small relations would require entirely new ideas.
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About the applications of concise Gröbner bases, it is worth mentioning that
van der Hoeven and Lecerf used them to build a quasi-quadratic algorithm for the
bivariate resultant over �nite �elds [HL19c]. Recall that classical algorithms for this
task are cubic, and the �rst known sub-cubic algorithm is due to Villard [Vil18] (with
complexity O(n(3−1/Ω)(1+ε)) for Ω the exponent of matrix multiplication). Roughly
speaking, concise Gröbner bases provide a representation ofK[X,Y ]/〈A,B〉 in Õ(n2)

operations. Then under additional assumptions, the resultant of A,B (with respect
to Y ) is the minimal polynomial of X in K[X,Y ]/〈A,B〉, which can be found using
fast modular composition. Notice that this algorithm is not practical, because it
relies on Kedlaya-Umans modular composition [KU11] (hence Remark 4.2 applies
again). Nevertheless, it could be interesting from a theoretical point of view to
study the consequences in other areas, typically with geometric resolution and the
Kronecker solver [GLS01], which heavily rely on the bivariate resultant.
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Computing �nite �eld embeddings
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As shown in Chapter 4 for the Frobenius FFT, there are situations where it is
necessary to work simultaneously with several �nite �elds, or more precisely sev-
eral extensions of the same �nite �eld. This question also appears naturally when
constructing an e�ective representation of Fp, the algebraic closure of Fp. Indeed,
recall that Fpd contains the roots of irreducible polynomials of degree d. This means
that for any element x ∈ Fp, there is an extension degree d ∈ N such that x ∈ Fpd ;
however it is not possible to �x a su�ciently large d because Fp is in�nite.

For both the Frobenius FFT or computation in Fp, we need at some point to
perform operations with elements of di�erent �elds (for example, given α ∈ Fpa
and β ∈ Fpb , compute αβ). This leads to the �nite �eld embedding problem: given
representations of Fpe and Fpd with e | d, �nd a function ρe→d : Fpe → Fpd that
represents algorithmically the injection Fpe ↪→ Fpd .

Notice that the solution ρe→d is not unique: if Fpe is represented by the quotient
Fp[X]/〈µ(e)(X)〉 and ζ1, . . . , ζe are the roots of µ(e) in Fpd , then the map X 7→ ζi
for any i is a solution. To ensure the consistency of the system, it is necessary to
add the constraint of compatibility [BCS97]:

if e | e′ | d, then ρe→d = ρe
′→d ◦ ρe→e′ . (A.1)

This appendix presents a di�erent solution to this problem, together with an exper-
imental implementation.

A.1 The �nite �eld embedding problem

The �rst classical algorithms to change representations of �nite �elds are due to
Lenstra [Len91] and Allombert [All02]. These algorithms rather focus on the �nite
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Fp ⊂ Fp2 ⊂ Fp4 · · ·

⊂ ⊂ ⊂

Fp3 ⊂ Fp6 ⊂ Fp12

⊂ ⊂ ⊂

Fp9 ⊂ Fp18 ⊂ Fp36

.

.

.

Figure A.1: A lattice of �nite �eld embeddings

�eld isomorphism problem, that is to convert between two representations of the
same �eld Fpd . Such algorithms can be extended to compute embeddings, but they
do not ensure the compatibility. For a more complete survey of solutions to the
isomorphism problem, see [BDD+19, BDD+17] and references therein.

A.1.1 Manually enforcing compatibility

In the Bosma-Cannon-Steel framework [BCS97], the di�erent �elds are placed on a
lattice as in Figure A.1, which is constructed iteratively when new extensions are
added. To add a new �eld to the lattice, they start by computing one embedding
(to or from one already present �eld), using typically Lenstra's or Allombert's algo-
rithm. Then they compute all other relevant embeddings in a way that enforces the
compatibility, using linear algebra techniques. Let us mention that this framework
is used for the �nite �elds construction in Magma [BCP97] and, since recently, in
Nemo [FHHJ17]. For example, if Fp, Fp2 and Fp3 are already present in the lattice,
then adding Fp6 could be done as follows:

• compute ρ2→6 using a classical algorithm,

• deduce ρ1→6 := ρ2→6 ◦ ρ1→2,

• compute ρ3→6 such that ρ1→6 := ρ3→6 ◦ ρ1→3 using linear algebra.

With this method, constructing the representation of each �eld is e�cient be-
cause Fpd can be de�ned by any degree d irreducible polynomial. Also, evaluating
an embedding (i.e. given x ∈ Fpe , compute ρe→d(x) ∈ Fpd) boils down to a matrix-
vector product which is very fast. However, adding new �elds to the lattice becomes
more and more expensive when the lattice grows, because there are more embed-
dings to compute each time; there is also a signi�cant memory requirement because
a quadratic number of embeddings needs to be stored (and each embedding ρe→d is
represented by a d× e matrix).
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A.1.2 Standard lattices

To reduce the memory requirement for storing the lattice of �eld embeddings, it is
possible to represent the �nite �elds using a family of �standard� polynomials with
special properties. With a well-chosen family of polynomials, there is a standard
way to de�ne embeddings which also enforces the compatibility. A classical example
is the family of Conway polynomials [Par90, Sch92] C(p,d) such that

• the polynomial C(p,d) ∈ Fp[X] is irreducible of degree d and monic;

• the roots of C(p,d) are primitive in Fpd (each root α generates F×
pd

as a multi-
plicative group);

• for any e dividing d, C(p,e) is norm-compatible with C(p,d) in the following
sense: if α is a root of C(p,d) and r := (pd − 1)/(pe − 1), then αr is a root of
C(p,e);

• among all polynomials with the above properties, C(p,d) is lexicographically
minimal (convention to ensure non-ambiguous de�nition).

The condition of norm compatibility echoes the fact that if α is primitive in Fpd ,
then αr is primitive in Fpe (again with r := (pd− 1)/(pe− 1)). With this de�nition,
the canonical embedding for Fpe ⊂ Fpd is given by

ρe→d : Fp[X]/〈C(p,e)(X)〉 → Fp[Y ]/〈C(p,d)(Y )〉
X modC(p,e)(X) 7→ Y r modC(p,d)(Y )

and it is clearly compatible in the sense of equation (A.1).
With such standard polynomials, the required storage is linear in the size of the

lattice. To evaluate the embedding ρe→d, it su�ces to �rst compute (by modu-
lar exponentiation) ρe→d(X) := Y r remC(p,d)(Y ), then ρe→d(P (X)) = P (ρe→d(X))

is obtained by modular composition. However, the computation of Conway poly-
nomials is very expensive: the algorithm from [HL04] is only slightly better than
exhaustive search. To make this method practical up to a certain point, some com-
puter algebra systems embark pre-computed tables of Conway polynomials.

A variant proposed by De Feo, Randriam and Rousseau [DRR19] de�nes another
family of standard polynomials. Their construction combines the Lenstra-Allombert
algorithm [Len91, All02] with Conway polynomials to get extensions of higher de-
grees. More precisely, if the Conway polynomials are known up to degree n, then
they derive another family of polynomials for all degrees dividing pn − 1. However,
they point out that getting all standard polynomials up to degree N with their
construction is asymptotically equivalent to the computation of the �rst N Conway
polynomials.

A.1.3 Combination of `-adic towers

On the lattice of �eld extensions from Figure A.1, we observe two main sequences
of embeddings: Fp ⊂ Fp2 ⊂ Fp4 ⊂ · · · horizontally, and Fp ⊂ Fp3 ⊂ Fp9 ⊂ · · ·
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vertically. These sequences are then combined to form the other extensions in the
quarter-plane. More generally, the lattice of all �eld extensions that constitute Fp
can be seen as a combination of the `-adic towers

Fp ⊂ Fp` ⊂ F
p`2
⊂ F

p`3
⊂ · · ·

for each prime `. Such towers have the advantage that constructing compatible
embeddings is easier: in most cases, subquadratic or even quasi-linear algorithms
exist. The case ` = p (Artin-Schreier towers) has been studied in [Can89, Cou00,
DS12]; the case ` = 2 is treated in [DS15]; and solutions for the other cases are found
in [DDS13]. To construct arbitrary extensions, it remains to combine the di�erent
towers.

The �rst solution is to notice that if Q is irreducible of degree n over Fp and if
m,n are coprime, then Q is also irreducible over Fpm . If d =

∏
` prime `

e(`), then it
is easy to construct successively the extensions

Fp ⊂ F
p2
e(2) ⊂ F

p2
e(2)3e(3) ⊂ F

p2
e(2)3e(3)5e(5) ⊂ · · · ⊂ Fpd

using a di�erent variable each time. For example, let Q(i) ∈ Fp[X] be irreducible
polynomials of degree i for i ∈ {2, 3, 5}. Then the extension Fp30 can be constructed
using the isomorphisms

Fp30 ∼= Fp15 [X2]/〈Q(2)(X2)〉
∼= Fp5 [X2, X3]/〈Q(2)(X2), Q(3)(X3)〉
∼= Fp[X2, X3, X5]/〈Q(2)(X2), Q(3)(X3), Q(5)(X5)〉 .

Similarly, if Q(4) is irreducible of degree 4, then the extension Fp60 can be represented
as

Fp60 ∼= Fp[X2, X3, X5]/〈Q(4)(X2), Q(3)(X3), Q(5)(X5)〉 .
Assume that we know an embedding of Fp2 ∼= Fp[X]/〈Q(2)(X)〉 into the extension
Fp4 ∼= Fp[X]/〈Q(4)(X)〉. Then this embedding can be extended into an embedding
of Fp30 into Fp60 , simply by applying the same transformation to the variable X2 in
the above multivariate representations. It is also clear that this method preserves
the compatibility of combined embeddings (as long as the embeddings inside each
`-adic tower were compatible).

The second solution is to combine the towers using the composed product (if A
has roots αi and B has roots βj , then the composed product of A,B is the polyno-
mial with roots αiβj). For example, with Q(2), Q(3), Q(5) as above, we let Q(30) be
their composed product, and we use the representation Fp[X]/〈Q(30)(X)〉 for Fp30 .
De Feo, Doliskani and Schost [DDS14] gave e�cient algorithms to translate between
multivariate representations like

Fp[X2, X3, X5]/〈Q(2)(X2), Q(3)(X3), Q(5)(X5)〉

and univariate representations like

Fp[X]/〈Q(30)(X)〉 .



A.2. Proposed solution 137

The idea of this construction is to use a univariate representation for all extensions;
but to compute an embedding, the representation is �rst decomposed to a multi-
variate representation, then the embedding is performed as above and the result
is �nally recomposed in univariate representation. The overhead of back-and-forth
translations is compensated by the improved arithmetic when using a univariate rep-
resentation of Fpd (multiplication of dense polynomials with many variables quickly
becomes impractical). A combination of towers using this technique is referred to
as a compositum.

A.2 Proposed solution

The construction proposed in this appendix is based on a combination of `-adic
towers as in section A.1.3. To combine the towers, we will use a multivariate rep-
resentation, but we merge some variables using the composed product. Roughly
speaking, this is a middlepoint between the two approaches of section A.1.3. It
turns out that a compromise between these ideas leads to practical improvements.

A.2.1 General framework

The idea of merging some (but not all) variables into one is inspired by [HL19b].
In their paper, van der Hoeven and Lecerf consider successive ring extensions
A0 ⊂ A1 ⊂ A2 ⊂ · · · where Ai+1 := Ai[Xi]/〈P (i)(Xi)〉 with P (i) ∈ Ai[Xi]. In other
words, Ai+1 is represented by polynomials inX0, . . . , Xi modulo a triangular system.
This representation gives trivial embeddings Ai ↪→ Aj for i 6 j, but on the other
hand the arithmetic of Ai has an overhead that is exponential in i: with the current
best algorithm [Leb15], multiplication in Ai has complexity O(3i M([Ai : A0])). To
reduce the overhead while keeping e�cient embeddings, van der Hoeven and Lecerf
construct an accelerated tower

Ã0 ⊂ Ãi1 ⊂ Ãi2 ⊂ · · · with Ãik ∼= Aik and Ãik+1
= Ãik [Xk]/〈P̃ (k)(Xk)〉

by collapsing certain levels of the original towers. This allows us to reduce the
number of variables and it remains only to compute the embedding Aj ↪→ Ãik+1

whenever ik < j < ik+1, which is not too expensive as long as [Aik+1
: Aik ] is not

too large. In practice, they choose a parameter δ and they set

ik+1 := min(j s.t. j > ik and [Aj : Aik ] > δ) .

For computations in Fp, the setting is a bit di�erent because the extensions form
a lattice instead of a tower. In particular, there is no �xed sequence of intermediate
�elds between Fp and Fpd : Fp12 could be represented using any of the following

Fp ↪→ Fp4 ↪→ Fp12
Fp ↪→ Fp2 ↪→ Fp6 ↪→ Fp12

Fp ↪→ Fp3 ↪→ Fp12
...
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and we wish to keep a uniform representation. For this reason, we prefer to start
from the representation where we assign the variable X` to the `-adic tower for each
prime `; then we may choose to combine two or more variables into one using the
composed product (as in [DDS14]), and keep the other separated. For example, if
we combine the 2-adic and 3-adic towers but not the 5-adic tower, Fp30 would be
represented as

Fp[X2,3, X5]/〈Q(6)(X2,3), Q(5)(X5)〉
(where Q(6) is the composed product of Q(2) and Q(3)), instead of

Fp[X2, X3, X5]/〈Q(2)(X2), Q(3)(X3), Q(5)(X5)〉 or Fp[X]/〈Q(30)(X)〉

in the classical approaches. Of course, the towers to be combined do not necessarily
correspond to consecutive primes. For example, if we consider the `-adic towers for
` ∈ {2, 3, 5, 7}, it could be appropriate to split this into {2, 7} and {3, 5}. Moreover,
the construction is incremental: when new towers are added, they can freely be
assigned to an already existing compositum, or kept separated by creating a new
variable. For example, if we add the 11-adic tower, we can insert it to the {2, 7}
compositum (the variable X2,7 would be renamed X2,7,11), or to the {3, 5} composi-
tum (thus renaming X3,5 into X3,5,11), or keep it separated (with a new variable
X11). Except for the renamed variable in the �rst two cases (which is computation-
ally free), none of these choices change the representation of already constructed
�elds. However, moving towers from one compositum to another would change the
representation so we will avoid this.

Representations like Fp[X2,3, X5]/〈Q(6)(X2,3), Q(5)(X5)〉 can still be seen as poly-
nomials modulo a triangular system, but notice that each polynomial in the trian-
gular system has only one variable. Because of this, the bound for modular mul-
tiplication can be re�ned. Let us say that the prime factors of d are split into k
composita C1, . . . , Ck; so that Fpd is represented by polynomials in k variables:

Fpd ∼= Fp[XC1 , . . . , XCk ]/〈Q(C1)(XC1), . . . , Q(Ck)(XCk)〉 .

Lebreton's algorithm [Leb15] would then give a bound of O(3kM(d)) operations for
multiplication in Fpd . Recall that this algorithm was an improvement of [LMS09],
that has O(4kM(d)) complexity. Roughly speaking, these algorithms consist of three
steps:

• a recursive call to reduce with respect to Q(C1), . . . , Q(Ck−1),

• a reduction with respect to Q(Ck),

• another recursive call with respect to Q(C1), . . . , Q(Ck−1), because the degree in
XC1 , . . . , XCk−1

increased during the second step.

However, since Q(Ck) is in fact univariate in X(Ck), the degrees in the other variables
do not increase during the second step, so the third step is not required and there is
only one recursive call. Then it is easy to check that the complexity of the algorithms
from [Leb15, LMS09] is in fact O(2kM(d)) in this case.
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Remark A.1. In [LMS09], Li, Moreno Maza and Schost also give a variant for this
case with a system of univariate polynomials. They show that multiplication takes
at most Kεd

εM(d) operations for any ε > 0 (for some constant Kε). In principle,
multiplication in Fpd could be made essentially quasi-linear. The idea is to handle
di�erently moduli with degree 6 δε and moduli with degree > δε, for some bound δε.
They present an implementation where all moduli have degree 2, and the exponential
dependency in the number of variables is indeed eliminated. However, the algorithm
seems impractical for our problem, because moduli may have large degrees.

A.2.2 Experimental results

An experimental C++ implementation of this framework (in collaboration with
Luca De Feo) shows that the construction is practical. The source code is available
at https://gitlab.inria.fr/rlarrieu/tower. For now, `-adic towers are only
implemented for the Kummer case (` divides p− 1). For this reason, we run exper-
iments with p := 2311 = 2 × 3 × 5 × 7 × 11 + 1 so we can construct `-adic towers
for ` ∈ {2, 3, 5, 7, 11}. Polynomial arithmetic over Fp uses the NTL [Sho01] library.
The main algorithms are in the include/ directory:

• irred_tower.h and compositum.h de�ne the representation of `-adic towers
and composita using univariate arithmetic.

• multivariate.h and triangular*.h de�ne general purpose arithmetic for
multivariate polynomials modulo triangular sets.

• tensor_product.h de�nes the tensor product (in multivariate representation)
of several composita.

Additional test and benchmark programs are found in the test and bench directo-
ries.

Timings are measured on a platform equipped with an Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4 memory. The platform
runs the Stretch GNU Debian operating system with a 64 bit Linux kernel ver-
sion 4.3. We compile with GCC [GCC87] version 6.3. We use NTL version 11.3.2
with the default compilation options, and the thresholds were tuned (by the con-
�gure script) during the installation. The execution times are given for the version
from August 23, 2019 (commit f0d3c213). Unless speci�ed otherwise, the programs
use a single thread.

Let us �rst compare the construction from section A.2.1 with the standard lat-
tices from [DRR19]. We measure the time needed to construct Fpd and to compute
the embedding Fp2 ↪→ Fpd . For the multivariate representation, we try di�erent
partitions of the towers among the variables (�le bench/ffembed.cpp):

• 1 variable � compositum {2, 3, 5, 7, 11},

• 3 variables � composita {2, 5}, {3, 7} and {11},

• 5 variables � each tower in a separate compositum.

https://gitlab.inria.fr/rlarrieu/tower
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Figure A.2: Construction of Fpd (left) and embedding Fp2 ↪→ Fpd (right).

For the standard lattices (�le bench/lattice_GF_H90.jl), we use the implemen-
tation from https://github.com/erou/LatticeGFH90.jl (version from May 21,
2019 � commit d52a2fb), using Julia [BEKS17] version 1.1.1 with Nemo [FHHJ17]
version 0.14.1. The results are presented in Figure A.2.

The �rst observation is that the construction from section A.2.1 is much faster
than standard lattices to obtain the representation of Fpd . Also, constructions with 3
and 5 variables are faster than the construction with 1 variable because the required
composita are smaller. Notice that in this example d remains relatively small so
the primes 2, 3, 5, 7, 11 do not appear simultaneously, which explains why the
construction with 3 and 5 variables have similar performances for most values of d.
For larger d, the construction with 3 variables would tend to become slower more
often because larger composita will appear.

As a second observation, for the computation of embeddings, it is roughly equiv-
alent to use standard lattices or to combine all towers in a univariate representation
with composita. Using 3 or 5 variables, most embeddings come essentially for free
because injections like

Fp[X2]/〈Q(2)(X2)〉 ↪→ Fp[X2, X3]/〈Q(2)(X2), Q(3)(X3)〉

are trivial. In 5 variables, only the 2-adic valuation of d plays a role in the execution
time. In 3 variables, the towers for ` ∈ {2, 5} are combined so that the 5-adic valu-
ation of d is also important (but the `-adic valuation for ` ∈ {3, 7, 11} is irrelevant).
This explains in particular why the cost of Fp2 ↪→ Fp128 is much higher than the
others. Notice that the choice of Fp2 as input �eld is especially favorable; with Fp6
as input �eld, the cost would also depend on the 3-adic valuation (and the 7-adic
in the 3 variable construction), so more embeddings would be costly.

Remark A.2. In the implementation of [DRR19], embeddings are �rst computed
as Julia functions, then they are evaluated by applying said function. The second

https://github.com/erou/LatticeGFH90.jl


A.2. Proposed solution 141

step is actually faster than the �rst one. If many elements are to be embedded in
Fpe ↪→ Fpd for the same e, d, then the embedding function can be computed just
once and evaluated many times which leads to a signi�cant speedup.

Remark A.3. The comparison with standard lattices is only about general behav-
ior, because they cannot construct the same �elds. Indeed, with standard lattices, d
must divide pn−1 for relatively small n (because not many Conway polynomials have
been computed over F2311). For example, Fp64 and Fp128 are not supported by the
implementation of [DRR19]. We mention however that the embedding Fp2 ↪→ Fp32
is a bit faster with standard lattices.

Now we run a second experiment to compare the cost of the embedding and
the cost of polynomial arithmetic (�le bench/ffembed-mult.cpp). Assume that we
wish to multiply α ∈ Fpa and β ∈ Fpb (the result is in Fpd with d := lcm(a, b)). To
do so, we need to

• compute the representations of Fpa ,Fpb ,Fpd ,

• compute the embeddings (Fpa ↪→ Fpd) for α and (Fpb ↪→ Fpd) for β,

• compute a multiplication in Fpd .

So let us measure the time needed for each task; again we try di�erent partitions
of the towers among the variables. Table A.1 gives the results for a := 22 × 52 × 11

and b := 32 × 72. Table A.1 gives the results for a := 22 × 3 × 52 × 7 × 11 and
b := 2× 32 × 5× 72 × 11. In both cases, we get d = 22 × 32 × 52 × 72 × 11.

In the �rst situation, we see that the partition with 5 variables and the partition
{2, 5}, {3, 7}, {11} lead to almost instantaneous embeddings, for the reasons already
mentioned in the �rst experiment. Surprisingly, the multiplication in this case is
even faster than in the univariate case. To see why, notice that in the 5 variable case,
α ∈ Fp[X2, X5, X11] while β ∈ Fp[X3, X7], then the degree of αβ in the variable X`

remains less than the degree of Q(`), so that the reduction modulo the triangular set
may be skipped (the reason is similar for the partition {2, 5}, {3, 7}, {11}). For the
partition {2, 3, 5}, {7}, {11}, there is some work to do to compute embeddings, but
this remains considerably faster than with the univariate representation. Also the
time for the multiplication is essentially the same; a possible explanation is that the
reduction boils down to several univariate remainder operations of smaller degree
instead of a single larger one, which may compensate the overhead of Kronecker
substitution.

This experiment suggests that it is better to keep the towers separated, but
the fact that a, b have di�erent prime factors is very particular. If a, b have the
same prime factors with di�erent powers, then it forces nontrivial embeddings in all
towers, and larger degrees in each variable for the product (which implies a reduction
modulo the triangular system). In this situation, we expect to observe a compromise
between e�cient embeddings and fast multivariate arithmetic.

This is the situation that we consider in the benchmark of Table A.2. Here
we see clearly the in�uence of the number of variables on the e�ciency of modular
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Table A.1: Multiplication of α ∈ Fpa and β ∈ Fpb , for a := 22 × 52 × 11 and
b := 32 × 72. All timings are in milliseconds.

5 variables 3 variables 1 variable

Partition
{2}, {3}, {5},
{7}, {11}

{2, 3, 5},
{7}, {11}

{2, 5},
{3, 7},
{11}

{2, 3, 5, 7, 11}

Construction Fpa 0.38 0.37 0.35 2.22
Construction Fpb 0.19 0.19 0.84 0.78
Construction Fpd 116 112 111 906

Fpa ↪→ Fpd 1.81 27.1 1.27 6888
Fpb ↪→ Fpd 1.01 151 1.13 5088
Total embedding 2.82 178 2.40 11977

Multiplication 85.7 108 41.3 107

Table A.2: Multiplication of α ∈ Fpa and β ∈ Fpb , for a := 22 × 3× 52 × 7× 11 and
b := 2× 32 × 5× 72 × 11. All timings are in milliseconds.

5 variables 3 variables 1 variable

Partition
{2}, {3}, {5},
{7}, {11}

{2, 3, 5},
{7}, {11}

{2, 5},
{3, 7},
{11}

{2, 3, 5, 7, 11}

Construction Fpa 4.95 5.36 4.96 41.7
Construction Fpb 10.1 10.3 10.8 108
Construction Fpd 108 105 104 891

Fpa ↪→ Fpd 4231 4211 4895 6983
Fpb ↪→ Fpd 2445 1730 2612 3964
Total embedding 6678 5941 7507 10948

Multiplication 2303 587 592 110
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multiplication: it is about 4 times more e�cient with 3 variables than with 5, and
about 5 times more e�cient with 1 variable than with 3. This corresponds more
or less to the theoretical overhead by a factor 2k mentioned earlier, where k is
the number of variables (the experiments in bench/triangular_univariate.cpp

tend to con�rm this). On the contrary, the cost of embeddings decreases as the
number of variables increases: embeddings are about 15% faster for the partition
{2}, {3}, {5}, {7}, {11} than for the partition {2, 5}, {3, 7}, {11}, and 40% faster
than in the univariate case. The partition {2, 3, 5}, {7}, {11} gives even faster
embeddings (by about 30% for Fpb ↪→ Fpd), which is rather surprising and hard to
explain. With a more detailed pro�ling, we see that with 5 variables, the embedding
Fpb ↪→ Fpd consist of around 20 000 small conversions Fp2 ↪→ Fp4 and about as
many conversions Fp5 ↪→ Fp25 . The computation required for each task is small
but the complete operation may be slowed down by the frequent memory access
(in 3 variables, there are 539 conversions Fp90 ↪→ Fp900 instead, so this phenomenon
may be less present). Finally, notice that in 1 and 3 variables, the cost of the modular
multiplication is negligible compared to the cost of the embeddings; in 5 variables,
the costs have the same order of magnitude (multiplication represents about 25% of
the overall operation). In this experiment, it is then optimal to combine the towers
using a mix of compositum techniques and multivariate arithmetic, and to distribute
the 5 towers among 3 variables.

Remark A.4. Another advantage of the multivariate representation is that some
operations naturally decompose into several independent smaller subtasks; then
they can be parallelized. For example, using 8 threads, the operation of reduction
modulo the triangular system becomes two to three times faster, which leads to an
improvement of up to 40% for the multiplication in Fpd . For now, embeddings are
not parallelized because one of the subroutines is currently not thread-safe, but in
principle this could be similarly parallelized and we could expect a speed-up by a
factor 2 or 3 as well.

Perspectives

These �rst experimental results are encouraging because the partial implementation
is already competitive. The main future implementation challenge is to handle all
cases of `-adic towers (recall that only the case where ` divides p−1 is supported by
the current implementation). Also, the code could probably be further optimized
(there may remain some unnecessary copies and other similar problems), and the
computation of embeddings could be parallelized as stated previously.

We observed that a mix of multivariate arithmetic and composita techniques
can lead to a practical improvement; the next step is to analyze this behavior more
precisely from a theoretical point of view to re�ne the thresholds. For the ultimate
objective of computing in the algebraic closure Fp, it remains also to de�ne a strategy
to partition automatically the towers between the variables. For now, this last point
is an open question but a theoretical analysis of the thresholds as mentioned might
give some leads.



144 Appendix A. Computing �nite �eld embeddings



Annexe B

Résumé des travaux

Contents

B.1 Présentation générale . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.1 Multiplication de polynômes à une variable . . . . . . . . . . 148

B.2.2 Réduction des polynômes bivariés . . . . . . . . . . . . . . . 150

B.3 Liste des publications . . . . . . . . . . . . . . . . . . . . . . . 152

L'objectif de cette thèse est d'étudier des algorithmes e�caces pour réaliser cer-
taines opérations mathématiques ; plus précisément, on s'intéresse à l'arithmétique
des polynômes à coe�cients dans un corps �ni, notamment la multiplication. Les
anneaux de polynômes sur des corps �nis sont fréquemment utilisés pour construire
des systèmes de chi�rement ou des codes correcteurs d'erreurs. Pour qu'un sys-
tème de chi�rement ou un code correcteur soit utilisable en pratique, il est crucial
que les opérations sous-jacentes puissent être réalisées rapidement, y compris pour
des entrées de grande taille. Ceci motive la recherche de nouveaux algorithmes (ou
l'amélioration d'algorithmes existants) pour e�ectuer les opérations sur les poly-
nômes plus e�cacement. À noter que de nombreuses opérations de plus haut niveau
peuvent se ramener à une multiplication de polynômes, d'où l'intérêt particulier
pour ce problème.

B.1 Présentation générale

La multiplication de polynômes ressemble beaucoup au problème plus familier sur
la multiplication des nombres entiers. Ces deux types ont en e�et de nombreuses
propriétés communes, car un nombre entier (écrit par exemple en base 10) peut être
vu comme un polynôme sur Z évalué en 10 : 123 = 1 × 102 + 2 × 10 + 3. Il n'est
donc pas surprenant que les résultats de complexité successifs soient similaires pour
les deux problèmes. Historiquement, un algorithme pour les entiers a souvent été
suivi quelques années plus tard par une version équivalente pour les polynômes. Le
décalage s'explique par quelques di�érences subtiles entre les deux contextes. D'un
côté, les entiers posent une di�culté supplémentaire liée à la retenue ; de l'autre, les
opérations élémentaires sur les coe�cients peuvent être plus complexes dans le cas
des polynômes (par exemple, la multiplication peut ne pas être commutative).
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L'algorithme naïf, enseigné à l'école primaire, permet de multiplier des entiers
de n chi�res en O(n2) opérations. Il est clair que cet algorithme est encore valable
pour multiplier des polynômes à coe�cients dans n'importe quel anneau. Jusqu'au
milieu du XXe siècle, on a cru qu'il était impossible de faire mieux, puis Karatsuba
a trouvé une méthode plus rapide [KO63], basée sur l'identité suivante :

(ax+ b)(cx+ d) = ux2 + (w − u− v)x+ v avec


u := a× c
v := b× d
w := (a+ b)× (c+ d)

.

Ici, il n'y a que 3 produits au lieu de 4 habituellement, donc doubler la taille de l'en-
trée multiplie le nombre d'opérations requises par 3 ; il faut donc O(nlog2 3) opéra-
tions pour multiplier deux entiers de n chi�res. Là encore, cet algorithme s'applique
aussi aux polynômes pour des raisons évidentes.

Grâce à la découverte de la transformée de Fourier rapide (ou FFT pour Fast
Fourier Transform) [CT65], les méthodes d'évaluation-interpolation permettent de
multiplier en temps quasi-linéaire. Il est notamment possible de multiplier des po-
lynômes de degré n à coe�cients complexes en O(n log n) opérations sur C. Le
fait de compter les opérations sur C cache cependant que la précision requise au
cours du calcul augmente avec n ; ce modèle n'est donc pas adapté pour évaluer
la complexité de la multiplication entière. De plus, l'algorithme utilise l'existence
de racines n-ièmes de l'unité (e2iπ/n) pour tout n ; cette borne n'est donc valide
que dans certains anneaux spéci�ques. Plus tard, Schönhage et Strassen ont adapté
cette méthode et donné un algorithme légèrement plus cher en O(n log n log logn)

pour la multiplication d'entiers [SS71]. Cet algorithme est également valide pour les
polynômes sur un corps commutatif (sauf en caractéristique 2, mais une variante
spéci�que [Sch77] résout le problème). Cantor et Kaltofen ont ensuite généralisé ce
résultat pour des anneaux quelconques [CK91], y compris dans le cas non commu-
tatif et/ou non associatif.

Cette borne est la meilleure connue à ce jour pour les polynômes dans le cas
général. Cependant, des algorithmes encore plus rapides ont été trouvés pour les
entiers, à commencer par l'algorithme de Fürer [Für09] avec une complexité de
O(n log nK log∗ n), où K est une constante non spéci�ée et log∗ désigne le logarithme
itéré (le nombre k minimal tel que si log est composé k fois, on a log log · · · log n < 1).
Les techniques utilisées ici ne s'appliquent plus pour les polynômes, mais il est
possible de les adapter dans le cas de coe�cients dans un corps �ni. Harvey, van der
Hoeven et Lecerf ont ainsi prouvé une borne du même type dans ce cas ; en fait ils
ont établi la borne O(n log n 8log∗ n) pour les entiers et les polynômes sur un corps
�ni [HHL16b, HHL17], explicitant ainsi la constante K dans la borne de Fürer.

C'est ce résultat qui a servi de point de départ pour la thèse, l'objectif initial
étant d'en étudier les conséquences théoriques et pratiques. En particulier, dans un
autre article [HHL16a], Harvey, van der Hoeven et Lecerf adaptent les nouvelles idées
pour multiplier plus e�cacement les polynômes sur F2, en utilisant les propriétés de
l'extension F260 . Cette application pratique a été une source d'inspiration à plusieurs
reprises, notamment dans la première partie de la thèse.



B.1. Présentation générale 147

Pour �nir, on peut mentionner les résultats de ces dernières années sur le sujet.
Plusieurs auteurs [HHL16b, CT19, HH19a] ont amélioré la complexité de la multi-
plication entière à O(n log n 4log∗ n), en supposant diverses conjectures de théorie des
nombres. Peu après, une autre preuve sans ces conjectures a été apportée [HH19b].
Dans le même temps [HH19c], la borne O(n log n 4log∗ n) a été établie également
pour les polynômes sur les corps �nis. Très récemment, Harvey et van der Hoeven
ont prouvé que la multiplication avait une complexité de O(n log n), aussi bien pour
les entiers [HH19d] que pour les polynômes à coe�cients dans un corps �ni [HH19e].
Dans leur article de 1971 [SS71], près de 50 ans plus tôt, Schönhage et Strassen
avaient conjecturé qu'il n'est pas possible de descendre en dessous de n log n. Cette
borne inférieure n'a pas encore été prouvée, mais elle est largement admise. Rappe-
lons toutefois que l'algorithme naïf (quadratique) était initialement considéré opti-
mal, à tort ; une preuve serait donc nécessaire pour apporter une réponse dé�nitive.
Mais en admettant la conjecture de Schönhage et Strassen, cela voudrait dire que
l'algorithme de Harvey et van der Hoeven est optimal.

La Transformée de Fourier Rapide. Comme on l'a dit, les algorithmes rapides
comme celui de Schönhage-Strassen [SS71] et les suivants reposent sur la transfor-
mée de Fourier Rapide ou FFT, et plus généralement sur le principe d'évaluation-
interpolation.

Pour multiplier des polynômes par évaluation-interpolation, on va simplement
évaluer les deux polynômes d'entrée en su�samment de points, multiplier ces évalua-
tions terme-à-terme, et interpoler le résultat. Ce principe s'étend à la multiplication
entière en voyant les grands entiers comme des polynômes à petits coe�cients en-
tiers (par exemple 123 = P (10) avec P := X2 + 2X + 3). Étant donnée une racine
n-ième d'unité ω ∈ K (c.a.d. avec ωn = 1), la Transformée de Fourier Discrète
(DFT) de P est le vecteur

(
P (1), P (ω), . . . , P (ωn−1)

)
. L'expression Transformée

de Fourier Rapide désigne tout algorithme permettant de calculer une DFT e�ca-
cement. En d'autres termes, la Transformée de Fourier Rapide donne un schéma
d'évaluation-interpolation e�cace.

Les premières contributions de la thèse sont donc des variantes améliorées de la
FFT, qui donneraient des algorithmes de multiplication plus rapides. Si ces variantes
restent correctes dans un cadre plus général, elles étaient initialement motivées par
l'exemple de F260 présenté dans [HHL16a].

Systèmes polynomiaux. La résolution de systèmes d'équations algébriques est
une extension naturelle lorsqu'on parle de polynômes, et la thèse s'intéresse égale-
ment à cette question. D'un point de vue calcul formel, ce problème est très vaste
et il existe plusieurs manières d'y répondre.

Dans le langage courant, � résoudre � signi�e � trouver toutes les solutions �, c'est
à dire donner une valeur approchée (à une précision arbitraire) de chaque solution,
ou décrire l'hypersurface formée par l'ensemble des solutions. Des réponses plus
partielles sont également acceptables, par exemple on ne s'intéresse parfois qu'au
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nombre de solutions si celui-ci est �ni. Éventuellement, on peut vouloir déterminer
si un polynôme donné s'annule sur l'ensemble des racines communes du système. Une
approche indirecte consiste à donner des algorithmes pour calculer modulo l'idéal
engendré par le système ; répondre à cette question permet de déduire le nombre
de solutions du système (égal à la dimension de l'algèbre quotient), ainsi que de
détecter si un polynôme s'annule sur l'ensemble des racines (si et seulement si une
de ses puissances appartient à l'idéal).

Dans une deuxième série de contributions, la thèse aborde la question de la
résolution de système polynomiaux du point de vue arithmétique. Plus spéci�que-
ment, on s'intéresse au sous-problème du calcul modulo l'idéal engendré par le sys-
tème. Pour les raisons mentionnées précédemment, cela revient à résoudre le système
d'équations en un certain sens, ou au moins peut constituer une étape vers une ré-
solution complète.

B.2 Contributions

Les résultats de cette thèse se concentrent donc principalement autour de deux
thèmes, à savoir la multiplication polynomiale et la résolution de systèmes d'équa-
tions algébriques. Pour des rappels historiques et un état de l'art sur ces deux sujets,
on pourra se référer à l'introduction en anglais de ce manuscrit (section 1.2).

La première partie traite de la multiplication de polynômes à une variable d'un
point de vue pratique. Il ne s'agit pas ici d'améliorer la complexité asymptotique,
mais plutôt de réduire la constante cachée dans la notation O(·), dans l'espoir d'ob-
tenir des implémentations plus rapides.

La deuxième partie s'intéresse à l'arithmétique des polynômes à plusieurs va-
riables modulo un idéal. Ce problème étant en général très complexe (en espace
exponentiel dans le pire des cas [May89]), on se concentre sur une situation sim-
pli�ée avec seulement deux variables et certaines hypothèses de régularité. Dans ce
cas précis, on peut donner des algorithmes quasi-optimaux, c'est à dire linéaires en
la taille de l'entrée/sortie à des facteurs logarithmiques près. Dans son champ d'ap-
plication restreint, ce résultat théorique est alors bien meilleur que les algorithmes
classiques plus généralistes.

B.2.1 Multiplication de polynômes à une variable

Comme on l'a vu un peu plus tôt, les algorithmes de multiplication rapide reposent
sur le principe d'évaluation-interpolation et la transformée de Fourier rapide. C'est
pourquoi l'amélioration des algorithmes de multiplication passent en fait par la dé-
�nition de variantes de FFT, permettant de limiter certains calculs super�us. Avant
de donner les résultats de cette partie, il est important de présenter le fonctionne-
ment de l'évaluation-interpolation et de la FFT. Ces rappels classiques font l'objet
du Chapitre 2.
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La transformée de Fourier tronquée. La multiplication basée sur la FFT est
connue pour son comportement � en escalier � : on observe des sauts importants
lorsque la taille est une puissance de 2, et peu d'augmentation entre les sauts. L'ob-
jectif de la transformée de Fourier tronquée (ou TFT) est de limiter cet e�et de
saut pour avoir une augmentation plus progressive. Si une FFT de taille n peut être
calculée en F(n) opérations, alors la TFT permet de réaliser une évaluation ou une
interpolation pour ` < n points en temps

`

n
F(n) +O(n) .

Ce résultat était déjà connu dans le cas où n est une puissance d'un nombre pre-
mier. La première contribution de cette thèse est une généralisation de l'algorithme
pour une taille n quelconque, et fait l'objet du Chapitre 3. Ce résultat a été publié
dans [Lar17] et présenté à la conférence internationale ISSAC en 2017.

Si le cas le plus classique n = 2k est bien compris et implémenté dans divers
logiciels (tels que FLINT [Har10], Mathemagix [HLM+02] ou NTL [Sho01]), le
cas général est beaucoup plus di�cile à traiter de manière compétitive par rap-
port à une FFT très optimisée. Les tailles de FFT avec une décomposition mixte
n = pe11 · · · pekk sont pourtant fréquentes dans les corps �nis et il serait intéressant
d'avoir une TFT applicable dans ce contexte. Sans viser une implémentation gé-
néraliste, il était initialement prévu de donner une version de la TFT pour F260

(motivée par l'article [HHL16a] déjà mentionné), mais le résultat suivant s'est avéré
plus prometteur.

L'algorithme � Frobenius FFT �. Une deuxième contribution de la thèse est
une variante de la FFT spéci�que pour les corps �nis, et plus précisément lorsqu'on
calcule une transformée de Fourier dans une extension du corps des coe�cients du
polynôme d'entrée. Cela arrive notamment pour multiplier des polynômes sur un
petit corps �ni, car il n'y a alors pas assez de points pour la technique d'évaluation-
interpolation ; il est alors nécessaire de travailler dans une extension plus grande,
ce qui entraîne un surcoût. L'idée est d'utiliser des symétries fournies par le mor-
phisme de Frobenius (d'où le nom de l'algorithme). La technique est en fait similaire
à l'utilisation de la conjugaison complexe pour accélérer une � FFT réelle �. Concrè-
tement, si P est un polynôme à coe�cients dans Fq et qu'on souhaite calculer sa
FFT dans Fqd , alors il est possible de le faire environ d fois plus vite que si P avait
ses coe�cients dans Fqd (voir Chapitre 4). Ce résultat a été publié dans [HL17] et
présenté à la conférence internationale ISSAC en 2017.

Ici encore, la technicité de l'algorithme rend di�cile de réaliser une implémenta-
tion compétitive dans le cas général. Cependant, il fonctionne particulièrement bien
pour multiplier des polynômes sur F2 en utilisant l'extension F260 . L'implémenta-
tion dans ce cas précis fournit donc une application intéressante à l'algorithme de
� Frobenius FFT �.
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Multiplication dans F2[X]. Comme on l'a dit, les propriétés de l'extension F260

permettent de multiplier e�cacement les polynômes sur F2. Pour faire la conver-
sion de F2[X] vers F260 [X], on peut simplement voir les coe�cients du polynôme
comme des éléments de F260 , mais cela causerait un surcoût d'un facteur équivalent
au degré de l'extension (60 dans ce cas), ce qui n'est évidemment pas acceptable.
Par la technique classique de substitution de Kronecker [Kro82], il est possible de
gagner simplement un facteur correspondant à la moitié du degré de l'extension ; le
surcoût n'est donc plus que d'un facteur 2 (c'est cette méthode qui est utilisée dans
le papier [HHL16a]). D'un autre côté, la technique de Frobenius FFT précédente
permet en principe d'éliminer totalement le surcoût, donc on peut espérer une im-
plémentation 2 fois plus rapide que la précédente. Grâce à une modi�cation mineure
de l'algorithme, cette accélération peut e�ectivement être observée en pratique. Les
détails sont donnés dans le Chapitre 5.

Le programme est distribué dans le paquet justinline du logiciel Mathema-

gix [HLM+02], sous licence GPL. Cette implémentation, environ 2 fois plus rapide
que les logiciels précédents, constitue la troisième contribution de la thèse. Les résul-
tats ont été publiés dans [HLL17] et présentés à la conférence internationale MACIS
en 2017.

B.2.2 Réduction des polynômes bivariés

Pour la deuxième partie, on considère le problème du calcul modulo un idéal de po-
lynômes à plusieurs variables. Ce problème intervient notamment pour la résolution
de systèmes polynomiaux, ou pour construire des anneaux avec certaines proprié-
tés algébriques. La di�culté principale est le calcul de formes normales, c.a.d. le
représentant canonique d'une classe d'équivalence.

En une variable (et pour des coe�cients dans un corps), la solution est très
simple : tout idéal est principal, engendré par le PGCD des polynômes dé�nissant
l'idéal, et une fois ce PGCD connu, le calcul de formes normales est simplement
une division euclidienne. À noter que dans ce cas, tous les algorithmes sont linéaires
à des facteurs logarithmiques près, donc essentiellement optimaux. On rappelle la
notation Õ(·) dite � soft-Oh � [GG13, section 25.7] pour cacher ces facteurs logarith-
miques. Pour les polynômes à plusieurs variables, les idéaux ne sont plus principaux,
mais ils possèdent une base standard, ou base de Gröbner qui assure l'existence et
l'unicité de la forme normale. Dans ce cas, les algorithmes ne sont en revanche pas
optimaux ; l'objectif de cette partie est donc de proposer des algorithmes optimaux
sous certaines hypothèses. Pour simpli�er, on considère seulement le cas des poly-
nômes à deux variables, et on suppose que l'idéal présente une certaine régularité.
Le Chapitre 6 rappelle les généralités sur les bases de Gröbner puis présente les idées
principales pour calculer des formes normales plus rapidement. Les Chapitres 7 et 8
détaillent ensuite la solution pour deux types d'hypothèses de régularité.

Techniques de réduction. Soient A,B ∈ K[X,Y ] deux polynômes bivariés de
degré n. Dans une situation générique, ils ont n2 racines communes, et l'algèbre quo-
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tient A := K[X,Y ]/〈A,B〉 est de dimension n2. On pourrait donc espérer des algo-
rithmes essentiellement quadratiques pour le calcul dans A, pourtant les algorithmes
classiques sont au moins cubiques. La raison principale est que la base de Gröbner
de l'idéal 〈A,B〉 est de taille Θ(n3), car elle contient Θ(n) éléments ayant Θ(n2)

coe�cients chacun. Pour calculer plus rapidement des formes normales, nous de-
vons donc compresser l'information contenue dans la base de Gröbner, idéalement
en espace quadratique (à des facteurs logarithmiques près).

Soit G := G(0), . . . , G(n) une base de Gröbner. Le but d'un algorithme de réduc-
tion est de déterminer des polynômes Q(0), . . . , Q(n) tels que P = Q(0)G(0) + · · · +
Q(n)G(n) +R où R est la forme normale (au sens où aucun de ses termes n'est divi-
sible par le terme de tête d'un des G(i)). Par analogie avec la division euclidienne, on
appelle Q(0), . . . , Q(n) les quotients, et R le reste. Au cours de l'algorithme, chaque
terme de P doit être réduit par rapport à un certain élément de la base de Gröb-
ner, mais il peut y avoir plusieurs candidats. Les algorithmes doivent donc faire un
choix à chaque étape pour sélectionner un candidat ; si le reste ne dépend pas des
choix e�ectués, les quotients eux en dépendent. C'est cette liberté qui autorise des
techniques de réduction plus e�caces.

La première idée est d'utiliser une stratégie de sélection dichotomique pour
contrôler le degré des quotients. De cette façon, on s'assure que la majorité des
quotients ont un très petit degré, certains sont un peu plus gros, quelques uns en-
core un peu plus, et ainsi de suite. Grâce aux bornes sur le degré, on peut ensuite
tronquer les éléments de la base : si on sait que le quotient Q(i) associé à G(i) est de
degré δ, alors il su�t pour les calculs de connaître G(i) avec la précision correspon-
dante, on ne va donc garder dans G(i) que les termes de degré au moins degG(i)−δ.
Ceci permet de réduire la taille de la base à Õ(n2) coe�cients utiles, mais le résultat
ne serait plus correct. La troisième idée est donc de réécrire l'équation de réduction
au cours du calcul, pour augmenter la précision. Pour ce faire, on stocke certaines
relations bien choisies entre les G(i), ce qui permet de mener le calcul à bien tout
en ne demandant qu'un espace raisonnable. Cette méthode, présentée dans le Cha-
pitre 6 constitue une autre contribution de la thèse. Ces techniques se déclinent avec
de légères di�érences dans les deux situations suivantes.

Bases de Gröbner � vanilla �. Le Chapitre 7 dé�nit une classe de bases de
Gröbner spécialement conçue pour que les techniques ci-dessus fonctionnent. Par
dé�nition, ces bases de Gröbner � vanilla � possèdent une représentation dite suc-
cincte (ou terse representation en anglais), laquelle demande un espace de stockage
essentiellement quadratique comme espéré. Une fois cette représentation précalculée,
il est possible de calculer une forme normale en temps quasi-linéaire par rapport à la
taille du polynôme à réduire et à la dimension de l'algèbre A (en tant que K-espace
vectoriel). En particulier, la multiplication dans A peut alors se faire en Õ(dimKA)

opérations.
Il peut sembler déraisonnable de choisir comme hypothèse de régularité � l'exis-

tence de la structure dont on a besoin pour faire fonctionner l'algorithme �, mais
expérimentalement cette situation semble être générique : un idéal engendré par des
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polynômes aléatoires admet une base vanilla avec grande probabilité. Ce comporte-
ment est observé pour plusieurs ordres monomiaux, et plusieurs formes de support
pour les générateurs de l'idéal. À l'avenir, il serait intéressant d'avoir une preuve de
généricité, plus convaincante que cet argument empirique ; ce résultat (le premier
algorithme quasi-optimal pour calculer une forme normale, bien que dans une si-
tuation assez spéci�que) ouvre cependant des perspectives théoriques intéressantes.
L'algorithme a été publié dans [HL18a] et présenté à la conférence internationale
ISSAC en 2018. Une implémentation � preuve-de-concept � pour le système de calcul
formel SageMath [Sag17] est disponible (sous licence GPL) à cette adresse :

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

Cas de l'ordre Grevlex. Dans le Chapitre 8, on considère des polynômes géné-
rateurs donnés par rapport au degré total (A = a0,nY

n + a1,n−1XY
n−1 + · · ·+ a0,0,

et de même pour B), et on calcule la base de Gröbner par rapport à l'ordre Grevlex
connu pour être le plus e�cace. Cette situation pourtant classique est une des ex-
ceptions au contexte des bases vanilla, mais on observe malgré tout un autre type
de structure. En supposant qu'il n'y a pas d'annulation accidentelle (ce qui est une
hypothèse de généricité raisonnable), on peut prouver qu'il existe une représentation
concise pour la base de Gröbner, avec des propriétés similaires à la représentation
succincte précédente. De plus, la base de Gröbner concise peut être calculée e�ca-
cement, en temps Õ(n2), à partir des générateurs A,B (alors que la représentation
succincte était un précalcul possiblement onéreux). Ces résultats ont été présentés
à la conférence internationale ACA en 2018, et publiés dans le journal � Applicable
Algebra in Engineering, Communication and Computing � [HL19a].

L'implémentation � preuve-de-concept � mentionnée précédemment traite aussi
cette situation. Par ailleurs, une implémentation plus e�cace a été intégrée au logi-
ciel Mathemagix [HLM+02], dans le paquet larrix (distribué sous licence GPL).
Cette implémentation pour le cas spéci�que considéré est nettement plus rapide que
les logiciels généralistes de référence : pour n = 200, l'accélération est d'un facteur
environ 150 (et l'écart est de plus en plus important quand n augmente, du fait de
la meilleure complexité asymptotique). Ce paquet a fait l'objet d'une démonstra-
tion logicielle à ISSAC en 2019, et le rapport sera publié dans les �ACM SIGSAM
Communications in Computer Algebra� [Lar19].

Comme application de ce résultat, van der Hoeven et Lecerf ont donné un algo-
rithme de complexité n2+o(1) pour le résultant bivarié générique sur les corps �nis
[HL19c], sous l'hypothèse de composition modulaire rapide.

B.3 Liste des publications

Cette section liste les publications produites pendant la thèse. Tous les articles ont
été publiés (après comité de lecture) dans des actes de conférences internationales
ou des journaux scienti�ques. Les logiciels sont librement distribués sous les termes
de la GNU General Public License (GPL, version 2 ou suivantes).

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
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Articles de recherche

[Lar17] Robin Larrieu. The Truncated Fourier Transform for mixed radices.
In Proceedings of the 2017 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC '17, pages 261�268, New York, NY,
USA, 2017. ACM

[HL17] Joris van der Hoeven and Robin Larrieu. The Frobenius FFT. In
Proceedings of the 2017 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC '17, pages 437�444, New York, NY,
USA, 2017. ACM

[HLL17] Joris van der Hoeven, Robin Larrieu, and Grégoire Lecerf. Implement-
ing fast carryless multiplication. In J. Blömer, I. Kotsireas, T. Kutsia,
and D. Simos, editors, Proceedings of Mathematical Aspects of Com-
puter and Information Sciences, pages 121�136, Cham, 2017. Springer

[HL18a] Joris van der Hoeven and Robin Larrieu. Fast reduction of bivariate
polynomials with respect to su�ciently regular Gröbner bases. In Pro-
ceedings of the 2018 ACM International Symposium on Symbolic and
Algebraic Computation, ISSAC '18, pages 199�206, New York, NY,
USA, 2018. ACM

[HL19a] Joris van der Hoeven and Robin Larrieu. Fast Gröbner basis computa-
tion and polynomial reduction for generic bivariate ideals. Applicable
Algebra in Engineering, Communication and Computing, June 2019

[Lar19] Robin Larrieu. Computing generic bivariate Gröbner bases with Math-
emagix, 2019. ISSAC software demonstration, to appear in ACM
SIGSAM Communications in Computer Algebra

Logiciels

• Routines pour la multiplication de polynômes dans F2[X] (voir [HLL17]), en
collaboration avec Grégoire Lecerf et Joris van der Hoeven. Fait partie du
paquet justinline du logiciel Mathemagix [HLM+02].
http://www.mathemagix.org

• Une implémentation � preuve-de-concept � pour SageMath [Sag17] des al-
gorithmes pour les bases de Gröbner bivariées génériques [HL18a, HL19a].
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

• Une bibliothèque e�cace pour le calcul des bases de Gröbner bivariées gé-
nériques dans le contexte de [HL19a]. Intégré dans Mathemagix [HLM+02]
comme le paquet larrix. http://www.mathemagix.org

• Une implémentation expérimentale pour le calcul avec des extensions de corps
�nis, en collaboration avec Luca De Feo. Disponible à l'adresse suivante :
https://gitlab.inria.fr/rlarrieu/tower

La méthode et des résultats provisoires sont donnés en Annexe A.

http://www.mathemagix.org
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
http://www.mathemagix.org
https://gitlab.inria.fr/rlarrieu/tower
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Titre : Arithmétique rapide pour des corps finis

Mots clés : Corps finis, Algorithme, Arithmétique polynomiale, FFT, Bases de Gröbner

Résumé : La multiplication de polynômes est une
opération fondamentale en théorie de la complexité.
En effet, pour de nombreux problèmes d’arithmétique,
la complexité des algorithmes s’exprime habituelle-
ment en fonction de la complexité de la multiplica-
tion. Un meilleur algorithme de multiplication permet
ainsi d’effectuer les opérations concernées plus rapi-
dement. Un résultat de 2016 a établi une meilleure
complexité asymptotique pour la multiplication de po-
lynômes dans des corps finis. Cet article constitue le
point de départ de la thèse ; l’objectif est d’étudier les
conséquences à la fois théoriques et pratiques de la
nouvelle borne de complexité.
La première partie s’intéresse à la multiplication de
polynômes à une variable. Cette partie présente deux
nouveaux algorithmes censés accélérer le calcul en
pratique (plutôt que d’un point de vue asymptotique).
S’il est difficile dans le cas général d’observer l’amé-
lioration prévue, certains cas précis sont particuliè-

rement favorables. En l’occurrence, le second algo-
rithme proposé, spécifique aux corps finis, conduit
à une meilleure implémentation de la multiplication
dans F2[X], environ deux fois plus rapide que les lo-
giciels précédents.
La deuxième partie traite l’arithmétique des poly-
nômes à plusieurs variables modulo un idéal, telle
qu’utilisée par exemple pour la résolution de systèmes
polynomiaux. Ce travail suppose une situation simpli-
fiée, avec seulement deux variables et sous certaines
hypothèses de régularité. Dans ce cas particulier, la
deuxième partie de la thèse donne des algorithmes
de complexité asymptotiquement optimale (à des fac-
teurs logarithmiques près), par rapport à la taille des
entrées/sorties. L’implémentation pour ce cas spéci-
fique est alors nettement plus rapide que les logiciels
généralistes, le gain étant de plus en plus marqué
lorsque la taille de l’entrée augmente.

Title : Fast finite fields arithmetic

Keywords : Finite fields, Algorithm, Polynomial arithmetic, FFT, Gröbner bases

Abstract : The multiplication of polynomials is a
fundamental operation in complexity theory. Indeed,
for many arithmetic problems, the complexity of al-
gorithms is expressed in terms of the complexity
of polynomial multiplication. For example, the com-
plexity of Euclidean division or of multi-point evalua-
tion/interpolation (and others) is often expressed in
terms of the complexity of polynomial multiplication.
This shows that a better multiplication algorithm al-
lows to perform the corresponding operations fas-
ter. A 2016 result gave an improved asymptotic com-
plexity for the multiplication of polynomials over finite
fields. This article is the starting point of the thesis;
the present work aims to study the implications of the
new complexity bound, from a theoretical and practi-
cal point of view.
The first part focuses on the multiplication of univa-
riate polynomials. This part presents two new algo-
rithms that should make the computation faster in

practice (rather than asymptotically speaking). While
it is difficult in general to observe the predicted speed-
up, some specific cases are particularly favorable. Ac-
tually, the second proposed algorithm, which is spe-
cific to finite fields, leads to a better implementation
for the multiplication in F2[X], about twice as fast as
state-of-the-art software.
The second part deals with the arithmetic of multiva-
riate polynomials modulo an ideal, as considered ty-
pically for polynomial system solving. This work as-
sumes a simplified situation, with only two variables
and under certain regularity assumptions. In this par-
ticular case, there are algorithms whose complexity
is asymptotically optimal (up to logarithmic factors),
with respect to input/output size. The implementa-
tion for this specific case is then significantly faster
than general-purpose software, the speed-up beco-
ming larger and larger when the input size increases.

Université Paris-Saclay
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