Cette Thèse

Antoine Limasette

Camille Marchet

Nicolas Vinarnick

Yoann Dufresne

Matthieu Falce

Kevin Gueuti

Pierre Morisse

Maxime Garcia

Guillaume Devailly

Jérome Pivert

Aurélien Beliard

Sacha Schutz

Rayan Chikhi

Jean-Stéphane Varré

Tobias Je Souhaiterais Remercié

Marie-France Marshall

Blerina Sagot

Clarisse Sinaimeri

Pierre Dhae- Nens

Peterlongo

Pierre Marijon
email: pierre.marijon@inria.fr

toutes les personnes qui mon accompagné

Chapter 1 Introduction

"Only what is evolving is alive"1 -this definition of life, like many others, is incomplete. And one could probably even find some counter-examples to it. One should first need to define what evolution is. We can try to define the evolution of a thing as its changes to optimize the capability to conserve itself. To do that, such a thing needs some form of memory.

In the majority of current known life, the physical support of this memory is DNA, which stands for DeoxyriboNucleic Acid. DNA is a molecule composed of two strands. Each strand is composed of a phosphate backbone. Along these backbones, we have a sugar linked to a nucleic acid. We have four types of nucleic acids: Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), Figure 1.1 shows the 3D structure of DNA.

The two strands of DNA are linked by their nucleic acids, with some rules. In front of an A we will always have a T, in front of a C we will always have a G and vice-versa. A DNA strand is thus the complementary of the other. We say DNA is composed of two anti-parallel strands. By convention we will always represent DNA in one orientation and will omit the other.

In bioinformatics, we generally represent a DNA strand by a single string on a four letter alphabet (A, C, T, G). The properties described above allow us to reconstruct the composition of one strand from the other by using the complementary letters (replace A by T, T by A, C by G and G by C) and reverse the order. With many complex mechanisms, not detailed here, information contained in DNA is used to build essential molecules to keep the organism alive, and to reproduce it. This information is therefore the basis of the organism's functioning. If this information is destroyed or modified, the living organism will behave differently or die. Thus, knowing and understanding the succession of DNA bases is an effective entry point for analyzing many biological phenomena, diseases, and evolution.

To read this information, we rely on many biochemical techniques that we group under the term sequencing techniques. These techniques allow to read fractions of DNA fragments that are more or less long, and with various error rates.

Sequencing

Sequencing technologies evolved quickly since 1977 [START_REF] Sanger | Nucleotide sequence of bacteriophage phi X174 DNA[END_REF]. Today we distinguish three generations of sequencing technologies, based on their properties. In this section we focus on sequencing technologies properties and their impact on different bioinformatics tasks and do not detail the underlying biochemical methods.

The two most important properties of a sequencing technology are the size of the DNA fragments it can read, expressed in number of bases, and also the number of errors that the technology will produce, expressed in percentage. An error rate of 0.1% indicates that the sequencer will make one error every thousand bases. When sequencing can read large fragments we have more information about the original sequence, which facilitates downstream analysis. If a read contains many errors (replace a letter by an other one, insert random letter(s) or skip one or more letters), using the information provided by sequencing may be impossible or would require additional operations to correct those errors. Those operations will sometimes be very expensive, in terms of computer time.

Generation Technology

Read presents read lengths and error rates of many sequencing technologies. We would like to emphasize that both second and third generation technologies are still used today, and sometimes both technologies are used for a single experiment, as we will discuss later about hybrid techniques.

With sequencing one can read all information contained in a genome. But, no matter the technology, we get lots of (short) unordered fragments. Genome assembly therefore designates the task of reconstructing the original sequence from this set of unordered fragments.

The genome assembly task

If you want study an organism, knowing the complete genome sequence is very useful for a lot of tasks, such as as finding genes of interest, or study the sequence variations across a population . . . Yet, the best sequencing technologies still provide reads that are at least 2 orders of magnitudes shorter than genomes. To understand the assembly problem, we provide a useful analogy which, to the best of our knowledge, has never been formulated before.

Imagine a crazy copyist monk. He is copying a book but he randomly chooses where he starts to copy. And he only copies small fragments of text at a time. The copyist monk makes errors, e.g.

he would sometimes replace a symbol by another one, would skip a symbol, or would add a random symbol. We call these errors substitutions, deletions and insertions, respectively. Now imagine that there are multiple such copyist monks. They choose randomly where they begin to write. They can choose several times the same region of the book or never choose to copy a certain region. We refer by "coverage" the number of times a given chunk of the original book is copied. Coverage may significantly differ across the genome's regions. In this analogy, the book is the genome of the organism we want to study, and the copyist monks are our sequencer. The fragments of text are reads, and the operation to rebuild the book is assembly.

The assembly task can be seen as an ordering problem. We try to put the text fragments in the original book order, and merge common parts at the end. To carry out this ordering, we could randomly take a fragment of text, and search among all the others if there exists a fragment that begins with the end of the one we took. In other words, the prefix of the sought fragment corresponds to the suffix of the taken fragment. When we observe this phenomenon we say that the fragments overlap.

This a key concept in assembly. Once we have found the best overlap (generally the longest) for a text fragment we can merge the two fragments into one and restart our search for a new fragment that overlaps with the one we just created. And so on until there are no more fragments. This presentation of how to perform assembly is very simple, and in fact it is what we will later refer to as the greedy algorithm. We will see more advanced assembly algorithms in chapter 3.

The genome assembly community, like any other scientific community, has its own set of concepts. A read designates a fragment of DNA produced by sequencer. An overlap occurs between two reads when the suffix of a read is similar to the prefix of another read. The length of the common part is called the length of overlap. A contig designates a sequence of DNA produced by an assembly tool. The exact definition of what is a contig changes between each assembly tool. We can see in some publications the term unitig: we will not get into details here, but a common fact is that contigs are built from unitigs. A scaffold designates an ordering of contigs. Most of the times we cannot reconstruct each chromosome into a single contig. We describe some reasons for this fragmentation later. With external information such as restriction maps, linked reads, or targeted sequencing, one can order contigs and determinate approximately the number of bases in the gaps between contigs.

Thesis outline

As stated above, latest sequencing technologies allow to sequence larger DNA fragments. One could think that the task of assembly becomes easier since we have to solve a puzzle with larger pieces. But this is not the case, as we will see in the following chapters. The main goal of this work is improve long-read genome assembly without creating a new assembly tool or modifying an existing one. The tools developed in this thesis can interface with existing long-read assembly tools or even with other bioinformatics analysis tools.

Chapter 2 addresses some of the key steps that are performed prior to assembly. The quality of the data provided to an assembler has a direct impact on the produced results. This chapter describes the state of the art of tools used to detect overlaps between DNA fragments. The first contribution is a discussion on how to compare such tools. The second contribution of the chapter is a paper that presents two tools we developed during this thesis [START_REF] Marijon | yacrd and fpa: upstream tools for long-read genome assembly[END_REF]. yacrd detects and removes regions with very high error rates in reads. Experiments show that removing low quality regions from reads improve assembly tools results. fpa filters out uninformative overlaps in order to save disk space.

Chapter 3 presents a state of the art of several assembly methods, both from a theoretical point of view, and how they work in practice. This chapter introduces key concepts used in the next chapter.

THESIS OUTLINE 5

Chapter 4 concerns some steps that occur after assembly. The first contribution is a blog post that presents the difficulties of evaluating the results of certain assembly tools that do not correct reads (or even polish contigs). The second contribution presents a tool for analyzing and improving assembly results, KNOT, that we developed during this thesis [START_REF] Marijon | Graph analysis of fragmented long-read bacterial genome assemblies[END_REF].

Chapter 5 will focus on various other scientific contributions: participation in the development of a graphical interface for genomic data analysis, participation in the contest is, and some work around 10X data.

Chapter 2

Preassembly

Two key aspects in long-read genome assembly are 1) the detection of overlaps between reads and 2)

dealing with errors in reads. Computing overlaps is done prior to assembly can thus be considered as a preassembly task, even if some assembly pipelines compute overlaps several times. Computing overlaps is a hard task, even harder with high error rate reads. A number of tools have been designed

in the last decade, with their own definition of what is an 'good' overlap. The section 2.1 gives a short overview of algorithmic ideas on which overlappers are designed. The next section 2.2 discusses about comparison of overlaps found by state-of-the-art overlappers for long read data.

After sequencing a usual task is to clean the set of reads, e.g.

• remove too short reads (less than 500 bp, 1000 bp or even 2000 bp)

• find and remove the sequencing adaptors (that is a short sequence added before DNA fragment, this short sequence is required for some biochemical consideration, but they can create trouble in assembly)

or perform some operations to improve the quality of reads, e.g.

• found highly erroneous regions of reads and replace them by more correct one, this operation is called scrubbing

• correct reads using information from other sequencing technology (this is called hybrid correction) or with same technology, this operation is called correction

Cleaning preprocessing intends to improve the quality of the assembly or to help the task of assembly (e.g. by reducing the number of false overlaps). As overlapping tools are not aware of what the user will do with the computed set of overlaps, all information is reported (it's a good point). But one has to remember that the number of overlaps for a usual sequencing experiment is very large. Storing them may require more than terabyte for some large dataset. In section 2.3.1 we introduce in more details bottlenecks and the solution we have proposed.

Correction and scrubbing seeks to perform the same target: reduce the error rate of reads.

Scrubbing works on large region (around ten or hundred bases) while correction works at the level of one base. This difference of scale implies different requirements in terms of computation time and memory usage.

Our work on overlap selection and on scrubbing tools was merged in a paper presented in section 2.4.

Overlaps and their impact on assembly

As we defined in the introduction, when two sequences share a common substring, we say that they overlap or that one of them maps on the other see 2.1a. It is possible for sequences to share a common substring just by chance (because of the 4-letter alphabet) but the probability of this event decreases when the length of the common substring increases. Intuitively, this probability gets smaller as common substring gets longer. If the reads does not contain sequencing errors, the only criteria to evaluate whether a common substring is "true" or not could be the length of this substring. However, the number of errors in the sequence of readings breaks this paradigm and forces us to integrate the errors when assessing the quality of an overlap. Figure 2.1b show an overlap with two mismatch.

There are two base pairs that do not match between the two sequences -knowing if this overlap is "true" or not isn't obvious. In this document we distinguish two tasks in similarity search between two sequences:

• mapping: one tries to find the position of a read in a larger sequence (e.g. comparing different datasets, experiments from different sequencing generations, or between the reads and an assembly, against a reference genome)

• overlapping: one tries to find which reads share a common substring with other reads (e.g. finding common substrings in the same dataset)

Even if mapping and overlapping can be seen as different tasks, one could observe that the same tools, and underlying algorithmic, can be used to solve both tasks.

The seed-and-extend strategy. Search of similarity between two or more DNA sequences has many links to plain text search. Seed-and-extend is an approach used by many tools to find similar sequences between a target (e.g. a reference genome) and a query (e.g. a read). The idea is to find a high similar subsequence (often exact), namely the seed (or anchor), and then to extend this seed to have a larger common subsequence. Tools that implement this approach usually create an index of 2.1 OVERLAPS AND THEIR IMPACT ON ASSEMBLY 9 the target. This index need to answer to a simple question: is a given subsequence exist in target and at which position. Each query is processed and its substrings are searched in the index. This gives a set of seeds that can be extended through alignment techniques such as dynamic programming. If the alignment score reaches a given threshold, a hit is reported.

Many tools for mapping and overlapping use seed-and-extend strategy. The most popular is Blast [START_REF] Altschul | Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[END_REF][START_REF] Altschul | Basic local alignment search tool[END_REF]. Specific tools dedicated to sequencing are BWA [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF] or blasr [START_REF] Mark | Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory[END_REF]. Implementation details of indexes, size and number of anchors change between tools. For example BWA or blasr use a FM-index [START_REF] Ferragina | An experimental study of an opportunistic index[END_REF] to perform anchor search.

The seed-only strategy. With NGS technology development more and more data had to be processed and the seed-and-extend strategy was replaced by a seed-only strategy. Indeed, the extension step is still very time-consuming. With the seed-and-extend strategy, an overlap is scored by its length and the number of errors in the alignment. With the seed-only strategy we don't have an alignment.

The overlap is thus scored using the number of seeds and their positions.

This strategy was used in SGA [START_REF] Simpson | Efficient de novo assembly of large genomes using compressed data structures[END_REF] assembly tools, during overlapping step SGA search exact overlap between low error read, by search a substring at end of read in a FM-index.

Specificity of long-reads (longer reads, high error rate) has relaunched this research field. Chu et al. produce an interesting review about some of third-generation overlap search in [START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF], discussed in next section. We can cite Hisea [START_REF] Khiste | HISEA: HIerarchical SEed aligner for PacBio data[END_REF], Daligner [START_REF] Myers | Daligner: Fast and sensitive detection of all pairwise local alignments[END_REF], MHAP [START_REF] Koren | Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[END_REF] and Minimap2 [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF] as overlapping tools they use this strategy to found overlap between thrid generation overlap. We will give some details on MHAP and Minimap2 in section 3.

For third generation reads, the length of the reads and the large number of errors make the choice of algorithm parameters even more complicated, particularly concerning how we choose the seed and length of seeds. But by removing the extend step the computation time was reduce and help to manage the high error rate of thrid generation reads.

On the importance of overlaps. As overlaps are the basic components to reconstruct the original sequence, a missing overlap may lead to a wrong assembly (entire pieces of the genome inverted) or to a high number of contigs. In [START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF] In a blog post "State-of-the-art long reads overlappers comparison"1 we take the same data as [START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF] but we didn't care if the overlappers found 'right' or 'wrong' overlaps. Instead we searched for comparing overlaps sets to decide whether or not overlappers compute the same overlaps. There

Introduction

In 2017, Chu et al. wrote a review [START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF] to present and compare 5 long-read overlapping tools, on 4 datasets (including 2 synthetic ones). This paper is very cool and clear. The authors compare overlappers with respect to peak memory, wall clock time, sensitivity and precision. Overlappers show better results on synthetic datasets than on real data. We can observe an important loss of sensitivity: 59.6-83.8% on the Pacbio real dataset, compared to 88.9-92.4% on the simulated data.

So, ok, overlappers dont't achieve perfect sensibility, but do they miss the same overlaps? We will check the results of overlappers, and for each entry that isn't an internal match nor an containment overlap, we store the pair of reads as elements of the set of all overlaps found by the overlapper.

Overlappers

We used:

• graphmap v0.5.2 [START_REF] Sović | Fast and sensitive mapping of nanopore sequencing reads with GraphMap[END_REF] • hisea commit: 39e01e98ca [START_REF] Khiste | HISEA: HIerarchical SEed aligner for PacBio data[END_REF] • mhap 1.6 and 2.1 [START_REF] Berlin | Assembling large genomes with single-molecule sequencing and localitysensitive hashing[END_REF] • minimap 0.2-r124 [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF] • minimap2 2.10 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF] We used parameters recommended by Chu et al. and default parameters for HISEA.

Venn diagram generation

We used a Python script to parse the output file of each overlapper, filter overlaps, generate a Venn diagram, and compute the Jaccard index. All scripts and steps to reproduce this analysis are available in this repository. We call this set the core overlaps. Here for this dataset, core overlaps contain 8,980,212 overlaps.

Results

Nanopore real data

Around this center, we highlight some of the largest disparities between overlappers: dataset composition number of overlaps % of core overlaps core overlaps -hisea overlaps 898,995 The above matrix shows the Jaccard similarity coefficient (cardinality of intersection divided by cardinality of union) between pairs of overlappers.

Pacbio real data

For the Pacbio dataset, core overlaps contain 3,407,577 overlaps. Other large disparities between overlappers are:

Out of all overlaps found by minimap2 (5,640,643), 9.54% of these overlaps are found only by this overlapper, for mhap the corresponding value is 5.98% (out of 5,336,610 overlaps). Both software find roughly the same set of overlaps, with the trend that mhap1.6 tended to find a bit more (it would be interesting to evaluate whether those were correct or wrong overlaps).

And another comparison between minimap and minimap2: For the pacbio dataset, minimap2 finds significantly (1.6M) more overlaps than minimap (which found 4M overlaps). But for the nanopore dataset, both software roughly agree.

Conclusion

Overlapper tools behave quite similarly, but on real pacbio datasets sensibility, precision, and the set of overlaps found across tools can be very different. Such a difference can also exist between two versions of the same tool.

Comparison of overlappers based on a quantitative measurement (sensitivity, precision) is useful but isn't perfect: two tools with the same sensitivity for a given set could still detect a different set of overlaps, see e.g. mhap and minimap2 for the nanopore set.

Some publications use quality of error-correction, or results of genome assembly, as quality metrics to compare overlappers. It's a good idea but correction and assembly tools make additional choices in the overlaps they keep, and it's not easy to relate assembly or error-correction imperfections and wrong or missed overlaps.

From our tests, there is no clear best overlapper software so far.

It could by interesting to study whether certain tools have a bias when finding overlaps, linked to e.g length of reads, mapping length, error rate, %GC, specific kmer composition, etc . . . A study like this could possibly reveal some intrinsic properties of the algorithms used in overlappers.

Is it a good idea to create a reconciliation tool for overlappers? We note that the correction and assembly tools seek to reduce the amount of overlaps they use, through e.g. graph transitivity reduction, Best Overlap Graph, the MARVEL approach (Supplementary information of [START_REF] Nowoshilow | The axolotl genome and the evolution of key tissue formation regulators[END_REF]).

Acknowledgment

• Sergey Koren 2.3 Improving assembly by filtering out overlaps and scrubbing

• Rayan Chikhi • Jean-Stéphane Varré

Improve genome assembly efficiency by reducing the quantity of information

Error in third generation reads make it more difficult to found overlaps between reads. Current techniques attempt to optimize results on real data [START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF]. Actually, a key observation is that within the overlaps found by state-of-the-art tools, not all of them are useful to downstream analysis. For example Miniasm keeps only end-to-end overlaps, and Canu keeps only the two longest end-to-end overlaps for each read (see 3 for more details). will not be used but they are written on the disk. There is definitively room for improvement. Can

IMPROVING ASSEMBLY BY FILTERING OUT OVERLAPS AND SCRUBBING 17

we filter overlapping information with positive (or at least no negative) impact on assembly results ?

One may hope to at least decrease the disk space and may be to increase the speed of assembly.

In section 2.4 we present fpa (for Filter Pairwise Alignment), our solution to filter out useless

overlaps. An overlaper output can be piped directly to fpa. fpa can apply several filters based on length of read, length of overlap, type of overlap, read name. Some simple fpa filters reduce the computation time of assembly without effect (or a small positive effect) on assembly.

Read scrubbing: an alternative to read correction

Assembly tools are based on reads. If your reads are bad, your assembly will be bad. The pre-processing correction step is particularly important for long-reads data because of high error rates that can lead to more errors and misassemblies. Tools like Mecat [START_REF] Xiao | MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads[END_REF], CONSENT [START_REF] Morisse | CONSENT: Scalable self-correction of long reads with multiple sequence alignment[END_REF] uses overlap information to pick reads that share same sequences and build a consensus from the alignements induced by overlaps. A similar task, called polishing, is run after assembly, as a postprocessing task. Reads are mapped against assembled contigs and contig sequences is corrected using reads, we can cite Racon [START_REF] Vaser | Fast and accurate de novo genome assembly from long uncorrected reads[END_REF] and CONSENT.

The more a read contains errors, the more the correction step require reads. But the sequencing depth is not homogeneous. Thus the corrector will be more or less effective depending on regions and the depth of coverage thereof. If the sequencing depth is too low, the correction may discard some reads. To solve this problem it is necessary either to work without correction or to return to raw reads.

Correction of reads before assembly can generate some trouble in assembly by remove some important information. At the best of our knowledge the only one reads corrector that tries to keep the heterozygotie during correction is falcon [START_REF] Chin | Phased diploid genome assembly with single-molecule real-time sequencing[END_REF]. Heterozygotie is very useful to understand genetic diversity in population or some genetic diseases. Another example concerns genomes that contain approximate repeats. The correction step tends to correct both region in order to make them identical. By the way, correction creates a repetition that cannot be solved by the assembler although regions could be distinguished prior to correction.

Nevertheless, long-reads still contains very low quality region [START_REF] Myers | Intrinsic quality values[END_REF] that can lead to fragmented assembly [START_REF] Wick | rrwick/Long-read-assembler-comparison: Initial release[END_REF]. It is thus necessary to filter out thos regions. An alternative to correction can be scrubbing: one removes only very low quality region and keep all other information.

To found and remove this very low quality region and read we created yacrd (for Yet Another Chimeric Read Detector). yacrd uses self overlapping information to compute a coverage curve and identifies regions of low coverage. We hypothesise taht such low coverage regions are of low quality (see section 2.4 for more details on this tool).

Introduction

Third-generation DNA sequencing (PacBio, Oxford Nanopore) is increasingly becoming a go-to technology for the construction of reference genomes (de novo assembly). New bioinformatics methods for this type of data are rapidly emerging.

Some long-read assemblers perform error-correction on reads prior to assembly. Correction helps reduce the high error rate of third-generation reads and make assembly tractable, but is also a time and memory-consuming step. Recent assemblers (e.g. [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF][START_REF] Ruan | Fast and accurate long-read assembly with wtdbg2. bioRxiv[END_REF] among others) have found ways to directly assemble raw uncorrected reads. Here we will therefore focus only on correctionfree assembly. In this setting, assembly quality may become affected by e.g. chimeric reads and highly-erroneous regions [START_REF] Myers | Intrinsic quality values[END_REF], as we will see next.

The DASCRUBBER program [START_REF] Myers | Scrubbing reads for better assembly[END_REF] introduced the concept of read "scrubbing", which consists of quickly removing problematic regions in reads without attempting to otherwise correct bases. The idea is that scrubbing reads is a more lightweight operation than correction, and is therefore suitable for high-performance and correction-free genome assemblers.

DASCRUBBER performs all-against-all mapping of reads and constructs a pileup for each read. Mapping quality is then analyzed to determinate putatively high error rate regions, which are replaced 2.4 YACRD AND FPA: UPSTREAM TOOLS FOR LONG-READ GENOME ASSEMBLY 19 by equivalent and higher-quality regions from other reads in the pileup. miniscrub [START_REF] Lapierre | MiniScrub: de novo long read scrubbing using approximate alignment and deep learning[END_REF] is another scrubbing tool that uses a modified version of Minimap2 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF] to record positions of the anchors used in overlap detection. For each read, miniscrub converts anchors positions to an image. A convolutional neural network then detects and removes of low quality read regions.

Another problem that is even more upstream of read scrubbing is the computation of overlaps between reads. The storage of overlaps is disk-intensive and to the best of our knowledge, there has never been an attempt at optimizing its potentially high disk space.

In this paper we present two tools that together optimize the early steps of long-read assemblers.

One is yacrd (for Yet Another Chimeric Read Detector) for fast and effective scrubbing of reads, and the other is fpa (for Filter Pairwise Alignment) which filters overlaps found between reads.

Materials & Methods

Similarly to DASCRUBBER and miniscrub, yacrd is based on the assumption that low quality regions in reads are not well-supported by other reads. To detect such regions yacrd performs all-againstall read mapping using Minimap2 and then computes the base coverage of each read. Contrarily to DASCRUBBER and miniscrub, yacrd only uses approximate positional mapping information given by Minimap2, which avoids the time-expensive alignment step. This comes at the expense of not having base-level alignments, but this will turn out to be sufficient for performing scrubbing. Reads are split at any location where coverage drops below a certain threshold (set to 4 by default), and the low-coverage region is removed entirely. A read is completely discarded if less than 40% of its length is below the coverage threshold. yacrd time complexity is linear in the number of overlaps. yacrd performance is directly linked to the overlapper performance. We tuned Minimap2 parameters (especially the maximal distance between two minimizers, -g parameter) to find similar regions between reads and not to create bridges over low quality regions (see Supplementary Section B.3). yacrd takes reads and their overlaps as input, and produces scrubbed reads, as well as a report.

fpa operates between the overlapper and the assembler. It filters out overlaps based on a highly customizable set of parameters, such as overlap length, length of reads names, etc. fpa can remove self-overlaps, end-to-end overlaps, containment overlaps, internal matches (when e.g. two reads share a repetitive region) as defined in [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF]. fpa supports the PAF or BLASR m4 formats as inputs and outputs, with optional compression. fpa can also rename reads, generate an index of overlaps and output an overlap graph in GFA format.

yacrd and fpa are evaluated on several datasets (details provided in Supplementary Section B.1), and here we highlight their performance on two of them: H. sapiens chromosome 1 Oxford Nanopore (ONT) ultra-long reads, and C. elegans PacBio reads. All tools were run on a single cluster node with recommended parameters (see Supplementary Section B.2). Scrubbed reads were then assembled using both Miniasm and wtdbg2 with recommended parameters for each sequencing technology.

Result & Discussion

Table 1 compares the results of yacrd and DASCRUBBER. We also evaluated miniscrub (see Supplementary Section B.2 and B.5), but its memory usage exceeded 256 GB on the two datasets of Table 1.

The main feature of yacrd is that its total execution time, which is essentially that of Minimap2, is two orders of magnitude faster than DASCRUBBER. We next evaluate whether running yacrd results in higher-quality reads and assemblies. yacrd removes 20-27% of the bases in raw reads, comparably to Finally, we examine the effect of combining both yacrd and fpa. We propose a pipeline based on Miniasm (Supplementary Section B.7) and show that it results in improved assembly contiguity, comparable assembly size, less mismatches and indels, less misassemblies, at the cost of a reasonable increase in running time (around 2x).

Chapter conclusion

In this chapter we have proposed a benchmark of overlappers, a filtering tool for these overlap and a scrubbing tool.

The blog post on overlapping tools comparison demonstrates that they do not found same overlaps. We should be able to improve the quality of the overlaps we found between reads by combining results from several tools. This is the idea of an overlap consensus generator. In the blog post we considered that if overlapping tools found an overlap between two reads, the overlap should be roughly the same. Actually this is not true. Considering two reads A and B and three overlapping tools, it's possible that:

• the first tool find that the end of read A overlaps the beginning of read B

• the second tool find that the end of read B overlaps the beginning of read A

• the third tool find that reads A and B share an internal match A number of other situations can occur. If we want to build an overlap consensus generator we need to found a method able to say this two overlap found by two different overlapping tools, concern the same region of read A and the same region of read B, we can increase our confidence in this overlap is a true overlap and it's is between this region of A and this region of read B. Or all overlapping tools found an overlap between read C and D but all this overlap concern different region of C and D, we can say they are probably no overlap between C and D. A work has been made in the context of a student project I supervised (PFE -Projet de Fin d' Étude End of Study Projects by Yann Grabe). He built a tool that computes a consensus of several overlap files. By comparing overlaps, i.e. computing overlaps between read overlaps, the tool computes a confident score on each read overlap by evaluating the number of overlapping tools that found the same read overlap. For the moment this tool is only a prototype and would still require a lot of work before it can be finalized.

Chapter 3

Long reads assembly tools state of the art

In the previous chapter we have seen how we can clean data before running assembly. In this chapter we present methods to perform an assembly and how these methods are applied on long-read assembly tools. We selected some tools for which we give a detailed description because methods and algorithms used are representative on how other tools work. In addition, these tools are recognized by the community for their quality. We can see that assembly tools can be split in steps. Assembly tools share similar steps. But we can observe that in the most recent assemblers (see section 3.7 and 3.8), the interdependence between each step of an assembly pipeline is more and more important.

Greedy assembly algorithm

The Greedy assembly algorithm is the first type of assembly tools, used on Sanger data. For example, GigAssembler was used to assemble the first human genome [START_REF] Kent | Assembly of the working draft of the human genome with GigAssembler[END_REF]. Algorithm 1 presents the general idea of how the Greedy algorithm works.

The BEST OVERLAP function is the main part of algorithm. The best overlap is the larger one or the overlap with less error. Each algorithm have its own method.

Algorithm 1 A greedy assembly for this read, cannot manage repetition. Genome contains many repetitions, like in a book some words are used several times or a whole part of a sentence can be present multiple times. Figure 3.1 presents a case where reads R 0 , R 1 and R 2 contain a repetition. R 0 has two possible overlaps: if overlap with R 1 is chosen, the assembly sequence matches with the green path; if overlap with R 2 is chosen, the assembly sequence matches with the red path. Each of these paths corresponds to a different region of the original genome. We can't know which path is the good one and we didn't see the repetition. So assembly tools based on Greedy algorithm can produce many misassemblies.

(R 0) (R 1) (R 2)
Figure 3.1: Each black box is a read, the grey box marks the position of a repetition. The beginning of R 1 and R 2 are in repetition: they share the same beginning but do not match at their ends. This repetition creates an ambiguity in assembly.

Overlap Layout Consensus

An alternative to the Greedy approach is the Overlap Layout Consensus (OLC). We can find a first definition of OLC in [START_REF] Myers | Toward simplifying and accurately formulating fragment assembly[END_REF] in 1995. The most popular assembly pipeline based on OLC is probably Celera [START_REF] Miller | Aggressive assembly of pyrosequencing reads with mates[END_REF][START_REF] Myers | A whole-genome assembly of drosophila[END_REF]. This approach is based on a graph where a read is a node and we build an edge between nodes if reads share an overlap. Figure 3.2, presents the OLC corresponding to the overlap seen in 3.1.

If we reuse analogy we introduce in section 1.2 we can see this graph as an ordering of the chapters of a book provided by a crazy copyist monk. An edge indicates this piece of text was before that piece of text in the original book.

As we can see in Figure 3.2 a repetition creates a fork in OLC, a node with two successors. It's easy to detect this case in the graph and stop this contig construction. The assembly result of this graph is 3 sequences with white nodes, green nodes and red nodes. The assembly is more fragmented than with the Greedy algorithm but does not contain any misassembly.

By analyzing the graph, we will be able to detect the paths without branching node and to reconstruct the corresponding sequence by merging the sequences present in the graph.

OLC-based tools help to avoid misassemblies but the search for overlaps between reads is still time-expensive. The graph construction consumes a lot of memory, and more cleaning steps and graph

ALGORITHMS AND HEURISTICS TO SIMPLIFY ASSEMBLY GRAPHS

(R 0) (R 1) (R 3) (R 2)
Figure 3.2: Each node is a read and an edge is built between two reads if they share an overlap.

analysis are expensive in computation time compared to a Greedy approach.

Algorithms and heuristics to simplify assembly graphs

The graph structure was useful to get a comprehensive view of all the information provided by reads, but having too much information can create problems, slow down the assembly tools and increase their costs in memory or at worst lead to misassembly or to unnecessary fragmentation of the assembly.

Transitive edge

In Figure 3.2 you can notice the edge from R 1 to read R 3 , this overlap is exact. We can find an overlap between R 1 and R 3 . But this edge does not provide new information, we know R 1 is before R 3 , this edge is called a transitive edge. We can give a more formal definition of a transitive edge: in a directed graph, if we have a set of edges (a, b) (b, c) and (a, c), the edge (a, c) is transitive.

Myers proposed in [START_REF] Myers | The fragment assembly string graph[END_REF] another assembly graph, the string graph, which is an overlap graph with no transitive edge. By reducing the number of edges in the graph, the string graph simplifies the traversing of the graph and decreases the memory impact.

With string graphs, we just need to follow a simple path (a path in which each node has only one successor) to build assembly without misassembly.

Contained reads

In third generation technology, the crazy copyst monk (see section 1.2) provides fragments of different sizes and chooses the beginning of a fragment randomly, so it is possible to have a read that is contained in another one. More formaly a read A is contained in another one B, if A and B share an overlap where A starts after the start of B, and A end before the end of B. All information (kmer or overlap with other reads) in contained reads was present in the container read for assembly task and so we can remove the contained read to save memory and time.

Bubble and tips

We have seen how OLC was built, but this graph can include some specific paterne, they can lead to misassemblies or fragmentation of assembly. A cleaning step was required.

(a) An example of tip in an assembly graph, the tips node is represented in red, the green, blue and black lines underline different possible assembly scenarios. (b) An example of a bubble in an assembly graph, each path is in a different color. The length of each path can be different and there can be more than two paths in a bubble. As we can see in Figure 3.3a a tip can create a branching node in the middle of a simple path.

If we keep this tip, generally assembly creates two contigs, one before the tip and one after a two contig assembly scenarios (one for the green path another for the blue). If we remove this tip we can run the black scenario.

It is easy to detect and remove tips in a graph. In many assembly tools, tips are considered as errors and are removed.

We can define a bubble as a set of subpaths in a graph with the same parent and the same children. Figure 3.3b gives an example with two paths of equal length. The bubble can be created by repetition or heterozygosity, when one or more version of this sequence contains a substitution or a more complex mutation.

Larger bubbles can be harder to detect. With smaller bubble, only one version of the path is kept, the choice can be random or based on coverage or another other specific method.

Rugly we can say assembly tools use all simple path in OLC graph to generate a contigs.

The advantages of long reads

We said in Section 1.1, that the main properties of reads technology are length and error rate. The impact of error rate on read mapping and overlap search, was easy to understand. If reads contain a lot of errors, it is harder to find the right mapping position and overlap.

Reads length has a very important impact on assembly quality. Bresler et al. in [START_REF] Bresler | Optimal assembly for high throughput shotgun sequencing[END_REF] introduce the notion of genome assembly feasibility, whether it is possible to reconstruct the genome from a reads set with a given length and a given coverage. To summarize very roughly, to get a good assembly reads need to bridge the repetition, so reads must be larger than the largest repetition. The idea was extended to reads with errors in [START_REF] Shomorony | Fundamental limits of genome assembly under an adversarial erasure model[END_REF] and demonstrated that we need increased coverage when the error rate increases.

Before third generation sequencing, the maximum length of a read was less than 2 kb (for a Sanger read) but a majority of repetitions in the genome are longer than this. Koren and Phillippy in [START_REF] Koren | One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly[END_REF] indicate a theoretical length of read that is necessary to obtain a perfect genome assembly; for most bacteria, a read needs to be over 7 kb. But this limit does not work in all concrete situations.

If reads start before a repetition cover all repetition and end after this repetition we can solve this repetition see Figure 3.4. Third generation reads are not larger than all repetitions, but they are larger than many repetitions and help to produce better genome assembly. Table 3.1 shows the improvement in terms of N50 between short-read assembly and long-read assembly in a few instances.

A 1 A 2 B 1 B 2 R C 1 C 2 D 1 D 2 Figure
Moreover, Yavas et al. in [START_REF] Yavas | dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies[END_REF] perform an assessment of different versions of well known assemblies. Yavas et al. notice an important improvement in this assembly after the introduction of third generation reads and 10X data (for more information on 10X data read Section 5.3).

Recently a high quality human genome assembly (CHM13 cell line), telomere to telomere gapless assembly, was produced with a combination of Nanopore and Pacbio reads [START_REF] Miga | Telomere-to-telomere assembly of a complete human x chromosome[END_REF]. The authors of this paper focused their efforts on X chromosome, reconstructed a 2.8 megabase centromeric satellite DNA array and closed all 29 remaining gaps in the current X chromosome H. sapiens reference. Nanopore CHAPTER 3: LONG READS ASSEMBLY TOOLS STATE OF THE ART data by analysis of raw signal provides an access to DNA methylation. This study confirm previous epigenomic results observed on the X chromosome.

Long read technology not only helps to improve genome assembly, it also has a significant impact on RNA study. Sequencing mRNA from beginning to end helps to detect new isoforms and splicing structures, by sequencing without PCR long reads help to remove bias in RNA quantification.

But long read sequencing error rate and large input material requirements (compared with short-read RNA-seq) require new analysis methodology development [START_REF] Hardwick | Getting the entire message: Progress in isoform sequencing[END_REF].

After this overview of how OLC assembly tools work, let us look at the details of two long-read OLC assembly tools, Canu and Miniasm.

A Pipeline with correction Canu

Canu [START_REF] Koren | Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[END_REF] was proposed in 2016, it is one of the first long reads assembly pipelines and it works with Pacbio and Nanopore reads after HGAP [START_REF] Chin | Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data[END_REF] Canu is based on Celera [START_REF] Miller | Aggressive assembly of pyrosequencing reads with mates[END_REF][START_REF] Myers | A whole-genome assembly of drosophila[END_REF], we can split the Canu pipeline in three steps which will be described below: correction, trimming and assembly. Nevertheless, before each of these steps Canu searches overlaps between reads. We will thus start by explaining how overlaps are computed.

Overlapping

In Canu pipeline overlap is computed by MHAP (for MinHash Alignment Process). We have seen that overlap between all reads takes a lot of time and requires a lot of memory. To avoid all versus all alignment, MHAP tries to estimate which reads share a common part with another by estimating a Jaccard distance between the set of k-mers of two reads. A k-mer was a substring of sequence with a fixed size equal to k. The Jaccard distance, present in equation 3.1, evaluates the distance between two sets by dividing the intersection of the sets by the union of the sets.

J δ (A, B) = 1 -J(A, B) = 1 -J(A, B) = 1 - |A ∩ B| |A ∪ B| (3.1)
In this equation A and B represent the k-mer set of read A and read B, J δ (A, B) represent the Jaccard distance and J(A, B) represent the Jaccard index. If J δ (A, B) is low, we can suppose read A and read B share a common part. Enumerating all the k-mers of each read and computing the intersection and union of each set takes a lot of time. MHAP selects a subset of k-mers to represent the read and computes a mash distance; [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] see equation 3.2 MHAP to choose which k-mer participate to the subset, assign to each k-mer a tf-idf score, see 3.5 A PIPELINE WITH CORRECTION CANU 29 equation 3.3. The tf-idf score comes from the field of text search. tf-idf evaluates if this term is specific to this document. tf for term frequency indicates if the term is present many times in the document, n i,j is how many time the term i is present in document and is j divided by the number of terms in document j. idf for inverse document frequency evaluates if the term is present in many documents or just a few, |D| is the number of documents in the dataset divided by |{d j : t i ∈ d j }|, the number of documents where the term i is present.

J(A, B) = |A ∩ B| |A ∪ B| ≈ |S(A ∪ B) ∩ S(A) ∩ S(B)| |S(A ∪ B)| (3.2) S(
tf -idf i,j = tf i,j • idf i = n i,j k n k,j • log |D| |{d j : t i ∈ d j }| (3.3)
In MHAP, terms are k-mer and documents are reads, this technique allows to reduce the number of k-mer in a set and keep k-mer specific to a read. If two reads share specific k-mer they probably share a common part.

If two reads have a small mash distance, MHAP compares the position of each k-mer in reads to determinate the overlap position.

The size of k-mer is very important as well. If k is too large, many k-mer contain errors, the size of intersection is reduced and MHAP can miss the overlap. Moreover, size of sketch has a huge impact. If it is too small, the read is sub-sample. If it is too large, compute mash distance takes more time, but with long-reads dataset the length of reads can be very different and choosing a good sketch size for this type of data is not easy. To find the optimal value for these two variable, the authors of MHAP perform many empirical tests.

Correction

In Canu correction was performed by a part of FALCON [START_REF] Chin | Phased diploid genome assembly with single-molecule real-time sequencing[END_REF], falcon sense. FALCON and Canu were developed simultaneously, we chose to describe Canu in detail instead of FALCON because we work mainly with Canu. In this section we did not cover the details of how falcon sense work but only the main idea.

Some correction tools such as falcon sense use a Partial Order Alignment (POA) (introduced in [START_REF] Lee | Multiple sequence alignment using partial order graphs[END_REF]) to perform long read correction. For each read R 1 , we recruit all the reads with which it shares an overlap, and perform an pairwise alignment with it. This alignment was used to build a POA graph. In a POA graph each base was a node and a direct edge was created between two bases if the first base was before the second one in an alignment. If an edge was present in two alignments, its weight was incremented. After all the alignments had been added to the POA graph, we searched for weighed path in the graph, and followed them to reconstruct the corrected sequence. An example of POA graph construction is present in figure 3.5

Trimming

The trimming step will remove the parts of the reads that are not supported by the other reads, see For each read we will analyze its coverage curve and remove the parts of the read that are not sufficiently covered (by default this value is set to 1). For trimming, Canu uses a homemade tool.

Assembly

The assembly step in Canu pipeline is based on the OLC paradigm (see Section 3.2 for a definition of OLC), with some specificities. Canu builds a Best Overlap Graph (BOG) for each non-contained read only two overlaps are kept in the graph, the best overlap for each read extremity, in Canu the best overlap was the longest overlap. Use of a BOG instead of a classic OLC graph is an aggressive strategy, in BOG we cannot observe a transitive edge and the number of edges is limited by the number of nodes. We avoid a cleaning step and reduce the memory impact of the graph. Once this graph construction step is performed, a clean step is run, removing tips and little bubbles (see Section

3.3.3).

This BOG was used as a scaffold to generate assembly. By remapping the reads against this scaffold, Canu tries to detect larger-than-read repetitions, which do not show as loops in BOG (see By remapping reads on the BOG, Canu can build a consensus and detect repetitions not observed in the graph. BOG was an aggressive strategy to avoid transitive edge and reduce graph size, but it could hide an edge that would have indicated a repetition. This check was required too.

A B Figure 3.7: Black arrow line was the path chosen by Canu, the other line was a read mapped against this path, the blue box indicates a repeat region. In case A the purple read spans all the repetition and indicates that the path chosen by Canu was the good one. In case B no read spans the repetition and the purple read have non-congruent overlaps between the red and blue reads, so Canu needs to break the path in order not to create a misassembly

Pipeline without correction Miniasm

Minimap2 and Miniasm are an assembly pipeline proposed in [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF] and [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF], the main purpose of this pipeline is to demonstrate that we can perform a long read assembly without correcting the long reads before.

The miniasm pipeline is more simple than the canu pipeline because it does not incorporate correction and consensus building. It is made of steps:

• overlap search, performed by minimap

• trimming, by miniasm

• graph construction

• graph cleaning

• contig generation

Minimap2

The main idea with Minimap2 is that we can represent a read as a set of minimizer, and if two reads share the same succession of minimizer we can suppose these two reads share an overlap.

A minimizer is define (in Minimap2 publication) as the k-mer with the minimal hash value of a set of consecutive k-mer.

If we keep the same hash function, two set of k-mer from different reads but with same k-mer composition, have the same k-mer minimizer. Moreover, a k-mer can be the minimizer for several consecutive sets of k-mer if no k-mer with a lower hash value comes in the window.

TTGTAGTCTACCGCATCGACACGTGTTCGTTTACTGTTT TACCGCATCGACACG ACCGCATCGACACGT CCGCATCGACACGTG CGCATCGACACGTGT GCATCGACACGTGTT CATCGACACGTGTTC
Kmer score: The red kmer has the lowest hash of the red window, so it is the minimizer of this window. But when the window slice arrives on the blue kmer, this one has a lower hash, the blue kmer become the minimizer of this window.

The minimal k-mer can represent many other k-mer, this technique can be compared to a lossy compression.

Minimap2 builds an index in which each minimizer is associated to the reads where a minimizer is present and the position of the minimizer in the reads.

With this index Minimap2 can collect the positions of similar minimizers between two reads.

With this collection of positions Minimap2 looks for the largest co-linear match, a succession of similar minimizers in each read with coherent position, same order of minimizer and similar distance between each minimizer. Figure 3.9 shows an overview of an overlap of two reads in Minimap2.

Minimap2 reports overlap where the number of matches is sufficient (greater than a threshold, 3 by default) and total length of putative overlap is sufficient.

Miniasm

Miniasm did not perform correction but it did not take all the information from reads and overlaps either; a filtering operation was performed.

For each read Miniasm performs coverage analysis of reads based on mappings identified by Minimap2, by default only the longest part of reads with a coverage greater than three is kept.

Minimap2 reports for each read, read length, position of first and last kmer, number of bases in kmer exact match, and a mapping quality and some option fields in SAM-like format can be present too.

Each overlap was classified in three categories, in order to keep only true end-to-end overlaps to build the OLC and filter out containment reads:

• internal match, this type of overlap probably corresponds to a repetition smaller than reads length • containment, a read of this overlap is contained in the other read, it is the same sequence

• dovetail, it is an end-to-end overlap

Here we give intuitive definitions of these categories without being mathematically rigorous. One would argue that being rigorous here is not necessary, as these definitions turn out to depend on arbitrary criteria in practice (e.g. in Miniasm). Miniasm was design to work on uncorrected reads and did not perform a consensus step, so contigs generated by Miniasm contains many errors and cannot be used directly. We can run the Minimap2 Miniasm pipeline with corrected read and a polishing tool on contigs generated by Miniasm.

Very recently, another assembly tool Ra [START_REF] Vaser | Yet another de novo genome assembler[END_REF] was a created to replace Miniasm in Minimap2 Miniasm pipeline. Ra uses an analysis of coverage curve of each read to trim non-supported regions (like Miniasm does) it includes the detection of chimera and repeated regions. Overlaps on regions marked as repeated are marked in a string graph and not trusted. Ra performs a real consensus step and runs many polishing step with Racon. According to the authors and to another study [START_REF] Wick | rrwick/Long-read-assembler-comparison: Initial release[END_REF],

Ra performs good assembly on bacteria and plant genome, but the overlap step still could still be optimized in terms of memory usage and computation time.

Read A Read B begin A end A begin B end B dovetails overlap Read A Read B begin A end A begin B end B internal match's overlap Read A Read B begin A end A begin B end B containment's overlap

Long read assembly approaches using methods inspired by de Bruijn graphs

Another class of tools try to speed up tools try to speed up assembly by simplifying the overlap search step. This method was proposed in EULER [START_REF] Pevzner | An eulerian path approach to DNA fragment assembly[END_REF].

This approach is based on a DeBruijn Graph (or DBG). For an alphabet with n symbols, a DBG represents each word of length k as a node and builds a directed edge if nodes share k -1 symbols at their extremities. For example, in Figure 3.11, node ATCG and TCGG share TCG. A word of length k is called a k-mer.

In assembly problems, n = 4 (A, C, T, G), and we can choose a value of k between 1 and the read length. In practice, the size is often smaller than the size of a read. The choice of the right values for k, depending on the use that we will have of the DBG, could be the subject for a whole thesis.

To build the DBG we chose a value for k and added all k-mer present in reads in the DBG. The DBG used in assembly contains only the k-mer present in the dataset, not all possible k-mer, and edges can be only edges that are present in the dataset or all possible edges.

Like OLC we can detect repetition by inspecting the number of successors of a node. Figure 3.11 presents a DBG with a repetition. After building the DBG we can follow the simple path to rebuild the original sequence.

LONG READ ASSEMBLY APPROACHES USING METHODS INSPIRED BY DE BRUIJN GRAPHS 35

Read With the DBG strategy we did not compute overlaps between reads, but the word length in the graph was shorter. And all repetitions with a size greater than k create a cycle in the graph and fragment the assembly.

Moreover the overlap between words in DBG must be exact (there must be no error) and with a fixed length (k -1). These two constraints are particularly problematic when the reads contain a lot of errors or when the coverage of the region is low.

The DBG approach was used successfully for short-read assembly. We can mention the tools Spades [START_REF] Bankevich | SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[END_REF], Minia [START_REF] Chikhi | Space-efficient and exact de bruijn graph representation based on a bloom filter[END_REF] and Megahit [START_REF] Li | MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph[END_REF] but these methods are not very effective for long reads assembly:

• reads contain a high error rate and therefore finding error-free kmers was hard, these errors can lead to expand the size of the graph or misconnections between parts of graph.

• to use the size of the long reads, these tools would have to support values of k greater than, for example, 7000 bp (bacterial repetitions).

If we use DBG naively for long read assembly, we can miss the main advantage of long-reads: their length.

Flye and wtdbg2 use the DBG approach with some modifications to adapt the idea to long-read assembly. Flye creates a A-Bruijn Graph (ABG), in which an edge does not signal an overlap with a k-1 length between nodes but the overlap can be shorter. In the wtdbg2, method kmer are replaced with k-bin, where a bin is a substring (256 bases of length by default) of reads. An edge is created between k-bin if they are successive in a read.

Flye

Flye [START_REF] Kolmogorov | Assembly of long, errorprone reads using repeat graphs[END_REF] was based on ABruijn [START_REF] Lin | Assembly of long error-prone reads using de Bruijn graphs[END_REF] assembly tools. ABruijn did not use a DBG but a similar concept: a ABG. Instead of using a set of kmers as nodes, ABG uses a set of chosen kmers. Instead of building an edge between each kmer they share a k-1 overlap, they build an edge between succesive kmer in a read without creating a transitive edge. A weight was added to edge this weight correspond to the length of k minus the length of overlap between kmer.

To build the chosen k-mers set, ABruijn selects kmers present many times in the dataset.

These kmers are called in many tools solid k-mers. The more present a k-mer is in the dataset, the more confident you can be that the k-mer does not contain a sequencing error. If the genome coverage is 40x we can hope to see a k-mer, not included in a repetition, roughly 40 times. Because when we sequence at 40x, we do not actually read each base 40 times; and when a sequence error appears, we lose an occurrence of the kmers where this base was present. Choosing the number of times a kmer has to be present in the dataset to be solid was a difficult task. This modification helps to clean sequencing error, but reduces the set of kmer fragments the DBG graphs. This is why ABG creates edges not only when kmers share a k-1 overlap.

During the ABG construction, ABruijn stores which read generates which graph path. This structure was useful to find quick overlaps between reads. Reads participating in the same path of ABG probably have the same sequence, so they probably share an overlap. To build contigs, ABruijn choose a read, search all overlap with help of ABG. If this local overlap graph didn't denote a fork (we have one read without successor and all reads have path in the local overlap graph to this read), ABruijn extend the contig.

ABruijn can be roughly summed up as mix of all the assembly strategies, using DBG to find overlaps between reads, building contigs by extension as with greedy method but using OLC to make sure they do not integrate a repetition and a potential missassembly in contigs.

Flye was built on top of ABruijn. After the ABruijn assembly, Flye concatenate ABruijn contigs in pseudo-genome (contigs order is arbitrarily chosen). This pseudo-genome is alignment against it self. This self-alignment is analyse to detect and tag repetitions. Flye builds a repetition graph, with repetition extremities as nodes and an edge is built when two repetition extremities are linked in a contig. Flye uses coverage information to take a clue on contig succession over untangle repetition. By analysing the topology of repetition graphs, Flye can find a unique traversal path to explain all repetitions and find the genomic order of a contig.

wtdbg2

wtdbg2 [START_REF] Ruan | Fast and accurate long-read assembly with wtdbg2. bioRxiv[END_REF] uses a DBG approach to solve long-read assembly. It is not really a DBG, but a "Fuzzy-Bruijn graph" (FDBG) and was defined for the first time in this article. To build this graph, wtdbg2 splits a read in a bin with a fixed size (256 base pairs) and stores the kmer present in each bin in a hash table. To find the overlap between reads, wtdg2 uses a hash table to compare the kmer compositions between each read and performs a pairwise alignment between each bin of reads.

After this alignment step, wtdbg2 only keeps in memory which bin is aligned to which bin, and it builds k-bins. Each k-bin is a sequence of k successive bin in a read. wtdbg2 can infer if two k-bins

NEW LONG READ ASSEMBLY METHOD

overlap if one or more bin in this two k-bins shares an ovelap.

A group of k-bins are a node of FDBG. wtdbg2 builds an edge between two nodes if the k-bins from each node are successive in a read, after some cleaning step (pops bubbles, tips cleaning) wtdbg2 builds a consensus sequence with each simple path in FDBG.

New long read assembly method

Very recently, two assembly tools have been presented that focus on the ability to produce good long read assembly with a very low cost in computation time and memory usage.

Peregrine

Peregrine [START_REF] Chin | Human genome assembly in 100 minutes[END_REF] uses the SHIMMER overlapper. SHIMMER extends idea of minimizer (introduced in Section 3.6.1), by creating a minimizer of minimizers. Given a set of minimizers, one of them can be chosen as a representative minimizer. These minimizers representing a set of kmer, we can have many layers of minimizers, each layer reducing the size of the minimizer set and the space of search to find similarities between reads.

The layer-0 of minimizers was a basic minmizer process, like Minimap2. After this step, SHIMMER selects the minimizers that will participate in the layer-1, it uses a reduction factor, for a reduction factor x, x minimizers are represented by the minimal minimizer of this set. This process can be repeated with many layers. When it chooses the minimizers of layer n among the minimizers of layer n-1 , SHIMMER checks the distance between each layer n minimizer to make sure they represent a distinct part of the read. SHIMMER by default uses three layers of minimizing this value, reduces the number of minimizers that have to be compared to find similarities between read, without increasing the number of missed overlaps (value found empirically).

After this indexing step, SHIMMER brings together reads that share many last layer minimizers and performs a classic alignment to confirm overlap between reads. After this step, Peregrine runs a classic OLC strategy to perform assembly.

SHIMMER overlapping tools can be used to perform a mapping of read against contig or genome. After this remapping a polishing step was performed, without taking into account heterozygosity.

Peregrine was actually tested only on Circular Consensus (CCS) Pacbio data. Reads were sequenced multiple times and a consensus was performed on all this sequencing. This technique reduces the read length but reduces the error level of sequencing too. Finding overlaps between reads with less error was easier and faster. Methods created by Peregrine tools by reducing the minimizer space of search speed up the search for overlaps, but they were tested on low error rate long reads. Even if the error rate of long reads decreases, will it decrease enough for this method to maintain a good sensitivity? Peregrine needs to be validated on other types of data before its method can be generalized.

Shasta

Shasta is a recently published assembly tools that was used to assemble Nanopore data of eleven human genomes [START_REF] Shafin | Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit[END_REF].

Shasta uses run-length representation of reads. Run-length representation is a loss-less compression method for text that contains a large repetition of the same character. For example, the sequence ACCTTTGAA, was represented by two strings Sb = {A, C, T, G, A} and St = {1, 2, 3, 1, 2}. To reconstruct the original sequence, we repeat St i time the Sb i letter.

This representation was interesting for long-reads data, because DNA contains sometimes the same character repetition (called an homopolymer) and long-reads often make errors in homopolymer.

Run-length representation by squashing this region can avoid this type of error and facilitates the alignment of long-reads.

To perform read overlapping, Shasta did not use a minimizer approach but something very close, the Sb string of read was split in kmer and some kmer were selected randomly, and called markers. The set of markers was the same for all data set. Reads was now represented by a succession of markers: it is a lossy compression.

Before looking for a colinear match of marker, in order to select reads with a higher match probability, Shasta computes a modification of the MinHash Jaccard estimation (see Section 3.5.1) to avoid the bias created by the difference of length between reads.

To perform assembly Shasta creates a marker graph. It is something similar to DBG, in which a kmer is a marker and an edge is built between two markers if a read contains this succession of markers. Each edge is weighted by the number of reads that contains this succession. After a cleaning step of marker graph (removing transitive edges, tips and bubbles), a path in the marker graph is selected and the reads that have helped build the edges for this path are used to build a consensus sequence of contigs.

Shasta contains many interesting ideas and the authors plan improvements for heterozygosity detection, resolution and performance improvement.

Chapter Conclusion

Long read assembly is an active field of research, many tools are created each year and long read assembly tools are used to improve genome and build draft genome.

To perform overlap detection, a majority of tools use k-mer to find reads with a high similarity and avoid all-versus-all overlapping search. To further reduce the space search, some tools use filtering based on minimizing: we keep the kmer with the lowest score, this score can be based on information contained in the dataset or be determined by an arbitrary function. The choice of k-mer size, filtering method and minimizing function, can have a great impact on result of each tool.

The OLC approach has proven its effectiveness in assembling third generation reads. Several modifications have been made to support these new reads but efforts are mainly focused on reducing the computation time of memory usage. These modifications have led to the idea of a hybrid OLC algorithm with DBG and Greedy (cf Flye and wtdbg2). This hybridisation of method create tools where 3.9 CHAPTER CONCLUSION 39 interdependance between each step was more and more important. For exemple in Flye, wtdbg2 and Shasta the search of overlap was linked to a assembly graph construction.

The only assembly that tried to take heterozygosity into account was FALCON, by making the difference between a sequencing error and a variant or heterozygosity. To get heterozygosity and variant phased or genome graph after assembly would be interesting. But the tools to extract all this information from a read do not exist yet.

Another step of assembly improvement would be to improve the contiguity, assembly tools by reducing the information to reduce computation time and memory usage can have an impact on assembly quality. Correction of long-read can by trimming insufficiently-covered data can increase the size of coverage gap. Coming back to all read information or using overlaps found by another tool, helps to solve assembly troubles created by heuristic in assembly and correction tools. The next chapter focuses on this point.

Chapter 4 Post Assembly

In the previous chapter we saw several third generation assembly tools, each one having its own specificity and method to produce a long read assembly. Each assembly tool produces different output files, but all of them produce a contigs file that store contigs sequences built during assembly. Other files generally contains information about contigs, coverage, if a contig is circular or not, which reads were used to build a given contig, . . . All this information is useful to assess the assembly quality, or to integrate other information to improve the assembly. In this chapter we will briefly review some methods for evaluating an assembly and will especially focus on the most commonly used method for evaluating a new assembly: the alignment of the contigs of the assembly against a known reference.We will see that this method requires some adjustment when evaluating an uncorrected assembly pipeline.

In a second part we observe how recent long-read assembly tools still fail to produce a good assembly on data although it should theoretically succeed. We thereafter present our solution KNOT.

KNOT is a tool which by returning to the original information reads, tries to find information that could not be used by the assembly pipelines.

Assembly evaluation

Several metrics exist to compare and evaluate assembly. The most common metric used is the N50 that evaluates the contiguity of assembly. For example we take a genome with one chromosome and two assemblies. The first assembly contains one large contig (approximately the length of the chromosome) and many short ones. The second contains only contigs of average size one or two order of magnitude smaller than the chromosome. The first one has an higher contiguity. We have more information about the genome with the first assembly than the second one. We don't need perform an hard scaffolding step to have an idea of genome organisation.

To compute N50, we create a list of your contigs length and sort them. When the cumulative sum of contigs length (starting with the largest) is larger than the sum of all contigs, the length the 70 was the last length added in cumulative length before this cumulative length is larger than half of the total sum of assembly. N25, N75 or NX correspond to the same metrics as N50 for 25%, 75%, or X% of total length of contigs. L50 is the rank of the N50 contig in the sorted contigs list, L50 of our example is 5.

NG50 is the same thing as N50, but the total sum of contigs length is replaced by the genome length (estimated or get from a previous assembly). NGA50 is the same as NG50, but the contigs length is replaced by the length of contig that map against the reference genome. We can cite U50 as another metric similar to N50 where overlapping region between contigs was ignored [START_REF] Castro | U50: A new metric for measuring assembly output based on non-overlapping, target-specific contigs[END_REF].

N50 family metrics are not perfect, but they help to represent the contigs length distribution, and to compare the results of different assembly tools on the same dataset. N50 is useful to analyze assembly quality without any external information.

By adding other information, we can evaluate assembly not only on size of contigs. BUSCO [START_REF] Simão | BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs[END_REF] evaluates the assembly completeness with the presence or the absence of core genes. By mapping contigs against reference genome or close reference genome, Quast [START_REF] Gurevich | QUAST: quality assessment tool for genome assemblies[END_REF] computes many metrics like the number of misassemblies, NGA50, the identity level of contigs, Some other tools and techniques exist and are useful. Some of them are presented in more details in [START_REF] Nagarajan | Sequence assembly demystified[END_REF] 4

.2 Misassemblies in noisy assemblies

Originaly publish in: https://blog.pierre.marijon.fr/misassemblies-in-noisy-assemblies/ Author: Pierre Marijon

Introduction

I think that all the people who have ever done a genome assembly one day say: "Ok my assembly is cool, but now how I can be sure that it's the best and it doesn't contain a lot of errors ?"

We have many technics to evaluate the quality of assemblies (it isn't a complete review, sorry):

• with only assembly information:

MISASSEMBLIES IN NOISY ASSEMBLIES

43

with N50 family metrics by analyzing reads remapping against assembly AMOSValidate, REAPR, FRCbam, Pilon,

VALET

by computing the probability of the reads given the assembly (ALE, CGAL, LAP)

• by using external information:

count the number of core genes present in an assembly, BUSCO transcriptome information, for example, Bos taurus genome validation synteny information Lui et al map assembly against a near reference genome, quast or dnAQET Note that for the last bullet point, if you are using quast with a reference genome you already have, by definition, a reference genome. So why perform an assembly?

The main reason to perform reference-assisted evaluation is when testing different assembly pipelines on the same read data set. To evaluate a new assembly pipeline, one also has to test different sets of parameters, and evaluate the impact of adding or changing the tools that are part of the pipeline.

Quast is a very useful tool and now it integrates many other assembly evaluating tools (BUSCO, GeneMark, GlimmerHMM, barnap)

Recently, with Rayan Chikhi and Jean-Stéphane Varré, we published a preprint about yacrd and fpa, two new standalone tools. These tools can be included in assembly pipelines to remove very bad reads regions, and filter out low-quality overlaps. We evaluated the effect of these tools on some pipelines (miniasm and redbean). Using quast, we compared the results with the assembly quality of different pipelines.

We sent this paper to a journal, and one of the reviewers said something along the lines of:

"quast isn't a good tool to evaluate high-consensus-error assemblies, the number of misassemblies was probably over evaluated." And it's probably true.

Miniasm and redbean perform assemblies without read correction steps (and without consensus step for miniasm). The low quality of a contig sequence is a real problem: quast could confuse a misaligned low-quality region with a misassembly.

In this blog post, I want to answer the following questions:

1. how to run quast on long-read uncorrected misassemblies 2. is the quast misassemblies count a good proxy to evaluate / compare assemblies?

3. can we find better metrics than just the number of misassemblies?

If you have no time to read all these long and technical details you can go directly to the TL;DR.

In this post I will talk about quast and not dnAQET, which has just been released, but dnAQET uses the same method (mapping the assembly against the reference) and the same misassembly definition as quast. It seems to me that what I am going to say about quast also applies to dnAQET.

But go read the dnAQET publication, there are lots of super interesting ideas in it.

Datasets, assembly pipelines, analysis pipelines; versions and parameters

For our tests we are going to use two Nanopore datasets and one Pacbio dataset.

• Reads:

-Oxford nanopore D melanogaster 63x coverage

-Oxford nanopore H sapiens chr1 29x -Pacbio RS P6-C4 C elegans 80x
• References: We use racon (v1.4.3) for polishing. For mapping reads against assembly we use minimap2, with recommended preset for each sequencing technology.

-D.
We use quast version v5.0.2.

All dotplots were produced by D-Genies.

Quast misassemblies definition

What are quast misassemblies? Do we have different misassembly types? How are they defined?

Quast defines three types of misassemblies: relocation, translocation and inversion.

Relocation

A relocation can occur based on signal from two mappings of the same contig against the same chromosome (cf Figure 4.1). We have two cases:

• either the two mappings are separated by an unmapped region (case A)

• or they map on the same chromosome with a shared mapping area (case B) Let's call L y the length of the relocation.

• The relocation length is positive when the assembly missed a part of the reference (case A)

• Negative when the assembly includes a duplicated region (case B).

In both cases, this is an assembly error.

Translocations

A translocation occurs when a contig has mapped on more than one reference chromosome (cf Figure 4.3). The contig utg0000021L maps on chromosome I, but it contains a small inversion at its end.

Important point

For more details on quast misassembly definitions, you can read this section 3.1.1 and section 3.1.2 of the quast manual.

Quast bases its misassemblies analysis on the alignmnt of contigs against a reference. To perform alignment, recent versions of quast use minimap2, with preset -x asm5 by default, or -x asm20 when min-identity is lower than 90%. After that, alignments with identity lower than min-identity are filtered out by quast (95% identity by default, but can be set to as low as 80%).

min-identity is a very important parameter. To consider a contig as misassembled, quast must have a minimum of two mappings for this contig. If the second mapping has an identity under the min-identity threshold, quast can't observe the misassembly. But even more, if a contig has three successive mappings, and assume also that the mapping in the middle has lower identity than the min-identity threshold, and the remaining gap between the two other mappings is larger than extensize-mis-size, then quast sees this as a misassembly, where in fact it isn't.

Parameters min-identity and extensize-mis-size have an important impact on misassemblies detection. So, what is the effect of changes in of these two parameters on the number of misassemblies found by quast? The black line marks quast default identity value threshold, we can see a majority of alignments are under this threshold for an uncorrected dataset. So, setting parameter min-identity 80 seems necessary.

Effect on a polished assembly

To test the effect of correction on misassemblies count, we ran racon 3 times on C. elegans (the one with the best reference) dataset.

On the non-corrected assembly, quast makes use of 7049 mappings; for the corrected assembly, 30931 mappings (increasing ratio 4.38).

We can observe in Figure 4.8 an increase in alignment identity due to racon (unsurprisingly).

Contrary to the uncorrected assembly, a majority of the mappings now have 95% or more identity.

To have an insight on the effect of min-identity on unpolished/polished assemblies, we run quast with default parameters and changing only min-identity (still the C. elegans dataset).

With min-identity 80 the number of relocations and translocations is increased compared to the default value of min-identity. If quast has only one alignment of a contig, it cannot find misassemblies. By reducing the min-identity we increased the number of alignments and mechanically increased the number of detected misassemblies. We think that some of these misassemblies aren't real misassemblies. But if we use the same min-identity value for all assemblies that we want to compare, we can hope that the number of 'false' misassemblies will be similar.

For uncorrected long-read assemblies, we recommend to use a lower-than-default QUAST identity threshold parameter (80 %)

Effect of extensive-mis-size on misassemblies count

We observed that the min-identity parameter has a very important impact on the number of misassemblies for uncorrected long-read assemblies (-> need to set it to 80 %.) Now we want to observe what is the impact of another parameter: extensive-mis-size, which is a length threshold for the detection of relocation-type misassemblies.

We launch quast with different value for parameter extensive-mis-size: 1.000, 2.000, 3.000, Figure 4.9: In the horizontal axis, we have the extensive-mis-size value. In the vertical axis we have the number of misassemblies.

4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000, 20.000, 30.000, 40.000, 50.000 (in base pairs). The parameter min-identity was set to 80 %.

The Figure 4.9 shows the evolution of the number of misassemblies in function of the extensive-mis-size value. After 10.000 base pairs, the number of misassemblies becomes quite stable.

This graph shows two regimes: with extensive-mis-size lower than 10.000 bp, it detects quite a lot of misassemblies. With extensive-mis-size higher than 10.000 bp, it detects less of them. Yet we know that quast detects three type of misassemblies (relocations, translocations, inversions). Only relocation should be affected by extensive-mis-size parameter, but let's verify this assumption. For C. elegans the number of translocations was quite stable, the number of relocations drops down rapidly and the inversions has only a little increase.

I can't explain why translocations and inversions numbers change with a different value of extensive-mis-size. By reading quast documentation and code I didn't understand the influence of this parameter on this group of misassemblies.

Relocation misassemblies are the most common type of misassemblies. We can impute the reduction of misassemblies, when extensive-mis-size grows, to a reduction of relocations.

Relocations lengths distribution

We see previously for our assemblies that a majority of misassemblies were relocations. We are now focused on this type of misassemblies. For each relocation we can attach a length, this length is the length of incongruence between assembly and reference genome. It's equal to L y .

The file {quast output}/contigs reports/all alignements {assembly file name}.tsv contains information about mapping and misassemblies. For other information on how quast stores mapping and misassemblies information, read quast faq.

The reference (orange point). Source code, data is available.

For H. sapiens a majority of relocations were positive and short (between 1000 and 5000 bases), with some very large relocations. For C. elegans it's different, the majority of relocations are negative and the largest relocation was shorter than in H. sapiens. For D. melanogaster the size of relocations was more spread out; the majority of relocations aren't short. This is confirmed by the look of the curve seen in the previous part, when extensize-mis-size is increased, the number of relocations decreases less quickly than for the other datasets.

With this representation, we can analyze the differences in relocations between assemblies, in terms of their numbers and more importantly the distributions of their lengths.

Conclusion

If you work with quast to evaluate an assembly made with miniasm, you need to set min-identity parameter to 80 %. It would be nice to have a lower minimum value, maybe 70%, but the quast code would have to be modified. And such a low identity is required only for a miniasm assemblies; for tools with a better consensus step (redbean for exemple), 80 % seems sufficient.

Translocations and inversions constitute a minority within misassemblies, yet when they are detected it's clear that they are 'true' misassemblies. I would be very surprised to see a translocation or inversion created by a mapping error, itself generated by error(s) in an uncorrected long-reads assembly. We can thus trust the count of translocations and inversions.

For relocations, the situation is different. They constitute the majority of misassemblies in our cases, and some of them are true some of them are false. Checking all misassemblies manualy is impossible, and finding a good extensive-mis-size value seems very hard for me. The easiest thing we can do is compare the series of lengths associated to relocations, as shown in this blogpost I used a swarmplot; I think statisticians could find better tools.

Take home message

You can use quast to compare uncorrected long-reads assemblies but:

• run quast with --min-identity 80

• rely on translocations and inversions counts

• for relocations, compare distributions of lengths associated to each assembly

Acknowledgements

For the creation of this very effective and useful tool all Quast contributors.

For their help in writing this blogpost:

• Rayan Chikhi • Jean-Stéphane Varré • Yoann Dufresne • Antoine Limasset • Matthieu Falce • Kevin Gueuti

Trouble with heuristic algorithm

Assembly tools need to rely on heuristics. Due to theoretical limit: how many bases need to be share between two read to create an overlap, how many errors can we accept in this overlap. Due to technical limit: memory constraint, computation time limit. You can't search and store all overlap. Most of the time chosen heuristics perform very well, but in some cases a more complex analysis is needed.

Wick and Holt in [START_REF] Wick | rrwick/Long-read-assembler-comparison: Initial release[END_REF] perform a comparison of five assembly tools on real data and simulated data bacterial data set. Some difficulties are injected in the input long-reads to stress assembly tools:

• Adaptor length. Sequencing techniques require the introduction of short sequence before reads.

Because of their high error rates to detect and remove those adaptor from long-read sequences is not trivial. Those adaptors can generate assembly errors.

• Chimeric read. During DNA extraction and fragmentation, two fragments coming from different regions can be sequenced as a single read. This can lead to assembly fragmentation.

• Glitch level. Long-read error aren't uniformly distributed along the reads and sometimes sequencer create a region with only random sequence. A higher the glitch level indicates a larger region and a higher frequency.

• Random junk reads. Some reads are just a string of random character.

• Read depth, corresponds to genome coverage.

• Read identity, percent of error insertion, deletion, substitution.

• Read length.

This study focuses on assembly contiguity, the number of contigs vs. the expected number of contigs, and the number of contigs that can be mapped against the reference. According to this benchmark we observe that:

• reads length are upper than 10k and lower than 20k, this length can be reached by long-read sequencing technology but requests a particular attention be focused on the risk of DNA fragmentation

• read identity need to be upper than 85% • the minimal coverage is around 20x, but this study didn't analyze the error rate of assembly, we can suspect a high error rate in assembled contigs

• chimeric reads have an important impact on assembly contiguity but at level generally not observed in real data

We can observe an important variability of result (in Canu, wtdbg2 and Unicycler). An assembly can fail for many reasons: a chimeric read in a repetition, a drop of coverage, a missing overlap, or a inappropriate set of parameters.

Analysis and understanding of the data produced by assembly tools help to check if assembly result didn't produce false result or to understand, and sometimes solve, assembly trouble. Some tools use remapping of reads against assembled contigs to found misassembly by detecting incongruity's in read coverage, mate pairs mapping, read mapping clipping. Some tools or assembly tools were developed in order to analyse assembly graphs to understand what is happening during assembly like Bandage [START_REF] Wick | Bandage: interactive visualization ofde novogenome assemblies: Fig. 1[END_REF], a tool to visualize assembly graph.

We developed KNOT a tool to simplify analysis of assembly tools results and help users to make choices improving assembly quality. This tool is based on the observation that the graph of raw reads is generally connected (we can reach any node from any node), while the graph of contigs does not.

Therefore the idea of KNOT is to use the graph of raw reads to find the (potentially missed) links between contigs.

The Figure 4.13 present the main idea of KNOT, to combine information of assembly (the read coloration) with pieces of information that can be extracted from reads (the OLC graph build from

Minimap2 but another overlapping tools can be used). The contigs information helps us to ignore some already solved problem (red circle), unsolvable trouble (greed circle) and to focus on strange situations (blue circle). Figure 4.13 show a very simple example on a real case. The OLC graph can be very hard to read and understand for a human, analysing an OLC graph by hand is almost impossible.

For these reasons and to run analysis without an human intervention we also automatised the idea of KNOT.

The paper was publish originally publish in Bioinformatics (https://doi.org/10.1093/bioinformatics/ btz219), we reformat the paper in the style of this current document for reasons of readability.

Graph analysis of fragmented long-read bacterial genome assemblies

Originaly publish in Oxford Bioinformatics : https://doi.org/10.1093/bioinformatics/btz219

Author: Pierre Marijon, Rayan Chikhi, and Jean-Stéphane Varré

Abstract

Motivation: Long-read genome assembly tools are expected to reconstruct bacterial genomes nearly perfectly, however they still produce fragmented assemblies in some cases. It would be beneficial to understand whether these cases are intrinsically impossible to resolve, or if assemblers are at fault,

GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME ASSEMBLIES 57

Figure 4.13: This graph is the overlap graph (computed by Minimap2), reads used by Canu to build its contigs are colored with same color. We can thus distinguish the three contigs computed by Canu. We can observe two fragmentation points, one can be explained by a repetition (green circle). We can observe that some repetitions are solved by Canu. But the fragmentation between green and red contigs (blue circle) can't be explained by a repetition.

implying that genomes could be refined or even finished with little to no additional experimental cost.

Results: We propose a set of computational techniques to assist inspection of fragmented bacterial genome assemblies, through careful analysis of assembly graphs. By finding paths of overlapping raw reads between pairs of contigs, we recover potential short-range connections between contigs that were lost during the assembly process. We show that our procedure recovers 45% of missing contig adjacencies in fragmented Canu assemblies, on samples from the NCTC bacterial sequencing project. We also observe that a simple procedure based on enumerating weighted Hamiltonian cycles can suggest likely contig orderings. In our tests, the correct contig order is ranked first in half of the cases and within the top-3 predictions in nearly all evaluated cases, providing a direction for finishing fragmented long-read assemblies.

Availability: https://gitlab.inria.fr/pmarijon/knot

Introduction

Third-generation DNA sequencing using PacBio and Oxford Nanopore instruments is increasingly becoming a go-to technology for constructing reference genomes of non-model prokaryotes and eukaryotes. Longer sequencing reads allow in principle to overcome the reconstruction problems posed by genomic repetitions [START_REF] Bresler | Optimal assembly for high throughput shotgun sequencing[END_REF]. Direct assembly of second-generation (Illumina) sequencing data typically also results in high consensus accuracy yet generally more fragmented bacterial assemblies [START_REF] Bankevich | SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[END_REF].

The large-scale ongoing NCTC project aims to assemble and make publicly available 3,000 bacterial strains sequenced using PacBio1 .

Recent works have demonstrated single-contig long-read assemblies of bacterial chromosomes [START_REF] Koren | One chromosome, one contig: Complete microbial genomes from long-read sequencing and assembly[END_REF][START_REF] Nicholas J Loman | A complete bacterial genome assembled de novo using only nanopore sequencing data[END_REF]. Therefore, it is natural to ask whether genome assembly is now a solved problem with long reads2 , at minimum for smaller genomes such as bacteria. It turns out that in several cases, bacterial assemblies remain fragmented into a handful of contigs, even with long-read sequencing and recent assembly techniques. Deciding whether an assembly instance is resolved is not always clear due to the presence of plasmids, contaminants and unplaced low-quality reads. In this work, an assembly is considered to be resolved if the number of contigs classified as chromosomal is equal to the expected number of chromosomes (generally just one, in the bacterial case).

To date, the NCTC project contains 1,735 samples for which 1,136 have been assembled by the consortium, and among these, 599 (34%) are unresolved according to the criteria above (as in Feb 2019). Later in this article, we will see that even when using multiple recent tools, many assemblies remain fragmented. Therefore there is a clear and unmet need for an investigation that determines whether those samples are intrinsically impossible to resolve, or whether current assembly methods are imperfect.

In this article we have selected a subset of NCTC samples (see Results section) and considered the outputs of three recent assemblers: Canu, Miniasm, and HINGE. We observe that instances where the assembly is fragmented can be challenging to further manually elucidate. In general, assemblers produce an assembly graph where nodes are contigs and edges reflect local sequence proximity in the genome (adjacency). In fragmented instances, the final assembly graph is sometimes uninformative due to the absence of edges between contigs, hindering further assembly finishing steps. In such cases, it would be tempting to conclude that the assembly is fragmented due to regions of insufficient sequencing coverage, with no way to determine a likely contig order. However, in a number of cases we found that a lack of connectivity can be due to reads that were discarded early in the assembly pipeline. Here we will show that contig adjacency information can be computationally recovered from the raw data.

To automatically investigate unresolved assemblies and propose directions for refinement, we introduce a set of in silico forensics operations for long-read assemblies, and we built a software framework. Our analyses are based solely on information present in the raw sequencing data in addition to the contigs produced by a given assembly tool, and are not biased by any other source, e.g. a closely related reference genome. For validation purposes only and to explain some of our observations, we will align contigs to a ground truth reference when one is available. Our framework is first tested on synthetic data to illustrate a simple case of fragmentation due to heuristics in the Canu

GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME ASSEMBLIES 59

assembler. We then show on real data that our method helps recover useful adjacency information between contigs.

Going further, we demonstrate how to use this recovered information to provide likely assembly hypotheses using Hamiltonian paths, through a ranked list of contigs orderings. Obtaining a small set of possible orderings between contigs, knowing that the true genome order is likely one of them, can be instrumental to guide further genome finishing steps.

Related works

Assembly forensics date back to the Sanger era, e.g. with the AMOSvalidate software [START_REF] Adam M Phillippy | Genome assembly forensics: finding the elusive mis-assembly[END_REF], which detects mis-assemblies within contigs using multiple sources of information (e.g. read coverage, properly mapped pairs, clipping). Other tools have been introduced for mis-assembly detection in Illumina data (REAPR [START_REF] Hunt | REAPR: a universal tool for genome assembly evaluation[END_REF], FRCbam [START_REF] Vezzi | Reevaluating assembly evaluations with feature response curves: GAGE and assemblathons[END_REF], Pilon [START_REF] Bruce | Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement[END_REF]) and for PacBio data (VALET [START_REF] Olson | Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes[END_REF]) using similar principles. Completeness of an assembly can be estimated without any reference, using core genes as a proxy metric, e.g. with BUSCO [START_REF] Simão | BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs[END_REF] or CheckM [START_REF] Donovan | CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[END_REF] software. Finally, assembly likelihood metrics have been introduced to assess the fit of an assembly to a probabilistic model of sequencing, via remapping reads to the assembly [START_REF] Scott | ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies[END_REF][START_REF] Ghodsi | De novo likelihood-based measures for comparing genome assemblies[END_REF][START_REF] Rahman | CGAL: computing genome assembly likelihoods[END_REF]. For a more complete exposition, refer to a recent survey on metagenomics assembly validation [START_REF] Olson | Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes[END_REF], that also largely applies to isolates.

For bacterial genomes specifically, several pipelines for assembly finishing have been developed [START_REF] Bosi | MeDuSa: a multi-draft based scaffolder[END_REF]. They usually take as input an assembly obtained with short-read data and align it to one or multiple close reference genomes, in order to find a contig ordering [START_REF] Schmitt | Approaches for in silico finishing of microbial genome sequences[END_REF]. Recent work has examined the cause of assembly fragmentation for seven bacterial genomes sequenced using PacBio sequencing, and rejected the hypothesis that gaps were caused by strong secondary DNA structure [START_REF] Sagar | A case study into microbial genome assembly gap sequences and finishing strategies[END_REF]. Instead, low coverage and repetitions appear to be the two main factors for contig termination.

To the best of our knowledge, little work has been carried to investigate assemblies based on the graph of assembled contigs or the initial string graph. Noteworthy exceptions are the Bandage software (an assembly graph visualization tool) [START_REF] Wick | Bandage: interactive visualization ofde novogenome assemblies: Fig. 1[END_REF], and the HINGE assembler that implements automated repeat handling based on the assembly graph [START_REF] Govinda | HINGE: long-read assembly achieves optimal repeat resolution[END_REF]. We use Bandage extensively in the present work, and will consider datasets where even HINGE failed to produce a single-contig assembly.

Long-read assemblers

Several genome assemblers have been developed to process third-generation sequencing data, either stand-alone [START_REF] Govinda | HINGE: long-read assembly achieves optimal repeat resolution[END_REF][START_REF] Koren | Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[END_REF][START_REF] Li | Minimap2 and Miniasm: Fast mapping and de novo assembly for noisy long sequences[END_REF][START_REF] Lin | Assembly of long error-prone reads using de Bruijn graphs[END_REF] or in combination with Illumina data [START_REF] Antipov | hybridSPAdes: an algorithm for hybrid assembly of short and long reads[END_REF][START_REF] Wick | Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads[END_REF][START_REF] Ye | DBG2olc: Efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies[END_REF][START_REF] Aleksey V Zimin | The MaSuRCA genome assembler[END_REF]. In this work we will focus on three recent stand-alone assemblers, chosen because of their widespread usage (Canu), automated graph analysis algorithms (HINGE), and speed/modularity (Miniasm). However the techniques are likely to be applicable to a broader set of assemblers.

Description of Canu, Miniasm, and HINGE

The Canu [START_REF] Koren | Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[END_REF] assembler consists of three major steps: correction, trimming and contig creation.

The first two steps should not be regarded as innocuous pre-processing steps, as they significantly impact the rest of the assembly process. The correction step uses MHAP to perform all-against-all

GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME ASSEMBLIES 61

Assembly A string graph of raw reads is constructed, in which paths are searched between extremities of contigs, then are converted into links between contigs in an augmented assembly graph. When such a graph is connected, putative contig orderings are reported. Dotted nodes represent elements that are automatically visualized in the HTML report.

A stand-alone script was created to convert overlaps from the PAF format (defined in [START_REF] Li | Minimap2 and Miniasm: Fast mapping and de novo assembly for noisy long sequences[END_REF]) to a graph in the GFA format 5 . Transitive reduction over the edges of this SG is performed using Myers' algorithm [START_REF] Myers | The fragment assembly string graph[END_REF].

Contigs classification

In order to simplify analyses and focus on chromosomal contigs, we filter out contigs of plasmid origin and contigs of unknown taxonomic status (see Supplemental Methods A.1). Contigs that were not marked as chromosomal are discarded. Note however that this contig classification step can be skipped in order to perform analysis of complete, unfiltered sets of contigs.

Computation of paths between contigs

An essential algorithmic component of our framework is the search for paths in the SG that uncover new connections between contigs. First, one read per contig extremity is identified among reads included in the SG: a read is selected such that both its incoming and outgoing neighbors also map at the same contig extremity (in order to avoid selecting dead-end nodes in the SG).

Then for each pair of contigs, shortest paths between reads at both extremities of each contig are computed in the SG using Dijkstra's algorithm. The length of a path is computed in nucleotides as follows: the sum of all reads lengths involved in the path minus all the overlaps between reads, as well as minus the overlaps between reads and contig extremities. If contigs overlap, the path length is reported as zero. Since we perform path search starting from each contig extremity, we may obtain two shortest paths for each pair of contigs, and only the shortest of those two is kept. We transform a contig graph into a novel object, the augmented assembly graph (AAG), as follows.

Nodes of the AAG are contig extremities. An edge is inserted between two nodes if a path has been found by the procedure in Section 4.4.4.3 between the two contig extremities. Each edge is weighted by the corresponding path length. Additionally, zero-weight edges are created between both extremities of each contig.

Such a graph allows to explore adjacencies between contigs, beyond those present in the original contig graph, in order to formulate hypotheses regarding the ordering of contigs. At a certain contig extremity, and in absence of genomic repeats, low-weight edges likely reflect adjacent contigs, while high-weight edges likely correspond to SG paths that pass through other contig(s) (i.e. transitively redundant edges in the AAG). In the presence of repeats, low-weight edges do not necessarily show true adjacencies between contigs, as the true path may be longer. Yet one can observe that a path longer than the longest repeat in the genome necessarily reveals a distant link between two contigs (i.e. necessarily contigs which are truly non-adjacent on the genome), and also such path may go through another contig.

According to [START_REF] Treangen | Genesis, effects and fates of repeats in prokaryotic genomes[END_REF] most repetitions in bacteria are shorter than 10kbp. We thus categorize edges of the AAG into 3 groups according to their weight. Consider the path in the SG that led to the creation of the edge e in the AAG between extremities of two different contigs a and b. If the path is longer than 10kbp, and/or it contains at least one read that was involved in the construction of another contig c, the edge e is named distant. Otherwise the edge e is considered to reflect an adjacency between a and b. If there is more than one edge outgoing from the extremity of a or of b, the edge e is named a multiple adjacency (likely revealing a putative repeat). Otherwise it is named a single adjacency.

Searching for parsimonious assembly scenarios

We sought to determine whether contigs could possibly be ordered directly using the AAG. In principle, we anticipate to recover a large number of distant edges in the AAG, therefore it would be non-trivial to determine a contig order by direct inspection of the graph layout (e.g. see Fig 4.16). Given a connected AAG, our working hypothesis is that a minimum-weight Hamiltonian cycle may correspond to the correct contig order (note that having a connected AAG is a necessary condition for such a cycle to exist, but not a sufficient one). This is guided by the intuition that edges in the AAG with high weight are more likely to correspond to false connections due to repetitions or true paths between distant contigs. For simplicity, we search for Hamiltonian cycles and not paths, under the assumption that the genome is circular. We further require that any Hamiltonian cycle traverses all zero-weight edges corresponding to both extremities of each contig. Moreover, contigs mapping inside another one are not considered.

We designed an automated procedure to test this hypothesis, based on computing and sorting

Hamiltonian cycles according to their total edge weights. In practice some of the AAGs that we obtain are too complex, due to the presence of short contigs (see the Discussion section for more details). Our pipeline excluded contigs shorter than 100kbp from the AAG before listing all Hamiltonian cycles.

For validation purposes, when a reference genome is available, we mapped all chromosomal contigs

GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME ASSEMBLIES 63

against this reference to determine the true contig order. We then recovered the position of the true contig order within the list of orders given by Hamiltonian cycles.

Assembly report generation

We implemented a Snakemake [START_REF] Koster | Snakemake-a scalable bioinformatics workflow engine[END_REF] pipeline that takes as input raw reads, contigs produced by an assembler, and optionally a contig graph. The pipeline follows steps described Fig. 4.14, then generates an HTML report for easy inspection. Companion tools to compute AAG edge classification and to perform Hamiltonian path search are also provided. If two contigs overlap, no length is given and instead the link is labeled 'ovl'.

Results

Datasets

In order to illustrate our methods using a simple yet non-trivial case of assembly graph analysis, we simulated long reads from a linearized reference genome of Terriglobulus roseus (NC 018014.1, 5.2

Mbp). This genome contains an unusual 460kbp repeat that is challenging for assembly tools. We used LongISLND [START_REF] Lau | LongISLND:in silicosequencing of lengthy and noisy datatypes[END_REF], with 20x sequencing coverage and 9kbp mean read length (Supplemental Table A.9).

To investigate real datasets, we mined the NCTC project which consists of 1735 bacterial strains (as of Feb 2019) sequenced using PacBio technology. For each dataset, the NCTC consortium had built an assembly using HGAP and Circlator [START_REF] Hunt | Circlator: automated circularization of genome assemblies using long sequencing reads[END_REF] We further investigated whether the assemblies could somehow be combined, e.g. by improving Canu assemblies using Miniasm contigs. We have performed a simple test to evaluate this possibility (see Supplemental section A.2) and could not straightforwardly improve assemblies this way.

Assembly graph analysis of a synthetic low-coverage dataset

This section gives an introductory overview of the analyses that our method performs on the T.roseus simple synthetic dataset described above. Canu produced 3 contigs of total length 4.7 Mbp. A ≈500kbp region is missing from the assembly. Miniasm produced 7 contigs and the HINGE assembler (commit 8613194) was not able to produce an assembly, likely because of the low coverage (20x).

Since the SG has a single connected component (Fig. 4.15b) but both the BOG and the contig graph of Canu have multiple connected components (Fig. 4.15a), assembly fragmentation can be explained by reads that have been discarded at the BOG construction stage of Canu. The coloring of the SG using the connected components of Canu BOG (Fig. 4.15b) further suggests an ordering of contigs. Note that the Canu contig graph is uninformative on this dataset, as it contains no edges between contigs.

We performed path analysis as per Section 4.4.4.3. Fig. 4.15d shows the length of paths in SG found between reads at Canu contigs extremities. Since a reference genome is available, the true order of contigs is reported on the Figure but note that path analysis does not need this information. We find that the Canu contigs named tig8 and tig4 overlap in the SG. tig1 and tig8 are linked by a long path involving 491922bp. This long path can be explained by looking at how tig1 has been built by Canu: the path goes through a large 'loop' (see Supplemental Fig. A.2) which corresponds to a repeat in the reference (Fig. 4.15c). The repeat (of length 460kbp) was not resolved by Canu, leading to a region of about 440kbp missing from the assembly between tig1 and tig8, which explains why the shortest path between both contigs contains as many as 491922bp. We further checked that the path of length 755235bp between tig1 and tig4 indeed contains reads from tig8, and is therefore redundant.

By aligning raw reads and Canu corrected reads to the reference genome, we observe a drop of raw reads coverage (around 8x) in the region between tig8 and tig4. This likely explains why Canu failed to connect both contigs.

As a side note, a Canu assembly of the same dataset with twice higher read coverage (40x)

GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME ASSEMBLIES 65

yielded a two-contig assembly, also with same pattern as in between tig8 and tig4. An older version of Canu (1.6) fully resolved the 40x dataset into a single contig, likely due to changes in how reads are corrected and trimmed between version 1.6 and 1.7.

Investigation of 45 unresolved NCTC assemblies

We performed the same type of analysis on the [START_REF] Koster | Snakemake-a scalable bioinformatics workflow engine[END_REF] Tables A.2, A.6 and A.7. There we observe that the number of contigs in Canu and Miniasm assemblies is generally higher than in the assemblies made by NCTC. Nevertheless the sum of lengths of chromosomal contigs is about the same in all assemblies (Supplemental Table A .8).

Case study of two NCTC datasets We closely examine two NCTC datasets that contain interesting patterns, through the lens of a ground truth obtained by remapping Canu contigs against respective NCTC assemblies using BWA-mem [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF].

NCTC12123 This dataset was assembled into 5 chromosomal contigs by Canu, including 2 contigs that are contained in others and are automatically discarded by our pipeline (see Fig. right) extremities of a contig x. We found single (i.e. non-repeat) adjacencies between tig1 s /tig23 s , tig1 e /tig10 s , tig10 e /tig23 s that were confirmed by mapping to the longest contig from the NCTC assembly. Together, these single adjacencies suggest a putative scaffolding scenario: tig1 -tig10 -tig23(reversed). This scenario is also the top-ranked one proposed by our Hamiltonian path search procedure (see below).

We also mapped corrected and raw reads to the junction for validation (see Supplemental that is likely the cause of assembly fragmentation. Therefore, again in this dataset the path search operation enabled to recover a link between contigs that was discarded by the assembler due to a drop in sequencing coverage. parameter), which in turn causes assembly fragmentation. Our method therefore enables to recover single adjacency edges between contigs that were fragmented due to this effect.

Path search enables to recover adjacency between contigs

To measure whether the Canu contig graphs could be used as-is to recover contig order, we counted the number of contig extremities that are not linked to any other extremity (i.e. dead-ends).

Those are contigs for which no chromosomal order can be reliably inferred. In 35 out of the 45 datasets (7 out of 9 in Table 4.2), the Canu contig graph has some dead-end extremities (between 1 and 23).

In principle dead-ends extremities should not exist in circular bacterial assembly graphs, except for linear chromosomes. Assemblers, here Miniasm and Canu, do not report all true contig adjacencies. In contrast, our method enables to recover some of these adjacencies and lower the number of dead-ends in 23 out the 37 datasets (and all but one dataset in Table 4.2). in the AAG per dataset on average. The reduction is also significant for Miniasm contigs but not as high (31%, Supp. Table A .4). Note that these adjacencies are 'real' in the sense that they are all supported by paths of overlapping reads of total nucleotide length less than 10kbp, yet a number of them may be caused by repetitions. An upper bound on the ability to mine paths in the SG is given by the theoretical maximal number of edges in the AAG (41.83 edges). Our method is on average 78% close to this bound for Canu contigs (resp. 90.1% for Miniasm) as it discovered 32.67 edges per dataset (resp. 85.1). We note that large fraction (87%) of discovered edges were classified as distant edges, yet the remaining adjacency edges are informative as they significantly contribute to removing dead-ends in the contig graph.

Contig order search retrieves parsimonious assembly scenarios While the work done in the previous section helps to recover contig adjacencies, the presence of multiple adjacency edges due to repetitions often prevents us from unambiguously inferring a contig order. We applied the Hamiltonian A ground truth is known in only 8 of those datasets. Among them, the lowest-weight scenario is ranked first in 3 datasets, 2nd in 2 datasets, 3rd in 1, 4th in 1 and 38th in the last one.

These results suggest that the correct assembly scenario is likely to be one of the top predictions made by our parsimonious Hamiltonian cycle procedure. However finding many fragmented datasets that also have a ground truth is inherently difficult, thus further work is needed to confirm this hypothesis. Also, datasets where several scenarios have similar weights (i.e. curves that 'plateau' in Fig 4.17) will possibly be more challenging to resolve using this method. Yet for many samples with fragmented assemblies, parsimonious assembly scenarios are a promising approach to explore a limited number of hypotheses that could further be validated using long-range PCR to finish the genome.

Discussion

We presented a set of concepts to provide novel insights on fragmented long-read bacterial genome assemblies.

By searching for paths of overlapping raw reads between extremities of contigs, we construct an augmented assembly graph that recovers unreported adjacencies between contigs. We demonstrate several usages of this graph: to provide a more informative representation of fragmented assemblies, to examine repeat structures, and to propose likely contig orderings. In our tests, the AAGs of NCTC datasets recover edges for nearly half (45%) of the dead-end nodes in Canu contig graphs, on average.

We further show a link between the lowest-weight Hamiltonian cycles in the AAG and the true contig order. We highlight that our method solely relies on the raw data and information produced by assemblers at various stages of their pipelines and, when our contig classification step is skipped, no reference genome nor external information (e.g. genome map, BLAST database) are used.

CONCLUSION 69

Our method hinges on directly constructing a string graph on the raw reads, after a relatively conservative chimera removal step. Doing so avoid biases that may be introduced in the read trimming and error-correction steps of an assembler. Indeed, overlaps between reads may become shorter or even absent after error-correction. For instance on the 45 NCTC datasets that we analyzed, the number of edges in SGs built from Canu error-corrected reads is reduced by 41.4% compared to the SGs of raw reads. We have classified edges in the AAG, by considering their underlying nucleotide lengths and whether they contain reads that belong to other contigs. To go further, one could define confidence metrics, e.g. based on local graph structures.

Due to a combination of engineering choices and the inherent difficulty of visualizing large assembly graphs, our software has only been tested on bacterial genomes and is unlikely to readily run on larger genomes. However, the techniques presented here (AAG, path search between contig extremities, weighted Hamiltonian cycles) are not specific to bacterial assembly, and should in principle be applicable to small and large eukaryotes. However more work would be needed e.g. to scale path search to thousands of contigs, refine thresholds (contig filter, adjacency edges), handle interchromosomal repeats, and an evaluation of the relevance of Hamiltonian cycles for larger genomes.

We stress that our techniques currently do not aim at detecting misassemblies within contigs.

We also did not focus on the difficulty of running multiple assembly programs, but we note that the process has previously been reported to be challenging [START_REF] Lariviere | Understanding trivial challenges of microbial genomics: An assembly example[END_REF]. Our work is also orthogonal to assembly reconciliation [START_REF] Alhakami | A comparative evaluation of genome assembly reconciliation tools[END_REF], which consists of constructing a higher-contiguity assembly by merging the results of multiple assemblers.

No attempt was made to optimize the detection of overlaps between reads though this could be a direction for improvement. Finally, automatic post-assembly improvements based on the AAG would be a natural extension of this work. One could use the AAG to design an oracle that suggests a limited number of (long-range) PCR experiments for resolving individual repeats.

Hill and Christopher W. Wheat for discussions that led to this project, Gautam Kamath for guidance on reproducing NCTC analyses with HINGE, Antoine Limasset and anonymous reviewers for helpful comments on the manuscript.

Conclusion

In this section we studied how we can evaluate an assembly, and detailed some issues when we use a reference genome to evaluate a de novo long-read assemblies.

With KNOT we present the interest to go back to raw read information, and how it can solve bacterial assembly issues. To use KNOT on more complex datasets needs to improve some parts of KNOT, especially the graph construction, its representation in memory and the search of paths between contigs extremities. These improvements required some development, but the original idea of going CHAPTER 4: POST ASSEMBLY back to raw reads information can be used for more genome assembly improvements.

Chapter 5

Other contribution

This chapter have not any link to other ones they presents about my contribution on some projects where I spent some time during my PhD without sufficiently large contribution to have a specific chapter.

Labsquare

Labsquare is a community for genomics software, this community was create by me and some other bioinformaticien's friend I participate in developpement of two tools.

FastQt is a rewrite of FastQC in C++ with the framework Qt. FastQt is a tool to check the quality of sequencing data by providing some statistics, GC% distribution, read length distribution, error rate repartition along the length of reads. At the moment FastQt development was stopped.

CuteVariant is a tool to visualize and analyze VCF (for Variant Call Format) files, these file store variants found between an individual or a dataset of reads against a reference genome. CuteVariant allows selecting annotation, genotype, filter variant, sort and group variants, set operation between VCF file. To perform all this operation a query language was create the VQL (for Variant Query Language), CuteVariant is still in development and it was the subject of a poster during the conference Jobim 2019.

CAMI challenge 2

CAMI challenge is a metagenomics assembly challenge, I participate in the second edition of CAMI challenge with Camille Marchet, Antoine Limaset, Pierre Peterlongo, Claire Lemaitre and Rayan Chikhi. We tried different strategies to perform an assembly of metagenomics datasets.

• variant phasing; all reads coming from same molecule necessarily come from the same haplotype.

If we have access to a good genome reference, deconvolution is easy: by mapping reads against the reference, we can look for reads of same barcode that map within approximately a 100 kb range on the reference genome. Those reads then likely come from same molecule. This general idea used by ema [START_REF] Shajii | Latent Variable Model for Aligning Barcoded Short-Reads Improves Downstream Analyses[END_REF] and Lariat [START_REF] Bishara | Read clouds uncover variation in complex regions of the human genome[END_REF] to assign a read to a molecule.

But when we don't have a good reference genome we cannot use this method. I proposed a method to perform deconvolution based on assembly graph analysis. After a classic DBG assembly (using bcalm), we remap reads against contigs with the ema software. Reads with same barcode and map on same contig are assigned an identical premolecule identifier by ema. We attempted to glue clusters of reads by analyzing the contigs graph. For all clusters of premolecules with the same barcode, we searched for the shortest path in the contigs graph between clusters. If the length (in number of bases) of a path is shorter than a threshold, we merge both premolecule clusters.

At this stage, we did not perform a complete evaluation of the method, thus this is still work in progress.

Chapter 6 Conclusion

In this work, we aimed to improve the process of long-read genome assembly, without creating a new assembly tool. We have designed tools that work before and after assembly. These tools can be easily integrated into a workflow. The underlying idea is to improve assembly pipelines one tool at a time.

Building pipelines with a collection of tools that perform simple tasks, makes it easier to provide independent improvements to each task separately. It enhances the re-usability of each component, and the flexibility of the pipeline usage. Many assembly pipelines are a set of difficultly configurable black boxes, which does not help the user to adapt assembly tools to their own problem. Applying UNIX philosophy "Doing only one thing, and doing it well" on genome assembly could save the time of the community and improve results, as shown in the Hackseq 2018 Genome Assembler Components project 1 . Modular assembly should be the route to design versatile tools, able to be easily tuned to specific tasks, while understanding and keeping under control each step.

fpa was created after a reflection on information generated by overlapping tools and its impact on disk space. Many overlaps are not useful for all analysis, for example Miniasm keeps only end-toend overlaps, thus storing all overlaps found by Minimap2 on disk is a waste of disk space. Moreover, writing and reading these overlaps takes times. fpa not only filters overlaps, but also can rename reads in overlap (to reduce disk memory impact of overlaps), generates a GFA1 overlap graph, -or index the position of overlap in output file. This functionality was used by CONSENT [START_REF] Morisse | CONSENT: Scalable self-correction of long reads with multiple sequence alignment[END_REF]. fpa was used to avoid the necessity of writing one's own filters, Erik Garrison uses it to simplify his work on seqwish2 , a tools to create pangenome graph. yacrd uses coverage information as a proxy of reads region quality, it's a simple idea already present in correction tools. However, yacrd extracts this functionally out of correction tools, increasing the modularity of pipelines. This helps to improve each step of the pipeline separately, to choose the relevant tools for specific data and analysis. A pre-publication version of yacrd, with chimeric detection only, was used in a long read microbiota profiling pipeline to clean chimeric reads [START_REF] Cuscó | Microbiota profiling with long amplicons using nanopore sequencing: full-length 16s rRNA gene and whole rrn operon[END_REF] and to improve some Flye assemblies. Some improvements can be made on yacrd pipeline. To detect bad quality regions, yacrd uses Minimap2 with a specific parameter, to avoid the creation of a bridge between two good quality regions over the bad quality regions. A solution like miniscrub was to use the seed position as a proxy of a quality region instead of the overlap, to directly avoid this trouble. Another solution was to replace minimizers by seed with error to find a similar region between reads over sequencing errors.

Replacing Minimap2 by tools using seeds with error to estimate the coverage of reads regions, was probably improved by these tools. Some overlapping tools use this idea, like GroupK [START_REF] Du | Improving the sensitivity of long read overlap detection using grouped short k-mer matches[END_REF].

yacrd takes a very global point of view on the composition in bases and the quality of the reads, avoiding the problems of masking heterozygosity that can still be observed today in correctors. But the problem of the accentuation of coverage gaps by which we have been able to observe and solve with to KNOT is potentially always present in yacrd. Indeed, if we follow the recommended parameters and a region of the genome is sequenced at a depth of less than 3 yacrd will create a coverage hole.

If we want to avoid this problem we would need to have a broader analysis of the problem, not this focus on a single read at a time, potentially through the construction of local overlap graphs around the reads. This work can be apply to scrubbing and correction tools, but this change in perspective will probably take time and some many development to have equivalent performance of actual tools.

KNOT is a tool to retrieve missing connections between contigs. KNOT uses Minimap2 to find overlap between reads and between contigs, yacrd to remove low quality reads from raw reads dataset and fpa to filter overlaps and generate overlaps graph; then a script in KNOT performs path search within this graph. The main idea behind KNOT is that sometimes we have to consider all the available data to solve a problem. At the moment, assembly pipelines try to keep only the minimum amount of information to solve the assembly problem (cf Chapter 3) and this is a very good approach that allows to accelerate the assembly in a very important way. But sometimes, this reduction of information goes too far and important information is lost. KNOT, by going back to the original information and focusing only on unresolved points, tries to correct these errors. This idea to go back to the total information can however become a trouble for KNOT. The size of KNOT overlap graph is very important for example in Table 6.1. We can see two Nanopore datasets, one from E. coli and one from D. melanogaster. D. melanogaster dataset is larger than E. coli dataset, less than 10 times. But the computation time to build KNOT overlap graph from the overlaps found by Minimap2 was increased by 30 times.

To use KNOT on a large datasets, we need to change how we use this graph. Currently KNOT loads all graphs in memory, however we don't need all this information to be permanently loaded into memory. We could load only one part of the graph at a time. Another trouble with larger datasets concerns genome with more than one chromosomes. At this time we did not try to prevent the creation of false links between contigs for different chromosomes. To adapt KNOT to larger genomes, we have to solve a technical problem on how to represent these very large graphs in memory. We must also tackle a more theoretical problem of how to ensure that we do not create links between contigs of different chromosomes.

If KNOT needs to be updated to be run easily on larger datasets, ideas behindKNOT can also lead to more features. We use KNOT overlap graph to refund the lost link between contigs, we focus our analysis of graph on contigs extremities. But by performing some graph analysis along of the contigs, we can maybe detect misassemblies. To do this, we can draw inspiration from Canu repetition detection module (see 3.7) or something not to far to tigmint [START_REF] Shaun D Jackman | Tigmint: Correcting assembly errors using linked reads from large molecules[END_REF].

The current version of KNOT has total confidence in the contigs given as input, while the future evolution could may be mark some spurious region or break contigs. Analysis of all reads information can lead to another extension. I think we can convert contigs and KNOT overlap graph information to a genome graph. A genome graph is a new type of genome representation, which replaces a linear representation of genome by a graph where each nucleotide is a node, and an edge is created if nodes follow in the genome. This type of structure could be useful to solve the limitations of reference genome approaches. For example WhatsHap [START_REF] Martin | WhatsHap: fast and accurate read-based phasing[END_REF], a tool to phase variant, perform a mapping of read against the reference. When WhatsHap found a mismatch in mapping, he need to build a small new version of genome according variant database. WhatsHap perform remapping of read against this new reference to confirm the read dataset contains effectively a known variation of this genome. A similar structure was used to perform genome comparison Cactus [START_REF] Paten | Cactus graphs for genome comparisons[END_REF]. This type of structure seems promising for future bioinformatics analysis, variant detection and phasing, genome comparison, genomics evolution, and variation analysis [START_REF] Ameur | Goodbye reference, hello genome graphs[END_REF]. But some trouble still needs to be addressed: how to build this type of graph, and how to map reads against them to construct an efficient coordinate system. Here are some blog post was you can read some blog post about part of this trouble 3 4 5 . Another challenge that interests me a lot would be to be able to build a graph genome during assembly.

By using the contigs generated by assembly tools as scaffolds of a genome graph and KNOT overlap graph information, I think we can generate directly the genome graph from the reads. If reads come from a single homozygous individual, this genome graph does not contain variant information, in theory. But for a heterozygous individual or a set of divergent cells like cancer cell or a bacterial population, this genome graph representation can help to have a better understanding of the sequenced genome.

Summary of perspectives

In the previous section we have summarized a number of elements of the thesis and detailed several improvements of our work. Here we would like to provide a more synthetic summary of the research perspectives opened by this work.

CHAPTER 6: CONCLUSION

Overlaping consensus: Overlapping search was a hard task, and perform it in reasonable time and memory usage was harder while many overlaps were missed. Combining information of different overlapping tools could be use full to improve downstream analysis.

To create this overlapping consensus tool we need to solve a technical problem: what is the best method to store and request this information. And even more theoretically, first, how to determine if we can merge these overlaps, and second how to assess the confidence we can have in resulting overlaps.

Scrub and correct reads without creating coverage gap: Our work on KNOT shows that sometimes the cleaning of reads create coverage gaps in reads. These gaps reduce the contiguity of assembly and reduce our confidence in contigs generated by assembly. At this moment, all trimming, scrubbing and correction tools work like a greedy algorithm, they focus on one read at time.

A read with high error rate and without support from other reads is probably not useful, but sometimes it can solve an assembly trouble. Spending time to find how to change the paradigm of these reads cleaning tools seems useful to me to maximize the usage of the data provided by the sequencing technology.

Find variant at assembly time:

We have indicated that the only long read corrector that tried to keep the heterozygosity of the reads during correction was falcon sense. For a de novo assembly, we generally sequence individuals with as smallest heterozygosity as possible or a colony of the same cell, to facilitate our work during assembly.

Consequently, we build assembly tools that do not manage high heterozygosity or sets of cells with variants, like cancer cells and metagenomics datasets. Rewriting a complete assembly tools to manage data with variants seems very hard. The KNOT strategy uses classic assembly tools to assemble simple parts of the genome, but going back to original information to find variants and heterozygosity seems a good way to find variant at assembly time. Table A.2: Datasets from the NCTC project chosen for analysis (the last row corresponds to our simulated dataset). For each sample, the coverage (cov) is given as well as the number of contigs and their assignment; chr: number of chromosomal contigs, pld: number of plasmid contigs, und: number of other contigs. For two datasets (NCTC12841 and NCTC9646) the NCTC project does not yet provide an assembly ("Pending"). For Canu and Miniasm, a classification similar to the one of NCTC is given (see text). We reported HINGE classification; FALC: Finished assembly (lacking circularization), FA: Finished assembly, MA: Mis-assembly, MA * : labeled as misassembled but actually correctly solved as 2 chromosomes, FCA: Finished circular assembly, MAF: Mis-assembly/Fragmented, FAMT: Finished assembly with multiple traversals.

A.6 Assembly length

In Table A.8 we report the sum of lengths of all contigs in assemblies computed by Miniasm, Canu, and the assemblies produced by NCTC. Above each this track we can observe the coverage curve and drop of this curve between the tig10 and tig23, for corrected read is around 50x coverage before junction, equal to 15x at minimal, and less than 40x after junction, this value are 90x, 25x and 40x for raw read. In addition we can observe more error in corrected read on this drop of coverage.

B.6 fpa

To evaluate fpa, we ran two different pipelines. The first one uses directly Miniasm without fpa and with recommended parameters. The second one runs fpa to filter out reads (Minimap2 output is piped to fpa directly) before running Miniasm on filtered reads with recommended parameters. Using fpa we removed internal match and overlap shorter than 2000 (options drop -i -l 2000). This sort of overlap is ignored by Miniasm during the assembly step but is used during the read filtering step.

Figure 1 . 2 ScaffoldFigure 1 . 2 :

 1212 Figure 1.2 gives a summary of how reads are processed to obtain an assembly.

(R 1

 1) ACTGAGATGGACTTAGA (R 2) ACTTAGAGAGGATAGGATA (a) R 1 shares 7 bases at its end with the beginning of R 2 , without any error (R 1) ACTGAGATGGACTTAGA (R 3) ACT-ACACATGGTAGTAGAA (b) R 1 shares 5 bases at its end with R 3 , with one substitution and one deletion

Figure 2 . 1 :

 21 Figure 2.1: When reads don't contain error, overlaps look like (a), but sequencing technologies make errors and the overlap present in (b) can be a true overlap.

2. 2 Figure 2 . 3 :

 223 Figure 2.3: Algorithm 5 in minimap and miniasm article by Heng Li

Figure 2 . 4 :

 24 Figure 2.4: Venn diagram for nanopore real dataset

Figure 2 . 5 :

 25 Figure 2.5: Venn diagram for pacbio real dataset

2. 2 . 3 . 3

 233 Comparison across versions At first we used mhap 2.1, using the same parameters as in Chu et al. But actually, Chu et al. used mhap 1.6. This version change yielded surprising results: many more overlaps were found only by mhap 2.1. Here is a comparison between the two executions of mhap 1.6 and 2.1 using the same command-line parameters, in terms of shared and exclusive overlaps.

Figure 2 . 6 :

 26 Figure 2.6: Jaccard similarity 0.72, 0.26

Figure 2 . 7 :

 27 Figure 2.7: Jaccard similarity 0.84, 0.96

Figure 2 . 8 :

 28 Figure 2.8: Jaccard similarity 0.71, 0.98

Figure 2 . 9 :

 29 Figure 2.9: Histogram of overlap lengths found by Minimap2, the black line represents the Miniasm overlap length threshold. The fasta file weight 3.1 Go, complete PAF file generate by Minimap2 weight 5.5 Go, without overlap lower than 2000 bases the weight is reduced to 3.7 Go.

Figure 2 .

 2 Figure 2.9 shows a histogram of overlap lengths found by Minimap2 on E. coli Nanopore dataset (acession number SRR8494940): 33 % of overlaps are shorter than 2000 bases. By default Miniasm ignores overlaps shorter than 2000 bases that is if we run a basic Miniasm pipeline, 33% of the overlap

Figure 3 . 3 A

 33 Figure 3.3

Figure 3 .

 3 Figure 3.6. For each read we will analyze its coverage curve and remove the parts of the read that are

Figure 3 . 5 :

 35 Figure 3.5: A sequence that needed to be corrected was represented by a graph, each base was a node and if a base was followed by another one a directed edge was built. (b) was the representation of sequence ATATTAGGC (called backbone in this figure), (b) We add the result of the alignment of one read in the graph. The number above the edge is its weight.If an edge exists in 3 alignments, its weight is equal to 3, (c) We add all other alignments in the graph, (d) the bold path was chosen as the correct path because it was supported by more alignments. This figure was originally present in Supplementary material of HGAP[START_REF] Chin | Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data[END_REF]

Figure 3 . 7) 0 Figure 3 . 6 :

 37036 Figure 3.7). Afterwards, this mapping is used to build the consensus sequence of contigs. Each simple path in BOG was used to build a contig.

Figure 3 . 8 :

 38 Figure 3.8: The red kmer has the lowest hash of the red window, so it is the minimizer of this window.But when the window slice arrives on the blue kmer, this one has a lower hash, the blue kmer become the minimizer of this window.

Figure 3 . 9 :

 39 Figure 3.9: Read A and Read B are represented by black arrows. The common minimizers of Read A and Read B are represented by blue and red arrows respectively. The green arrows are a co-linear chain, the purple arrows another co-linear chain, the black arrows do not participate in a co-linear chain. The longest colinear chain is the green one. The end of Read A probably overlaps with the beginning of Read B .

Figure 3 .

 3 Figure 3.10 shows examples of these overlaps. Containment read was removed, only dovetail overlap was used to build the overlap graph. Tips, small bubbles and transitive edges were removed after this step. Miniasm takes each simple path and concatenates substring of read between the beginning and the first position of overlap.

Figure 3 . 10 :

 310 Figure 3.10: Miniasm classifies overlaps in three types of dovetail, internal match and containment overlap. The dark grey region corresponds to the part of the read between the first and last minimizer. The light grey region is called the overhang region, it is out of minimizer range. If overhang is large compared to the overlap region, we can suspect the overlap is not a true overlap.

CHAPTER 4 :

 4 POST ASSEMBLY last added contig is the N50 value. For example, L is the sorted list of contigs length: L = {20, 30, 40, 50, 70, 80} L sum =

Figure 4 . 1 :

 41 Figure 4.1: A schematic representation of a relocation

Figure 4 . 2 :

 42 Figure 4.2: Thrid relocation observe in dotplot a long reads assembly against reference of C. elegans

Figure 4 . 3 :

 43 Figure 4.3: A schematic representation of a translocation

Figure 4 . 4 :

 44 Figure 4.4: A translocation in a dotplot.

Figure 4 . 5 :

 45 Figure 4.5: A schematic representation of a inversion

Figure 4 .

 4 Figure 4.6: The contig utg0000021L maps on chromosome I, but it contains a small inversion at its end.

4. 2 . 4

 24 Effect of min-identity4.2.4.1 Low min-identity is required for uncorrected assemblyQuast only uses mappings with alignment identity higher than min-identity. So, what could be a good value for this parameter for long-read uncorrected assembly?The file contigs reports/minimap output/{output-name}.coords, generated by quast, in the fourth column contains the alignment identity %. For each dataset, we extracted this value and plot it in an histogram (cf 4.7).

Figure 4 . 7 :

 47 Figure 4.7: Horizontal axis: identity percentage bins, vertical axis: number of mappings in each bin.

Figure 4 . 8 :

 48 Figure 4.8: Horizontal axis: identity percentage bins, vertical axis: number of mappings in each bin.

4. 2 . 5 . 1 Figure 4 .

 2514 Figure 4.10).The H. sapiens dataset doesn't have any translocation because the reference is composed of only one chromosome. The majority of misassemblies are relocations, but when we increase the parameter extensive-mis-size the number of inversions also increases. D. melanogaster reference contains many small contigs. This can explain the high number of translocations. Relocations and translocations drop at the same time.

Figure 4 . 10 :

 410 Figure 4.10: In the horizontal axis, we have the extensive-mis-size value. In the vertical axis, we have the number of misassemblies.

Figure 4 .

 4 [START_REF] Bosi | MeDuSa: a multi-draft based scaffolder[END_REF] shows a swarm plot of log of length associated to recombination. It's the size of the gap between mappings flankings a misassembly. If the length is positive, the assembly misses part of the reference (green point). If the length is negative, the assembly duplicates a part of the

Figure 4 . 11 :

 411 Figure 4.11: In the vertial axis, we have the log length of each relocation. Each raw is a species. Green points are for negative (<0 bp) relocations, orange points for positive relocations.

4. 3 TROUBLE WITH HEURISTIC ALGORITHM 55 Figure 4 . 12 :

 355412 Figure 4.12: Effect of different reads property on assembly contiguity (number of contigs expect and map correctly on reference genome), of five assembly tools. Unicycler is an hybrid assembler (use second and thrid generation read). Canu is a long-read assembly pipeline they perform a self correction before construct assembly with a special OLC graph (more detail in Section 3.5). Ra perform a basic string graph assembly on raw reads with a correction of contigs after assembly (more detail in Section 3.6). wtdbg2 and Flye use a DBG like approach to perform assembly on raw reads (more detail in Section 3.7). This figure is a reproduction of figure from [109].

Figure 4 . 14 :

 414 Figure 4.14: The proposed framework takes as input raw long-read sequencing data and the output of an assembler. The (optional) contig classification step removes non-chromosomal contigs.A string graph of raw reads is constructed, in which paths are searched between extremities of contigs, then are converted into links between contigs in an augmented assembly graph. When such a graph is connected, putative contig orderings are reported. Dotted nodes represent elements that are automatically visualized in the HTML report.

Figure 4 . 15 :

 415 Figure 4.15: Graph analysis of a synthetic dataset (T. roseus). (a) Contig graph produced by Canu (visualized using Bandage): 3 contigs, no edge. (b) SG built from Minimap2 overlaps, on which connected components of the Canu BOG are colored. (c) Dot-plot of the T. roseus genome (NC 018014.1) aligned against itself, showing a long tandem repeat. (d) The AAG with Canu contigs ordered according to their position on the T. roseus reference. If two contigs overlap, no length is given and instead the link is labeled 'ovl'.

 4.16).The assembly is made of 2 large contigs (tig1 and tig2) and a shorter one (tig9) totaling 4.78Mbp. Miniasm produces also 5 chromosomal contigs, including 3 small ones. Both Canu and Miniasm contig graphs are made of two components. HINGE produces a single-component assembly graph but does not resolve it (because it detects multiple possible traversals). Finally, the NCTC assembly consists of 2 chromosomal contigs: one being 4.69Mbp long and the other 21kbp long. Contigs tig1 and tig2 both map over the large NCTC contig, while tig9 maps to both NCTC contigs. Using the AAG on Canu contigs (see Fig.4.16), one can observe that a number of scaffolding scenarios could be made following this graph. Interestingly, based on the mapping of the 3 contigs on the larger contig of the NCTC assembly, edges of smaller weight (i.e. shortest paths) tend to be associated with true

Figure 4 . 16 :

 416 Figure 4.16: Mapping of Canu contigs (bold horizontal lines) against NCTC12123 assembly (the two thin horizontal lines). Links between contigs give the length (in bp) of the shortest path in SG between reads at extremities. If two contigs overlap, no length is given and instead the link is labeled with 'ovl'. Plain links are paths that are compatible with the sequential order of contigs given by mapping to the NCTC assembly, and dotted links are all other paths.

Fig. A. 5)

 5 Fig. A.5). We observe a drop of coverage at this location (see reads mapping in Supplemental Fig. A.5) that is likely the cause of assembly fragmentation. Therefore, again in this dataset the path search

Figure 4 . 17 :

 417 Figure 4.17: Weights of scenarios in AAGs. Each curve correspond to the sorted list of Hamiltonian cycles, sorted by weight. If a ground truth is known, a diamond symbol marks the correct assembly scenario. Extended Figure available in Supplementary material A.1

Figure A. 5 :

 5 Figure A.5: IGV view of NCTC5050 mapping of Canu contig against NCTC contig, in junction between tig10 (first track at left) and tig23 (first track at right), tig41 are mapped on begin of tig23 in forward and reverse. The second track represent the mapping of Canu corrected read, the third track represent the raw reads.Above each this track we can observe the coverage curve and drop of this curve between the tig10 and tig23, for corrected read is around 50x coverage before junction, equal to 15x at minimal, and less than 40x after junction, this value are 90x, 25x and 40x for raw read. In addition we can observe more error in corrected read on this drop of coverage.

Table 1 .

 1 1: This table presents length of reads and error rate of main sequencing technology. Pacific Biosciences and Oxford Nanopore evolve quickly and different papers may report diverse figures. . back to the early 2010s. It has greatly increased the size of the reads but also the error rate while maintaining a good throughput. Errors in third generation are mostly insertion or deletion, sequencer didn't read a part of sequence or introduce random base not present in original sequence. Table 1.1

	length (bd)	Error rate Source

Sanger technique produces long reads with very small error rate, but with a very low throughput and a very expensive cost per base. Second generation appeared in the mid-2000s. It increased the throughput and reduced the cost per base, but reduced dramatically the length of the reads and increases the probability of error (≈ 1%). The most frequent error type for this technology is a substitution between two nucleotides, (i.e. sequencer reads A in place of a T). Third generation dates 1.2 THE GENOME ASSEMBLY TASK 3

Table 2 .

 2 -92.4 d 59.6 m -83.8 d 90.4 g -95.2 b 88.9 b -92.9 d 1: m Minimap, d Daligner, g GraphMap, b BLASR, h MHAP

	Pacbio	Nanopore
	Simulated	Real	Simulated	Real
	Sensibility 88.9 m Precision 81.9 b -96.5 g	79.8 h -96.5 b	75.1 b -99 m	73 b -95.4 m

, Chu et al. compare the state of the art third generation sequencing read overlappers on simulated datasets and on real datasets. A drop in the accuracy and recall of these algorithms can be observed between real and simulated data 2.1.

Table 2

 2

from this paper presents sensitivity and precision: Figure 2.2: Table

2

of

[START_REF] Chu | Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art[END_REF]

 3.4: We have a part of assembly graph node R represent a repetition node A, B, C, D represent basic sequence. Red, purple, green and blue line represent reads. Red read was larger than repetition and span over it and indicate A 1 → A 2 → R → C 1 → C 2 was a good path, with out this read we can solve this repetition.

 A) is a k-mers set composed by s a subset k-mers of set A. Ondov et al. evaluate the error between mash distance and Jaccard distance is in O(1

	√	s), by default in MHAP s = 512 so the error is
	smaller than 0.05.	

Table 4 .

 4 1: This table shows the number of different types of misassemblies, whether we run racon on the assembly or not and according to the value of the threshold min-identity

 POST ASSEMBLYgraphs are missing contig adjacency information in 69% of the fragmented assemblies of HINGE and Miniasm, i.e. around 13% of all NCTC datasets (including those that assemble perfectly). Among datasets for which both Canu and HINGE failed to produce a single contig per chromosome, we selected 19 datasets where the assembly made by NCTC contains as many chromosomal contigs as the number of expected chromosomes (i.e. is resolved), 24 datasets where the NCTC assembly is unresolved, and finally 2 datasets that were not yet assembled by NCTC. See Supplemental Table A.2 for a complete list of the 45 datasets. All datasets were assembled with Canu version 1.7 and Miniasm version 0.2. Canu contigs were classified according to Section 4.4.4.2. On average for each dataset, 10.2% (resp. 6.4%) of the Canu (resp. Miniasm) contigs are marked as plasmid, 13.7% (resp. 12.2%) do not match any bacteria in the Blast database and are therefore marked as of undefined origin, and the remaining 76.0% (resp. 81.3%) of contigs are classified as chromosomal and are further considered for analysis. Full classification results are presented in Supplemental Table A.6 and A.7.

followed by a manual correction step. We estimate, based on visual inspection of 159 NCTC fragmented HINGE assemblies 6 out of 997, that assembly 64 CHAPTER 4:

Table 4 .

 4 NCTC samples. A Minimap2 AAG was constructed for each dataset using SG and Canu contig extremities. Assembly and AAG statistics are presented in Table4.2 for an excerpt of the dataset. Full statistics and more details are given in Supplemental

		NCTC contigs	Canu contigs	# nodes	# dead-ends in		# edges in AAG
												single	multiple
	NCTC ID	chr	pls	und	chr	pls	und	in AAG	contig graph	AAG	total	adjacency	adjacency
	NCTC10006	1	0	0	3	0	0	4	2	2	4	2	0
	NCTC10332	1	0	0	12	0	0	8	8	4	24	0	3
	NCTC10444	1	0	0	7	0	0	8	3	0	24	0	6
	NCTC10702	1	1	1	3	3	0	4	4	4	4	0	0
	NCTC12123	2	3	0	5	4	1	6	4	1	12	1	2
	NCTC12132	1	0	0	2	0	2	4	4	2	4	1	0
	NCTC13125	1	2	4	6	3	1	6	0	0	12	0	4
	NCTC13463	1	1	4	5	2	2	4	0	0	3	2	0
	NCTC5050	2	3	0	4	2	3	6	6	0	12	3	0

2: Assemblies and contig graphs statistics for an excerpt of 9 NCTC datasets (full tables in Supplemental Table A.2 and A.3), consisting of 8 datasets where Hamiltonian cycle search succeeded, and the NCTC5050 dataset discussed in the Results section. AAGs are constructed using a SG built from Minimap2 overlaps and Canu contig extremities. The 'contig graph' column corresponds to the final assembly graph produced by Canu; 'chr': number of chromosomal contigs; 'pld': number of plasmid contigs; 'und': number of other contigs. Note that some of Canu 'chr' contigs may be contained in others, therefore the '# nodes in AAG' column corresponds to twice the number of non-contained contigs.

Table 4

 4

	.2 reports statistics of

dataset of 45 samples, 60.4% of all single adjacency edges (43 in total) are found in samples that have a sequencing coverage below 38x, and only 17 single adjacency edges are found in datasets with coverage above 38x. This is likely due to the error-correction step in assemblers that is less effective in low-coverage datasets (even when the true sequencing coverage is given to the assembler as a

Table 4 .

 4 3: Average statistics of augmented assembly graphs using a SG built from Minimap2 overlaps on Canu contigs across the 38 NCTC datasets with two or more contigs, after size and classification filters. All rows are as per definitions in Section 4.4.4.4. 'Theoretical max. edges': number of possible edges in each AAG. 'Dead-ends in AAG, adjacency edges': number of dead-ends in the AAG when only adjacency edges are considered, i.e. distant edges are deleted.

Table 4 .

 4 3 summarizes average AAG statistics over all 38 datasets on Canu contigs (per-dataset results in Supplemental Table A.3). Results for Miniasm contigs are shown in Supplementary Tables A.4 and A.3. On average, Canu contig graphs contain 4.32 nodes (5.86 extremities), among which 4.94 extremities are dead-ends. The AAG enables to reduce the number of dead-end extremities to 2.7 (45% lower), through the discovery of 1.16 single adjacency edges and 2.86 multiple adjacency edges

Table 6 .

 6 1: A comparison of two Nanopore datasets. The ratio was computed by dividing D. melanogaster value by E. coli value. The size of data increases by less than an order of magnitude but the construction time increases more than 2 orders of magnitude.

	76

Table A

 A

	A.3 ASSEMBLY SUMMARY									93
	A.3 Assembly summary								
		number of genomic contig number of Miniasm number of merged contigs
	contigs that overlap Tables A.2 and A.3 report our complete results for the 45 NCTC datasets.	contigs from
	NCTC ID	Canu	Miniasm	two Canu contigs		Miniasm/Canu overlaps
	NCTC10006	3		7			0					
	NCTC10332	12		22			1					
	NCTC10444	7		5			0					
	NCTC10702	3		2			0					
	NCTC10766	13		7			1					
	NCTC10794	7		5			0					
	NCTC10988	10		9			0					
	NCTC11126	7		15			5					
	NCTC11343	12		10			2					
	NCTC11360	26		25			1					
	NCTC11435	8		6			2					
	NCTC11800	7		3			1					
	NCTC11872	7		13			3					
	NCTC12123	5		3			2					
	NCTC12126	13		15			4					
	NCTC12131	16		77			3					
	NCTC12132	2		4			1					
	NCTC12146	3		1			0					
	NCTC12694	21		123			1					
	NCTC12841	16		1			0					
	NCTC12993	5		2			0					
	NCTC12998	3		4			0					
	NCTC13095	3		2			0					
	NCTC13125	6		7			0					
	NCTC13348	25		17			3					
	NCTC13463	5		4			1					
	NCTC13543	3		3			0					
	NCTC4672 NCTC5050 NCTC5053 NCTC8179 NCTC8500	E. coli E. coli	68 4 8	36 29	16 4 11 1 1	1 1	3 MAF 0 MAF	5 0 2	15 3	4 1	4 4 1	9 15 1	2 2 1
	NCTC5055 NCTC8684	143 C. violaceum	36	20 0	0	3 MAF	0	5	0	0	2	0
	NCTC7922 NCTC9075	E. coli	13	35	9 1	0	3 MAF	4	7	0	14	3	0
	NCTC8179 NCTC9078	E. coli	15	55	15 1	2	2 MA	1	4	3	1	2	1
	NCTC8500 NCTC9098	E. coli	3	56	1 1	1	2 MAF	0	8	0	1	6	2
	NCTC8684 NCTC9111	E. coli	5	62	2 1	1	9 MAF	0	9	6	2	13	3
	NCTC9075 NCTC9112 NCTC9078 NCTC9184 NCTC9098 NCTC9645 NCTC9111 NCTC9646 NCTC9112 NCTC9695 NCTC9184	7 4 Klebsiella sp. E. coli 8 K. pneumoniae 9 K. aerogenes 7 C. violaceum 141 T. roseus	69 6 17 24 34 20	3 1 2 0 6 0 13 * 15 1 17 *	0 0 0 * 0 *	0 MAF 179 MAF 16 MAF * MAF 0 MAF 10 2 0 3 0 0 * *	7 141 31 8 2 3	0 5 10 3 9 0	5 0 1 3 3 0	15 17 76 9 1 6	0 0 4 5 0 0
	NCTC9645		31		76			9					
	NCTC9646		8		9			3					
	NCTC9695		2		1			0					

.1: The pipeline described section A.2 found more than one overlap between Canu contigs with Miniasm contig for 24 over 45 datasets. When these overlaps are re-assembled using Miniasm, one or more merged contigs are produced in only 8 out of 45 datasets.

 Table A.3: Assembly graph statistics for a selection of 45 fragmented assemblies from the NCTC project. Canu assembly graph statistics: number of contigs, number of dead-end extremities. AAG statistics: theoretical maximal number number of edges. Note that for some of the most fragmented datasets (e.g. NCTC9184), none of the contigs pass the 100 Kbp length threshold, hence the AAG is empty.

	tig00000192 tig00000151 chromosomal chromosomal 9045 tig00000084 undefined tig00012918 chromosomal 1378 tig00000220 chromosomal 3460 tig00000006 chromosomal 156816 tig00000029 chromosomal 31199 tig00003372 chromosomal 28757 utg000009l undefined 7051 utg000002l chromosomal utg000006l undefined 14352 utg000102l chromosomal utg000015l chromosomal 60948 utg000004c plasmidic utg000050l chromosomal 8353 A.5 Contigs length and clas-1514971 56975 82073 6168 87254 tig00000193 chromosomal 6302 tig00000154 chromosomal 4231 tig00000099 undefined 1213 tig00012919 chromosomal 1701 tig00000225 chromosomal 2926 tig00000012 chromosomal 932548 tig00000031 chromosomal 18451 tig00003373 chromosomal 23908 utg000011c undefined 6079 utg000003l chromosomal 411282 utg000011l undefined 40323 utg000103l chromosomal 15062 utg000016l chromosomal 13117 utg000003c none 132921 utg000053l chromosomal 61272	tig00000038 tig00002041 plasmidic chromosomal tig00006898 plasmidic tig00000048 chromosomal tig00000098 chromosomal tig00008455 chromosomal total chromosomal length tig00000158 chromosomal tig00000213 plasmidic 14986 utg000003l undefined utg000025l chromosomal utg000043l chromosomal utg000006l chromosomal utg000003l chromosomal utg000010l chromosomal total chromosomal length 4677804 tig00000057 plasmidic tig00002042 chromosomal tig00006899 plasmidic tig00000049 chromosomal tig00000100 chromosomal tig00008456 chromosomal tig00000025 plasmidic tig00000159 chromosomal tig00000214 plasmidic 32714 utg000004l undefined utg000026l chromosomal utg000044l chromosomal utg000009l chromosomal total chromosomal length utg000011l chromosomal utg000002c none 3416
	Canu contigs dead-ends 2 2 4 8 4 3 2 4 4 6 3 5 1 0 4 4 7 6 3 6 5 4 2 0 5 6 3 4 6 7 8 6 2 4 2 4 10 20 1 0 2 4 1 2 2 2 3 0 7 7 2 0 2 2 5 8 3 6 5 6 1 2 1 0 6 3 7 4 1 2 1 2 6 8 2 0 4 1 3 2 4 0 0 0 14 23 5 8 2 0 3.71 4.24 7 14 14 28 5 10 1 2 5 10 3 6 3 6 11 22 3 6 7 14 6 12 3 6 9 18 2 4 11 22 17 34 2 4 1 2 0 0 1 2 2 4 4 8 1 2 5 10 15 30 4 8 2 4 8 16 4 8 9 18 1 2 2 4 6 12 11 22 1 2 2 4 2 4 2 4 5 10 11 22 10 20 0 0 16 32 7 14 1 2 5.32 10.6 Table A.5: Assembly graph statistics for a selection of 45 fragmented assemblies from the NCTC Edges in the AAG NCTC ID dead-ends total AAG theoretical distant adjacency edges with adj. max. edges edge edges NCTC10006 2 4 4 2 2 0 NCTC10332 4 24 24 21 3 3 NCTC10444 3 24 24 18 6 6 NCTC10702 0 4 4 4 0 0 NCTC10766 2 24 24 22 2 0 NCTC10794 0 12 12 12 0 0 NCTC10988 0 0 0 0 0 0 NCTC11126 3 20 24 15 5 5 NCTC11343 3 72 84 66 6 5 NCTC11360 0 12 12 12 0 0 NCTC11435 4 40 40 35 5 3 NCTC11800 0 3 4 1 2 0 NCTC11872 4 40 40 36 4 0 NCTC12123 3 12 12 9 3 2 NCTC12126 6 36 60 26 10 10 NCTC12131 6 83 112 60 23 23 NCTC12132 2 4 4 3 1 0 NCTC12146 0 4 4 4 0 0 NCTC12694 6 61 180 58 3 0 NCTC12841 0 0 0 0 0 0 NCTC12993 2 4 4 3 1 0 NCTC12998 0 0 0 0 0 0 NCTC13095 0 4 4 3 1 0 NCTC13125 0 12 12 8 4 4 NCTC13348 0 75 84 68 7 7 NCTC13463 0 3 4 1 2 0 NCTC13543 0 4 4 4 0 0 NCTC4672 4 32 40 28 4 4 NCTC5050 6 12 12 9 3 0 NCTC5053 2 32 40 28 4 3 NCTC5055 0 0 0 0 0 0 NCTC7152 0 0 0 0 0 0 NCTC7922 2 60 60 56 4 2 NCTC8179 0 84 84 79 5 2 NCTC8500 0 0 0 0 0 0 NCTC8684 0 0 0 0 0 0 NCTC9075 7 60 60 54 6 2 NCTC9078 0 2 4 1 1 0 NCTC9098 1 24 24 16 8 8 NCTC9111 2 12 12 8 4 4 NCTC9112 0 24 24 14 10 10 NCTC9184 0 0 0 0 0 0 NCTC9645 5 244 364 238 6 3 NCTC9646 4 40 40 37 3 0 NCTC9695 0 2 4 1 1 0 Summary 1.84 26.86 34.4 23.55 3.31 0.95 2.35 edge edges NCTC10006 11 84 84 78 6 4 NCTC10332 12 364 364 358 6 6 NCTC10444 2 40 40 39 1 1 NCTC10702 0 0 0 0 0 0 NCTC10766 8 40 40 35 5 2 NCTC10794 0 12 12 12 0 0 NCTC10988 2 12 12 11 1 1 NCTC11126 8 200 220 196 4 4 NCTC11343 0 8 12 8 0 0 NCTC11360 2 84 84 83 1 1 NCTC11435 4 33 60 31 2 2 NCTC11800 2 8 12 7 1 1 NCTC11872 10 113 144 108 5 5 NCTC12123 4 4 4 1 3 0 NCTC12126 10 146 220 141 5 5 NCTC12131 2 512 544 511 1 1 NCTC12132 0 4 4 4 0 0 NCTC12146 0 0 0 0 0 0 NCTC12694 0 0 0 0 0 0 NCTC12841 0 0 0 0 0 0 NCTC12993 2 4 4 3 1 1 NCTC12998 2 24 24 23 1 1 NCTC13095 0 0 0 0 0 0 NCTC13125 4 32 40 30 2 2 NCTC13348 19 420 420 410 10 8 NCTC13463 2 18 24 17 1 1 NCTC13543 0 4 4 4 0 0 NCTC4672 * * * * * * * NCTC5050 5 24 24 20 4 0 NCTC5053 8 113 144 108 5 2 NCTC5055 0 0 0 0 0 0 NCTC7152 0 4 4 4 0 0 NCTC7922 2 50 60 49 1 1 NCTC8179 4 220 220 218 2 2 NCTC8500 0 0 0 0 0 0 NCTC8684 0 2 4 2 0 0 NCTC9075 2 4 4 3 1 1 NCTC9078 0 4 4 4 0 0 NCTC9098 3 32 40 30 2 0 NCTC9111 2 220 220 219 1 1 NCTC9112 4 180 180 178 2 2 NCTC9184 0 0 0 0 0 0 NCTC9645 2 366 480 365 1 1 NCTC9646 6 72 84 69 3 3 NCTC9695 0 0 0 0 0 0 Summary 3.27 78.6 87.3 76.8 1.77 1.34 0.432 project. Miniasm assembly graph statistics: number of contigs, number of dead-end ex-tremities. AAG statistics: theoretical maximal number number of edges. Note that for some of the most fragmented datasets (e.g. NCTC9184), none of the contigs pass the 100 tig00000032 plasmidic 91068 Kbp length threshold, hence the AAG is empty. '*' denotes dataset for which the result Dataset Contig name Classification NCTC10006 tig00000055 chromosomal tig00001802 chromosomal tig00001803 chromosomal total chromosomal length NCTC10332 tig00000001 chromosomal 3474338 tig00000002 chromosomal 30165 tig00000049 chromosomal 477163 tig00000076 chromosomal 781581 tig00000121 chromosomal 2609 tig00000123 chromosomal 2461 tig00000125 chromosomal 2452 tig00009835 chromosomal 2395 tig00009836 chromosomal 1564849 tig00009837 chromosomal 11088 tig00009838 chromosomal 2340 tig00009839 chromosomal 2302 total chromosomal length 6353743 NCTC10444 tig00000085 chromosomal 16691 tig00000105 chromosomal 989155 tig00000671 chromosomal 2391267 tig00000672 chromosomal 14372 tig00000673 chromosomal 1333749 tig00000674 chromosomal 9774 tig00000675 chromosomal 603044 total chromosomal length 5358052 NCTC10702 tig00000001 chromosomal 1882575 tig00000002 chromosomal 1048854 tig00000080 chromosomal 70302 total chromosomal length 3001731 tig00000200 plasmidic 49994 tig00001328 plasmidic 28893 tig00001329 plasmidic 7575 tig00000084 undefined 30012 tig00000087 undefined 2442 tig00000199 undefined 20259 NCTC10766 tig00000009 chromosomal 35058 tig00000021 chromosomal 331047 tig00001907 chromosomal 4740 tig00001908 chromosomal 3602512 tig00001909 chromosomal 15279 tig00001910 chromosomal 700851 tig00001911 chromosomal 14965 tig00001912 chromosomal 10378 tig00001913 chromosomal 20674 tig00001915 chromosomal 10586 tig00001916 chromosomal 9467 tig00001921 chromosomal 7453 tig00001922 chromosomal 710378 total chromosomal length 5473388 tig00000189 chromosomal tig00000190 chromosomal tig00004951 chromosomal total chromosomal length tig00000003 undefined tig00000014 undefined tig00000039 undefined tig00000040 undefined tig00000042 undefined tig00000047 undefined tig00000067 undefined tig00000072 undefined tig00000098 undefined tig00000100 undefined tig00000102 undefined tig00000110 undefined tig00000114 undefined tig00000116 undefined tig00000187 undefined tig00000188 undefined tig00000191 undefined tig00000192 undefined tig00004950 undefined tig00004952 undefined tig00004953 undefined tig00004954 undefined tig00004955 undefined tig00000096 none tig00000112 none tig00000186 none NCTC10988 tig00000006 chromosomal tig00000279 chromosomal tig00000896 chromosomal tig00000897 chromosomal tig00000898 chromosomal tig00000899 chromosomal tig00000900 chromosomal tig00000901 chromosomal tig00000902 chromosomal tig00000903 chromosomal total chromosomal length tig00000088 undefined tig00000105 undefined NCTC11126 tig00000037 chromosomal tig00000074 chromosomal tig00000726 chromosomal 2208641 tig00005693 chromosomal 12001 tig00005694 chromosomal 876928 tig00005696 chromosomal 3878 tig00005698 chromosomal 8934 tig00005699 chromosomal 214339 total chromosomal length 4193675 tig00000047 undefined 470559 tig00000158 undefined 3400 tig00000261 undefined 3105 tig00000357 undefined 55998 tig00000360 undefined 46002 tig00000381 undefined 1809 tig00000727 undefined 136723 tig00000728 undefined 6803 tig00000729 undefined 19083 tig00000730 undefined 6003 tig00005695 undefined 783131 tig00005697 undefined 20459 tig00005700 undefined 12630 tig00005701 undefined 4319 tig00005702 undefined 4350 tig00005703 undefined 325592 tig00005704 undefined 8727 NCTC11360 tig00000001 chromosomal 856759 tig00000002 chromosomal 167905 tig00000023 chromosomal 2941 tig00000024 chromosomal 74373 tig00000036 chromosomal 2775 tig00000039 chromosomal 4498 tig00000040 chromosomal 90923 tig00000044 chromosomal 93819 tig00000059 chromosomal 3339 tig00000061 chromosomal 5726 tig00000067 chromosomal 69601 tig00000084 chromosomal 2711 tig00000115 chromosomal 85300 tig00000116 chromosomal 6833 tig00000117 chromosomal 89165 tig00000118 chromosomal 7948 tig00000119 chromosomal 73822 tig00000121 chromosomal 61437 tig00000122 chromosomal 11175 tig00000123 chromosomal 7718 tig00002040 chromosomal 3708 tig00001174 chromosomal tig00001175 chromosomal total chromosomal length NCTC11800 tig00000003 chromosomal tig00000100 chromosomal tig00000108 chromosomal tig00000110 chromosomal tig00000228 chromosomal tig00000229 chromosomal tig00003669 chromosomal total chromosomal length tig00000002 undefined tig00000104 undefined tig00003670 undefined NCTC11872 tig00000016 chromosomal tig00000035 chromosomal tig00000200 chromosomal tig00000201 chromosomal tig00000202 chromosomal tig00000203 chromosomal tig00000204 chromosomal total chromosomal length tig00000072 undefined NCTC12123 tig00000001 chromosomal tig00000002 chromosomal tig00000009 chromosomal tig00001215 chromosomal tig00001216 chromosomal total chromosomal length tig00000045 plasmidic tig00001219 plasmidic tig00001220 plasmidic tig00001221 plasmidic tig00000003 undefined tig00000036 undefined tig00001217 undefined tig00001218 undefined NCTC12126 tig00000002 chromosomal tig00000003 chromosomal tig00000005 chromosomal tig00000018 chromosomal tig00000041 chromosomal tig00000088 chromosomal tig00000103 chromosomal tig00000144 chromosomal tig00000260 chromosomal 277244 tig00000261 chromosomal 6991 tig00000262 chromosomal 654135 tig00000263 chromosomal 7044 tig00000264 chromosomal 44446 tig00000265 chromosomal 6070 tig00000266 chromosomal 658311 tig00000267 chromosomal 173281 tig00000268 chromosomal 6652 tig00000269 chromosomal 735339 tig00000271 chromosomal 839355 total chromosomal length 4785146 tig00000272 undefined 11590 tig00000273 undefined 3170 NCTC12132 tig00000001 chromosomal 2583454 tig00000002 chromosomal 756442 total chromosomal length 3339896 tig00000004 undefined 20873 NCTC12146 tig00000001 chromosomal 4385596 tig00001748 chromosomal 15170 tig00001749 chromosomal 1248170 total chromosomal length 5648936 NCTC12694 tig00000001 chromosomal 1305929 tig00000004 chromosomal 723799 tig00000010 chromosomal 270213 tig00000013 chromosomal 244711 tig00000015 chromosomal 205059 tig00000017 chromosomal 163002 tig00000019 chromosomal 200318 tig00000021 chromosomal 138348 tig00000028 chromosomal 101438 tig00000031 chromosomal 87449 tig00000032 chromosomal 63734 tig00000035 chromosomal 90673 tig00000038 chromosomal 41457 tig00000040 chromosomal 64898 tig00000042 chromosomal 69114 tig00000045 chromosomal 37727 tig00000047 chromosomal 27321 tig00000052 chromosomal 2331 tig00000091 chromosomal 753465 tig00000092 chromosomal 2291 tig00000093 chromosomal 2280 total chromosomal length 4595557 tig00000050 plasmidic 1930 tig00000257 chromosomal tig00000258 chromosomal tig00032866 chromosomal tig00032867 chromosomal tig00032868 chromosomal tig00032869 chromosomal total chromosomal length NCTC12993 tig00000002 chromosomal tig00002251 chromosomal tig00002252 chromosomal tig00002253 chromosomal tig00002254 chromosomal total chromosomal length tig00000055 plasmidic tig00000063 plasmidic tig00000064 plasmidic tig00000113 plasmidic tig00000052 undefined tig00000114 undefined tig00002255 undefined tig00002256 undefined NCTC12998 tig00000002 chromosomal tig00002880 chromosomal tig00002881 chromosomal total chromosomal length tig00002882 plasmidic tig00002883 plasmidic NCTC13095 tig00000036 chromosomal tig00000037 chromosomal tig00000038 chromosomal total chromosomal length tig00000015 plasmidic tig00001684 plasmidic tig00001685 plasmidic tig00000003 none NCTC13125 tig00000001 chromosomal tig00000003 chromosomal tig00000408 chromosomal tig00000409 chromosomal tig00001778 chromosomal tig00001779 chromosomal total chromosomal length tig00000080 plasmidic tig00000081 plasmidic tig00000083 plasmidic tig00000350 chromosomal 898431 tig00000351 chromosomal 4061 tig00000352 chromosomal 224612 tig00000353 chromosomal 201081 tig00000356 chromosomal 2525 tig00005291 chromosomal 1458800 tig00005292 chromosomal 3871 tig00005293 chromosomal 1173550 tig00005294 chromosomal 6497 tig00005295 chromosomal 8532 tig00005296 chromosomal 9588 tig00005297 chromosomal 3796 tig00005298 chromosomal 3770 tig00005299 chromosomal 6030 tig00005300 chromosomal 4132 total chromosomal length 5027241 tig00000183 plasmidic 99046 tig00000196 undefined 4009 tig00000355 undefined 2810 NCTC13463 tig00000066 chromosomal 4612761 tig00000067 chromosomal 15891 tig00000068 chromosomal 473422 tig00000070 chromosomal 11585 tig00000071 chromosomal 9027 total chromosomal length 5122686 tig00000024 plasmidic 99437 tig00000028 plasmidic 3907 tig00000026 undefined 9287 tig00000069 undefined 63008 NCTC13543 tig00000001 chromosomal 2912152 tig00000044 chromosomal 20274 tig00000092 chromosomal 1100488 total chromosomal length 4032914 tig00000037 plasmidic 71251 tig00000039 plasmidic 27238 tig00000024 undefined 489748 tig00000034 undefined 174464 tig00000042 undefined 31750 tig00000047 undefined 3595 tig00000049 undefined 6247 tig00000057 undefined 3104 tig00000093 undefined 8383 tig00000094 undefined 985883 NCTC4672 tig00000005 chromosomal 234563 tig00000013 chromosomal 183355 tig00000198 chromosomal tig00000233 chromosomal tig00000242 chromosomal tig00000258 chromosomal tig00000262 chromosomal tig00000265 chromosomal tig00000266 chromosomal tig00000269 chromosomal tig00000275 chromosomal tig00000277 chromosomal tig00000278 chromosomal tig00000280 chromosomal tig00000283 chromosomal tig00000288 chromosomal tig00000290 chromosomal tig00000296 chromosomal tig00000297 chromosomal tig00000300 chromosomal tig00000304 chromosomal tig00000306 chromosomal tig00000309 chromosomal tig00000320 chromosomal tig00000323 chromosomal tig00000330 chromosomal tig00000334 chromosomal tig00000338 chromosomal tig00000345 chromosomal tig00000347 chromosomal tig00000349 chromosomal tig00000358 chromosomal tig00000367 chromosomal tig00000380 chromosomal tig00000886 chromosomal tig00000887 chromosomal tig00000888 chromosomal tig00000889 chromosomal tig00000890 chromosomal tig00000891 chromosomal tig00000892 chromosomal tig00000893 chromosomal tig00012913 chromosomal tig00012914 chromosomal tig00012915 chromosomal tig00012916 chromosomal tig00012917 chromosomal tig00012928 undefined 1023 NCTC5050 tig00000001 chromosomal 3626030 tig00000010 chromosomal 1250471 tig00000023 chromosomal 227716 tig00000041 chromosomal 3864 total chromosomal length 5108081 tig00000038 plasmidic 82367 tig00000039 plasmidic 52025 tig00000037 undefined 117821 NCTC5053 tig00000133 chromosomal 198522 tig00000255 chromosomal 920215 tig00000256 chromosomal 5841 tig00000257 chromosomal 1006535 tig00000258 chromosomal 6903 tig00000259 chromosomal 2186965 tig00003210 chromosomal 6218 tig00003211 chromosomal 930059 total chromosomal length 5261258 tig00000136 plasmidic 112876 tig00000143 plasmidic 105258 tig00000146 plasmidic 13447 tig00000160 plasmidic 9791 tig00000261 plasmidic 209198 tig00000260 undefined 9413 tig00003209 undefined 107411 tig00003212 undefined 10219 NCTC5055 tig00000055 chromosomal 11815 tig00000057 chromosomal 12732 tig00000059 chromosomal 6105 tig00000060 chromosomal 4943 tig00000064 chromosomal 5662 tig00000065 chromosomal 15192 tig00000070 chromosomal 3156 tig00000074 chromosomal 4830 tig00000076 chromosomal 4460 tig00000077 chromosomal 7113 tig00000078 chromosomal 5247 tig00000080 chromosomal 4590 tig00000081 chromosomal 7472 tig00000082 chromosomal 2196 tig00000084 chromosomal 9133 tig00000094 chromosomal 5354 tig00000095 chromosomal 3374 tig00000096 chromosomal 4914 tig00000097 chromosomal 9470 tig00000122 chromosomal tig00000127 chromosomal tig00000129 chromosomal tig00000130 chromosomal tig00000133 chromosomal tig00000151 chromosomal tig00000153 chromosomal tig00000154 chromosomal tig00000155 chromosomal tig00000156 chromosomal tig00000158 chromosomal tig00000159 chromosomal tig00000160 chromosomal tig00000161 chromosomal tig00000162 chromosomal tig00000163 chromosomal tig00000165 chromosomal tig00000167 chromosomal tig00000168 chromosomal tig00000169 chromosomal tig00000171 chromosomal tig00000172 chromosomal tig00000176 chromosomal tig00000177 chromosomal tig00000179 chromosomal tig00000180 chromosomal tig00000181 chromosomal tig00000182 chromosomal tig00000183 chromosomal tig00000184 chromosomal tig00000186 chromosomal tig00000187 chromosomal tig00000189 chromosomal tig00000190 chromosomal tig00000191 chromosomal tig00000192 chromosomal tig00000193 chromosomal tig00000194 chromosomal tig00000195 chromosomal tig00000196 chromosomal tig00000202 chromosomal tig00000203 chromosomal tig00000204 chromosomal tig00000209 chromosomal tig00000212 chromosomal tig00000277 chromosomal 3110 tig00000279 chromosomal 4417 tig00000281 chromosomal 3851 tig00000288 chromosomal 5472 tig00000289 chromosomal 4032 tig00000291 chromosomal 3818 tig00000292 chromosomal 4370 tig00000293 chromosomal 3129 tig00000294 chromosomal 2304 tig00000296 chromosomal 3225 tig00000301 chromosomal 7281 tig00000305 chromosomal 8491 tig00000314 chromosomal 5433 tig00000317 chromosomal 3678 tig00000325 chromosomal 1863 tig00000327 chromosomal 3222 tig00000328 chromosomal 5106 tig00000333 chromosomal 3256 tig00000341 chromosomal 1291 tig00000342 chromosomal 2493 tig00000346 chromosomal 1815 tig00000353 chromosomal 2918 tig00000355 chromosomal 4982 tig00000357 chromosomal 2946 tig00000358 chromosomal 1834 tig00000360 chromosomal 2630 tig00000364 chromosomal 3574 tig00000370 chromosomal 2820 tig00000378 chromosomal 8735 tig00000381 chromosomal 3848 tig00000382 chromosomal 2055 tig00000386 chromosomal 2616 tig00000387 chromosomal 1427 tig00000389 chromosomal 1736 tig00000397 chromosomal 5670 tig00000401 chromosomal 2024 tig00000407 chromosomal 3932 tig00000409 chromosomal 4037 tig00000426 chromosomal 1317 tig00000429 chromosomal 5444 tig00000430 chromosomal 3589 tig00001790 chromosomal 22546 tig00001791 chromosomal 4656080 tig00008453 chromosomal 2243 tig00008454 chromosomal 3013 tig00000105 plasmidic tig00000121 plasmidic tig00000157 plasmidic tig00000228 plasmidic tig00000336 plasmidic tig00000366 plasmidic tig00001789 plasmidic tig00000173 undefined tig00000270 undefined tig00000282 undefined tig00000306 undefined tig00000308 undefined NCTC7152 tig00001521 chromosomal tig00001522 chromosomal total chromosomal length tig00000020 plasmidic tig00000021 plasmidic tig00000023 plasmidic tig00000004 undefined tig00001524 undefined tig00000002 none tig00001523 none NCTC7922 tig00000005 chromosomal tig00000010 chromosomal tig00000015 chromosomal tig00000061 chromosomal tig00000089 chromosomal tig00000120 chromosomal tig00000357 chromosomal tig00000358 chromosomal tig00000359 chromosomal tig00000360 chromosomal tig00000361 chromosomal tig00004505 chromosomal tig00004506 chromosomal total chromosomal length tig00000123 plasmidic tig00000136 plasmidic tig00000137 plasmidic tig00000138 undefined tig00000140 undefined tig00000143 undefined tig00000356 undefined NCTC8179 tig00000002 chromosomal tig00000005 chromosomal tig00001523 chromosomal 732378 total chromosomal length 5739375 tig00000063 plasmidic 127915 tig00000065 plasmidic 85310 tig00000066 plasmidic 5132 tig00000069 plasmidic 3833 tig00000142 none 18135 NCTC8500 tig00000001 chromosomal 4654897 tig00000069 chromosomal 14271 tig00000172 chromosomal 2477 total chromosomal length 4671645 tig00000166 plasmidic 61752 NCTC8684 tig00000042 chromosomal 2510 tig00000044 chromosomal 2653 tig00000096 chromosomal 1675130 tig00000100 chromosomal 9818 tig00005015 chromosomal 2002 total chromosomal length 1692113 tig00000019 undefined 90777 tig00000035 undefined 334610 tig00000040 undefined 2954 tig00000090 undefined 463211 tig00000091 undefined 6937 tig00000092 undefined 226539 tig00000093 undefined 10565 tig00000094 undefined 683840 tig00000095 undefined 8091 tig00000097 undefined 11829 tig00000098 undefined 815147 tig00000099 undefined 582249 tig00005013 undefined 3845 tig00005014 undefined 3834 NCTC9075 tig00000001 chromosomal 2771864 tig00000014 chromosomal 707603 tig00000055 chromosomal 975632 tig00000129 chromosomal 250221 tig00000196 chromosomal 115073 tig00002929 chromosomal 6892 tig00002930 chromosomal 441745 total chromosomal length 5269030 tig00000200 undefined 67419 NCTC9078 tig00000001 chromosomal 4157901 tig00000006 chromosomal 11044 tig00000036 chromosomal 1211 tig00000051 chromosomal 1033327 tig00000530 chromosomal total chromosomal length tig00000209 none tig00000212 none NCTC9111 tig00000001 chromosomal tig00000032 chromosomal tig00000054 chromosomal tig00000063 chromosomal tig00000064 chromosomal tig00000186 chromosomal tig00002643 chromosomal tig00002644 chromosomal tig00002645 chromosomal total chromosomal length tig00000120 plasmidic tig00000187 plasmidic tig00002646 plasmidic tig00002648 plasmidic tig00002649 plasmidic tig00002651 plasmidic tig00000118 undefined tig00000123 undefined tig00002647 undefined tig00002650 undefined tig00002642 none NCTC9112 tig00000065 chromosomal tig00000084 chromosomal tig00000705 chromosomal tig00000706 chromosomal tig00000707 chromosomal tig00001864 chromosomal tig00001865 chromosomal total chromosomal length NCTC9184 tig00000001 chromosomal tig00000003 chromosomal tig00000005 chromosomal tig00000010 chromosomal tig00000013 chromosomal tig00000015 chromosomal tig00000017 chromosomal tig00000021 chromosomal tig00000022 chromosomal tig00000025 chromosomal tig00000027 chromosomal tig00000028 chromosomal tig00000055 chromosomal 35816 tig00000056 chromosomal 37501 tig00000057 chromosomal 9675 tig00000058 chromosomal 25028 tig00000059 chromosomal 21381 tig00000060 chromosomal 32086 tig00000061 chromosomal 22676 tig00000063 chromosomal 20847 tig00000065 chromosomal 16377 tig00000066 chromosomal 22324 tig00000069 chromosomal 23508 tig00000071 chromosomal 23542 tig00000072 chromosomal 24820 tig00000078 chromosomal 13426 tig00000082 chromosomal 23417 tig00000088 chromosomal 17003 tig00000089 chromosomal 15211 tig00000090 chromosomal 21564 tig00000091 chromosomal 10799 tig00000094 chromosomal 34765 tig00000095 chromosomal 16175 tig00000096 chromosomal 28943 tig00000099 chromosomal 2490 tig00000102 chromosomal 10959 tig00000104 chromosomal 15702 tig00000105 chromosomal 17032 tig00000113 chromosomal 17463 tig00000114 chromosomal 24382 tig00000115 chromosomal 6126 tig00000116 chromosomal 7311 tig00000117 chromosomal 6497 tig00000118 chromosomal 13154 tig00000119 chromosomal 19876 tig00000121 chromosomal 17839 tig00000122 chromosomal 10689 tig00000124 chromosomal 14467 tig00000128 chromosomal 16138 tig00000129 chromosomal 18515 tig00000134 chromosomal 15758 tig00000135 chromosomal 7877 tig00000139 chromosomal 12365 tig00000141 chromosomal 23830 tig00000145 chromosomal 15645 tig00000147 chromosomal 21070 tig00000148 chromosomal 31094 tig00000175 chromosomal tig00000176 chromosomal tig00000177 chromosomal tig00000182 chromosomal tig00000184 chromosomal tig00000187 chromosomal tig00000191 chromosomal tig00000193 chromosomal tig00000199 chromosomal tig00000201 chromosomal tig00000204 chromosomal tig00000210 chromosomal tig00000212 chromosomal tig00000223 chromosomal tig00000240 chromosomal tig00000241 chromosomal tig00000242 chromosomal tig00000245 chromosomal tig00000246 chromosomal tig00000248 chromosomal tig00000250 chromosomal tig00000252 chromosomal tig00000253 chromosomal tig00000254 chromosomal tig00000255 chromosomal tig00000263 chromosomal tig00000264 chromosomal tig00000269 chromosomal tig00000272 chromosomal tig00000273 chromosomal tig00000276 chromosomal tig00000280 chromosomal tig00000289 chromosomal tig00000297 chromosomal tig00000301 chromosomal tig00000305 chromosomal tig00000311 chromosomal tig00000315 chromosomal tig00000316 chromosomal tig00000318 chromosomal tig00003367 chromosomal tig00003368 chromosomal tig00003369 chromosomal tig00003370 chromosomal tig00003371 chromosomal tig00003384 chromosomal 15516 tig00003385 chromosomal 17588 tig00003386 chromosomal 17512 total chromosomal length 2470164 tig00000107 plasmidic 15044 tig00000166 plasmidic 10162 tig00000186 plasmidic 12869 tig00000188 plasmidic 18137 tig00000299 plasmidic 2027 tig00000180 undefined 13067 NCTC9645 tig00000007 chromosomal 2625 tig00000011 chromosomal 607255 tig00000013 chromosomal 599160 tig00000021 chromosomal 40668 tig00000024 chromosomal 405420 tig00000026 chromosomal 317955 tig00000036 chromosomal 103955 tig00000037 chromosomal 234258 tig00000042 chromosomal 220152 tig00000047 chromosomal 201508 tig00000052 chromosomal 207208 tig00000058 chromosomal 2660 tig00000061 chromosomal 135529 tig00000094 chromosomal 27162 tig00000096 chromosomal 18889 tig00000098 chromosomal 20876 tig00000101 chromosomal 5995 tig00000102 chromosomal 1801 tig00000105 chromosomal 2743 tig00000109 chromosomal 1646 tig00000113 chromosomal 1844 tig00000206 chromosomal 382698 tig00000207 chromosomal 7336 tig00000208 chromosomal 1225204 tig00000209 chromosomal 232251 tig00000210 chromosomal 16029 tig00000211 chromosomal 97614 tig00000219 chromosomal 3443 tig00000220 chromosomal 80500 tig00012227 chromosomal 4751 tig00012228 chromosomal 100031 total chromosomal length 5309166 tig00000072 plasmidic 10238 tig00000086 plasmidic 8968 tig00000212 plasmidic 82446 tig00000026 chromosomal 206992 tig00000027 chromosomal 878265 tig00000047 chromosomal 295064 tig00000187 chromosomal 2534 tig00003591 chromosomal 4056 tig00003592 chromosomal 4764 total chromosomal length 5672313 tig00000022 plasmidic 148222 tig00003589 plasmidic 8057 tig00003590 plasmidic 6751 tig00000021 undefined 36388 tig00000063 undefined 1282 tig00000065 undefined 1113 NCTC9695 tig00000074 chromosomal 1279605 tig00000076 chromosomal 1894574 total chromosomal length 3174179 tig00000003 undefined 473776 tig00000004 undefined 204759 tig00000019 undefined 4937 tig00000038 undefined 3861 tig00000040 undefined 2672 tig00000042 undefined 2170 tig00000075 undefined 7627 tig00000077 undefined 7294 tig00000078 undefined 911580 Table A.6: Canu contigs classification per NCTC dataset. Total length of chromosomal contigs is given. utg000010l undefined 18666 NCTC10988 utg000001l chromosomal 470745 utg000002l chromosomal 1143622 utg000003l chromosomal 39170 utg000004l chromosomal 1521633 utg000005l chromosomal 35669 utg000006l chromosomal 36182 utg000007l chromosomal 28025 utg000009l chromosomal 23011 utg000011l chromosomal 25778 total chromosomal length 3323835 utg000010c undefined 27255 utg000008c none 1813 NCTC11126 utg000001l chromosomal 799550 utg000003l chromosomal 39468 utg000005l chromosomal 199017 utg000006l chromosomal 654158 utg000007l chromosomal 801856 utg000008l chromosomal 150048 utg000009l chromosomal 615460 utg000010l chromosomal 446084 utg000012l chromosomal 187190 utg000013l chromosomal 24165 utg000015l chromosomal 124049 utg000016l chromosomal 115589 utg000017l chromosomal 214509 utg000018l chromosomal 36740 utg000019l chromosomal 18016 total chromosomal length 4425899 utg000002l undefined 463729 utg000004l none 129544 utg000011l none 152040 utg000014l none 20861 NCTC11343 utg000001l chromosomal 1137077 utg000008l chromosomal 387994 utg000009l chromosomal 303645 utg000013l chromosomal 73842 utg000017l chromosomal 44820 utg000021l chromosomal 71812 utg000023l chromosomal 82330 utg000026l chromosomal 37829 utg000027l chromosomal 20725 utg000028l chromosomal 10169 total chromosomal length 2170243 utg000002l undefined 110639 utg000019l undefined utg000020l undefined utg000022l undefined utg000024l undefined utg000025l undefined NCTC11360 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal utg000016l chromosomal utg000017l chromosomal utg000018l chromosomal utg000019l chromosomal utg000020l chromosomal utg000021l chromosomal utg000022l chromosomal utg000023l chromosomal utg000024l chromosomal utg000025l chromosomal total chromosomal length NCTC11435 utg000001l chromosomal utg000002c chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal total chromosomal length utg000007c none NCTC11800 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal total chromosomal length utg000004l undefined NCTC11872 utg000001l chromosomal total chromosomal length 1962919 NCTC12123 utg000001l chromosomal 2853675 utg000002l chromosomal 2105813 utg000003l chromosomal 40089 total chromosomal length 4999577 utg000005c plasmidic 10039 utg000004l undefined 31948 NCTC12126 utg000001l chromosomal 319898 utg000002l chromosomal 731428 utg000003l chromosomal 2015098 utg000004l chromosomal 424548 utg000005l chromosomal 234649 utg000006l chromosomal 95263 utg000007l chromosomal 401716 utg000008l chromosomal 165317 utg000009l chromosomal 79334 utg000010l chromosomal 121403 utg000011l chromosomal 117059 utg000013l chromosomal 100109 utg000014l chromosomal 144200 utg000015l chromosomal 64609 utg000016l chromosomal 59101 total chromosomal length 5073732 utg000012l undefined 169903 NCTC12131 utg000001l chromosomal 111790 utg000002l chromosomal 92827 utg000003l chromosomal 97030 utg000004l chromosomal 124270 utg000005l chromosomal 69426 utg000007l chromosomal 26064 utg000008l chromosomal 39017 utg000009l chromosomal 161140 utg000010l chromosomal 67339 utg000013l chromosomal 30391 utg000014l chromosomal 100618 utg000015l chromosomal 125621 utg000016l chromosomal 60566 utg000017l chromosomal 16554 utg000018l chromosomal 195541 utg000019l chromosomal 101170 utg000020l chromosomal 130409 utg000021l chromosomal 49770 utg000022l chromosomal 84913 utg000023l chromosomal 78770 utg000024l chromosomal 257054 utg000039l chromosomal utg000040l chromosomal utg000041l chromosomal utg000042l chromosomal utg000043l chromosomal utg000044l chromosomal utg000045l chromosomal utg000046l chromosomal utg000047l chromosomal utg000048l chromosomal utg000049l chromosomal utg000050l chromosomal utg000051l chromosomal utg000052l chromosomal utg000053l chromosomal utg000054l chromosomal utg000055l chromosomal utg000056l chromosomal utg000057l chromosomal utg000058l chromosomal utg000061l chromosomal utg000062l chromosomal utg000063l chromosomal utg000064l chromosomal utg000065l chromosomal utg000066l chromosomal utg000067l chromosomal utg000068l chromosomal utg000069l chromosomal utg000070l chromosomal utg000072l chromosomal utg000073l chromosomal utg000074l chromosomal utg000075l chromosomal utg000076l chromosomal utg000078l chromosomal utg000079l chromosomal utg000080l chromosomal utg000081l chromosomal utg000082l chromosomal utg000084l chromosomal utg000085l chromosomal utg000086l chromosomal utg000087l chromosomal total chromosomal length utg000003l chromosomal 69541 utg000004l chromosomal 19313 total chromosomal length 3520932 NCTC12146 utg000001l chromosomal 5930232 total chromosomal length 5930232 NCTC12694 utg000001l chromosomal 58159 utg000002l chromosomal 35524 utg000003l chromosomal 28409 utg000004l chromosomal 16449 utg000005l chromosomal 17394 utg000006l chromosomal 21530 utg000007l chromosomal 11853 utg000008l chromosomal 8442 utg000009l chromosomal 10039 utg000010l chromosomal 49546 utg000011l chromosomal 26813 utg000012l chromosomal 23265 utg000013l chromosomal 21153 utg000014l chromosomal 12511 utg000015l chromosomal 17131 utg000016l chromosomal 42769 utg000017l chromosomal 12766 utg000018l chromosomal 24545 utg000019l chromosomal 23162 utg000020l chromosomal 19756 utg000021l chromosomal 45548 utg000022l chromosomal 21115 utg000023l chromosomal 25591 utg000024l chromosomal 30239 utg000025l chromosomal 21095 utg000026l chromosomal 9863 utg000027l chromosomal 23159 utg000029l chromosomal 8102 utg000030l chromosomal 11082 utg000031l chromosomal 28054 utg000033l chromosomal 42654 utg000034l chromosomal 30933 utg000035l chromosomal 46346 utg000036l chromosomal 30903 utg000037l chromosomal 25189 utg000038l chromosomal 18193 utg000039l chromosomal 43343 utg000040l chromosomal 30397 utg000041l chromosomal 15935 utg000042l chromosomal 19588 utg000056l chromosomal utg000057l chromosomal utg000058l chromosomal utg000059l chromosomal utg000060l chromosomal utg000061l chromosomal utg000062l chromosomal utg000064l chromosomal utg000065l chromosomal utg000066l chromosomal utg000067l chromosomal utg000068l chromosomal utg000069l chromosomal utg000070l chromosomal utg000071l chromosomal utg000072l chromosomal utg000073l chromosomal utg000074l chromosomal utg000075l chromosomal utg000076l chromosomal utg000077l chromosomal utg000078l chromosomal utg000079l chromosomal utg000080l chromosomal utg000081l chromosomal utg000082l chromosomal utg000083l chromosomal utg000084l chromosomal utg000085l chromosomal utg000086l chromosomal utg000087l chromosomal utg000088l chromosomal utg000089l chromosomal utg000090l chromosomal utg000091l chromosomal utg000092l chromosomal utg000093l chromosomal utg000094l chromosomal utg000095l chromosomal utg000096l chromosomal utg000097l chromosomal utg000098l chromosomal utg000099l chromosomal utg000100l chromosomal utg000101l chromosomal utg000114l chromosomal 15167 utg000115l chromosomal 29785 utg000116l chromosomal 21769 utg000117l chromosomal 8477 utg000118l chromosomal 16251 utg000119l chromosomal 21816 utg000120l chromosomal 4937 utg000121l chromosomal 15924 utg000122l chromosomal 14350 utg000123l chromosomal 17284 utg000124l chromosomal 14773 utg000125l chromosomal 13950 utg000126l chromosomal 12821 utg000127l chromosomal 12776 total chromosomal length 2667113 utg000028l plasmidic 39729 utg000063l plasmidic 24889 utg000032l none 10367 utg000052l none 44932 NCTC12841 utg000001l chromosomal 2025517 total chromosomal length 2025517 NCTC12993 utg000001l chromosomal 4585710 utg000002l chromosomal 728592 total chromosomal length 5314302 utg000004l plasmidic 83189 utg000006l plasmidic 25452 utg000007l plasmidic 6215 utg000003l undefined 109233 utg000005l undefined 74705 NCTC12998 utg000001l chromosomal 669883 utg000002l chromosomal 3936078 utg000003l chromosomal 584057 utg000004l chromosomal 737303 total chromosomal length 5927321 utg000005c plasmidic 125518 NCTC13095 utg000001c chromosomal 5922307 utg000003l chromosomal 34891 total chromosomal length 5957198 utg000002c undefined 117186 utg000004c undefined 164749 NCTC13125 utg000001l chromosomal 4270665 utg000002l chromosomal 470580 utg000003l chromosomal 287719 utg000004l chromosomal 62610 utg000005l chromosomal 392905 utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal utg000016l chromosomal utg000017l chromosomal utg000018l chromosomal total chromosomal length utg000005l plasmidic NCTC13463 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000006l chromosomal total chromosomal length utg000004c plasmidic utg000005c undefined utg000007l undefined NCTC13543 utg000001c chromosomal utg000002l chromosomal utg000007l chromosomal total chromosomal length utg000005l plasmidic utg000006l plasmidic utg000008l plasmidic utg000004c undefined utg000009l undefined utg000003l none NCTC4672 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal NCTC5053 utg000001l chromosomal utg000002l chromosomal 334789 utg000004l chromosomal 1438231 utg000006l chromosomal 675061 utg000007l chromosomal 225750 utg000008l chromosomal 372066 utg000009l chromosomal 188575 utg000010l chromosomal 677706 utg000011l chromosomal 244959 utg000012l chromosomal 63154 utg000013l chromosomal 26449 total chromosomal length 5462553 utg000005c plasmidic 208263 utg000014c plasmidic 102763 utg000015c plasmidic 104579 utg000016c plasmidic 12712 utg000018c plasmidic 5167 utg000003c undefined 105118 utg000017c none 2115 NCTC5055 utg000001l chromosomal 5214489 utg000002l chromosomal 13329 utg000004l chromosomal 16397 utg000006l chromosomal 11993 utg000007l chromosomal 11530 utg000008l chromosomal 23643 utg000010l chromosomal 12125 utg000011l chromosomal 20225 utg000012l chromosomal 11167 utg000013l chromosomal 10465 utg000014l chromosomal 11390 utg000015l chromosomal 21429 utg000016l chromosomal 11492 utg000017l chromosomal 14583 utg000018l chromosomal 10242 utg000019l chromosomal 20037 utg000020l chromosomal 12298 utg000022l chromosomal 21719 utg000023l chromosomal utg000024l chromosomal total chromosomal length utg000003l plasmidic utg000009l plasmidic utg000021l plasmidic utg000005l undefined 10762 NCTC7152 utg000001l chromosomal 4797250 NCTC9078 utg000001c utg000002c chromosomal total chromosomal length utg000008l chromosomal 27067 utg000009l chromosomal 16993 utg000048l NCTC9695 utg000001l chromosomal 4677804 chromosomal chromosomal utg000007l chromosomal 21484 utg000047l chromosomal utg000013c none 2141 17587 utg000003c undefined utg000006l chromosomal 18494 utg000046l chromosomal utg000014l undefined 37740 34026 total chromosomal length utg000005l chromosomal 24250 utg000045l chromosomal utg000016l plasmidic 6887 19472 utg000004l chromosomal utg000004l chromosomal 16159 utg000044l chromosomal utg000015l plasmidic 26818 5496910 utg000002l chromosomal utg000002l chromosomal 18494 utg000043l chromosomal utg000012l plasmidic 16804 7808 NCTC9075 utg000001l chromosomal NCTC9184 utg000001l chromosomal 29829 utg000042l chromosomal utg000011l plasmidic 38663 20549 total chromosomal length utg000008c plasmidic utg000009c plasmidic utg000012c undefined utg000013c undefined utg000014c none NCTC8179 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000010l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal utg000016l chromosomal utg000017l chromosomal total chromosomal length utg000009c plasmidic utg000011c plasmidic utg000018c none NCTC8500 utg000001c chromosomal total chromosomal length utg000002c plasmidic NCTC8684 utg000001l chromosomal utg000006l chromosomal total chromosomal length utg000002l undefined utg000003l undefined utg000004l undefined utg000005l undefined utg000007l undefined NCTC9111 utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011c chromosomal utg000013l chromosomal utg000014l chromosomal utg000018c chromosomal total chromosomal length utg000001c plasmidic utg000012c plasmidic utg000015c plasmidic utg000016c undefined utg000017c undefined NCTC9112 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal total chromosomal length utg000016c none utg000041l chromosomal utg000003l plasmidic 181111 786 utg000040l chromosomal total chromosomal length 5755068 5906453 utg000039l chromosomal utg000010l chromosomal 105678 17055 utg000038l chromosomal utg000009l chromosomal 61801 19079 utg000037l chromosomal utg000008l chromosomal 205862 22078 utg000036l chromosomal utg000007l chromosomal 22892 20182 utg000035l chromosomal utg000006l chromosomal 169448 134545 utg000034l chromosomal utg000005l chromosomal 1259981 537734 utg000033l chromosomal utg000004l chromosomal 918891 283544 utg000032l chromosomal utg000002l chromosomal 1185729 739996 utg000030l chromosomal NCTC9646 utg000001l chromosomal 1824786 772601 utg000029l chromosomal utg000051l none 21105 583111 utg000028l chromosomal utg000049l none 20985 1445001 utg000027l chromosomal utg000076l undefined 14407 226433 utg000026l chromosomal utg000065l undefined 27749 799223 utg000025l chromosomal utg000083l plasmidic 9793 38684 utg000024l chromosomal utg000052l plasmidic 89214 267187 utg000023l chromosomal utg000031c plasmidic 85333 97293 utg000022l chromosomal utg000015l plasmidic 289749 5475 utg000021l chromosomal total chromosomal length 5162355 71898 utg000020l chromosomal utg000084l chromosomal 10403 92083 utg000019l chromosomal utg000082l chromosomal 17026 126297 utg000018l chromosomal utg000081l chromosomal 19414 5618741 utg000017l chromosomal utg000080l chromosomal 20491 9151 utg000016l chromosomal utg000079l chromosomal 13912 298974 utg000014l chromosomal utg000078l chromosomal 18064 14110 utg000013l chromosomal utg000077l chromosomal 23613 751321 utg000012l chromosomal utg000075l chromosomal 75997 496328 utg000011l chromosomal utg000074l chromosomal 11225 780946 utg000010l chromosomal utg000073l chromosomal 33264 393118 utg000009l chromosomal utg000072l chromosomal 34026 354979 utg000008l chromosomal utg000071l chromosomal 12499 360884 utg000007l chromosomal utg000070l chromosomal 15069 120406 utg000006l chromosomal utg000069l chromosomal 69014 1397867 utg000005l chromosomal utg000068l chromosomal 49692 258361 utg000004l chromosomal utg000067l chromosomal 53886 382296 utg000003l chromosomal utg000066l chromosomal 39231 1215813 utg000011l chromosomal utg000010c none 2517 utg000002l chromosomal utg000064l chromosomal 68089 5297110 tig00000108 chromosomal tig00000291 chromosomal 226277 tig00001173 chromosomal tig00000133 chromosomal 2760 tig00000066 chromosomal tig00000349 chromosomal 7200 tig00000159 chromosomal tig00012927 undefined 1024 tig00000119 chromosomal tig00000275 chromosomal 4156 tig00000062 plasmidic tig00001522 chromosomal 17732 tig00000529 chromosomal tig00000051 chromosomal 24356 tig00000174 chromosomal tig00003383 chromosomal 14003 tig00000002 chromosomal 614927 utg000009l undefined 50190 utg000018l undefined utg000013l chromosomal 33052 utg000038l chromosomal utg000002c chromosomal 536810 utg000055l chromosomal utg000113l chromosomal 13429 utg000007l chromosomal utg000008l none 37817 utg000010l chromosomal utg000009c none 3685 NCTC9645 utg000001l chromosomal utg000063l chromosomal 24109 11996 tig00000081 chromosomal tig00000272 chromosomal 249754 tig00001172 chromosomal tig00000129 chromosomal 3215 tig00000060 chromosomal tig00000348 chromosomal 742809 tig00000144 chromosomal tig00000046 undefined 3142 tig00000117 chromosomal tig00000274 chromosomal 3548 total chromosomal length tig00001521 chromosomal 21995 tig00000528 chromosomal tig00000049 chromosomal 18586 tig00000173 chromosomal tig00003382 chromosomal 11567 NCTC9646 tig00000001 chromosomal 3665711 utg000007l undefined 122221 utg000016l undefined utg000012l chromosomal 193447 utg000037l chromosomal NCTC12132 utg000001l chromosomal 2895268 utg000054l chromosomal utg000112l chromosomal 57852 utg000006l chromosomal utg000007c plasmidic 76667 utg000007l chromosomal utg000006c plasmidic 88507 utg000003c none utg000062l chromosomal 37019 4649423 tig00000027 chromosomal tig00000095 chromosomal 5614 tig00001171 chromosomal tig00000052 chromosomal 782381 tig00000058 chromosomal tig00000186 chromosomal 2783 tig00000139 chromosomal total chromosomal length 2108735 tig00000116 chromosomal tig00000273 chromosomal 3348 tig00008464 chromosomal tig00001520 chromosomal 24836 tig00000527 chromosomal tig00000048 chromosomal 35573 tig00000172 chromosomal tig00003381 chromosomal 10743 tig00000069 none 81493 utg000006l undefined 618933 utg000015l undefined utg000011l chromosomal 62719 utg000036l chromosomal utg000035l none 65396 utg000053l chromosomal utg000111l chromosomal 12398 utg000004l chromosomal utg000006c plasmidic 40870 utg000006l chromosomal utg000004c plasmidic 52547 total chromosomal length utg000061l chromosomal 93957 635691 NCTC10794 tig00000006 chromosomal tig00000083 chromosomal 258828 tig00000267 chromosomal tig00000022 chromosomal 2720 tig00000054 chromosomal tig00000171 chromosomal 2696 tig00000128 chromosomal tig00012926 chromosomal 3441 tig00000112 chromosomal tig00000269 chromosomal 2507 tig00008463 chromosomal tig00000147 chromosomal 1150072 tig00000526 chromosomal tig00000046 chromosomal 23919 tig00000171 chromosomal tig00003380 chromosomal 7550 tig00000088 undefined 7153 utg000002l undefined 23304 utg000014l undefined utg000010l chromosomal 170105 utg000034l chromosomal utg000083l undefined 9380 utg000051l chromosomal utg000110l chromosomal 23469 utg000003l chromosomal utg000005c plasmidic 116760 utg000005l chromosomal total chromosomal length 5493919 utg000018l chromosomal utg000060l chromosomal 12588 Length tig00000036 undefined tig00000067 chromosomal 117209 tig00000002 chromosomal NCTC12131 tig00000004 chromosomal 585202 tig00000052 chromosomal tig00000162 chromosomal 87300 tig00000124 chromosomal tig00012925 chromosomal 3460 tig00000110 chromosomal tig00000267 chromosomal 1633 tig00008462 chromosomal tig00000146 chromosomal 22495 tig00000163 chromosomal tig00000045 chromosomal 26501 tig00000168 chromosomal tig00003379 chromosomal 3818 tig00000035 undefined 168687 total chromosomal length 1387650 utg000012l undefined utg000009l chromosomal 198320 utg000033l chromosomal utg000077l undefined 11705 utg000050l chromosomal utg000109l chromosomal 27587 utg000002l chromosomal total chromosomal length 5475305 utg000004l chromosomal utg000008l chromosomal 288339 utg000017l chromosomal utg000059l chromosomal 33128 total single multiple Miniasm Edges in the AAG NCTC ID contigs dead-ends dead-ends total AAG theoretical distant adjacency edges with adj. max. edges total single multiple tig00001917 plasmidic tig00000194 chromosomal 2066502 tig00002043 chromosomal tig00000255 chromosomal 1991519 NCTC12841 tig00000004 chromosomal NCTC13348 tig00000012 chromosomal 2875 tig00000057 chromosomal tig00012920 chromosomal 1535 tig00000101 chromosomal tig00000229 chromosomal 5309 tig00008457 chromosomal tig00000140 chromosomal 32623 tig00000052 plasmidic tig00000032 chromosomal 26706 tig00000160 chromosomal tig00003374 chromosomal 6632 tig00000215 plasmidic 99472 NCTC10794 utg000001l chromosomal 686754 utg000005l undefined utg000004l chromosomal 188111 utg000027l chromosomal utg000012l undefined 26155 utg000045l chromosomal utg000104l chromosomal 11927 total chromosomal length total chromosomal length 1980239 utg000002c plasmidic NCTC9098 utg000001l chromosomal 3054707 utg000012l chromosomal utg000054l chromosomal 19953 sification Canu tig00001918 plasmidic tig00001919 plasmidic tig00001920 plasmidic tig00000035 undefined tig00003788 chromosomal 8944 tig00003789 chromosomal 46666 total chromosomal length 4887988 NCTC11343 tig00000004 chromosomal 11272 tig00002044 chromosomal tig00002045 chromosomal total chromosomal length NCTC11435 tig00000001 chromosomal tig00000256 chromosomal 3006 tig00000257 chromosomal 620710 total chromosomal length 4868983 tig00000119 plasmidic 168880 tig00000005 chromosomal tig00000007 chromosomal tig00000047 chromosomal tig00000050 chromosomal tig00000029 chromosomal 163558 tig00000045 chromosomal 2613 tig00000114 chromosomal 3490 tig00000124 chromosomal 2641 tig00000065 chromosomal tig00000084 chromosomal tig00000092 chromosomal tig00000095 chromosomal tig00012921 chromosomal 1435 tig00012922 chromosomal 1444 tig00012923 chromosomal 1179 tig00012924 chromosomal 1180 tig00000102 chromosomal tig00000106 chromosomal tig00000107 chromosomal tig00000109 chromosomal tig00000256 chromosomal 3504 tig00000263 chromosomal 1548 tig00000264 chromosomal 2071 tig00000266 chromosomal 7550 tig00008458 chromosomal tig00008459 chromosomal tig00008460 chromosomal tig00008461 chromosomal tig00000141 chromosomal 1989140 tig00000143 chromosomal 297068 tig00000144 chromosomal 33325 tig00000145 chromosomal 260864 tig00000053 plasmidic tig00000050 undefined NCTC9098 tig00000001 chromosomal tig00000030 chromosomal tig00000036 chromosomal 27618 tig00000039 chromosomal 27467 tig00000040 chromosomal 21778 tig00000042 chromosomal 28070 tig00000161 chromosomal tig00000162 chromosomal tig00000163 chromosomal tig00000164 chromosomal tig00003375 chromosomal 6460 tig00003376 chromosomal 8901 tig00003377 chromosomal 13617 tig00003378 chromosomal 7801 tig00000217 plasmidic 11997 tig00000218 plasmidic 87460 tig00000221 plasmidic 2054 tig00000222 plasmidic 13460 utg000003l chromosomal 73314 utg000004l chromosomal 198317 utg000005l chromosomal 344693 utg000008l chromosomal 84572 utg000006l undefined utg000007l undefined utg000010l undefined utg000011l undefined utg000005l chromosomal 116854 utg000006l chromosomal 68409 utg000007l chromosomal 132209 utg000008l chromosomal 135142 utg000028l chromosomal utg000030l chromosomal utg000031l chromosomal utg000032l chromosomal utg000029l undefined 24896 utg000059l undefined 21237 utg000060l undefined 5107 utg000071l undefined 44778 utg000046l chromosomal utg000047l chromosomal utg000048l chromosomal utg000049l chromosomal utg000105l chromosomal 10715 utg000106l chromosomal 7331 utg000107l chromosomal 10881 utg000108l chromosomal 15574 utg000007c plasmidic utg000008c plasmidic utg000010c undefined NCTC13348 utg000001l chromosomal NCTC5050 utg000001l chromosomal 1602894 utg000002l chromosomal 1353385 utg000003l chromosomal 1365254 utg000004l chromosomal 1153772 utg000004l plasmidic NCTC7922 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000002l chromosomal 1563634 utg000003l chromosomal 219418 utg000005l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal utg000055l chromosomal 76527 utg000056l chromosomal Table A.7: Miniasm contigs classification per 30382 utg000057l chromosomal 38221 dataset. Total length of chromosomal 337874 utg000007l chromosomal 29947 utg000016l chromosomal utg000058l chromosomal 67870 contigs is given.
	is not available.	

Table B .

 B [START_REF] Ameur | Goodbye reference, hello genome graphs[END_REF] shows the impact of using fpa on time, memory and assembly metrics. Using fpa decreases both disk usage and total computation time of downstream analysis while having no impact or a positive one on assembly metrics. Usage of fpa does not radically affect mapping wall-clock time and memory usage, but it reduces by 13% to 67% the memory usage and CPU time of the assembly step (the computation time of fpa is included in the mapping time). Moreover the size of the PAF file produced by Minimap2 is reduced by 40% to 79 %. Table B.5: Impact of fpa on assembly using Miniasm. B.7 COMBINATION OF YACRD AND FPA 131B.7 Combination of yacrd and fpaTo evaluate the effect of running both yacrd and fpa, we ran two different pipelines. The first one uses a standard Miniasm pipeline (called 'basic'): Minimap2 plus Miniasm with recommended parameters.The second one (called 'extended') runs yacrd with best parameters for each dataset, then Minimap2 with recommend parameter on scrubbed reads and pipes the results in fpa to filter out internal matches and overlaps shorter than 2000 (option drop -i -l 2000), and finally runs Miniasm on scrubbed reads with filtered overlap. TableB.6 shows how the integration of both yacrd and fpa in Miniasm pipeline ('extended' row) compares against standard Miniasm ('simple' row). Each pipeline is based on Minimap2 so their memory usages are equivalent. The extended pipeline takes twice more time because Minimap2 is run twice (once for yacrd and once for Miniasm). Minimap2 is a time bottleneck in both pipelines.The extended pipeline improves the quality of assemblies, in terms of NGA50, number of indels and mismatches per 100 kbp, and misassemblies. It also decreases the number of contigs while keeping the total length of assemblies similar.

		Dataset	C. elegans		D. melanogaster	H. sapiens chr 1
		Pipeline	w/o fpa		fpa	w/o fpa	fpa	w/o fpa	fpa
	Time (s)	Mapping	3296	3247		3510	3659	1570	1558
	Assembly Total Dataset	297 3593	139 3386 C. elegans	782 4292	186 3845 D. melanogaster 103 1673	50 1608 H. sapiens
	Memory Pipeline Mapping (GB)	51	simple	51	extended	53	54 simple	41 extended	40 simple	extended
	Assembly (Mbp) # contigs PAF size Assembly # contigs NGA50 NGA50 Largest contig	4788 32G 168 407821 5422030 2594 226 9.5G 150 432112 438055	13836 171 54G 423 451479 423007 4224860	5335 423 11G 381 423007 455307 8745435	1797 345 8.9G 184 715276 96225 5559611	587 184 3.2G 96225 216 106259 15987693	367 488573 6875897
	# misassemblies Largest alignment	1212 1231264 1149	2126 1527213	1840 2396453	1745 3053469	1502 857015	4444801
	length Total length	112248122 111641079 114194187 110177189 138733599 134443509 202082384 202405973 138733599 136623341 202082384 198386315
	per 100kb # mismatches # indels # indels per 100 kbp	1893.44 7700.42	1854.95 7628.39 7842.91	4233.35 5789.82 7380.12	4190.43 5742.05 5789.82	4089.56 6554.02 5593.09	4065.95 6534.92 6554.02	6359.25
	Dataset # mismatches per 100 kbp E. coli Nanopore 1944.78	E. coli Pacbio 1720.16 4233.35	4052.42	4089.56	3884.23
	Pipeline # misassemblies	w/o fpa	1396	fpa	w/o fpa 907	fpa 2126	1412	1745	363
	Time (s)	Mapping	26		29			23	24	
	Assembly Total Dataset	4 30 E. coli Nanopore 2 31		2 25	1 25 E. coli Pacbio
	Memory Pipeline Mapping (GB)	3	simple	3	extended	4	4 simple	extended
	Assembly (Mbp) # contigs	52	1	45		1	33	22 4	3
	PAF size # contigs NGA50 Assembly NGA50 Largest contig	141M 5 1450762 82M 5 1450762 1246808 5147604	85M 8 3775889 562741 5186180	38M 499610 9 292111 1974889	1271550 4960107
	# misassemblies Largest alignment	5 1553466	5	3775889	8	9 1083557	1465922
	length Total length	5147604 5147604 5283927	5394119 5186180	5395896 5417095	5355278
	per 100kb # mismatches # indels # indels per 100 kbp	4341.81 5279.79	4425.24 5376.03 5279.79	1862.72 7968.63 5097.12	1841.66 7945.11 8011.42	7969.99
	# mismatches per 100 kbp	4341.81		4113.01		1856.96	1844.42
	# misassemblies		5			3		11	8

Table B .

 B 6: Impact of yacrd and fpa on assembly using Miniasm. Simple match to basic Miniasm pipeline and extend match to version with yacrd and fpa.

Pierre Kerner translation from french, original quote "N'est vivant que ce qui évolue"

https://blog.pierre.marijon.fr/long-reads-overlapper-compare/

https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/

See e.g. https://huit.re/PJMMA_uF

https://github.com/GFA-spec/GFA-spec

https://gitlab.inria.fr/pmarijon/yacrd

https://gitlab.inria.fr/pmarijon/fpa

https://web.stanford.edu/ ~gkamath/NCTC/report.html

https://github.com/hackseq/modular-assembly-hs18

https://github.com/ekg/seqwish

http://ekg.github.io/2019/07/09/Untangling-graphical-pangenomics

https://lh3.github.io/2019/07/08/on-a-reference-pan-genome-model

https://lh3.github.io/2019/07/12/on-a-reference-pan-genome-model-part-ii

https://github.com/rrwick/DASCRUBBER-wrapper

https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/get_ mapping_info.py

https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/found_ chimera.py

Acknowledgements

This work was supported by an Inria doctoral grant and the INCEPTION project (PIA/ANR-16-CONV-0005). The authors are grateful to Samarth Rangavittal, Monika Cechova, Jason Chin, Jason

This blog post was presented at the poster session of JOBIM (This work was supported by Inria and the INCEPTION project (PIA/ANR-16-CONV-0005) and the University of Lille HPC facility. The authors thank Maël Kerbiriou for algorithmic help.

https://github.com/natir/yacrd and https://github.com/natir/fpa Supplementary data are available online.

Miniasm Dataset Contig name Classification Length NCTC10006 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal total chromosomal length NCTC10332 utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000006l chromosomal utg000007l chromosomal utg000008l chromosomal utg000009l chromosomal utg000010l chromosomal utg000011l chromosomal utg000012l chromosomal utg000013l chromosomal utg000014l chromosomal utg000015l chromosomal utg000016l chromosomal utg000017l chromosomal utg000018l chromosomal utg000019l chromosomal utg000020l chromosomal utg000022l chromosomal utg000023l chromosomal utg000024l chromosomal total chromosomal length utg000001l none utg000021l none NCTC10444 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005c chromosomal total chromosomal length utg000006c none NCTC10702 utg000001c chromosomal utg000004l chromosomal total chromosomal length utg000003l plasmidic utg000002c undefined NCTC10766 utg000001l chromosomal utg000002l chromosomal utg000003l chromosomal utg000004l chromosomal utg000005l chromosomal utg000007l chromosomal utg000010l chromosomal total chromosomal length utg000006c plasmidic utg000008c plasmidic

CHAPTER 4: POST ASSEMBLY read mapping then generates consensus reads with the falcon sense tool [START_REF] Chin | Phased diploid genome assembly with single-molecule real-time sequencing[END_REF]. Canu then performs overlapping of error-corrected reads with a legacy algorithm from the Celera assembler, named ovl.

The trimming step detects hairpins, chimeric reads, and low-support regions and subsequently cuts reads. A 'unitigging' step is performed using bogart, a modified version of CABOG [START_REF] Miller | Aggressive assembly of pyrosequencing reads with mates[END_REF], to produce a graph that records only the longest overlaps between corrected reads (termed BOG for 'Best Overlap Graph'). Canu generates contigs from this graph and improves their consensus accuracy by re-mapping all reads.

The Miniasm pipeline consists of two separate tools: Minimap2 and Miniasm [START_REF] Li | Minimap2 and Miniasm: Fast mapping and de novo assembly for noisy long sequences[END_REF]. Minimap2 finds overlaps between raw reads and outputs alignments. Miniasm trims low-coverage regions of reads, then constructs a string graph from Minimap2 alignments that are suffix-prefix overlaps. Miniasm performs simplification on the graph inspired by short-read assembly: transitive reduction, tip removal, bubble popping, and short overlaps removal based on a relative length threshold. After simplifications, non-branching paths are returned as contigs.

The HINGE [START_REF] Govinda | HINGE: long-read assembly achieves optimal repeat resolution[END_REF] assembler uses raw uncorrected reads (similarly to Miniasm) to construct an overlap graph similar to the BOG of Canu. HINGE attempts to output finished bacterial assemblies through improved repeat-resolution. In cases where there subsist repetitions that are not spanned by reads, HINGE provides a visualization of the resulting assembly graph for manual inspection.

Assembly graphs

Short-read and long-read assemblers output final assembly sequences in FASTA format, and an increasing number of tools also output an assembly graph in Graphical Fragment Assembly (GFA) format 3 . A final long-read assembly graph typically consists of all contig sequences as nodes, and a set of overlaps between contigs as edges. Assembly graphs Most long-read assemblers start by constructing then analyzing a string graph (SG) of the reads [START_REF] Myers | The fragment assembly string graph[END_REF], where each read is a node, and overlaps between reads are represented by edges to which additional information is attached (e.g. overlap length, overlap error rate). In addition, transitive reduction is performed on the edges and reads that are fully contained in others are discarded.

Methods

We hypothesized that the final contig graph produced by assemblers does not always reflect all the information present in the raw data, and may be missing overlaps or even genomic regions. We built a novel algorithmic framework to recover some of the 'missing' information and further analyze it.

The main steps are presented in Fig. 4.14, and the next sections describe them in more details.

Raw string graph

First, we eliminate chimeric reads from the raw data based on overlaps found by Minimap2 using a custom tool 4 (manuscript in preparation [START_REF] Marijon | yacrd and fpa: upstream tools for long-read genome assembly[END_REF], see Supplemental Fig. A.6). A string graph (SG) is then constructed using overlaps between chimera-removed reads (here, overlaps found by Minimap2).

Dataset description

In this challenge, we have two datasets with similar reads composition. A set of Illumina Hiseq like reads and a set of Pacbio like reads, simulated by CAMISIM [START_REF] Fritz | CAMISIM: simulating metagenomes and microbial communities[END_REF].

We have two datasets, Marine Dataset built to correspond to the composition of a metagenomics sequencing of seawater, and Strain Madness Dataset with very important strain-level variation.

Assembly strategy

On the first hand we perform a short reads assembly with gatb-pipeline 1 , that is a multi-kmer size short read assembly based on Bloocoo [START_REF] Benoit | Bloocoo, a memory efficient read corrector[END_REF] for read correction, Minia 3 [START_REF] Chikhi | Space-efficient and exact de bruijn graph representation based on a bloom filter[END_REF][START_REF] Chikhi | Compacting de bruijn graphs from sequencing data quickly and in low memory[END_REF] for contig assembly and BESST for scaffolding [START_REF] Sahlin | Improved gap size estimation for scaffolding algorithms[END_REF][START_REF] Sahlin | BESST-efficient scaffolding of large fragmented assemblies[END_REF][START_REF] Kristoffer Sahlin | Assembly scaffolding with pecontaminated mate-pair libraries[END_REF].

On the second hand, my main contribution in this challenge, we build a long-read assembly pipeline with fmlrc [107] a hybrid long-read corrector, and assembly of corrected long read with a pipeline Minimap2, fpa (no internal match and overlap lower than 2000 bases), Miniasm or a wtdbg2 assembly. We try to perform read classification before correction and assembly with centrifuge [START_REF] Kim | Centrifuge: rapid and sensitive classification of metagenomic sequences[END_REF] to avoid the complexity of metagenomics dataset because our correction assembly tools are not built to use this type of data, but we did not use this strategy due to lack of time.

Finally, we submit a reconciliation of short reads assembly made by gatb-pipeline and wtdbg2 assembly of corrected long-read, if a short reads contig maps in a long reads contig the short reads contigs is discarded. This strategy should have allowed us to have good quality contigs (from long reads assemblies) on the most present strains without losing the information of the least present strains (contained in the short reads contigs). Indeed, long reads sequencing technologies have lower sequencing depths which cannot allow the detection and assembly of the least present strains.

When writing this document, we do not have yet the result of other teams or an idea of quality of our assembly.

10X linked-read deconvolution

10X linked-read sequencing is a sequencing technique developed by 10X genomics. Figure 5.1 presents the main idea of 10X linked-read sequencing. After purificationn DNA is fragmented into large molecules (≈100 kb length). By microfluidic method each large molecule is separated into an individuals bubble. Each bubble is associated to a barcode. In a bubble DNA is fragmented into shorter fragments (compatible with Illumina sequencing method) and a barcode is added to the extremity of each fragment. After a classic short-read sequencing, we can use barcode information to determinate if read comes from the same large fragment or not.

Unfortunately, there is not a barcode for each large DNA molecule and therefore several fragments will share the barcode. The task of assigning each reads its original molecule is called deconvolution. Knowing exactly the original molecule of each reads is useful to:

• assembly and scaffolding, by allowing to solve repetitions that are spanned by large molecules, In order to have a better understanding of the contig graph produced by a given assembler, we wish to filter out contigs that are not of chromosomal origin. We compare each contig against the nr database using Megablast (Morgulis et al., 2008), and classify a contig as chromosomal if its length is greater than 1 Mb, or is such that 80% of the first 50 Megablast hits map to a complete bacterial genome. We use the same second criterion to classify whether a contig is of plasmid origin, regardless of its size. Remaining unclassified contigs are classified as of undefined origin. In addition, we flag as containment contigs those which map (using Minimap2) over at least 75% of their length to another contig.

A.2 On whether Canu contig fragmentation can be solved using Miniasm contigs

To check if Miniasm contigs could possibly enable to order and fill gaps between Canu contigs, we performed an assembly using the Minimap2 and Miniasm pipeline using both the Canu contigs and the Miniasm contigs as input (to be clear: no reads were used as input to this assembly, only two contig sets). To allow Minimap2 to find shorter matches, mapping of Miniasm contigs against Canu contigs was performed with the following parameters: -x map-pb -m 25 -n 2. To avoid Miniasm filtering overlaps, we ran it with the following parameters: -1 -2 -s 1000 -c 0.

We ran this pipeline on all datasets, and counted the number of times that a Miniasm contig overlaps with two Canu contigs. We also counted the number of contigs generated by Miniasm using the overlap created at the previous step. Results are summarized in Supplementary Table A A.4 We observed that a portion of tig1 is inverted with respect to the NCTC assembly, with no impact on the path analysis as this putative misassembly does not involve an extremity of the contig.

A.9 YACRD: Yet Another Chimeric Read Detector

B.1 Datasets

This section provides metrics about each dataset. The E. coli original dataset had large coverage (> 200x) so we subsampled it dataset with seqtk 1 down to target 50x.

B.2.2 miniscrub

We use version of commit 3d11d3e. We did not run miniscrub in GPU mode so we followed te authors instructions for installation and run https://bitbucket.org/berkeleylab/jgi-miniscrub/.

B.2.3 yacrd

We use version 0.5.1.

B.2.4 fpa

We use version 0.5.

B.2.5 BWA

We use version 0.7.17-r1188.

B.2.6 Minimap2

We use version 2.16-r922.

B.2.7 Miniasm

We use version 0.3-r179

B.2.8 wtdbg2

We use version 2.3.

B.2.9 QUAST

We use version v5.0.2.

B.2.10 Porechop

We use version 0.2.3 seqan2.1.1

B.2.11 Script and reproduction of analysis

All information to repeat our analysis can be found at this address https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly

yacrd parameter optimisation

yacrd is very dependent on the mechanism used to find common regions between reads. We rely on Minimap2 for this task. Minimap2 is based on short sequence seeds to find common regions between reads. In all-against-all alignment, it takes as parameter a distance between two seeds (-g, default:

10,000 bases). In yacrd we assume that regions with low seed coverage have low quality, and therefore need to be scrubbed. Yet with the default seed distance, it may happen that Minimap2 finds two consecutive seeds that correspond to two "good" read regions separated by one "bad" read region.

Therefore this parameter needs to be tuned.

Another important parameter is the read coverage threshold to consider that a read region is of sufficient quality (yacrd parameter -c).

We have changed these two parameters as follows: i) the maximum distance between the two seeds from 50 to 2450 with a step of 100, ii) the minimum coverage before eliminating the region from 1 to 15 with a step of 1.

We evaluated the influence of these parameters on several metrics: For H. sapiens Nanopore dataset we find that a value of 500 for the -g parameter and 4 for the -c parameter optimizes the number of contigs in Miniasm assembly and NGA50, and remains reasonable across the other metrics. We therefore recommend to use this value for Nanopore data and we used it in all of our results.

For C. elegans PacBio dataset P6-C4, using a similar reasoning, optimal values are different and are 800 for the -g parameter and 4 for the -c parameter.

For E. coli PacBio Sequel dataset, using similar reasoning, optimal values are different and are 5000 for the -g parameter and 3 -c parameter.

We therefore used the above values for all datasets obtained with the same sequencing technology.

B.4 MAPPING OF SCRUBBED READS 127

B.4 Mapping of scrubbed reads

To compute quality metrics, for each dataset we mapped both scrubbed and raw reads against their respective reference genomes with BWA (we used ont2d preset for Nanopore reads, and pacbio preset for Pacbio reads). The mapping results were analyzed using a custom Python script 3 which reports the number of mapped reads, the sum of edit distances between each read and the matching reference sequence, the sum of positions of the genome mapped by a read, and the error rate.

To count the number of chimeric reads for each dataset, we remapped reads against each reference genome with Minimap2 (we used map-ont preset for Nanopore reads, and map-pb preset for Pacbio reads). We analyzed the PAF (Pairwise Alignment Format) file outputted by Minimap2 with a custom Python script 4 . This script parses a PAF file and associates to each read a list of pairs of starting/ending mapping positions. For each read, if two pairs of positions overlap in the corresponding list, they are merged. If, after merging, there remains more than one pair of positions, the read is marked as chimeric. To manage circular genomes we ignore reads with mapping positions near to the beginning/ending of the genome (within a distance of reference length -0.1 × reference length from the beginning/ending).

To count the number of adapters in Nanopore reads we use Porechop [START_REF] Wick | Porechop: adapter trimmer for oxford nanopore reads, jan[END_REF] with out any specific parameter and we sum the number of adapters at start and end of reads, we ignore the count of middle adapters.

Table B.2 shows that scrubbing reduces the number of reads and the number of bases mapped against the reference, but the error rate is reduced too (at least 1% for yacrd and at least 2% for DASCRUBBER) and the number of chimeric reads was reduced by two or more.

B.5 Quality of assembly

To assess the quality of assemblies with and without scrubbing, we ran both Miniasm and wtdbg2 from scrubbed reads and raw reads with recommended parameters for each sequencing technology.

After assembly we ran QUAST with parameter --min-identity 80.0.

Table B.3 shows a summary of outputted metrics for Miniasm. Scrubbing increases both the NGA50 and the length of the largest alignment. The size of the largest contig is often decreased but the contigs quality seems better as the number of misassemblies decreases. Finally the number of indels and mismatches per 100kb are quite stable. We thus observe that scrubbing improves assembly metrics, yacrd and DASCRUBBER having similar results, better than miniscrub.

Abstract

The sequencing of genetic information provides better understanding for a large number of biological phenomena: e.g. genetic diseases, speciation events, fundamental mechanisms of cell function.

Sequencing techniques have considerably evolved since the Sanger method (1977). Nowadays thirdgeneration sequencing technologies greatly reduce the costs of sequencing complete genomes. They produce longer reads (sequence fragments), but require the design of specific assembly tools that take into account the high error rates in the produced fragments.

The study of methods used by third-generation read assembly pipelines has revealed that improvements in assembly were possible without modifying assembly tools themselves. Some improvements are thus proposed in this thesis work, and were implemented through publicly available tools.

yacrd and fpa pre-process the set of reads prior to assembly, in order to improve efficiency and quality of the assembly process. KNOT combines information from both the input reads and an assembly, in order to provide insights on how to improve the contiguity of an assembly.

Keywords: Genome assembly, Third generation sequencing, Assembly graphs

Résumé

Le séquençage de l'information génétique a permis de mieux comprendre un grande nombre de phénomènes biologiques, maladies génétiques, évènements de spéciations, mécanismes fondamentaux du fonctionnement de nos cellules. Les techniques de séquençage ont beaucoup évolué depuis la méthode de Sanger (1977). De nos jours, les technologies de séquençage de troisième génération per-