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et de l’université de Lille et du centre INRIA Lille Nord Europe qui mon accueuil durant cette thèse.
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Chapter 1

Introduction

”Only what is evolving is alive” 1 – this definition of life, like many others, is incomplete. And one

could probably even find some counter-examples to it. One should first need to define what evolution

is. We can try to define the evolution of a thing as its changes to optimize the capability to conserve

itself. To do that, such a thing needs some form of memory.

In the majority of current known life, the physical support of this memory is DNA, which stands

for DeoxyriboNucleic Acid. DNA is a molecule composed of two strands. Each strand is composed

of a phosphate backbone. Along these backbones, we have a sugar linked to a nucleic acid. We have

four types of nucleic acids: Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), Figure 1.1

shows the 3D structure of DNA.

The two strands of DNA are linked by their nucleic acids, with some rules. In front of an A we

will always have a T, in front of a C we will always have a G and vice-versa. A DNA strand is thus the

complementary of the other. We say DNA is composed of two anti-parallel strands. By convention

we will always represent DNA in one orientation and will omit the other.

In bioinformatics, we generally represent a DNA strand by a single string on a four letter

alphabet (A, C, T, G). The properties described above allow us to reconstruct the composition of one

strand from the other by using the complementary letters (replace A by T, T by A, C by G and G

by C) and reverse the order.

With many complex mechanisms, not detailed here, information contained in DNA is used to

build essential molecules to keep the organism alive, and to reproduce it. This information is therefore

the basis of the organism’s functioning. If this information is destroyed or modified, the living organism

will behave differently or die. Thus, knowing and understanding the succession of DNA bases is an

effective entry point for analyzing many biological phenomena, diseases, and evolution.

To read this information, we rely on many biochemical techniques that we group under the term

sequencing techniques. These techniques allow to read fractions of DNA fragments that are more or

less long, and with various error rates.

1Pierre Kerner translation from french, original quote ”N’est vivant que ce qui évolue”
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Figure 1.1: Structure and composition of DNA. Source: Wikipedia https://en.wikipedia.org/

wiki/File:DNA_simple2.svg

1.1 Sequencing

Sequencing technologies evolved quickly since 1977 [91]. Today we distinguish three generations of

sequencing technologies, based on their properties. In this section we focus on sequencing technolo-

gies properties and their impact on different bioinformatics tasks and do not detail the underlying

biochemical methods.

The two most important properties of a sequencing technology are the size of the DNA fragments

it can read, expressed in number of bases, and also the number of errors that the technology will

produce, expressed in percentage. An error rate of 0.1% indicates that the sequencer will make one

error every thousand bases. When sequencing can read large fragments we have more information

about the original sequence, which facilitates downstream analysis. If a read contains many errors

(replace a letter by an other one, insert random letter(s) or skip one or more letters), using the

information provided by sequencing may be impossible or would require additional operations to

correct those errors. Those operations will sometimes be very expensive, in terms of computer time.

Generation Technology Read length (bd) Error rate Source
First Sanger ≈ 2 kb Low (≈ 2%) [76]
Second ABI/Solid 75 Low (≈ 2%) [76]
Second Illumina/Solexa 100–150 Low (<2%) [76]
Second IonTorrent ≈ 200 Medium (≈ 4%) [76]
Second Roche/454 400–600 Medium (≈ 4%) [76]
Third Pacific Biosciences ≈ 10 kb (max 100 kb) High (≈ 18%) [76] [93]
Third Oxford Nanopore ≈ 10 kb (max 1 mb) High (≈ 12%) [93] [86]

Table 1.1: This table presents length of reads and error rate of main sequencing technology. Pacific
Biosciences and Oxford Nanopore evolve quickly and different papers may report diverse
figures. .

Sanger technique produces long reads with very small error rate, but with a very low throughput

and a very expensive cost per base. Second generation appeared in the mid-2000s. It increased the

throughput and reduced the cost per base, but reduced dramatically the length of the reads and

increases the probability of error (≈ 1%). The most frequent error type for this technology is a

substitution between two nucleotides, (i.e. sequencer reads A in place of a T). Third generation dates

https://en.wikipedia.org/wiki/File:DNA_simple2.svg
https://en.wikipedia.org/wiki/File:DNA_simple2.svg
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back to the early 2010s. It has greatly increased the size of the reads but also the error rate while

maintaining a good throughput. Errors in third generation are mostly insertion or deletion, sequencer

didn’t read a part of sequence or introduce random base not present in original sequence. Table 1.1

presents read lengths and error rates of many sequencing technologies. We would like to emphasize that

both second and third generation technologies are still used today, and sometimes both technologies

are used for a single experiment, as we will discuss later about hybrid techniques.

With sequencing one can read all information contained in a genome. But, no matter the

technology, we get lots of (short) unordered fragments. Genome assembly therefore designates the

task of reconstructing the original sequence from this set of unordered fragments.

1.2 The genome assembly task

If you want study an organism, knowing the complete genome sequence is very useful for a lot of tasks,

such as as finding genes of interest, or study the sequence variations across a population . . . Yet, the

best sequencing technologies still provide reads that are at least 2 orders of magnitudes shorter than

genomes. To understand the assembly problem, we provide a useful analogy which, to the best of our

knowledge, has never been formulated before.

Imagine a crazy copyist monk. He is copying a book but he randomly chooses where he starts

to copy. And he only copies small fragments of text at a time. The copyist monk makes errors, e.g.

he would sometimes replace a symbol by another one, would skip a symbol, or would add a random

symbol. We call these errors substitutions, deletions and insertions, respectively. Now imagine that

there are multiple such copyist monks. They choose randomly where they begin to write. They

can choose several times the same region of the book or never choose to copy a certain region. We

refer by ”coverage” the number of times a given chunk of the original book is copied. Coverage may

significantly differ across the genome’s regions. In this analogy, the book is the genome of the organism

we want to study, and the copyist monks are our sequencer. The fragments of text are reads, and the

operation to rebuild the book is assembly.

The assembly task can be seen as an ordering problem. We try to put the text fragments in

the original book order, and merge common parts at the end. To carry out this ordering, we could

randomly take a fragment of text, and search among all the others if there exists a fragment that begins

with the end of the one we took. In other words, the prefix of the sought fragment corresponds to the

suffix of the taken fragment. When we observe this phenomenon we say that the fragments overlap.

This a key concept in assembly. Once we have found the best overlap (generally the longest) for a text

fragment we can merge the two fragments into one and restart our search for a new fragment that

overlaps with the one we just created. And so on until there are no more fragments. This presentation

of how to perform assembly is very simple, and in fact it is what we will later refer to as the greedy

algorithm. We will see more advanced assembly algorithms in chapter 3.

The genome assembly community, like any other scientific community, has its own set of con-

cepts. A read designates a fragment of DNA produced by sequencer. An overlap occurs between

two reads when the suffix of a read is similar to the prefix of another read. The length of the common

part is called the length of overlap. A contig designates a sequence of DNA produced by an assembly
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tool. The exact definition of what is a contig changes between each assembly tool. We can see in

some publications the term unitig: we will not get into details here, but a common fact is that contigs

are built from unitigs. A scaffold designates an ordering of contigs. Most of the times we cannot

reconstruct each chromosome into a single contig. We describe some reasons for this fragmentation

later. With external information such as restriction maps, linked reads, or targeted sequencing, one

can order contigs and determinate approximately the number of bases in the gaps between contigs.

Figure 1.2 gives a summary of how reads are processed to obtain an assembly.

Reads

...

Overlaps

...

contig1

contig2

contig3

contig4

Contigs

contig4 contig1

contig3contig2

Scaffold

Figure 1.2: Schematic of DNA assembly. Each horizontal line represents a read, grey boxes represents
overlaps found between reads. These overlaps are used to build contigs and finally these
contigs are ordered into a scraffold.

1.3 Thesis outline

As stated above, latest sequencing technologies allow to sequence larger DNA fragments. One could

think that the task of assembly becomes easier since we have to solve a puzzle with larger pieces. But

this is not the case, as we will see in the following chapters. The main goal of this work is improve

long-read genome assembly without creating a new assembly tool or modifying an existing one. The

tools developed in this thesis can interface with existing long-read assembly tools or even with other

bioinformatics analysis tools.

Chapter 2 addresses some of the key steps that are performed prior to assembly. The quality of

the data provided to an assembler has a direct impact on the produced results. This chapter describes

the state of the art of tools used to detect overlaps between DNA fragments. The first contribution

is a discussion on how to compare such tools. The second contribution of the chapter is a paper that

presents two tools we developed during this thesis [63]. yacrd detects and removes regions with very

high error rates in reads. Experiments show that removing low quality regions from reads improve

assembly tools results. fpa filters out uninformative overlaps in order to save disk space.

Chapter 3 presents a state of the art of several assembly methods, both from a theoretical

point of view, and how they work in practice. This chapter introduces key concepts used in the next

chapter.
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Chapter 4 concerns some steps that occur after assembly. The first contribution is a blog post

that presents the difficulties of evaluating the results of certain assembly tools that do not correct

reads (or even polish contigs). The second contribution presents a tool for analyzing and improving

assembly results, KNOT, that we developed during this thesis [62].

Chapter 5 will focus on various other scientific contributions: participation in the development

of a graphical interface for genomic data analysis, participation in the contest is, and some work

around 10X data.



6 CHAPTER 1: INTRODUCTION



Chapter 2

Preassembly

Two key aspects in long-read genome assembly are 1) the detection of overlaps between reads and 2)

dealing with errors in reads. Computing overlaps is done prior to assembly can thus be considered

as a preassembly task, even if some assembly pipelines compute overlaps several times. Computing

overlaps is a hard task, even harder with high error rate reads. A number of tools have been designed

in the last decade, with their own definition of what is an ’good’ overlap. The section 2.1 gives a short

overview of algorithmic ideas on which overlappers are designed. The next section 2.2 discusses about

comparison of overlaps found by state-of-the-art overlappers for long read data.

After sequencing a usual task is to clean the set of reads, e.g.

• remove too short reads (less than 500 bp, 1000 bp or even 2000 bp)

• find and remove the sequencing adaptors (that is a short sequence added before DNA fragment,

this short sequence is required for some biochemical consideration, but they can create trouble

in assembly)

or perform some operations to improve the quality of reads, e.g.

• found highly erroneous regions of reads and replace them by more correct one, this operation is

called scrubbing

• correct reads using information from other sequencing technology (this is called hybrid correc-

tion) or with same technology, this operation is called correction

Cleaning preprocessing intends to improve the quality of the assembly or to help the task of assembly

(e.g. by reducing the number of false overlaps). As overlapping tools are not aware of what the user

will do with the computed set of overlaps, all information is reported (it’s a good point). But one

has to remember that the number of overlaps for a usual sequencing experiment is very large. Storing

them may require more than terabyte for some large dataset. In section 2.3.1 we introduce in more

details bottlenecks and the solution we have proposed.

Correction and scrubbing seeks to perform the same target: reduce the error rate of reads.

Scrubbing works on large region (around ten or hundred bases) while correction works at the level
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of one base. This difference of scale implies different requirements in terms of computation time and

memory usage.

Our work on overlap selection and on scrubbing tools was merged in a paper presented in section

2.4.

2.1 Overlaps and their impact on assembly

As we defined in the introduction, when two sequences share a common substring, we say that they

overlap or that one of them maps on the other see 2.1a. It is possible for sequences to share a

common substring just by chance (because of the 4-letter alphabet) but the probability of this event

decreases when the length of the common substring increases. Intuitively, this probability gets smaller

as common substring gets longer. If the reads does not contain sequencing errors, the only criteria to

evaluate whether a common substring is ”true” or not could be the length of this substring. However,

the number of errors in the sequence of readings breaks this paradigm and forces us to integrate the

errors when assessing the quality of an overlap. Figure 2.1b show an overlap with two mismatch.

There are two base pairs that do not match between the two sequences - knowing if this overlap is

”true” or not isn’t obvious.

(R1) ACTGAGATGGACTTAGA

(R2) ACTTAGAGAGGATAGGATA

(a) R1 shares 7 bases at its end with the beginning of
R2, without any error

(R1) ACTGAGATGGACTTAGA

(R3) ACT-ACACATGGTAGTAGAA

(b) R1 shares 5 bases at its end with R3, with one substi-
tution and one deletion

Figure 2.1: When reads don’t contain error, overlaps look like (a), but sequencing technologies make
errors and the overlap present in (b) can be a true overlap.

In this document we distinguish two tasks in similarity search between two sequences:

• mapping: one tries to find the position of a read in a larger sequence (e.g. comparing differ-

ent datasets, experiments from different sequencing generations, or between the reads and an

assembly, against a reference genome)

• overlapping: one tries to find which reads share a common substring with other reads (e.g.

finding common substrings in the same dataset)

Even if mapping and overlapping can be seen as different tasks, one could observe that the same tools,

and underlying algorithmic, can be used to solve both tasks.

The seed-and-extend strategy. Search of similarity between two or more DNA sequences has

many links to plain text search. Seed-and-extend is an approach used by many tools to find similar

sequences between a target (e.g. a reference genome) and a query (e.g. a read). The idea is to find a

high similar subsequence (often exact), namely the seed (or anchor), and then to extend this seed to

have a larger common subsequence. Tools that implement this approach usually create an index of
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the target. This index need to answer to a simple question: is a given subsequence exist in target and

at which position. Each query is processed and its substrings are searched in the index. This gives

a set of seeds that can be extended through alignment techniques such as dynamic programming. If

the alignment score reaches a given threshold, a hit is reported.

Many tools for mapping and overlapping use seed-and-extend strategy. The most popular is

Blast [3, 4]. Specific tools dedicated to sequencing are BWA [52] or blasr [15]. Implementation

details of indexes, size and number of anchors change between tools. For example BWA or blasr use a

FM-index [26] to perform anchor search.

The seed-only strategy. With NGS technology development more and more data had to be pro-

cessed and the seed-and-extend strategy was replaced by a seed-only strategy. Indeed, the extension

step is still very time-consuming. With the seed-and-extend strategy, an overlap is scored by its length

and the number of errors in the alignment. With the seed-only strategy we don’t have an alignment.

The overlap is thus scored using the number of seeds and their positions.

This strategy was used in SGA [98] assembly tools, during overlapping step SGA search exact

overlap between low error read, by search a substring at end of read in a FM-index.

Specificity of long-reads (longer reads, high error rate) has relaunched this research field. Chu

et al. produce an interesting review about some of third-generation overlap search in [22], discussed in

next section. We can cite Hisea [39], Daligner [73], MHAP [44] and Minimap2 [56, 57] as overlapping

tools they use this strategy to found overlap between thrid generation overlap. We will give some

details on MHAP and Minimap2 in section 3.

For third generation reads, the length of the reads and the large number of errors make the

choice of algorithm parameters even more complicated, particularly concerning how we choose the

seed and length of seeds. But by removing the extend step the computation time was reduce and help

to manage the high error rate of thrid generation reads.

On the importance of overlaps. As overlaps are the basic components to reconstruct the original

sequence, a missing overlap may lead to a wrong assembly (entire pieces of the genome inverted) or to

a high number of contigs. In [22], Chu et al. compare the state of the art third generation sequencing

read overlappers on simulated datasets and on real datasets. A drop in the accuracy and recall of

these algorithms can be observed between real and simulated data 2.1.

Pacbio Nanopore
Simulated Real Simulated Real

Sensibility 88.9m - 92.4d 59.6m - 83.8d 90.4g - 95.2b 88.9b - 92.9d

Precision 81.9b - 96.5g 79.8h - 96.5b 75.1b - 99m 73b - 95.4m

Table 2.1: mMinimap, dDaligner, gGraphMap, bBLASR, hMHAP

In a blog post ”State-of-the-art long reads overlappers comparison” 1 we take the same data

as [22] but we didn’t care if the overlappers found ’right’ or ’wrong’ overlaps. Instead we searched

for comparing overlaps sets to decide whether or not overlappers compute the same overlaps. There

1https://blog.pierre.marijon.fr/long-reads-overlapper-compare/

https://blog.pierre.marijon.fr/long-reads-overlapper-compare/
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were differences large enough to justify the idea of creating a kind of ’reconciliation’ tool that merge

information from several overlapper. This blog post was presented at the poster session of JOBIM

(Journée Ouverte de Bioinformatique & Mathematique) 2018.

2.2 State-of-the-art long reads overlapper-compare

Originaly publish in: https://blog.pierre.marijon.fr/long-reads-overlapper-compare/

Author: Pierre Marijon

2.2.1 Introduction

In 2017, Chu et al. wrote a review [22] to present and compare 5 long-read overlapping tools, on

4 datasets (including 2 synthetic ones). This paper is very cool and clear. The authors compare

overlappers with respect to peak memory, wall clock time, sensitivity and precision. Table 2 from this

paper presents sensitivity and precision:

Figure 2.2: Table 2 of [22]

Overlappers show better results on synthetic datasets than on real data. We can observe an

important loss of sensitivity: 59.6-83.8% on the Pacbio real dataset, compared to 88.9-92.4% on the

simulated data.

So, ok, overlappers dont’t achieve perfect sensibility, but do they miss the same overlaps?

2.2.2 Materials & Methods

2.2.2.1 Datasets

I selected the two real sequencing datasets in Chu et al., because they had the highest variance in

sensitivity, so we can see the most extreme effects in how long-read overlappers possibly find different

overlaps.

2.2.2.2 What is an overlap

I will not bore you with formal definitions :)

https://blog.pierre.marijon.fr/long-reads-overlapper-compare/
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We will consider 3 type of overlaps, according to Algorithm 5 presented in the minimap

publication[56]

Figure 2.3: Algorithm 5 in minimap and miniasm article by Heng Li

Internal match: Just a short similarity localized in the middle section of both reads, which is prob-

ably due to a repetitive region and not a true overlap

Containment: One read is completely contained in another

Classic overlap: Deemed a regular suffix-prefix overlap

We will check the results of overlappers, and for each entry that isn’t an internal match nor

an containment overlap, we store the pair of reads as elements of the set of all overlaps found by the

overlapper.

2.2.2.3 Overlappers

We used:

• graphmap v0.5.2 [100]

• hisea commit: 39e01e98ca [39]

• mhap 1.6 and 2.1 [9]

• minimap 0.2-r124 [56]

• minimap2 2.10 [57]

We used parameters recommended by Chu et al. and default parameters for HISEA.

2.2.2.4 Venn diagram generation

We used a Python script to parse the output file of each overlapper, filter overlaps, generate a Venn

diagram, and compute the Jaccard index. All scripts and steps to reproduce this analysis are available

in this repository.

https://github.com/natir/SOTA-long-read-overlapping-tools-comparative-analysis-data
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2.2.3 Results

2.2.3.1 Nanopore real data

Figure 2.4: Venn diagram for nanopore real dataset

In the center of the above diagram we have the number of overlaps found by all overlappers.

We call this set the core overlaps. Here for this dataset, core overlaps contain 8,980,212 overlaps.

Around this center, we highlight some of the largest disparities between overlappers:

dataset composition number of overlaps % of core overlaps
core overlaps - hisea overlaps 898,995 10.01 %
hisea overlaps ∩ mhap overlaps 464,546 5.17 %
core overlaps - mhap overlaps 198,989 2.21 %
core overlaps - graphmap overlaps 198,014 2.21 %

In addition, out of the 11,352,915 overlaps found by mhap, 4.96 % of these are found only by

this overlapper. For hisea, the corresponding value is 1.55 % (out of 10,114,576 overlaps).

mhap minimap2 graphmap hisea
mhap 0.88 0.85 0.82

minimap2 0.88 0.94 0.84
graphmap 0.85 0.94 0.83

hisea 0.82 0.84 0.83

The above matrix shows the Jaccard similarity coefficient (cardinality of intersection divided

by cardinality of union) between pairs of overlappers.

2.2.3.2 Pacbio real data

For the Pacbio dataset, core overlaps contain 3,407,577 overlaps. Other large disparities between

overlappers are:

Out of all overlaps found by minimap2 (5,640,643), 9.54% of these overlaps are found only by

this overlapper, for mhap the corresponding value is 5.98% (out of 5,336,610 overlaps).
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Figure 2.5: Venn diagram for pacbio real dataset

dataset composition number of overlaps % of core overlaps
core overlaps - graphmap overlaps 713,161 20.93 %
minimap2-only overlaps 538,118 15.79 %
mhap overlaps ∩ minimap2 overlaps 503,431 14.77 %
core overlaps - hisea overlaps 352,376 10.44 %
mhap-only overlaps 319,744 9.38 %

Again the above matrix shows Jaccard similarity coefficient.

2.2.3.3 Comparison across versions

At first we used mhap 2.1, using the same parameters as in Chu et al. But actually, Chu et al. used

mhap 1.6. This version change yielded surprising results: many more overlaps were found only by

mhap 2.1. Here is a comparison between the two executions of mhap 1.6 and 2.1 using the same

command-line parameters, in terms of shared and exclusive overlaps.

Figure 2.6: Jaccard similarity 0.72, 0.26

mhap 2.1 found many more overlaps than mhap 1.6. But it turns out that this is because mhap

1.6 calculates a similarity score between reads and mhap 2.1 calculates a distance between reads, the
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mhap minimap2 graphmap hisea
mhap 0.83 0.70 0.76

minimap2 0.83 0.67 0.74
graphmap 0.70 0.67 0.74

hisea 0.76 0.74 0.74

meaning of the --threshold option is different between the two versions, so we should have not used

the same parameter value for both versions (thanks to Sergey Koren for pointing this out). This

explains why a user may get significantly different results between the two versions, when running

them carelessly with identical parameters. Below, we plot the Venn diagrams of overlaps found only

by mhap 1.6 with --threshold 0.02 for pacbio and --threshold 0.04 (like Chu. et al) and only by mhap

2.1 with --threshold 0.75 for pacbio and --threshold 0.78 for nanopore.

Figure 2.7: Jaccard similarity 0.84, 0.96

Both software find roughly the same set of overlaps, with the trend that mhap1.6 tended to

find a bit more (it would be interesting to evaluate whether those were correct or wrong overlaps).

And another comparison between minimap and minimap2:

Figure 2.8: Jaccard similarity 0.71, 0.98

For the pacbio dataset, minimap2 finds significantly (1.6M) more overlaps than minimap (which

found 4M overlaps). But for the nanopore dataset, both software roughly agree.
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2.2.4 Conclusion

Overlapper tools behave quite similarly, but on real pacbio datasets sensibility, precision, and the set

of overlaps found across tools can be very different. Such a difference can also exist between two

versions of the same tool.

Comparison of overlappers based on a quantitative measurement (sensitivity, precision) is useful

but isn’t perfect: two tools with the same sensitivity for a given set could still detect a different set

of overlaps, see e.g. mhap and minimap2 for the nanopore set.

Some publications use quality of error-correction, or results of genome assembly, as quality

metrics to compare overlappers. It’s a good idea but correction and assembly tools make additional

choices in the overlaps they keep, and it’s not easy to relate assembly or error-correction imperfections

and wrong or missed overlaps.

From our tests, there is no clear best overlapper software so far.

It could by interesting to study whether certain tools have a bias when finding overlaps, linked

to e.g length of reads, mapping length, error rate, %GC, specific kmer composition, etc . . . A study

like this could possibly reveal some intrinsic properties of the algorithms used in overlappers.

Is it a good idea to create a reconciliation tool for overlappers? We note that the correction

and assembly tools seek to reduce the amount of overlaps they use, through e.g. graph transitivity

reduction, Best Overlap Graph, the MARVEL approach (Supplementary information of [77]).
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• Jean-Stéphane Varré
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Figure 2.9: Histogram of overlap lengths found by Minimap2, the black line represents the Miniasm

overlap length threshold. The fasta file weight 3.1 Go, complete PAF file generate by
Minimap2 weight 5.5 Go, without overlap lower than 2000 bases the weight is reduced to
3.7 Go.

2.3 Improving assembly by filtering out overlaps and scrub-

bing

2.3.1 Improve genome assembly efficiency by reducing the quantity of in-

formation

Error in third generation reads make it more difficult to found overlaps between reads. Current

techniques attempt to optimize results on real data [22]. Actually, a key observation is that within

the overlaps found by state-of-the-art tools, not all of them are useful to downstream analysis. For

example Miniasm keeps only end-to-end overlaps, and Canu keeps only the two longest end-to-end

overlaps for each read (see 3 for more details).

Figure 2.9 shows a histogram of overlap lengths found by Minimap2 on E. coli Nanopore dataset

(acession number SRR8494940): 33 % of overlaps are shorter than 2000 bases. By default Miniasm

ignores overlaps shorter than 2000 bases that is if we run a basic Miniasm pipeline, 33% of the overlap

will not be used but they are written on the disk. There is definitively room for improvement. Can
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we filter overlapping information with positive (or at least no negative) impact on assembly results ?

One may hope to at least decrease the disk space and may be to increase the speed of assembly.

In section 2.4 we present fpa (for Filter Pairwise Alignment), our solution to filter out useless

overlaps. An overlaper output can be piped directly to fpa. fpa can apply several filters based on

length of read, length of overlap, type of overlap, read name. Some simple fpa filters reduce the

computation time of assembly without effect (or a small positive effect) on assembly.

2.3.2 Read scrubbing: an alternative to read correction

Assembly tools are based on reads. If your reads are bad, your assembly will be bad. To continue

on the analogy given in the introduction, you probably cannot reconstruct a book if crazy monks

gave you only fragments with half of the letters being erroneous. Correction of reads, with a mix

of sequencing technologies or with a single technology, can help to get better reads. But actually,

correction tools have an important cost in term of computation time and memory usage. Moreover

it’s hard to distinguish mutations (e.g. true SNPs) from sequencing errors, and sometimes interesting

mutations are consider as errors and are corrected (thus removed).

The pre-processing correction step is particularly important for long-reads data because of high

error rates that can lead to more errors and misassemblies. Tools like Mecat [112], CONSENT [68]

uses overlap information to pick reads that share same sequences and build a consensus from the

alignements induced by overlaps. A similar task, called polishing, is run after assembly, as a post-

processing task. Reads are mapped against assembled contigs and contig sequences is corrected using

reads, we can cite Racon [104] and CONSENT.

The more a read contains errors, the more the correction step require reads. But the sequencing

depth is not homogeneous. Thus the corrector will be more or less effective depending on regions and

the depth of coverage thereof. If the sequencing depth is too low, the correction may discard some

reads. To solve this problem it is necessary either to work without correction or to return to raw

reads.

Correction of reads before assembly can generate some trouble in assembly by remove some

important information. At the best of our knowledge the only one reads corrector that tries to

keep the heterozygotie during correction is falcon [20]. Heterozygotie is very useful to understand

genetic diversity in population or some genetic diseases. Another example concerns genomes that

contain approximate repeats. The correction step tends to correct both region in order to make them

identical. By the way, correction creates a repetition that cannot be solved by the assembler although

regions could be distinguished prior to correction.

Nevertheless, long-reads still contains very low quality region [74] that can lead to fragmented

assembly [109]. It is thus necessary to filter out thos regions. An alternative to correction can be

scrubbing: one removes only very low quality region and keep all other information.

To found and remove this very low quality region and read we created yacrd (for Yet Another

Chimeric Read Detector). yacrd uses self overlapping information to compute a coverage curve and

identifies regions of low coverage. We hypothesise taht such low coverage regions are of low quality

(see section 2.4 for more details on this tool).
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Our paper ”yacrd and fpa: upstream tools for long-read genome assembly” presents two tools,

yacrd, and fpa. yacrd focuses on the detection and elimination of very poor quality regions. fpa

focuses on filtering ’useless’ overlaps.

2.4 yacrd and fpa: upstream tools for long-read genome as-

sembly

Currently under review but avaible in bioRxiv 10.1101/674036

Author: Pierre Marijon Rayan Chikhi and Jean-Stéphane Varré

2.4.1 Abstract

Motivation: Genome assembly is increasingly performed on long, uncorrected reads. Assembly

quality may be degraded due to unfiltered chimeric reads; also, the storage of all read overlaps can

take up to terabytes of disk space. Results: We introduce two tools, yacrd and fpa, to respectively

perform chimera removal/read scrubbing, and filter out spurious overlaps. We show that yacrd results

in higher-quality assemblies and is two orders of magnitude faster than the best available alternative.

Availability: https://github.com/natir/yacrd and https://github.com/natir/fpa

Contact: pierre.marijon@inria.fr

Supplementary information: Supplementary data are available online.

Acknowledgements: This work was supported by Inria and the INCEPTION project (PIA/ANR-

16-CONV-0005) and the University of Lille HPC facility. The authors thank Maël Kerbiriou for

algorithmic help.

2.4.2 Introduction

Third-generation DNA sequencing (PacBio, Oxford Nanopore) is increasingly becoming a go-to tech-

nology for the construction of reference genomes (de novo assembly). New bioinformatics methods

for this type of data are rapidly emerging.

Some long-read assemblers perform error-correction on reads prior to assembly. Correction

helps reduce the high error rate of third-generation reads and make assembly tractable, but is also

a time and memory-consuming step. Recent assemblers (e.g. [56, 87] among others) have found

ways to directly assemble raw uncorrected reads. Here we will therefore focus only on correction-

free assembly. In this setting, assembly quality may become affected by e.g. chimeric reads and

highly-erroneous regions [74], as we will see next.

The DASCRUBBER program [75] introduced the concept of read ”scrubbing”, which consists of

quickly removing problematic regions in reads without attempting to otherwise correct bases. The

idea is that scrubbing reads is a more lightweight operation than correction, and is therefore suitable

for high-performance and correction-free genome assemblers.

DASCRUBBER performs all-against-all mapping of reads and constructs a pileup for each read.

Mapping quality is then analyzed to determinate putatively high error rate regions, which are replaced

https://doi.org/10.1101/674036
https://github.com/natir/yacrd
https://github.com/natir/fpa
pierre.marijon@inria.fr


2.4 YACRD AND FPA: UPSTREAM TOOLS FOR LONG-READ GENOME ASSEMBLY19

by equivalent and higher-quality regions from other reads in the pileup. miniscrub [47] is another

scrubbing tool that uses a modified version of Minimap2 [57] to record positions of the anchors used in

overlap detection. For each read, miniscrub converts anchors positions to an image. A convolutional

neural network then detects and removes of low quality read regions.

Another problem that is even more upstream of read scrubbing is the computation of overlaps

between reads. The storage of overlaps is disk-intensive and to the best of our knowledge, there has

never been an attempt at optimizing its potentially high disk space.

In this paper we present two tools that together optimize the early steps of long-read assemblers.

One is yacrd (for Yet Another Chimeric Read Detector) for fast and effective scrubbing of reads, and

the other is fpa (for Filter Pairwise Alignment) which filters overlaps found between reads.

2.4.3 Materials & Methods

Similarly to DASCRUBBER and miniscrub, yacrd is based on the assumption that low quality regions

in reads are not well-supported by other reads. To detect such regions yacrd performs all-against-

all read mapping using Minimap2 and then computes the base coverage of each read. Contrarily to

DASCRUBBER and miniscrub, yacrd only uses approximate positional mapping information given by

Minimap2, which avoids the time-expensive alignment step. This comes at the expense of not having

base-level alignments, but this will turn out to be sufficient for performing scrubbing. Reads are

split at any location where coverage drops below a certain threshold (set to 4 by default), and the

low-coverage region is removed entirely. A read is completely discarded if less than 40% of its length

is below the coverage threshold. yacrd time complexity is linear in the number of overlaps.

yacrd performance is directly linked to the overlapper performance. We tuned Minimap2 pa-

rameters (especially the maximal distance between two minimizers, -g parameter) to find similar

regions between reads and not to create bridges over low quality regions (see Supplementary Section

B.3). yacrd takes reads and their overlaps as input, and produces scrubbed reads, as well as a report.

fpa operates between the overlapper and the assembler. It filters out overlaps based on a highly

customizable set of parameters, such as overlap length, length of reads names, etc. fpa can remove

self-overlaps, end-to-end overlaps, containment overlaps, internal matches (when e.g. two reads share

a repetitive region) as defined in [56]. fpa supports the PAF or BLASR m4 formats as inputs and

outputs, with optional compression. fpa can also rename reads, generate an index of overlaps and

output an overlap graph in GFA format.

yacrd and fpa are evaluated on several datasets (details provided in Supplementary Section

B.1), and here we highlight their performance on two of them: H. sapiens chromosome 1 Oxford

Nanopore (ONT) ultra-long reads, and C. elegans PacBio reads. All tools were run on a single

cluster node with recommended parameters (see Supplementary Section B.2). Scrubbed reads were

then assembled using both Miniasm and wtdbg2 with recommended parameters for each sequencing

technology.
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H. sapiens chr1 (ONT ultra-long R9.4) C. elegans (Pacbio P6-C4)
raw dascrubber yacrd raw dascrubber yacrd

Reads

# reads 1,075,867 819,798 1,044,848 740,776 660,766 751,750
Relative # bases 1.00 0.71 0.80 1.00 0.84 0.84
N50 10,568 9,858 9,520 16,572 15,667 15,845
# chimera 25,888 6 % 20 % 71,704 13 % 21 %
Time 3 days 2 hours 27 mins 1 day 20 hours 33 mins

Miniasm

# contigs 184 184 394 226 131 154
NGA50 96,225 410,37 453,748 432,112 544,677 440,776
Asm/Ref size 81 % 78 % 81 % 113 % 108 % 110 %
# misassemblies 1,745 209 432 1,396 754 1,015

wtdbg2

# contigs 810 496 485 139 100 122
NGA50 1,513,450 545,902 1,482,513 565,278 578,041 593,039
Asm/Ref size 87 % 80 % 84 % 106 % 104 % 106 %
# misassembly 1,316 177 582 614 485 577

Table 2.2: Performance of yacrd compared to DASCRUBBER on an ONT and a PacBio dataset. Relative
#bases indicates the proportion of raw read bases kept after scrubbing. # chimera indicates
the number of chimeric reads detected in the dataset using Minimap2 (see Supplementary
Section B.4) and the proportion of remaining chimeric reads after scrubbing. NGA50 is
the N50 of aligned contigs, and # misassemblies are the number of misassemblies, both
metrics were computed by QUAST [30]. Asm/Ref size indicates the relative length of the
assembly divided the reference length.

2.4.4 Result & Discussion

Table 1 compares the results of yacrd and DASCRUBBER. We also evaluated miniscrub (see Supple-

mentary Section B.2 and B.5), but its memory usage exceeded 256 GB on the two datasets of Table

1.

The main feature of yacrd is that its total execution time, which is essentially that of Minimap2,

is two orders of magnitude faster than DASCRUBBER. We next evaluate whether running yacrd results in

higher-quality reads and assemblies. yacrd removes 20-27% of the bases in raw reads, comparably to

DASCRUBBER. Both scrubbers significantly reduce chimeras: only 6-13% of those in raw reads remain

with DASCRUBBER and 18-20% with yacrd. The impact of removing chimeras is directly seen on

assembly metrics: both scrubbers produce significantly less misassemblies with Miniasm and wtdbg2

than with direct assembly of raw reads. Both yacrd and DASCRUBBER resulted in increased contiguity

(NGA50) with Miniasm, and equivalent (or significantly degraded for DASCRUBBER) contiguity with

wtdbg2, and comparable assembly lengths.

On ONT reads, DASCRUBBER reduces the number of misassemblies by a factor of 2-3 more than

yacrd. However, given that all assemblies in Table 1 completed in less than an hour and DASCRUBBER

took 3 days, running this tool on larger datasets would become a significant performance bottleneck. In

Supplementary Section B.3 we examine the behavior of yacrd across its parameter space. We observe

that different parameters worked best for different datasets, one of which is actually a parameter for

Minimap2.

fpa reduced the size of reads overlap file (PAF file produced by Minimap2) by 40-79% on the

evaluated datasets, without any significant effect on quality assembly. As a consequence this reduces

the memory usage of Miniasm by 13-67%. Other performance metrics are presented in Supplementary

Table B.5.

Finally, we examine the effect of combining both yacrd and fpa. We propose a pipeline based



2.5 CHAPTER CONCLUSION 21

on Miniasm (Supplementary Section B.7) and show that it results in improved assembly contiguity,

comparable assembly size, less mismatches and indels, less misassemblies, at the cost of a reasonable

increase in running time (around 2x).

2.5 Chapter conclusion

In this chapter we have proposed a benchmark of overlappers, a filtering tool for these overlap and a

scrubbing tool.

The blog post on overlapping tools comparison demonstrates that they do not found same

overlaps. We should be able to improve the quality of the overlaps we found between reads by

combining results from several tools. This is the idea of an overlap consensus generator. In the blog

post we considered that if overlapping tools found an overlap between two reads, the overlap should

be roughly the same. Actually this is not true. Considering two reads A and B and three overlapping

tools, it’s possible that:

• the first tool find that the end of read A overlaps the beginning of read B

• the second tool find that the end of read B overlaps the beginning of read A

• the third tool find that reads A and B share an internal match

A number of other situations can occur. If we want to build an overlap consensus generator we need

to found a method able to say this two overlap found by two different overlapping tools, concern the

same region of read A and the same region of read B, we can increase our confidence in this overlap is

a true overlap and it’s is between this region of A and this region of read B. Or all overlapping tools

found an overlap between read C and D but all this overlap concern different region of C and D, we

can say they are probably no overlap between C and D. A work has been made in the context of a

student project I supervised (PFE - Projet de Fin d’Étude End of Study Projects by Yann Grabe). He

built a tool that computes a consensus of several overlap files. By comparing overlaps, i.e. computing

overlaps between read overlaps, the tool computes a confident score on each read overlap by evaluating

the number of overlapping tools that found the same read overlap. For the moment this tool is only

a prototype and would still require a lot of work before it can be finalized.



22 CHAPTER 2: PREASSEMBLY



Chapter 3

Long reads assembly tools state of

the art

In the previous chapter we have seen how we can clean data before running assembly. In this chapter

we present methods to perform an assembly and how these methods are applied on long-read assembly

tools. We selected some tools for which we give a detailed description because methods and algorithms

used are representative on how other tools work. In addition, these tools are recognized by the

community for their quality. We can see that assembly tools can be split in steps. Assembly tools

share similar steps. But we can observe that in the most recent assemblers (see section 3.7 and 3.8),

the interdependence between each step of an assembly pipeline is more and more important.

3.1 Greedy assembly algorithm

The Greedy assembly algorithm is the first type of assembly tools, used on Sanger data. For example,

GigAssembler was used to assemble the first human genome [38]. Algorithm 1 presents the general

idea of how the Greedy algorithm works.

The BEST OVERLAP function is the main part of algorithm. The best overlap is the larger

one or the overlap with less error. Each algorithm have its own method.

Algorithm 1 A greedy assembly

1: function greedy(reads) . reads is a set of read
2: choose r1 in reads
3: sequence ← r1
4: while r2 ← best overlap(r1) do . best overlap() is a function for r1 they get read r2

the best overlap for read r1 in reads
5: concatenate(sequence, r2)
6: drop(r1, reads)
7: r1 ← r2
8: end while
9: end function

Moreover the Greedy algorithm, by focusing on the local problem, which overlap is the best
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for this read, cannot manage repetition. Genome contains many repetitions, like in a book some words

are used several times or a whole part of a sentence can be present multiple times.

Figure 3.1 presents a case where reads R0, R1 and R2 contain a repetition. R0 has two possible

overlaps: if overlap with R1 is chosen, the assembly sequence matches with the green path; if overlap

with R2 is chosen, the assembly sequence matches with the red path. Each of these paths corresponds

to a different region of the original genome. We can’t know which path is the good one and we didn’t

see the repetition. So assembly tools based on Greedy algorithm can produce many misassemblies.

(R0)

(R1)

(R2)

Figure 3.1: Each black box is a read, the grey box marks the position of a repetition. The beginning
of R1 and R2 are in repetition: they share the same beginning but do not match at their
ends. This repetition creates an ambiguity in assembly.

3.2 Overlap Layout Consensus

An alternative to the Greedy approach is the Overlap Layout Consensus (OLC). We can find a first

definition of OLC in [71] in 1995. The most popular assembly pipeline based on OLC is probably Celera

[66, 69]. This approach is based on a graph where a read is a node and we build an edge between

nodes if reads share an overlap. Figure 3.2, presents the OLC corresponding to the overlap seen in 3.1.

If we reuse analogy we introduce in section 1.2 we can see this graph as an ordering of the

chapters of a book provided by a crazy copyist monk. An edge indicates this piece of text was before

that piece of text in the original book.

As we can see in Figure 3.2 a repetition creates a fork in OLC, a node with two successors. It’s

easy to detect this case in the graph and stop this contig construction. The assembly result of this

graph is 3 sequences with white nodes, green nodes and red nodes. The assembly is more fragmented

than with the Greedy algorithm but does not contain any misassembly.

By analyzing the graph, we will be able to detect the paths without branching node and to

reconstruct the corresponding sequence by merging the sequences present in the graph.

OLC-based tools help to avoid misassemblies but the search for overlaps between reads is still

time-expensive. The graph construction consumes a lot of memory, and more cleaning steps and graph
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(R0)

(R1) (R3)

(R2)

Figure 3.2: Each node is a read and an edge is built between two reads if they share an overlap.

analysis are expensive in computation time compared to a Greedy approach.

3.3 Algorithms and heuristics to simplify assembly graphs

The graph structure was useful to get a comprehensive view of all the information provided by reads,

but having too much information can create problems, slow down the assembly tools and increase their

costs in memory or at worst lead to misassembly or to unnecessary fragmentation of the assembly.

3.3.1 Transitive edge

In Figure 3.2 you can notice the edge from R1 to read R3, this overlap is exact. We can find an

overlap between R1 and R3. But this edge does not provide new information, we know R1 is before

R3, this edge is called a transitive edge. We can give a more formal definition of a transitive edge: in

a directed graph, if we have a set of edges (a, b) (b, c) and (a, c), the edge (a, c) is transitive.

Myers proposed in [70] another assembly graph, the string graph, which is an overlap graph

with no transitive edge. By reducing the number of edges in the graph, the string graph simplifies the

traversing of the graph and decreases the memory impact.

With string graphs, we just need to follow a simple path (a path in which each node has only

one successor) to build assembly without misassembly.

3.3.2 Contained reads

In third generation technology, the crazy copyst monk (see section 1.2) provides fragments of different

sizes and chooses the beginning of a fragment randomly, so it is possible to have a read that is contained

in another one. More formaly a read A is contained in another one B, if A and B share an overlap

where A starts after the start of B, and A end before the end of B. All information (kmer or overlap

with other reads) in contained reads was present in the container read for assembly task and so we

can remove the contained read to save memory and time.
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3.3.3 Bubble and tips

We have seen how OLC was built, but this graph can include some specific paterne, they can lead to

misassemblies or fragmentation of assembly. A cleaning step was required.

(a) An example of tip in an assembly graph, the tips node
is represented in red, the green, blue and black lines
underline different possible assembly scenarios.

(b) An example of a bubble in an assembly graph, each path is
in a different color. The length of each path can be different
and there can be more than two paths in a bubble.

Figure 3.3

A tip in an assembly graph is a node with only one edge. A tip can be created by many things:

trouble during DNA extraction, DNA duplication, an artifact created by the sequencer, a read with

too many errors...

As we can see in Figure 3.3a a tip can create a branching node in the middle of a simple path.

If we keep this tip, generally assembly creates two contigs, one before the tip and one after a two

contig assembly scenarios (one for the green path another for the blue). If we remove this tip we can

run the black scenario.

It is easy to detect and remove tips in a graph. In many assembly tools, tips are considered as

errors and are removed.

We can define a bubble as a set of subpaths in a graph with the same parent and the same

children. Figure 3.3b gives an example with two paths of equal length. The bubble can be created by

repetition or heterozygosity, when one or more version of this sequence contains a substitution or a

more complex mutation.

Larger bubbles can be harder to detect. With smaller bubble, only one version of the path is

kept, the choice can be random or based on coverage or another other specific method.

Rugly we can say assembly tools use all simple path in OLC graph to generate a contigs.

3.4 The advantages of long reads

We said in Section 1.1, that the main properties of reads technology are length and error rate. The

impact of error rate on read mapping and overlap search, was easy to understand. If reads contain a

lot of errors, it is harder to find the right mapping position and overlap.

Reads length has a very important impact on assembly quality. Bresler et al. in [12] introduce

the notion of genome assembly feasibility, whether it is possible to reconstruct the genome from a
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Species Short read N50 (bp) Long read N50 (bp) factor
Gorilla gorilla gorilla 913,458 [92] 23,141,960 [29] 25

Schistosoma japonicum 176,869 [1] 1,093,989 [60] 6
Escherichia coli strain CFT073 88,381 * 4,721,099 [61] 50

Ambystoma mexicanum 256 [37] 216,366 [99] 845

Table 3.1: contigs N50 (define in section 4.1) of some genome assembly with short and long reads. *
GenBank Id 6313798

reads set with a given length and a given coverage. To summarize very roughly, to get a good assembly

reads need to bridge the repetition, so reads must be larger than the largest repetition. The idea was

extended to reads with errors in [96] and demonstrated that we need increased coverage when the

error rate increases.

Before third generation sequencing, the maximum length of a read was less than 2 kb (for a

Sanger read) but a majority of repetitions in the genome are longer than this. Koren and Phillippy

in [43] indicate a theoretical length of read that is necessary to obtain a perfect genome assembly; for

most bacteria, a read needs to be over 7 kb. But this limit does not work in all concrete situations.

If reads start before a repetition cover all repetition and end after this repetition we can solve this

repetition see Figure 3.4.

A1 A2

B1 B2

R

C1 C2

D1 D2

Figure 3.4: We have a part of assembly graph node R represent a repetition node A, B, C, D represent
basic sequence. Red, purple, green and blue line represent reads. Red read was larger
than repetition and span over it and indicate A1 → A2 → R→ C1 → C2 was a good path,
with out this read we can solve this repetition.

Third generation reads are not larger than all repetitions, but they are larger than many

repetitions and help to produce better genome assembly. Table 3.1 shows the improvement in terms

of N50 between short-read assembly and long-read assembly in a few instances.

Moreover, Yavas et al. in [113] perform an assessment of different versions of well known

assemblies. Yavas et al. notice an important improvement in this assembly after the introduction of

third generation reads and 10X data (for more information on 10X data read Section 5.3).

Recently a high quality human genome assembly (CHM13 cell line), telomere to telomere gapless

assembly, was produced with a combination of Nanopore and Pacbio reads [65]. The authors of this

paper focused their efforts on X chromosome, reconstructed a 2.8 megabase centromeric satellite DNA

array and closed all 29 remaining gaps in the current X chromosome H. sapiens reference. Nanopore
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data by analysis of raw signal provides an access to DNA methylation. This study confirm previous

epigenomic results observed on the X chromosome.

Long read technology not only helps to improve genome assembly, it also has a significant

impact on RNA study. Sequencing mRNA from beginning to end helps to detect new isoforms and

splicing structures, by sequencing without PCR long reads help to remove bias in RNA quantification.

But long read sequencing error rate and large input material requirements (compared with short-read

RNA-seq) require new analysis methodology development [31].

After this overview of how OLC assembly tools work, let us look at the details of two long-read

OLC assembly tools, Canu and Miniasm.

3.5 A Pipeline with correction Canu

Canu [44] was proposed in 2016, it is one of the first long reads assembly pipelines and it works with

Pacbio and Nanopore reads after HGAP [19]

Canu is based on Celera [66, 69], we can split the Canu pipeline in three steps which will be

described below: correction, trimming and assembly. Nevertheless, before each of these steps Canu

searches overlaps between reads. We will thus start by explaining how overlaps are computed.

3.5.1 Overlapping

In Canu pipeline overlap is computed by MHAP (for MinHash Alignment Process). We have seen that

overlap between all reads takes a lot of time and requires a lot of memory. To avoid all versus all

alignment, MHAP tries to estimate which reads share a common part with another by estimating a

Jaccard distance between the set of k-mers of two reads. A k-mer was a substring of sequence with

a fixed size equal to k. The Jaccard distance, present in equation 3.1, evaluates the distance between

two sets by dividing the intersection of the sets by the union of the sets.

Jδ(A,B) = 1− J(A,B) = 1− J(A,B) = 1− |A ∩B|
|A ∪B|

(3.1)

In this equation A and B represent the k-mer set of read A and read B, Jδ(A,B) represent the

Jaccard distance and J(A,B) represent the Jaccard index. If Jδ(A,B) is low, we can suppose read

A and read B share a common part. Enumerating all the k-mers of each read and computing the

intersection and union of each set takes a lot of time. MHAP selects a subset of k-mers to represent

the read and computes a mash distance; [80] see equation 3.2

J(A,B) =
|A ∩B|
|A ∪B|

≈ |S(A ∪B) ∩ S(A) ∩ S(B)|
|S(A ∪B)|

(3.2)

S(A) is a k-mers set composed by s a subset k-mers of set A. Ondov et al. evaluate the error

between mash distance and Jaccard distance is in O( 1√
s
), by default in MHAP s = 512 so the error is

smaller than 0.05.

MHAP to choose which k-mer participate to the subset, assign to each k-mer a tf-idf score, see
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equation 3.3. The tf-idf score comes from the field of text search. tf-idf evaluates if this term is

specific to this document. tf for term frequency indicates if the term is present many times in the

document, ni,j is how many time the term i is present in document and is j divided by the number

of terms in document j. idf for inverse document frequency evaluates if the term is present in many

documents or just a few, |D| is the number of documents in the dataset divided by |{dj : ti ∈ dj}|,
the number of documents where the term i is present.

tf − idfi,j = tfi,j · idfi =
ni,j∑
k nk,j

· log
|D|

|{dj : ti ∈ dj}|
(3.3)

In MHAP, terms are k-mer and documents are reads, this technique allows to reduce the number

of k-mer in a set and keep k-mer specific to a read. If two reads share specific k-mer they probably

share a common part.

If two reads have a small mash distance, MHAP compares the position of each k-mer in reads to

determinate the overlap position.

The size of k-mer is very important as well. If k is too large, many k-mer contain errors, the

size of intersection is reduced and MHAP can miss the overlap. Moreover, size of sketch has a huge

impact. If it is too small, the read is sub-sample. If it is too large, compute mash distance takes more

time, but with long-reads dataset the length of reads can be very different and choosing a good sketch

size for this type of data is not easy. To find the optimal value for these two variable, the authors of

MHAP perform many empirical tests.

3.5.2 Correction

In Canu correction was performed by a part of FALCON [20], falcon sense. FALCON and Canu were

developed simultaneously, we chose to describe Canu in detail instead of FALCON because we work

mainly with Canu. In this section we did not cover the details of how falcon sense work but only

the main idea.

Some correction tools such as falcon sense use a Partial Order Alignment (POA) (introduced

in [50]) to perform long read correction. For each read R1, we recruit all the reads with which it

shares an overlap, and perform an pairwise alignment with it. This alignment was used to build a

POA graph. In a POA graph each base was a node and a direct edge was created between two bases

if the first base was before the second one in an alignment. If an edge was present in two alignments,

its weight was incremented. After all the alignments had been added to the POA graph, we searched

for weighed path in the graph, and followed them to reconstruct the corrected sequence. An example

of POA graph construction is present in figure 3.5

3.5.3 Trimming

The trimming step will remove the parts of the reads that are not supported by the other reads, see

Figure 3.6. For each read we will analyze its coverage curve and remove the parts of the read that are

not sufficiently covered (by default this value is set to 1). For trimming, Canu uses a homemade tool.
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Figure 3.5: A sequence that needed to be corrected was represented by a graph, each base was a
node and if a base was followed by another one a directed edge was built. (b) was the
representation of sequence ATATTAGGC (called backbone in this figure), (b) We add the
result of the alignment of one read in the graph. The number above the edge is its weight.
If an edge exists in 3 alignments, its weight is equal to 3, (c) We add all other alignments
in the graph, (d) the bold path was chosen as the correct path because it was supported
by more alignments. This figure was originally present in Supplementary material of HGAP
[19]

3.5.4 Assembly

The assembly step in Canu pipeline is based on the OLC paradigm (see Section 3.2 for a definition

of OLC), with some specificities. Canu builds a Best Overlap Graph (BOG) for each non-contained

read only two overlaps are kept in the graph, the best overlap for each read extremity, in Canu the

best overlap was the longest overlap. Use of a BOG instead of a classic OLC graph is an aggressive

strategy, in BOG we cannot observe a transitive edge and the number of edges is limited by the

number of nodes. We avoid a cleaning step and reduce the memory impact of the graph. Once this

graph construction step is performed, a clean step is run, removing tips and little bubbles (see Section

3.3.3).

This BOG was used as a scaffold to generate assembly. By remapping the reads against this

scaffold, Canu tries to detect larger-than-read repetitions, which do not show as loops in BOG (see

Figure 3.7). Afterwards, this mapping is used to build the consensus sequence of contigs. Each simple

path in BOG was used to build a contig.



3.6 PIPELINE WITHOUT CORRECTION MINIASM 31

R0

Figure 3.6: The black line is a read, the Canu trimming step keeps only the blue parts of read R0, the
parts that are covered by other reads.

By remapping reads on the BOG, Canu can build a consensus and detect repetitions not observed

in the graph. BOG was an aggressive strategy to avoid transitive edge and reduce graph size, but it

could hide an edge that would have indicated a repetition. This check was required too.

A B

Figure 3.7: Black arrow line was the path chosen by Canu, the other line was a read mapped against
this path, the blue box indicates a repeat region. In case A the purple read spans all the
repetition and indicates that the path chosen by Canu was the good one. In case B no
read spans the repetition and the purple read have non-congruent overlaps between the
red and blue reads, so Canu needs to break the path in order not to create a misassembly

3.6 Pipeline without correction Miniasm

Minimap2 and Miniasm are an assembly pipeline proposed in [55] and [57], the main purpose of this

pipeline is to demonstrate that we can perform a long read assembly without correcting the long reads

before.

The miniasm pipeline is more simple than the canu pipeline because it does not incorporate

correction and consensus building. It is made of steps:

• overlap search, performed by minimap

• trimming, by miniasm

• graph construction

• graph cleaning

• contig generation
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3.6.1 Minimap2

The main idea with Minimap2 is that we can represent a read as a set of minimizer, and if two reads

share the same succession of minimizer we can suppose these two reads share an overlap.

A minimizer is define (in Minimap2 publication) as the k-mer with the minimal hash value of

a set of consecutive k-mer.

If we keep the same hash function, two set of k-mer from different reads but with same k-mer

composition, have the same k-mer minimizer. Moreover, a k-mer can be the minimizer for several

consecutive sets of k-mer if no k-mer with a lower hash value comes in the window.

TTGTAGTCTACCGCATCGACACGTGTTCGTTTACTGTTT

TACCGCATCGACACG
ACCGCATCGACACGT
CCGCATCGACACGTG
CGCATCGACACGTGT
GCATCGACACGTGTT
CATCGACACGTGTTC

Kmer score:

50
10
25
30
8
72

Figure 3.8: The red kmer has the lowest hash of the red window, so it is the minimizer of this window.
But when the window slice arrives on the blue kmer, this one has a lower hash, the blue
kmer become the minimizer of this window.

The minimal k-mer can represent many other k-mer, this technique can be compared to a lossy

compression.

Minimap2 builds an index in which each minimizer is associated to the reads where a minimizer

is present and the position of the minimizer in the reads.

With this index Minimap2 can collect the positions of similar minimizers between two reads.

With this collection of positions Minimap2 looks for the largest co-linear match, a succession of similar

minimizers in each read with coherent position, same order of minimizer and similar distance between

each minimizer. Figure 3.9 shows an overview of an overlap of two reads in Minimap2.

Minimap2 reports overlap where the number of matches is sufficient (greater than a threshold,

3 by default) and total length of putative overlap is sufficient.

3.6.2 Miniasm

Miniasm did not perform correction but it did not take all the information from reads and overlaps

either; a filtering operation was performed.

For each read Miniasm performs coverage analysis of reads based on mappings identified by

Minimap2, by default only the longest part of reads with a coverage greater than three is kept.

Minimap2 reports for each read, read length, position of first and last kmer, number of bases in kmer

exact match, and a mapping quality and some option fields in SAM-like format can be present too.

Each overlap was classified in three categories, in order to keep only true end-to-end overlaps

to build the OLC and filter out containment reads:

• internal match, this type of overlap probably corresponds to a repetition smaller than reads

length
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ReadA

ReadB

Figure 3.9: ReadA and ReadB are represented by black arrows. The common minimizers of ReadA
and ReadB are represented by blue and red arrows respectively. The green arrows are
a co-linear chain, the purple arrows another co-linear chain, the black arrows do not
participate in a co-linear chain. The longest colinear chain is the green one. The end of
ReadA probably overlaps with the beginning of ReadB .

• containment, a read of this overlap is contained in the other read, it is the same sequence

• dovetail, it is an end-to-end overlap

Here we give intuitive definitions of these categories without being mathematically rigorous. One

would argue that being rigorous here is not necessary, as these definitions turn out to depend on

arbitrary criteria in practice (e.g. in Miniasm).

Figure 3.10 shows examples of these overlaps. Containment read was removed, only dovetail

overlap was used to build the overlap graph. Tips, small bubbles and transitive edges were removed

after this step. Miniasm takes each simple path and concatenates substring of read between the

beginning and the first position of overlap.

Miniasm was design to work on uncorrected reads and did not perform a consensus step, so

contigs generated by Miniasm contains many errors and cannot be used directly. We can run the

Minimap2 Miniasm pipeline with corrected read and a polishing tool on contigs generated by Miniasm.

Very recently, another assembly tool Ra [103] was a created to replace Miniasm in Minimap2

Miniasm pipeline. Ra uses an analysis of coverage curve of each read to trim non-supported regions

(like Miniasm does) it includes the detection of chimera and repeated regions. Overlaps on regions

marked as repeated are marked in a string graph and not trusted. Ra performs a real consensus

step and runs many polishing step with Racon. According to the authors and to another study[109],

Ra performs good assembly on bacteria and plant genome, but the overlap step still could still be
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ReadA

ReadB

beginA endA

beginB endB

dovetails overlap

ReadA

ReadB

beginA endA

beginB endB

internal match’s overlap

ReadA

ReadB

beginA endA

beginB endB

containment’s overlap

Figure 3.10: Miniasm classifies overlaps in three types of dovetail, internal match and containment
overlap. The dark grey region corresponds to the part of the read between the first and
last minimizer. The light grey region is called the overhang region, it is out of minimizer
range. If overhang is large compared to the overlap region, we can suspect the overlap is
not a true overlap.

optimized in terms of memory usage and computation time.

3.7 Long read assembly approaches using methods inspired

by de Bruijn graphs

Another class of tools try to speed up tools try to speed up assembly by simplifying the overlap search

step. This method was proposed in EULER [83].

This approach is based on a DeBruijn Graph (or DBG). For an alphabet with n symbols, a DBG

represents each word of length k as a node and builds a directed edge if nodes share k− 1 symbols at

their extremities. For example, in Figure 3.11, node ATCG and TCGG share TCG. A word of length k is

called a k-mer.

In assembly problems, n = 4 (A,C, T,G), and we can choose a value of k between 1 and the

read length. In practice, the size is often smaller than the size of a read. The choice of the right values

for k, depending on the use that we will have of the DBG, could be the subject for a whole thesis.

To build the DBG we chose a value for k and added all k-mer present in reads in the DBG. The

DBG used in assembly contains only the k-mer present in the dataset, not all possible k-mer, and edges

can be only edges that are present in the dataset or all possible edges.

Like OLC we can detect repetition by inspecting the number of successors of a node. Figure 3.11

presents a DBG with a repetition. After building the DBG we can follow the simple path to rebuild the

original sequence.
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Read1:ATCGGAT
ATCG
TCGG
CGGA
GGAT

Read2:GGATTCG
GGAT
GATT
ATTC
TTCG

Read3:TTCGGTT
TTCG
TCGG
CGGT
GGTT

Read4:GGTTTCG
GGTT
GTTT
TTTC
TTCG

ATCG

TCGG

CGGA GGAT GATT ATTC

CGGT GGTT GTTT TTTC

TTCG

Figure 3.11: We have a dataset of 4 reads with length equal to 7, we choose a value of k equal to 4,
kmer are present under each read. A DBG built from this kmer set is present under reads,
each node is a kmer and if a word shares k − 1 symbol at its end with k − 1 symbols at
the beginning of another node, we build a directed edge. This DBG contains a cycle. This
cycle probably matches a repetition in the original sequence.

With the DBG strategy we did not compute overlaps between reads, but the word length in the

graph was shorter. And all repetitions with a size greater than k create a cycle in the graph and

fragment the assembly.

Moreover the overlap between words in DBG must be exact (there must be no error) and with a

fixed length (k − 1). These two constraints are particularly problematic when the reads contain a lot

of errors or when the coverage of the region is low.

The DBG approach was used successfully for short-read assembly. We can mention the tools

Spades [7], Minia [16] and Megahit [51] but these methods are not very effective for long reads

assembly:

• reads contain a high error rate and therefore finding error-free kmers was hard, these errors can

lead to expand the size of the graph or misconnections between parts of graph.

• to use the size of the long reads, these tools would have to support values of k greater than, for

example, 7000 bp (bacterial repetitions).

If we use DBG naively for long read assembly, we can miss the main advantage of long-reads:

their length.

Flye and wtdbg2 use the DBG approach with some modifications to adapt the idea to long-read

assembly. Flye creates a A-Bruijn Graph (ABG), in which an edge does not signal an overlap with a

k-1 length between nodes but the overlap can be shorter. In the wtdbg2, method kmer are replaced

with k-bin, where a bin is a substring (256 bases of length by default) of reads. An edge is created

between k-bin if they are successive in a read.
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3.7.1 Flye

Flye [41] was based on ABruijn [58] assembly tools. ABruijn did not use a DBG but a similar concept:

a ABG. Instead of using a set of kmers as nodes, ABG uses a set of chosen kmers. Instead of building

an edge between each kmer they share a k-1 overlap, they build an edge between succesive kmer in

a read without creating a transitive edge. A weight was added to edge this weight correspond to the

length of k minus the length of overlap between kmer.

To build the chosen k-mers set, ABruijn selects kmers present many times in the dataset.

These kmers are called in many tools solid k-mers. The more present a k-mer is in the dataset, the

more confident you can be that the k-mer does not contain a sequencing error. If the genome coverage

is 40x we can hope to see a k-mer, not included in a repetition, roughly 40 times. Because when we

sequence at 40x, we do not actually read each base 40 times; and when a sequence error appears, we

lose an occurrence of the kmers where this base was present. Choosing the number of times a kmer

has to be present in the dataset to be solid was a difficult task.

This modification helps to clean sequencing error, but reduces the set of kmer fragments the

DBG graphs. This is why ABG creates edges not only when kmers share a k-1 overlap.

During the ABG construction, ABruijn stores which read generates which graph path. This

structure was useful to find quick overlaps between reads. Reads participating in the same path of

ABG probably have the same sequence, so they probably share an overlap. To build contigs, ABruijn

choose a read, search all overlap with help of ABG. If this local overlap graph didn’t denote a fork

(we have one read without successor and all reads have path in the local overlap graph to this read),

ABruijn extend the contig.

ABruijn can be roughly summed up as mix of all the assembly strategies, using DBG to find

overlaps between reads, building contigs by extension as with greedy method but using OLC to make

sure they do not integrate a repetition and a potential missassembly in contigs.

Flye was built on top of ABruijn. After the ABruijn assembly, Flye concatenate ABruijn

contigs in pseudo-genome (contigs order is arbitrarily chosen). This pseudo-genome is alignment

against it self. This self-alignment is analyse to detect and tag repetitions. Flye builds a repetition

graph, with repetition extremities as nodes and an edge is built when two repetition extremities are

linked in a contig. Flye uses coverage information to take a clue on contig succession over untangle

repetition. By analysing the topology of repetition graphs, Flye can find a unique traversal path to

explain all repetitions and find the genomic order of a contig.

3.7.2 wtdbg2

wtdbg2 [87] uses a DBG approach to solve long-read assembly. It is not really a DBG, but a ”Fuzzy-Bruijn

graph” (FDBG) and was defined for the first time in this article. To build this graph, wtdbg2 splits

a read in a bin with a fixed size (256 base pairs) and stores the kmer present in each bin in a hash

table. To find the overlap between reads, wtdg2 uses a hash table to compare the kmer compositions

between each read and performs a pairwise alignment between each bin of reads.

After this alignment step, wtdbg2 only keeps in memory which bin is aligned to which bin, and

it builds k-bins. Each k-bin is a sequence of k successive bin in a read. wtdbg2 can infer if two k-bins
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overlap if one or more bin in this two k-bins shares an ovelap.

A group of k-bins are a node of FDBG. wtdbg2 builds an edge between two nodes if the k-bins

from each node are successive in a read, after some cleaning step (pops bubbles, tips cleaning) wtdbg2

builds a consensus sequence with each simple path in FDBG.

3.8 New long read assembly method

Very recently, two assembly tools have been presented that focus on the ability to produce good long

read assembly with a very low cost in computation time and memory usage.

3.8.1 Peregrine

Peregrine [18] uses the SHIMMER overlapper. SHIMMER extends idea of minimizer (introduced in

Section 3.6.1), by creating a minimizer of minimizers. Given a set of minimizers, one of them can be

chosen as a representative minimizer. These minimizers representing a set of kmer, we can have many

layers of minimizers, each layer reducing the size of the minimizer set and the space of search to find

similarities between reads.

The layer-0 of minimizers was a basic minmizer process, like Minimap2. After this step, SHIMMER

selects the minimizers that will participate in the layer-1, it uses a reduction factor, for a reduction

factor x, x minimizers are represented by the minimal minimizer of this set. This process can be

repeated with many layers. When it chooses the minimizers of layern among the minimizers of

layern−1, SHIMMER checks the distance between each layern minimizer to make sure they represent a

distinct part of the read. SHIMMER by default uses three layers of minimizing this value, reduces the

number of minimizers that have to be compared to find similarities between read, without increasing

the number of missed overlaps (value found empirically).

After this indexing step, SHIMMER brings together reads that share many last layer minimizers

and performs a classic alignment to confirm overlap between reads. After this step, Peregrine runs

a classic OLC strategy to perform assembly.

SHIMMER overlapping tools can be used to perform a mapping of read against contig or genome.

After this remapping a polishing step was performed, without taking into account heterozygosity.

Peregrine was actually tested only on Circular Consensus (CCS) Pacbio data. Reads were

sequenced multiple times and a consensus was performed on all this sequencing. This technique

reduces the read length but reduces the error level of sequencing too. Finding overlaps between reads

with less error was easier and faster. Methods created by Peregrine tools by reducing the minimizer

space of search speed up the search for overlaps, but they were tested on low error rate long reads.

Even if the error rate of long reads decreases, will it decrease enough for this method to maintain a

good sensitivity? Peregrine needs to be validated on other types of data before its method can be

generalized.
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3.8.2 Shasta

Shasta is a recently published assembly tools that was used to assemble Nanopore data of eleven

human genomes [94].

Shasta uses run-length representation of reads. Run-length representation is a loss-less com-

pression method for text that contains a large repetition of the same character. For example, the

sequence ACCTTTGAA, was represented by two strings Sb = {A, C, T, G, A} and St = {1, 2, 3, 1,

2}. To reconstruct the original sequence, we repeat Sti time the Sbi letter.

This representation was interesting for long-reads data, because DNA contains sometimes the

same character repetition (called an homopolymer) and long-reads often make errors in homopolymer.

Run-length representation by squashing this region can avoid this type of error and facilitates the

alignment of long-reads.

To perform read overlapping, Shasta did not use a minimizer approach but something very

close, the Sb string of read was split in kmer and some kmer were selected randomly, and called

markers. The set of markers was the same for all data set. Reads was now represented by a succession

of markers: it is a lossy compression.

Before looking for a colinear match of marker, in order to select reads with a higher match

probability, Shasta computes a modification of the MinHash Jaccard estimation (see Section 3.5.1)

to avoid the bias created by the difference of length between reads.

To perform assembly Shasta creates a marker graph. It is something similar to DBG, in which

a kmer is a marker and an edge is built between two markers if a read contains this succession of

markers. Each edge is weighted by the number of reads that contains this succession. After a cleaning

step of marker graph (removing transitive edges, tips and bubbles), a path in the marker graph is

selected and the reads that have helped build the edges for this path are used to build a consensus

sequence of contigs.

Shasta contains many interesting ideas and the authors plan improvements for heterozygosity

detection, resolution and performance improvement.

3.9 Chapter Conclusion

Long read assembly is an active field of research, many tools are created each year and long read

assembly tools are used to improve genome and build draft genome.

To perform overlap detection, a majority of tools use k-mer to find reads with a high similarity

and avoid all-versus-all overlapping search. To further reduce the space search, some tools use filtering

based on minimizing: we keep the kmer with the lowest score, this score can be based on information

contained in the dataset or be determined by an arbitrary function. The choice of k-mer size, filtering

method and minimizing function, can have a great impact on result of each tool.

The OLC approach has proven its effectiveness in assembling third generation reads. Several

modifications have been made to support these new reads but efforts are mainly focused on reducing

the computation time of memory usage. These modifications have led to the idea of a hybrid OLC

algorithm with DBG and Greedy (cf Flye and wtdbg2). This hybridisation of method create tools where
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interdependance between each step was more and more important. For exemple in Flye, wtdbg2 and

Shasta the search of overlap was linked to a assembly graph construction.

The only assembly that tried to take heterozygosity into account was FALCON, by making the

difference between a sequencing error and a variant or heterozygosity. To get heterozygosity and

variant phased or genome graph after assembly would be interesting. But the tools to extract all this

information from a read do not exist yet.

Another step of assembly improvement would be to improve the contiguity, assembly tools

by reducing the information to reduce computation time and memory usage can have an impact on

assembly quality. Correction of long-read can by trimming insufficiently-covered data can increase

the size of coverage gap. Coming back to all read information or using overlaps found by another

tool, helps to solve assembly troubles created by heuristic in assembly and correction tools. The next

chapter focuses on this point.
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Chapter 4

Post Assembly

In the previous chapter we saw several third generation assembly tools, each one having its own

specificity and method to produce a long read assembly. Each assembly tool produces different output

files, but all of them produce a contigs file that store contigs sequences built during assembly. Other

files generally contains information about contigs, coverage, if a contig is circular or not, which reads

were used to build a given contig, . . .

All this information is useful to assess the assembly quality, or to integrate other information to

improve the assembly. In this chapter we will briefly review some methods for evaluating an assembly

and will especially focus on the most commonly used method for evaluating a new assembly: the

alignment of the contigs of the assembly against a known reference.We will see that this method

requires some adjustment when evaluating an uncorrected assembly pipeline.

In a second part we observe how recent long-read assembly tools still fail to produce a good

assembly on data although it should theoretically succeed. We thereafter present our solution KNOT.

KNOT is a tool which by returning to the original information reads, tries to find information that

could not be used by the assembly pipelines.

4.1 Assembly evaluation

Several metrics exist to compare and evaluate assembly. The most common metric used is the N50

that evaluates the contiguity of assembly. For example we take a genome with one chromosome

and two assemblies. The first assembly contains one large contig (approximately the length of the

chromosome) and many short ones. The second contains only contigs of average size one or two order

of magnitude smaller than the chromosome. The first one has an higher contiguity. We have more

information about the genome with the first assembly than the second one. We don’t need perform

an hard scaffolding step to have an idea of genome organisation.

To compute N50, we create a list of your contigs length and sort them. When the cumulative

sum of contigs length (starting with the largest) is larger than the sum of all contigs, the length the
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last added contig is the N50 value. For example, L is the sorted list of contigs length:

L = {20, 30, 40, 50, 70, 80}

Lsum =

|L|∑
i=0

Li = 290

290

2
> 20 + 30 + 40 + 50

290

2
< 20 + 30 + 40 + 50 + 70

N50(L) = 70

(4.1)

70 was the last length added in cumulative length before this cumulative length is larger than

half of the total sum of assembly. N25, N75 or NX correspond to the same metrics as N50 for 25%,

75%, or X% of total length of contigs. L50 is the rank of the N50 contig in the sorted contigs list, L50

of our example is 5.

NG50 is the same thing as N50, but the total sum of contigs length is replaced by the genome

length (estimated or get from a previous assembly). NGA50 is the same as NG50, but the contigs

length is replaced by the length of contig that map against the reference genome. We can cite U50 as

another metric similar to N50 where overlapping region between contigs was ignored [14].

N50 family metrics are not perfect, but they help to represent the contigs length distribution,

and to compare the results of different assembly tools on the same dataset. N50 is useful to analyze

assembly quality without any external information.

By adding other information, we can evaluate assembly not only on size of contigs. BUSCO [97]

evaluates the assembly completeness with the presence or the absence of core genes. By mapping

contigs against reference genome or close reference genome, Quast [30] computes many metrics like

the number of misassemblies, NGA50, the identity level of contigs, . . . .

Some other tools and techniques exist and are useful. Some of them are presented in more

details in [76]

4.2 Misassemblies in noisy assemblies

Originaly publish in: https://blog.pierre.marijon.fr/misassemblies-in-noisy-assemblies/

Author: Pierre Marijon

4.2.1 Introduction

I think that all the people who have ever done a genome assembly one day say: ”Ok my assembly is

cool, but now how I can be sure that it’s the best and it doesn’t contain a lot of errors ?”

We have many technics to evaluate the quality of assemblies (it isn’t a complete review, sorry):

• with only assembly information:

https://blog.pierre.marijon.fr/misassemblies-in-noisy-assemblies/
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– with N50 family metrics

– by analyzing reads remapping against assembly AMOSValidate, REAPR, FRCbam, Pilon,

VALET

– by computing the probability of the reads given the assembly (ALE, CGAL, LAP)

• by using external information:

– count the number of core genes present in an assembly, BUSCO

– transcriptome information, for example, Bos taurus genome validation

– synteny information Lui et al

– map assembly against a near reference genome, quast or dnAQET

Note that for the last bullet point, if you are using quast with a reference genome you already

have, by definition, a reference genome. So why perform an assembly?

The main reason to perform reference-assisted evaluation is when testing different assembly

pipelines on the same read data set. To evaluate a new assembly pipeline, one also has to test

different sets of parameters, and evaluate the impact of adding or changing the tools that are part of

the pipeline.

Quast is a very useful tool and now it integrates many other assembly evaluating tools (BUSCO,

GeneMark, GlimmerHMM, barnap)

Recently, with Rayan Chikhi and Jean-Stéphane Varré, we published a preprint about yacrd

and fpa, two new standalone tools. These tools can be included in assembly pipelines to remove very

bad reads regions, and filter out low-quality overlaps. We evaluated the effect of these tools on some

pipelines (miniasm and redbean). Using quast, we compared the results with the assembly quality of

different pipelines.

We sent this paper to a journal, and one of the reviewers said something along the lines of:

”quast isn’t a good tool to evaluate high-consensus-error assemblies, the number of misassemblies was

probably over evaluated.”

And it’s probably true.

Miniasm and redbean perform assemblies without read correction steps (and without consensus

step for miniasm). The low quality of a contig sequence is a real problem: quast could confuse a

misaligned low-quality region with a misassembly.

In this blog post, I want to answer the following questions:

1. how to run quast on long-read uncorrected misassemblies

2. is the quast misassemblies count a good proxy to evaluate / compare assemblies?

3. can we find better metrics than just the number of misassemblies?

If you have no time to read all these long and technical details you can go directly to the TL;DR.

https://doi.org/10.1089/cmb.2017.0013
http://amos.sourceforge.net/wiki/index.php/Amosvalidate
https://www.sanger.ac.uk/science/tools/reapr
https://github.com/vezzi/FRC_align
https://github.com/broadinstitute/pilon/wiki
https://www.cbcb.umd.edu/software/valet
https://doi.org/10.1093/bioinformatics/bts723
https://doi.org/10.1186/gb-2013-14-1-r8
https://doi.org/10.1186/1756-0500-6-334
https://busco.ezlab.org/
https://doi.org/10.1186/gb-2009-10-4-r42
https://doi.org/10.1186/s12859-018-2026-4
https://doi.org/10.1093/bioinformatics/btt086
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6070-x
http://exon.gatech.edu/GeneMark/
https://doi.org/10.1093/bioinformatics/bth315
https://github.com/tseemann/barrnap
https://www.biorxiv.org/content/10.1101/674036v2
https://github.com/natir/yacrd/
https://github.com/natir/fpa
https://github.com/lh3/miniasm
https://github.com/ruanjue/wtdbg2
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In this post I will talk about quast and not dnAQET, which has just been released, but dnAQET

uses the same method (mapping the assembly against the reference) and the same misassembly def-

inition as quast. It seems to me that what I am going to say about quast also applies to dnAQET.

But go read the dnAQET publication, there are lots of super interesting ideas in it.

4.2.2 Datasets, assembly pipelines, analysis pipelines; versions and param-

eters

For our tests we are going to use two Nanopore datasets and one Pacbio dataset.

• Reads:

– Oxford nanopore D melanogaster 63x coverage

– Oxford nanopore H sapiens chr1 29x

– Pacbio RS P6-C4 C elegans 80x

• References:

– D. melanogaster 143.7 Mb

– C. elegans 100.2 Mb

– H. sapiens chr1 248.9 Mb

To perform assembly we use minimap2 (version 2.16-r922) and miniasm (version 0.3-r179) with

recommended preset for each sequencing technology (ava-ont and ava-pb).

We use racon (v1.4.3) for polishing. For mapping reads against assembly we use minimap2,

with recommended preset for each sequencing technology.

We use quast version v5.0.2.

All dotplots were produced by D-Genies.

4.2.3 Quast misassemblies definition

What are quast misassemblies? Do we have different misassembly types? How are they defined?

Quast defines three types of misassemblies: relocation, translocation and inversion.

4.2.3.1 Relocation

A relocation can occur based on signal from two mappings of the same contig against the same

chromosome (cf Figure 4.1). We have two cases:

• either the two mappings are separated by an unmapped region (case A)

• or they map on the same chromosome with a shared mapping area (case B)

https://www.ebi.ac.uk/ena/data/view/SRX3676783
http://s3.amazonaws.com/nanopore-human-wgs/chr1.sorted.bam
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001215.4
ftp://ftp.ensembl.org/pub/release-95/fasta/caenorhabditis_elegans/dna/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz
ftp://ftp.ensembl.org/pub/release-95/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.chromosome.1.fa.gz
https://github.com/lbcb-sci/racon
http://dgenies.toulouse.inra.fr/


4.2 MISASSEMBLIES IN NOISY ASSEMBLIES 45

Figure 4.1: A schematic representation of a relocation

A misassembly is said to occur when Lx and Lz > 1kbp (this value can’t be changed, it seems)

and when Ly > extensive-mis-size (1kbp by default).

Let’s call Ly the length of the relocation.

• The relocation length is positive when the assembly missed a part of the reference (case A)

• Negative when the assembly includes a duplicated region (case B).

In both cases, this is an assembly error.

Figure 4.2: Thrid relocation observe in dotplot a long reads assembly against reference of C. elegans

In dotplot present in Figure 4.2 of contigs ctg000002L for our C. elegans miniasm assembly

against the chromosome V of the reference. We can see two relocation events of type B circled in blue

and one relocation event of type A (green). I have no idea on how to explain the other problem on

the top right.
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4.2.3.2 Translocations

A translocation occurs when a contig has mapped on more than one reference chromosome (cf Figure

4.3).

Figure 4.3: A schematic representation of a translocation

It’s easy to spot this kind of misassemblies on a dotplot because of the multi-chromosome

match.

Figure 4.4: A translocation in a dotplot.

In Figure 4.4, two parts of contig ’utg16L’ from our C. elegans miniasm assembly, map respec-

tively on chromosomes II and V of the reference. This contig contains a translocation without any

doubt.

4.2.3.3 Inversions

An inversion occurs when a contig has two consecutive mappings on the same chromosome but in

different strands (cf Figure 4.5).

Figure 4.5: A schematic representation of a inversion

The dotplot present in Figure 4.6 shows an inversion between a reference genome and a miniasm

assembly of C. elegans.



4.2 MISASSEMBLIES IN NOISY ASSEMBLIES 47

Figure 4.6: The contig utg0000021L maps on chromosome I, but it contains a small inversion at its
end.

4.2.3.4 Important point

For more details on quast misassembly definitions, you can read this section 3.1.1 and section 3.1.2 of

the quast manual.

Quast bases its misassemblies analysis on the alignmnt of contigs against a reference. To perform

alignment, recent versions of quast use minimap2, with preset -x asm5 by default, or -x asm20 when

min-identity is lower than 90%. After that, alignments with identity lower than min-identity are

filtered out by quast (95% identity by default, but can be set to as low as 80%).

min-identity is a very important parameter. To consider a contig as misassembled, quast

must have a minimum of two mappings for this contig. If the second mapping has an identity under

the min-identity threshold, quast can’t observe the misassembly. But even more, if a contig has

three successive mappings, and assume also that the mapping in the middle has lower identity than

the min-identity threshold, and the remaining gap between the two other mappings is larger than

extensize-mis-size, then quast sees this as a misassembly, where in fact it isn’t.

Parameters min-identity and extensize-mis-size have an important impact on mis-

assemblies detection. So, what is the effect of changes in of these two parameters on the

number of misassemblies found by quast?

4.2.4 Effect of min-identity

4.2.4.1 Low min-identity is required for uncorrected assembly

Quast only uses mappings with alignment identity higher than min-identity. So, what could be a

good value for this parameter for long-read uncorrected assembly?

http://quast.bioinf.spbau.ru/manual.html#misassemblies
http://quast.bioinf.spbau.ru/manual.html#sec3.1.2
https://github.com/lh3/minimap2
https://github.com/ablab/quast/blob/b040cc9140c7630eea95f94cdda3b825cf4a22c3/quast_libs/ca_utils/align_contigs.py#L65
https://github.com/ablab/quast/blob/b040cc9140c7630eea95f94cdda3b825cf4a22c3/quast_libs/ca_utils/align_contigs.py#L65
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The file contigs reports/minimap output/{output-name}.coords, generated by quast, in

the fourth column contains the alignment identity %. For each dataset, we extracted this value and

plot it in an histogram (cf 4.7).

Figure 4.7: Horizontal axis: identity percentage bins, vertical axis: number of mappings in each bin.

The black line marks quast default identity value threshold, we can see a majority of alignments

are under this threshold for an uncorrected dataset. So, setting parameter min-identity 80 seems

necessary.

4.2.4.2 Effect on a polished assembly

To test the effect of correction on misassemblies count, we ran racon 3 times on C. elegans (the one

with the best reference) dataset.

On the non-corrected assembly, quast makes use of 7049 mappings; for the corrected assembly,

30931 mappings (increasing ratio 4.38).

We can observe in Figure 4.8 an increase in alignment identity due to racon (unsurprisingly).

Contrary to the uncorrected assembly, a majority of the mappings now have 95% or more identity.

To have an insight on the effect of min-identity on unpolished/polished assemblies, we run

quast with default parameters and changing only min-identity (still the C. elegans dataset).

With min-identity 80 the number of relocations and translocations is increased compared to

the default value of min-identity. If quast has only one alignment of a contig, it cannot find mis-

assemblies. By reducing the min-identity we increased the number of alignments and mechanically

increased the number of detected misassemblies.
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Figure 4.8: Horizontal axis: identity percentage bins, vertical axis: number of mappings in each bin.

racon no yes yes
min-identity 80 80 95
relocation 1131 886 635
translocation 200 259 170
inversion 65 68 75
total 1396 1213 880

Table 4.1: This table shows the number of different types of misassemblies, whether we run racon on
the assembly or not and according to the value of the threshold min-identity

We think that some of these misassemblies aren’t real misassemblies. But if we use the same

min-identity value for all assemblies that we want to compare, we can hope that the number of

’false’ misassemblies will be similar.

For uncorrected long-read assemblies, we recommend to use a lower-than-default

QUAST identity threshold parameter (80 %)

4.2.5 Effect of extensive-mis-size on misassemblies count

We observed that the min-identity parameter has a very important impact on the number of mis-

assemblies for uncorrected long-read assemblies (-> need to set it to 80 %.) Now we want to observe

what is the impact of another parameter: extensive-mis-size, which is a length threshold for the

detection of relocation-type misassemblies.

We launch quast with different value for parameter extensive-mis-size: 1.000, 2.000, 3.000,
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Figure 4.9: In the horizontal axis, we have the extensive-mis-size value. In the vertical axis we
have the number of misassemblies.

4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000, 20.000, 30.000, 40.000, 50.000 (in base pairs). The

parameter min-identity was set to 80 %.

The Figure 4.9 shows the evolution of the number of misassemblies in function of the extensive-mis-size

value. After 10.000 base pairs, the number of misassemblies becomes quite stable.

This graph shows two regimes: with extensive-mis-size lower than 10.000 bp, it detects quite

a lot of misassemblies. With extensive-mis-size higher than 10.000 bp, it detects less of them. Yet

we know that quast detects three type of misassemblies (relocations, translocations,

inversions). Only relocation should be affected by extensive-mis-size parameter, but

let’s verify this assumption.

4.2.5.1 Effect of parameter extensive-mis-size on the detection of each misassembly type

Quast defines three types of misassemblies relocation, translocation and inversion. Previously

we observed the total number of misassemblies. Now we break down by group of misassemblies (cf

Figure 4.10).

The H. sapiens dataset doesn’t have any translocation because the reference is composed of only

one chromosome. The majority of misassemblies are relocations, but when we increase the parameter

extensive-mis-size the number of inversions also increases.

D. melanogaster reference contains many small contigs. This can explain the high number of

translocations. Relocations and translocations drop at the same time.
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Figure 4.10: In the horizontal axis, we have the extensive-mis-size value. In the vertical axis, we
have the number of misassemblies.

For C. elegans the number of translocations was quite stable, the number of relocations drops

down rapidly and the inversions has only a little increase.

I can’t explain why translocations and inversions numbers change with a different value of

extensive-mis-size. By reading quast documentation and code I didn’t understand the influence

of this parameter on this group of misassemblies.

Relocation misassemblies are the most common type of misassemblies. We can

impute the reduction of misassemblies, when extensive-mis-size grows, to a reduction

of relocations.

4.2.5.2 Relocations lengths distribution

We see previously for our assemblies that a majority of misassemblies were relocations. We are now

focused on this type of misassemblies. For each relocation we can attach a length, this length is the

length of incongruence between assembly and reference genome. It’s equal to Ly.

The file {quast output}/contigs reports/all alignements {assembly file name}.tsv con-

tains information about mapping and misassemblies. For other information on how quast stores

mapping and misassemblies information, read quast faq.

The Figure 4.11 shows a swarm plot of log of length associated to recombination. It’s the size

of the gap between mappings flankings a misassembly. If the length is positive, the assembly misses

part of the reference (green point). If the length is negative, the assembly duplicates a part of the

http://quast.bioinf.spbau.ru/manual.html#sec7
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Figure 4.11: In the vertial axis, we have the log length of each relocation. Each raw is a species. Green
points are for negative (<0 bp) relocations, orange points for positive relocations.
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reference (orange point). Source code, data is available.

For H. sapiens a majority of relocations were positive and short (between 1000 and 5000 bases),

with some very large relocations. For C. elegans it’s different, the majority of relocations are negative

and the largest relocation was shorter than in H. sapiens. For D. melanogaster the size of relocations

was more spread out; the majority of relocations aren’t short. This is confirmed by the look of the

curve seen in the previous part, when extensize-mis-size is increased, the number of relocations

decreases less quickly than for the other datasets.

With this representation, we can analyze the differences in relocations between

assemblies, in terms of their numbers and more importantly the distributions of their

lengths.

4.2.6 Conclusion

If you work with quast to evaluate an assembly made with miniasm, you need to set min-identity

parameter to 80 %. It would be nice to have a lower minimum value, maybe 70%, but the quast code

would have to be modified. And such a low identity is required only for a miniasm assemblies; for

tools with a better consensus step (redbean for exemple), 80 % seems sufficient.

Translocations and inversions constitute a minority within misassemblies, yet when they are

detected it’s clear that they are ’true’ misassemblies. I would be very surprised to see a translocation

or inversion created by a mapping error, itself generated by error(s) in an uncorrected long-reads

assembly. We can thus trust the count of translocations and inversions.

For relocations, the situation is different. They constitute the majority of misassemblies in

our cases, and some of them are true some of them are false. Checking all misassemblies manualy is

impossible, and finding a good extensive-mis-size value seems very hard for me. The easiest thing

we can do is compare the series of lengths associated to relocations, as shown in this blogpost I used

a swarmplot; I think statisticians could find better tools.

4.2.7 Take home message

You can use quast to compare uncorrected long-reads assemblies but:

• run quast with --min-identity 80

• rely on translocations and inversions counts

• for relocations, compare distributions of lengths associated to each assembly
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• Yoann Dufresne

• Antoine Limasset

• Matthieu Falce

• Kevin Gueuti

4.3 Trouble with heuristic algorithm

Assembly tools need to rely on heuristics. Due to theoretical limit: how many bases need to be share

between two read to create an overlap, how many errors can we accept in this overlap. Due to technical

limit: memory constraint, computation time limit. You can’t search and store all overlap. Most of

the time chosen heuristics perform very well, but in some cases a more complex analysis is needed.

Wick and Holt in [109] perform a comparison of five assembly tools on real data and simulated

data bacterial data set. Some difficulties are injected in the input long-reads to stress assembly tools:

• Adaptor length. Sequencing techniques require the introduction of short sequence before reads.

Because of their high error rates to detect and remove those adaptor from long-read sequences

is not trivial. Those adaptors can generate assembly errors.

• Chimeric read. During DNA extraction and fragmentation, two fragments coming from different

regions can be sequenced as a single read. This can lead to assembly fragmentation.

• Glitch level. Long-read error aren’t uniformly distributed along the reads and sometimes se-

quencer create a region with only random sequence. A higher the glitch level indicates a larger

region and a higher frequency.

• Random junk reads. Some reads are just a string of random character.

• Read depth, corresponds to genome coverage.

• Read identity, percent of error insertion, deletion, substitution.

• Read length.

This study focuses on assembly contiguity, the number of contigs vs. the expected number

of contigs, and the number of contigs that can be mapped against the reference. According to this

benchmark we observe that:

• reads length are upper than 10k and lower than 20k, this length can be reached by long-read

sequencing technology but requests a particular attention be focused on the risk of DNA frag-

mentation

• read identity need to be upper than 85%



4.3 TROUBLE WITH HEURISTIC ALGORITHM 55

Figure 4.12: Effect of different reads property on assembly contiguity (number of contigs expect and
map correctly on reference genome), of five assembly tools. Unicycler is an hybrid
assembler (use second and thrid generation read). Canu is a long-read assembly pipeline
they perform a self correction before construct assembly with a special OLC graph (more
detail in Section 3.5). Ra perform a basic string graph assembly on raw reads with a
correction of contigs after assembly (more detail in Section 3.6). wtdbg2 and Flye use a
DBG like approach to perform assembly on raw reads (more detail in Section 3.7). This
figure is a reproduction of figure from [109].
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• the minimal coverage is around 20x, but this study didn’t analyze the error rate of assembly, we

can suspect a high error rate in assembled contigs

• chimeric reads have an important impact on assembly contiguity but at level generally not

observed in real data

We can observe an important variability of result (in Canu, wtdbg2 and Unicycler). An

assembly can fail for many reasons: a chimeric read in a repetition, a drop of coverage, a missing

overlap, or a inappropriate set of parameters.

Analysis and understanding of the data produced by assembly tools help to check if assembly

result didn’t produce false result or to understand, and sometimes solve, assembly trouble. Some tools

use remapping of reads against assembled contigs to found misassembly by detecting incongruity’s

in read coverage, mate pairs mapping, read mapping clipping. Some tools or assembly tools were

developed in order to analyse assembly graphs to understand what is happening during assembly like

Bandage [110], a tool to visualize assembly graph.

We developed KNOT a tool to simplify analysis of assembly tools results and help users to make

choices improving assembly quality. This tool is based on the observation that the graph of raw reads

is generally connected (we can reach any node from any node), while the graph of contigs does not.

Therefore the idea of KNOT is to use the graph of raw reads to find the (potentially missed) links

between contigs.

The Figure 4.13 present the main idea of KNOT, to combine information of assembly (the read

coloration) with pieces of information that can be extracted from reads (the OLC graph build from

Minimap2 but another overlapping tools can be used). The contigs information helps us to ignore

some already solved problem (red circle), unsolvable trouble (greed circle) and to focus on strange

situations (blue circle). Figure 4.13 show a very simple example on a real case. The OLC graph can be

very hard to read and understand for a human, analysing an OLC graph by hand is almost impossible.

For these reasons and to run analysis without an human intervention we also automatised the idea of

KNOT.

The paper was publish originally publish in Bioinformatics (https://doi.org/10.1093/bioinformatics/

btz219), we reformat the paper in the style of this current document for reasons of readability.

4.4 Graph analysis of fragmented long-read bacterial genome

assemblies

Originaly publish in Oxford Bioinformatics : https://doi.org/10.1093/bioinformatics/btz219

Author: Pierre Marijon, Rayan Chikhi, and Jean-Stéphane Varré

4.4.1 Abstract

Motivation: Long-read genome assembly tools are expected to reconstruct bacterial genomes nearly

perfectly, however they still produce fragmented assemblies in some cases. It would be beneficial to

understand whether these cases are intrinsically impossible to resolve, or if assemblers are at fault,

https://doi.org/10.1093/bioinformatics/btz219
https://doi.org/10.1093/bioinformatics/btz219
https://doi.org/10.1093/bioinformatics/btz219


4.4 GRAPH ANALYSIS OF FRAGMENTED LONG-READ BACTERIAL GENOME
ASSEMBLIES 57

Figure 4.13: This graph is the overlap graph (computed by Minimap2), reads used by Canu to build
its contigs are colored with same color. We can thus distinguish the three contigs com-
puted by Canu. We can observe two fragmentation points, one can be explained by a
repetition (green circle). We can observe that some repetitions are solved by Canu. But
the fragmentation between green and red contigs (blue circle) can’t be explained by a
repetition.

implying that genomes could be refined or even finished with little to no additional experimental cost.

Results: We propose a set of computational techniques to assist inspection of fragmented bacterial

genome assemblies, through careful analysis of assembly graphs. By finding paths of overlapping raw

reads between pairs of contigs, we recover potential short-range connections between contigs that were

lost during the assembly process. We show that our procedure recovers 45% of missing contig adjacen-

cies in fragmented Canu assemblies, on samples from the NCTC bacterial sequencing project. We also

observe that a simple procedure based on enumerating weighted Hamiltonian cycles can suggest likely

contig orderings. In our tests, the correct contig order is ranked first in half of the cases and within the

top-3 predictions in nearly all evaluated cases, providing a direction for finishing fragmented long-read

assemblies.

Availability: https://gitlab.inria.fr/pmarijon/knot

https://gitlab.inria.fr/pmarijon/knot
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4.4.2 Introduction

Third-generation DNA sequencing using PacBio and Oxford Nanopore instruments is increasingly

becoming a go-to technology for constructing reference genomes of non-model prokaryotes and eu-

karyotes. Longer sequencing reads allow in principle to overcome the reconstruction problems posed

by genomic repetitions [13]. Direct assembly of second-generation (Illumina) sequencing data typi-

cally also results in high consensus accuracy yet generally more fragmented bacterial assemblies [7].

The large-scale ongoing NCTC project aims to assemble and make publicly available 3,000 bacterial

strains sequenced using PacBio1.

Recent works have demonstrated single-contig long-read assemblies of bacterial chromosomes [42,

59]. Therefore, it is natural to ask whether genome assembly is now a solved problem with long reads2,

at minimum for smaller genomes such as bacteria. It turns out that in several cases, bacterial assem-

blies remain fragmented into a handful of contigs, even with long-read sequencing and recent assembly

techniques. Deciding whether an assembly instance is resolved is not always clear due to the presence

of plasmids, contaminants and unplaced low-quality reads. In this work, an assembly is considered

to be resolved if the number of contigs classified as chromosomal is equal to the expected number of

chromosomes (generally just one, in the bacterial case).

To date, the NCTC project contains 1,735 samples for which 1,136 have been assembled by the

consortium, and among these, 599 (34%) are unresolved according to the criteria above (as in Feb

2019). Later in this article, we will see that even when using multiple recent tools, many assemblies

remain fragmented. Therefore there is a clear and unmet need for an investigation that determines

whether those samples are intrinsically impossible to resolve, or whether current assembly methods

are imperfect.

In this article we have selected a subset of NCTC samples (see Results section) and considered

the outputs of three recent assemblers: Canu, Miniasm, and HINGE. We observe that instances where

the assembly is fragmented can be challenging to further manually elucidate. In general, assemblers

produce an assembly graph where nodes are contigs and edges reflect local sequence proximity in the

genome (adjacency). In fragmented instances, the final assembly graph is sometimes uninformative

due to the absence of edges between contigs, hindering further assembly finishing steps. In such

cases, it would be tempting to conclude that the assembly is fragmented due to regions of insufficient

sequencing coverage, with no way to determine a likely contig order. However, in a number of cases

we found that a lack of connectivity can be due to reads that were discarded early in the assembly

pipeline. Here we will show that contig adjacency information can be computationally recovered from

the raw data.

To automatically investigate unresolved assemblies and propose directions for refinement, we

introduce a set of in silico forensics operations for long-read assemblies, and we built a software

framework. Our analyses are based solely on information present in the raw sequencing data in

addition to the contigs produced by a given assembly tool, and are not biased by any other source,

e.g. a closely related reference genome. For validation purposes only and to explain some of our

observations, we will align contigs to a ground truth reference when one is available. Our framework

is first tested on synthetic data to illustrate a simple case of fragmentation due to heuristics in the Canu

1https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
2See e.g. https://huit.re/PJMMA_uF

https://huit.re/PJMMA_uF
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assembler. We then show on real data that our method helps recover useful adjacency information

between contigs.

Going further, we demonstrate how to use this recovered information to provide likely assembly

hypotheses using Hamiltonian paths, through a ranked list of contigs orderings. Obtaining a small set

of possible orderings between contigs, knowing that the true genome order is likely one of them, can

be instrumental to guide further genome finishing steps.

4.4.3 Related works

Assembly forensics date back to the Sanger era, e.g. with the AMOSvalidate software [84], which de-

tects mis-assemblies within contigs using multiple sources of information (e.g. read coverage, properly

mapped pairs, clipping). Other tools have been introduced for mis-assembly detection in Illumina

data (REAPR [32], FRCbam [105], Pilon [106]) and for PacBio data (VALET [78]) using similar

principles. Completeness of an assembly can be estimated without any reference, using core genes as

a proxy metric, e.g. with BUSCO [97] or CheckM [81] software. Finally, assembly likelihood metrics

have been introduced to assess the fit of an assembly to a probabilistic model of sequencing, via re-

mapping reads to the assembly [23, 28, 85]. For a more complete exposition, refer to a recent survey

on metagenomics assembly validation [79], that also largely applies to isolates.

For bacterial genomes specifically, several pipelines for assembly finishing have been devel-

oped [11]. They usually take as input an assembly obtained with short-read data and align it to one

or multiple close reference genomes, in order to find a contig ordering [46]. Recent work has examined

the cause of assembly fragmentation for seven bacterial genomes sequenced using PacBio sequencing,

and rejected the hypothesis that gaps were caused by strong secondary DNA structure [102]. Instead,

low coverage and repetitions appear to be the two main factors for contig termination.

To the best of our knowledge, little work has been carried to investigate assemblies based on

the graph of assembled contigs or the initial string graph. Noteworthy exceptions are the Bandage

software (an assembly graph visualization tool) [110], and the HINGE assembler that implements

automated repeat handling based on the assembly graph [36]. We use Bandage extensively in the

present work, and will consider datasets where even HINGE failed to produce a single-contig assembly.

4.4.3.1 Long-read assemblers

Several genome assemblers have been developed to process third-generation sequencing data, either

stand-alone [36, 44, 54, 58] or in combination with Illumina data [6, 111, 114, 115]. In this work we will

focus on three recent stand-alone assemblers, chosen because of their widespread usage (Canu), auto-

mated graph analysis algorithms (HINGE), and speed/modularity (Miniasm). However the techniques

are likely to be applicable to a broader set of assemblers.

4.4.3.2 Description of Canu, Miniasm, and HINGE

The Canu [44] assembler consists of three major steps: correction, trimming and contig creation.

The first two steps should not be regarded as innocuous pre-processing steps, as they significantly

impact the rest of the assembly process. The correction step uses MHAP to perform all-against-all
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read mapping then generates consensus reads with the falcon sense tool [21]. Canu then performs

overlapping of error-corrected reads with a legacy algorithm from the Celera assembler, named ovl.

The trimming step detects hairpins, chimeric reads, and low-support regions and subsequently cuts

reads. A ’unitigging’ step is performed using bogart, a modified version of CABOG [67], to produce a

graph that records only the longest overlaps between corrected reads (termed BOG for ’Best Overlap

Graph’). Canu generates contigs from this graph and improves their consensus accuracy by re-mapping

all reads.

The Miniasm pipeline consists of two separate tools: Minimap2 and Miniasm [54]. Minimap2

finds overlaps between raw reads and outputs alignments. Miniasm trims low-coverage regions of reads,

then constructs a string graph from Minimap2 alignments that are suffix-prefix overlaps. Miniasm

performs simplification on the graph inspired by short-read assembly: transitive reduction, tip removal,

bubble popping, and short overlaps removal based on a relative length threshold. After simplifications,

non-branching paths are returned as contigs.

The HINGE [36] assembler uses raw uncorrected reads (similarly to Miniasm) to construct an

overlap graph similar to the BOG of Canu. HINGE attempts to output finished bacterial assemblies

through improved repeat-resolution. In cases where there subsist repetitions that are not spanned by

reads, HINGE provides a visualization of the resulting assembly graph for manual inspection.

4.4.3.3 Assembly graphs

Short-read and long-read assemblers output final assembly sequences in FASTA format, and an in-

creasing number of tools also output an assembly graph in Graphical Fragment Assembly (GFA)

format3. A final long-read assembly graph typically consists of all contig sequences as nodes, and a

set of overlaps between contigs as edges. Assembly graphs

Most long-read assemblers start by constructing then analyzing a string graph (SG) of the

reads [72], where each read is a node, and overlaps between reads are represented by edges to which

additional information is attached (e.g. overlap length, overlap error rate). In addition, transitive

reduction is performed on the edges and reads that are fully contained in others are discarded.

4.4.4 Methods

We hypothesized that the final contig graph produced by assemblers does not always reflect all the

information present in the raw data, and may be missing overlaps or even genomic regions. We built

a novel algorithmic framework to recover some of the ’missing’ information and further analyze it.

The main steps are presented in Fig. 4.14, and the next sections describe them in more details.

4.4.4.1 Raw string graph

First, we eliminate chimeric reads from the raw data based on overlaps found by Minimap2 using a

custom tool4 (manuscript in preparation [63], see Supplemental Fig. A.6). A string graph (SG) is

then constructed using overlaps between chimera-removed reads (here, overlaps found by Minimap2).

3https://github.com/GFA-spec/GFA-spec
4https://gitlab.inria.fr/pmarijon/yacrd

https://github.com/GFA-spec/GFA-spec
https://gitlab.inria.fr/pmarijon/yacrd
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Assembly contigs Raw reads

Contig classification Raw string graph

Inter-contigs paths search

Augmented assembly graph

Parsomonious assembly scenario

Input

Output

Figure 4.14: The proposed framework takes as input raw long-read sequencing data and the output of
an assembler. The (optional) contig classification step removes non-chromosomal contigs.
A string graph of raw reads is constructed, in which paths are searched between extrem-
ities of contigs, then are converted into links between contigs in an augmented assembly
graph. When such a graph is connected, putative contig orderings are reported. Dotted
nodes represent elements that are automatically visualized in the HTML report.

A stand-alone script was created to convert overlaps from the PAF format (defined in [54]) to a

graph in the GFA format5. Transitive reduction over the edges of this SG is performed using Myers’

algorithm [72].

4.4.4.2 Contigs classification

In order to simplify analyses and focus on chromosomal contigs, we filter out contigs of plasmid origin

and contigs of unknown taxonomic status (see Supplemental Methods A.1). Contigs that were not

marked as chromosomal are discarded. Note however that this contig classification step can be skipped

in order to perform analysis of complete, unfiltered sets of contigs.

4.4.4.3 Computation of paths between contigs

An essential algorithmic component of our framework is the search for paths in the SG that uncover

new connections between contigs. First, one read per contig extremity is identified among reads

included in the SG: a read is selected such that both its incoming and outgoing neighbors also map

at the same contig extremity (in order to avoid selecting dead-end nodes in the SG).

Then for each pair of contigs, shortest paths between reads at both extremities of each contig

are computed in the SG using Dijkstra’s algorithm. The length of a path is computed in nucleotides

as follows: the sum of all reads lengths involved in the path minus all the overlaps between reads, as

well as minus the overlaps between reads and contig extremities. If contigs overlap, the path length

is reported as zero. Since we perform path search starting from each contig extremity, we may obtain

two shortest paths for each pair of contigs, and only the shortest of those two is kept.

5https://gitlab.inria.fr/pmarijon/fpa

https://gitlab.inria.fr/pmarijon/fpa
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4.4.4.4 Augmented assembly graph

We transform a contig graph into a novel object, the augmented assembly graph (AAG), as follows.

Nodes of the AAG are contig extremities. An edge is inserted between two nodes if a path has been

found by the procedure in Section 4.4.4.3 between the two contig extremities. Each edge is weighted by

the corresponding path length. Additionally, zero-weight edges are created between both extremities

of each contig.

Such a graph allows to explore adjacencies between contigs, beyond those present in the original

contig graph, in order to formulate hypotheses regarding the ordering of contigs. At a certain contig

extremity, and in absence of genomic repeats, low-weight edges likely reflect adjacent contigs, while

high-weight edges likely correspond to SG paths that pass through other contig(s) (i.e. transitively

redundant edges in the AAG). In the presence of repeats, low-weight edges do not necessarily show

true adjacencies between contigs, as the true path may be longer. Yet one can observe that a path

longer than the longest repeat in the genome necessarily reveals a distant link between two contigs

(i.e. necessarily contigs which are truly non-adjacent on the genome), and also such path may go

through another contig.

According to [101] most repetitions in bacteria are shorter than 10kbp. We thus categorize

edges of the AAG into 3 groups according to their weight. Consider the path in the SG that led to

the creation of the edge e in the AAG between extremities of two different contigs a and b. If the

path is longer than 10kbp, and/or it contains at least one read that was involved in the construction

of another contig c, the edge e is named distant. Otherwise the edge e is considered to reflect an

adjacency between a and b. If there is more than one edge outgoing from the extremity of a or of b,

the edge e is named a multiple adjacency (likely revealing a putative repeat). Otherwise it is named

a single adjacency.

4.4.4.5 Searching for parsimonious assembly scenarios

We sought to determine whether contigs could possibly be ordered directly using the AAG. In principle,

we anticipate to recover a large number of distant edges in the AAG, therefore it would be non-trivial to

determine a contig order by direct inspection of the graph layout (e.g. see Fig 4.16). Given a connected

AAG, our working hypothesis is that a minimum-weight Hamiltonian cycle may correspond to the

correct contig order (note that having a connected AAG is a necessary condition for such a cycle to

exist, but not a sufficient one). This is guided by the intuition that edges in the AAG with high weight

are more likely to correspond to false connections due to repetitions or true paths between distant

contigs. For simplicity, we search for Hamiltonian cycles and not paths, under the assumption that

the genome is circular. We further require that any Hamiltonian cycle traverses all zero-weight edges

corresponding to both extremities of each contig. Moreover, contigs mapping inside another one are

not considered.

We designed an automated procedure to test this hypothesis, based on computing and sorting

Hamiltonian cycles according to their total edge weights. In practice some of the AAGs that we obtain

are too complex, due to the presence of short contigs (see the Discussion section for more details). Our

pipeline excluded contigs shorter than 100kbp from the AAG before listing all Hamiltonian cycles.

For validation purposes, when a reference genome is available, we mapped all chromosomal contigs
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against this reference to determine the true contig order. We then recovered the position of the true

contig order within the list of orders given by Hamiltonian cycles.

4.4.4.6 Assembly report generation

We implemented a Snakemake [45] pipeline that takes as input raw reads, contigs produced by an

assembler, and optionally a contig graph. The pipeline follows steps described Fig.4.14, then generates

an HTML report for easy inspection. Companion tools to compute AAG edge classification and to

perform Hamiltonian path search are also provided.

4.4.5 Results

(a) (b) (c)

tig1 tig8 tig4
491922 ovl

755235

(d)

Figure 4.15: Graph analysis of a synthetic dataset (T. roseus). (a) Contig graph produced by Canu

(visualized using Bandage): 3 contigs, no edge. (b) SG built from Minimap2 overlaps, on
which connected components of the Canu BOG are colored. (c) Dot-plot of the T. roseus
genome (NC 018014.1) aligned against itself, showing a long tandem repeat. (d) The
AAG with Canu contigs ordered according to their position on the T. roseus reference.
If two contigs overlap, no length is given and instead the link is labeled ’ovl’.

4.4.5.1 Datasets

In order to illustrate our methods using a simple yet non-trivial case of assembly graph analysis, we

simulated long reads from a linearized reference genome of Terriglobulus roseus (NC 018014.1, 5.2

Mbp). This genome contains an unusual 460kbp repeat that is challenging for assembly tools. We

used LongISLND [49], with 20x sequencing coverage and 9kbp mean read length (Supplemental Table

A.9).

To investigate real datasets, we mined the NCTC project which consists of 1735 bacterial strains

(as of Feb 2019) sequenced using PacBio technology. For each dataset, the NCTC consortium had

built an assembly using HGAP and Circlator [33] followed by a manual correction step. We estimate,

based on visual inspection of 159 NCTC fragmented HINGE assemblies6 out of 997, that assembly

6https://web.stanford.edu/~gkamath/NCTC/report.html

https://web.stanford.edu/~gkamath/NCTC/report.html
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graphs are missing contig adjacency information in 69% of the fragmented assemblies of HINGE and

Miniasm, i.e. around 13% of all NCTC datasets (including those that assemble perfectly). Among

datasets for which both Canu and HINGE failed to produce a single contig per chromosome, we selected

19 datasets where the assembly made by NCTC contains as many chromosomal contigs as the number

of expected chromosomes (i.e. is resolved), 24 datasets where the NCTC assembly is unresolved, and

finally 2 datasets that were not yet assembled by NCTC. See Supplemental Table A.2 for a complete

list of the 45 datasets. All datasets were assembled with Canu version 1.7 and Miniasm version 0.2.

Canu contigs were classified according to Section 4.4.4.2. On average for each dataset, 10.2%

(resp. 6.4%) of the Canu (resp. Miniasm) contigs are marked as plasmid, 13.7% (resp. 12.2%) do not

match any bacteria in the Blast database and are therefore marked as of undefined origin, and the

remaining 76.0% (resp. 81.3%) of contigs are classified as chromosomal and are further considered for

analysis. Full classification results are presented in Supplemental Table A.6 and A.7.

We further investigated whether the assemblies could somehow be combined, e.g. by improving

Canu assemblies using Miniasm contigs. We have performed a simple test to evaluate this possibility

(see Supplemental section A.2) and could not straightforwardly improve assemblies this way.

4.4.5.2 Assembly graph analysis of a synthetic low-coverage dataset

This section gives an introductory overview of the analyses that our method performs on the T.roseus

simple synthetic dataset described above. Canu produced 3 contigs of total length 4.7 Mbp. A≈500kbp

region is missing from the assembly. Miniasm produced 7 contigs and the HINGE assembler (commit

8613194) was not able to produce an assembly, likely because of the low coverage (20x).

Since the SG has a single connected component (Fig. 4.15b) but both the BOG and the contig

graph of Canu have multiple connected components (Fig. 4.15a), assembly fragmentation can be

explained by reads that have been discarded at the BOG construction stage of Canu. The coloring

of the SG using the connected components of Canu BOG (Fig. 4.15b) further suggests an ordering

of contigs. Note that the Canu contig graph is uninformative on this dataset, as it contains no edges

between contigs.

We performed path analysis as per Section 4.4.4.3. Fig. 4.15d shows the length of paths in SG

found between reads at Canu contigs extremities. Since a reference genome is available, the true order

of contigs is reported on the Figure but note that path analysis does not need this information. We

find that the Canu contigs named tig8 and tig4 overlap in the SG. tig1 and tig8 are linked by a long

path involving 491922bp. This long path can be explained by looking at how tig1 has been built by

Canu: the path goes through a large ’loop’ (see Supplemental Fig. A.2) which corresponds to a repeat

in the reference (Fig. 4.15c). The repeat (of length 460kbp) was not resolved by Canu, leading to

a region of about 440kbp missing from the assembly between tig1 and tig8, which explains why the

shortest path between both contigs contains as many as 491922bp. We further checked that the path

of length 755235bp between tig1 and tig4 indeed contains reads from tig8, and is therefore redundant.

By aligning raw reads and Canu corrected reads to the reference genome, we observe a drop of raw

reads coverage (around 8x) in the region between tig8 and tig4. This likely explains why Canu failed

to connect both contigs.

As a side note, a Canu assembly of the same dataset with twice higher read coverage (40x)
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yielded a two-contig assembly, also with same pattern as in between tig8 and tig4. An older version

of Canu (1.6) fully resolved the 40x dataset into a single contig, likely due to changes in how reads

are corrected and trimmed between version 1.6 and 1.7.

4.4.5.3 Investigation of 45 unresolved NCTC assemblies

We performed the same type of analysis on the 45 NCTC samples. A Minimap2 AAG was constructed

for each dataset using SG and Canu contig extremities. Assembly and AAG statistics are presented

in Table 4.2 for an excerpt of the dataset. Full statistics and more details are given in Supplemental

NCTC contigs Canu contigs # nodes # dead-ends in # edges in AAG
single multiple

NCTC ID chr pls und chr pls und in AAG contig graph AAG total adjacency adjacency
NCTC10006 1 0 0 3 0 0 4 2 2 4 2 0
NCTC10332 1 0 0 12 0 0 8 8 4 24 0 3
NCTC10444 1 0 0 7 0 0 8 3 0 24 0 6
NCTC10702 1 1 1 3 3 0 4 4 4 4 0 0
NCTC12123 2 3 0 5 4 1 6 4 1 12 1 2
NCTC12132 1 0 0 2 0 2 4 4 2 4 1 0
NCTC13125 1 2 4 6 3 1 6 0 0 12 0 4
NCTC13463 1 1 4 5 2 2 4 0 0 3 2 0
NCTC5050 2 3 0 4 2 3 6 6 0 12 3 0

Table 4.2: Assemblies and contig graphs statistics for an excerpt of 9 NCTC datasets (full tables
in Supplemental Table A.2 and A.3), consisting of 8 datasets where Hamiltonian cycle
search succeeded, and the NCTC5050 dataset discussed in the Results section. AAGs are
constructed using a SG built from Minimap2 overlaps and Canu contig extremities. The
’contig graph’ column corresponds to the final assembly graph produced by Canu; ’chr’:
number of chromosomal contigs; ’pld’: number of plasmid contigs; ’und’: number of other
contigs. Note that some of Canu ’chr’ contigs may be contained in others, therefore the ’#
nodes in AAG’ column corresponds to twice the number of non-contained contigs.

Tables A.2, A.6 and A.7. There we observe that the number of contigs in Canu and Miniasm assem-

blies is generally higher than in the assemblies made by NCTC. Nevertheless the sum of lengths of

chromosomal contigs is about the same in all assemblies (Supplemental Table A.8).

Case study of two NCTC datasets We closely examine two NCTC datasets that contain in-

teresting patterns, through the lens of a ground truth obtained by remapping Canu contigs against

respective NCTC assemblies using BWA-mem [53].

NCTC12123 This dataset was assembled into 5 chromosomal contigs by Canu, including 2 contigs

that are contained in others and are automatically discarded by our pipeline (see Fig. 4.16).

The assembly is made of 2 large contigs (tig1 and tig2) and a shorter one (tig9) totaling 4.78

Mbp. Miniasm produces also 5 chromosomal contigs, including 3 small ones. Both Canu and Miniasm

contig graphs are made of two components. HINGE produces a single-component assembly graph but

does not resolve it (because it detects multiple possible traversals). Finally, the NCTC assembly

consists of 2 chromosomal contigs: one being 4.69Mbp long and the other 21kbp long. Contigs tig1

and tig2 both map over the large NCTC contig, while tig9 maps to both NCTC contigs. Using the

AAG on Canu contigs (see Fig. 4.16), one can observe that a number of scaffolding scenarios could be

made following this graph. Interestingly, based on the mapping of the 3 contigs on the larger contig

of the NCTC assembly, edges of smaller weight (i.e. shortest paths) tend to be associated with true
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tig1 tig2 tig9tig1215, tig1216
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Figure 4.16: Mapping of Canu contigs (bold horizontal lines) against NCTC12123 assembly (the two
thin horizontal lines). Links between contigs give the length (in bp) of the shortest path
in SG between reads at extremities. If two contigs overlap, no length is given and instead
the link is labeled with ’ovl’. Plain links are paths that are compatible with the sequential
order of contigs given by mapping to the NCTC assembly, and dotted links are all other
paths.

contig adjacencies. In this example, low-weight Hamiltonian cycles (Section 4.4.4.5) yield two likely

contig orders (see Supplemental Fig. A.3). This SG analysis thus enabled to retrieve an adjacency

that was missed by Canu. It also confirms the multiple traversals prediction of HINGE, further reducing

the number of putative contig orders to only two.

NCTC5050 This dataset is assembled into 4 chromosomal contigs by Canu, including one that is

contained in another. The Canu contig graph is ’fully’ fragmented as each contig is its own connected

component. There is no reference genome for this strain, and we chose as ground truth the NCTC

assembly consisting of 2 contigs. One is entirely covered by a Canu contig, and the other contains

the 3 remaining contigs (see Supplemental Fig. A.4). In the following, xs and xe denote left (resp.

right) extremities of a contig x. We found single (i.e. non-repeat) adjacencies between tig1s/tig23s,

tig1e/tig10s, tig10e/tig23s that were confirmed by mapping to the longest contig from the NCTC

assembly. Together, these single adjacencies suggest a putative scaffolding scenario: tig1 – tig10 –

tig23(reversed). This scenario is also the top-ranked one proposed by our Hamiltonian path search

procedure (see below).

We also mapped corrected and raw reads to the junction for validation (see Supplemental

Fig. A.5). We observe a drop of coverage at this location (see reads mapping in Supplemental Fig. A.5)

that is likely the cause of assembly fragmentation. Therefore, again in this dataset the path search

operation enabled to recover a link between contigs that was discarded by the assembler due to a drop

in sequencing coverage.

Path search enables to recover adjacency between contigs Table 4.2 reports statistics of

paths found between Canu contigs by our method for a subset of 9 NCTC datasets (for the full

dataset, see Supplemental Table A.3). We first focus on unambiguous contig adjacencies recovered

by our pipeline. Single adjacency edges are only found in 6 out of 9 datasets, yet across the entire

dataset of 45 samples, 60.4% of all single adjacency edges (43 in total) are found in samples that

have a sequencing coverage below 38x, and only 17 single adjacency edges are found in datasets with

coverage above 38x. This is likely due to the error-correction step in assemblers that is less effective

in low-coverage datasets (even when the true sequencing coverage is given to the assembler as a
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Mean number of

Canu contigs 4.32

Edges in AAG 32.67
Theoretical max. edges in AAG 41.83
Distant edges 28.64
All adjacency edges 4.02
Single adjacency edges 1.16
Multiple adjacency edges 2.86

Dead-ends in Canu contigs 4.94
Dead-ends in AAG, adjacency edges 2.70

Table 4.3: Average statistics of augmented assembly graphs using a SG built from Minimap2 overlaps
on Canu contigs across the 38 NCTC datasets with two or more contigs, after size and
classification filters. All rows are as per definitions in Section 4.4.4.4. ’Theoretical max.
edges’: number of possible edges in each AAG. ’Dead-ends in AAG, adjacency edges’:
number of dead-ends in the AAG when only adjacency edges are considered, i.e. distant
edges are deleted.

parameter), which in turn causes assembly fragmentation. Our method therefore enables to recover

single adjacency edges between contigs that were fragmented due to this effect.

To measure whether the Canu contig graphs could be used as-is to recover contig order, we

counted the number of contig extremities that are not linked to any other extremity (i.e. dead-ends).

Those are contigs for which no chromosomal order can be reliably inferred. In 35 out of the 45 datasets

(7 out of 9 in Table 4.2), the Canu contig graph has some dead-end extremities (between 1 and 23).

In principle dead-ends extremities should not exist in circular bacterial assembly graphs, except for

linear chromosomes. Assemblers, here Miniasm and Canu, do not report all true contig adjacencies. In

contrast, our method enables to recover some of these adjacencies and lower the number of dead-ends

in 23 out the 37 datasets (and all but one dataset in Table 4.2).

Table 4.3 summarizes average AAG statistics over all 38 datasets on Canu contigs (per-dataset

results in Supplemental Table A.3). Results for Miniasm contigs are shown in Supplementary Ta-

bles A.4 and A.3. On average, Canu contig graphs contain 4.32 nodes (5.86 extremities), among which

4.94 extremities are dead-ends. The AAG enables to reduce the number of dead-end extremities to 2.7

(45% lower), through the discovery of 1.16 single adjacency edges and 2.86 multiple adjacency edges

in the AAG per dataset on average. The reduction is also significant for Miniasm contigs but not as

high (31%, Supp. Table A.4). Note that these adjacencies are ’real’ in the sense that they are all

supported by paths of overlapping reads of total nucleotide length less than 10kbp, yet a number of

them may be caused by repetitions. An upper bound on the ability to mine paths in the SG is given

by the theoretical maximal number of edges in the AAG (41.83 edges). Our method is on average

78% close to this bound for Canu contigs (resp. 90.1% for Miniasm) as it discovered 32.67 edges per

dataset (resp. 85.1). We note that large fraction (87%) of discovered edges were classified as distant

edges, yet the remaining adjacency edges are informative as they significantly contribute to removing

dead-ends in the contig graph.

Contig order search retrieves parsimonious assembly scenarios While the work done in the

previous section helps to recover contig adjacencies, the presence of multiple adjacency edges due to

repetitions often prevents us from unambiguously inferring a contig order. We applied the Hamiltonian



68 CHAPTER 4: POST ASSEMBLY

Figure 4.17: Weights of scenarios in AAGs. Each curve correspond to the sorted list of Hamiltonian
cycles, sorted by weight. If a ground truth is known, a diamond symbol marks the correct
assembly scenario. Extended Figure available in Supplementary material A.1

cycle procedure presented in Section 4.4.4.5 to determine likely contig orderings. Fig. 4.17 shows

orderings sorted by weight across 23 datasets on which the method could successfully be executed

(connected AAG, low number of edges).

A ground truth is known in only 8 of those datasets. Among them, the lowest-weight scenario

is ranked first in 3 datasets, 2nd in 2 datasets, 3rd in 1, 4th in 1 and 38th in the last one.

These results suggest that the correct assembly scenario is likely to be one of the top predictions

made by our parsimonious Hamiltonian cycle procedure. However finding many fragmented datasets

that also have a ground truth is inherently difficult, thus further work is needed to confirm this

hypothesis. Also, datasets where several scenarios have similar weights (i.e. curves that ’plateau’ in

Fig 4.17) will possibly be more challenging to resolve using this method. Yet for many samples with

fragmented assemblies, parsimonious assembly scenarios are a promising approach to explore a limited

number of hypotheses that could further be validated using long-range PCR to finish the genome.

4.4.6 Discussion

We presented a set of concepts to provide novel insights on fragmented long-read bacterial genome

assemblies.

By searching for paths of overlapping raw reads between extremities of contigs, we construct

an augmented assembly graph that recovers unreported adjacencies between contigs. We demonstrate

several usages of this graph: to provide a more informative representation of fragmented assemblies,

to examine repeat structures, and to propose likely contig orderings. In our tests, the AAGs of NCTC

datasets recover edges for nearly half (45%) of the dead-end nodes in Canu contig graphs, on average.

We further show a link between the lowest-weight Hamiltonian cycles in the AAG and the true contig

order. We highlight that our method solely relies on the raw data and information produced by

assemblers at various stages of their pipelines and, when our contig classification step is skipped, no

reference genome nor external information (e.g. genome map, BLAST database) are used.
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Our method hinges on directly constructing a string graph on the raw reads, after a relatively

conservative chimera removal step. Doing so avoid biases that may be introduced in the read trimming

and error-correction steps of an assembler. Indeed, overlaps between reads may become shorter or

even absent after error-correction. For instance on the 45 NCTC datasets that we analyzed, the

number of edges in SGs built from Canu error-corrected reads is reduced by 41.4% compared to the

SGs of raw reads. We have classified edges in the AAG, by considering their underlying nucleotide

lengths and whether they contain reads that belong to other contigs. To go further, one could define

confidence metrics, e.g. based on local graph structures.

Due to a combination of engineering choices and the inherent difficulty of visualizing large

assembly graphs, our software has only been tested on bacterial genomes and is unlikely to readily

run on larger genomes. However, the techniques presented here (AAG, path search between contig

extremities, weighted Hamiltonian cycles) are not specific to bacterial assembly, and should in principle

be applicable to small and large eukaryotes. However more work would be needed e.g. to scale

path search to thousands of contigs, refine thresholds (contig filter, adjacency edges), handle inter-

chromosomal repeats, and an evaluation of the relevance of Hamiltonian cycles for larger genomes.

We stress that our techniques currently do not aim at detecting misassemblies within contigs.

We also did not focus on the difficulty of running multiple assembly programs, but we note that the

process has previously been reported to be challenging [48]. Our work is also orthogonal to assembly

reconciliation [2], which consists of constructing a higher-contiguity assembly by merging the results

of multiple assemblers.

No attempt was made to optimize the detection of overlaps between reads though this could

be a direction for improvement. Finally, automatic post-assembly improvements based on the AAG

would be a natural extension of this work. One could use the AAG to design an oracle that suggests

a limited number of (long-range) PCR experiments for resolving individual repeats.
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4.5 Conclusion

In this section we studied how we can evaluate an assembly, and detailed some issues when we use a

reference genome to evaluate a de novo long-read assemblies.

With KNOT we present the interest to go back to raw read information, and how it can solve

bacterial assembly issues. To use KNOT on more complex datasets needs to improve some parts of

KNOT, especially the graph construction, its representation in memory and the search of paths between

contigs extremities. These improvements required some development, but the original idea of going
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back to raw reads information can be used for more genome assembly improvements.



Chapter 5

Other contribution

This chapter have not any link to other ones they presents about my contribution on some projects

where I spent some time during my PhD without sufficiently large contribution to have a specific

chapter.

5.1 Labsquare

Labsquare is a community for genomics software, this community was create by me and some other

bioinformaticien’s friend I participate in developpement of two tools.

FastQt is a rewrite of FastQC in C++ with the framework Qt. FastQt is a tool to check the quality

of sequencing data by providing some statistics, GC% distribution, read length distribution, error rate

repartition along the length of reads. At the moment FastQt development was stopped.

CuteVariant is a tool to visualize and analyze VCF (for Variant Call Format) files, these file store

variants found between an individual or a dataset of reads against a reference genome. CuteVariant

allows selecting annotation, genotype, filter variant, sort and group variants, set operation between

VCF file. To perform all this operation a query language was create the VQL (for Variant Query

Language), CuteVariant is still in development and it was the subject of a poster during the conference

Jobim 2019.

5.2 CAMI challenge 2

CAMI challenge is a metagenomics assembly challenge, I participate in the second edition of CAMI

challenge with Camille Marchet, Antoine Limaset, Pierre Peterlongo, Claire Lemaitre and Rayan

Chikhi. We tried different strategies to perform an assembly of metagenomics datasets.
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5.2.1 Dataset description

In this challenge, we have two datasets with similar reads composition. A set of Illumina Hiseq like

reads and a set of Pacbio like reads, simulated by CAMISIM [27].

We have two datasets, Marine Dataset built to correspond to the composition of a metagenomics

sequencing of seawater, and Strain Madness Dataset with very important strain-level variation.

5.2.2 Assembly strategy

On the first hand we perform a short reads assembly with gatb-pipeline 1, that is a multi-kmer size

short read assembly based on Bloocoo [8] for read correction, Minia 3 [16, 17] for contig assembly

and BESST for scaffolding [88–90].

On the second hand, my main contribution in this challenge, we build a long-read assembly

pipeline with fmlrc [107] a hybrid long-read corrector, and assembly of corrected long read with a

pipeline Minimap2, fpa (no internal match and overlap lower than 2000 bases), Miniasm or a wtdbg2

assembly. We try to perform read classification before correction and assembly with centrifuge [40]

to avoid the complexity of metagenomics dataset because our correction assembly tools are not built

to use this type of data, but we did not use this strategy due to lack of time.

Finally, we submit a reconciliation of short reads assembly made by gatb-pipeline and wtdbg2

assembly of corrected long-read, if a short reads contig maps in a long reads contig the short reads

contigs is discarded. This strategy should have allowed us to have good quality contigs (from long

reads assemblies) on the most present strains without losing the information of the least present

strains (contained in the short reads contigs). Indeed, long reads sequencing technologies have lower

sequencing depths which cannot allow the detection and assembly of the least present strains.

When writing this document, we do not have yet the result of other teams or an idea of quality

of our assembly.

5.3 10X linked-read deconvolution

10X linked-read sequencing is a sequencing technique developed by 10X genomics. Figure 5.1 presents

the main idea of 10X linked-read sequencing. After purificationn DNA is fragmented into large

molecules (≈100 kb length). By microfluidic method each large molecule is separated into an indi-

viduals bubble. Each bubble is associated to a barcode. In a bubble DNA is fragmented into shorter

fragments (compatible with Illumina sequencing method) and a barcode is added to the extremity of

each fragment. After a classic short-read sequencing, we can use barcode information to determinate

if read comes from the same large fragment or not.

Unfortunately, there is not a barcode for each large DNA molecule and therefore several frag-

ments will share the barcode. The task of assigning each reads its original molecule is called decon-

volution. Knowing exactly the original molecule of each reads is useful to:

• assembly and scaffolding, by allowing to solve repetitions that are spanned by large molecules,

1https://github.com/GATB/gatb-minia-pipeline
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Figure 5.1: 10X linked-read sequencing idea. Source: https://

ucdavis-bioinformatics-training.github.io/2018-Dec-Genome-Assembly/

10x-supernova/10x-supernova.html

https://ucdavis-bioinformatics-training.github.io/2018-Dec-Genome-Assembly/10x-supernova/10x-supernova.html
https://ucdavis-bioinformatics-training.github.io/2018-Dec-Genome-Assembly/10x-supernova/10x-supernova.html
https://ucdavis-bioinformatics-training.github.io/2018-Dec-Genome-Assembly/10x-supernova/10x-supernova.html
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• variant phasing; all reads coming from same molecule necessarily come from the same haplotype.

If we have access to a good genome reference, deconvolution is easy: by mapping reads against

the reference, we can look for reads of same barcode that map within approximately a 100 kb range

on the reference genome. Those reads then likely come from same molecule. This general idea used

by ema [95] and Lariat [10] to assign a read to a molecule.

But when we don’t have a good reference genome we cannot use this method. I proposed a

method to perform deconvolution based on assembly graph analysis. After a classic DBG assembly

(using bcalm), we remap reads against contigs with the ema software. Reads with same barcode

and map on same contig are assigned an identical premolecule identifier by ema. We attempted to

glue clusters of reads by analyzing the contigs graph. For all clusters of premolecules with the same

barcode, we searched for the shortest path in the contigs graph between clusters. If the length (in

number of bases) of a path is shorter than a threshold, we merge both premolecule clusters.

At this stage, we did not perform a complete evaluation of the method, thus this is still work

in progress.
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Conclusion

In this work, we aimed to improve the process of long-read genome assembly, without creating a new

assembly tool. We have designed tools that work before and after assembly. These tools can be easily

integrated into a workflow. The underlying idea is to improve assembly pipelines one tool at a time.

Building pipelines with a collection of tools that perform simple tasks, makes it easier to provide

independent improvements to each task separately. It enhances the re-usability of each component,

and the flexibility of the pipeline usage. Many assembly pipelines are a set of difficultly configurable

black boxes, which does not help the user to adapt assembly tools to their own problem. Applying

UNIX philosophy ”Doing only one thing, and doing it well” on genome assembly could save the time

of the community and improve results, as shown in the Hackseq 2018 Genome Assembler Components

project1. Modular assembly should be the route to design versatile tools, able to be easily tuned to

specific tasks, while understanding and keeping under control each step.

fpa was created after a reflection on information generated by overlapping tools and its impact

on disk space. Many overlaps are not useful for all analysis, for example Miniasm keeps only end-to-

end overlaps, thus storing all overlaps found by Minimap2 on disk is a waste of disk space. Moreover,

writing and reading these overlaps takes times. fpa not only filters overlaps, but also can rename

reads in overlap (to reduce disk memory impact of overlaps), generates a GFA1 overlap graph, – or

index the position of overlap in output file. This functionality was used by CONSENT [68]. fpa was

used to avoid the necessity of writing one’s own filters, Erik Garrison uses it to simplify his work on

seqwish2, a tools to create pangenome graph.

yacrd uses coverage information as a proxy of reads region quality, it’s a simple idea already

present in correction tools. However, yacrd extracts this functionally out of correction tools, increasing

the modularity of pipelines. This helps to improve each step of the pipeline separately, to choose

the relevant tools for specific data and analysis. A pre-publication version of yacrd, with chimeric

detection only, was used in a long read microbiota profiling pipeline to clean chimeric reads [24] and

to improve some Flye assemblies.

Some improvements can be made on yacrd pipeline. To detect bad quality regions, yacrd

uses Minimap2 with a specific parameter, to avoid the creation of a bridge between two good quality

1https://github.com/hackseq/modular-assembly-hs18
2https://github.com/ekg/seqwish



76 CHAPTER 6: CONCLUSION

In KNOT graph KNOT graph
# bases # reads # Nodes # Edges construction time

E. coli 1621000527 158590 24966 158590 2 hours
D. melanogaster 9064470438 1327569 234253 956929 3 days

ratio 5.59 8.37 9.38 6.03 36

Table 6.1: A comparison of two Nanopore datasets. The ratio was computed by dividing D.
melanogaster value by E. coli value. The size of data increases by less than an order
of magnitude but the construction time increases more than 2 orders of magnitude.

regions over the bad quality regions. A solution like miniscrub was to use the seed position as a

proxy of a quality region instead of the overlap, to directly avoid this trouble. Another solution was

to replace minimizers by seed with error to find a similar region between reads over sequencing errors.

Replacing Minimap2 by tools using seeds with error to estimate the coverage of reads regions, was

probably improved by these tools. Some overlapping tools use this idea, like GroupK [25].

yacrd takes a very global point of view on the composition in bases and the quality of the reads,

avoiding the problems of masking heterozygosity that can still be observed today in correctors. But

the problem of the accentuation of coverage gaps by which we have been able to observe and solve

with to KNOT is potentially always present in yacrd. Indeed, if we follow the recommended parameters

and a region of the genome is sequenced at a depth of less than 3 yacrd will create a coverage hole.

If we want to avoid this problem we would need to have a broader analysis of the problem, not this

focus on a single read at a time, potentially through the construction of local overlap graphs around

the reads. This work can be apply to scrubbing and correction tools, but this change in perspective

will probably take time and some many development to have equivalent performance of actual tools.

KNOT is a tool to retrieve missing connections between contigs. KNOT uses Minimap2 to find

overlap between reads and between contigs, yacrd to remove low quality reads from raw reads dataset

and fpa to filter overlaps and generate overlaps graph; then a script in KNOT performs path search

within this graph. The main idea behind KNOT is that sometimes we have to consider all the available

data to solve a problem. At the moment, assembly pipelines try to keep only the minimum amount of

information to solve the assembly problem (cf Chapter 3) and this is a very good approach that allows

to accelerate the assembly in a very important way. But sometimes, this reduction of information

goes too far and important information is lost. KNOT, by going back to the original information and

focusing only on unresolved points, tries to correct these errors.

This idea to go back to the total information can however become a trouble for KNOT. The size

of KNOT overlap graph is very important for example in Table 6.1. We can see two Nanopore datasets,

one from E. coli and one from D. melanogaster. D. melanogaster dataset is larger than E. coli dataset,

less than 10 times. But the computation time to build KNOT overlap graph from the overlaps found

by Minimap2 was increased by 30 times.

To use KNOT on a large datasets, we need to change how we use this graph. Currently KNOT

loads all graphs in memory, however we don’t need all this information to be permanently loaded into

memory. We could load only one part of the graph at a time. Another trouble with larger datasets

concerns genome with more than one chromosomes. At this time we did not try to prevent the creation

of false links between contigs for different chromosomes. To adapt KNOT to larger genomes, we have
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to solve a technical problem on how to represent these very large graphs in memory. We must also

tackle a more theoretical problem of how to ensure that we do not create links between contigs of

different chromosomes.

If KNOT needs to be updated to be run easily on larger datasets, ideas behindKNOT can also

lead to more features. We use KNOT overlap graph to refund the lost link between contigs, we focus

our analysis of graph on contigs extremities. But by performing some graph analysis along of the

contigs, we can maybe detect misassemblies. To do this, we can draw inspiration from Canu repetition

detection module (see 3.7) or something not to far to tigmint [34].

The current version of KNOT has total confidence in the contigs given as input, while the future

evolution could may be mark some spurious region or break contigs. Analysis of all reads information

can lead to another extension. I think we can convert contigs and KNOT overlap graph information

to a genome graph. A genome graph is a new type of genome representation, which replaces a linear

representation of genome by a graph where each nucleotide is a node, and an edge is created if nodes

follow in the genome. This type of structure could be useful to solve the limitations of reference

genome approaches. For example WhatsHap [64], a tool to phase variant, perform a mapping of read

against the reference. When WhatsHap found a mismatch in mapping, he need to build a small new

version of genome according variant database. WhatsHap perform remapping of read against this new

reference to confirm the read dataset contains effectively a known variation of this genome. A similar

structure was used to perform genome comparison Cactus [82].

This type of structure seems promising for future bioinformatics analysis, variant detection

and phasing, genome comparison, genomics evolution, and variation analysis [5]. But some trouble

still needs to be addressed: how to build this type of graph, and how to map reads against them to

construct an efficient coordinate system. Here are some blog post was you can read some blog post

about part of this trouble 3 4 5. Another challenge that interests me a lot would be to be able to build

a graph genome during assembly.

By using the contigs generated by assembly tools as scaffolds of a genome graph and KNOT

overlap graph information, I think we can generate directly the genome graph from the reads. If reads

come from a single homozygous individual, this genome graph does not contain variant information,

in theory. But for a heterozygous individual or a set of divergent cells like cancer cell or a bacterial

population, this genome graph representation can help to have a better understanding of the sequenced

genome.

Summary of perspectives

In the previous section we have summarized a number of elements of the thesis and detailed several

improvements of our work. Here we would like to provide a more synthetic summary of the research

perspectives opened by this work.

3http://ekg.github.io/2019/07/09/Untangling-graphical-pangenomics
4https://lh3.github.io/2019/07/08/on-a-reference-pan-genome-model
5https://lh3.github.io/2019/07/12/on-a-reference-pan-genome-model-part-ii

http://ekg.github.io/2019/07/09/Untangling-graphical-pangenomics
https://lh3.github.io/2019/07/08/on-a-reference-pan-genome-model
https://lh3.github.io/2019/07/12/on-a-reference-pan-genome-model-part-ii
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Overlaping consensus: Overlapping search was a hard task, and perform it in reasonable time

and memory usage was harder while many overlaps were missed. Combining information of different

overlapping tools could be use full to improve downstream analysis.

To create this overlapping consensus tool we need to solve a technical problem: what is the best

method to store and request this information. And even more theoretically, first, how to determine

if we can merge these overlaps, and second how to assess the confidence we can have in resulting

overlaps.

Scrub and correct reads without creating coverage gap: Our work on KNOT shows that

sometimes the cleaning of reads create coverage gaps in reads. These gaps reduce the contiguity of

assembly and reduce our confidence in contigs generated by assembly. At this moment, all trimming,

scrubbing and correction tools work like a greedy algorithm, they focus on one read at time.

A read with high error rate and without support from other reads is probably not useful, but

sometimes it can solve an assembly trouble. Spending time to find how to change the paradigm of

these reads cleaning tools seems useful to me to maximize the usage of the data provided by the

sequencing technology.

Find variant at assembly time: We have indicated that the only long read corrector that tried

to keep the heterozygosity of the reads during correction was falcon sense. For a de novo assembly,

we generally sequence individuals with as smallest heterozygosity as possible or a colony of the same

cell, to facilitate our work during assembly.

Consequently, we build assembly tools that do not manage high heterozygosity or sets of cells

with variants, like cancer cells and metagenomics datasets. Rewriting a complete assembly tools to

manage data with variants seems very hard. The KNOT strategy uses classic assembly tools to assemble

simple parts of the genome, but going back to original information to find variants and heterozygosity

seems a good way to find variant at assembly time.
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Appendix A

KNOT

A.1 Contig classification

In order to have a better understanding of the contig graph produced by a given assembler, we wish

to filter out contigs that are not of chromosomal origin. We compare each contig against the nr

database using Megablast (Morgulis et al., 2008), and classify a contig as chromosomal if its length

is greater than 1 Mb, or is such that 80% of the first 50 Megablast hits map to a complete bacterial

genome. We use the same second criterion to classify whether a contig is of plasmid origin, regardless

of its size. Remaining unclassified contigs are classified as of undefined origin. In addition, we flag as

containment contigs those which map (using Minimap2) over at least 75% of their length to another

contig.

A.2 On whether Canu contig fragmentation can be solved us-

ing Miniasm contigs

To check if Miniasm contigs could possibly enable to order and fill gaps between Canu contigs, we

performed an assembly using the Minimap2 and Miniasm pipeline using both the Canu contigs and the

Miniasm contigs as input (to be clear: no reads were used as input to this assembly, only two contig

sets). To allow Minimap2 to find shorter matches, mapping of Miniasm contigs against Canu contigs

was performed with the following parameters: -x map-pb -m 25 -n 2. To avoid Miniasm filtering

overlaps, we ran it with the following parameters: -1 -2 -s 1000 -c 0.

We ran this pipeline on all datasets, and counted the number of times that a Miniasm contig

overlaps with two Canu contigs. We also counted the number of contigs generated by Miniasm using

the overlap created at the previous step. Results are summarized in Supplementary Table A.1.
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number of genomic contig number of Miniasm number of merged contigs
contigs that overlap contigs from

NCTC ID Canu Miniasm two Canu contigs Miniasm/Canu overlaps
NCTC10006 3 7 0 0
NCTC10332 12 22 1 0
NCTC10444 7 5 0 0
NCTC10702 3 2 0 0
NCTC10766 13 7 1 0
NCTC10794 7 5 0 0
NCTC10988 10 9 0 0
NCTC11126 7 15 5 0
NCTC11343 12 10 2 1
NCTC11360 26 25 1 0
NCTC11435 8 6 2 0
NCTC11800 7 3 1 0
NCTC11872 7 13 3 0
NCTC12123 5 3 2 0
NCTC12126 13 15 4 0
NCTC12131 16 77 3 0
NCTC12132 2 4 1 0
NCTC12146 3 1 0 0
NCTC12694 21 123 1 0
NCTC12841 16 1 0 0
NCTC12993 5 2 0 0
NCTC12998 3 4 0 0
NCTC13095 3 2 0 0
NCTC13125 6 7 0 0
NCTC13348 25 17 3 1
NCTC13463 5 4 1 0
NCTC13543 3 3 0 0
NCTC4672 68 16 5 1
NCTC5050 4 4 0 0
NCTC5053 8 11 2 1
NCTC5055 143 20 0 0
NCTC7922 13 9 4 1
NCTC8179 15 15 1 0
NCTC8500 3 1 0 1
NCTC8684 5 2 0 0
NCTC9075 7 3 2 0
NCTC9078 4 2 0 0
NCTC9098 8 6 3 0
NCTC9111 9 13 0 0
NCTC9112 7 15 10 0
NCTC9184 141 17 0 0
NCTC9645 31 76 9 3
NCTC9646 8 9 3 1
NCTC9695 2 1 0 0

Table A.1: The pipeline described section A.2 found more than one overlap between Canu contigs
with Miniasm contig for 24 over 45 datasets. When these overlaps are re-assembled using
Miniasm, one or more merged contigs are produced in only 8 out of 45 datasets.
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A.3 Assembly summary

Tables A.2 and A.3 report our complete results for the 45 NCTC datasets.
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NCTC contigs HINGE Canu contigs Miniasm contigs
NCTC ID species cov chr pld und status chr pld und chr pld und

NCTC10006 E. aerogenes 56 1 0 0 MAF 3 0 0 7 0 2
NCTC10332 P. aeruginosa 36 1 0 0 MAF 12 0 0 22 0 1
NCTC10444 E. coli 61 1 0 0 MAF 7 0 0 5 0 1
NCTC10702 S. aureus 24 1 1 1 MAF 3 3 0 2 1 2
NCTC10766 E. alkalescens 37 0 0 11 MA 13 7 3 7 2 5
NCTC10794 H. parahaemolyticus 26 0 0 3 MAF 7 0 2 5 0 2
NCTC10988 S. aureus 87 0 0 13 MA 10 0 26 9 0 4
NCTC11126 E. coli 50 2 0 0 FALC 7 0 2 15 0 18
NCTC11343 S. multivorum 22 0 0 11 MAF 12 0 0 10 0 0
NCTC11360 S. agalactiae 3 0 0 3 MAF 26 0 17 25 0 1
NCTC11435 V. mimicus 60 0 0 3 MA∗ 8 0 0 6 0 2
NCTC11800 P. stuartii 32 0 0 4 MA 7 0 0 3 0 0
NCTC11872 H. influenzae 27 0 0 11 MAF 7 0 3 13 0 1
NCTC12123 E. asburiae 64 2 3 0 FAMT 5 4 1 3 1 1
NCTC12126 E.rcancerogenus 42 6 1 0 MAF 13 1 4 15 0 10
NCTC12131 Y. regensburgei 41 3 0 0 MAF 16 0 0 77 0 0
NCTC12132 M. wisconsensis 86 1 0 0 MAF 2 0 2 4 0 0
NCTC12146 Klebsiella terrigena 11 0 0 2 MAF 3 0 1 1 0 2
NCTC12694 S. enterica 19 0 0 121 MAF 21 3 0 123 2 0
NCTC12841 S. pyogenes 75 * * * MA 16 0 0 1 0 2
NCTC12993 K. cryocrescens 46 5 1 0 FCA 5 4 0 2 3 0
NCTC12998 R. planticola 41 1 1 0 MAF 3 2 4 4 1 2
NCTC13095 K. planticola 38 1 1 3 FCA 3 3 0 2 0 1
NCTC13125 E. coli 49 1 2 4 MAF 6 3 1 7 2 1
NCTC13348 S. enterica 41 4 2 0 MAF 25 1 1 17 1 2
NCTC13463 E. coli 62 1 1 4 MAF 5 2 2 4 1 3
NCTC13543 R. radiobacter 31 0 0 12 MA 3 2 2 3 3 0
NCTC4672 S. uberis 10 0 0 3 MAF 68 0 8 16 0 1
NCTC5050 K. pneumoniae 54 2 3 0 MAF 4 2 3 4 3 2
NCTC5053 K. pneumoniae 28 0 0 7 MAF 8 5 1 11 5 1
NCTC5055 K. pneumoniae 69 1 0 2 MAF 143 8 3 20 3 1
NCTC7152 E. coli 49 1 0 4 MAF 2 3 5 1 1 3
NCTC7922 E. coli 26 0 0 6 MAF 13 3 4 9 2 1
NCTC8179 E. coli 36 1 1 3 MAF 15 4 4 15 2 0
NCTC8500 E. coli 29 1 1 0 MAF 3 1 1 1 1 5
NCTC8684 C. violaceum 36 0 0 3 MAF 5 0 0 2 0 1
NCTC9075 E. coli 35 1 0 3 MAF 7 0 14 3 0 1
NCTC9078 E. coli 55 1 2 2 MA 4 3 1 2 1 2
NCTC9098 E. coli 56 1 1 2 MAF 8 0 1 6 2 2
NCTC9111 E. coli 62 1 1 9 MAF 9 6 2 13 3 1
NCTC9112 E. coli 69 1 0 0 MAF 7 0 5 15 0 1
NCTC9184 Klebsiella sp. 6 0 0 179 MAF 141 5 0 17 0 4
NCTC9645 K. pneumoniae 17 0 0 16 MAF 31 10 1 76 4 2
NCTC9646 K. aerogenes 24 * * * MAF 8 3 3 9 5 1
NCTC9695 C. violaceum 34 1 0 0 MAF 2 9 3 1 0 1

T. roseus 20 * * * * 3 0 0 6 0 0

Table A.2: Datasets from the NCTC project chosen for analysis (the last row corresponds to our
simulated dataset). For each sample, the coverage (cov) is given as well as the num-
ber of contigs and their assignment; chr: number of chromosomal contigs, pld: number
of plasmid contigs, und: number of other contigs. For two datasets (NCTC12841 and
NCTC9646) the NCTC project does not yet provide an assembly (”Pending”). For Canu

and Miniasm, a classification similar to the one of NCTC is given (see text). We reported
HINGE classification; FALC: Finished assembly (lacking circularization), FA: Finished as-
sembly, MA: Mis-assembly, MA∗: labeled as misassembled but actually correctly solved
as 2 chromosomes, FCA: Finished circular assembly, MAF: Mis-assembly/Fragmented,
FAMT: Finished assembly with multiple traversals.
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Canu Edges in the AAG
NCTC ID contigs dead-ends dead-ends total AAG theoretical distant adjacency edges

with adj. max. edges total single multiple
edge edges

NCTC10006 2 2 2 4 4 2 2 2 0
NCTC10332 4 8 4 24 24 21 3 0 3
NCTC10444 4 3 3 24 24 18 6 0 6
NCTC10702 2 4 0 4 4 4 0 0 0
NCTC10766 4 6 2 24 24 22 2 2 0
NCTC10794 3 5 0 12 12 12 0 0 0
NCTC10988 1 0 0 0 0 0 0 0 0
NCTC11126 4 4 3 20 24 15 5 0 5
NCTC11343 7 6 3 72 84 66 6 1 5
NCTC11360 3 6 0 12 12 12 0 0 0
NCTC11435 5 4 4 40 40 35 5 2 3
NCTC11800 2 0 0 3 4 1 2 2 0
NCTC11872 5 6 4 40 40 36 4 4 0
NCTC12123 3 4 3 12 12 9 3 1 2
NCTC12126 6 7 6 36 60 26 10 0 10
NCTC12131 8 6 6 83 112 60 23 0 23
NCTC12132 2 4 2 4 4 3 1 1 0
NCTC12146 2 4 0 4 4 4 0 0 0
NCTC12694 10 20 6 61 180 58 3 3 0
NCTC12841 1 0 0 0 0 0 0 0 0
NCTC12993 2 4 2 4 4 3 1 1 0
NCTC12998 1 2 0 0 0 0 0 0 0
NCTC13095 2 2 0 4 4 3 1 1 0
NCTC13125 3 0 0 12 12 8 4 0 4
NCTC13348 7 7 0 75 84 68 7 0 7
NCTC13463 2 0 0 3 4 1 2 2 0
NCTC13543 2 2 0 4 4 4 0 0 0
NCTC4672 5 8 4 32 40 28 4 0 4
NCTC5050 3 6 6 12 12 9 3 3 0
NCTC5053 5 6 2 32 40 28 4 1 3
NCTC5055 1 2 0 0 0 0 0 0 0
NCTC7152 1 0 0 0 0 0 0 0 0
NCTC7922 6 3 2 60 60 56 4 2 2
NCTC8179 7 4 0 84 84 79 5 3 2
NCTC8500 1 2 0 0 0 0 0 0 0
NCTC8684 1 2 0 0 0 0 0 0 0
NCTC9075 6 8 7 60 60 54 6 4 2
NCTC9078 2 0 0 2 4 1 1 1 0
NCTC9098 4 1 1 24 24 16 8 0 8
NCTC9111 3 2 2 12 12 8 4 0 4
NCTC9112 4 0 0 24 24 14 10 0 10
NCTC9184 0 0 0 0 0 0 0 0 0
NCTC9645 14 23 5 244 364 238 6 3 3
NCTC9646 5 8 4 40 40 37 3 3 0
NCTC9695 2 0 0 2 4 1 1 1 0
Summary 3.71 4.24 1.84 26.86 34.4 23.55 3.31 0.95 2.35

Table A.3: Assembly graph statistics for a selection of 45 fragmented assemblies from the NCTC
project. Canu assembly graph statistics: number of contigs, number of dead-end extrem-
ities. AAG statistics: theoretical maximal number number of edges. Note that for some
of the most fragmented datasets (e.g. NCTC9184), none of the contigs pass the 100 Kbp
length threshold, hence the AAG is empty.
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Mean number of

Miniasm contigs 5.8

Edges in AAG 85.1
Theoretical max. edges in AAG 94.4
Distant edges 83.12
All adjacency edges 1.98
Single adjacency edges 1.51
Multiple adjacency edges 0.46

Dead-ends in Miniasm contigs 11.61
Dead-ends in AAG, adjacency edges 7.95

Table A.4: Average statistics of augmented assembly graphs using a SG built from Minimap2 overlaps
on Miniasm contigs across the 37 NCTC datasets with two or more contigs, after size and
classification filters. All rows are as per definitions in Section 4.4.4.4. ’Theoretical max.
edges’: number of possible edges in each AAG. ’Dead-ends in AAG, adjacency edges’:
number of dead-ends in the AAG when only adjacency edges are considered, i.e. distant
edges are deleted.

A.4

Figure A.1: Weights of scenarios in AAGs. Each curve correspond to the sorted list of Hamiltonian
cycles, sorted by weight. If a ground truth is known, a diamond symbol marks the correct
assembly scenario
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Miniasm Edges in the AAG
NCTC ID contigs dead-ends dead-ends total AAG theoretical distant adjacency edges

with adj. max. edges total single multiple
edge edges

NCTC10006 7 14 11 84 84 78 6 4 2
NCTC10332 14 28 12 364 364 358 6 6 0
NCTC10444 5 10 2 40 40 39 1 1 0
NCTC10702 1 2 0 0 0 0 0 0 0
NCTC10766 5 10 8 40 40 35 5 2 3
NCTC10794 3 6 0 12 12 12 0 0 0
NCTC10988 3 6 2 12 12 11 1 1 0
NCTC11126 11 22 8 200 220 196 4 4 0
NCTC11343 3 6 0 8 12 8 0 0 0
NCTC11360 7 14 2 84 84 83 1 1 0
NCTC11435 6 12 4 33 60 31 2 2 0
NCTC11800 3 6 2 8 12 7 1 1 0
NCTC11872 9 18 10 113 144 108 5 5 0
NCTC12123 2 4 4 4 4 1 3 0 3
NCTC12126 11 22 10 146 220 141 5 5 0
NCTC12131 17 34 2 512 544 511 1 1 0
NCTC12132 2 4 0 4 4 4 0 0 0
NCTC12146 1 2 0 0 0 0 0 0 0
NCTC12694 0 0 0 0 0 0 0 0 0
NCTC12841 1 2 0 0 0 0 0 0 0
NCTC12993 2 4 2 4 4 3 1 1 0
NCTC12998 4 8 2 24 24 23 1 1 0
NCTC13095 1 2 0 0 0 0 0 0 0
NCTC13125 5 10 4 32 40 30 2 2 0
NCTC13348 15 30 19 420 420 410 10 8 2
NCTC13463 4 8 2 18 24 17 1 1 0
NCTC13543 2 4 0 4 4 4 0 0 0
NCTC4672 8 16 * * * * * * *
NCTC5050 4 8 5 24 24 20 4 0 4
NCTC5053 9 18 8 113 144 108 5 2 3
NCTC5055 1 2 0 0 0 0 0 0 0
NCTC7152 2 4 0 4 4 4 0 0 0
NCTC7922 6 12 2 50 60 49 1 1 0
NCTC8179 11 22 4 220 220 218 2 2 0
NCTC8500 1 2 0 0 0 0 0 0 0
NCTC8684 2 4 0 2 4 2 0 0 0
NCTC9075 2 4 2 4 4 3 1 1 0
NCTC9078 2 4 0 4 4 4 0 0 0
NCTC9098 5 10 3 32 40 30 2 0 2
NCTC9111 11 22 2 220 220 219 1 1 0
NCTC9112 10 20 4 180 180 178 2 2 0
NCTC9184 0 0 0 0 0 0 0 0 0
NCTC9645 16 32 2 366 480 365 1 1 0
NCTC9646 7 14 6 72 84 69 3 3 0
NCTC9695 1 2 0 0 0 0 0 0 0
Summary 5.32 10.6 3.27 78.6 87.3 76.8 1.77 1.34 0.432

Table A.5: Assembly graph statistics for a selection of 45 fragmented assemblies from the NCTC
project. Miniasm assembly graph statistics: number of contigs, number of dead-end ex-
tremities. AAG statistics: theoretical maximal number number of edges. Note that for
some of the most fragmented datasets (e.g. NCTC9184), none of the contigs pass the 100
Kbp length threshold, hence the AAG is empty. ’*’ denotes dataset for which the result
is not available.
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A.5 Contigs length and clas-

sification

Canu

Dataset Contig name Classification Length

NCTC10006 tig00000055 chromosomal 635691

tig00001802 chromosomal 4649423

tig00001803 chromosomal 11996

total chromosomal length 5297110

NCTC10332 tig00000001 chromosomal 3474338

tig00000002 chromosomal 30165

tig00000049 chromosomal 477163

tig00000076 chromosomal 781581

tig00000121 chromosomal 2609

tig00000123 chromosomal 2461

tig00000125 chromosomal 2452

tig00009835 chromosomal 2395

tig00009836 chromosomal 1564849

tig00009837 chromosomal 11088

tig00009838 chromosomal 2340

tig00009839 chromosomal 2302

total chromosomal length 6353743

NCTC10444 tig00000085 chromosomal 16691

tig00000105 chromosomal 989155

tig00000671 chromosomal 2391267

tig00000672 chromosomal 14372

tig00000673 chromosomal 1333749

tig00000674 chromosomal 9774

tig00000675 chromosomal 603044

total chromosomal length 5358052

NCTC10702 tig00000001 chromosomal 1882575

tig00000002 chromosomal 1048854

tig00000080 chromosomal 70302

total chromosomal length 3001731

tig00000200 plasmidic 49994

tig00001328 plasmidic 28893

tig00001329 plasmidic 7575

tig00000084 undefined 30012

tig00000087 undefined 2442

tig00000199 undefined 20259

NCTC10766 tig00000009 chromosomal 35058

tig00000021 chromosomal 331047

tig00001907 chromosomal 4740

tig00001908 chromosomal 3602512

tig00001909 chromosomal 15279

tig00001910 chromosomal 700851

tig00001911 chromosomal 14965

tig00001912 chromosomal 10378

tig00001913 chromosomal 20674

tig00001915 chromosomal 10586

tig00001916 chromosomal 9467

tig00001921 chromosomal 7453

tig00001922 chromosomal 710378

total chromosomal length 5473388

tig00000032 plasmidic 91068

tig00000038 plasmidic 6441

tig00000057 plasmidic 49757

tig00001917 plasmidic 30098

tig00001918 plasmidic 12494

tig00001919 plasmidic 8557

tig00001920 plasmidic 22116

tig00000035 undefined 7262

tig00000036 undefined 3368

NCTC10794 tig00000006 chromosomal 54912

tig00000027 chromosomal 3322

tig00000081 chromosomal 92448

tig00000108 chromosomal 3328

tig00000189 chromosomal 480759

tig00000190 chromosomal 290320

tig00004951 chromosomal 591102

total chromosomal length 1516191

tig00000003 undefined 186664

tig00000014 undefined 105799

tig00000039 undefined 180586

tig00000040 undefined 18002

tig00000042 undefined 42405

tig00000047 undefined 41214

tig00000067 undefined 3608

tig00000072 undefined 3493

tig00000098 undefined 3650

tig00000100 undefined 3534

tig00000102 undefined 3498

tig00000110 undefined 1327

tig00000114 undefined 3322

tig00000116 undefined 3800

tig00000187 undefined 16904

tig00000188 undefined 12596

tig00000191 undefined 12836

tig00000192 undefined 12673

tig00004950 undefined 4641

tig00004952 undefined 105999

tig00004953 undefined 11722

tig00004954 undefined 6412

tig00004955 undefined 9623

tig00000096 none 5730

tig00000112 none 1434

tig00000186 none 5922

NCTC10988 tig00000006 chromosomal 25636

tig00000279 chromosomal 3040963

tig00000896 chromosomal 22144

tig00000897 chromosomal 19058

tig00000898 chromosomal 14604

tig00000899 chromosomal 14371

tig00000900 chromosomal 13453

tig00000901 chromosomal 19223

tig00000902 chromosomal 14801

tig00000903 chromosomal 17641

total chromosomal length 3201894

tig00000088 undefined 4456

tig00000105 undefined 36448

NCTC11126 tig00000037 chromosomal 577906

tig00000074 chromosomal 666697
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tig00000192 chromosomal 1514971

tig00000193 chromosomal 6302

tig00000194 chromosomal 2066502

tig00003788 chromosomal 8944

tig00003789 chromosomal 46666

total chromosomal length 4887988

NCTC11343 tig00000004 chromosomal 11272

tig00000067 chromosomal 117209

tig00000083 chromosomal 258828

tig00000095 chromosomal 5614

tig00000272 chromosomal 249754

tig00000291 chromosomal 226277

tig00000726 chromosomal 2208641

tig00005693 chromosomal 12001

tig00005694 chromosomal 876928

tig00005696 chromosomal 3878

tig00005698 chromosomal 8934

tig00005699 chromosomal 214339

total chromosomal length 4193675

tig00000047 undefined 470559

tig00000158 undefined 3400

tig00000261 undefined 3105

tig00000357 undefined 55998

tig00000360 undefined 46002

tig00000381 undefined 1809

tig00000727 undefined 136723

tig00000728 undefined 6803

tig00000729 undefined 19083

tig00000730 undefined 6003

tig00005695 undefined 783131

tig00005697 undefined 20459

tig00005700 undefined 12630

tig00005701 undefined 4319

tig00005702 undefined 4350

tig00005703 undefined 325592

tig00005704 undefined 8727

NCTC11360 tig00000001 chromosomal 856759

tig00000002 chromosomal 167905

tig00000023 chromosomal 2941

tig00000024 chromosomal 74373

tig00000036 chromosomal 2775

tig00000039 chromosomal 4498

tig00000040 chromosomal 90923

tig00000044 chromosomal 93819

tig00000059 chromosomal 3339

tig00000061 chromosomal 5726

tig00000067 chromosomal 69601

tig00000084 chromosomal 2711

tig00000115 chromosomal 85300

tig00000116 chromosomal 6833

tig00000117 chromosomal 89165

tig00000118 chromosomal 7948

tig00000119 chromosomal 73822

tig00000121 chromosomal 61437

tig00000122 chromosomal 11175

tig00000123 chromosomal 7718

tig00002040 chromosomal 3708

tig00002041 chromosomal 446407

tig00002042 chromosomal 2667

tig00002043 chromosomal 3997

tig00002044 chromosomal 6676

tig00002045 chromosomal 6999

total chromosomal length 2189222

NCTC11435 tig00000001 chromosomal 1450647

tig00000002 chromosomal 1627001

tig00000267 chromosomal 3308

tig00001171 chromosomal 213960

tig00001172 chromosomal 11255

tig00001173 chromosomal 260680

tig00001174 chromosomal 13563

tig00001175 chromosomal 871963

total chromosomal length 4452377

NCTC11800 tig00000003 chromosomal 2775

tig00000100 chromosomal 2617

tig00000108 chromosomal 2163

tig00000110 chromosomal 2403

tig00000228 chromosomal 797974

tig00000229 chromosomal 7782

tig00003669 chromosomal 3650645

total chromosomal length 4466359

tig00000002 undefined 2722

tig00000104 undefined 2273

tig00003670 undefined 10818

NCTC11872 tig00000016 chromosomal 486488

tig00000035 chromosomal 414114

tig00000200 chromosomal 305814

tig00000201 chromosomal 6170

tig00000202 chromosomal 554139

tig00000203 chromosomal 6679

tig00000204 chromosomal 106287

total chromosomal length 1879691

tig00000072 undefined 1688

NCTC12123 tig00000001 chromosomal 2025792

tig00000002 chromosomal 2402021

tig00000009 chromosomal 319720

tig00001215 chromosomal 17954

tig00001216 chromosomal 19022

total chromosomal length 4784509

tig00000045 plasmidic 7248

tig00001219 plasmidic 14495

tig00001220 plasmidic 11169

tig00001221 plasmidic 12838

tig00000003 undefined 7552

tig00000036 undefined 2048

tig00001217 undefined 44732

tig00001218 undefined 4652

NCTC12126 tig00000002 chromosomal 2504

tig00000003 chromosomal 6347

tig00000005 chromosomal 312284

tig00000018 chromosomal 697355

tig00000041 chromosomal 180413

tig00000088 chromosomal 980155

tig00000103 chromosomal 2869

tig00000144 chromosomal 58545
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tig00000151 chromosomal 9045

tig00000154 chromosomal 4231

tig00000255 chromosomal 1991519

tig00000256 chromosomal 3006

tig00000257 chromosomal 620710

total chromosomal length 4868983

tig00000119 plasmidic 168880

NCTC12131 tig00000004 chromosomal 585202

tig00000022 chromosomal 2720

tig00000052 chromosomal 782381

tig00000129 chromosomal 3215

tig00000133 chromosomal 2760

tig00000260 chromosomal 277244

tig00000261 chromosomal 6991

tig00000262 chromosomal 654135

tig00000263 chromosomal 7044

tig00000264 chromosomal 44446

tig00000265 chromosomal 6070

tig00000266 chromosomal 658311

tig00000267 chromosomal 173281

tig00000268 chromosomal 6652

tig00000269 chromosomal 735339

tig00000271 chromosomal 839355

total chromosomal length 4785146

tig00000272 undefined 11590

tig00000273 undefined 3170

NCTC12132 tig00000001 chromosomal 2583454

tig00000002 chromosomal 756442

total chromosomal length 3339896

tig00000004 undefined 20873

NCTC12146 tig00000001 chromosomal 4385596

tig00001748 chromosomal 15170

tig00001749 chromosomal 1248170

total chromosomal length 5648936

NCTC12694 tig00000001 chromosomal 1305929

tig00000004 chromosomal 723799

tig00000010 chromosomal 270213

tig00000013 chromosomal 244711

tig00000015 chromosomal 205059

tig00000017 chromosomal 163002

tig00000019 chromosomal 200318

tig00000021 chromosomal 138348

tig00000028 chromosomal 101438

tig00000031 chromosomal 87449

tig00000032 chromosomal 63734

tig00000035 chromosomal 90673

tig00000038 chromosomal 41457

tig00000040 chromosomal 64898

tig00000042 chromosomal 69114

tig00000045 chromosomal 37727

tig00000047 chromosomal 27321

tig00000052 chromosomal 2331

tig00000091 chromosomal 753465

tig00000092 chromosomal 2291

tig00000093 chromosomal 2280

total chromosomal length 4595557

tig00000050 plasmidic 1930

tig00006898 plasmidic 5801

tig00006899 plasmidic 63765

NCTC12841 tig00000004 chromosomal 12036

tig00000005 chromosomal 1851

tig00000007 chromosomal 2368

tig00000047 chromosomal 1630

tig00000050 chromosomal 1416

tig00000052 chromosomal 2797

tig00000054 chromosomal 2185

tig00000058 chromosomal 1348

tig00000060 chromosomal 1588

tig00000066 chromosomal 2323

tig00000257 chromosomal 1926784

tig00000258 chromosomal 11427

tig00032866 chromosomal 17087

tig00032867 chromosomal 11198

tig00032868 chromosomal 1405

tig00032869 chromosomal 1416

total chromosomal length 1998859

NCTC12993 tig00000002 chromosomal 2655515

tig00002251 chromosomal 2377976

tig00002252 chromosomal 8006

tig00002253 chromosomal 9235

tig00002254 chromosomal 11903

total chromosomal length 5062635

tig00000055 plasmidic 12328

tig00000063 plasmidic 5676

tig00000064 plasmidic 2730

tig00000113 plasmidic 5891

tig00000052 undefined 222246

tig00000114 undefined 4385

tig00002255 undefined 9923

tig00002256 undefined 13795

NCTC12998 tig00000002 chromosomal 2569

tig00002880 chromosomal 5608109

tig00002881 chromosomal 9135

total chromosomal length 5619813

tig00002882 plasmidic 126740

tig00002883 plasmidic 7454

NCTC13095 tig00000036 chromosomal 2168596

tig00000037 chromosomal 8008

tig00000038 chromosomal 3511453

total chromosomal length 5688057

tig00000015 plasmidic 166342

tig00001684 plasmidic 124320

tig00001685 plasmidic 18225

tig00000003 none 21738

NCTC13125 tig00000001 chromosomal 4777685

tig00000003 chromosomal 461931

tig00000408 chromosomal 263450

tig00000409 chromosomal 19433

tig00001778 chromosomal 18427

tig00001779 chromosomal 24134

total chromosomal length 5565060

tig00000080 plasmidic 105599

tig00000081 plasmidic 120877

tig00000083 plasmidic 18752
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tig00000084 undefined 56975

tig00000099 undefined 1213

NCTC13348 tig00000012 chromosomal 2875

tig00000029 chromosomal 163558

tig00000045 chromosomal 2613

tig00000114 chromosomal 3490

tig00000124 chromosomal 2641

tig00000162 chromosomal 87300

tig00000171 chromosomal 2696

tig00000186 chromosomal 2783

tig00000348 chromosomal 742809

tig00000349 chromosomal 7200

tig00000350 chromosomal 898431

tig00000351 chromosomal 4061

tig00000352 chromosomal 224612

tig00000353 chromosomal 201081

tig00000356 chromosomal 2525

tig00005291 chromosomal 1458800

tig00005292 chromosomal 3871

tig00005293 chromosomal 1173550

tig00005294 chromosomal 6497

tig00005295 chromosomal 8532

tig00005296 chromosomal 9588

tig00005297 chromosomal 3796

tig00005298 chromosomal 3770

tig00005299 chromosomal 6030

tig00005300 chromosomal 4132

total chromosomal length 5027241

tig00000183 plasmidic 99046

tig00000196 undefined 4009

tig00000355 undefined 2810

NCTC13463 tig00000066 chromosomal 4612761

tig00000067 chromosomal 15891

tig00000068 chromosomal 473422

tig00000070 chromosomal 11585

tig00000071 chromosomal 9027

total chromosomal length 5122686

tig00000024 plasmidic 99437

tig00000028 plasmidic 3907

tig00000026 undefined 9287

tig00000069 undefined 63008

NCTC13543 tig00000001 chromosomal 2912152

tig00000044 chromosomal 20274

tig00000092 chromosomal 1100488

total chromosomal length 4032914

tig00000037 plasmidic 71251

tig00000039 plasmidic 27238

tig00000024 undefined 489748

tig00000034 undefined 174464

tig00000042 undefined 31750

tig00000047 undefined 3595

tig00000049 undefined 6247

tig00000057 undefined 3104

tig00000093 undefined 8383

tig00000094 undefined 985883

NCTC4672 tig00000005 chromosomal 234563

tig00000013 chromosomal 183355

tig00000048 chromosomal 1061

tig00000049 chromosomal 2728

tig00000057 chromosomal 1112

tig00000065 chromosomal 1150

tig00000084 chromosomal 1399

tig00000092 chromosomal 3917

tig00000095 chromosomal 1292

tig00000124 chromosomal 3541

tig00000128 chromosomal 1599

tig00000139 chromosomal 1711

tig00000144 chromosomal 4980

tig00000159 chromosomal 3137

tig00000198 chromosomal 1889

tig00000233 chromosomal 1995

tig00000242 chromosomal 7213

tig00000258 chromosomal 1676

tig00000262 chromosomal 2808

tig00000265 chromosomal 1307

tig00000266 chromosomal 1405

tig00000269 chromosomal 3265

tig00000275 chromosomal 1624

tig00000277 chromosomal 1819

tig00000278 chromosomal 1609

tig00000280 chromosomal 1497

tig00000283 chromosomal 1155

tig00000288 chromosomal 1859

tig00000290 chromosomal 1529

tig00000296 chromosomal 4494

tig00000297 chromosomal 2018

tig00000300 chromosomal 1525

tig00000304 chromosomal 1433

tig00000306 chromosomal 1315

tig00000309 chromosomal 1535

tig00000320 chromosomal 1446

tig00000323 chromosomal 1479

tig00000330 chromosomal 1947

tig00000334 chromosomal 3660

tig00000338 chromosomal 1749

tig00000345 chromosomal 1368

tig00000347 chromosomal 1669

tig00000349 chromosomal 1420

tig00000358 chromosomal 1659

tig00000367 chromosomal 1044

tig00000380 chromosomal 1237

tig00000886 chromosomal 59611

tig00000887 chromosomal 11888

tig00000888 chromosomal 778559

tig00000889 chromosomal 130493

tig00000890 chromosomal 5574

tig00000891 chromosomal 34698

tig00000892 chromosomal 1261

tig00000893 chromosomal 4516

tig00012913 chromosomal 528826

tig00012914 chromosomal 3329

tig00012915 chromosomal 8743

tig00012916 chromosomal 6640

tig00012917 chromosomal 8651
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tig00012918 chromosomal 1378

tig00012919 chromosomal 1701

tig00012920 chromosomal 1535

tig00012921 chromosomal 1435

tig00012922 chromosomal 1444

tig00012923 chromosomal 1179

tig00012924 chromosomal 1180

tig00012925 chromosomal 3460

tig00012926 chromosomal 3441

total chromosomal length 2108735

tig00000046 undefined 3142

tig00012927 undefined 1024

tig00012928 undefined 1023

NCTC5050 tig00000001 chromosomal 3626030

tig00000010 chromosomal 1250471

tig00000023 chromosomal 227716

tig00000041 chromosomal 3864

total chromosomal length 5108081

tig00000038 plasmidic 82367

tig00000039 plasmidic 52025

tig00000037 undefined 117821

NCTC5053 tig00000133 chromosomal 198522

tig00000255 chromosomal 920215

tig00000256 chromosomal 5841

tig00000257 chromosomal 1006535

tig00000258 chromosomal 6903

tig00000259 chromosomal 2186965

tig00003210 chromosomal 6218

tig00003211 chromosomal 930059

total chromosomal length 5261258

tig00000136 plasmidic 112876

tig00000143 plasmidic 105258

tig00000146 plasmidic 13447

tig00000160 plasmidic 9791

tig00000261 plasmidic 209198

tig00000260 undefined 9413

tig00003209 undefined 107411

tig00003212 undefined 10219

NCTC5055 tig00000055 chromosomal 11815

tig00000057 chromosomal 12732

tig00000059 chromosomal 6105

tig00000060 chromosomal 4943

tig00000064 chromosomal 5662

tig00000065 chromosomal 15192

tig00000070 chromosomal 3156

tig00000074 chromosomal 4830

tig00000076 chromosomal 4460

tig00000077 chromosomal 7113

tig00000078 chromosomal 5247

tig00000080 chromosomal 4590

tig00000081 chromosomal 7472

tig00000082 chromosomal 2196

tig00000084 chromosomal 9133

tig00000094 chromosomal 5354

tig00000095 chromosomal 3374

tig00000096 chromosomal 4914

tig00000097 chromosomal 9470

tig00000098 chromosomal 6023

tig00000100 chromosomal 2873

tig00000101 chromosomal 3992

tig00000102 chromosomal 3774

tig00000106 chromosomal 5073

tig00000107 chromosomal 8708

tig00000109 chromosomal 6353

tig00000110 chromosomal 3657

tig00000112 chromosomal 2278

tig00000116 chromosomal 3106

tig00000117 chromosomal 2467

tig00000119 chromosomal 4337

tig00000122 chromosomal 3239

tig00000127 chromosomal 3330

tig00000129 chromosomal 3810

tig00000130 chromosomal 8852

tig00000133 chromosomal 4009

tig00000151 chromosomal 1816

tig00000153 chromosomal 4264

tig00000154 chromosomal 9420

tig00000155 chromosomal 3231

tig00000156 chromosomal 3481

tig00000158 chromosomal 2227

tig00000159 chromosomal 5958

tig00000160 chromosomal 3393

tig00000161 chromosomal 2176

tig00000162 chromosomal 2694

tig00000163 chromosomal 2441

tig00000165 chromosomal 1982

tig00000167 chromosomal 8049

tig00000168 chromosomal 3057

tig00000169 chromosomal 4639

tig00000171 chromosomal 5174

tig00000172 chromosomal 4436

tig00000176 chromosomal 2044

tig00000177 chromosomal 3065

tig00000179 chromosomal 5480

tig00000180 chromosomal 5299

tig00000181 chromosomal 7740

tig00000182 chromosomal 3451

tig00000183 chromosomal 3189

tig00000184 chromosomal 1334

tig00000186 chromosomal 3107

tig00000187 chromosomal 2091

tig00000189 chromosomal 2580

tig00000190 chromosomal 1472

tig00000191 chromosomal 8189

tig00000192 chromosomal 5362

tig00000193 chromosomal 3042

tig00000194 chromosomal 6645

tig00000195 chromosomal 1695

tig00000196 chromosomal 1678

tig00000202 chromosomal 2682

tig00000203 chromosomal 9552

tig00000204 chromosomal 3295

tig00000209 chromosomal 6262

tig00000212 chromosomal 6643
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tig00000220 chromosomal 3460

tig00000225 chromosomal 2926

tig00000229 chromosomal 5309

tig00000256 chromosomal 3504

tig00000263 chromosomal 1548

tig00000264 chromosomal 2071

tig00000266 chromosomal 7550

tig00000267 chromosomal 1633

tig00000269 chromosomal 2507

tig00000273 chromosomal 3348

tig00000274 chromosomal 3548

tig00000275 chromosomal 4156

tig00000277 chromosomal 3110

tig00000279 chromosomal 4417

tig00000281 chromosomal 3851

tig00000288 chromosomal 5472

tig00000289 chromosomal 4032

tig00000291 chromosomal 3818

tig00000292 chromosomal 4370

tig00000293 chromosomal 3129

tig00000294 chromosomal 2304

tig00000296 chromosomal 3225

tig00000301 chromosomal 7281

tig00000305 chromosomal 8491

tig00000314 chromosomal 5433

tig00000317 chromosomal 3678

tig00000325 chromosomal 1863

tig00000327 chromosomal 3222

tig00000328 chromosomal 5106

tig00000333 chromosomal 3256

tig00000341 chromosomal 1291

tig00000342 chromosomal 2493

tig00000346 chromosomal 1815

tig00000353 chromosomal 2918

tig00000355 chromosomal 4982

tig00000357 chromosomal 2946

tig00000358 chromosomal 1834

tig00000360 chromosomal 2630

tig00000364 chromosomal 3574

tig00000370 chromosomal 2820

tig00000378 chromosomal 8735

tig00000381 chromosomal 3848

tig00000382 chromosomal 2055

tig00000386 chromosomal 2616

tig00000387 chromosomal 1427

tig00000389 chromosomal 1736

tig00000397 chromosomal 5670

tig00000401 chromosomal 2024

tig00000407 chromosomal 3932

tig00000409 chromosomal 4037

tig00000426 chromosomal 1317

tig00000429 chromosomal 5444

tig00000430 chromosomal 3589

tig00001790 chromosomal 22546

tig00001791 chromosomal 4656080

tig00008453 chromosomal 2243

tig00008454 chromosomal 3013

tig00008455 chromosomal 2506

tig00008456 chromosomal 2503

tig00008457 chromosomal 2363

tig00008458 chromosomal 1846

tig00008459 chromosomal 8988

tig00008460 chromosomal 7418

tig00008461 chromosomal 2516

tig00008462 chromosomal 1286

tig00008463 chromosomal 1256

tig00008464 chromosomal 1283

total chromosomal length 5275172

tig00000062 plasmidic 18081

tig00000105 plasmidic 10705

tig00000121 plasmidic 7705

tig00000157 plasmidic 2638

tig00000228 plasmidic 5859

tig00000336 plasmidic 1653

tig00000366 plasmidic 1797

tig00001789 plasmidic 274671

tig00000173 undefined 4757

tig00000270 undefined 5189

tig00000282 undefined 2754

tig00000306 undefined 2137

tig00000308 undefined 5179

NCTC7152 tig00001521 chromosomal 4895392

tig00001522 chromosomal 11663

total chromosomal length 4907055

tig00000020 plasmidic 140100

tig00000021 plasmidic 22029

tig00000023 plasmidic 17571

tig00000004 undefined 12499

tig00001524 undefined 9161

tig00000002 none 14822

tig00001523 none 13250

NCTC7922 tig00000005 chromosomal 30266

tig00000010 chromosomal 231607

tig00000015 chromosomal 8910

tig00000061 chromosomal 624029

tig00000089 chromosomal 224263

tig00000120 chromosomal 118779

tig00000357 chromosomal 3437368

tig00000358 chromosomal 27476

tig00000359 chromosomal 62893

tig00000360 chromosomal 14447

tig00000361 chromosomal 517854

tig00004505 chromosomal 2628

tig00004506 chromosomal 7127

total chromosomal length 5307647

tig00000123 plasmidic 92363

tig00000136 plasmidic 68892

tig00000137 plasmidic 2971

tig00000138 undefined 2688

tig00000140 undefined 8279

tig00000143 undefined 5528

tig00000356 undefined 9292

NCTC8179 tig00000002 chromosomal 32726

tig00000005 chromosomal 34757



104 APPENDIX A: KNOT

tig00000006 chromosomal 156816

tig00000012 chromosomal 932548

tig00000140 chromosomal 32623

tig00000141 chromosomal 1989140

tig00000143 chromosomal 297068

tig00000144 chromosomal 33325

tig00000145 chromosomal 260864

tig00000146 chromosomal 22495

tig00000147 chromosomal 1150072

tig00001520 chromosomal 24836

tig00001521 chromosomal 21995

tig00001522 chromosomal 17732

tig00001523 chromosomal 732378

total chromosomal length 5739375

tig00000063 plasmidic 127915

tig00000065 plasmidic 85310

tig00000066 plasmidic 5132

tig00000069 plasmidic 3833

tig00000142 none 18135

NCTC8500 tig00000001 chromosomal 4654897

tig00000069 chromosomal 14271

tig00000172 chromosomal 2477

total chromosomal length 4671645

tig00000166 plasmidic 61752

NCTC8684 tig00000042 chromosomal 2510

tig00000044 chromosomal 2653

tig00000096 chromosomal 1675130

tig00000100 chromosomal 9818

tig00005015 chromosomal 2002

total chromosomal length 1692113

tig00000019 undefined 90777

tig00000035 undefined 334610

tig00000040 undefined 2954

tig00000090 undefined 463211

tig00000091 undefined 6937

tig00000092 undefined 226539

tig00000093 undefined 10565

tig00000094 undefined 683840

tig00000095 undefined 8091

tig00000097 undefined 11829

tig00000098 undefined 815147

tig00000099 undefined 582249

tig00005013 undefined 3845

tig00005014 undefined 3834

NCTC9075 tig00000001 chromosomal 2771864

tig00000014 chromosomal 707603

tig00000055 chromosomal 975632

tig00000129 chromosomal 250221

tig00000196 chromosomal 115073

tig00002929 chromosomal 6892

tig00002930 chromosomal 441745

total chromosomal length 5269030

tig00000200 undefined 67419

NCTC9078 tig00000001 chromosomal 4157901

tig00000006 chromosomal 11044

tig00000036 chromosomal 1211

tig00000051 chromosomal 1033327

total chromosomal length 5203483

tig00000025 plasmidic 84831

tig00000052 plasmidic 15048

tig00000053 plasmidic 141326

tig00000050 undefined 13786

NCTC9098 tig00000001 chromosomal 3151410

tig00000030 chromosomal 19458

tig00000163 chromosomal 19823

tig00000526 chromosomal 324234

tig00000527 chromosomal 19807

tig00000528 chromosomal 196308

tig00000529 chromosomal 15991

tig00000530 chromosomal 1487922

total chromosomal length 5234953

tig00000209 none 64136

tig00000212 none 86222

NCTC9111 tig00000001 chromosomal 4605377

tig00000032 chromosomal 15239

tig00000054 chromosomal 151455

tig00000063 chromosomal 586362

tig00000064 chromosomal 28263

tig00000186 chromosomal 5942

tig00002643 chromosomal 30626

tig00002644 chromosomal 14812

tig00002645 chromosomal 16371

total chromosomal length 5454447

tig00000120 plasmidic 4002

tig00000187 plasmidic 88084

tig00002646 plasmidic 132127

tig00002648 plasmidic 84308

tig00002649 plasmidic 16303

tig00002651 plasmidic 12651

tig00000118 undefined 3898

tig00000123 undefined 106160

tig00002647 undefined 12391

tig00002650 undefined 10115

tig00002642 none 17615

NCTC9112 tig00000065 chromosomal 1280329

tig00000084 chromosomal 1227588

tig00000705 chromosomal 761814

tig00000706 chromosomal 23527

tig00000707 chromosomal 2213829

tig00001864 chromosomal 23718

tig00001865 chromosomal 26283

total chromosomal length 5557088

NCTC9184 tig00000001 chromosomal 44206

tig00000003 chromosomal 75248

tig00000005 chromosomal 54514

tig00000010 chromosomal 38058

tig00000013 chromosomal 57613

tig00000015 chromosomal 34569

tig00000017 chromosomal 29672

tig00000021 chromosomal 41507

tig00000022 chromosomal 32208

tig00000025 chromosomal 33831

tig00000027 chromosomal 30328

tig00000028 chromosomal 25544
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tig00000029 chromosomal 31199

tig00000031 chromosomal 18451

tig00000032 chromosomal 26706

tig00000036 chromosomal 27618

tig00000039 chromosomal 27467

tig00000040 chromosomal 21778

tig00000042 chromosomal 28070

tig00000045 chromosomal 26501

tig00000046 chromosomal 23919

tig00000048 chromosomal 35573

tig00000049 chromosomal 18586

tig00000051 chromosomal 24356

tig00000055 chromosomal 35816

tig00000056 chromosomal 37501

tig00000057 chromosomal 9675

tig00000058 chromosomal 25028

tig00000059 chromosomal 21381

tig00000060 chromosomal 32086

tig00000061 chromosomal 22676

tig00000063 chromosomal 20847

tig00000065 chromosomal 16377

tig00000066 chromosomal 22324

tig00000069 chromosomal 23508

tig00000071 chromosomal 23542

tig00000072 chromosomal 24820

tig00000078 chromosomal 13426

tig00000082 chromosomal 23417

tig00000088 chromosomal 17003

tig00000089 chromosomal 15211

tig00000090 chromosomal 21564

tig00000091 chromosomal 10799

tig00000094 chromosomal 34765

tig00000095 chromosomal 16175

tig00000096 chromosomal 28943

tig00000099 chromosomal 2490

tig00000102 chromosomal 10959

tig00000104 chromosomal 15702

tig00000105 chromosomal 17032

tig00000113 chromosomal 17463

tig00000114 chromosomal 24382

tig00000115 chromosomal 6126

tig00000116 chromosomal 7311

tig00000117 chromosomal 6497

tig00000118 chromosomal 13154

tig00000119 chromosomal 19876

tig00000121 chromosomal 17839

tig00000122 chromosomal 10689

tig00000124 chromosomal 14467

tig00000128 chromosomal 16138

tig00000129 chromosomal 18515

tig00000134 chromosomal 15758

tig00000135 chromosomal 7877

tig00000139 chromosomal 12365

tig00000141 chromosomal 23830

tig00000145 chromosomal 15645

tig00000147 chromosomal 21070

tig00000148 chromosomal 31094

tig00000158 chromosomal 6592

tig00000159 chromosomal 12026

tig00000160 chromosomal 19542

tig00000161 chromosomal 16653

tig00000162 chromosomal 9525

tig00000163 chromosomal 3503

tig00000164 chromosomal 10038

tig00000168 chromosomal 22095

tig00000171 chromosomal 5815

tig00000172 chromosomal 3557

tig00000173 chromosomal 8034

tig00000174 chromosomal 13049

tig00000175 chromosomal 13166

tig00000176 chromosomal 4913

tig00000177 chromosomal 4186

tig00000182 chromosomal 16661

tig00000184 chromosomal 12911

tig00000187 chromosomal 10310

tig00000191 chromosomal 11302

tig00000193 chromosomal 10014

tig00000199 chromosomal 11611

tig00000201 chromosomal 14360

tig00000204 chromosomal 2382

tig00000210 chromosomal 10068

tig00000212 chromosomal 8977

tig00000223 chromosomal 17229

tig00000240 chromosomal 6878

tig00000241 chromosomal 15069

tig00000242 chromosomal 6620

tig00000245 chromosomal 15723

tig00000246 chromosomal 4700

tig00000248 chromosomal 5491

tig00000250 chromosomal 14542

tig00000252 chromosomal 20309

tig00000253 chromosomal 5109

tig00000254 chromosomal 6407

tig00000255 chromosomal 4126

tig00000263 chromosomal 18307

tig00000264 chromosomal 6065

tig00000269 chromosomal 2756

tig00000272 chromosomal 15386

tig00000273 chromosomal 10403

tig00000276 chromosomal 3194

tig00000280 chromosomal 10412

tig00000289 chromosomal 5925

tig00000297 chromosomal 2750

tig00000301 chromosomal 14266

tig00000305 chromosomal 6556

tig00000311 chromosomal 4992

tig00000315 chromosomal 5174

tig00000316 chromosomal 9510

tig00000318 chromosomal 3586

tig00003367 chromosomal 9616

tig00003368 chromosomal 55674

tig00003369 chromosomal 40990

tig00003370 chromosomal 4425

tig00003371 chromosomal 11626
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tig00003372 chromosomal 28757

tig00003373 chromosomal 23908

tig00003374 chromosomal 6632

tig00003375 chromosomal 6460

tig00003376 chromosomal 8901

tig00003377 chromosomal 13617

tig00003378 chromosomal 7801

tig00003379 chromosomal 3818

tig00003380 chromosomal 7550

tig00003381 chromosomal 10743

tig00003382 chromosomal 11567

tig00003383 chromosomal 14003

tig00003384 chromosomal 15516

tig00003385 chromosomal 17588

tig00003386 chromosomal 17512

total chromosomal length 2470164

tig00000107 plasmidic 15044

tig00000166 plasmidic 10162

tig00000186 plasmidic 12869

tig00000188 plasmidic 18137

tig00000299 plasmidic 2027

tig00000180 undefined 13067

NCTC9645 tig00000007 chromosomal 2625

tig00000011 chromosomal 607255

tig00000013 chromosomal 599160

tig00000021 chromosomal 40668

tig00000024 chromosomal 405420

tig00000026 chromosomal 317955

tig00000036 chromosomal 103955

tig00000037 chromosomal 234258

tig00000042 chromosomal 220152

tig00000047 chromosomal 201508

tig00000052 chromosomal 207208

tig00000058 chromosomal 2660

tig00000061 chromosomal 135529

tig00000094 chromosomal 27162

tig00000096 chromosomal 18889

tig00000098 chromosomal 20876

tig00000101 chromosomal 5995

tig00000102 chromosomal 1801

tig00000105 chromosomal 2743

tig00000109 chromosomal 1646

tig00000113 chromosomal 1844

tig00000206 chromosomal 382698

tig00000207 chromosomal 7336

tig00000208 chromosomal 1225204

tig00000209 chromosomal 232251

tig00000210 chromosomal 16029

tig00000211 chromosomal 97614

tig00000219 chromosomal 3443

tig00000220 chromosomal 80500

tig00012227 chromosomal 4751

tig00012228 chromosomal 100031

total chromosomal length 5309166

tig00000072 plasmidic 10238

tig00000086 plasmidic 8968

tig00000212 plasmidic 82446

tig00000213 plasmidic 14986

tig00000214 plasmidic 32714

tig00000215 plasmidic 99472

tig00000217 plasmidic 11997

tig00000218 plasmidic 87460

tig00000221 plasmidic 2054

tig00000222 plasmidic 13460

tig00000035 undefined 168687

tig00000088 undefined 7153

tig00000069 none 81493

NCTC9646 tig00000001 chromosomal 3665711

tig00000002 chromosomal 614927

tig00000026 chromosomal 206992

tig00000027 chromosomal 878265

tig00000047 chromosomal 295064

tig00000187 chromosomal 2534

tig00003591 chromosomal 4056

tig00003592 chromosomal 4764

total chromosomal length 5672313

tig00000022 plasmidic 148222

tig00003589 plasmidic 8057

tig00003590 plasmidic 6751

tig00000021 undefined 36388

tig00000063 undefined 1282

tig00000065 undefined 1113

NCTC9695 tig00000074 chromosomal 1279605

tig00000076 chromosomal 1894574

total chromosomal length 3174179

tig00000003 undefined 473776

tig00000004 undefined 204759

tig00000019 undefined 4937

tig00000038 undefined 3861

tig00000040 undefined 2672

tig00000042 undefined 2170

tig00000075 undefined 7627

tig00000077 undefined 7294

tig00000078 undefined 911580

Table A.6: Canu contigs classification per NCTC
dataset. Total length of chromosomal
contigs is given.
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Miniasm

Dataset Contig name Classification Length

NCTC10006 utg000001l chromosomal 260336

utg000002l chromosomal 1081553

utg000003l chromosomal 1615186

utg000004l chromosomal 1435892

utg000005l chromosomal 629371

utg000006l chromosomal 301502

utg000007l chromosomal 263124

total chromosomal length 5586964

NCTC10332 utg000002l chromosomal 213696

utg000003l chromosomal 598526

utg000004l chromosomal 220355

utg000005l chromosomal 687999

utg000006l chromosomal 92810

utg000007l chromosomal 274321

utg000008l chromosomal 889152

utg000009l chromosomal 236367

utg000010l chromosomal 62450

utg000011l chromosomal 436257

utg000012l chromosomal 720033

utg000013l chromosomal 191547

utg000014l chromosomal 301467

utg000015l chromosomal 41317

utg000016l chromosomal 350649

utg000017l chromosomal 273059

utg000018l chromosomal 339294

utg000019l chromosomal 65630

utg000020l chromosomal 81777

utg000022l chromosomal 43390

utg000023l chromosomal 42183

utg000024l chromosomal 16950

total chromosomal length 6179229

utg000001l none 274988

utg000021l none 57736

NCTC10444 utg000001l chromosomal 2018895

utg000002l chromosomal 1852358

utg000003l chromosomal 240957

utg000004l chromosomal 1224505

utg000005c chromosomal 234694

total chromosomal length 5571409

utg000006c none 4134

NCTC10702 utg000001c chromosomal 3036414

utg000004l chromosomal 5937

total chromosomal length 3042351

utg000003l plasmidic 36874

utg000002c undefined 34724

NCTC10766 utg000001l chromosomal 424892

utg000002l chromosomal 360757

utg000003l chromosomal 3136691

utg000004l chromosomal 991822

utg000005l chromosomal 814775

utg000007l chromosomal 17423

utg000010l chromosomal 76701

total chromosomal length 5823061

utg000006c plasmidic 56779

utg000008c plasmidic 88390
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utg000009l undefined 7051

utg000011c undefined 6079

NCTC10794 utg000001l chromosomal 686754

utg000003l chromosomal 73314

utg000004l chromosomal 198317

utg000005l chromosomal 344693

utg000008l chromosomal 84572

total chromosomal length 1387650

utg000002l undefined 23304

utg000006l undefined 618933

utg000007l undefined 122221

utg000009l undefined 50190

utg000010l undefined 18666

NCTC10988 utg000001l chromosomal 470745

utg000002l chromosomal 1143622

utg000003l chromosomal 39170

utg000004l chromosomal 1521633

utg000005l chromosomal 35669

utg000006l chromosomal 36182

utg000007l chromosomal 28025

utg000009l chromosomal 23011

utg000011l chromosomal 25778

total chromosomal length 3323835

utg000010c undefined 27255

utg000008c none 1813

NCTC11126 utg000001l chromosomal 799550

utg000003l chromosomal 39468

utg000005l chromosomal 199017

utg000006l chromosomal 654158

utg000007l chromosomal 801856

utg000008l chromosomal 150048

utg000009l chromosomal 615460

utg000010l chromosomal 446084

utg000012l chromosomal 187190

utg000013l chromosomal 24165

utg000015l chromosomal 124049

utg000016l chromosomal 115589

utg000017l chromosomal 214509

utg000018l chromosomal 36740

utg000019l chromosomal 18016

total chromosomal length 4425899

utg000002l undefined 463729

utg000004l none 129544

utg000011l none 152040

utg000014l none 20861

NCTC11343 utg000001l chromosomal 1137077

utg000008l chromosomal 387994

utg000009l chromosomal 303645

utg000013l chromosomal 73842

utg000017l chromosomal 44820

utg000021l chromosomal 71812

utg000023l chromosomal 82330

utg000026l chromosomal 37829

utg000027l chromosomal 20725

utg000028l chromosomal 10169

total chromosomal length 2170243

utg000002l undefined 110639

utg000003l undefined 629323

utg000004l undefined 483485

utg000005l undefined 88713

utg000006l undefined 94951

utg000007l undefined 268271

utg000010l undefined 265843

utg000011l undefined 186796

utg000012l undefined 244669

utg000014l undefined 739847

utg000015l undefined 328310

utg000016l undefined 159212

utg000018l undefined 95506

utg000019l undefined 84352

utg000020l undefined 49752

utg000022l undefined 78366

utg000024l undefined 25887

utg000025l undefined 63812

NCTC11360 utg000001l chromosomal 83040

utg000002l chromosomal 142687

utg000003l chromosomal 86224

utg000004l chromosomal 117971

utg000005l chromosomal 103040

utg000006l chromosomal 379750

utg000007l chromosomal 73713

utg000008l chromosomal 87575

utg000009l chromosomal 173405

utg000010l chromosomal 39660

utg000011l chromosomal 75956

utg000012l chromosomal 43377

utg000013l chromosomal 104822

utg000014l chromosomal 66226

utg000015l chromosomal 97577

utg000016l chromosomal 22672

utg000017l chromosomal 68226

utg000018l chromosomal 31089

utg000019l chromosomal 135026

utg000020l chromosomal 12813

utg000021l chromosomal 59788

utg000022l chromosomal 18821

utg000023l chromosomal 10147

utg000024l chromosomal 14492

utg000025l chromosomal 12493

total chromosomal length 2060590

NCTC11435 utg000001l chromosomal 348162

utg000002c chromosomal 1514816

utg000003l chromosomal 992029

utg000004l chromosomal 641762

utg000005l chromosomal 861119

utg000006l chromosomal 287740

total chromosomal length 4645628

utg000007c none 1992

NCTC11800 utg000001l chromosomal 3251923

utg000002l chromosomal 430158

utg000003l chromosomal 887997

total chromosomal length 4570078

utg000004l undefined 190071

NCTC11872 utg000001l chromosomal 171196
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utg000002l chromosomal 82073

utg000003l chromosomal 411282

utg000004l chromosomal 188111

utg000005l chromosomal 116854

utg000006l chromosomal 68409

utg000007l chromosomal 132209

utg000008l chromosomal 135142

utg000009l chromosomal 198320

utg000010l chromosomal 170105

utg000011l chromosomal 62719

utg000012l chromosomal 193447

utg000013l chromosomal 33052

total chromosomal length 1962919

NCTC12123 utg000001l chromosomal 2853675

utg000002l chromosomal 2105813

utg000003l chromosomal 40089

total chromosomal length 4999577

utg000005c plasmidic 10039

utg000004l undefined 31948

NCTC12126 utg000001l chromosomal 319898

utg000002l chromosomal 731428

utg000003l chromosomal 2015098

utg000004l chromosomal 424548

utg000005l chromosomal 234649

utg000006l chromosomal 95263

utg000007l chromosomal 401716

utg000008l chromosomal 165317

utg000009l chromosomal 79334

utg000010l chromosomal 121403

utg000011l chromosomal 117059

utg000013l chromosomal 100109

utg000014l chromosomal 144200

utg000015l chromosomal 64609

utg000016l chromosomal 59101

total chromosomal length 5073732

utg000012l undefined 169903

NCTC12131 utg000001l chromosomal 111790

utg000002l chromosomal 92827

utg000003l chromosomal 97030

utg000004l chromosomal 124270

utg000005l chromosomal 69426

utg000007l chromosomal 26064

utg000008l chromosomal 39017

utg000009l chromosomal 161140

utg000010l chromosomal 67339

utg000013l chromosomal 30391

utg000014l chromosomal 100618

utg000015l chromosomal 125621

utg000016l chromosomal 60566

utg000017l chromosomal 16554

utg000018l chromosomal 195541

utg000019l chromosomal 101170

utg000020l chromosomal 130409

utg000021l chromosomal 49770

utg000022l chromosomal 84913

utg000023l chromosomal 78770

utg000024l chromosomal 257054

utg000025l chromosomal 154990

utg000026l chromosomal 38811

utg000027l chromosomal 68728

utg000028l chromosomal 46799

utg000030l chromosomal 161317

utg000031l chromosomal 71407

utg000032l chromosomal 77866

utg000033l chromosomal 86540

utg000034l chromosomal 114741

utg000036l chromosomal 60369

utg000037l chromosomal 28783

utg000038l chromosomal 71999

utg000039l chromosomal 64473

utg000040l chromosomal 72097

utg000041l chromosomal 12003

utg000042l chromosomal 19063

utg000043l chromosomal 29043

utg000044l chromosomal 36339

utg000045l chromosomal 134261

utg000046l chromosomal 56314

utg000047l chromosomal 101727

utg000048l chromosomal 16300

utg000049l chromosomal 101615

utg000050l chromosomal 25187

utg000051l chromosomal 23598

utg000052l chromosomal 17725

utg000053l chromosomal 106162

utg000054l chromosomal 18067

utg000055l chromosomal 87197

utg000056l chromosomal 38172

utg000057l chromosomal 68391

utg000058l chromosomal 38284

utg000061l chromosomal 73927

utg000062l chromosomal 34241

utg000063l chromosomal 30728

utg000064l chromosomal 22173

utg000065l chromosomal 15783

utg000066l chromosomal 25123

utg000067l chromosomal 49646

utg000068l chromosomal 15064

utg000069l chromosomal 38231

utg000070l chromosomal 25850

utg000072l chromosomal 103746

utg000073l chromosomal 32616

utg000074l chromosomal 20672

utg000075l chromosomal 20049

utg000076l chromosomal 16489

utg000078l chromosomal 7701

utg000079l chromosomal 17282

utg000080l chromosomal 25386

utg000081l chromosomal 13893

utg000082l chromosomal 21851

utg000084l chromosomal 6442

utg000085l chromosomal 4765

utg000086l chromosomal 8500

utg000087l chromosomal 5363

total chromosomal length 4704169
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utg000006l undefined 14352

utg000011l undefined 40323

utg000012l undefined 26155

utg000029l undefined 24896

utg000059l undefined 21237

utg000060l undefined 5107

utg000071l undefined 44778

utg000077l undefined 11705

utg000083l undefined 9380

utg000035l none 65396

NCTC12132 utg000001l chromosomal 2895268

utg000002c chromosomal 536810

utg000003l chromosomal 69541

utg000004l chromosomal 19313

total chromosomal length 3520932

NCTC12146 utg000001l chromosomal 5930232

total chromosomal length 5930232

NCTC12694 utg000001l chromosomal 58159

utg000002l chromosomal 35524

utg000003l chromosomal 28409

utg000004l chromosomal 16449

utg000005l chromosomal 17394

utg000006l chromosomal 21530

utg000007l chromosomal 11853

utg000008l chromosomal 8442

utg000009l chromosomal 10039

utg000010l chromosomal 49546

utg000011l chromosomal 26813

utg000012l chromosomal 23265

utg000013l chromosomal 21153

utg000014l chromosomal 12511

utg000015l chromosomal 17131

utg000016l chromosomal 42769

utg000017l chromosomal 12766

utg000018l chromosomal 24545

utg000019l chromosomal 23162

utg000020l chromosomal 19756

utg000021l chromosomal 45548

utg000022l chromosomal 21115

utg000023l chromosomal 25591

utg000024l chromosomal 30239

utg000025l chromosomal 21095

utg000026l chromosomal 9863

utg000027l chromosomal 23159

utg000029l chromosomal 8102

utg000030l chromosomal 11082

utg000031l chromosomal 28054

utg000033l chromosomal 42654

utg000034l chromosomal 30933

utg000035l chromosomal 46346

utg000036l chromosomal 30903

utg000037l chromosomal 25189

utg000038l chromosomal 18193

utg000039l chromosomal 43343

utg000040l chromosomal 30397

utg000041l chromosomal 15935

utg000042l chromosomal 19588

utg000043l chromosomal 18820

utg000044l chromosomal 23764

utg000045l chromosomal 27579

utg000046l chromosomal 26394

utg000047l chromosomal 18649

utg000048l chromosomal 20699

utg000049l chromosomal 28188

utg000050l chromosomal 7493

utg000051l chromosomal 46315

utg000053l chromosomal 5107

utg000054l chromosomal 40004

utg000055l chromosomal 20811

utg000056l chromosomal 6201

utg000057l chromosomal 42503

utg000058l chromosomal 9998

utg000059l chromosomal 14321

utg000060l chromosomal 22892

utg000061l chromosomal 28867

utg000062l chromosomal 28898

utg000064l chromosomal 24612

utg000065l chromosomal 41956

utg000066l chromosomal 22542

utg000067l chromosomal 18013

utg000068l chromosomal 30693

utg000069l chromosomal 20647

utg000070l chromosomal 35946

utg000071l chromosomal 26657

utg000072l chromosomal 18854

utg000073l chromosomal 8301

utg000074l chromosomal 6505

utg000075l chromosomal 18941

utg000076l chromosomal 17232

utg000077l chromosomal 21805

utg000078l chromosomal 14634

utg000079l chromosomal 37447

utg000080l chromosomal 12665

utg000081l chromosomal 39494

utg000082l chromosomal 17950

utg000083l chromosomal 21934

utg000084l chromosomal 22518

utg000085l chromosomal 7041

utg000086l chromosomal 28654

utg000087l chromosomal 16884

utg000088l chromosomal 28723

utg000089l chromosomal 16734

utg000090l chromosomal 13996

utg000091l chromosomal 23988

utg000092l chromosomal 14611

utg000093l chromosomal 7501

utg000094l chromosomal 25459

utg000095l chromosomal 4562

utg000096l chromosomal 47136

utg000097l chromosomal 4814

utg000098l chromosomal 25935

utg000099l chromosomal 10951

utg000100l chromosomal 21525

utg000101l chromosomal 10732
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utg000102l chromosomal 6168

utg000103l chromosomal 15062

utg000104l chromosomal 11927

utg000105l chromosomal 10715

utg000106l chromosomal 7331

utg000107l chromosomal 10881

utg000108l chromosomal 15574

utg000109l chromosomal 27587

utg000110l chromosomal 23469

utg000111l chromosomal 12398

utg000112l chromosomal 57852

utg000113l chromosomal 13429

utg000114l chromosomal 15167

utg000115l chromosomal 29785

utg000116l chromosomal 21769

utg000117l chromosomal 8477

utg000118l chromosomal 16251

utg000119l chromosomal 21816

utg000120l chromosomal 4937

utg000121l chromosomal 15924

utg000122l chromosomal 14350

utg000123l chromosomal 17284

utg000124l chromosomal 14773

utg000125l chromosomal 13950

utg000126l chromosomal 12821

utg000127l chromosomal 12776

total chromosomal length 2667113

utg000028l plasmidic 39729

utg000063l plasmidic 24889

utg000032l none 10367

utg000052l none 44932

NCTC12841 utg000001l chromosomal 2025517

total chromosomal length 2025517

NCTC12993 utg000001l chromosomal 4585710

utg000002l chromosomal 728592

total chromosomal length 5314302

utg000004l plasmidic 83189

utg000006l plasmidic 25452

utg000007l plasmidic 6215

utg000003l undefined 109233

utg000005l undefined 74705

NCTC12998 utg000001l chromosomal 669883

utg000002l chromosomal 3936078

utg000003l chromosomal 584057

utg000004l chromosomal 737303

total chromosomal length 5927321

utg000005c plasmidic 125518

NCTC13095 utg000001c chromosomal 5922307

utg000003l chromosomal 34891

total chromosomal length 5957198

utg000002c undefined 117186

utg000004c undefined 164749

NCTC13125 utg000001l chromosomal 4270665

utg000002l chromosomal 470580

utg000003l chromosomal 287719

utg000004l chromosomal 62610

utg000005l chromosomal 392905

utg000006l chromosomal 215108

utg000009l chromosomal 25575

total chromosomal length 5725162

utg000007c plasmidic 105857

utg000008c plasmidic 93624

utg000010c undefined 41914

NCTC13348 utg000001l chromosomal 297750

utg000002l chromosomal 152446

utg000003l chromosomal 219639

utg000004l chromosomal 237470

utg000006l chromosomal 471362

utg000007l chromosomal 399972

utg000008l chromosomal 226216

utg000009l chromosomal 979865

utg000010l chromosomal 154813

utg000011l chromosomal 97347

utg000012l chromosomal 283827

utg000013l chromosomal 408789

utg000014l chromosomal 469421

utg000015l chromosomal 431950

utg000016l chromosomal 157498

utg000017l chromosomal 129726

utg000018l chromosomal 18621

total chromosomal length 5136712

utg000005l plasmidic 105592

NCTC13463 utg000001l chromosomal 2602844

utg000002l chromosomal 476415

utg000003l chromosomal 2106813

utg000006l chromosomal 151619

total chromosomal length 5337691

utg000004c plasmidic 89940

utg000005c undefined 50683

utg000007l undefined 2881

NCTC13543 utg000001c chromosomal 3006943

utg000002l chromosomal 2166302

utg000007l chromosomal 54242

total chromosomal length 5227487

utg000005l plasmidic 24866

utg000006l plasmidic 57848

utg000008l plasmidic 14511

utg000004c undefined 509202

utg000009l undefined 15019

utg000003l none 163283

NCTC4672 utg000001l chromosomal 390339

utg000002l chromosomal 234263

utg000003l chromosomal 205142

utg000004l chromosomal 194700

utg000005l chromosomal 143175

utg000006l chromosomal 145320

utg000007l chromosomal 20463

utg000008l chromosomal 72927

utg000009l chromosomal 171587

utg000010l chromosomal 152272

utg000011l chromosomal 39361

utg000012l chromosomal 68994

utg000013l chromosomal 26376

utg000014l chromosomal 41255
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utg000015l chromosomal 60948

utg000016l chromosomal 13117

total chromosomal length 1980239

NCTC5050 utg000001l chromosomal 1602894

utg000002l chromosomal 1353385

utg000003l chromosomal 1365254

utg000004l chromosomal 1153772

total chromosomal length 5475305

utg000005c plasmidic 116760

utg000006c plasmidic 40870

utg000007c plasmidic 76667

utg000008l none 37817

NCTC5053 utg000001l chromosomal 1215813

utg000002l chromosomal 334789

utg000004l chromosomal 1438231

utg000006l chromosomal 675061

utg000007l chromosomal 225750

utg000008l chromosomal 372066

utg000009l chromosomal 188575

utg000010l chromosomal 677706

utg000011l chromosomal 244959

utg000012l chromosomal 63154

utg000013l chromosomal 26449

total chromosomal length 5462553

utg000005c plasmidic 208263

utg000014c plasmidic 102763

utg000015c plasmidic 104579

utg000016c plasmidic 12712

utg000018c plasmidic 5167

utg000003c undefined 105118

utg000017c none 2115

NCTC5055 utg000001l chromosomal 5214489

utg000002l chromosomal 13329

utg000004l chromosomal 16397

utg000006l chromosomal 11993

utg000007l chromosomal 11530

utg000008l chromosomal 23643

utg000010l chromosomal 12125

utg000011l chromosomal 20225

utg000012l chromosomal 11167

utg000013l chromosomal 10465

utg000014l chromosomal 11390

utg000015l chromosomal 21429

utg000016l chromosomal 11492

utg000017l chromosomal 14583

utg000018l chromosomal 10242

utg000019l chromosomal 20037

utg000020l chromosomal 12298

utg000022l chromosomal 21719

utg000023l chromosomal 20549

utg000024l chromosomal 7808

total chromosomal length 5496910

utg000003l plasmidic 19472

utg000009l plasmidic 34026

utg000021l plasmidic 17587

utg000005l undefined 10762

NCTC7152 utg000001l chromosomal 4797250

utg000003l chromosomal 446534

total chromosomal length 5243784

utg000002c plasmidic 140333

utg000004l plasmidic 45336

NCTC7922 utg000001l chromosomal 223615

utg000002l chromosomal 3332503

utg000003l chromosomal 633327

utg000004l chromosomal 213700

utg000005l chromosomal 47119

utg000006l chromosomal 541108

utg000007l chromosomal 353127

utg000010l chromosomal 56267

utg000011l chromosomal 15478

total chromosomal length 5416244

utg000008c plasmidic 84907

utg000009c plasmidic 59289

utg000012c undefined 5073

utg000013c undefined 5631

utg000014c none 1251

NCTC8179 utg000001l chromosomal 865090

utg000002l chromosomal 1960752

utg000003l chromosomal 277217

utg000004l chromosomal 786279

utg000005l chromosomal 111098

utg000006l chromosomal 93197

utg000007l chromosomal 293360

utg000008l chromosomal 24186

utg000010l chromosomal 292276

utg000012l chromosomal 125358

utg000013l chromosomal 265142

utg000014l chromosomal 277553

utg000015l chromosomal 294414

utg000016l chromosomal 32286

utg000017l chromosomal 22000

total chromosomal length 5720208

utg000009c plasmidic 118435

utg000011c plasmidic 71383

utg000018c none 3105

NCTC8500 utg000001c chromosomal 4831304

total chromosomal length 4831304

utg000002c plasmidic 55643

NCTC8684 utg000001l chromosomal 1077377

utg000006l chromosomal 1059624

total chromosomal length 2137001

utg000002l undefined 750049

utg000003l undefined 701800

utg000004l undefined 762169

utg000005l undefined 622781

utg000007l undefined 49586

NCTC9075 utg000001l chromosomal 2460452

utg000002l chromosomal 3016645

utg000004l chromosomal 9967

total chromosomal length 5487064

utg000003c undefined 52022

NCTC9078 utg000001c chromosomal 4242489

utg000002c chromosomal 1146428

total chromosomal length 5388917
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utg000004c plasmidic 87254

utg000003c none 132921

NCTC9098 utg000001l chromosomal 3054707

utg000002l chromosomal 1563634

utg000003l chromosomal 219418

utg000005l chromosomal 337874

utg000007l chromosomal 29947

utg000008l chromosomal 288339

total chromosomal length 5493919

utg000004c plasmidic 52547

utg000006c plasmidic 88507

utg000009c none 3685

utg000010c none 2517

NCTC9111 utg000002l chromosomal 382296

utg000003l chromosomal 258361

utg000004l chromosomal 1397867

utg000005l chromosomal 120406

utg000006l chromosomal 360884

utg000007l chromosomal 354979

utg000008l chromosomal 393118

utg000009l chromosomal 780946

utg000010l chromosomal 496328

utg000011c chromosomal 751321

utg000013l chromosomal 14110

utg000014l chromosomal 298974

utg000018c chromosomal 9151

total chromosomal length 5618741

utg000001c plasmidic 126297

utg000012c plasmidic 92083

utg000015c plasmidic 71898

utg000016c undefined 5475

utg000017c undefined 97293

NCTC9112 utg000001l chromosomal 267187

utg000002l chromosomal 38684

utg000003l chromosomal 799223

utg000004l chromosomal 226433

utg000005l chromosomal 1445001

utg000006l chromosomal 583111

utg000007l chromosomal 772601

utg000008l chromosomal 739996

utg000009l chromosomal 283544

utg000010l chromosomal 537734

utg000011l chromosomal 134545

utg000012l chromosomal 20182

utg000013l chromosomal 22078

utg000014l chromosomal 19079

utg000015l chromosomal 17055

total chromosomal length 5906453

utg000016c none 786

NCTC9184 utg000001l chromosomal 29829

utg000002l chromosomal 18494

utg000004l chromosomal 16159

utg000005l chromosomal 24250

utg000006l chromosomal 18494

utg000007l chromosomal 21484

utg000008l chromosomal 27067

utg000009l chromosomal 16993

utg000010l chromosomal 23540

utg000011l chromosomal 22732

utg000012l chromosomal 6381

utg000013l chromosomal 29998

utg000014l chromosomal 22501

utg000015l chromosomal 22166

utg000016l chromosomal 14255

utg000017l chromosomal 13452

utg000018l chromosomal 19121

total chromosomal length 346916

utg000003c none 4242

NCTC9645 utg000001l chromosomal 43611

utg000002l chromosomal 159710

utg000003l chromosomal 60098

utg000004l chromosomal 148353

utg000005l chromosomal 202718

utg000006l chromosomal 19551

utg000007l chromosomal 50893

utg000008l chromosomal 131157

utg000009l chromosomal 154075

utg000010l chromosomal 213751

utg000011l chromosomal 29643

utg000012l chromosomal 39758

utg000013l chromosomal 79432

utg000014l chromosomal 47565

utg000016l chromosomal 24983

utg000017l chromosomal 60388

utg000018l chromosomal 36168

utg000019l chromosomal 96948

utg000020l chromosomal 163752

utg000021l chromosomal 90608

utg000022l chromosomal 56793

utg000023l chromosomal 182187

utg000024l chromosomal 51393

utg000025l chromosomal 53299

utg000026l chromosomal 128083

utg000027l chromosomal 124407

utg000028l chromosomal 48273

utg000029l chromosomal 126118

utg000030l chromosomal 43482

utg000032l chromosomal 169005

utg000033l chromosomal 48040

utg000034l chromosomal 28371

utg000035l chromosomal 54647

utg000036l chromosomal 17500

utg000037l chromosomal 99129

utg000038l chromosomal 109018

utg000039l chromosomal 169360

utg000040l chromosomal 79322

utg000041l chromosomal 29162

utg000042l chromosomal 12864

utg000043l chromosomal 135445

utg000044l chromosomal 77604

utg000045l chromosomal 212393

utg000046l chromosomal 53152

utg000047l chromosomal 23857

utg000048l chromosomal 87995
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utg000050l chromosomal 8353

utg000053l chromosomal 61272

utg000054l chromosomal 19953

utg000055l chromosomal 76527

utg000056l chromosomal 30382

utg000057l chromosomal 38221

utg000058l chromosomal 67870

utg000059l chromosomal 33128

utg000060l chromosomal 12588

utg000061l chromosomal 93957

utg000062l chromosomal 37019

utg000063l chromosomal 24109

utg000064l chromosomal 68089

utg000066l chromosomal 39231

utg000067l chromosomal 53886

utg000068l chromosomal 49692

utg000069l chromosomal 69014

utg000070l chromosomal 15069

utg000071l chromosomal 12499

utg000072l chromosomal 34026

utg000073l chromosomal 33264

utg000074l chromosomal 11225

utg000075l chromosomal 75997

utg000077l chromosomal 23613

utg000078l chromosomal 18064

utg000079l chromosomal 13912

utg000080l chromosomal 20491

utg000081l chromosomal 19414

utg000082l chromosomal 17026

utg000084l chromosomal 10403

total chromosomal length 5162355

utg000015l plasmidic 289749

utg000031c plasmidic 85333

utg000052l plasmidic 89214

utg000083l plasmidic 9793

utg000065l undefined 27749

utg000076l undefined 14407

utg000049l none 20985

utg000051l none 21105

NCTC9646 utg000001l chromosomal 1824786

utg000002l chromosomal 1185729

utg000004l chromosomal 918891

utg000005l chromosomal 1259981

utg000006l chromosomal 169448

utg000007l chromosomal 22892

utg000008l chromosomal 205862

utg000009l chromosomal 61801

utg000010l chromosomal 105678

total chromosomal length 5755068

utg000003l plasmidic 181111

utg000011l plasmidic 38663

utg000012l plasmidic 16804

utg000015l plasmidic 26818

utg000016l plasmidic 6887

utg000014l undefined 37740

utg000013c none 2141

NCTC9695 utg000001l chromosomal 4677804

total chromosomal length 4677804

utg000002c none 3416

Table A.7: Miniasm contigs classification per
dataset. Total length of chromosomal
contigs is given.
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A.6 Assembly length

In Table A.8 we report the sum of lengths of all contigs in assemblies computed by Miniasm, Canu,

and the assemblies produced by NCTC.
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Dataset Canu Miniasm NCTC

NCTC10006 5297110 5586964 5285365
NCTC10332 6353743 6510723 6316979
NCTC10444 5358052 5575543 5295042
NCTC10702 3140906 3113949 3044394
NCTC10766 5704549 5981360 5662808
NCTC10794 2323585 2220964 2164041
NCTC10988 3242798 3352903 3309451
NCTC11126 4887988 5192073 4875981
NCTC11343 6102368 6167977 5984896
NCTC11360 2189222 2060590 2078787
NCTC11435 4452377 4647620 4443087
NCTC11800 4482172 4760149 4461490
NCTC11872 1881379 1962919 1879445
NCTC12123 4889243 5041564 4785686
NCTC12126 5037863 5243635 5015169
NCTC12131 4799906 4967498 4743059
NCTC12132 3360769 3520932 3326136
NCTC12146 5648936 5930232 5621322
NCTC12694 4667053 2787030 4439218
NCTC12841 1998859 2025517 *
NCTC12993 5339609 5613096 5287156
NCTC12998 5754007 6052839 5723058
NCTC13095 6018682 6239133 5962730
NCTC13125 5868476 5966557 3814513
NCTC13348 5133106 5242304 5042742
NCTC13463 5298325 5481195 5268825
NCTC13543 5834577 6012216 5822755
NCTC4672 2113924 1980239 1942171
NCTC5050 5360294 5747419 5342107
NCTC5053 5838871 6003270 5769583
NCTC5055 5618297 5578757 4924715
NCTC7152 5136487 5429453 5086417
NCTC7922 5497660 5572395 5367566
NCTC8179 5979700 5913131 5715723
NCTC8500 4733397 4886947 4709652
NCTC8684 4936541 5023386 4860337
NCTC9075 5336449 5539086 5322538
NCTC9078 5458474 5609092 5430557
NCTC9098 5385311 5641175 5331923
NCTC9111 5942101 6011787 5859950
NCTC9112 5557088 5907239 5468741
NCTC9184 2541470 351158 679813
NCTC9645 5930294 5720690 5852841
NCTC9646 5874126 6065232 *
NCTC9695 4792855 4681220 4738566

Table A.8: Total length of chromosomal contigs for Canu and Miniasm assemblers, total length of all
contigs for NCTC on the 45 NCTC datasets studied. ”*” means that NCTC assembly is
not available.
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A.7 Detailed assembly results

Supplementary T. roseus figures

Total number of reads 11592
Total length 104,608,900bp
Longest reads 46,221bp
Shortest reads 4bp
Mean Length 9,024bp
Median Length 6,978bp
N10 364 reads
N50 2586 reads
N90 7236 reads
L10 24,917bp
L50 14,590bp
L90 4,550bp

Table A.9: Some statistics about reads produced by LongISLND for T. roseus synthetic dataset.

tig1

tig1

tig1 tig8

Figure A.2: Canu T. roseus tig1 reconstruction. Plain lines denote path without branches in the SG
(the one shown Figure 4.15b). Boxes denote reads at contig extremities. Dashed lines
denote overlaps between reads (and then contig extremities). Arrows show the path used
by Canu to build tig1: it goes through the ”loop” before going back.
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A.8 Supplementary NCTC figures

NCTC12123

Figure A.3: Shortest paths in AAG. Both scenarii (paths that follow edges with bold label) use the
edge of weight 7.178, the only remaining ambiguity concerns the order of tig1 against the
pair tig2/tig9. ’overlap’ indicate than our pipeline found an overlap between the contig
extremities. The left scenario has a weight of 29.379 (22.201 + 7.178) while the right one
has a weight of 30.736 (17.209 + 7.178 + 6.349).

NCTC5050

tig1 tig10 tig23

tig41

7827

72990

73127
55903

60430

24578

24441

9606
74983

20887

57759

5012

Figure A.4: NCTC5050 contigs mapped against NCTC reference for ordering. Paths are shown along
with their number of bases as labels. The NCTC assembly consists of two contigs, hence
the relative order of tig1 and tig10/tig23 cannot be inferred (vertical line in the figure).
We observed that a portion of tig1 is inverted with respect to the NCTC assembly, with
no impact on the path analysis as this putative misassembly does not involve an extremity
of the contig.
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Figure A.5: IGV view of NCTC5050 mapping of Canu contig against NCTC contig, in junction be-
tween tig10 (first track at left) and tig23 (first track at right), tig41 are mapped on begin
of tig23 in forward and reverse. The second track represent the mapping of Canu corrected
read, the third track represent the raw reads. Above each this track we can observe the
coverage curve and drop of this curve between the tig10 and tig23, for corrected read is
around 50x coverage before junction, equal to 15x at minimal, and less than 40x after
junction, this value are 90x, 25x and 40x for raw read. In addition we can observe more
error in corrected read on this drop of coverage.
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A.9 YACRD: Yet Another Chimeric Read Detector

Figure A.6: YACRD (manuscript in preparation) detects chimeric regions present in the read dataset.
To detect such regions, YACRD takes as input the output of an overlapper (both PAF and
MHAP format are accepted). For each read in the dataset, YACRD computes positional
coverage values based on the overlaps with that read. If there is a drop of coverage, the
corresponding read is marked as ’chimeric’.
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B.1 Datasets

This section provides metrics about each dataset. The E. coli original dataset had large coverage

(> 200x) so we subsampled it dataset with seqtk1 down to target 50x.

C. elegans D. melanogaster H. sapiens E. coli Nanopore E. coli Pacbio

|sequences| 740774 1327569 1075867 25469 37404
Shortest sequence (b) 35 5 30 152 35
Mean Length (Kb) 10958 6827 6744 10110 6894
Median Length (Kb) 9822 4568 5089 5515 6672
N50 (Kb) 16572 11853 10568 20073 9064
N90 (Kb) 6502 3533 3537 4701 4218
L10 (sequences) 27013 29049 21703 400 1354
L50 (sequences) 191637 243356 220369 3807 10502
L90 (sequences) 480553 779045 652055 13969 25787
Coverage 81x 63x 29x 49x 49x
Accession * SRR6702603 PRJEB23027 SRR8494911 SRR8494940
Publication [35] [61] [61]

Table B.1: Information and metrics about the dataset using in our evaluation of yacrd and
fpa. * The C. elegans dataset come from Pacbio DevNet https://github.com/

PacificBiosciences/DevNet/wiki/C.-elegans-data-set.

1https://github.com/lh3/seqtk

https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/lh3/seqtk
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B.2 Repeatability information

B.2.1 DASCRUBBER

DASCRUBBER commit number 0e90524 was used, and a custom pipeline was built using DASCRUBBBER-wrapper2

as an inspiration, as well as recommendations from the authors: https://github.com/thegenemyers/

DASCRUBBER/issues/7 and https://github.com/thegenemyers/DASCRUBBER/issues/20. See be-

low (section B.2.11) for the URL of the custom pipeline.

B.2.2 miniscrub

We use version of commit 3d11d3e. We did not run miniscrub in GPU mode so we followed te authors

instructions for installation and run https://bitbucket.org/berkeleylab/jgi-miniscrub/.

B.2.3 yacrd

We use version 0.5.1.

B.2.4 fpa

We use version 0.5.

B.2.5 BWA

We use version 0.7.17-r1188.

B.2.6 Minimap2

We use version 2.16-r922.

B.2.7 Miniasm

We use version 0.3-r179

B.2.8 wtdbg2

We use version 2.3.

B.2.9 QUAST

We use version v5.0.2.

2https://github.com/rrwick/DASCRUBBER-wrapper

https://github.com/thegenemyers/DASCRUBBER/issues/7
https://github.com/thegenemyers/DASCRUBBER/issues/7
https://github.com/thegenemyers/DASCRUBBER/issues/20
https://bitbucket.org/berkeleylab/jgi-miniscrub/
https://github.com/rrwick/DASCRUBBER-wrapper
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B.2.10 Porechop

We use version 0.2.3 seqan2.1.1

B.2.11 Script and reproduction of analysis

All information to repeat our analysis can be found at this address

https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly

https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly
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B.3 yacrd parameter optimisation

yacrd is very dependent on the mechanism used to find common regions between reads. We rely on

Minimap2 for this task. Minimap2 is based on short sequence seeds to find common regions between

reads. In all-against-all alignment, it takes as parameter a distance between two seeds (-g, default:

10,000 bases). In yacrd we assume that regions with low seed coverage have low quality, and therefore

need to be scrubbed. Yet with the default seed distance, it may happen that Minimap2 finds two

consecutive seeds that correspond to two ”good” read regions separated by one ”bad” read region.

Therefore this parameter needs to be tuned.

Another important parameter is the read coverage threshold to consider that a read region is

of sufficient quality (yacrd parameter -c).

We have changed these two parameters as follows: i) the maximum distance between the two

seeds from 50 to 2450 with a step of 100, ii) the minimum coverage before eliminating the region from

1 to 15 with a step of 1.

We evaluated the influence of these parameters on several metrics:

• Number of chimeric reads

• Number of reads

• Number of bases

• And in Miniasm and wtdbg2 assemblies,

– NGA50

– Total length

– Number of contigs

– Number of indels per 100 kpb

– Number of mismatches per 100 kbp

We ran this evaluation on H. sapiens, C. elegans and E. coli Pacbio dataset. The raw data

is available in:

• H. sapiens (ONT ultra-long R9.4): https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/

raw/master/data/yacrd_parameter_test_h_sapiens_ont.csv

• C. elegans (Pacbio P6-C4): https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/

blob/master/data/yacrd_parameter_test_c_elegans_pb.csv

• E. coli (Pacbio Sequel): https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/

blob/master/data/yacrd_parameter_test_e_coli_pb.csv

For H. sapiens Nanopore dataset we find that a value of 500 for the -g parameter and 4 for

the -c parameter optimizes the number of contigs in Miniasm assembly and NGA50, and remains

reasonable across the other metrics. We therefore recommend to use this value for Nanopore data and

we used it in all of our results.

https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/raw/master/data/yacrd_parameter_test_h_sapiens_ont.csv
https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/raw/master/data/yacrd_parameter_test_h_sapiens_ont.csv
https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/blob/master/data/yacrd_parameter_test_c_elegans_pb.csv
https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/blob/master/data/yacrd_parameter_test_c_elegans_pb.csv
https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/blob/master/data/yacrd_parameter_test_e_coli_pb.csv
https://gitlab.inria.fr/pmarijon/yacrd-and-fpa-upstream-tools-for-lr-genome-assembly/blob/master/data/yacrd_parameter_test_e_coli_pb.csv
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For C. elegans PacBio dataset P6-C4, using a similar reasoning, optimal values are different

and are 800 for the -g parameter and 4 for the -c parameter.

For E. coli PacBio Sequel dataset, using similar reasoning, optimal values are different and are

5000 for the -g parameter and 3 -c parameter.

We therefore used the above values for all datasets obtained with the same sequencing technol-

ogy.
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B.4 Mapping of scrubbed reads

To compute quality metrics, for each dataset we mapped both scrubbed and raw reads against their

respective reference genomes with BWA (we used ont2d preset for Nanopore reads, and pacbio preset

for Pacbio reads). The mapping results were analyzed using a custom Python script3 which reports

the number of mapped reads, the sum of edit distances between each read and the matching reference

sequence, the sum of positions of the genome mapped by a read, and the error rate.

To count the number of chimeric reads for each dataset, we remapped reads against each

reference genome with Minimap2 (we used map-ont preset for Nanopore reads, and map-pb preset for

Pacbio reads). We analyzed the PAF (Pairwise Alignment Format) file outputted by Minimap2 with

a custom Python script4. This script parses a PAF file and associates to each read a list of pairs of

starting/ending mapping positions. For each read, if two pairs of positions overlap in the corresponding

list, they are merged. If, after merging, there remains more than one pair of positions, the read is

marked as chimeric. To manage circular genomes we ignore reads with mapping positions near to the

beginning/ending of the genome (within a distance of reference length− 0.1× reference length

from the beginning/ending).

To count the number of adapters in Nanopore reads we use Porechop [108] with out any specific

parameter and we sum the number of adapters at start and end of reads, we ignore the count of middle

adapters.

Table B.2 shows that scrubbing reduces the number of reads and the number of bases mapped

against the reference, but the error rate is reduced too (at least 1% for yacrd and at least 2% for

DASCRUBBER) and the number of chimeric reads was reduced by two or more.

BWA Minimap2 Porechop
Dataset Scrubber # reads mapped Edit distance Mapping length Error rate # chimeric reads # adaptaters

C. elegans
raw 643138 903621479 6542507928 13.8115 71704 n/a
yacrd 575517 758579062 5932958881 12.7858 15157 n/a
dascrubber 576467 700895648 6128772910 11.4361 9285 n/a

D. melanogaster
raw 954622 1238009380 7353191408 16.8364 59864 891571
yacrd 843483 968115342 6468730379 14.9661 28076 0
dascrubber 792138 857944894 6543861920 13.1107 24826 246779

H. sapiens
raw 808709 1274720337 6053626797 21.0571 25888 947531
yacrd 698139 929843201 4889850725 19.0158 5216 153255
dascrubber 615789 813646386 4823555914 16.8682 1640 311007

E. coli Nanopore

raw 19873 36411589 232858822 15.6368 351 39596
yacrd 18790 29819875 207863123 14.3459 64 12132
dascrubber 18275 29216052 223383847 13.0789 50 6222
miniscrub 24242 15740209 136642860 11.5192 58 36776

E. coli Pacbio

raw 31945 29162389 175640234 16.6035 7374 n/a
yacrd 24728 22150527 146552898 15.1143 15157 n/a
dascrubber 26883 20315636 158261992 12.8367 63 n/a
miniscrub 10304 3050308 32249990 9.4583 37 n/a

Table B.2: Statistics of reads mapped to their respective reference, before and after scrubbing.

3https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/get_

mapping_info.py
4https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/found_

chimera.py

https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/get_mapping_info.py
https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/get_mapping_info.py
https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/found_chimera.py
https://gitlab.inria.fr/pmarijon/optimizing-early-steps-of-lr-assembly/blob/master/script/found_chimera.py
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B.5 Quality of assembly

To assess the quality of assemblies with and without scrubbing, we ran both Miniasm and wtdbg2

from scrubbed reads and raw reads with recommended parameters for each sequencing technology.

After assembly we ran QUAST with parameter --min-identity 80.0.

Table B.3 shows a summary of outputted metrics for Miniasm. Scrubbing increases both the

NGA50 and the length of the largest alignment. The size of the largest contig is often decreased but

the contigs quality seems better as the number of misassemblies decreases. Finally the number of

indels and mismatches per 100kb are quite stable. We thus observe that scrubbing improves assembly

metrics, yacrd and DASCRUBBER having similar results, better than miniscrub.

Table B.4 shows a summary of outputted metrics for wtdbg2. Contrarily to Miniasm, NGA50

is not always improved by scrubbing. The size of the largest contig increases while the number of

misassemblies decreases. This could be interpreted as a better assembly. Regarding these two metrics,

yacrd has better results than DASCRUBBER.

Largest Largest Asm/Ref Indels Mismatches # mis-
Dataset Scrubber #contigs NGA50 contig alignment length per 100kb per 100kb assemblies
C. elegans

(Pacbio P6-C4)

yacrd 0.68 1.02 1.48 1.1 1.1 0.96 0.94 0.72
dascrubber 0.58 1.26 0.97 1.55 1.08 0.94 0.9 0.54

D. melanogaster

(ONT Minion)

yacrd 0.8 1.57 0.64 1.27 0.93 0.96 0.96 0.65
dascrubber 0.84 2.41 1.45 2.48 0.96 0.96 0.94 0.83

H. sapiens

(ONT ultra-long R9.4)

yacrd 2.14 4.72 0.38 5.19 1.41 0.97 0.95 0.25
dascrubber 2.78 4.26 0.32 4.48 1.36 0.97 0.95 0.12

E. coli

(ONT Minion)

yacrd 1 2.6 1 2.43 0.99 0.96 0.95 0.6
dascrubber 1 2.65 1 2.48 0.99 0.97 0.96 0.6
miniscrub 9 0.46 0.62 1.6 0.98 0.83 0.77 0.8

E. coli

(Pacbio Sequel)
yacrd 1 1.96 0.96 1 1.02 0.99 0.99 0.63
dascrubber 0.75 2.73 2.55 2.36 1.02 0.99 1.01 0.36

(a) Ratio of assembly metrics after scrubbing on assembly without scrubbing. Column Asm/Ref length report the total
length of assembly against reference length, not against raw assembly length.

Largest Largest Total Indels Mismatches # mis-
Dataset Scrubber #contigs NGA50 contig alignment length per 100kb per 100kb assemblies

C. elegans

(Pacbio P6-C4)

raw 226 432112 5422030 1231264 114194187 7842.91 1944.78 1396
yacrd 154 440776 8039734 1362861 110987109 7587.54 1827.39 1015
dascrubber 131 544677 5262439 1907915 108636024 7405.35 1744.85 754

D. melanogaster

(ONT Minion)

raw 423 423007 8745435 2396453 138733599 5789.82 4233.35 2126
yacrd 339 664130 5559421 3053469 134302689 5587.09 4044.89 1375
dascrubber 357 1018097 12708694 5953687 137569022 5537.66 3988.95 1765

H. sapiens

(ONT ultra-long R9.4)

raw 184 96225 15987693 857015 202082384 6554.02 4089.56 1745
yacrd 394 453748 6008000 4444926 203039148 6366.5 3891.98 432
dascrubber 512 410370 5041373 3837755 195781855 6377.04 3887.84 209

E. coli

(ONT Minion)

raw 1 1450762 5147604 1553466 5147604 5279.79 4341.81 5
yacrd 1 3775907 5161073 3775907 5161073 5083.69 4104.31 3
dascrubber 1 3850663 5168753 3850663 5168753 5113.64 4160.78 3
miniscrub 9 670066 3172759 2478579 5136537 4382.29 3337.49 4

E. coli

(Pacbio Sequel)

raw 4 499610 1974889 1083557 5417095 8011.42 1856.96 11
yacrd 4 983113 1910204 1089886 5345453 7974.73 1856.19 7
dascrubber 3 1362738 5042223 2552164 5331569 7963.32 1870.92 4

(b) Exact value of assembly metrics without scrubbing and with scrubbing

Table B.3: Miniasm assembly statistics.
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Largest Largest Asm/Ref Indels Mismatches # mis-
Dataset Scrubber #contigs NGA50 contig alignment length per 100kb per 100kb assemblies
C. elegans

(Pacbio P6-C4)

yacrd 0.87 1.05 1.09 1 1.06 0.93 0.93 0.93
dascrubber 0.72 1.02 1.04 1.11 0.98 0.9 0.7 0.35

D. melanogaster

(ONT Minion)

yacrd 0.51 1.02 1.09 0.98 0.93 0.84 0.57 0.43
dascrubber 0.61 0.87 0.83 0.98 0.93 0.85 0.62 0.41

H. sapiens

(ONT ultra-long R9.4)

yacrd 0.6 0.98 11.68 1 0.97 0.94 0.86 0.44
dascrubber 0.61 0.36 2.97 0.49 0.92 0.9 0.82 0.13

E. coli

(ONT Minion)

yacrd 0.56 1.57 1.7 1.7 1.02 1.01 1 0
dascrubber 1.11 0.81 0.64 0.57 0.87 1.06 1.18 1.5
miniscrub 1 1.65 1.13 1.13 0.95 1.2 1.77 2

E. coli

(Pacbio RS II)

yacrd 0.27 5.49 1.65 2.42 0.98 1.55 1.99 1.5
dascrubber 0.64 1.14 0.43 0.67 1.01 1.24 1.46 0.75

(a) Ratio of assembly metrics after scrubbing on assembly without scrubbing. Column Asm/Ref length report the total
length of assembly against reference length, not against raw assembly length.

Largest Largest Indels Mismatches # mis-
Dataset Scrubber #contigs NGA50 contig alignment Total length per 100kb per 100kb assemblies

C. elegans

(Pacbio P6-C4)

raw 139 565278 6301328 1880328 106873707 212.25 114.82 1396
yacrd 122 593039 6919398 1880831 106276350 106,89 198,35 577
dascrubber 100 578041 6577520 2084274 105265557 191.21 79.93 485

D. melanogaster

(ONT Minion)

raw 945 1274655 22883959 5747639 144439108 1589.69 523.13 3938
yacrd 484 1305125 24923636 5624012 135024912 1331.34 298.73 1675
dascrubber 578 1114519 18994352 5625082 134142906 1348.97 324.48 1633

H. sapiens

(ONT ultra-long R9.4)

raw 810 1513450 2435917 9247318 217462699 3588.91 368.93 1316
yacrd 485 1482513 28462688 9268500 210552669 3370.08 318.69 582
dascrubber 496 545902 7234785 4524362 200220997 3224.69 302.44 177

E. coli

(ONT Minion)

raw 9 678871 1434432 1432545 5045762 767.87 156.21 2
yacrd 5 1068201 2435917 2434921 5133519 778.16 155.46 0
dascrubber 10 546569 917645 821696 4395460 817.43 184.84 3
miniscrub 9 1117217 1621361 1619652 4773046 924.23 275.84 4

E. coli

(Pacbio RS II)

raw 11 583235 2474045 1323293 5021940 170.49 46.03 4
yacrd 3 3207692 4100960 3207692 5134707 264,26 91,77 3
dascrubber 7 664896 1075736 892884 5093533 211.5 67.38 3

(b) Exact value of assembly metrics without scrubbing and with scrubbing

Table B.4: wtdbg2 assembly statistics.
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B.6 fpa

To evaluate fpa, we ran two different pipelines. The first one uses directly Miniasm without fpa and

with recommended parameters. The second one runs fpa to filter out reads (Minimap2 output is piped

to fpa directly) before running Miniasm on filtered reads with recommended parameters. Using fpa

we removed internal match and overlap shorter than 2000 (options drop -i -l 2000). This sort

of overlap is ignored by Miniasm during the assembly step but is used during the read filtering step.

Table B.5 shows the impact of using fpa on time, memory and assembly metrics. Using fpa

decreases both disk usage and total computation time of downstream analysis while having no impact

or a positive one on assembly metrics. Usage of fpa does not radically affect mapping wall-clock time

and memory usage, but it reduces by 13% to 67% the memory usage and CPU time of the assembly

step (the computation time of fpa is included in the mapping time). Moreover the size of the PAF

file produced by Minimap2 is reduced by 40% to 79 %.

Dataset C. elegans D. melanogaster H. sapiens chr 1
Pipeline w/o fpa fpa w/o fpa fpa w/o fpa fpa

Time (s) Mapping 3296 3247 3510 3659 1570 1558
Assembly 297 139 782 186 103 50
Total 3593 3386 4292 3845 1673 1608

Memory Mapping (GB) 51 51 53 54 41 40
Assembly (Mbp) 4788 2594 13836 5335 1797 587
PAF size 32G 9.5G 54G 11G 8.9G 3.2G

Assembly # contigs 168 150 423 381 184 216
NGA50 407821 438055 423007 455307 96225 106259
# misassemblies 1212 1149 2126 1840 1745 1502
length 112248122 111641079 138733599 136623341 202082384 198386315

per 100kb # mismatches 1893.44 1854.95 4233.35 4190.43 4089.56 4065.95
# indels 7700.42 7628.39 5789.82 5742.05 6554.02 6534.92

Dataset E. coli Nanopore E. coli Pacbio
Pipeline w/o fpa fpa w/o fpa fpa

Time (s) Mapping 26 29 23 24
Assembly 4 2 2 1
Total 30 31 25 25

Memory Mapping (GB) 3 3 4 4
Assembly (Mbp) 52 45 33 22
PAF size 141M 82M 85M 38M

Assembly # contigs 5 5 8 9
NGA50 1450762 1246808 562741 292111
# misassemblies 5 5 8 9
length 5147604 5283927 5394119 5395896

per 100kb # mismatches 4341.81 4425.24 1862.72 1841.66
# indels 5279.79 5376.03 7968.63 7945.11

Table B.5: Impact of fpa on assembly using Miniasm.
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B.7 Combination of yacrd and fpa

To evaluate the effect of running both yacrd and fpa, we ran two different pipelines. The first one uses

a standard Miniasm pipeline (called ’basic’): Minimap2 plus Miniasm with recommended parameters.

The second one (called ’extended’) runs yacrd with best parameters for each dataset, then Minimap2

with recommend parameter on scrubbed reads and pipes the results in fpa to filter out internal

matches and overlaps shorter than 2000 (option drop -i -l 2000), and finally runs Miniasm on

scrubbed reads with filtered overlap.

Table B.6 shows how the integration of both yacrd and fpa in Miniasm pipeline (’extended’

row) compares against standard Miniasm (’simple’ row). Each pipeline is based on Minimap2 so their

memory usages are equivalent. The extended pipeline takes twice more time because Minimap2 is run

twice (once for yacrd and once for Miniasm). Minimap2 is a time bottleneck in both pipelines.

The extended pipeline improves the quality of assemblies, in terms of NGA50, number of indels

and mismatches per 100 kbp, and misassemblies. It also decreases the number of contigs while keeping

the total length of assemblies similar.

Dataset C. elegans D. melanogaster H. sapiens
Pipeline simple extended simple extended simple extended
# contigs 226 171 423 345 184 367
NGA50 432112 451479 423007 715276 96225 488573
Largest contig 5422030 4224860 8745435 5559611 15987693 6875897
Largest alignment 1231264 1527213 2396453 3053469 857015 4444801
Total length 114194187 110177189 138733599 134443509 202082384 202405973
# indels per 100 kbp 7842.91 7380.12 5789.82 5593.09 6554.02 6359.25

# mismatches per 100 kbp 1944.78 1720.16 4233.35 4052.42 4089.56 3884.23
# misassemblies 1396 907 2126 1412 1745 363

Dataset E. coli Nanopore E. coli Pacbio
Pipeline simple extended simple extended
# contigs 1 1 4 3
NGA50 1450762 3775889 499610 1271550
Largest contig 5147604 5186180 1974889 4960107
Largest alignment 1553466 3775889 1083557 1465922
Total length 5147604 5186180 5417095 5355278
# indels per 100 kbp 5279.79 5097.12 8011.42 7969.99

# mismatches per 100 kbp 4341.81 4113.01 1856.96 1844.42
# misassemblies 5 3 11 8

Table B.6: Impact of yacrd and fpa on assembly using Miniasm. Simple match to basic Miniasm

pipeline and extend match to version with yacrd and fpa.





Abstract

The sequencing of genetic information provides better understanding for a large number of biolog-

ical phenomena: e.g. genetic diseases, speciation events, fundamental mechanisms of cell function.

Sequencing techniques have considerably evolved since the Sanger method (1977). Nowadays third-

generation sequencing technologies greatly reduce the costs of sequencing complete genomes. They

produce longer reads (sequence fragments), but require the design of specific assembly tools that take

into account the high error rates in the produced fragments.

The study of methods used by third-generation read assembly pipelines has revealed that im-

provements in assembly were possible without modifying assembly tools themselves. Some improve-

ments are thus proposed in this thesis work, and were implemented through publicly available tools.

yacrd and fpa pre-process the set of reads prior to assembly, in order to improve efficiency and quality

of the assembly process. KNOT combines information from both the input reads and an assembly, in

order to provide insights on how to improve the contiguity of an assembly.

Keywords: Genome assembly, Third generation sequencing, Assembly graphs

Résumé

Le séquençage de l’information génétique a permis de mieux comprendre un grande nombre de

phénomènes biologiques, maladies génétiques, évènements de spéciations, mécanismes fondamentaux

du fonctionnement de nos cellules. Les techniques de séquençage ont beaucoup évolué depuis la

méthode de Sanger (1977). De nos jours, les technologies de séquençage de troisième génération per-

mettent le séquençage d’un génome complet à moindre coût, produisent des lectures (fragments de

genomes) plus longs, mais nécessitent la création d’outils d’assemblage spécifiques pour tenir compte

d’un taux d’erreur élevé dans les lectures produites.

L’étude des méthodes utilisées par les outils d’assemblage de lectures de troisième génération

a permis d’observer que des améliorations des assemblages étaient possibles sans toutefois modifier

les outils eux-mêmes. Certaines améliorations sont proposées dans ce travail de thèse, et sont mises

en œuvre à travers des outils proposés à la communauté. yacrd et fpa interviennent en amont de

l’assemblage en lui-même pour améliorer l’ensemble des lectures données en entrée à un assembleur.

KNOT analyse et combine le résultat d’un assemblage avec les données brutes, pour donner des pistes

permettant d’améliorer l’assemblage final.

Mots clef: Assemblage de génomes, Troisième generation de séquençage, Graphes d’assemblage
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