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Some Aspects of Growth-Fragmentation

Benjamin Dadoun

Ph. D. thesis

Abstract

This thesis treats stochastic aspects of fragmentation processes when growth and/or
immigration of particles are incorporated as a compensating phenomenon. In a first
part, we study the asymptotic behavior of self-similar growth-fragmentation processes,
extending the results related to pure fragmentations. In a second part, we prove that
self-similar growth-fragmentations arise as scaling limits of truncated Markov branching
processes and we provide a rather general criterion. This bolsters the conviction
that growth-fragmentations appear in many discrete Markovian structures, as already
observed in random planar geometry. Lastly, we study a growth-fragmentation with
immigration equation. In particular, we investigate the asymptotic behavior of the
solution by relating it to a stochastic particle system in which immigrate copies of a
certain growth-fragmentation process.
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Chaque fois que la science avance d’un pas,
c’est qu’un imbécile la pousse,
sans le faire exprès.
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Introduction
The word fragmentation designates a process in which an object is shattered into many
smaller pieces called fragments. One may think of those resulting from the collision between
two celestial objects of comparable sizes, or from the fragmentation of a meteorite entering
the atmosphere. In cell biology, one may picture mitosis as a kind of fragmentation. Other
instances where fragmentations occur include earthquakes in geophysics, fission in biology
or in nuclear physics, sequencing in mass spectrometry, crushing in mineral processing, data
transmission in telecommunications, etc.

As a simple and first, chronological example, let us take a pile of (fine) sand, split it in a
truly random way, and repeat the operation independently on each two subpiles. Obviously,
there are 2n piles after the n-th iteration. But what is the repartition of their respective
volumes? Such a question was answered in 1941 by A. N. Kolmogorov, in the paper [74]
“Übers logaritmisch normale Verteiligsgsetz vo de Dimensione vo de Teili bi de Zerszücklig”.
As the title may suggest, the logarithms of the volumes follow a Normal distribution (the
well-known bell-shaped curve) when n is sufficiently large; see Figure 0.1a for a simulation.
More generally, Kolmogorov’s result applies to the situation where “particles” may be divided
into a random number of fragments with random “sizes”, possibly in a non-conservative, but
always homogeneous, way.

The question of inhomogeneous fragmentation, which he asked at the end of his work,
addresses the situation where the rate of grinding may depend on the particle size (referring
to our example, the splitting scheme can then be a function of the volume of sand being
split). More precisely, one could imagine that particles with size x fragmentate xα “faster”
than particles with size 1 (so the original formulation is enclosed in the homogeneous case
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Figure 0.1a. Empirical distribution of sandpiles after n = 20 steps.
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Figure 0.1b. Empirical distribution of sandpiles at large time for α = 1/2.

α = 0). Kolmogorov predicted that in the nowadays called self-similar case α 6= 0, “the
logarithmic normal law is no longer applicable”. This discrepancy was confirmed twenty
years later by one of his former students, A. F. Filippov2 [60]. If ut(x) denotes the average
density of sandpiles of volume x at time t, then ut solves the integro-differential equation

∂

∂t
ut(x) = −xαut(x) + 2

∫ ∞
x

yα−1ut(y) dy. (0.1)

For α > 0, the analysis of this equation shows that when t is sufficiently large, ut is close to
a generalized Gamma distribution3; see Figure 0.1b. For α < 0, Filippov shone a light on
the phenomenon of “formation of dust”: because particles fragmentate at higher rates as they
get smaller, the total mass of the system decreases continuously and vanishes within a finite
amount of time (although the mass involved in each individual fragmentation is conserved).

There is a natural genealogy induced by a fragmentation process, where “daughter
particles” are related to the “mother particle” they originate from. In the self-similar setting,
we easily picture a sort of phylogenetic tree where the length of a mother-daughter branch
is proportional to the daughter’s lifetime. When α < 0, because of the total extinction of
mass at large times, this fragmentation tree is “compact”. In many cases (typically, when
the “macroscopic” fragmentations into large comparable fragments are rare), its global shape
does further not depend heavily on the exact splitting scheme, and we often observe so called
continuum random trees, which bear interesting fractal properties. See Figure 0.2.

Fragmentation equations like (0.1) appear in a large variety of biological or physical
models of particle systems and constitute an object of study as a whole, generally (at
least, originally) from a non-probabilistic point of view. Besides the customary questions of
existence and uniqueness of solutions, one typically wants to describe the stationary regime

2Incidentally, Filippov was twenty years younger than Kolmogorov, whom he acknowledges for his
assistance and advice. Both had the same academic grandfather, D. F. Egorov.

3For this simple example, Filippov even provides a semi-explicit expression for ut at any time t.
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Figure 0.2. Large fragmentation tree with binary splits n 7→ {k, n−k}, 1 ≤ k < n, occurring
at rate ∝ nα for α = − 1/2, and with probability ∝

(
n
k

) ∫ 1
1/2
xk−3/2(1− x)n−k−3/2 dx.

and estimate the speed of convergence toward the asymptotic profile. Equilibrium may arise
when fragmentation is compensated by growth of particles or immigration of new particles.

This thesis treats some of the aforementioned aspects when growth and possibly
immigration is added to the picture. In a growth-fragmentation process, particles are not only
subject to (random) fragmentation but may as well grow larger or smaller in a continuous
(also random) way. In Chapter 1, we look at asymptotics of empirical measures associated
with the fragments, extending prior results in this vein (Kolmogorov [74], Filippov [60],
Baryshnikov and Gnedin [16], Bertoin and al. [23, 26, 30, 32], Kyprianou et al. [77]). Then,
in Chapter 2, motivated by the appearance of self-similar growth-fragmentation processes
in random planar geometry [25, 24, 81], we consider a simple Markovian model acting as
discrete growth-fragmentation and we discuss its self-similar scaling limit by amending a
criterion of Bertoin and Kortchemski [27]. This work can be seen as a humble addition to
the general and various criteria of Haas, Miermont et al. [86, 65, 87, 66, 63] for self-similar
pure-fragmentations. Lastly, in Chapter 3, we focus on a growth-fragmentation equation
as studied by Bertoin and Watson [34, 20, 36] but with an additional term accounting for
immigration.

In the remaining of this general introduction, we formally set up the growth-fragmentation
processes and present more precisely the different questions that we alluded above.
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0.1 Fragmentation processes

A first, fundamental property of fragmentation processes is the so called branching property :
fragments split and evolve independently of one another. As such, we may define them within
the framework of branching processes on (0,∞), which we now introduce.

0.1.1 General framework

For any measurable function f : (0,∞) → (0,∞), we write f ∈ B0< if it is bounded from
below away from zero, that is inf{f(x) : x ≥ a} > 0 for every a > 0. We set f(0) := 0 and
letMf be the space of non-increasing sequences x := (x1, x2, . . .) on [0,∞) such that

〈x, f〉 :=
∑
j≥1

f(xj) <∞.

(Null values in x are disregarded; their presence is merely needed to include finite sequences.)
We see Mf as a subspace of M0, the space of non-increasing null sequences endowed with
the topology of pointwise convergence, which because of monotonicity is also that of uniform
convergence. Equivalently, we may view elements x ∈ M0 as point measures

∑
j≥1 δxj

on (0,∞) under the topology of vague convergence. This makesM0 a Polish space which we
naturally equip with its Borel σ-field.

For the remaining of this section, we fix f ∈ B0<∪{0} and note that for point measures x
and x(i), i ≥ 1, we can always define the scalar multiplication λx :=

∑
j≥1 δλxj , λ > 0, and

the sum
⊎
i≥1 x

(i) :=
∑

i,j≥1 δx(i)j
(not necessarily inM0).

Definition 0.1.1. Let X := (X(t) : t ≥ 0) be a Mf -valued stochastic process, which is
continuous in probability and whose conditional law given X(0) = δx, x > 0, is denoted Px.

• We call X a branching process (inMf ) if it has the (temporal) branching property : for
every s ≥ 0, the family (X(t + s) : t ≥ 0) given X(s) = (x1, x2, . . .) is independent of
(X(r) : r ≤ s) and distributed like (

⊎
i≥1 X

(i)(t) : t ≥ 0), where the X(i) are independent
processes with law Pxi , respectively.

• If further there exists α ∈ R such that for every x > 0, the law of (xX(xαt) : t ≥ 0)

under P1 is Px, then we say that X is self-similar ; α is the index of self-similarity.
When α = 0, the process is said homogeneous.

Additive martingales and supermartingales associated with branching processes constitute
one essential tool. Let us state a first elementary fact in this direction. Hereafter, Ex denotes
the expectation under Px.
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Proposition 0.1.2 (Corollary 1 in [19]; see also Biggins and Kyprianou [42]). Let C > 0

and suppose that f is C-excessive for X, in the sense that for all x > 0, t ≥ 0,

Ex

[
〈X(t), f〉

]
≤ Ctf(x)

(when there is equality, we rather say that f is C-invariant). Then the process

C−t〈X(t), f〉, t ≥ 0,

is a supermartingale under Px for every x > 0. (It is in fact a martingale if f is C-invariant.)

Often, typically for self-similar fragmentations, we restrict B0< to power functions fq : x 7→ xq

with q ≥ 0 and identifyMfq as a closed subspace of the sequence space `q(N).

0.1.2 Pure fragmentations

Definition 0.1.1 embraces processes that may be far from the intuitive notion of fragmentation.
In a truly (i.e., pure) fragmentation process, one indeed also expects X(t) to be “finer”
than X(s) for all t ≥ s.

Definition 0.1.3. A branching process is called a pure-fragmentation process (or simply a
pure fragmentation), if its sample paths are non-increasing with respect to the lexicographic
ordering ≤lex onM0.

It is clear from the branching property that a branching process is a pure fragmentation if
and only if under Px, x > 0, it has values in the subspace

Sx :=
{
s ∈M0 : s ≤lex (x, 0, . . .)

}
.

We call s ∈ S := S1 a configuration, giving the different arrangements x · s := (xs1, xs2, . . .)

of fragments which may result from the fragmentation of a particle with initial size x > 0.
This includes the trivial configuration 1 := (1, 0, . . .) and the dust 0 := (0, 0, . . .). Often,
the size parameter x rather corresponds to a “mass” or any quantity which cannot increase
under fragmentation. Then the total mass 〈X(t), f1〉 is also non-increasing over time, so that
under Px, x > 0, the sample paths have values in {x · p : p ∈P}, where

P :=

{
p ∈M0 :

∑
i≥1

pi ≤ 1

}

is the space of mass-partitions. In this situation, f1 is 1-excessive for X (so
∑

i≥1Xi(t), t ≥ 0,

is a supermartingale). Of course, there are other situations where this is not true, for instance
when the size of a particle is measured by its diameter.



6 GENERAL INTRODUCTION

Note that a fragmentation event x 7→ x ·p specified by p ∈P may induce a loss of mass,
that is a possibly positive fraction p0 := 1−

∑
i≥1 pi of the mass x may be reduced to dust.

We say that p (resp. a measure ν on P) is conservative if p0 = 0 (resp. ν(p0 > 0) = 0).

In the next sections we briefly sketch two constructions of pure fragmentations, and
forward the interested reader to the first three chapters of the monograph [21].

0.1.2.1 Fragmentation chains

Let νx, x > 0, be a finite measure onM0, with support in Sx. We assume that the family
(νx)x>0 depends in a measurable way on the variable x. A (pure-)fragmentation chain with
kernel (νx)x>0 is a system of non-interacting particles which, at rate νx(Sx) according to
their respective size x, are each replaced by a cloud of particles with law νx(·)/νx(Sx).

It is formally defined as a continuous-time branching Markov chain (X(t) : t ≥ 0) with
intensity kernel q onM0 given by q(0, ·) := 0 and

q(x, dy) :=
∑
i≥1

νxi(y + δxi − x ∈ ds), x 6= 0.

As particles evolve independently, we think of qx := q(x,M0) =
∑

i≥1 νxi(Sxi) as the rate of
first fragmentation from the configuration x; the next configuration y having law q(x, dy)/qx.
Of course it really makes sense only if qx <∞, but this “hold-jump” description can be made
rigorous (using a truncation argument) with a small assumption [21, Chapter 1]: that for
every ε > 0, there exists a constant cε > 0 such that

νx(Sx) < cε and
∫

s((ε,∞)) νx(ds) < cε νx(Sx), x > ε.

It is then checked that X is a pure-fragmentation process. In particular, if νx, x > 0, is
the image measure of xαν by the map s 7→ x · s, where α ∈ R and ν is any finite measure
on S with

∫
s((ε,∞)) ν(ds) < ∞ for every ε > 0, then the above condition holds, and so

does the self-similarity property of Definition 0.1.1; we say that X is the (α, ν)-self-similar
fragmentation chain (or simply the ν-homogeneous fragmentation chain when α = 0).

0.1.2.2 Self-similar pure fragmentations

Naturally, a self-similar pure-fragmentation process is a self-similar branching process that is
also a pure fragmentation. One example is the (α, ν)-self-similar fragmentation chain of the
previous section, where the measure ν was such that ν(S ) <∞ and

∫
s((ε,∞)) ν(ds) <∞

for every ε > 0. In fact, we can also make sense of a self-similar fragmentation process with
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infinite dislocation rates. Suppose instead that ν has support in P, that ν({1}) = 0 and∫
P

(1− p1) ν(dp) <∞. (0.2)

While allowing ν(P) =∞, condition (0.2) limits the intensity of “macroscopic” dislocations
(those given by the mass-partitions which are far from 1). More precisely, if a measurable
set A ⊂M0 is at distance d(1, A) > 0 from 1, then ν(A) ≤ d(1, A)−1

∫
(1− p1) ν(dp) <∞.

A fundamental result [22, 17], is that the law P := P1 of a self-similar P-valued
fragmentation process is uniquely determined by its self-similarity index α ∈ R, its
erosion coefficient c ∈ [0,∞), and its so called dislocation measure ν, which is a measure
on P satisfying to ν({1}) = 0 and (0.2); we shall hence refer to the (α, c, ν)-self-similar
fragmentation process (or rather the (c, ν)-homogeneous fragmentation process when α = 0).
Considering a Poisson point process M on P×N with intensity ν⊗#, where # is the counting
measure on N, the (0, ν)-homogeneous fragmentation process X can be constructed from M in
such a way that X only jumps when some atom (p, k) of M occurs, and if it happens at time t,
then X(t) is obtained from X(t−) by replacing its kth largest particle Xk(t−) by the cloud
of particles Xk(t−) · p, leaving the other particles unchanged. Erosion simply corresponds
to a continuous decay in the fragment masses, to the extent that (exp(−ct)X(t) : t ≥ 0) is a
version of the (c, ν)-homogeneous fragmentation process. There also exists some procedure
to change the index of self-similarity, transforming the (c, ν)-homogeneous fragmentation
process into the (α, c, ν)-self-similar fragmentation. Explaining this transformation as well
as the bijection between P and (α, c, ν) requires that we enrich the fragmentation with a
genealogical structure. One way to achieve this is via so called interval representations :
one can couple any self-similar pure fragmentation X with some process G onto the usual
topology of the open interval (0, 1) such that for all s ≤ t, G(t) ⊆ G(s) and X(t) coincides
with the non-increasing rearrangements of the lengths of the interval components of G(t).
We refer to [22, Section 3.2] for greater detail.

Example 0.1.4. Let α ∈ R and ν be the law of (U, 1 − U, 0, . . .), where U is uniformly
sampled on [1

2
, 1). Then the (α, 0, ν)-self-similar pure-fragmentation process matches the

dividing sandpile process with uniform binary splitting that started this introduction.

0.1.3 Growth-fragmentation processes

Allowing particles to vary continuously between fragmentation events raises intricate
questions as well as important applications. The equilibrium between growth and
fragmentation has first been studied “deterministically” by analysts. The first stochastic
models were introduced recently by Bertoin [18, 19].
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0.1.3.1 Cell systems

We start by constructing a rather general system of non-interacting particles, called cell
system in [19]. Our approach is a bit more general and bears similarities with [29, Section 4.2].
Informally, a cell system consists in a family X := {(Xu(t − bu) : bu ≤ t) : u ∈ U } of
processes on (0,∞), recorded since their birth times bu (which we implicitly encode in the
notation Xu) and whose negative jumps produce birth events. These processes are assumed
to be càdlàg and either converging to or absorbed at 0, so that their negative jumps can
be easily enumerated. In [19], the j-th negative jump (ordered by decreasing absolute size)
of Xu, occurring say at time t ≥ 0 and with size −y < 0, is the cause of a single daughter
cell Xuj born at buj := t with Xuj(0) := y. There, processes were indexed by the usual
Harris–Ulam tree U :=

⋃
n≥0 Nn, where N0 := {∅} is reduced to the root of U , which labels

the Eve cell X∅.

We can slightly generalize the preceding idea and imagine that the cell material y > 0

lost by Xu at time t during its j-th negative jump serves to the creation of several (zero, one,
or more) daughter cells Xu,(j,1), Xu,(j,2), etc., all with birth times bu,(j,k) := t and respective
sizes at birth ys1, ys2, etc., for some random configuration s ∈ S whose law may depend on
both Xu(t−) and y. Thus, we rather choose the indexing set as

U :=
⋃
n≥0

(N2)n =
⋃
n≥0

N2n.

In this slightly unconventional Harris–Ulam tree, each node u := (u1, . . . , u2n) ∈ U at a
given generation |u| := n has children ujk := (u1, . . . , u2n, j, k), j, k ≥ 1, labelling at the
next generation all daughter cells Xujk := Xu,(j,k) originating from the jth negative jump
of Xu, respectively, where these jumps are enumerated in the non-increasing order of their
absolute sizes, and chronologically in case of ex aequo. More precisely, if (t1,−y1), (t2,−y2), . . .

denotes this enumeration of negative jump times and sizes, then either yj > yj+1 or yj = yj+1

and tj < tj+1, for all j. The children labelled ujk, k ≥ 1, corresponding to the jump
(tj,−yj), depend on a certain configuration suj prescribing the relative sizes at birth, namely
(Xujk(0) : k ≥ 1) = yj · suj (when suj = 0, no particle is born). We set b∅ := 0, bujk := bu + tj,
and agree with the conventions bujk := ∞ and Xujk ··≡ 0 if pujk = 0 or Xu has fewer than j
negative jumps. Figure 0.3 sets up the notation.

The law Px of X started from a single particle X∅ with initial size x ≥ 0 is constructed
to ensure the genealogical branching property : for all u ∈ U and i ≥ 1, conditionally
on σ((Xu, suj) : |u| ≤ i, j ≥ 1), the cell systems X ujk := {Xujkv : v ∈ U }, |u| = i, j, k ≥ 1,

are independent; further, each X ujk has law Pysujk , where y is the jth negative jump of Xu
(according to the above enumeration).
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b∅

X∅

ys2
1

−y

b2,1

X2,1

b1,1

X1,1

b1,1,1,1

X1,1,1,1

Figure 0.3. Illustrating example of cell system.
If Xu has its jth negative jump −y < 0 at time t, then independent daughter-cells Xujk, k ≥ 1, with
respective sizes at birth ysujk , k ≥ 1, are born at bujk := t, where suj is a %(Xu(t−), y/Xu(t−), ·)-distributed
configuration. (For the picture we chose % ≡ δ1, so each cell Xu begets at its jth negative jump a unique
child Xuj1, with size at birth equal to the jump size.)

Formally, Px depends on a probability kernel %(x, r, ds) from (0,∞) × (0, 1] to S , the
fragmentation kernel, and on a càdlàg Markov process (Y, (Py)y≥0) on (0,∞), the cell process,
which, under the initial distribution Py, y ≥ 0 (Py(Y (0) = y) = 1 and P0(Y ≡ 0) = 1),
is either eventually absorbed at 0 or converging to 0 as t → ∞. It is defined with the
help of Ionescu-Tulcea’s theorem as the unique distribution on [0,∞)U such that X∅ has
law Px and, conditionally on X∅, the enumeration (t1,−y1), (t2,−y2), . . . of its negative jumps,
and on an independent family (sj : j ≥ 1) of independent configurations with respective
laws %(X∅(tj−), yj/X∅(tj−), ·), the cell systems {Xjkv : v ∈ U }, j, k ≥ 1, are independent
Pyjsjk-distributed variables. We forward the reader to [70] for more rigorous details on the
construction of this type of branching processes.

Note that we may as for pure fragmentations give a sense to a dislocation measure ν:
if negative jumps −y < 0 of Y from a certain size x occur at rate θ(x, dy), then particles
with size x fragmentate at rate θ(x, dy)%(x, y/x, ds) into a cloud of particles with initial sizes
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x − y, ys1, ys2, ys3 . . .; see the connection in Example 0.1.6. We also underline the “binary
case” x 7→ {x − y, y} (for % ≡ δ1), which reduces the construction presented here to that
treated in [19].

We call X the cell system driven by (Y, %), but we are in fact more interested in the point
process of alive cells:

X(t) :=
∑
u∈U

1{bu≤t} δXu(t−bu), t ≥ 0.

When (X(t) : t ≥ 0) is a branching process (in the sense of Definition 0.1.1), it is called the
growth-fragmentation process driven by (Y, %). Note that in general, X might very well not
beM0-valued, nor might it enjoy the temporal branching property. However, the existence
of some excessive function is sufficient to enforce this. In this direction, write ∆−y(s) :=

max(y(s−) − y(s), 0) for s > 0, y : [0,∞) → R and suppose that there exist C > 0 and
f ∈ B0< such that for all x > 0 and t ≥ 0,

Ex

[
C−tf

(
Y (t)

)
+
∑

0<r≤t

∫
S

∑
i≥1

C−rf
(
∆−Y (r)si

)
%

(
Y (r−),

∆−Y (r)

Y (r−)
, ds

)]
≤ f(x). (0.3)

Then4 X is a growth-fragmentation process in Mf . Moreover, f is a C-excessive function
for X, and so C−t〈X(t), f〉, t ≥ 0, is a supermartingale.

Of course, if X is a growth-fragmentation driven by (Y, %) where the cell process Y has
non-increasing sample paths, then X corresponds to a pure fragmentation. When further the
fragmentation kernel % has support in P, we can check that (0.3) trivially holds for C = 1

and f = f1.

0.1.3.2 Self-similar growth-fragmentations

In this section, we assume that the fragmentation kernel %(x, r, ds) does not depend on x, and
by a slight abuse of notation we set %(x, r, ds) ≡·· %(r, ds). A self-similar growth-fragmentation
process is a growth-fragmentation fulfilling the self-similarity property of Definition 0.1.1. It
must be driven by a cell process Y which is itself self-similar (with index α):

for all x > 0, the law of (xY (xαt) : t ≥ 0) under P1 is Px.

Indeed, by [19, Lemma 1], self-similarity then extends to the cell system X driven by (Y, %):
for y > 0 arbitrary and b′u := y−αbu, u ∈ U , X ′u(t) := yXu(yαt), u ∈ U , t ≥ 0, the law of
((X ′u, b′u) : u ∈ U ) under P1 is the same as the law of ((Xu, bu) : u ∈ U ) under Py.

4This criterion is easily adapted from [19, Proposition 2 & Theorem 1] proved for C = 1 and % ≡ δ1. By
the Markov property, it is fulfilled if and only if the process f

(
∆−Y (r)si

)
%
(
Y (r−), ∆−Y (r)

Y (r−) ,ds
)
, t ≥ 0, is a

supermartingale under Px, for every x > 0. When Y is a semimartingale, this can be investigated for smooth
enough functions f by stochastic calculus.
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Lamperti [78] characterized all positive self-similar Markov processes (for short, pssMp).
Suppose Y is a pssMp with index α ∈ R which is either absorbed at or converging to 0 a.s.
Then θ(t) := inf{s ≥ 0:

∫ s
0
Y (r)α dr > t}, t ≥ 0, is increasing for t <

∫∞
0
Y (s)α ds =: ζ, and

equals ∞ if t ≥ ζ. Lamperti’s transformation says that under P1, ξ(t) := log Y (θ(t)), t ≥ 0

(with the convention ξ(t) := −∞ for t ≥ ζ), is a Lévy process (a càdlàg process with
independent and stationary increments), which is either absorbed at or diverging to −∞.
Conversely, for such a Lévy process ξ, we can define Y as having under Py the law of
(y exp(ξ(τyαt)) : t ≥ 0), where τt := inf{s ≥ 0:

∫ s
0

exp(−αξ(r)) dr > t}. In other words, a
self-similar cell process Y is determined by (α, ξ), where α ∈ R and ξ is a Lévy process which is
either absorbed at or diverging to −∞. In turn, ξ is characterized by a quadruple (k, b, σ2,Λ),
where k ≥ 0 is the killing rate, b ∈ R the drift coefficient, σ2 ≥ 0 the Gaussian component,
and Λ is the so called Lévy measure, that is a measure on R \ {0} with

∫
(1∧ y2) Λ(dy) <∞.

Since it describes the intensity of jumps in the cell process, Λ will often be supported on
the negative half-line. However, allowing cells to encounter sudden growth can be relevant
especially in applications to random planar maps (see [24] or the forthcoming Section 0.3),
and it is actually only assumed that

∫
1{y>1}e

y Λ(dy) < ∞. Then the distribution of ξ is
identified by the Lévy–Khintchine formula E[exp(qξ(t))] = exp(tΨ(q)), t ≥ 0, through a
Laplace exponent Ψ of the form

Ψ(q) := −k + bq +
1

2
σ2q2 +

∫
R

(
eqy − 1 + q(1− ey)

)
Λ(dy), q ∈ C, (0.4)

which makes sense at least for q ∈ [0,∞). In particular, Ψ: [0,∞)→ (−∞,∞] is convex.

In view of Lamperti’s transformation, we shall in this setting refer to Y and X as,
respectively, the (α,Ψ)-self-similar cell process and the (α,Ψ, %)-self-similar cell system.
When further X is a branching process (typically, when (0.3) applies), X is called the
(α,Ψ, %)-self-similar growth-fragmentation (or rather, if α = 0, the (Ψ, %)-homogeneous
growth-fragmentation).

Remark 0.1.5. Different (Ψ, %) may lead to the same self-similar growth-fragmentation
process with index α [99].

Example 0.1.6. Let c ≥ 0 and % have support in P. Suppose Λ has support in [− log 2, 0)

with
∫

(1 ∧ |x|) Λ(dx) <∞, and that −ξ is a subordinator, i.e., Ψ has the form

Ψ(q) := −k− cq +

∫
R
(eqx − 1) Λ(dx), q ≥ 0 (0.5)

(which means that Y is non-increasing and never jumps lower than half its current size).
Then the (α,Ψ, %)-self-similar growth-fragmentation is a version of the (α, c, ν)-self-similar
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pure fragmentation, where the dislocation measure ν is given by∫
f(p) ν(dp) = kf(0) +

∫∫
f
(
ex, p1(1− ex), p2(1− ex), . . .

)
Λ(dx)%

(
1− ex, dp

)
, (0.6)

for every measurable function f : P → [0,∞). Conversely, suppose ν is a dislocation
measure, that is ν({1}) = 0 and

∫
P

(1− p1) ν(dp) <∞. Then (0.6) holds for k = ν({0}), Λ

the image measure of ν by the map p 7→ log p1, and, by disintegration5 [72, Corollary 1.23],
some probability kernel %(r, dp), r ∈ (0, 1], on P which we can interpret as the image
measure of ν(· | p1 = 1 − r) by the map p 7→ (

pj
1−p1 )j≥2. Further, the (α, c, ν)-self-similar

pure fragmentation coincides with the (α,Ψ, %)-self-similar growth-fragmentation with Ψ as
in (0.5).

This example shows that the greater generality of self-similar growth-fragmentations with
respect to self-similar pure fragmentations lies essentially in the fact that ξ need no longer be
the negative of a subordinator; it may for instance have a Brownian component and jumps
of unbounded variation.

When X is driven by a general (α,Ψ)-self-similar cell process Y with Laplace exponent Ψ

as in (0.4), there is the following specialization of (0.3) to prove excessiveness. Suppose
first α = 0, so that Y = xeξ under Px. By stochastic calculus (adapting the proof of [19,
Lemma 2]) we have, for all x > 0 and t, q ≥ 0,

Ex

[
Y (t)q +

∑
0<r≤t

∫
S

∑
i≥1

(∆−Y (r)si)
q %

(
∆−Y (r)

Y (r−)
, ds

)]
= xq + xqκ(q)

∫ t

0

erΨ(q) dr,

where
κ(q) := Ψ(q) +

∫
(−∞,0)

(1− ey)q Λ(dy)

∫
S

∑
i≥1

sqi %(1− ey, ds), q ≥ 0. (0.7)

Hence (by a supermartingale argument) the inequality (0.3) with κ(q) ≤ 0, f = fq and C = 1

will hold for all x > 0 and t ≥ 0, and (by Doob’s optional stopping theorem) even if α 6= 0.
We can here already see that κ, known as the cumulant function, plays a crucial rôle.

Lemma 0.1.7. Suppose q ≥ 0 is such that κ(q) ≤ 0. Then (0.3) holds for f = fq and
C = 1, and the process 〈X(t), fq〉, t ≥ 0, is a supermartingale under Px for every x > 0.

As a matter of fact, Bertoin and Stephenson [33] have shown that for α 6= 0, the condition
of Lemma 0.1.7 is necessary for X to beM0-valued.

5We view ν as a measure on [−∞, 0)×P via the bijective transformation p 7→ (log p1,
p2

1−p1 ,
p3

1−p1 , . . .).
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Naturally, the presence of power functions in additive (super)martingales is expected
because of the multiplicative structure of self-similar fragmentations. Let us derive here
f(t) := f(t;x, q) := Ex[〈X(t), fq〉] in the homogeneous case α = 0. Then, the cell process Y
under Px is simply represented as xeξ, where ξ is a Lévy process with Laplace exponent Ψ.
By the Lévy–Khintchine formula, the infinitesimal generator L of Y fulfills Lfq(x) = xqΨ(q).
Now, consider the variation of f from f(0) = xq after an infinitesimal amount of time dt.
On the one hand, the variation due to the growth of the mother particle is Lfq(x)dt (in the
first order). On the other hand, the amount of negative jumps with relative size ey that have
occurred on this time interval is roughly Λ|(−∞,0)(dy) dt, and each begets a random cloud
x(1− ey) · p of daughter particles where p has law %(1− ey, ·), bringing thus a contribution
of
∫ ∑

i≥1(x(1 − ey)pi)
q %(1 − ey, dp) to f(dt) − f(0). Putting pieces together, it follows

that ∂tf(0) = xqκ(q) (at least when κ(q) < ∞). Since the branching property easily entails
f(t+ s) = f(t)f(s) for all s, t ≥ 0, we conclude that f(t;x, q) = etκ(q)xq. This means that fq
is eκ(q)-invariant for X, and therefore (by Proposition 0.1.2) e−tκ(q)〈X(t), fq〉, t ≥ 0, is a
martingale under Px for every x > 0. We refer to [18, Theorem 1] for a rigorous derivation
of this fact.

Example 0.1.8. Let ν be a dislocation measure. With the notation of Example 0.1.6, the
cumulant function for the (0, ν)-homogeneous pure-fragmentation process X is

κ(q) =

∫
R
(eqy − 1) Λ(dy) +

∫
(−∞,0)

(1− ey)q Λ(dy)

∫
P

∑
i≥1

pqi %(1− ey, dp)

=

∫∫
[0,∞)×P

(
xq − 1 + (1− x)q

∑
i≥2

(
pi

1− p1

)q)
ν(p1 ∈ dx) ν(dp | p1 = x)

=

∫
P

(∑
i≥1

pqi − 1

)
ν(dp).

In particular if ν is conservative, then κ(1) = 0 (and the martingale 〈X, f1〉 is trivial). For the
example starting this introduction, we have ν(p1 ∈ dx) = 21[ 1

2
,1)(x) dx and ν(p1+p2 = 1) = 1,

so κ(q) = 1−q
1+q

.

The strictly self-similar case α 6= 0 is somewhat different. There, it is generally assumed
that Cramér’s hypothesis is satisfied [24, Section 3]:

There exist 0 < ω− < ω+ such that κ(ω−) = κ(ω+) = 0 and κ′(ω−) > −∞. (0.8)

Under this hypothesis, 〈X, fω+〉 is a martingale when α ≤ 0 [24, Corollary 3.5], and 〈X, fω−〉
is a uniformly integrable martingale when α ≥ 0 [24, Theorem 3.7].
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Remark 0.1.9. Additive martingales cannot be uniformly integrable when α < 0, because
the self-similar fragmentation gets eventually extinct almost surely [60, 22, 19]: X(t) = 0

after a P-almost surely finite time t.

Remark 0.1.10 (Compensated fragmentation processes; general branching Lévy processes).
• The first construction of homogeneous growth-fragmentations (in [18]) was not made
from the point of view of cell systems, but rather directly using projective limits of general
branching Lévy processes (see the second point below). More conceptually, one may
interpret them as limits of dilated homogeneous pure fragmentations. Suppose indeed that
Xn, n ∈ N, are (cn, νn)-homogeneous pure-fragmentation processes such that there is the
weak convergence of finite measures on P

(1− p1)2 νn(dp) =⇒ σ2 δ1(dp) + (1− p1)2 ν(dp),

for some σ2 ≥ 0 and measure ν on P fulfilling ν({1}) = 0 and∫
P

(1− p1)2 ν(dp) <∞, (0.9)

and suppose further that cn− σ2

2
converges as n→∞ to some constant b ∈ R (if cn ≡ 0, this

is automatically verified with b = −σ2

2
). Then there exist a sequence (dn)n≥0 of nonnegative

numbers and a non-trivial processX such that for every q > 2, the convergence in distribution

(exp(dnt)Xn(t) : t ≥ 0)
(d)−−−→

n→∞
X,

holds in the space of Mfq -valued càdlàg functions endowed with Skorokhod’s J1-topology.
Moreover, the dilation coefficients may be chosen as dn :=

∫
P

(1− p1) νn(dp); if so, then X is
the compensated fragmentation process with characteristics (σ2, b, ν). If we disintegrate ν as
in (0.6) and define Ψ by (0.4) (with k := ν({0})), then the compensated fragmentation process
with characteristics (σ2, b, ν) coincides with the (Ψ, %)-homogeneous growth-fragmentation.

• Condition (0.9) is weaker than the integrability requirement (0.2) for the dislocation
measure of a self-similar pure fragmentation. When the latter fails, the too strong
accumulation of “microscopic” dislocations would instantaneously shatter the mass into dust,
so it must be compensated by a suitable dilation of the fragments. This is of course
reminiscent of the construction of Lévy processes as compensated Poisson integrals. The
analogy is not coincidental [29]: in the same way that Lévy processes characterize infinitely
divisible distributions, processes of the form∑

i≥1

δlogXi(t), t ≥ 0,
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whereX is a homogeneous growth-fragmentation, are called branching Lévy processes because
they identify the random point measures which can be written for any n ≥ 1 as the n-th
generation of some branching random walk. These processes are studied in greater detail
in [29, 28].

0.2 Asymptotics of self-similar fragmentations

Here, we summarize the large-time asymptotics of several quantities related to homogeneous,
self-similar, pure- and growth-fragmentation processes, such as empirical distributions
associated with the fragments and the size of the largest fragment.

0.2.1 Homogeneous fragmentations

The bottom line is that for homogeneous fragmentations, the empirical measure of the
fragments exhibits a log-Normal distribution.

Theorem 0.2.1 (Kolmogorov [74]). Let X be the ν-homogeneous fragmentation chain,
with ν a probability measure on S ∩Mf0 . Suppose that Q(1) > 1 and

∫ 1

0
|log t|3 dQ(t) <∞,

where for t ∈ (0, 1], Q(t) :=
∫

#{i ∈ N : 0 < si ≤ t} ν(ds). Then as t→∞, the quantity

sup
x∈R

∣∣∣∣∣ 1

〈X(t), f0〉
∑
i≥1

1{logXi(t)≤x} − F
(
x− µt
σ
√
t

)∣∣∣∣∣
converges to 0 in probability, where F is the cumulative distribution function of the standard
Normal distribution, µ := Q(1)−1

∫ 1

0
log t dQ(t), and σ2 := Q(1)−1

∫ 1

0
(log t− µ)2 dQ(t).

Nowadays, Kolmogorov’s theorem should be seen as a version of a central limit theorem
for branching random walks [9, 10, 40]. Applying additive martingale techniques due to
Biggins [39, 41], Bertoin [23] and Bertoin and Rouault [32] then established asymptotics for
possibly infinite dislocation measures:

Theorem 0.2.2 (Bertoin [23], [21, Theorem 1.2]). Let ν have support in P with ν({1}) = 0

and
∫

(1− p1) ν(dp) <∞, and let X be the (0, ν)-homogeneous pure-fragmentation process.
Suppose that the cumulant function

κ(q) :=

∫
S

(∑
i≥1

sqi − 1

)
ν(ds), q ≥ 0, (0.10)

has a (necessarily unique) zero ω ≥ 0 and that, for some r > 1,∫
S

(∑
i≥1

sωi

)r
ν(ds) <∞. (0.11)
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Then as t→∞, the empirical measures∑
i≥1

Xi(t)
ω δ 1

t
logXi(t)

and
∑
i≥1

Xi(t)
ω δ√

t
(

1
t

logXi(t)−µ
) (0.12)

converge in L1(P) to M∞ δµ and M∞ · σN respectively, in the sense of weak convergence of
measures, where µ := κ′(ω), σ2 := κ′′(ω), N is a standard Gaussian random variable, andM∞
is the terminal value of the uniformly integrable martingale 〈X, fω〉.

The local central limit theorem for branching random walks (Stone [101], Biggins [41])
specializes to homogeneous pure fragmentations as follows.

Theorem 0.2.3 (Bertoin and Rouault [32]). Let the dislocation measure ν, the
homogeneous pure-fragmentation X, and the cumulant function κ as above, and suppose
further that ν is conservative and non-geometric. Then for every Riemann integrable function
f : (0,∞)→ R with compact support, there is as t→∞ the P-almost sure convergence of

q 7−→
√
te−
(
κ(q)−qκ′(q)

)
t
∑
i≥1

f
(
Xi(t)e

−κ′(q)t
)

toward

q 7−→ M∞(q)√
2πκ′′(q)

∫ ∞
0

f(y)

yq+1
dy,

locally uniformly in U := {q ≥ 0: |κ(q)| < ∞ and qκ′(q) − κ(q) < 0}, where M∞(q) is the
terminal value of the uniformly integrable martingale e−tκ(q)〈X(t), fq〉, t ≥ 0.

Asymptotics for the largest fragment X1(t) are also tractable:

Proposition 0.2.4 (Bertoin [23]). Assuming further that U has no empty interior, we have

lim
t→∞

1

t
logX1(t) = κ′(q̄)

P-almost surely on the non-extinction event {∀t ≥ 0: X(t) 6= 0}, where q̄ := supU .

We show in Chapter 1 that Theorem 0.2.3 and Proposition 0.2.4 also hold when X is
a compensated fragmentation process. Actually, we augment Proposition 0.2.4 by deriving
further asymptotic orders for the largest fragment X1 using results that have since appeared
in the literature on branching random walks [3, 100].
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Theorem 0.2.5

Let X be the compensated fragmentation with characteristics (σ2, b, ν) and cumulant
function

κ(q) :=
1

2
σ2q2 + bq +

∫
P

(
∞∑
i=1

pqi − 1 + q(1− p1)

)
ν(dp), q ≥ 0.

Suppose κ(0) > 0, ν non-geometric and ν
(
p2 > 0,

∑
i≥1 p

q
i > 1

)
< ∞ whenever

κ(q) <∞ and q < 1. Then:

• The conclusion of Theorem 0.2.3 holds.

• If U := {q ≥ 0: κ(q) <∞ and qκ′(q)− κ(q) < 0} has no empty interior, then there
exist a constant C∗ > 0 and a nonnegative random variable D∞ such that, for every
x > 0,

lim
t→∞

P
(
t3/2q̄ e−κ

′(q̄)tX1(t) ≤ x
)

= E
[
e−C

∗D∞/x
]
.

Moreover, D∞ > 0 P-almost surely on the non-extinction event.

0.2.2 Self-similar fragmentations

Recall that a self-similar fragmentation process with negative index gets almost surely extinct.
In this section, we summarize asymptotics of self-similar fragmentations when α > 0. As
before, we are interested in empirical measures of the fragments and in the largest fragment.

Theorem 0.2.6 (Bertoin and Gnedin [26]). Let X be the (α, ν)-self-similar fragmentation
chain with index α > 0 and non-geometric dislocation measure ν on S with ν(S ) = 1 and
ν({0}) = 0. Suppose that

κ(q) :=

∫
S

(∑
i≥1

sqi − 1

)
ν(ds), q ∈ C,

has a positive root ω ∈ (0,∞), and define the random finite measures

ρt :=
∑
i≥1

Xi(t)
ω δt1/αXi(t), t ≥ 0.

(i) If µ := κ′(ω) < ∞, then as t → ∞, ρt converges in P-mean to a probability
measure ρ∞, in the sense of weak convergence of measures. Setting φ(q) := −κ(q), the
limit ρ∞ is uniquely determined by the moments∫ ∞

0

ykα ρ∞(dy) =
(k − 1)!

αµφ(ω + α) · · ·φ(ω + α(k − 1))
, k ≥ 1. (0.13)
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(ii) If
¯
q := inf{q ∈ R : κ(q) < ∞} < ω and (0.11) holds for r = 2, then for every ε > 0

and every measurable function f : (0, 1] → R dominated by f
¯
q−ω+ε, there is as t → ∞ the

convergence in L2(P) of 〈ρt, f〉 toward M∞ 〈ρ∞, f〉, where M∞ is the terminal value of the
uniformly integrable martingale 〈X, fω〉.

Example 0.2.7. Suppose ν(p1 ∈ dx) = 21[ 1
2
,1)(x) dx and ν(p1 + p2 = 1) = 1, so κ(q) = 1−q

1+q

with
¯
q = −1 < 1 = ω, µ = 1

2
, and ρ∞ is the law of G1/α where G is Gamma(2/α)-distributed.

Consequently, the average density ut(dx) := E[〈X(t), f0〉]−1E[X(t)(dx)] of particles with
size x at a large time t approximately follows the generalized Gamma(t−1/α, 1, α)-distribution
E[G−1/α]−1E[G−1/α; (G/t)1/α ∈ dx]. This is consistent with the observations of Filippov [60];
see also Brennan and Durrett [46].

A similar statement is valid for infinite dislocation measures:

Theorem 0.2.8 (Bertoin [23], [21, Theorem 1.3]). Let X be the (α, 0, ν)-self-similar pure
fragmentation with index α > 0 and dislocation measure ν that is not geometric (i.e., X(t)

is not supported on a set of the form {se−kr : k ≥ 1}, for any r, s > 0). Suppose that the
cumulant function (0.10) has a zero ω ≥ 0, that (0.11) holds for some r > 1, and that
µ := κ′(ω) <∞. Then as t→∞ (with the same notations as above), ρt converges in L1(P)

toward M∞ ρ, in the sense of weak convergence of measures.

Unlike in the homogeneous case, the asymptotic velocity of the largest fragment is not of
exponential order:

Proposition 0.2.9 (Bertoin [23]). Under the assumptions of Theorem 0.2.8,

lim
t→∞

1

log t
logX1(t) = − 1

α

in P-probability, conditionally on non-extinction.

In Chapter 1, we extend these last two results to self-similar growth-fragmentations, under
Cramér’s hypothesis (0.8). There, the rôle of ω is played by ω−, and ρ∞ is not given by (0.13),
but rather in terms of the exponential functional of a certain Lévy process.
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Theorem 0.2.10

Let X be the binary (α,Ψ, δ1)-self-similar growth-fragmentation process with cumulant
function

κ(q) := Ψ(q) +

∫
(−∞,0)

(1− ey)q Λ(dy), q ≥ 0.

Suppose that Cramér’s hypothesis (0.8) holds. Then for every 0 ≤ q < (ω+ − ω−)/α,
every 1 < p < ω+/(ω−+qα), and every measurable function f : (0,∞)→ R dominated
by fqα,

lim
t→∞

∑
i≥1

Xi(t)
ω−f

(
t1/αXi(t)

)
= M∞

∫ ∞
0

f(y) ρ∞(dy), in Lp(P),

with M∞ the terminal value of the uniformly integrable intrinsic martingale 〈X, fω−〉,
and where ρ∞ is defined in terms of the exponential functional I :=

∫∞
0

exp
(
αη(t)

)
dt

for the Lévy process η with characteristic exponent κ(·+ ω−), by

ρ∞(dy) := − 1

ακ′(ω−)
E
[
I−1; I1/α ∈ dy

]
.

We might expect that growth have some influence on the speed of decay for the largest
fragment X1. At least in the first order, this is not the case:

Theorem 0.2.11

Under the assumptions and notations of Theorem 0.2.10, suppose further that
Λ
(
(0,∞)

)
= 0. Then

lim
t→∞

1

log t
logX1(t) = − 1

α

in P-probability, conditionally on non-extinction.

To conclude, we mention another asymptotic result for an empirical measure of particles
which are “frozen” once they fall below some vanishing threshold. Specifically, we can go back
over the construction of X, with the difference that when a particles reaches the interval (0, ε]

(which may happen at birth), it is stopped and thus no longer grows, splits, or produces
children. We denote by {x i,ε

}∞
i=1

the state of the system once all particles have been frozen
below ε. Note that it does not depend on the index α, since self-similarity only affects the
time when particles get frozen.

Theorem 0.2.12 (Bertoin and Martínez [30], Bertoin [21, Proposition 1.12]). Adopting
either the notations and assumptions of Theorem 0.2.6, or those of Theorem 0.2.8, and
supposing further that ω > inf{q ∈ R : κ(q) < ∞} and (0.11) for some r > 1, the random
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point measures
∞∑
i=1

x ωi,ε δ 1
ε

x i,ε
, ε > 0,

converge in L1(P) as ε → 0 toward M∞ ϕ, in the sense of weak convergence of measures,
where ϕ is a deterministic probability measure on [0, 1] given by

ϕ(da) :=

(∫
S

∑
i≥1

1{si<a}s
ω
i ν(ds)

)
da

aκ′(ω)
.

We should also cite Harris, Knobloch and Kyprianou [67] who completed this result by
establishing an almost sure convergence. A statement analogous to Theorem 0.2.12 is proved
in Chapter 1 for self-similar growth-fragmentations.

Theorem 0.2.13

In the setting of Theorem 0.2.10, suppose further that Λ
(
(0,∞)

)
= 0 and η is not

arithmetic, and let {x i,ε
}∞
i=1

be the final state of the growth-fragmentation when
particles are frozen below ε > 0. Then as ε→ 0, the random point measure

∞∑
i=1

x ωi,ε δ 1
ε

x i,ε

converges in P-probability to M∞ ϕ, where ϕ is a deterministic probability measure
on [0, 1] given by

〈ϕ, f〉 :=
ω+ − ω−
−κ′(ω−)

∫∫
(−∞,0)2

f(ex) e(ω+−ω−)y Λ−
(
(−∞, x+ y)

)
dxdy,

for f : [0, 1]→ [0,∞) measurable and Λ− the jump measure of the Lévy process η.

0.3 Self-similar fragmentations as scaling limits

Self-similarity stipulates a scale invariance property in time and space. Self-similar processes
thus naturally “attract” limits of rescaled dynamics. Doubtless the most classical example is
that of Brownian motion, which as proved by Donsker [53] is the continuous limit of rescaled
random walks with finite variance. A few years later, Lamperti [78] fully characterized all
real Markov processes that arise as weak limits of suitably normalized processes (so called
scaling limits). Among these, and besides Brownian motion, are notably stable processes,
stable Lévy processes, Bessel processes, stable Lévy processes conditioned to stay positive,
etc. For more recent results on self-similar Markov processes, see the survey [92].
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Haas, Miermont, and al. [86, 65, 87, 66, 63] have investigated scaling limits in (pure)
fragmentation theory. Mainly, they derive general conditions under which discrete branching
mechanisms converge (after suitable renormalization) to self-similar pure fragmentations.
This convergence is stated within the realm of random trees, in terms of natural genealogies
associated with the fragmentation processes, where fragments are respectively linked to the
particle they originate from by an edge whose length is proportional to their lifetime.

To fix ideas, imagine a discrete fragmentation as pictured in Figure 0.4a with the following
mechanism. Each cell, say with integer size k, may independently of the other cells divide into
daughter cells with respective sizes k1 ≥ · · · ≥ kr ≥ 1 forming a random integer-partition6

of k, which we can write k ·p for a certain mass-partition p ∈P whose law we denote q̄k. To
ensure finiteness of trees, we suppose that q̄k(1) < 1 for every k ≥ 1, so cells repeatedly divide
(conservatively) into eventually two or more daughter cells until only cells with size 1 remain,
which are then stopped at a geometric rate. Let T (n) stand for the random tree with n leaves
obtained when the initial cell has size n. We ask whether T (n) admits a non-trivial limit of
the form T (n)/an −→ T for some scaling sequence (an)n≥0 of positive numbers, where by
T (n)/an we mean that the branch lengths of T (n) are divided by an. Note that self-similarity
for the limit T implies that (an)n≥0 must be regularly-varying with some index −α ∈ R, i.e.,
we assume that abnxc/an tends to x−α as n→∞, for every x > 0.

Theorem 0.3.1 (Haas and Miermont [63]). Suppose α < 0 and “macroscopic” fragmentation
events are rare, in the sense that there is as n→∞ the weak convergence of finite measures

an(1− p1) q̄n(dp) =⇒ (1− p1) ν(dp),

for some dislocation measure ν on P with ν({1}) = 0 and
∫

P
(1 − p1) ν(dp) < ∞. Then

T (n)/an converges in distribution as t → ∞ toward the genealogical tree T associated with
the (α, ν)-self-similar pure-fragmentation.

The self-similar fragmentation tree T at the limit belongs to the class of continuum random
trees as first introduced by Aldous [5, 4, 6]. Technically, T (n) and T are viewed as a compact
metric space which we can basically embed in `1(N) by gluing together closed segments with
variable lengths, and the above convergence holds in the Gromov–Hausdorff topology [59].

In Chapter 2, we consider Markov branching trees which incorporate growth, so that
cells may not only split but also grow. For simplicity, we focus on binary fragmentations
as illustrated in Figure 0.4b. The Markovian structure allows us to encode such a tree by a
probability kernel (pn,m)n,m≥0 on N with the following interpretation: with probability pn,m,

6more precisely, k1 + · · ·+ kr = k except possibly for k = 1, where r = 0 means that the cell is killed.
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Figure 0.4a. A sample from T (11) (illustration from [63]).

Figure 0.4b. A discrete growth-fragmentation tree (growth in bold).

each cell with size n grows either larger (m > n), or smaller (n/2 ≤ m < n), and in the latter
case an independent daughter cell with initial size n − m is born. Our purpose is to find
conditions on pn,m for n→∞ such that the tree constructed in this way looks (after rescaling)
like the genealogical tree corresponding to a self-similar growth-fragmentation process. This
will again be a continuum random tree; we refer to Rembart and Winkel [98] for a description
using a contraction method.

One major difference induced by growth is that the system may be subject to explosion.
To prevent this, we require that cells cease to evolve when they become too small, which we
enforce mathematically by setting pn,n := 1 for n ≤M and some constant threshold M that
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will be fixed accordingly7. We let X (n) denote the resulting tree rooted at a cell with size n
and X(n)(k) the non-increasing rearrangement of the cells’ sizes at height k ≥ 0 in X (n), and
we consider as before a regularly-varying sequence (an)n≥0 with index −α.

Theorem 0.3.2

Let α < 0, and suppose there exist q > −α and a Lévy process diverging to −∞, whose
characteristic exponent and Lévy measure we respectively denote Ψ and Λ, such that

∀t ∈ R, lim
n→∞

an

∞∑
m=1

pn,m

[(m
n

)it

− 1

]
= Ψ(it),

lim sup
n→∞

an

∞∑
m=2n

pn,m

(m
n

)q
<∞,

Ψ(q) +

∫
(−∞,0)

(1− ey)q Λ(dy) < 0,

and for some ε > 0,

lim
n→∞

an

n−1∑
m=1

pn,m

(
1− m

n

)q−ε
=

∫
(−∞,0)

(1− ey)q−ε Λ(dy).

Then we can fix M sufficiently large so that as n→∞, the process(
1

n
X(n)(bantc) : t ≥ 0

)
converges in distribution to the binary (α,Ψ, δ1)-self-similar growth-fragmentation Y,
in the sense ofM0-valued càdlàg processes. Furthermore, there is the convergence in
distribution X (n)/an → Y for the corresponding random trees seen as compact metric
spaces.

One motivation for Theorem 0.3.2 stems from the evidence that growth-fragmentations
arise quite naturally in statistics of random planar objects, for instance Boltzmann
triangulations [25, 24]. Consider a random triangulation of the n-gon which, given the
number of internal vertices, is picked uniformly at random. Revealing (i.e., conditioning on)
the faces at distance at most r ≥ 1 from the boundary, the unexplored areas are independent
Boltzmann triangulations; we let X(n)(r) denote the family of the lengths of their boundaries
ranked in the non-increasing order — see Figure 0.5. It is proved in [25] that (X(n)(r))r≥1

admits as n→∞ a scaling limit toward a self-similar growth-fragmentation process.

7We stress that the process depends on the threshold M , even though this dependency does not appear
in the subsequent notation.
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Figure 0.5. The ball of radius 2 in this random Boltzmann triangulation of the 7-gon
displays three holes (in white) with perimeters 5, 4, and 1: X(7)(2) = (5, 4, 1, 0, ...).

0.4 Fragmentation equations

In this section, and in Chapter 3, we consider a simpler model of growth-fragmentation
where, essentially, particles grow deterministically and thus randomness only occurs in the
fragmentation process. We further drop the assumption of self-similarity, so the rate at which
a particle grows or splits may depend on its size in a fairly general manner.

Specifically, suppose there is an average density of u(t, x) particles around size x and
time t. If particles with size x grow at rate τ(x) and fragmentate at rate B(x) in a
conservative way, which means that fragments with size y < x occur at rate b(x, y) such
that

∫
y b(x, y)dy = xB(x), then u solves the (linear) growth-fragmentation equation

∂

∂t
u(t, x) +

∂

∂x

(
τ(x)u(t, x)

)
+B(x)u(t, x) =

∫ ∞
x

b(y, x)u(t, y) dy. (0.14)

This equation is often subject to initial and boundary conditions, such as u(0, x) = u0(x)

and u(t, 0) ≡ 0. When the measure of particles is not necessarily given by a density (through
the expression µt(dx) = u(t, x)dx), one may instead of (0.14) analyze the weak formulation

∂t〈µt, f〉 = 〈µt,Af〉, (0.15)

for appropriate test-functions f : (0,∞)→ R, where the operator A is defined by

Af(x) := τ(x)f ′(x) +

∫ x

0

f(y) b(x, y)dy −B(x)f(x).

We shall call (µt)t≥0 a solution if (0.15) holds for all t ≥ 0 and f in the domain D(A) of A.
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Self-similarity, mirroring the random self-similar growth-fragmentations of the preceding
sections, is achieved here by setting τ(x) := xαc(x), B(x) := xα, and b(x, y) := xα−1θ( y

x
).

In particular, the self-similar fragmentation model with uniform binary splitting (Eq. (0.1))
corresponds to c ≡ 0 and θ ≡ 2. More generally, the self-similar pure-fragmentation equation
with possibly erosion (c(x) := cx with c ≤ 0) has been studied by Haas [62]. Bertoin and
Watson [35], and Doumic and Escobedo [55] considered the self-similar growth-fragmentation
equation with linear growth (c(x) := cx with c > 0).

Under fairly general regularity assumptions on τ , b, and B (see for instance [95] or [96,
Theorem 4.3]), the growth-fragmentation equation admits a unique solution (in a sense to
be specified), and one sometimes may ascertain the time asymptotic behavior. Namely, the
global exponential rate and the asymptotic profile of the solution appertain to an eigenvalue
problem for the operatorA [54], and under the existence of a spectral gap the rescaled solution
converges exponentially fast toward the asymptotic profile [94, 79, 47, 13]. The literature
we just cited covers these questions via analytic techniques, e.g. entropy methods [85] or
splitting of operators [88].

A deeper probabilistic treatment has however been developed recently by Bertoin and
Watson [34, 36, 20]. In few words, they connect the eigenproblem to the ergodicity of a
certain Markov process (X, (Px)x>0) whose infinitesimal generator G is similar to A:

Gf(x) :=
1

x
Af̄(x)−

¯
c(x) = τ(x)f ′(x) +

∫ (
f(y)− f(x)

) y
x
b(x, y)dy,

with the notation ḡ(x) := xg(x) and
¯
g(x) := x−1g(x) for any function g : (0,∞)→ R. Their

results are summarized below.

Theorem 0.4.1 (from Bertoin and Watson [34]). Suppose that X is irreducible, i.e., the
hitting time Hy := inf{t ≥ 0: Xt = y} is not Px-a.s. infinite for all x, y > 0, and that
the maps x 7→ ·

x
b(x, ·) from (0,∞) to L1(dy) and

¯
τ : (0,∞) → (0,∞) are continuous and

bounded. Then A is the infinitesimal generator of a unique positive, strongly continuous
semigroup (Tt)t≥0 on C̄b := {f : (0,∞) → R continuous with

¯
f bounded}, and the solution

to (0.15) subject to µ0 = δx is given for every t ≥ 0 and f ∈ C̄b by the Feynman–Kac formula

〈µt, f〉 = Ttf(x) = xEx
[
¯
f(Xt)Et

]
, where Et := exp

(∫ t

0 ¯
τ(Xs) ds

)
.

Furthermore, defining the Laplace transform Lx,y(q) := Ex[e−qH(y)EH(y);H(y) < ∞], q ∈ R,
the parameter

λ := inf
{
q ∈ R : Lx0,x0(q) < 1

}
(0.16)

does not depend on x0 > 0, and:
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(a) If
Lx0,x0(λ) = 1 and L′x0,x0(λ) > −∞, (0.17)

is fulfilled for some (then all) x0 > 0, then for every f with compact support

lim
t→∞

e−λt〈µt, f〉 = 〈ν, f〉h(x), (0.18)

where
h(x) := xLx,x0(λ) and ν(dx) :=

dx

h(x)τ(x)|L′x,x(λ)|
, x > 0. (0.19)

(b) If instead of (0.17) holds the the stronger condition

Lx0,x0(q) <∞ for some q < λ and x0 > 0,

then the convergence (0.18) occurs exponentially fast.

Eq. (0.18) is referred to as a Malthusian behavior. In [36], Bertoin and Watson linked the
solution (µt)t≥0 to the growth-fragmentation equation (0.15) to the intensity measure of a
growth-fragmentation process (Z(t) : t ≥ 0), namely 〈µt, f〉 =

∫
µ0(dx)Ex[〈Z(t), f〉] for all

t ≥ 0 and f : R→ [0,∞) measurable.

Theorem 0.4.2 (Bertoin and Watson [36]). Under the main assumptions of Theorem 0.4.1,
and

lim sup
x→0+ ¯

τ(x) < λ and lim sup
x→∞ ¯

τ(x) < λ, (0.20)

with λ defined by (0.16), the process Z exhibits strong Malthusian behavior: for all x > 0

and continuous function f : (0,∞)→ R with f = O(h), one has

lim
t→∞

e−λt〈Z(t), f〉 = 〈ν, f〉W∞, in L1(Px),

where W∞ is the limit of the uniformly integrable martingale Wt := e−λt〈Zt, h〉, t ≥ 0, and
the pair (h, ν) is given by (0.19).

Condition (0.20) implies λ > 0 and [20, Theorem 2] is a stronger requirement than (0.17).

Many models in natural science are concerned with open systems. As such, one may
for instance want to take into account the introduction of new particles coming from the
environment. Perhaps the simplest kind of immigration is when individuals arrive at a
constant rate independently of the current population. This situation is described by the
equation (compare with (0.15))

∂t〈µt, f〉 = 〈µt,Af〉+

∫
I(dy) f(y), (0.21)
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where I is a measure on (0,∞) (called the immigration measure). Haas [61] investigated a
self-similar pure-fragmentation with immigration equation like (0.21) where τ(x) = −cxα+1

for α ∈ R and c > 0. She discussed the equilibrium between fragmentation and immigration
and gave the expression of the unique stationary solution when equilibrium happens. In
Chapter 3, we look at the same problem but for positive τ (growth), in the setting of [34].

Theorem 0.4.3

We take the same assumptions and notations of Theorem 0.4.1.(a), and we suppose
further that m := 〈I, f1〉 < ∞ and 〈I, h〉 < ∞. Then the growth-fragmentation with
immigration equation (0.21) admits a unique solution (µit )t≥0 started from µ0 = δx,
and for every continuous function f : (0,∞)→ R with compact support,

〈µit , f〉 =


eλt〈ν, f〉

(
h(x) + 1

λ
〈I, h〉

)
+ o(eλt), if λ > 0,

1
−λ〈ν, f〉〈I, h〉+ o(1), if λ < 0,

〈ν, f〉
(
h(x) + t〈I, h〉

)
+ o(t), if λ = 0.

Further, we can relate µit to the intensity measure of a so called growth-fragmentation
with immigration process (Zi

t : t ≥ 0), which when (0.20) holds also exhibits a strong
Malthusian behavior.

Informally, Zi is the superposition of Z together with independent copies of Z immigrating
at rate I.

One can imagine a second kind of immigration where each individual in the current population
independently attracts new immigrants. Then the system is instead ruled by the equation

∂t〈µt, f〉 = 〈µt,Aif〉, (0.22)

where Ai := A+ 〈I, ·〉. This situation is briefly discussed in Chapter 3.





1
Asymptotics of self-similar
growth-fragmentation processes
This chapter is a reproduction of the article [49].

Markovian growth-fragmentation processes introduced in [18, 19] extend the pure-
fragmentation model by allowing the fragments to grow larger or smaller between
dislocation events. What becomes of the known asymptotic behaviors of self-similar pure
fragmentations [23, 26, 30, 32] when growth is added to the fragments is a natural question
that we investigate in this paper. Our results involve the terminal value of some additive
martingales whose uniform integrability is an essential requirement. Dwelling first on
the homogeneous case [18], we exploit the connection with branching random walks and
in particular the martingale convergence of Biggins [39, 41] to derive precise asymptotic
estimates. The self-similar case [19] is treated in a second part; under the so called Malthusian
hypotheses and with the help of several martingale-flavored features recently developed
in [24], we obtain limit theorems for empirical measures of the fragments.

1.1 Introduction

Fragmentation processes are meant to describe the evolution of an object which is subject
to random and repeated dislocations over time. The way the mass is spread into smaller
fragments during a dislocation event is usually given by a (random) mass-partition, that is
an element of the space

P :=

{
p := (pi, i ∈ N) : p1 ≥ p2 ≥ · · · ≥ 0 and

∞∑
i=1

pi ≤ 1

}
, (1.1)

where the total mass need not be conserved, i.e. a positive proportion 1 −
∑

i≥1 pi may
disintegrate into dust. The first probabilistic models of fragmentations go back at least
to Kolmogorov [74]. Roughly, Kolmogorov imagined a discrete branching system in
which particles get fragmented according to a conservative distribution ν on P and in a
homogeneous manner, that is to say the rate at which a particle splits does not depend
on its mass. Under this essential assumption of homogeneity, Kolmogorov showed that a
simple rescaling of the empirical measure of the logarithms of the fragments converges with
probability one toward the Gaussian distribution. Later, a student of his, Filippov [60]
investigated mass-dependent dislocation rates and more precisely the self-similar case, in

29
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the sense that a particle with size m splits at speed mα for some fixed constant α ∈ R (the
homogeneous case then corresponds to α = 0). Most notably he discovered a limit theorem
for a weighted version of the empirical measure of the fragments when α > 0. The special
but common binary situation, where particles always split into two smaller fragments, has
been emphasized by Brennan and Durrett [45, 46], and later reconsidered by Baryshnikov
and Gnedin [16] in some variant of the car packing problem. Further extensions and other
asymptotic properties in the non-conservative case have also been derived by Bertoin and
Gnedin [26] by means of complex analysis and contour integrals.

In the 2000s (see [21, Chapters 1-3] for a comprehensive summary), Bertoin extended
and theorized the construction of general fragmentation processes in continuous time. In
particular the dislocation measure ν need no longer be a probability distribution, as there is
only the integrability requirement ∫

P

(1− p1) ν(dp) <∞. (1.2)

While permitting infinite dislocation rates (so infinitely many dislocation events may
occur in a bounded time interval), this condition prevents the total mass from being
immediately shattered into dust and leads to a nondegenerate fragmentation process X(t) :=

(X1(t), X2(t), . . .), t ≥ 0, with values in P. When α = 0, fragmentation processes can
be related (via a simple logarithmic transformation) to branching random walks, for which
fruitful literature is available, see e.g. the works of Biggins and Uchiyama [39, 102, 41],
and [100]. Especially, additive martingales, which are processes of the form

E

[
∞∑
i=1

Xq
i (t)

]−1 ∞∑
i=1

Xq
i (t), t ≥ 0, (1.3)

for some parameter q > 0, play a key role and the question of their uniform integrability
inquired by Biggins has successfully led to the asymptotic behavior of homogeneous
conservative fragmentations [31, 32]. More generally, in the self-similar case, some specific
so called Malthusian hypotheses guarantee the existence of an intrinsic martingale associated
with the fragmentation and whose convergence again yields many interesting asymptotic
results. Among others the results of Kolmogorov and Filippov have been revisited [23],
applying known statistics of self-similar Markov processes to the process of a randomly tagged
fragment.

More recently, Bertoin [18, 19] introduced a new type of fragmentation processes in
which the fragments are allowed to grow during their lifetimes. We expect that most of the
aforementioned asymptotic properties extend to these growth-fragmentation processes, and it
is the main purpose of the present work to derive some of them. We shall first give a bit more
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description and explain why our task is not completely straightforward. Like in the pure (i.e.
without growth) setting, we are interested in the process which describes the (sizes of the)
fragments as time passes. For homogeneous growth-fragmentations, namely the compensated
fragmentations of [18], the basic prototype is simply a dilated homogeneous fragmentation,
that is a pure homogeneous fragmentation affected by a deterministic exponential drift.
However, there exist much more general compensated fragmentations, where the dislocation
measure ν has only to fulfill ∫

P

(1− p1)2 ν(dp) <∞, (1.4)

so that the process is nondegenerate and can still be encoded at any time by a non-increasing
null sequence. Condition (1.4) is weaker than the necessary and sufficient condition (1.2) for ν
to be the dislocation measure of a homogeneous fragmentation, and both are reminiscent
of those concerning the jump intensities of Lévy processes, respectively subordinators.
Incidentally, it was the main motivation of [18] to establish that, just like the Lévy–Itō
construction of Lévy processes in terms of compensated Poisson integrals, compensated
fragmentations naturally arise as limits of suitably dilated homogeneous fragmentations [18,
Theorem 2]. Though asymptotic properties of pure homogeneous fragmentations immediately
transfer to the dilated ones, extending them to general compensated fragmentations would
correspond to interchanging two limits, which does not seem obvious at first sight. This is
without to mention the self-similar case, that is for the growth-fragmentations in [19], where
things look even more complicated.

There, and unlike the compensated fragmentations which are constructed directly as
processes in time, the self-similar cell systems are rather built from a genealogical point of
view: roughly, the (size of the) mother cell evolves like a Markov process on the positive
half-line where each negative jump −y is interpreted as a splitting event, giving birth to a
daughter cell with initial size y and which then grows independently of the mother particle
and according to the same dynamics, i.e. producing in turn granddaughters, and so on.
Bertoin focused in particular on the situation where the associated growth-fragmentation
process X := (X(t), t ≥ 0), that is the process recording the sizes of all alive cells in the
system, fulfills a self-similarity property, namely when there exists α ∈ R such that for
each x > 0, the process (xX(xαt), t ≥ 0) has the same law as X started from a cell whose
initial size is x. In the homogeneous case α = 0, these growth-fragmentations correspond
to the compensated fragmentations of [18] for which the dislocation measure is binary, see
[19, Proposition 3]. In the self-similar case α < 0, they have been proved to be eventually
extinct [19, Corollary 3], an observation which was already made by Filippov [60] in the
context of pure fragmentations.
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Both for homogeneous and for self-similar fragmentations, the additive martingales (1.3)
and more precisely their uniform integrability have turned out to be of greatest importance
in the study of asymptotic behaviors. We stress that sufficient conditions to this uniform
integrability appear less easily for growth-fragmentations, as they non longer take values in
the space of mass-partitions P.

Our work is organized in two independent parts. In Section 1.2, we deal with
the homogeneous case α = 0 in the slightly more general setting of compensated
fragmentations [18]. With the help of a well-known theorem due to Biggins [41] and by
adapting arguments of Bertoin and Rouault [32], we prove the uniform convergence of
additive martingales from which, in the realm of branching random walks, we infer precise
estimates for the empirical measure of the fragments and the asymptotic behavior of the
largest one. This part can be viewed as an application to the study of extremal statistics in
certain branching random walks, see e.g. the recent developments by Aïdékon [2], Aïdékon
et al. [1], Arguin et al. [7] and Hu et al. [68]. The self-similar case is considered in Section 1.3
within the framework of [19]. Relying on recent results in [24] and in particular on the
uniform integrability of the Malthusian martingale, we establish for α > 0 the convergence
in probability of the empirical measure of the fragments and that of the largest fragment.
In a concluding section we also address the convergence of another empirical measure where
fragments are stopped as soon as they become smaller than a vanishing threshold.

1.2 Compensated fragmentations

1.2.1 Prerequisites

Recall the space of mass-partitions P defined in (1.1) and denote by P1 the subspace
of mass-partitions p := (p1, 0, . . .) ∈ P having only one single fragment p1 ∈ (0, 1]. A
compensated fragmentation process Z(t) := (Z1(t), Z2(t), . . .), t ≥ 0, is a stochastic process
whose distribution is characterized by a triple (σ2, c, ν) where σ2 ≥ 0 is a diffusion coefficient,
c ∈ R is a growth rate, and ν is a nontrivial measure on P \ {(1, 0, . . .)} such that (1.4)
holds. It can be seen as the decreasing rearrangement of the exponential of the atoms of a
branching process in continuous time. Namely, the process giving the empirical measure of
the logarithms of the fragments at time t,

Z t :=
∞∑
i=1

δlogZi(t),

is called a branching Lévy process in [18], to which we refer for background. In the basic case
where ν(P \P1) < ∞, i.e. the fragmentation rates are finite, Z is a generalization of the
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branching random walk in continuous time introduced by Uchiyama [102]: more precisely,
Z is a branching particle system in which each atom, during its lifetime, is allowed to move
in R independently of the other atoms and according to the dynamics of a spectrally negative
Lévy process1 η with Laplace transform

E
[
exp
(
qη(t)

)]
= exp

(
tψ(q)

)
, t ≥ 0, q ≥ 0,

where under (1.4) the Laplace exponent2

ψ(q) :=
1

2
σ2q2 +

(
c+

∫
P\P1

(1− p1) ν(dp)

)
q +

∫
P1

(
pq1 − 1 + q(1− p1)

)
ν(dp) (1.5)

is finite for all q ≥ 0. In words, when ν(P \P1) < ∞, the system can be described as
follows. It starts at the origin of space and time with a single particle which evolves like η.
Each particle dies after a random exponential time with intensity ν(P \P1), giving birth
to a random family of children (η1, η2, . . .) whose initial position (∆a1,∆a2, . . .) relative to
the mother particle at its death is such that (e∆a1 , e∆a2 , . . .) has the conditional distribution
ν( · |P \P1).

In the general situation where the dislocation rate ν(P\P1) may be infinite, the construction
is achieved by approximation from compensated fragmentations with finite dislocation rates,
using a monotonicity argument (see [18, Lemma 3] recalled in the proof of Proposition 1.2.8
below).

Let us denote by
µ(dx) := E[Z1(dx)] (1.6)

the mean intensity of the point process Z1, so that

m(q) :=

∫
eqxµ(dx), q ≥ 0,

is the Laplace transform of µ. An important fact (cf. [18, Theorem 1]) is that, for every t ≥ 0

and every q ≥ 0,

m(q)t = E

[
∞∑
i=1

Zq
i (t)

]
= exp

(
tκ(q)

)
, (1.7)

1That is a càdlàg stochastic process with stationary and independent increments which has only negative
jumps. The results of this section could be quite straightforwardly adapted to also handle positive jumps in
the particle motions; we shall however not do so as this would burden the expository and was anyway not
considered in [18].

2Formula (1.5) is designed in such a way that if σ2 = 0, c = 0, and D :=
∫

P(1− p1) ν(dp) <∞, then Z
simply is a pure homogeneous fragmentation X with dislocation measure ν affected by a dilatation with
coefficient D, i.e. Z(t) = eDtX(t), t ≥ 0. In this case η is a compound Poisson process with jump measure
(log p1) ν|P1

(dp) and drift D, but we stress that ψ(q) < ∞ holds in greater generality, namely under (1.4)
and ν(P \P1) <∞. See [18] for details.



34 CHAPTER 1. ASYMPTOTICS OF GROWTH-FRAGMENTATIONS

where

κ(q) :=
1

2
σ2q2 + cq +

∫
P

(
∞∑
i=1

pqi − 1 + q(1− p1)

)
ν(dp)

defines a convex function κ : [0,∞) → (−∞,∞]. We mention that under ν(P \P1) < ∞,
there is the identity

κ(q) = ψ(q) +

∫
P\P1

(
∞∑
i=1

pqi − 1

)
ν(dp), q ≥ 0. (1.8)

As we shall explain in the forthcoming Lemma 1.2.7, the first summand describes the motion
of a particle, while the second outlines the branching mechanism. In better words, κ is
merely the log-Laplace transform of the cloud of particles at first generation (i.e. after the
first branching event), which is a key feature of branching random walks.

Since under (1.4),

pq1 − 1 + q(1− p1) = O
(
(1− p1)2

)
is integrable with respect to ν, we easily observe that, if we set

q
¯

:= inf
{
q ≥ 0: κ(q) <∞

}
= inf

{
q ≥ 0:

∫
P\P1

∞∑
i=2

pqi ν(dp) <∞

}
,

then κ takes finite values and is analytic on the open interval (q
¯
,∞). Note that (1.4) also

implies κ(2) <∞, so q
¯
≤ 2. Let us introduce the subspace

`q↓ :=

{
z := (z1, z2, . . .) : z1 ≥ z2 ≥ · · · ≥ 0 and

∞∑
i=1

zqi <∞

}

of the space `q of q-summable sequences endowed with the distance ‖z−z′‖q`q :=
∑∞

i=1 |zi−z′i|q.
We also denote `∞↓ the space of bounded, non-increasing sequences of nonnegative real
numbers endowed with the uniform norm ‖ · ‖`∞ . We see by (1.7) that the compensated
fragmentation Z := (Z(t), t ≥ 0) is a `q↓-valued process for every q ∈ (q

¯
,∞], and in particular

for q = 2. Further if z := (z1, z2, . . .) is in `2↓ and Z[1],Z[2], . . . are independent copies of Z,
then the process of the family (zjZ

[j]
i (t), i, j ∈ N), t ≥ 0, rearranged in the non-increasing

order is again in `2↓, and we denote its distribution by Pz. It has been proved in [18] that
(Z, (Pz)z∈`2↓) is a Markov process which fulfills the so called branching property : for all s ≥ 0,
the conditional law of (Z(t + s))t≥0 given (Z(r))0≤r≤s is Pz, where z = Z(s). Without loss
of generality we shall assume in the sequel that the fragmentation starts with a single mass
with unit size, i.e. P := P(1,0,...).
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Equation (1.7) and the branching property yield an important family of additive
martingales. Namely, the R-valued process

M(t; q) := exp
(
−tκ(q)

) ∞∑
i=1

Zq
i (t), t ≥ 0, (1.9)

is a martingale for every q ∈ (q
¯
,∞). As a first consequence [18, Proposition 2], the

compensated fragmentation Z possesses a càdlàg version in `2↓, that is a version in the
Skorokhod space D([0,∞), `2↓) of right continuous with left limits, `2↓-valued functions.
Working with such a version from now on, Z has actually càdlàg paths in `q↓ for every
q ∈ (q

¯
,∞].

Proposition 1.2.1. Almost surely, for every q ∈ (q
¯
,∞], Z has càdlàg paths in `q↓.

Proof. Recall that ‖ · ‖`q′ ≤ ‖ · ‖`q whenever q ≤ q′ ≤ ∞. Since Z has càdlàg paths in `2↓,
it has in particular càdlàg paths in `∞↓. Let (qk, k ∈ N) be a sequence decreasing to q

¯
, and

define
T (k)
m := inf

{
t ≥ 0: M(t; qk) > m

}
= inf

{
t ≥ 0: ‖Z(t)‖qk`qk > metκ(qk)

}
for k,m ∈ N. Applying Doob’s maximal inequality to the martingale (1.9) we have that
almost surely, for all k ∈ N, T (k)

m ↑ ∞ as m → ∞. Thus, almost surely, for every q ∈ (q
¯
,∞]

and T ≥ 0 we can find a k ∈ N such that q
¯
< qk < q and then a m ∈ N such that T < T

(k)
m ,

whence

‖Z(t)− Z(s)‖q`q ≤ ‖Z(t)− Z(s)‖q−qk`∞ ‖Z(t)− Z(s)‖qk`qk

≤ m 21+qk
(

1 + eT
(k)
m κ(qk)

)
‖Z(t)− Z(s)‖q−qk`∞

for all 0 ≤ s, t < T . The fact that Z has càdlàg paths in `∞↓ completes the proof. �

We first would like to extend to the compensated fragmentation Z the asymptotic results
obtained by Bertoin and Rouault [31, 32] for pure homogeneous fragmentations. They
strongly rely on the work of [39, 41] about the uniform integrability of additive martingales.
Essentially, the martingales (M(t; q))t≥0 will be uniformly integrable if qκ′(q)−κ(q) < 0 and
M(1; q) ∈ Lγ(P) for some γ > 1. With this in mind, let us introduce

q̄ := sup
{
q > q

¯
: qκ′(q)− κ(q) < 0

}
.

First note that q̄ <∞, because

qκ′(q)− κ(q) =
1

2
σ2q2 +

∫
P

(
1− pq1(1− log pq1)

)
ν(dp)−

∫
P\P1

∞∑
i=2

pqi
(
1− log pqi

)
ν(dp),



36 CHAPTER 1. ASYMPTOTICS OF GROWTH-FRAGMENTATIONS

which, by Fatou’s lemma, is at least ν(P) as q → ∞. Second, we have q̄ > q
¯
as soon as

qκ′(q)− κ(q) < 0 for some q ≥ 0 such that κ(q) <∞ (e.g. for q = 2), which is realized when∫
P\P1

∞∑
i=2

pqi
(
1− log pqi

)
ν(dp) ≥

(
1

2
σ2 +

∫
P

(1− p1)2 ν(dp)

)
q2.

We distinguish two different regimes for the function q 7→ κ(q)/q:

Lemma 1.2.2. The function q 7→ κ(q)/q is decreasing on (q
¯
, q̄) and increasing on (q̄,∞).

Further, q̄κ′(q̄) = κ(q̄) when q̄ > q
¯
.

In the context of branching random walks, the value κ′(q̄) is the asymptotic velocity of the
maximal displacement logZ1(t); see Figure 1.1 and Section 1.2.3.

κ(q)

κ′(q̄)

q̄q
¯

a. Positive velocity.

κ(q)

q
¯

•

q̄

b. Positive velocity.

κ(q)

•

q
¯
q̄

κ′(q̄)

c. Positive velocity.

Figure 1.1. The cumulant function κ, the points q
¯
, q̄, and the velocity κ′(q̄) = κ(q̄)/q̄.

Proof. On the one hand,
d

dq

[
κ(q)

q

]
=

qκ′(q)− κ(q)

q2
.

On the other hand, the map q 7→ qκ′(q) − κ(q) is increasing on (q
¯
,∞) since κ is convex, so

it has at most one sign change, occurring at q̄ if q̄ > q
¯
. �

Our main result provides sufficient conditions for the convergence of the martingales
(M(t; q))t≥0 uniformly in q ∈ (q

¯
, q̄), both almost surely and in L1(P). Most of the coming

section is devoted to a precise statement and a proof. As consequences, we ascertain the
convergence of a rescaled version of the empirical measure Z t and in Section 1.2.3 we expand
on the asymptotic behavior of the largest fragment. One last application is exposed in
Section 1.2.4.
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1.2.2 Uniform convergence of the additive martingales

In the remaining of Section 1.2 we will make, in addition to (1.4), the assumption that the
dislocation measure ν fulfills

κ(0) ∈ (0,∞], (1.10)

and, for all q
¯
< q < 1,

ν|P\P1

(
∞∑
i=1

pqi < 1

)
< ∞. (1.11)

Condition (1.10) holds e.g. when ν(p2 > 0) > ν(p1 = 0) and merely rephrases that the mean
number µ(R) = m(0) of offspring of particles is greater than 1, i.e. the branching process Z
is supercritical. This implies that the non-extinction event {∀t ≥ 0, Z1(t) > 0} occurs with
positive probability. Condition (1.11) is just a minor technical requirement for the possible
values q < 1 and is fulfilled in many situations: when q

¯
≥ 1, when ν(P \P1) <∞, or more

importantly when the measure ν is conservative, i.e.
∑

i≥1 pi = 1 for ν-almost every p ∈P.
Observe also that in the conservative case, q

¯
< 1 is possible only if (1.2) holds, i.e. Z is

essentially a dilated pure fragmentation.

We may now state:

Theorem 1.2.3. Suppose (1.10) and (1.11). Then the following assertions hold almost
surely:

(i) On (q
¯
, q̄), M(t; ·) converges locally uniformly as t → ∞. More precisely, there exists

a random continuous function M(∞; ·) : (q
¯
, q̄) → [0,∞) such that, for any compact

subset K of (q
¯
, q̄),

lim
t→∞

sup
q∈K
|M(t; q)−M(∞; q)| = 0,

and this convergence also holds in mean. Furthermore for every q ∈ (q
¯
, q̄),M(∞; q) > 0

conditionally on non-extinction.

(ii) For every q ∈ [q̄,∞),
lim
t→∞

M(t; q) = 0.

As a first important consequence, we derive uniform estimates for the empirical measure of
the fragments, which echo those determined by Bertoin and Rouault [32, Corollary 3]. We
shall assume here that the mean intensity measure µ in (1.6) is non-lattice, in that it is not
supported on rZ + s for any r > 0, s ∈ R.
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Corollary 1.2.4. Suppose (1.10), (1.11), and µ non-lattice. Then for any Riemann integrable
function f : (0,∞)→ R with compact support and for all compact subset K of (q

¯
, q̄),

lim
t→∞

√
t e−
(
κ(q)−qκ′(q)

)
t
∞∑
i=1

f
(
Zi(t) e

−κ′(q)t
)

=
M(∞; q)√

2πκ′′(q)

∫ ∞
0

f(y)

yq+1
dy

uniformly in q ∈ K, almost surely.

Remark 1.2.5. We stress that condition (1.11) is unnecessary if we only deal with q ≥ 1.
In particular it may be removed from the above statements provided that we replace q

¯
by

q
¯
∨ 1.

Before proving these two results, let us give a quick summary on the sizes of particles
in a compensated fragmentation. On the one hand, it is easy (see e.g. [21, Corollary 1.4])
to derive from Theorem 1.2.3.(i) that in the first order, the largest particle Z1(t) evolves
like eκ′(q̄)t as t → ∞, and we will have a look at the second and third asymptotic orders
in Section 1.2.3. On the other hand, Corollary 1.2.4 provides the local density of particles at
intermediate scales: if κ′(q

¯
) < a < κ′(q̄) and κ∗(a) := κ(q)− qκ′(q) for κ′(q) := a, then

lim
t→∞

1

t
log #

{
i ∈ N : eat−ε ≤ Zi(t) ≤ eat+ε

}
= κ∗(a)

for every ε > 0, almost surely (just take f(x) := 1[−ε,ε](log x) above). Lastly, we shall observe
in Section 1.2.4 that fragments at untypical levels a > κ′(q̄) appear with a probability that
is roughly of the same order as their expected number (Corollary 1.2.13.(ii)).

Theorem 1.2.3 is essentially a version of a theorem of Biggins [41] in the context of
compensated fragmentations. In this respect, one important requirement to derive part (i)
is that E[M(1; q)γ] <∞ for some γ > 1. We start with a lemma controlling the finiteness of

W γ
ν,q :=

∫
P\P1

∣∣∣∣∣1−
∞∑
i=1

pqi

∣∣∣∣∣
γ

ν(dp).

Lemma 1.2.6. Let q > q
¯
and suppose either (1.11) or q ≥ 1. Then W γ

ν,q < ∞ for some
γ ∈ (1, 2].

Proof. Suppose first q ≥ 1. Then for γ := 2 and for all p ∈P,

0 ≤

(
1−

∞∑
i=1

pqi

)2

≤ (1− pq1)2 ≤ q2 (1− p1)2
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(the last inequality resulting from the convexity of x 7→ xq), so W 2
ν,q <∞ by (1.4). Suppose

now q < 1. Then

W γ
ν,q ≤ ν|P\P1

(
∞∑
i=1

pqi < 1

)
+

∫
P\P1

1{ ∞∑
i=1

pqi≥1

}
(
∞∑
i=1

pqi − 1

)γ
ν(dp).

Under (1.11), W γ
ν,q is finite as soon as the latter integral is finite. But by Jensen’s inequality,

the integrand is bounded from above by(
∞∑
i=2

pip
q−1
i

)γ
≤

∞∑
i=2

p
1+γ(q−1)
i ,

which is ν-integrable if 1 + γ(q − 1) = q − (γ − 1)(1− q) > q
¯
, i.e. provided γ ∈ (1, 2] is close

enough to 1. �

We then derive an upper bound for E[M(t; q)γ] in terms of W γ
ν,q:

Lemma 1.2.7. Suppose that ν(P \P1) < ∞. Then for every q ∈ (q
¯
,∞), γ ∈ (1, 2] and

t ≥ 0,
E[M(t; q)γ] ≤ cγW

γ
ν,q f

(
t, ψ(γq)− γψ(q), κ(γq)− γκ(q)

)
, (1.12)

where ψ is given by (1.5), f(t, x, y) := (etx−ety)/(x−y), and cγ is a finite constant depending
only on γ.

Proof. Lemma 2 in [18] states that the branching Lévy process Z can be obtained by
superposing independent spatial Lévy motions to a “steady” branching random walk.
Specifically, for each t ≥ 0,

Z(t)
d
=
(
eβ1X1(t), eβ2X2(t), . . .

)
,

where X(t) := (X1(t), X2(t), . . .) are the atoms at time t of a homogeneous fragmentation X

with dislocation measure ν|P\P1 and (βi)i∈N is an independent sequence of random variables
with Laplace transform E[exp(qβi)] = exp(tψ(q)), q ≥ 0. Applying Jensen’s inequality and
conditioning on X(t) produce

E

[(
∞∑
i=1

Zq
i (t)

)γ ]
= E

[(
∞∑
j=1

Xq
j (t)

)γ ( ∞∑
i=1

eqβi
Xq
i (t)∑

j X
q
j (t)

)γ ]

≤ E

( ∞∑
j=1

Xq
j (t)

)γ−1 ∞∑
i=1

eγqβiXq
i (t)


= exp

(
tψ(γq)

)
E

[(
∞∑
i=1

Xq
i (t)

)γ ]
. (1.13)



40 CHAPTER 1. ASYMPTOTICS OF GROWTH-FRAGMENTATIONS

We now recall from [23] (see the proof of its Theorem 2) how to estimate the latter
expectation. Denoting

φ(q) :=

∫
P\P1

(
∞∑
i=1

pqi − 1

)
ν(dp) <∞,

the process

N(t; q) := exp
(
−tφ(q)

) ∞∑
i=1

Xq
i (t), t ≥ 0, (1.14)

is a purely discontinuous martingale. It is then deduced from an inequality of Burkholder–
Davis–Gundy that

E[N(t; q)γ] ≤ cγ E[V γ(t; q)],

where cγ <∞ is some constant, and V γ is the γ-variation process of N :

V γ(t; q) :=
∑

0<s≤t

|N(s; q)−N(s−; q)|γ.

Since in this setting

|N(s; q)−N(s−; q)|γ = exp
(
−sγφ(q)

)
Xγq
k (s−)

∣∣∣∣∣1−
∞∑
i=1

pqi

∣∣∣∣∣
γ

,

(s,p, k) ∈ (0, t] × P × N being the atoms of a Poisson random measure with intensity
dt⊗ ν|P\P1 ⊗ ], it follows that V γ has predictable compensator(∫

P\P1

∣∣∣∣∣
∞∑
i=1

1− pqi

∣∣∣∣∣
γ

ν(dp)

)∫ t

0

exp
(
−sγφ(q)

) ∞∑
i=1

Xγq
i (s) ds,

and therefore
E[N(t; q)γ] ≤ cγW

γ
ν,q f

(
t, 0, φ(γq)− γφ(q)

)
. (1.15)

Now recall (1.9), (1.14) and the identity φ(q) + ψ(q) = κ(q) already observed in (1.8).
Multiplying (1.13) by e−tγκ(q) and then reporting the bound (1.15), we end up with

E[M(t; q)γ] ≤ cγW
γ
ν,q f

(
t, ψ(γq)− γψ(q), κ(γq)− γκ(q)

)
,

as desired. �

Putting the previous results together now yields:

Proposition 1.2.8. Let q > q
¯
and suppose either (1.11) or q ≥ 1. Then there exists

γ ∈ (1, 2] such that M(t; q) ∈ Lγ(P) for all t ≥ 0.
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Proof. By Lemma 1.2.6 we can choose γ ∈ (1, 2] such that W γ
ν,q < ∞. Let us first assume

ν(P \P1) <∞, so that we may apply Lemma 1.2.7. Note that

ψ(γq)− γψ(q) =
1

2
σ2(γ − 1)γq2 +

∫
P1

(pγq1 − γp
q
1 + γ − 1) ν(dp),

with
0 ≤ pγq1 − γp

q
1 + γ − 1 = O

(
(1− p1)2

)
.

Then the inequality (1.12) is

E[M(t; q)γ] ≤ cγW
γ
ν,q f

(
t,

1

2
σ2(γ − 1)γq2 +

∫
P1

(pγq1 − γp
q
1 + γ − 1) ν(dp), κ(γq)− γκ(q)

)
,

where f is a continuous function. This bound is finite for each t ≥ 0, and we shall show by
approximation that this also holds when ν(P \P1) = ∞. The measures ν(b), images of ν
by the maps

p 7−→
(
p1, p21{p2>e−b}, p31{p3>e−b}, . . .

)
, b > 0,

define a consistent family of dislocation measures such that ν(b)(P\P1) <∞. Thanks to [18,
Lemma 3] we can consider that Z arises from the inductive limit Z := lim↑Z(b) as b ↑ ∞, where
the Z(b), b > 0, are suitably embedded compensated fragmentations with characteristics
(σ2, c, ν(b)). With obvious notations, we deduce from the monotone convergence theorem
that E[‖Z(b)(t)‖γq`q ] → E[‖Z(t)‖γq`q ] as b → ∞, and from the dominated convergence theorem
that κ(b)(q)→ κ(q) andW γ

ν(b),q
→ W γ

ν,q (working like in the proof of Lemma 1.2.6). The proof
is then completed by Fatou’s lemma. �

We are finally ready to tackle the proof of the convergence of the martingale (M(t; q))t≥0.

Proof of Theorem 1.2.3. Since (M(t; q))t≥0 is a nonnegative càdlàg martingale, its limit
M(∞; q) as t → ∞ exists almost surely. If q ∈ [q̄,∞), then qκ′(q) − κ(q) ≥ 0 so that
condition (3.3) in [39] fails, and therefore M(∞; q) = 0. This proves (ii). For (i), we follow
the lines of [32]. From Proposition 1.2.1 we know that almost surely, for every t ≥ 0 and
(tn, n ∈ N) such that tn ↓ t as n→∞, the sequence of random functions on K

q 7→
(
1 + Z1(tn)

)−q ∞∑
i=1

Zq
i (tn), n ∈ N,

which all are non-increasing because of the leading factors (1+Z1(tn))−q, converges pointwise
to the random continuous function

q 7→
(
1 + Z1(t)

)−q ∞∑
i=1

Zq
i (t).
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By a classical counterpart of Dini’s theorem (see e.g. [97, Problem II.3.127]), the convergence
is actually uniform in q ∈ K. Multiplying by the continuous function q 7→ (1 +

Z1(t))q exp(−tκ(q)) and dealing similarly with the left limits of Z, we can therefore view
(M(t; ·))t≥0 as a martingale with càdlàg paths in the Banach space C(K,R) of continuous
functions on K.

We now observe that the process

Zn =
∞∑
i=1

δlogZi(n), n ∈ N,

is a branching random walk (in discrete time), and check the two conditions to apply the
results of Biggins [41, Theorems 1 & 2]: first, if q ∈ (q

¯
, q̄) then by Proposition 1.2.8 we have

E[M(1; q)γ] <∞ for some γ ∈ (1, 2]; second, using Lemma 1.2.2 we can find α ∈ (1, γ] such
that αq ∈ (q, q̄), hence

m(αq)

m(q)α
= exp

{
αq

(
κ(αq)

αq
− κ(q)

q

)}
< 1. (1.16)

It thus follows that the C(K,R)-valued discrete-time martingale

M(n; ·) : q 7→ exp
(
−nκ(q)

) ∫
eqxZn(dx), n ∈ N,

converges as n → ∞ to a random function M(∞; ·) ∈ C(K,R), almost surely and in mean.
Now, the uniform norm ‖ · ‖ of C(K,R) is a convex map and thus for any integer n ≥ 0 the
process (‖M(t; ·)−M(n; ·)‖)t≥n is a nonnegative submartingale with càdlàg paths. If t ≥ 0

and n is chosen so that n ≤ t < n+ 1, we have in particular

E[‖M(t; ·)−M(n; ·)‖] ≤ E[‖M(n+ 1; ·)−M(n; ·)‖],

and consequently

E[‖M(t; ·)−M(∞; ·)‖] ≤ E[‖M(n+ 1; ·)−M(n; ·)‖] + E[‖M(n; ·)−M(∞; ·)‖].

The convergence in L1(P) of the continuous-time martingale (M(t; ·))t≥0 then follows from
the one in discrete time. The almost sure convergence is established by applying Doob’s
maximal inequality and the Borel–Cantelli lemma, like in the proof of [32]: indeed for every
ε > 0,

P(∃t ≥ n : ‖M(t; ·)−M(n; ·)‖ > ε) ≤ ε−1 E[‖M(∞; ·)−M(n; ·)‖] −−−→
n→∞

0.

We finally deal with the almost sure positivity of the terminal valueM(∞; q) conditionally
on non-extinction. We derive from the branching property at time n that, for every q ∈ (q

¯
, q̄),

P
(
M(∞; q) = 0

∣∣ Zn) =
∏
z∈Zn

Pz(M(∞; q) = 0),
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where by scaling, the probability Pz(M(∞; q) = 0) does actually not depend on the initial
size z. Hence ρ := P(M(∞; q) = 0) = E[ρ#(n)], where #(n) := Zn(R), the number
of particles at time n ∈ N, defines a supercritical Galton–Watson process. Since ρ < 1

(because E[M(∞; q)] = E[M(0; q)] = 1), ρ is its probability of extinction. The two events
{extinction} ⊆ {M(∞; q) = 0} having thus the same probability we conclude that they
coincide up to a negligible event. �

Remark 1.2.9. Under the conditions of Theorem 1.2.3 we have also from [41, Theorem 5]
that for each q ∈ (q

¯
, q̄) and α ∈ (1, γ] as in (1.16), the martingale (M(t; q))t≥0 converges in

Lα(P).

We close this section with the proof of Corollary 1.2.4.

Proof of Corollary 1.2.4. Let us define the tilted measures

Z tq(dx) :=
eqx

m(q)t
Z t(dx), t ≥ 0, and µq(dx) :=

eqx

m(q)
µ(dx).

Using (1.7), µq is a probability measure with mean

cq := m(q)−1 E

[
∞∑
i=1

Zq
i (1) logZi(1)

]
= κ′(q),

and variance

σ2
q := m(q)−1 E

[
∞∑
i=1

Zq
i (1) log2 Zi(1)

]
− c2

q = κ′′(q).

On the one hand, we observe that for every n ∈ N,

e−
(
κ(q)−qκ′(q)

)
n
∞∑
i=1

f
(
Zi(n) e−κ

′(q)n
)

=

∫
R
f(ex) e−qxZnq (ncq + dx).

On the other hand, by a local limit theorem due to Stone [101, Theorem 2],
√
nµ(?n)

q (ncq + dx) ≈ pq

(
x√
n

)
dx, n→∞,

uniformly for x ∈ R and q in compact subsets of (q
¯
,∞), where µ(?n)

q , n ∈ N, is the nth

convolution of µq with itself and pq(x) denotes the Gaussian density with mean 0 and
variance σ2

q . Thanks to the uniform convergence in Theorem 1.2.3, this in terms of the
branching random walk translates into

√
nZnq (ncq + dx) ≈ M(∞; q) pq

(
x√
n

)
dx, n→∞,

uniformly for x ∈ R and q in compact subsets of (q
¯
, q̄), almost surely. The corollary then

results from a Riemann sum argument. We leave details and refer the interested reader to
Corollary 4 in [41] and its “continuous-time” extension discussed on page 150 there. �
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1.2.3 On the largest fragment

Alike the observation made by Bertoin [23, Equation (9)] for pure homogeneous fragmentations,
Theorem 1.2.3 readily reveals the asymptotic velocity of the largest fragment Z1: if P∗ denotes
the probability P conditionally on non-extinction, then

lim
t→∞

1

t
logZ1(t) = κ′(q̄), P∗-almost surely,

where κ′(q̄) = κ(q̄)/q̄ and provided that q̄ > q
¯
. We shall now delve deeper into the analogy

with branching random walks and tell a bit more about the asymptotic expansion of Z1(t).
To this end, we proceed to a renormalization of the branching process Z t: specifically, for

Z̃ t :=
∞∑
i=1

δκ(q̄)t−q̄ logZi(t),

which has the log-Laplace transform

κ̃(q) :=
1

t
logE

[∫
R
e−qy Z̃ t(dy)

]
= κ(qq̄)− qκ(q̄), q ≥ 0,

we are now in the so called boundary case, namely κ̃(0) > 0 and κ̃(1) = κ̃′(1) = 0. Let us
also introduce the process

D(t) :=

∫
R
ye−y Z̃ t(dy) = −q̄ d

dq
M(t; q)

∣∣∣∣
q=q̄

, t ≥ 0,

which is easily seen from the branching property to be a martingale (rightly called the
derivative martingale) and will serve our purpose.

Corollary 1.2.10. Suppose (1.10), (1.11), and q̄ > q
¯
.

(a) Then

lim
t→∞

logZ1(t)− κ′(q̄)t
log t

= − 3

2q̄
, in P∗-probability. (1.17)

(b) If further µ is non-lattice, then there exist a constant C∗ > 0 and a nonnegative random
variable D∞ such that, for every x > 0,

lim
t→∞

P
(
t3/2q̄ e−κ

′(q̄)t Z1(t) ≤ x
)

= E
[
e−C

∗D∞/x
]
. (1.18)

Moreover D∞ > 0, P∗-almost surely.

Remark 1.2.11. (i) Kyprianou et al. [77] recently derived an analogue of (a) for pure
homogeneous fragmentations. However the method we employ here (for both statements)
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is different: basically, we directly transfer the known results on branching random walks
to discrete skeletons of the growth-fragmentation, and then infer the behavior of the whole
process with the help of Lemma 1.2.12 below.

(ii) The logarithmic fluctuations [100, Theorem 5.23] also show that

lim sup
t→∞

logZ1(t)− κ′(q̄)t
log t

≥ − 1

2q̄
, P∗-almost surely

(we conjecture that there is in fact equality), so the convergence (1.17) cannot be
strengthened.

(iii) Other interesting facts from the literature of branching random walks could be inherited.
For instance, by specializing a recent result due to Aïdékon and Shi [100, Theorem 5.29]
one infers a so called Seneta–Heyde renormalization for the convergence of M(t; q̄) in
Theorem 1.2.3.(ii): namely

lim
t→∞

√
tM(t; q̄) =

√
2

πq̄2κ′′(q̄)
D∞, in P∗-probability

(with D∞ as above), and again this convergence cannot be strengthened (the lim sup is
infinite P∗-almost surely).

Lemma 1.2.12 (Croft–Kingman, [73, Theorem 2]). Let f : (0,∞) → R be a continuous
function such that for every h > 0, the sequence f(nh), n ∈ N, converges. Then f(x) has a
limit as x→∞.

Proof of Corollary 1.2.10. Let h > 0 be any fixed time mesh. It is plain from the branching
property that Z̃nh corresponds to the individuals at generation n ∈ N of a branching random
walk on R whose offspring point process is distributed like Z̃h. On the one hand, there is

E
[∫

R
y2 e−y Z̃h(dy)

]
= hκ̃′′(1) = hq̄2κ′′(q̄) < ∞.

On the other hand, with the notation u+ := max(u, 0) for any u ∈ R and

X :=

∫
R
e−y Z̃h(dy) = M(h; q̄), X̃ :=

∫
R
y+ e

−y Z̃h(dy),

Proposition 1.2.8 readily entails that

E
[
X(logX)2

+

]
< ∞ and E

[
X̃(log X̃)+

]
< ∞.
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(For the second, we use that |log(x)| ≤ (xε + x−ε)/ε for every x > 0 and any 0 < ε < q̄ − q
¯
.)

As a result, Assumption (H) of [100, § 5.1] is fulfilled3. From Theorem 5.12 there, we obtain
that for every ε > 0,

P
(∣∣∣∣ logZ1(nh)− κ′(q̄)nh

log nh
+

3

2q̄

∣∣∣∣ > ε

)
−−−→
n→∞

0, for each h > 0.

As the left-hand side is a continuous function of t := nh, the proof of (a) follows from
Lemma 1.2.12. Similarly, when µ is non-lattice, then Z̃h is non-lattice as well and
Theorem 5.15 of [100] (likewise, Theorem 1.1 of [2]) applies: for every y ∈ R and every
h > 0, the quantity

P
(

logZ1(nh)− κ′(q̄)nh+
3

2q̄
log nh ≤ y

)
has a limit as n → ∞. Applying Croft–Kingman’s lemma once more gives the
convergence (1.18), where the limit is e.g. that for h = 1. In (b), the random variable D∞
can be taken as the terminal value of the derivative martingale (D(n), n ∈ N): Theorem 5.2
of [100] shows that it exists almost surely and is positive on non-extinction. That D∞ is at
least nonnegative holds simply because the smallest atom of Z̃n,

κ(q̄)n− q̄ logZ1(n),

is bounded from below by − logM(n; q̄), which tends to ∞ a.s. due to Theorem 1.2.3.(ii). �

1.2.4 On abnormally large fragments

In this last section we give an estimation for the probability of presence of fragments at
scale greater than κ′(q̄) in a compensated fragmentation. We simply perform the very same
analysis as done in [32] for homogeneous pure fragmentations. Let us fix two real numbers
α < β and introduce

U(t, x) := P
(
Z t([x+ α, x+ β]) > 0

)
,

V (t, x) := E
[
Z t([x+ α, x+ β])

]
,

for every t ≥ 0 and x ∈ R.

Corollary 1.2.13. Let q > q
¯
. Suppose (1.10), µ non-lattice, and either (1.11) or q ≥ 1.

3Strictly speaking, [100] also requires a finite branching (Z̃t(R) <∞ a.s.), but this condition turns out to
be unnecessary (see e.g. [84]; besides, it is not needed in the latest version of [2] that we invoke to prove (b),
and the conclusion of (b) obviously implies (a)).
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(i) Then

lim
t→∞

√
t e−
(
κ(q)−qκ′(q)

)
t V
(
t, tκ′(q)

)
=
e−qα − e−qβ

q
√

2πκ′′(q)
.

(ii) If further q > q̄ (so that κ(q)− qκ′(q) < 0), then

lim
t→∞

U
(
t, tκ′(q)

)
V
(
t, tκ′(q)

) = Kq,

where Kq is some positive finite constant.

Remark 1.2.14. In the range q ∈ (q
¯
, q̄), (i) is the counterpart in mean of the convergence

stated in Corollary 1.2.4 for f := 1[α,β]. This convergence thus holds in L1(P) thanks to the
Riesz–Scheffé lemma.

Proof. The proof is a straightforward adaptation of that of Theorem 5 in [32]. In our setting,
we have

a := κ′(q), Λ∗(a) := qκ′(q)− κ(q),

and for any time mesh h > 0,

Λh(q) := logE

[
∞∑
i=1

Zq
i (h)

]
= hκ(q),

by (1.7). From Equation (12) in [31] we readily get

√
nh enhΛ∗(a)V (nh, anh) −−−→

n→∞

e−qα − e−qβ

q
√

2πκ′′(q)
. (1.19)

If furthermore Λ∗(a) > 0 (i.e. q > q̄), then Proposition 1.2.8 ensures that the conditions of
Theorem 2 in [31] are fulfilled and therefore

U(nh, anh)

V (nh, anh)
−−−→
n→∞

K(h)
q , (1.20)

where K(h)
q is a positive constant. Besides, the time mesh h > 0 in (1.19) and (1.20) is

arbitrary and the left-hand sides are both continuous functions of the variable t := nh. The
existence of limits as t → ∞ then comes again from Lemma 1.2.12. (In particular, the
constant K(h)

q in (1.20) does actually not depend on h.) �
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1.3 Self-similar growth-fragmentations

As opposed to the previous part, a self-similar growth-fragmentation will now allow
inhomogeneous fragmentation rates. Loosely speaking, one can picture it as a homogeneous
fragmentation where each fragment is “sped up” all along its history by a fixed power α ∈ R of
its current size. If as before the Laplace transform of the fragment sizes at genealogical births
may be related through a cumulant function κ, self-similarity induces significant changes
when we look at processes over time. Mainly, in the case α > 0 we shall mostly focus on,
where positive growth in the fragments is thus compensated by higher dislocation rates, the
typical sizes will no longer be of exponential order (given through the derivative κ′), but will
instead encounter a polynomial decay of the type t−1/α. Another side effect is that additive
martingales appear less nicely, so specific assumptions will be needed.

1.3.1 Prerequisites

We begin with a quick summary of the construction and important properties of self-similar
growth-fragmentations processes. These were introduced in [19]; greater details as well as
some applications to random planar maps can be found in [24].

Let ξ := (ξ(t), t ≥ 0) be a possibly killed Lévy process and (σ2, b,Λ, k) denote its
characteristic quadruple in the following sense. The Gaussian coefficient σ2 ≥ 0, the drift
coefficient b ∈ R, the Lévy measure Λ (that is, a measure on R with

∫
(1∧y2) Λ(dy) <∞), and

the killing rate k ∈ [0,∞) may be recovered from this slight variation of the Lévy–Khinchin
formula:

E
[
exp
(
qξ(t)

)]
= exp

(
tΨ(q)

)
, t, q ≥ 0,

the Laplace exponent Ψ being written in the form

Ψ(q) := −k +
1

2
σ2q2 + bq +

∫
R

(
eqy − 1 + q(1− ey)

)
Λ(dy), q ≥ 0.

The case Λ((−∞, 0)) = 0 will be uninteresting and is therefore excluded. We shall also
assume that

∫
(1,∞)

ey Λ(dy) <∞ (which always holds when the support of Λ is bounded from
above), and that

k > 0 or
(
k = 0 and Ψ′(0+) ∈ [−∞, 0)

)
(1.21)

(in other words, that Ψ(q) < 0 for some q > 0). This latter condition means that ξ(t) either
has a finite lifetime or tends to −∞ as t → ∞, almost surely. Let now α ∈ R and, for each
x > 0, Px be the law of the process

X(t) := x exp
{
ξ(τxαt)

}
, t ≥ 0,
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where

τt := inf

{
u ≥ 0:

∫ u

0

exp
(
−αξ(s)

)
ds ≥ t

}
,

and with the convention that X(t) := ∂ for t ≥ ζ := x−α
∫∞

0
exp(−αξ(s)) ds. This Lamperti

transform ([78]; see also [76, Theorem 13.1]) makes (X, (Px)x>0) be a positive self-similar
Markov process (for short, pssMp), in the sense that:

For all x > 0, the law of
(
xX(xαt), t ≥ 0

)
under P1 is Px. (1.22)

(Following the terminology in [38], we say that X is a pssMp with index 1/(−α).) Moreover,
this transformation is reversible, and since the law of the Lévy process ξ is uniquely
determined by its Laplace exponent Ψ, the pair (Ψ, α) characterizes the law of X; we call it
the characteristics of the pssMp X. Note that under (1.21), X either is eventually absorbed
to the cemetery point ∂ added to the positive half-line (0,∞), or it converges to 0 as t→∞.

The process X above will portray the typical size of a cell in the system and is thus
referred as the cell process. Specifically, a cell system is a process ((Xu, bu), u ∈ U) indexed
on the Ulam–Harris tree

U :=
∞⋃
i=0

Ni,

with the following classical notations: N0 is reduced to the root of U, labeled ∅, and for
any node u := u1u2 · · ·ui ∈ U in this tree, |u| := i ∈ {0, 1, 2, . . .} refers to its generation (or
height), and u1, u2, . . . to its children. For each u ∈ U, (Xu(t), t ≥ 0) is a càdlàg process on
(0,∞)∪{∂} driven by X and recording the size of the cell labeled by u since its birth time bu,
which shall be implicitly encoded in the notation Xu. In this system X∅ refers to Eve cell, born
at time b∅ := 0, and each negative4 jump of a cell is interpreted as the birth of a daughter cell.
More precisely for every u ∈ U and j ∈ U, Xuj is the process of the jth daughter cell of u, born
at the absolute time buj := bu +βuj, where βuj is the instant of the jth biggest positive jump5

of −Xu. The law Px of X is then defined recursively as the unique probability distribution
such that X∅ has the law Px and, conditionally on X∅, the processes (Xiu, u ∈ U), i ∈ N, are
independent with respective laws Pxi , i ∈ N, where (x1, β1), (x2, β2), . . . is the sequence of
positive jump sizes and times of −X∅, sorted by decreasing sizes (with βi < βi+1 if xi = xi+1).

4In [19], the author only considered spectrally negative Lévy processes so jumps were always of negative
sign. However, allowing the cells to have sudden positive growths during their lifetimes is relevant in some
applications such as those exposed in [24]. Their slightly more general setting, which we have also chosen
to adopt, does not invalidate the results of [19] — the significant point being that only the negative jumps
correspond to division events while the possible positive jumps just remain part of the trajectories of the
cells.

5Recall that the cell process is either absorbed in finite time or converges to 0, so the positive jumps
of −Xu may indeed be ranked in the decreasing order.
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Here, we agree that xi := ∂ and βi :=∞ if X∅ has less than i negative jumps, and we let P∂
denote the law of the degenerate cell system where Xu ··≡ ∂ for every u ∈ U, b∅ := 0 and
bu :=∞ for u 6= ∅.

The associated growth-fragmentation process is the process of the family of (the sizes of)
all alive cells in the system:

X(t) :=
{{
Xu(t− bu) : u ∈ U, bu ≤ t < du

}}
, t ≥ 0

(with bu and du denoting respectively the birth time and the death time of the cell labeled
by u). Additionally to the scaling parameter α, one other specific quantity is

κ(q) := Ψ(q) +

∫
(−∞,0)

(1− ey)q Λ(dy), q ≥ 0.

If α = 0 and Λ has support in [− log 2, 0], then [19, Proposition 3] X is merely a compensated
fragmentation of the type considered in Section 1.2, and the notation κ there is compatible
with the one we use here: more precisely, X has diffusion coefficient σ2, growth rate b and
dislocation measure ν := k δ0+ν2, where 0 := (0, 0, . . .) ∈P is the null mass-partition and ν2

is the image of Λ by the map x ∈ [− log 2, 0] 7→ (ex, 1− ex, 0, . . .) ∈P (the fragmentation is
binary).

We shall work under the assumption

∃q ≥ 0, κ(q) ≤ 0, (1.23)

see [19, Theorem 2]. Then for each time t, the family X(t) may be ranked in the non-
increasing order, i.e. X(t) := (X1(t), X2(t), . . .) with X1(t) ≥ X2(t) ≥ · · · ≥ 0. Further,
the self-similarity property (1.22) extends to the process X := (X(t), t ≥ 0), and there is
the branching property. Formally, if Px denotes the law of X under Px, then firstly, for
every x > 0, the distribution of (xX(xαt), t ≥ 0) under P1 is Px, and secondly, for each
s ≥ 0, conditionally on X(s) = (x1, x2, . . .), the process (X(t + s), t ≥ 0) is independent
of (X(r), 0 ≤ r ≤ s) and has the same law as the non-increasing rearrangement of the
family (X

(i)
j , i, j ∈ N), where the X(i) are independent self-similar growth-fragmentations

with respective laws Pxi .

In the sequel we mainly focus on large time asymptotics for the growth-fragmentation
process X. Since we can refer to Section 1.2 when α = 0, and because the growth-
fragmentation is eventually extinct when the scaling parameter α is negative [19, Corollary 3],
we will mostly suppose α > 0. Note in this case that (1.23) is a necessary and sufficient
condition preventing local explosion of the fragmentation [33], that is a phenomenon causing
infinitely many particles of arbitrary large sizes to be produced in almost surely finite time



1.3. SELF-SIMILAR GROWTH-FRAGMENTATIONS 51

(which in particular would impede us to list the elements of X(t) in the non-increasing order).
Like in Section 1.2, the function κ : [0,∞)→ (−∞,∞] will be of greatest importance in the
study. It is clearly convex; therefore the equation κ(q) = 0 has at most two solutions. We
assume from here on that these two solutions exist — more precisely that the Malthusian
hypotheses hold:

there exist 0 < ω− < ω+ such that κ(ω−) = κ(ω+) = 0 and κ′(ω−) > −∞ (1.24)

(note then that κ′(ω−) < 0, by convexity). Condition (1.24) implies that κ(q) < 0 for some
q > 0, which in turn implies (1.23), and (1.21) (because Ψ ≤ κ).

As before, limit theorems for the growth-fragmentation processX will involve the terminal
value of some additive martingale, namely the Malthusian martingale

M−(t) :=
∞∑
i=1

X
ω−
i (t), t ≥ 0.

In this direction, results of [24] will be of fundamental use; we restate some of them here for
sake of reference.

Proposition 1.3.1 (from [24, Theorem 3.10.(ii), Corollaries 3.7.(ii) and 3.9]).

Suppose α > 0.

(i) The process (M−(t), t ≥ 0) under Px is a uniformly integrable martingale; more
precisely it is bounded in Lp(Px) for every 1 < p < ω+/ω−.

(ii) For every 0 < q < (ω+ − ω−)/α, the process

∞∑
i=1

X
qα+ω−
i (t), t ≥ 0,

is a supermartingale converging to 0 in L1(Px): more precisely,

Ex

[
∞∑
i=1

X
qα+ω−
i (t)

]
∼ c(q)xω− t−q

as t→∞, for some constant c(q) > 0.

Remark 1.3.2. We find relevant to mention that [24] also introduced the genealogical
martingale

M−(n) :=
∑
|u|=n+1

X ω−
u (0), n ≥ 0,
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called the intrinsic martingale, which under Px is always uniformly integrable. When α ≥ 0,
there is the remarkable fact

M−(t) = Ex
[
M−(∞)

∣∣ Ft], t ≥ 0,

with (Ft)t≥0 the canonical filtration of X. In particular, M−(∞) =M−(∞) almost surely.

Additive martingales — in the present context, the Malthusian martingale (M−(t))t≥0,
are of important interest since the celebrated work of Lyons et al. [83]. Roughly speaking,
one can perform a change of probability measure in terms of the terminal value M−(∞) so
that the genealogical system may be observed from the point of view of a randomly tagged
branch. Specifically, write ∂U for the set of leaves of U, each of which determines a unique
branch from the root. For every leaf ` ∈ ∂U, let `(n) denote its unique ancestor at generation
n ≥ 0, and X` := (X`(t), t ≥ 0) be the process of the cell on the branch from ∅ to `:

X`(t) := X`[t](t− b`[t]), t ≥ 0,

where `[t] labels the cell in this branch which is alive at time t (i.e. `[t] is the unique ancestor u
of ` such that bu ≤ t < b`(|u|+1)), with the convention that X`(t) := ∂ for t > lim↑n→∞ b`(n) =:

b`. Next we consider a random leaf L ∈ ∂U and we define for every x > 0 the joint
distribution P̂−x of (X ,L) as follows. Under P̂−x , the law of X := (Xu, u ∈ U) is absolutely
continuous with respect to Px with density x−ω−M−(∞), and the law of L conditionally on X
is

P̂−x (u ancestor of L | X ) := lim
n→∞

1

M−(∞)

∑
|v|=n

X ω−
uv (0). (1.25)

Denoting X̂ := XL the randomly tagged cell, Bertoin et al. [24] derived:

Proposition 1.3.3 (from [24, Theorem 4.7 and Proposition 4.6]).

(i) The process (X̂ , (P̂−x )x>0) is a pssMp with characteristics (Φ−, α), where

Φ−(q) := κ(q + ω−), q ≥ 0. (1.26)

(ii) Many-to-one formula. For every x > 0, every t ≥ 0, and every measurable function
f : (0,∞)→ (0,∞), we have

Ex

[
∞∑
i=1

X
ω−
i (t) f

(
Xi(t)

)]
= xω− Ê−x

[
f
(
X̂ (t)

)]
, (1.27)

with the convention f(∂) := 0.
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Formula (1.27) will be a key ingredient for our purpose. Roughly speaking, it says that the
intensity of the weighted point measure

∑
z∈X z

ω−δz is captured by the law of the randomly
tagged cell X̂ (hence the denomination “many-to-one”).

When α > 0, unlike in the homogeneous case, a polynomial decrease in the size of the
fragments is expected. Large-time asymptotics for their empirical measure will be retrieved
in the next section. In Section 1.3.3 we center our attention on the largest fragment. Lastly,
in Section 1.3.4, we discuss the convergence of the empirical measure of the fragments taken
at the instant when they become smaller than a vanishing threshold.

1.3.2 Convergence of the empirical measure

We are here especially interested in the convergence of the empirical measure ρ(α)
t given by〈

ρ
(α)
t , f

〉
:=

∞∑
i=1

X
ω−
i (t) f

(
t1/αXi(t)

)
,

for α > 0. From now on, we shall suppose that the Lévy process ξ− associated with the
tagged cell X̂ via Lamperti’s transformation is not arithmetic, in the sense that there is no
r > 0 such that P(ξ−(t) ∈ rZ) = 1 for all t ≥ 0. To state our result, let us define the
probability distribution ρ on (0,∞) by∫ ∞

0

f(y) ρ(dy) :=
−1

ακ′(ω−)
E
[
I−1 f

(
I1/α

)]
,

where
I :=

∫ ∞
0

exp
(
αξ−(s)

)
ds (1.28)

is the so called exponential functional of αξ−. The following completes the results of
Bertoin [23] and Bertoin and Gnedin [26] relative to self-similar pure fragmentations, and
differs substantially from the homogeneous case (Corollary 1.2.4).

Theorem 1.3.4. For every 1 < p < ω+/ω− and for every bounded continuous function
f : (0,∞)→ R,

lim
t→∞

〈
ρ

(α)
t , f

〉
= M−(∞)

∫ ∞
0

f(y) ρ(dy), in Lp(P1).

Consequently, the random measure ρ(α)
t converges in P1-probability to M−(∞) ρ as t→∞,

in the space of finite measures on (0,∞) endowed with the topology of weak convergence.

Remark 1.3.5. Note the presence of the random factor M−(∞), which does not appear
in [23] because the Malthusian martingale is trivial for conservative pure fragmentations6.

6Since then the cumulant function vanishes at 1 and the total mass of the fragments at any generation is
constant.
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It does nonetheless appear in the non-conservative case [26]; however the method used there
leads to a L2-convergence that we cannot hope for growth-fragmentations when ω+/ω− < 2,
and it seems anyway difficult to generalize.

Exponential functionals of Lévy processes such as (1.28) arise in a variety of contexts and
their laws have been widely studied, see the survey [37] and the recent works [90, 93, 91, 8].
In particular, Pardo et al. [90] showed that under mild assumptions, they can be factorized
into the product of two independent exponential functionals associated with companion Lévy
processes, and the distributions of both these functionals are uniquely determined by either
their positive or their negative moments. To name just one example, in the common situation
where ξ− is spectrally negative (Λ((0,∞)) = 0), we have [90, Corollary 2.1] that I d

= J/Γ,
with J the exponential functional of the descending ladder height process of αξ− and Γ an
independent Gamma random variable with parameter (ω+−ω−)/α. Further, the density of I
has a polynomial tail of order 1 + (ω+ − ω−)/α and admits a semi-explicit series expansion.

The distribution of I (likewise, ρ) naturally takes part in asymptotics of the tagged cell X̂ :

Lemma 1.3.6. As t→∞, the random variable t1/αX̂ (t) under P̂−1 converges in distribution
to ρ. Moreover,

∫∞
0
yqα ρ(dy) <∞ for every 0 ≤ q < 1 + (ω+ − ω−)/α.

Proof. Clearly, (1/X̂ (t), t ≥ 0) is a pssMp with self-similarity index 1/α associated with −ξ−,
where ξ− is a Lévy process with the Laplace exponent Φ− in (1.26). According to [38,
Theorem 1], all we need to check to prove the first part of the statement is that −ξ−(1) admits
a finite and positive first moment, which is implied by the Malthusian hypotheses (1.24):
indeed,

E[−ξ−(1)] = −(Φ−)′(0+) = −κ′(ω−) ∈ (0,∞).

The existence of moments is quite straightforwardly adapted from the proof of [37,
Theorem 3]. �

We now turn to the proof of Theorem 1.3.4, arguing along the lines of [21, Theorem 1.3].
The main idea is that, by the branching and scaling properties, the empirical measure of
the fragments can be rewritten as the sum of identically distributed pieces arising from an
intermediate (arbitrary large) time, which are all independent conditionally on the past.
With the help of a (conditional) law of large numbers, we are then reduced to a first moment
estimate for some additive functional of the growth-fragmentation, which we can work out
thanks to the many-to-one formula and the asymptotic behavior of the tagged fragment
above.



1.3. SELF-SIMILAR GROWTH-FRAGMENTATIONS 55

Proof of Theorem 1.3.4. Using the branching property at time t and the self-similarity of X
we can write, on the event {X(t) = (x1, x2, . . .)},〈

ρ
(α)

t+t2 , f
〉

:=
∞∑
i=1

X
ω−
i

(
t+ t2

)
f
((
t+ t2

)1/α
Xi

(
t+ t2

))
=

∞∑
i=1

λi(t)Yi(t),

where λi(t) := X
ω−
i (t) = x

ω−
i and

Yi(t) :=
∞∑
j=1

X
ω−
i,j

(
xαi t

2
)
f
((
t+ t2

)1/α
xiXi,j

(
xαi t

2
))
, (1.29)

the families (Xi,1, Xi,2, . . .), i ≥ 1, being i.i.d. copies independent of X, having all the same
law P1. Clearly, the Yi are independent conditionally on λ(t) := (λ1(t), λ2(t), . . .) and, if we
introduce

Ȳi := ‖f‖∞ sup
t≥0

∞∑
j=1

X
ω−
i,j (t),

then thanks to Proposition 1.3.1.(i) and Doob’s maximal inequality, the Ȳi are i.i.d. random
variables in Lp(P1) such that |Yi(t)| ≤ Ȳi for all t ≥ 0. For the same reason,

sup
t≥0

E1

[(
∞∑
i=1

λi(t)

)p]
< ∞

and further, using Proposition 1.3.1.(ii),

lim
t→∞

E1

[
∞∑
i=1

λpi (t)

]
= 0.

By a variation of the law of large numbers ([89]; see also [21, Lemma 1.5]) we then have

lim
t→∞

∞∑
i=1

λi(t)
(
Yi(t)− E1[Yi(t) | λ(t)]

)
= 0, in Lp(P1).

Consequently, the proof boils down to showing that

lim
t→∞

∞∑
i=1

λi(t)E1[Yi(t) | λ(t)] = M−(∞)

∫ ∞
0

f(y) ρ(dy), in Lp(P1), (1.30)

where, applying the many-to-one formula (1.27),

E1[Yi(t)
∣∣ λ(t)] = Ê−1

[
f
(

(1 + t−1)1/α xi t
2/α X̂ (xαi t

2)
)]
.

But we know from Lemma 1.3.6 that as s → ∞, the law of s1/αX̂ (s) under P̂−1 converges
weakly to ρ. On the one hand, it thus follows that

Ê−1
[
f
(

(1 + t−1)1/α xi t
2/α X̂ (xαi t

2)
)]
−−−→
t→∞

∫ ∞
0

f(y) ρ(dy)
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uniformly in i such that, say, xαi t2 >
√
t, i.e. xi > t−3/2α. On the other hand, applying

again (1.27), the quantity
∞∑
i=1

X
ω−
i (t)1{Xi(t)≤t−3/2α} (1.31)

has, under P1, mean
P̂−1
(
t1/αX̂ (t) < t−1/2α

)
,

which tends to 0 as t→∞. Since (1.31) is bounded in Lq(P1) for every p < q < ω+/ω−, it also
converges to 0 in Lp(P1) (by Hölder’s inequality). Putting everything together yields (1.30),
and thus the first part of the statement.

The second part is derived from standard arguments: the space Cc((0,∞)) of continuous
functions on (0,∞) with compact support being separable, a diagonal extraction procedure
easily entails, for every sequence tn → ∞, that there exists an extraction σ : N → N such
that, almost surely,

∀f ∈ Cc((0,∞)),
〈
ρ

(α)
tσ(n)

, f
〉
−−−→
n→∞

M−(∞)

∫ ∞
0

f(y) ρ(dy),

i.e. ρ(α)
tσ(n)

converges vaguely to M−(∞) ρ, a.s. Since the total mass is conserved, that is

〈
ρ

(α)
t , 1

〉
=
∞∑
i=1

X
ω−
i (t) −−−→

t→∞
M−(∞) =

〈
M−(∞) ρ, 1

〉
a.s.,

the convergence of ρ(α)
tσ(n)

toward M−(∞) ρ is actually weak. The conclusion follows easily. �

The existence of moments for ρ (Lemma 1.3.6) allows us to strengthen Theorem 1.3.4:

Corollary 1.3.7. For every 0 < q < (ω+−ω−)/α, every measurable function f : (0,∞)→ R
such that f(y) = O(yqα), and every 1 < p < ω+/(qα + ω−),

lim
t→∞

〈
ρ

(α)
t , f

〉
= M−(∞)

∫ ∞
0

f(y) ρ(dy), in Lp(P1).

Proof. Approximating y 7→ y−qαf(y) by simple functions, it is enough to do the proof for
f = fq : y 7→ yqα, that is to prove:

lim
t→∞

tq
∞∑
i=1

X
qα+ω−
i (t) = M−(∞)

∫ ∞
0

yqα ρ(dy), in Lp(P1).

This is of course not a direct consequence to Theorem 1.3.4 because fq is not a bounded
continuous function; nevertheless we can repeat the argument used in the previous proof.
Observing that qα+ω− ∈ (ω−, ω+) and defining Yi(t) as in (1.29) but with fq in place of f , we
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easily check with the help of Proposition 1.3.1 and Hölder’s inequality that conditionally onX,
the Yi are independent supermartingales bounded in Lp(P1) for every 1 < p < ω+/(qα+ω−).
Therefore, all that remains to show is the convergence

tq E1

[
∞∑
i=1

X
qα+ω−
i (t)

]
= Ê−1

[(
t1/αX̂ (t)

)qα ]
−−−→
t→∞

∫ ∞
0

yqα ρ(dy),

where the equality is just an application of the many-to-one formula (1.27). Since we already
know that t1/αX̂ (t) converges in distribution toward ρ (Lemma 1.3.6), it suffices to show
that ((t1/αX̂ (t))qα)t≥0 is bounded in Lr(P̂−1 ) for some r > 1, which is immediate using again
the many-to-one formula and the convergence rate in Proposition 1.3.1.(ii) (we can take
1 < r < (ω+ − ω−)/qα). �

1.3.3 Asymptotic behavior of the largest fragment

For pure self-similar fragmentations with scaling parameter α > 0, it is known [23] that the
size of the largest fragment decreases like t−1/α as t → ∞. The same holds for growth-
fragmentations7:

Theorem 1.3.8. Assume again (1.24), α > 0, and that ξ− is not arithmetic, and suppose
further that Λ((0,∞)) = 0. Let S := {∀t ≥ 0, X(t) 6= ∅} be the non-extinction event, and
P∗ := P1( · | S). Then

lim
t→∞

logX1(t)

log t
= − 1

α
, in P∗-probability.

Proof of the lower bound. The fact that the P∗-lim inf of logX1(t)/ log t as t → ∞ is at
least −1/α follows by comparison with the randomly tagged cell X̂ . Indeed, we know by
Lemma 1.3.6 that log X̂ (t)/ log t converges to −1/α in P̂−1 -probability. Because X1(t) is the
size of the largest fragment and X̂ (t) is that of some other fragment in the system, we deduce
that for every η > 0,

P̂−1
(

logX1(t)

log t
+

1

α
< −η

)
≤ P̂−1

(
log X̂ (t)

log t
+

1

α
< −η

)
−−−→
t→∞

0.

Since dP̂−1 /dP1 = M−(∞), which by the branching property is positive P1-a.s. on S, the
latter convergence also holds with P∗ in place of P̂−1 . �

7For simplicity, we suppose that the cell process has no positive jumps, though this restriction is probably
superfluous.
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Figure 1.2. Simulation of − logX1 in a self-similar growth-fragmentation process with
scaling α = 2. (The dashed line represents the map t 7→ 1

α
log t.)

For the other direction, we need to make sure that asymptotically, if the largest
fragment ever exceeds the level t−1/α, it is unlikely that one of its parents has gone
far below this level before t. To this end, we write X1(t) := Xu∗(t)(t − bu∗(t)) with
u∗(t) := arg maxu∈U,bu≤t<du Xu(t− bu) (in case of ex aequo, we choose u∗(t) to be minimal in
lexicographic order), and introduce the event

Ht(ε) : Xv(s− bv) < ε, for some time s and ancestor v 4 u∗(t) with bv ≤ s < dv ∧ t.

The following statement is tailored for our purpose.

Proposition 1.3.9. There exists θ ≥ ω+ such that{
sup
x>1

, lim
x→∞

}
1

log x
logP1

(
sup
s≥0

X1(s) > x

)
= −θ. (1.32)

Furthermore, for every γ, ε ∈ (0, 1) and every t > 0,

P1

(
Ht(ε), X1(t) > εγ

)
≤ ε(1−γ)θ.

Proof. We may assume α = 0 as the statement does not depend on α. The first assertion is
a large deviation estimate for the probability F (x) that T+(x) <∞, where T+(x) := inf{s ≥
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0: X1(s) > x}. To eventually obtain a fragment larger than xy in the growth-fragmentation,
for x, y > 1, it is enough that the largest particle X1 first reaches some level z > x, and that
the subsequent fragmentation of this particle produces a fragment with size larger than xy.
But by scaling we have, for any z > x,

Pz
(
T+(xy) <∞

)
= P1

(
T+(xy/z) <∞

)
= F

(
xy/z

)
≥ F (y) = P1

(
T+(y) <∞

)
,

so that the branching property at T+(x) yields, since z := X1(T+(x)) > x on the event
{T+(x) <∞},

F (xy) = P1(T+(xy) <∞) ≥ E1

[
1{T+(x)<∞}F

(
xy/X1

(
T+(x)

))]
≥ F (x)F (y).

Eq. (1.32) then arises from the subadditive lemma (see e.g. [75, Theorem 16.2.9]). The lower
bound θ ≥ ω+ is just a consequence of Doob’s maximal inequality applied to the process

M+(s) :=
∞∑
i=1

X
ω+

i (s), s ≥ 0,

which [24, Corollary 3.7.(i)] is a martingale (for α = 0): namely

F (x) = P1

(
sup
s≥0

X1(s) > x

)
≤ P1

(
sup
s≥0

M+(s) > xω+

)
≤ x−ω+ , x > 1.

Next, we take x := εγ−1 and apply again the scaling property: we deduce that, for every
0 < y < ε,

F (εγ/y) = Py
(

sup
s≥0

X1(s) > εγ
)
≤ ε(1−γ)θ.

But the event Ht(ε) holds precisely when the cell process following the ancestral lineage
of u∗(t) has reached a value 0 < y < ε before t. Using the branching property at the first
time this happens, the second assertion is then easily proved. �

We can now derive the upper bound and complete the proof of Theorem 1.3.8.

Proof of the upper bound. Let 0 < η < 1 and observe that δ := η − (1 − η)(1 − γ)/γ lies
in (0, η) for any γ ∈ (1 − η, 1) arbitrarily fixed. Define ε := t−(1−δ)/α for t > 1, so that
εγ = t−(1−η)/α, and

P1

(
X1(t) > t−(1−η)/α

)
= P1(X1(t) > εγ)

= P1

(
Ht(ε), X1(t) > εγ

)
+ P1

(
Ht(ε)

{, X1(t) > εγ
)
.

By Proposition 1.3.9,

P1

(
Ht(ε), X1(t) > εγ

)
≤ t−(1−δ)(1−γ)θ/α −−−→

t→∞
0.
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To estimate the second term, we shall exploit the fact that a self-similar growth-fragmentation
can be constructed from a homogeneous one by performing an appropriate Lamperti time-
substitution on each cell in the system (see [19, Corollary 2] or [33, Section 2.1]). Specifically,
there exists a cell system Z := ((Zu, βu) : u ∈ U), with same cumulant function κ, such that
every element in X(t) with label v ∈ U equals Zu(τ −βu) for some u ∈ U and τ ≥ 0 fulfilling

τ =

∫ t

0

(
Xv̄(s)

(
s− bv̄(s)

))α
ds, (1.33)

where v̄(s) labels the cell in X corresponding to the unique ancestor of v that is alive at
time s. Further, the connection with compensated fragmentations [19, Proposition 3] entails
that for every q ≥ 0 with κ(q) <∞,

E1

[∑
u∈U

(
Zu(τ − βu)

)q]
= exp

(
τκ(q)

)
.

On the one hand, if Z1(τ) denotes the size of the largest cell at time τ in Z, then Markov’s
inequality yields

P1(Z1(τ) > εγ) ≤ ε−γq exp
(
τκ(q)

)
.

On the other hand, if we purposely take v := u∗(t) then, on the complementary event of
Ht(ε), we have Xv̄(s)(s − bv̄(s)) ≥ ε for all s ∈ [0, t) and thus, by (1.33), X1(t) = Zu(τ − bu)
with τ ≥ t εα = tδ. Hence, fixing q ∈ (ω−, ω+) (so that κ(q) < 0),

P1

(
Ht(ε)

{, X1(t) > εγ
)
≤ P1

(
Z1(τ) > εγ

)
≤ tq(1−η)/α exp

(
tδκ(q)

)
−−−→
t→∞

0.

Putting the two pieces together we have just showed that, for every 0 < η < 1,

P1

(
logX1(t)

log t
+

1

α
>
η

α

)
−−−→
t→∞

0,

which is the upper bound we wanted. �

1.3.4 Freezing the fragmentation

Suppose now that we “freeze” every cell as soon as its size falls under a fixed diameter ε > 0

(which may occur at birth), in the sense that frozen cells no longer grow or split. To put
things more formally we need a more chronological point of view in the cells genealogy.
For this reason we suppose that the growth-fragmentation has been constructed as in [33,
Section 2.1], where cells are now labeled on the infinite binary tree

B :=
∞⋃
n=0

{1, 2}n ⊂ U.
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Roughly speaking, any jump from a size x > 0 to some smaller size x − y ∈ (0, x) of a cell
with label, say, u ∈ B, causes the death of that cell while at the same time two independent
cells labeled by u1 and u2 are born with initial sizes x− y and y respectively. We implicitly
reuse the notations of Section 1.3.1 within this new description, e.g. Px is the distribution
of the cell system X := (Xu : u ∈ B) when the mother cell starts at size x > 0 (i.e. has the
law Px). Analogously, ` ∈ ∂B refers to a leaf of B, and `[t] and X`(t) respectively denote the
label and the process of the unique cell in the branch from ∅ to ` that is alive at time t. Let
us then introduce the first passage times

Tv(ε) := inf
{
t ≥ 0: Xv(t) < ε

}
, v ∈ B ∪ ∂B,

so that the family of frozen cells can be defined as{
x i,ε
}∞
i=1

:=
(
Xu
(

Tu(ε)
)

: u ∈ B(ε)
)
,

with B(ε) := {u ∈ B : u = `[T`(ε)] for some ` ∈ ∂B}. Note that this procedure of freezing
cells does not depend on the scaling parameter α of the growth-fragmentation (changing α
just affects the speed at which particles get frozen). It is proved [24, Proposition 2.5] that
for each x > 0, the process of the sum of the sizes of frozen cells raised to the power ω−,

M −(ε) :=
∞∑
i=1

x ω−i,ε , 0 < ε ≤ x,

is a backward martingale converging to M−(∞) as ε→ 0+, almost surely and in L1(Px). In
the same vein as in [30], we investigate the empirical measure ϕ(ε) defined by

〈
ϕ(ε), f

〉
:=

∞∑
i=1

x ω−i,ε f
(x i,ε
ε

)
.

Again, we let ξ− denote the Lévy process with Laplace exponent Φ− associated with the
pssMp X̂ via Lamperti’s transformation; see (1.26). We can check that its Lévy measure Λ−

is given by∫
R
g(y) Λ−(dy) =

∫
R

[
eyω−g(y) + 1{y<0}(1− ey)ω−g

(
log(1− ey)

)]
Λ(dy),

see [76, Theorem 3.9].

Theorem 1.3.10. Suppose (1.24), Λ((0,∞)) = 0, and that ξ− is not arithmetic. Then as
ε → 0+, the random measure ϕ(ε) converges in P1-probability to M−(∞)ϕ, where ϕ is a
deterministic probability measure on (0, 1) specified by〈

ϕ, f
〉

:=
ω+ − ω−
−κ′(ω−)

∫∫
(−∞,0)2

f(ex) e(ω+−ω−)y Λ−
(
(−∞, x+ y)

)
dxdy. (1.34)
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Proof. As said previously we may suppose α = 0, so that X̂ is just the exponential of ξ−.
After Jagers [70], we can see that the random set B(ε) ⊂ B is a so called optional line
for which the strong branching property holds — intuitively, freezing the cells below ε is
equivalent to freezing those which would descend from a family of cells that have first been
frozen below ε+ δ, with δ > 0 fixed. Specifically, by choosing δ :=

√
ε− ε for 0 < ε < 1 and

scaling, we can write 〈
ϕ(ε), f

〉
=
∞∑
i=1

x ω−
i,
√
ε︸︷︷︸

λi(ε)

∞∑
j=1

x ω−i,j,εif
(x i,√ε x i,j,εi

ε

)
︸ ︷︷ ︸

Yi(ε)

,

where conditionally on λ(ε) := (λi(ε))i≥1, the {x i,j,εi}
∞
j=1, i = 1, 2, . . ., are independent

cell families respectively frozen below εi := ε/x i,√ε. For every 1 < p < ω+/ω−,
(conditional) Jensen’s inequality easily shows that the closed martingale M −(ε) is bounded
(by E1[M−(∞)p]) in Lp(P1). Hence

sup
0<ε<1

E1

[(
∞∑
i=1

λi(ε)

)p]
< ∞,

and, because E1[M −(ε)] = E1[M−(∞)] = 1,

E1

[
∞∑
i=1

λpi (ε)

]
≤ ε(p−1)ω− −−−→

ε→0+
0.

The proof then continues like that of Theorem 1.3.4. Similarly to the many-to-one formula,
Lemma 1.3.11 below gives

E1

[〈
ϕ(ε), f

〉]
= Ê−1

[
f
(
X̂
(

TL(ε)
)
/ε
)]
,

where TL(ε) = inf{t ≥ 0: X̂ (t) < ε}. It thus remains to find the distributional limit
of X̂ (TL(ε))/ε as ε → 0+. Observe that up to taking the inverse exponential, this
random variable corresponds to the overshoot above − log ε of the spectrally positive Lévy
process −ξ−, which drifts to ∞ a.s. (since E[−ξ−(1)] = −(Φ−)′(0+) = −κ′(ω−) ∈ (0,∞)).
By a classical result of renewal theory (see e.g. [43] or [76, Theorem 5.7]) we have, for every
continuous function g : (0,∞)→ R with compact support,

E
[
g
(
−ξ− − (− log ε)

)]
−−−→
ε→0+

1

µ

∫
(0,∞)2

g(x) Π(y + dx)dy, (1.35)

with Π and µ respectively the jump measure and the expectation at time 1 of the ascending
ladder height process associated with −ξ−. On the one hand, from [52, Corollary 4.4.4.(iv)]
we get

µ =
E[−ξ−(1)]

k∗
,
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where k∗ is the killing rate of the ascending ladder height process associated with ξ−, and
equals the right inverse at 0 of the Laplace exponent Φ− (see for instance [76, Example 6.11]):

k∗ = sup
{
t ≥ 0: Φ−(t) = 0

}
= ω+ − ω−.

On the other hand, we know since the work of Vigon [103] (see also [76, Corollary 7.9]) that Π

fulfills
Π
(
(y,∞)

)
=

∫ ∞
0

e−k
∗xΛ−

(
(−∞,−x− y)

)
dx, y > 0.

An easy computation then enables us to identify the right-hand sides of (1.34) and (1.35)
(with g(x) := f(e−x)). �

Lemma 1.3.11. For every x > 0 and every bounded measurable function f : (0,∞)→ R,

Ex

 ∑
u∈B(ε)

X ω−
u

(
Tu(ε)

)
f
(
Xu
(

Tu(ε)
)) = xω− Ê−x

[
f
(
X̂
(

TL(ε)
))]

,

with the usual convention f(∂) := 0.

Proof. We slightly adapt the proof of [24, Proposition 4.1]. To this end, recall the intrinsic
martingale M− evoked in Remark 1.3.2 and, in the paragraph following that remark, the
definition of the randomly tagged branch L. It is here convenient to write u � B(ε) if u ∈ B
stems from a (unique) node in B(ε) that we then call ū (i.e. ū ∈ B(ε) is a prefix of u). The
(conditional) distribution of L in (1.25) gives

Ê−x
[
f
(
X̂
(

TL(ε)
))
1{L(k+1)�B(ε)}

]
= Ê−x

 ∑
|u|=k+1

1{u�B(ε)}1{u ancestor of L} f
(
Xū
(

Tū(ε)
))

= Ê−x

[
1

M−(∞)
lim
n→∞

∑
|u|=k+1
|v|=n

1{u�B(ε)}X ω−
uv (0) f

(
Xū
(

Tū(ε)
))]

.

Rewriting the latter in terms of Px simplifies outM−(∞). The branching property at u and
the martingale property ofM− then entail

Ê−x
[
f
(
X̂
(

TL(ε)
))
1{L(k+1)�B(ε)}

]
= x−ω−Ex

 ∑
|u|=k+1

1{u�B(ε)}X ω−
u (0) f

(
Xū
(

Tū(ε)
)).

If we now gather the nodes u which have the same ancestor v := ū ∈ B(ε) and repeat the
previous argument, we obtain

Ê−x
[
f
(
X̂
(

TL(ε)
))
1{L(k+1)�B(ε)}

]
= x−ω−Ex

∑
|v|≤k

1{v∈B(ε)}X ω−
v

(
Tv(ε)

)
f
(
Xv
(

Tv(ε)
)).
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Since the event {L(k+ 1) � B(ε)} must occur for k large enough when limt→∞ X̂ (t) = 0 and
f(∂) = 0 anyway, letting k →∞ yields the result by dominated convergence. �



2
Self-similar growth-fragmentations as scaling
limits of Markov branching processes

This chapter is a reproduction of the article [50].

We provide explicit conditions, in terms of the transition kernel of its driving particle, for a
Markov branching process to admit a scaling limit toward a self-similar growth-fragmentation
with negative index. We also derive a scaling limit for the genealogical embedding considered
as a compact real tree.

2.1 Introduction

Imagine a bin containing n balls which is repeatedly subject to random (binary) divisions at
discrete times, until every ball has been isolated. There is a natural random (binary) tree
with n leaves associated with this partitioning process, where the subtrees above a given
height k ≥ 0 represent the different subcollections of all n balls at time k, and the number
of leaves of each subtree matches the number of balls in the corresponding subcollection.
The habitual Markov branching property stipulates that these subtrees must be independent
conditionally on their respective size. In the literature on random trees, a central question is
the approximation of so called continuum random trees (CRT) as the size of the discrete trees
tends to infinity. We mention especially the works of Aldous [5, 4, 6] and Haas, Miermont,
et al. [65, 87, 66, 64, 63]. Concerning the above example, Haas and Miermont [63] obtained,
under some natural assumption on the splitting laws, distributional scaling limits regarded
in the Gromov–Hausdorff–Prokhorov topology. In the Gromov–Hausdorff sense where trees
are considered as compact metric spaces, they especially identified the so called self-similar
fragmentation trees as the scaling limits. The latter describe the genealogy of self-similar
fragmentation processes, which, reciprocally, are known to record the size of the components
of a (continuous) fragmentation tree above a given height [65], and thus correspond to scaling
limits for partition sequences of balls as their number n tends to infinity. One key tool in the
work of Haas and Miermont [63] is provided by some non-increasing integer-valued Markov
chain which, roughly speaking, depicts the size of the subcollection containing a randomly
tagged ball. This Markov chain essentially captures the dynamics of the whole fragmentation
and, by their previous work [64], itself possesses a scaling limit.

The purpose of the present work is to study more general dynamics which incorporate

65
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Figure 2.1. An example of dynamics with growth transitions (in bold).

growth, that is the addition of new balls in the system (see Figure 2.1). One example of
recent interest lies in the exploration of random planar maps [25, 24], which exhibits “holes”
(the yet unexplored areas) that split or grow depending on whether the new edges being
discovered belong to an already known face or not. We thus consider a Markov branching
system in discrete time and space where at each step, every particle is replaced by either
one particle with a bigger size (growth) or by two smaller particles in a conservative way
(fragmentation). We condition the system to start from a single particle with size n (we use
the superscript ·(n) in this respect) and we are interested in its behavior as n→∞. Namely,
we are looking for:

1. A functional scaling limit for the process in time (X(k) : k ≥ 0) of all particle sizes:(
X(n)(bantc)

n
: t ≥ 0

)
(d)−−−→

n→∞

(
Y(t) : t ≥ 0

)
,

in some sequence space, where the an are positive (deterministic) numbers;

2. A scaling limit for the system’s genealogical tree, seen as a random metric space
(χ(n), dn): (

χ(n),
dn
an

)
(d)−−−→

n→∞
Y ,

in the Gromov–Hausdorff topology.

Like in the pure-fragmentation setting we may single out some specific integer-valued Markov
chain, but which of course is no longer non-increasing. To derive a scaling limit for this chain,
a first idea is to apply, as a substitution to [64], the more general criterion of Bertoin and
Kortchemski [27] in terms of the asymptotic behavior of its transition kernel at large states.
However, this criterion is clearly insufficient for the convergences stated above as it provides
no control on the “microscopic” particles. To circumvent this issue, we choose to “prune” the
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system by freezing the particles below a (large but fixed) threshold. That is to say, we let
the system evolve from a large size n but stop every individual as soon as it is no longer
bigger than some threshold M > 0 which will be independent of n, and we rather study the
modifications X(n) and X (n) of the process and the genealogical tree that are induced by this
procedure.

The limits Y and Y that we aim at are, respectively, a self-similar growth-fragmentation
process and its associated genealogical structure. Indeed, the scaling limits of integer-valued
Markov chains investigated in [27], which we build our work upon, belong to the class of
so called positive self-similar Markov processes (pssMp), and these processes constitute
the cornerstone of Bertoin’s self-similar growth-fragmentations [19, 24]. Besides, in the
context of random planar maps [25, 24], they have already been identified as scaling limits
for the sequences of perimeters of the separating cycles that arise in the exploration of
large Boltzmann triangulations. Informally, a self-similar growth-fragmentation Y depicts
a system of particles which all evolve according to a given pssMp and whose each negative
jump −y < 0 begets a new independent particle with initial size y. In our setting, the self-
similarity property has a negative index and makes the small particles split at higher rates,
in such a way that the system becomes eventually extinct [19, Corollary 3]. The genealogical
embedding Y is thus a compact real tree; its formal construction is presented in [98].

Because of growth, one main difference with the conservative case is, of course, that
the mass of a particle at a given time no longer equals the size (number of leaves) of the
corresponding genealogical subtree. In a similar vein, choosing the uniform distribution to
mark a ball at random will appear less relevant than a size-biased pick from an appropriate
(nondegenerate) supermartingale. This will highlight a Markov chain admitting a self-similar
scaling limit (thanks to the criterion [27]), and which we can plug into a many-to-one formula.
Under an assumption preventing an explosive production of relatively small particles, we will
then be able to establish our first desired convergence. Concerning the convergence of the
(rescaled) trees X (n), we shall employ a Foster–Lyapunov argument to obtain an uniform
control on their heights, which are nothing else than the extinction times of the processesX(n).
Contrary to what one would first expect, it turns out that a good enough Lyapunov function
is not simply a power of the size, but merely depends on the scaling sequence (an). This brings
a tightness property that, together with the convergence of “finite-dimensional marginals”,
will allow us to conclude.

In the next section we set up the notation and the assumptions more precisely, and state
our main two results.
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2.2 Assumptions and results

Our basic data are probability transitions pn,m, m ≥ n/2 and n ∈ N “sufficiently large”,
with which we associate a Markov chain, generically denoted X, that governs the law of the
particle system X: at each time k ∈ N and with probability pn,m, every particle with size n
either grows up to a size m > n, or fragmentates into two independent particles with sizes
m ∈ {dn/2e, . . . , n − 1} and n − m. That is to say, X(n)(0) = n is the size of the initial
particle in X(n), and given X(k) for some k ≥ 0, X(k + 1) is the largest among the (one or
two) particles replacing X(k). We must emphasize that the transitions pn,m from n “small”
are irrelevant since our assumptions shall only rest upon the asymptotic behavior of pn,m as n
tends to infinity. Indeed, for the reason alluded in the Introduction that we explain further
below, we rather study the pruned version X where particles are frozen (possibly at birth)
when they become not bigger than a threshold parameter M > 0, which we will fix later
on. Keeping the same notation, this means that X is a Markov chain stopped upon hitting
{1, 2, . . . ,M}. For convenience, we omit to write the dependency in M , and set pn,n := 1 for
n ≤M .

In turn, the law of the genealogical tree X can be defined inductively as follows (we give
a more rigorous construction in Section 2.3). Let 1 ≤ k1 ≤ · · · ≤ kp enumerate the instants
during the lifetime ζ(n) of X(n) when ni := X(n)(ki− 1)−X(n)(ki) > 0. Then X (n) consists in
a branch with length ζ(n) to which are respectively attached, at positions ki from the root,
independent trees distributed like X (ni) (agreeing that X (n) degenerates into a single vertex
for n ≤M). We view X (n) as a metric space with metric denoted by dn.

Suppose (an)n∈N is a sequence of positive real numbers which is regularly varying with
index γ > 0, in the sense that for every x > 0,

lim
n→∞

abnxc
an

= xγ. (2.1)

Our starting requirement will be the convergence in distribution(
X(n)(bantc)

n
: t ≥ 0

)
(d)−−−→

n→∞

(
Y (t) : t ≥ 0

)
, (2.2)

in the space D([0,∞),R) of càdlàg functions on [0,∞) (endowed with Skorokhod’s J1

topology), towards a positive strong Markov process (Y (t) : t ≥ 0), continuously absorbed
at 0 in an almost surely finite time ζ, and with the following self-similarity property:

The law of Y started from x > 0 is that of (xY (x−γ t) : t ≥ 0) when Y starts from 1.
(2.3)
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Since the seminal work of Lamperti [78], this simply means that

log Y (t) = ξ

(∫ t

0

Y (s)−γ ds

)
, t ≥ 0, (2.4)

with ξ a Lévy process which drifts to −∞ as t → ∞. We denote by Ψ the characteristic
exponent of ξ (so there is the Lévy–Khinchine formula E[exp(qξ(t))] = exp(tΨ(q)) for every
t ≥ 0 and every q ∈ C, wherever this makes sense), and by Λ the Lévy measure of its jumps
(that is a measure on R \ {0} with

∫
(1 ∧ y2) Λ(dy) <∞).

In order to state precisely our assumptions, we need to introduce some more notation.
First, we define the exponent

κ(q) := Ψ(q) +

∫
(−∞,0)

(
1− ey

)q
Λ(dy),

whose meaning will be discussed shortly (in the paragraph “Discussion on the assumptions”).
Next, we also define, for every n ∈ N, the discrete versions

Ψn(q) := an

∞∑
m=1

pn,m

[(m
n

)q
− 1
]
, and κn(q) := Ψn(q) + an

n−1∑
m=1

pn,m

(
1− m

n

)q
.

Finally, we fix some parameter q∗ > 0. After [27, Theorem 2], convergence (2.2) holds under
the following two assumptions:

(H1) For every t ∈ R,
lim
n→∞

Ψn(it) = Ψ(it).

(H2) We have

lim sup
n→∞

an

∞∑
m=2n

pn,m

(m
n

)q∗
< ∞.

Indeed, by [71, Theorem 15.14 & 15.17], Assumption (H1) is essentially equivalent to
(A1)&(A2) of [27], while (H2) rephrases Assumption (A3) there. We now introduce the
new assumption:

(H3) We have either κ(q∗) < 0, or κ(q∗) = 0 and κ′(q∗) > 0. Moreover, for some ε > 0,

lim
n→∞

an

n−1∑
m=1

pn,m

(
1− m

n

)q∗−ε
=

∫
(−∞,0)

(
1− ey

)q∗−ε
Λ(dy). (2.5)

Postponing the description of the limits, we can already state our two convergence results
formally:
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Theorem 2.2.1. Suppose (H1) to (H3). Then we can fix a freezing threshold M sufficiently
large so that, for every q ≥ 1 ∨ q∗, the convergence in distribution(

X(n)(bantc)
n

: t ≥ 0

)
(d)−−−→

n→∞

(
Y(t) : t ≥ 0

)
,

holds in the space D([0,∞), `q↓), where Y is the self-similar growth-fragmentation driven
by Y , and

`q↓ :=

{
x := (x1 ≥ x2 ≥ · · · ≥ 0) :

∞∑
i=1

(xi)
q <∞

}
(that is, the family of particles at a given time is always ranked in the non-increasing order).

Theorem 2.2.2. Suppose (H1) to (H3), and q∗ > γ. Then we can fix a freezing thresholdM
sufficiently large so that there is the convergence in distribution(

X (n),
dn
an

)
(d)−−−→

n→∞
Y ,

in the Gromov–Hausdorff topology, where Y is the random compact real tree that represents
the genealogy of Y.

Description of the limits. As explained in the Introduction, the process Y portrays the
size of particles in the self-similar growth-fragmentation process Y := (Y(t) : t ≥ 0), whose
construction we briefly recall (referring to [19, 24] for more details): The Eve particle Y∅
is distributed like Y . We rank the negative jumps of a particle Yu in the decreasing order
of their absolute sizes (and chronologically in case of ex aequo). When this particle makes
its jth negative jump, say with size −yj < 0, then a daughter particle Yuj is born at this
time and evolves, independently of its siblings, according to the law of Y started from yj.
(Recall that Y is eventually absorbed at 0, so we can indeed rank the negative jumps in
this way; for definiteness, we set buj := ∞ and Yuj ··≡ 0 if Yu makes less than j negative
jumps during its lifetime.) Particles are here labeled on the Ulam–Harris tree U =

⋃∞
n=0 Nn,

the set of finite words over N, where N0 = {∅} is reduced to the root of the tree, and a
vertex u := (u1, u2, . . . , uk) ∈ U, at generation |u| := k, has uj := (u1, u2, . . . , uk, j) as j-th
descendent. Write bu for the birth time of Yu. Then

Y(t) =
(
Yu(t− bu) : u ∈ U, bu ≤ t

)
, t ≥ 0.

After [19, 24], this process is self-similar with index −γ. Roughly speaking, this means
that a particle with size x > 0 evolves x−γ times “faster” than a particle with size 1. Since
here −γ < 0, there is the snowball effect that particles get rapidly absorbed toward 0 as time
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passes, and it has been shown [19, Corollary 3] that such a growth-fragmentation becomes
eventually extinct, namely that ε := inf{t ≥ 0: Y(t) = ∅} is almost surely finite.

The extinction time ε is also the height of the genealogical structure Y seen as a compact
real tree. Referring to [98] for details, we shall just sketch the construction. Let Yu,0 consists
in a segment with length ζu := inf{t ≥ 0: Yu(t) = 0} rooted at a vertex u. Recursively, define
Yu,h+1 by attaching to the segment Yu,0 the trees Yuj,h at respective distances buj−bu from u,
for each born particle uj, j ≤ h + 1. The limiting tree Y := lim↑h→∞ Yh, where Yh := Y∅,h

fulfills a so called recursive distributional equation. Namely, by [98, Corollary 4.2], given
the negative jump times and sizes (bj, yj) of Y and an independent sequence Y1,Y2, . . . of
copies of Y , the action of grafting, on a branch with length ζ := inf{t ≥ 0: Y (t) = 0} and
at distances bj from the root, the trees Yj rescaled by the multiplicative factor yγj , yields a
tree with the same law as Y . With this connection, Rembart and Winkel [98, Corollary 4.4]
proved that ε admits moments up to the order sup{q > 0: κ(q) < 0}/γ. When particles do
not undergo sudden positive growth (i.e., Λ((0,∞)) = 0), Bertoin et al. [24, Corollary 4.5]
more precisely exhibited a polynomial tail behavior of this order for the law of ε.

Discussion on the assumptions. Observe that (H1) entails (H2) when the Lévy measure Λ

of ξ is bounded from above (in particular, when ξ has no positive jumps). By analyticity,
Assumptions (H1) and (H2) imply that Ψn(z) → Ψ(z) as n → ∞, for 0 ≤ <z ≤ q∗.
Adding the condition (2.5) in (H3) then yields the convergence κn(z) → κ(z) for <z in a
left-neighbourhood of q∗. Lastly, the first condition in (H3) itself implies Ψ(q∗) < 0 (since
Ψ < κ) and, together with the other assumptions, that there must exist q∗ ∈ (0, q∗) and some
threshold M such that

κn(q) < 0 and κ(q) < 0, for all q ∈ [q∗, q
∗) and n > M,

which is all but a superfluous requirement. Indeed, the condition κ(q) ≤ 0 for some q > 0

is necessary (and sufficient) [33] to prevent local explosion of the growth-fragmentation Y

(a phenomenon which would not allow us to view it in some `q-space). Informally, the
cumulant function κ(q) captures the expected value of the sum of the particle sizes raised to
the power q immediately after the first birth event. This function constitutes a key feature of
branching processes and, in particular, of self-similar growth-fragmentations [99]. Of course,
the meanings of the quantity κn(q) and of the condition κn(q) < 0 should be regarded the
same but at the discrete level (that is, w.r.t. X(n)).

We stress that our assumptions do not provide any control on the “small particles” (n ≤M).
This explains why we need to “freeze” them (meaning that they no longer grow or beget
children); otherwise their number could become quickly very high and make the system
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explode, as we illustrate in the example below. We will basically choose M as above, so that
κn(q) ≤ 0 for some q and all n, once we take the freezing into account (which is tantamount
to resetting1 κn ··≡ 0 for n ≤M).

Example 2.2.3. Suppose that a particle with size n increases to size n+ 1 with probability
p < 1/2 and, at least when n is small, splits into two particles with sizes 1 and n − 1 with
probability 1− p. Thus, at small sizes, the unstopped Markov chain essentially behaves like
a simple random walk. On the one hand, we know from Cramér’s theorem (see e.g. [51,
Theorem 2.2.3]) that for every ε > 0 sufficiently small,

P
(
X(1)(k) > (1− 2p+ ε)k

)
, k ≥ 0,

decreases exponentially at a rate cp(ε) > 0. On the other hand, keeping only track of particles
with size 1 or 2, the number of particles with size 1 is bounded from below by Z [1], where
Z := (Z [1], Z [2]) is a 2-type Galton–Watson process whose mean-matrix(

0 1

2(1− p) 0

)

has spectral radius rp :=
√

2(1− p) > 1, so that by the Kesten–Stigum theorem [12,
Theorem V.6.1] the number of particles with size 1 at time k → ∞ is of order at least rkp ,
almost surely. Consequently the expected number of particles which are above (1− 2p+ ε)k

at time 2k is of exponential order at least mp(ε) := log rp − cp(ε). It is easily checked that
this quantity may be positive (e.g., m1/4(1/4) ≥ 0.16). Thus, without any “local” assumption
on the reproduction law at small sizes, the number of small particles may grow exponentially
and we cannot in general expect X(n)(ban·c)/n to be tight in `q↓, for some q > 0. However,
this happens to be the case for the perimeters of the cycles in the branching peeling process
of random Boltzmann triangulations [25], where versions of Theorems 2.2.1 and 2.2.2 hold
for γ = 1/2, q∗ = 3, and M = 0, although κn(3) ≤ 0 seems fulfilled only for M ≥ 3 (which
should mean that the holes with perimeter 1 or 2 do not contribute to a substantial part of
the triangulation).

We start with the relatively easy convergence of finite-dimensional marginals (Section 2.3).
Then, we develop a few key results (Section 2.4) that will be helpful to complete the proofs
of Theorem 2.2.1 (Section 2.5) and Theorem 2.2.2 (Section 2.6).

1We make here a slight abuse on the notation. Again, even though the dependency is not explicitly
written, the discrete objects such as κn,X(n), . . . all ultimately depend on the freezing threshold M .
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2.3 Convergence of finite-dimensional marginals

In this section, we prove finite-dimensional convergences for both the particle process X and
its genealogical structure X . (We mention that the freezing procedure is of no relevance here
as it will be only useful in the next section to establish tightness results; in particular the
freezing threshold M will be fixed later.)

We start by adopting a representation of the particle system X that better matches
that of Y given above. We define, for every word u := u1 · · ·ui ∈ Ni, the u-locally largest
particle2 (Xu(k) : k ≥ 0) by induction on i = 0, 1, . . . Initially, for i = 0, there is a single
particle X∅ labeled by u = ∅, born at time β∅ := 0 and distributed like X. Then, we
enumerate the sequence (βu1, n1), (βu2, n2), . . . of the negative jump times and sizes of Xu

so that n1 ≥ n2 ≥ · · · and βuj < βu(j+1) whenever nj = nj+1. Conditionally on (nj)n≥1,
the processes Xuj, j = 1, 2, . . . are independent and distributed like X(nj) respectively (for
definiteness, we set βuj :=∞ and Xuj ··≡ 0 if Xu makes less than j negative jumps during its
lifetime), and we have (

X(k)
)
k≥0

d
=
(
Xu(k − βu) : u ∈ U, βu ≤ k

)
k≥0

.

Recall the notation ·(n) to stress that the system is started from a particle with sizeX∅(0) = n.

Lemma 2.3.1. Suppose (H1) and (H2). Then for every finite subset U ⊂ U, there is the
convergence in D([0,∞),RU):(

X
(n)
u (bantc − β(n)

u )

n
: u ∈ U

)
t≥0

(d)−−−→
n→∞

(
Yu(t− bu) : u ∈ U

)
t≥0
. (2.6)

Proof. We follow the argument used to prove the second part of [25, Lemma 17]. For h ≥ 0,
let Uh := {u ∈ U : |u| ≤ h} be the set of vertices with height at most h in the tree U. It
suffices to show

(Ih) : Convergence (2.6) holds in D([0,∞),RU) for every finite subset U ⊂ Uh,

by induction on h. The statement (I0) is given by (2.2). Now, if U is a finite subset of Uh+1

and Fu, u ∈ U, are continuous bounded functions from D([0,∞),R) to R, then the branching
property entails that, for X̂(n)

u := X
(n)
u (ban·c − βu)/n,

E

[∏
u∈U

Fu
(
X̂(n)
u

) ∣∣∣∣ (X(n)
u : u ∈ Uh

)]
=
∏

u∈U∩Uh

Fu
(
X̂(n)
u

)
·
∏
u∈U
|u|=h+1

E
(n)

X̂
(n)
u (0)

[
Fu
]
,

2In the peeling of random Boltzmann maps [25], the locally-largest cycles are called left-twigs.
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where E(n)
x stands for expectation under the law P

(n)
x of X̂∅ started from x, which by (2.1),

(2.2) and (2.3), converges weakly as n → ∞ to the law Px of Y started from x. The values
X̂

(n)
u (0) for |u| = h+ 1 correspond to (rescaled) negative jump sizes of particles at height h.

With [69, Corollary VI.2.8] and our convention of ranking the jump sizes in the non-increasing
order, the convergence in distribution (X̂

(n)
u (0) : u ∈ U, |u| = h + 1) → (Yu(0) : u ∈ U, |u| =

h + 1) as n → ∞ thus holds jointly with (Ih). Further, thanks to the Feller property [78,
Lemma 2.1] of Y , its distribution is weakly continuous in its starting point. By the continuous
mapping theorem we therefore obtain, applying back the branching property, that

E

[∏
u∈U

Fu
(
X̂(n)
u

)]
−−−→
n→∞

E

[∏
u∈U

Fu
(
Yu(· − bu)

)]
.

A priori, this establishes the convergence in distribution (X̂
(n)
u : u ∈ U) → (Yu(· −

bu) : u ∈ U) only in the product space D([0,∞),R)U . By [69, Proposition 2.2] it will also
hold in D([0,∞),RU) provided that the processes Yu, u ∈ U, almost surely never jump
simultaneously. But this is plain since particles evolve independently and the jumps of Y are
totally inaccessible. Thus (Ih) =⇒ (Ih+1). �

Next, we proceed to the convergence of the finite-dimensional marginals of X , which we
shall first formally construct. For each u ∈ U with βu < ∞, let ζu denote the lifetime of
the stopped Markov chain Xu. Recall the definition in Section 2.2 of the trees Y ,Yh, h ≥ 0,
related to Y’s genealogy, that echoes Rembart and Winkel’s construction [98]. Similarly,
let Xu,0 simply consist of an edge with length ζu, rooted at a vertex u. Recursively,
define Xu,h+1 by attaching to the edge Xu,0 the trees Xuj,h at a distance βuj − βu from
the root u, respectively, for each born particle uj, j ≤ h + 1, descending from u. The tree
Xh := X∅,h is a finite tree whose vertices are labeled by the set U(h) of words over {1, . . . , h}
with length at most h. Plainly, the sequence Xh, h ≥ 0, is consistent, in that Xh is the subtree
of Xh+1 with vertex set U(h), and we may consider the inductive limit X := lim↑h→∞Xh.
We write dn(v, v′) for the length of the unique path between v and v′ in X (n). All these
trees belong to the space T of (equivalence classes of) compact, rooted, real trees and can
be embedded as subspaces of a large metric space (such as, for instance, the space `1(N) of
summable sequences [6, Section 2.2]). Irrespectively of the embedding, they can be compared
one with each other through the so called Gromov–Hausdorff metric dGH on T . We forward
the reader to [80, 59] and references therein.

Lemma 2.3.2. Suppose (H1) to (H3). Then for all h ∈ N, there is the convergence in
(T , dGH): (

X (n)
h ,

dn
an

)
(d)−−−→

n→∞
Yh.
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Proof. It suffices to show the joint convergence of all branches. The branch going from the
root ∅ through the vertex u ∈ U(h) has total length E (n)

u := β
(n)
u + ζ

(n)
u in (X (n)

h , dn), and
length εu := bu + ζu in Yh. Recall that conditionally on {Xu(0) = n}, the random variable ζu
has the same distribution as ζ(n) := ζ

(n)
∅ . By [27, Theorem 3.(i)], the convergence

ζ(n)

an

(d)−−−→
n→∞

ζ := inf{t ≥ 0: Y (t) = 0}

holds jointly with (2.2). Adapting the proof of Lemma 2.3.1, we can more generally check
that for every finite subset U ⊂ U, we have, jointly with (2.6),(

E (n)
u

an
: u ∈ U

)
(d)−−−→

n→∞

(
εu : u ∈ U

)
.

In particular, this is true for U := U(h). �

To conclude this section, we restate an observation of Bertoin, Curien, and Kortchemski
[25, Lemma 21] which results from the convergence of finite-dimensional marginals
(Lemma 2.3.1): with high probability as h→∞, “non-negligible” particles have their labels
in U(h). Specifically, say that an individual u ∈ U is (n, ε)-good, and write u ∈ G(n, ε), if the
particles Xv labeled by each ancestor v of u (including u itself) have size at birth at least nε.
Then:

Lemma 2.3.3. We have

lim
h→∞

lim sup
n→∞

P(n)
(
G(n, ε) 6⊆ U(h)

)
= 0.

2.4 A size-biased particle and a many-to-one formula

We now introduce a “size-biased particle” and relate it to a many-to-one formula. This will
help us derive tightness estimates in Sections 2.5 and 2.6, and thus complement the finite-
dimensional convergence results of the preceding section. Recall from Assumptions (H1)
to (H3) that we can find q∗ ∈ (0, q∗) such that, as n → ∞, κn(q) → κ(q) < 0 for every
q ∈ [q∗, q

∗). Consequently, we may and will suppose for the remainder of this section that the
freezing threshold M is taken sufficiently large so that κn(q∗) ≤ 0 for every n > M . (Note
that κn(q∗) = 0 for n ≤M , by our convention pn,n := 1.)

Lemma 2.4.1. For every n ∈ N,

E(n)
[(
X(1)

)q∗
+
(
n−X(1)

)q∗
+

]
≤ nq∗ . (2.7)
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Therefore, the process3 ∑
u∈U

(
Xu(k − βu)

)q∗
, k ≥ 0,

is a supermartingale under P(n).

Proof. The left-hand side of (2.7) is

nq∗
∞∑
m=0

pn,m

[(m
n

)q∗
+
(

1− m

n

)q∗
+

]
= nq∗

(
1 +

κn(q∗)

an

)
,

where κn(q∗) ≤ 0. Hence the first part of the statement. The second part follows by applying
the branching property at any given time k ≥ 0:

E(n)

[∑
u∈U

(
Xu(k + 1− βu)

)q∗ ∣∣∣ X(k) = (xi : i ∈ I)

]
=
∑
i∈I

E(xi)
[(
X(1)

)q∗
+
(
xi −X(1)

)q∗
+

]
≤
∑
i∈I

(xi)
q∗

=
∑
u∈U

(
Xu(k − βu)

)q∗
. �

Remark 2.4.2. Put differently, the condition “κn(q∗) ≤ 0” entails that n 7→ nq∗ is
superharmonic with respect to the “fragmentation operator”. This map plays the same role
as the function f in [25], where it takes the form of a cubic polynomial (q∗ = 3) and∑

u∈U

f
(
Xu(k − βu)

)
, k ≥ 0,

is actually a martingale. More generally, the map n 7→ nq∗ could be replaced by any regularly-
varying sequence with index q∗, but probably at the cost of heavier notation.

As we see in the proof of Lemma 2.4.1, the fact that κn(q∗) ≤ 0 allows us to introduce a
(defective) Markov chain (X̄(k) : k ≥ 0) on N, to which we add 0 as cemetery state, with
transition

E(n)
[
f
(
X̄(1)

)
; X̄(1) 6= 0

]
=

∞∑
m=1

pn,m

[(m
n

)q∗
f(m) +

(
1− m

n

)q∗
+
f(n−m)

]
. (2.8)

We let ζ̄ := inf{k ≥ 0: X̄(k) = 0} denote its lifetime. Up to a change of probability measure,
X̄ follows the trajectory of a randomly selected particle in X, until it is eventually absorbed
to the cemetery state 0. It admits the following scaling limit (which could also be seen as a
randomly selected particle in Y; see [24, Section 4]):

3We set here Xu(i) := 0 for i < 0 in order to not burden the notation with the indicator 1{βu≤k}.
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Proposition 2.4.3. There is the convergence in distribution(
X̄(n)(bantc)

n
: t ≥ 0

)
(d)−−−→

n→∞

(
Ȳ (t) : t ≥ 0

)
(2.9)

in D([0,∞),R), where the limit Ȳ fulfills the same identity (2.4) as Y , but for a (killed) Lévy
process ξ̄ with characteristic exponent κ̄(q) := κ(q∗ + q). Further, if ζ̄ denotes the lifetime
of Ȳ , then the convergence

ζ̄(n)

an

(d)−−−→
n→∞

ζ̄

holds jointly with (2.9).

Proof. Write Λ̄n for the law of log(X̄(n)(1)/n), with the convention log 0 := −∞. We see
from (2.8) that an P(X̄(1) = 0) = −κn(q∗), and, for every 0 ≤ q ≤ q∗ − q∗,∫

R
(eqy − 1) anΛ̄n(dy) = an

∞∑
m=0

pn,m

[(m
n

)q∗ ((m
n

)q
− 1
)

+
(

1− m

n

)q∗
+

((
1− m

n

)q
− 1
)]

= κn(q∗ + q)− κn(q∗).

Hence
−anΛ̄n({−∞}) +

∫
R
(eqy − 1) anΛ̄n(dy) = κn(q∗ + q) −−−→

n→∞
κ̄(q).

Furthermore, by (H2),

lim sup
n→∞

an

∫ ∞
1

e(q∗−q∗)y Λ̄n(dy) ≤ lim sup
n→∞

an

∞∑
m=2n

pn,m

(m
n

)q∗
< ∞.

In other words, assumptions (A1), (A2) and (A3) of [27] are satisfied (w.r.t the Markov
chain X̄ and the limiting process Ȳ ). Our statement thus follows from Theorems 1 and 2
there4. �

Heading now toward pathwise and optional many-to-one formulae, we first set up some
notation. Let A ⊆ N be a fixed subset of states, and let ` ∈ ∂U refer to an infinite word
over N, which we see as a branch of U. For every u ∈ U ∪ ∂U and every k ≥ 0, set

X̃u(k) := Xu[k](k − βu[k]),

where u[k] is the youngest ancestor v of u with βv ≤ k, and write τ Au := inf{k ≥ 0: X̃u(k) ∈ A}
for the first hitting time of A by X̃u. Let also τ̄ A := inf{k ≥ 0: X̄(k) ∈ A}. Now, imagine

4Strictly speaking, the results are only stated when there is no killing, that is κ(q∗) = 0, but as mentioned
by the authors [27, p. 2562, §2], they can be extended using the same techniques to the case where some
killing is involved.
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that once a particle hits A, it is stopped and thus has no further progeny. The state when
all particles have hit A in finite time is xAu := X̃u(τ

A
u), u ∈ UA, where UA := {u ∈ U : `[τ A` ] =

u for some ` ∈ ∂U with τ A` <∞}.

Lemma 2.4.4 (Many-to-one formula).

(i) For every n ∈ N, every k ≥ 0, and every f : Nk+1 → R+,

E(n)

[∑
u∈U

(
Xu(k − βu)

)q∗
f
(
X̃u(i) : i ≤ k

)]
= nq∗ E(n)

[
f
(
X̄(i) : i ≤ k

)
; ζ̄ > k

]
.

(ii) For every n ∈ N, every A ⊆ N, and every f : Z+ × N→ R+,

E(n)

[∑
u∈UA

(
xAu
)q∗
f
(
τ Au , x

A
u

)]
= nq∗ E(n)

[
f
(
τ̄ A, X̄

(
τ̄ A
))

; ζ̄ > τ̄ A
]
.

Proof. (i) The proof is classical (see e.g. [100, Theorem 1.1]) and proceeds by induction on k.
The identity clearly holds for k = 0. Using (2.8) together with the branching property at
time k,

E(n)

[∑
u∈U

(
Xu(k + 1− βu)

)q∗
f
(
X̃u(i) : i ≤ k + 1

) ∣∣∣ X̃u(i) = xu,i, i ≤ k

]

=
∑
u∈U

∞∑
m=0

pxu,k,m

(
mq∗f

(
xu,0, . . . , xu,k,m

)
+
(
xu,k −m

)q∗
+
f
(
xu,0, . . . , xu,k, xu,k −m

))
=
∑
u∈U

(
xu,k

)q∗ E(xu,k)
[
f
(
xu,0, . . . , xu,k, X̄(1)

)
; X̄(1) 6= 0

]
.

By taking expectations on both sides and applying the induction hypothesis with the function
f̃(x0, . . . , xk) := E(xk)[f(x0, . . . , xk, X̄(1)); X̄(1) 6= 0] on the one hand, and by applying the
Markov property of X̄ at time k on the other hand, we derive the identity at time k + 1:

E(n)

[∑
u∈U

(
Xu(k + 1− βu)

)q∗
f
(
X̃u(i) : i ≤ k + 1

)]
= nq∗ E(n)

[
f̃
(
X̄(i) : i ≤ k

)
; ζ̄ > k

]

= nq∗ E(n)
[
f
(
X̄(i) : i ≤ k + 1

)
; ζ̄ > k + 1

]
.



2.5. PROOF OF THEOREM 2.2.1 79

(ii) For every k ≥ 0 and every x0, . . . , xk ∈ N, we set f Ak (x0, . . . , xk) := 1{x0 /∈A,...,xk−1 /∈A,xk∈A}f(k, xk).
Then

E(n)

[∑
u∈UA

(
xAu
)q∗
f
(
τ Au , x

A
u

)]
=

∞∑
k=0

E(n)

[∑
u∈U

(
Xu(k − bu)

)q∗
f Ak

(
X̃u(i) : i ≤ k

)]

= nq∗
∞∑
k=0

E(n)
[
f
(
k, X̄(k)

)
; τ̄ A = k; ζ̄ > k

]
= nq∗ E(n)

[
f
(
τ̄ A, X̄

(
τ̄ A
))

; ζ̄ > τ̄ A
]
,

by (i) and the monotone convergence theorem. �

We now combine Proposition 2.4.3 and Lemma 2.4.4 to derive the following counterpart
of [25, Lemma 14] that we will apply in the next two sections. Consider the hitting set
A := {1, . . . , bnεc} and denote by x≤nεu := xAu, u ∈ U≤nε := UA, the population of particles
stopped below nε.

Corollary 2.4.5. We have

lim
ε→0

lim sup
n→∞

n−q∗ E(n)

[ ∑
u∈U≤nε

(
x≤nεu

)q∗]
= 0.

Proof. By Lemma 2.4.4,

n−q∗ E(n)

[ ∑
u∈U≤nε

(
x≤nεu

)q∗]
= P(n)

(
ζ̄ > τ̄≤nε

)
,

where τ̄≤nε := inf{k ≥ 0: X̄(k) ≤ nε}. Thus, if ζ̄ is the lifetime of Ȳ and τ̄≤ε := inf{t ≥
0: Ȳ (t) ≤ ε}, then by Proposition 2.4.3 and the continuous mapping theorem,

lim sup
n→∞

n−q∗ E(n)

[ ∑
u∈U≤nε

(
x≤nεu

)q∗] ≤ P
(
ζ̄ > τ̄≤ε

)
,

which tends to 0 as ε→ 0 (because ζ̄ <∞ and Ȳ (ζ̄−) > 0, P-almost surely). �

2.5 Proof of Theorem 2.2.1

We prove Theorem 2.2.1 by combining Lemma 2.3.1 with the next two “tightness” properties.
We suppose that Assumptions (H1) to (H3) hold and recall that U(h) ⊂ U refers to the set
of words over {1, . . . , h} with length at most h.
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Lemma 2.5.1. For every δ > 0,

lim
h→∞

P

sup
t≥0

∑
u∈U\U(h)

(
Yu(t− bu)

)q∗
> δ

 = 0.

Proof. This was already derived in [25, Lemma 20], and results from the following fact [19,
Corollary 4]:

E

[∑
u∈U

sup
t≥0

(
Yu(t− bu)

)q]
< ∞ for κ(q) < 0. �

Lemma 2.5.2. If M is sufficiently large, then for every δ > 0,

lim
h→∞

lim sup
n→∞

P(n)

sup
k≥0

∑
u∈U\U(h)

(
Xu(k − βu)

)q∗
> δnq

∗

 = 0.

Proof. Let us first take q∗ < q∗ and M as in Section 2.4. As in the proof of [25, Lemma 22]
and by definition of G(n, ε) in Section 2.3, we claim that each particle in {Xu(k − βu) : u ∈
U \ G(n, ε)} has an ancestor with size at birth smaller than nε. Thanks to the branching
property, we may therefore consider that these particles derive from a system that has first
been “frozen” below the level nε, that is, with the notations of Section 2.4, from a particle
system having x≤nεu , u ∈ U≤nε, as initial population. Hence, by Lemma 2.4.1 and Doob’s
maximal inequality,

P(n)

sup
k≥0

∑
u∈U\G(n,ε)

(
Xu(k − βu)

)q∗
> δnq

∗

 ≤ 1

δq∗/q∗ nq∗
E(n)

[ ∑
u∈U≤nε

(
x≤nεu

)q∗]

(bounding from above the `q∗-norm by the `q∗-norm). We conclude by Corollary 2.4.5 and
Lemma 2.3.3. �

Proof of Theorem 2.2.1. From Lemmas 2.3.1, 2.5.1 and 2.5.2, we deduce the convergence in
distribution (

X
(n)
u (bantc − β(n)

u )

n
: u ∈ U

)
t≥0

(d)−−−→
n→∞

(
Yu(t− bu) : u ∈ U

)
t≥0
,

in the space D([0,∞), `q
∗
(U)) of `q∗(U)-valued càdlàg functions on [0,∞), where

`q
∗
(U) :=

{
x := (xu : u ∈ U) :

∑
u∈U

(xu)
q∗ <∞

}
.

Since for q ≥ 1, rearranging sequences in the non-increasing order does not increase their
q-distance [82, Theorem 3.5], the convergence in `q∗(U) implies that in `q↓, q ≥ 1 ∨ q∗. �
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2.6 Proof of Theorem 2.2.2

Similarly to the previous section, by Lemma 2.3.2 the proof of Theorem 2.2.2 is complete
once we have established that

lim
h→∞

P
(

dGH

(
Y ,Yh) > δ

)
= 0,

and

lim
h→∞

lim sup
n→∞

P
(

dGH

(
X (n),X (n)

h

)
> δan

)
= 0, (2.10)

for all δ > 0. The first display is clear since the tree Y is compact. The second will be a
consequence of the following counterpart of [25, Conjecture 1]:

Lemma 2.6.1. Suppose (H1) to (H3), and q∗ > γ. Then for every q < q∗, and for M
sufficiently large,

sup
n∈N

E

(ht
(
X (n)

)
an

)q/γ < ∞,
where ht

(
X (n)

)
:= supx∈X (n) dn(∅, x) is the height of the tree X (n).

The proof of Lemma 2.6.1 involves martingale arguments. Prior to writing it, we need a
preparatory lemma. Let us define

κ̃n(q) := an

∞∑
m=1

pn,m

[(
am
an

)q/γ
− 1 +

(
an−m
an

)q/γ ]
,

which slightly differs from κn(q) to the extent that we have replaced the map m 7→ mq

by the q-regularly-varying sequence Aq(m) := a
q/γ
m , m ∈ N (for convenience, we have set

am := 0, m ≤ 0). Of course, κ̃n = κn if am = mγ for every m ∈ N.

Lemma 2.6.2. Suppose q∗ > γ. Then we can find q∗ ∈ (0, q∗) such that, for every
q ∈ [q∗, q

∗),
lim
n→∞

κ̃n(q) = κ(q) < 0.

Proof. We will more generally show that for every q-regularly-varying sequence (rn),∣∣∣∣∣an
∞∑
m=1

pn,m

[
rm
rn
−
(m
n

)q ]∣∣∣∣∣+

∣∣∣∣∣an
n−1∑
m=1

pn,m

[
rn−m
rn
−
(

1− m

n

)q ]∣∣∣∣∣ −−−→n→∞
0,

provided q < q∗ is close enough to q∗. Denoting by Λn the law of log(X(n)(1)/n), we observe
that

an

∞∑
m=1

pn,m

[
rm
rn
−
(m
n

)q ]
= an

∫ ∞
−∞

[(
rnex

rn

)
− eqx

]
Λn(dx),
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which, by repeating the arguments in [27, Proof of Lemma 4.9], tends to 0 as n→∞. Next,
an appeal to Potter’s bounds [44, Theorem 1.5.6] shows that for every c > 1 and δ > 0

arbitrary small,
1

c

(m
n

)q+δ
≤ rm
rn
≤ c

(m
n

)q−δ
whenever m < n are sufficiently large. Thus, recalling that Ψn(q)→ Ψ(q) and κn(q)→ κ(q)

for every q in some left-neighbourhood of q∗, we have

lim inf
n→∞

an

n−1∑
m=1

pn,m

[
rn−m
rn
−
(

1− m

n

)q ]
≥ 1

c

(
κ(q + δ)−Ψ(q + δ)

)
−
(
κ(q)−Ψ(q)

)
,

and

lim sup
n→∞

an

n−1∑
m=1

pn,m

[
rn−m
rn
−
(

1− m

n

)q ]
≤ 1

c

(
κ(q − δ)−Ψ(q − δ)

)
−
(
κ(q)−Ψ(q)

)
.

We conclude by letting c→ 1 and δ → 0. �

We can now prove Lemma 2.6.1.

Proof of Lemma 2.6.1. We shall rely on a Foster-type technique close to the machinery
developed in [11]; see in particular the proof of Theorem 2’ there. First, observe that ht(X )

is distributed like the extinction time E of X:

ht
(
X (n)

) d
= sup

u∈U
E (n)
u =: E (n).

Fix q ∈ (γ, q∗) arbitrary close to q∗ and set r := q/γ. By Lemma 2.6.2, suppose M large
enough so that κ̃m(q) < 0 for every m > M . It is easy to see as in the proof of Lemma 2.4.1
that the process

Γ(k) :=
∑
u∈U

Aq
(
Xu(k − βu)

)
, k ≥ 0,

is a supermartingale under P(n) (with respect to the natural filtration (Fk)k≥0 of X): indeed,
for X(k) = (xi : i ∈ I),

E(n)
[
Γ(k + 1)− Γ(k)

∣∣∣ Fk] =
∑
i∈I

κ̃xi(q)Aq−γ(xi),

where the right-hand side is (strictly) negative on the event {E > k} = {∃i ∈ I : xi > M}.
We will more precisely show the existence of η > 0 sufficiently small such that the process

G(k) :=
(
Γ(k)1/r + η

(
E ∧ k

))r
, k ≥ 0,
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is a (Fk)k≥0-supermartingale under P(n), for any n ∈ N. Then, the result will be readily
obtained from ηr E(n)[(E ∧ k)r] ≤ E(n)[G(k)] ≤ E(n)[G(0)] = Aq(n) = arn and an appeal to
Fatou’s lemma.

On the one hand, we have

σ :=
∑
i∈I

Aq−γ(xi) ≥

(∑
i∈I

Aq(xi)

)1−γ/q

because
Aq(xi)

σq/(q−γ)
=

(
Aq−γ(xi)

σ

)q/(q−γ)

≤ Aq−γ(xi)

σ
,

where q/(q − γ) > 1 and the right-hand side sums to 1 as i ranges over I. Then, if we let
η > 0 sufficiently small such that κ̃m(q) ≤ −rη for every m > M , we deduce that

E(n)
[
Γ(k + 1)

∣∣∣ Fk] ≤ Γ(k)
(
1− rη Γ(k)−γ/q 1{E>k}

)
.

Raising this to the power 1/r = γ/q yields

E(n)
[
Γ(k + 1)

∣∣∣ Fk]1/r

≤ Γ(k)1/r
(
1− η Γ(k)−γ/q 1{E>k}

)
= Γ(k)1/r − η 1{E>k}, (2.11)

by concavity of x 7→ x1/r. On the other hand, the supermartingale property also implies that
(Γ(k + 1)1/r + a)r is integrable for every constant a > 0; we may thus apply the generalized
triangle inequality [11, Lemma 1] with the positive, convex increasing function x 7→ xr, the
positive random variable Γ(k+1)1/r, and the probability P(n)( · | Fk) (under which E ∧(k+1)

can be seen as a positive constant):

E(n)
[(

Γ(k + 1)1/r + η
(
E ∧ (k + 1)

))r ∣∣∣ Fk]1/r

≤ E(n)
[
Γ(k + 1)

∣∣ Fk]1/r + η
(
E ∧ (k + 1)

)
.

Reporting (2.11) shows as desired that (G(k) : k ≥ 0) is a supermartingale. �

We are finally ready to derive (2.10) and complete the proof of Theorem 2.2.2.

Proof of (2.10). We start as in the proof of Theorem 2.2.1: thanks to Lemma 2.3.3 and the
branching property, with high probability as h→∞, the connected components of X (n)\X (n)

h

are included in independent copies of X stemming from the population x≤nεu , u ∈ U≤nε, of
particles frozen below nε. Specifically,

P(n)
(

dGH

(
X (n),X (n)

h

)
> δan

)
≤ P(n)

(
G(n, ε) 6⊆ U(h)

)
+E(n)

[ ∑
u∈U≤nε

P(x≤nεu )
(

ht(X ) > δan

)]
.
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Now, take q∗ < q < q∗ and M large enough so that both Lemma 2.6.1 and the results of
Section 2.4 hold. So, there exists a constant C > 0 such that

E(n)

[ ∑
u∈U≤nε

P(x≤nεu )
(

ht(X ) > δan

)]
= E(n)

[ ∑
u∈U≤nε

P(x≤nεu )

(
ht(X ) > δa

x≤nεu

an
a
x≤nεu

)]

≤ C E(n)

[ ∑
u∈U≤nε

(
a
x≤nεu

an

)q/γ ]
.

But we know, thanks to another application of Potter’s bounds, that we may find c > 0 such
that (

am
an

)q/γ
≤ c

(m
n

)q∗
,

whenever n is sufficiently large and m ≤ n. Since x≤nεu ≤ n (for 0 < ε < 1), we can again
conclude by Corollary 2.4.5 and Lemma 2.3.3. �



3
A growth-fragmentation with immigration
equation
We prove existence and uniqueness of a solution to a growth-fragmentation with immigration
equation. The solution corresponds to the intensity measure of a stochastic particle system,
in which immigrate copies of a growth-fragmentation process whose intensity measure solves
the equation without immigration considered in [34, 20, 36]. This allows us to compare their
respective asymptotic behaviors.

3.1 Introduction

Imagine a system of particles, parametrized by their “size” x > 0, with the following dynamics:

– particles grow at rate τ(x),

– fragmentation occurs at rate B(x),

– at rate I(dy), a new particle with size y immigrates into the system.

This means that the measure µt(dx) at time t ≥ 0 of the average number of particles per
unit volume with size x± dx fulfills an integro-differential equation of the form1

∂t〈µt, f〉 = 〈µt,Af〉+ 〈I, f〉 (3.1)

for test-functions f such that the right-hand side makes sense. Here, the so called growth-
fragmentation operator A may be taken as

Af(x) := τ(x)f ′(x) +

∫ x

0

f(y) b(x, y)dy −B(x)f(x),

where b(x, y) is the rate at which fragments with size y > 0 arise from the fragmentation of
a particle with size x > y.

Let us first recall the growth-fragmentation equation, that is (3.1) without the immigration
term (I ≡ 0), which has been studied extensively by many authors, see the monographs [58,
96] and references therein. Typically, the main purpose is to determine the asymptotic
behavior of solutions, such as

〈µt, f〉 ∼
t→∞

eλt〈µ0, h〉〈ν, f〉,

1We employ the usual notation 〈ν, g〉 :=
∫
g(y) ν(dy) for every measure ν and every function g.

85
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also known as the Malthusian behavior, for some real λ ∈ R, positive function h and
measure ν. In this respect, a key component is the spectral analysis of the operator A,
especially the existence of positive eigenelements (λ, h, ν). Recently, Bertoin and Watson [34,
20, 36] developed probabilistic tools toward this aim. Roughly, they related the semigroup
associated withA to a certain Markov process through a so called Feynman–Kac formula, and
then solved the eigenproblem by applying classical results of ergodic theory. Their technique
improves on some works in the literature of PDEs which were developed using more analytic
tools, see e.g. [94, 54, 13, 55, 88] — although similar approaches, and more generally the use of
probability for the study of growth-fragmentation equations and other semigroup-formulated
PDEs, appear in earlier works, see e.g. Bansaye et al. [15, 14], Cloez [48], Doumic et al. [56].

In this note, we broaden the problem a bit by taking the immigration term into account
(I 6≡ 0). We mention that a similar fragmentation with immigration equation, but without
growth (more precisely, with τ ≤ 0) was studied by Haas [62, 61]. We shall first prove
existence (Section 3.2) and uniqueness (Section 3.3) of the solution to (3.1), and then
compare this solution with the one without immigration (Section 3.4), in particular regarding
their respective Malthusian behaviors. Then, in Section 3.5, we connect the solution to the
intensity measure of a stochastic particle system in which immigrate copies of the growth-
fragmentation process of [36], and we also specify the Malthusian behavior for the process.
In a concluding section, we discuss a variation of equation (3.1) where immigration no longer
appears at constant rate but depends on the population.

Assumptions. We adopt the setting of Bertoin and Watson [34] and thus make the same
assumptions. The following is taken for granted throughout this paper.

• Growth is sublinear: τ : R>0 → R>0 is continuous and

‖̄τ‖ := sup
x>0

τ(x)

x
<∞. (3.2)

• Fragmentation is conservative: setting b̄(x, y) := y
x
b(x, y), we have∫ x

0

b̄(x, y)dy = B(x).

We also assume that

the map x 7→ b̄(x, ·) from R>0 to L1(dy) is measurable and bounded.

• Immigration is described by a positive measure I on R>0 with finite mean:

m :=

∫
y I(dy) <∞. (3.3)
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Then 〈I, ·〉 is defined and finite on C̄b := {f : R>0 → R continuous with
¯
f bounded}, where

¯
f(x) := f(x)/x, and the domain D(A) of the operator A (which we can also define on C̄b)
contains every Lipschitz, continuously differentiable function f ∈ C̄b. (In particular, D(A)

includes the space C∞c of smooth, compactly supported functions on R>0 and the identity
function x 7→ x.) A solution to the growth-fragmentation with immigration equation should
then be understood as a family (µt)t≥0 of measures on R>0 such that (3.1) holds for all t ≥ 0

and f ∈ D(A).

3.2 Existence

Let us first provide an explicit solution to the growth-fragmentation with immigration
equation (3.1) by integrating results from the no-immigration case. Bertoin and Watson [34]
indeed solved the equation in absence of immigration (I ≡ 0): there exists a unique positive,
strongly continuous semigroup (Tt)t≥0 on C̄b such that, for every t ≥ 0 and every f ∈ D(A),

∂tTtf = TtAf. (3.4)

In other words, the family (µt)t≥0 of measures given by 〈µt, f〉 := 〈µ0, Ttf〉, t ≥ 0, fulfills (3.1)
when I ≡ 0. More precisely, they derived the following Feynman-Kac representation
for (Tt)t≥0: let (X, (Px)x>0) denote the Markov process with the infinitesimal generator
(G, D(G)) on the space Cb of continuous bounded functions on R>0 given by

Gf(x) := τ(x)f ′(x) +

∫ x

0

(
f(y)− f(x)

)
b̄(x, y)dy, f ∈ D(G).

Then, for I ≡ 0, the unique solution to (3.1) subject to µ0 = δx is

〈µt,x, f〉 := Ttf(x) = xEx
[
¯
f(Xt)Et

]
, where Et := exp

(∫ t

0 ¯
τ(Xs) ds

)
. (3.5)

Let us now replace the assumption I ≡ 0 by (3.3). Following Haas [61, § 5.1], this
integrability condition allows us to define, for every x > 0, the measures

〈µit,x, f〉 := Ttf(x) +

∫ t

0

dr

∫
Trf(y) I(dy), t ≥ 0. (3.6)

(Note that Trf(y) = O(y) for f ∈ C̄b, because Tr : C̄b → C̄b, as confirmed by (3.5) and (3.2).)

Proposition 3.2.1. For every x > 0, the family (µit,x)t≥0 solves (3.1).

Proof. Let f ∈ D(A). Then

∂t〈µit,x, f〉 = TtAf(x) +

∫
Ttf(y) I(dy),
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where, by integrating (3.4),

Ttf(y) = f(y) +

∫ t

0

TrAf(y) dr, j ≥ 1.

Thus, by Fubini’s theorem,

∂t〈µit,x, f〉 = TtAf(x) +

∫ (
f(y) +

∫ t

0

TrAf(y) dr

)
I(dy)

= TtAf(x) +

∫ t

0

dr

∫
TrAf(y) I(dy) +

∫
f(y) I(dy)

= 〈µit,x,Af〉+ 〈I, f〉,

which is (3.1). �

3.3 Uniqueness

Proposition 3.3.1. For every x > 0, the solution (µit,x)t≥0 given in (3.6) is the unique
solution to (3.1) subject to µ0 = δx.

Proof. Let (νt)t≥0 be a solution to (3.1) with ν0 = δx. This means that, for f ∈ D(A),

∂t〈νt, f〉 = 〈νt,Af〉+ 〈I, f〉.

We may rewrite this in terms of ν̄t(dy) := y νt(dy), Ī(dy) := y I(dy), f̄(y) := yf(y), and

¯
f ∈ D(A) as

∂t〈ν̄t, f〉 = ∂t〈νt, f̄〉 = 〈ν̄t, Āf〉+ 〈Ī , f〉, (3.7)

for the operator Ā on Cb defined by

Āf(x) :=
1

x
Af̄(x) = τ(x)f ′(x) +

∫
(f(y)− f(x)) b̄(x, y) dy +

¯
τ(x)f(x).

On the one hand, plugging in f ≡ 1 in (3.7) yields

∂t〈ν̄t, 1〉 ≤ m+ ‖̄τ‖〈ν̄t, 1〉,

so 〈ν̄t, 1〉 = O
(
exp(‖̄τ‖t)

)
by Grönwall’s lemma. On the other hand, Ā is known [34,

Lemma 2.1] to generate a strongly continuous semigroup, which is also bounded by exp(‖̄τ‖t)
(for the operator norm on Cb). In particular, by [57, Theorem II.3.8], Ā is closed and p− Ā
is surjective for every p > ‖̄τ‖. Now, fix g ∈ Cb and p > ‖̄τ‖, and let

¯
f ∈ D(A) such that
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g = (p− Ā)f . Multiplying both sides of (3.7) by e−pt and integrating by parts, we arrive at
the identity ∫ ∞

0

e−pt〈ν̄t, g〉 dt = f̄(x) +
1

p
〈Ī , f〉.

Since the right-hand side does not depend on the solution (νt)t≥0 to (3.6) with ν0 = δx, we
thus see by setting q := p− ‖̄τ‖ and µ̄it,x(dy) := y µit,x(dy) that for every q > 0,∫ ∞

0

e−qt
(
e−‖¯τ‖t〈ν̄t, g〉

)
dt =

∫ ∞
0

e−qt
(
e−‖¯τ‖t〈µ̄it,x, g〉

)
dt.

In other words, the Laplace transforms of the continuous maps t 7→ e−‖¯τ‖t〈ν̄t, g〉 and t 7→
e−‖¯τ‖t〈µ̄it,x, g〉 coincide. Hence these two maps are equal, and because this equality is valid
for every g ∈ Cb, we conclude that (νt)t≥0 = (µit,x)t≥0. �

3.4 Comparison of solutions

We now come to the asymptotic behavior as t → ∞ of the solution to the growth-
fragmentation with immigration equation. We shall relate this behavior to (and actually
derive it from) the one without immigration. Indeed, Bertoin and Watson [34] provided
conditions for which the solution without immigration (µt)t≥0 has a Malthusian behavior,
namely

lim
t→∞

e−λt〈µt,x, f〉 = h(x)〈ν, f〉, x > 0, (3.8)

at least for every continuous, compactly supported function f , where λ ∈ R is the so called
Malthus exponent, h is a positive function, and ν is a Radon measure on (0,∞) (called
the asymptotic profile). In the language of spectral theory, when appropriate definiteness
conditions are met (e.g., h ∈ D(A)), λ corresponds to the leading eigenvalue of the
operator A, h is an associated eigenfunction, and ν is an associated eigenmeasure w.r.t.
the dual operator.

It is of course expected that, because of immigration, if µt and µit are of order eλt and eλ
it

respectively, then λi ≥ λ. This is indeed true and easy to check because, by (3.6), 〈µit,x, f〉 ≥
〈µt,x, f〉 for every nonnegative function f .

Let us recall the necessary [20] and sufficient [34] condition for the solution (µt)t≥0 to
admit a Malthusian behavior. It is expressed using the Markov process (X, (Px)x>0) that
represents (µt)t≥0 through the Feynman–Kac formula (3.5). Suppose that X is irreducible,
that is, Px(H(y) < ∞) > 0 for all x, y > 0, where H(y) := inf{t ≥ 0: Xt = y}. Define also
the convex function Lx,y : R→ (−∞,∞] by

Lx,y(q) := Ex
[
e−qH(y)EH(y);H(y) <∞

]
, q ∈ R,
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with E the functional defined in (3.5). Then (µt)t≥0 has a Malthusian behavior if and only if

for any (or all) x > 0, Lx,x(λ) = 1 and L′x,x(λ) > −∞, (3.9)

where λ is defined as
λ := inf{q ∈ R : Lx,x(q) < 1}

and is proved to not depend on x. More precisely, if (3.9) is in force, then (3.8) holds with
the eigenpair

h(y) := yLy,x(λ) and ν(dy) :=
dy

h(y)τ(y)|L′y,y(λ)|
, y > 0,

and further
〈µt,x, h〉 = eλth(x) for all x > 0, t ≥ 0, and 〈ν, h〉 = 1.

Proposition 3.4.1. Suppose (µt)t≥0 admits the Malthusian behavior (3.8) and 〈I, h〉 <∞.
Then as t → ∞, for every x > 0 and every continuous function f : R>0 → R with compact
support,

〈µit,x, f〉 =


eλt〈ν, f〉

(
h(x) + 1

λ
〈I, h〉

)
+ o(eλt), if λ > 0,

1
−λ〈ν, f〉〈I, h〉+ o(1), if λ < 0,

〈ν, f〉
(
h(x) + t〈I, h〉

)
+ o(t), if λ = 0.

Remark 3.4.2. Unsurprisingly the exponential order is λi := λ ∨ 0 (immigration prevents
the population from extinction).

Proof. Let C > 0 such that |f | ≤ Ch and recall that e−λt〈µt,x, h〉 = h(x) for all x > 0, t ≥ 0.
By (3.6),

〈µit,x, f〉 = 〈µt,x, f〉+

∫ t

0

eλrdr

(∫
e−λr〈µr,y, f〉 I(dy)

)
,

where the inner integrand is dominated for all r ≥ 0 by Ce−λr〈µr,y, h〉 = Ch(y), which by
assumption is integrable with respect to I. Further, (3.8) says that

lim
r→∞

e−λr〈µr,y, f〉 = 〈ν, f〉h(y).

We easily conclude by the dominated convergence theorem. �

We mention the sufficient condition [20, Theorem 2] to guarantee that (3.8) holds
exponentially fast :

lim sup
x→0+

τ(x)

x
< λ and lim sup

x→∞

τ(x)

x
< λ. (3.10)

This condition further implies [34, Lemma 4.6] that
¯
h ∈ Cb, so 〈I, h〉 = 〈Ī ,

¯
h〉 < ∞ and

Proposition 3.4.1 applies.
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3.5 The growth-fragmentation-immigration process

Recently, Bertoin and Watson [36] showed that the solution without immigration (µt)t≥0

corresponds to the intensity measure of a so called growth-fragmentation process [19], that
is a Markov branching process (Z(t))t≥0 whose construction in terms of a particle system
Z := (Zu(t) : bu ≤ t < du, u ∈ U) can be summarized as follows. (We employ the usual
Harris–Ulam tree U :=

⋃
n≥0 Nn to label the individuals.) Under Px0 , x0 > 0, there is initially

one particle Z∅, called Eve, which evolves until the first fragmentation event according to
the flow velocity {

ẋ(t) = τ
(
x(t)

)
,

x(0) = x0.

Thus Z∅(t) = x(t), t ∈ [b∅, d∅) := [0, ζ∅), up to the fission time ζ∅ of Eve. Recalling that B(y)

is the rate at which a particle with size y fragmentates, ζ∅ has law

Px0(ζ∅ > t) = exp

(
−
∫ t

0

B
(
x(s)

)
ds

)
= exp

(
−
∫ x(t)

x0

B(y)

τ(y)
dy

)
, t ≥ 0.

We view d∅ = ζ∅ as both the death time of Eve and, when d∅ < ∞, the birth time bi of
all its daughter particles Zi, i ∈ N. Specifically, conditionally on the death d∅ = s < ∞ of
Eve, a fraction pi ∈ [0, 1) of the mass x = Z∅(ζ∅−) = x(s) is given to its i-th child at birth,
namely Zi(s) = xpi, where the (conservative) mass-partition p = (p1, p2, . . .) is a random
element of the space

P :=

{
p ∈ `1 : p1 ≥ p2 ≥ · · · ≥ 0 and

∑
i≥1

pi = 1

}
,

and its law %(x, dp), for some probability kernel % on P , satisfies to the relation∫ x

0

f(y) b(x, y)dy = B(x)

∫
P

∑
i≥1

f(xpi) %(x, dp). (3.11)

Naturally, children evolve independently and according to the same dynamics, which means
that conditionally on bi = s and Zi(s) = y, the system Zi := (Ziu(· − s) : u ∈ U) has
the law of Z under Py, and further the family (Zi)i∈N is independent. By definition, the
growth-fragmentation process

Z(t) :=
∑
u∈U

1{bu≤t<du}δZu(t), t ≥ 0,

is the point process of particles alive at t. We let Px0 denote the law of Z under Px0 , and
note that the branching property is fulfilled: for every s ≥ 0, conditionally on Z(s) = z,
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the process (Z(t + s) : t ≥ 0) is independent of (Z(r) : r ≤ s) and has the distribution Pz of
the sum

∑
i≥1 Zi of independent growth-fragmentation processes Zi, i ≥ 1, with respective

laws Pzi .

It is then fairly easy to see that f 7→ E[〈Z, f〉] enjoys the semigroup property and that
for every f ∈ D(A), we can decompose E[〈Z(t), f〉] as

P(ζ∅ > t)f
(
x(t)

)
+

∫ t

0

exp

(
−
∫ s

0

B
(
x(r)

)
dr

)
ds

∫ x(s)

0

Ey

[
〈Z(t− s), f〉

]
b
(
x(s), y

)
dy,

from which it follows that
∂tE

[
〈Z(t), f〉]

∣∣∣
t=0

= Af.

Therefore the intensity measures E[Z(t)] = µt, t ≥ 0, solve the growth-fragmentation
equation (3.1) without immigration (I ≡ 0). Besides, taking f = f1 : x 7→ x above and
applying the branching property show that e−‖¯τ‖t〈Z(t), f1〉, t ≥ 0, is a supermartingale, so
we can view Z in the space D of càdlàg `1-valued functions.

Bertoin and Watson further proved that under the condition (3.10), the Malthusian
behavior (3.8) holds strongly: for every x > 0 and every continuous function f : R>0 → R
such that f = O(h):

lim
t→∞

e−λt〈Z(t), f〉 = 〈ν, f〉W∞, in L1(Px), (3.12)

where W∞ is the limit of the uniformly integrable martingale Wt := e−λt〈Z(t), h〉, t ≥ 0, and
Ex[W∞] = h(x).

Here, we consider an independent Poisson point process N on R≥0 × D with intensity
dt⊗PI, where

PI :=

∫
I(dy)Py.

We then define the growth-fragmentation with immigration process as

Zi(t) := Z(t) +

∫
N (ds, dz)1{s≤t}z(t− s), t ≥ 0.

and let Pi
x0

denote its law under Px0 . We immediately observe that for every f ∈ D(A),

Ei
x0

[
〈Zi(t), f〉

]
= 〈µt,x0 , f〉+

∫ t

0

ds

∫
〈µt−s,y, f〉 I(dy) = 〈µit,x0 , f〉

(cf. (3.6)), and so the solution to the growth-fragmentation with immigration equation (3.1)
indeed corresponds to the intensity measure of Zi. We stress however that, unlike the no-
immigration case, the expression “T i

t f(x) := 〈µit,x, f〉” does not define a semigroup, because
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the additional immigration term invalidates the branching property. Still, whether the strong
Malthusian behavior (3.12) extends to Zi is a natural question. In this direction, we map
each atom (s, z) of N to (s, w), where w := limt→∞ e

−λt〈z(t), h〉 is a copy of W∞, and we
let Ñ (ds, dw) denote the image of N (ds, dz) by this map.

Proposition 3.5.1. Suppose (3.10). Then for every x > 0 and every continuous function
f : R>0 → R such that f = O(h),

lim
t→∞

e−λt〈Zi(t), f〉 = 〈ν, f〉
(
W∞ +

∫
e−λsw Ñ (ds, dw)

)
, in L1(Pi

x).

Remark 3.5.2. This strengthens Proposition 3.4.1 in the case λ > 0, at the cost of the
stronger premise (3.10).

Proof. The proof is similar to that of Proposition 3.4.1 (when λ > 0). Let C > 0 such that
|f | ≤ Ch. From the very definitions of Zi, N , Ñ , and PI, we have that

Ei
x

[∣∣∣∣e−λt〈Zi(t), f〉 − 〈ν, f〉
(
W∞ +

∫
e−λsw Ñ (ds, dw)

)∣∣∣∣]
is bounded from above by

Ex

[∣∣e−λt〈Z(t), f〉 − 〈ν, f〉W∞
∣∣]

+

∫ ∞
0

e−λs ds

∫
I(dy)Ey

[∣∣1{s≤t}e−λ(t−s)〈Z(t− s), f〉 − 〈ν, f〉W∞
∣∣].

Thanks to (3.12), the first term tends to 0 as t → ∞, as does the integrand in the second
term. Moreover, this integrand is dominated by 2Ce−λsh(y), which is integrable with respect
to ds⊗ I. We conclude by another application of the dominated convergence theorem. �

3.6 Population-dependent immigration

So far immigration has been occurring at a constant rate (independently of the number of
particles). This is a natural assumption, however it has caused the branching property to
break. Alternatively, one may also consider the situation where each individual independently
attracts new immigrants. Assuming

Υ := I(R>0) <∞,

this amounts to repeating the construction of the growth-fragmentation process Z (as
explained in the first paragraph of Section 3.5), except that we replace B(x) by B̃(x) :=

B(x) + Υ and the probability kernel %(x, dp) by

%̃(x, ds) = B̃(x)−1
(
B(x) %(x, dp) + 1{xs=(x,y,0,...)} I(dy)

)
,
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for s ∈ S := P ∪ {1} × R>0 × {0}N, with which we associate the fission-immigration rate b̃
defined by∫ ∞

0

f(y) b̃(x, dy) := B̃(x)

∫
S

∑
i≥1

f(xsi) %̃(x, ds) =

∫ x

0

f(y) b(x, y)dy+

∫
f(y) I(dy) + Υf(x);

see (3.11). We end up with a growth-fragmentation with population-dependent immigration
process Z̃i with initial laws (P̃i

x)x>0, such that

∂t Ẽ
i
x

[
〈Z̃i(t), f〉]

∣∣∣
t=0

= Aif(x), t ≥ 0, x > 0, f ∈ D(A),

where
Aif(x) := Af(x) +

∫
f(y) I(dy).

In this case the intensity measures µ̃it,x := Ẽi
x[Z̃

i(t)], t ≥ 0, solve the alternative equation

∂t〈µt, f〉 = 〈µt,Aif〉, (3.13)

and, because the branching property holds, the expression T i
t f(x) := 〈µ̃it,x, f〉 defines a

semigroup with generator Ai.

For simplicity, we assume that the fragmentation kernel b is homogeneous, meaning that

b(x, y) =
1

x
ρ
(y
x

)
, 0 < y < x,

where ρ : (0, 1) → R≥0 has first positive and negative moments. In particular the
fragmentation rate B is constant:

B ≡
∫ 1

0

uρ(u) du <∞.

We further assume that

lim inf
x→0+

τ(x)

x
>

∫ 1

0

(u−1 − 1) ρ(u)du and lim sup
x→∞

τ(x)

x
<

∫ 1

0

(1− u) ρ(u)du =: λ′.

Proposition 3.6.1. Under the above assumptions, the solution (µ̃it )t≥0 to (3.13) admits the
Malthusian behavior

lim
t→∞

e−(λ+Υ)t〈µ̃it , f〉 = Υ−1〈ν ? I, f〉, (3.14)

for every f : R>0 → R continuous with compact support, where ν is the asymptotic profile of
the solution without immigration.
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Proof. By [34, Proposition 7.1], we have λ = λ′ and h = 1 (the constant function equal to 1).
Then, we can write

Af(x) = G̃f(x) + λf(x), and Aif(x) = G̃if(x) + (λ+ Υ)f(x),

where

G̃f(x) := τ(x)f ′(x) +

∫ 1

0

(
f(ux)− f(x)

)
ρ(u)du,

and

G̃if(x) := G̃f(x) +

∫ (
f(y)− f(x)

)
I(dy),

define infinitesimal generators of some Markov processes. More precisely, if X̃ has generator G̃
and (Nt : t ≥ 0) is an independent Markov jump process on R>0 with infinitesimal
generator G̃i−G̃, then X̃i = X̃+N has generator G̃i, and there are the simple Feynman–Kac
formulas

〈µt,x, f〉 = eλt Ex
[
f(Xt)

]
,

and

〈µ̃it,x, f〉 = e(λ+Υ)t Ex
[
f(Xt +Nt)

]
.

Clearly, N admits Υ−1I as stationary distribution. Since further X and N are independent,
there is the convergence in distribution (Xt, Nt) → (ν,Υ−1I) as t → ∞. The conclusion
follows. �

Remark 3.6.2. The Malthusian behavior (3.14) further holds exponentially fast under the
additional assumption r :=

∫
y−1 I(dy) <∞. Indeed, with V (x) := x+ x−1, we see that

G̃iV (x) = x
(̄
τ(x)− (λ+ Υ)

)
+ x−1

(∫ 1

0

(
u−1 − 1

)
ρ(u)du−

(
Υ +

¯
τ(x)

))
+m+ r, x > 0,

and so there exist b > 0 and β > 0 such that G̃iV (x) ≤ −βV (x) whenever x > b or
x < 1/b. This allows us to apply the geometric ergodic theorem, just like in [34, Proof of
Proposition 7.2.(ii)].

Remark 3.6.3. We can derive a strong Malthusian behavior for Z̃i by adapting the results
of [36]. If

lim sup
x→0+

τ(x)

x
< λ+ Υ

also holds, then for every x > 0 and every continuous bounded function f : R>0 → R,

lim
t→∞

e−(λ+Υ)t〈Z̃i(t), f〉 = Υ−1〈ν ? I, f〉 W̃∞, in L1(P̃i
x),

where W̃∞ is the limit of the uniformly integrable martingale W̃t := e−(λ+Υ)t〈Z̃i
t ,1〉, t ≥ 0.
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