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Emerging photovoltaics: the key to photovoltaics 
democratization? 

 

 In the current climate crisis context, more and more citizens are looking for ways to 

contribute to the fight against global warming at their own humble level. People are trying to 

limit their negative impact on the planet: decreasing their meat consumption, avoiding 

plastics, limiting their carbon footprint, recycling, embracing a zero waste philosophy lifestyle. 

In the present digital era, rethinking our electricity consumption appears equally relevant. 

Indeed, electricity is becoming “the fuel of choice” accounting for 20% of the global final 

consumption according to IEA’s 2018 World Energy Outlook report 1.  

 Based on abundant, sustainable and available resources, solar photovoltaic (PV) and 

wind power stand as the most obvious choices, among renewables, to generate green 

electricity. Although well adapted for large scale facilities, wind power cannot be easily 

implemented at the local level by climate-concerned citizens. Indeed, wind turbines are rarely 

installed in the backyard of a suburban house while, on the other hand, solar panels are 

widely deployed on their rooftops. Solar PV then stands as the most convenient technology 

for small-scale green electricity production. 

 Although the photovoltaic market is dominated by Silicon, historical actor of the field 

and the current most efficient technology, there is indubitably room for parallel niche markets 

where the so called emerging technologies, such as organic and perovskite PV, would 

perfectly fit. In the optics of democratizing photovoltaics, chosen technologies should be 

cheap, easy to implement and adaptive. Manufactured from low cost materials, using low 

cost processes, organic and perovskite PV are cheaper than Silicon. Based on thinner 

absorbing layers, they offer a flexibility and a lightness that Silicon fails to provide. In 

addition, their colourfulness brings an aesthetical feature into the matter that would further 

broaden the range of possibilities.  

 Being older than its perovskite counterpart, organic PV can already claim (despite its 

relatively low efficiencies) several successful implementations and realisations among which: 

OPVIUS’s solar trees implemented at the entrance of Merck headquarters in Germany2, 

Heliatek’s flexible organic solar films installed on canopies at the Roland Garros French 

Open3 and ARMOR’s OPV film ‘ASCA’ installed on horticultural greenhouses4. 

 Possessing all the features that make OPV appealing while reaching higher 

efficiencies, perovskites seem to be the perfect material for market penetration. Despite their 

youthfulness in the photovoltaic field, perovskites transfer from the laboratory to the industry 

is already initiated with companies such as Saule Technologies and Oxford PV. 

 In November 2016, Oxford PV took a huge step toward commercialization of 

perovskite solar cells, securing the acquisition of a former Bosch Solar CISTech GmbH 

production site5, equipped with 17,000 m² of pilot line facilities. In July 2019, ‘The perovskite 

 
1 Internation Energy Agency 2018 World Energy Outlook report 
2 Merckgroup.com   
3 Heliatek.com  
4 Asca.com  
5 OxfordPV.com / news 14 Nov. 2016 

https://webstore.iea.org/download/summary/190?fileName=English-WEO-2018-ES.pdf
https://www.merckgroup.com/en/publications/download-gallery/sites-and-buildings/headquarters-darmstadt/180327-100716-mda-outdoor-50067-final.html
https://www.heliatek.com/blog/greenest-solar-energy-the-french-open-roland-garros/
https://www.asca.com/realisations/asca-structures/des-serres-maraicheres-equipees-avec-le-film-photovoltaique-organique-asca/
https://www.oxfordpv.com/news/oxford-pv-acquires-thin-film-development-line-perovskite-scale
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company’ secured a £65 million funding6 to push further the development of their vacuum-

processed perovskite based tandem approach. At the end of 2018, the Polish start up Saule 

Technologies announced the installation of their inkjet-printed perovskite solar modules at 

Henn-na hotel in Japan7. Few months later, they were launching a pilot installation on 

Skanska’s offices in Warsaw8. Although no products are yet available, both Saule 

technologies and Oxford PV are unquestionable driving forces in the race of perovskite PV 

toward the market. 

  

 
6 OxfordPV.com / news 3rd July 2019  
7 Sauletech.com 
8 Skanska.pl 

https://www.oxfordpv.com/news/oxford-pv-secures-ps65-million-series-d-funding-round
https://sauletech.com/saule-perovskite-solar-panel-in-the-worlds-most-innovative-hotel/
https://www.skanska.pl/en-us/about-skanska/media/press-releases/227820/Skanska-and-Saule-Technologies-commence-revolutionary-solar-panels-tests-
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Thesis aim and outline 

 This thesis was carried out in the framework of the Project F “Perovskite solar cells” of 

the Institut Photovoltaïque d’Île-de-France (IPVF) in close collaboration with the Laboratoire 

de Physique des Interfaces et des Couches Minces (LPICM) from CNRS (UMR 7647) and 

Ecole Polytechnique. IPVF’s project F addresses three major aspects of the perovskite 

photovoltaics field: device stability, large surface deposition and tandem applications.  

 The present thesis covers the last two topics of IPVF project F as the objective is to 

develop, using a semi-industrial reactor, the coevaporation process for perovskite thin films 

fabrication with the target of tandem applications. 

 The first chapter of the manuscript will introduce the reader to the perovskite 

materials, their characteristics and properties to eventually direct the interest toward their use 

as light absorber in solar cells. Navigating through the progress made in the field of 

perovskite photovoltaics we will ultimately focus on the processing methods. Following an 

overview of the different methods for perovskite thin films fabrication, we will narrow down 

the scope to the coevaporation process. Finally, discussing a literature review of the topic will 

provide some basic insights on the method used in the follow-up chapters. 

 The second part of the manuscript will take the reader through the early stages of our 

development of the coevaporation process for perovskite thin films fabrication. Starting off on 

a proof-of-concept reactor, our initial developments will drive us to design a second reactor, 

dedicated to perovskite coevaporation. The implementation and initial trials on this new 

reactor will be detailed, setting the ground for the next chapter. 

 The third part of the manuscript will be dedicated to the development of the 

coevaporation process using the specifically designed reactor. In the hope of taming the 

deposition technique the focus will be first given to process-related considerations. 

Eventually properties of the fabricated materials will be studied, discussed and correlated to 

the deposition conditions. From these results, various aspects will be debated, paving the 

way for future developments. 

 The last part of the manuscript will take the reader to new horizons, away from the 

perovskite thin films fabrication toward their characterization using a Synchrotron-based 

technique. After a thorough introduction to the lightsource world, we will eventually introduce 

the X-ray based spectromicroscopy technique used to study our perovskite films. Results of 

our study will then be disclosed and discussed. 

 Ultimately, general conclusions from the previous four parts will be drawn and ideas 

for future research will be provided. 
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Chapter 1. 

A glimpse of hybrid perovskites for 

photovoltaic applications: 

focus on the deposition methods. 

 

 

 

 

 

 

 

 

 

Michael Saliba: - “New world record for perovskite solar cells at 25.2% KRICT/MIT. […]”  

Aron Huckaba: - “Wow! Can’t wait to see how they did it.” 

Michael Saliba: - “Will be very exciting. Although not even the previous record is published yet haha” 

Twitter @miliba01, August 3rd 2019 
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Introduction 

 The present chapter aims at setting the scene for the rest of the manuscript. 

Following a brief synopsis on the perovskite family and their outstanding optoelectronic 

properties, we will address key concepts of photovoltaics through its history, theory and 

applications, these latter being our interest in the framework of this thesis.  

 We will eventually resume to the history of perovskites in the photovoltaic field. The 

first use of perovskites as light absorber goes back to only a decade ago. It then quickly 

became a trending topic, such that perovskites are now directly challenging the historical 

actors of the field. Along the way, tremendous progresses were achieved on the levels of: 

composition, cell types and deposition processes. We will provide insights on each of these 

topics with a particular focus on these latter. 

 Achieving high efficiencies at low cost, perovskites have all it takes for a great 

industrial future. We will eventually direct our interest towards the coevaporation process for 

perovskite solar cells. This vacuum-based technique, already widely implemented in the 

OLED industry for example, stands as a viable candidate for the manufacturing of large area 

perovskite thin films.  
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I. Perovskites 

 In 1839, German mineralogist Gustav Rose discovered a calcium titanate mineral of 

chemical formula CaTiO3. The crystal structure consists of a TiO6 octahedron inside a 

Ca8 cube, in 3D it can be seen as a network of corner-sharing octahedra with Calcium-filled 

cavities (Figure 1). The arrangement can be reduced to its unit cell formula ABX3, A being 

the corner atoms in the cubic lattice, B the centre atom and X the face centred ones. As a 

tribute to the Russian mineralogist Lev Alexeïevitch Perovski the structure was named 

‘perovskite’. Depending on the nature of the X-site atom, subfamilies can be defined: oxide 

(X = O2-)9,10,11,12,13 and halide (X = I-, Cl- or Br-) perovskites. 

 
Figure 1. Perovskite family tree: from the parent general ABX3 crystal structure14 (with CaTiO3 mineral15) to the 
oxide subfamily with (Mg,Fe)SiO3 bridgmanite from Earth lower mantle16, catalytic LaMnO3

13 and Sr-doped 
NaTaO3

17 and halide subfamily with (C6H5C2H4NH3)2PbI418, (C4H9NH3)2(CH3NH3)2Sn3I10
19 and CH3NH3PbI318. 

 

 
9 E. Knittle and R. Jeanloz, (1987) Science 235, 668  
10 F. Nestola et al., (2018) Nature, 555, 237-41 
11 M. F. M. Zwinkels et al., (1999) Catalysis Today, 47, 73-82 
12 H. Huang et al., (2019) Diamond & Related Materials, 91, 199-206 
13 Q. Wang and L. Ma, (2019) New J. Chem., 43, 2974-80 
14 adapted from N. Louvain’s thesis manuscript « Relations Structures-Propriétés dans des matériaux hybrides 
multifonctionnels : Investigations structurales et théoriques. » (2008) <tel-00450691> 
15 Wikipedia 
16 Earth-Building Bridgmanite; Caltech (2014)  
17 L. An and H. Onishi, (2015) ACS Catal., 5, 3196-206 
18 T. Ishihara, (1994) J. of Luminescence, 60 & 61, 269-74 
19 D. B. Mitzi et al., (1994)  Nature, 369, 467-9  

https://www.ncbi.nlm.nih.gov/pubmed/17833627
https://www.researchgate.net/publication/323615402_CaSiO3_perovskite_in_diamond_indicates_the_recycling_of_oceanic_crust_into_the_lower_mantle
https://www.sciencedirect.com/science/article/pii/S0920586198002843
https://www.sciencedirect.com/science/article/pii/S0925963518303728
https://pubs.rsc.org/en/content/articlelanding/2019/nj/c8nj04590a#!divAbstract
https://tel.archives-ouvertes.fr/tel-00450691/file/Louvain_These_Finale.pdf
https://tel.archives-ouvertes.fr/tel-00450691/file/Louvain_These_Finale.pdf
https://en.wikipedia.org/wiki/Perovskite
https://www.caltech.edu/about/news/earth-building-bridgmanite-43020
https://pubs.acs.org/doi/abs/10.1021/acscatal.5b00484
https://www.sciencedirect.com/science/article/pii/0022231394901457
https://www.nature.com/articles/369467a0
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 Considering halide perovskites, B-site is occupied by a dication like Pb2+, Sn2+20, Bi2+21 

or Ge2+22 (either pure or mixed23,24) and A-site can be occupied by a large variety of univalent 

cations (organic or not). If the A-cation is too big, the 3D network is shattered, leading to 

layered perovskites with a dimensionality of 2. By fine molecular engineering, intermediate 

2 to 3D phases can even be obtained25. Although, strictly speaking ‘perovskite’ refers to the 

3D arrangement, lower dimension materials also fall under the perovskite banner, as derived 

from the parent structure, making this family a rather complex and wide one.  

 Whatever their dimensionality, halide perovskites have quite outstanding properties of 

photoconductivity as reported in 1958 by Møller for Caesium halide perovskite CsPbX3
26 and 

later on in 1978 by Weber for the hybrid organic-inorganic lead halide perovskites 

CH3NH3SnBrxI3-x
27 and CH3NH3PbX3

28 (a non-exhaustive yet very complete review can be 

found in Mitzi29). Therefore, halide perovskites can be integrated in a variety of optoelectronic 

devices such as Light Emitting Diodes (LED)30, Field Effect Transistors (FET)31 or Solar 

Cells32 (Figure 2). Throughout this document, focus is given to the solar cell applications.  

 
 

 

Figure 2. Examples of halide perovskite-based optoelectronic devices: CH3NH3PbX3 Field-Effect Transistor31 

(S, D and G being Source, Drain and Gate), CH3NH3PbI3 Solar cell33 and CH3NH3PbBr3 Light Emitting Diode34. 

 The love story between perovskites and photovoltaics is quite recent, being only ten 

years old. In 2009, Kojima et al.35 used CH3NH3PbI3 in Dye-Sensitized Solar Cells (DSSC) 

yielding 3.8% efficiency. Since then, perovskite photovoltaics has taken off as its own 

technology: new cells were developed and higher efficiencies have been achieved. Before 

going any deeper into this story, let us take a step aside to focus on photovoltaics: its history 

and theory. 

 
20 F. Hao et al., (2014) Nat. Photon., 8, 489-94 
21 B-W. Park et al., (2015) Adv. Mater., 27, 6806-13 
22 G. Stoumpos et al., (2015) J. Am. Chem. Soc.,137, 21, 6804-19 
23 S. Lee et al., (2018) 227, 311-4 
24 N. Ito et al., (2018) J. Phys. Chem. Lett., 97, 1682-8 
25 A. Leblanc et al., (2017) Angew. Chem. Int. Ed., 56, 16067-72 
26 C. K. Møller, (1958) Nature, 182, 1436 
27 D. Weber, (1978) Zeitschrift für Naturforschung B, 33, 8, 862-5 
28 D. Weber, (1978) Zeitschrift für Naturforschung B, 33, 12, 1443-5 
29 D. B. Mitzi ‘Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials’ in 
Progress in Inorganic Chemistry, K. D. Karlin (1999)  
30 Y. H. Kim et al., (2015) Adv. Mater., 27, 1248 
31 W. Yu et al., (2018) Nature Communications, 9, 354  
32 M. Grätzel, (2014) Nature Materials, 13, 838–42  
33 O. Almora et al., Rev. Cub. Fís. (2017), 34, 1, 58-68 
34 H. Cho et al., (2015) Science, 4, 350, 6265, 1222-5 
35 A. Kojima et al., (2009) J. Am. Chem. Soc., 131, 17, 6050-1 

https://www.nature.com/articles/nphoton.2014.82
https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201501978
https://pubs.acs.org/doi/10.1021/jacs.5b01025
https://www.sciencedirect.com/science/article/pii/S0167577X1830795X
https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00275
https://www.ncbi.nlm.nih.gov/pubmed/29078027
http://adsabs.harvard.edu/abs/1958Natur.182.1436M
https://www.researchgate.net/publication/276404244_CH3NH3SnBrxI3-x_x_0-3_ein_SnII-System_mit_kubischer_Perowskitstruktur_CH3NH3SnBrxI3-xx_0-3_a_SnII-System_with_Cubic_Perovskite_Structure
https://www.researchgate.net/publication/276404155_CH3NH3PbX3_ein_PbII-System_mit_kubischer_Perowskitstruktur_CH3NH3PbX3_a_PbII-System_with_Cubic_Perovskite_Structure
https://onlinelibrary.wiley.com/doi/10.1002/9780470166499.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9780470166499.ch1
https://www.ncbi.nlm.nih.gov/pubmed/25420784
https://www.nature.com/articles/s41467-018-07706-9
https://www.nature.com/articles/nmat4065
http://www.revistacubanadefisica.org/index.php/rcf/article/view/RCF_34-1_58
https://www.ncbi.nlm.nih.gov/pubmed/26785482
https://pubs.acs.org/doi/abs/10.1021/ja809598r
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II. Photovoltaic effect and solar cells 

 Discovered in 1839 by the French physicist Alexandre Edmond Becquerel36, the 

photovoltaic effect depicts the conversion of light into electricity by a material. Photovoltaic 

active materials are empirically sorted out in three generations: Silicon (poly- and mono-

crystalline), thin films (CIGS, CdTe, amorphous Si) and the so-called “emerging PV” that 

gathers organic and quantum dots among other technologies. If each generation has its own 

specificities, solar cells all basically operate in the same way.  

 At the heart of the solar cell is the semi-conductor absorbing layer (Figure 3). Semi-

conductor materials are defined by a non-zero conduction-to-valence bandgap (Eg), typically 

of a few eV (above tens of eV the material can be considered as insulating). Their 

illumination promotes one conduction band electron to the valence band, creating an 

electron/hole pair in the absorber. Due to the energy difference between the carrier-selective 

layers, generated charges are separated and finally collected at the electrodes. The overall 

process creates an electrical current in the device and its efficiency is estimated by the 

produced to incident power ratio, i. e. the electricity to light ratio.  

 
Figure 3. Photoconversion process steps: 1. Photon (hν) absorption; 2. electron/hole (e-/h+) pair creation; 3. 
charges separation; 4. charges collection and 5. current generation (VB and CB: Valence and Conduction Bands 
and Eg the bandgap). 

 Experimentally, solar cells are characterized by current-voltage measurements: 

a voltage bias (V) is applied to a device under illumination and the current (I) delivered is 

measured. From the obtained J-V curve (very often, the current density J is preferred to the 

current I), one can extract three important values: the open circuit voltage (Voc), the 

short-circuit current density (Jsc) and the Fill Factor (FF) and calculate a fourth one: the 

photoconversion efficiency (PCE). This set of parameters defines the device. As depicted on 

the J-V curve in Figure 4, Voc and Jsc are defined as the voltage value for a zero current 

density and the current density value for a zero voltage respectively. The Fill Factor is 

calculated as the ratio of the maximal power (mp) actually delivered by the cell over the 

power if the cell was ideal (equation [1]). It depicts the device ideality gap, i. e. the closer it 

gets to 1, the more optimized the device is. Finally, the PCE is calculated as the ratio of the 

produced power over the incident power (equation [2]).  

  

 
36 E. Becquerel, (1839) Comptes rendus des séances de l'Académie des sciences, 9, 561  

https://gallica.bnf.fr/ark:/12148/bpt6k2968p?rk=21459;2
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𝐹𝐹 =
𝑉𝑚𝑝 × 𝐽𝑚𝑝

𝑉𝑜𝑐 × 𝐽𝑠𝑐
      [1] 

𝑃𝐶𝐸 =
𝑃𝑝𝑟𝑜𝑑
𝑃𝑖𝑛𝑐

 

𝑃𝐶𝐸 =
𝑉𝑜𝑐 × 𝐽𝑠𝑐 × 𝐹𝐹

𝑃𝑖𝑛𝑐
 

 

     [2] 

 

 
Figure 4. Example of ideal (dotted line) and real (solid line) current density-voltage (J-V) curve with Voc and Jsc 
points and formula for calculated FF [1] (‘mp’ maximal power) and PCE [2] parameters. 

 When the PV device consists of only one absorbing layer it is said to be “single-

junction”. This type of cells has the intrinsic limitation of being unable to convert more than 

30% of the incoming solar spectrum. Streamlined in 1961 by Shockley and Queisser37 this 

theoretical limit can be overcome by combining several junctions. The basic idea of such 

configuration is to stack cells on top of each other in order to expand the spectral window 

collected by the device and increase its efficiency. As depicted Figure 5, highest energy 

photons are absorbed by the top cell, the remaining unabsorbed ones reach the lower cell 

where they are then absorbed. The point of this multijunction configuration being the 

maximization of light collection, absorption windows of the different cells should be 

complementary, without overlaying too much. 

a)  
b)  

Figure 5. a) Light absorption in a DSSC-CIGS tandem device and b) Spectral irradiance of solar light and 
External Quantum Efficiencies (EQE) spectra of separated DSSC (blue curve) and CIGS (red curve) single-

junction solar cells38.  

 As the current single junction PV technologies are getting closer and closer to the 

30% limit, the multijunction approach unquestionably represents the future of PV. Reviews 

on multijunctions can be found in Lu et al.39 for organics, in Colter et al.40 for III-V materials 

 
37 W. Shockley and H. J. Queisser, (1961) J. Appl. Phys. 32, 510  
38 S.H. Moon et al., (2015) Sci. Rep. 5, 8970 
39 S. Lu et al., (2017) Sc. China Chem., 60, 4, 460-71 
40 P. Colter et al., (2018) Crystals, 8, 445 

https://www.sp.phy.cam.ac.uk/drp2/copy_of_ShockleyandQueisserSolarcells..pdf
https://www.nature.com/articles/srep08970
https://link.springer.com/article/10.1007/s11426-016-9008-1
https://www.mdpi.com/2073-4352/8/12/445
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and in Yamaguchi et al.41 for Si. This multijunction configuration; although very attractive; 

involves important device engineering.  

 Considering a tandem device (two junctions) several configurations are possible: two, 

three and four-terminal (Figure 6), each of them having its advantages and drawbacks.  

 
Figure 6. Schematic views of the different configurations possible for a tandem cell. 

 From an electrical point of view, tandems can be connected either in series or parallel 

and depending on the type of connection, limitations on the Voc and Jsc values arise (Figure 

7). For a series-connected tandem (typically the 2T configuration), the tandem’s Jsc is limited 

by the lowest Jsc of the two subcells (equation [3]). The 2T configuration then requires a 

current matching between the two subcells in order to minimize current loss. For a parallel-

connected tandem (typically the 3T configuration), the tandem’s Jsc is the sum of the two 

subcells’ Jsc (equation [4]). For this configuration, no current matching is needed. The 4T 

configuration is the most electrically compliant as it can be connected either in series or 

parallel. 

Series-connected tandem: Parallel-connected tandem: 

 

 

 

 

𝐽𝑠𝑐_𝑡𝑎𝑛𝑑𝑒𝑚 = min⁡(𝐽𝑠𝑐𝑡𝑜𝑝; 𝐽𝑠𝑐𝑏𝑜𝑡𝑡𝑜𝑚) [3] 𝐽𝑠𝑐_𝑡𝑎𝑛𝑑𝑒𝑚 = 𝐽𝑠𝑐𝑡𝑜𝑝 + 𝐽𝑠𝑐𝑏𝑜𝑡𝑡𝑜𝑚  [4] 

𝑉𝑜𝑐_𝑡𝑎𝑛𝑑𝑒𝑚 = 𝑉𝑜𝑐𝑡𝑜𝑝 + 𝑉𝑜𝑐𝑏𝑜𝑡𝑡𝑜𝑚 [5] 𝑉𝑜𝑐_𝑡𝑎𝑛𝑑𝑒𝑚 = min⁡(𝑉𝑜𝑐𝑡𝑜𝑝; 𝑉𝑜𝑐𝑏𝑜𝑡𝑡𝑜𝑚) [6] 

Figure 7. Series and parallel connections for a tandem device: illustrating scheme of an OPV tandem device42 
and corresponding equations for both Jsc and Voc values. 

 The 4T is also the simplest configuration in terms of manufacturing, each of the 

subcells being processed on its own and then simply mechanically stacked together. The 2T 

and 3T configurations are more challenging as they involve monolithic processing, the top 

cell substrate being the entire bottom cell. The N+1th layer deposition should be compatible 

with the Nth lower layer. As the cell stack goes up, the process temperatures should go down. 

For a wet on dry deposition, lower layer wettability to the upper layer solvent is essential. For 

 
41 M. Yamaguchi et al., (2018) J. Phys. D: Appl. Phys., 51, 133002 
42 adapted from I. Etxebarria et al., (2014) Solar Energy Materials & Solar Cells, 130, 495–504 

https://iopscience.iop.org/article/10.1088/1361-6463/aaaf08/meta
https://www.sciencedirect.com/science/article/pii/S0927024814004164
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wet on wet deposition, N+1th layer solvent must be orthogonal to the lower Nth layer solvent 

to prevent its dissolving. 

 Aside from these technical considerations, tandem structure also implies a fine 

material engineering, regarding both the interconnecting layer (ICL) between the two subcells 

and the absorbing material of each of these cells. To mitigate photon loss, ICL’s absorption 

in the range of interest should be minor. To minimize parasitic resistive effects, ICL should 

ensure a good ohmic contact between the cells. To minimize energy losses, ICL energy 

levels should fit into the overall device energy band diagram. As far as absorbers choice 

goes, although a large variety of materials combination is possible, with the goal of 

industrialization, multijunction cells should meet the PV market. Representing 95%43 of this 

latter, crystalline Silicon (c-Si) appears as the obvious choice for the bottom cell material. 

Simulations show the optimum top cell bandgap for a c-Si–based tandem device to be 

1.72 eV for a 2T configuration and 1.8 eV for a 4T configuration44 (respectively red and green 

plot on Figure 8). 

 
Figure 8. 2T and 4T tandem cell efficiency as a function of the top cell bandgap for a c-Si bottom cell with a 

1.1 eV bandgap45. 

 Owing to their tunable optical properties, their outstanding PV performances and their 

low cost manufacturing, perovskites stand out as very promising candidates for tandem 

applications. Their rise in the field of photovoltaics did not happen by accident and is 

supported by the numerous developments the perovskite technology underwent since its 

emergence, only ten years ago. 

III. Perovskites in PV 

 While the first steps of perovskite in the field of photovoltaics were through the 

already existing Dye-Sensitized Solar Cells technology35, perovskite PV eventually emerged 

as its own technology in 201246. The following year perovskites were nominated in Science’s 

Top 10 breakthrough of the year as the “newcomer [that] juices up the race to harness 

sunlight”47. Efficiencies went up very quickly to reach the symbolic 20% by 2015. Such rise in 

efficiency is unprecedented in the field of photovoltaics. As a matter of fact, it took only 6 

 
43 Franhofer Photovoltaics Report, March 2019 
44 T. Todorov et al., (2016) Mol. Syst. Des. Eng., 1, 370-6 
45 adapted from reference 44 
46 H-S. Kim et al., (2012) Sci Rep, 2, 591 
47 Sciences' top 10 breakthroughs 2013 

https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
https://www.researchgate.net/publication/306270028_A_Road_towards_25_Efficiency_and_Beyond_Perovskite_Tandem_Solar_Cells
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423636/
https://www.sciencemag.org/news/2013/12/sciences-top-10-breakthroughs-2013
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years for perovskites to go from 14 to 24% efficiency when it took 18 years for crystalline 

Silicon to do the same (Figure 9).  

 
Figure 9. Simplified NREL chart for Best Research cell efficiencies with a focus on c-Si and perovskite 
technologies48. 

 Due to this unprecedented rise in efficiency, perovskites quickly drew attention from 

the scientific community. Given their hybrid nature (organic A part and inorganic B part) and 

their uncanny electrical behaviour (J-V hysteresis), both chemists (in- and organic) and 

physicists took interest in these materials. The number of perovskite-related papers went 

from very few in 2009 to 3,500 in 2018, a rise mirrored (to an even stronger degree) by the  

steep increase in the number of citations from very few in 2009 up to 160,000 by 2018 

(Figure 10). These two metrics highlight the excitement of the scientific community for 

perovskite PV. 

 
Figure 10. Rise of perovskite research as viewed through the published papers and their citation impact over the 
2009−2018 period (Source: Web of Science, Clarivate Analytics March 3, 2019)49. 

 Like for any other PV technology; even though the time lapse was shorter for 

perovskites; the increase in cell efficiency came with numbers of crucial advances along the 

way: new chemical compositions, new type of cells and new manufacturing processes.  

  

 
48 NREL efficiency chart (version 2019-08-02) 
49 De Angelis (2019) ACS Energy Lett., 4, 853−4 

https://www.nrel.gov/pv/cell-efficiency.html
https://pubs.acs.org/doi/10.1021/acsenergylett.9b00500#.XLCvsVfsLfE.twitter
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i. New perovskite compositions 

 Nearly half a decade after the ‘simple’ CH3NH3PbI3 and CH3NH3PbBr3 were used as 

dyes35 (‘simple’ because A, B and X sites are occupied by single ions), the very first 

independently certified perovskite solar cell was reported at 14.1%50 with a CH3NH3PbI3 

absorber. Few months later, a new record was set to 16.2%, this time with a mixed halide 

perovskite CH3NH3PbI3-xBrx
51. The subsequent arrival of mixed cation perovskites was a 

game changer. In 2014, CH(NH2)2+ formamidinium cation (FA) was incorporated in the A site 

at the level of 85%52 and then 95%53. In 2016, Saliba et al.54 even proved the feasibility of 

incorporating a third cation, simultaneously establishing a new record of 21.1% with a Cs-

containing perovskite. Except for the very first one, all reported NREL-certified research 

perovskite solar cells are based on mixed materials (Figure 11), making it one of the key 

aspects for the future of this technology. 

 
Figure 11. Evolution between 2013 and 2017 of the NREL-certified efficiencies for the best research perovskite 

solar cells55 with the corresponding perovskite compositions. 

 Considering the 3D lattice defined by the corner-sharing PbX6 octahedra with A-filled 

cavities, a relative freedom regarding the A-site cation size is allowed. In 1926, 

V. M. Goldschmidt rationalized an indicator accounting for the compatibility of ions within the 

3D perovskite lattice56. Considering a Pb-and-I-based perovskite, it is possible to predict the 

potential incorporation of a given A-cation into the network depending on the value of the 

calculated tolerance factor (Figure 12).   

 
50 J. Burschka et al., (2013) Nature, 499, 316–319 
51 N. J. Jeon et al., (2014) Nature Materials, 13, p 897–903 
52 N. J. Jeon et al., (2015) Nature, 517 (7535), p 476-80 
53 W. S. Yang et al., (2015) Science, 348 (6240) 1234-7 
54 M. Saliba et al., (2016) Energy Environ. Sci., 9, 1989 
55 L. K. Ono et al., (2017) ACS Appl. Mater. Interfaces, 9, 30197−246 
56 V. M. Goldschmidt, (1926) Die Naturwissenschaften, 21, 477–85 

https://www.nature.com/articles/nature12340
https://www.nature.com/articles/nmat4014
https://www.ncbi.nlm.nih.gov/pubmed/25561177
http://science.sciencemag.org/content/348/6240/1234
https://pubs.rsc.org/en/content/articlelanding/2016/ee/c5ee03874j#!divAbstract
https://pubs.acs.org/doi/10.1021/acsami.7b06001
https://link.springer.com/article/10.1007%2FBF01507527
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Figure 12. Tolerance factor values for various A cations (structures are shown on the right hand side for MA, FA, 
IA, EA and GA) and nature of the APbI3 crystal network (3D or non 3D)57. 

 Reducing mixed compositions to the sole aspect of higher efficiencies would be 
detrimental; they are also beneficial on other crucial levels. Incorporation of bromide for 
instance, enables fine tuning of the bandgap (as shown Figure 13 a). Incorporation of 
formamidinium or Caesium cations has been reported to increase stability of the material (as 
shown Figure 13 b for Cs+). Recently, addition of small amounts of Fluoride58 or Imidazolium 
Iodide (C3N2H5I)59 have been reported to further increase device stability. Both aspects of 
bandgap tunability and device stability being critical for the industrialization of the technology, 
mixed compositions unquestionably represent the future of perovskite PV. 

  
a) b) 
Figure 13. a) UV−vis absorption spectra of FTO/bl-TiO2/mp-TiO2/MAPb(I1−xBrx)3/Au cells (x ∈ [0; 1]) measured 
using an integral spheres60 and b) Aging of high performance Cs5M and Cs0M devices in a N2 atmosphere 
(Csx(MA0.17FA0.83)100-xPb(I0.83Br0.17)3 perovskite abbreviated as CsxM; M for ‘mixed’)54.  

ii. New types of cells 

 Derived from the DSSC technology, the first perovskite cells were very similar to 

Grätzel’s ones61 with a mesoporous structure and an Electron Transporting Layer (n-type) / 

perovskite absorber (intrinsic) / Hole Transporting Layer (p-type) (from bottom to top) 

structure46. In 2013 Jeng et al.62 introduced a fully planar heterojunction structure with a 

HTL (p) / perovskite absorber (i) / ETL (n) architecture referred to as ‘inverted’ with regard to 

the ‘direct’ one initially developed. Few months later, a direct planar heterojunction cell was 

 
57 adapted from M. Saliba et al., (2016) Science, 354, 6309, 206-9 
58 N. Li et al., (2019) Nature Energy, 4, 408-15 
59 M. Salado et al., (2019) ChemSusChem, 12, 11 
60 J. H. Noh et al., (2013) Nano Lett., 13, 4, 1764–69 
61 B. O’Regan and M. Grätzel, (1991) Nature, 353, 737-40 
62 J-Y Jeng et al., (2013) Adv. Mater., 25, 27, 3727-32 

https://science.sciencemag.org/content/354/6309/206.full
https://www.researchgate.net/publication/333120922_Cation_and_anion_immobilization_through_chemical_bonding_enhancement_with_fluorides_for_stable_halide_perovskite_solar_cells
https://www.researchgate.net/publication/333644940_Appraisement_of_Crystal_Expansion_in_CH3NH3PbI3_on_Doping_Improved_Photovoltaic_Properties
https://pubs.acs.org/doi/10.1021/nl400349b
https://www.nature.com/articles/353737a0
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201301327
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reported63. The following year, Wang et al.64 reported on an inverted mesoscopic cell. Table 

1 gathers examples of these four cell types. 

 Direct architecture (n-i-p) Inverted architecture (p-i-n) 
M
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ar

 s
tr

u
ct

u
re

 

 [66]  [62] 

Table 1. Inventory of the different types of perovskite cells (N.B. in the top left figure: “bl” and “mp”-TiO2 stand for 
“blocking layer” i.e. compact and “mesoporous” respectively). 

 The use of mesoscopic bottom layers involves a high temperature sintering step 

(usually 500°C for TiO2
46 and 300°C for NiOx

67). With the objective of low cost devices, 

scientists quickly looked into avoiding this energy-consuming step, opening the way to the 

planar architecture. Owing to the lower active surface (i.e. statistically less interface for e-/h+ 

pair dissociation), efficiencies of the planar junctions are slightly lower than those of 

heterojunctions. 

 Taking a look at the nature of the transporting layers, the direct architecture can be 

seen as ‘Thin Film PV’-like (with inorganic materials TiO2 and NiOx) when the inverted one is 

closer to Organic PV (with PEDOT:PSS and PCBM). This differentiation echoes with the 

hybrid organic/inorganic nature of the perovskite material itself; stressing, once again, the 

rallying character of the perovskite photovoltaics field.  

 It is important to mention that while TiO2, NiOx, spiro-MeOTAD and PEDOT:PSS, 

PCBM and C60 are the most widely used materials, the library for carrier-selective materials 

is quite rich (Figure 14) and a dense literature on the subject can be found for both 

Hole68,69,70,71 and Electron72,73,74,75 Transporting Materials. 

 
63 M. Liu et al., (2013) Nature, 501, 7467, 395-8 
64 K-C. Wang et al., (2014) ACS Appl. Mater. Interfaces,  6, 15, 11851-8 
65 X. Li et al., (2015) Nature Chemistry, 7, 703–11 
66 M. Saliba et al., (2018) Chem. Mater., 30, 13, 4193−201 
67 K. C. Wang et al., (2014) Sc. Reports, 23, 4, 4756 
68 Z. Yu and L. Sun, (2015) Adv. Energy Mater., 5, 12, 1500213 
69 L. Caliò et al., (2016) Angew. Chem. Int. Ed., 55, 14522-45 
70 P. K. Kung et al., (2018) Adv. Mater. Interfaces, 5, 1800882 

https://www.ncbi.nlm.nih.gov/pubmed/24025775
https://pubs.acs.org/doi/abs/10.1021/am503610u
https://www.nature.com/articles/nchem.2324
https://www.researchgate.net/publication/325703977_How_to_Make_over_20_Efficient_Perovskite_Solar_Cells_in_Regular_n-i-p_and_Inverted_p-i-n_Architectures
https://www.nature.com/articles/srep04756
https://www.researchgate.net/publication/275367860_Recent_Progress_on_Hole-Transporting_Materials_for_Emerging_Organometal_Halide_Perovskite_Solar_Cells
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201601757
https://onlinelibrary.wiley.com/doi/10.1002/admi.201800882
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a)  

b)  

Figure 14. Energy level diagrams for a) n-i-p and b) p-i-n configurations with various Hole and Electron 
Transporting Layers (H/ETL)76. 

 

iii. New manufacturing processes 

 Among the numerous advantages of perovskites, their ease of process might be one 

of the most striking. The first perovskites for PV were deposited by the very simple and 

cheap spincoating technique35: a solution containing CH3NH3X and PbX2 (X = I-, Br-) 

precursors was spincoated onto a substrate that was then annealed to form the perovskite 

layer. Solution-based techniques being rather cheap and simple to implement, there has 

been a lot of development in this field (Figure 15).  

  

 
71 J. Urieta-Mora et al., (2018) : Chem. Soc. Rev., 47, 8541-71 
72 H. Liu et al., (2016) Nanoscale, 8, 6209-21  
73 K. Mahmood et al., (2017) RSC Adv., 7, 17044-62 
74 J. Lian et al., (2018) Small Methods, 2, 1800082 
75 Y. Chen et al., (2019) J. of Energy Chem., 35, 144-67 
76 A. Rajagopal et al., (2018) Adv. Mater., 30, 32, 1800455 

https://pubs.rsc.org/en/content/articlelanding/2018/cs/c8cs00262b#!divAbstract
https://www.researchgate.net/publication/282430905_Nano-structured_electron_transporting_materials_for_perovskite_solar_cells
https://www.researchgate.net/publication/315345043_Current_status_of_electron_transport_layers_in_perovskite_solar_cells_materials_and_properties
https://onlinelibrary.wiley.com/doi/10.1002/smtd.201800082
https://www.sciencedirect.com/science/article/pii/S2095495618305928?via%3Dihub
https://www.researchgate.net/publication/325654471_Toward_Perovskite_Solar_Cell_Commercialization_A_Perspective_and_Research_Roadmap_Based_on_Interfacial_Engineering
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Spincoating with antisolvent treatment77 Doctor Blade78 

 

 

Two-step spincoating/dipping79 Slot die80 

 

 

Inkjet printing81 Blowing-assisted drop casting82 

 

Pressure processing method83 

  

Sheath-gas-assisted electrospray84 Brush painting and spray coating85 

Figure 15. Overview of solution-based manufacturing techniques for perovskite thin films. 

 
77 N. J. Jeon et al., (2014) Nature Materials, 13, 897-903 
78 A. T. Mallajosyula et al., (2016) Applied MaterialsToday, 3, 96-102 
79 J. Burschka et al., (2013) Nature, 499, 316-9 
80 J. B. Whitaker, (2018) Sustainable Energy Fuels, 2, 2442-9 
81 F. Mathies et al., (2016) J. Mater. Chem. A, 4, 19207-13 
82 C. Zuo et al., (2018) Nano Energy, 46, 185-92 
83 H. Chen et al., (2017) Nature, 550, 92-5 
84 S. Han et al., (2018) ACS Appl. Mater. Interfaces, 10, 8, 7281-8 
85 A. K. Chilvery et al., (2015) J. of Photonics for Energy, 5, 053093 

https://www.nature.com/articles/nmat4014
https://www.sciencedirect.com/science/article/pii/S2352940716300038
https://www.nature.com/articles/nature12340
https://pubs.rsc.org/en/content/articlelanding/2018/se/c8se00368h#!divAbstract
https://www.researchgate.net/publication/310391165_Multipass_inkjet_printed_planar_methylammonium_lead_iodide_perovskite_solar_cells
https://www.sciencedirect.com/science/article/pii/S2211285518300454
https://www.nature.com/articles/nature23877
https://www.researchgate.net/publication/322962151_Efficient_Planar-Heterojunction_Perovskite_Solar_Cells_Fabricated_by_High-Throughput_Sheath-Gas-Assisted_Electrospray
https://www.researchgate.net/publication/275258290_Efficient_planar_perovskite_solar_cell_by_spray_and_brush_solution-processing_methods
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 Besides the inherent varying parameters of these different techniques (ex. dispensing 

and coating speeds) there are numerous solution-related varying parameters. Several 

studies showed the impact of precursor molar ratio86, solvent(s)87 and aging88 of the 

perovskite solution on the film quality. As such, there are now, for instance, almost as many 

recipes for spincoating processing as there are of scientists using this method. 

 While solution-based techniques are relatively easy to master, the large parameter 

plurality makes them hardly reproducible in between batches. Development of solvent-free 

methods has thus been undertaken. In 2013 the first vacuum-based perovskite layer for PV 

applications was fabricated using coevaporation process63. Further developments were made 

in the field leading to two-steps processes and hybrid evaporation process (Figure 16). 

A non-exhaustive bibliography on vapor-deposited perovskites, published in 2016, can be 

found in Ono et al.89. 

 

 

Coevaporation63 Sequential evaporation90 

 

 

Hybrid Chemical Vapor Deposition91 Hybrid deposition92 

Figure 16. Overview of vacuum-based manufacturing techniques for perovskite thin films. 

 Due to the volatility of the organic compound during evaporation, control over the 

perovskite composition is harder to get with regards to the solution process where the molar 

ratio is controlled from the precursor solution concentration. 

 
86 K. Yan et al., (2015) J. Am. Chem. Soc., 137, 4460-8 
87 X. Cao et al., (2019) ACS Appl. Mater. Interfaces, 11, 7639-54 
88 H. Tsai et al., (2017) Adv. Energy Mater. 2017, 7, 1602159 
89 L. K. Ono et al., (2016) J. Mater. Chem. A, 4, 6693-713 
90 C. W. Chen et al., (2014) Adv. Mater., 26, 38, 6647-52 
91 M. R. Leyden et al., (2014) J. Mater. Chem. A, 2, 18742-5 
92 L. K. Ono et al., (2014) Energy Environ. Sci., 7, 3989-93 

http://www.dsc.rcast.u-tokyo.ac.jp/perovskite/20150111JACS2015_4460.pdf
https://www.researchgate.net/publication/330575409_A_Review_of_the_Role_of_Solvents_in_Formation_of_High-Quality_Solution-Processed_Perovskite_Films
https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201602159
https://pubs.rsc.org/en/content/articlelanding/2016/ta/c5ta08963h#!divAbstract
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201402461
https://www.researchgate.net/publication/266087498_High_Performance_Perovskite_Solar_Cells_by_Hybrid_Chemical_Vapor_Deposition
https://www.researchgate.net/publication/265346139_Fabrication_of_Semi-Transparent_Perovskite_Films_with_Centimeter-scale_Superior_Uniformity_by_the_Hybrid_Deposition_Method
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 Adding to this already quite wide range of processing methods, perovskites thin films 

can also be fabricated using transfer methods. These latters combine the stoichiometric 

control of solution-based processes with the homogeneous and larger scale deposition 

features of vacuum-based processes. The first transfer method was reported in 1999 by Mitzi 

et al.93 that fabricated various perovskites thin films using a single source thermal ablation 

process. It essentially consists in fabricating a perovskite crystal94 or film95 from solution 

based techniques and, using a vacuum reactor, to flash-evaporate it onto the desired 

substrate (Figure 17). The heating source usually consists of a regular power supply but the 

use of a laser has also been reported96.  

  

Single-source Physical Vapor Deposition94  Flash evaporation95 

 

Laser-induced flash-evaporation printing96 

Figure 17. Transfer methods for perovskite thin films. 

 Over the years vapor-deposited perovskite cells have been challenging solution-

processed ones in terms of efficiency, with the symbolic 20% achieved by the end of 2016 

(Figure 18). While they require larger and more expensive equipments, they seem 

nonetheless more suited than solution-based techniques for the industrialization challenge 

awaiting the perovskite PV technology.  

 
93 D. B. Mitzi et al., (1999) Chem. Mater., 11, 542-4 
94 P. Fan et al., (2016) Sc. Reports, 6, 29910 
95 G. Longo et al., (2015) Chem. Comm., 51, 7376 
96 M. Tai et al., (2018) ACS Appl. Mater. Interfaces, 10, 26206-12 

https://pubs.acs.org/doi/abs/10.1021/cm9811139
https://www.nature.com/articles/srep29910
https://www.researchgate.net/publication/274099300_Perovskite_solar_cells_prepared_by_flash_evaporation
https://www.researchgate.net/publication/326388406_Laser-Induced_Flash-Evaporation_Printing_CH_3_NH_3_PbI_3_Thin_Films_for_High-Performance_Planar_Solar_Cells
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Figure 18. Evolution between 2013 and 2017 of the best research-cell efficiencies for perovskite solar cells 
obtained by solution processing or vapor deposition97. 

 As a matter of fact, vapor-deposition allows fabrication of homogeneous films, over 

large area, on any substrate (i. e. textured c-Si for tandem applications), with both high 

repeatability and high reproducibility which makes it very suitable for industry-scale 

manufacturing. The evaporation technique is, for instance, already widely implemented for 

OLED (Organic Light Emitting Diodes), with the examples of OLEDON98 and Universal 

Display Corporation99 companies. For perovskites, with the future challenge of tandems and 

particularly the c-Si-based approach, coevaporation seems even more relevant. 

OXFORD PV Company100, spin-out from the University of Oxford launched in 2010 by Henry 

Snaith and Kevin Arthur, spearheads the development on the topic. 

 In this context, I was asked to implement and develop the coevaporation process for 

perovskite thin films for large area solar cells using a semi-industrial equipment, starting with 

the CH3NH3PbI3 reference material. In order to better apprehend the working environment, 

the next section develops all reported works on coevaporated CH3NH3PbI3. 

IV. ‘Simple’ CH3NH3PbI3 thin films fabrication by coevaporation 

 The first report for a CH3NH3PbI3 thin film by coevaporation can be found in 

Era et al.101 back in 1997. Using a simple dual-source evaporation setting, the authors 

fabricated various perovskite films starting from RNH3I and PbI2. In this article the mention for 

CH3NH3PbI3 is almost anecdotal and no further description other than a very brief « we 

succeeded in preparing thin films of the cubic perovskite (CH3NH3)PbI3 » is given.  

 Almost twenty years later, Liu et al.63 integrated for the first time vacuum-processed 

perovskites into PV devices. They used a dual-source evaporation reactor to fabricate a 

CH3NH3PbI3-xClx perovskite from the simultaneous evaporation of CH3NH3I and PbCl2. The 

fabricated film was of higher homogeneity (flat film with a mean thickness around 330 nm) 

when compared to a wet-processed spincoated one (undulating film with a thickness ranging 

from 50 to 410 nm) (Figure 19) and led to better performing PV devices (15.4% vs. 8.6% for 

a spincoated perovskite film).   

 
97 J. Avila et al., (2017) Joule, 1, 3, 432-42 
98 OLEDON 
99 UDC 
100 OXFORD PV 
101 M. Era et al., (1997) Chem. Mater., 9, 1, 8-10 

https://www.sciencedirect.com/science/article/pii/S2542435117300211
http://www.oledon.co.kr/technology/technology1
http://evaporation60.rssing.com/chan-8813771/all_p1.html
https://www.oxfordpv.com/
https://www.researchgate.net/publication/231243473_Self-Organized_Growth_of_PbI-Based_Layered_Perovskite_Quantum_Well_by_Dual-Source_Vapor_Deposition
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Figure 19. Cross-section SEM images of Glass/FTO/c-TiO2/CH3NH3PbI3-xClx/Spiro-OMeTAD/Ag solar cells 
constructed from vapour-deposited and solution-processed perovskite films (highlighted in red on the images)102. 

 Few months later, at the Instituto de Ciencia Molecular (ICMol), Malinkiewicz et al.103, 

reported on the very first evaporated CH3NH3PbI3 for PV applications. The authors noticed 

that the organic compound exhibited a non-directive evaporation. Upon its heating to 70°C all 

three quartz sensors of the chamber (one at each evaporation source and one at the 

substrate holder, Figure 20) gave a signal even though the PbI2 source was not running. 

They found themselves unable to calibrate the MAI sensor and had to adapt their process.  

 
Figure 20. Scheme of the dual evaporation system from ICMol team108. 

 They decided to first heat MAI to 70°C, waiting for its quartz sensor reading (sensor 1 

on Figure 20) to be stable before heating up PbI2 and then used this latter rate as the 

adjusting parameter. They determine the optimum heating temperature for PbI2 to be 250°C, 

corresponding to a 0.5 Å/s deposition rate. Integrating these vacuum-processed perovskite 

layers into PV devices of structure ITO/PEDOT:PSS/polyTPD/perovskite/PCBM/Au they 

achieved at that time 12% efficiency on a 0.09 cm² device. Since then this procedure has 

been reported in tens of papers from the ICMol team (Table 2). Optimizing the charge 

transport layers, efficiencies over 20% have been achieved (on 0.01 cm² cells) with a 

complex fully evaporated structure114. Outside this team, only very few works on 

coevaporated CH3NH3PbI3 thin films for PV applications have been reported.  

 A team from Seoul National University (SNU) developed a MAI-vapor-pressure-based 

method105. In their first paper in 2015104, Kim et al. followed ICMol’s procedure, heating MAI 

up to 70°C, to reach a pressure of 2.10-5 Torr, while PbI2 was set to a deposition rate of 

 
102 adapted from reference [63] 
103 O. Malinkiewicz et al., (2014) Nature Photonics, 8, 128-32 
104 B. S. Kim et al., (2015) Org. Elec., 17, 102-6 

https://www.nature.com/articles/nphoton.2013.341
https://www.sciencedirect.com/science/article/pii/S1566119914005485
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0.5 Å/s (read on sensor 1, Figure 21). Over 72 samples (within 6 different batches) of 

ITO/MoO3/NPB/CH3NH3PbI3/C60/BCP/Al structure with a 0.04 cm² active area, the PCE 

Gaussian distribution reached its peak between 11 and 12%. Their best device achieved a 

13.7% efficiency. 

 
Figure 21. Scheme of the dual evaporation system from SNU team105. 

 One year later, in their second paper, SNU’s team report their MAI-vapor-pressure-

based method105. They varied the MAI vapor pressure from 0.6 to 8.3.10-5 Torr in between 

experiments (the pressure during deposition was kept constant ± 0.1 Torr by controlling the 

MAI crucible temperature). They specify in this paper that « a 2 nm thick PbI2 layer was 

deposited before heating up the MAI » but no mention of any temperature was made in the 

overall paper. We expect them to have followed, for this second paper too, the procedure 

developed at ICMol with the 250°C and 70°C target temperatures for PbI2 and MAI 

respectively. In 2015, they had found this MAI temperature to yield a 2.10-5 Torr vapor 

pressure. In their second paper where this vapor pressure is quite finely tuned (between 0.6 

and 8.3.10-5 Torr), the authors unfortunately fail to provide any temperature values 

corresponding to this pressure management. 

 Another report of coevaporated CH3NH3PbI3 was found in Lin et al.106, with very few 

details provided. The authors heated the CH3NH3I precursor up to a constant 100°C and the 

PbI2 temperature was varied between 250 and 280°C yielding an overall deposition rate 

between 0.3 and 1.1 Å/s (monitored by a single sensor positioned between the two sources). 

They claim 260°C is the optimal PbI2 temperature for their evaporation configuration but fail 

to provide the corresponding deposition rate. Integrating the fabricated films into perovskite 

devices of structure ITO/PEDOT:PSS/PCDTBT/CH3NH3PbI3/PCBM/LiF/Ag they achieved 

16.5% (on 0.2 cm²), a record at that time for a non-oxide perovskite cell. 

 

  

 
105 B. S. Kim et al., (2016) J. Mater. Chem. A, 4, 15, 5663-8 
106 Q. Lin et al., (2015) Nature Photonics, 9, 106-12 

https://www.researchgate.net/publication/298334583_Composition-controlled_organometal_halide_perovskite_via_CH_3_NH_3_I_pressure_in_vacuum_co-deposition_process
https://www.nature.com/articles/nphoton.2014.284
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Coevaporation conditions 

disclosed 

                                  Photovoltaic devices 

ref. Structure 

(if given, active area in cm²) 

PCE 

(%) 

CH3NH3I 70°C 

PbI2 250°C; 0.5 Å/s 

 

“ICMol procedure” 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM/Au 

(0.09) 

(0.98) 

 

12.04 

8.27 

[103] 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM/Au 

(0.06) 

 

12.7 
[107]  

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM/3TPYMB/Au 

(0.065) 

(0.95) 

 

14.8 

10.9 

[108] 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/Fullerene/Ba/Au 

__________________________ PCBM 

_______________________ C60 

(N/A) 

 

15.2 

14.7 

[109] 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/Fullerene/Ba/Ag 

__________________________ PCBM 

Ful________________________ PCBB . 

(N/A) 

 

13.6 

13.3 

[110] 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/IPH/PDINO/Ag 

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/… /Ba/Ag ggg 

 ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/I… /PFNBr/Ag i 

(N/A) 

14.3 

13.7 

13.9 

[111] 

ITO/TaTm:F6-TCNNQ/TaTm/CH3NH3PbI3/C60/C60:PhIm/Ag 

(0.01) 

ITO/C60:PhIm/C60/CH3NH3PbI3/TaTm/TaTm:F6-TCNNQ/Au 

(0.01) 

(0.1) 

 

15.8 

 

18.0 

20.3 

[112]  

ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/IPH/PDINO/Ag 

(0.01) 

ITO/MoO3/TBDI/CH3NH3PbI3/IPH/PDINO/Ag 

(0.01) 

 

15.30 

 

14.85 

[113] 

ITO/TiO2/C60/CH3NH3PbI3/TaTm/TaTm:F6-TCNNQ/Au 

(0.01) 

 

20.83 
[114] 

ITO/MoO3/HTM/CH3NH3PbI3/C60/BCP/Ag 

________ITO/MoO3/m-MTDATA 

________ITO/MoO3/TaTm 

________ITO/MoO3/TcTa 

(N/A) 

 

14.4 

16.3 

12.2 

 

[115] 

ITO/MoO3/HTM/CH3NH3PbI3/C60/BCP/Ag 

________ITO/MoO3/TaTm 

________ITO/MoO3/TPA-2,7-FLTPA-TPA 

________ITO/MoO3/TPA-3,6-FLTPA-TPA 

(0.01) 

 

15.9 

17.1 

13.9 

 

[116] 

 
107 C. Momblona et al., (2014) APL Mater., 2, 8, 081504  
108 O. Malinkiewicz et al., (2014) Adv. Energy Mater., 4, 1400345 
109 G. El-Hajje et al., (2016) Energy Environ. Sci.,9, 2286-94 
110 L. Gil-Escrig et al., (2016) J. Mater. Chem. A, 4, 3667-72 
111 L. Gil-Escrig et al., (2016) Organic Electronics, 37, 396-401 
112 C. Momblona et al., (2016) Energy Environ. Sci., 9, 3456 
113 L. Caliò et al., (2017) Solar Energy Mater. & Solar Cells, 163, 237-41 
114 D. Pérez del Rey et al., (2018) J. Phys. Chem. Lett., 9, 5, 1041-6 
115 B. Dänekamp et al., (2019) J. Mater. Chem. B, 7, 523-7 
116 H. D. Pham et al., (2019) J. Mater. Chem. A, 7, 12507-17 
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ITO/C60:PhIm/C60/CH3NH3PbI3/TaTm/TaTm:F6-TCNNQ/Au 

(N/A) 
18.2 [117] 

TCO/MoO3/TaTm/CH3NH3PbI3/C60/BCP/Ag 

(0.0651) 

TCO/TiO2/C60/CH3NH3PbI3/TaTm/TPBi/MoO3/Au 

(0.0651) 

 

19.3 

 

18.8 

[118] 

CH3NH3I vapor pressure 

of  2.10-5 Torr  

PbI2 0.5 Å/s 

ITO/MoO3/NPB/CH3NH3PbI3/C60/BCP/Al 

(0.04) 

 

13.7 
[104] 

CH3NH3I vapor pressure  

of 5.1.10−5 Torr  

PbI2 0.5 Å/s 

ITO/MoO3/NPB/CH3NH3PbI3/C60/BCP/Al 

(0.04) 

 

14.1 
[105] 

CH3NH3I 100°C 

PbI2 260°C 

ITO/PEDOT:PSS/PCDTBT/CH3NH3PbI3/PCBM/LiF/Ag 

(0.2) 
16.5 [106] 

CH3NH3I vapor pressure 

of 1.23.10-4 mbar 

PbI2 3 Å/s 

FTO/TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au 

(0.16) 
13 [119] 

CH3NH3I vapor pressure 

of 5.10-5 Torr 

PbI2 0.75 Å/s 

FTO/C60/CH3NH3PbI3/Spiro-OMeTAD/Au 

(0.08) 
15.7 [120] 

CH3NH3I 0.4 Å/s 

PbI2 0.4 Å/s 

FTO/c-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Ag 

FTO/C60/CH3NH3PbI3/Spiro-OMeTAD/Ag 

FTO/ c-TiO2/PCBM/CH3NH3PbI3/Spiro-OMeTAD/Ag 

FTO/poly-TPD/CH3NH3PbI3/PCBM/BCP/Ag 

(0.0919) 

15.8 

15.4 

13.6 

12.6 

 

 [121] 

Table 2. Summary of reported coevaporated CH3NH3PbI3 perovskite thin films for PV applications. 

 It is worth noting that except two reports for ~ 1 cm² active area cell and two for 

0.2 cm², all cells are well below 0.1 cm². Another striking fact is the lack of consistency in the 

disclosed deposition conditions: no mention of temperature for some papers and no mention 

of rates for others. It appears clear from this literature review that pressure is a key 

parameter of the coevaporation process.  

 With less than 20 papers found on coevaporated CH3NH3PbI3 films for PV 

applications since 2013, the topic of the present thesis seems rather far from the raging ‘war’ 

of other perovskites-related subjects.  

   

 
117 D. Kiermasch et al., (2019) J. Mater. Chem. A, 7, 14712-22 
118 D. Pérez del Rey et al., (2019) Chem. Mater. DOI: 10.1021/acs.chemmater.9b01396 
119 J. Teuscher et al., (2015) ChemSusChem, 8, 3847-52 
120 D. Zhao et al., (2016) Nano Energy, 19, 88-97 
121 J. B. Patel et al., (2017) Adv. Electron. Mater., 1600470 

https://www.researchgate.net/publication/333183971_Unravelling_steady-state_bulk_recombination_dynamics_in_thick_efficient_vacuum-deposited_perovskite_solar_cells_by_transient_methods
https://www.researchgate.net/publication/333627386_Molecular_Passivation_of_MoO3_Band_Alignment_and_Protection_of_Charge_Transport_Layers_in_Vacuum-Deposited_Perovskite_Solar_Cells
https://www.researchgate.net/publication/282914043_Control_and_Study_of_the_Stoichiometry_in_Evaporated_Perovskite_Solar_Cells
https://www.sciencedirect.com/science/article/pii/S2211285515004267#ec0005
https://www.researchgate.net/publication/312057756_Influence_of_Interface_Morphology_on_Hysteresis_in_Vapor-Deposited_Perovskite_Solar_Cells
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Conclusion 

 With the present chapter we have set the scene for this thesis, starting off by 

introducing the perovskite materials and their broad family, we eventually narrowed down to 

halide ones. Among their outstanding optoelectronics properties, our interest in the scope of 

this manuscript lies within photovoltaics. Consequently, we took a step aside to unwind some 

key aspects of the field: photoconversion process steps, solar cells and their 

characterization. We finally focused on the multijunction approach since it represents a 

significant part of the future of photovoltaics.  

 We then developed the history of halide perovskites photovoltaics, going through the 

major developments made along its decade of existence. From their very first use as dyes in 

Grätzel cells in 2009 with an efficiency of 3.8%, halide perovskites now allow 25.2% efficient 

photoconversion, at the lab-scale. As they became a distinct photovoltaic branch, perovskite 

solar cells went through few revolutions. First revolution (and maybe the most crucial one): 

the introduction of mixed compositions. Perovskites went from the very basic CH3NH3PbI3 to 

more complex formulations such as Cs0.1(CH(NH2)2)0.75(CH3NH3)0.15PbI2.49Br0.51. These latter 

seem to tackle both the efficiency and stability issues while allowing a fine tuning of the 

optical properties of the material. Second revolution: the development of new types of device. 

Perovskites solar cells extended from DSSC-like mesoporous architecture in n-i-p structure 

toward fully planar architectures and p-i-n structures. Benefiting from their hybrid nature, 

perovskite have been investigated by both organic and inorganic chemists and physicists, 

leading to a large variety of solar devices. Third revolution: the explosion of deposition 

processes. From their initial deposition using basic spincoating method, perovskite thin films 

can now be obtained by a large variety of techniques, in pure phase (both wet and dry) as 

well as in mixed phase, as highlighted by the provided overview. 

 With the increasing interest for perovskites as light absorbers, whether it will be 

through the single or the multijunction approach, next step of perovskite PV development 

surely lies within their industrialization. With this objective, I was asked to implement the 

coevaporation process for perovskite thin films fabrication. The last section of this chapter 

provided a summary of all reported works on evaporation-based fabrication of the reference 

perovskite material CH3NH3PbI3, setting the scene for the next chapters of this manuscript. 
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Chapter 2.  

Design and engineering of a reactor for 

perovskite coevaporation. 

 

 

 

 

 

 

 

 

 

“If I had nine hours to chop down a tree, I’d spend the first six sharpening my axe.” 

A. Lincoln 
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Introduction 

 Although the first report for dry-processed perovskite thin films goes back almost ten 

years before the ‘perovskite boom’ in photovoltaics, for most of the development in that field 

the wet phase was preferred. Being relatively easy and cheap to implement, solution-based 

processes are still extensively performed but have the drawback of entailing a high 

variability, both intra and inter-batches. Given the commercialization challenge that 

perovskite photovoltaic is facing, interest for vacuum-based techniques has lately been 

revived. As they combine homogeneous large area with low cost manufacturing, they are 

expected to hold the key to the future of perovskite solar cells. 

 In this context I was asked to develop at IPVF and LPICM the coevaporation process 

for perovskite materials, starting with the reference CH3NH3PbI3. With only a few reported 

papers, most of them coming from the ICMol team, coevaporation of this material appears 

very challenging, with the organic salt described as complicated to control. My work initially 

consisted in establishing the feasibility of the coevaporation process using a proof-of-concept 

reactor. Feedbacks from this latter helped us chose relevant features guiding the design of 

the new dedicated equipment that was eventually delivered in the second year of this thesis. 

From then I was in charge of implementing and developing the perovskite coevaporation 

process using this dedicated reactor.  
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I. Coevaporation process for perovskites using a proof-of-

concept reactor 

 Initial developments were carried out using a reactor from RIBER company. The 

system, initially designed for ozone treatment, was ‘recycled’ to deposit perovskites as a 

proof of concept. The reactor is equipped with three sources, a single Quartz Crystal 

Microbalance (QCM) sensor and a stationary substrate holder suited for 6 substrates of 

17x25 mm² dimension. Schematic views of the reactor are given Figure 22 (see Table 3 

page 42 for more details). 

 

 

a) b) 
Figure 22. Schematic side (a) and top (b) views of the interior of the RIBER reactor set up with its three sources, 
its QCM sensor and the stationary substrate holder with the six samples. 

 With the purpose of perovskite coevaporation, we started with the methylammonium 

lead triiodide (CH3NH3PbI3 or MAPbI3) reference material synthetized from PbI2 and CH3NH3I 

(or MAI), each loaded in a source of the reactor as shown Figure 22.  

 Since the purpose of this reactor was the proof of concept only few results will be 

disclosed in the following sections, going from initial results setting the ground for the design 

of the next reactor (I.i.) to results assessing the feasibility of the process (I.ii.). 

i. Initial developments and identification of missing features 

 Upon exploring the MAI heating behaviour, which is expected to be complicated 

based on the previously reported studies (see Table 2), we noticed that the chamber 

pressure increased, gaining about one order of magniatude from its initial value upon heating 

of the organic salt (Figure 23). 
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Figure 23. Temperature (solid line) and pressure plots (dotted line with symbols) for MAI heating. 

 This pressure boost, that doesn’t occur with PbI2 evaporation, shows the volatility of 

the methylammonium iodide compound. Accordingly, we anticipate the organic material to be 

difficult to control, possibly evaporating as a ‘cloud’ filling the entire reactor volume during the 

process. From the rate plot displayed Figure 24a, we see that the MAI deposition rate keeps 

increasing while the temperature is constant; compared to PbI2 for which the rate is constant 

when the temperature is stable (Figure 24b). This trend supports our hypothesis of dynamic 

MAI vapour cloud swirling in the chamber during the process, inducing a variable rate 

response. 

  
a) b) 

Figure 24. Temperature (solid line) and deposition rate (solid line with symbols) plots for single-compound 
evaporation processes of a) MAI and b) PbI2. 

 From this early realization, we expect the MAI behaviour and the chamber pressure to 

be closely linked. Unfortunately we found ourselves unable to accurately monitor the 

pressure on this reactor as it can only be read on the vacuum pump box and is not monitored 

from the software interface. In order to better understand the MAI temperature correlation 

with pressure we would include in the new reactor specifications the precise and direct live 

monitoring of the pressure from the software. 
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 The observation of MAI deposition on the back of samples and all over the chamber 

walls further supported our hypothesis of an organic cloud filling the entire reactor volume. 

From our different experiments we roughly estimated a temperature of 40°C to trigger the 

pressure increase (Figure 23) and thus, in our opinion, the evaporation of MAI. In addition to 

the vapour arising from the MAI source heating (intended), we would potentially also have 

MAI redepositing from the walls (far from intended). Given the high temperature of the PbI2 

source (>200°C) and the sources/walls closeness we suspect the source heating to radiate 

toward the walls causing the release of the MAI deposited during the previous experiments. 

 Being intrinsically linked to the MAI compound, this vapour cannot be suppressed and 

kicks off as soon as 40°C is reached. While we cannot avoid it, we can counter it by 

depositing an initial layer of PbI2 that would be converted into perovskite following a vapour-

assisted process, previously reported for perovskites122, as the MAI cloud occurs. Following 

this idea, we then adapted our process by dephasing PbI2 and MAI heatings (that were 

previously simultaneously started as shown Figure 25a) and integrating a step where few 

nanometres of PbI2 are deposited while the organic source is still at room temperature (RT), 

i. e. below the 40°C triggering temperature (Ttrig) (Figure 25b).  

a)      

b)      

Figure 25. a) Initial heating process: MAI and PbI2 are heated from the same starting point, causing some 
parasitic MAI to deposit on both sides of the samples as 40°C is reached that will remain when coevaporation is 
performed and b) Updated heating process: PbI2 is first heated, few nm are deposited as its sublimation 
temperature is reached (Tsub ~200°C) while MAI is still at room temperature (RT), then MAI is heated and the 
initial PbI2 is converted into perovskite as the organic vapour appears followed by the deposition of coevaporated 
perovskite. 

 
122 Q. Chen et al., (2014) J. Am. Chem. Soc., 136, 2, 622-5 

https://pubs.acs.org/doi/10.1021/ja411509g
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 While this updated process does prevent the deposition of parasitic MAI originating 

from the source heating, it hardly prevents the parasitic MAI coming from the walls (PbI2 

sublimation temperature of 200°C being surely high enough to activate the release of MAI off 

the walls). This MAI release seems hardly avoidable as it would involve a thorough cleaning 

of the reactor by hand before every experiment. This cannot be reasonably done as it would 

tremendously increase the workload (and the risk due to Pb exposure) to properly clean the 

reactor as well as the down time between experiments. Increasing the source-to-walls 

distance could be a viable alternative, worth implementing on the next equipment.  

 Further into our developments, we identified two supplementary features missing from 

the present reactor that we deem relevant to implement on the new equipment: the presence 

of one QCM per source and the rotation of the substrate holder. 

 As shown Figure 22, this proof-of-concept reactor is equipped with a single QCM 

sensor, making it impossible to follow each material deposition rate throughout a multi-

source coevaporation process. To bypass this matter we have decided to work in three 

phases: settings, coevaporation and checking. In the initial setting phase, by alternatively 

shutting the two sources (MAI source shutter closed when PbI2 source one is open and vice 

versa), it is possible; although tedious; to follow and adjust each deposition rate. During the 

coevaporation phase, the two sources are opened and what is monitored by the 

microbalance (given its location) is the PbI2+MAI deposition rate, estimated to be the 

‘perovskite’ deposition rate. Once the coevaporation is over, we proceed similarly to the initial 

phase (shutting one source while looking at the other) to check the end-of-process deposition 

rates of the two materials (so called ‘checking phase’). An example of deposition rate plot is 

shown Figure 26 to illustrate the different phases. 

 

 
a) b) 

Figure 26. a) Deposition rate plot for a full process showing the settings, coevaporation and checking phases and 

b) corresponding shutter status for PbI2, MAI and PbI2+MAI QCM sensor reading. 

 Since it is not possible to monitor the precursors (PbI2 and MAI) instant deposition 

rates, any temperature adjustment made during the coevaporation phase is done blindly. 
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Indeed, the user has no way to assess the impact of a temperature increase on the 

corresponding deposition rate but can only see the impact on the overall PbI2+MAI QCM 

sensor reading. It is thus very difficult to be sure that although two batches of samples are 

deposited with the same PbI2+MAI ‘perovskite’ rate, that they do indeed have the same PbI2 

and MAI instant rates (i. e. the same composition). Consequently, we integrate in the new 

design the presence of one QCM sensor per source to get a more accurate reading of each 

material deposition rate.  

 Following our initial investigations, we foresee that the organic salt will behave 

erratically, its evaporation cloud swirling inside the reactor during the coevaporation process 

as it does for single-compound evaporation. With the technical impossibility to rotate the 

substrate holder during the process on this reactor, we expect this phenomenon to impair the 

homogeneity of the deposition as well as, potentially, the composition of the films.  

 Indeed, as shown Figure 27 for one experiment (i. e. 6 samples as shown Figure 22), 

we do see a variability both in the film thickness which ranges from 300 to 435 nm (Figure 

29a) and in composition with an onset absorption wavelength varying from 780 to almost 804 

nm. From the profilometry measurements one can also notice a difference in film roughness 

comparing sample C to D, the latter exhibiting a noisier signal for the non-scratched part of 

the profile. The thickness inhomogeneity can also be seen from the absorption spectra, with 

low energy absorption tail (from 800 nm) originating from interference effect due to thick films 

for samples A and C. 

 
a) 

 

 

b) c) 
Figure 27. a) Profilometry plots with corresponding mean thickness (𝒕̅); b) absorption spectra and c) 
corresponding onset wavelength (determined from the spectra with a linear regression) and calculated bandgap 
Eg (using Planck-Einstein equation) for all six Glass/perovskite samples of coevaporation #22. 
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 We would include in the new reactor design a substrate holder rotating feature, 

hoping that it would soften (if not fully counter) the variability induced by the MAI vapour 

swirling dynamics.  

 With the aim of further mitigating the impact of the MAI swirling vapour, we also 

include in the new reactor design the presence of a screening shield (with a shutter opening) 

between the sources and the substrate holder. Doing so, we hope that the MAI cloud will be 

restrained to the lower part of the chamber, less parasitizing the deposition on the samples 

(located in the upper part of the chamber).  

 Despite the missing features of this proof-of-concept reactor, we were nonetheless 

able to perform experiments, fabricating thin films, preparing perovskite solar cells and 

achieving very encouraging results. 

ii. Proof-of-concept assessment results 

 The aim of this reactor being the proof of concept this section will provide a rapid 

overview of the work conducted, giving only few major results. The equipment features (or 

lack thereof) preventing us from accurately getting a handle on the coevaporation process, 

the conditions determined can only be considered as ‘relatively’ optimized.  

 A typical coevaporation process is shown here after with the temperature profiles 

(Figure 28a) showing MAI heating delayed from PbI2’s and the rate profile (Figure 28b) 

showing the different phases of settings, coevaporation and checking. 

  
a) b) 
Figure 28. a) Temperature profiles for PbI2 and MAI (respectively blue and red solid lines) and b) Deposition rate 
profile with PbI2 (blue) and MAI (red) settings (up to 15 minutes into the process), coevaporation (between 15 and 
25 minutes) and final checking step. 

 As can be seen from the rate plot, setting the deposition rate of the two precursors 

takes about 15 minutes and is followed by 10 minutes of coevaporation and finally few 

minutes to check each precursor final rates. Overall the process, as we developed it with this 

reactor, lasts less than half an hour with deposition rates of ~2 Å/s for MAI, ~6 Å/s for PbI2 

and ~5 Å/s for ‘perovskite’. 

 Coevaporated films were either deposited on Glass only substrates or integrated into 

PV devices of structure: Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Ag with an active area of 

0.28 cm² (Figure 29) (fabrication steps are detailed in the Annexes/section 0/pages A-C).  
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a) b) c) 

Figure 29. Perovskite solar cell: a) layers stack, b) corresponding thicknesses and c) picture of a sample. 

 In six months of exploitation of this proof-of-concept reactor, approximately one 

hundred experiments were conducted. Due to the lack of features of the present reactor we 

found ourselves unable to accurately follow and apprehend the coevaporation process, thus 

hardly confident to make any clear sense of the experiments. First, we know the MAI vapour 

to be of great impact on the process, but we are unable to assess it due to the lack of 

accurate pressure monitoring. Second, with the presence of a single QCM sensor, we are 

unable to follow each precursor instant rate during the process (only the ‘perovskite’ one) 

which prevents us from following the precursor deposition rates ratio that we suspect to be of 

great importance for the material composition. Despite these two issues, some statistics for 

the conducted experiments will be quickly discussed in the following paragraphs.  

 Focusing on the bandgap values (Eg) shown Figure 30a (calculated from absorption 

spectroscopy measurement), one can notice a difference between samples of a same 

experiment. Although a small part of this intra-batch variability can originate from the linear 

regression calculation, the main part is, in our mind, linked to the stationary status of the 

sample holder. Eg being instrinsically linked to the material, variation in its value can in 

extenso mean a variation in the material composition. Interestingly, one also notices a 

difference in amplitude of this intra-batch variability between experiments. Considering, for 

example, experiments c43 and c52: the amplitude is very different, Eg values ranging from 

1.51 to 1.59 eV for c43 and from 1.55 to 1.58 eV for c52. Very likely this lack of consistency 

between experiments finds its roots in the non reproducible and parasitic MAI vapour cloud. 

  
a) b) 

Figure 30. Statistics for Glass/perovskite samples: bandgap values (Eg) calculated from UV-visible absorption 
spectroscopy measurements using Planck-Einstein equation (absorption threshold wavelength was determined 
by a linear regression from the spectra). The dashed line at 1.57 eV stands for the CH3NH3PbI3 reference 
bandgap value calculated accordingly from the spectra of a wet-processed film. 
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 As for the Eg distribution (Figure 30b) it reaches a peak slightly above the ±1.57 eV 

characteristic of the CH3NH3PbI3 composition (determined from a wet-processed film). More 

than half of our samples have a calculated Eg between 1.58 and 1.60 eV. All calculated 

points are more or less concentrated around the 1.57 eV target value. Although we are not 

perfectly at a CH3NH3PbI3-composition, we are relatively close to it.  

 

 Considering the PV performances (Figure 31a), we find a similar intra-batch 

variability, no consistency between the six samples of a same experiment. Part of this latter 

very likely originates from the intrinsically inhomogeneous solution process used to deposit 

the lower and upper layers (respectively PEDOT:PSS and PCBM) of the devices. 

Unfortunately, at that time we failed to prepare fully wet-processed devices alongside the 

evaporated-perovskite ones, which would have allowed us to address this aspect. 

Considering all the experiments the amplitude of this variability is not consistent between 

them, with PCE values ranging from 5.37 to 8.99% for c61 when they only go from 1.02 to 

2.23% for c64. In our opinion, this inter-batch variability finds its main origin in the non-

repeatability of the coevaporation process itself. Unfortunately we are unable to assess it for 

sure. 

  
a) b) 

Figure 31. Statistics for Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Ag solar cells (active area is 0.28 cm²): 
PhotoConversion Efficiency (PCE) values.  

 As far as the PCE distribution goes (Figure 31b), we have a mean efficiency 

around 4% and a record of almost 9% (experiment c61, sample D). Regrettably, the number 

of samples is too low to be statistically significant, nonetheless few conclusions can be drawn 

from these results. Given their centred location, with respects to the two sources (Figure 

22b), we expect samples in positions C and D to exhibit the most balanced composition 

(i. e. no excess of any of the two precursors), leading to the best material quality and thus 

potentially the highest efficiencies. From the PCE statistics displayed Figure 31a we find no 

such correlation between the sample position and the efficiency, echoing with the absence of 

correlation between Eg values and positions (Figure 30). Once again, the stationary status of 

the sample holder surely takes part in this issue.  

 Focusing on the two ‘worst-performing’ batches (c64 and c80, with a mean PCE <2%) 

and taking a closer look at the process, one can notice that the deposition rates throughout 

the coevaporation were consistent with each other, which is logical, but, surprisingly, also 

consistent with the deposition rate of the best performing batch (c61) (Figure 32). 
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Figure 32. Deposition rate plots for experiments 61, 64 and 80 (only plotted for the coevaporation time range). 

 Lacking the possibility to know the precursors instant rates during the coevaporation 

(only the ‘perovskite’ PbI2+MAI combined rate) we are unable to know the value of the MAI to 

PbI2 instant rates ratio for each of these different experiment and thus correlate the material 

composition to the PV performances. Unfortunately, these three experiments consisted of 

only solar cell samples; no absorption-dedicated samples were included, we are thus unable 

to highlight a potential difference in composition that could explain the difference in PV 

efficiencies.  

 At that point we feel like the limits of our thinking have been reached as we are 

operating a system that does not provide us enough insights on our process, we are not 

confident going further into the results’ interpretation. 

 Based on these initial results, we consider this reactor’s purpose of proof-of-concept 

to be fulfilled. Even though we found ourselves lacking some key understandings, we were 

able to get a first handle on the coevaporation process, achieved encouraging results and we 

made some crucial discoveries that will drive our future work. In the sake of effectiveness, as 

the new equipment was delivered to the lab we solely focused our attention on it, neglecting 

this proof-of-concept reactor. 
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II. Comparison of the specifically designed reactor with the 

proof-of-concept one 

 

 Proof-of-concept reactor 
Perovskite coevaporation-designed 

reactor 
  

  

  

Glovebox integrated Glovebox integrated 

Dimensions 

V = 9 dm3  
(⌀ 15 cm × h 51 cm) 

V = 125 dm3  
(l 50 cm × w 50 cm × h 50 cm) 

Sources 

3 for organic/inorganic materials 
4 for organic/inorganic materials 
+ 1 for Metal (high temperature) 

Crucible 
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Quartz Crystal Microbalance (QCM) 

1 
5 

(1/source) 

 

 

Distance from crucible: 9 cm Distance from crucible: ~12 cm 

Sample Holder 

Stationary 
6 samples of 17x25 cm² 

Distance from crucible: 29 cm 
 

Rotating and heating 
9 samples of 25x25 cm² 

Distance from crucible: 17 cm 

 

 

Monitoring 

 
Temperature for each source 
Deposition rate on the QCM sensor 
Thickness 

 
 
 

Temperature 
Deposition rate 
Thickness 

 
for each source 

 

 Chamber pressure 

Table 3. Comparative table of the two perovskite reactors features.  
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III. Implementation of the new reactor designed for perovskite 

coevaporation 

 The new reactor purchased by IPVF was delivered to the LPICM laboratory in March 

2017 (at that time IPVF lab facilities were not yet ready). Waiting for some corrective actions 

from MBRAUN, the equipment was ready to be used by mid-June. The site acceptance tests 

(SAT) were done by mid-July and the equipment was then available for exploitation. In 

January 2019, the equipment was moved from LPICM to the IPVF building. At the time of 

writing, the equipment is still in standby due to issues on the reactor pumping system. 

 Since the equipment was purchased in the framework of this thesis, first step of its 

implementation consisted in running the site acceptance tests to check that the reactor 

fulfilled all desired features. 

i. Site Acceptance Tests 

 The Site Acceptance Tests (SAT), mandatory upon acquisition of any new system to 

insure the specifications are met, were established between LPICM, IPVF and MBRAUN. 

Several items were to check including some features on the glovebox and on the pumping 

system that will not be disclosed here. Relevant items definition is given Table 4 and 

corresponding check tests are here after detailed.  

Definition Specificity Comments 

Substrate Holder rotation: 

Thickness uniformity over 5 samples  

(1 center + 4 corners) 

<  ± 5% 
Thickness measurements 

using profilometer 

Deposition: 

_of PbI2 (300 nm thick) 

_of organic material (100 nm thick) 

_of metal (50-100 nm thick) 

 

0 to 0.5 nm/s 

 

Deposition tests and thickness 

measurements using 

profilometer or SEM 

Table 4. Site Acceptance Tests definition. 

a. Substrate Holder rotation SAT tests 

 Given the erratic behaviour of the organic compound, foreseen from the RIBER 

reactor feedback, the substrate holder rotation tests were conducted using PbI2 as 

the evaporated material since it behaves more conventionally, i. e. with a 

directive evaporation cone. Two sets of PbI2 films (nine samples each time) were fabricated 

without and with substrate holder rotation during the evaporation process.  

When the rotation feature is not used, a difference in thickness can already be seen by the 

naked eye (picture Figure 33a) and is further assessed from the absorption spectra that 

exhibit a clear thickness effect. On the other hand, when the rotation is used, all nine plots 

perfectly overlay (spectra Figure 33b). 
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a) no rotation 

 

 
b) with rotation 

Figure 33. Deposition of PbI2 films on glass without (a) and with (b) rotation of the substrate holder: pictures of 

the nine samples (left) and corresponding absorption spectrum (right). 

The thicknesses were measured using a stylus profilometer. For each set of films, five 

samples (centred (position 5) and cornered ones (positions 1, 3, 7 and 9)) were scratched 

and measured. Profile plots along with the mean thicknesses are given Figure 34 for each 

rotation status: OFF (a) and ON (b). 

 

a) no rotation 
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b) with rotation 

Figure 34. Profilometry profiles and corresponding thicknesses (𝒕) of five samples Glass/PbI2 without (a) and with 

(b) rotation of the substrate holder. 

 Thicknesses range from 40 to 150 nm without rotation and from 115 to 125 nm with 

rotation. Given the precision of the profilometer, we estimated the thickness homogeneity 

criterion, if not of 5% but of 8.7%, to be nonetheless fulfilled. 

b. Deposition SAT tests  

 For each compound (PbI2, organic and metal) the material was heated to a random 

temperature and then adjusted so that the rate doesn’t go above the 0.5 nm/s limit defined in 

Table 4). Each time, nine samples were prepared and following section III.i.a. results, the 

substrate holder was rotated during the different experiments. The sensor-read thickness 

and deposition rates process outputs as well as measured thickness profiles of five samples 

are plotted for each material and gathered Figure 35. 

 
 

a) b) 

 
 

c) d) 
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e) f) 

Figure 35. Evaporation process outputs: deposition rate (dark red line with symbols, left scale) and QCM-read 
thickness (pink solid line, right scale) (a, c, e) and measured thicknesses of five glass samples (b, d and f) for 
PbI2 (a, b), organic CH3NH3I (c, d) and silver metal (e, f). 

 For PbI2 and Ag, that have a classical directive evaporation, the thickness 

measurements show a good homogeneity between the five selected samples upon rotation 

of the holder during deposition (Figure 35b and f). Even though the rotation feature was 

used, the erratic behaviour of the organic salt CH3NH3I (reported in the literature by other 

groups and shown by our group in I.i.) could not be mitigated, resulting in thicknesses 

varying between 100 and 200 nm (Figure 35d). Comparing the thickness profiles one can 

notice the difference in film roughness between MAI and PbI2 (or Ag). The organic film profile 

(on each side of the scratching fingerprint) is very noisy compared to the inorganic and 

metallic ones, confirming the swirling nature of the MAI evaporation. Since the organic 

material is, inherently, hardly controllable, we consider the SAT deposition criteria to be 

satisfied and will investigate further its behaviour later in the manuscript.   

 Once all the acceptance tests satisfied, we proceeded with some initial developments 

starting with single compound evaporations to assess the behaviour of the precursors in this 

new reactor, hoping to get deeper insights with regard to the RIBER development thanks to 

the added features. 

ii. Transfer knowledge between equipments 

 As we started implementing the coevaporation process on the new equipment, we 

wanted to follow the routine developed on the previous reactor, i. e. high heating rates of 

50 and 20°C/min for PbI2 and MAI respectively. Due to a safety interlock on the new reactor 

sources, the heating rate could not exceed 20°C/min, we then had to adapt our process.  

 Taking advantage of this restraint, we decided to run a study on the influence of the 

heating rate. We performed single-compound evaporation of PbI2 at three heating rates: 20, 

10 and 8°C/min with target temperatures around 300°C and single-compound evaporation of 

MAI at five heating rates: 20, 15, 10, 5 and 2°C/min with a target temperature of 120°C. The 

results are shown Figure 36. 
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a) b) 

  
c)  d) 

  
e) f) 

Figure 36. Influence of the heating rate: temperature (a, b), pressure (c, d) and deposition rate (e, f) plots for PbI2 
heating rates of 20, 10 and 8°C/min with target temperatures ~300°C (a, c, e) and MAI heating rates of 20, 15, 10, 
5 and 2°C/min with a target temperature of 120°C (b, d, f). Insert in c) shows the PbI2 pressure plot scaled to the 
MAI pressure plot (d). N.B. each experiment is a single-compound evaporation. 

 Considering the PbI2 pressure plots (Figure 36c), although the 20°C/min plot shows 

stronger oscillations than the 10 and 8°C/min plots, these oscillations turn out to be 

insignificant considering their amplitude (from 9.10-7 mbar to 1.9.10-6 mbar). Scaling the PbI2 

plots to the MAI ones (insert Figure 36c) clearly shows the flatness of PbI2 pressure profiles 

(whatever the heating rate) with respect to the MAI profiles.  



 

48 
 

 While all MAI pressure profiles (Figure 36d) follow the same trend (from the initial 

value Pi the pressure increases up to a peak value Ppeak before stabilizing down to a 

pressure 𝑃 > 𝑃𝑖), interestingly the amplitude of the pressure increase seems to depend on 

the heating rate. For the three highest heating rates, the peak pressure value is higher 

3.5x10-5 mbar when it is below 2.10-5 mbar for the two lowest (Figure 37a). What is also 

worth mentioning is the shift in the peak-pressure temperature with the heating rate, going 

from 120°C for the three highest heating rates down to 60°C for the 2°C/min plot (T at Ppeak in 

Figure 37b). 

 

 

a) b) 

Figure 37. a) Evolution of the pressure with the temperature for all five MAI heating rates and b) Values of initial 
and peak pressure values (respectively Pi and Ppeak) and the corresponding temperature (T at Ppeak) for the five 
different MAI heating rates. 

 These results show that decreasing the MAI heating rate limits the pressure increase; 

potentially mitigating the organic swirling cloud effect which would suggests a better control 

of the MAI evaporation with low heating rates.  

 Considering the deposition rate plots for MAI (Figure 36f), no clear difference is seen 

between the five experiments while we would have expected very different response from the 

three highest heating rates with respect the two lowest (as seen with the pressure), 

potentially with higher deposition rates and/or more oscillating profiles (due to the parasitic 

swirling MAI cloud). This inconsistency between the pressure trend and the deposition rate 

still puzzles us to this day.  

 As far as PbI2 goes, while the 20 and 10°C/min plots show the same trend, there is, 

quite surprisingly, a very strong difference between the 10 and 8°C/min profiles (Figure 36e). 

The two highest heating rates yield a rather similar deposition rate profile with a peak value 

as the target temperature is reached, followed by a decrease. The 8°C/min heating rate on 

the other hand leads to a profile where the deposition rate is stable from ~35:00 until the end 

of the process 20 minutes later. It is worth mentioning that, for the 20 and 10°C/min 

experiments, a second increase in deposition rate occurs as the temperature is slightly 

increased to 307 and 305°C respectively (at 2°C/min). A slight increase in temperature was 

also applied during the 8°C/min experiment (to 300°C at 2°C/min) but interestingly enough it 

did not disturb the deposition rate.  

 This study suggests that low heating rates allow a better control of the PbI2 deposition 

rate while mitigating the parasitic MAI cloud. We then decided to work with heating rates 
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below 10°C/min for PbI2 and below 5°C/min for MAI with the new reactor, when we were 

using 50 and 20°C/min on the previous one. 

iii. Single compound depositions 

a. Single evaporation of PbI2 

 For the single evaporation of lead iodide, several experiments were ran with the same 

inputs i. e. a target temperature of 220°C with a heating slope of 10°C/min. The process 

parameters plots (temperature, pressure and deposition rate) are shown Figure 38. 

  
a) b) 

 

 

c) d) 
Figure 38. Process parameters for three PbI2 single compound evaporation experiments: a) temperature; b) 

chamber pressure; c) deposition rate and d) rate statistics (σ is the standard deviation). 

 Upon heating PbI2 up to 220°C, the chamber pressure remains close to the initial 

value and relatively constant, between 2.8 and 3.3.10-7 mbar. As the target temperature is 

reached, the PbI2 deposition rate hits a value of 0.15 Å/s. During the 2 hours of process, this 

value remains steady with a standard deviation well below 0.01.  

 All three experiments where PbI2 was heated to 220°C at 10°C/min lead to a mean 

stabilized rate of 0.15 Å/s, showing a good repeatability of the process. 

b. Single evaporation of CH3NH3I 
 For the single evaporation of organic methylammonium triiodide (CH3NH3I or MAI), 

ten experiments were ran with the same inputs i. e. a target temperature of 60°C with a 
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heating slope of 4°C/min. The output parameters plots (measured temperature, pressure and 

deposition rate) are shown Figure 39. 

  
a) b) 

 

 

 

c) d) 
Figure 39. Process parameters for ten MAI single compound evaporation experiments: a) temperature; b) 
chamber pressure; c) deposition rate and d) rate statistics (σ is the standard deviation). 

 Regarding the chamber pressure, the trend upon MAI evaporation is very different 

from the one for PbI2 where the pressure was stable and close to the initial value. Upon 

heating of the organic material, the chamber pressure quickly increases to reach a peak 

value as the temperature peaks, before going down as the temperature stabilizes at 60°C. 

This sharp increase in pressure shows the volatility of the organic methylammonium iodide 

material, as previously noticed with the proof-of-concept reactor. The stabilized working 

pressure (reached after 30 minutes into the process) is slightly higher than the initial one. To 

compare the MAI pressure behaviour with the one from PbI2 evaporation, four points of 

interest are considered: initial, maximum, at t0+30min and final. The corresponding profiles 

are shown Figure 40 for all MAI and PbI2 experiments.  
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Figure 40. Comparison of pressure trends between MAI (solid line with squares) and PbI2 (dotted line with stars) 
single compound evaporations for four points of interest: Pi at t0, Ppeak, 30 minutes into the process (t0+30min) and 
final pressure value at the end of the deposition process. 

 Considering PbI2, all four points of interest are more or less in the same range, 

yielding a flat pressure profile. Considering MAI, the pressure profile shows an increase of 

approximately one order of magnitude from the initial pressure before stabilization to a 

working pressure higher than the t0 value.  

 Even though the temperature inputs are identical for all ten MAI experiments (60°C 

target with a 4°C/min slope) the deposition rate outputs are very different ranging from 

0.64 Å/s for MAI #1 to five times less for MAI #10 (table d) Figure 39). It is worth noting that 

the difference in noise in the rate profiles (plot c)) is due to the QCM sensor lifetime. For 

experiments #1 to #5, the QCM lifetime went down from 94.5 to 90.8%, the membrane was 

then changed for a new one (99.2% initial lifetime for experiment MAI #6) that went down to 

97.6% by the end of experiment MAI #10. Regardless of this aspect, deposition rates are not 

consistent between experiments as shown by the factor 3 difference in the mean deposition 

rates between experiments MAI #6 and #10 for instance (Figure 41). 

 
Figure 41. Mean rate values for all ten MAI single-compound evaporations (data from Figure 39d table). 

 In terms of standard deviation, given the lower QCM lifetime (thus the higher signal 

noise), experiments #1 to #5 exhibit higher σ values (around 0.1) than experiment #6 to #10 

(below 0.05). Compared to PbI2, for which values were well below 0.01 (table Figure 39d), 
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standard deviations for MAI range from 0.014 to 0.208 stressing once again the erratic 

nature of the organic salt evaporation. 

 At this point, we have showed that the evaporation of the organic salt is slightly less 

stable than the one for PbI2 and that it is poorly reproducible between experiments, even 

though the input parameters (target temperature and heating rate) are identical. We tried to 

correlate the deposition rate dispersal with any quantifiable parameter.  

 All ten experiments follow the same temperature trend, with a stabilized temperature 

of 60°C (Figure 39a), the difference in deposition rate thusly does not originate from there. 

The only remaining monitored parameter being the pressure we took a closer look at it. 

Focusing on two sets of experiments (one where the two deposition rates are almost 

identical: MAI #9 and #10, and one where they are different: MAI #2 and #6) we compared 

both the deposition rates and pressure plots (Figure 42). 

  
a) b) 

Figure 42. a) Deposition rates and b) pressure plots for the two sets of experiments considered. 

 Considering the set of experiments with comparable deposition rates (#9 and #10), 

their pressure plots nicely overlay, potentially showing that pressure and deposition rate are 

correlated. Yet, the second set of experiment (with different rates, respectively 0.63 and 

0.45 Å/s for #2 and #6), also shows overlying pressure profiles. At this point, we find 

ourselves unable to explain the difference in deposition rate response. 

 Thanks to the automatic and accurate pressure monitoring on this designed reactor 

we were able to assess more precisely the temperature triggering the pressure increase 

occurring upon MAI heating. On the proof-of-concept RIBER reactor, we found a value 

around 40°C. With the fine and accurate pressure monitoring featured on this new reactor, 

we were able to refine this triggering value around 35°C as shown Figure 43. 
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Figure 43. Process plots for MAI single evaporation #1 correlating the temperature and pressure increase (insert 
shows a zoom of the starting region). 

 This section’s findings are in good agreement with the previous work of Malinkiewicz 

et al.108 where they pinpointed the difficulty to control the organic salt evaporation. From its 

behaviour in single-compound evaporation, we expect the MAI to react accordingly in a 

coevaporation process, potentially perturbing the stable response of PbI2. 

iv. Toward coevaporation 

 With the previous section we have shown that the pure evaporation of PbI2 seems 

reproducible with a stable deposition rate during process (around 0.15 Å/s for a target 

temperature of 220°C) and found the organic compound MAI evaporation to be relatively 

stable during one experiment but poorly reproducible between experiments. Before jumping 

into optimizing the coevaporation process itself, we ran few experiments where starting from 

a single evaporation of PbI2 we then added MAI, to apprehend its influence on the process, 

leaning toward pseudo coevaporation conditions.  

 From the start PbI2 is heated up to a 220°C target temperature with a 10°C/min slope. 

After more than an hour of process where only the inorganic material is evaporating, 

the organic MAI is heated up to a 80°C target temperature with a 4°C/min slope. The output 

parameters (PbI2 and MAI temperatures, chamber pressure and PbI2 deposition rate) for 

three experiments are shown Figure 44 along with the PbI2 rate statistics). Given the two 

working regimes (PbI2 only and PbI2 + MAI), rate statistics are calculated for two time ranges: 

from t0 to MAI starting point (tMAI) (PbI2 only regime) and from tMAI to the end (PbI2 + MAI 

regime). 
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a) b) 

 

 

c) d) 
Figure 44. Process parameters for three PbI2 evaporation experiments where MAI heating is activated during the 
process (‘’ shows the starting point): a) temperatures; b) chamber pressure; c) PbI2 deposition rate and d) rate 
statistics (σ is the standard deviation and ‘’ shows the starting point of the MAI heating). 

 From the PbI2 rate plots we clearly see the impact of MAI. When PbI2 is alone, its 

behaviour is similar to the results from Figure 38c and d, i. e. a stable rate with σ values 

below 0.01. Even though the target temperature is identical to the PbI2 only study (220°C) the 

rates obtained here are slightly different from the 0.15 Å/s previously reached (Figure 38c) 

with 0.10 Å/s for coevaporation #1 and 0.20 Å/s for #2 and #3. Few minutes after starting 

MAI heating the PbI2 rate increases.  

 Regarding the pressure, the three coevaporations plots are a perfect sequence of the 

PbI2 only and MAI only pressure plots (respectively Figure 38 b) and Figure 39 b)) with a flat 

pressure profile for the time range where only PbI2 is heated and the characteristic pressure 

increase of one decade when the MAI heating is activated. Given the two working regimes of 

the discussed experiments (PbI2 only and PbI2 + MAI) the pressure trend is followed in seven 

points of interest: initial, peak in PbI2 only regime, t0+30min, tMAI, peak in PbI2 + MAI regime, 

tMAI+30min and final. The resulting profiles are shown Figure 45. 
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Figure 45. Pressure trends for PbI2+MAI experiments for seven points of interest: initial (t0), peak, t0+30 minutes 
in the PbI2 only regime and tMAI, peak, tMAI+30 minutes and end in the PbI2+MAI regime (the arrow  shows the 
starting point of MAI heating). 

The profiles are consistent with the ones from Figure 40 with a flat profile in the PbI2 only 

regime and the MAI-characteristic peak in pressure in the PbI2 + MAI regime. 

 After these first, relatively raw, trials of pseudo coevaporation we found ourselves 

actively questioning the process reported by the ICMol team in which they first heat the MAI 

up to 70°C, wait for the sensor reading to stabilize and then heated the PbI2 up to 250°C. 

Indeed, we have shown that despite an identical target temperature, MAI deposition rate 

varies throughout experiments. We have also highlighted that the presence of MAI alongside 

PbI2 disrupts this latter deposition rate and that this behaviour is not reproducible between 

experiments, with a factor three difference eventually occurring.  
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Conclusion 

 This thesis was the first on the topic of evaporated perovskites at both IPVF and 

LPICM levels. As such I had to prove the feasibility of the process using a non-purposely-

designed reactor while taking part to the definition of requirement specifications for the next 

equipment. I was later on in charge of implementing this specially designed reactor.  

 As we developed the coevaporation of PbI2 and CH3NH3I using the proof-of-concept 

reactor we found ourselves facing a lack of functionalities, with only one QCM sensor and no 

accurate pressure monitoring. These latter being process-specific, i. e. induced by the 

aforementioned materials and their coevaporation, this feedback allowed us to finely tune the 

design of the next (dedicated) reactor. Despite this lack of features, that prevented us from 

accurately controlling it, we were able to get a grasp on the process. As reported in the 

literature, we found the behaviour of organic compound CH3NH3I to be quite unusual. We 

noticed a substantial increase in the chamber pressure upon heating of the compound that 

we attributed to a cloud of MAI filling the reactor in a swirling manner. We adapted our 

process accordingly and integrated a PbI2-only deposition step (prior to the coevaporation) to 

counter the potentially parasitic effect of the organic cloud. Within six months of use, we 

managed to control, to a relative degree, the coevaporation of PbI2 and MAI and achieved 

very encouraging results with efficiencies around 5-6% in perovskite photovoltaic devices.  

 Once the new reactor was delivered and could be used, we first performed the 

qualifications tests (mandatory for any new equipment acquisition) and then studied 

the perovskite precursors behaviour in single-compound evaporation. We have found PbI2 to 

behave classically, with a deposition rate stable throughout one experiment and reproducible 

between experiments of same process conditions. We have found MAI to behave more 

erratically with a deposition rate stable throughout one experiment but far from reproducible 

between experiments of same process conditions. We were able to confirm our insight that 

MAI behaviour and pressure are closely related, yet it requires further study to be better 

assessed. These initial developments allowed us to get accustomed to the new reactor’s 

features and corroborate their relevance, paving the way for the next chapter where the 

specifically designed reactor will be extensively used for perovskite coevaporation purposes. 
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Chapter 3.  

Fabrication of perovskite thin films using 

coevaporation. 

 

 

 

 

 

 

 

 

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. 

If it doesn’t agree with experiment, it’s wrong.” 

R. P. Feynman 
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Introduction 

 In the framework of this thesis I was asked to develop the coevaporation process to 

fabricate CH3NH3PbI3 perovskite thin films for solar cells applications. Working on a proof-of-

concept reactor we were able to get a first handle on the process and designed a reactor 

more suited for perovskite coevaporation purposes. With the initial developments on this 

second reactor, we tamed its new features and were able to deepen our understanding of the 

precursors behaviour. We were able to direct ourselves toward good process conditions.  

 The present chapter is dedicated to the development of the coevaporation process 

using this second, specifically designed, reactor. The first part of this chapter will focus on 

presenting the obtained results while the second part will be built around discussions on 

these latter. Based on our initial developments with single compound evaporations and the 

first pseudo-coevaporation trials, we expect actual coevaporation process to be complicated 

to control. As we were developing things from scratch, we tried to establish the process 

repeatability; fabricating films we would then characterize to direct our investigations toward 

the good deposition parameters. 

 It is worth recalling that, at the time of writing, due to an issue on its pumping system 

the MBRAUN reactor is still in standby in IPVF laboratory clean room facilities (since 

January). We are unable to know if the behaviours reported in the following part (obtained 

when the reactor was located in LPICM) will be found again once the reactor finally starts off 

in its new location.   
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I. Coevaporation process for perovskite thin films 

 Before jumping into anything it must be specified that all experiments were carried out 

following a temperature-controlled process: the target temperature and heating rate are 

entered by the user from the software interface and are the process inputs. Although the 

present MBRAUN reactor also offers a rate control mode (i. e. the temperature is 

automatically managed to meet the target deposition rate input) we did not use it as it implies 

the simultaneous opening of both source shutters (MAI and PbI2), which does not fit with our 

developed procedure. As explained in the previous chapter, our procedure includes the 

deposition of an initial thin layer of PbI2 (while the MAI source is at room temperature and its 

shutter closed) to prevent the deposition of a parasitic initial layer of MAI on the samples. 

 As seen with the few previous attempts of pseudo-coevaporation (chapter 2.III.iv 

page 53), we expect the repeatability to be poor between experiments following the same 

procedure. Indeed, we have uncovered the parasitizing effect of MAI heating on the 

(otherwise stable when alone) PbI2 deposition rate and its lack of consistency between 

experiments. As we started performing actual coevaporations, we made the choice to run 

campaigns of experiments in which we would follow the same procedure (temperature-

driven) for a significant number of experiments. From there, we would study the output 

parameters (pressure and deposition rates) to assess their consistency between experiments 

and thus the repeatability of the process. Various material characterizations (absorption 

spectroscopy, SEM, I-V,…) were performed on the fabricated films, in the hope of correlating 

process parameters with material properties. 

i. Focus on the process repeatability 

 In order to assess the process repeatability, we ran a few campaigns where a 

statistically significant number of experiments were performed following the same heating 

procedure (i. e. target temperatures, heating rates and MAI heating timing): 

- Study 1: PbI2 to 290°C target temperature at 8°C/min heating rate and then MAI to 

92°C target temperature at 4°C/min heating rate. 

- Study 2: PbI2 to 220°C target temperature at 10°C/min heating rate then to 250°C 

at 4°C/min as MAI is set to ~60°C target temperature at 4°C/min heating rate. 

- Study 3: PbI2 to 220°C target temperature at 10°C/min heating rate then to 250°C 

at 4°C/min as MAI is set to 80°C target temperature at 4°C/min heating rate. 

For each study, at least ten experiments were performed. In the sake of repeatability, for 

each experiment, starting from an empty crucible, the same amount of fresh material, coming 

from the same powder batch, was loaded. The source locations (see Table 3 page 42 in 

Chapter 2) as well as the substrate holder rotation speed were kept constant. 

 It is important to stress again that the focus is here on the process outputs, not the 

material properties (these latter will be discussed further into the manuscript), as such the 

following sections will disclosed only process parameters (temperatures, chamber pressure 

and deposition rates) for each of the studies. 
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a. Study 1: PbI2 290°C (8°C/min) and MAI 92°C (4°C/min) 

 This first study follows a routine close to the one previously used on the proof-of-

concept reactor with both high temperatures and high deposition rates. Process plots for the 

different monitored parameters (temperatures, chamber pressure and deposition rates) are 

shown Figure 46 a to d. All ten experiments followed the exact same timing, as can be seen 

from the perfect overlay of all temperatures plots in Figure 46a. 

a)  b)  

c)  d)  

Figure 46. Process plots: a) Temperatures, b) Pressure, c) MAI deposition rate and d) PbI2 deposition rate for 
experiments c86 to c96 for which the procedure was to heat PbI2 to 290°C at 8°C/min from t0 and then at t0+35 
min MAI was heated to 92°C with a 4°C/min heating rate. 

 Although the heating rates and target temperatures are perfectly identical between 

experiments, the pressure profiles (Figure 46b) are relatively different from one another. 

They follow more or less the same trend with a peak pressure and a stabilization to a 

pressure higher than the initial one.  Both the amplitude of this pressure increase and the 

stabilization values are not consistent between experiments. Experiment c86 goes from 

6x10-7 mbar to a peak pressure of 1.8x10-5 mbar before stabilizing around 9x10-6 mbar when 

experiment c92 goes from 6.4x10-7 mbar to a peak pressure of 1.1x10-5 mbar before 

stabilizing around 6x10-6 mbar.  

 Comparing the two compounds, one can notice a difference in profile between MAI 

and PbI2 deposition rates: the organic salt response has a bell shape for most of the 

experiments (Figure 46c) while the lead-based compound remains relatively steady once a 

stabilized value is reached (Figure 46d).  
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 Focusing on the quite unusual MAI deposition rate value of experiment c87 (red plot 

in Figure 46c), we find a corresponding pressure profile continuously increasing. As we 

would have expected an increasing pressure value to translate into an accordingly increasing 

deposition rate, we are unable to explain this behaviour. In fact, while c87’s pressure profile 

is the highest, reaching 1.2x10-5 mbar by the end, the corresponding MAI deposition rate is 

the lowest of the present study, with 0.74 Å/s in average. 

 From the rate statistics (Figure 47), we can see that the two precursors’ responses 

are hardly consistent between experiments. Mean deposition rates (over the temperature-

stable regime) going from 0.7 to 2.5 Å/s for MAI and from 2.3 to 3.9 Å/s for PbI2.  

a)  b)  

c)   

Figure 47. a) MAI and b) PbI2 rate statistics for the different experiments of Study 1: ,,  stand for the 
maximum, minimum and mean values, the box amplitude represents 𝟐 × 𝝈 (with σ the standard deviation) and the 
median value is materialized by the horizontal line in the box; and c) temperature-stable time range for statistics 
calculations. 

 

b. Study 2: PbI2 220°C (10°C/min) then 250°C (4°C/min) and MAI 60°C 

(4°C/min) 

 In this second study we targeted lower temperatures both for MAI and PbI2 as we 

were hoping to avoid any bell-shaped MAI deposition rate and to get a more reproducible 

PbI2 deposition rate. Process plots for the different monitored parameters (temperatures, 

chamber pressure and deposition rates) are plotted Figure 48 (a to d). For this study, we 

were less rigorous on the timing as highlighted by the slight time delay of the temperature 

plots in between the different experiments in Figure 48a, but we kept the PbI2/MAI heating 

timing consistent for each experiment. 
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a)  b)  

c)  d)  

Figure 48. Process plots: a) Temperatures, b) Pressure, c) MAI deposition rate and d) PbI2 deposition rate for 
experiments c126 to c136 for which the procedure was to heat PbI2 to 220°C at 10°C/min from t0 and then 250°C 

at 4°C/min while MAI was heated to 60°C with a 4°C/min heating rate from t0±30min. 

 Several differences can be found with the previous study. The pressure profiles 

(Figure 48b) now all follow the same trend, with a sharp increase as the 60°C target 

temperature is achieved, and their stabilization pressures are both more consistent and lower 

than for the previous study. In fact, they are now all below 3x10-6 mbar when they were 

between 6x10-6 mbar and 1.2x10-5 mbar in the case of the 92°C target temperature of 

Study 1. Also, the MAI deposition rate profiles are no more bell-shaped and the deposition 

rate remains relatively stable over an hour. 

 As for the previous study, although the temperatures and heating rates are consistent 

between experiments, neither of the deposition rates (MAI or PbI2) are consistent between 

experiments with a factor three difference between the lowest and highest MAI mean 

deposition rates (0.26 Å/s lowest value for c124 and 0.95 Å/s highest value for c120, Figure 

49a) and almost a factor two for PbI2 (0.68 Å/s for c112 vs 1.15 Å/s for c114, Figure 49b).  
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a)  b)  

c)                        
Figure 49. a) MAI and b) PbI2 rate statistics for the different experiments of Study 2: ,,  stand for the 

maximum, minimum and mean values, the box amplitude represents 𝟐 × 𝝈 (with σ the standard deviation) and the 

median value is materialized by the horizontal line in the box; and c) time range for statistics calculations. 

 

c. Study 3: PbI2 220°C (10°C/min) then 250°C (4°C/min) and MAI 80°C 

(4°C/min) 

 With the two first studies we have highlighted the difference in MAI behaviour 

between a 92°C and a 60°C target temperature. Both the pressure and deposition rates were 

more stable for the lower value. With this third study, we wanted to keep this stability gain 

while decreasing the processing time by choosing a 80°C MAI target temperature. The PbI2 

heating conditions were kept constant from the previous study (i. e. 220°C at 10°C/min then 

250°C at 4°C/min). Process plots for the different monitored parameters (temperatures, 

chamber pressure and deposition rates) are plotted Figure 50 a to d.  

a)  b)  
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c)  d)  

Figure 50. Process plots: a) Temperatures, b) Pressure, c) MAI deposition rate and d) PbI2 deposition rate for 
experiments c126 to c136 for which the procedure followed was to heat PbI2 to 220°C at 10°C/min from t0 and 

then 250°C at 4°C/min while MAI was heated to 80°C with a 4°C/min heating rate from t0±30min. 

 For this third study, the pressure profiles follow the same trend as the previous study: 

with a sharp increase as the target temperature is reached followed by a stabilization to 

values below 3x10-6 mbar. The peak pressures are slightly higher, compared to the previous 

60°C study, with values of 1.5x10-5 mbar reached. 

 Similarly to the previous study, although the temperatures and heating rates are 

identical between experiments, neither of the deposition rates (MAI or PbI2) are consistent 

throughout this study. There is a factor 3 difference between the highest and lowest 

deposition rates (mean values) for MAI (1.13 Å/s for c135 vs 0.44 Å/s for c130) and a factor 2 

in the case of PbI2 (0.72 Å/s for c136 and 1.45 Å/s for c128) (Figure 51). 

  

a)  b)  

c)   

Figure 51. a) MAI and b) PbI2 rate statistics for the different experiments of Study 3: ,,  stand for the 
maximum, minimum and mean values, the box amplitude represents 𝟐 × 𝝈 (with σ the standard deviation) and the 

median value is materialized by the horizontal line in the box; and c) time range for statistics calculations. 
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d. Overall comparison of the three studies  

 The three studies are now compared to each other, with a focus on the deposition 

rates (Figure 52). 

   
a) b) c) 

Figure 52. Mean deposition rates of each experiments of the different studies: a) for MAI and c) for PbI2. The 
color code for each study experiments is shown again in b). 

 These plots clearly highlight the differences in the deposition rates between the three 

studies. First, considering the inter-experiment variability: although there is still a non-

consistency between the mean deposition rates outputs, its amplitude is smaller for the two 

last studies than for the first one where the mean deposition rates values are broadly spread 

(from 0.7 to 2.5 Å/s for MAI and from 2.2 to 4 Å/s for PbI2). Then, focusing on the deposition 

rates values themselves: for the first study, where the two precursors are heated to high 

temperatures (290°C and 92°C for PbI2 and MAI respectively), the mean deposition rates are 

higher than for the two lower-temperatures studies, with a factor three difference for PbI2 

(±3 Å/s for study 1 vs ±1 Å/s for studies 2 and 3, Figure 52c). Interestingly, we identify no 

clear impact of increasing MAI target temperature from 60°C to 80°C on the deposition rates, 

these latter being rather consistent between studies 2 and 3.  

 It is interesting to notice that no correlation between the MAI and PbI2 responses 

could be found, for any of the three studies. Indeed, the lowest MAI deposition rate does not 

correspond to the lowest PbI2 deposition rate and the same goes for the respective highest 

deposition rates. This is quite surprising since we have shown, with the pseudo-

coevaporations tests from the previous chapter, that MAI heating rises PbI2 deposition rate. 

From there, one would have thought that the greater the MAI deposition rate, the greater the 

PbI2 deposition rate would be, yet we do not see such correlation here. 

 It is also worth noting that, contrary to what we could have expected, we do not 

identify a clear trend in the evolution of the deposition rates between experiments. As 

aforementioned, we fear that the MAI covering the chamber walls (Figure 53) would become 

more and more parasitic as the number of experiments increases (as the amount on the 

walls would increase accordingly), yet no evidence of such tendency was found throughout 

the different studies.  
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Figure 53. Picture of the inside of the reactor (lower part, below the screening shield) highlighting the presence of 

a white MAI veil covering all the surfaces. 

 As this point, we find ourselves puzzled by these different tendencies (or lack 

thereof). In our mind, the parasitic behaviour of MAI is the only explanation for the process 

variability, yet we fail to clearly assess it with the present results. 

 With this focus on the process repeatability we have shown that despite being 

consistent in our inputs (target temperatures and heating rates), the output responses 

unfortunately lack of consistency. We were able to mitigate, to a relative extent, the 

amplitude of this non-consistency by decreasing both the PbI2 and MAI temperatures, yet we 

couldn’t entirely avoid it. We have reached an impasse and find ourselves unable to exactly 

pinpoint the origins of the inter-experiment variability.  

 Fortunately, these studies were not ran for the sole purpose of studying the 

parameter outputs, for each of these experiments samples were loaded into the reactor and 

thin films were fabricated. Let us now direct our focus toward the properties of these latter. 

ii. Focus on the material properties 

 As we were in the developing phase, to save materials and time, we mostly worked 

with Glass/perovskite samples and only very rarely prepared full photovoltaic devices. The 

present section will disclose the results of the different material characterizations performed 

on the fabricated thin films. The Glass/perovskite samples were consistently studied by 

absorption spectroscopy and occasionally by Scanning Electron Microscopy (SEM) when the 

PV devices were studied by I-V characteristics measurements. 

a. Absorption spectroscopy results for coevaporated perovskite thin 

films 

 Starting off with the Glass/perovskite samples, Figure 54 indexes all bandgap values, 

calculated from the absorption spectra using Planck-Einstein equation [7]:  

𝐸 =
ℎ𝑐

𝜆
 

[7] 

where 𝜆 is the absorption threshold wavelength, determined from the spectra using a linear 

regression. 
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Sample position: 

 

Figure 54. Bandgap (Eg) values calculated from absorption UV-visible spectroscopy measurements using Planck-
Einstein equation ([7]) for all Glass/perovskite samples. The orange line at ±1.57 eV stands for the CH3NH3PbI3 
reference bandgap value calculated accordingly from the spectra of wet-processed films. The three studies from 
the previous section are framed. 
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 This representation of all calculated Eg values nicely highlights both the intra- and 

inter-batch variabilities. The corresponding value distribution (plotted Figure 55) does not 

follow a normal low: as two peaks can be seen; the first one being around 1.52 eV and the 

second one closer to 1.58 eV. With most of the values being between 1.5 and 1.60 eV, we 

are not so far from the target CH3NH3PbI3 composition; although we are slightly off (Eg < 

1.5 eV for instance) for a non-negligible number of samples.  

 
Figure 55. Distribution of Figure 54’s Eg results. The orange line at ±1.57 eV stands for the CH3NH3PbI3 reference 
bandgap value calculated from the spectra of wet-processed films. 

 Given the non-consistency of the process, we found no clear correlation between the 

deposition conditions and the absorption spectroscopy results. 

 

b. I-V characteristics results for coevaporated perovskite based solar 

cells  

 For I-V measurements, Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Ag samples with a 

0.28 cm² active area were fabricated (fabrication steps are detailed in Annexes, pages A to 

C). For few experiments, PV devices where the perovskite layer is wet-processed were 

prepared alongside the dry-processed ones, as a comparison. These fully wet-processed 

Glass/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag samples are part of LPICM baseline. Values 

of each PV parameters (Voc, Jsc, FF and PCE) for all the fabricated perovskite solar cells are 

plotted in Figure 56.  
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b) 
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d) 

 

Figure 56. I-V characteristics values: a) Open circuit voltage (Voc); b) Short-circuit current density (Jsc); c) Fill 
factor (FF) and d) Photoconversion efficiency (PCE) for all Glass/ITO/PEDOT:PSS/perovskite/PCBM/Ag solar cell 
fabricated (s=0.28 cm²). For experiments c105, c108, c123 and c131: fully wet-processed perovskite cells were 
prepared alongside as references (reported here as “wet vs experiment#”). These dry/wet comparisons are 
framed on each graphs. 

 From the absorption statistics (Figure 54) we have seen that the fabricated materials 

were not far from the CH3NH3PbI3 target composition, yet the performances in solar cells are 

poor, with over 80% of dry-perovskite based cells below 3% photoconversion efficiency 

(Figure 56d). Taking a closer look at the other PV parameters, one can notice that the Voc 

values are in good agreement with the usual values for the reference CH3NH3PbI3 perovskite 

around 0.95 V but the Jsc and FF are on the other hand very low, resulting logically in low 

PCE. Even though these values are off, it is interesting to mention that they seem to be less 

distributed than for the wet-perovskite devices. This shows a higher homogeneity throughout 

the samples of a same batch in favour of the dry process with respect to the wet one, which 

is a good point for the industrialization stake. 

 To make more sense of these values, it appears more relevant to consider their 

distribution, while underlining the difference between wet- and dry-perovskite based devices 

results (Figure 57). 

a)  b)  
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c)  d)  

Figure 57. Distribution of Figure 56’s results: a) Voc; b) Jsc; c) FF and d) PCE values, only for coevaporated 
perovskite layers 

 With these distributions, we can clearly see, between dry- and wet-perovskites, a 

good consistency for the Voc values (Figure 57a), a relative consistency for the FF values 

(Figure 57c) but a very poor consistency for the Jsc values (Figure 57b). In fact, the wet Jsc 

values are ~8 points higher than the dry ones. Despite the good Voc consistency, this 

Jsc difference is so strong that it is passed on to the PCE (Figure 57d) where over 90% of 

dry-perovskite based devices are less than 3% efficient when all wet ones are between 5 and 

10%. 

 From these results, the Jsc and FF values are clearly identified as problematic. While 

it could also be an issue of material (composition or quality), we rather suspect an interface 

issue to be at stake. One could think that the wet/dry/wet (PEDOT:PSS/perovskite/PCBM) 

sequence can be problematic, particularly the lower wet/dry interface (PEDOT:PSS/ 

perovskite) but it seems very unlikely given that the poly-TPD/perovskite/PCBM (wet/dry/wet) 

sequence has been widely (and successfully) reported103, 107-111, 113. One could then think it 

could be an issue of materials. While the dry-perovskite/PCBM interface has been widely 

reported; it is, to our knowledge; the first report of a PEDOT:PSS/dry-perovskite interface.  

 Focusing on the good efficiencies from experiments c73 and c74, one notices that 

these were high deposition rates experiments. Accordingly, deposition rates were poorly 

stable throughout the process (Figure 58), with a bell-shaped profile for the MAI. As such, we 

are hardly able to know the composition of the material deposited. It is also expected to be 

impossible to reproduce these experiments. 
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a) b) c) 

Figure 58. Process plots for experiments c73 (black lines) and c74 (red lines): a) temperatures; b) PbI2 deposition 
rates and c) MAI deposition rates.  

 Despite the lack of consistency in the deposition conditions for these two 

experiments, we notice that the Eg values for the measured samples of both these 

experiments are around 1.49 eV, slightly off from the target 1.57 eV value for a CH3NH3PbI3 

composition. Yet, due to the intra-batch variability (seen for all experiments) we do not feel 

confident claiming that the good PV-performing samples had a composition consistent with 

the absorption-measured samples.  

 Correlating these PV performances to the repeatability studies, it appears that the 

gain in stability and repeatability (to a relative extent) on the process level appears to have 

been made at the expense of the material quality. 

 Considering poorly PV performing batches (c82, c95 and c113 among others), we 

notice that the absorption measured samples show Eg values closer to the target composition 

(~ 1.55 eV). At this point, we are unable to find any logical relationship between Eg values 

and PV performances. 

 

c. Scanning Electron Microscopy analysis of coevaporated 

perovskite thin films 

 While running our repeatability studies we noticed the appearance of a white veil on 

some samples that gave them a milky aspect, with respect to their usual bright aspect. Using 

SEM we investigated the impact of this veil on the material structure. The results are shown 

in Figure 59. 
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a)  

b)  

c)  

Figure 59. SEM image and pictures of a) fully bright sample (s1 from c113); b) fully ‘milky’ sample (c1 from c114) 
and c) both bright and ‘milky’ sample (s3 from c117) (on SEM images the scale bar is 2 µm on a and b and 
500 nm on c). 

 From these SEM images we see a clear difference in the material structure, with 

small rice-like grains for the bright-looking films and big grain domains (1 µm wide for some) 

for ‘milky’-looking films. 

 Given the striking difference in the material structure, one could think that the white 

aspect of the films could be optically induced. Recording absorption spectroscopy, we have 

shown a difference in the absorption feature too (Figure 60). 
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Figure 60. Absorption spectra of a bright-looking sample (c113 s1, black plot) and a mily-looking one (c114 s1, 

red plot). 

 Bright sample from c113 shows the characteristic perovskite absorption with an onset 

wavelength around 800 nm (black plot Figure 60) when milky sample from c114 shows a 

diffuse absorption feature (red plot Figure 60). From this difference, one can reasonably 

conclude that the white aspect of the films is not only optically induced but originates from 

the presence of an actual white layer. Given the materials loaded in the reactor (white MAI 

and yellow PbI2) and the presence of MAI all over the chamber, we can assume that this 

white layer is MAI. We found no conclusive process-related explanation (pressure, MAI/PbI2 

deposition rates) for this difference in composition. Our hypothesis is that upon cooling of the 

chamber after the process, parasitic MAI deposits on the samples.  

 The presence of this white veil was neither homogeneous nor reproducible: for some 

experiments, all nine samples were covered (some fully (c114 samples in Figure 61), others 

only partly (Figure 59c)) and for others only some samples of the batch were covered (c113 

samples in Figure 61). No correlation was found between the veil presence and the sample 

position. 

 
Figure 61. Picture of samples showing both bright and ‘milky’ samples for c113 when all three samples of c114 
were ‘milky’.   

 

 At this point, we have shown the difficulty of managing and understanding the 

coevaporation process of MAI and PbI2. We spent quite some time trying to understand the 

reactor response, trying to get repeatability between our experiments. We deemed best to 

focus mostly on Glass/perovskite samples and prepared only few batches of solar cells. As 

we did not really know what would be the material deposited given our repeatability issues, 

we wanted to save time and materials by focusing on simple samples and not complex solar 
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cell stacks. Failing to get repeatability in the process, we nonetheless managed to mitigate 

the inter-batch variability, to a relative extent. The large number of samples fabricated did not 

allow to identify any clear link between deposition conditions and material properties. 

II. Open discussions 

 Writing this manuscript we realized that some choices (made as we started working 

on this reactor) were maybe not the best ones. The present section will address some of 

these choices through open discussions, while providing ideas for future developments.  

i. Process-related aspects 

 With our different studies, we managed to get stable deposition rates during process, 

working with low heating rates and temperatures, but unfortunately failing to get a good 

repeatability between experiments. As we were unable to be reproducible using the 

temperature control mode, next step would be to switch to the rate control mode. Using a 

rate-driven process would ensure this output repeatability we are lacking for the moment and 

would allow us to run studies where we would vary the materials deposition rates, their ratio 

and the deposited thickness. Building a design of experiments we would then be able to 

determine the good deposition conditions.  

 Switching to a rate control mode would require a slight adjustment of the process. As 

aforementioned, rate control mode implies the simultaneous opening of all active source 

shutters. Given our PbI2 initial deposition step, performed while the MAI source is cold and its 

shutter closed, we would either need to work in two regimes (a first temperature-driven 

regime where only PbI2 source is heated to its sublimation temperature for the few 

nanometres deposition and a second rate-driven regime where both MAI and PbI2 sources 

are active for coevaporation) or work with a two-step rate-driven regime (during the first 

phase MAI rate target would be zero while PbI2 rate target would be non-zero for the few 

nanometres deposition and in the second phase MAI rate would be set to the target value for 

coevaporation).  

  From the results presented in this chapter, we were unable to correlate the process 

conditions (MAI and PbI2 deposition rates) to the material properties. We have shown that 

the MAI vapor cloud disturbs the PbI2 sensor reading. We then expect the PbI2-sensor signal 

to correspond in fact to a ‘PbI2+ΔMAI’ deposition rate. Given the presence of a directing tube 

on the sensor (Figure 53) and the swirling nature of the MAI cloud, we hardly expect the MAI 

part interfering in the QCM read to be neither constant nor reproducible. It would be 

interesting to put one QCM sensor at the sample position and see how its reading correlates 

to the PbI2 one. 

ii. Material-related aspects 

 We are fully aware that we are missing some key insights on the material 

characterization level. The choice was made to focus on understanding the reactor, to be 

able to prepare samples in a reproducible way rather than fully characterize a batch of 

samples we could only fabricate once. From the pitfalls of the current approach, we have 

identified several relevant characterizations that would provide us with useful information.  

 To investigate further the white parasitic layer (that we suspect to be MAI) we would 

perform Energy Dispersive X-ray Spectroscopy (EDX) or UV Photoelectron Spectroscopy to 

confirm the nature of the layer.  
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 Assuming that the low Jsc values are linked to the material, we could perform Time-

Resolved PhotoLuminesence (TRPL) measurements to assess the carrier lifetime. Assuming 

that the low Jsc values are linked to an interface issue, it would be interesting to integrate a 

polyTPD layer to our current stack structure (between PEDOT:PSS and perovskite) to see if 

this improves in any way the performances.  

 With the objective of commercialization, next steps would include going from 

25x25 mm samples to a 10x10 cm. Going one step further toward commercialization, we 

would eventually go for fully dry-processed solar cells, removing all solution-process steps.  

 As it can be guessed from its constant mention throughout this chapter (and the 

previous one), MAI vapor is an important issue. Given the objective of fabricating 

CH3NH3PbI3 by coevaporation, we have until now only used MAI and PbI2, it would be 

interesting to switch to other precursors (thus other perovskite composition) that would 

potentially be less problematic than MAI, for instance formamidinium iodide CH(NH2)2I or CsI. 

Despite the slight disinterest of the community for it (as it is poorly stable and not the best 

performing absorber), the reference CH3NH3PbI3 perovskite is yet still not fully understood. It 

is the most basic perovskite material, which makes it very relevant for fundamental studies. 

 Keeping the CH3NH3PbI3 composition and thus the MAI precursor, we would need to 

mitigate its parasitic effect. One way would be to clean the reactor between each experiment. 

Besides being tedious it is also far from safe as it would imply a direct contact with 

hazardous materials like PbI2. Although it would complicate the set up, we could implement 

an in situ cleaning, as it is widely performed for in the field of Silicon with plasma. Another, 

less constraining, approach would be to succeed in turning the cloud-like evaporation 

behaviour of MAI into something directive (like PbI2). Given the high volatility of MAI (we 

have shown that the pressure starts increasing as soon as a 35°C temperature is reached) 

one idea would be to work in a cooled environment. As we started working on the reactor, 

MBRAUN Company along with its partner CreaPhys announced the launching of an updated 

version of their equipment with a cooling system integrated into the chamber walls123. 

Unfortunately, no upgrade of our equipment was possible. We could try to implement a 

similar set up by inserting inside the chamber a water distribution system. A less heavy 

alteration could be to adapt a cone on the MAI source that would physically constraint its 

evaporation and would limit the chamber contamination.  

 Finding the right balance between samples fabrication and characterization surely 

holds the key to better understand both the process and the material.  

 
123 PEROvap system (patent pending) 

https://www.creaphys.com/vacuum-deposition
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Conclusion 

 In the present chapter we have presented the development of the coevaporation 

process to fabricate CH3NH3PbI3 starting from CH3NH3I (MAI) and PbI2 powder precursors 

using the previously designed reactor. Starting from scratch we performed experiments in a 

repeatable manner building studies where we would follow an identical procedure for several 

experiments. We were quite puzzled by the non-repeatability in the output parameters we 

first obtained. We managed to mitigate to a certain extent this variability by adjusting our 

input parameters to lower temperatures but were not able to entirely suppress it. Logically, 

this poor process repeatability translated into an inter-experiment variability. 

 Despite the lack of process repeatability, we have performed a significant number of 

experiments and fabricated perovskite films for various characterization purposes: absorption 

spectroscopy, SEM and even I-V measurements. Considering all these experiments we 

stumbled upon several issues. First, adding to the inter-experiment variability, we have 

shown an intra-experiment variability; with material properties varying throughout one batch 

of samples. Then, we have found all our PV devices to have good Voc while having very 

low Jsc, resulting overall in low efficiencies. Finally, we faced the non-predictable and non-

reproducible presence of a parasitic white veil on our samples.  

 We eventually took a step aside from all these results and provided ideas to better 

control the process and better know our material. These ideas would eventually be 

implemented as the reactor starts again in its new location in IPVF. 
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Chapter 4.  

Nanoscale characterisation of perovskite 

films using Synchrotron-based technique. 

 

 

 

 

 

“The average user of Synchrotron Radiation is not so much concerned about the complex 

equipment behind the concrete wall which separates the experimental area from the storage 

ring itself. What the user is aware of is that the source of radiation can easily become a master 

rather than a servant and the enthusiastic experimenter can be confronted by frustrating 

periods of down time just at the moment when the measurements are on the verge of success. 

(…) Nevertheless, judging by the increasing number of users of Synchrotron Radiation and 

the quality of the work they are producing the scientific advantages outweigh the irritations 

and difficulties.” 

P. J. Duke 

“Synchrotron Radiation and the Submicron world:  

selected activities at the Daresbury Laboratory, UK.” 

in Examing the submicron world 
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Introduction 

 In the course of this thesis, our team conducted three Synchrotron beamtimes on a 

Scanning Transmission X-ray Microscopy technique at SOLEIL facility in the Paris region. 

While two of them were focused on wet-processed perovskite PV devices, one beamtime 

was dedicated to the study of dry-processed ones. With the aim of better understanding the 

evaporated perovskite material, we found it relevant to benefit from one of these synchrotron 

campaigns to build a study around the comparison of wet- and dry-processed perovskite 

films.  

 As a spectromicroscopy technique, Scanning Transmission X-ray Microscopy (STXM) 

combines X-ray microscopy imaging with X-ray Absorption Spectroscopy. Given the nature 

and complexity of perovskite layers, studying them with a low damage (soft X-rays) and high 

resolution (35 nm) technique such as STXM seems a reasonable choice. The spectral aspect 

of the technique was expected to be useful to determine the actual composition of our 

evaporated perovskite material with respect to the wet one as well as potentially pointing out 

difference in chemical environment depending on the deposition method.  

  By now, the reader masters the two topics of perovskites and their vacuum 

deposition (as they were thoroughly developed in the two previous chapters) but 

Synchrotron-based STXM might be a mystery. As the first thesis in our team including 

Synchrotron measurements, the present chapter will take the reader through the basic 

principles of X-rays interaction with matter (with a focus on X-ray Absorption Spectroscopy), 

background and history of Synchrotron facilities and the application in Scanning 

Transmission X-ray Microscopy before stepping into the study conducted and unveiling the 

results. 

. 
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I. X-ray radiation124 

 X-rays were discovered in 1895 by Wilhelm Conrad Röntgen, a German physicist, 

using a Crookes-Hittorf tube powered by a Ruhmkorff coil and a barium platinocyanide-

painted paper screen. He noticed that when set almost two meters away from the fully 

covered tube the screen fluoresced in the distinctive [Pt(CN)4Ba, H2O]’s green. No rays were 

visible between the tube and the screen. Röntgen concluded that some invisible-to-

the-naked-eye rays were passing through the covering cardboard and air to reach and excite 

the painted screen.  He published only three papers on his discovery125,126,127 when no less 

than a thousand papers were published on the topic in the year 1896 alone. Röntgen was 

awarded in 1901 the very first Nobel Prize in Physics “in recognition of the extraordinary 

services he has rendered by the discovery of the remarkable rays subsequently named after 

him”128. 

 Very promptly the medical community took a strong interest in these new rays. In 

1896, Frost and Austin used X-rays as a diagnostic tool129 (marking the beginning of medical 

imaging) and Dr Grubbé succeeded in treating breast cancer with X-rays130 (marking the 

beginning of radiotherapy). Dangers of these rays were pointed out very early by Dr Gage 

and confirmed by Becquerel and the Curie couple, respectively discovering and 

conceptualizing radioactivity (shared Nobel Prize in 1903). In the following years, fear grew 

stronger, slowing things down a bit for X-rays in science. The 1910s marked the revival of the 

interest with several milestone discoveries. In 1912 Von Laue, Nobel Prize in 1914 “for his 

discovery of the diffraction of X-rays by crystals”, proved the electromagnetic nature of these 

radiations. In 1913, Bragg father and son, shared Nobel Prize in 1915 “for their services in 

the analysis of crystal structure by means of X-rays”, formulated the law to determine a 

crystal structure. Overall, there are over 20 Nobel Prizes (Chemistry, Physics and Medicine) 

based on X-ray work. 

 Given their small wavelengths (high energy) and unique interaction with matter, 

X-rays are very powerful probes to study both structural and chemical properties of a large 

variety of samples at the nanoscale. Their interaction with matter can result in emission, 

scattering, reflection or absorption131, the latter being our focus in the present chapter. 

 

 
124 J. J. Samueli 'The discovery of X-rays by Röntgen', bibnum library  
125 W. C. Röntgen “Über eine neue Art von Strahlen” (1895) Sitzunsberichten der Würzburger Physik.-medic. 
Gesellschaft, English translation in Nature 
126 W. C. Röntgen “Über eine neue Art von Strahlen 2” (1896) 
127 W. C. Röntgen “Weitere Beobachtungen über die Eigenschaften der X Strählen” (1897) Sitzunsberichten der 
Akademie der Wissenschaften zu Berlin 
128 nobelprize.org 
129 ‘Inventions: Diagnotic X-rays’ from Darmouth.edu 
130 E. H. Grubbé, (1933) Radiology, 21, 156-62 
131 B. L. Henke et al., (1993) Atomic Data and Nuclear Data Tables, 54, 2, 181-342 

https://journals.openedition.org/bibnum/714
https://www.nature.com/articles/053274b0
https://www.nobelprize.org/prizes/physics/1901/summary/
https://engineering.dartmouth.edu/magazine/inventions-diagnostic-x-rays/
https://pubs.rsna.org/doi/abs/10.1148/21.2.156
http://adsabs.harvard.edu/abs/1993ADNDT..54..181H


 

83 
 

II. X-ray Absorption Spectroscopy132 133 134 

 X-ray Absorption Spectroscopy (XAS) is the study of the energy dependency of the 

absorption coefficient of a material, in the X-ray range. This technique can provide insights 

on the structural, electronic and magnetic properties of a specimen. 

 Considering an incident ray of I0 intensity absorbed by a sample of thickness t, the 

transmitted intensity It follows the Beer-Lambert law: 

𝐼𝑡 = 𝐼0𝑒
−µ(𝐸)𝑡 [8] 

where µ(E) is the absorption coefficient of an atom that varies as a function of energy as 

follows: 

µ(𝐸)~
𝑑𝑍4

𝑚𝐸3
 [9] 

with d, Z and m being respectively the density, atomic number and mass. Following this 

equation, as energy increases, absorption coefficient should decrease. However, for 

particular energy values, a steep increase in µ(E) can occur. The energy of this so called 

‘absorption edge’ corresponds to a transition between particular electronic levels. In the case 

of X-ray absorption, the energy is high enough (100 eV to 100 keV) that affected levels, for 

many elements, are core ones.  

 When X-rays strike an atom, an electron from the core shell is promoted to a higher 

energy level, leaving behind a very unstable core hole (10-15 s lifetime135). This core hole will 

be quickly filled by a higher-level electron, resulting in an energy release via non-radiative 

Auger electron emission or X-ray fluorescence. As depicted Figure 62, the X-ray generated 

photoelectron can go to an unoccupied bound level (process ‘1’) or into free levels, i.e. the 

vacuum (process ‘2’) (Figure 62). 

 
Figure 62. X-ray absorption processes136. 

 Following Bohr’s model, absorption edges are named after the initial level of the 

transition. As such, the K-edge represents the transition from the n=1 level (1s orbital), 

 
132 Y. Joly and S. Grenier, ‘Theory of X-ray absorption near edge structure’ in X‐Ray Absorption and X‐Ray 
Emission Spectroscopy: Theory and Applications, J. A. Van Bokhoven and C. Lamberti (2006) 
133 C. S. Schnohr and M. C. Ridgway, ‘Introduction to X-ray absorption spectroscopy’ in X-ray absorption 
spectroscopy of semi-conductors, C. S. Schnohr and M. C. Ridgway (2015) 
134 X-ray Spectroscopy Chemistry LibreTexts 
135 O. Björneholm et al., (1997) Phys. Rev. Lett. 79, 17, 3150-3 
136 adapted from Ref. 133 

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118844243
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118844243
https://www.springer.com/us/book/9783662443613
https://www.springer.com/us/book/9783662443613
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/X-ray_Spectroscopy
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.3150
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L-edges the transition from the n=2 level (2s and 2p orbitals for L1 and L2,3) and M-edges the 

transitions from n=3 level (3s, 3p and 3d orbitals for M1, M2,3 and M4,5). 

 Depending on the value of the energy of the incident X-rays (𝐸), different subsets of 

XAS can be defined (Figure 63): when 𝐸 matches the binding energy of a core electron (𝐸0) it 

corresponds to the edge; when 𝐸 is in the range of [𝐸0; 𝐸0 + 50⁡𝑒𝑉] it corresponds to the 

X-ray Absorption Near-Edge Structure (XANES, or NEXAFS for Near-Edge X-ray Absorption  

Fine Structure) and when 𝐸 exceeds 𝐸0 by more than 50 eV it corresponds to the Extended 

X-ray Absorption Fine Structure (EXAFS) region. 

 
Figure 63. Example of XAS spectra with the XANES and EXAFS subregions137. 

 If the edge energy is characteristic of the absorbing atom itself, XANES and EXAFS 

subregions give insights on its surroundings. In the XANES region, the photoelectron has 

enough kinetic energy (𝐸𝑐 = 𝐸 − 𝐸0) to reach the vacuum but not enough to be completely 

free from the parent atom. It will encounter multiple scattering with the surrounding non-

absorbing atoms. In the EXAFS region, the photoelectron is so energetic that it will encounter 

non-elastic scattering with a surrounding atom and then be emitted.  

 Laboratory scale equipment for X-ray Absorption Spectroscopy; such as Bruker XRD 

equipment138; use tubes (usually with Cu or Mo targets) as X-ray sources. It has the 

advantages of being cheap and easy to implement but the quality of the obtained X-ray is 

relatively poor. As shown Figure 64, these laboratory sources are more than four orders of 

magnitude less brilliant than storage rings Synchrotron sources.  

 
137 adapted from M. Newville, (2014) Reviews in Mineralogy and Geochemistry, 78, 1 
138 XRD Bruker 

https://www.researchgate.net/publication/256079526_Fundamentals_of_XAFS
https://www.bruker.com/fr/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/components/xrd-components/sources.html
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Figure 64. Comparison of laboratory sources (Copper and Molybdenum) and storage rings Synchrotron sources 
(ALS: Advanced Light Source, APS: Advanced Photon Source, NSLS: National Synchrotron Light Source and SSRL: Stanford 

Synchrotron Radiation Lightsource)139. 

 Synchrotron lightsources unique features of energy tunability and high brilliance are 

very relevant to study multi-elemental composition materials such as perovskites. 

III. Synchrotron lightsource140 141 142 

 A Synchrotron lightsource is a type of particle accelerator that turns relativistic 

electrons into very bright light with a continuous spectrum: the so called ‘Synchrotron 

radiation’. The working principle relies on one unique simple physical phenomenon 

(simplified Maxwell-Lorentz theory): when diverted, a moving electron will release energy.  

i. Synchrotron radiation143 144 145 146 147 

 The Synchrotron Radiation (SR) corresponds to a specific type of electromagnetic 

radiation emitted by radially accelerated particles. It can be naturally or artificially generated 

(Figure 65). The Crab Nebula is one of the most known examples of natural state SR. What 

 
139 J. R. Helliwell, (1998) Nature Structural Biology,5, 614-7 
140 Diamond light source education resources  
141 Canadian light source education resources 
142 ESRF light source education resources 
143 A. L. Robinson, 'History of Synchrotron Radiation' from X-ray Data Booklet 
144 Lightsources.org resources 
145 M. N. Piancastelli ‘Intro to SR and FEL spectroscopy’ for EUSpec Winter School on core levels 2016 
146 F. Baudelet (2014) ‘Les origines du rayonnement synchrotron’ in Histoire de la recherche contemporaine 
Rayonnement Synchrotron: de Frascati à SOLEIL (1963-2013) 
147 F. Méot ‘An introduction to particule accelerators’ (2009)  

https://www.nature.com/articles/nsb0898_614
https://www.diamond.ac.uk/Public/For-School/Resources/Simulations-and-Worksheets.html
https://www.lightsource.ca/inside_the_synchrotron
https://www.esrf.eu/about/synchrotron-science/synchrotron
http://xdb.lbl.gov/Section2/Sec_2-2.html
https://lightsources.org/history/
http://ewins2016.ijs.si/slides/piancastelli-slides-1-ewins2016.pdf
https://journals.openedition.org/hrc/416
https://journals.openedition.org/hrc/416
https://lpsc-indico.in2p3.fr/Indico/event/358/contribution/9/material/slides/0.pdf
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is considered to be the first artificial generation of SR, was seen at General Electric’s 70-MeV 

betatron148 in 1947.  

  
a) b) 

Figure 65. a) Composite image from NASA149 of the Crab Nebula exhibiting natural state SR (central bluish light) 
and b) First artificially generated visible SR at General Electric in 1947150 seen through the transparent vacuum 
chamber wall (circled out on the image). 

 Compared to a cyclotron in which particles are accelerated using an electric field, a 

betatron is a magnetic-field-driven particle accelerator. In 1994, Iwanenko and 

Pomeranchuck calculated the maximal working energy of these instruments to be of 0.5 GeV 

following the ‘values [then] being in use’151. This limitation was due to the radiative energy 

loss occurring at high energies in a betatron. The two scientists were in fact just pointing out 

the SR phenomena (already fully theorized by Liénard in 1898152). At the time, this radiation; 

considered as hindering since it was weakening the energy of the accelerated particles; was 

not at the heart of high-energy physicists’ work. Fortunately enough, scientists like 

John Paul Blewett persisted and investigated further into this radiative energy loss 

phenomenon. The Canadian scientist was in fact the first to quantitatively measure SR in 

1946153 but, unfortunately, the vacuum chamber of the 100-MeV betatron used at that time 

was opaque, preventing any concrete observation. This latter came a year after with the 

direct observation by Elder et al.148 of a visible light radiation: the Synchrotron Radiation. 

 This discovery gave credit to Liénard, Iwanenko, Pomeranchuk and Blewett’s work 

and paved the way for the development of new particle accelerators: the Synchrotron 

lightsource facilities. 

ii. Synchrotron facility 

 The Synchrotron electrons, once generated in the electron gun and extracted from it, 

need to be accelerated. The first accelerating step takes place in the linear accelerator 

(LINAC), a 16-metre-long tunnel (for SOLEIL) where small magnetic fields are successively 

generated. At the end of the LINAC, electron energy is of 100 MeV (for SOLEIL). The second 

accelerating step occurs in the Booster, a racetrack-like tunnel that brings the electrons to 

their operating energy using Radio Frequency cavities. In the case of SOLEIL facility, this 

 
148 F.R. Elder et al., (1947) Phys. Rev., 71, 11,  829-30 
149 NASA, ESA, J. Hester, A. Loll (ASU) NASA image gallery 
150 image adapted from J. P. Blewett, (1998) J. Synchrotron Rad. (1998). 5, 135-139 
151 D. Iwanenko and I. Pomeranchuk, (1944) Phys. Rev. 65, 343 
152 A. Liénard, (1898) L’éclairage électrique, 16-21 
153 John P. Blewett, (1946) Phys. Rev., 69, 87 

https://journals.aps.org/pr/pdf/10.1103/PhysRev.71.829.5
https://www.nasa.gov/multimedia/imagegallery/image_feature_1604.html
http://scripts.iucr.org/cgi-bin/paper?S0909049597043306
https://journals.aps.org/pr/abstract/10.1103/PhysRev.65.343
https://journals.aps.org/pr/abstract/10.1103/PhysRev.69.87
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operating value is of 2.75 GeV. Once this energy is reached, the electrons are injected in the 

storage ring where they will travel at 99.999998% of the speed of light for several hours. 

 The storage “ring” is in fact made of a series of alternating straight and curved 

sections. In the straight sections, electrons evolve in a linear trajectory and go through 

focusing magnets to maintain the most ideal path. In the curved sections, electrons 

encounter bending magnets that divert their path and cause energy release in the form of 

light: the synchrotron radiation. To get a brilliant beam, insertion devices are used. These 

undulators consist of an array of small magnets in which the different emitted radiations 

overlap, resulting in a more focused and intense beam. 

 
Figure 66. Structure of a Synchrotron facility154. 

 Emitted light then travel to the beamline where it will be used. The beamlines are 

distributed all around the storage ring. In the case of SOLEIL, there are 29 operating 

beamlines out of the 43 spots available. Each of these laboratories is composed of the same 

three hutches: optics, experimentation and control (see Figure 66). In the optics hutch, the 

raw synchrotron beam is tuned using different sets of mirrors, slits and a monochromator to 

fit the beamline needs. At SOLEIL, most of the beamlines cover X-ray (hard and soft) and UV 

ranges, yet few beamlines also operate in the visible and IR ranges (Table 5). The 

experimentation hutch is where the specific beamline technique is implemented. Finally, the 

control hutch is where scientists (from the beamline or occasional users) operate their 

measurements and process the data.  

 
Table 5. SOLEIL beamlines by energy range155 

 
154 adapted from SOLEIL education resources  
155 SOLEIL beamlines  

https://www.synchrotron-soleil.fr/en/about-us/what-soleil/soleil-3-questions
https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/par-domaines-denergie
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 Among the different techniques available at SOLEIL synchrotron, we found Scanning 

Transmission X-ray Microscopy (STXM) to be highly suitable to study perovskite materials. 

Indeed, its soft X-ray regime covers edges for C, N, Pb and I elements, its high resolution 

(30 nm) enables the study of a material with nanoscale inhomogeneities and its feature of 

chemical mapping can provide insight on the composition of both grain and corresponding 

boundaries. 

At SOLEIL, STXM technique is available on the High Efficiency and Resolution beamline for 

X-ray Microscopy and Electron Spectroscopy (HERMES). Implemented in 2015156, this 

beamline currently operates in the soft X-ray regime from 70 eV to 1.5 keV (to be extended 

soon to 2.5 keV) covering, among others, M-edges of rare earth elements (157 eV for Y 

M4,5), K-edges of light elements such as C, N, and O (respectively at 284, 401 and 532 eV) 

and L-edges of transition metals (872 eV for Ni L2)157. HERMES beamline is equipped with 

two endstations: X-ray PhotoEmitted Electron Microscopy and Scanning Transmission X-ray 

Microscopy.  

IV. Scanning Transmission X-ray Microscopy158 

 Scanning Transmission X-ray Microscopy is a XAS technique in transmission mode: 

the absorption coefficient is directly monitored by measuring the intensity of the transmitted 

light with respect to the intensity of the incident beam. The basic working principle of this 

photon-in/photon-out technique is the following: a tunable X-ray beam is shine onto a sample 

that is scanned and the transmitted light is recorded by a detector.  

i. History and development159 160 

 Although the first idea for a scanning X-ray microscope can be found as early as 1953 

with the work of Howard Pattee161, the first instrument was only implemented twenty years 

later by Horowitz and Howell162 at the Cambridge Electron Accelerator. They performed the 

first transmission and fluorescence measurements on aluminium and silicon samples, in 

ambient conditions. The beam was at that time collimated to a micron size using a simple 

pinhole. 

 In the 70s, Niemann et al. developed the first Zone Plate based microscopes, first 

using a laboratory source163 and then using Synchrotron Radiation164. At the Deutsches 

Elektronen-Synchrotron they succeeded in resolving a 0.5 µm distance showing the 

promising potential of Synchrotron Radiation for zone plate based STXM. Ten years later, a 

75-nm resolution was reported by Rarback et al.165.  

 
156 R. Belkhou et al., (2015) J. Synchrotron Rad., 22, 968-979 
157 HERMES beamline - SOLEIL 
158 A. P. Hitchcock et al., (2002), J. Biomater Sci. Polymer Edn, 13, 8, 919-37 
159 J. Kirz and C. Jacobsen, (2009) J. of Physics: Conference series, 186, 012001 
160 G. Schmid, M. Obst, J. Wu and A. Hitchcock ‘3D chemical imaging of nanoscale biological, environmental and 
synthetic materialsby Soft X-ray STXM spectrotomography’ in X-ray and Neutron Techniques for Nanomaterials 
Characterization, C. S. S. R. Kumar (2016) 
161 H. H. Pattee, (1953) J. of the Opt. Soc. of America, 43, 1, 61-2 
162 P. Horowitz and J A Howell, (1972) Science, 178, 4061, 608–11 
163 B. Niemann et al., (1974) Optics Comm., 12, 2, 160-3 
164 B. Niemann et al., (1976) Appl. Optics, 15, 8, 1883-4 
165 H. Rarback et al., (1988) Rev. of Sc. Inst., 59, 1, 52 

https://www.researchgate.net/profile/Stefan_STANESCU/publication/279730298_HERMES_A_soft_X-ray_beamline_dedicated_to_X-ray_microscopy/links/55f6b18f08aec948c462ec41/HERMES-A-soft-X-ray-beamline-dedicated-to-X-ray-microscopy.pdf
https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/hermes
https://pdfs.semanticscholar.org/a33e/6f708ba2d6e85c2575c20291caf5dc8f40ab.pdf
https://www.researchgate.net/publication/228721027_The_History_and_Future_of_X-ray_Microscopy
https://www.researchgate.net/publication/309151731_3D_Chemical_Imaging_of_Nanoscale_Biological_Environmental_and_Synthetic_Materials_by_Soft_X-Ray_STXM_Spectrotomography
https://www.researchgate.net/publication/309151731_3D_Chemical_Imaging_of_Nanoscale_Biological_Environmental_and_Synthetic_Materials_by_Soft_X-Ray_STXM_Spectrotomography
https://www.researchgate.net/publication/309151731_3D_Chemical_Imaging_of_Nanoscale_Biological_Environmental_and_Synthetic_Materials_by_Soft_X-Ray_STXM_Spectrotomography
https://www.researchgate.net/publication/10519356_The_Scanning_X-Ray_Microscope
https://www.ncbi.nlm.nih.gov/pubmed/5086391
https://www.sciencedirect.com/science/article/pii/0030401874903812
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-15-8-1883
https://aip.scitation.org/doi/10.1063/1.1139965
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 For over 20 years most of the progress on STXM technique were achieved at NSLS 

(National Synchrotron Light Source) by Rarback166,167,168, Kirz169,170,171 and Jacobsen172,173. 

The development in 2003 at ALS (Advanced Light Source) of an interferometer integrated 

STXM instrument174; that would later on be commercialized by Bruker175; was a game 

changer. By 2015, there were in fact 20 operating STXM implemented all around the world, 

HERMES being among the most recent (Table 6). 

 
Table 6. STXM at synchrotron light sources (data from 2015)176. 

 Over the last two decades, STXM has drowned increasing interest from the 

community: from less than ten per year until the 90s, there were no less than 110 papers 

published last year on the subject, over two times more than the other common soft X-ray 

microscopes combined (Figure 67).  

 
166 H. Rarback, J. Kenney, J. Kirz and X. Xie ‘Scanning Soft X-ray Microscopy: First Tests with Synchrotron 
Radiation’ in Scanned Image Microscopy, E. Ash (1980) 
167 H. Rarback et al., (1986) Nucl. Inst. and Methods in Phys. Res., 246, 159-62 
168 H. Rarback et al., (1990) Nucl. Inst. and Methods in Phys. Res., 291, 54-9 
169 J. Kirz, (1988) Nucl. Inst. and Methods in Phys. Res., 266, 293-5 
170 J. Kirz et al., (1990) Physica Scripta, 31, 12-7 
171 J. Kirz et al., (1992) Rev. of Sc. Inst., 63, 1, 557 
172 C. Jacobsen et al., (1986) Photochem. and Photobio., 44, 3, 421-3 
173 C. Jacobsen et al., (2000) J. of Microscopy, 197, 173-84 
174 A. L. D. Kilcoyne et al., (2003) J. Synchrotron Rad., 10, 125-36 
175 Bruker ASC STXM 
176 A. P. Hitchcock, (2015) J. of Elec. Spectro. and Related Phenom., 200, 49-63 

http://xrm.phys.northwestern.edu/research/pdf_papers/1980/rarback_ash_1980.pdf
http://xrm.phys.northwestern.edu/research/pdf_papers/1980/rarback_ash_1980.pdf
https://www.sciencedirect.com/science/article/pii/0168900286900653
https://www.sciencedirect.com/science/article/pii/0168900290900333
https://www.sciencedirect.com/science/article/pii/0168900288903993
https://www.researchgate.net/publication/231132261_X-ray_Microscopy_with_the_NSLS_Soft_X-ray_Undulator
https://aip.scitation.org/doi/10.1063/1.1142705
https://www.researchgate.net/publication/19374402_Soft_X-ray_scanning_microscopy_its_practical_use_for_elemental_mapping_at_the_NSLS_U15_beamline
https://www.researchgate.net/publication/11803858_Soft_X-ray_Spectroscopy_From_Image_Sequences_with_Sub-100_nm_Spatial_Resolution
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.502.7182
https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/BEST/DataSheets/STXM.pdf
https://www.sciencedirect.com/science/article/pii/S0368204815001176
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Figure 67. Overview of the number of papers per year between 1980 and 2018 for the four common types of soft 
X-ray microscopes (Scanning Transmission X-ray Microscopy, full field Transmission X-ray Microscopy, X-ray PhotoEmission 

Electron Microscopy and Scanning PhotoElectron Microscopy)177. 

 This dominance of STXM over the other types of soft X-ray microscopes can be 

explained by its combined features of high spatial resolution and chemical sensitivity. Spatial 

resolutions below 50 nm are now routinely achieved in STXM178,179. Additional detection 

techniques implemented simultaneously along with photon detection and flexibility in sample 

environments are few of the aspects that has helped STXM dominate over other types of 

microscopies. As shown Figure 68, STXM spectrum displays much more fine structures 

compared to a more classical EELS (Electron Energy Loss Spectroscopy) spectrum.  

 
Figure 68. C 1s spectra of PET (polyethylene therephtalate) from Electron Energy Loss Spectroscopy (EELS) 
with two different sources (LaB6 filament or a Field Emission Gun) and from XAS spectroscopy in Total Electron 

Yield (TEY) or Transmission (STXM) mode180. 

 
177 adapted from  A. P. Hitchcock's Bibliography of Soft X-ray Microscopy 
178 T. H. Yoon et al., (2004) Langmuir, 20, 24, 10361–6 
179 H. Bluhm et al., (2006) J. of Elec. Spectro. and Related Phenom., 150, 86-104 
180 adapted from H. Ade and S. Urquhart, ‘NEXAFS spectroscopy and microscopy of natural and synthetic 
polymers’ in Chemical Applications of Synchrotron Radiation, T.-K. Sham (2002) 

http://unicorn.chemistry.mcmaster.ca/xrm-biblio/xrm_bib.html
http://xrm.phys.northwestern.edu/research/pdf_papers/2004/yoon_langmuir_2004.pdf
https://www.sciencedirect.com/science/article/pii/S0368204805004573
https://www.worldscientific.com/doi/abs/10.1142/9789812775757_0006
https://www.worldscientific.com/doi/abs/10.1142/9789812775757_0006


 

91 
 

 As a spectromicroscopy technique STXM can allow a direct correlation between the 

sample morphology and its chemical composition, making it very powerful and suitable for 

complex analysis.  

ii. STXM instrumentation 

 The general outline of a Scanning Transmission X-ray Microscope and a picture of 

the HERMES set up are shown Figure 69. The incident beam, focused using a set of optics, 

is shine onto the sample and the transmitted beam is recorded by a detector. 

 
Figure 69. Scanning Transmission X-ray Microscope: schematic outline and picture of the HERMES set up. 

 In an STXM, the beam is focused using a diffractive device called a Fresnel Zone 

Plate (FZP) which consists of an array of concentric Gold rings deposited on a transparent 

Silicon Nitride membrane181 (Figure 70). The transparent zones are spaced such as the 

diffracted beams constructively interfere at the same focal point. The resolution of the STXM 

is defined by the spot size at this particular point. Optimizing the optical resolution of the 

microscope then implies a fine design of the zone plate. Typical resolutions are about 25 nm 

but spot sizes as low as 7 nm have also been reported182.  

 
Figure 70. SEM image of a Fresnel zone plate183. 

To operate as a focusing lens, a FZP has to be used in the first order. To filter higher-order 

diffracted beams (and prevent dispersive radiations) an exit aperture called the Order Sorting 

Aperture (OSA) is conveniently placed between the FZP and the first order focal point where 

 
181 x-ray-optics.de  
182 B. Rösner et al., (2018) Microsc. Microanal., 24 (S2) 272-3 
183 I. Mohacsi et al., (2016) Optics Letters, 41, 2, 281-4 

http://www.x-ray-optics.de/index.php/en/types-of-optics/diffracting-optics/fresnel-zone-plates
https://pdfs.semanticscholar.org/574b/e56e8e6f706fbb6fa40e2d260bc65310c4a3.pdf
https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-41-2-281&id=335250
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the sample is placed. To protect the sample from unfocussed incident beams, a central 

opaque stop is integrated into the FZP design.   

 STXM technique is not very sample-compelling. Studied samples can consist of 

coated silicon nitride membranes, cross-sections lamella or even wet cells184. Only 

requirements are sufficient X-ray absorption (30% transmission) and vacuum compatibility. 

Operating in the soft X-ray region makes STXM a very suitable technique for the study of soft 

materials such as polymers and biological specimens when compared to electron 

microscopes. Indeed, in 1997 Rightor et al. studied Poly(Ethylene Terephthalate) by EELS 

and STXM and they reported a beam damage two times less important for the latter one185. 

The study of polymers using STXM is extensively investigated by Adam P. Hitchcock and his 

team at ALS (USA) and CLS (Canada) light sources186,187.  

 Transmitted X-ray detectors in STXM can be of various types: fluorescence188, 

Charge-Coupled-Device189 or photomultiplier190. On HERMES STXM, transmitted photons 

are detected using a photomultiplier tube.  

 While the OSA and detector are fixed during measurements, the FZP moves in z 

upon spectral scanning and the sample moves in (x; y) upon spatial scanning. As to have a 

spatial coherence between the images and keep the resolution constant, the sample and 

zone plate positions (respectively (x; y) and z) during measurements are monitored by an 

interferometer.  

iii. STXM measurements 

 One of the strong features of STXM is that it combines imaging with spectral analysis. 

As a comparison, XPS (X-ray Photoelectron Spectroscopy) only provides spectral analysis 

and SEM (Scanning Electron Microscopy) only imaging. This dual character makes STXM a 

very powerful technique to study chemically complex materials with nanoscale 

inhomogeneities. 

a. Data acquisition 

 STXM data consist of scans and depending on the type of information sought, the 

scan type varies: spatial only, spectral only or spatial and spectral. For spatial imaging only 

purpose, scans are single images where the beam energy is constant. For spectral analysis 

(beam energy varies), scans can have different spatial dimensionalities from 0 to 2 (Table 

7.).  

 
184 J. R. Lawrence et al., (2003) Appl Environ Microbiol., 69, 9, 5543–54 
185 E. G. Rightor et al., (1997) J. Phys. Chem. B, 101, 1950-60 
186 Hitchcock group publications ‘Polymers and polymer model studies’ 
187 A. P. Hitchcock ‘Bibliography of Soft X-ray Microscopy’ S.I. from H. Ade and A. P. Hitchcock, (2008) Polymer, 
49, 643-75 
188 R. Barrett et al., (2000) AIP Conf. Proc., 507, 458  
189 A. Gianoncelli et al., (2006) Appl. Phys. Lett., 89, 251117 
190 C. Jacobsen et al., (1993) J. of Microscopy, 172, 2, 121-9 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC194976/
https://www.researchgate.net/publication/253413159_Spectromicroscopy_of_Polymers_Comparison_of_Radiation_Damage_with_Electron_and_Photon_Core_Excitation_Spectroscopy_Techniques
http://unicorn.chemistry.mcmaster.ca/aph-pubs/aph-pubs-polymers.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.7843&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/pii/S0032386107010270
https://www.sciencedirect.com/science/article/pii/S0032386107010270
https://www.researchgate.net/publication/234894697_Current_status_of_the_Scanning_X-ray_Microscope_at_the_ESRF
http://xrm.phys.northwestern.edu/research/pdf_papers/2006/gianoncelli_apl_2006.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.1993.tb03403.x
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Table 7. STXM scan types. 

 Each sample scan type has its own usefulness. Image scans are roughly performed 

during the initial steps to locate the sample and then the area of interest but they can also be 

carried out for high resolution imaging. Stack scans are the most exhaustive of the scan 

types as they combine imaging along with spectral analysis (3D data). Depending on the 

range and resolution (both spatial and spectral), acquisition of stack scans can take from a 

few minutes to 2 to 3 hours or even 5 hours and generate 2 Mo files.  

 Whatever the scan type, each of these is very rich of information and must be 

processed to extract meaningful results.  

b. Data processing 

 In order to be quantitative, raw acquired data need to be first converted from 

transmitted intensity into absorbance, also widely referred to as ‘Optical Density’ (OD). From 

the raw data, OD is calculated as follow: 

𝑂𝐷 = 𝑙𝑜𝑔
𝐼0
𝐼𝑡

 [10] 

where 𝐼0 and 𝐼𝑡 are respectively the incident and transmitted recorded beam intensities. 

From Beer-Lambert law, OD is then correlated to the absorption coefficient ⁡𝜇(𝐸) by  

𝑂𝐷 = 𝜇(𝐸)𝜌𝑡 [11] 

where 𝜌 and 𝑡 are the material density and the sample thickness respectively. 

This first step of OD conversion is performed whatever the type of scans.  

 For stack scans, an extra pre-processing step is needed. Repeated (x ; y) motions 

can cause heating of the sample holder piezo motors, this energy is mechanically released 

and induces a shift between the images of the sequence. Although this drift is mitigated by 

the interferometer monitoring, it is still there and can increase with the image size, resolution 

and spectral range. In order to correct this offset between the sequence images, they have to 

be aligned before any further analysis.  
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 OD and alignment steps can be carried out using specific tools in STXM data analysis 

software such as aXis2000191 or MANTiS192. Following these pre-processing steps, the data 

are ready to be analysed. 

 There are a large variety of ways to analyse STXM data depending on the intended 

results (chemical mapping, spectral analysis, …). The three most widely used approaches 

are: a) ratio between at- and pre-edge images; b) linear decomposition combined with 

reference spectra and c) cluster analysis. A more detailed description can be found in 

Schmid et al.193. Results from these processing can be chemical mapping and/or XAS 

spectra (Figure 71). 

  
a) b) 
Figure 71. a) single-energy (290.8 eV) STXM image (12x12 μm²) of externally mixed sea salt/CH3SO3

-/SO4
2- 

(squares) and H2SO4/(NH4)2SO4 (circles) particle residuals and principal component maps at the C K-edge, N K-
edge and S L-edge and b) Zn L-edge NEXAFS spectra for ambient particle of type A and Zn(NO3)2H2O 
standard.194 

 While a substantial number of STXM studies have been carried out on organic 

films195,196,197,198,199,200,201,202,203 to our knowledge very few have been led on hybrid perovskite 

ones. 

 
191 aXis2000 (Analysis of X-ray Images and Spectra) is a software developed by Adam Hitchcock at Mc Master 
University (Canada) 
192 MANTiS (Multivariate ANalysis Tool for Spectromicroscopy) 
193 G. Schmid, M. Obst, J. Wu and A. Hitchcock, ‘3D Chemical Imaging of Nanoscale Biological, Environmental, 
and Synthetic Materials by Soft X-Ray STXM Spectrotomography’ In X-ray and Neutron Techniques for 
Nanomaterials Characterization, C. Kumar (2016) 
194 R. C. Moffet, A. T. Tivanski and M. K. Gilles, ‘Scanning Transmission X-ray Microscopy: Applications in 
Atmospheric Aerosol Research’ in Fundamentals and Applications in Aerosol Spectroscopy, R. Signorell and J. P. 
Reid (2010) 
195 C. R. Mc Neill et al., (2006) Nano Lett., 6, 6, 1202-6 
196 C. R. Mc Neill et al., (2008) Nanotechnology, 19, 424015 
197 C. Hub et al., (2010) J. Mater. Chem., 20, 4884-4887 
198 S. Swaraj et al., (2010) Nano Lett., 10, 8, 2863-9 
199 W. Zhang et al., (2011) Polym. Adv. Technol., 22, 65–71 
200 S. Pack et al., (2012) Polymer 53, 4787-99 
201 B. A. Collins and H. Ade, (2012) J. of Elec. Spectro. and Related Phenom., 185, 5-7, 119-28 
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V. Synchrotron-based studies of perovskite films 

 The literature survey we conducted on the topic of (Lead trihalide) perovskite films 

and synchrotron-based techniques led to about a dozen of articles with only two STXM 

studies (highlighted in bold in Table 8) and neither of those on dry-processed perovskites. 

(Lead trihalide) Perovskite Deposition method 
Synchrotron 

Beamline 
Technique Ref. 

CH3NH3PbI3 
Wet 

1-step spincoating 

SSRF 

BL14B1 

 

GIXRD 
[204] 

CH3NH3PbI3 
Wet 

1-step spincoating 

SSRF 

BL14B 

 

XRD 
[205] 

CH3NH3PbI3(Cl) 
Wet 

1-step spincoating 

SSRF 

BL14W1 

 

XRF 
[206] 

CH3NH3PbI3 
Wet 

2-step spincoating/dipping 

SLAC SSRL 

NA 

 

XRD 
[207] 

CH3NH3PbI3 
Wet 

1-step spincoating 

SSRF 

BL14B 
XRD [208] 

CH3NH3PbI3 
Wet 

1-step spincoating 

PAL 

PLS-II 9 A U-SAXS 

4D PES 

 

2D-GIWAXD 

HR-XPS 

[209] 

Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3 
Wet 

1-step spincoating 

SLAC SSRL 

BL11-3 

 

GIXRD 
[210] 

CH3NH3PbI3(Cl) 
Wet 

1-step spincoating 

SLAC SSRL 

BL11-3 

BL4-1 

 

GIXRD 

XRF 

[211] 

CH3NH3PbI3 
Wet 

Spray 

SLAC SSRL 

BL11-3 

 

WAXS 
[212] 

CH3NH3PbI3  

(FAI)1.0(MABr)0.2(PbI2)1.1(PbBr2)0.20 

Cs0.5(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 

Wet 

1-step spincoating 

ESRF 

XMaS 
GI-WAXS [213] 

CH3NH3PbI3 
Wet 

1-step spincoating 

NSRL 

BL11U 

SRPES 

XPS 
[214] 

CH3NH3PbI3 
Wet 

2-step spincoating/dipping 

UVSOR 

BL4U 
STXM [215] 

CH3NH3PbI3 

C6H5(CH2)2NH3I/PbI2 

Wet Vapor Assisted 

2-step spincoating/vapor 

UVSOR 

BL4U 
STXM [216] 

Table 8. Overview of Synchrotron-based study of perovskite films (GI-XRD: Grazing Incidence X-ray Diffraction; GI-

WAXD: Grazing-Incidence Wide-Angle X-ray Diffraction; XPS: X-ray Photoelectron Spectroscopy; XRF: X-ray Fluorescence; 
WAXS: Wide Angle X-ray Scattering; GI-WAXS: Grazing Incidence Wide Angle X-ray Scattering; SRPES: Synchrotron 
Radiation PhotoEmission Spectroscopy). 
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 The first STXM study of perovskites published in 2016 by Lin et al.215 studied 

SiN/NiOnc/PbI2 microaggregates before and after MAI treatment (PbI2 is expected to be 

converted into perovskite upon exposure to MAI) using NEXAFS spectroscopy at the O and 

Pb-edges. They found proof that a redox reaction occurred at the NiOnc/PbI2 interface leading 

to the formation of a PbO compound. This compound when exposed to MAI will turn into a 

MAPbI3-2δOδ that proved to be beneficial for the hole collection at the interface with NiO.  

 In 2018, Li et al.216 studied low-vapor assisted solution process perovskite coated on 

a TiO2 mesoporous layer. They used NEXAFS at the C K-edge to investigate the dynamic of 

the partial integration of PEA+ (PhenylEthylAmmonium) into the PbI2 network (PEAI/PbI2 ratio 

of 0.05). In the absence of MAI vapor, the PEA+ intercalates itself into the PbI2 network to 

form a material close to the 2D perovskite with PEAI/PbI2 = 2. In the presence of MAI vapor, 

the PEA+ intercalates into the pre-formed perovskite network to form a material closer to the 

3D MAPbI3 perovskite.  

 Besides these two papers, we found no other report of STXM study on perovskite 

materials. To this point, it is important to take a step aside to develop the history of our 

perovskite team with STXM. 

VI. LPICM perovskite team STXM studies 

  When our team submitted its first proposal in 2016 to study cross-sections of full 

perovskite PV devices, we had no clear idea what to expect from these measurements, 

being the first to run such study (if it was done by the past, we found no report of it in our 

literature survey). Following the acceptance of our proposal by SOLEIL’s peer reviewing 

committee, we conducted our first beamtime in December 2016. Besides, being our first time 

in a Synchrotron, it was also a premiere for the HERMES team to work on perovskite 

materials. As such, the first beamtime was very exploratory. On our side we were learning 

about the technique, with the goal of being the most independent possible, and on the 

HERMES team side, they were apprehending the material and its complexity (both on the 

chemical and structural levels).  

 During this first beamtime we studied cross-sections of Glass/ITO/PEDOT:PSS/ 

Perovskite/PCBM/Ag stacks with three perovskite compositions: CH3NH3PbI3, 

CH3NH3PbI3-xClx and CH3NH3PbI2.4Br0.6. We went back and forth between the two spectral 

regions of [280; 310] and [620; 700] eV thought to be of interest due to the C K-edge 

at 284 eV, I M4,5-edge at 620 eV and Pb N2,3-edge at 644 eV217. Figure 72 shows few results 

from this beamtime: a spectrum where the characteristic C K-edge can be seen for the Cl-

perovskite (a) and a Pb and I spectrum along with nicely resolved images showing grains in 

the Br-perovskite layer (b). 

 
217 From http://www.eels.info/atlas/lead  

http://www.eels.info/atlas/lead
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a) b) 
Figure 72. Example of results from our first STXM beamtime: a) perovskite spectrum at the C K-edge for the 
CH3NH3PbI3-xClx composition and b) perovskite spectrum at the Pb and I edges with few images for energies of 
interest (before (580 and 640 eV) and at-edges (616 and 655 eV)) for the CH3NH3PbI2.4Br0.6 composition. 

 The three peaks in the [580; 700] eV spectrum (Figure 72b) are surprising as we 

would have expected a single peak from Iodine at 620 eV and a discrete Pb-related 

component due to its N2,3-edge at 644 eV. Assuming the peak at 616 eV on Figure 72b 

corresponds to I M4,5-edge (implying a -4 eV shift with the expected energy of 620 eV that 

can be explained by the line configuration) we were unable to explain the two extra peaks at 

630 and 655 eV (that would correspond to 634 and 659 eV corrected from the eV shift). The 

Pb N2,3-edge we were expecting to see would have turned out at 640 eV given the shift, yet 

there is no absorption feature at that energy in the spectrum. Some weeks after our 

beamtime, we performed extra experiments on KI, PbCl2 and PbI2 films (deposited full plate 

on SiN membranes) trying to decipher this triple-peak feature. 

 Comparing pure Iodine/no Lead (KI), pure Lead/no Iodine (PbCl2) and mix 

Iodine/Lead (PbI2) reference materials we were hoping to attribute the extra peaks from the 

first beamtime results. OD spectra for each of the three compounds are shown here after in 

Figure 73 in the [620; 700] eV range. 

   
Figure 73. OD spectra for KI (blue), PbCl2 (red) and PbI2 (black) reference materials in the [620; 700] eV energy 
range. 
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 When comparing PbI2 (Pb and I containing compound, black plot) to KI and PbCl2 

(respectively I- and Pb-only compounds, blue and red plots), one can see that PbI2 and KI 

spectra perfectly match in shape (Figure 73). While PbCl2 spectrum is relatively flat in the 

studied range (amplitude of 0.006 in OD), KI and PbI2 both show the same double-peaked 

sharp absorption feature. While we are to this day unable to explain the double-peak 

absorption seen in KI and PbI2, these results led us to assume that all features from Figure 

72b were very likely only I-related and not Pb-related. 

 Besides being unable to better understand some of our data (for example Figure 72b 

spectrum), we were not even able to properly compare the different perovskite compositions 

(CH3NH3PbI3, CH3NH3PbI3-xClx and CH3NH3PbI2.4Br0.6) due to a lack of consistency in our 

measurements. We had very nice high resolution images for one composition (Figure 72b 

images) or very nicely resolved spectra for another (Figure 72a spectrum) but not both for 

any of the three compositions. We also had spectra with different energy resolution, making it 

difficult to properly compare them. Even if we were not able to draw any clear conclusion 

from this first beamtime, the results we achieved were very encouraging and drove us to 

submit a second proposal to continue our investigations.  

 We were eventually granted with a second beamtime that fitted well in the timeline of 

the coevaporation process development; we then seized this opportunity to build a study 

around the comparison of wet- and dry-processed perovskite films. At that time we had 

tamed the STXM technique to a relative degree (at least enough to operate it quite 

autonomously) but we were still not expert enough to choose the most suitable acquisition 

parameters. Nonetheless, this time, we adjusted our measurement procedure so that it would 

be consistent (i. e. same energy range, same spatial and spectral resolution, etc…) to allow 

a fair comparison between our samples. We also adapted our sample structure with respect 

to the first beamtime. At the time, the omnipresence of Carbon in the layers surrounding the 

perovskite (PEDOT:PSS and PCBM) complicated the layer assignation. Thus for this second 

beamtime, we simplified our structure by removing the PCBM (and therefore Ag) layer(s), 

while maintaining the perovskite growth conditions by keeping the PEDOT:PSS lower layer. 

The following section details the study from sample preparation, STXM measurements and 

obtained results, all the way down to our interpretation of these latter with the purpose of 

assessing the homogeneity difference between variously processed perovskite films. 

VII. Homogeneity of wet- and dry-perovskite films assessed by 

Synchrotron STXM 

 Our study aims at comparing dry-processed perovskite films with wet- ones. As we 

have already foreseen from basic SEM images, the two methods do not yield the same film 

quality, in favour of the dry method. Samples studied by STXM consisted of cross-sections of 

semi-PV-device stacks of structure: Glass/ITO/PEDOT:PSS/Perovskite where the 

methylammonium lead triiodide (CH3NH3PbI3) perovskite was either wet- or dry-processed. 

The following section details the preparation steps from bulk samples to STXM-ready cross-

sections.  

i. Samples preparation 

 The Glass/ITO/PEDOT:PSS samples were prepared following the procedure 

described in section A of the Annexes. The wet-processed perovskite was deposited using 

spincoating technique from an equimolar solution of MAI:PbI2 in a GBL-DMSO mix using a 
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toluene anti-solvent treatment. The dry-processed perovskite was deposited by 

coevaporation from MAI and PbI2 powders heated at 95°C and 295°C respectively. The 

thickness of the obtained active layers is between 250 and 300 nm. In order to perform 

Scanning Transmission X-ray Microscopy, cross sections lamellas have been prepared218 

using the Focus Ion Beam (FIB) technique on these bulk samples. 

 Before transferring the sample within the FIB dual beam microscope chamber (Scios 

DualBeam) a thin layer of carbon (C) is applied by hand (using a writing pen) in order to 

avoid any electron and ionic beam charge effects that might appear during the preparation. 

At first, the area of interest is selected and a 2/2/20 µm Platinum (Pt) protective layer is 

deposited to protect the chosen area from excessive ion damage. Secondly, the selected 

area is isolated using the energetic Gallium ion beam. Once the area is isolated, the milling 

process begins using high current ion beam and then as the lamella becomes thin (down to 

0.8-1 µm) the ion beam current is decreased (Figure 74).  

 
Figure 74. FIB milling initial steps: pre-beam exposition protection with Carbon and Pt, Ga+ ion beam exposition 
and first rough milling step down to 1 µm thickness (thickness of the different layers is given in bracket, Pt and 

Carbon thicknesses are unknown (unk.)). 

 The lamella is then removed from the substrate with a micro manipulator and 

transferred onto a TEM sample grid. A second milling process using very low ion beam 

current is then performed to bring the lamella thickness down to 150-200 nm (Figure 75).  

 
218 by Dr. Ileana Florea (LPICM, Ecole Polytechnique/CNRS) 



 

100 
 

 
Figure 75. a) SEM image of the TEM grid, b) SEM image of the grid’s finger B with the lamella, c) scheme of the 
lamella stack (with thicknesses), d) zoomed SEM image of the lamella and e) TEM image side view of the lamella. 

 The sample is removed from the FIB chamber and stored under neutral atmosphere. 

TEM grids with milled slices are then transferred into a N2-filled glovebox to be mounted on 

the STXM sample holder before being brought to SOLEIL for STXM measurements. 

ii. STXM Measurements 

 The present section will take the reader through the process of our STXM 

measurements from data acquisition down to data processing. It is important to mention that 

the following measurements represent only one day of Synchrotron beamtime. The STXM 

set up, with the FIB-prepared lamella in position, is shown once again as a reminder in 

Figure 76.  

 
Figure 76. STXM set up with the FIB-prepared cross-section slice of perovskite semi-PV-device implemented 

(slice layers from bottom to top: Glass/ITO/PEDOT:PSS/Perovskite/C/Pt). 

a. Data acquisition 

 During the first beamtime, we lacked consistency in our measurements that prevented 

us from properly comparing our different samples. For this second beamtime we followed a 

unique measurement procedure for both our samples. Given their wholeness, we chose to 

perform only stack scans. As aforementioned, these scans are very rich of information as 

they contain both imaging and spectral data, yet they are highly time-consuming. We then 

had to find a trade-off between the energy range and the spectral and spatial definition to fit 

this study in one day of measurement. 
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 From simulations of the different elements composing the perovskite (C, H, N, Pb and 

I) shown Figure 77, we determined [240; 700] eV to be a suitable range. From the first 

beamtime feedbacks, we knew we had to broaden the investigated spectral window aiming 

for the Pb N4,5-edge at 413 eV we hoped to be more relevant than the N2,3 one we failed to 

see. Yet as we went into this second beamtime we did not know really where the differences 

between our samples (if there would be any) would occur, we then decided to cover a large 

spectral range, including perovskite-composing elements absorption features from C K-edge 

at 284 eV up to the I M4,5 one at 620 eV. 

 
Figure 77. Simulations for a CH3NH3PbI3 formula (black plot, top) and the different perovskite elements (C, H, N, 

Pb and I) (coloured plots, bottom). 

 As we had only one day to run this study, we had to make some adjustments on the 

spectral definition (both on the energy range and eV step). As such the 520 to 615 eV region 

was not included in the stack definition since no perovskite-related element had any edge in 

this range and including it would have increased the acquisition time of the stacks far too 

consequently. We then proceeded by running two stacks: one from 240 to 520 eV and the 

second from 615 to 700 eV. We also defined varying eV step depending on the spectral 

regions. For energy ranges where peaks were expected (for example [281; 290] eV with the 

C K-edge at 284 eV), we defined fine eV step to get highly defined spectra. For energy 

ranges where no relevant peaks were expected ([291; 390] eV) the definition was lowered 

(i. e. the eV step was increased). Eventually we followed the stack definition showed in Table 

9. Acquisition times were about 4 hours for the [240; 520] eV stack and 1 hour for the [515; 

700] eV stack.  
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Table 9. Stack definition parameters.  

 We recorded images of 7 x 1.8 µm² (𝑥 x 𝑦) dimension with a 0.030 µm step in each 

direction. Examples of raw images are shown in Figure 78 for the two samples. 

a)  

b)  

Figure 78. Examples of raw STXM images at 490 eV for the a) wet- and b) dry-processed perovskite samples 

(reminder: what is shown here is just one out of the 116 images of each stack scan). 

 From these raw images one can already notice a difference between wet- and dry-

processed films, as wet perovskite lower interface with PEDOT:PSS shows small dark 

aggregates we don’t see for the dry perovskite. Yet, before being able to draw any 

meaningful conclusion these raw data need to be processed. The processing procedure 

followed, detailed in the next section, starts with the mandatory pre-processing steps that 

lead to useable data; that can then be variously post-processed depending on the pursued 

purpose.  

b. Data pre-processing 

 As a first step the two stacks ([240; 520] and [615; 700] eV) were appended together 

to get a [240; 700] eV stack (easier to process) that was then aligned (to correct the shift 

from drifting) and converted to Optical Density using the vacuum part of the images (see 

Figure 78) as 𝐼0. Figure 79 schematically represents these pre-processing steps. In our case, 

the images were also cropped to get rid of some of the glass and carbon parts to decrease 

the size of the file and thus facilitate later processing.  
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Figure 79. Pre-processing steps (N.B. colors do not match the beam energy). 

 Examples of accordingly pre-processed images are shown in Figure 80. 

a)  

b) 
  

Figure 80. Examples of aligned, ODed and cropped STXM images at 490 eV for the a) wet- and b) dry-processed 
perovskite samples (reminder: what is shown here is just one out of the 116 images of each stack scan). 

 From these pre-processed data, it is then possible to plot absorption spectra for pixels 

of interest, in our case: pixels in the perovskite layer, as illustrated in Figure 81.  
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Wet-processed perovskite sample 
 

 

a) 

  
 

Dry-processed perovskite sample 
 

 

b) 

  
  

Figure 81. OD cropped image at 490 eV with few selected pixels and corresponding OD spectra (reminder: the 
520 to 615 eV range was not covered in our measurements, thus the linear section in the spectra) for a) wet- and 
b) dry-processed perovskite sample. 

 Now that the stacks are pre-processed, they can be further analysed to serve our 

purpose of homogeneity assessment through post-processing steps. It is important to 

mention that although the pre-processing steps (i. e. from raw data Figure 78 to aligned 

ODed cropped data Figure 80) were carried out during the beamtime, the post-processing 

steps that follow were carried out post-beamtime. 

 Given the very occasional nature of a beamtime, its short duration and dynamics, 

data are usually recorded and partially processed (enough to direct the next measurements 

but not entirely) during the measurement time and then further processed after the 
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beamtime. Operating without any processing means blindly performing a lot of 

measurements and hope that the processed data will eventually make sense, coming down 

to sound results. Extensively processing the data leads to important downtime where the 

beam is not used, users don’t take advantage of their beamtime to the fullest. Running a 

‘good’ beamtime is a question of finding the right balance between recording and processing 

the data. 

iii. Post-processing methodology 

 As we conducted the post-processing steps after the beamtime, we had to make the 

best of the available data; as we could not record complementary ones. We realized post-

beamtime that our measurements were maybe still not the best and most representative; that 

we might have overlooked some aspects in our measurements but at least we knew we 

could properly compare our two samples as we made sure, for this study, to be consistent in 

our measurement procedure. We then had to find a metric to base our comparison on. 

 Confronting our data to the simulations (Figure 77), we estimated the monitoring of 

the Pb and I features to be relevant. As our study was the first of its kind we had to develop 

our own post-processing methodology. In close collaboration with the HERMES beamline 

team, we eventually settled down for a Pb/I ratio figure of merit. This ratio was calculated 

using two methods (so called Fitting and Integration) that will now be described.  

a. Fitting method 

 The Fitting method consists in fitting a simulated OD spectrum with the measured 

one. Simulated OD spectra are obtained from the energy-dependent equation of OD. As 

aforementioned (page 93), the optical density is linked to the absorption coefficient through: 

𝑂𝐷 = 𝜇(𝐸)𝜌𝑡 [11] 

with 𝜇(𝐸) the absorption coefficient that can be defined as: 

𝜇(𝐸) =
𝑁𝐴
𝑀𝑊

∑𝑧𝑖𝜎𝑎𝑖
𝑖

 [12] 

where 𝑁𝐴 is the Avogadro number, 𝑀𝑊 the molecular weight, 𝑧𝑖 the atomic coefficients of the 

chemical element 𝑖 and 𝜎𝑎𝑖 the atomic photoabsorption cross-sections. 

The latter can be expressed as: 

𝜎𝑎𝑖 = 2𝑟0𝜆𝑓2𝑖(𝐸) [13] 

with 𝑟0 the electron radius, 𝜆 the wavelength and 𝑓2𝑖(𝐸) the energy-dependant atomic 

scattering factor. 

The energy dependency is clearly displayed by developing the wavelength given by the 

Planck-Einstein equation: 

𝜆 =
ℎ𝑐

𝐸
 [14] 

Combining equations [11], [12], [13] and [14] provides the complete energy-dependent 

expression of the optical density:  

𝑂𝐷 =
𝑁𝐴
𝑀𝑊

2𝑟0
ℎ𝑐

𝐸
𝜌𝑡∑𝑧𝑖𝑓2𝑖

𝑖

(𝐸)  [15] 
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For a (𝐶𝐻3𝑁𝐻3)𝑧𝐶𝐻3𝑁𝐻3𝑃𝑏𝑧𝑃𝑏𝐼𝑧𝐼 formula, the OD equation [15] becomes: 

 
 

𝑂𝐷 =
𝑁𝐴

(32𝑧𝐶𝐻3𝑁𝐻3 + 126.9𝑧𝐼 + 207.2𝑧𝑃𝑏)
2𝑟0

ℎ𝑐

𝐸
𝜌𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡× [𝑧𝐶𝐻3𝑁𝐻3(𝑓2𝐶 + 6𝑓2𝐻 + 𝑓2𝑁) + 𝑧𝐼𝑓2𝐼 + 𝑧𝑃𝑏𝑓2𝑃𝑏] 

[16] 

After seeing no difference between the fitting results when its value was either 0.1, 0.5, 0.8 

or 1, the organic part coefficient 𝑧𝐶𝐻3𝑁𝐻3  was arbitrarily set to 1; leading to the following OD 

equation for a 𝐶𝐻3𝑁𝐻3𝑃𝑏𝑧𝑃𝑏𝐼𝑧𝐼 formula: 

𝑂𝐷 =
𝑁𝐴

(32 + 126.9𝑧𝐼 + 207.2𝑧𝑃𝑏)
2𝑟0

ℎ𝑐

𝐸
𝜌𝑡[(𝑓2𝐶 + 6𝑓2𝐻 + 𝑓2𝑁) + 𝑧𝐼𝑓2𝐼 + 𝑧𝑃𝑏𝑓2𝑃𝑏] [17] 

 Atomic coefficients 𝑧𝑃𝑏 and 𝑧𝐼 are used as fitting parameters to fit the simulated OD 

spectrum that follows equation [17] with the measured one. The fitting is carried out using 

the least squares method. An example of fit between measured and simulated spectra is 

shown Figure 82.  

 
Figure 82. Example of fitting of a simulated OD spectrum (dashed black line) with a measured one (solid blue 
line). 

 The Fitting ratio was then calculated as the following numerical ratio:  

(
𝑃𝑏

𝐼
)
𝐹𝑖𝑡

=
𝑧𝑃𝑏
𝑧𝐼

 [18] 

where 𝑧𝑃𝑏 and 𝑧𝐼 are the Pb and I atomic coefficients in equation [17] of the fitted simulated 

spectrum (dashed black line in Figure 82).  

 The validity of this fitting method was assessed using PbI2 a pure and stable 

compound with a known density. The measured spectrum from a 75 nm thick PbI2 film 

deposited on a SiN membrane was compared to various simulated spectra of 𝑃𝑏𝑧𝑃𝑏𝐼𝑧𝐼 

formula with a 75 nm thickness and a 6.16 g/cm3 density. The general equation for these 

simulated spectra is given by equation [19] and the simulated spectra are shown in Figure 

83. 

𝑂𝐷 =
𝑁𝐴

(126.9𝑧𝐼 + 207.2𝑧𝑃𝑏)
2𝑟0

ℎ𝑐

𝐸
𝜌𝑡[𝑧𝐼𝑓2𝐼 + 𝑧𝑃𝑏𝑓2𝑃𝑏] [19] 
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Figure 83. Simulated spectra for various PbxIy formulas going from Pb5I (light blue plot) to PbI5 (black plot). 

 We have found the simulated spectrum for 𝑧𝑃𝑏 = 1 and 𝑧𝐼 = 2 i. e. PbI2 to fit with the 

measured spectrum as shown in Figure 84.  

 
Figure 84. Comparison between the measured spectrum for a 75 nm thick PbI2 film (solid line) with the simulated 

spectrum for a PbI2 formula (𝒛𝑷𝒃 = 𝟏 and 𝒛𝑰 = 𝟐) with a density of 6.16 g/cm3 and a thickness of 75 nm (dashed 

line). 

 The measured spectrum for a PbI2 film matches the simulated spectrum for a PbI2 

formula (𝑧𝑃𝑏 = 1 and 𝑧𝐼 = 2), establishing the righteousness of the fitting calculation method. 

 It is worth mentioning that the two spectra cannot perfectly match given the fine 

structures in the measured spectrum (for example the small peaks around 400, 480 and 

550 eV) and the shift between the two absorption maxima (at 620 eV for simulated and 660 

eV for measured) that are linked to experimental factors (respectively Nitrogen contamination 

and beamline settings) that cannot be accounted for in the simulations.  
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b. Integration method 

 We confronted the Fitting method to a second one, more empiric, so called 

Integration. It consisted in calculating the Pb/I ratio as the graphical ratio of the two 

corresponding spectrum parts. Confronting our data (Figure 81 pixel OD spectra) to 

simulations (Figure 77) and previous experiments (Figure 73), we postulated that from 240 to 

632 eV the absorption was mostly Pb-related and that from 632.5 to 700 eV the absorption 

was I-related (Figure 85).  

 It is important to note that with this assumption we are neglecting the fine features of 

C and N as well as the discrete contribution of Iodine at low energies (that can be seen in 

Figure 77 simulations) in the Pb-defined region. We are making intentionally the following 

approximation:  

𝑃𝑏 + ∆𝐶 + ∆𝑁 + ∆𝐼 = 𝑃𝑏 [20] 

 

 
Figure 85. Example of pixel spectrum with the integration areas as we have defined them: Pb region from 240 to 
632 eV and I region from 632.5 to 700 eV. 

 The Pb/I Integration ratio is then calculated as: 

(
𝑃𝑏

𝐼
)
∫ ⁡
=

∫ 𝑂𝐷
632

240

∫ 𝑂𝐷
700

632.5

 [21] 

with ∫ 𝑂𝐷
632

240
 and∫ 𝑂𝐷

700

632.5
 the integration areas shown Figure 85. 
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iv. Ratio calculations results 

 Both Fitting and Integration methods were carried out using Python219 for each pixel 

of both the wet- and dry-perovskite stacks as depicted in Figure 86.  

 
Figure 86. Data processing overflow for Pb/I ratio calculations. 

  

 
219 Code by Dr. Sufal Swaraj beamline scientist on HERMES. 
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 The ratio images resulting from the two ratio calculation are shown in Figure 87 for 

both samples. 
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Figure 87. Ratio images results (grayscale) for a) wet- and b) dry-processed perovskites with Integration ratio 
calculation and c) wet- and d) dry-processed perovskites with Fitting ratio integration (for clarity, only the 
perovskite and ITO layers are tagged on the images). 

From these images, we used a processing software (Fiji220) to analyse our data, studying the 

evolution of the calculated Pb/I ratio in the perovskite layers. 

 As an initial approach, we defined lines across the perovskite layer of the different 

images (an example of line definition is shown in Figure 88a) and plotted the corresponding 

profiles (Figure 88b graphs).  

  

 
220 Fiji (former ImageJ) 

https://fiji.sc/
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b) 

Figure 88. Profile lines: a) example of line definition across the perovskite layer for one ratio image and b) 
corresponding profiles for the four different ratio images (two perovskites -Wet and Dry- with two ratio calculations 
-Fitting and Integration-). 

 The two calculation paths (Fitting and Integration) yield the same kind of ratio profiles: 

rather smooth with a mean value close to 1.5 for the dry perovskite and bumpier with a mean 

value around 3 for the wet perovskite. Our ratio calculations seem consistent with each other, 

both in amplitude and values. 

 Given the tilt of the layers on the images, we were unable to plot a more statistically 

relevant number of lines (while keeping the same number of pixels). We then decided to 

consider the perovskite layer in its wholeness and plot histogram of the ratio distribution. An 

example of the perovskite layer selection is shown in Figure 89a and the four corresponding 

histograms are shown in Figure 89b. 
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b) 

Figure 89. Ratio distribution: a) example of region selection and b) corresponding histograms for the four different 
ratio images (two perovskites with two ratio calculations). 

 The distribution results are consistent with the profile lines analysis (Figure 88): the 

distribution is sharper for the dry perovskite and localized around a ratio value of 1.5 when it 

is wider with a value closer to 3 for the wet perovskite, whatever the ratio calculation path. 

Once again our two calculation methods (Fitting and Integration) are consistent with each 

other. 

 Given the agreement between the two statistical analysis (line and distribution), we 

can conclude; with a relative confidence; that our results are trustworthy.  

 Focusing on the results themselves, we can draw several conclusions. First, 

considering a qualitative analysis of the results: whatever the calculation path and the 

statistical analysis, ratio values are more distributed for the wet-processed perovskite (noisier 

profile and wider distribution) than for the dry-processed one (flatter profile and narrower 

distribution). This finding shows a higher homogeneity of the dry-processed perovskite film 

with respect to the wet-processed, based on the Pb/I ratio figure of merit we have defined 

here. Focusing on a quantitative analysis of the results: the Pb/I ratio values being lower for 

the dry perovskite would mean that either the Pb content is lower or the I content is higher 

with respect to the wet perovskite. While we do not see any reason why the Pb content 

would be impacted by the deposition method, it seems highly likely that the I content would 
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be. Given the potential MAI parasitic redeposition suspected from the work detailed in the 

previous two chapters during the coevaporation process, it is possible that the I content is 

higher for the dry sample. It is also possible that the I content is lower for the wet sample as it 

is now widely acknowledged that CH3NH3PbI3 degradation mechanism releases I221. The 

degradation of the material is highly plausible given its poor stability and the time delay 

(inherent to the FIB milling step) between deposition and STXM measurement. At the time, 

we found ourselves unable to clearly validate any of these two hypotheses without 

supplementary experiments.  Although we can hardly get rid of the excess of I for the dry-

processed perovskite (unless the reactor is thoroughly cleaned before deposition), we could 

moderate the Iodine loss in wet-processed perovskite by studying fresher samples, getting 

rid of the time delay induced by the FIB preparation. 

 Although our method seems robust (the two calculations leading to consistent results) 

it suffers several weaknesses. To this point it seems important to take the time to discuss 

once again these latter (already dispensed throughout the previous paragraphs). 

v. Open discussion 

 Considering the Fitting approach, as shown with the PbI2 (Figure 84), simulated and 

measured spectra will never perfectly fit. Small absorption features coming from 

experimental factors (beamline settings, Nitrogen contamination, etc…) cannot be accounted 

for in simulations, this induces a difference that might distort the fitting. 

 Considering the Integration approach, it is even more contentious than the Fitting 

one. First, in our stack definition we neglected almost 100 eV (520 to 615 eV) of the spectral 

range. Absorption in this range was approximated to be linear while it might have shown fine 

structures. Also, as we have specified we made quite an approximation overlooking the C, N 

and I contributions in the Pb region from 240 to 632 eV (equation [20]). 

 In spite of these weaknesses, that certainly calls our method into question; we were 

at least consistent in both our data acquisition and data analysis between our two samples, 

which allow us to be reasonably confident in the presented study and its outcomes. 

  

 
221 M. Shirayama et al., (2016) J. of Applied Physics, 119, 115501 

https://aip.scitation.org/doi/full/10.1063/1.4943638
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Conclusion 

 The current chapter aimed at presenting a Synchrotron-based X-ray Absorption 

Spectroscopy technique used for the first time, in our team, to study perovskite films. After an 

overview on the topic of X-rays, their interaction with matter, an introduction to Synchrotron 

radiation lightsource, we focused on the particular technique of Scanning Transmission X-ray 

Microscopy. We then step into the heart of our STXM/perovskites studies with a focus on the 

comparative investigation of wet- and dry-processed perovskite films.  

 The study we conducted was quite unique, as it involved the comparison of two 

deposition techniques (one still scarcely used) of an emerging material using a large 

instrument based spectromicroscopy technique. With the goal of assessing the homogeneity 

differences between wet- and dry-phase depositions of perovskite films we have developed a 

whole new methodology to analyse our STXM data. We chose as a figure of merit the Pb/I 

ratio for our comparison. Confronting two calculation methods (one based on simulations and 

one more empirical) we have shown a higher homogeneity of this Pb/I ratio in favour of the 

dry-processed perovskite film. As we are aware of the weaknesses of our method, we would 

need further investigations to strengthen it. Expanding the spectral range down to 180 and 

up to 800 eV to properly cover respectively the Pb and I contributions would allow for a more 

righteous integration calculation.  

 In the present study we favoured a rough statistical analysis of the perovskite layer in 

its wholeness; future work could focus on finer analysis, distinguishing regions in the 

perovskite, such as its core, the interface with a lower layer and the one with an upper layer. 

As it is widely acknowledge that interfaces are crucial in a perovskite device, this could unveil 

structural differences one could link to differences in PV performances. Given the difficulty 

we faced with our Pb and I monitoring, future work could focus on less intertwined features 

such as Carbon and Nitrogen. Studying different perovskite compositions would then be 

highly relevant. For example pure methylammonium, pure formamidinium and mixed 

methylammonium/formamidinium compositions would exhibit different absorption features as 

the N atom configuration varies from CH3NH3I to CH(NH2)2I.  

 With the two beamtimes mentioned in the present chapter, we have set the 

groundwork for future studies. We know that we must be very consistent in our different 

measurements (both during one beamtime and in between beamtimes), we have started 

deciphering the different contributions but are aware that we need to build a library of 

reference spectra. All these initial results are very encouraging and have opened the way for 

a PhD thesis between the LPICM and HERMES beamline that will start in autumn 2019. 

Given the novelty of the perovskite material, the richness of the STXM technique and the 

very few reported papers on the topic, the scope for future studies is quite broad and they 

are expected to be of great impact for the scientific community as to better understand the 

nanoscale organization of the material as well as its behaviour. 
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Conclusion and Perspectives 

 Within this document we have presented the development of the coevaporation 

process for the fabrication of perovskite thin films for photovoltaic applications. The major 

findings are here after summarized and future work ideas are proposed. 

 As this thesis started, the coevaporation of perovskites had never been undertaken 

neither in IPVF nor LPICM. As such, we first had to assess the feasibility of the process. 

Using a proof-of-concept reactor we got a first handle on the coevaporation of PbI2 and 

CH3NH3I (MAI). We were quickly confronted to the unusual evaporation behaviour of the 

organic precursor that was far from directive, filling the chamber volume and parasitizing the 

PbI2 evaporation. Lacking some features on the reactor we were unable to fully grasp the 

impact of this erratic evaporation of MAI. Despite this issue, encouraging results were 

obtained that validated the feasibility of the perovskite coevaporation process. 

 From the pitfalls of the proof-of-concept reactor, we designed hand in hand with the 

manufacturer a second reactor, dedicated to the coevaporation of perovskites, integrating 

new relevant features. Following its implementation, we thoroughly studied the behaviour of 

each of the precursors. The added features of the reactor provided us with useful insights 

that allowed us to mitigate to a certain extent the impact of the organic salt. Following these 

single-compound evaporation studies, we eventually started to perform coevaporation. 

Facing both intra- and inter-batch variability we found ourselves unable to draw any clear 

conclusion and not knowing where to go from there.   

 Stepping aside from these practical issues, we had the opportunity to investigate our 

dry-processed material using a Synchrotron-based spectromicroscopy technique. Building a 

study around wet- and dry-processed films, we wanted to assess the suspected homogeneity 

difference between these two phases. Monitoring the Pb to I ratio throughout the two 

materials we found a clear difference in favour of the dry-deposition method. 

 Regarding the coevaporation process, as the second reactor was moved from LPICM 

to IPVF, we are unable to know whether the issues we reported in the present manuscript 

will be found again. In the event they are, we could resort to an alteration of the reactor to 

implement a cooling system; that is believed to eradicate the MAI parasitic behaviour. If this 

latter cannot be supressed by any practical upgrade, we would eventually switch to other 

organic precursors. 

 The Synchrotron study of wet and dry perovskite materials would need a more 

statistically significant number of samples, to consolidate the initial findings. To further 

investigate the Pb/I ratio and validate (or invalidate) our findings, it would be worth studying 

variously aged wet perovskite samples. Given the weaknesses of the method presently used 

(Pb/I ratio figure of merit) due to the difficulty to clearly untangle the Pb and I contributions, 

another approach could consist in focusing the interest on the Nitrogen region with various 

perovskite compositions. Future works could also include investigating the material response 

(both spectroscopically and microscopically) to an electrical bias with the hope of showing in 

situ ionic migration.   
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Fabrication of perovskite solar cells at LPICM 

 ITO coated glass substrates (from Xin Yan Tech.) are patterned using chlorhydric 

acid (HCl) and zinc powder (Zn) to remove ITO over one third of the sample surface to create 

the two poles of the device (Figure 90b). Following this etching step the samples are cleaned 

in the following sequence of ultrasonic baths: 

- Water + detergent (15 min) 

- Clear water (15 min) x3 

- Acetone (15 min) 

- Isopropan-2-ol (15 min) 

 Etched samples are then transferred into a vacuum chamber were Cr (10 nm) and Au 

(70 nm) contacts are deposited by Physical Vapor Deposition (PVD) (Figure 90c). Following 

this, the substrates are ready for experiments. 

   

   
a) b) c) 

Figure 90. Substrate preparation steps from a) the full plate ITO glass coated; b) to the etched and c) Cr/Au 
contacted substrate (side and top views of the sample stack). 

 The patterned and contacted ITO samples are cleaned in ultrasonic baths of acetone 

and isopropanol and then treated by UV-ozone for 15 minutes. A PEDOT:PSS hole transport 

layer (approximately 50 nm thick) is then deposited via spin-coating process (4500 rpm 

spinning rate for 40 seconds) and annealed at 120 °C for 20 minutes. The Cr/Au contacts are 

cleaned using a cotton tip dipped in water before annealing. 

 

 

Figure 91. PEDOT:PSS deposition (side and top views of the sample stack). 

  



 

B 
 

For the wet-processed perovskite films:  

 A mix of PbI2 and CH3NH3I (1:1 molar ratio) was solubilized in a mix of 

γ-ButyroLactone and DiMethyl SulfOxide (GBL-DMSO, 8:2, v/v)222 with a concentration of 

1.23 M. The solution is stirred for 1h at 70°C in N2 conditions before deposition. The filtered 

perovskite solution is then spincoated on the PEDOT:PSS layer at 2500 rpm for 30 seconds. 

An anti-solvent treatment77 is performed by dropping 0.5 mL of toluene 5 seconds before the 

end of the spinning. Samples are then annealed for 1 minute at 70°C and 5 minutes at 100°C 

in N2 conditions. The Cr/Au contacts are cleaned using a cotton tip dipped in N,N-

DiMethylFormamide (DMF) after annealing while the substrate is still hot to prevent any DMF 

diffusion. 

For the dry-processed perovskite films: 

- Using the proof-of-concept reactor from RIBER Company: 

PbI2 bids and MAI powder are loaded in their respective sources (Table 3). The 

Glass/ITO/PEDOT:PSS samples are loaded in the substrate holder and the reactor chamber 

is then evacuated to ~4.10-6 hPa. Coevaporation conditions are disclosed in Chapter 2 

section I page 32. Following the perovskite deposition, the samples are transferred to a hot 

plate where they are annealed for at least 15 minutes at 90°C. The Cr/Au contacts are 

cleaned using a cotton tip dipped in N,N-DiMethylFormamide (DMF) after annealing while the 

substrate is still hot to prevent any DMF diffusion. 

- Using the designed reactor from MBRAUN Company: 

PbI2 bids and MAI powder are loaded in their respective sources, in the amount of 0.70 and 

0.5 g respectively before each experiment. The Glass/ITO/PEDOT:PSS samples are loaded 

in the substrate holder and the reactor chamber is then evacuated to ~5.10-7 mbar. Heating 

rates and temperature targets are extensively disclosed in the manuscript. The substrate 

holder is rotated to a speed of 250 rpm during both the deposition of the PbI2 initial layer and 

the coevaporation. Following the perovskite deposition, the samples are transferred to a hot 

plate where they are annealed for at least 15 minutes to 90°C. The Cr/Au contacts are 

cleaned using a cotton tip dipped in N,N-DiMethylFormamide (DMF) after annealing while the 

substrate is still hot to prevent any DMF diffusion. 

 

 

Figure 92. Perovskite deposition (side and top views of the sample stack). 

   

 
222 Recipe adapted from S. Ghanavi’s master thesis  

https://www.diva-portal.org/smash/get/diva2:642174/FULLTEXT04.pdf


 

C 
 

 A solution of 40 mg/mL of PCBM in ChloroBenzene (CB) is then spincoated on top of 

the perovskite layer (2000 rpm for 30 seconds). The samples are then annealed 3 minutes at 

90°C. The Cr/Au contacts are cleaned using a cotton tip dipped in CB. 

 

 
Figure 93. PCBM deposition (side and top views of the sample stack). 

 The solar stack is completed by the deposition using PVD of a silver top electrode 

through a shadow mask defining a 0.28 cm² area. 

 

 
Figure 94. Ag top electrode deposition (side and top views of the sample stack). 
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Résumé en français 

 
 

Elaboration de films de perovskites hybrides  

par coévaporation pour des applications photovoltaïques. 

Les pérovskites hybrides célèbrent cette année leurs 10e anniversaire dans le 

domaine du photovoltaïque. Bien que la grande majorité des films de pérovskites sont 

obtenus par la méthode d’enduction centrifuge, celle-ci ne permet pas l’obtention de films 

homogènes, sur grandes surfaces et de façon répétable. Etant donné l’enjeu industriel qui 

attend les pérovskites et l’intérêt croissant pour les structures tandems Silicium/Pérovskite, 

les méthodes sans solvant semblent plus adaptées. Publiée pour la première fois en 2013, la 

synthèse par coévaporation des pérovskites semble constituer une solution 

commercialement viable. Elle est pour le moment encore peu étudiée car nécessitant des 

équipements plus coûteux que les procédés en voie liquide.  

La présente thèse vise à mettre en place et développer la technique de 

coévaporation pour la fabrication de films de pérovskites hybrides pour des applications en 

cellules solaires grandes surfaces.  

Afin d’évaluer la faisabilité du procédé, nous avons commencé notre travail avec un 

réacteur de démonstration, ce qui nous a permis d’appréhender la réponse à la sublimation 

des deux précurseurs. Nous avons très vite identifié le comportement du sel organique 

CH3NH3I comme étant problématique car difficilement contrôlable, s’évaporant sous forme 

de « nuage ». En six mois d’exploitation de ce réacteur nous avons fabriqué des films de 

pérovskites ayant permis d’atteindre des rendements de 9% en cellules solaires, 

malheureusement avec une mauvaise répétabilité. A cause d’un manque de fonctionnalités 

sur l’équipement, nous nous sommes trouvés dans l’incapacité d’aller plus en profondeur 

dans la compréhension du procédé. Grâce à nos différents retours d’expérience avec ce 

réacteur de démonstration nous avons pu concevoir, en étroite collaboration avec 

l’équipementier, un réacteur semi-industriel dédié à la fabrication de films de perovskites par 

coévaporation. 

Suite à la mise en place de ce nouvel équipement, plus optimisé pour la 

coévaporation de perovskites, et aux tests de qualification obligatoires nous avons pu nous 

focaliser sur la problématique de répétabilité de nos expériences en essayant de limiter 

l’impact parasite du nuage organique. En diminuant les températures de chauffage (°C) et 

les rampes associées (°C/min) nous avons pu augmenter la stabilité des vitesses de dépôt 

des précurseurs et améliorer, dans une moindre mesure, la répétabilité de nos expériences.  

 Avec l’amélioration de la stabilité et de la répétabilité du procédé, nous avons pu 

nous intéresser à la caractérisation des matériaux obtenus. Bien que les efficacités atteintes 

en cellules solaires avec des perovskites coévaporées fussent moindres que pour des 

perovskites par enduction centrifuge, nous soupçonnions une meilleure homogénéité en 

faveur du procédé voie sèche. Les matériaux ont été étudiés par quelques techniques de 

base telles que la microscopie électronique à balayage et la spectroscopie d’absorption UV-

visible, mais aussi à l’aide d’une technique plus complexe de spectromicroscopie : la 



 

F 
 

microscopie à rayons X à balayage et transmission (STXM en anglais). Une étude 

comparative de films perovskites voie liquide et voie sèche par cette technique a été menée 

par cette technique Synchrotron. Nous avons étudié les films sur une large gamme d’énergie 

(240 ; 700 eV) afin de couvrir les pics d’absorption des différents éléments chimiques 

composant le matériau (C, N, Pb et I). En se fixant le rapport Pb/I comme facteur comparatif 

et en confrontant deux méthodes de calcul de ce dernier, nous avons montré une meilleure 

homogénéité de ce rapport et donc in fine de la composition du matériau en faveur de la voie 

sèche par rapport à la voie liquide. 
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Titre : Elaboration de films de perovskites hybrides par coévaporation pour des applications 

photovoltaïques. 
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Résumé : Les pérovskites hybrides célèbrent cette année 

leurs 10e anniversaire dans le domaine du photovoltaïque. 

Bien que la grande majorité des films de pérovskites sont 

obtenus par la méthode d’enduction centrifuge, celle-ci ne 

permet pas l’obtention de films homogènes, sur grandes 

surfaces et de façon répétable. Etant donné l’enjeu 

industriel qui attend les pérovskites et l’intérêt croissant 

pour les structures tandems Silicium/Pérovskite, les 

méthodes sans solvant semblent plus adaptées.  

Publiée pour la première fois en 2013, la synthèse par 

coévaporation des pérovskites semble constituer une 

solution commercialement viable, elle est pour le moment 

encore étudiée par peu de groupes car nécessitant des 

équipements plus coûteux. La présente thèse vise à mettre 

en place et développer la technique de coévaporation pour 

la fabrication de films de pérovskites hybrides pour des 

applications en cellules solaires.  

Afin d’évaluer la faisabilité du procédé, nous avons 

commencé notre travail sur un réacteur de démonstration, 

ce qui nous a permis d’appréhender la réponse des 

précurseurs.  

En six mois d’utilisation, nous avons fabriqué des cellules 

solaires à 9% d’efficacité, malheureusement avec une 

faible répétabilité (que nous expliquons en partie par le 

caractère aléatoire de l’évaporation du composé organique 

CH3NH3I). 

Grâce aux différents retours d’expérience avec le réacteur 

de démonstration nous avons pu concevoir un réacteur 

semi-industriel dédié à la fabrication de films de 

perovskites par coévaporation. Suite à sa mise en place, 

nous nous sommes focalisés sur la problématique de la 

répétabilité dans nos expériences en essayant de diminuer 

l’impact du nuage organique. Bien que les efficacités 

atteintes en cellules solaires pour des films coévaporés 

fussent moindres que pour des films déposés par la 

technique classique d’enduction centrifuge, nous 

soupçonnions néanmoins une meilleure homogénéité des 

films obtenus par voie sèche.  

Nous avons ainsi intégré à cette thèse une étude 

comparative voie liquide/voie sèche par le biais d’une 

technique de spectromicroscopie rayons X en Synchrotron.  

 

 

 

Title: Development of coevaporated hybrid perovskite thin films for solar cells applications. 

Keywords : perovskite – photovoltaic devices – vacuum process – Synchrotron 

Abstract: Hybrid perovskites celebrate this year their 10-

year anniversary in the photovoltaic field. While most of 

the reported works on perovskite thin films are based on 

the basic wet-process spincoating technique, this latter 

hardly allows large scale, homogeneous and reproducible 

deposition. With the future challenge of industrialization 

and the increasing interest for the Silicon/Perovskite 

tandem approach, solvent-free methods appear more 

suitable. 

Reported for the first time in 2013, coevaporation stands as 

a viable option for perovskites industrial future. The 

technique is still scarcely studied compared to wet-based 

techniques, requiring more expensive set ups. In the 

present thesis, we implemented and developed the 

coevaporation process to fabricate perovskite thin films for 

solar cells applications. 

Starting off on a proof-of-concept reactor to assess the 

feasibility of the technique, we got accustomed to the 

perovskite precursors behaviour. 

In six months of use, we were able to obtain perovskite 

films leading to 9% efficient photovoltaic devices, 

unfortunately with a poor repeatability that we think to be 

partially due to the cloud vapour behaviour of CH3NH3I.  

From this feedback we then designed, hand in hand with 

the manufacturer, a dedicated semi-industrial equipment 

for perovskite coevaporation. Following its 

implementation, we then focused on establishing the 

repeatability of the method, trying to mitigate the parasitic 

effect of the organic compound. Even though the 

efficiencies in solar cells were still slightly lower for 

coevaporated perovskites, with respect to classical 

spincoated ones, we expected the material homogeneity to 

be in favour of the vacuum-based process. 

We then eventually integrated to this thesis a comparative 

study between wet- and dry-processed perovskite films 

using a Synchrotron-based X-ray spectromicroscopy 

technique. 

 

 


