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Long résumé 

La Thérapie par Substitution de Surfactant (TSS), qui opère par instillation d’une 

solution de surfactant directement dans l’arbre bronchique, est un traitement essentiel 

chez les nouveau-nés soufrant de syndrome de détresse respiratoire (SDRN). Cette 

procédure s’est révélée remarquablement eicace chez les grands prématurés, 

contribuant à la division par cinq de leur mortalité depuis les années 1980. À l’inverse, 

son utilisation s’est avérée décevante chez l’adulte dans le traitement du syndrome de 

détresse respiratoire aigu (SDRA), se soldant par un échec après des premiers essais 

pourtant prometteurs. 

Dans cette thèse, nous présentons un modèle mathématique et numérique de la 

propagation de bouchons liquides dans le système pulmonaire aérien de mammifères. 

Dans ce but, nous commençons par créer des modèles d’arbres trachéobronchiques chez 

le rat, le cochon ou l’homme. Ces modèles sont déinis non seulement par leurs 

propriétés d’échelle mais également par leur structure tridimensionnelle indispensable à 

la simulation du transport liquidien. Les géométries ainsi créées sont comparées aux 

données morphométriques de la littérature. 

Nous présentons ensuite le modèle mathématique du transport liquidien. La principale 

propriété de ce modèle réside dans la décomposition de la propagation de bouchons 

liquides en deux étapes élémentaires fondamentales : (1) le dépôt de liquide sur les 

parois bronchiques lors de la propagation d’un bouchon, et (2) la division du bouchon 

liquide à chaque bifurcation de l’arbre. Les équations du processus de séparation sont 

déduites de la conservation de l’impulsion, pour tout type de bifurcation asymétrique. 

Cette décomposition en deux étapes élémentaires nous permet de calculer de manière 

eicace et rapide la propagation du surfactant dans l’intégralité de l’arbre aérien, 

fournissant ainsi un véritable outil de conception en génie biomédical. 

Ce modèle numérique est tout d’abord exploité pour calculer l’administration de 

surfactant chez le rat. Les rôles respectifs du volume initial, du débit et de l’injection 

multiple sont examinés. Nos résultats de simulations se révèlent être en bon accord 

avec les données de la littérature. En particulier, nous mettons en évidence le rôle joué 

par l’architecture monopodiale du rat qui contribue à la faible homogénéité de la 

distribution inale de surfactant. On observe également la forte non linéarité de la 

quantité de surfactant distribuée dans les acini en fonction du volume initial, en raison 

du dépôt d’une fraction de ce volume sur les parois bronchiques (le coût de dépôt). Des 

simulations de l’administration chez le cochon font apparaître les mêmes propriétés, 
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avec cette fois une sensibilité accrue à la taille du poumon. Les efets respectifs de la 

gravité et de la tension de surface ne varient en efet pas suivant les mêmes lois 

d’échelle, ce qui se traduit par une distribution extrêmement inhomogène à bas débit 

ou à faible volume. 

Enin, chez l’homme, notre modèle montre que l’origine de l’échec de la TSS chez 

l’adulte est possiblement à chercher dans la mécanique des luides, l’accroissement du 

coût de dépôt aggravant la non-linéarité de l’administration. Cet efet peut être contré 

soit en instillant le surfactant à plus faible débit (mais au prix d’une distribution inale 

fortement inhomogène), soit en augmentant le volume initial. Nos résultats montrent 

en outre que, même pour des tailles comparables, les géométries très diférentes de 

l’homme et du cochon ne permettent pas de traduire directement pour le premier les 

résultats obtenus chez le second. Un modèle iable de l’administration est donc 

indispensable pour prédire l’eicacité de la TSS à partir de modèles animaux. 

En conclusion, cette thèse propose un nouvel outil permettant de prédire 

l’administration de surfactant chez l’animal et chez l’homme, de comprendre le rôle 

éventuel des modèles animaux, et en déinitive de concevoir et d’optimiser de manière 

individualisée la TSS pour le patient. 
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Long abstract: 

Surfactant Replacement Therapy (SRT), which involves the instillation of a liquid-

surfactant mixture directly into the lung airway tree, is a major therapeutic treatment 

in neonatal patients with respiratory distress syndrome (NRDS). This procedure has 

proved to be remarkably efective in premature newborns, contributing to a ive-fold 

decrease in mortality since the 1980s. Disappointingly, its use in adults for treating 

acute respiratory distress syndrome (ARDS) experienced initial success followed by 

failures. 

In this Ph.D. thesis, we present a mathematical and numerical model for the 

propagation of a liquid plug into the pulmonary airway system of mammals. To that 

intent, we irst create realistic geometrical models of the tracheobronchial trees of 

mammals, rat, pig, and human, deined not only by their scaling properties but also by 

their 3D spatial embedding (i.e., branching and rotation angles), a description 

necessary for simulating liquid transport. The resulting geometries are compared with 

the available quantitative morphometric measurements found in the literature. 

We then introduce the mathematical model describing liquid plug transport. The main 

feature of this model is to decompose the propagation of liquid plugs in two 

fundamental elementary steps: (1) liquid deposition onto the airway walls during the 

propagation of a plug into a single airway, and (2) plug splitting at each bifurcation 

between two consecutive generations. The equations for the splitting process are 

derived from momentum conservation considerations, for any type of asymmetric 

bifurcation and any orientation with respect to gravity. The decomposition of the 

transport of liquid plugs into these essential steps allows us to compute eiciently and 

rapidly the propagation of surfactant into the entire airway tree, thus creating a truly 

biomedical engineering design tool. 

This mathematical and numerical model is irst used to compute surfactant delivery 

into realistic asymmetric conducting airway trees of rat lung. The roles of dose volume, 

low rate, and multiple aliquot deliveries are investigated. We ind that our simulations 

of surfactant delivery in rat lungs are in good agreement with experimental data. In 

particular, we show that the monopodial architecture of the rat airway trees plays a 

major role in surfactant delivery, contributing to the poor homogeneity of the end 

distribution of surfactant. We also observe that increasing the initial dose volume 

increases in a nonlinear way the amount of surfactant delivered to the acini after losing 

a portion to coating the involved airways, the coating cost volume. Simulations of 
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delivery in pig lungs exhibit the same general features, but our model demonstrates 

that SRT is very sensitive to the lung size. Surface tension and gravity efects do not 

scale similarly, and the end distribution can become highly nonhomogeneous at lower 

low rates or small dose volumes. 

Finally, in the human lung, our model shows that the failure of SRT in adults could, 

in fact, have a luid mechanical origin that is potentially reversible. The coating cost is 

predicted to increase in adult lungs, enhancing the nonlinearity of the delivery process. 

This efect can be countered either by instilling the surfactant mixture at a smaller 

low rate (but then the distribution is highly nonhomogeneous) or by using a larger 

dose volume. In addition, our results show that, even if sizes are comparable, the very 

diferent geometrical structures of pig and human lungs do not permit a direct 

translation of experimental results in pigs to humans, and that a reliable mathematical 

model of the delivery is absolutely crucial if one wants to predict the eicacy of SRT 

from animal models. 

In conclusion, this thesis provides a tool for predicting surfactant delivery in animals 

and humans, for understanding how to build animal models of SRT, and inally for 

engineering and optimizing patient-speciic surfactant delivery in complex situations. 
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1.1.2 Animal lung 

1.1.2.1 Rat lung 

Gas, liquid, and particle transport in the lung are inluenced by airway length, 

diameter, branching1, and rotational2 angles, so a comprehensive description of lung 

geometry is required to accurately model transport of luid and particles in pulmonary.  

During the last 60 years, a large body of work has been dedicated to the study of the 

mammalian morphometry of conducting airways, including rat and pig (Weibel et al. 

[3], [5],  Raabe et al.[6], Phalen et al. [7], Menache et al. [8], Rodriguez et al. [9], Lee et 

al. [10], Oakes et al. [11], Horsield et al. [12], Yeh et al. [13], Counter et al. [14], Azad 

et al. [15], Einstein et al. [16]). 

In these studies, the lung structure was investigated by creating casts of the 

pulmonary airways and micro-CT images. They mostly described and simpliied the 

pulmonary airways. Even recent research works as well as published lung geometry 

and dosimetry model for male Sprague-Dawley rats are simpliied [17]. In Miller et al. 

[17] work, they measured the parameters of the tracheobronchial geometry: airway 

lengths, airway diameters, branching angles, and angles to gravity for 14 generations. 

The published data provide the average values at each generation, which is enough for 

building a symmetric model but far from the reality of the rat lung geometry.  

In 1987, Rodriguez et al. [9] found that the number of generations of conducting 

airways varies in the diferent lobes of the rat lung. In the right upper lobe, conducting 

airways form conducting pathways that extend over 8 to 25 generations, whereas in 

the right lower lobe they extend over 13 to 32 generations. In 1973, Moreci et al. [18] 

results showed that the mean diameter of 100 sacs at peak inspiration is 66.610.7 m 

and 59.34.5 m at end-expiration for the Sprague-Dawley rat lung. In 2004, Hyde et 

al. [19] measured the number of alveoli and the average alveolar volume of Wistar rat's 

lung. The number of alveoli in the rat lung ranged from 17.3106 to 24.6106, with a 

mean of 20.1106. In addition, the right lobe contains 47% more alveoli than the left. 

The average alveolus volume, 0.5106 m3, was found to be identical on the two sides; 

it corresponds to a (spherical) diameter of about 100 µm.  

                                      
1 The branching angle is deined as the angle between the two daughter airways after a bifurcation. 
2 The rotation angles (left and right) are the deined as the angles between the plane of the current 
bifurcation and the planes of the following bifurcations (starting from the daughter airways, left and 
right). 
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irst layer is the watery layer, which calls serous. The serous is near to the airway wall 

and it includes cilia. The second layer of liquid is on top of the serous layer and call 

mucus. Mucus has a number of non-Newtonian properties, including viscoelasticity, 

shear-thinning, and yield stress, while the serous luid is essentially Newtonian [2]. The 

entire air-water interface of the respiratory zone is coated by a liquid layer called the 

pulmonary surfactant, a complex mixture composed of lipids and proteins [27]. 

1.2 Lung diseases 

The term ‘respiratory disease’ refers to any disease or disorder in which the lungs do 

not function properly. Some of these diseases have genetic origin cause, others are 

related to pollution and the quality of the air, and some others are related to the 

bacteria. At least 2 billion people are exposed to indoor toxic smoke, 1 billion inhale 

outdoor pollutant air, and 1 billion are exposed to tobacco smoke [28].  

Lung diseases are deined in six categories: 

 Lung diseases afecting the airways 

Chronic Obstructive Pulmonary Disease (COPD) (with 3 million death each year [28], 

3rd leading cause of death worldwide), asthma (about 334 million people sufer from 

asthma, the most common chronic disease of childhood afecting 14% of all children 

globally [28]), chronic bronchitis, acute bronchitis [29]. 

 Lung diseases afecting the air sacs (alveoli) 

Pneumonia (killed 920,136 children aged under 5 years in 2015, accounting for 15% of 

the deaths in this age group [28]), tuberculosis (over 10 million people develop 

tuberculosis (TB), and 1.4 million dies from it each year making it the most common 

lethal infectious disease [28]), acute respiratory distress syndrome (ARDS), and 

neonatal respiratory distress syndrome (NRDS). 

 Lung diseases afecting the interstitium 

The interstitium is the microscopically thin, delicate lining between the lungs' air sacs 

(alveoli). Tiny blood vessels run through the interstitium and allow gas exchange 

between the alveoli and the blood, like interstitial lung disease (ILD), pneumonia, and 

pulmonary edemas. 
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 Lung diseases afecting the blood vessels 

The right side of the heart receives low-oxygen blood from the veins. It pumps blood 

into the lungs through the pulmonary arteries. These blood vessels can sufer from 

diseases as well, like pulmonary embolism (PE) and pulmonary hypertension. 

 Lung diseases afecting the pleura 

The pleura is a thin lining that surrounds the lung and lines the inside of the chest 

wall. A tiny layer of luid allows the pleura on the lung's surface to slide along the 

chest wall with each breath, like pleural efusion and pneumothorax. 

 Lung diseases afecting the chest wall 

The chest wall also plays a vital role in breathing. Muscles connect the ribs to each 

other, helping the chest to expand. The diaphragm descends with each breath in, also 

causing chest expansion, like obesity hypoventilation syndrome and neuromuscular 

disorders. 

1.2.1 ARDS and NRDS 

ARDS (acute respiratory distress syndrome) is caused by a lack of surface-active 

compounds, changes in the phospholipid, fatty acid, neutral lipid, and surfactant 

apoprotein composition, and damage/inhibition of surfactant compounds by 

inlammatory mediators. The surfactant is coated in a thin ilm of liquid at the 

alveolar surface of the lung [30]. ARDS, for the irst time described by Ashbaugh et al. 

[31] in 1967, is characterized by an “acute onset of tachypnoea, hypoxemia.” Later in 

1994, the American-European Consensus Conference (AECC) deined ARDS as the 

acute onset of hypoxemia (arterial partial pressure of oxygen to fraction of inspired 

oxygen, [PaO2/FIO2]<200 mmHg) with bilateral iniltrates on frontal chest radiograph, 

and no evidence of left atrial hypertension. They deined acute lung injury (ALI) as 

the respiratory failure of acute onset with a [PaO2/FIO2]<300 mmHg [32]. This 

deinition has lots of limitations. In 2012, the Berlin deinition (BD) [33] addressed 

many of these limitations. According to the new BD, ARDS is classiied as three 

categories based on the degree of hypoxemia. Mild 

(200 mmHg<[PaO2/FIO2]<300 mmHg), moderate 

(100 mmHg<[PaO2/FIO2]<200 mmHg, and severe ([PaO2/FIO2]<100 mmHg). The 

ALI term was not useful and frequently misused, so it is not included in the BD. Both 

the BD and AECC deined ARDS for adult lung injury and for children have 
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limitations. At the Pediatric Acute Lung Injury Consensus Conference (PALICC) in 

2015 [34], new developed pediatric-speciic deinitions and recommendations for 

treatment were stated to cover the BD and AECC deinitions for ARDS in children. 

They mentioned that the onset of pediatric acute respiratory distress syndrome 

(PARDS) must happen within 7 days of a known clinical insult, and respiratory failure 

must not be fully explained by cardiac failure or luid overload. The PALICC used the 

oxygenation index (OI), and in some conditions, the oxygen saturation index (OSI) 

instead of the PaO2/FIO2 ratio was used. In Table 1, you can see more details of the 

PARDS deinition of PALICC. 

Table 1: Pediatric acute respiratory distress syndrome deinition. OI = 

oxygenation index, OSI = oxygen saturation index [34]. 

The surface area in the human adult lung is 90m2 involving 274-790x106 alveoli whose 

average radius is 100 m. Neonatal lungs have an alveolar surface area of 3 m2 for 

24x106 alveoli [35] whose average radius is about 75 m. The pressure jump across 

the air-liquid interface tends to collapse alveolar unless the surface tension is 

signiicantly reduced. Reduced surface tension is also needed to increase compliance 

allowing the lung to inlate much more easily. This role is devoted to pulmonary 

surfactant [27]. Lack of surfactant can induce airway collapse (atelectasis) and low 

lung compliance. Its existence was irst hypothesized by Von Neergaard, who 

discovered that more signiicant pressure was needed to ill the lungs with air 

compared to saline [36]. In the 1950s, Pattle and Clements described the properties 

and functions of pulmonary surfactant [37][38][39].  

Age Exclude patients with perinatal related lung disease 

Timing Within 7 days of known clinical insult 

Origin of 
Edema 

Respiratory failure not fully explained by cardiac failure or luid overload 

Chest Imaging 
Chest imaging indings of new iniltrate(s) consistent with the acute 

pulmonary parenchymal disease 

Oxygenation 

Noninvasive mechanical 
ventilation 

Invasive mechanical ventilation 

PARDS Mild Moderate Server 

Full face-mask bi-level 
ventilation 

 

4 < OI < 8 
 

8 < OI < 16 
 

16 < OI 
 

CPAP > 5 cm H2O 
PF ratio < 300 
SF ratio <264 

5< OSI < 7.5 7.5 < OSI < 12.3 12.3 < OSI
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Prematurely born neonates can have a primary surfactant deiciency which stifens 

their lungs due to the high surface tensions, making them diicult to inlate. By 

studying the lung of infants who died from this neonatal respiratory distress syndrome 

(RDS), Avery and Mead inferred that the cause of death was due to surfactant 

deiciency from prematurity [40]. Neonatal respiratory distress syndrome (NRDS) is a 

condition of pulmonary insuiciency that in its natural course commences at or shortly 

after birth and increases in severity over the irst 3 days of life [41]. NRDS is due to a 

deiciency of alveolar surfactant along with structural immaturity of the lung and it is 

mainly, but not exclusively, a disease of preterm babies. 10 out of 1000 infants might 

be born with NRDS [42]. In poor countries, the mortality rate is roughly 10 times 

higher than in wealthier countries [43]. 

1.3 Surfactant replacement therapy 

Surfactant Replacement Therapy (SRT) consists of instilling a liquid-surfactant 

mixture directly into the lung airway tree: the surfactant is then transported through 

pulmonary airways and eventually reaches the alveolar regions. The eicacy of these 

treatments depends on liquid distribution in the pulmonary airways and delivery to 

the respiratory zone through the branching airway network. SRT has been applied in 

diferent lung diseases: 

 Acute respiratory distress syndrome (ARDS). 

 Asthma and pneumonia [44]. (A pilot study of natural surfactant showed 

improved lung function [45], but it was not shown clinical beneit in stable 

asthma [46]). 

 RSV pneumonia [47].  

 Stable chronic bronchitis [48]. (Aerosolized synthetic surfactant showed 

improved pulmonary function in adult patients). 

 Immunosuppression.  

 Cytokine release [49]. 

 DNA synthesis of inlammatory mediators [50]. 

 Lymphocyte proliferation [51]. 

 Immunoglobulin production [52]. 

 Expression of adhesion molecules [53].  

A more extensive well-controlled study in subjects with respiratory illness needs to 

conirm these observations [54]. In the 1980s, Fujiwara et al. [55] reported the irst 

successful trial of surfactant replacement therapy (SRT) with exogenous surfactant for 
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treating the preterm infants with RDS. Soon SRT became the standard therapy for 

these newborn RDS patients. This therapy contributed to a drastic drop in premature 

neonatal mortality in less than 30 years: from 4,997 deaths in the US in 1980 to 861 in 

2005 [56][57]. The mortality rate in Korea plummeted from 56% in the 1980s to 11% in 

the early 2000s for very low birth weight infants [58][59]. Table 2 shows an overview of 

case histories and clinical trials demonstrating the beneits of SRT in 

children/infants/babies with ARDS. 

Table 2: Overview of case histories and clinical trials demonstrating the beneits of 

SRT in children/infants/babies with ARDS [60] 

 

SRT has also been proposed to treat a related condition afecting both children and 

adults called Acute Respiratory Distress Syndrome (ARDS). SRT was initially 

successful in ARDS in human adult patients [68], large sheep [69], and later in 

pediatric patients to age 21 [63].  

Anzueto et al. [70] in 1996 used an aerosolized surfactant in adults with ARDS. They 

randomized the patients to receive either Exosurf (364 patients) or 0.45% saline 

(361 patients). They reported no improvement in oxygenation with the instillation of 

Exosurf (exogenous surfactant). 

In 2001, Kesecioglu et al. [71] did a randomized study of 24 patients who received 

standard therapy plus surfactant (porcine surfactant) and 12 patients who just 

Study Patients (N) Surfactant Outcomes 

Fettah et al. 
[61] 

Baby (1) Curosurf® 

Rapid and persistent 
improvement after 2 doses of 
Curosurf® (100 mg.kg-1 body 

weight, 1.25 mg.kg-1) 

Willson et 
al. [62] 

Children 
(110) 

Infasurf® 
No immediate improvement in 
oxygenation: study stopped at 

sponsor’s request 

Willson et 
al. [63] 

Children 
(152) 

Infasurf® 
Improved oxygenation and 

ventilation 

Moller et al. 
[64] 

Children (35) Alveofact® Improved oxygenation 

Hermon et 
al. [65] 

Children (19) Curosurf® Improved oxygenation 

Lopez-Herce 
et al. [66] 

Children (20) Curosurf® Improved oxygenation 

Willson et 
al. [67] 

Children (29) Infasurf® Improved oxygenation 
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received standard treatment. The dosage was from 200 mg phospholipid/kg ideal body 

weight (up to four doses in case of relapse). Their results presented measures of 

oxygenation, duration of mechanical ventilation, and the average ICU1 length of stay, 

which these results did not difer signiicantly between the two groups. 

Spragg et al. in 2003 [72], 2004 [73], and 2011 [74] performed studies on the adult using 

synthetic surfactant, including recombinant (rSP-C). In the irst study with 40 

patients, they reported no improvement in oxygenation due to surfactant instillation in 

the group of patients who received standard therapy plus one of the two doses of 

exogenous surfactant compared to the group who just received standard treatment. 

The second study was carried in a bigger group involving 448 patients with ARDS. 

They compared standard therapy alone with standard treatment plus up to four 

intratracheal doses of rSP-C-based surfactant. The results showed no improvement in 

survival due to exogenous surfactant instillation. The third study was included in 843 

patients between 12 and 85 years of age with severe impairment of gas exchange 

administration. The rSP-C surfactant was used at a concentration of 100 mg 

phospholipid/kg. The results showed no diference in mortality for groups deined by a 

mechanism of direct lung injury (aspiration or pneumonia). The conclusion was that 

rSP-C–based surfactant has no clinical beneit in case of severe direct lung injury. 

Kesecioglu et al. in 2009 also concluded that the instillation of a large bolus of 

exogenous natural porcine, in a group of patients with acute lung injury and ARDS, 

did not improve the outcome [75]. 

In parallel to these clinical studies, several groups performed careful experimental 

studies on liquid plug propagation in the pulmonary airway system. In 1994, Ueda et 

al. investigated surfactant–deicient ventilated preterm lambs [76], showing that 

surfactant distributions strongly depend on the chosen instillation 

technique/conditions. In 1998, Espinosa et al. showed that rapid injections lead to a 

more homogenous distribution [77]. Examining the efect of dose and delivery methods 

on 43–kg adult sheep, Lewis et al. observed in all cases an improvement of gas 

exchange: the larger the dose volume, the more signiicant the improvement [69]. 

Moreover, tracheal instillation or administration directly into each lobe under 

bronchoscopic guidance showed similar results in terms of the lobar distribution of 

surfactant. Cassidy et al. working on rat lung found that the formation of a liquid plug 

in the trachea before inspiration plays a signiicant and positive role by creating a 
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uniform liquid distribution of surfactant throughout the lung [78]. In 2004, using 

radiographic image techniques, Bull et al. conirmed that the formation of liquid plugs 

in the large airways, which depend on posture and infusion rate, could result in a more 

homogeneous liquid distribution than gravity drainage alone [79]. Finally, in 2017, 

Stefen et al. showed that SRT was able to lower alveolar surface tension and that the 

number of open alveoli was improved signiicantly in a rat model [80]. 

Theoretical studies in liquid/surfactant delivery to the lung have also been performed. 

Halpern et al. discovered that both transit and delivery times are strongly inluenced 

by the amount of pre-existing surfactant and by coating the conducting airway surface 

area treated as a trumpet model [81]. Mathematical modeling and numerical 

simulations have been used to assess SRT eicacy, which is not only determined by the 

amount of surfactant delivered to the targeted (alveolar) regions, but also by the 

homogeneity of the end distribution of delivered surfactant. This distribution in the 

alveolar region is afected by a number of factors, including physical properties of the 

liquid (viscosity, density, surface tension), patient posture (prone/supine, left lateral 

decubitus/right lateral decubitus) airway geometry, instillation method (low rate), 

and presence of other plugs in nearby airways from previous instillations [82]. 

Filoche et al. [83] in 2015 simulated SRT in a symmetric 3D structure of the 

respiratory airway system. Their results showed that an initial instilled dose volume of 

the surfactant loses a portion of volume VD to coating the airways. This lost volume is 

called the coating cost VCC. Therefore, the amount actually reaching the acinus is VD–

VCC. The successful reduction of VD/kg in neonates is due to VD–VCC remaining 

clinically efective. However, in adults, VD–VCC was efective at the higher value of 

VD/kg, but not at the lower value.  

Initial success in applying surfactant to the adult with ARDS [68], large sheep [69], 

and pediatric patients to age 21 [63] was at a dose volume per kg range VD/kg= 2-

4 mL.kg-1. The ield, however, switched to a lower dose volume, VD/kg=1-1.3 mL.kg-1, 

higher concentration strategy that was successful in premature neonates discussed 

above. However, it led to failure in adults [62][72][73][74][84][70][71] which is in 

agreement with the indings of Filoche et al. [83] in 2015. 
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1.4 Surfactant properties 

1.4.1 Composition of pulmonary surfactant 

Alveolar type II cells are responsible for producing pulmonary surfactant. Pulmonary 

surfactant is composed primarily of lipids and proteins. The lipids account for 

approximately 90% of the surfactant (in mass), and proteins are around 10% 

[85][86][87].  

 lipids 

The main lipids are phospholipids (PL) which are 80-85% of the surfactant (in mass). 

PL are amphipathic molecules with a hydrophilic part (polar) and hydrophobic chains 

(non-polar). The main components of PL are phosphatidylcholine (PC), which is 

approximately 80% of the lipids. Approximately 10% of the lipid pool is 

Phosphatidylglycerol (PG), and the rest is composed of small amounts of phosphatidic 

acid (PA), phosphatidylinositol (PI), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), sphingomyelin (SPM) and Cholesterol in PL. The component 

that is responsible for generating a very low surface tension at the interface during 

compression is Dipalmitoyl-PC (DPPC), and it accounts for at least 50% of PC 

molecular species. The two saturated acyl chains enable the lipid to form a tightly 

packed monolayer that can generate these low surface tension values without 

collapsing [88][89][87]. The combination of lipids depends on the type of surfactant. For 

example, Curosurf is composed of: 

1- phosphatidylcholine (PC) or lecithin (1,2-diacyl-sn-glycero-3-phosphorylcholine) 

2- phosphatidylglycerol (PG) (1,2-diacyl-sn-glycero-3-phosphoryl-1'-sn-glycerol) 

3- phosphatidylinositol (PI) (1,2-diacyl-sn-glycero-3-phosphoryl-1'-inositol) 

4- phosphatidylserine (PS) (1,2-diacyl-sn-glycero-3-phosphorylserine) 

5- phosphatidylethanolamine(PE)(1,2-diacyl-sn-glycero-3-phosphorylethanolamine) 

6- sphingomyelin (SM) (sphingosine ceramide of phosphorylcholine) 

7- lysophosphatidylcholine (LPC) 

 Proteins 

The protein in the surfactant consists of four speciic proteins. These proteins are 

surfactant protein A (SP-A), SP-B, SP-C, and SP-D. Surfactant proteins are in two 

groups of hydrophobic and hydrophilic. SP-B and SP-C are two small hydrophobic 

proteins, while SP-A and SP-D are large hydrophilic proteins [90]. Until now, no direct 

role for SP-A and SP-D in decreasing surface tension of the surfactant has been shown. 
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U.S.A.) (all extracted from bovine lungs) and Poractant alfa (Curosurf®, Chiesi 

Farmaceutici, Italy) (from porcine lungs).  

1.4.2 Mechanical properties of surfactant 

1.4.2.1 Surface tension 

Surface tension () is the attractive force applied upon the surface molecules of a 

liquid by the molecules situated below. This force tends to draw the surface molecules 

into the bulk of the liquid and makes the liquid assume the shape having the least 

possible surface area [95]. The forces of attraction acting between molecules of the 

same type are called cohesive forces and those acting between molecules of diferent 

types are called adhesive forces. The molecules at the surface of a liquid see diferent 

molecules above and below and therefore are pulled inward. This creates some internal 

pressure which forces the liquid surface to contract to the minimal area.  

In terms of energy, a molecule in contact with a neighbor is in a lower state of energy 

than if it were alone. Because of missing neighbors, molecules at the boundary have 

higher energy compared to the interior molecules. The number of higher energy 

boundary molecules must be minimized to have a minimize energy state. Minimizing 

the number of boundary molecules results in a minimal surface area. Surface tension 

can be dimensionally introduced by “energy per area unit” or “force per unit length”:

G A    , where G is the free enthalpy and A is the area. Surface tension is measured 

in SI units, J.m-2. 

Liquids with weak molecular interactions (for instance when only van der Walls forces 

exist) have a low surface tension (e.g., for oil  σ=20 mN/m). If interactions are 

stronger, such as when hydrogen bonding dominates, surface tension is high (e.g., for 

water σ=73 mN/m) [96].  

The surface tension at the alveolar interface has an inluence on lung mechanical 

properties such as the compliance of lung associated with the elastic work of breathing 

[97]. Lung geometry dictates that the fractal division of acinar volume between alveoli 

and alveolar ducts is determined by the balance between two types of force: (i) inward-

acting tissue forces in the alveolar entrance ring, and (ii) outward-acting forces arising 

from septal tissue acting in parallel to surface forces at the air-liquid interface [98]. 

The changes in the lung volume, the alveolar diameter, and lung compliance are the 

result of an increase of surface tension in the lung. Such increase generates a 
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Surfactant viscosity depends on the type of surfactant (its microstructure), shear rate 

(the interactions between components and the environmental conditions), phospholipid 

concentration, and temperature. Distribution of surfactant in the lungs is believed to 

be afected by viscosity [102][103][104]. 

In 2002, King et al. [105], using a cone and plate micro viscometer, measured shear 

viscosities of saline suspensions of lavage calf lung surfactant® (LS), Survanta®, 

Infasurf®, and Exosurf® at 37 °C. Their results showed that for similar concentration, 

temperature, and shear rate, Survanta has a higher viscosity and Infasurf®, LS®, and 

Exosurf® have smaller viscosity, respectively. For example, Survanta® and Infasurf® 

viscosity are 17 and 7 times higher than Exosurf® at ixed concentration and shear 

rate.  

Increasing phospholipid concentration and decreasing shear rate shows an increase in 

the viscosity of all four surfactants. But the dependence of viscosity to temperature is 

complicated. Increasing the temperature has a diferent efect on viscosity: it increases 

viscosity in LS® and Infasurf® while it leads to a decrease in Survanta® and Exosurf®. 

King et al. [104] results in 2001 showed that LS® at low concentration has a Newtonian 

behavior but is a Non-Newtonian luid at higher concentration. Survanta® and 

Infasurf® are non-Newtonian at high and low shear rates.  

In 2009, Lu et al. [106] measured and characterized the viscous properties of Survanta® 

and Infasurf®. They focused on kinematic viscosity1 because of its relevance to the 

distribution of surfactant in the upper airways. They found that viscosity increased 

substantially at the higher concentrations of Infasurf®, 25 or 35 mg/ml. This increase 

in viscosity was markedly higher at 37 °C than at 23 °C (see Figure 7A, B). The 

viscosity of Survanta® is highly concentration dependent. The largest increase 

occurring between 12.5 and 25 mg/ml: at 12.5 mg/mL, the viscosity was 8 cSt (CGS 

unit) at 23 °C and 3 cSt at 37 °C and rises to 90 and 32 cSt, respectively at 25 mg/ml 

(see Figure 7C, d). Survanta® had a consistently higher viscosity than Infasurf® at an 

equal concentration at 23 or 37 °C. At higher concentrations, the viscosity value of 

Survanta® greatly exceeds that of Infasurf®. Also, in contrast to Infasurf®, Survanta® 

viscosity at any concentration is always lower at 37°C than at 23°C and does not 

change with time at either temperature. 

                                      
1 The kinematic viscosity can be converted to dynamic (absolute) viscosity by multiplying by the 
density of the luid. 
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RDS is usually diagnosed by a combination of assessments [108]: 

 Appearance, color, and breathing eforts (indicate a baby's need for oxygen) 

 Chest X-rays of lungs 

 Blood gases (tests for oxygen, carbon dioxide and acid in arterial blood) 

 Echocardiography 

For the neonate, in the case of ARDS, there are two therapeutic strategies. First, 

preventive treatment (surfactant is administered at the time of birth), second, rescue 

treatment (surfactant is applied after the initiation of mechanical ventilation in infants 

with clinically conirmed RDS) [109][110].  

The infants smaller than 24 weeks’ gestational age are recommended to be intubated 

immediately after birth within the irst 15 min to 30 min of life. Between intubation 

and surfactant administration, they have to be ventilated with low tidal volume and 

pressure. For infants who are older than 24 weeks’ gestational age as early treatment 

can be intubated immediately after birth or initially treated with noninvasive 

ventilation, and surfactant administration can be done under conditions [111]. 

Still, 40 years after the introduction of SRT, an optimized way of delivering surfactant 

to maximize the homogeneity of the distribution while maintaining the eiciency is still 

lacking. Administration techniques play essential roles in the homogeneity and the 

eiciency of the delivery. Administration techniques involve issues such as: when to 

start the therapy, what amount of instilled dose volume, the value of instilled low 

rate, the number of repeated doses, the patient position, the ventilation strategies and 

rates, and the choice of surfactant (because of mechanical properties of surfactant, like 

viscosity and surface tension), which all have an efect on the surfactant delivery. In 

this section, we mention some of the current common recommendations for surfactant 

administration. 

First, a physician has to check and give the order for SRT and he or she has to be at 

the bedside during surfactant administration. A registered respiratory therapist (RRT) 

is responsible for advising the bedside nurse for SRT. There is a baseline patient 

assessment, which has to be done by the RRT and registered nurse [111]. The RRT is 

responsible for administrating the surfactant. 
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The surfactant can be delivered through an in-line catheter with the tip located in the 

mid-trachea level. However, it can also be delivered by instilling through the 

nasopharynx [112] or using a nebulizer [113]. 

The instilled dose volume, VD, per kilogram used in neonates depends on the 

surfactant concentration. Diferent type of surfactant has diferent concentration. 

Examples are Survanta® (25 mg.mL-1 × 4 mL.kg-1 = 100 mg.kg-1), Infasurf® (35 mg.mL-

1 × 3 mL.kg-1 = 105 mg.kg-1), and Curosurf® (80 mg.mL-1 × 1.25 mL.kg-1 = 100 mg.kg-

1) [114] (see Table 3). As it is shown, if we use Survanta®, Infasurf®, and Curosurf®, we 

need to instill 4, 3, and 1.25 mL.kg-1 dose volume. The move to smaller VD.kg-1, from 4 

to 1.25 mL.kg-1, was to reduce the hazards of liquid in the lung while maintaining the 

molecular dose 100 mg.kg-1, a goal based on a well-mixed compartment assumption. 

Table 3: Surfactant properties [114] 

During surfactant administration, the patient can lay down in one or multi-position. 

The position could be left lateral decubitus (LLD), right lateral decubitus (RLD), 

supine (S), prone (P), 45-degree angle (halfway) between supine-LLD (called SL) and 

the 45-degree angle between supine-RLD positions (SR), and so on. In LLD, the body 

is lying on the left side and the trachea is horizontal. RLD is similar but on the right 

side. When these positions are used together (noted L+R), the total dose is divided 

into 2 half-doses, one half-dose being delivered in RLD position, and the second half in 

LLD position and so on. 

Modes of delivery may have an efect on SRT. Bolus infusion and continuous infusion 

are two standard methods of surfactant instillation into the trachea. Bolus 

administration could be in one single dose or in multiple doses. In one single dose, all 

of the prepared dose volumes are instilled once (10 to 20 s). In multiple doses, the total 

dose divided into two or more amounts (aliquots). It can be given separately in time, a 

minimum period of 30 s to 60 s between the aliquots should be used if infants 

remained stable, or can be instilled in two or more aliquot one after each other 

between consecutive breaths. Another technique is a continuous infusion, which is a 

slow administration of the surfactant preparation. A new technique is nebulization. In 

Surfactant Surfaxin® Exosurf® Survanta® Infasurf® Curosurf® Alveofact®

Phospholipid 
concentration (mg.mL-1) 

30 13.5 25 35 80 40 

Dose volume (mL.kg-1) 5.8 5 4 3 1.25 or 2.5 1.2 

Dose (mg.kg-1) 175 67.5 100 105 100 or 200 50 
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this method, a suspension of the surfactant is aerosolized and subsequently inhaled 

[111][115][116]. 

1.6 Conclusion 

During the last 30 years, the mortality rate in premature newborns with RDS has 

experienced a drastic drop thanks to the introduction of SRT, although SRT did not 

alter the mortality rate in adults sufering from ARDS. In fact, this therapy was 

initially successful in adult patients who received a high dose volume of surfactant 

(VD/kg= 2-4 mL.kg-1). Changing from high dose volume to low dose volume with 

higher concentration, a strategy proved successful in premature neonates, led to failure 

in adults.  

Is this failure due to the chemical properties of surfactant and the diferent nature of 

the disease in newborns and adults, or should it be attributed to the mechanical 

properties of surfactant and the delivery methods? To answer this question, we irst 

need to know how surfactant (as a liquid) propagates into the lung under diferent 

initial conditions. This requires very detailed knowledge of the 3D structure of the 

pulmonary airway system. 

Most of the investigation on transport into the pulmonary airway system addressed 

gas transport. For that, one necessarily needs to know only the airway diameters and 

lengths. Angles bear almost no interest in this case as they have little inluence on gas 

transport. But in order to investigate the propagation of liquid, we need branching 

angles and rotation angles between successive bifurcation planes as well. One challenge 

of the current study was to ind data for the 4 aforementioned parameters in all the 

conducting zone.  

The animal model in clinical research is the irst step to valid therapy. As we saw, the 

animal (rat and pig) airway pulmonary branching structures are diferent from the 

human lung. Rat and pig branching are more monopodial, whereas the human lung 

branching is rather dichotomous. The lung is designed for gas transport, while in SRT, 

the liquid is pushed into the lung airway system. Knowing the importance of angles in 

liquid delivery, can animal models be a reliable model for SRT in humans? 

To answer these questions, we develop in the next chapter the irst realistic 

geometrical models of the tracheobronchial tree for rat and pig (the latter being 

comparable to the human lung in terms of volume). Finally, we develop symmetric and 



 

  

25 

asymmetric 3D models of the human lung to be able to investigate the propagation of 

liquid under diferent applied conditions. 
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The structure of the lower respiratory tract difers among mammalians. Rat, pig, and 

common laboratory rodents exhibit a mainly monopodial branching system (the main 

axis grows for an indeinite period and during this process, it regularly-produces lateral 

branches), while dichotomous branching patterns of airways are present in human 

(branches form as a result of the division of a terminal into two equal daughter 

branches). To be able to model the propagation of surfactant into the lower respiratory 

tract, we irst need to design realistic models of these tracts that account faithfully for 

these diferences. In this chapter, we irst introduce the main features of the 

geometrical description of the tracheobronchial tree. We then build a realistic 

asymmetric 3D model of the rat tracheobronchial tree and an asymmetric 3D model of 

the pig lung. In the end, we developed a symmetric and two asymmetric 3D models of 

the human lung. Finally, to check the accuracy of our lung models in terms of size, 

branching, and structure, we compare our respiratory geometrical models with existing 

pictures of casts and CT-scans.  

2.1 Geometrical parameterization 

The bronchial tree starts at the trachea and ends in the respiratory terminal 

bronchioles. In the geometrical description, this airway system is described as an 

assembly of straight tubes connected by bifurcations, each airway being parameterized 

by its length (L) and diameter (D). The tree is dichotomous at each bifurcation, and a 

parent airway divides into two daughter airways. The bifurcations are parameterized 

by three angles and two dimensionless parameters. The three angles are the branching 

angle between the two daughter airways (θ) and the two rotation angles (left and 

right) between the plane of the current bifurcation and the successive bifurcation 

planes of each daughter airway (). The two dimensionless parameters are the 

diameter ratios between the daughter airways and the parent airway (). Figure 9 

displays this geometric description of the airway tree. 

The airways are classiied by generations, labeling the trachea as generation 0 and 

increasing by 1 at each bifurcation following Weibel’s deinition [3] (see Figure 10). 
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Table 4: Compared lung geometry between Wistar, Long-Evans, and Sprague-

Dawley rats modify from [11]. 

 Raabe 1976 [6] Oakes 2012 [11] Lee 2008 [10] 

Species Long-Evans Wistar Sprague Dawley 

Diameter 

Diameters measured in Long-Evans and Sprague-Dawley rats 

are very similar (see Figure 13). Wistar rat exhibit 

systematically smaller diameters. 

Length 
Airway lengths in all three databases are very similar (see 

Figure 13). 

Branching Angle 

19.3 ± 14.6° for the major airway in the Wistar rat, i.e., 36.7% 

larger than in the Long-Evans rat, 60.5 ± 19.4° for the minor 

airway in the Wistar rat, i.e., 4.6% smaller than in the Long-

Evans rat 

Angles of airways to 

gravity 
35°-85° 38°-83° - 

Rotation angles - 24°-53° 20°-50° 

Body Weight 330 g 268 g 302 g 

 Fraction of Total Lung Volume, % 

Right apical 10.4 11.0 ± 1.16 9.2 

Right diaphragmatic 28.8 28.0 ± 1.02 31.8 

Right intermediate 13.9 13.5 ± 0.36 13.3 

Right cardiac 12.1 11.6 ± 0.51 12.5 

Left lung 34.8 35.9 ± 1.3 33.3 

Right lung (all lobes) 65.2 64.1 ± 1.3 66.8 
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In the last decade, a number of researchers used casts, CT scans, and magnetic 

resonance (MR) scanner technique to image the rat pulmonary airways geometry. 

They used diferent techniques and these researches are done on diferent rat species, 

that makes it diicult to compare the results [11][117][118][16][119][14][120][121]. 

Authors in [118][16][119][14] [120] investigated airways of Sprague–Dawley, while 

[11][117] focused on the Wistar rats. Hyde, Einstein, Carson et al. worked on silicon 

cast and Counter, Jacob, Sera, and Barre et al. used contrast-enhanced micro-CT, 

while Oakes used magnetic resonance (MR) scanner. In Table 5, we can see details of 

recent research works on the morphology of rat conducting airways. Figure 16 displays 

the results of Barre et al. [121] that showed the similarity of the structure of the 

conducting airways at days 4, 10, 21, 36, and 60 of a Wistar rat in diferent 

individuals. The gray color represents the walls of the conducting airways. The colored 

spheres represent the entrances of the acini. According to their conclusion, the 

bronchial tree is formed; it stays very constant during lung development as we can see 

in Figure 16. Figure 17 displays images of the respiratory system for six diferent rat 

lungs (see Table 5 for more details). Although none of these six igures show the same 

picture and each airway tree has a unique shape, we can see the similarity in the 

monopodial structure and similar trends of branching of rat lung, especially in stem 

branches. 

Table 5: Recent research on the morphology of rat conducting airways  

Researcher Year Rat species Method 

Sera et al. [117] 2003 Wistar micro-CT 

Hyde et al. [118] 2006 Sprague–Dawley Cast 

Einstein et al. [16] 2008 Sprague–Dawley Cast 

Carson et al. [119] 2010 Sprague–Dawley Cast 

Oakes et al. [11] 2012 Wistar MR 

Counter et al. [14] 2013 Sprague–Dawley micro-CT 

Jacob et al. [120] 2014 Sprague–Dawley micro-CT 

Barre et al. [121] 2016 Wistar micro-CT 
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2.1.2 Model of the pig lung 

The geometrical model used in the current study to simulate pig lungs is an 

asymmetric model obtained from morphometric measurements performed by Md. Azad 

et al. [15]. The authors imaged the lungs of six pigs (weight 40 kg) and used 

segmentation software tools to extract the geometry of the airway lumen. Airway 

dimensions were measured for the irst 24 airway generations. They showed that the 

sizes of the airways in the six pigs were similar and that the tracheal diameters are 

comparable to the typical human adult. However, the diameter, length, and branching 

angles of other airways are noticeably diferent from what we can measure in the 

human lung.  

According to this study, the main diference between the pig and human lung 

respiratory airway systems is the early branching existing in the pig trachea. This 

branching feeds the top right lung lobe and precedes the main carina. This does not 

exist in the human respiratory tract. Now a question remains: can the pig airway 

system be the right candidate for approximating the human airway system and 

providing an animal model to SRT? 

In Table 6, we present statistics from Azad et al. [15]. These data are the average 

airway length per generation and the diameter ratio. Authors showed that two 

diferent types of bifurcations coexist in the pig: in-plane and out-of-plane. “In-plane” 

refers to a bifurcation where the parent branch and the two daughter branches belong 

to the same plane. “Out-of-plane” refers to a bifurcation where only the parent branch 

and the major daughter belong to the same plane, the minor daughter being almost 

perpendicular to this plane [15] (see Figure 18). For some generations, both in-plane 

and out-of-plane diameter ratios are available. For some others, only one of them is 

available. Table 6 presents the length (L), the major and minor daughter/parent 

diameter ratios (d1/D and d2/D). 



 

  

F

Table 

betwee

branch

value o

used th

betwee

generat

 

          
1 With h

Figure 18: 

7 shows t

n successi

ing angles 

of the angle

he 2D imag

n the paren

tions. This 

             
help of klonk 

Schematic

the values 

ive bifurca

per genera

e of branch

ge of (Figu

nt branch 

measurem

              
image measu

c of an A) 

of the av

ation plan

ation are g

hing, at eac

ure 1B) th

and the m

ment is perfo

 

 
urement softw

in-plane a

verage bra

nes. In the

given. Howe

ch generatio

he reference

main daught

ormed auto

ware 

and B) out

anching an

e publishe

ever, it is i

on, for the 

e [15] to m

ter along th

omatically1

t-of-plane b

ngle and th

ed data, o

important 

two main 

measure the

he main st
1 (Table 8)

 

bifurcation

he rotation

only the 

to have th

stem bron

e branching

tem bronch

. 

39

n. 

n angle 

average 

he exact 

chi. We 

g angles 

hi for all 

9



 

  

40

Table 6: Airway lengths (cm) and diameter ratios (Md. Azad [15]).  

Generation	
number	 L	(cm)	 d1/D	 Plane	 d2/D	 Plane	

1	 2.95	 0.74 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.73 In‐Plane	

2	 1.04	 0.85 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.44 In‐Plane	

3	 1.71	 0.85 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.59 In‐Plane	

4	 0.638	 0.88 Out‐of‐Plane Out‐of‐Plane	
0.88 In‐Plane 0.26 In‐Plane	

5	 0.694	 0.88 Out‐of‐Plane 0.35 Out‐of‐Plane	
In‐Plane 0.56 In‐Plane	

6	 1.04	 Out‐of‐Plane 0.29 Out‐of‐Plane	
0.89 In‐Plane In‐Plane	

7	 0.701	 0.74 Out‐of‐Plane 0.25 Out‐of‐Plane	
In‐Plane 0.52 In‐Plane	

8	 0.770	 0.85 Out‐of‐Plane 0.18 Out‐of‐Plane	
In‐Plane 0.49 In‐Plane	

9	 0.404	 0.95 Out‐of‐Plane 0.24 Out‐of‐Plane	
0.97 In‐Plane In‐Plane	

10	 0.813	 0.87 Out‐of‐Plane 0.35 Out‐of‐Plane	
0.95 In‐Plane In‐Plane	

11	 0.703	 0.94 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.55 In‐Plane	

12	 0.604	 Out‐of‐Plane 0.65 Out‐of‐Plane	
0.78 In‐Plane 0.57 In‐Plane	

13	 0.730	 0.78 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.59 In‐Plane	

14	 1.279	 0.79 Out‐of‐Plane 0.32 Out‐of‐Plane	
In‐Plane In‐Plane	

15	 0.711	 0.94 Out‐of‐Plane Out‐of‐Plane	
0.76 In‐Plane 0.47 In‐Plane	

16	 0.614	 Out‐of‐Plane 0.51 Out‐of‐Plane	
0.85 In‐Plane In‐Plane	

17	 0.767	 0.88 Out‐of‐Plane Out‐of‐Plane	
In‐Plane 0.44 In‐Plane	

18	 0.504	 0.74 Out‐of‐Plane 0.43 Out‐of‐Plane	
0.83 In‐Plane 0.57 In‐Plane	

19	 0.601	 Out‐of‐Plane 0.55 Out‐of‐Plane	
0.7 In‐Plane In‐Plane	

20	 0.761	 0.72 Out‐of‐Plane 0.47 Out‐of‐Plane	
In‐Plane 0.57 In‐Plane	

21	 0.990	 0.89 Out‐of‐Plane Out‐of‐Plane	
0.6 In‐Plane 0.64 In‐Plane	
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Table 7: Branching angles and bifurcation plane angles. By default, all data are 

taken from Md. Azad [15], pig #3, igure 2 C, D and igure 4 A, B.  When data 

were not available for pig #3, other pig data were used. Red color refers to the 

lack of data for pig #3 and the green bracket refers to the pig number. 

Generations 

number 

Branching

angle 

(degree) 1   

Plane Branching

angle (degree) 

2  

Plane Bifurcation 

plane (degree) 

Left, 1  

Bifurcation 

plane (degree) 

Right, 2  

1 33 In-Plane 53 In-Plane -55 -54 

2 10 (1) In-Plane 64 Out-of-Plane 9 9 

3 18 (1) In-Plane 59 Out-of-Plane 3 3 

4 10 In-Plane 44 Out-of-Plane -89 91 

5 14 In-Plane 59 Out-of-Plane -5 -86 

6 10 In-Plane 55 Out-of-Plane -81 -7 

7 4.8 In-Plane 59 Out-of-Plane 85 -89 

8 4.6 In-Plane 44 Out-of-Plane -10 81 

9 14.7 In-Plane 48 Out-of-Plane 83 5 

10 9.7 In-Plane 50 Out-of-Plane -1 -80 

11 14.8 In-Plane 39 Out-of-Plane -1 80 

12 10 In-Plane 33 Out-of-Plane -89 5 

13 15 (4) In-Plane 79 (1) Out-of-Plane -5 (1) -77 (1) 

14 10 In-Plane 48 Out-of-Plane 9 -89 

15 4.7 In-Plane 45 Out-of-Plane 78 81 

16 19.45 In-Plane 40 Out-of-Plane 1 5 

17 19.68 (1) In-Plane 53 Out-of-Plane 0 -50 (2) 

18 9.8 (1) In-Plane 48 Out-of-Plane -90 0 

19 9.38 In-Plane 43 Out-of-Plane 0 -90 

20 14 In-Plane 48 (1) Out-of-Plane 0 90 

21 14.6 (2) In-Plane 53 Out-of-Plane 90 0 

Table 8: Branching angles for daughter one ( 1 ) for main stem bronchi. 

Generation 

number 

Branching angle 

(degree) 1   

1 25 

2 10 

3 7 

4 6 

5 6 

6 5 

7 3 

8-10 2 

11-21 1 
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In conclusion, in this chapter, we presented models of rat, pig, and human lower 

respiratory tract. The aim of this work is to create accurate models for investigating 

the propagation of liquid in SRT. To model the human lung, we irst started using 

geometrical data based on Phalen et al. [125] and Menache et al. [126]. The Phalen-

based model does not contain any branching angle or gravity angle. On the contrary, 

the Menache-based model is interesting because it provides data for lengths, diameters, 

branching, and gravity angles for a wide range of ages. Both Phalen-based and 

Menache-based models of the airway tree are symmetric because the published data 

are averaged for each generation. To model a human symmetric airway tree, we inally 

opted for the well-known Weibel symmetric tree because it provides a mathematical 

formula for computing the lengths and diameters, and is easy to work with. In a 

second step, we developed an asymmetric model based on Weibel symmetric model 

and Raabe published data. In the following chapter, we now turn to the propagation of 

a liquid plug into our geometrical model. We describe the mathematical and numerical 

model of surfactant delivery and compare it with two experiments. 
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In the previous chapter, we have presented models of rat, pig, and human lower 

respiratory airway systems. In this chapter, we will introduce the mathematical models 

that will allow us to set up the numerical simulations of liquid plug propagation into 

these airway systems. First, we describe the propagation of a liquid plug into a single 

branch and the coating mechanism that goes with it. Then we derive equations for the 

splitting of this plug at a bifurcation. In this model, surfactant delivery is entirely 

determined by the geometry of the airway tree, the surfactant properties, and the 

instillation conditions. To characterize the overall performance of the delivery inside 

the entire airway tree, we deine two dimensionless quantities, namely the eiciency 

and the homogeneity indices. These indices allow us to compare the results of our 

surfactant delivery model with actual experimental data. 

3.1 Modeling of propagation of the liquid plug into the airway tree 

In SRT, a surfactant mixture is instilled at the trachea. Very rapidly, a liquid plug 

forms, travels, splits, and distributes along the branches of the pulmonary airway 

system towards the acinar region. The eicacy of SRT depends crucially on delivering 

the right amount of surfactant to targeted regions of the lung. Consequently, 

understanding how the liquid plug splits at airway bifurcations and distributes 

throughout the airway system is key to improve SRT. Many parameters inluence the 

inal distribution of liquid in the lung: 

 The physical properties of the liquid: viscosity, density, and surface tension at 

the air-liquid interface [134]. 

 The delivery conditions: initial instilled dose volume or plug size [135], low rate 

or propagation speed [103], patient position, gravitational orientation [79], 

instillation method [102], redosing, and presence of other plugs in nearby 

airways from previous instillations [78] 

 The patient morphology: airway geometry, lengths, diameters, and angles.  

The dynamics of propagation of a liquid plug in the airway tree structure is 

complicated. However, we can simplify this propagation by decomposing it according 

to two separate fundamental steps. The irst step is the propagation of a plug along an 

individual airway, accompanied by the deposition of a trailing ilm onto the airway 

walls (the coating layer). The second step is the splitting of a plug at one bifurcation 

of the pulmonary airway tree. We now examine these two fundamental mechanisms 

and derive mathematical equations to describing them.  
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3.1.1 The coating layer 

Let us consider a plug of volume V0 entering an airway. During its journey towards the 

end of the airway, this plug loses part of its mass (or volume) by depositing a fraction

of it on the airway walls. Let us call V1 the volume of liquid that reaches the end of 

the airway, i.e., the next bifurcation. The diference between V0 and V1 is called the 

coating volume VC (see Figure 35): 

 1 0  CV V V   (3.1) 

Numerical studies [81] have shown that the thickness (h) of the coated layer left behind 

the plug essentially depends on the average velocity of the luid at the rear meniscus 

(UP) through the capillary number: 
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where a is the airway radius, and CaP is the capillary number   Ca U  that 

represents the ratio of viscous forces to surface tension force (µ: viscosity, U: velocity, σ: surface tension). Eq. (3.1) means that the volume V1 that is inally delivered to the 

daughter airways is deduced from V0 (the volume of the plug initially entering the 

parent airway) through: 
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  (3.3) 

with the help of Eq. (3.2): 
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La and Va being the length and the volume of the parent airway, respectively. The 

velocity of the rear meniscus Up which appears in the capillary number is related to the 

velocity U1 of the front meniscus of the liquid plug, when it reaches the bifurcation, 

through conservation of the low rate: 
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 The pressure drop in the parent branch: viscous (Poiseuille) drop + hydrostatic 

pressure drop + inertia term. 

The pressure drop is approximated using the Poiseuille law, a valid assumption in the 

case of small capillary numbers. The entrance efects and the secondary lows when the 

liquid passes the bifurcation are neglected. These features do not have a substantial 

efect on the splitting ratio, especially at low velocity and small capillary number [82]. 

Also, we have to consider a second hydrostatic pressure drop due to gravity. The 

pressure drop inside the liquid plug in the parent airway inally reads:  
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01 1
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QL Q
Q g L

a a a
  (3.8) 

where L1, Q1, Q0, , , and g are the length of the plug in the parent airway right 

before splitting, the low rate in the parent airway corresponding to the surfactant that 

is transferred to the daughter airways, the low rate in the entrance of  parent airway, 

the pitch angle (see Figure 36), the surfactant density, and the standard gravity, 

respectively [129][82][136]. 

 The pressure drop in the daughter branch: viscous (Poiseuille) drop + hydrostatic 

pressure + inertia term. 

The pressure drop in the daughter airway includes the same terms already seen in the 

parent airway (Eq. (3.8)). For daughter 2, this pressure is: 

  
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  (3.9) 

while for daughter 3, it is: 
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where 
i

L , 
i

Q , 
i

a , 
i

 , and    for (i=2,3) are the lengths of the plugs in the daughter 

airways, the low rates of surfactant in the daughter airways, the radius of the 

daughter airways, the half-branching angles, and the roll angle (see Figure 36) 

[129][82][136]. One introduces also the quantities f2 and f3 deined as: 

 2 2 2

3 3 3
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sin sin cos sin
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  (3.11) 
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 The pressure drops across the front meniscus in daughters 2 and 3. 

At the air-liquid-solid interfaces in the daughter tubes, the capillary jumps are given 

by 

 2 2 3 3
2 3

2 2
,

       P P
a a

  (3.12) 

When the plug has entirely passed the bifurcation, the rear meniscus is located at . 

This means that L1=0. Since the two new plugs in both daughter branches have 

crossed the bifurcation during the same duration, we can infer that: 

 32
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U U
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2 3
2 2
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Q Q

a a

  (3.13) 

The splitting of the plug is characterized by the splitting ratio 2 3sR V V . From Eq. 

(3.13), one deduces the ratio between low rates and : 
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  (3.14) 

Finally, conservation of matter tells us that 2 3 1 V V V  and 2 3 1 Q Q Q . 

3.1.3 Equation on Rs 

The value of the splitting ratio sR  is obtained by stating that both downstream 

pressures are equal, 2 3P P , or that both pressure drops are equal, 0 2 0 3   P P  . It 

follows that  
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  (3.15) 

Rewriting this equation in terms of volumes leads to: 
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All volumes and low rates in the daughter branches are now expressed in term of the 

parent branch: 

0

2Q 3Q
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Multiplying by  2
1 sR  on both sides yields: 
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  (3.18) 

One inally rewrites the equation in  as a second-order equation: 2 0  s sA R B R C  

where the coeicients A, B, and C are deined by: 
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  (3.19) 

3.1.3.1 Dimensionless equation 

The quantities A, B, and C can be reformulated using the dimensionless numbers Re 

(Reynold number), Ca (capillary number), and Bo (Bond number): 

 1 1



U a

Re  , 1



U

Ca , 
2
1




ga
Bo   (3.20) 

where Re represents the ratio of inertial to viscous forces, Bo represents the ratio of 

gravitational forces to surface tension force and Ca is the aforementioned capillary 

number. Then 
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  (3.21) 

sR



 

  

64

where 3
1 1 V V a  is the dimensionless dose volume, V1 being the actual dose volume 

reaching the bifurcation and λ is diameter ratio. The dimensionless equation sR  is thus 

obtained by dividing all A, B, C coeicients by 1 a : 
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1 3 24 6 2
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2 21
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B 2Bo V f f 8 1 1
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  (3.22) 

3.1.3.2 The splitting factor 

The splitting ratio is a dimensionless parameter that ranges from 0 to , whether the 

entire plug goes to one daughter branch or the other. To handle more conveniently a 

measurable parameter, we introduce from now the splitting factor  such that 2 V V  

and  3 1  V V . It follows immediately that 

 
1





sR       and        

1
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
s

s

R

R
  (3.23) 

 ranges from 0 to 1. Value 0.5    means that the plug splits equally between both 

daughter airways while values 0 and 1 correspond an entirely uneven splitting.  

satisies a second-order equation which is obtained from the dimensionless equation in 

Rs: 
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Consequently, the coeicients A1, B1, and C1 are: 


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3.1.3.3 The symmetric bifurcation 

In a symmetric bifurcation 2 3    , 2 3 ,L L  and 3 2   . This simpliies the 

expression of A1, B1, and C1 to: 
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           (3.27) 

The equation in   therefore becomes a irst-order equation whose solution is: 
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Introducing the dimensionless quantity  
4

1

2
1

2
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
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X

Re V Ca
 , one can inally express 

the splitting factor for a symmetric bifurcation: 
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In summary, when a plug of volume V0 enters an airway at a given velocity, the irst 

computation step consists in assessing the thickness of the trailing ilm and thus the 

maximal volume VC of surfactant that will be left lining the parent airway. If this 

coated volume is smaller than the volume of the plug, then V1 =V0 -VC is the volume of 

the surfactant available for splitting. The second step consists in calculating the 

splitting ratio of the liquid plug through the bifurcation, which gives two new volumes 

entering both daughter airways. The process is then iterated in the daughter's airways, 

until reaching the acini or exhausting the liquid plug. 
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3.2 Modeling of multiple aliquot instillations 

As we mentioned before, the surfactant can be delivered into the lung either in one 

single or through multiple instillations. In the latter case, the initial dose volume is 

divided into equal aliquots, one per breath. With this technique, the inal instilled 

volume is the sum of the volumes of the aliquots. When instilling the irst aliquot, a 

plug forms which propagates along the branches of the pulmonary airway system. In 

each airway tube, the plug loses a part of its volume. This volume of liquid remains 

coating the walls of the airways (Figure 37A and B). The following aliquots form new 

plugs that therefore propagate through airways already lined with surfactant.  

The efect of a precursor (preexisting) ilm on the coating layer and plug length has 

been studied by Cassidy et al. [78]. Results showed that the trailing ilm thickness 

depends upon the plug capillary number (Ca), but not on the precursor ilm thickness. 

The ilm thickness depends strongly on Ca but is a weak function of LP and Re. We 

have implemented this property in our model by assuming that the new plug does not 

lose any volume when passing through airways that are already coated with a 

precursor ilm (from previous plugs). Therefore, a new plug starts losing a fraction of 

its volume only when it reaches airways that were never coated previously (Figure 37C 

and 3D). Our numerical model accounts for this speciic feature of the multiple aliquot 

deliveries. 
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A vanishing standard deviation, hence an ininite value of HI, means that the delivery 

is entirely homogeneous. A value of HI smaller than 1 corresponds to a poorly 

homogeneous distribution. The smallest homogeneity is achieved when the entire 

delivered volume goes to one terminal airway only, in which case 1 1 HI M . 

3.4 Surfactant properties and instillation conditions 

Simulations of surfactant delivery have been performed for various instillation 

conditions, low rate, dose volume, surfactant properties, and posture. We examine 

here how these conditions are determined. 

3.4.1 Flow rate 

The low rate depends strongly on the breathing frequency. For rats, this breathing 

frequency depends on the species. The frequency used in the Long-Evans rat 

simulations is 70 min-1 and the inspiration time is 0.3 s. The tidal volume is about 9 

mL.kg-1, which is moderate [137]. Such tidal volume inspired during 0.3 seconds 

corresponds to a low rate of 30 mL.kg-1.s-1. The tidal volumes for Sprague-Dawley and 

Wistar rats are 8 mL.kg-1 and 6 mL.kg-1, respectively. Such tidal volumes with their 

frequencies and I:E7 ratios correspond in our simulations to low rates of 26.8 and 

6 mL.kg-1.s-1, respectively. 

The pig tidal volume is 10 ml.kg-1, the breathing frequency is 12 min-1 [138], (using a 

1:2 ratio of inspiratory to expiratory duration), and the low rates range from 1 to 6 

mL.kg-1.s-1. 

Typical human tidal volume and breathing frequency at rest are 7-8 mL.kg-1 [139][140] 

and 12 min-1, respectively, which corresponds to a 5-6 mL.kg-1.s-1 low rate. Flow rates 

ranging from 1 to 6 mL.kg-1.s-1 were used in human simulations. 

3.4.2 Dose volume and surfactant properties 

Simulations are also run for a wide range of dose volumes per kilogram, from 1 to 

8 mL.kg-1 [135][63] [141][142][143]. The recommended instilled dose volume per kg of 

body weight depends on the type of surfactant and its phospholipid 

concentration [114]. In Table 11, we display the phospholipid concentration, dose 

volume/kg, and molecular dose of 6 commonly-used surfactants. 

                                      
7 Inspiratory : Expiratory ratio 
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Table 11: Surfactant properties [105][144] 

Surfactant Surfaxin Exosurf Survanta Infasurf Curosurf Alveofact

Phospholipid 
concentration 

(mg.mL-1) 
30 13.5 25 35 80 40 

Dose volume/kg 
(mL.kg-1) 

5.8 5 4 3 
1.25 or 

2.5 
1.2 

Dose 
(mg.kg-1) 

175 67.5 100 105 100 or 200 50 

Surfactant viscosity (Survanta®, Infasurf®, and Curosurf®) is taken equal to µ=30 cP 

[105][144], and density is water-like in all cases, i.e., 1 g.mL-1. The surface tension of 

the air-liquid interface also has a strong inluence on lung mechanical properties [97]. 

The default surface tension is set at 30   dyn.cm-1 [34] [35] unless mentioned 

otherwise. In 2018, Thai at al. [107] exhibited a linear relationship between the volume 

fraction �	 and the surfactant concentration: �	 = 0.0052�	, where c is given in g.L-1. It 

means that for Curosurf® at 80 g.L-1 concentration, the volume fraction is �	 = 0.42. 

3.4.3 Posture 

We have simulated surfactant delivery for various animal and human postures: left 

lateral decubitus (LLD), right lateral decubitus (RLD), supine (S), prone (P), 45-

degree angle (halfway) between supine-LLD (called SL) and 45-degree angle between 

supine-RLD postures (SR) (see Figure 38). When two postures are used together, the 

total dose volume is divided into 2 half-doses, one half-dose being delivered in the irst 

posture and the second half in the second posture. When three postures are used, the 

total dose volume is divided into 3 equal dose volumes and each dose volume is 

instilled in one position. In multiple instillations, all dose volumes are instilled in one 

position. 
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Table 13: Mechanical properties of the liquid and experimental conditions 

Property Water ρ (g/cm/s) 0.01 

ρ (g/cm3) 1 

σ (dyn/cm) 72.4 

Bo 0.54 

CaP  2.10-5-3.10-3 

ReP  2 – 300 

The authors plotted Rs vs. ReP for values of ReP ranging from 2 to 300 (see Figure 43). 

They found the existence of a critical value of the Reynolds number (Rec) below which 

the splitting ratio Rs vanishes, meaning that all liquid goes to the lower daughter. They 

also observed that Rs increases with ReP while in contrast, an increase in the value of 

  a lead to a decrease in Rs and an increase in Rec. In the following, we simulate with 

our numerical model precisely the same conditions used in these experiments. 

Figure 43 displays comparisons of the splitting factor measured experimentally 

(symbols) with our theoretical predictions (lines) for diferent values of ReP. Again, our 

simulation results have captured the trends of the experimental data. We observer here 

a critical Reynolds number and an increase in the Rs with an increase of ReP and 

decrease of  . 
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3.6 Validation of the surfactant delivery model in the entire lung 

In this section, we verify and validate our computer simulation models with two 

animal experiments surfactant delivery. The irst experiment explores the propagation 

of surfactant for various dose volumes and the second for multiple instillations. 

3.6.1 Changing the dose volume: comparison with experimental results 

To validate our model, we have compared it with experimental results obtained by 

Gary Nieman’s team (State University of New York Upstate Medical University) in 

rats when testing diferent dose volumes. All experiments were conducted with 

approval from the State University of New York Upstate Medical University 

Institutional Animal Care and Use Committee. 

For the experiments, three male Sprague-Dawley rats weighing ~450 g were 

anesthetized with 1 mL.kg-1 of Ketamine/Xylazine I.P. and surgically prepared with a 

tracheotomy. Rats were then mechanically ventilated with a 6 mL.kg-1 tidal volume 

(Vt), 2 positive end-expiratory pressure (PEEP), 21% inspiratory oxygen fractionation 

(FiO2), and a frequency of 20 breaths per minute (Dräger Medical, Evita Ininity 

V500) [103]. The animal was disconnected from the ventilator and positioned in left 

lateral decubitus and reverse Trendelenburg (L+R). One half of the surfactant/dye 

mixture was distributed by sliding a catheter into the endotracheal tube and forming a 

plug [102]. After 20 mechanical breaths, the animal was put in right lateral decubitus 

and reverse Trendelenburg and the procedure repeated. The lung was then clamped at 

inspiration, and the lungs were excised and immersed in 10% formalin for histological 

examination. 

Infasurf® surfactant (210 mg) was tagged with Green Tissue Marking Dye® (Green 

Dye: WAK-Chemie Medical GmbH, Germany) at a concentration of 1% of the total 

volume of surfactant [146]. Three dose volumes per kg of surfactant 1.125, 2.5, and 

5.8 mL.kg-1 were tested for experiments. The dye and surfactant mixture was 

incubated at 37°C until the time of distribution. Figure 44 shows the results for these 

diferent three-dose volumes per kg into the rat lung.  

There is a marked visual diference in surfactant distribution between the three-dose 

volumes per kg (Figure 44A-C). The low dose volume per kg (1.125 mL.kg-1) exhibits a 

scattered heterogeneous distribution in both right and left lungs. Increasing the 

instilled dose volume per kg to 2.5 mL.kg-1 resulted in a higher concentration of 

surfactant in the caudal portions of both lungs. For the highest instilled dose volume 
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per kg (5.8 mL.kg-1), an even distribution of surfactant in the caudal portion of both 

lungs was observed while the remaining lung showed no surface distribution at all. In 

summary, the low dose volume per kg resulted in small areas of heterogeneous 

surfactant distribution whereas the high dose volume per kg induced a more locally 

homogeneous distribution isolated to the caudal portion of both lungs, indicating 

regional-scale heterogeneity. 

Of course, the heterogeneity observed here lies at the outer surface of the pulmonary 

airway system, which corresponds to the most distal part of the external acini. It is 

reasonable to assume that having surfactant reaching this surface implies that the 

corresponding acini are also illed with surfactant and this heterogeneity relects the 

3D patchy distribution of surfactant in the lung volume. Our simulations (Figure 44D-

F) support this assumption. 

We have then carried out numerical simulations using our model in the same 

conditions. Figure 45A, B, and C present 3D views of the end distributions of 

surfactant in a rat lung after a double instillation in L+R posture, with instilled dose 

volumes per kg = 1.125 mL.kg-1, 2.5 mL.kg-1, and 5.8 mL.kg-1, respectively. The 

surfactant viscosity is =30 cP, and the low rate per kg is 6 mL.kg-1.s-1. This 

corresponds to the experiments presented in Figure 44, with 20 breathes per minute, a 

tidal volume per kg of 6 mL.kg-1, and a ratio between inspiration and exhalation times 

I:E=1:2. One observes that increasing the instilled dose volume allows more surfactant 

to reach the terminal regions. Indeed, the eiciency is raised from 5.9% to 45.6% and 

76%, respectively, while the homogeneity index remains very poor, about 0.2 to 0.29. 

The amount of surfactant left coating the airways is displayed for all dose volumes 

per kg in Figure 45D, E, and F. In the two last cases, the coating cost VC is about 0.45 

mL, only 30% more than the one found for a 1.125 mL.kg-1 instilled dose volume per 

kg, whereas the amount of instilled dose volume per kg is 2 and 5 times larger, 

respectively. VC reaches a plateau above a given initial dose volume per kg. As we can 

see, the end distributions of surfactant in rat lungs are very poor, both in our 

simulations and in the experiments. However, apart from the clinical result, the results 

of our simulations have the same trend as experiments.  
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3.6.2 Multiple instillations: comparison with experimental results  

In this section, we compare the results of numerical simulations of surfactant delivery 

with experimental results obtained by Cassidy et al. [102] in 2001 on Wistar rats.

Surfactant viscosity and surface tension were 12.2 cP and 54 dyn.cm-1, respectively. 

Wistar rats were laid down in a vertical position for instilling surfactant. Simulations 

of surfactant delivery have been carried out with our model using similar viscosity, 

surface tension, volume, posture, and velocity than in the experiments (see Table 14).  

Table 14: Properties and condition of instilled surfactant in simulations and 

experiments [102]. 

 Simulation (Long_Evans) Experiment (Wistar) 

Viscosity (cP) 12.2 12.2 

Surface tension (dyn.cm-1) 54 54 

Density (g.cm-3) 1.22 1.22 

Flow rate (mL.kg-1.s-1) 26.8 16 

Dose (mL.kg-1) 1 per breath (10 breaths) 1 per breath (10 breaths) 

Position Vertical Vertical 

Capillary Number (Trachea) 0.22 0.22 

Bond Number (Trachea) 0.64 0.58 

Reynolds Number (Trachea) 165 160 

Trachea diameter (cm) 0.34 0.324 

Velocity (cm.s-1) (Trachea) 97 97 

Rat weight (kg) 0.330 0.500 

The surfactant is being delivered in multiple aliquots, 0.053 mL per breath (0.1 mL.kg-

1) during the irst 10 breaths (which amounts to 1 mL.kg-1 in total). At the end of each 

inspiration, images of the lung were captured. Figure 46 shows a comparison between 

the end distributions of surfactant mixture observed experimentally (A-D), and in our 

simulations (E-H) after the 1st, 3rd, 6th, and 10th breath. In both cases, one can observe 

that the liquid plugs propagate increasingly deeper down the airway tree during each 

successive breath. This is particularly striking in Figure 47, which displays the 

surfactant delivered during the 10th breath. The eiciency of the delivery is about 59%, 

which is quite good. This high eiciency is due to the pre-existing ilm lining the 

airways that allow the plugs to propagate without losing most of their mass. 

In their experiments, Cassidy et al. deined the homogeneity of the end distribution of 

surfactant to analyze their results [102], which difers from ours. They divided the lung 

into four main quadrants; in each quadrant, the two-dimensional area reached by the 

liquid would be measured. Each of these areas would be then divided by the total 
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surface area of the quadrant (AR), and the homogeneity index deined for each image 

as the smallest value of AR divided by its largest one. To avoid any confusion in what 

follows, we call this quantity comprised between 0 and 1 the “quadrant homogeneity 

index” (QHI). A value QHI=1 corresponds to a perfectly homogeneous distribution (at 

the level of a quadrant) while a vanishing QHI means a strongly inhomogeneous 

distribution. This QHI index difers from the homogeneity index (HI) introduced later 

in [129] and deined by Eq. (3.31), which is more general and captures more details 

about the distribution homogeneity. To allow a direct comparison between experiments 

and our model, we have computed a tentative estimate of the QHI from our 

simulations. To that end, simulated images of the lung are created by placing a sphere 

around each terminal branch of the bronchial tree (see Figure 48). The size of the 

sphere is constant and corresponds to the average size of an acinus. The sphere is 

colored on a grayscale, a white color meaning that no surfactant has reached the 

acinus and while black means that the amount of the surfactant reaching the acinus is 

suicient to coat the entire acinar surface. Table 15 displays the eiciency and the 

homogeneity indices computed from our simulations and the QHI obtained measured in 

the experiments, and the SQHI (simulated QHI) computed from our simulations. We 

see that the eiciency rises at each breath, from 0% to 59% in the 10th breath. The 

homogeneity also increases, whether measured by our HI index or by the original 

quadrant-based index. We can observe that QHI and SQHI follow very similar curves, 

with a slight shift that is probably due to a diference in the initial tracheal coating, 

diicult to estimate from the original images. 

Table 15: Simulated eiciency and homogeneity indices compared with the 

homogeneity index measured in Cassidy et al. [102]. 

Breath number 1 2 3 4 5 6 7 8 9 10 

Eiciency (%) 0 0 2 10 20 31 41 48 54 59 

Homogeneity Index (HI) 0 0 0.19 0.39 0.53 0.65 0.72 0.76 0.78 0.8 

Quadrant Homogeneity Index 

(QHI) (%) [102]
5 7 17 29 37 49 56 58 63 65 

Simulated Quadrant 
Homogeneity Index (SQHI) 

(%) 
0 0 3.1 8.2 24.2 34.3 40.8 49.9 51.8 52 
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4.1 A brief history of SRT 

Surfactant replacement therapy has been introduced as a treatment for severe forms of 

respiratory distresses, namely the Newborn Respiratory Distress Syndrome (NRDS, 

also called IRDS for Infantile Respiratory Distress Syndrome) and the Acute 

Respiratory Distress Syndrome (ARDS). 

Ashbaugh et al. [31] were the irst in 1967 to report ARDS as a form of acute 

respiratory failure characterized by a difuse, progressive inlammatory lung disease. In 

the last two decades, the deinition of ARDS will be modiied several times. In 1994, 

the American-European Consensus Conference (AECC) deined ARDS as the acute 

onset of hypoxemia and in 2012, the Berlin deinition (BD) [33] addressed many of 

AECC limitations. In this deinition, ARDS was categorized according to 3 terms, 

mild, moderate, and severe. In 2015, in the Pediatric Acute Lung Injury Consensus 

Conference (PALICC) [34], new developed pediatric-speciic deinitions and 

recommendations for treatment were introduced to cover the BD and AECC 

deinitions for ARDS in children. 

ARDS occurs in adult and children groups and afects males and females equally [147]. 

However, the occurrence of ARDS in children is 5–8 times less than in adults [148]. 

The incidence of children is about 0.003-0.128 % per year [149][150]. The published 

data show that the mortality rate has remained unchanged in the last two decades. 

Based on the AAEC deinition of ARDS [32], 32 studies reported a mortality rate of 

33.7% in children for ARDS. The mortality in western countries is reported between 

4.3%-30.5% [151][152], and studies from Asia reported mortality as high as 61% [153]. 

In general, it is perceived that the mortality in children is lower than in adults. 

NRDS is a diferent condition that afects speciically premature newborns. It is caused 

by a deiciency in surfactant production. The lack of surfactant results in non-

homogeneous inlation of the pulmonary air spaces and stif lungs, impairing the 

oxygen supply. Fujiwara et al. [55] reported the irst successful trial of exogenous 

surfactant replacement therapy (SRT) in the 1980s to treat NRDS and after, SRT 

became a standard therapy for the newborn baby with RDS. With the help of this 

therapy, premature neonatal mortality drastically dropped in less than 30 years 

[56][57][58][59]. 

Despite being successful in premature infants, studies at this stage showed that routine 

surfactant administration is not recommended for treating ARDS in adults. Yet, due 
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to diferences in surfactant preparations and delivery methods, a precise comparison of 

results among studies is complicated. In fact, SRT was initially successful in ARDS in 

adult patients and large sheep as well [68][69], and later in pediatric patients to age 21 

[63]. These studies were at high dose volume per kg. Later a lower dose volume with a 

higher concentration strategy was applied that was successful in premature neonates, 

but it led to failure in adults [62][72][73][74][84][70][71]. 

One can wonder what is the origin of this diference. First, there are obvious 

diferences between adult, children and neonate's lungs. Infants and young children 

have approximately 20 million alveoli after birth, while there are around 300 million 

alveoli by the age of 8 years. But it is not only a matter of number. Infants have also 

smaller alveolus. The size (diameter) of each alveolus is about 150–180 m for children 

vs. 250–300 m for adults [147]. If we consider just a symmetric tree, like Weibel’s 

model of the lung, we can see that the airway surface area of a neonate, which has 8 

conducting airway generations, is 40cm2 while that of an adult, with 15 generations, 

is 4,500cm2. The diference in airway surface area is a 110:1 ratio that does not scale 

with weight since it signiicantly exceeds the kg weight ratio of 70:1-3 adult to the 

neonate in this patient population [129][83][154]. Based on these two facts, the surface 

area that is available for gas exchange in children is smaller than the adult. This 

anatomic variation is prevalent until approximately 8 years of age. In addition to the 

sizing, the mechanical properties of the lungs of children and infants are diferent from 

adults too. We believe that these diferences in size and mechanical properties afect 

the result of SRT, and we cannot just scale surfactant instilled dose volume per weight 

for adult and neonate. To have a successful outcome and see higher eiciency and 

homogeneity, we need to apply a higher dose volume per kg in adults compared to the 

neonates.  

In 2015, Filoche et al. [129] published the irst 3D structural model of SRT for the 

human symmetric airways system and simulated the delivery of a liquid bolus of 

surfactant mixture into the entire tracheobronchial tree [129]. They showed that a 

fraction of instilled dose volume is lost coating the airways. Therefore, the amount 

reaching the acinus is less than the instilled dose volume. In neonates’ lung after 

reduction of instilled dose volume, SRT still reminds successful in clinical cases due to 

the relative smaller surface of the conduction airways. However, in adults, because of 

the lost coating layer at the low dose volume, SRT is not eicient at small instilled 

dose volumes. The signiicant diference inluencing reminded dose volume in neonates 

compared to adults is the airway surface area available for coated volume.  
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What is the minimum initial instilled dose volume per kg for an adult to have optimal 

eiciency and homogeneity is still unclear. To address this question, we started to 

investigate the propagation of liquid (surfactant) in small animals and then moved to a 

bigger animal (pig) which is comparable to the human adult lung. At the last step, we 

modeled SRT in humans. Our human model includes symmetric and asymmetric for a 

big range of ages from neonate to adults and is based on the celebrated Weibel model 

[131] and on Raabe et al. [6] published data. 

In our study, we simulated the inal distribution of the surfactant into the rat, pig, and 

human lungs. In this chapter, we present the results of these simulations. In particular, 

we use these computations to assess the respective efects of lung asymmetry, dose 

volumes, low rates, posture, mechanical properties, and instillation techniques like 

single, double, and repetitive dosing. 

4.2 Surfactant delivery in the rat lung 

4.2.1 Symmetric vs. asymmetric lung model 

The asymmetric monopodial structure of the rat lung is one of the main factors that 

are likely to inluence the delivery and inhomogeneity of the end distribution of 

surfactant. To investigate the efect of this asymmetry structure, we have irst 

compared our model with a symmetric version of the rat airway tree. To create a 

symmetric airway tree, we used the average value of Raabe et al. [6] asymmetric tree 

measurement in each generation. In this symmetrized version of the tracheobronchial 

tree, all airways belonging to the same generation share the same diameter and length, 

which are the average length and diameter of the corresponding asymmetric airway 

tree. In addition, each bifurcation is symmetric. The rotation angles between successive 

bifurcation planes are equal and opposite (+90° and -90°). The branching angle θ is 
45°. An interesting feature of these two models (symmetric and asymmetric) is that 

they both have almost the same total surface area.  

In Figure 49A, the 3D geometry of this symmetric tree is presented. The color-coding 

represents the diameter value. Figure 49B displays a 3D color-coded view of the end 

distribution of surfactant for a single instillation delivery in the supine position. The 

color of each bubble corresponds to the volume of the surfactant reaching each 

terminal branch. The mechanical properties of Curosurf® and Survanta® are considered 

for this simulation (μ�30 cP, σ�30 yn.cm-1), see Table 16 for more details.  
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is color-coded according to the fraction of the initial dose delivered to this speciic end 

(delivered dose divided by the initial instilled dose volume). The computed eiciency 

index is  = 4.9%. Figure 50B presents a 3D view of the surfactant left coating the 

airways for the same simulation, the color-coding representing this time the ratio of 

volume coating each airway to the initial instilled plug volume. The coating cost (the 

total volume left on the airway walls) is 0.32 mL (95% of the initial instilled volume).  

Moreover, the end distribution of surfactant is far from being homogenous. As we can 

see, many terminal airways do not receive any surfactant at all. Figure 50C shows the 

end distribution of normalized delivered volumes (for each terminal airway, the volume 

of surfactant at the end of this airway divided by the sum of all end volumes). Figure 

50D shows the histogram of these normalized volumes. The histogram conirms the 

highly non-homogeneous distribution, characterized by a very low homogeneity index 

HI = 0.32. 
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Table 17: Computed eiciency and homogeneity indices of instilled surfactant  

 Figure 49 Figure 50 

Eiciency index (%) 26.8 4.9 

Homogeneity index 7.45 0.32 

4.2.2 Flow rate and dose volume 

Using the asymmetric model of the rat conducting airways developed and tested 

above, we now explore the role of the initial dose volume VD. Figure 51A and Figure 

51B present 3D views of the end distributions of surfactant in a rat lung after a single 

instillation in the supine posture, with VD = 2 mL.kg-1 and 5 mL.kg-1, respectively 

(Table 18). One observes that increasing VD reduces almost proportionally the coating 

cost, allowing now enough surfactant to reach the terminal regions. Indeed, the 

eiciency is raised from 4.9% to 41% and 76%, respectively, whereas the homogeneity 

index remains very poor, about 0.47 and 0.54. The amount of surfactant left coating 

the airways is displayed for both dose volumes (2 mL.kg-1 and 5 mL.kg-1) in Figure 51C 

and Figure 51D. In both cases, the coating cost VC is about 0.38 mL, only 15% more 

than the one found for a 1 mL.kg-1 instilled dose volume, whereas the amount of 

instilled dose volume is 2 and 5 times larger, respectively. VC reaches a plateau above a 

given initial dose volume. 

Table 18: Properties and condition of instilled surfactant 

 Figure 51A Figure 51B Figure 52 

Dose volume per kg (mL.kg-1) 2 5 1 - 8 

Flow rate (mL.kg-1.s-1) 30 30 10 - 50 

Viscosity (cP) 30 30 30 

Surface tension (dyn.cm-1) 30 30 30 

Density (g.cm-3) 1 1 1 

Position Supine Supine Supine 

Lung model Rat, asymmetric Rat, asymmetric Rat, asymmetric
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decreases signiicantly. When the surfactant is instilled in 2 and 3 dose volumes on the 

contrary (in S+P and SL+SR+P postures), both eiciency and homogeneity decrease 

as compared to the single instillation situation. This reduction is even aggravated for a 

more signiicant number of injections (see Figure 54F). For multiple instillations, one 

also observes an increase in the threshold volume dose. This can be easily understood: 

splitting the initial dose volume into several smaller doses, in order to inject in 

diferent postures, is detrimental to the eiciency.  

Table 20: Properties and condition of instilled surfactant 

Figure 54 A B C D E F 

Dose volume per kg (mL.kg-1) 1-8 1-8 1-8 1-8 1-8 1-8 

Flow rate (mL.kg-1.s-1) 30 30 30 30 30 30 

Viscosity (cP) 30 30 30 30 30 30 

Surface tension (dyn.cm-1) 30 30 30 30 30 30 

Density (g.cm-3) 1 1 1 1 1 1 

Position LLD RLD Supine Prone S+P SL+SR+P
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4.2.4 Mechanical properties of surfactant 

As mentioned earlier, several clinical trials of SRT in adults have shown no signiicant 

improvement in the number of survival of ARDS/ALI [62][72][73][74][84][70][71]. The

question then arises of the origin of this failure: might it be due to the type of 

surfactant that was used, to its phospholipid concentration, or is there some 

mechanical origin in which not only the dose volume per (mL.kg-1) but also the 

surfactant properties (density, viscosity, and surface tension) would play the primary 

role. To shed light on this issue, we have performed simulations of delivery for various 

types of surfactant. 

4.2.4.1 Viscosity 

A critical parameter in luid transport is the luid viscosity. The surfactant viscosity 

depends on the type of surfactant, on the phospholipid concentration, on shear rate 

and temperature. For example, for a concentration of 35 mg of PL/ml, a shear rate of 

300 s-1, and a body temperature of 37°C, Survanta and Infasurf viscosities are 25.3 cP 

and 10.4 cP, 17 and 7 times larger than the low Exosurf viscosity, respectively 

(Exosurf viscosity being 1 cP at a clinical concentration of 13.5 mg of 

phospholipid/ml). The temperature dependence of viscosity is also complicated and 

there are distinct diferences between Survanta and Infasurf: a temperature increase 

leads to an increase of viscosity in Survanta while it decreases the viscosity of Infasurf 

at a ixed shear rate [104][105]. As one can see, the range of values is vast. For 

Survanta, viscosity can typically vary from 9 to 52 cP [105]. 

Figure 55 shows the computed eiciency and homogeneity indices vs. dose volume 

(LLD posture, 30 mL.kg-1.s-1 low rate, 1-4 mL.kg-1 dose volume per kg), for the 

smallest and largest values of the viscosity of Survanta (Table 21). A larger viscosity 

increases the thickness of the trailing ilm left by the propagating plugs and lowers the 

eiciency, especially at low dose volume. A larger viscosity reduces the homogeneity as 

well. 
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4.2.5 Instillation technique 

There is are diferent ways to instill surfactant into the trachea. A irst possibility 

consists of instilling the totality of the surfactant in one single volume. One can also

insert the dose volume in 2 or 3 times, for diferent postures (as we already simulated). 

Another interesting option for improving the eiciency of surfactant delivery is 

multiple aliquot approaches. In this approach, we can instill the surfactant in 10 or 

more aliquots in the same posture during successive breaths. In the chapter of the 

mathematical and numerical model of surfactant delivery section 3.6, we have 

compared numerical simulations performed using our model with experimental results 

obtained by Cassidy et al. on Wistar rats [102]. Simulations of surfactant delivery have 

been carried out using the same viscosity, surface tension, volume, posture, and 

velocity of experiments. In the experiments, the surfactant was being delivered in 

multiple aliquots, 0.053 mL per breath (0.1 mL.kg-1) during the irst 10 breaths. 

In both cases, we could observe that the liquid plugs propagate increasingly deeper 

down the airway tree at each successive breath. The total eiciency of the simulated 

delivery is about 59%, a much better result than the eiciency of the single-instillation 

delivery simulation in the same conditions which is close to 5%. This high eiciency is 

due to the pre-existing ilm lining the airways. 

We now study using our model the efect of increasing the initial dose volume per kg, 

from 1 to 2 mL.kg-1 (Table 23). Figure 57 presents the eiciency and homogeneity 

indices computed for 1, 5, 10, and 15 aliquots, respectively. We observe an apparent 

increase in both indices for a larger number of aliquots. However, the homogeneity 

index remains always smaller than 1 which indicates very poorly homogeneous 

distributions. This poor homogeneity is conirmed visually in the experiments, at all 

dose volumes. The origin of this relative insensitivity of the inhomogeneity to the dose 

volume is to be found in the monopodial airway structure (i.e., the strong branching 

asymmetry): increasing the dose volume simply increases the delivery to the already 

favored alveoli. 
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symmetric tree. This comparison underlines the importance of accurately accounting 

for the asymmetrical monopodial structure of the airway tree in luid transport. On the 

other hand, the mechanical properties of the surfactant and the instillation condition 

also have a substantial efect on the end distribution of surfactant in the lung. Table 

24 shows the efect of these parameters on the eiciency and homogeneity indices. 

Increasing the dose volume and the viscosity leads to an increase in both indices while 

increasing the low rate and the surface tension resulted in a decrease of these indices. 

If one now ixes the dose volume, the viscosity, the low rate, and the surface tension, 

changing the posture (supine, prone, LLD, and RLD) for a single instillation does not 

signiicantly modify the eiciency and homogeneity (see Figure 54), whereas going to 

multiple aliquot instillation leads to a signiicant increase in eiciency and 

homogeneity. Table 24 provides a general overview of these trends. To give an example 

and show the importance of the efect of the combination of these parameters in Figure 

58, we plotted the normalized delivery of terminal branches in two diferent conditions. 

In Figure 58A, the surfactant is instilled in 10 aliquots (multiple instillation) at 4 

mL.kg-1 dose volume per kg while in Figure 58B the delivery is performed in one single 

instillation in LLD posture and for dose volume per kg of 1 mL.kg-1 (see Table 25 for 

full details on the applied conditions). The eiciency and homogeneity computed in 

Figure 58A are  = 93.1% and HI = 0.75, while in Figure 58B they are about 93 and 

4.7 times smaller, respectively. 

Table 24: The eiciency and homogeneity in diferent applied conditions 

 Eiciency    Homogeneity  H I  

Flow rate    

Dose volume   

Viscosity   

Surface tension   

Multiple instillation   

Posture Same in supine, prone, LLD, and RLD 
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the features of the inal surfactant distribution [129]. Any experimental animal model 

should, therefore, have a size comparable to the human adult lung, which is the case 

for the pig. However, the pig pulmonary airway system is very speciic, diferent from 

the human because it has a monopodial branching structure similar to the rat lung 

[20], and diferent from the rat in terms of design, overall structure, and surface area. 
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4.3 Surfactant delivery in the pig lung 

The pig lung is comparable to the adult human lung in terms of volume but has a 

monopodial branching structure similar to the rat [20]. To investigate the propagation 

of the surfactant in the pig respiratory airway, we have built an asymmetric model 

based on the morphometric measurements performed by Md. Azad et al. [15]. This 

geometrical model of the pig bronchial tree starts at the trachea and ends in the 

respiratory bronchioles. Its volume is 45 times bigger than the rat lung, and its surface 

area is about 12 times bigger. The irst question that comes to mind is therefore: is the 

propagation of surfactant similar to the rat? Or do the speciic structure and size of 

the pig lung signiicantly modify the results we have seen so far? To answer these 

questions, we examine hereafter the respective efects of dose volume, low rate, 

posture, mechanical properties, and instillation technique on surfactant delivery in the 

pig and compare them with the previous results obtained on the rat lung. 

4.3.1 Flow rate and dose volume 

First, we compare the propagation and coating layer for low vs. high dose volumes 

(VD = 1 smL.kg-1 vs. VD = 4 mL.kg-1) in Figure 59 (see Table 26 for the details of the 

delivery conditions). The pig airway tree model contains 21 generations and 

1712 terminal branches. Figure 59A displays a 3D front view of the distribution of 

volumes reaching the acini, for an initial dose volume per kg of 1 mL.kg-1 while Figure 

59B presents the same igure for a higher value (4 mL.kg-1). The computed eiciency 

indices are  = 60% and  = 90%, respectively. Each sphere represents a terminal 

branch that has received surfactant, and the color of the sphere corresponds to the 

volume of surfactant reaching the corresponding terminal branch. Figure 59C shows a 

3D front view of the amount of surfactant left coating the airways in simulation (A). 

The color-coding represents the volume left coating each airway divided by the initial 

instilled dose volume. Figure 59D shows the same igure as (C) corresponding to 

simulation (B). In the irst case (low dose volume), the coating cost VC is about 

13.33 mL while in the second case, it is 14.69 mL, i.e., only 10% more whereas the 

amount of initial instilled dose volume is 4 times larger. Figure 59E illustrates the 

normalized delivery VN(i) plotted vs. the terminal branch number of simulation (A), 

and Figure 59F is the same plot for simulation (B). The homogeneity index is 0.31 in 

the low dose volume case and 0.30 in the high dose volume one. 
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Table 26: Properties and conditions of instilled surfactant 

 Figure 59A Figure 59B Figure 60 

Dose volume per kg (mL.kg-1) 1 4 1, 2, 3, 4 

Flow rate (mL.kg-1.s-1) 4 4 1, 3, 6 

Viscosity (cP) 30 30 30 

Surface tension (dyn.cm-1) 30 30 30 

Density (g.cm-3) 1 1 1 

Position LLD LLD Supine 

Lung model Pig, asymmetric Pig, asymmetric Pig, asymmetric

One observes that increasing VD reduces almost proportionally the coating cost, 

allowing now enough surfactant to reach the terminal regions. Indeed, the eiciency is 

raised from 60% to 90%, whereas the homogeneity index remains very poor, about 0.3. 

Delivery of surfactant in terms of eiciency for low dose volume is very high compared 

to the rat lung. In our simulations in rat lung, the eiciency was about 5% for 1 

mL.kg-1 while it is 60% for the pig. This observation is reverse to what we expected 

based on the size of the lung. It shows that the lung volume is not the only parameter 

that we must take into account for understanding the scaling properties of SRT. The 

explanation for this speciic behavior of the delivery in pig lung lies in the lung 

structure. This lung structure plays an essential role when it comes to liquid delivery 

and we cannot compare directly the results in diferent species. We can note also that 

despite exhibiting very diferent eiciencies, the homogeneity index is very similar 

(about 0.3) in both animals.  

Figure 60 displays the eiciency index (solid line, illed symbols) and the homogeneity 

index (dashed line, open symbols) for a realistic range of dose volumes per kg (1-

4 ml.kg-1) and for various tracheal low rates, 1, 3, and 6 ml.kg-1.s-1. As already 

mentioned, increasing the dose volume increases eiciency. Increasing the low rate has 

a moderate impact on eiciency: it leads to a decrease in eiciency of about 10% at a 

low low rate and does not signiicantly alter the eiciency at higher low rates. One 

interesting point though is that neither the dose volume or the low rate seems to have 

any impact on the homogeneity of the end distribution of surfactant. 
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computed in (S+P) position is smaller than the one in (L+R): e.g., 40% lower for a 1 

mL.kg-1 dose volume. 

In the case of the rat, we have seen that for dose volumes per kg larger than 2 mL.kg-1, 

the eiciency reaches a plateau and remains larger than 50 % above a certain critical 

value of the dose volume. Below this value, the eiciency-dose plot exhibits a steep 

slope and decreases signiicantly. In contrast, we do observe see this threshold in the 

pig lung for a single instillation. 

When the surfactant is instilled in 2 and 3 dose volumes (in S+P, L+R, and 

SL+SR+P postures), both eiciency and homogeneity decrease compared to the single 

instillation situation (same as the results obtained in rats). This reduction is even more 

signiicant for a larger number of injections (see Figure 61E). For 2 and 3 instilled dose 

volumes, we can now note the existence of a threshold dose volume, this one being 

larger for 3 instillations than for 2.  

In all cases, the homogeneity remains stable at a low level, with HI below 0.4, the 

signature of a highly non-homogeneous delivery. As one can see in Figure 61A and B, 

the homogeneity index does not seem to depend much on the posture for a single 

instillation. Figure 62 shows a color-coded view of the fraction of the surfactant exiting 

the terminal airways (i.e., the amount arriving at the end divided by the initial 

instilled dose volume). Comparing (S+P) and (L+R), we can see that several terminal 

bronchioles (876) do not receive any surfactant at all in the former condition. This is 

very diferent from the (L+R) situation where only 241 branches do not receive 

surfactant. The LLD position always appears to be the most favorable position 

compared to (L+R), (S+P), or (SL+SR+P).  

Table 27: Properties and conditions of instilled surfactant 

 Figure 61 Figure 62 

Dose volume per kg (mL.kg-1) 1-4 4 

Flow rate (mL.kg-1.s-1) 4 6 

Viscosity (cP) 30 30 

Surface tension (dyn.cm-1) 30 30 

Density (g.cm-3) 1 1 

Position 
LLD, S, L+R, 

S+p, SL+SR+P 
L+R, S+P 

Lung model Pig, asymmetric Pig, asymmetric 
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0.32, respectively. A previous study of Filoche et al. [28] on the neonate and the adult 

had demonstrated that the neonatal airway tree behaves as a well-mixed compartment 

whereas the adult airway tree is not, the diference is essentially due to the lung size. 

Nevertheless, after comparing surfactant delivery in rats and pigs, we see that the 

smaller lung (rat) does not behave either as a well-mixed compartment, the reason 

lying in the architecture of the lung airway system. Indeed, if we were to compare 

simulations of surfactant delivery among the same species, with the same lung 

structure, the smaller lung would exhibit higher eiciency than the bigger one. 

However, we cannot compare directly diferent sizes for lungs coming from two 

diferent species. Size matters, but the geometrical structure of the lungs is crucial too. 

In the pig lung, due to its particular geometry, we never observed the eiciency index 

smaller than 57% while the homogeneity index was always in the [0.31-0.34] range for 

all simulations performed with a single instillation. This is very diferent from what 

was found in the rat simulations. 

However, one trend remains identical. The efect of the dose volume on the eiciency 

index is similar in both species: increasing the dose volume leads to an increase of the 

eiciency index independently of the low rate, in the rat and pig respiratory systems. 

On the contrary, changing the dose volume bears no efect on the homogeneity index 

which remains stable for all simulated dose volumes. 

Another diference between rat and pig surfactant delivery models is the efect of low 

rate on the homogeneity index. Simulations of surfactant delivery in rat and pig lungs 

show a slight decrease in the eiciency index when increasing the low rate. This efect 

is especially marked at low dose volume.  

In contrast to the rat results, the mechanical properties of the surfactant do not see 

have a substantial efect on the homogeneity index of surfactant delivery into the 

respiratory airway system of the pig. The homogeneity index remains fairly stable 

when viscosity and surface tension are modiied. The eiciency index decreases by 

about 20% (from 9 to 52 cP), and increases by less than 10% ( from 3 to 90 dyn.cm-1). 

Generally speaking, the homogeneity index has shown to be remarkably stable across 

all applied conditions. To have a quick overview of these variations, please refer to 

Table 29. 
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Table 29: The eiciency and homogeneity in diferent applied conditions 

 Eiciency    Homogeneity  H I  

Flow rate    

Dose volume   

Viscosity   

Surface tension   

Multiple instillation   

Posture Depend on position  
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4.4 SRT in the human lung 

4.4.1 Neonate vs. adult 

4.4.1.1 Flow rate and dose volume  

To investigate the efect of low rate and dose volume in SRT in the human lower 

respiratory tract, we have irst reproduced the results of the study by Filoche, Tai & 

Grotberg [129], i.e., we have simulated and compared the propagation and the inal 

distribution surfactant in a 1-kg premature neonate (8 generations + trachea, 256 

acini) with a 70-kg adult (12 generations + trachea, 4096 acini). The surfactant bolus 

starts as a plug in the distal trachea for both because that would generally be the 

location of the outlet of an endotracheal tube. The surfactant is delivered in the LLD 

position. Figure 66A and Figure 66B show a 3D front view of the neonatal and adult 

respiratory lower tract, respectively. Figure 66C illustrates the normalized delivery 

  mean( )iN iV i V V  plotted vs. the terminal branch number of the neonate, while 

Figure 66D provides the same plot for an adult and an initial dose volume of 1 mL.kg-1 

dose volume per kg. The mixture viscosity is  = 30 cP, which is typical of Survanta® 

(to see more details on the delivery conditions refer to Table 30). Clearly, the second 

half of the neonate acinus (129  i  256) receives more surfactant due to the LLD 

position. The eiciency index is  = 52.8%. It means that 47.2%, i.e., almost half of 

the instilled volume is lost lining the airway walls. Very diferent from the neonate, we 

can note that the right lung in the adult case does not receive any surfactant at all. 

The eiciency index is  = 15.7%. Figure 66E displays a histogram of Figure 66A and 

Figure 66F is the same plot for Figure 66B. The calculated homogeneity index is about 

5.7 for the neonate lung and 0.73 for the adult lung.  

Table 30: Properties and conditions of instilled surfactant 

 Figure 66 

Dose volume per kg (mL.kg-1) 1 

Flow rate (mL.kg-1.s-1) 6 

Viscosity (cP) 30 

Surface tension (dyn.cm-1) 30 

Density (g.cm-3) 1 

Position LLD 

Lung model Human, symmetric 
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computed in a 1-kg neonate lung for low rates ranging from 1 to 6 mL.kg-1.s-1 (see 

Figure 67 for details of delivery conditions). The dose volume is administered in two 

half doses (LLD and RLD positions successively). Our results show that increasing the 

low rate has two opposite efects on eiciency and homogeneity. The eiciency 

decreases with increasing low rate due to the presence of a thicker trailing ilms 

coating the airway walls whereas the homogeneity increases because the splitting factor 

at each bifurcation is shifted toward 0.5. In other words, we see here a fundamental 

contradiction regarding the low rate: a higher low rate achieves a better homogeneity 

but a smaller low rate leads to better eiciency.  

Increasing the dose volume increases both eiciency and homogeneity at any given low 

rate because the additional available volume reduces the number of plug rupture 

events. For a dose volume per kg of 1 mL.kg-1, the eiciency is found in the [6%-56%] 

range and the homogeneity is in the [1.1-13.7] range. If we now examine the results for 

a 4 mL.kg-1 dose volume per kg, the range of eiciency is [76%-89%] while the range of 

homogeneity is [4-164]. 

Table 31: Properties and conditions of instilled surfactant 

 Figure 67 and Figure 71 

Dose volume per kg (mL.kg-1) 1-4 

Flow rate (mL.kg-1.s-1) 1-6 

Viscosity (cP) 30 

Surface tension (dyn.cm-1) 30 

Density (g.cm-3) 1 

Position L+R 

Lung model Neonate and adult symmetric 
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4.4.1.3.1 Viscosity 

The surfactant viscosity depends on the type of surfactant, the phospholipid 

concentration, the shear rate, and the temperature. Similarly to what we did with the 

rat and the pig models in this section, we investigate the efect of surfactant viscosity 

on the inal distribution of Survanta® (9 and 52 cP [105]). Figure 74 shows the 

computed eiciency index (solid line, illed symbols) and the homogeneity index 

(dashed line, open symbols) vs. the dose volume (see Table 32). A larger viscosity 

increases the thickness of the trailing ilm left by the propagating plugs and lowers the 

eiciency, especially at low dose volume. For lower viscosity, the homogeneity remains 

fairly stable, but a higher viscosity induces a positive dependency between 

homogeneity and dose volume. 

Table 32: Properties and condition of instilled surfactant 

 Figure 74 

Dose volume per kg (mL.kg-1) 1-4 

Flow rate (mL.kg-1.s-1) 4 

Viscosity (cP) 9 and 52 

Surface tension (dyn.cm-1) 30 

Density (g.cm-3) 1 

Position LLD 

Lung model Adult, symmetric 
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4.4.2 Age study 

We have seen that neonate and adult lungs perform very diferently in SRT due to 

their size diference. In this section, we investigate how the performance of SRT 

evolves with age, as the lung size progressively increases. To model age-dependent 

geometry, we used the Weibel-based symmetric tree. The symmetric airway tree stems 

from the trachea (n=0), and as we saw in section  2.1.3.1, the tracheal diameter is the 

sole parameter entirely controlling the size of the tree. 

Figure 76 displays the eiciency index (solid line, illed symbols) and the homogeneity 

index (dashed line, open symbols) vs. the age from 1 to 19 years. The low rate per kg 

is kept constant throughout the simulations (6 mL.kg-1.s-1), which means that, at each 

age, the low rate is proportional to the patient weight. The delivery is simulated for 4 

diferent values of the total dose volume per kg of 1, 2, 3, and 4 mL.kg-1, respectively, 

administered in two half-doses in RLD then LLD position (refer to Table 35 for the 

details of delivery conditions). Figure 76 shows a decrease in eiciency with age due to 

the increase of the tracheobronchial tree size. From ages 1 to 9, the eiciency drops at 

an almost constant rate, but from 11-13 and at a higher age, the drop becomes even 

sharper. We see here the direct inluence of the lung size. The age-dependent model of 

the lung geometry contains about 15 generations from 1 to 13 years, and 16 from 15 to 

19 years (see Table 36) [155]. At all ages, however, we conserve the classical trend, 

which is increasing the dose volume increases the eiciency, in agreement with our 

previous results in neonate and adult. For 1 to 9 years, the eiciency index remains 

high for dose volumes per kg larger than 1 mL.kg-1. Above 9 years, the eiciency index 

drops or requires a higher initial dose volume to remain above 50%. At a smaller dose 

volume per kg (1 mL.kg-1), the eiciency is comprised between 0 and 48% while for a 

larger dose volume per kg (4 mL.kg-1), the eiciency is in the [45%-86%] range. As for 

eiciency, the homogeneity decreases with increasing age. 
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Table 35: Properties and conditions of instilled surfactant 

 Figure 76 Figure 77 

Dose volume per kg (mL.kg-1) 1-4 1-4 

Flow rate (mL.kg-1.s-1) 6 1 

Viscosity (cP) 30 30 

Surface tension (dyn.cm-1) 30 30 

Density (g.cm-3) 1 1 

Position LLD+RLD LLD+RLD 

Age (year) 1-19 1-19 

Lung model Human, symmetric Human, symmetric 

Table 36: Age-dependent lung size and body weight  

Age 
(year) 

Trachea diameter 
(cm) [155] 

Terminals 
diameter (cm) 

Number of 
generations 

Weight (Kg) 
[156] 

1 0.5 0.0184 15 1 

3 0.7 0.0258 15 7 

5 0.8 0.0295 15 14 

7 0.9 0.0332 15 18 

9 1 0.0369 15 23 

11 1.2 0.0443 15 28 

13 1.3 0.0479 15 36 

15 1.5 0.0437 16 56 

17 1.7 0.0495 16 65 

19 1.8 0.0524 16 69 
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The computed eiciency and homogeneity indices are  = 55.5% and HI = 0.86 for the 

symmetric tree, and  = 54.8% and HI = 0.61 for the asymmetric one. Each sphere 

represents a terminal branch that received surfactant, and the color of the sphere 

corresponds to the volume of surfactant reaching the corresponding terminal branch. 

Table 37 and Table 38 provide the properties of the surfactant and instillation 

conditions. Figure 79 shows a comparison of the eiciency index (solid line, illed 

symbols) and the homogeneity index (dashed line, open symbols) between the 

symmetric and the asymmetric trees vs. tracheal low rate, for 4 diferent dose 

volumes. Interestingly, both trees exhibit similar trends, the homogeneity index of the 

symmetric tree being only slightly higher and its eiciency slightly lower than the 

asymmetric version.  

Table 37: Properties and conditions of instilled surfactant 

 Figure 78 Figure 79 

Viscosity (cP) 30 30 

Surface tension (dyn.cm-1) 30 30 

Density (g.cm-3) 1 1 

Flow rate (mL.kg-1.s-1) 4 1-6 

Dose volume per kg (mL.kg-1) 2 1-4 

Position LLD LLD 

Lung model Human, symmetric Human, asymmetric 

Table 38: Model size and body weight 

 Figure 78A Figure 78B 

Trachea diameter (cm) 1.8 1.8 

Terminals diameter (cm) 0.05 0.05 

Number of generations 16 maximum 16 

Weight (Kg) 69 69 

Number of terminals 32,768 29,202 
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4.4.4 SRT in the Weibel-based asymmetric tree 

In the Weibel-based asymmetric airway tree, the branching and rotation angles are 

identical to the Weibel’s symmetric model, but the two daughter airways always 

exhibit diferent diameters and lengths determined by two diferent diameter ratios at 

each bifurcation. In this section, we investigate the inluence of posture, viscosity, 

surface tension, and multiple instillations on the inal distribution of surfactant 

delivery. 

4.4.4.1 Assessing the role of posture 

Simulations of SRT have been performed for LLD, L+R, supine, and S+P positions. 

Figure 80 displays the behavior of the eiciency index (solid line, illed symbols) and 

the homogeneity index (dashed line, open symbols) in diferent postures. The results 

are presented for a range of dose volumes in 4 mL.kg-1.s-1 low rates and 4 diferent 

postures: 2 are single instillation, i.e., LLD, supine, and 2 are multiple instillations, i.e., 

½ LLD + ½ RLD (L+R) and ½ supine + ½ prone (S+P) (see Table 39 for details of 

applied conditions). In all cases, the eiciency increases with the dose volume. As one 

can see in Figure 80, the eiciency and the homogeneity indices do not seem to depend 

much on the posture for a single instillation. In these cases, for dose volumes per kg 

bigger than 2 mL.kg-1, the eiciency remains bigger than 50 %. If one goes below this 

threshold dose volume, the eiciency-dose plot exhibits a steep slope and decreases 

signiicantly. When the surfactant is instilled in 2 dose volumes, on the contrary, both 

eiciency and homogeneity decrease as compared to the single instillation situation. 

For multiple instillations, one also observes an increase in the threshold volume dose 

and it due to splitting the initial volume into several smaller doses in order to instill in 

diferent postures detrimental to the eiciency.  

Table 39: Properties and condition of instilled surfactant 

 Figure 80 Figure 81 Figure 82 Figure 83 Figure 84 

Dose volume per kg (mL.kg-1) 4 1-4 1-4 4 1-4 

Flow rate (mL.kg-1.s-1) 4 4 4 4 1-6 

Viscosity (cP) 30 9 and 52 30 30 30 

Surface tension (dyn.cm-1) 30 30 3, 30, 90 30 30 

Density (g.cm-3) 1 1 1 1 1 

Position 
LLD, L+R, 

S, S+P 
LLD LLD LLD LLD 

Lung model asymmetric asymmetric asymmetric asymmetric asymmetric

 



 

  

4

4.4

As we 

the inst

efect o

have p

shows t

(dashed

of Surv

left by 

This ob

We do

volume

Figure

homog

compu

rate in

and S+

.4.4.2 Me

4.4.2.1 Visc

have seen 

tilled luid 

of viscosity

performed 

the compu

d line, open

vanta® (Ta

the propa

bservation 

o not see a

e. The distr

e 80: Eic

geneity ind

uted in a 

n two sing

+P) instill

echanical p

cosity 

(and expe

inluences

y on the in

simulation

ted eicien

n symbols)

able 39). A

gating plug

is consiste

any notice

ribution is 

iency inde

dex HI (lin

70-kg hum

gle (LLD 

lation.  

propertie

ected from 

the end d

nal distribu

s of delive

ncy index (

) indices vs

A larger vis

gs and low

ent with w

eable chang

strongly no

ex  (solid

ne, open s

man lung, 

and supin

s of surfa

the equat

distribution

ution in th

ery for va

(solid line, 

s. dose volu

scosity incr

wers the ei
what we al

ges in the

on-homoge

d line, ille

symbols) v

at a 4 mL

ne) and tw

actant 

ion of spli

n of surfact

he Weibel-b

arious type

illed symb

ume for va

reases the t

iciency, esp

ready saw 

e homogene

enous for bo

ed symbol

vs. dose v

L.kg-1.s-1 th

wo double 

tting ratio

ant in the 

based asym

es of surfa

bols) and h

arious value

thickness o

pecially at 

in rat and

eity, espec

oth cases. 

 

ls) and 

volume, 

he low 

(L+R 

o), the visc

lungs. To 

mmetric mo

actants. Fig

homogeneit

es of the v

of the trail

low dose v

d pig simu

cially at lo

13

cosity of 

see the 

odel, we 

gure 81 

ty index 

viscosity 

ing ilm 

volume. 

ulations. 

ow dose 

39



 

  

4.4

Simulat
1) for 

eicien

line, op

the ei
homoge

delivery

4.4.2.2 Sur

tions are r

the same 

cy index 
pen symbol

iciency an

eneity is al

y. 

Figure

homog

volum

viscosi

rate a

70 s-1 s

rface tensio

un for 3 di

initial ap

  (solid lin

ls). We can

nd homog

lways smal

e 81: Eic

geneity ind

me for Su

ity, 9 cP (

nd 37 °C)

shear rate 

n 

iferent val

plied cond

ne, illed s

n see that

eneity for 

ller than 1

iency inde

dex HI (d

urvanta®

(Concentra

 and 52 c

and 37 °C

lues of the 

ditions (se

symbols) an

increasing 

 all value

, once agai

ex  (solid

dashed line

for two

ation: 25 m

cP (Concen

C). 

surface ten

e Table 3

nd the hom

surface ten

es of the 

in a sign o

d line, ille

e, open sy

diferent 

mg of PL/

ntration: 3

nsion (3, 3

39). Figure

mogeneity 

nsion leads

initial do

of a highly 

ed symbol

ymbols) vs

values o

/ml, 770 s-1

35 mg of P

0, and 90 

e 82 displa

index HI 

s to an inc

ose volum

non-homo

 

ls) and 

s. dose 

of the 
1 shear 

PL/ml, 

14

dyn.cm-

ays the 

(dashed 

rease in 

me. The 

geneous 

40



 

  

4

In this 

delivery

instillat

instillat

surfacta

symbol

aliquot

aliquot

smaller

conditio

 

Figure

homog

volum

.4.4.3 Mu

section, w

y. As we 

tion impro

tion techn

ant deliver

ls) and the

s, respectiv

s, but a s

r than 1, th

ons).  

e 82: Eic

geneity ind

me for 3 dif

ultiple-aliq

we run our

have alrea

oved the 

nique did 

ry in the 

e homogen

vely. We ob

slight incre

he sign of 

iency inde

dex HI (d

ferent valu

quot Insti

r model to 

ady observ

eiciency 

not exhib

pig lung. 

neity index 

bserve no i

ease of the

a non-hom

ex  (solid

dashed line

ues of the 

illation 

simulate 

ved in rat 

and the 

bit any b

Figure 83

 (open sym

improveme

e homogene

mogeneous 

d line, ille

e, open sy

surface te

SRT in th

and pig s

homogene

beneit in 

3 displays

mbols) com

ent of the e

eity index 

distributio

ed symbol

ymbols) vs

nsion. 

he case of a

simulations

eity indice

terms of 

the eicie

mputed for 

eiciency w

which rem

ns (see Ta

 

ls) and 

s. dose 

a multiple

s, multiple

es. Howeve

homogene

ency index

r 1, 5, 10, 

with the nu

mains in a

able 39 for 

14

-aliquot 

-aliquot 

er, this 

eity for 

x (illed 

and 15 

mber of 

all cases 

applied 

41



 

  

4.4.5 

In orde

the lun

human 

(that w

the Raa

Figure 

index (

details 

volume

general

and a 

corresp

eicien

Based a

Figure

homog

aliquo

Weibel-b

er to check 

ng that we 

pulmonar

we already 

abe-based 

84 display

(dashed lin

of applied

e per kg. A

l pattern. I

simultaneo

ponds in all

cy index i

asymmetric

e 83: E

geneity in

ts in a mu

ased vs. R

how sensit

used, we 

ry airway 

compared 

model. 

ys the eici

ne, open sy

d condition

As expecte

In all cases

ous increas

l cases to a

in the Raa

c model, w

Eiciency 

ndex HI (

ultiple-aliqu

Raabe-bas

tive are ou

will compa

system. T

with the sy

iency index

ymbols) co

ns) vs. low

d, the eic

s, we observ

se of the h

an increase

abe-based 

while the ho

index 
open sym

uot deliver

sed asymm

ur results w

are in this 

The irst is

ymmetric v

x (solid line

omputed in

w rate, for

ciency and

ve a decrea

homogenei

e of both ei
model is o

omogeneity

 (illed

mbols) vs. 

ry.  

metric tre

with respect

section tw

 the Weib

version in S

e, illed sym

n those m

r 4 diferen

d homogene

ase of the 

ty index. 

iciency an

only slight

y index is sl

symbols)

the num

ees 

t to the geo

wo asymmet

bel-based a

Section  4.4

mbols) and

odels (see 

nt values o

eity indices

eiciency i

Increasing 

nd homoge

ly higher 

lightly lowe

) and 

mber of 

ometrical m

tric model

asymmetric

4.3). The se

d the homo

Table 39 

of the initi

s follow th

index vs. l
the dose 

eneity indic

than the 

er. 

14

 

model of 

s of the 

c model 

econd is 

ogeneity 

for the 

ial dose 

he same 

low rate 

volume 

ces. The 

Weibel-

42



 

  

143

In summary, Figure 84 shows that the two models are quite similar in terms of 

distribution and delivery of surfactant. The simulations results are robust, the trends 

are similar, and the only diferences originate from the small diferences in the details 

of the geometry. In the next section, we use the Raabe-based asymmetric model to 

investigate the efect of posture, surface tension, viscosity, and aliquot instillation.  
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4.4.6 Conclusion 

In this chapter, we have simulated SRT in several models of the human pulmonary 

airway system. We have irst compared symmetric models of neonate and adult and

recovered the results of Filoche et al. [129] showing that the neonate's lung acts as a 

well-mixed compartment while the adult lung does not. However, both models share 

similarities: in all cases, increasing the dose volume leads to an increase of both 

eiciency and homogeneity indices, for any given low rate because the larger available 

volume reduces the number of plug ruptures during the propagation of surfactant into 

the lung airway system. On the contrary, the increasing low rate has the opposite 

efects on eiciency and homogeneity. On the one hand, the eiciency decreases with 

increasing low rate due to the thicker trailing ilms coating the airway walls left 

behind by the plug during their propagation. On the other hand, the homogeneity 

increases due to the more even spitting at each bifurcation at a higher low rate. 

We have then studied how the eiciency and the homogeneity drop progressively with 

age. For this age study, a Weibel-based symmetric model has been used, from ages 1 

to 19. This age study has shown that due to the increase of the lung volume and 

surface area, both eiciency and homogeneity drop dramatically above age 9-10, except 

at a very low low rate.  

The next step has consisted in assessing the role of the geometrical asymmetry by 

comparing the Weibel-based symmetric model with its asymmetric version, for adult 

lung. We have shown that, although the main features remain identical the same, 

there are some numerical diferences, especially with respect to the computed values of 

the homogeneity index. 

Finally, we have tested the robustness of our model of surfactant delivery in comparing 

a Raabe-based asymmetric model of the human pulmonary airway system with the 

Weibel-based version. The eiciency and homogeneity indices for Weibel symmetric 

and asymmetric based tree and Raabe-based tree follow the same trends, and both 

indices are very close in all cases. We conclude from that that we can safely use either 

one or the other model for assessing the eicacy of SRT in the human lung. 
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5.1 Discussion  

This study is the irst attempt to run a fast and reliable numerical and mathematical 

model of surfactant delivery in realistic large animal and human lung models and to 

validate it with experimental data. Many studies have investigated the plug or semi-

ininite bubble propagations in straight channels to see the efect of diferent applied 

conditions, but very few have studied the inal distribution of liquid resulting from 

plug propagation and splitting in the lungs. The lower respiratory tract in mammals is 

a highly hierarchical branching tree, and thus understanding liquid delivery and 

propagation through its branches and bifurcations bears a great interest for lung 

function and lung treatment. 

To this end, we have developed realistic 3D models of rat, pig, and human 

tracheobronchial trees, accounting in particular for the branching asymmetry which is 

crucial for reliable computation of liquid plug propagation. Our mathematical model 

avoids solving the Navier-Stokes equation in two-phase low and is based instead on 

describing the liquid plug propagation as a two-step process: step A, propagation of 

the plug along an individual airway and deposition of a trailing ilm onto the airway 

walls; step B, plug splitting at the bifurcation. These two steps are then repeated in 

the daughter's airways and so on through the airway tree. Step A essentially governs 

the eiciency of the delivery, deined as the fraction of the initial plug volume reaching 

the terminal region, while step B mostly governs the homogeneity of the inal 

distribution. The computation of step A is achieved through an empirical equation 

deduced from CFD studies while step B relies instead on rate equations for computing 

the splitting factor at each bifurcation of the pulmonary airway tree. 

The initial numerical study of SRT in humans using a similar model by Filoche et al. 

[129] had shown that, contrary to the adult lung, the neonate's lung is a well-mixed 

compartment for surfactant delivery. Due to the respective scaling of gravity force vs. 

surface tension and to the much larger surface of airway walls in the adult human lung 

than in the neonate (more than 3000 cm2 for the adult and about 1500 cm2 for the 3-

month old neonate), the coating cost becomes vastly larger than delivered dose in the 

adult. 

Our new simulations of surfactant delivery in rat and pig lungs presented here to ofer 

a diferent and more complex picture. Despite the small size of the rat lung (smaller 

than the human neonate), simulations of delivery under realistic conditions result in a 

poor eiciency index (e.g. 4.69%) and a very small homogeneity index (0.32), overall a 
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very poor performance. At the same time, the pig whose lung has a size comparable to 

the human adult lung exhibits a higher eiciency (around 60%) and almost the same 

homogeneity (0.31). This seems to contradict our preceding explanation based on the 

size. The reason for this discrepancy can be found in the asymmetric structure of the 

airway pulmonary tree of the rat. Our computations emphasize that, beyond its size, 

the detailed geometrical structure of the lung airways plays a crucial role in 

distributing luid to the alveolar region. The splitting factor at a bifurcation depends 

on asymmetries due to orientation with gravity and also geometry. For the rat lung, 

this geometric asymmetry dominates liquid transport. It is interesting on this topic to 

point out that the descriptions of the rat or pig pulmonary airway tree found in the 

literature are generally not suited for simulating liquid transport. These descriptions 

are usually used for simulating 

1. Air and gas transport, for which one essentially needs only the airway diameters 

and lengths. For this entire airway tree, it is even more eicient to store the 

diameter and length of the trachea, then the ratios between successive 

generations of these parameters. Angles are almost of no interest as they have 

little inluence on gas transport. 

2. Aerosol deposition, for which not only the airway diameters and lengths are 

needed, but also the branching angles at each bifurcation. Deposition by 

impaction occurs mostly at the bifurcation carina, which explains the role played 

by the branching angle. On the contrary, rotation angles between successive 

bifurcation planes play a very little role [157]. Angles to gravity need only to be 

stored statistically, as they are involved in sedimentation. 

Simulating liquid delivery in the tracheobronchial tree is a two-phase low problem 

that is far more demanding in terms of knowledge of geometry. One needs now of 

course airway diameters and lengths, but also precise values of the angles to gravity 

for each airway and each bifurcation. These parameters are not usually found in the 

literature or in the commonly available lung airway models, hence the need to develop 

original 3D models of the mammalian pulmonary airway trees. Our simulations show 

for instance that the delivery relects the craniocaudal asymmetry of the rat lung, a 

conclusion qualitatively consistent with the experimental data [158]. 

More generally, our results underline the crucial role played by the detailed 3D 

geometrical structure: it appears as one of the important determinants of the end 

distribution of surfactant (especially when moving from a symmetric to an asymmetric 
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model). In particular, despite the small size of the animals, the end distributions of 

surfactant in rat lungs are very non-homogeneous, both in our simulations and in the 

experiments. This high inhomogeneity is mainly due to the asymmetric architecture of 

the rat and pig airway trees, very diferent from that of the human. A cautionary note 

is that pig and sheep lungs, having monopodial lung architecture, have been used for 

SRT experimentation [15][133]. Thus, generalizing results of surfactant delivery 

between diferent species might be misleading, even for mammals of similar size or 

weight. The speciic geometry of the studied species has to be accounted for in order to 

under the precise quantitative results obtained from numerical models. Also, material 

properties of the surfactant such as viscosity and surface tension may drastically alter 

the eiciency. This dependency makes it more complicated to compare results of trials 

performed with diferent surfactants. Preliminary data on surfactant dose volume 

distribution in rats conirm our computational indings. 

Our model also suggests that one could customize the delivery for each patient by 

accounting precisely for the branching asymmetry in the irst few generations, either to 

improve the inal homogeneity or to reach one lobar or sub-lobar region. It therefore 

opens the way of engineering the delivery to target speciic regions of the lung by 

tuning the initial dose volume, the low rate, and the patient posture. 

In addition to underlying the role played by the asymmetry in the pulmonary airway 

systems, our simulations conirmed that the instilled dose volume is a crucial 

parameter. This observation was corroborated with the biologic data of surfactant 

distribution in rat lungs. For dose volumes per kg ranging from 1 to 8 mL.kg-1, the 

coating cost (the amount of surfactant left lining the walls of the airways) is very 

stable, about 0.32-0.76 mL in the asymmetric rat lung (L+R posture). When 

increasing even more the initial dose volume, the coating cost reaches a plateau. Once 

this plateau is reached, the eiciency of the delivery improves for larger dose volumes. 

This phenomenon seems to be universal and consistent with was had been already 

observed in our irst computation in the human lung. However, a way to overcome this 

coating cost is not necessarily to increase the dose volume. 

Indeed, a new feature of the model presented here is the possibility to simulate for the 

irst time multiple-aliquot delivery. A plug traveling over a previously coated airway 

(by a previous plug) will not lose its mass until it reaches regions of the lung that were 

not attained by the preceding plugs. Our simulations clearly show that resorting to 

multiple aliquot deliveries without changing the posture increases the eiciency. 
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Increasing the homogeneity would require changing posture, but then the beneit of the 

multiple aliquot deliveries is partially lost, the subsequent plugs entering parts of the 

lung which have never been visited during the preceding instillations. 

5.2 Conclusion & perspectives 

In summary, this thesis investigates the transport of liquid plugs through the lower 

respiratory tract in order to understand the fundamental luid mechanics in respiratory 

distress syndromes. Liquid instillation into the lungs is indeed required in many clinical 

therapies, such as liquid ventilation, drug delivery, and surfactant replacement therapy 

(SRT). Understanding how liquids distribute in the lungs is the primary key to the 

eicacy of these treatments. The current clinical practice is mostly based on empirical 

knowledge, both for determining the patient postures, the delivery conditions, or the 

type solution and surfactant. The work presented here provides new insights into the 

physical mechanisms of liquid plug dynamics inside the pulmonary airways during 

liquid instillation. 

We have thus presented a numerical model of surfactant plug propagation into the 

pulmonary airway system. To that end, we have developed original 3D asymmetric 

geometrical models of rat, pig, and human conducting airways, based on morphometric 

measurements and dedicated to luid transport. Using these models, we have assessed 

the efects of dose volume, low rate, and multiple aliquot deliveries, and observed the 

existence of a threshold dose volume under which the coating cost represents 100% of 

the initial dose volume, which means that no surfactant reaches the acinar region at 

all. Moving from single to multiple instillations for a given total dose volume allows us 

to overcome partially the constraint of the coating cost and to globally improve the 

eiciency. 

The liquid distribution is also afected by a number of factors, including physical 

properties of the liquid (viscosity, density, surface tension), patient posture 

(prone/supine, left lateral decubitus/right lateral decubitus) airway geometry, 

instillation method (low rate), and presence of other plugs in nearby airways from 

previous instillation. We have studied the inluence of all these factors and compared 

the results when it was possible to experimental data available on rats. 

Based on this collection of results, one could wonder what the best strategies for 

successful delivery are. We have seen the major role played by the dose volume. It is 

therefore natural to use this tuning parameter to target speciically some regions of the 
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lung. If the region to be treated is the conducting airways, then a small initial dose 

volume VD and a high low rate would optimally distribute the surfactant everywhere 

in the lung while maximizing the deposition on the airway walls. If on the contrary the 

target is located distally within a well-deined lobe, one will favor a larger VD and a 

smaller low rate, able to propagate the liquid plugs for a long time without losing too 

much of their masses along the way. The dependence of homogeneity and eiciency, 

indices vs. the dose volume remains, however similar to the symmetric case. 

We can envision further improvements to our model in several directions. While we 

have studied so far the detailed efects of surfactant on liquid plug propagation, 

trailing ilm thickness, and rupture in a single tube or channel [136][159][160][161], 

accounting for surface-active efects, luid inertia in the deposition process would be 

the next steps when dealing with a branching tree geometry. The fate of surfactant, 

once it coats the airways or has entered the acinus, is also a challenging ield of study. 

Understanding how surfactant will progressively coat the entire complex acinar surface 

requires accounting for the dynamics of alveolar recruitment during the breathing cycle 

[162], the mechanics of the compliant distal airways [163], and the complex motion of 

surfactant plugs in the rough-walled acinar ducts [164]. Accurately modeling this step 

should provide valuable insights into the delivery process, the inal distribution of 

surfactant on the alveolar walls, and the global eiciency of SRT. 
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are extracted from [82]. ................................................................................................. 73 

Figure 42: Comparison of  vs. 
pC a  for diferent values of the Bond number Bo 

(angles are 60    and 0   ): Bo=1.26 (experiments: black diamonds, model: black 

line), and Bo=0.76 (experiments: blue triangles, model: blue line). Experimental data 

are extracted from [82]. ................................................................................................. 74 

Figure 43: sR  vs. R e p
 for  0   and 30  (experiments: orange squares, model: 

orange line) and 60    (experiments: blue triangles, model: blue line). Data are 

extracted from [136] ...................................................................................................... 76 

Figure 44: Delivery of three surfactant dose volumes into a rat lung (L+R posture). 

Surfactant (Infasurf®) was tagged with Green Tissue Marking Dye. A) Dose volume 

per kg = 1.125 mL.kg-1, B) Dose volume per kg = 2.5 mL.kg-1, and C) Dose volume per 

kg = 5.8 mL.kg-1. ........................................................................................................... 79 
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coated). When two spheres superimpose, their grey levels are added. B) The image 

obtained in the frame (A) is thresholded to obtain a black and white image (threshold 

is 90% grey), on which the SQHI can be computed as in [102]. C) Comparison of 
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