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Samuel AMSTUTZ
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Charles DAPOGNY
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ABSTRACT

This work is devoted to shape and topology optimization of multiphysics systems motivated by
aeronautic industrial applications. Shape derivatives of arbitrary objective functionals are computed for
a weakly coupled thermal fluid-structure model. A novel gradient flow type algorithm is then developed
for solving generic constrained shape optimization problems without the need for tuning non-physical
metaparameters. Motivated by the need for enforcing non-mixing constraints in the design of liquid-
liquid heat exchangers, a variational method is developed in order to simplify the numerical evaluation
of geometric constraints: it allows to compute line integrals on a mesh by solving a variational problem
without requiring the explicit knowledge of these lines on the spatial discretization. All these ingredients
allowed us to implement a variety of 2-d and 3-d multiphysics shape optimization test cases: from single,
double or three physics problems in 2-d, to moderately large-scale 3-d test cases for structural design,
thermal conduction, aerodynamic design and a fluid-structure interacting system. A final opening chapter
derives high order homogenized equations for the Stokes system in a porous medium. These high order
equations encompass the three classical homogenized regimes—namely Stokes, Brinkman and Darcy—
associated with different obstacle’s size scalings. They could allow, in future works, to develop new
topology optimization methods for the design of fluid systems characterized by multi-scale patterns such
as industrial heat exchangers.

Keywords: Topology optimization, remeshing, convective heat transfer, fluid-structure interaction,
geometric constraints, high order homogenization.

RÉSUMÉ

Cette thèse est consacrée à l’optimisation de la topologie et de la forme de systèmes multiphysiques
motivés par des applications de l’industrie aéronautique. Nous calculons les dérivées de forme de fonctions
de coût arbitraires pour un modèle fluide, thermique et mécanique faiblement couplé. Nous développons
ensuite un algorithme de type gradient adapté à la résolution de problèmes d’optimisation de formes
sous contraintes qui ne requiert par de réglage de paramètres non physiques. Nous introduisons ensuite
une méthode variationnelle qui permet de calculer des intégrales le long de rayons sur un maillage par
la résolution d’un problème variationnel qui ne requiert pas la détermination explicite de ces lignes sur
la discrétisation spatiale. Cette technique nous a ainsi permis d’imposer une contrainte de non-mélange
de phases pour une application à l’optimisation d’échangeurs de chaleur bi-tubes. Tous ces ingrédients
ont été employés pour traiter une variété de cas tests d’optimisation de formes pour des systèmes multi-
physiques 2-d ou 3-d. Nous avons considéré des problèmes à une seule, deux ou bien trois physiques
couplées en 2-d, et des problèmes de tailles relativement élevées en 3-d pour la mécanique, la conduction
thermique, l’optimisation de profils aérodynamiques, et de la forme de systèmes en interaction fluide-
structure. Un dernier chapitre d’ouverture est consacré à l’étude de modèles homogénéisées d’ordres
élevés pour les équations de Stokes en milieu poreux. Ces équations d’ordres élevés englobent les trois
régimes homogénéisés classiques—Stokes, Brinkman et Darcy–associés à divers rapports d’échelles pour
la taille des obstacles. Elles pourraient permettre, lors de futurs travaux, de développer de nouvelles
méthodes d’optimisation pour la conception de systèmes fluides caractérisés par des motifs multiéchelles,
tels que les échangeurs thermiques industriels.

Mots clés : Optimisation topologique, remaillage, transfert thermique convectif, interaction fluide-
structure, contraintes géométriques, modèles homogénéisés d’ordres élevés.
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accueil à Grenoble, pour l’effort de tes relectures et commentaires attentifs, et enfin plus encore pour les
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concerne les demandes informatiques. Merci à tous les doctorants du laboratoire avec lesquels j’ai eu
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systématiques. Merci Frédérique et Thibault (pour les déjeuners à l’INRIA après la piscine) Nicole et
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INTRODUCTION – RÉSUMÉ DE LA THÈSE

Cette thèse est consacrée à l’optimisation de la forme et de la topologie de systèmes multi-physiques
motivés par des applications de l’industrie aéronautique. Nous employons principalement la méthode
de Hadamard qui est particulièrement adaptée à la prise en compte de diverses contraintes industrielles
détaillées ci-après. Cependant, nous effectuons dans un dernier chapitre indépendant des développements
théoriques en ce qui concerne l’applicabilité future de la méthode d’optimisation topologique de systèmes
fluides par homogénéisation dans un dernier chapitre indépendant.

L’optimisation des formes est l’art mathématique de générer des formes “optimales” qui satisfont au
mieux un objectif proposé. Dans le contexte industriel, il s’agit de concevoir des systèmes physiques
qui atteignent des performances optimales. Quelle est la forme de la structure la plus rigide utilisant
une quantité donnée de matière ? Quel profil aérodynamique choisir pour générer une force de portance
voulue ? Quelle distribution de fluides permet de réaliser le meilleur transfert de chaleur ? Comment
concevoir la forme d’une coque de bateau ? Ces questions sont des problèmes industriels très classiques.

1 De l’optimisation de formes à l’optimisation topologique : la méthode de

Hadamard, les méthodes par densité et par homogénéisation

La méthode de Hadamard tire ses origines du mémoire de 1908 [180]. Elle consiste à calculer la sensibilité
du problème considéré à de petites déformations de la frontière (Figure 1). Ceci permet d’optimiser la
forme via la détermination de déformations particulières qui donnent lieu à de meilleurs designs. De part

Figure 1: La méthode de variation de frontière de Hadamard : il s’agit d’évaluer la sensibilité du problème
d’optimisation par rapport à de petites déformations de la forme.

l’essor de l’informatique qui a rendu possible la simulation numérique de systèmes physiques toujours
plus complexes, de nombreux développements autour de la méthode ont été effectués dans les années 1970
avec les travaux fondateurs de Céa [86, 87], Murat, Simon [241, 242], Dervieux et Palmerio [251, 252]
et Pironneau [259, 260]. Ces auteurs ont été parmi les premiers à proposer des cadres théoriques et
numériques pour la résolution de problèmes d’optimisation de formes contraints par des équations aux
dérivées partielles (EDPs). Ces techniques ont très vite suscité un engouement dans l’industrie et ont été
suivies de nombreux articles envisageant des applications physiques variées : pour la conception optimale
des structures mécaniques [290, 182, 57], en théorie des coques [89], pour des problèmes de conduction
thermique [121, 83, 91], et pour des applications en mécanique des fluides [90, 172, 191, 192, 226, 123].

Depuis lors, la discipline de l’optimisation de formes n’a cessé de se développer et de s’améliorer
quant aux aspects théoriques [78, 79, 186] ou numériques [179, 229]. Les premiers algorithmes de calcul
de formes optimales étaient basés sur la technique de déformation de maillages [260, 291, 34] : une forme
candidate est discrétisée en un maillage, qui est déformé de manière itérative afin d’obtenir une géométrie
améliorée. (Figure 2). Une avancée majeure a eu lieu au début des années 2000 avec l’introduction de
la méthode des lignes de niveaux dans les algorithmes d’optimisation de formes [32, 311, 250]: la forme
à optimiser n’est pas maillée explicitement mais plutôt capturée de manière implicite comme l’ensemble
des valeurs négatives d’une fonction “lignes de niveaux”, ce qui permet de capturer l’évolution de la
forme sur un maillage fixe. Cette méthode permet l’apparition de changements topologiques complexes
de la forme au cours des itérations, tels que la fusion de trous ou la fusion de frontières (Figure 3). Cette
capacité de ces types d’algorithmes à gérer les changements topologiques permet de s’affranchir de tout a
priori sur la topologie et sur la géométrie de la forme à optimiser, tel que le nombre ou la localisation des
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(a) Forme initiale (b) Forme intermédiaire (c) Forme optimisée

Figure 2: La méthode de variation de frontière de Hadamard utilisant la déformation d’un maillage pour
l’optimisation de la forme d’une console 2-d en flexion (figure extraite de [17]). Les changements topologiques
sont difficiles à traiter numériquement : les formes initiales et finales ont le même nombre de trous.

(a) Forme initiale (b) Forme intermédiaire (c) Forme optimisée

Figure 3: La méthode de variation de frontières de Hadamard utilisant la méthode des lignes de niveaux pour
l’optimisation de la forme d’une console 2-d en flexion (figures extraites de [31]). Les changements topologiques
sont possibles : certains trous ont fusionné entre l’initialisation et la forme finale.

trous (ou bien des arches en 3-d). Pour cette raison, les algorithmes basés sur la méthode des lignes de
niveaux sont souvent considérés comme des techniques d’optimisation topologique, tandis que ceux basés
sur la déformation d’un maillage de la forme est traditionnellement appelée optimisation géométrique
[17]. Une tendance récente suggère d’intégrer des techniques de remaillage à la démarche d’optimisation
topologique de façon à combiner les avantages des deux méthodes [24, 107]. Il est ainsi possible de garder
une discrétisation explicite des formes au cours de l’optimisation tout en permettant à des changements
topologiques d’avoir lieu (Figure 4).

L’optimisation topologique est une discipline très large qui bénéficie d’un large panel de techniques
mathématiques et numériques. Nous pouvons mentionner, de manière non exhaustive, la méthode du gra-
dient topologique [85, 145, 165, 289, 40], les méthodes par lignes de niveaux qui ne sont pas spécifiquement
basées sur la méthode de Hadamard [133, 316], les méthodes de changement de phase [73, 299], les
méthodes d’optimisations topologiques dites “évolutionnaires”’ [193], et enfin les méthodes par densité
[66] et par homogénéisation [18, 93] (nous renvoyons à [284] pour une revue plus complète du domaine).
Parmi celles-ci, les méthodes par densité n’optimisent pas explicitement la frontière de la forme mais
plutôt une fonction de densité ρ qui modélise la présence de matériau (ρ = 1) ou bien son absence (ρ = 0),
ou bien des états “intermédiaires” (0 < ρ < 1). Des schémas numériques de pénalisation doivent être
utilisés de façon à obtenir la convergence vers des formes “admissibles”, c’est-à-dire des états purement
“noirs et blancs” (ρ = 0 ou bien ρ = 1 comme sur la Figure 5). Les méthodes par homogénéisation
remplacent quant à elles le problème d’optimisation de formes par la recherche d’une microstructure
optimale pour un matériau composite effectif. Une première étape consiste à optimiser les paramètres de
la microstructure tels que la densité de matière ou bien l’orientation des cellules. Dans un second temps,
si aucune pénalisation n’a été utilisée, ces champs de paramètres sont interprétés afin de déterminer une
forme qui approche convenablement la microstructure optimale (Figure 6) [254, 27, 166, 177].

2 Quelques enjeux actuels de l’optimisation topologique pour les applications

de l’industrie aéronautique

Traditionnellement, les ingénieurs conçoivent les systèmes industriels grâce à l’aide de logiciels de Con-
ception Assistée par Ordinateur (CAO). Les industries sont souvent dépendantes des formats CAO du
fait de leur compatibilité avec toutes les étapes de conception, de la simulation numérique des pro-
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(a) Forme initiale (b) Forme intermédiaire

(c) Forme intermédiaire caractérisée par un changement
topologique

(d) Forme finale

Figure 4: La méthode de variation de frontière de Hadamard implémentée en utilisant la méthode des lignes de
niveaux combinée à une technique de remaillage pour l’optimisation d’une console 2-d en flexion (figures extraites
de [107]). Les changements topologiques sont permis tout en conservant une discrétisation explicite et conforme
des formes.

(a) Design initial (b) Design intermédiaire (c) Design optimisé

Figure 5: Optimisation topologique d’une console 2-d en flexion par une méthode de densité (ici la méthode
SIMP—Solid Isotropic Material Penalization—). Figure obtenue à partir du code source décrit dans [43].

(a) Densité optimale (b) Orientation optimale (c) Forme interprétée

Figure 6: Optimisation topologique d’une console 2-d en flexion par une méthode d’homogénéisation. Figure
extraite de [166].
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cessus physiques par des codes industriels à la fabrication effective par des machines automatisées.
Lors de l’optimisation d’une forme au moyen d’outils CAO, la topologie du système à concevoir est
généralement proposée a priori par l’ingénieur. Elle est par exemple déterminée par un ensemble de
points de contrôles de courbes de Bézier, par des paramètres de splines, ou bien par d’autres types de
paramètres géométriques. Une optimisation paramétrique de ces paramètres de conception est alors
effectuée pour améliorer le design initial [181]. Habituellement, la sensibilité du problème par rapport
à la géométrie n’est pas connue de manière analytique. Celle-ci est parfois estimée par différentiation
automatique (un outil très populaire en conception aérodynamique [94, 139, 130]) [235, 288].

Cependant, dans de nombreux cas, l’optimisation est effectuée par l’exploration d’un sous-ensemble
suffisamment vaste de l’espace des paramètres appelé “plan d’expériences”(cela est fait par exemple avec
le logiciel commercial Optimus [245]), voir par exemple [142, 286]. Puisque ces méthodes reposent sur

Figure 7: Optimisation de la CAO d’un profil aérodynamique pour le couple portance–trâınée. Figure extraite
de [142].

des choix importants de paramétrisation de la géométrie, elles ne conduisent généralement qu’à de très
faibles modifications de la forme initialement proposée (Figure 7). En principe, l’optimisation topologique
pourrait permettre d’obtenir des designs aux performances sensiblement meilleures, parmi un ensemble
beaucoup moins restreint de formes admissibles.

Les développements de la fabrication additive depuis les années 1990 permettent aujourd’hui à
l’industrie de fabriquer des systèmes à la géométrie toujours plus complexe, difficilement décrite par
une paramétrisation CAO ; ceci suscite aujourd’hui un enthousiasme renouvelé pour l’optimisation
topologique. Un grand nombre d’applications envisagées dans les travaux de recherche actuels sont issus
de l’industrie aéronautique. Celles-ci constituent quelques-unes des motivations principales à l’origine
de ce travail, par exemple lorsqu’il est question de la conception des composants de moteurs d’avion.
Un des enjeux majeurs, en ce qui concerne l’application de l’optimisation topologique aux systèmes
aéronautiques, est la nécessité de prendre en compte leur caractère intrinsèquement multi-physique : il
est bien souvent souhaitable d’optimiser de tels systèmes au regard de critères impliquant des propriétés
thermiques, mécaniques et hydrauliques couplées.

Un problème d’actualité est celui de l’optimisation topologique appliquée à la conception d’échangeurs
de chaleur [255, 258, 189, 271, 275]. Les échangeurs de chaleurs sont des dispositifs utilisés dans les
moteurs pour refroidir des fluides chauds en les transportant à proximité de certains gaz ou liquides
réfrigérants. Les modèles industriels présentent généralement un assemblage de nombreux tubes et
ailettes afin de maximiser la surface d’échange entre les phases chaudes et froides (Figure 8). Naturelle-
ment, il est aussi nécessaire de prendre en compte un ensemble de contraintes multi-physiques lors de la
conception, telles que la perte de charge (la différence de pression entre l’entrée et la sortie du dispositif),
ou bien la résistance des structures mécaniques en présence d’une charge thermique élevée.

De nombreux autres composants des moteurs aéronautiques pourraient certainement bénéficier de
l’optimisation de formes, à commencer par le système de refroidissement par canaux internes des aubes
de turbines [62, 162] (Figure 9).
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Figure 8: Échangeur de chaleur industriel liquide–gaz.
Figure extraite de [169].

Figure 9: Système de refroidissement d’aubes de tur-
bines avec présence de canaux internes réfrigérants.
Figure extraite de [162].

3 Cadre de la thèse

À ce jour, la méthode de Hadamard utilisée à des fins d’optimisation topologique (dans laquelle on
autorise des déformations libres de la forme optimisée) n’est pas encore suffisamment mature pour être
intégrée à de véritables applications industrielles et multi-physiques. La plupart des cas tests traités
dans la littérature se placent le plus souvent dans le cadre de l’élasticité linéaire dans [25, 108], ou
dans celui de la conduction thermique [9, 325], et bien peu d’exemples numériques tridimensionnels, à
résolution élevée, sont présentés [202]. Seulement récemment, la méthode a été appliquée à des physique
plus complexes telles que la plasticité mécanique [230] ou bien l’électromagnétisme [160, 213]. Cette
observation s’applique également à la communauté d’optimisation par méthodes de densités qui présente
un nombre croissant de récents travaux portant sur des applications multidisciplinaires [116, 129, 128,
318, 319, 240, 288].

L’objectif de ce travail est de développer des outils théoriques et numériques pour l’optimisation de la
forme et de la topologie de systèmes multi-physiques, guidé par la prise en compte d’un certain nombre
d’exigences industrielles à long terme. À cet effet, nous utilisons principalement la méthode de varia-
tion de frontière de Hadamard ; un chapitre d’ouverture (le chapitre 7) est dédié à des développements
mathématiques sur l’homogénéisation des milieux poreux qui pourraient permettre d’envisager des ap-
plications nouvelles pour l’optimisation de systèmes impliquant des fluides.

Par “exigences industrielles”, nous entendons plusieurs besoins industriels qui sont autant d’axes
majeurs pour notre travail et que nous décrivons dans les cinq prochains paragraphes. Les contributions
de la thèse sont ensuite résumées chapitre par chapitre dans la section qui suit.

Systèmes multi-physiques

Comme en témoignent les applications industrielles évoquées dans la la section précédente, il existe une
demande croissante en ce qui concerne l’optimisation topologique pour des applications mêlant plusieurs
physiques en interaction. Notre étude se concentre sur des systèmes fluides présentant des propriétés hy-
drauliques, thermiques et mécaniques couplées. Ces derniers sont caractérisés par les variables physiques
suivantes:

• v et p désignent les champs de vitesse et de pression associés à un ou plusieurs fluides évoluant à
travers le système ;

• T pour le champs de température dans les phases solides et liquides ;

• u pour le champs de déplacement élastique des structures mécaniques solides mises en jeu dans le
système.

Mathématiquement, ces variables sont déterminées par la résolution d’un système d’équations aux
dérivées partielles, ces dernières provenant elles-mêmes du choix de la modélisation physique. Un cadre
académique suffisamment représentatif pour nos applications, est décrit dans le chapitre 2.
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En termes d’applications, une partie de notre travail est guidée par la conception d’échangeurs de
chaleur. Une étude numérique dans ce contexte est proposée dans le chapitre 5, où nous optimisation la
forme et la topologie de deux modèles d’échangeurs de chaleur bidimensionnels.

Optimisation sous contraintes

Lors de la conception d’un système industriel, il est d’usage de prendre en compte un cahier des charges
dont les spécifications doivent être satisfaites dans les conditions d’utilisation réelles. Par exemple, les
contraintes mécaniques ou thermiques d’une structure solide ne doivent pas dépasser un seuil donné
afin d’éviter un endommagement prématuré. En d’autres termes, un problème de conception optimale
consiste à déterminer la forme du système qui réalise la meilleure performance pour un ensemble donné
de contraintes physiques à respecter.

De tels problèmes sont modélisés de manière générique par des programmes mathématiques de la
forme :

min
Γ

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) = 0, 1 ≤ i ≤ p,
hj(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) ≤ 0, 1 ≤ j ≤ q,

(1)

où Γ est la frontière du système à optimiser, typiquement l’interface entre une structure solide et un
fluide (ce qui laisse la possibilité de rendre compte de plusieurs phases liquides). J est une fonction de
coût à minimiser qui quantifie la performance du système. Par exemple, la compliance d’une structure
mécanique, la force de trâınée générée par un obstacle, ou encore la chaleur emmagasinée par un système
thermique sont des fonctions de coût classiques couramment rencontrées en optimisation de la forme.
Les fonctions gi et hj modélisent des contraintes d’égalité et d’inégalité: elles renvoient à des valeurs
cibles que certaines quantités physiques doivent atteindre (par exemple, un emplacement souhaité pour
le centre de gravité de la structure) ou bien ne doivent pas dépasser (par exemple, une limite imposée
sur la température du système, ou bien une taille caractéristique minimale). La fonction objectif J et
les contraintes gi, hj dépendent à la fois de la forme Γ et des variables physiques v(Γ), p(Γ),u(Γ), T (Γ),
qui dépendent elles-mêmes de Γ via les équations d’états.

Dans le contexte des méthodes de densité, la variable optimisée ρ appartient à un espace vectoriel de
type Rn après discrétisation, ce qui permet de résoudre des programmes mathématiques contraints par des
méthodes très classiques d’optimisation du premier ordre [244, 298, 310]. Dans le cadre de la méthode de
Hadamard, la variable d’optimisation Γ n’appartient pas à un espace vectoriel mais plutôt à une “variété”
de dimension infinie ce qui rend la résolution de (1) beaucoup plus délicate. La plupart des travaux de
la littérature s’appuyant sur la méthode de Hadamard convertissent (1) en un problème de minimisation
sans contrainte via l’ajout de termes de pénalisation à la fonction objectif J ; une technique couramment
employée à cet égard est la méthode du Lagrangien augmenté [234, 107]. Des méthodes plus complexes,
telles que l’optimisation linéaire successive (Sequential Linear Programming, SLP) ou la méthode des
directions admissibles (Method of Feasible Directions, MFD) ont été utilisées avec succès dans un nombre
restreint de travaux [135, 150]. Cependant, ces méthodes ne sont pas complètement satisfaisantes pour
une utilisation industrielle car elles nécessitent un réglage fin de paramètres d’optimisation qui dépendent
fortement de la situation considérée et qui peuvent être difficiles à ajuster, surtout en présence d’un grand
nombre de contraintes.

Dans le chapitre 3, nous proposons un nouvel algorithme de type gradient pour la résolution de
problèmes d’optimisation sous contraintes adapté au contexte de la méthode de Hadamard.

Algorithmes non-intrusifs

Dans un souci de compatibilité avec les outils industriels, le processus d’optimisation de formes doit être
entièrement compatible avec la châıne de conception du système. Par exemple, les outils d’optimisation
topologique doivent idéalement pouvoir évaluer les variables d’état en faisant appel aux mêmes solveurs
physiques que ceux utilisés lors de la phase de validation industrielle. De nombreuses méthodes d’opti-
misation topologique, notamment les méthodes de densité ou de lignes de niveaux, ne remplissent pas
cette condition car elles reposent sur des modifications artificielles des équations d’état pour des raisons
purement numériques.

Ce besoin constitue l’une des raisons de notre utilisation systématique pour tous nos cas tests
numériques de l’algorithme d’évolution de maillages proposé par [25]. Cet algorithme illustré sur la
Figure 4 et ses grands principes sont rappelés dans le chapitre 1. Cette technique, basée sur la méthode
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des lignes de niveaux, permet de conserver une représentation maillée explicite de la forme optimisée
durant toutes les itérations du processus d’optimisation, ce qui permet de résoudre les équations d’état
sans aucune modification ou approximation de la physique considérée. Cette étape de résolution pour-
rait en principe, être effectuée par un solveur tiers. Pour nos applications, nous avons utilisé de manière
intensive le logiciel open source mmg [108] pour les étapes de remaillage 2-d ou 3-d.

Une nécessité supplémentaire imposée par le souhait de non-intrusivité des algorithmes d’optimisation
de formes est la minimisation de la quantité d’information demandée à l’utilisateur. En particulier, un
utilisateur formulant un problème du type (1) devrait pouvoir renseigner des fonctions de coûts et des
contraintes arbitraires sans avoir à connâıtre les détails mathématiques (plutôt techniques) du calcul
des dérivées de forme au sens de Hadamard. Dans le chapitre 2, nous établissons des formules pour les
dérivées de formes de fonctionnelles de coût arbitraires, qui ont l’avantage de pouvoir être assemblées
numériquement de manière automatique à partir de de la seule connaissance des dérivées partielles (qui
classiquement, sont très simples à calculer).

Contraintes géométriques

La prise en compte de contraintes géométriques quant aux formes optimisées est un besoin industriel
classique en optimisation topologique du fait de la précision limitée des processus de fabrication. Elles
peuvent par exemple se manifester par des contraintes sur l’épaisseur minimale d’une structure ou bien sur
l’angle maximal de ses parties en porte-à-faux avec la direction verticale. Elles se présentent également
lors de la conception des échangeurs de chaleur bi-tubes : dans le chapitre 5, nous modélisons une
condition de non-mélange de deux phases fluides par une contrainte de distance géométrique.

De nombreux travaux ont analysé l’intégration de telles contraintes en optimisation topologique,
voir par exemple [234], chapitre 3, pour une revue. Dans le contexte de l’optimisation de formes par la
méthode de Hadamard, il est commode de modéliser les contraintes géométriques au moyen de la fonction
de distance signée [30]. Cependant, l’implémentation pratique des dérivées de forme associées est très
délicate et dépend sensiblement du type de discrétisation envisagée pour la forme optimisée. Dans le
chapitre 4, nous proposons une nouvelle méthode variationnelle qui facilite l’évaluation numérique des
dérivées de forme pour les contraintes géométriques de distance, et qui peut être implémentée de manière
très commode par la méthode des éléments finis.

Calcul haute performance

Une dernière exigence industrielle importante concerne l’application de l’optimisation topologique à des
problèmes physiques 3-d et discrétisé par des maillages ayant des résolutions élevées. Lors d’un processus
d’optimisation, les équations d’état doivent être résolues de l’ordre d’une à plusieurs centaines de fois,
ce qui est très coûteux en temps de calcul pour les problèmes dits de “grande échelle” (pour lesquels
l’étape de résolution requiert la détermination d’un très grand nombre de variables). Ce coût est d’autant
plus élevé lorsque les physiques mises en jeu comprennent des écoulements de fluides. Cette question
a été assez largement traitée par la communauté utilisant les méthodes de densité [1, 10, 71, 232, 39],
et elle commence à être également abordée dans le cadre des algorithmes d’optimisation topologiques
dits “évolutionnaires” [227] ainsi que de ceux basés sur la méthode des lignes de niveaux [202]. Dans le
chapitre 6, nous présentons et discutons notre implémentation en FreeFEM [183] de cas tests 3-d présentant
des tailles de maillages relativement importantes (moyennant la résolution de systèmes linéaires jusqu’à
2 millions de degrés de liberté). À cet effet, nous exploitons le calcul parallèle et des techniques récentes
de décomposition de domaines associées à des solveurs itératifs préconditionnés [238].

Dans un autre registre, les modèles industriels classiques de conceptions des échangeurs de chaleur
(tel que celui illustré sur la Figure 8) suggèrent le besoin de générer des designs présentant des motifs
multi-échelles. Dans le chapitre 7, nous proposons des modèles homogénéisés d’ordres supérieurs pour les
écoulement de fluides en milieux poreux, qui pourraient permettre d’envisager de traiter ces applications
par les méthodes d’optimisation topologique par homogénéisation dans de tels contextes.

4 Résumé par chapitre

Chapitre 1 : optimisation de formes par la méthode de variation de frontière de Hadamard

Ce chapitre préliminaire présente le contexte et le matériel technique de base concernant l’optimisation
de formes par la méthode de Hadamard. Nous décrivons les ingrédients classiques requis pour la mise
en œuvre d’un processus d’optimisation topologique via la méthode d’évolution de maillages de [25].
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Plus précisément, nous commençons par un survol de la méthode de Hadamard et des techniques
mathématiques classiques qui permettent de calculer les dérivées de forme de fonctions de coût dépendant
de solutions d’équations aux dérivées partielles. Nous discutons ensuite du problème classique de
l’adaptation de l’algorithme d’optimisation par la méthode du gradient au contexte de la dimension
infinie. Une partie indépendante est dédiée à des rappels sur les définitions et les principales propriétés
de la fonction de distance signée. Enfin nous résumons les différentes étapes de la méthode d’évolution
de maillage de Allaire, Dapogny et Frey [25] pour l’optimisation de formes.

Chapitre 2 : Dérivées de formes au sens de Hadamard pour un problème hydraulique
thermique mécanique faiblement couplé

Ce chapitre présente un modèle thermique fluide-structure simplifié qui fait office de référence pour toutes
nos applications numériques: les variables v, p, T,u sont définies comme les solutions de trois équations
d’état qui sont faiblement couplées dans le sens où ces dernières peuvent être résolues successivement
et indépendamment. Nous considérons les équations de Navier-Stokes incompressibles et stationnaires
pour la vitesse et la pression du fluide, l’équation de convection-diffusion pour le champ de température
au sein des phases fluides et solides, et le système de la thermo-élasticité linéaire pour le déplacement
élastique de la structure solide. Ce modèle est une généralisation de plusieurs situations impliquant une
seule physique qui sont couramment étudiées dans la littérature ; ils permettent en outre de traiter de
nouveaux cas test couplés tels que l’interaction fluide-structure dans un régime de petites déformations,
ou bien le transfert de chaleur par convection.

Une nouveauté importante proposée par cette partie est la détermination de formules de dérivées de
forme pour des fonctions de coût arbitraires. Dans la littérature consacrée à la méthode de Hadamard,
de telles formules reposent en effet sur des hypothèses sur la structure de la fonction de coût considérée.
Ainsi, il s’avère nécessaire de refaire le calcul des dérivées de forme lors de chaque changement de
fonction objectif ou contrainte, ce qui va à l’encontre d’une intégration systématique dans des logiciels
industriels. Nos formules permettent au contraire d’automatiser le calcul des dérivées de forme : celles-ci
sont assemblées après la résolution d’équations adjointes à partir de la seule connaissance des dérivées
partielles de la fonction de coût, une information qui peut en principe être fournie facilement par un
utilisateur externe.

Une autre contribution de ce chapitre concerne la prise en compte spécifique des problèmes d’inte-
raction fluide-structure. Une propriété surprenante réside dans le couplage du système adjoint : l’égalité
des contraintes normales sur l’interface fluide-structure (une condition de type “Neumann”) se traduit
par une égalité des valeurs des variables adjointes sur cette frontière (une condition de type “Dirichlet”).

La validité de nos formules est enfin vérifiée numériquement sur plusieurs cas tests à deux dimensions
impliquant simultanément une, deux ou trois des physiques mentionnées.

Le contenu de ce chapitre a été publié pour l’essentiel dans l’article [153]:

F. Feppon, G. Allaire, F. Bordeu, J. Cortial, and C. Dapogny, Shape optimization of a coupled
thermal fluid–structure problem in a level set mesh evolution framework, SeMA Journal, (2019), pp. 1–46.

Mentionnons cependant que nous avons ajouté de nombreux exemples numériques supplémentaires et
amélioré certains cas tests de la publication [153].

Chapitre 3 : flots de gradient à noyaux pour l’optimisation de formes sous contrainte

Ce chapitre présente l’algorithme d’optimisation que nous avons spécifiquement développé dans la per-
spective de son application en optimisation de formes. Nous proposons un schéma d’optimisation qui peut
être interprété comme la discrétisation d’un flot de gradient capable de “voir” les contraintes d’égalité et
d’inégalité (il s’agit d’une généralisation de certains algorithmes d’optimisation par systèmes dynamiques
[317, 300]). Ce flot de gradient est appelé à noyau car la direction d’optimisation s’écrit comme la somme
d’un vecteur appartenant à l’espace tangent aux contraintes (i.e. au noyau de leur différentielle) qui vise
à faire décrôıtre les valeurs de la fonction objectif, et d’un vecteur orthogonal au premier et qui ramène
le chemin d’optimisation à l’intérieur du domaine admissible. Le calcul de ces vecteurs dépend de la
résolution d’un sous-problème quadratique qui indique quand décoller de la frontière des contraintes
pour revenir à l’intérieur du domaine d’optimisation (Figure 10). Une caractéristique de l’algorithme est
son aptitude à diminuer les valeurs de la fonction objectif tout en maintenant les contraintes satisfaites.

Nous établissons des propriétés de convergence de notre algorithme pour les trajectoires d’optimisation
continues ; celles-ci garantissent l’amélioration de solutions optimisées jusqu’à ce qu’un minimum local
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Constraints
Optimum
Initialization
Optimization path
Objective function

Figure 10: Illustration de notre flot de gradient à noyau pour la résolution des problèmes d’optimisation sous
contraintes. Les trajectoires d’optimisation suivent toujours la meilleur direction de descente possible.

soit trouvé, à une discrétisation suffisamment fine près. Nous illustrons la robustesse et l’efficacité de
notre méthode d’optimisation de formes sur un cas test de pont en chargement multiple présentant 10
contraintes d’optimisation.

La plupart du contenu de ce chapitre est à parâıtre dans la prépublication soumise [155]:

F. Feppon, G. Allaire, and C. Dapogny, Null space gradient flows for constrained optimization
with applications to shape optimization, submitted, (2019).

Le chapitre contient en outre quelques comparaisons de notre méthode avec des algorithmes plus clas-
siques sur des exemples académiques.

Chapitre 4 : une méthode variationnelle pour calculer les dérivées de formes de contraintes
géométriques le long des rayons

Les applications envisagées de l’optimisation topologique aux échangeurs de chaleur bi-tubes nécessitent
de prendre en compte une contrainte de non-mélange des phases fluides misent en jeu lors de la résolution
du problème d’optimisation. Une approche très naturelle pour ce faire consiste à prescrire une distance
minimale entre les deux phases non miscibles, ce qui peut être formulé mathématiquement grâce à la
fonction de distance signée. Plus généralement, de nombreuses autres contraintes géométriques peuvent
être formulées de manière analogue, telles que les contraintes d’épaisseurs minimales ou maximales.

Des travaux précédents [30, 234] ont proposé des expressions mathématiques pour calculer les dérivées
de formes de fonctionnelles de coût faisant intervenir la fonction de distance signée, afin d’imposer des
contraintes géométriques telles que l’épaisseur maximale ou minimale de la forme optimisée. Cependant,
la mise en œuvre directe de ces formules est difficile car elle nécessite une intégration numérique le long
des rayons normaux au bord de la forme (Figure 11), ainsi que des estimations précises du squelette
et des courbures principales. L’implémentation de ces opérations est notoirement difficile et est très
dépendante de la dimension (2-d ou 3-d) ainsi que du type de discrétisation envisagé pour capturer la
forme optimisée (implicite ou explicite, sur maillage structuré ou non structuré).

Figure 11: Les méthodes classiques pour calculer les dérivées de formes des contraintes géométriques (impliquant
la fonction de distance signée) requièrent le calcul des rayons normaux à la forme (en rouge), ce qui nécessite de
parcourir la discrétisation de maille en maille.

Dans ce chapitre, nous montrons que les dérivées de forme de contraintes géométriques peuvent être
calculées au moyen de la résolution d’un problème variationnel, qui peut être aisément effectuée par la
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méthode des éléments finis : la valeur des intégrales le long des rayons est obtenue à partir des valeurs
de cette solution variationnelle aux sommets de la frontière de la forme. En toute généralité, notre
méthode permet de calculer des intégrales le long des courbes caractéristiques d’un champ de vitesse β
sans avoir à calculer explicitement ces courbes sur la discrétisation spatiale. L’implémentation s’en trouve
considérablement simplifiée car elle ne nécessite pas le calculs de rayons, ni celui des courbures de la forme,
mais uniquement la détermination d’un poids relativement arbitraire s’annulant approximativement sur
le squelette.

Nous établissons le caractère bien posé de la formulation variationnelle proposée grâce à une analyse
détaillée d’espaces à poids associés à l’opérateur d’advection β ·∇. Dans le contexte de l’optimisation de
formes, β est le gradient de la fonction de distance signée au domaine sur lequel on souhaite imposer des
contraintes géométriques, mais notre analyse permet de traiter également des champs de vecteurs plus
généraux. Notre approche permet notamment de traiter des champs de vitesse ayant une divergence non
bornée: les travaux classiques effectuant des analyses similaires [144] supposent généralement div(β) ∈
L∞(D) où D désigne le domaine de travail. Cette hypothèse est cependant systématiquement violée
pour les applications considérées en optimisation de formes.

Nous montrons enfin l’efficacité de cette méthode variationnelle en revisitant l’implémentation des
contraintes d’épaisseurs maximale et minimale en optimisation de formes. Nous retrouvons des résultats
numériques analogues à ceux obtenus dans les travaux antérieurs [30, 234] s’appuyant sur le calcul
explicite (difficile) des intégrales le long des rayons.

La majeure partie de ce chapitre est à parâıtre dans la publication [154]:

F. Feppon, G. Allaire, and C. Dapogny, A variational formulation for computing shape derivatives
of geometric constraints along rays, To appear in M2AN, (2019).

Chapitre 5 : optimisation topologique d’échangeurs thermiques 2-d

Les ingrédients développés dans les parties précédentes sont appliqués dans ce chapitre au problème de
l’optimisation d’échangeurs de chaleur bidimensionnels.

Dans une première partie, nous mettons en œuvre nos méthodes pour l’optimisation topologique
d’échangeurs de chaleur bi-tube dont le comportement physique est décrit par le modèle faiblement
couplé du chapitre 2. Nous formulons une contrainte de non mélange des deux phases liquides au moyen
d’une contrainte de géométrique impliquant la fonction de distance signée à l’une des phases, que nous
traitons par la méthode variationnelle du précédent chapitre 4 (Figure 12a).

Dans une seconde partie, nous rendons compte de la réalisation d’un cas test d’optimisation de formes
pour des échangeurs de chaleur 2-d issu d’une collaboration avec Safran Aero Boosters : l’objectif est
de déterminer la forme optimale de la section de canaux d’huiles transverses et réfrigérés par un flux
d’air froid en entrée. La physique de ce cas test est modélisée par les équations d’états introduites dans
le chapitre 2, à un changement de condition aux limites près pour le champ de température. Nous
avons également intégré une contrainte d’épaisseur minimale pour la phase huileuse, et une contrainte
sur la perte de charge maximale pour la phase constituée d’air. Notre étude démontre les capacités de
notre méthodologie numérique d’optimisation de formes pour générer des designs non classiques dans un
contexte simplifié (Figure 12b).

Chapitre 6 : vers des applications 3-d et industrielles : stratégies d’implémentation pour
une variété de cas tests numériques

Ce chapitre traite de l’implémentation de cas tests numériques qui approchent des applications indus-
trielles plus avancées.

Une première section décrit succinctement certains paradigmes d’implémentation de notre code d’opti-
misation topologique développé en python et FreeFEM [183] pour les applications de cette thèse. Nous dis-
cutons ensuite des détails d’implémentation spécifiques à la 3-d, avec en particulier l’utilisation inévitable
de techniques de décomposition de domaine associées à des préconditionneurs spécifiques aux physiques
considérées.

Dans une seconde partie, nous présentons plusieurs nouveaux résultats d’optimisation de formes
tridimensionnelle pour différentes physiques. Nos cas tests considèrent l’optimisation de la forme de
consoles mécaniques en traction ou torsion, d’une distribution de matériaux pour la conduction ther-
mique (Figure 13), de profils aérodynamiques permettant de générer une portance maximale tout en
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(a) Échangeur de chaleur 2-d avec contrainte de non-
mélange.

(b) Échangeur de chaleur 2-d issu d’un cas test proposé
par SAFRAN Aero Boosters.

Figure 12: Deux cas tests d’optimisations considérés dans le chapitre 5.

(a) Structure mécanique
(b) Design optimisé pour la conduction
thermique

(c) Design aérodynamique

Figure 13: Quelques formes optimisées 3-d obtenues dans le chapitre 6.
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limitant les efforts de frictions. Nous traitons enfin un cas test plus complexe d’un système en inter-
action fluide-structure. Grâce aux travaux récents de Moulin et. al. [238], nous avons été en mesure
de simuler la mécanique des fluides de systèmes discrétisés par des maillages présentant jusqu’à deux
millions d’éléments.

Chapitre 7 : équations homogénéisées d’ordres élevés pour les problèmes perforés, vers
l’optimisation topologique des fluides par la méthode d’homogénéisation

Ce dernier chapitre constitue une ouverture de la thèse vers l’utilisation de la méthode d’homogénéisation
pour l’optimisation topologique de systèmes multiphysiques comportant des phases fluides.

Il est établi qu’en général, les solutions des problèmes d’optimisation de formes sont des matériaux
composites. La théorie de l’homogénéisation permet de caractériser la physique effective des matériaux
obtenus par des mélanges arbitrairement complexes de deux phases homogènes. Dans le contexte de la
conception optimale des structures, celle-ci donne a donné lieu à des méthodes efficaces pour générer
des formes approchant les microstructure optimales [27, 254] (telle que celle illustrée sur la Figure 6).
Pour des applications en mécanique des fluides, la théorie de l’homogénéisation parâıt a priori plus
difficilement applicable : la littérature classique [103, 11, 15, 265] identifie trois régimes possibles de
modèles homogénéisés, déterminés par le rapport d’échelles entre la taille et l’écartement des obstacles
périodiques considérés. Aujourd’hui les méthodes d’optimisation topologique par densité utilisent quasi-
exclusivement le modèle de Brinkman, qui se trouve être l’un des trois régimes homogénéisés possibles.

Dans cette partie, nous proposons des équations homogénéisées d’ordres élevés pour le système des
équations de Stokes en milieu poreux qui permettent de capturer ces trois régimes simultanément. Ces
modèles homogénéisés pourraient être utilisés pour l’optimisation topologique de systèmes fluides grâce
à l’approche numérique proposée par [254, 27]. Notre motivation originale provient de la complexité
des échangeurs thermiques industriels, dont la forme combine une silhouette macroscopique avec des
motifs “microscopiques” en fines ailettes périodiques. L’optimisation de formes “classique” reposant par
exemple sur la méthode de Hadamard permet de déterminer des formes optimisées macroscopiques, mais
elle n’est pas très bien adaptée au cas où les géométries optimales sont caractérisées par de tels motifs
multi-échelles.

L’un de nos résultats principaux montre que les trois régimes homogénéisés classiques peuvent être
capturés par une unique équation homogénéisée d’ordre élevé : chacun des trois modèles est obtenu
en passant à la limite de faible fraction volumique pour des régimes particuliers de taille d’obstacle.
Plus généralement, des équations homogénéisées bien posées sont déterminées à tout ordre grâce à une
méthode inspirée des travaux de Bakhvalov et Panasenko [53], Smyshlyaev et Cherednichenko [287] et
Allaire, Lamacz et Rauch [33].

D’un point de vue pédagogique, nous calculons ces équations homogénéisées pour plusieurs problèmes
elliptiques perforés successifs (dont les solutions s’annulent sur les petits obstacles distribués périodiquement)
présentant un ordre de difficulté croissant. Nous considérons tout d’abord le cas du problème (scalaire)
de Poisson perforé, puis nous étendons nos résultats au cadre vectoriel par la considération du problème
analogue en élasticité. Nous étudions enfin le problème de Stokes pour lequel le terme de pression requiert
un travail additionnel. Une caractéristique surprenante est l’apparition d’opérateurs d’ordre impair très
étranges dans les équations homogénéisées d’ordres élevés : ce résultat n’est pas standard et ne semble
pas avoir été observé dans la littérature classique proposant des termes correcteurs pour ces modèles.

Ce chapitre final ne contient pas de résultats numériques ; ceux-ci feront l’objet de futurs travaux.
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This work is devoted to shape and topology optimization of multiphysics systems motivated by applica-
tions of the aeronautic industry. Due to several industrial constraints that are detailed further on, we
primarily consider the method of Hadamard for such purposes, although topology optimization by the
homogenization method is also investigated in a final independent chapter.

Shape optimization is the mathematical art of generating shapes that best fulfill a proposed objective.
Industrial applications are generally concerned with the issue of determining physical systems that achieve
optimal performance. What is the shape of the most rigid structure for a given prescribed amount of
material? What is the most aerodynamic airfoil generating a prescribed lift force? Which distribution
of fluid pipes does achieve the best heat transfer ? How to design the shape of a ship hull? These are
very classical questions of industrial interest.

1 From shape to topology optimization: Hadamard’s, density and homogeniza-

tion methods

The method of Hadamard can be traced back to the 1908 seminal memoir [180]. It consists in computing
the sensitivity of the problem to small deformations of the boundary (Figure 14), which allows to optimize
shapes by finding particular deformations which gradually yield better designs. With the advent of

Figure 14: The boundary variation method of Hadamard: evaluating the sensitivity of the problem with respect
to small shape deformations.

computers enabling to simulate numerically larger and larger physical systems, the method started to
be the object of many developments in the 1970s with the seminal works of Céa [86, 87], Murat, Simon
[241, 242], Dervieux and Palmerio [251, 252] and Pironneau [259, 260]. These authors were among the first
to develop numerical and theoretical frameworks for solving shape optimization problems constrained
by partial differential equations (PDEs). This very soon raised a growing interest in the industry with
the publication of many works devoted to a variety of physical applications, dealing for instance with
optimal design in mechanics [290, 182, 57], shell theory [89], heat conduction problems [121, 83, 91] and
fluid mechanics [90, 172, 191, 192, 226, 123].

Since then, the field has kept improving both on theoretical [78, 79, 186] and computational aspects
[179, 229]. The first numerical algorithms were based on mesh deformations [260, 291, 34]: a proposed
initial guess is discretized by mean of a mesh which is deformed to a better shape (Figure 15). A
major breakthrough arose in the beginning of the 2000s with the introduction of level set methods in
shape optimization [32, 311, 250]: the shape to be optimized is not discretized explicitly by a mesh
but rather described implicitly as the negative value set of a level-set function and evolved on a fixed
mesh; this allows to handle complex topological changes of the optimized shape such as holes merging
or boundaries collapsing (Figure 16). This ability to handle topological changes is very much desired in
order to generate optimal designs without any a priori on the final shape, such as the number or the
location of holes (of holes and arches in 3-d); for this reason the level set method used in conjunction with
the method of Hadamard is often referred to as a topology optimization method, while the one based on
mesh deformation is called geometric optimization [17]. A recent trend is to incorporate remeshing into
shape and topology optimization in order to combine advantages of both methods [24, 107]: it allows
to keep an explicit discretization of shapes throughout the optimization process while still allowing for
topological changes (Figure 17).

25
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(a) Initial design (b) Intermediate design (c) Final design

Figure 15: Hadamard’s method of boundary variation implemented for the optimization of the shape of a 2-d
cantilever beam with the method of mesh deformation (figures from [17]). Topological changes are difficult to
handle: the number of holes of the initial and final design is unchanged.

(a) Initial design (b) Intermediate design (c) Final design

Figure 16: Hadamard’s method of boundary variation implemented for the optimization of the shape of a 2-d
cantilever beam with the level set method (figures from [31]). Topological changes are handled: some holes have
merged from the initial to the final design.

(a) Initial design (b) Intermediate design

(c) Intermediate design featuring a topological change (d) Final design

Figure 17: Hadamard’s method of boundary variation implemented for the optimization of the shape of a 2-d
cantilever beam with a level-set based mesh evolution method (figures from [107]). Topological changes are
handled while keeping an explicit, conformal discretization of shapes.
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Topology optimization is actually a rather large field which includes many other methods, such as
the topological gradient method [85, 145, 165, 289, 40], level-set methods not based on the method of
Hadamard [133, 316], phase field methods [73, 299], evolutionary topology optimization [193], density
[66] and homogenization based methods [18, 93] (see [284] for a more complete review). Density based
methods do not optimize the explicit location of the shape boundary but rather a density function ρ which
represents the presence (ρ = 1) or the absence (ρ = 0), or intermediate states (0 < ρ < 1) of material;
some penalization scheme is used in order to obtain convergence towards true shapes, i.e. black and white
designs (Figure 18). Homogenization methods replace the issue of finding an optimal shape with the one
of finding an optimal composite material characterized by a varying microstructure. A first step consists
in optimizing the parameters of the microstructure such as material density or cell orientation fields. In
a second step (if no penalization scheme is used), these fields are interpreted in order to determine a
shape approximating in some sense the optimal microstructure (Figure 19) [254, 27, 166, 177].

(a) Initial design (b) Intermediate design (c) Final design

Figure 18: Topology optimization of a 2-d cantilever beam by a density method (here the so-called SIMP—Solid
Isotropic Material Penalization—method). Figure obtained from the source code described in [43].

(a) Optimized density (b) Optimized orientation (c) Interpreted shape

Figure 19: Topology optimization of a 2-d cantilever beam by a homogenization method. Figure from [166].

2 Some current challenges in shape and topology optimization for the aero-

nautic industry

Today, engineers devise industrial systems most often with the assistance of Computer Aided Design
(CAD) based geometry optimization software programs. Industries have been very much dependent on
CAD formats because of their full compatibility with all stages of the design process, from physical
numerical simulations on commercial software to actual manufacturing by automated machines. An
a priori guess topology for the system to devise is first proposed by engineers. It is characterized
for instance by a set of Bézier control points, spline surfaces parameters, or more general geometric
parameters. Parametric optimization with respect to CAD parameters is then performed in order to
improve the proposed design [181]. Usually, analytic shape sensitivities are not available; these are
sometimes obtained by automatic differentiation (a very popular tool in aerodynamic design [94, 139,
130]) [235, 288].

However, the optimization is achieved in many cases by exploring a sufficiently large subset of the
design space (e.g. with the commercial software Optimus [245]), see e.g. [142, 286]. Since these methods
heavily rely on a parameterization choice of the shape geometry, they usually yield very small design
updates of the initially proposed geometry (Figure 20). Such is fine for industrial applications to the
extent that these small modifications may yield substantial gains of performance. However, it is easily
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Figure 20: Lift–Drag optimization of a CAD–based airfoil design. Figure from [142].

imagined that even better performance could be obtained thanks to topology optimization since it could
allow to seek very innovative new designs among much more unconstrained sets of shapes.

The rise of additive manufacturing since the 1990s has enabled the industry to be capable of fabri-
cating more and more complex designs hardly described by CAD parameterizations, which feeds today a
renewed enthusiasm for topology optimization. Many applications receiving currently a generous amount
of effort are issued from the aeronautic industry and constitute some of the long term motivations at
the origin of this work. One of the key challenges to overcome in order to make topology optimization
applicable to aeronautic systems is the need for tackling inherent multiphysics aspects: coupled fluid,
thermal, and mechanical constraints must very often be accounted for simultaneously when designing
aircraft engines components.

A very representative issue drawing currently a substantial amount of attention in the topology
optimization community lies in the design of heat exchangers [255, 258, 189, 271, 275]; these are devices
used to cool down hot engine fluids by conveying them in the vicinity of some refrigerating gas or liquid.
Industrial heat exchangers usually include many tubes and fins shaped in order to maximize the exchange
surface area between hot and cold phases (Figure 21). Naturally, various additional multiphysics design
constraints come into play, such as the need for controlling the loss of pressure induced by the system
on the input fluid, or the mechanical resistance of the whole structure to the elevated thermal load.

Figure 21: Industrial gas–liquid heat exchanger design.
Figure from [169].

Figure 22: Turbine blade cooling system featuring in-
ternal cooling channels. Figure from [162].

It is suspected that many other components of aircraft engines could benefit as well from shape and
topology optimization, such as the internal cooling channels system of turbine blades [62, 162] (Figure 22).
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3 Scope of the thesis

To date, the method of Hadamard used as a topology optimization method (in which the geometry
of the optimized design is allowed to deform freely) is not yet completely mature for true industrial
applications. Most of the test cases featured in the literature are rather exclusively concerned with
linear elasticity [25, 108] or heat conduction [9, 325], with very few large scale 3-d test cases [202].
It is only relatively recently that the method is being applied on more complicated physics such as,
elastoplasticity [230] or electromagnetism [160, 213]. This trend is also visible in the the density based
topology optimization community which also features an increasing number of works on multidisciplinary
applications [116, 129, 128, 318, 319, 240, 288].

The objective of this work is to develop theory and methodologies for shape and topology optimization
of multiphysics systems, keeping in view longer term industrial requirements. The content of this thesis
is mainly concerned with the boundary variation method of Hadamard, but it also includes an opening
chapter 7 investigating mathematical aspects of the homogenization method for future fluid applications.

By specific “industrial requirements”, it is meant several identified major industrial needs that have
guided our research and which are described in the next five paragraphs. Detailed contributions of the
thesis are then summarized chapter by chapter in the next section.

Multiphysics systems

As motivated by the industrial applications of the previous section, there is an increasing demand for
topology optimization of systems involving several interacting physics. Our study shall focus on systems
featuring coupled fluid, thermal and mechanical properties. Mathematically, these are characterized by
a set of physical variables denoted as follows in this entire manuscript:

• v and p for the velocity and pressure field associated to one or more fluid phases flowing through
the system;

• T for the temperature field in solid and fluid phases;

• u for the elastic displacement of solid mechanical structures.

These variables are mathematically determined as the solutions of a set of Partial Differential Equations
(PDEs), which are themselves derived from physical modelling choices. An academic setting for the
characterization of v, p, T and u, sufficiently generic for our purposes, shall be described in chapter 2.

A significant motivation of the present work lies in the design of heat exchangers. A 2-d case study
for the optimization of two different models of heat exchangers is proposed in chapter 5.

Constrained optimization

Most industrial systems feature a variety of load specifications that must be satisfied in realistic conditions
of use. For instance, the overall mechanical stress or the temperature of a solid structure may be required
to remain below a given bound in order to avoid premature fatigue. In other words, a design optimization
problem reduces to determine the shape of a system that achieves the best performance subject to a
given set of physical constraints.

Such problems can generically be modeled as mathematical programs of the form

min
Γ

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) = 0, 1 ≤ i ≤ p,
hj(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) ≤ 0, 1 ≤ j ≤ q,

(1)

where Γ denotes the boundary of the system to be optimized, typically the interface between a solid and
a fluid structure (this may also include the case of a single phase). J refers to a given cost function which
quantifies the system performance and which is to be minimized. Classical cost functions commonly
encountered in shape optimization include the compliance of a mechanical structure, the drag force
induced by an airfoil, or the heat stored into a thermal system. Equality and inequality constraints
gi and hj model physical load specifications; they refer to target values some physical quantities need
to reach (e.g. a desired location for the center of mass of the structure) or should not exceed (e.g.
an upper bound limit for the overall temperature or a minimum feature size on the geometry). Both
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objective function J and constraints gi, hj depend both on the shape Γ and on the physical variables
v(Γ), p(Γ),u(Γ), T (Γ), which depend themselves on Γ through physical state equations.

In density methods, the design variable ρ belongs to some euclidean space Rn after discretization,
which makes mathematical program of the form of (1) solvable with classical first order optimization
methods [244, 298, 310]. In the context of the method of Hadamard, the optimization variable Γ does
not belong to any euclidean space but rather a kind of infinite dimensional manifold which makes the
resolution of (1) more delicate. Most available works using the method of Hadamard convert (1) into
an unconstrained minimization problem by adding penalization terms to the objective function J e.g.
as in the Augmented Lagrangian Method [234, 107]. More complex methods, such as Sequential Linear
Programming (SLP) or the Method of Feasible Directions (MFD) have been used with some success
in few published works [135, 150]. However, these methods still present some unsatisfying qualities for
industrial goals because they heavily rely on the selection of case dependent meta-parameters that can
be difficult to tune, especially in the presence of a large number of constraints.

In chapter 3, a novel gradient flow type algorithm is described for the resolution of constrained
optimization problems adapted to the context of the method of Hadamard.

Non-intrusiveness

For long term industrial applications, the shape optimization process should be fully compatible with the
whole system conception chain. For instance, topology optimization tools should evaluate state variables
by calling the same physical solvers used for industrial validation. Many topology optimization methods,
including density based and level set methods, do not fulfill this condition, because they rely on artificial
modifications of the state equations for pure numerical reasons.

Such need constituted one of the motivations for the systematic use of the level-set based mesh
evolution algorithm of [25] (illustrated on Figure 17) in all our numerical topology optimization test
cases. The main principles of the method are recalled in chapter 1. One of its main advantages is to
preserve an explicit mesh discretization of the optimized shape; this allows to solve for state equations
without any modification or approximation of the original physics, which could in principle be done by
an external solver. For our remeshing purposes, we relied on the open source software mmg [108].

An additional non-intrusiveness constraint which retained our attention requires that only a strict
minimal amount of information should be expected from an external user wishing to solve topology
optimization test cases. In particular, the user should be allowed to specify arbitrary objective and
constraints without being required the (rather technical) knowledge of the full derivation of Hadamard’s
shape sensitivities. In chapter 2, we provide mathematical expressions of shape sensitivities of arbitrary
functionals which can be numerically automatically assembled from the sole knowledge of their partial
derivatives.

Geometric distance constraints

Taking into account geometric distance constraints is a classical industrial need in topology optimization
due to the finite precision of the manufacturing process. These can for instance manifest into minimum
thickness or overhang constraints. They also occur in heat exchanger applications; in chapter 5, we shall
see that a non-mixing condition between two different fluid phases can also be formulated as a geometric
distance constraint.

Many works have been devoted to the integration of such constraints in topology optimization, see
[234], Chapter 3, for a review. In the context of the method of Hadamard, geometric constraints can
be taken into account thanks to formulations based on the signed distance function [30]. However the
practical implementation of shape sensitivities is highly delicate and depends very much on the type
of shape discretization used. In chapter 4, a new variational method is proposed for the numerical
evaluation of shape sensitivities of geometric constraints, which can conveniently be implemented in any
finite element setting.

Large scale problems

One last significant industrial requirement concerns the application of topology optimization to highly
resolved 3-d physical systems. The physical state equations must be solved about a hundred times during
a typical optimization process which is very computationally demanding for large scales problems, all the
more when fluid mechanics is involved. This issue has been taken into account in various works relying on
density based methods [1, 10, 71, 232, 39] and is starting to be addressed as well in evolutionary topology
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optimization [227] and in level-set methods [202]. chapter 6 presents and discusses the implementation
in FreeFEM [183] of moderately large 3-d numerical applications (involving up to 2 million degrees of
freedom) exploiting parallel computing, preconditioned iterative solvers and recent high performance
domain decomposition methods [238].

Finally, industrial heat exchanger designs such as the one illustrated on Figure 21 exemplify the need
for generating optimized multiphysics designs featuring fine multiscale structures. In chapter 7, we derive
higher order homogenized models for fluid systems which could allow for the future applicability of shape
optimization by the homogenization method for such applications.

4 Summary of chapters

Chapter 1: Shape optimization based on Hadamard’s boundary variation method

This preliminary chapter introduces background context and material on design optimization with the
method of Hadamard. We outline well-established ingredients required for an implementation workflow
of topology optimization using the level-set based mesh evolution method of [25]. We expose a summary
of the method of Hadamard including classical mathematical techniques that allow to calculates the
shape sensitivities of PDE dependent functionals. We mention the use of gradient based optimization
adapted to the infinite dimensional context. We discuss the computation of the signed distance function
and detail its mathematical properties. Finally we summarize the domain evolution method of [25] based
on level set advection and a remeshing step.

Chapter 2: Hadamard’s shape derivatives for a coupled thermal fluid structure problem

This chapter introduces a simplified thermal fluid-structure model which shall be of interest throughout
this whole work: the variables v, p, T,u are the solutions of three state equations which are weakly
coupled in the sense that each of them can be solved successively and independently. This model is
based on the steady state incompressible Navier-Stokes equations for the fluid velocity and pressure,
convection diffusion for the temperature field, and linear thermo-elasticity for the elastic displacement.
It includes previous literature studies where only one of the physics is active, while allowing for new
coupled test cases such as fluid-structure interaction in a small deformation regime or convective heat
transfer.

A significant novelty of this part is the derivation of Hadamard’s shape derivatives formulas for arbi-
trary objective functionals, which we detail and compare to more classical techniques in details. In the
literature concerned with the method of Hadamard, hypotheses on the form of the shape functional are
usually assumed: this imposes to redo the full derivation of shape derivatives for each change of objective
function or constraint, which is a burden for practical implementation in industrial software. Our for-
mulas allows to automate the computation of shape derivatives: these are assembled after the resolution
of adjoint equations from the sole knowledge of the partial derivatives of the objective functional, an
information which can be in principle provided easily by an external user.

Another contribution is to include in our analysis a type of fluid-structure interaction problem. A
surprising property lies in the coupling of the adjoint system involved in the computation of shape
sensitivities: the equality of normal stress constraints at the fluid–structure interface turns into the
matching of the respective adjoint variables values on this boundary.

The validity of our formulas is finally verified numerically on several 2-d test cases activating either
one, two, or three physics simultaneously.

Most of the content of this chapter has been published in [153]:

F. Feppon, G. Allaire, F. Bordeu, J. Cortial, and C. Dapogny, Shape optimization of a coupled
thermal fluid–structure problem in a level set mesh evolution framework, SeMA Journal, (2019), pp. 1–46.

Let us mention, however, that this chapter includes many more numerical test cases, and that some of
the test cases of the published work [153] have been improved.

Chapter 3: Null space gradient flows for constrained shape optimization

The physical model and its shape optimization context being introduced, this chapter describes the
optimization algorithm developed specifically for all our numerical test cases. We propose an optimization
scheme that can be interpreted as the discretization of a gradient flow able to see equality and inequality
constraints (a generalization of the dynamical system approaches of [317, 300]). The gradient flow is called
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Constraints
Optimum
Initialization
Optimization path
Objective function

Figure 23: Illustration of our null space gradient flow for constrained optimization. Trajectories always follow
the best feasible descent direction.

null space because the descent direction is decomposed into a null space step decreasing the objective
function tangentially to the constraints, and a range space step orthogonal to the null space step and
which gradually carries the optimization path towards the feasible domain. Optimization trajectories
are guided by the resolution of dual quadratic subproblems which indicate when to come back into the
interior of the optimization domain (Figure 23). One feature characterizing the algorithm is the ability
to decrease objective function values while maintaining constraints satisfied.

Convergence properties of the continuous trajectories are established; they guarantee the improve-
ment of optimized solutions until a local minimum is found up to the selection of a sufficiently small
discretization step. The robustness and efficiency of our method for shape optimization is demonstrated
numerically on multiple load bridge test cases featuring 10 constraints.

Most of the content of this chapter has been the object of the submitted preprint [155]:

F. Feppon, G. Allaire, and C. Dapogny, Null space gradient flows for constrained optimization
with applications to shape optimization, submitted, (2019).
The chapter contains in addition several numerical comparisons with classical algorithms on academic
test cases.

Chapter 4: A variational method for computing shape derivatives of geometric constraints
along rays

Heat exchangers applications featuring two distinct fluid phases motivate the need for taking into account
non penetration constraints in shape optimization. A very natural approach consists in requiring each of
the two phases to remain at a prescribed minimum distance from one another, which can be formulated
mathematically conveniently by means of the signed distance function. More generally, many other
geometric constraints can be formulated in this fashion, such as minimum or maximum thickness and
minimum member’s distance.

Previous works [30, 234] have proposed mathematical expressions for the derivatives of shape func-
tionals depending on the signed distance function, and have demonstrated numerically their ability to
enforce geometric constraints such as maximum or minimum thickness. However, their direct implemen-
tation is difficult because it requires numerical integration along the normal rays to the shape (Figure 24)
and accurate estimates of shape skeleton or its principal curvatures. The implementation of these oper-
ations is notoriously difficult and very much depends on the dimension (2-d or 3-d) and on the type of
shape discretization used (implicit or conforming, on a structured or unstructured mesh).

In this chapter, we demonstrate that shape derivatives of geometric constraints can in fact be obtained
from a variational problem which can be solved conveniently by the finite element method: the value
of integrals along the rays are retrieved from the variational solution values at boundary vertices. Our
method amounts, in full generality, to compute integral quantities along the characteristic curves of a
given velocity field β without requiring the explicit knowledge of these curves on the spatial discretization.
The implementation is very much simplified because it requires neither the computations of rays nor of
the shape curvatures but only that of a rather arbitrary weight vanishing approximately on the skeleton
set.

The well-posedness of the proposed variational formulation is established thanks to a detailed analysis
of the weighted graph space of the advection operator β · ∇. In the shape optimization context, β is
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Figure 24: Classical methods for computing the shape derivatives of geometric distance constraints involve the
computation of the normal rays of the shape (in red), which requires to travel along the mesh discretization.

given by the gradient of the signed distance function of the working domain, however our analysis also
includes more general vector fields satisfying a suitable set of assumptions. One novelty of our approach
is the ability to handle velocity fields with possibly unbounded divergence; classical works performing
similar analysis [144] usually assume div(β) ∈ L∞(D) where D denotes the working domain, which in
general does not hold for shape optimization applications.

The ease of implementation of our method is demonstrated for maximum and minimum thickness
constraints in structural design: we have been able to retrieve numerical results analogous to those of
previous works [30, 234] relying on explicit ray integrals.

Most of the content of this chapter is to appear in the publication [154]:

F. Feppon, G. Allaire, and C. Dapogny, A variational formulation for computing shape derivatives
of geometric constraints along rays, To appear in M2AN, (2019).

Chapter 5: Topology optimization of 2-d heat exchangers

The material developed in the previous chapters is now applied to design optimization of 2-d heat
exchangers.

In a first part, our methods are applied on the topology optimization of a liquid-liquid heat exchanger
problem with the weakly coupled model introduced in chapter 2. A non-mixing constraint for two liquid
phases exchanging their heat is formulated as a geometric distance constraint and treated with the
variational method of the previous chapter 4 (Figure 25a).

In a second part, we present a 2-d heat exchanger case study issued from a collaboration with Safran
Aero Boosters: the objective is to determine the optimal shape of transverse oil pipe cross sections
refrigerated by an input cold air flow. The test case fits well in the physical setting introduced in
chapter 2 up to a small change of boundary conditions for the thermal profile. The optimization problem
featured a minimum thickness constraint for the oil phase and a maximum pressure loss constraint for
the air phase. Our study demonstrates the ability of our shape optimization method to generate a variety
of non-classical designs in a simplified setting (Figure 25b).

Chapter 6: Towards 3-d and industrial applications: implementation recipes for a variety
of numerical test cases

This chapter discusses the implementation of numerical test cases approaching more advanced industrial
applications.

A first section describes succinctly programming paradigms of our topology optimization code devel-
oped in python and FreeFEM [183] in the context of this thesis. We then discuss delicate implementation
details specific to the 3-d context, for instance the unavoidable use of domain decomposition techniques
in conjunction with physics-dependent preconditioners.

The next section presents then a variety of new 3-d shape optimization results for different physics.
Our case studies include the classical benchmark example of the cantilever beam subject to traction or
torsion, optimal designs for heat conduction (Figure 13), optimal lift-drag profiles, up to more complex
fluid-structure interaction test cases. Thanks to the work of Moulin et. al. [238], we have been able to
solve problems featuring Navier-Stokes flows with mesh discretizations involving up to two millions of
mesh elements.
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(a) 2-d heat exchanger design featuring a non-mixing con-
straint.

(b) 2-d heat exchanger design from the SAFRAN Aero
Boosters case study.

Figure 25: Two of the optimization test cases presented in chapter 5.

(a) Structural design (b) Thermal design (c) Aerodynamic design

Figure 26: A few 3-d test cases obtained in chapter 6.

Chapter 7: High order homogenized equations for perforated problems, towards fluid topol-
ogy optimization by the homogenization method

This final chapter constitutes an opening of the thesis towards the use of the homogenization method
for topology optimization of multiphysics applications involving fluids.

It is well known that in general, optimal designs in shape optimization are composite structures.
The theory of homogenization allows to characterize the effective physics of the materials obtained by
arbitrarily complex phase mixtures: this enables to develop practical shape and topology optimization
algorithms [18]. In the context of optimal design for the mechanics of structures, the theory of homog-
enization is well known and efficient methods have been developed for generating shapes approaching
optimal composite micro-structures [27, 254] (such as those depicted on Figure 19). For fluid applica-
tions, the theory of homogenization is less clear, because classical literature [103, 11, 15, 265] identifies
three possible homogenized regimes depending on how periodic obstacles scale within their periodic cell.
To date, density based methods rely exclusively on the Brinkman model for such purposes, which turns
to be only one of these possible homogenized the three.

This part of the thesis investigates high order homogenized equations for the Stokes system in a porous
medium which capture all three regimes. These homogenized models which could serve for topology
optimization of fluid systems by applying the approach of [254, 27]. Our motivation originates from the
observation of the complexity of industrial heat exchanger designs, which combine a macroscopic shape
design together with highly resolved periodic blade structures. Classical shape optimization methods
such as the one developed above are able to determine macroscopic geometries, but are not very well
suited in the case where optimal geometries exhibit such multi-scale patterns.
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One of our main results shows that the classical three homogenized regimes can be captured by a
single higher order homogenized equation: each of them is retrieved, in low-volume fraction limits, for
particular obstacle’s shape scalings. More generally, well-posed homogenized equations are derived at
any order thanks to a method inspired from the work of Bakhvalov and Panasenko [53], Smyshlyaev and
Cherednichenko [287] and Allaire et. al. [33].

From a pedagogical perspective, we provide derivations and a mathematical analysis of high order
homogenized equations for several elliptic perforated problems (whose solutions vanish on small periodic
holes) featuring an increasing order of complexity. We first consider the case of the perforated scalar
Poisson problem, the extension to the vectorial case is then treated by studying the analogous perforated
problem in elasticity, before turning eventually to the Stokes problem where the pressure term requires
some additional work. A very striking feature is the occurrence of strange differential operators of odd
order in these homogenized equations: this fact is not standard and does not seem to have been noticed
in classical literature seeking higher order model corrections.

This final chapter does not include numerical results, which are the object of future works.





CHAPTER 1

SHAPE AND TOPOLOGY OPTIMIZATION BASED ON HADAMARD’S
BOUNDARY VARIATION METHOD
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This chapter is a review of classical background material on shape and topology optimization based
on the method of Hadamard. The first section 1.1 is a reference section for the notation that is used
throughout this whole thesis. Then section 1.2 summarizes common definitions and properties of shape
derivatives. For later comparison with the method proposed in chapter 2, classical techniques are recalled
for the derivation of shape derivatives in the context of PDE constrained problem. Section 1.3 is devoted
to the signed distance function, a central object for taking into account geometric constraints in shape
optimization. Important properties that shall be used intensively in chapter 4 are referenced, including
the sensitivity of the signed distance function with respect to the domain. Finally, section 1.4 focuses on
the practical integration of the previous ingredients into numerical algorithms. Classical implementation
steps of the Hadamard’s method for topology optimization are summarized. The gradient method and
its adaptation to the (infinite dimensional) shape optimization context is reviewed as a preliminary to
the dedicated chapter 3. Finally, we discuss the important issue of numerically representing and evolving
shapes. We mention mesh deformation and level set methods, and we summarize the level-set based
mesh evolution algorithm of [24] which we used for all our numerical shape optimization test cases.

1.1 Notation

In what follows, for d an integer and a given open set D ⊂ Rd, we denote by

Lp(D) :=

{
v measurable |

∫
D

|v|pdx < +∞
}

the space of p-integrable functions and by L∞(D) the space of bounded functions almost everywhere on
D. The Sobolev space Wm,p(D) for m ∈ N and p ∈ (1,+∞) (see [76]) is the space of functions with
derivatives up to the order k in Lp(D).

Wm,p(D) := {v measurable | ∀0 ≤ k ≤ m, ∀1 ≤ i1 ≤ . . . ≤ ik ≤ d, ∂ki1...ikv ∈ L
p(D)}.

The Hilbert space Wm,2(D) shall also be denoted by Hm(D).

37
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The norm naturally associated to a Banach space V is denoted by || · ||V , for instance

∀v ∈Wm,p(D), ||v||Wm,p(D) =

 ∑
0≤k≤m

∑
1≤i1...ik≤d

|∂ki1...ikv|
p

1/p

.

When V is a Hilbert space, its scalar product is denoted by 〈·, ·〉V . Its natural norm is then || · ||V :=

〈·, ·〉1/2V . Space of vector valued functions whose components belong to Lp(D), Wm,p(D) or Hm(D) are
respectively denoted by Lp(D,Rd), Wm,p(D,Rd) and Hm(D,Rd). The dual space of a Banach space V
is denoted by V ∗, and the identity mapping by I : V → V (the dependence with respect to V being
implicit if clear from the context).

The usual euclidean norm on Rd is denoted by || · || (without index notation) and the scalar product of
two vectors a, b ∈ Rd by a · b. We shall also use the notation

a ·M · b := aTMb

for scalar products in Rd featuring a product by a d× d matrix M ∈ Rd×d. In general, elements f ∈ Rd
that must be thought of as vectors are written in boldface, while a non bold notation x ∈ Rd is preferred
those that must be rather considered as points.

Finally, the gradient of a differentiable function f is the column vector ∇f := (∂if)1≤i≤d. The Jacobian
matrix of a differentiable vector field f is the d× d matrix ∇f := (∂jfi)1≤i,j≤d.

1.2 The boundary variation method of Hadamard for shape sensitivity of PDE

constrained problems

This section reviews the classical theory of shape differentiation by the method of Hadamard for PDE
constrained functionals. Definitions of shape derivatives and the Hadamard’s structure theorem are
recalled in section 1.2.1. Reference formulas for the shape differentiation of volume and boundary in-
tegrals are summarized in section 1.2.2. Finally, the classical steps involved in the calculation of shape
derivatives for PDE constrained functionals are reviewed in section 1.2.3. Sketch of proofs are often
included for the reader’s convenience, who will find more complete material in the classical textbooks
[17, 184, 291].

1.2.1 Shape derivatives in the sense of Hadamard

Shape optimization is concerned with the problem of finding the shape of a bounded Lipschitz domain
Ω ⊂ Rd (d = 2 or 3 in usual applications) which minimizes a given cost function J :

min
Ω

J(Ω). (1.2.1)

For the applications considered in this thesis, we shall also be interested in the slightly more general
case where the shape to optimize is a Lipschitz codimension one manifold Γ, possibly with non empty
boundary. For instance, in chapters 2 and 6, Γ represents the interface between two subdomains occupied
by fluid and solid phases.

The purpose of the method of Hadamard [184, 17, 291] is to introduce a notion of differentiation with
respect to the position of the shape Ω (or Γ) which ultimately allows to solve (1.2.1) (or more complex
problems such as (1) in the introduction) with gradient based optimization algorithms. The principle of
the method is to consider shape deformations of the form

Ωθ = (I + θ)Ω, where θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1, (1.2.2)

Γθ = (I + θ)Γ, where θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1, (1.2.3)

in either case where the shape to optimize is a bounded domain Ω or an interface Γ.
The variable θ denotes a small vector field which moves all points of Ω from x to the deformed

location x+ θ(x), as is illustrated on Figure 1.1 below. In order to estimate the sensitivity of the shape
with respect to such deformations, it is sufficient to consider “small” displacements θ; this smallness
is generally measured with the norm || · ||W 1,∞(Rd,Rd) of the set W 1,∞(Rd,Rd), which is the space of
Lipschitz bounded vector fields [76]:

W 1,∞(Rd,Rd) := {θ ∈ L∞(Rd,Rd) | ∇θ ∈ L∞(Rd,Rd×d)}.
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Ω

Ωθ

θ

Figure 1.1: Deformation of a domain Ω with the method of Hadamard. A small vector field θ is used to deform
Ω into Ωθ = (I + θ)Ω.

A classical result states that I + θ is a Lipschitz diffeomorphism whenever θ has a norm smaller than
one:

Lemma 1.1 (see [17], Lemma 6.13 p.129). For any θ ∈ W 1,∞(Rd,Rd) such that ||θ||W 1,∞(Rd,Rd) < 1,

the map I + θ is a bijection satisfying (I + θ)−1 − I ∈W 1,∞(Rd,Rd).

Sketch of proof. Formally, the inverse map is given by

(I + θ)−1 =

+∞∑
k=0

(−1)k
k times︷ ︸︸ ︷

θ ◦ · · · ◦ θ,

where the above series is convergent in the norm of W 1,∞(Rd,Rd). For a complete proof, see [17].

The shape derivative of a given functional J(Ω) is then defined by differentiation of J(Ωθ) with respect
to θ:

Definition 1.1. A shape functional J(Ω) is said shape differentiable if the mapping

W 1,∞(Rd,Rd) −→ R

θ 7−→ J(Ωθ)
(1.2.4)

is Fréchet differentiable at θ = 0, i.e. if there exists a continuous linear form

DJ(Ω) ∈W 1,∞(Rd,Rd)∗ (1.2.5)

such that the following asymptotics holds true:

J(Ωθ) = J(Ω) + DJ(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0. (1.2.6)

Remark 1.1. In case where the shape to optimize is an interface Γ, a functional J(Γ) is said shape
differentiable if θ 7→ J(Γθ) is differentiable and the shape derivative DJ(Γ)(θ) is defined analogously to
(1.2.6).

Remark 1.2. It will be convenient to write (1.2.6) with a d/dθ differential notation:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ)](θ) := DJ(Ω)(θ),

where with a little abuse of notations, we have also denoted by θ the direction in which θ 7→ J(Ωθ) is
differentiated.

Remark 1.3. W 1,∞(Rd,Rd)∗ is the dual space of W 1,∞(Rd,Rd). The notation (1.2.5) requires conse-
quently the existence of some constant C(Ω) independent of θ such that

∀θ ∈W 1,∞(Rd,Rd), |DJ(Ω)(θ)| ≤ C(Ω)||θ||W 1,∞(Rd,Rd).
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An important theoretical result known as Hadamard’s structure theorem states that under suitable
smoothness assumptions, the shape derivative DJ(Ω)(θ) of a functional J(Ω) depends only on the normal
trace component θ · n of the vector field θ deforming the bounded open set Ω.

Proposition 1.1 (Hadamard’s structure theorem [17, 184]). Let Ω a smooth bounded open set of Rd
and J(Ω) a shape differentiable functional. If θ1,θ2 ∈W 1,∞(Rd,Rd) are such that θ2 − θ1 ∈ C1(Rd,Rd)
and θ1 · n = θ2 · n on ∂Ω, then it holds

DJ(Ω)(θ1) = DJ(Ω)(θ2).

1.2.2 Shape derivatives of volume and surface functionals

The purpose of this part is to recall classical theorems involved in shape derivative calculus of volume and
surface integrals. The main tool underlying all subsequent properties is the classical change of variable
formula [184, 147, 212].

Proposition 1.2. If Φ is a Lipschitz diffeomorphism of Rd and Ω ⊂ Rd an open set, then for any
f ∈ L1(Φ(Ω)), f ◦ Φ belongs to L1(Ω) and it holds∫

Φ(Ω)

fdx =

∫
Ω

f ◦ Φ ||∇Φ||dx. (1.2.7)

We shall use as well its variant for the change of variables on co-dimension one surfaces [17, 184]:

Proposition 1.3. Let Γ a C1 codimension one surface and Φ a C1 diffeomorphism of Rd. Then for any
function f ∈ L1(Φ(Γ)), it holds f ◦ Φ ∈ L1(Γ) and∫

Φ(Γ)

fds =

∫
Γ

f ◦ Φ |det(∇Φ)| |(∇Φ)−Tn|ds, (1.2.8)

where n is any normal vector field to Γ.

Sketch of proof. Formula (1.2.8) can be deduced from the generalization of (1.2.7) to arbitrary manifolds
[212]. In that case, the change of variable from Γ to Φ(Γ) reads:∫

Φ(Γ)

fds =

∫
Γ

f ◦ Φ |det(∇Φ|T (s))|ds

where |det(∇Φ|T (s))| is the determinant of the restriction of ∇Φ to the tangent space T (s) of Γ at s and
onto the tangent space T (Φ(s)) of Φ(Γ) at Φ(s). It is clear that T (Φ(s)) is given by

T (Φ(s)) = {∇Φ(s)ξ | ξ ∈ T (s)}.

Denote n′(s) a normal vector to T (Φ(s)). The Jacobian matrix ∇Φ(s) can be written in the form of a
block matrix with respect to the decomposition Rd = Rn(s)⊕ T (s) onto Rd = Rn′(s)⊕ T (Φ(s)):




∇Φ(s)n(s)

∇Φ(s)|T (s)

0 Rn′(s)

T (Φ(s))

Rn(s) T (s)

∇Φ(s) =

This implies that the determinant of ∇Φ(s) is given by det(∇Φ(s)) = n′(s) · ∇Φ(s) · n(s) det(∇Φ|T (s)).
Finally, the relation n′(s) · ∇Φ(s) · ξ = ξ · ∇Φ(s)T · n′(s) = 0 which holds true for any ξ ∈ T (Φ(s))
implies that n(s) is proportional to ∇Φ(s)Tn′(s). This yields the following expression for n′(s) (up to
a sign change):

n′(s) =
∇Φ−Tn(s)

||∇Φ−T (s)n(s)||
, (1.2.9)

from where we infer < ∇Φ(s)n(s),n′(s) >= 1/||∇Φ−T (s)n(s)|| and the result.
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Proposition 1.4. Let Ω be a bounded open set of Rd. For any f ∈ W 1,1(Rd), the functional J(Ω)
defined by

J(Ω) :=

∫
Ω

f(x)dx

is shape differentiable and it holds

DJ(Ω)(θ) =

∫
Ω

div(fθ)dx =

∫
Ω

(∇f · θ + fdiv(θ))dx, θ ∈W 1,∞(Rd,Rd).

If in addition Ω is smooth then the above formula can be rewritten as

DJ(Ω)(θ) =

∫
∂Ω

f θ · nds, θ ∈W 1,∞(Rd,Rd).

where n denotes the outward normal to Ω.

Sketch of proof. The application of the change of variable formula yields

J(Ωθ) =

∫
(I+θ)Ω

fdx =

∫
Ω

f ◦ (I + θ) det(I +∇θ)dx =

∫
Ω

(∇f · θ + fdiv(θ))dx+ o(θ).

The boundary integral formula follows by integration by part.

The derivation of the shape derivatives of surface integrals is slightly more involved and requires some
notions of differential geometry and tangential calculus [293]. For a given smooth codimension one surface
Γ with a prescribed smooth normal vector field n, we denote by ∇Γ the tangential gradient:

∀g ∈ H1(Rd), ∇Γg := ∇g − (n · ∇g)n.

The tangential divergence of a vector field f ∈ H1(Rd,Rd) is defined by the trace of the linear operator
∇f restricted to the tangent spaces of Γ; it reads

divΓ(f) := div(f)− n · ∇f · n.

Let us now recall the classical definition of principal curvatures for the codimension one manifold ∂Ω
(see [293] for proofs and further material on differential geometry).

Proposition 1.5 (Principal curvatures). Let Γ be a C2 manifold and let n be any differentiable unit
vector field normal to Γ. The gradient of the normal ∇n satisfies:

1. ∀y ∈ Γ, ∇n(y) · n(y) = 0,

2. ∀y ∈ Γ, ∇nT = ∇n.

In other words, for any y ∈ Γ, ∇n(y) is a symmetric matrix which leaves the tangent space of Γ at y
invariant. Consequently, it can be diagonalized with d− 1 eigenvectors (τi(y))1≤i≤d−1 ∈ Rd×d belonging
to the tangent space at y and associated to d− 1 eigenvalues (κi(y))1≤i≤d−1 ∈ Rd:

∀y ∈ Γ, ∇n(y) =

d−1∑
i=1

κi(y)τi(y)τi(y)T .

The real numbers (κi(y))1≤i≤d−1 and their related basis of eigenvectors (τi(y))1≤i≤d−1 are respectively
called principal curvatures and principal directions of Γ at y.
The mean curvature of Γ is the real number κ(y) defined (up to a sign change) by

κ(y) :=

d−1∑
i=1

κi(y) = div(n(y)).

For the derivation of shape derivatives of boundary integrals, we shall also need the following identity
which is a variant of the Stokes formula on manifolds:
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Lemma 1.2. Let Γ be a smooth codimension one surface of Rd with boundary ∂Γ, f ∈ H1(Γ,Rd) and
g ∈ H1(Γ). Then it holds∫

Γ

gdivΓ(f)ds =

∫
Γ

(−∇Γg · f + κg(f · n))ds+

∫
∂Γ

gf · τds,

where τ is the outward normal to ∂Γ tangent to Γ.

Sketch of proof. The projection of f tangent to Γ is fΓ := f − (f · n)n. Stokes formula on manifolds
then reads [212] ∫

Γ

gdivΓ(fΓ)ds = −
∫

Γ

∇Γg · fΓds+

∫
∂Γ

gfΓ · τdl.

The results follows from the following identities

divΓ(f) = divΓ(fΓ) + κf · n, (1.2.10)

∇Γg · fΓ = ∇Γg · f , (1.2.11)

fΓ · τ = f · τ . (1.2.12)

The previous lemma 1.2 allows to compute shape derivatives of surface integrals.

Proposition 1.6. Let Γ a smooth codimension one surface of Rd with boundary ∂Γ. For any f ∈
W 2,1(Rd), the functional J(Γ) defined by

J(Γ) :=

∫
Γ

fds

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) =

∫
Γ

(div(fθ)− n · ∇θ · nf)ds

=

∫
Γ

(
∂f

∂n
+ κf

)
(θ · n)ds+

∫
∂Γ

fθ · τdl,

where τ denotes the outward normal to ∂Γ tangent to Γ.

Proof. The first equality follows easily from the application of (1.2.8) and differentiation with respect to
θ of ∫

Γθ

fds =

∫
Γ

f ◦ (I + θ) |det(I +∇θ)| ||(I +∇θ)−Tn||ds. (1.2.13)

The use of the previous lemma 1.2 yields the second equality because∫
Γ

div(fθ)ds =

∫
Γ

(divΓ(fθ) + n · ∇(fθ) · n)ds

=

∫
Γ

(
κf(θ · n) +

∂f

∂n
(θ · n) + n · ∇θ · nf

)
ds+

∫
∂Γ

f(θ · τ )dl.

(1.2.14)

The last result of this part provides formulas for the shape derivatives of surface integrals involving the
normal (which also depends on the shape). It is slightly less classical but is obtained thanks to very
similar techniques.

Proposition 1.7. Let Γ a smooth codimension one surface of Rd with boundary ∂Γ and differentiable
normal vector field n. For any f ∈W 2,1(Rd,Rd), the functional J(Γ) defined by

J(Γ) :=

∫
Γ

f · nds

is shape differentiable and the shape derivative reads

DJ(Γ)(θ) = =

∫
Γ

(n · ∇f · θ − n · ∇θ · f + (f · n)div(θ))ds

=

∫
Γ

div(f)(θ · n)ds+

∫
∂Γ

[(f · n)(θ · τ )− (f · τ )(θ · n)]ds,

(1.2.15)

where τ denotes the outward normal to ∂Γ tangent to Γ.
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Proof. The proposition implicitly understands that the transported unit normal nθ to Γθ = (I + θ)Γ is
given by (see formula (1.2.9))

nθ ◦ (I + θ) :=
(I +∇θ)−Tn
||(I +∇θ)−Tn||

.

Under this circumstance, J(Γθ) reads

J(Γθ) =

∫
Γθ

f · nθds =

∫
Γ

f ◦ (I + θ) · nθ ◦ (I + θ) |det(I +∇θ)| ||(I +∇θ)−Tn||ds

=

∫
Γ

f ◦ (I + θ) · (I +∇θ)−T · n |det(I +∇θ)|ds.
.

Differentiating this expression with respect to θ yields then the first equality. We then use the fact that
θ · ∇n · f = f · ∇n · θ and ∇n · n = 0 in order to write∫

Γ

(n·∇f ·θ−n·∇θ ·f)ds =

∫
Γ

(n·∇f ·n(θ ·n)−n·∇θ ·n(f ·n)+θ ·∇Γ(f ·n)−f ·∇Γ(θ ·n))ds. (1.2.16)

Applying now lemma 1.2 to treat the term depending on div(θ) in the first line of (1.2.15), we obtain:∫
Γ

(f · n)div(θ)ds =

∫
Γ

[(f · n)divΓ(θ) + (f · n)n · ∇θ · n]ds

=

∫
Γ

(−∇Γ(f · n) · θ + κ(f · n)(θ · n) + (f · n)n · ∇θ · n)ds+

∫
∂Γ

(f · n)(θ · τ )ds. (1.2.17)

It remains to sum (1.2.16) and (1.2.17) to obtain:

DJ(Γ)(θ) =

∫
Γ

(−∇Γ(θ · n) · f + κ(f · n)(θ · n) + n · ∇f · n(θ · n))ds+

∫
∂Γ

(f · n)(θ · τ )ds (1.2.18)

which is equivalent to the formula (1.2.15) after a second application of lemma 1.2.

Remark 1.4. In the case where Γ = ∂Ω is the boundary of a bounded smooth open set Ω, the result is
trivial because Stokes formula allows to write∫

Γ

f · nds =

∫
∂Ω

f · nds =

∫
Ω

div(f)dx

from where the shape derivative can be obtained directly by applying proposition 1.4.

1.2.3 Shape derivatives of PDE constrained functionals

In this last subsection we review classical methods for the calculation of shape derivatives of functionals
depending on the solutions to Partial Differential Equations (PDEs). For simplicity, we consider the
model problem of the Laplace equation 

−∆u = f in Ω

u = 0 on ΓD

∂u

∂n
= 0 on ΓN

(1.2.19)

set on a Lipschitz domain Ω, where the boundary ∂Ω = ΓD ∪ ΓN is divided into respective Dirichlet
and Neumann parts ΓD and ΓN (the setting is represented on Figure 1.2). Let V = {v ∈ H1(Ω) | v =
0 on ΓD}. Recall that u(Ω) ∈ V is the unique function solving the variational problem

Find u ∈ V such that ∀v ∈ V,
∫

Ω

∇u · ∇vdx =

∫
Ω

fvdx. (1.2.20)

In order to make the integral term of the right hand side shape differentiable, the source term f is
assumed to belong to H1(Rd), although the problem makes sense in general for f ∈ H−1(Ω).

We are concerned with the derivation of the shape derivative of a functional J(Ω, u(Ω)) depending
both on the shape Ω and on the solution u(Ω) to (1.2.19) (the dependence of u with respect to Ω shall
be omitted when the context is clear). Both Neumann and Dirichlet boundaries ΓN and ΓD are allowed



44 Chapter 1. Shape optimization based on Hadamard’s boundary variation method

Ω

ΓD

ΓN

Figure 1.2: Setting for the Poisson problem of (1.2.19).

to deform. As is customary in the classical shape optimization literature, we assume (in this chapter
only) J(Ω, u(Ω)) can be written in the form of a volume integral:

J(Ω, u(Ω)) :=

∫
Ω

j(x, u(x))dx (1.2.21)

where j : Rd × R→ R is a C1 function satisfying |∂uj(x, u)| ≤ c|u| for some constant c > 0.
As a preliminary to the derivations of chapter 2 involving more complex PDEs, the full, rigorous,

calculation of shape derivative based on Lagrangian derivatives is reviewed and compared to the so-called
“fast” but only formal derivation method of Céa in the next paragraph. We shall see later in chapter 2
how to adapt (and even shorten, see the proof of chapter 2, proposition 2.2) these derivations to obtain
formulas for arbitrary functionals J(Ω, u(Ω)).

Rigorous derivation based on Lagrangian derivatives

In this part, we follow the derivation of [184] which allows to obtain the shape sensitivity of J(Ω, u(Ω))
in a “safe” mathematically rigorous manner. The first step is to perform the usual change of variable
x = (I + θ)(y):

J(Ωθ, u(Ωθ)) =

∫
Ωθ

j(x, u(Ωθ)(x))dx =

∫
Ω

j((I + θ)(y), u(Ωθ) ◦ (I + θ)(y)) det(I +∇θ)dy. (1.2.22)

This change of variable brings into play the transported solution uθ ∈ V defined by

uθ := u(Ωθ) ◦ (I + θ).

Importantly, the function uθ has the nice property to be defined on the fixed space V , while u(Ωθ) is
defined on the space H1(Ωθ) which depends on θ. The same change of variable in (1.2.20) yields a
variational formulation satisfied by uθ:

Find uθ ∈ V such that ∀v ∈ V,∫
Ω

(I +∇θ)−T∇uθ · (I +∇θ)−T∇v det(I +∇θ)dx =

∫
Ω

f ◦ (I + θ) det(I +∇θ) vdx, (1.2.23)

We have used the elementary but very useful lemma 1.3 below when performing change of variables
involving gradients:

Lemma 1.3. Let f ∈ H1(Rd) and f ∈ H1(Rd,Rd) be respectively scalar and vectorial functions, and
θ ∈W 1,∞(Rd,Rd) with ||θ||W 1,∞(Rd,Rd) < 1. It holds

(∇f) ◦ (I + θ) = (I +∇θ)−T∇(f ◦ (I + θ)) (1.2.24)

(∇f) ◦ (I + θ) = ∇(f ◦ (I + θ))(I +∇θ). (1.2.25)

Remark 1.5. The apparent asymmetry between (1.2.24) and (1.2.25) is only related to an unfortunate
convention for the gradient notation ∇. For a vector field f , the notation ∇f := (∂jfi)1≤i,j≤d for the
Jacobian matrix is not consistent with the one for the gradient ∇f := (∂if)1≤i≤d considered as a column
vector (the Jacobian matrix of f is a linear form, hence it should be a row vector). We shall however
maintain this convention commonly assumed, introducing a different notation in chapter 3 in contexts
where a clear distinction between gradients and differential is needed.
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Remark 1.6. From a practical point of view, (1.2.24) and (1.2.25) imply that when differentiating a
variational formulation with respect to the shape:

1. the differentiation of a scalar gradient term ∇f yields a term −∇θT∇f ;

2. the differentiation of a vectorial gradient term ∇f yields a term −∇f∇θ;

3. the differentiation of dx yields a term div(θ)dx;

4. test functions v are not differentiated (because v ◦ (I + θ)−1 can be chosen in (1.2.20)) (see [17])

These properties could be used formally e.g. for obtaining (1.2.28) below directly from the differentiation
of (1.2.20) without writing actually (1.2.23).

The variational formulation (1.2.23) can be rewritten into an equation of the form F (θ, uθ) = 0 where
F is the functional

F : W 1,∞(Rd,Rd)× V → V ∗

(θ, u) 7→ v 7→
∫

Ω
(I +∇θ)−T∇u · (I +∇θ)−T∇v det(I +∇θ)dx

−
∫

Ω
f ◦ (I + θ) det(I +∇θ) vdx.

(1.2.26)
It can be verified that the partial derivative ∂F/∂u at (0, u(Ω)) is the linear operator associated to
the bilinear form (u, v) 7→

∫
Ω
∇u · ∇vdx, which is invertible from standard Lax-Milgram theory (see

[184, 185]). This allows to apply the implicit function theorem ([212], Chap. 1, Theorem 5.9), which
states that θ 7→ uθ is differentiable at θ = 0 (see also chapter 2, lemma 2.1 for more details). Its Fréchet
derivative in a direction θ is denoted

u̇(θ) :=
duθ
dθ

∣∣∣∣
θ=0

(θ) (1.2.27)

(the dependence with respect to Ω is omitted ) and it is called the Lagrangian derivative of u(Ω). A
variational formulation for u̇(θ) is obtained by differentiating (1.2.23) with respect to θ:

∀v ∈ V,
∫

Ω

∇u̇(θ) · ∇vdx =

∫
Ω

(∇θ +∇θT − div(θ)I)∇u · ∇vdx+

∫
Ω

div(fθ)vdx. (1.2.28)

Remark 1.7. The Lagrangian derivative u̇(θ) is the Fréchet derivative of θ 7→ u(Ωθ) ◦ (I +θ). Another
possible way to differentiate the domain dependent function u(Ω) is to consider the (Gâteaux) differential
of the map θ 7→ u(Ωθ)(x) for a fixed x, which is denoted

∀x ∈ Ω, u′(θ)(x) :=
d

dθ
u(Ωθ)(x)

and is called the Eulerian derivative of u(Ω). Although this definition could seem more natural at first
glance, the Eulerian derivative does not systematically exists in the same solution space than u(Ω).
Indeed, a formal computation shows that Eulerian and Lagrangian derivatives are related by the formula

u′(θ)(x) = u̇(θ)(x)−∇u(x) · θ(x).

In our case, the Lagrangian derivative u̇(θ) is an element of H1(Ω), however ∇u(x) only belongs to
L2(Ω), which implies that u′(θ) has less regularity than u̇(θ).

Coming back to J(Ωθ, u(Ωθ)) in (1.2.22), the use of the chain rules yields then

J(Ωθ, u(Ωθ)) = J(Ω) +

∫
Ω

(
∇xj(x, u(x)) · θ + j(x, u(x))div(θ) +

∂j

∂u
(x, u(x))u̇(θ)

)
dx+ o(θ). (1.2.29)

The formula is not yet satisfactory because (i) it involves the computation of u̇(θ) which requires the
resolution of (1.2.28) for any vector field θ, and (ii) it does not satisfy the Hadamard’s structure theorem
of proposition 1.1. The classical trick is to introduce an adjoint variable p ∈ V solution to the variational
problem

Find p ∈ V such that ∀v ∈ V,
∫

Ω

∇p · ∇vdx =

∫
Ω

∂j

∂u
(x, u(x))vdx. (1.2.30)
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The above equation means that p is the solution of the Poisson problem
−∆p =

∂j

∂u
(x, u(x)) in Ω

p = 0 on ΓD

∂p

∂n
= 0 on ΓN .

(1.2.31)

Inserting v = u̇(θ) in (1.2.30) and using (1.2.28) with v = p yields indeed∫
Ω

∂j

∂u
(x, u(x))u̇(θ)dx =

∫
Ω

∇p · ∇u̇(θ)dx =

∫
Ω

(∇θ +∇θT − div(θ)I)∇u · ∇pdx+

∫
Ω

div(fθ)pdx.

Replacing the above formula into (1.2.29) yields the well known volumetric expression of the shape
derivative of J(Ω, u(Ω)).

Proposition 1.8. Assume Ω ⊂ D is a Lipschitz bounded open set and f ∈ H1(Rd). The functional
J(Ω, u(Ω)) defined by (1.2.21) is shape differentiable and the shape derivative reads

d

dθ
[J(Ωθ, u(Ωθ))](θ) =

∫
Ω

(
∂j

∂x
(x, u(x)) · θ + j(x, u(x))div(θ)

)
dx

+

∫
Ω

[(∇θ +∇θT − div(θ)I)∇u · ∇p+ pdiv(fθ)]dx. (1.2.32)

Remark 1.8. Classically and importantly, no further regularity of the state solutions u and p is required
for the volume expression (1.2.32) to make sense. However, further regularity is needed for either rewriting
it in the form of a boundary integral (see below).

The expression (1.2.32) is better than (1.2.29) in the sense that it does not depend on u̇(θ), however it
can still be simplified in order to obtain a boundary expression satisfying Hadamard’s structure theorem.
Such is obtained through an integration by part eliminating the derivatives of θ. Higher order derivatives
of u and p are going to appear in the process: specifically, we need H2 regularity of u and p, which
generally holds if Ω is smooth except on a neighborhood of the interface ΓD ∩ΓN between the Neumann
and Dirichlet boundary (see [176] and [114] for a rigorous treatment of such issue in shape optimization).

Therefore, we assume for now that Ω is a smooth domain and that a neighborhood ω of ΓD ∩ΓN ⊂ ω
is fixed: θ = 0 on ω. Therefore, it holds u, p ∈ H2(Ω\ω) which allows us to perform the following
integration by part:∫

Ω

[(∇θ +∇θT − div(θ)I)∇u · ∇pdx = −
∫

Ω

θ · (div(∇p⊗∇u+∇u⊗∇p)−∇(∇u · ∇p))dx

+

∫
∂Ω

[(θ · ∇p)(∇u · n) + (θ · ∇u)(∇p · n)− (∇u · ∇p)(θ · n)]ds. (1.2.33)

A small calculation allows to simplify the volume integrand:

−[div(∇p⊗∇u+∇u⊗∇p)−∇(∇u · ∇p))] = −∆u∇p−∆p∇u

= f∇p+
∂j

∂u
(·, u)∇u.

(1.2.34)

Then the volume integrals involving j in (1.2.32) and (1.2.34) can be rewritten as follows:∫
Ω

(
∂j

∂x
(x, u(x)) · θ + j(x, u(x))div(θ) +∇u · θ ∂j

∂u
(x, u(x))

)
dx

=

∫
Ω

div(j(x, u(x))θ)dx =

∫
∂Ω

j(x, u(x))θ · nds. (1.2.35)

The volume terms involving p can also be treated in the same manner:∫
Ω

(pdiv(fθ) +∇p · θf)dx =

∫
Ω

div(fpθ)dx =

∫
∂Ω

fpθ · nds.
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Finally, using the boundary conditions satisfied by u and p, the surface integral term of (1.2.33) can be
rewritten∫

∂Ω

[(θ · ∇p)(∇u · n) + (θ · ∇u)(∇p · n)− (∇u · ∇p)(θ · n)]ds

=

∫
ΓD

∂u

∂n

∂p

∂n
θ · nds−

∫
ΓN

∇u · ∇p (θ · n)ds.

All in all, we have obtained

Proposition 1.9. Assume Ω is smooth and f ∈ H1(Rd). If θ = 0 on a neighborhood of ΓD ∩ ΓN , then
the shape derivative of J(Ω, u(Ω)) given by (1.2.32) rewrites as a boundary integral involving only the
normal trace component θ · n of θ:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) =

∫
∂Ω

(j(x, u(x)) + fp)θ · nds+

∫
ΓD

∂u

∂n

∂p

∂n
θ · nds−

∫
ΓN

∇u · ∇p (θ · n)ds.

(1.2.36)

Remark 1.9. As emphasized in e.g. [168, 312], the volume expression (1.2.32) requires less regularity on
the data (only the one obtained from the variational setting) than (1.2.36). For example, it is well-known
that uf , us may fail to be H2 functions when the domains Ωs or Ωf involve corners [76, 176]; in such
case (1.2.32) remains valid while the surface expression (1.2.36) may become invalid. Furthermore, some
authors have found evidence that the Fréchet derivatives of shape functional are better approximated
when discretizing the volume form [188]. Let us note, however, that regularity assumptions are still
needed (i.e. DJ(Ω) continuous over H1(D,Rd) and not only W 1,∞(D,Rd)) if one wants to identify
DJ(Ω) with a H1 scalar product.

Céa’s “fast” derivation method

The previous result (1.2.36) shall now be retrieved with Céa’s classical method, which is faster in the
sense that it circumvents the need for computing the Lagrangian derivative u̇ (eqn. (1.2.27)). However,
the computation is only formal and is prone to errors. This part follows [17], section 6.4.3, in a slightly
more complicated context. The principle of the method is to introduce a Lagrangian function

L(Ω, û, p̂, λ̂) :=

∫
Ω

j(x, û(x))dx+

∫
Ω

(f + ∆û)p̂dx+

∫
ΓD

λ̂ûds+

∫
ΓN

λ̂
∂û

∂n
ds (1.2.37)

defined for û, p̂, λ̂ ∈ H1(Rd) (they are defined on Rd and not on Ω to make them independent from

the shape Ω). The variable λ̂ is a Lagrange multiplier for boundary constraints, and p̂ is a Lagrange
multiplier for the PDE constraint (1.2.19) satisfied by the solution u(Ω). In other words, the partial

derivatives of the Lagrangian L with respect to p̂ and λ̂ cancel at û = u where u is the solution to the
Poisson problem (1.2.19):

∀p̂, λ̂ ∈ H1(Rd),
∂L
∂p̂

(Ω, u, p̂, λ̂) = 0 and
∂L
∂λ̂

(Ω, u, p̂, λ̂) = 0.

The values of p̂ and λ̂ are sought in order to cancel the partial derivative ∂L/∂û for û = u. Performing
a double integration by part, it holds:

∀v ∈ H1(Rd),
∂L
∂û

(Ω, u, p̂, λ̂)(v) =

∫
Ω

∂j

∂u
(x, û(x))vdx+

∫
Ω

p̂∆vdx+

∫
ΓD

λ̂vds+

∫
ΓN

λ̂
∂v

∂n
ds

=

∫
Ω

∂j

∂u
(x, û(x))vdx+

∫
Ω

v∆p̂dx+

∫
∂Ω

(
p̂
∂v

∂n
− v ∂p̂

∂n

)
ds+

∫
ΓD

λ̂vds+

∫
ΓN

λ̂
∂v

∂n
ds. (1.2.38)

Therefore this partial derivative vanishes by setting p̂ = p where p is the adjoint variable defined by
(1.2.30), and

λ̂ = λ :=


∂p

∂n
on ΓD

−p on ΓN .
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The boundary expression for the shape derivative of J(Ω, u(Ω) follows then by remarking that

J(Ωθ, u(Ωθ)) = L(Ωθ, u(Ωθ), p̂, λ̂)

for any p̂, λ̂ ∈ H1(Rd), which allows to write

d

dθ
[J(Ωθ, u(Ωθ))](θ) =

d

dθ
[L(Ωθ, u(Ωθ), p̂, λ̂)]

=
∂

∂θ
(L(Ωθ, u(Ω), p̂, λ̂))(θ) +

∂L
∂û

(Ω, u(Ω), p̂, λ̂)(u′(θ)).

(1.2.39)

where

u′(θ) =
d

dθ
u(Ωθ) (1.2.40)

is the Eulerian derivative of u(Ω) (remark 1.7). Setting p̂ = p and λ̂ = λ in (1.2.39) allows to cancel the
term involving u′(θ), which yields then

d

dθ

∣∣∣∣
θ=0

[J(Ωθ, u(Ωθ))](θ) =
∂

∂θ
[L(Ωθ, u(Ω), p, λ)]

=

∫
∂Ω

j(x, u(x))θ · nds+

∫
ΓD

(
κ+

∂

∂n

)(
∂p

∂n
u

)
θ · nds−

∫
ΓN

div(p∇u)θ · nds

=

∫
∂Ω

j(x, u(x))θ · nds+

∫
ΓD

∂u

∂n

∂p

∂n
θ · nds+

∫
ΓN

(fp−∇u · ∇p)θ · nds.

Note the use of proposition 1.7 with the assumption that θ = 0 on ∂ΓN in the shape differentiation of
the term ∫

ΓN

λ
∂u

∂n
ds =

∫
ΓN

(λ∇u) · nds.

This expression coincides with (1.2.36) remembering the boundary conditions satisfied by u and p. Albeit
this method allows to avoid to explicit Eulerian or Lagrangian derivatives u′(θ) and u̇(θ), it remains
rather technical and does not work without hypothesis on the objective functional. Furthermore, this
method remains formal (and may even yield wrong formulas, see e.g. [253]) because (i) the Eulerian
derivative u′(θ) (eqn. (1.2.40)) has less regularity than u(Ω), which could imply

∂L
∂û

(Ω, u(Ω), p, λ)(u′(θ)) 6= 0,

and (ii) the Lagrangian L defined in (1.2.37) implicitly assume very high regularity for u and p.

1.3 On the signed distance function and its main properties

The signed distance function to a domain (as illustrated on Figure 1.3) is a mathematical object com-
monly used in a variety of applications of the level-set method [96, 248, 280, 247] (reviewed in section 1.4.2
below). In the field of shape optimization based on the method of Hadamard, it also allows to formulate
geometric distance constraints such as minimum or maximum thickness [234, 30]. Its definition and reg-
ularity properties are summarized in section 1.3.1. Section 1.3.2 recalls then differentiability results with
respect to the domain and their use for obtaining the shape derivatives of distance constraints. Finally, a
few words are given in section 1.3.3 regarding the numerical computation of the signed distance function
on discretization meshes. The reader is referred to [64, 119, 122, 23] for proofs and much more exhaustive
material.

1.3.1 Definition of the signed distance function and its first two derivatives

Definition 1.2 (Signed distance function). The signed distance function to a bounded open domain
Ω ⊂ Rd is the function

dΩ : Rd → R

defined for any x ∈ Rd by

dΩ(x) =


− inf
y∈∂Ω

||x− y|| if x ∈ Ω,

inf
y∈∂Ω

||x− y|| if x /∈ Ω.
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(a) Meshed subdomain Ω ⊂ D (in blue) of a computational
domain D.

(b) Isocontours of the signed distance function dΩ.

(c) 3-d plot of dΩ.

Figure 1.3: Example of signed distance function dΩ numerically computed on a meshed domain.
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It is obvious that (i) dΩ(x) = 0 for any x ∈ ∂Ω, and (ii) that the infimum involved in the definition of Ω
is attained in possibly several points of ∂Ω that are called projections onto ∂Ω. It is useful to distinguish
points that admit a unique projection from the others.

Definition 1.3 (Skeleton set and projection).

1. The set of points x ∈ Rd for which the minimization problem

min
y∈∂Ω

||x− y|| (1.3.1)

admits several minimizers is called the skeleton of Ω and is denoted by Σ.

2. For any x ∈ Rd\Σ, the unique minimizer of (1.3.1) is denoted p∂Ω(x) and is called the (orthogonal)
projection of x onto ∂Ω, in that case it holds

∀x ∈ Rd\Σ, dΩ(x) =

{
−||x− p∂Ω(x)|| if x ∈ Ω,

||x− p∂Ω(x)|| if x /∈ Ω.

The skeleton Σ of a domain Ω and the projection p∂Ω are illustrated on Figure 1.4.

Figure 1.4: Shape Ω ⊂ Rd, skeleton Σ with normal rays (ray(y))y∈∂Ω, outward normal vector n, center of
curvature C and orthogonal projection of a point x ∈ D onto ∂Ω.

It is elementary to show that without any further assumption, dΩ is a Lipschitz map with Lipschitz
constant smaller than one. Therefore, from Rademacher’s theorem [146, 147], dΩ is differentiable almost
everywhere, and it can be proved that dΩ is actually differentiable on Rd \ (Σ ∪ ∂Ω) which implies that
Σ has zero Lebesgue measure (see [122, 146]). It is possible to be more explicit in the case where Ω is a
C1 domain:

Proposition 1.10 (Differentiability of dΩ). Assume Ω is a C1 domain with outward normal n. The
signed distance function dΩ is differentiable at any point x ∈ Rd\Σ, and it is not differentiable on Σ.
The gradient ∇dΩ is an extension of the unit normal vector n to ∂Ω pointing outward Ω:

∀x ∈ Rd\Σ, ∇dΩ(x) = n(p∂Ω(x)). (1.3.2)

In particular, dΩ solves the so-called “Eikonal” equation:{
||∇dΩ|| = 1 in Rd \ Σ,

dΩ = 0 on ∂Ω.
(1.3.3)

Formulas for the differential of the projection map p∂Ω and the Hessian ∇2dΩ are available under the
additional assumption that Ω is a domain of class C2, referring to [2, 122] for less regular contexts. In
that case, the use of the basis (τi)1≤i≤d−1 associated with the principal curvatures (κi)1≤i≤d−1 of ∂Ω
(proposition 1.5) yields (see [36, 64, 82, 157] for proofs):
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Proposition 1.11 (Differentiability of p∂Ω and Hessian of dΩ). If Ω is a C2 bounded domain, then the
following properties hold:

1. for any point x ∈ Rd\Σ, one has:

1 + κi(p∂Ω(x))dΩ(x) > 0, i = 1, ..., d− 1;

2. the projection p∂Ω is differentiable on Rd\Σ and

∀x ∈ Rd\Σ, ∇p∂Ω(x) =

d−1∑
i=1

1

1 + κi(p∂Ω(x))dΩ(x)
τi(p∂Ω(x))τi(p∂Ω(x))T ; (1.3.4)

3. the signed distance function dΩ is twice differentiable on Rd\Σ and the Hessian ∇2dΩ is given by

∀x ∈ Rd\Σ, ∇2dΩ(x) =

d−1∑
i=1

κi(p∂Ω(x))

1 + κi(p∂Ω(x))dΩ(x)
τi(p∂Ω(x))τi(p∂Ω(x))T .

If in addition, Ω is a C3 domain, then Rd \ Σ has zero Lebesgue measure (see [223]).

Remark 1.10. The projection p∂Ω is not differentiable on the boundary ∂Σ of the skeleton Σ. Indeed
(see Figure 1.4 and [82, 157]), a point C ∈ Rd belongs to the closure Σ either because it lies on Σ, or
because it is a center of curvature of ∂Ω, i.e. there exists y ∈ Π∂Ω(C) and i = 1, ..., d− 1 such that

1 + dΩ(C)κi(y) = 0 .

Remark 1.11. Formula (1.3.4) can be generalized to arbitrary embedded smooth manifolds, see e.g.
[157, 156] where it is used in the context of matrix manifolds for the differentiation of matrix decompo-
sitions.

1.3.2 Differentiability of the signed distance function with respect to the domain and
shape derivatives of distance functionals

Delfour and Zolésio [120] followed by [23, 107] demonstrated that the function dΩ is differentiable with
respect to the shape Ω in the following sense:

Proposition 1.12 ([23], Proposition 3.5). For any x /∈ Σ, the map θ 7→ d(I+θ)Ω(x) is Gâteaux-

differentiable at θ as an application from W 1,∞(Rd,Rd) into Rd and its derivative reads

d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Sketch of proof. A formal proof of this result is obtained as follows. Recall the signed distance function
dΩ satisfies {

||∇dΩ(x)|| = 1 in Rd\Σ
dΩ(x) = 0 on ∂Ω.

Differentiating the first equality with respect to Ω yields formally ∇dΩ ·∇(d′Ω(θ)) = 0, which means that
d′Ω(θ) is constant along the rays normal to the shape. One then rewrites the second equality in a weak
sense on the deformed domain Ωθ = (I + θ)Ω:

∀φ ∈ H1(Rd),
∫
∂Ωθ

φ ◦ (I + θ)−1dΩθ
(y)dy = 0.

Differentiating this equation with respect to θ then yields

∀φ ∈ H1(Rd),
∫
∂Ω

φ (κdΩ +∇dΩ · n)θ · ndy +

∫
∂Ω

φd′Ω(θ)dy = 0,

from where d′Ω(θ) = −θ · n on ∂Ω follows.
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In practice, this result is used for taking into account geometric constraints expressed as an integral
criterion involving the signed distance function. Let D ⊂ Rd be a “hold-all” domain containing Ω ⊂ D
as a subdomain. A geometric constraint functional P (Ω) is typically written in the form

P (Ω) :=

∫
D

j(dΩ(x))dx (1.3.5)

where j : R → R is a given C1 function. Maximum thickness, minimum thickness, minimum member’s
distance [30, 234], or the stress energy of a multimaterial medium involving a smooth interface [23] can
be formulated in this form. The application of proposition 1.12 yields that the shape derivative of P (Ω)
is (in a Gâteaux differentiability sense):

P ′(Ω)(θ) =

∫
D

j′(dΩ(x))d′Ω(θ)(x)dx. (1.3.6)

This formula is, at first glance, not satisfying because it does not satisfy Hadamard’s structure theorem
(proposition 1.1). A more explicit expression is obtained thanks to a suitable change of variable which
involves integrals along the normal rays to the shape. More precisely, for y ∈ ∂Ω, the ray emerging from
y is defined to be the one-dimensional segment

ray(y) :=
{
x ∈ D\Σ, p∂Ω(x) = y

}
.

The application of the coarea formula (decomposing D onto the level sets of p∂Ω, see [23]), or a suitable
change of variable (detailed later in chapter 4) yields:

P ′(Ω)(θ) =

∫
∂Ω

(∫
z∈ray(y)

j′(dΩ(z))

d−1∏
i=1

(1 + κi(y)dΩ(z))dz

)
θ(y) · n(y)dy

which verifies Hadamard’s structure theorem. This formula remains however very delicate to implement
in practice; we shall introduce a new characterization for P ′(Ω)(θ) in chapter 4 which allows to evaluate
the above integral without the need for explicitly calculating ray(y) nor the shape curvatures κi(y) from
the discretization of ∂Ω.

1.3.3 Numerical methods for the computation of the signed distance function

In practical PDE constrained shape optimization algorithms, the domain Ω ⊂ D to optimize is known
only in a discrete form. Most common types of discretization can be broadly divided into two categories:

1. explicit discretization: the shape Ω is explicitly discretized into a finite element mesh, such as in
the example of Figure 1.3a.

2. implicit discretization: the shape Ω is implicitly represented by nodal values of a level set function
φ discretized on a fixed meshed domain D:

Ω = {x ∈ D |φ(x) < 0}.

In that case, the shape Ω is retrieved from the 0 isocontour of the level set φ, as visible on
Figure 1.3b.

Various numerical algorithms exist for computing the signed distance function dΩ in these various
discrete settings. These generally rely on the fact that dΩ is a viscosity solution of the Eikonal equation
(1.3.3), which can be computed as a steady-state solution of the so called “redistanciation” equation:

∂tφ+ sign(φ)(||∇φ|| − 1) = 0. (1.3.7)

It can be shown that the viscosity solution φ(t, ·) of (1.3.7) (see [61]) converges indeed to dΩ where
Ω = {x ∈ D |φ(0, x) < 0}. This can be used:

1. to devise numerical schemes on fixed grid transforming an input level set function φ(0, ·) into a
signed distance function dΩ, see e.g. [247], chapter 7. This is of particular interest in implicit
methods because the signed distance function is a particular level set function characterized by
good numerical properties [247];
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2. to devise numerical algorithms on triangular or tetrahedral mesh to build the signed distance func-
tion of a subdomain discretized as a submesh, provided the distance has been computed first on
vertex adjacent to the subdomain boundary. This approach is e.g. followed by [111] and imple-
mented in the software mshdist, which we used in our own implementations of shape optimization
test cases.

Several other methods exist for the computation of the signed distance function such as the Fast Marching
Method (see [280], or [204] for a version on simplicial meshes), or the Fast Sweeping method [323]; the
reader is referred to [107], section 1.3.1. for a review.

1.4 A classical shape optimization numerical workflow using a level-set based

mesh evolution method

This last section describes the classical main steps involved in the numerical implementation of the
method of Hadamard in order to solve shape optimization problems of the form

min
Ω

J(Ω), (1.4.1)

where J may depend on the solutions to some partial differential equations as in (1.2.21).

In practice, additional equality or inequality constraints come into play in most applications. For now,
it is sufficient to assume that these can be treated by penalization techniques which reduce constrained
problems to unconstrained one of the same form of (1.4.1), This approach has been actually commonly
used in literature dealing with problems featuring only a few constraints [190, 203, 29, 234]. For instance,
if there is only one constraint P (Ω) = 0, the Augmented Lagrangian Method [244] considers

min
Ω

J(Ω) + λP (Ω) +
1

2
µP (Ω)2, (1.4.2)

where λ and µ are tuning parameters which may be updated in the course of the optimization process.
This method is unsatisfying for a number of reasons; for constrained optimization with an arbitrary
number of constraints, all our numerical examples rely in fact on a different algorithm which is described
in details in the dedicated chapter 3.

The main steps of a typical topology optimization algorithm for the minimization of PDE constrained
functionals are summarized in algorithm 1.1 below. These algorithms involve two classical cornerstones:
the computation of a descent direction (a vector field θ ∈ W 1,∞(Rd,Rd) yielding improved design
shapes), and the representation and practical updates of shapes in the numerical setting. These two
steps are reviewed in details in the next two sections. section 1.4.1 reviews the well known necessity
to regularize and extend the shape derivative and its consistency with respect to the gradient method.
Then, the problem of numerically evolving shapes is discussed in sections 1.4.1 and 1.4.2, which includes
a summary of the level set mesh evolution method which we used in our numerical test cases in the latter
section.

Algorithm 1.1 Shape optimization with the method of Hadamard and a level set based mesh evolution
algorithm.

Generate an initial mesh T0 for a computational domain D adapted to a first guess subdomain
Ω0 ⊂ D.
for n = 0, 1, 2 . . . do

1. Solve the physical equations posed on Ωn (e.g. (1.2.19)).
2. Assemble the shape derivative DJ(Ωn) (e.g. (1.2.36) and section 1.2.2) after solving adjoint
equations (such as (1.2.30)).
3. Identify the shape derivative DJ(Ωn) to a gradient ∇J(Ωn) by solving an extension regulariza-
tion problem of the form of (1.4.4) (see section 1.4.1).
4. Update the shape according to the descent direction θn = −∆t∇J(Ωn) where ∆t is a small
discretization step. This can be done by using mesh deformations (with (1.4.3)) or with the level
set based mesh evolution algorithm of algorithm 1.2 (with (1.4.12)), see section 1.4.2.

end for
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1.4.1 Gradient based optimization in the context of the method of Hadamard: identifica-
tion, regularization, and extensions of shape derivatives

Numerical algorithms for solving shape optimization problems of the form

min
Ω

J(Ω).

compute a minimizing sequence of domains (Ωn)n∈N which gradually decrease the objective function
J(Ω). In the context of the method of Hadamard, the domain Ωn+1 is obtained by deformation of Ωn
along a vector field θn ∈W 1,∞(Rd,Rd):

Ωn+1 = (I + θn)Ωn, ∀n ≥ 0. (1.4.3)

The principle of the gradient method is to use the knowledge of the shape derivative in order to build a
descent direction θn that decreases the objective function J(Ω) in some optimal sense.

In this infinite dimensional context, the shape derivative DJ(Ω) of the objective function J(Ω) at a
given domain Ω is not strictly speaking a descent direction: indeed, DJ(Ω) belongs to the dual space
W 1,∞(Rd,Rd)∗ and not to W 1,∞(Rd,Rd) itself. This issue is numerically related to the extension and
regularization step of the shape derivative, which is very classical issue acknowledged in a number of works
since the early developments of shape optimization [87, 86, 49, 48, 81, 34, 117, 236]. Practically, a descent
direction can be obtained by identifying the linear form DJ(Ω) ∈ W 1,∞(D,Rd)∗ to an actual gradient
∇J(Ω) ∈W 1,∞(D,Rd). To do so, it is sufficient to consider a Hilbert space V sufficiently “small” for the
inclusion V ⊂ W 1,∞(Ω,Rd) to hold. The converse inclusion for the dual spaces, W 1,∞(Ω,Rd)∗ ⊂ V ∗,
implies the continuity of DJ(Ω) on V . Therefore, denoting by 〈·, ·〉V the scalar product of V , the standard
Riesz representation theorem [76, 49, 81, 117] yields the existence of a unique element ∇J(Ω) ∈ V such
that

∀θ ∈ V, 〈∇J(Ω),θ〉V = DJ(Ω)(θ). (1.4.4)

The opposite of the vector field ∇J(Ω) ∈ V ⊂ W 1,∞(D,Rd) can then serve as a descent direction to
obtain a better shape. Indeed, it holds for any sufficiently small step size ∆t > 0

J((I −∆t∇J(Ω))Ω) = J(Ω)−∆tDJ(Ω)(∇J(Ω)) + o(∆t)

= J(Ω)−∆t〈∇J(Ω),∇J(Ω)〉V + o(∆t),
(1.4.5)

with −〈∇J(Ω),∇J(Ω)〉V ≤ 0, which shows that updating Ω by deformation with the vector field θ =
−∆t∇J(Ω) leads to a non-increase of the objective function. Furthermore, −∇J(Ω) is a “best” descent
direction in the sense that it is better than any other element of V having the same norm: in chapter 3,
we recall that if DJ(Ω) 6= 0, then

− ∇J(Ω)

||∇J(Ω)||V
= min

θ∈V,
||θ||V ≤1

DJ(Ω)(θ).

As for the choice of the Hilbert space V ⊂ W 1,∞(D,Rd) used in the identification (1.4.4), one can
set V = Hm(D,Rd) with m > 1 + d/2, equipped with its standard inner product: indeed, the inclusion
Hm(D,Rd) ⊂W 1,∞(D,Rd) holds as a consequence of the Sobolev embedding theorem [76]. In this case,
the identification problem (1.4.4) reduces to a linear elliptic problem of order 2m. What is more, when
DJ(Ω)(θ) can be written in the form of a boundary integral, namely when there exists vJ(Ω) ∈ L1(∂Ω)
such that

∀θ ∈W 1,∞(D,Rd), DJ(Ω)θ =

∫
∂Ω

vJ(Ω) θ · nds, (1.4.6)

then ∇J(Ω) ∈ Hm(D,Rd) is a regularized extension of the field vJ(Ω)n to the whole domain D, which
turns to be very convenient for practical numerical algorithms.

A very common strategy in the literature (see for instance [34, 49, 81, 153, 117, 236]) , though,
consists in taking simply V = H1(D,Rd) with the inner product

∀θ,θ′ ∈ V, 〈θ,θ′〉V :=

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx, (1.4.7)

where γ > 0 is a user-defined parameter which can physically be interpreted as a length-scale for the
regularity of the deformations θ; typically, γ is of the order of the minimum mesh element size of the
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discretization. Variants can be considered for tuning more finely the smoothness of such extensions, or to
prescribe non optimizable boundaries by setting zero Dirichlet boundary conditions for ∇J(Ω) in (1.4.6).
This choice of V is a priori only formal because V is not rigorously a subspace of W 1,∞(D,Rd): it
works only if DJ(Ω) is continuous over H1(D,Rd). This condition is actually not a limitation because it
turns to be often satisfied for PDE constrained problems under suitable regularity assumptions on Ω and
the data. Furthermore, this choice is very convenient numerically because this space is easily discretized
with P1 finite elements. Since this leads to very good results in practice, we rely on this strategy in our
own numerical implementation.

Last, it is possible to even reduce the cost of the computation of ∇J(Ω) to the one of the resolution
of a simple scalar elliptic problem if one considers V = {v∇dΩ | v ∈ H1(Ω)} equipped with the scalar
product 〈·, ·〉V defined by

∀v, w ∈ H1(Ω), 〈v∇dΩ, w∇dΩ〉V :=

∫
Ω

(γ∇v · ∇w + vw)dx. (1.4.8)

Remembering that ∇dΩ(x) = n(p∂Ω(x)) is a continuous extension of the outward vector field normal to
∂Ω (proposition 1.10), (1.4.4) reduces to the identification of a single normal component v for the updating
vector field θ = −v∇dΩ. In practice, one resorts to (1.4.8) when using boundary integral expressions of
shape derivatives such as (1.2.36), and to (1.4.7) when relying rather on volumetric expressions of the
form of (1.2.32).

1.4.2 Numerical representations and updates of shapes: mesh deformations, level set
methods, and level set based mesh evolution method

One of the key issues of shape optimization algorithms lies in the numerical implementation of the
shape update step (1.4.3). This step involves (i) a numerical representation of the shape Ωn and (ii) a
process that allows to obtain a new shape Ωn+1 in this representation from a displacement vector field
θn. Furthermore, in a context involving partial differential equations, the numerical representation of Ω
should be compatible with physical solvers relying e.g. on the Finite Element method.

In what follows, two complementary numerical representations of shapes together with their related
method for updating them are briefly reviewed: explicit methods which evolve a meshed representation,
and level set methods. Then, we briefly describe the main steps of the level set mesh evolution algorithm
of Allaire, Dapogny and Frey [25], which combines advantages of both representations.

Explicit mesh representations and nodal displacements

The first implementations of the method of Hadamard for shape optimization were considering explicit
discretizations of shapes [259, 86, 34]. An open domain Ω is typically represented by a simplicial mesh
(a set of triangles or tetrahedra) which is globally conforming in the sense that the intersection between
any two triangles or tetrahedra is either empty, or reduced to a vertex, or an edge, or a triangle of the
mesh (Figure 1.5).

This representation is convenient for computing solutions to partial differential equations on Ω with
the finite element method domain such as (1.2.19), as well as volume or surface integrals involved in
the evaluation of shape derivatives such as (1.2.32) and (1.2.36). Furthermore, it is easily amenable to
small deformation updates by translations of mesh vertices. If Ω is discretized into a mesh involving N
vertices x1, . . . , xN , then a deformed shape (I +θ)Ω with θ ∈W 1,∞(Rd,Rd) is obtained by applying the
transformation

xi ← xi + θ(xi), 1 ≤ i ≤ N.

The process is not computationally expensive and can be iterated in order to implement (1.4.3) for
obtaining a minimizing sequence Ωn from descent updates θn until a final design. However, it is well-
known [259] that in very few iterations, the quality of the deformed mesh may quickly decrease due to
the occurrence of nearly flat or inverted mesh elements, calling for the use of remeshing, or for the use
of other numerical shape representations.

Level set methods: advection and Hamilton-Jacobi equations

The level set method was initially introduced by S. Osher and J. Sethian for solving free boundary
problems in fluid mechanics [248], before being used for shape optimization in [31, 32, 250, 281, 311].



56 Chapter 1. Shape optimization based on Hadamard’s boundary variation method

xi θ(xi)

xi + θ(xi)

Ω

(I + θ)Ω

Figure 1.5: Discretization of a 2-d domain Ω in a simplicial mesh and its deformation by application of a
displacement vector field θ.

Given a fixed computational domain D, it amounts to representing any subdomain Ω ⊂ D as the negative
subdomain of a scalar “level set” function φ : D → R:

φ(x) < 0 if x ∈ Ω,

φ(x) = 0 if x ∈ ∂Ω,

φ(x) > 0 if x ∈ D \ Ω.

(1.4.9)

The motion of a domain Ω(t) in D according to a vector velocity field θ(x) translates then in terms of
an associated level set function φ(t, x) as the following advection equation:

∂φ

∂t
(t, x) + θ(t, x) · ∇φ(t, x) = 0, x ∈ D,

φ(0, x) = φ0(x), x ∈ D,
(1.4.10)

where φ0 is any level set function for Ω. This representation is very convenient for describing the evolution
of domains at the discrete level on fixed meshes, because topological changes are handled naturally and
automatically (Figure 1.6).

Figure 1.6: Motion of an implicit domain featuring a topological change and its representation by level set
functions. Figure from [170].

When the time dependent domain Ω(t) evolves according to a motion θ(t, x) normal to the interface
∂Ω(t), i.e. θ(t, x) = v(t, x)n on ∂Ω for some scalar function v(t, x), (1.4.10) rewrites as the following
Hamilton-Jacobi equation:

∂φ

∂t
(t, x) + v(t, x)||∇φ(t, x)|| = 0, t > 0, x ∈ Ω. (1.4.11)
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Generally, the level set function is initialized to the signed distance function of the initial domain
and reinitialized from times to times, which allows to reduce numerical diffusion and round off errors
[96, 247]. In applications where the computational domain D is discretized into a finite difference or finite
volume cartesian grid, one usually relies on the Hamilton-Jacobi equation (1.4.11) for the evolution of
implicit domains Ω(t) represented by level set functions φ(t, ·). Indeed, efficient and accurate numerical
schemes are available for the resolution of (1.4.11) on structured grids [249, 247]. In contexts involving
finite element unstructured meshes with level set functions φ discretized as a set of nodal values, it can
be more convenient to solve the evolution equation (1.4.10), e.g. with the method of characteristics.
This is the method we favored for all our numerical examples; we relied on the implementation available
in the software advect issued from [80] and which shares common features with the semi-Lagrangian
method of J. Strain [295].

In shape optimization algorithms (such as in algorithm 1.1) relying on the level set method, either
of the evolution equations (1.4.10) or (1.4.11) is solved with respectively θ(t, x) ≡ θn(x) or v(t, x) ≡
vn(x)n(t, x), where the (time-independent) descent directions θn(x) and vn(x) are computed to evolve
the current shape Ωn into the next iterate Ωn+1.

Let us note that the level set method for moving domain boundaries (either with (1.4.10) or (1.4.11))
actually involves domain updates different of those (1.4.3) considered by the method of Hadamard : if
the current domain Ωn is to be deformed according to a descent direction θn ∈ W 1,∞(D,Rd), then the
updated domain Ωn+1 is obtained by

Ωn+1 = ρ̃Ωn(θn),

where for a given subdomain Ω ⊂ D, ρ̃Ω is the mapping defined by

ρ̃Ω(θ) := {x ∈ D |φ(1, x) < 0}, θ ∈W 1,∞(D,Rd) (1.4.12)

with φ(t, x) the solution to either (1.4.10) of (1.4.11). The mapping ρ̃Ω is different from the one
ρΩ(θ) := (I + θ)Ω considered in the Hadamard’s method. However, it can be shown that there is
no loss of consistency when using either ρ̃Ω(θ) or ρΩ(θ) in the implementation of first order optimization
methods. In fact, when φ(t, ·) is obtained with the advection equation (1.4.10), then ρ̃Ω is the update
map considered in the speed method of Zolésio for boundary variations [291], which is equivalent at first
order to the method of Hadamard. When φ(t, ·) is obtained by (1.4.11), ρ̃Ω corresponds to moving the
points of ∂Ω along bicharacteristics associated to the Hamilton-Jacobi equation, which is also a second
order perturbation of the method of Hadamard (see [21] where this is discussed in details). An equivalent
way to formulate this statement is that the domain update maps ρΩ and ρ̃Ω can be interpreted as two
admissible retractions converting descent directions into new optimization points, this point is further
explained in chapter 3.

A common difficulty of the implicit representation on a fixed computational mesh is that it does not
make readily possible to solve for original physical equations such as (1.2.19) posed on the implicit domain
Ω: indeed, the location of Ω is known only through the values of the level set function φ. Classical level set
based shape optimization methods use the so-called “ersatz” or fictitious material approach [32] (other
interpolation methods are possible in such level set descriptions, such as XFEM or cutFEM methods
[140, 309]). For instance, in the context of the Laplace problem considered in section 1.2.3, if only the
Neumann boundary ΓN is optimizable and ΓD ⊂ ∂D, this amounts to replace (1.2.19) by an approximate
problem set on the whole domain D:{

−div(Aε(Ω)∇uε) = f in D

uε = 0 on ΓD.
(1.4.13)

The parameter Aε is a fictitious conductivity set equal to 1 in the domain Ω and to a (small) “ersatz”
value ε in the complementary D\Ω. The solution uε can be computed on the mesh adapted to D, and
it satisfies uε → u in the L2 norm on Ω as ε → 0. Using regularized Heaviside and Dirac functions
[247], it becomes possible to assemble finite element matrices associated with (1.4.13) and to estimate
volume integrals on Ω or surface integrals on ∂Ω for the implementation of shape optimization algorithms
[31, 311].

Finally, let us remark that if the level set method allows large dmomain deformations up to topo-
logical changes to occur, these are not natively accounted for by the method of Hadamard. Indeed,
shape derivatives (definition 1.1) quantify the sensitivity of objective functionals with respect to small
deformations only, without topology changes. Therefore, topological changes occurring in the course of
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optimization updates with the level set method are the consequence of the finite resolution of both the
spatial and time discretization. For instance, very thin parts of an evolved domain Ω(t) typically disap-
pear because either of some numerical diffusion smearing out small details, or because the advection step
chosen for the numerical resolution of (1.4.10) is too large with respect to the smallest mesh element size.
There is no guarantee that an objective function J(Ω) keeps decreasing when such an event suddenly
occurs, however it can be expected that the optimization carries on smoothly afterwards until another
topological change happens or until convergence.

The level set based mesh evolution algorithm of Allaire, Dapogny and Frey [24]

In all numerical examples of the present work, we use the level set based mesh evolution method intro-
duced by Allaire, Dapogny and Frey [24]. The main idea is to combine both numerical representations
of the domain Ω ⊂ D seen as a subset of a computational domain D (see Figure 1.3):

• on the one hand, a computational mesh T of D is available, in which Ω is explicitly discretized as
a meshed subdomain;

• on the other hand, Ω is implicitly described, using the level set method: e.g. it can be seen as the
negative subdomain of a function φ : D → R.

It becomes then possible to consistently alternate between both descriptions of the domain Ω depending
on the nature of the ongoing operation: finite element resolutions are carried out using the meshed
description, while the motion of the phases is tracked using the level set method.

The idea of remeshing shapes in between shape optimization iterations was first proposed by Persson
and implemented on a test case in his thesis [256]. For our applications, we rely on the subsequent work
of [108] for implicit domain meshing. The main features of this method are now outlined in the case
of two space dimensions; referring to [25] for further details. Our numerical shape optimization test
cases relied on the library mmg in which the remeshing step of a subdomain described by a level set is
implemented both in 2-d and in 3-d.

In what follows, we assume a vector field θ is given at the nodes of the computational mesh T
discretizing D and Ω ⊂ D (Figure 1.7a). The objective of the algorithm is to compute a new mesh
T ′ adapted to the discretization of the evolved domain Ω′ := ρ̃Ω(θ), where ρ̃Ω (eqn. (1.4.12)) encloses
the advection step as dictated by the transport equation (1.4.10). The main steps of the algorithm are
summarized in algorithm 1.2 and illustrated on Figure 1.8.

Algorithm 1.2 Domain update by mean of a level set based mesh evolution method.

1. A level set function φ associated with the domain Ω ⊂ D is computed at the nodes of the mesh
T (Figure 1.7b). As is classical in level set methods, we choose φ = dΩ to be given by the signed
distance function of Ω, although any other level set function smooth in a band around ∂Ω would be
sufficient.

2. φ is advected on the fixed mesh D by solving the evolution equation (1.4.10) (Figure 1.8a).
3. The new domain Ω′ (Figure 1.8b) is discretized by splitting mesh elements of T according to the

zero level set of the updated level set. This part is purely combinatorial and yields a conforming but
poor quality mesh.

4. Remeshing operations (explained in details [108, 25, 107, 153]) are performed iteratively to improve
the mesh quality and the approximation of the discrete surface ∂Ω′. Such is possible thanks to the
computation of a metric based on the Haussdorff distance to the surface ∂Ω′. This yields a new high
quality mesh T ′ adapted to the new subdomain Ω′ (Figure 1.8c).

Finally, let us , let us mention the existence of the Deformable Simplicial Complex (DSC) method for
shape and topology optimization [99, 98], which is an alternative method for evolving explicit meshed
representations of shapes. The essential principle of the method is to translate vertices according to
the deformation field, and to perform elementary mesh operations to repair invalid or poor quality
elements. The method is substantially different, in that no adaptive refinement of the meshed interface
Γ is performed according to a surface metric. Furthermore, topological changes are not dictated by the
level set advection but are the consequences of the remeshing operation. Let us notice that as an essential
user constraint, the remeshing software mmg implementing the method of [25] forbids itself to alter the
topology of the zero isosurface of an input level set function to mesh.
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(a) (b)

Figure 1.7: Initial setting of the level set based mesh evolution algorithm of [24]. (a) A vector field θ is defined
at the vertices of the computational mesh T for the background domain D in which Ω ⊂ D is explicitly; (b) the
signed distance function dΩ is computed on the mesh T as a level set φ = dΩ representing Ω.

(a) (b) (c)

Figure 1.8: Mesh evolution algorithm: (b) the level set function φ = dΩ associated with the subdomain Ω is
advected on T ; (c) A poor quality mesh T̃ of the evolved domain Ω′ is obtained by splitting T according to
the updated level set function ; (d) T̃ is iteratively remeshed into a new mesh T ′ of sufficient quality for finite
element analysis.
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thermal fluid–structure problem in a level set mesh evolution framework, SeMA Journal, (2019), pp. 1–46.

However, the introduction has been rewritten in order to fit the outline of the thesis, and the numerical
section 2.5 has been substantially improved and enlarged with additional test cases.

2.1 Introduction

One of the ultimate motivations guiding this thesis is the optimization of mechanical structures sub-
jected to thermal loads and cooled down by fluids. In this chapter, we investigate shape and topology
optimization based on the method of Hadamard for a weakly coupled model of heat propagation, fluid
flow and structure deformation. This model is detailed in section 2.2 and serves as a basis for all the
numerical shape optimization test cases considered in this thesis; it is based on the incompressible Stokes
or Navier Stokes equations in the fluid domain, on the convection-diffusion equation for heat propaga-
tion in both fluid and solid domains, and on the linearized thermoelasticity system for the mechanical
displacement of the solid domain. Our main result is the calculation of shape derivatives of arbitrary
objective functionals in volume and surface form; these are given in propositions 2.3 and 2.4 respectively.
These formulas are implemented and verified numerically on 2-d test cases in section 2.5 with the level
set based mesh evolution method of [25] (summarized in chapter 1, section 1.4.2). Our 2-d numerical
test cases involve either one, two or three of the aforementionned physics simultaneously; more complex
numerical test cases including 3-d problems being specifically detailed in chapter 4.

61
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The main originality of the present work is the consideration of coupled heat propagation, fluid flow
and structure deformations for topology optimization with the method of Hadamard. There are few
previous contributions [318] using such complete models for shape and topology optimization, and they
all rely on very different methods for parametrizing shapes and topologies, namely SIMP [65, 66] or
variable density methods [72]. Some simpler variants of this full three-physics model have been more
extensively studied. For example, there are quite many works dealing with convective heat transfer
problems (involving coupled fluid and thermal equations, without coupled elasticity) with density based
methods [224, 116, 134, 324, 275, 129, 118, 258, 263] or variants of level set methods [9, 104, 315] (not
explicitly based on the method of Hadamard). Fluid-structure interacting systems (without taking into
account thermal effects) have also been considered and in slightly fewer works [319, 240, 42, 194, 221, 208]
featuring only 2-d results, as well as thermoelastic structures [197, 285, 151, 314, 101, 28].

Likewise, there is a relatively small amount of work considering level set methods for topology op-
timization of fluid systems [315, 194, 133] (which do not rely explicitly on the method of Hadamard),
although its use in the context of geometry optimization (in which the shape is explicitly meshed but
its topology is fixed) is a very classical problem, see the monographs [191, 260, 236, 261] and the more
recent work [112].

From a numerical point of view, one specificity of our contribution is the implementation of the
Hadamard method with the level set based remeshing algorithm of Allaire, Dapogny and Frey [24]
(reviewed in chapter 1, section 1.4.2). This allows—in sharp contrast with density and more classical
level set methods—to optimize such coupled systems without introducing a relaxed formulation for the
description of a mixture of the fluid and solid domains. In the context of density methods (using namely
SIMP for linear elasticity or the Brinkman penalization approach for the Navier-Stokes equations [72]),
the entire domain D is assumed to be filled with a porous material containing a volume fraction ηf (x) of
fluid and 1−ηf (x) of solid at every point x. Then the state equations posed in the fluid domain Ωf or in
the solid domain Ωs are replaced with an approximate version (inspired from the homogenization theory)
to be solved on the whole domain D = Ωs ∪Ωf with coefficients depending on the volume fraction ηf (if
not on a local microstructure, see [18]). The nature of the approximation may depend on the physical
model and the type of boundary condition considered at the interface Γ = ∂Ωs ∩ ∂Ωf (we discuss this
point further in chapter 6, section 6.1.3); for instance the classical approximation of the standard linear
elasticity system with constant Hooke’s tensor A,{

−div(A∇u) = fs in Ωs

A∇u · n = 0 on ∂Ωs

is an elasticity system with variable Hooke’s tensor Ã(ηf ),

−div(Ã(ηf )∇u) = fs in D.

Likewise, the Stokes problem 
−∆v +∇p = ff in Ωf

div(v) = 0 in D

v = 0 on ∂Ωf

is commonly relaxed as a Brinkman model with variable inverse permeability α̃(ηf ) [72]{
−∆v +∇p+ α̃(ηf )v = f in D,

div(v) = 0 in D.

The relaxed Hooke’s tensor Ã and the inverse permeability α̃ must vary between respectively Ã(0) = A

and α̃(0) ' +∞ in the pure solid part corresponding to ηf = 0, and Ã(1) ' 0 and α̃(1) = 0 in the
pure fluid part corresponding to ηf = 1. A common difficulty characterizing these density approaches
is the need for determining adequate interpolation laws in order to penalize intermediate densities and
to obtain in practice convergence towards “black and white” designs (featuring only ηf = 0 or ηf = 1
in the computational domain D). One law must be proposed per homogenized coefficient, which makes
it delicate to set when considering complex multiphysics problems involving several or many of these
coefficients.

On the contrary, our level set approach keeps distinct fluid and solid domains throughout the opti-
mization process, Ωf and Ωs, and makes the fluid-solid interface Γ the main optimization variable. The
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method of Hadamard allows to estimate the sensitivity of the original physics with respect to local varia-
tions of the sharp interface Γ. Keeping track of a clear and neat interface with the use of remeshing avoids
various problems such as mass conservation, load transmission or boundary layers description [281, 276].
In our context, the level set based mesh evolution algorithm of [24, 25] alleviates these difficulties while
enabling shapes to change their topology in the course of optimization iterations. In numerical practice,
the solid-fluid interface Γ is evolved with the level set method and remeshed at every iteration for the
finite element analysis. This is particularly well suited for fluid-solid applications, as no alteration of
the physical equations is required in contrast with density methods or fixed mesh level set methods,
requiring ersatz materials. Another advantage is that this allows, in principle, to solve for each physics
non intrusively, for instance with industrial solvers external to the shape optimization implementation.

The chapter is organized as follows. Section 2.2 details the considered weakly coupled model. The
coupling is weak in the sense that it allows to solve for each physical equations successively and indepen-
dently from the knowledge of already computed state variables. The main simplifying hypothesis is that
mechanical deformations and displacements are small. In particular, the fluid domain is fixed at first
order; it is independent of the deformation of the structure. This allows to solve, first, the incompressible
Stokes or Navier-Stokes equations in the fluid domain. Second, we solve a convection-diffusion equation
for the temperature in the fluid and solid domains with the previously computed velocity. Third, the
linearized thermoelasticity system is solved for the mechanical displacement of the solid domain: the
forces at play are a combination of applied external loads, of the fluid stress prescribed on the fluid-solid
interface, and of the thermal dilation induced by the temperature. This weak coupling is of course a
major simplification and it dramatically reduces the computational cost since no monolithic coupled
system has to be solved. Let us note that despite these simplifications, this model is sufficiently general
to include previous classical studies when considering only a subset of these physics separately.

The next two sections 2.3 and 2.4 are concerned with the derivations of Hadamard shape sensitivities
formulas which are at the basis of our gradient-based topology optimization algorithm used in our numer-
ical simulations.The first section 2.3 introduces a simplified model made of two scalar Laplace equations,
mimicking the weak coupling between the solid and the fluid subdomains. This section is purely ped-
agogical: it deals with the same mathematical difficulties which could be somewhat hidden behind the
relative complexity of the full multiphysics system treated in section 2.4. Two major contributions are
especially highlighted.

First, we explain how to adapt the classical shape differentiation methods in order to consider arbitrary
shape functionals. Indeed, as reviewed in chapter 1, section 1.2.3 the most commonly used method is
the so-called Lagrangian method of Céa [84, 17]. It brings simplifications with respect to the “rigorous
calculation” (see chapter 1, section 1.2.1) but it relies on the specific knowledge of a formula for the
objective function. In other words, if the objective function changes (say from a volume integral to a
surface integral), the calculation of the shape derivative has to be performed again from the beginning.
Here, following the lead of Murat and Simon [242], we rather rely on a Lagrangian approach which
allows us to treat very general objective functions, without precise formulas, under a mild assumption
on the existence of some partial derivatives. Obviously, it is in the more complex framework of the full
three-physic problem that our proposed Lagrangian approach is really more efficient than the classical
Céa’s method.

Second, we detail the treatment of the coupling induced by the fluid on the structure, which features
a quite surprising mathematical phenomenon. Classically, the order of the coupling is reversed for the
adjoint system: for the direct problem, one first solves the fluid equation, and in a second step the
solid equation; for the adjoint problem, it is the opposite, namely elasticity is solved first, followed by
fluid mechanics. While the fluid and solid equations are coupled by a one-sided interface transmission
condition of Neumann type in the direct problem (which accounts for the force exerted by the fluid on
the solid), the adjoint equations are, on the contrary, coupled by a Dirichlet interface condition. This
‘transformation’ of the Neumann interface condition for the direct problem into a Dirichlet interface
condition for the adjoint seems new to the best of our knowledge.

These derivations are explained in details in section 2.3 on the simplified model, before being extended
to the full multiphysics setting in section 2.4 for our practical applications.

Eventually, 2-d applicative examples are considered in section 2.5 for the numerical validation of
our derived analytical shape derivatives. Several optimizations are performed on test cases featuring
either one, two, or three physics enabled simultaneously. Constrained optimization problems are solved
in these situations with the help of a constrained optimization algorithm detailed in the dedicated
chapter 3. Our preliminary test cases are drawn from classical literature with only one physics involved:
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we consider the classical cantilever beam in structural mechanics, an optimal heat conduction test case,
and classical optimal drag profile designs in fluid mechanics. We then address problems featuring two
physics simultaneously. Our first example is a fluid-structure interaction problem, without taking into
accounts thermal effects. It is inspired from a similar example in [319, 221]. Our second test case is
a convective heat transfer problem where the elastic deformation of the solid phase is neglected. It
was already studied in [225] with a different approach (based on a variable density relaxation of the
problem). Our third test case is concerned with optimal design in thermoelasticity and is based on the
previous work [314]. Finally, we present a last test case which comprises the three physics and is new,
to the best of our knowledge. All three examples work nicely in the sense that the objective function is
indeed minimized while respecting optimization constraints constraints, and that the obtained optimal
shapes are significantly different from the initial ones sharing improved performances. These results are
preliminary to the more complex heat transfer and 3-d applications considered in chapter 6.

2.2 Setting of the three-physic problem

Let D = Ωs ∪ Ωf be a fixed, open bounded domain in Rd (d = 2 or 3 in applications), arising as the
disjoint reunion of a ‘fluid’ phase Ωf and a ‘solid’ phase Ωs = D\Ωf (see Figure 2.1), separated by an
interface Γ := ∂Ωf ∩ ∂Ωs which is to be optimized. Throughout this chapter, the normal vector n to Γ
is pointing outward the fluid domain Ωf .
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Figure 2.1: Setting of the considered three-physic problem (not all the regions of ∂D featured in (2.2.1) (2.2.2)
and (2.2.3) are represented, see the numerical section 2.5 for more complete settings).

The domain D is described by three physical variables which are governed by three coupled models:

• the motion of the fluid inside Ωf described by the velocity and pressure fields v and p;

• the diffusion of heat inside the whole domain D, and its transport by convection in the fluid domain,
resulting in a temperature field T ;

• the deformation of the solid region Ωs as a result of the stress exerted by the fluid part and of the
dilation induced by thermoelastic effects, characterized by a mechanical displacement u.

The physical equations chosen for the modeling of (v, p), T and u with their relevant set of bound-
ary conditions are described in strong form in sections 2.2.1 to 2.2.3. The shape optimization setting
considered with the method of Hadamard is then introduced in section 2.2.4. Notation for the setting
of boundary conditions as well as for all the physical parameters involved in the state equations are
summarized respectively in Tables 2.1 and 2.2 below.
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D = Ωs ∪ Ωf Whole domain featuring fluid and solid phases

Ωf Fluid phase

Ωs Solid phase

Γ = ∂Ωs ∪ ∂Ωf Fluid-structure interface

∂D = ∂ΩNT ∪ ∂ΩDT Boundary of the global domain D

∂ΩDT Dirichlet (isothermal) boundary condition for the temperature variable
(T = T0 on ∂ΩDT )

∂ΩNT Neumann (adiabatic or isoflux) boundary condition for the temperature
variable (−kf∂Tf/∂n = h on ∂ΩNT ∩∂Ωf and −ks∂Ts/∂n = h on ∂ΩNT ∩
∂Ωs)

∂Ωs = ∂ΩDs ∪ ∂ΩDf ∪ Γ Boundary of the solid domain Ωs

∂ΩDs Dirichlet boundary for the solid variable u

∂ΩNs Neumann boundary for the solid variable u

∂Ωf = ∂ΩDf ∪ ∂ΩDf ∪ Γ Boundary of the fluid domain Ωf

∂ΩDf Dirichlet (inlet) boundary for the fluid variable (v = v0 on ∂ΩDf )

∂ΩNf Neumann (outlet) boundary for the fluid variable (σf (v, p) · n =
0 on ∂ΩNf )

Table 2.1: Domains D, Ωs and Ωf with their associated boundary conditions

2.2.1 Steady state incompressible Navier-Stokes equation for the fluid variable

The fluid domain Ωf is filled with a fluid characterized by its viscosity ν and density ρ; its velocity v
and pressure p satisfy the incompressible steady-state Navier-Stokes equations:

−div(σf (v, p)) + ρ∇v v = ff in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩDf

σf (v, p)n = 0 on ∂ΩNf

v = 0 on Γ,

(2.2.1)

where ∇v is the Jacobian matrix (∇v)ij = ∂jvi, i, j = 1, ..., d . The fluid stress tensor σf (v, p) is given
by the Newton law

σf (v, p) = 2νe(v)− pI with e(v) = (∇v +∇vT )/2,

where I is the d× d identity matrix.

Remark 2.1. The nonlinear term∇v v is often written (v·∇)v in the literature, however this convention
is not consistent with our notation v · ∇v := vT∇v (section 1.1). We shall therefore keep the notation
∇v v considered to be the matrix product of the Jacobian matrix ∇v with the vector v.

In (2.2.1), ff is an applied body force (e.g. gravity); the boundary of the fluid phase is the disjoint
reunion

∂Ωf = ∂ΩDf ∪ ∂ΩNf ∪ Γ

of a Dirichlet (or inlet) part ∂ΩDf where the flow enters with a given velocity v = v0, a Neumann (or

outlet) part ∂ΩNf where zero normal stress is observed, and the interface Γ with the solid domain Ωs.
At this stage it is assumed that the deformation of the solid domain is sufficiently small so that no slip
boundary conditions hold on Γ: v = 0; see remark 2.2 below about this point. Therefore, the variables
(v, p) depend solely on the geometry of the fluid domain Ωf .
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v ∈ H1(Ωf ,Rd) Fluid velocity

p ∈ L2(Ωf ) Fluid pressure

ν ∈ R∗+ Fluid viscosity

ρ ∈ R∗+ Fluid density

ff ∈ H1(Ωf ,Rd) Volume force in the fluid phase

v0 ∈ H1/2(∂Ωf ,Rd) Input inlet or outlet velocity

T ∈ H1(D) Temperature field

Ts ∈ H1(Ωs) Restriction of T to the solid domain

Tf ∈ H1(Ωf ) Restriction of T to the fluid domain

cp ∈ R∗+ Heat capacity of the fluid

kf ∈ R∗+ Conductivity in fluid

ks ∈ R∗+ Conductivity in solid

Qf ∈ L2(Ωf ) External input heat flux in the fluid domain

Qs ∈ L2(Ωs) External input heat flux in he solid domain

T0 ∈ H1/2(∂D) Input temperature on the total boundary

h ∈ L2(∂ΩNT ) Input entering heat flux on the total boundaries

u ∈ H1(Ωs,Rd) Elastic displacement

µ ∈ R∗+ Lamé coefficient

λ ∈ R∗+ Lamé coefficient

Tref ∈ R∗+ Reference temperature in the solid

α ∈ R∗+ Thermal expansion coefficient

fs ∈ H1(Ωs,Rd) Volume force in the solid phase

u0 ∈ H1/2(∂ΩDs ,Rd) Prescribed displacement

g ∈ L2(∂ΩNs ) Input traction force

Table 2.2: Physical parameters considered in the weakly coupled model

2.2.2 Convection diffusion for the temperature variable

The fluid velocity v determines the physical behavior of the temperature T in the whole domain D,
as a result of convection and diffusion effects inside the fluid domain Ωf , and of pure diffusion inside
the solid domain Ωs. Denoting by kf and ks the thermal conductivity inside Ωf and Ωs respectively,
and by cp the thermal capacity of the fluid, the temperature field T is determined by the steady-state
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convection-diffusion equations:

−div(kf∇Tf ) + ρcpv · ∇Tf = Qf in Ωf

−div(ks∇Ts) = Qs in Ωs

T = T0 on ∂ΩDT

−kf
∂Tf
∂n

= h on ∂ΩNT ∩ ∂Ωf

−ks
∂Ts
∂n

= h on ∂ΩNT ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

on Γ,

(2.2.2)

where we use the subscripts f and s for the restrictions Tf and Ts of T to Ωf and Ωs respectively. In
(2.2.2), Qf and Qs are volumic sources inside Ωf and Ωs; the boundary ∂D = ∂ΩNT ∪ ∂ΩDT is split into
a Dirichlet part, where a temperature T0 is imposed and a Neumann part where a given incoming heat
flux h is applied on ∂ΩNT . The temperature T as well as the heat flux are continuous across the interface
Γ between Ωf and Ωs.

2.2.3 Thermoelasticity with fluid structure interaction for the elastic variable

Finally, the fluid variables (v, p) and the temperature T together determine the displacement u of the
solid domain Ωs, which is assumed to be an isotropic thermoelastic material with Lamé coefficients λ, µ,
thermal expansion parameter α and temperature at rest Tref. This variable u is characterized by the
equations of linear thermoelasticity:

−div(σs(u, Ts)) = fs in Ωs

u = u0 on ∂ΩDs

σs(u, Ts)n = g on ∂ΩNs

σs(u, Ts)n = σf (v, p) · n on Γ.

(2.2.3)

where the solid stress tensor is given by

σs(u, Ts) = Ae(u)− α(Ts − Tref)I with Ae(u) = 2µe(u) + λTr(e(u))I, (2.2.4)

and fs is an applied body force. In (2.2.3), the boundary ∂Ωs is split into respectively a Dirichlet part
∂ΩDs where a displacement u = u0 is prescribed, a Neumann part ∂ΩNs where a stress g is imposed, and
the interface Γ with the fluid domain. On this latter boundary, the solid is submitted to the pressure
force imposed by the fluid, which translates into the equality σf (v, p) · n = σs(u, Ts) · n between the
normal fluid and solid stresses.

Remark 2.2. The above model is a simplified version of a genuine fluid-solid-thermic coupling be-
tween the phases Ωf and Ωs. A more accurate description of fluid-structure interaction would feature a
vanishing fluid velocity v on the deformed interface (I + u)(Γ), namely:

v(x+ u(x)) = 0, x ∈ Γ, (2.2.5)

see e.g. [267], or [319] in an optimization context. Likewise, the equality between normal stresses
σs(u, Ts)n = σf (v, p)n should hold on the deformed interface. In the present work, the displacement
u of the solid phase is assumed to be small enough so that the influence of the interface deformation
on the physical behavior of the fluid can be neglected. Thanks to this simplification, the system (2.2.1)
to (2.2.3) is only weakly coupled: its resolution is achieved by solving first the fluid system (2.2.1), then
using the resulting fluid velocity v in the heat transfer equation (2.2.2), and finally using the fluid stress
σf (v, p) and the temperature Ts to solve (2.2.3).

2.2.4 Shape optimization setting

The final goal of the thesis is the resolution of general constrained optimization problems of the form

min
Γ

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) = 0, 1 ≤ i ≤ p,
hj(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) ≤ 0, 1 ≤ j ≤ q,

(2.2.6)
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where J , gi and hj are arbitrary shape objective and constraint functionals set by a user. For its
resolution, we shall rely on the null space gradient flow algorithm detailed in chapter 3, which (like
any other first order optimization method) requires the knowledge of the shape derivatives of the above
functionals. In the context of the method of Hadamard (reviewed in chapter 1, section 1.2), this means
computing the Fréchet derivative of the mapping

θ 7→ J(Γθ,v(Γθ), p(Γθ), T (Γ,θ),u(Γθ)),

where we recall that θ is a deformation field belonging in general to W 1,∞(D,Rd) and Γθ = (I + θ)Γ
(and so on for the constraints gi and hj). The setting in the biphasic domain D = Ωf ∪Ωs is illustrated
on Figure 2.2.

⌦f

⌦s

�

✓ �✓

Figure 2.2: Deformation of a partition D = Ωf ∪ Ωs using Hadamard’s method.

For simplicity, we assume in our context that only the interface Γ is subject to optimization, and
not the boundary ∂D of the total domain, therefore the admissible space for deformations θ is not
W 1,∞(D,Rd) but rather the subspace:

W 1,∞
0 (D,Rd) = {θ ∈ L∞(D,Rd)| ∇θ ∈ L∞(D,Rd × Rd) and θ = 0 on ∂D}. (2.2.7)

The condition θ = 0 on ∂D implies that junction points corresponding to the intersection ∂D ∩ Γ
are fixed. The analysis to follow can of course be extended to more general shape variations (e.g. only
θ ·n = 0 on ∂D or even θ ∈W 1,∞(D,Rd)), at the expense of including extra terms in shape derivatives
accounting for the variations of boundary conditions or for the tangential displacements of the junction
points [114].

2.3 Shape derivatives for a simplified scalar fluid structure interaction prob-

lem

One of the salient features of the system (2.2.1) to (2.2.3) is the equality of normal stresses σs(u, Ts)n =
σf (v, p)n imposed on the optimized interface Γ. The calculation of shape derivatives in this context is
not a completely standard issue to the best of our knowledge, and the result has an interesting structure:
the interface conditions for the adjoint systems are different from those appearing in the state equations
(see the expressions (2.4.8) and (2.4.10)). To illustrate this fact, we first consider a simplified scalar
problem which gathers with lighter notations all the essential mathematical points.

This preliminary study contains as a particular case the classical Poisson problem considered in
chapter 1, (1.2.19), which will also allow us to highlight how the derivation of shape derivatives can be
adapted, in quite general contexts, for arbitrary objective functionals.

2.3.1 Presentation of the simplified problem and of its variational formulation

We consider the following setting: the fluid variable v is replaced by a scalar variable uf solving the
Poisson equation (2.3.1) in Ωf with homogeneous Dirichlet boundary conditions on the interface Γ.
The elastic variable u is replaced by the solution us to another Poisson equation (2.3.2) posed in the
complement Ωs. Body sources ff ∈ H1(Ωf ), fs ∈ H1(Ωs), with the dimension of a force, are applied in
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both cases. Note that such H1 regularity is needed when computing shape derivatives in the sequel (see
the discussion of chapter 1, section 1.2.3), although weaker regularity is enough for state equations to be
well-posed. For the sake of physical units (uf and us have respectively the dimension of a velocity and
of a displacement), the Laplace operators involved in (2.3.1) and (2.3.2) are scaled with constants ν and
µ that assume respectively the role of a viscosity in the fluid domain, and of a Lamé coefficient in the
solid domain. The two systems for uf and us are weakly coupled: the equation (2.3.1) for uf does not
depend on us and in the system (2.3.2) for us, equality of normal fluxes is imposed at the interface Γ, as
the exact counterpart in the scalar setting to the continuity of normal stresses σs(u, Ts)n = σf (v, p)n.
For simplicity, homogeneous Dirichlet boundary conditions are imposed on the boundary ∂D of the total
domain D = Ωf ∪ Ωs in both systems for uf and us:

−ν∆uf = ff in Ωf

uf = 0 on Γ

uf = 0 on ∂Ωf\Γ,
(2.3.1)


−µ∆us = fs in Ωs

µ
∂us
∂n

= ν
∂uf
∂n

on Γ

us = 0 on ∂Ωs\Γ.

(2.3.2)

We recall our convention that the normal vector n in (2.3.2) is pointing outward Ωf (note that the
transmission boundary condition in (2.3.2) reads the same if n is pointing outward Ωs). We consider the
minimization problem

min
Γ

J(Γ, uf (Γ), us(Γ)), (2.3.3)

where J is a given cost function upon which we shall impose adequate regularity conditions in due time.

Remark 2.3. This simplified setting reduces to the single Poisson problem considered in chapter 1,
section 1.2.3 with Ω = Ωf , ΓN = ∅ in the particular case where the objective function J(Γ, uf (Γ)) does
not depend on the solid variable (in that case (2.3.2) can be ignored). Although in the present context,
no Neumann boundary condition is considered for uf for simplicity, we shall still retrieve the results of
chapter 1, propositions 1.8 and 1.9 because our way to obtain shape derivatives is rather insensitive to
the type of boundary conditions considered.

In the sequel, the dependence of the state variables uf and us with respect to Γ is made explicit—
using the notations us(Γ) and uf (Γ) as in (2.3.3)—when it is needed (e.g. as in. (2.3.12) below). In
order to discuss the precise mathematical setting for (2.3.1) (2.3.2), the following spaces of functions on
the subdomains Ωs and Ωf are introduced:

Vs(Γ) = {vs ∈ H1(Ωs) | vs = 0 on ∂Ωs\Γ}, (2.3.4)

Vf (Γ) = {vf ∈ H1(Ωf ) | vf = 0 on ∂Ωf\Γ}, (2.3.5)

Vf,0(Γ) = {vf ∈ H1(Ωf ) | vf = 0 on ∂Ωf}. (2.3.6)

We also consider the subspace H
1/2
00 (Γ) of H1/2(Γ) composed of restrictions to Γ of functions in Vf (Γ),

H
1/2
00 (Γ) = {v|Γ | v ∈ Vf (Γ)}, (2.3.7)

and its dual space H
−1/2
00 (Γ). Roughly speaking, any element v ∈ H1/2

00 (Γ) has an extension vf to Ωf
vanishing on ∂Ωf \ Γ [218].

In this framework, the state variables us and uf in (2.3.1) and (2.3.2) are the unique solutions to the
following variational problems:

Find uf ∈ Vf,0(Γ) such that ∀vf ∈ Vf,0(Γ),

∫
Ωf

ν∇uf · ∇vfdx =

∫
Ωf

ffvfdx, (2.3.8)

Find us ∈ Vs(Γ) such that ∀vs ∈ Vs(Γ),

∫
Ωs

µ∇us · ∇vsdx =

∫
Ωs

fsvsdx−
∫

Γ

ν
∂uf
∂n

vsds, (2.3.9)

where the minus sign in the last term of the right-hand side of (2.3.9) is due to our convention whereby
n is pointing outward Ωf .
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A comment is in order about the meaning of (2.3.9). In general, the normal derivative ∂v/∂n on the
interface Γ of an arbitrary function v ∈ Vf,0(Γ) is not defined, because there is no trace theorem for the
gradient of functions in H1(Ωf ). However, uf is not a mere function of H1(Ωf ): (2.3.8) implies that

∆uf = ff ∈ L2(Ωf ). Therefore, the last term of (2.3.9) is defined, for any v ∈ H1/2
00 (Γ), by

−
∫

Γ

ν
∂uf
∂n

vds := −
∫

Ωf

(ν∆uf ṽ + ν∇uf · ∇ṽ)dx =

∫
Ωf

(ff ṽ − ν∇uf · ∇ṽ)dx, (2.3.10)

where ṽ ∈ Vf (Γ) is any extension of v to Ωf satisfying ṽ = v on Γ. Note that, for smooth uf , (2.3.10) is
just Green’s formula. Since from (2.3.8), the right-hand side of (2.3.10) does not depend on the choice

of such extension ṽ, this identity actually defines ∂uf/∂n as an element of the dual H
−1/2
00 (Γ); see e.g.

[218, 176].

The variational formulation (2.3.9) associated to (2.3.2) thus rewrites:

Find us ∈ Vs(Γ) such that ∀vs ∈ Vs(Γ),∫
Ωs

µ∇us · ∇vsdx =

∫
Ωs

fsvsdx+

∫
Ωf

ff ṽsdx−
∫

Ωf

ν∇uf · ∇ṽsdx (2.3.11)

where ṽs ∈ Vf (Γ) is any extension of vs to Ωf such that ṽs = vs on Γ.

Remark 2.4. When Γ ∩ ∂D = ∅, which happens if for instance Ωs is strictly included in D (Ωs ⊂⊂
D), then H

1/2
00 (Γ) and H

−1/2
00 (Γ) coincide with the more usual fractional Sobolev spaces H1/2(Γ) and

H−1/2(Γ) respectively; see [218, 302] about these technicalities.

2.3.2 A fully Lagrangian setting for computing shape derivatives of arbitrary objective
functionals

Although very common and widely used in the literature (see e.g. [32, 253]), an issue with Céa’s method
as exposed in chapter 1, section 1.2.3 is that the computation of the shape derivatives depend very
much on the assumptions made on the nature of the considered objective functional J . Different type
of functionals may lead to different strong forms for the adjoint equations (see section 2.6.2 where this
fact is exemplified), which imposes to redo the analytical derivation whenever the objective function is
modified, and to update the numerical implementation accordingly.

In this section, we use a fully Lagrangian setting to derive rigorously the shape derivative of very
general objective functionals in the simplified setting of section 2.3.1, in the spirit of the seminal work
of Murat and Simon [242]. The shape sensitivities of the state variables uf (Γ), us(Γ) are calculated first
in order to obtain the shape derivative of an arbitrary objective functional in volume form. Then, under
sufficient regularity assumptions, the well-known Hadamard structure theorem together with suitable
integration by parts yield general shape derivative formulas in the classical form of a boundary integral.

A modified objective functional and Lagrangian derivative of the state variables

The starting remark is that the functional J , although appearing naturally in the formulation of the
optimization problem (2.3.3) is not so convenient for the mathematical analysis. Indeed, the domain of
definition of J(Γ, ·, ·) is Vf,0(Γ) × Vs(Γ), a functional space which depends on the first argument Γ. In
order to address this issue, the classical idea is to work within a Lagrangian framework rather than a
Eulerian one. Therefore, we consider a fixed reference interface Γ, and we introduce a modified functional
J obtained by “transporting” J on a fixed space: for any (θ, ûf , ûs) ∈ W 1,∞

0 (D,Rd) × Vf,0(Γ) × Vs(Γ),
we define

J(θ, ûf , ûs) := J(Γθ, ûf ◦ (I + θ)−1, ûs ◦ (I + θ)−1). (2.3.12)

Conversely, this allows to rewrite the objective functional J as:

J(Γθ, uf (Γθ), us(Γθ)) = J(θ, uf (Γθ) ◦ (I + θ), us(Γθ) ◦ (I + θ))

= J(θ, uf,θ, us,θ),
(2.3.13)

where (following the notation of chapter 1, section 1.2) we have denoted Γθ := (I + θ)(Γ), us,θ :=
us(Γθ) ◦ (I + θ) and uf,θ := uf (Γθ) ◦ (I + θ) the transported functions on their reference domains Ωs
and Ωf . The identity (2.3.13) is the key motivation for introducing J: indeed, as it is classical in shape
optimization, the transported functions uf,θ, us,θ are differentiable with respect to θ without additional
regularity assumptions [184, 242]. More precisely, the following lemma holds:
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Lemma 2.1. The mappings θ 7→ uf,θ and θ 7→ us,θ, from W 1,∞
0 (D,Rd) into Vf,0(Γ) and Vs(Γ) are

Fréchet differentiable at θ = 0 and their Fréchet derivatives u̇f (θ) and u̇s(θ) in the direction θ are the
unique solutions to the following variational problems:

Find u̇f (θ) ∈ Vf,0(Γ) such that ∀vf ∈ Vf,0(Γ),∫
Ωf

ν∇u̇f (θ) · ∇vfdx =

∫
Ωf

(div(ffθ)vf + ν(∇θ +∇θT − div(θ)I)∇uf · ∇vf )dx, (2.3.14)

Find u̇s(θ) ∈ Vs(Γ) such that ∀vs ∈ Vs(Γ),∫
Ωs

µ∇u̇s(θ) · ∇vsdx =

∫
Ωs

(div(fsθ)vs + (∇θ +∇θT − div(θ)I)µ∇us · ∇vs)dx−
∫

Γ

ν
∂u̇f (θ)

∂n
vsds,

(2.3.15)

where −∂u̇f (θ)
∂n ∈ H−1/2

00 (Γ) is defined for any v ∈ H1/2
00 (Γ) by:

−
∫

Γ

ν
∂u̇f (θ)

∂n
vds =

∫
Ωf

(div(ffθ)ṽ+(∇θ+∇θT−div(θ)I)ν∇uf ·∇ṽ)dx−
∫

Ωf

ν∇u̇f (θ)·∇ṽdx. (2.3.16)

for any extension ṽ ∈ Vf (Γ) of v such that v = ṽ on Γ.

Proof. The proof is classical, so we content ourselves with a very brief description of the main ideas,
which are very similar to those outlined in chapter 1, section 1.2.3. We first perform a change of variables
in the variational formulations (2.3.8) and (2.3.11) so that the integrals involved there are written on
fixed domains. Taking vf ◦ (I + θ)−1 ∈ Vf,0(Γθ) as a test function in (2.3.8) for arbitrary vf ∈ Vf,0(Γ),
this yields a variational formulation for uf,θ:

∀vf ∈ Vf,0(Γ),

∫
Ωf

νA(θ)∇uf,θ · ∇vfdx =

∫
Ωf

ff ◦ (I + θ)vf |det(I +∇θ)|dx, (2.3.17)

where A(θ) is the d× d matrix A(θ) = |det(I +∇θ)|(I +∇θ)−1(I +∇θ)−T . Note that Γ corresponds
to the reference configuration in (2.3.17) while it is the deformed configuration in (2.3.8).

Now, for a given vs ∈ Vs(Γ) and any extension ṽs ∈ Vf (Γ) such that ṽs = vs on Γ, the function
ṽs ◦ (I + θ)−1 ∈ Vf (Γθ) is an extension of vs ◦(I+θ)−1 ∈ Vs(Γθ) satisfying ṽs ◦(I+θ)−1 = vs ◦(I+θ)−1

on Γθ. Therefore taking vs ◦ (I+θ)−1 as a test function in (2.3.11) and performing a change of variables
yields a variational formulation for us,θ:

∀vs ∈ Vs(Γ),

∫
Ωs

µA(θ)∇us,θ·∇vsdx =

∫
Ωs

fs◦(I+θ) |det(I+∇θ)|dx+

∫
Ωf

ff◦(I+θ)ṽs|det(I+∇θ)|dx

−
∫

Ωf

νA(θ)∇uf,θ · ∇ṽsdx (2.3.18)

for any extension ṽs ∈ Vf (Γ) satisfying ṽs = vs on Γ.
Eventually, a classical use of the implicit function theorem, as in [184], reveals that the mappings

θ 7→ uf,θ and θ 7→ us,θ, from W 1,∞
0 (D,Rd) into Vf,0(Γ) and Vs(Γ) respectively, are Fréchet differentiable

in the neighborhood of θ = 0. Eqns. (2.3.14) and (2.3.15) are then simply obtained by differentiating
(2.3.17) and (2.3.18) with respect to θ.

Remark 2.5. The functions u̇f (θ) and u̇s(θ), defined by lemma 2.1, are the Lagrangian derivatives of
uf and us with respect to variations of Γ, a notion of derivative which is directly compatible with the
variational setting of the PDEs (2.3.1) and (2.3.2). Recall that u̇s(θ) and u̇f (θ) do not coincide with
the perhaps more physical ‘Eulerian’ derivatives u′f (θ), u′s(θ), that are the differentials of the mappings
θ 7→ uf (Γθ) and θ 7→ us(Γθ) (without composition by (I + θ)); see e.g. [242, 184, 17] and chapter 1,
section 1.2.

Adjoint system and volume expression of the shape derivative

Assuming that the transported objective function J has continuous partial derivatives at

(θ, ûs, ûf ) = (0, us(Γ), uf (Γ)),
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equation (2.3.13) and the chain rule imply that the mapping θ 7→ J(Γθ, uf (Γθ), us(Γθ)) is differentiable
with respect to θ and that its derivative at θ = 0 reads:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =

d

dθ

[
J(θ, uf,θ, us,θ)

]
(θ) =

∂J

∂θ
(θ)+

∂J

∂ûf
(u̇f (θ))+

∂J

∂ûs
(u̇s(θ)). (2.3.19)

Remark that, to keep notations as light as possible, we omit the point (0, uf (Γ), us(Γ)) where the partial
derivatives of J are evaluated in (2.3.19) and below. The occurrence of the Lagrangian derivatives u̇s(θ)
and u̇f (θ) in (2.3.19) are now classically eliminated by introducing adequate adjoint states pf ∈ Vf (Γ)
and ps ∈ Vs(Γ), defined in weak form by the following variational problems:

Find ps ∈ Vs(Γ) such that ∀vs ∈ Vs(Γ),

∫
Ωs

µ∇ps · ∇vsdx =
∂J

∂ûs
(vs), (2.3.20)

Find pf ∈ Vf (Γ) such that pf = ps on Γ and ∀vf ∈ Vf,0(Γ),

∫
Ωf

ν∇pf · ∇vfdx =
∂J

∂ûf
(vf ). (2.3.21)

Interestingly, the equality between normal derivatives ν
∂uf
∂n = µ∂us∂n featured in the system (2.3.2) for the

state variables translates into the rather surprising boundary condition pf = ps on Γ in (2.3.24) for the
adjoint variables pf . This boundary condition can be obtained in at least two ways. In the appendix, we
provide in section 2.6.2 a derivation of this adjoint boundary condition based on a Lagrangian with Céa’s
method. In section 2.3.2 below, we also provide an equivalent mixed formulation for the state equations
(2.3.1) and (2.3.2) which features different spaces for the ‘primal’ state variables and the ‘adjoint’ test
functions. This difference of functional spaces is at the root of this change of boundary conditions at the
interface.

Remark 2.6. The variational problems (2.3.20) and (2.3.21) make sense for general objective functions.
Let us remark that they may lead to different adjoint equations when written in strong forms, which is
the way they are obtained with Céa’s method (this is one of the reasons why the derivation of shape
derivatives must be repeated from the beginninthe beginning when changing the type of the objective
functional). For instance, if we consider an objective functional depending on us(Γ) and uf (Γ) through
a volume integral (see section 2.6.2 below for the complete derivation of shape sensitivities with the
method of Céa):

J(Γ, us(Γ), uf (Γ)) :=

∫
Ωf

jf (uf )dx+

∫
Ωs

js(us)dx (2.3.22)

for two C2 functions js, jf : R→ R with bounded second order derivatives, then

∂J

∂ûs
(vs) =

∫
Ωs

j′s(us)vsdx,
∂J

∂ûf
(vf ) =

∫
Ωf

j′f (uf )vfdx

which yields the following strong form for the adjoint system (2.3.20) and (2.3.21):
−µ∆ps = j′s(us) in Ωs

µ
∂ps
∂n

= 0 on Γ

ps = 0 on ∂Ωs \ Γ,

(2.3.23)


−ν∆pf = j′f (uf ) in Ωf

pf = ps on Γ

pf = 0 on ∂Ωf \ Γ.

(2.3.24)

However, if J(Γ, uf (Γ), us(Γ)) now depends on the gradient of one of the variables, for instance

J(Γ, uf (Γ), us(Γ)) :=
1

2

∫
Ωs

µ|∇us|2dx,

then
∂J

∂ûs
(vs) =

∫
Ωs

µ∇us · ∇vsdx = −
∫

Ωs

µ∆usvsdx+

∫
∂Ωs

µ
∂us
∂n

vsds,
∂J

∂ûf
(vf ) = 0,
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which yields a different strong form for the adjoint equation associated with ps:
−µ∆ps = −µ∆us in Ωs

µ
∂ps
∂n

= µ
∂us
∂n

on Γ

ps = 0 on ∂Ωs \ Γ,

(2.3.25)


−ν∆pf = 0 in Ωf

pf = ps on Γ

pf = 0 on ∂Ωf \ Γ.

(2.3.26)

The adjoint variables ps and pf allow to obtain an expression independent of u̇s(θ) and u̇f (θ) for the
shape derivative of J as in chapter 1, proposition 1.4:

Proposition 2.1. Assume that the transported objective function J given by (2.3.12) has continuous
partial derivatives at (θ, us, uf ) = (0, us(Γ), uf (Γ)). Then, the mapping θ 7→ J(Γθ, uf (Γθ), us(Γθ)),

from W 1,∞
0 (D,Rd) into R, is Fréchet differentiable at θ = 0 and its derivative reads:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =

∂J

∂θ
(θ)

+

∫
Ωf

[
div(ffθ)pf + (∇θ +∇θT − div(θ)I)ν∇uf · ∇pf

]
dx

+

∫
Ωs

[
div(fsθ)ps + (∇θ +∇θT − div(θ)I)µ∇us · ∇ps

]
dx, (2.3.27)

where pf and ps are the adjoint states defined by (2.3.20) and (2.3.21).

Remark 2.7. Since formula (2.3.27) for the shape derivative of J involves domain integrals, it is called
a volume expression of the shape derivative. In the next subsection, it is shown that it can equivalently
be written in terms of surface integrals (which are more obviously satisfying the so-called Hadamard
structure theorem stated in chapter 1, proposition 1.1).

Proof. We first insert vs = u̇s(θ) and vf = u̇f (θ) in the adjoint equations (2.3.20) and (2.3.21) to obtain:

∂J

∂ûs
(u̇s(θ)) =

∫
Ωs

µ∇ps · ∇u̇s(θ)dx, (2.3.28)

∂J

∂ûf
(u̇f (θ)) =

∫
Ωf

ν∇pf · ∇u̇f (θ)dx. (2.3.29)

Then taking vs = ps in the variational formulation (2.3.15) for u̇s(θ) yields:∫
Ωs

µ∇ps·∇u̇s(θ)dx =

∫
Ωs

(div(fsθ)ps+(∇θ+∇θT−div(θ)I)µ∇us·∇ps)dx−
∫

Γ

ν
∂u̇f (θ)

∂n
psds. (2.3.30)

Now remarking that ṽ = pf ∈ Vf (Γ) is an extension of v = ps = pf ∈ H1/2
00 (Γ), taking ṽ = pf in (2.3.16)

implies:∫
Ωf

ν∇pf · ∇u̇f (θ)dx =

∫
Ωf

(div(ffθ)pf + (∇θ +∇θT − div(θ)I)ν∇uf · ∇pf )dx+

∫
Γ

ν
∂u̇f (θ)

∂n
psds.

(2.3.31)
The desired formula (2.3.27) follows then by summation of (2.3.30) and (2.3.31).

Obtaining the surface expression of the shape derivative

The Hadamard’s structure theorem (chapter 1, proposition 1.1) states that under additional regularity
on the optimized interface Γ and on the considered vector fields θ, the shape derivative of a sufficiently
smooth objective function J depends only on the normal component θ · n on Γ. In this section, we
highlight how this remark allows to obtain a surface expression for the shape derivative of J from the
volume expression (2.3.27) in a simple way. To achieve this, we classically rely on three regularity
assumptions, which we assume to be satisfied throughout this section:
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1. The considered deformations θ are smooth, e.g. of class C1;

2. The state and adjoint variables us, uf , ps, pf enjoy H2 regularity in their domain of definition; this
is for instance the case when D, Ωs, Ωf and Γ are smooth enough; see e.g. [76].

3. The partial derivative ∂J
∂θ is sufficiently “regular”, in the sense that there exist fJ ∈ L1(D,Rd) and

gJ ∈ L1(Γ,Rd) such that

∀θ ∈W 1,∞
0 (D,Rd),

∂J

∂θ
(θ) =

∫
D

fJ · θdx+

∫
Γ

gJ · θds. (2.3.32)

The uniqueness of the decomposition (2.3.32), when it exists, is straightforward. The existence of
such a structure is typically obtained by performing integration by parts on ∂J

∂θ using, in turn, the
H2 regularity of the state and adjoint variables us, uf , ps, pf .

In the following and under these assumptions, we denote by

∀θ ∈W 1,∞
0 (D,Rd),

∂J

∂θ
(θ) :=

∫
Γ

(gJ · n)(θ · n)ds, (2.3.33)

the part of ∂J
∂θ that depends only on θ · n. The main result of this section is the following proposition:

Proposition 2.2. Under the above assumptions, the shape derivative (2.3.27) rewrites as an integral
over the boundary Γ involving only the normal component θ · n:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =

∂J

∂θ
(θ)

+

∫
Γ

[
ffpf − fsps − ν∇uf · ∇pf + µ∇us · ∇ps + 2ν

∂uf
∂n

∂pf
∂n
− 2µ

∂us
∂n

∂ps
∂n

]
(θ · n)ds. (2.3.34)

Proof. The regularity assumptions allow to perform integration by parts in the volume expression
(2.3.27), which yields:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ)

=

∫
Γ

gJ · θds+

∫
Γ

[ffpf (θ · n) + ν(θ · ∇uf )(∇pf · n) + ν(n · ∇uf )(∇pf · θ)− ν(∇uf · ∇pf )(θ · n)]ds

−
∫

Γ

[fsps(θ · n) + µ(θ · ∇us)(∇ps · n) + µ(n · ∇us)(∇ps · θ)− µ(∇us · ∇ps)(θ · n)]ds

+

∫
D

Λ · θdx, (2.3.35)

for some function Λ ∈ L1(D,Rd) which does not need to be written explicitly. Hadamard’s structure
theorem implies that (2.3.35) must vanish for vector fields θ compactly supported in Ωs or in Ωf , or
for vector fields θ which are tangential to Γ. Therefore, Λ = 0, and one obtains (2.3.34) by computing
(2.3.35) with θ normal to Γ.

Formula (2.3.34) is called a surface expression of the shape derivative of J . It is retrieved in section 2.6.2
for a particular case of an objective functional J with Céa’s method. An asset of the above Lagrangian
method is that it depends neither on the nature of the objective function J (e.g. if it depends on uf , us
or their gradients), nor on the type of boundary conditions satisfied by the state variables uf and us.
Both expressions (2.3.27) and (2.3.34) are convenient to implement because they require minimal inputs
from the user: namely, the expression of the partial derivatives of J with respect to θ (for (2.3.27)
and (2.3.34)) and to the state variables us, uf (for solving the adjoint system (2.3.14) and (2.3.15)).

Remark 2.8. Propositions 2.1 and 2.2 respectively reduce to propositions 1.8 and 1.9 in the context
of the Poisson problem (1.2.19) considered in chapter 1, by replacing u and p by uf and pf and setting
us = 0, ps = 0. Notice that in the derivation of (2.3.34), we never used the zero Dirichlet boundary
condition of uf , pf and us, ps on respectively ∂Ωf\Γ and ∂Ωs\Γ. Therefore, it can be seen that (2.3.34)
is also valid in the context of proposition 1.9 (featuring Neumann boundary conditions, ΓN 6= ∅).
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Remark 2.9. In practice, one can obtain very quickly the surface expression (2.3.34) of the shape
derivative from the volume expression (2.3.27) by

1. replacing volume integrals by surface integrals, adding a minus sign when these involve Ωs in order
to account the orientation of the normal n outward to Ωf ;

2. replacing ∇θ by nnT (θ · n).

Let us now illustrate these results with the calculation of the shape derivative of the ‘solid compliance’,
which is not of the form (2.3.22) considered previously:

J(Γ, uf (Γ), us(Γ)) =

∫
Ωs

µ|∇us|2dx. (2.3.36)

The associated transported objective function J via (2.3.12) reads:

J(θ, ûf , ûs) =

∫
(I+θ)Ωs

µ|∇(ûs ◦ (I + θ)−1)|2dx =

∫
Ωs

µ|(I +∇θ)−T∇ûs|2|det(I +∇θ)|dx. (2.3.37)

Lemma 2.2. The functional J defined in (2.3.37) has continuous partial derivatives at

(θ, ûs, ûf ) = (0, us(Γ), uf (Γ)),

which are given by:
∂J

∂ûf
(vf ) = 0,

∂J

∂ûs
(vs) =

∫
Ωs

2µ∇us · ∇vsdx, (2.3.38)

∂J

∂θ
(θ) =

∫
Ωs

(µ|∇us|2div(θ)− 2µ∇us · ∇θ · ∇us)dx, (2.3.39)

∂J

∂θ
(θ) =

∫
Γ

[
−µ|∇us|2 + 2µ

∣∣∣∣∂us∂n

∣∣∣∣2
]

(θ · n)ds. (2.3.40)

Therefore the solid compliance (2.3.36) θ 7→ J(Γθ, us(Γθ), uf (Γθ)) is differentiable with respect to θ ∈
W 1,∞

0 (D,Rd), and the shape derivative is given by proposition 2.1 in volume form or proposition 2.2 in
surface form.

Remark 2.10. Note that in this particular case the adjoint state ps defined by (2.3.20) satisfies ps = 2us,
but no such property holds for pf (the problem is not self-adjoint). Unlike the usual case of the standard
Poisson equation, there is no obvious way to write the solid compliance (2.3.36) in a form (2.3.22)
involving only volumic integrals in us, uf without occurrence of their gradient as in section 2.6.2. For
example, the formulation as the work of external forces,

J(Γ, us(Γ), uf (Γ)) =

∫
Ωs

fsusdx−
∫

Γ

ν
∂uf
∂n

usds, (2.3.41)

involves the gradient of uf ; it is therefore less convenient to handle than (2.3.36), since the partial
derivative

∂J

∂uf
: v 7→ −

∫
Γ

ν
∂v

∂n
usds

is not defined on Vf,0, but merely in a subspace of smoother functions (a treatment could be considered
however, by considering different solution spaces, see e.g. [294, 216]). We shall also discuss this point
when calculating the shape derivative of the lift functional in chapter 6, section 6.2.3.

A mixed variational formulation for the state and adjoint problem

We conclude this section with a remark which may shed some light on the a priori surprising boundary
condition ps = pf on Γ for the adjoint systems (2.3.20) and (2.3.21). The key observation is that the
systems (2.3.1) and (2.3.2) may be formally described by means of a variational formulation for the
couple (us, uf ) which features different functional spaces for the solution and test functions (a so-called
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Petrov-Galerkin variational formulation, see e.g. [144]). The latter is simply obtained by summing (2.3.8)
and (2.3.11):

Find (uf , us) ∈ H1
0 (Ωf )×H1(Ωs) such that ∀v ∈ H1(D),∫

Ωs

µ∇us · ∇vdx+

∫
Ωf

ν∇uf · ∇vdx =

∫
Ωs

fsvdx+

∫
Ωf

ffvdx. (2.3.42)

Problem (2.3.42) implicitly encloses the transmission condition µ∂us∂n = ν
∂uf
∂n on Γ, and the need to resort

to extensions of test functions defined on Ωs in the variational formulation (2.3.11) for us is reflected
here in that the test function v belongs to H1(D).

As is customary (see for instance section 2.6.2), the adjoint system is obtained by formally taking the
linear transpose of the mixed variational formulation (2.3.42) (with a different right-hand side), which
exchanges the roles of the functional spaces for the sought solution and the test functions:

Find p ∈ H1(D) such that ∀(vf , vs) ∈ H1
0 (Ωf )×H1(Ωs),∫

Ωs

ν∇p · ∇vsdx+

∫
Ωf

ν∇p · ∇vfdx =
∂J

∂ûs
(vs) +

∂J

∂ûf
(vf ). (2.3.43)

The above equation is in turn equivalent to the triangular system (2.3.20) and (2.3.21) for the restrictions
ps and pf of p on Ωs and Ωf , where the transmission condition ps = pf on Γ is implicitly contained in
the requirement that p be an element of H1(D).

Remark 2.11. The above argument is only formal because it is not obvious that the variational problem
(2.3.42) be well-posed. It can however be made rigorous by changing the functional spaces featured in
there, more precisely, by searching for (uf , us) in{

(uf , us) ∈ H1
0 (Ωf )× Vs(Γ), 1Ωf ν∇uf + 1Ωsν∇us ∈ H(div, D)

}
,

where 1Ωf (resp. 1Ωs) is the characteristic function of Ωf (resp. Ωs), and by searching for v in L2(D).
It is then possible to prove that the inf-sup condition of the Banach-Necas-Babuska theorem holds (see
[144]) in the case of this new version of (2.3.42), which guarantees its well-posedness.

2.4 Shape derivatives for the three-physic problem

We now briefly describe how the methodology presented in section 2.3 applies to the weakly coupled,
multiphysics system (2.2.1) to (2.2.3). Let us introduce the functional spaces which are required, respec-
tively, for the Navier-Stokes equations

Vv,p(Γ) = {(w, q) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = 0 on ∂Ωf},

for the thermal equation
VT (Γ) = {S ∈ H1(D) |S = 0 on ∂ΩDT },

for the thermo-mechanical equations

Vu(Γ) = {r ∈ H1(Ωs,Rd) | r = 0 on ∂ΩDs }.

Note that, as is customary in the theory of the Navier-Stokes equations, the quotient space L2(Ωf )/R,
associated to the pressure field, gathers square integrable functions defined up to an additive constant.
We consider as well the affine spaces associated to the non-homogeneous Dirichlet boundary data v0 ∈
H1/2(∂ΩDf ,Rd), u0 ∈ H1/2(∂ΩDs ,Rd) and T0 ∈ H1/2(∂ΩDT ) featured in (2.2.1) to (2.2.3):

v0 + Vv,p(Γ) = {(w, q) ∈ H1(Ωf ,Rd)× L2(Ωf )/R |w = v0 on ∂ΩDf and w = 0 on Γ},
T0 + VT (Γ) = {S ∈ H1(D) |S = T0 on ∂ΩDT },
u0 + Vu(Γ) = {r ∈ H1(Ωs,Rd) | r = u0 on ∂ΩDs }.

Finally, we shall make use of the trace space

H
1/2
00 (Γ,Rd) = {r|Γ | r ∈ H1(Ωf ,Rd) and r = 0 on ∂Ωf\Γ}, (2.4.1)
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and its dual H
−1/2
00 (Γ,Rd). The state variables v, p, T,u are the solutions to the following variational

problems: for the Navier-Stokes equations (2.2.1), find (v, p) ∈ v0 + Vv,p(Γ) such that

∀(w, q) ∈ Vv,p(Γ)

∫
Ωf

[σf (v, p) : ∇w + ρw · ∇v · v − qdiv(v)] dx =

∫
Ωf

ff ·wdx; (2.4.2)

for the thermal equation (2.2.2), find T ∈ T0 + VT (Γ) such that, for any S ∈ VT (Γ),∫
Ωs

ks∇T · ∇Sdx+

∫
Ωf

(kf∇T · ∇S + ρcpSv · ∇T )dx =

∫
Ωs

QsSdx+

∫
Ωf

QfSdx+

∫
∂ΩNT

hSds; (2.4.3)

for the thermo-mechanical equations (2.2.3), find u ∈ u0 + Vu(Γ) such that

∀r ∈ Vu(Γ),

∫
Ωs

σs(u, Ts) : ∇rdx =

∫
Ωs

fs · rdx+

∫
∂ΩNs

g · rds−
∫

Γ

r · σf (v, p) · nds. (2.4.4)

Let us comment on the well-posedness of the coupled system of variational problems (2.4.2), (2.4.3) and
(2.4.4). As in section 2.3, the volumic source terms are assumed to enjoy H1 regularity in their domain:
ff ∈ H1(Ωf , Rd), fs ∈ H1(Ωs, Rd), Qf ∈ H1(Ωf ), Qs ∈ H1(Ωs). The surface fluxes h, g are assumed
to belong to L2 spaces. At first, the classical theory for the Navier-Stokes equation states that (2.4.2) is
well-posed as soon as the Reynolds numbers Re := ||v0||H1/2(∂ΩDf ,Rd)ρ/ν is sufficiently small; see [304].

The variational formulation (2.4.3) of the thermal problem is not well-posed in utter generality
because of the lack of coercivity induced by the advection term

∫
Ωf
ρcpSv · ∇Tdx and of the presence of

inhomogeneous Dirichlet boundary conditions. However, in usual applications [255, 225], it is customary
to impose a Dirichlet boundary condition T = T0,f at the inlet of the computational domain (i.e. where
v · n < 0) and a Neumann boundary condition −kf∇T · n = 0 at the outlet (v · n > 0). This together
with the incompressibility condition div(v) = 0 is easily shown to imply the coercivity of the bilinear
form featured in (2.4.3); see e.g. [75].

Eventually, the well-posedness of the linear elasticity problem (2.4.4) results from the Lax-Milgram
theorem, the only subtle point is that, as in section 2.3, σf (v, p) · n is an element of the dual space of

H
1/2
00 (Γ,Rd): if v, p were regular enough, the following integration by parts would hold true:

∀r ∈ Vu(Γ), −
∫

Γ

r · σf (v, p) · nds =

∫
Ωf

(−div(σf (v, p)) · r − σf (v, p) : ∇r)dx. (2.4.5)

Hence the normal stress σf (v, p)n can be understood mathematically as an element of H
−1/2
00 (Γ,Rd),

defined by

∀r ∈ H1/2
00 (Γ,Rd), −

∫
Γ

r · σf (v, p) ·nds =

∫
Ωf

(ff · r̃− ρr̃ · ∇v · v − σf (v, p) : ∇r̃+ q̃div(v))dx (2.4.6)

for any extension (r̃, q̃) ∈ H1(Ωf ,Rd)× (L2(Ωf )/R) satisfying r̃ = r on Γ. Note that although it is not
fully necessary, we consider also an extension q̃ of the pressure field to maintain a complete analogy with
(2.3.10). This turns to be convenient in the calculation of the shape derivative performed in section 2.6.1.

Throughout this section, we assume that the above conditions for the well-posedness of the coupled
system of variational problems (2.4.2), (2.4.3) and (2.4.4) are fulfilled.

In the above context, we aim at solving the minimization problem (2.2.6) where the velocity v(Γ),
pressure p(Γ), temperature T (Γ) and elastic displacement u(Γ) are the solutions to (2.2.1) to (2.2.3).

In order to compute shape derivatives with respect to variations of a given interface Γ, we introduce
as in section 2.3.2 a transported functional J defined on the fixed functional space

W 1,∞
0 (D,Rd)×H1(Ωf ,Rd)× (L2(Ωf )/R)×H1(D)×H1(Ωs,Rd)

by:

∀θ ∈W 1,∞
0 (D,Rd), (v̂, p̂, T̂ , û) ∈ H1(Ωf ,Rd)× (L2(Ωf )/R)×H1(D)×H1(Ωs,Rd),

J(θ, v̂, p̂, T̂ , û) = J(Γθ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1, T̂ ◦ (I + θ)−1, û ◦ (I + θ)−1). (2.4.7)

The only requirement made on J is that the associated functional J has continuous partial derivatives
at (θ, v̂, p̂, T̂ , û) = (0,v(Γ), p(Γ), T (Γ),u(Γ)). Under this assumption, arguing as in section 2.3.2 and
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section 2.6.2, we define the adjoint variablesw, q, S, r as follows. The elasticity adjoint variable r ∈ Vu(Γ)
is the solution of ∫

Ωs

Ae(r) : ∇r′dx =
∂J

∂û
(r′) ∀r′ ∈ Vu(Γ) . (2.4.8)

The thermal adjoint variable S ∈ VT (Γ) is the solution of∫
Ωs

ks∇S ·∇S′dx+

∫
Ωf

(kf∇S ·∇S′+ρcpSv·∇S′)dx =

∫
Ωs

αdiv(r)S′dx+
∂J

∂T̂
(S) ∀S′ ∈ VT (Γ) . (2.4.9)

The fluid adjoint variables (w, q) ∈ H1(Ωf ,Rd)× (L2(Ωf )/R) are the solution of

w = r on Γ and ∀(w′, q′) ∈ Vv,p(Γ)∫
Ωf

(
σf (w, q) : ∇w′ + ρw · ∇w′ · v + ρw · ∇v ·w′ − q′div(w)

)
dx =∫

Ωf

−ρcpS∇T ·w′dx+
∂J

∂(v′, p′)
(w′, q′), (2.4.10)

and we recall our convention whereby the point (0,v(Γ), p(Γ), T (Γ),u(Γ)) where the partial derivatives
of J are evaluated is omitted.

As expected, the cascade dependency (v, q)→ T → u in the state variables (the variable on the right
of the arrow depends on that on the left) is reversed into r → S → (w, q) for the adjoint variables, which
reflects the fact that the adjoint system is formally the linearized transpose of the state problem.

Remark 2.12. The existence and uniqueness of a solution (w, q, S, r) in H1(Ωf ,Rd) × (L2(Ωf )/R) ×
H1(D) × H1(Ωs,Rd) to the adjoint system (2.4.8) to (2.4.10) follows from the same considerations as
in the case of the state system (2.4.2) to (2.4.4), except when it comes to the linearized Navier-Stokes
equation (2.4.10). The latter is well-posed provided the Reynolds number is sufficiently small; see [171],
Chap. IV about this point.

Remark 2.13. Let us consider the case of a particular objective functional of the form

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) =

∫
Ωf

jf (v(Γ), p(Γ), T (Γ))dx+

∫
Ωs

js(u(Γ), T (Γ))dx, (2.4.11)

where jf : Rdv×Rp×RT → R and js : Rdu×RT → R are smooth and satisfy adequate growth conditions.
The adjoint equations (2.4.8) to (2.4.10) rewrite respectively in strong form, for the elasticity system,

−div(Ae(r)) =
∂js
∂u

in Ωs

r = 0 on ∂ΩDs

Ae(r)n = 0 on ∂ΩNs ∪ Γ,

for the thermal equation,

−div(ks∇Ss) = αdiv(r) +
∂js
∂Ts

in Ωs

−div(kf∇Sf )− ρcpv · ∇Sf =
∂jf
∂Tf

in Ωf

S = 0 on ∂ΩDT

ks
∂Ss
∂n

= 0 on ∂ΩNT ∩ ∂Ωs

kf
∂Sf
∂n

+ ρcp(v · n)Sf = 0 on ∂ΩNT ∩ ∂Ωf

Ss = Sf on Γ

−ks
∂Ss
∂n

= −kf
∂Sf
∂n

on Γ,
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for the Navier-Stokes equations,

−div(σf (w, q)) + ρ(∇vT w −∇wv) = −ρcpS∇Tf +
∂jf
∂v

in Ωf

−div(w) =
∂jf
∂p

in Ωf

w = 0 on ∂ΩDf

σf (w, q)n+ ρ(v · n)w = 0 on ∂ΩNf

w = r on Γ.

(2.4.12)

Note the “surprising” fact in the linearized adjoint system (2.4.12) for the Navier-Stokes equations that
the interface condition for the velocity variable w is of Dirichlet type on Γ, while it was of Neumann
type for the direct elasticity problem (2.2.3).

A very similar analysis to that of section 2.3 yields the shape derivative of J in the present physical
context; proofs are postponed to section 2.6.1.

Proposition 2.3. Assume that the transported objective function J, defined by (2.4.7), has continuous

partial derivatives at (θ, v̂, p̂, T̂ , û) = (0,v(Γθ), p(Γθ), T (Γθ),u(Γθ)). Then the objective function J ,
considered in (2.2.6), is differentiable with respect to θ ∈W 1,∞

0 (D,Rd) and the derivative reads

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=
∂J

∂θ
(θ) +

∫
Ωf

[w · div(ff ⊗ θ)− (σf (v, p) : ∇w + ρw · ∇v · v)div(θ)] dx

+

∫
Ωf

[σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ) + ρw · (∇v∇θ) · v]dx

−
∫

Ωs

div(θ)(ks∇T · ∇S)dx−
∫

Ωf

div(θ)(kf∇T · ∇S + ρcp(v · ∇T )S)dx

+

∫
Ωs

ks(∇θ +∇θT )∇T · ∇Sdx+

∫
Ωf

[
kf (∇θ +∇θT )∇T · ∇S + ρcpv · (∇θT∇T )S

]
dx

+

∫
Ωs

div(Qsθ)Sdx+

∫
Ωf

div(Qfθ)Sdx

+

∫
Ωs

[−div(θ)σs(u, T ) : ∇r + σs(u, T ) : (∇r∇θ) +Ae(r) : (∇u∇θ) + r · div(fs ⊗ θ)] dx, (2.4.13)

where r, S,w, q are the adjoint states defined by (2.4.8) to (2.4.10).

Proposition 2.4. If in addition the state and adjoint variables v, Ts, Tf ,u,w, S, r (resp. p, q) have H2

(resp H1) regularity in their domain of definition, and if the partial derivative ∂J
∂θ has a decomposition of

the form (2.3.32), then (2.4.13) rewrites as an integral over the interface Γ depending only on the normal
component θ · n of θ:

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=
∂J

∂θ
(θ) +

∫
Γ

(ff ·w − σf (v, p) : ∇w + n · σf (w, q)∇v · n+ n · σf (v, p)∇w · n)(θ · n)ds

+

∫
Γ

(
ks∇Ts · ∇Ss − kf∇Tf · ∇Sf +QfS −QsSs − 2ks

∂Ts
∂n

∂Ss
∂n

+ 2kf
∂Tf
∂n

∂Sf
∂n

)
(θ · n)ds

+

∫
Γ

(σs(u, Ts) : ∇r − fs · r − n ·Ae(r)∇u · n− n · σs(u, Ts)∇r · n) (θ · n)ds,

(2.4.14)

where ∂J
∂θ denotes the part of ∂J/∂θ that depends only on the normal trace θ · n (see (2.3.33)).

Remark 2.14. Formula (2.4.13) is a volume expression of the shape derivative, while formula (2.4.14)
is a surface expression of the same derivative. Formula (2.4.14) can be simplified a little by using the
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following identities on Γ, which arise as consequences of the boundary conditions featured in (2.2.1)
to (2.2.3):

n · σf (w, q)∇v · n = σf (w, q) : ∇v, (2.4.15)

n · σf (v, p)∇w · n− n · σs(u, Ts)∇r · n = σf (v, p) : ∇w − σs(v, p) : ∇r. (2.4.16)

The above equations (2.4.13) and (2.4.14) generalize more classical shape derivatives expressions for
each of the physics considered individually: the elastic, thermic, and fluid parts coincide with expressions
stated in e.g. [32, 168] for the elasticity, [314] for pure thermoelasticity, [253] for the thermal conductivity
terms, and [259, 100, 112] for the Navier Stokes equations. However some terms of formula (2.4.14)
vanishing for particular instances of the objective function J (for example, Ae(r) · n = 0 for objective
functions written as a volume integral depending only on u and not on its gradient), may be missing in
previous works.

The shape derivative formulas (2.4.13) and (2.4.14) may seem rather complex at first glance, however
they can be implemented once and for all. In a practical implementation, they allow then to automate
very conveniently the numerical assembly of shape derivatives, since only analytical expressions of the
partial derivatives of the objective functionals are required. These are usually obtained very easily in
weak form, which turns to be also convenient for the resolution of the adjoint equations (2.4.8) to (2.4.10).

Remark 2.15. In the case where the Stokes system is considered instead of the Navier-Stokes equations
in (2.2.1), the above formulas hold by setting ρ = 0 in the terms involving the fluid state and adjoint
variables v and w.

2.5 Numerical test cases

This section is devoted to the presentation of several 2-d test cases which in particular allow to verify
numerically the shape derivatives formulas of propositions 2.3 and 2.4. This verification is based on the
assumption that their correct implementation should make objective functions decrease and constraints
become gradually satisfied, in accordance with the expected behavior of our null space algorithm for
constrained optimization (detailed in chapter 3).

Here, we demonstrate on various multiphysics examples how the previous ideas can be effectively
implemented in order to address a wide range of topology optimization problems.

This part deviates from the published work [153] in several aspects. First, supplementary test cases
are treated in sections 2.5.2 to 2.5.5. Second, the test case of sections 2.5.6 and 2.5.7 that were originally
treated in [153] have been respectively revised (in order to illustrate differences between the use of volume
and surface expressions of the shape derivative) or improved (constraints are treated explicitly with our
null space gradient flow optimization algorithm).

2.5.1 A few details about the numerical implementation

Our numerical implementation follows algorithm 1.1 outlined in chapter 1 with the level set based
mesh evolution method of [25] summarized in algorithm 1.2. We rely on the open-source FreeFem++

environment for the resolution of Finite Element problems [183] (see [34] for its use in the context of
structural optimization and [112] about its use in the context of fluid flow optimization). Since much
more details shall be provided in chapter 6, we content ourselves to provide here only a brief overview
of our implementation.

The Navier-Stokes system (2.4.2) is solved by using a mixed formulation, where the space Vv,p is
discretized with P1-bubble × P1 elements. The equations (2.2.2) and (2.2.3) for the temperature T
and the elastic displacement u are solved with P1 finite elements. In all the considered examples, the
Reynolds number and the velocity v of the fluid are sufficiently small so that the convergence and stability
of our numerical schemes are guaranteed without the need for more complex numerical strategies, e.g.
upwinding methods. Note that, when solving the fluid-structure interaction problem (2.2.3), a numerical
estimate of the normal stress σf (v, p)n is used as a boundary load in the discretization of the variational
formulation (2.4.4). Naturally, a mixed formulation analogous to (2.3.42) could be implemented for the
triplet (v, p,u), which would avoid computing normal derivatives at the boundary.

Both surface and volume expressions of shape derivatives are considered for the computation of a
descent direction as described in chapter 1, section 1.4.1. Once the shape derivative DJ(Γ) of the
considered objective function J (or the constraints) is assembled, the identification problem (1.4.4) (also
called extension and regularization of the interface velocity) is solved using FreeFEM. We rely on the inner
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product (1.2.24) when using the surface expression (2.4.14) for the shape derivative, and on (1.2.25) when
using the volume expression (2.4.13). In several cases, we observed without explanation that the use of
the volume expression was beneficial, either for obtaining better shapes or smoother convergence curves
for the objective function and constraints. A few comparisons illustrating these facts shall be provided
hereafter. Note that this matter has been discussed in a number of works, see e.g. [188, 168].

The open-source library mmg [108] is used when it comes to the isosurface discretization and quality-
oriented remeshing operations outlined in chapter 1, section 1.4.2. Let us mention that the meshes
obtained are in general non symmetric even if the discretized shape is symmetric. Since this can affect
slightly the quality of the optimized shape, the level set function associated to the shape of the next
iteration is symmetrized before remeshing in test cases where symmetry is to be expected (see chapter 6
for the details). This allows to avoid large symmetry loss induced by the accumulation of small numerical
errors. The computation of the signed distance function to a meshed domain (see section 1.3.1) is
performed by using the open-source algorithm mshdist; see [111].

In all our examples, the considered shape and topology optimization problems feature equality or
inequality constraints, for instance on the volume of one of the two phases Ωf , Ωs. These constraints are
gradually enforced and maintained thanks to the null space gradient flow algorithm detailed in chapter 3.
For now, let us content ourselves with saying that optimization trajectories are calculated by mean of a
gradient flow (a dynamical system based on the gradient of the objective and constraint functions) that
is able to detect and to handle equality and inequality constraints.

In the following, we treat a variety of test cases which are all subcases of the full three physics
model. The first three examples are benchmark test cases of the literature featuring only one physics.
The next three problems involve two physics: pure fluid-structure interaction, thermoelasticity, and heat
convection. The final example involves all physics simultaneously.

2.5.2 Cantilever beam in linearized elasticity

Our first example is the very classical cantilever beam test case which has been commonly used to
illustrate many topology optimization algorithms, e.g. with the Hadamard method [32, 34] or the SIMP
method [43]. We consider the classical compliance minimization problem of finding a structure Ωs ⊂ D
enclosed in a domain D = [0, 2]× [0, 1] fixed at top and bottom left boundaries and subject to a traction
load g on the middle of the right-hand boundary (the setting is illustrated on Figure 2.3). The objective

g

0.2

1

1

∂ΩDs

∂ΩDs

∂ΩNs

Figure 2.3: Setting of the cantilever optimization problem of section 2.5.2.

is to minimize the compliance of the structure subject to a volume constraint:

min
Ωs⊂D

J(Ωs,u(Ωs)) :=

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) :=

∫
Ωs

dx = Vtarget.

(2.5.1)

where Vtarget is a target volume set to 0.6 in our implementation.
In this setting, the formulas (2.3.38) and (2.3.39) needed for the shape derivative of J and the

definition of the adjoint systems read:

∂J

∂θ
(θ) =

∫
Ωs

(Ae(u) : e(u)div(θ)− 2Ae(u) : (∇u∇θ))dx, (2.5.2)
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∂J

∂θ
(θ) =

∫
Γ

(−Ae(u) : e(u) + 2n · (Ae(u))∇u · n)(θ · n)ds, (2.5.3)

∂J

∂û
(r′) =

∫
Ωs

2Ae(u) : e(r′)dx. (2.5.4)

The shape derivative of the volume functional Vol(Ωs) reads simply

d

dθ
Vol(Ωs,θ) =

∫
Ωs

div(θ)dx = −
∫

Γ

θ · nds, (2.5.5)

where the minus sign comes from our convention that n is pointing inside Ωs. For this example, the
values of the Lamé parameters are set to λ = 12.96 and µ = 5.56.

Intermediate shapes obtained with our implementation by using the surface expression for the shape
derivative are displayed on Figure 2.4. An instance of a mesh associated to one of the intermediate shapes
where a topological change occurs is visible on Figure 2.5, which further illustrates a key feature of our
numerical method: an explicitly meshed, black and white description of the shape is available during
the whole optimization process. The history curves for the objective and constraint function values
are displayed on Figure 2.6. These illustrate the ability of our optimization algorithm to decrease the
objective function while maintaining the constraint satisfied. Observe that very good shapes are obtained
within approximately a thirty iterations, and that the oscillations visible for the objective function J at
subsequent iterations are the result of numerical noise around the optimum.

Figure 2.4: Intermediate iterations 0, 8, 15, 19, 30 and 110 for the cantilever test case of section 2.5.2.

2.5.3 Optimal shapes for pure heat conduction

We now address a different problem where only thermal effects are considered, for which the only state
variable active is the temperature T . This test case has been treated by Marck and Privat [225] with
a density based topology optimization method. We consider a domain D = [0.1, 0.1] with two phases
Ωs and Ωf representing two conductive materials with respective conductivity constants ks = 1 and
kf = 100. The whole domain is heated with a uniform volume heat source Qs = Qf = 104. The most
conductive phase Ωf is connected to a “cold” Dirichlet boundary ∂ΩDT featuring T = T0 (with T0 = 0 in
our implementation). All other parts of the boundary are adiabatic (no heat flux escaping the domain).
The setting is represented on Figure 2.7.

The objective is to find the distribution of material Ωf which minimizes the average temperature of
the whole domain using a limited amount of volume Vtarget (set to Vtarget = 0.15 in our case):

min
Γ

J(Γ, T (Γ)) =

∫
D

Tdx

s.t. Vol(Ωf ) ≤ Vtarget.
(2.5.6)

For this problem, the partial derivatives of the objective function J read simply

∂J

∂θ
(θ) =

∂J

∂θ
(θ) = 0 (2.5.7)

∂J

∂T̂
(S′) =

∫
D

S′dx. (2.5.8)
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Figure 2.5: Mesh of an intermediate optimization iteration (on the left) and zoom on a region featuring a change
of topology (on the right) for the cantilever test case of section 2.5.2.

0 20 40 60 80 100

0.05

0.06

0.07

0.08

0.09

0.10

0.11

(a) Objective function J . Final value: J =0.058.
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(b) Volume constraint Vol(Ωs). Final value:
Vol(Ωs) =0.59.

Figure 2.6: Convergence history for the cantilever test case of section 2.5.2.

∂ΩDT
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∂T
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D

Γ

Figure 2.7: Setting of the optimal heat conduction problem of section 2.5.3.
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Initial and final shapes obtained by using the surface expression (2.4.14) of the shape derivative are
displayed on Figure 2.8. A few intermediate iterations are visible on Figure 2.10. It is interesting to
compare them to those obtained with the volume expression (2.4.13) of the shape derivative. Both final
shapes are similar, although the optimization path is a little bit different with smaller details appearing
more quickly with the volume expression of the shape derivative, and a final shape slightly better for
a similar number of iterations. The convergence curves for the objective and constraint functionals are
plotted on Figure 2.13. It is interesting to observe that although the volume constraint in (2.5.6) is an
inequality constraint. The process converges without oscillations characterizing many other optimization
algorithms using active set strategies [297]. The details of the method allowing to obtain this smoothness
of convergence are explained in chapter 3, section 3.4.1.

A mesh of the final shape is shown on Figure 2.12. Let us mention that local parameters were pre-
scribed in the remeshing tool mmg in order to obtain a (small) constant mesh edge size for the discretization
of the optimized boundary Γ.

Figure 2.8: Initial and final configurations for the pure heat conduction test case of section 2.5.3. The fluid
material is represented in white.

Figure 2.9: Initial and final temperature fields for the pure heat conduction test case of section 2.5.3.

2.5.4 Optimal drag profiles for Stokes and Navier-Stokes flows

The final example featuring only one physics is concerned with the classical problem of finding the shape
of an obstacle minimizing the drag force induced by a surrounding flow [259, 172]. Here we follow the
setting proposed in [113]. The global domain is a rectangle D = [0, 1] × [0, 1]. A flow v is entering on
the left side with a velocity v = ex where ex is the unit horizontal direction. The viscosity and density
parameters of the flow are given by ν = 5e − 3 and ρ = 1, which corresponds to a Reynolds number
Re = 200. In order to limit the effects induced by the bottom and top walls, a slip boundary condition
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Figure 2.10: Intermediate iterations 0, 10, 25, 40, 90 and 200 for the pure heat conduction test case of section 2.5.3
using the surface expression (2.4.14) of the shape derivative. Final objective function value: J = 2.8.

Figure 2.11: Intermediate iterations 0, 10, 25, 40, 90 and 190 for the pure heat conduction test case of section 2.5.3
using the volume expression of the shape derivative. Final objective function value: J = 2.6.
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Figure 2.12: Final mesh and zoom on a part of it for the heat conduction test case of section 2.5.3.
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(a) Objective function J . Final value: J = 2.8.
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(b) Constraint Vol(Ωf ). Final value: Vol(Ωf ) = 0.15.

Figure 2.13: Convergence history for the heat conduction test case of section 2.5.3.

v · n = 0 is assumed on these boundaries1. The flow leaves the domain on the right boundary with a
zero normal stress boundary condition: σf (v, p) · n = 0. The setting is illustrated on Figure 2.14).

The objective is to minimize the energy dissipation of the fluid generated by the solid structure,
subject to a constraint on its volume, as well as on its center of mass fixed to the center x0 of the
domain:

min
Γ

J(Γ,v(Γ)) =

∫
Ωf

2νe(v) : e(v)dx

s.t.


Vol(Ωf ) = Vtarget

X(Ωs) :=
1

|Ωs|

∫
Ωs

xdx = x0.

(2.5.9)

We have set Vtarget = 0.03 and x0 = (0.5, 0.5) in our implementation. The partial derivatives of the
objective function allowing to obtain its shape derivative are given by

∂J

∂θ
(θ) =

∫
Ωf

[−2νe(v) : ∇v∇θ + 2νe(v) : e(v)div(θ)]dx, (2.5.10)

∂J

∂θ
(θ) = −

∫
Γ

2νe(v) : e(v) (θ · n)ds, (2.5.11)

∂J

∂(v, p)
(w′, q′) =

∫
Ωf

4νe(v) : e(w′)dx. (2.5.12)

The reader may verify that these equations plugged in the formulas (2.4.13) yield shape derivative
formulas identical to those derived for the same problem e.g. in [112]. The derivative of the center of
mass X(Ωs) is given by

d

dθ
X(Ωs,θ)(θ) =

1

|Ωs|

∫
Ωs

(X(Ωs)− x)div(θ)dx =
1

|Ωs|

∫
Γ

(X(Ωs)− s)θ · nds.

1This boundary condition is not exactly the one considered in (2.2.1) but the computation of shape derivatives remains
identical up to the account of the same boundary condition w · n = 0 for the adjoint variable on this boundary
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v = v0

v · n = 0

v · n = 0

σf (v, p) · n = 0Ωs

Ωf

Γ

Figure 2.14: Setting of the minimum drag flow problem of section 2.5.4.

Final optimized shapes are shown on Figure 2.15 below in both situations where the fluid is charac-
terized by the Stokes or Navier-Stokes equations. The celebrated rugby ball shape can be recognized for
the Stokes problem [259]. Velocity fields are plotted on Figure 2.16. Convergence curves for objective
and constraint functions are visible on Figure 2.19. We note that our constrained optimization algorithm
was able to compute these shapes without the oscillations of the constraints obtained in [110] with the
Augmented Lagrangian Method. A few intermediate iterations and the mesh of the final shape for the
Navier Stokes case are respectively shown on Figs. 2.17 and 2.18.

(a) Initial (b) Stokes (c) Navier-Stokes

Figure 2.15: Initial and final configurations for the minimum drag test case of section 2.5.4.

(a) Initial (Stokes) (b) Final (Stokes) (c) Initial (Navier-Stokes) (d) Navier-Stokes

Figure 2.16: Initial and final norm fields for the fluid velocity.

2.5.5 Minimum compliance problem in thermoelasticity

In this paragraph, we reproduce the test case of Xia and Wang [314] for compliance minimization in
thermoelasticity. A structure Ωs ⊂ D to be found in the rectangular domain D = [0, 2] × [0, 1] is
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(a) Stokes problem

(b) Navier Stokes problem

Figure 2.17: Intermediate iterations 0, 5, 10, 20, 30 and 70 for the minimum drag test case of section 2.5.4.

Figure 2.18: Mesh of the Navier-Stokes minimum drag profile and zoom on a part of the mesh. The mesh was
refined near the boundary of the obstacle and the outlet boundary to capture the flow variability.
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(a) Objective function J . Final values: J = 0.056
(Stokes) and J = 0.11 (Navier-Stokes)
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(b) Volume constraint Vol(Ωs). Final values (both
cases): Vol(Ωs) = 0.03.
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Figure 2.19: Convergence history for the test case of section 2.5.3.
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clamped on the left and right sides of the domain, and subjected to a traction load on the middle of
the bottom boundary. It is made of an elastic material characterized by Lamé parameters λ = 11510,
µ = 7673, thermoelastic coefficient α = 0.77 and reference temperature Tref = 0.

A constant temperature field T = Tref + ∆T is applied on the whole structure, which induces
thermal expansion. The setting is reproduced on Figure 2.20. We aim to solve the minimum compliance
minimization problem subject to a volume inequality constraint:

∂ΩDs

u = 0

D

∂ΩNs

T = Tref + ∆T

g

1

2

Figure 2.20: Setting for the thermoelastic compliance minimization problem of section 2.5.5, issued from [314].

min
Ωs⊂D

J(Ωs,u(Ωs)) :=

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) :=

∫
Ωs

dx ≤ Vtarget.

Strictly speaking, the problem still involves only one physics (the heat conduction problem (2.2.2) does
not need to be solved since the temperature field is prescribed). We could have made it multiphysics
by applying e.g. heat sources Qf and Qs, however we keep the setting of Xia and Wang [314] for the
sake of comparison. The force applied in [314] has a value F = 1, which is set in our implementation
by prescribing a traction force density g = −1/ε on a small portion of size ε = 0.0125 on the boundary.
The upper bound volume is set to Vtarget = 0.4.

Following [314], we solve the optimization problem for four values of ∆T (∆T = 0, 5, 10 or 20). On
Figure 2.21, we plot the convergence history curves for the objective function and the volume constraint
for each test case. Very interestingly, and as observed in [314], we retrieve the fact that the volume
constraint Vol(Ωs) ≤ Vtarget is saturated for the first two test cases ∆T = 0 and ∆T = 5, and is not
saturated otherwise. Notice as well in our case the smooth convergence of these curves obtained with
our null space gradient flow, in contrast to those of the original paper which relied on a variant of the
Augmented Lagrangian Method. In particular, our algorithm is able to quickly detect if the volume
constraint needs to remain saturated or not.

Optimized shapes including intermediate iterations are shown on Figure 2.22, and the correspond-
ing final compliance and volume values are shown in Table 2.3. Note that our numerical values do not
coincide exactly with those of Wang because their original physical parameters were multiplied by nondi-
mensionalization constants more compatible with our setting. However we clearly retrieve very similar
optimized shapes.

2.5.6 A steady-state fluid-structure interaction problem

We now address a true multiphysics problem involving two physics. A fluid is flowing through a pipe,
where it is pushing on a vertical beam of solid clamped at its bottom; see Figure 2.23 for a schematic
of the test case. Thermal effects are neglected (namely, (2.2.2) is ignored), so that (2.2.3) reduces to a
standard linear elasticity system with the pressure load induced by the fluid. The objective is to minimize
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(a) Objective function J .
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(b) Volume constraint Vol(Ωs) ≤ 0.4.

Figure 2.21: Convergence history for the thermoelasticity test case of section 2.5.5.

∆T Final J Final Vol(Ωs)

0 0.00049 0.4

5 0.00085 0.4

10 0.0015 0.38

15 0.0022 0.25

Table 2.3: Optimized compliance and volume values for the thermoelasticity test case of section 2.5.5. The results
are analogous to those of [311].

(a) ∆T = 0

(b) ∆T = 5

(c) ∆T = 10

(d) ∆T = 15

Figure 2.22: Intermediate iterations 0, 4, 13, 50 and 200 for each case of the thermoelasticity problem of sec-
tion 2.5.5.
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Figure 2.23: Physical setting of the fluid-structure optimization problem of section 2.5.6. During optimization,
the black domain cannot be reduced but only enlarged by adding reinforcements.

L H ` a ν ρ λ µ

2 0.5 0.4 0.3 0.005 1 0.00529 0.0476

Table 2.4: Numerical values of the physical parameters for the fluid-structure problem of section 2.5.6

the compliance of the solid phase Ωs subject to a volume constraint, that is:

min
Γ

J(Γ,u(Γ)) =

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) = Vtarget.

(2.5.13)

This example was previously considered by Yoon [319] with a different density-based (SIMP) method.
In our case, we set Vtarget = 0.025|D| where |D| = 1 is the volume of the total domain.

The numerical values of the considered physical parameters are given in Table 2.4. The velocity
profile v0 imposed at the entrance of the pipe is parabolic, with maximum amplitude vmax = 1, and
value 0 at the upper and lower walls. The Reynolds number is equal to Re = ρhvmax

ν = 60. The elastic
displacement is set to 0 on a horizontal segment of length ` supporting the beam.

In this part, we slightly ellaborate from our study previously published in [153] in that we highlight
some numerical differences between the use of the surface (2.4.14) and volume expression (2.4.13) when
computing the shape derivative. The optimization problem (2.5.13) is solved for both cases.

The initial and optimized shapes featuring the norm of the fluid velocity fields v are displayed on
Figure 2.24. The corresponding elastic deformations induced by the fluid on the solid structure (obtained
by moving mesh nodes along u for visualization purposes) are shown on Figure 2.25.Figure 2.26 shows
parts of the initial and final meshes for the case using the surface expression of the shape derivative.
Again, we point out that we used a feature of the library mmg to selectively enforce a fine mesh resolution
near the interface Γ, while allowing larger triangles far from this boundary in order to save computational
effort. Note that our final design are different from that in [319] because our Reynolds number is much
larger and the location of the beam is different.

The evolution of the objective function and of the volume fraction are reported on Figure 2.28. Note
that in the first part of the optimization, J increases sometimes substantially (especially in the case
relying on the volume expression of the shape derivative) due to the fact that the volume constraint is
not yet satisfied, or due to sudden discontinuities at topological changes.

Several intermediate shapes are displayed on Figure 2.29 when using the surface expression of the
shape derivative, and on Figure 2.30 when relying on the volume expression. The optimization path
is surprisingly very different when using the volume expression; very thin parts of the structure exist
for a longer time. Furthermore, although the final designs are somewhat similar, the one obtained with
the volume expression has a slightly better performance for a very similar volume constraint. Note
in particular the small solid bump near the top of the vertical beam which appears at the end of the
optimization with the volume expression of the shape derivative. In our published work [153], we checked
that this bump leads indeed to a better design; however it was obtained with the surface expression of the
shape derivative at the cost of much more resolved meshes: the first design had a prescribed minimum
edge length size hmin = 0.001 with 28,000 vertices in [153] versus hmin = 0.003 for approx. 11,000
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vertices in the present work. The meshes of the optimized shape published in [153] are reproduced on
Figure 2.27. Interestingly, in the present lower resolution case, only the volume expression of the shape
derivative seems able to retrieve this bump.

The optimization ran in approximately half an hour on a laptop equipped with Intel(R) Core(TM) i7-
4702MQ @ 2.20 GHz. Note that for this example, no optimization of the implementation was performed
for reducing the total computational time, e.g. with the use of preconditioners or parallelism when
solving finite element problems that represent most of the computational effort for these 2-d examples.
Such ingredients become unavoidable for 3-d examples and are discussed in chapter 6.

(a) Initial shape

(b) Final shape with the surface expression (2.4.14) of the shape derivative

(c) Final shape with the volume expression (2.4.14) of the shape derivative

Figure 2.24: Initial and final shapes and velocity norm fields for the fluid-structure interaction test case of
section 2.5.6. The optimized solid structure is depicted in white.

(a) Initial (b) Final (surface expression) (c) Final (volume expression)

Figure 2.25: Computed elastic deformations of the initial and optimized solid structures subjected to the pressure
induced by an inlet flow.

2.5.7 Convective heat transfer

Our second example involving two different physics is concerned with a coupling of the flow and heat
equations (2.2.1) and (2.2.2), i.e. the elastic behavior of the complement Ωs of the optimized fluid phase
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Figure 2.26: Zooms on the meshed solid structure of the final design obtained with the surface expression of the
shape derivative. The minimum mesh size was set to hmin = 0.003.

Figure 2.27: Zooms on the meshed solid structure of the final design from our published work [153] with the
surface expression of the shape derivative. The minimum mesh size was set to hmin = 0.001. The optimal shape
is slightly different with the “bump” at the top left of the structure obtained with the volume expression.
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(a) Objective function J . Final values: J = 52 (surface
expression) and J = 49 (volume expression).
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(b) Volume fraction constraint ηf (Ωs) =
Vol(Ωs)/Vol(D). Final value: ηf (Ωs) = 0.125 in
both cases, up to an error lower than 5.10−4.

Figure 2.28: Convergence history for the fluid-structure test case of section 2.5.6. The mentions “surf” and “vol”
refer respectively to the use of the surface and volume expressions of the shape derivatives.
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Figure 2.29: Intermediate iterations 0, 6, 15, 26, 56 and 300 for the fluid-structure test case of section 2.5.6 using
the surface expression (2.4.14) of the shape derivative.

Figure 2.30: Intermediate iterations 0, 15, 40, 56, 150 and 300 for the fluid-structure test case of section 2.5.6
using the volume expression (2.4.14) of the shape derivative.
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L ρ cp ν vmax ks kf ω Tin Tlow Tup (Ex. 1) Tup (Ex. 2)

0.1 10 100 0.005 1 10 1 0.4 0 10 -5 10

Table 2.5: Numerical values of the physical parameters in the convective heat transfer problem of section 2.5.7.

Ωf is not taken into account (equation (2.2.3) is ignored). This test case features a cavity where a
fluid is entering with a parabolic profile (with maximal velocity vmax = 1) and an inlet temperature
Tin. The setting is similar to that in [225] (where a density based method is used), although we rely on
different parameters values; namely, a higher Reynold number (Re=ρLvmax

5ν = 40 while Re=3 in [225])
and different prescribed temperatures Tup and Tlow for the lower and upper walls respectively. The other
regions of the boundary of the cavity are insulated from the outside, i.e. zero normal fluxes boundary
conditions hold for the temperature. The setting is represented on Figure 2.31 and numerical values of
the parameters involved are reported in Table 2.5.

Figure 2.31: Setting of the convective heat transfer test case of section 2.5.7. The black layers at the walls stand
for solid, non optimizable boundaries.

Our aim is maximize the heat transferred by the fluid subject to an upper bound on the output
pressure drop and a volume constraint:

min
Γ

J(Γ,v(Γ), T (Γ)) := −
∫

Ωf

ρcpv · ∇Tdx

s.t.


DP(p(Γ)) :=

∫
∂ΩDf

pds−
∫
∂ΩNf

pds ≤ DPstatic

Vol(Ωf ) = Vtarget.

(2.5.14)

Note that the objective function J rewrites indeed as the opposite of heat transferred from the inlet ∂ΩDf
to the outlet ∂ΩNf upon integration by parts:∫

Ωf

ρcpv · ∇Tdx =

∫
∂Ωf

ρcpT (v · n)ds =

∫
∂ΩNf

ρcpT (v · n)ds+

∫
∂ΩDf

ρcpT0(v0 · n)ds

where the second term is a constant depending on the inlet data. The upper bound constraint on the
static pressure drop is set to DPstatic = 11.4 and the volume target to Vtarget = 0.2|D|.

Remark 2.16. This test case improves the one treated in our published work [153], sec. 6.3.,in that we
now handle a fully constrained problem (2.5.14) instead of a penalized version of it. The viscous energy
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dissipation (as considered in the drag minimization test case of section 2.5.4 and in the test case of [153])
has also been replaced by the static pressure drop DP, which has a more straightforward interpretation
in industrial applications and also considered in topology optimization works, e.g. [255].

Remark 2.17. The constraint function DP does not a priori make sense because the pressure p belongs a
priori to L2(Ωf )/R and has no well defined trace on the boundary, unless possibly under higher regularity
assumptions. However, it is believed interesting to observe that our shape derivative formulas seem to
work despite the assumptions violation.

For this example, the formulas needed for the calculation of the shape sensitivity of the objective
function are:

∂J

∂θ
(θ) =

∫
Ωf

[−ρcpv · ∇T )div(θ) + ρcpv · ∇θT∇T ]dx,
∂J

∂θ
(θ) = 0 (2.5.15)

∂J

∂(v̂, p̂)
(w′, q′) = −

∫
Ωf

ρcpw
′ · ∇Tdx,

∂J

∂T̂
(S′) = −

∫
Ωf

ρcpv · ∇S′dx. (2.5.16)

Furthermore, the shape derivative of the pressure drop constraint DP (remark 2.17) can be calculated (at
least formally) with the following partial derivatives:

∂DP

∂θ
(θ) = 0,

∂DP

∂θ
(θ) = 0, (2.5.17)

∂DP

∂(v̂, p̂)
(w′, q′) =

∫
∂ΩDf

q′ds−
∫
∂ΩNf

q′ds. (2.5.18)

We consider two possible configurations for the applied temperature Tup at the upper wall of the
system. The first example corresponds to the configuration considered in [224]; the upper and lower wall
temperatures are equal and higher than the inlet temperature: Tin < Tup = Tlow. In a second example
(Ex.2), we consider the case where the upper wall temperature is lower than the inlet temperature:
Tup < Tin < Tlow.

The optimized shapes, associated with temperature fields and fluid velocity fields are represented
respectively on Figs. 2.32 to 2.33. Several intermediate shapes arising in the course of the optimization
process are depicted on Figure 2.36. In the first case featuring Tup = Tlow, we retrieve an optimized shape
analogous to those presented in [224]. It consists of two main pipes connecting the inlet to the outlet with
an additional vertical tubular bar of fluid domain where the velocity is almost zero. As already noticed
in [224], this vertical inclusion takes advantage of the low diffusivity of the fluid material in order to
insulate thermally the main pipes from the cold input left boundary Tin. Note that in contrast with the
results presented in [153], the final shape is symmetric despite the use of non-symmetric meshes because
the symmetry of the level set function was enforced at every iteration (see further details in chapter 6
about this point).

In the second case featuring Tup < Tin, an analogous behavior is observed: the optimized shape
consists of a main pipe accumulating the hot temperature from the bottom wall with an additional
outgrowth of the fluid domain where the velocity is almost zero which insulates the main pipe from the
cold upper wall.

The convergence curves for the objective and constraint functions are depicted on Figure 2.37. Note
that the slight increase of objective function at the end in case of the second configuration Tlow < Tin <
Tup is related to the disappearance of the very thin outgrowths of fluid at the top of the domain: these
are beneficial for the performance of the shape but may tend to disappear because they are thinner than
the prescribed mesh resolution.

2.5.8 Optimization of a compliant thermoelastic solid with fluid-structure interaction

We finally turn to a shape optimization example in the full three-physic setting presented in section 2.2.
A fluid is flowing from the left to the right of a two-dimensional pipe; at the center of this pipe, a solid
body is attached to the boundary of a small non optimizable square ω of side length c. The flow is
entering the pipe at the inlet with a parabolic profile (with maximal velocity vmax = 1), and a prescribed
temperature Tin and the solid body receives a thermal flux h applied at the boundary ∂ω of the square.
The reference temperature of the solid material is equal to the fluid inlet temperature: Text = Tin. All
the other boundaries in this device are insulated from the outside: zero Neumann boundary conditions
∂T
∂n = 0 hold for the temperature; see Figure 2.38 for a schematic of the problem.
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(a) Initial (b) Tlow = Tup = Tin (c) Tup < Tin < Tlow

Figure 2.32: Initial and final configurations for the convective heat transfer test case of section 2.5.7.

(a) Initial (b) Tlow = Tup = Tin (c) Tup < Tin < Tlow

Figure 2.33: Initial and final temperature fields for the convective heat transfer test case of section 2.5.7.

(a) Initial
(b) Tlow = Tup = Tin

(c) Tup < Tin < Tlow

Figure 2.34: Initial and final norm fields of the velocity (v, p) for the convective heat transfer test case of
section 2.5.7.

Figure 2.35: Intermediate iterations 0, 10, 30, 55, 188 and 300 for the convective heat transfer test case of
section 2.5.7 with Tlow = Tup = Tin.
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Figure 2.36: Intermediate iterations 0, 10, 30, 55, 188 and 300 for the convective heat transfer test case of
section 2.5.7 with Tup < Tin < Tlow.
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(a) Objective function J . Final values: J = −1.2e+ 02 (Tlow = Tup < Tin) and J = −70 (Tup < Tin < Tlow).
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(b) Volume fraction constraint ηf (Ωf ) := Vol(Ωf )/|D|.
Final value: ηf (Ωf ) = 0.2 (in both cases).
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(c) Static pressure drop constraint DP. Final values:
DP = 3.3 (in both cases).

Figure 2.37: Convergence history for the convective heat transfer test case of section 2.5.7.

ω

Figure 2.38: Setting of the thermoelastic fluid-structure problem of section 2.5.8.
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L H c ρ cp ν vmax ks kf Tin Tref λ µ α h

2 1 0.1 1 0.5 0.01 1 10 1 0 0 12.96 5.55 3 ± 250

Table 2.6: Parameter values for the thermoelastic fluid-structure test case of section 2.5.8.

We consider in total four different physical configurations corresponding to two possible signs of the
thermal flux—either h > 0 or h < 0—and to two different systems for the physical behavior of the flow:
either the Navier-Stokes system (2.2.1), or its linear Stokes counterpart. In the case where h > 0, the
square boundary ∂ω plays the role of a thermal source: the high temperature in the solid body induces
thermal expansion. In the latter case, where h < 0, ∂ω plays the role of a thermal sink: the lower
temperature in the solid body induces thermal contraction. In both cases, the role of the fluid is to
mitigate the temperature variations induced in Ωs by the thermal source term h.

The Reynolds number is set to Re = ρLvmax
ν = 200 and the Péclet number is Pe = Lvmax

kf
= 1000.

The volume of the solid phase is imposed to be equal to Vol(Ωs) = 0.03Vol(D) where Vol(D) = 2 is
the volume of the total domain. In all the considered regimes, a sufficiently high value of the thermal
dilation coefficient α is used so as to make the thermoelastic effect dominant. The various numerical
values for the physical parameters of the problem are summarized in Table 2.6.

Our aim is to minimize the mechanical efforts induced in the solid structure Ωs by thermal dilation
effects and the stress imposed by the fluid subject to the volume constraint:

min
Γ

J(Γ,u(Γ)) :=

∫
Ωs

σs(u, Ts) : ∇udx =

∫
Ωs

(Ae(u) : e(u)− α(Ts − Tref )div(u))dx,

s.t. Vol(Ωs) = Vtarget.

(2.5.19)

The objective functional J(Γ,u(Γ)) corresponds to the internal energy stored inside the structure. Its
sensitivities with respect to the shape Γ are calculated thanks to the following formulas:

∂J

∂θ
(θ) =

∫
Ωs

(σs(u, Ts) : ∇udiv(θ)− 2Ae(u) : ∇u∇θ + α(Ts − Tref )Tr(∇u∇θ))dx, (2.5.20)

∂J

∂θ
(θ) = −

∫
Γ

[σs(u, Ts) : ∇u− 2n ·Ae(u)∇u · n+ α(Ts − Tref )n · ∇u · n](θ · n)ds, (2.5.21)

∂J

∂û
(r′) =

∫
Ωs

(2Ae(u) : e(r′)− α(Ts − Tref )div(r′))dx, (2.5.22)

∂J

∂T̂
(S′) = −

∫
Ωs

αS′div(u)dx. (2.5.23)

The optimized shapes in the four situations are displayed in Figure 2.39. Note that for the Stokes flow
with h > 0, we used an initial shape perforated with holes in order to improve the convergence. For
the other test cases, we used a disk shape initial domain. The convergence histories for the objective
function and deviation to the volume constraint are shown on Figure 2.40. Notably, our optimization
algorithm is able to decrease the objective function while keeping constant the volume fraction in the
solid phase. Several intermediate shapes are represented in Figure 2.41 in the situation where h > 0 and
the fluid behavior is driven either by the Stokes or the full Navier-Stokes equations (2.2.1). For this latter
case, the state variables v, T and u are additionnally depicted on Figure 2.42. In all four cases, the solid
part Ωs tends to have a large contact surface with the fluid, so as to mitigate the effect of the thermal
source (recall that Tin = Tref). The optimized shapes in the cases h > 0 and h < 0 are dramatically
different, and are quite unintuitive from the mechanical viewpoint. Finally, the optimized shapes for
a common value of h are noticeably different between the Stokes and Navier-Stokes cases, which could
be expected due to the non negligible value of the Reynolds number. We have indeed checked that the
optimized shape in the case of a Stokes flow has worse performance when evaluated in the context of a
Navier-Stokes flow than the optimized shape in this setting (and vice-versa).

In this example, the objective function J turns out to be very sensitive with respect to very small
variations of the shape. Recall that we do not resort to any upwinding scheme in our implementation.
Therefore, we used a very fine mesh resolution (the minimum edge length is hmin=0.001) as well as the
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volume expression (2.3.27) of the shape derivative, which both enhanced the quality of the optimization
process; see Figure 2.43.

On average, each intermediate mesh of D has approximately 20,000 vertices. A typical 300 iteration
run of any of the aforementioned test cases (including Newton iterations for the numerical resolution of
the Navier-Stokes equations) took approximately 6 hours on a 2.50 GHz Intel(R) Xeon(R) CPU.

As we have already mentioned, these are preliminary results. The ongoing work presented in chapter 6
focuses on more realistic 3-d test cases.

(a) h > 0 (Stokes) (b) h > 0 (Navier-Stokes)

(c) h < 0 (Stokes) (d) h < 0 (Navier-Stokes)

Figure 2.39: Optimized shapes for the three-physic test case of section 2.5.8 in the four considered physical
situations.
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(a) Objective functions J
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(b) Deviations ηs − 0.03 to the volume constraint.

Figure 2.40: Convergence histories of the objective and constraint functions in the three-physic test case of
section 2.5.8.

2.6 Appendix

2.6.1 Proof of propositions 2.3 and 2.4

We provide in this appendix a proof of propositions 2.3 and 2.4, or equivalently of (2.4.13) and (2.4.14),
which is a mere adaptation of the arguments involved in section 2.3. Using classical arguments based on
the implicit function theorem (see e.g. [184]), one proves that under the condition that the linearized
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(a) h > 0 (Stokes)

(b) h > 0 (Navier-Stokes)

Figure 2.41: From left to right and top to bottom: iterations 1, 35, 80, 120 and 300 of the optimization process
in the three-physic context of section 2.5.8 for Stokes and Navier Stokes flow where h > 0.

(a) Temperature field T (b) Velocity field v (kinetic energy (v2
x + v2

y)/2)

(c) Displacement field u (square energy (u2
x + u2

y)/2)

Figure 2.42: State variables v, T and u for the optimized configuration of the three-physic shape optimization
problem of section 2.5.8, in the situation h > 0 and solved with the Navier-Stokes equations.

Figure 2.43: Zoom on the mesh for the final configuration of the Stokes case of Ex. 1.
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version of the state equations (2.2.1) to (2.2.3) are well posed (see remark 2.12), the mappings v(Γθ)◦(I+
θ), p(Γθ)◦(I+θ), T (Γθ)◦(I+θ), and u(Γθ)◦(I+θ) are differentiable with respect to θ. Differentiating
the variational formulations (2.4.2) to (2.4.4), one finds that the Fréchet derivatives v̇(θ), ṗ(θ), Ṫ (θ) and
u̇(θ) at θ = 0 solve the following variational problems:

Find (v̇(θ), ṗ(θ)) ∈ Vv,p(Γ) such that ∀(w′, q′) ∈ Vv,p(Γ),∫
Ωf

[σf (v̇(θ), ṗ(θ)) : ∇w′ + ρw′ · ∇v · v̇(θ) + ρw′ · ∇v̇(θ) · v − q′div(v̇(θ))]dx

=

∫
Ωf

[w′ · div(ff ⊗ θ)− (σf (v, p) : ∇w′ + ρw′ · ∇v · v)div(θ)]dx

+

∫
Ωf

(σf (v, p) : (∇w′∇θ) + σf (w′, q′) : (∇v∇θ) + ρw′ · ∇v∇θ · v)dx, (2.6.1)

Find Ṫ (θ) ∈ VT (Γ) such that ∀S′ ∈ VT (Γ),∫
Ωs

ks∇Ṫ (θ) · ∇S′dx+

∫
Ωf

(kf∇Ṫ (θ) · ∇S + ρcpS
′v̇(θ) · ∇T )dx = −

∫
Ωf

ρcpS
′v · ∇Ṫ (θ)dx

+

∫
Ωs

[div(Qsθ)S′ + ks(∇θ +∇θT − div(θ)I)∇T · ∇S′]dx

+

∫
Ωf

[div(Qfθ)S′ + kf (∇θ +∇θT − div(θ)I)∇T · ∇S′]dx

+

∫
Ωf

(−ρcpS′v · ∇Tdiv(θ) + ρcpS
′v · ∇θT∇T )dx, (2.6.2)

Find u̇(θ) ∈ Vu(Γ) such that ∀r′ ∈ Vu(Γ),∫
Ωs

Ae(u̇(θ)) : ∇r′dx =

∫
Ωs

αṪ (θ)div(r′)dx+

∫
Ωs

[−div(θ)σs(u, Ts) : ∇r′ + div(fs ⊗ θ) · r′]dx

+

∫
Ωs

(σs(u, Ts) : (∇r∇θ) +Ae(r) : (∇u∇θ))dx−
∫

Γ

r′ · σf (v̇(θ), ṗ(θ)) · nds, (2.6.3)

where σf (v̇(θ), ṗ(θ)) · n is an element of the dual space H
−1/2
00 (Γ,Rd) of H

1/2
00 (Γ,Rd) whose action is

given by (differentiating (2.4.5) with respect to θ):

∀r′ ∈ H1/2
00 (Γ,Rd), −

∫
Γ

r′ · σf (v̇(θ), ṗ(θ)) · nds

=

∫
Ωf

(div(ff ⊗ θ) · r̃ − (ρr̃ · ∇v · v + σf (v, p) : ∇r̃)div(θ))dx

+

∫
Ωf

(ρr̃ · ∇v∇θ · v + σf (v, p) : (∇r̃∇θ) + σf (r̃, q̃) : (∇v∇θ))dx

−
∫

Ωf

(σf (v̇(θ), ṗ(θ)) : ∇r̃ + ρr̃ · ∇v · v̇(θ) + ρr̃ · ∇v̇(θ) · v − q̃div(v̇(θ)))dx, (2.6.4)

for any extension (r̃, q̃) ∈ Vv,p(Γ) satisfying r̃ = r′ on Γ. Note that the above expression is independent
of the chosen extension because of (2.6.1) with w′ = r̃ and q′ = q̃. Then by the definition (2.4.7) of J:

J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

= J(θ,v(Γθ) ◦ (I + θ), p(Γθ) ◦ (I + θ), T (Γθ) ◦ (I + θ),u(Γθ) ◦ (I + θ)), (2.6.5)

whence the chain rule yields:

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ) =

∂J

∂θ
(θ) +

∂J

∂(v, p)
(v̇(θ), ṗ(θ)) +

∂J

∂T
(Ṫ (θ)) +

∂J

∂u
(u(θ)).

(2.6.6)
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One then uses the adjoint equations (2.4.8) to (2.4.10) with r′ = u̇(θ), S′ = Ṫ (θ),w′ = v̇(θ), q′ = ṗ(θ)
as test functions to obtain:

∂J

∂u
(u̇(θ)) =

∫
Ωs

Ae(r) : ∇u̇(θ)dx =

∫
Ωs

Ae(u̇(θ)) : ∇rdx, (2.6.7)

∂J

∂T
(Ṫ (θ)) =

∫
Ωs

ks∇S ·∇Ṫ (θ)dx+

∫
Ωf

(kf∇S ·∇Ṫ (θ)+ρcpSv ·∇Ṫ (θ))dx−
∫

Ωs

αṪ (θ)div(r)dx, (2.6.8)

∂J

∂(v, p)
(v̇(θ), ṗ(θ))

=

∫
Ωf

(σf (w, q) : ∇v̇(θ) + ρw · ∇v · v̇(θ) + ρw · ∇v̇(θ) · v − ṗ(θ)div(w))dx+

∫
Ωf

ρcpS∇T · v̇(θ)dx

=

∫
Ωf

(σf (v̇(θ), ṗ(θ)) : ∇w+ ρw · ∇v̇(θ) · v+ ρw · ∇v · v̇(θ)− qdiv(v̇(θ)))dx+

∫
Ωf

ρcpS∇T · v̇(θ)dx.

(2.6.9)

Using now equations (2.6.2) and (2.6.3) with r′ = r, S′ = S as test functions and (2.6.4) with (r̃, q̃) =

(w, q) as an extension of r′ = r ∈ H1/2
00 (Γ,Rd) to eliminate the bilinear terms, the above three equations

rewrite:

∂J

∂u
(u̇(θ)) = −

∫
Γ

r · σf (v̇(θ), ṗ(θ)) · nds+

∫
Ωs

αṪ (θ)div(r)dx

+

∫
Ωs

[−div(θ)σs(u, Ts) : ∇r + div(fs ⊗ θ) · r]dx

+

∫
Ωs

(σs(u, Ts) : (∇r∇θ) +Ae(r) : (∇u∇θ))dx, (2.6.10)

∂J

∂T
(Ṫ (θ)) = −

∫
Ωs

αṪ (θ)div(r)dx−
∫

Ωf

ρcpSv̇(θ) · ∇Tdx

+

∫
Ωs

[div(Qsθ)S + ks(∇θ +∇θT − div(θ)I)∇T · ∇S]dx

+

∫
Ωf

[div(Qfθ)S + kf (∇θ +∇θT − div(θ)I)∇T · ∇S]dx

+

∫
Ωf

(−ρcpSv · ∇Tdiv(θ) + ρcpSv · ∇θT∇T )dx, (2.6.11)

∂J

∂(v, p)
(v̇(θ), ṗ(θ)) =

∫
Γ

r · σf (v̇(θ), ṗ(θ)) · nds+

∫
Ωf

ρcpS∇T · v̇(θ)dx

+

∫
Ωf

(div(ff ⊗ θ) ·w − (ρw · ∇v · v + σf (v, p) : ∇w)div(θ))dx

+

∫
Ωf

(ρw · ∇v∇θ · v + σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ))dx. (2.6.12)

Formula (2.4.13) follows by summing up the above three equations. If H2 regularity holds for v,u, T and
H1 regularity holds for p on their respective domains of definition, then an integration by parts allows



104 Chapter 2. Hadamard’s shape derivatives for a thermal fluid structure problem

to rewrite (2.4.13) as;

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=

∫
Γ

gJ · θds+

∫
Γ

(ff ·w − σf (v, p) : ∇w − ρw · ∇v · v)(θ · n)ds

+

∫
Γ

[n · σf (v, p)∇w · θ + n · σf (w, q)∇v · θ + ρ(v · n)w · ∇v · θ]ds

+

∫
Γ

(ks∇Ts · ∇Ss − kf∇Tf · ∇Sf +QfS −QsSs) (θ · n)ds

+

∫
Γ

(−ks(∇Ts · θ)(∇Ss · n)− ks(∇Ss · θ)(∇Ts · n)) ds

+

∫
Γ

(kf (∇Tf · θ)(∇Sf · n) + kf (∇Sf · θ)(∇Tf · n)) ds

+

∫
Γ

[(σs(u, Ts) : ∇r − fs · r)(θ · n)− n · σs(u, Ts)∇r · θ − n ·Ae(r)∇u · θ] ds+

∫
Γ

Λ · θdx, (2.6.13)

where Λ is a L1(D,Rd) function obtained from Green’s identity. The Hadamard structure theorem
implies that (2.6.13) vanishes for compactly supported fields θ or for fields θ tangent to Γ. This implies
that in fact, Λ = 0, and (2.4.14) follows by removing the terms depending on the tangential component
of θ on Γ.

2.6.2 Calculating the shape derivative of a particular objective functional and its adjoint
system with Céa’s method

In this appendix, we consider the simplified setting of section 2.3, and we show that the adjoint boundary
condition ps = pf corresponding to the equality of normal derivatives for the primal variables in (2.3.2)
can be retrieved formally with the classical Céa’s Lagrangian method [84] also reviewed in chapter 1,
section 1.2.3. We shall as well illustrate once again the calculation of the shape derivative with this
method on a particular type of objective functional J .

We restrict ourselves in this part to objective functionals J of the form:

J(Γ, us(Γ), uf (Γ)) =

∫
Ωf

jf (uf (Γ))dx+

∫
Ωs

js(us(Γ))dx, (2.6.14)

for two C2 functions js, jf : R→ R with bounded second-order derivatives:

||j′′s ||L∞(R) <∞, ||j′′f ||L∞(R) <∞.

Proposition 2.5. The functional θ 7→ J(Γθ, us(Γθ), uf (Γθ)), from W 1,∞
0 (D,Rd) into R, as defined in

(2.6.14), is differentiable at θ = 0 and, under H2 regularity of the variables uf , us, pf , ps, the shape
derivative reads:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =∫

Γ

[
jf (uf )− js(us) + ffpf − fsps + µ∇us · ∇ps + ν

∂uf
∂n

∂pf
∂n

]
(θ · n)ds. (2.6.15)

Remark 2.18. Formula (2.6.15) is equivalent to the following one, which was obtained in (2.3.34) by
the Lagrangian method in section 2.3.2,

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =∫

Γ

[
jf (uf )− js(us) + ffpf − fsps − ν∇uf · ∇pf + µ∇us · ∇ps + 2ν

∂uf
∂n

∂pf
∂n

]
(θ · n)ds, (2.6.16)

because the boundary condition uf = 0 on Γ implies that ν
∂uf
∂n

∂pf
∂n = ν∇uf · ∇pf .
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Proof. We introduce the following Lagrangian

L(Γ, ûf , ûs, p̂f , p̂s, λ̂) =

∫
Ωf

jf (ûf )dx+

∫
Ωs

js(ûs)dx

−
∫

Ωf

(−ν∆ûf − ff )p̂fdx−
∫

Ωs

(µ∇ûs · ∇p̂s − fsp̂s)dx−
∫

Γ

ν
∂ûf
∂n

p̂sds−
∫

Γ

λ̂ûfds, (2.6.17)

where the above ‘hat’ functions all belong to the Sobolev space H1
0 (D) which is independent of the

position of the interface Γ. Following the methodology described in [17, 84, 253], Lagrange multipliers

p̂f , p̂s, λ̂ are introduced in (2.6.17) to enforce the state equations (2.3.1) and (2.3.2) and the Dirichlet
boundary condition uf = 0 on the moving interface Γ. The main idea of Céa’s method consists in finding
the equations for the values pf , ps of the adjoint states p̂f and p̂s and the value λ of the Lagrange

multiplier λ̂ by requiring that the partial derivatives ∂L
∂ûf

, ∂L∂ûs at ûf = uf , ûs = us vanish. The latter

partial derivatives read, for arbitrary vf , vs ∈ H1
0 (D):

∂L
∂ûf

(vf ) =

∫
Ωf

j′f (uf )vfdx+

∫
Ωf

ν∆vfpfdx−
∫

Γ

ν
∂vf
∂n

psds−
∫

Γ

λvfds

=

∫
Ωf

(j′f (uf ) + ν∆pf )vfdx+

∫
Γ

ν

(
∂vf
∂n

pf −
∂pf
∂n

vf

)
ds−

∫
Γ

ν
∂vf
∂n

psds−
∫

Γ

λvfds (2.6.18)

∂L
∂ûs

(vs) =

∫
Ωs

j′s(us)vsdx−
∫

Ωs

µ∇vs · ∇psdx

Now requiring ∂L
∂ûs

(vs) vanish for any vs ∈ H1
0 (D) yields the adjoint equation (and the attached boundary

conditions) (2.3.23) for ps.
Likewise, requiring ∂L

∂ûf
(vf ) to vanish for any vf ∈ H1

0 (D) should lead to the other adjoint system

(2.3.24) but the derivation is a bit more subtle. First, choosing arbitrary vf with compact support in
Ωf in (2.6.18) yields:

−ν∆pf = j′f (uf ).

Second, choosing smooth vf such that vf = 0 on Γ and that vf has an arbitrary trace
∂vf
∂n yields

the Dirichlet interface condition pf = ps on Γ. Thus, the adjoint system (2.3.24) for pf is completely
recovered. Finally, choosing vf in (2.6.18) with arbitrary trace on Γ leads to the optimal value of the

Lagrange multiplier λ = −ν ∂pf∂n on Γ.
Assuming that the solutions us and uf to (2.3.1) and (2.3.2) are differentiable with respect to Γ

(which is where Céa’s method is only formal), and using that the partial derivatives of L with respect to

ûf and ûs vanish at (θ, ûf , ûs, p̂f , p̂s, λ̂) = (0, uf , us, pf , ps, λ), a simple use of the chain rule produces:

d

dθ

[
J(Γθ, uf (Γθ), us(Γθ))

]
(θ) =

∂L
∂θ

(θ)

=

∫
Γ

(
jf (uf )− js(us) + µ∇us · ∇ps − fsps − νdiv(ps · ∇uf )− λ∂uf

∂n

)
(θ · n)ds

=

∫
Γ

(
jf (uf )− js(us) + µ∇us · ∇ps − fsps − ν∇ps · ∇uf + ffps + ν

∂uf
∂n

∂pf
∂n

)
(θ · n)ds, (2.6.19)

where we have used the technical proposition 1.7 of chapter 1 when differentiating
∫

Γ
ν
∂uf
∂n psds with the

normal vector depending on Γ. Using that uf = 0 and ∂ps
∂n = 0 on Γ, it follows that ∇uf · ∇ps = 0 on

Γ, and since pf = ps on Γ, we retrieve expression (2.6.16).
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Note : most of the content of this chapter has been submitted in the preprint [155]:

F. Feppon, G. Allaire, and C. Dapogny, Null space gradient flows for constrained optimization
with applications to shape optimization, Submitted, (2019).

However, several changes have been made in the introduction and in section 3.4 for a better under-
standing, as well as a new section 3.5 providing additional discussions and comparisons of our method
with other algorithms. Some redundant introductory parts with the previous chapters have also been
removed.

3.1 Introduction

The purpose of this chapter is to introduce efficient and reliable algorithmic methodologies for the reso-
lution of general shape optimization problems featuring an arbitrary number of equality and inequality
constraints; for multiphysics applications in the context of chapter 2 , these problems can be generically
formulated as

min
Γ

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) = 0, 1 ≤ i ≤ p,
hj(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) ≤ 0, 1 ≤ j ≤ q.

(3.1.1)

The ability to account for equality or inequality constraints gi or hj in the resolution of such optimal
design problems is a sine qua non condition towards the application of shape and topology optimization
methods to realistic industrial applications. Indeed, industrial designs are in most cases devised with
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respect to a variety of load specifications, such as minimum thickness, maximum curvature radius, upper
bound limits on the stress in the case of a mechanical structure or on the pressure drop between the
outlet and inlet in the case of a fluid device.

Over the past decades, many iterative algorithms have been proposed to solve generic constrained
optimization problems of the form:

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(3.1.2)

where V is the optimization set, J : V → R is a differentiable objective function, g : V → Rp
and h : V → Rq are differentiable functions accounting for p equality and q inequality differentiable
constraints, respectively. Classical gradient-based algorithms for the numerical resolution of (3.1.2)
include, e.g., Penalty, Lagrangian, Interior Point and Trust Region Methods, Sequential Quadratic or
Linear Programming (SQP or SLP) [70, 244, 321, 161, 310], the Method of Moving Asymptotes (MMA)
[298], the Method of Feasible Directions [327, 308].

A major difficulty related to the practical use of these algorithms for topology optimization lies in that
all the aforementioned techniques require fine tuning of the algorithm parameters in order to actually
solve the minimization problem. These parameters are e.g. the penalty coefficients in the Augmented
Lagrangian and Interior Point methods, the size of the trust region in SLP algorithms, the strategy
for approximating the Hessian matrix in SQP, the bounds on the asymptotes in MMA and the Topkis
parameters in MFD. The correct determination of these parameters is strongly case-dependent and often
unintuitive: for instance, the penalty coefficients must be neither ‘too large’ nor ‘too small’ in Lagrangian
methods, the SLP trust region size—which acts as a step length—cannot be chosen too small (otherwise
the involved quadratic subproblems may not have a solution). For shape and topology optimization
applications, a fair amount of trials and errors is often required in order to obtain satisfying minimizing
sequences of shapes. Since every optimization step depends on the resolution of partial differential
equations, such tunings are very tedious, time consuming for 2-d cases, and simply not affordable for
realistic 3-d applications.

As a matter of fact, advanced mathematical programming methods are not frequently described for
shape optimization based on Hadamard’s method. Rather, for simplicity of implementation, Penalty
and Augmented Lagrangian Methods are often used, all the more when only one constraint is considered
[32, 113]. Morin et. al. introduced a variant of SQP in [237] but they treated a volume constraint with
a Lagrange Multiplier method. For more complex applications, some authors have proposed adapted
variants of Sequential Linear Programming [135] or of the Method of Feasible Directions [150]. Let us
remark that in shape optimization based on the method of Hadamard, an additional difficulty comes
into play due to the classical identification and regularization step of the descent direction. So far, this
matter has not been treated explicitly for constrained optimization problems: common approaches rather
compute a descent direction first, before performing a regularization (see e.g. [135, 150]), which may
alter the decrease property of the updating step.

In this chapter, we propose a novel method for constrained optimization which is rather easy to
implement and reliable in the sense that it allows to solve (3.1.2) without the need for tuning non
physical parameters; this makes it particularly well adapted to the specificities of shape and topology
optimization applications. The essence of our method is a modification of the celebrated gradient flow
so as to make it able to ‘see the constraints’: optimization trajectories x(t) are obtained by solving an
Ordinary Differential Equation (ODE):

ẋ(t) = −αJξJ(x(t))− αCξC(x(t)). (3.1.3)

An admissible local minimizer to (3.1.1) is then reached as the stationary point x∗ of the continuous
trajectory x(t) starting from any (feasible or not) initialization x(0) and whatever the value of αJ , αC > 0.
This property is retrieved at the discrete level provided (3.1.3) is discretized with a sufficiently small
Euler step size ∆t.

The descent direction ẋ is a combination of a so-called ‘null space’ direction ξJ(x) and a ‘range space’
direction ξC(x), lying respectively in the null space of the constraints and in its orthogonal complement
(for this reason, we call the ODE (3.1.3) a ‘null space’ gradient flow). The null space direction ξJ(x)
is the projection of the gradient ∇J(x) onto the cone of feasible directions. Our approach relies on a
suitable dual program for the resolution of the combinatorial character of the inequality constraints: we
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precisely identify those active inequality constraints that the optimization path is allowed to ‘unstick’
from (thus re-entering into the feasible domain) and, conversely, those inequality constraints to which
it must remain tangent (see Figure 3.1 below). As a result, −ξJ(x) is always the best possible descent
direction respecting locally both equality and inequality constraints. The range space direction ξC(x)
is a Gauss-Newton direction ξC(x) which is aimed to smoothly lead the optimization path toward the
feasible domain. Finally, αJ , αC > 0 are two (optional) parameters introduced which scale the relative
decrease rates of the objective function and of the violation of the constraints; we shall see in particular
that the latter quantity decreases along trajectories x(t) at least as fast as e−αCt.

2 0 2 4
1

0

1

2

3

Constraints
Optimum
Initialization
NLSPACE
False minimizer (no dual)
NLSPACE (no dual)
Objective function

Figure 3.1: An example of optimization trajectory produced by our null space gradient flow (3.1.3). Trajectories

travel tangentially to an optimal subset Î(x) ⊂ Ĩ(x) of the active constraints Ĩ(x), which is determined by a dual

problem (see section 3.3). A less optimal trajectory is obtained without the identification of the set Î(x), because

it is unable to escape the tangent space to the constraints labeled by Ĩ(x).

More specifically, for a given subset of indices I ⊂ {1, . . . , q}, denote by hI(x) := (hi(x))i∈I the
collection of inequality constraints and by CI(x) the matrix

CI(x) :=

 g(x)

hI(x)

 . (3.1.4)

Then, for inequality constrained problems, the directions ξJ(x) and ξC(x) in (3.1.3) are defined as follows:

ξJ(x) = (I −DCT
Î(x)

(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (3.1.5)

ξC(x) = DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (3.1.6)

where I is the identity matrix and (DC(x))ij = ∂jCi(x) denotes the Jacobian matrix of a vector function
C(x) = (Ci(x))i (the dependence with respect to x is omitted when the context is clear). The symbol
T denotes the transposition operator; it may differ from the usual transpose T if the optimization set
V is infinite dimensional (see below and section 3.2). Formulas (3.1.5) and (3.1.6) involve two different

subsets Î(x) ⊂ Ĩ(x) of indices of the inequality constraints {1, ..., q}: the first one Ĩ(x) is the set of all
saturated or violated constraints, defined by

Ĩ(x) = {i ∈ {1, . . . , q} |hi(x) ≥ 0}. (3.1.7)

The set Î(x) ⊂ Ĩ(x) is an optimal subset which is characterized by the following ‘dual’ quadratic opti-
mization subproblem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.1.8)

The problem (3.1.8) amounts to compute the projection of ∇J(x) onto the cone of feasible directions. It

allows to determine the optimal set Î(x) from the positive components of the optimal Lagrange multiplier
µ∗(x):

Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. (3.1.9)
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In proposition 3.4, we show that this definition of Î(x) ensures that −ξJ(x) is the ‘best’ descent direction
respecting locally both equality and inequality constraints. This key idea to use these two different sets
of indices Î(x) and Ĩ(x) ensures that ξJ(x) is obtained by projection of ∇J(x) on the largest possible
subspace staying tangential to the set of constraints. This approach turns out to be very efficient efficient
in the case of a large number of (possibly violated) inequality constraints (Figure 3.1). As a result of the
flexibility of ODE approaches, our method depends truly only on the discretization step ∆t for (3.1.3),
and on the physically interpretable, dimensionless parameters αJ , αC , which makes them relatively easy
to tune for the user.

It turns out that our ODE (3.1.3) is a generalization of rather classical dynamical system approaches to
nonlinear constrained optimization, which are maybe less known in the topology optimization community.
When the problem (3.1.2) features no constraint, (3.1.5) and (3.1.6) become ξJ(x) = ∇J(x) and ξC(x) =
0, so that the ODE (3.1.3) reduces to the standard gradient flow

ẋ(t) = −∇J(x(t)). (3.1.10)

When (3.1.2) also features equality constraints g(x) = 0, but no inequality constraint (in that case
CĨ(x)(x) = CÎ(x)(x) = g(x)), the same ODE as ours/(3.1.3) was previously derived and studied in the

early 1980s by Tanabe [300] (without the Gauss-Newton direction ξC(x(t))) and by Yamashita [317]
(with both ξJ(x(t)) and ξC(x(t))). In this particular case, the solution to the dual problem (3.1.8)
admits a closed-form expression and (3.1.3) reads with our notation

ẋ = −αJ(I −DgT (DgDgT )−1Dg)∇J(x)− αCDgT (DgDgT )−1g(x). (3.1.11)

In the general situation where (3.1.2) features both inequality and equality constraints, variants of
the ODE (3.1.11) have been considered by different authors, however with a different method from
ours [277, 200, 201, 282]. The most common approach in the literature consists in introducing q slack
variables {zi}1≤i≤q ∈ Rq so as to convert the q inequalities hi(x) ≤ 0 for 1 ≤ i ≤ q into as many equality

constraints hi(x) + z2
i = 0, before then solving the ODE (3.1.3) in the augmented space (x, z) ∈ V ×Rq.

This approach offers convergence guarantees [277] and could also be beneficial for shape optimization,
however this is not the strategy we have retained. Indeed, our method does not need to resort to slack
variables for handling inequality constraints, and it present small additional advantages described in
section 3.5.1.

Another important contribution of this chapter is the exposure of our dynamical system strategy in
a setting compatible with the inherently infinite dimensional aspect of shape optimization based on the
method of Hadamard. In such context where the optimization variable x belongs to a Hilbert space V
(if not a more general set, see below), this is achieved by making a clear distinction made between the
Fréchet derivative DJ(x(t)) (which is an element of the dual space V ′) and the gradient ∇J(x(t)) (which
is an element of V ): the gradient ∇J(x(t)) is obtained by identification of DJ(x(t)) with an element of V
thanks to the Riesz representation theorem. The same distinction is also needed between the differential
of a vector valued function DC(x(t)) and its transposition DC(x(t))T .

Several works in the field of shape and topology optimization can be related to ours. In fact, our
method is very close in spirit to the recent work of Barbarosie et. al. [60], who derived an iterative
algorithm for equality constrained optimization which turns out to be a discretization of (3.1.3) with
a variable scaling for the parameter αC . For inequality constraints, the authors proposed (without
convergence results) an active set strategy also based on the extraction of an appropriate subset of the
active constraints. However their method relies on a different algorithm from ours, that yields generally
a different (suboptimal) set than Î(x), see remark 3.7 below for more details. Yulin and Xiaoming
[322] also suggested to project the gradient of the objective function onto the convex cone of feasible
directions; nevertheless, they remained elusive regarding how the projection problem should be solved
or how violated constraints should be tackled.

Finally, let us mention as well that the discretization of the flow (3.1.3) can be related to non dynam-
ical system approaches for constrained optimization such as SQP methods (see [277] for a comparison
with the ODE approach) and to null space iterative methods [69, 70, 244].

The present chapter is organized as follows. section 3.2 introduces useful notation for distinguishing
gradient and differentials for constrained optimization on Hilbert spaces V . We review as well a few
motivations at the origin of the definitions of ξJ(x(t)) and ξC(x(t)) (in (3.1.5) and (3.1.6)) in the case
where inequality constraints are absent. In this context, the properties of the flow (3.1.3), classical when



3.2. Null space gradient flows for equality-constrained optimization in Hilbert
spaces 111

the minimization set V is a finite dimensional vector space, are reviewed for the more general context
where V is a Hilbert space. We detail then in section 3.3 the necessary adaptations to account for
inequality constraints and in particular the introduction of the dual subproblem allowing to determine the
null space direction ξJ(x). Under some non restrictive technical assumptions, we prove in proposition 3.5
decreasing properties for the trajectories of the “null space” gradient flow (3.1.3) towards points satisfying
the Karush, Kuhn and Tucker (KKT) condition. Numerical implementation and discretization aspects
are detailed in section 3.4. Section 3.5 provides pedagogical illustrations of our method on simple
academic test cases, and comparisons to a few other optimization methods of the literature including
the method of slack variables for inequality constraints. Shape optimization applications are eventually
considered in section 3.6. After clarifying the necessary adaptations required to extend the discretization
of (3.1.3) to sets featuring a rather generic manifold structure, we explain how our algorithm can be
integrated within the level set method for shape optimization [311, 32, 24]. The ease of implementation
and efficiency of our method is demonstrated numerically for the optimal design of a bridge structure
subject to multiple loads, which involves up to ten constraints.

3.2 Null space gradient flows for equality-constrained optimization in Hilbert

spaces

In this section, we consider the case where the optimization takes place on a Hilbert space V with inner

product 〈·, ·〉V and relative norm || · ||V = 〈·, ·〉1/2V ; see section 3.6 for the description of the more general
situation associated to our shape optimization applications. In this part only, we consider the problem
(3.1.2) where only equality constraints are present, namely:

min
x∈V

J(x)

s.t. g(x) = 0,
(3.2.1)

where J : V → R and g : V → Rp are Fréchet differentiable functions. The purpose of this section is
to motivate the introduction of the ODE (3.1.3) for equality constrained optimization, and to review its
properties in the present Hilbertian setting. Let us emphasize that, although this section is elementary
and not completely new, it is not easily found as is in the literature. Since it is key in understanding our
technique for handling inequality constraints in section 3.3, the present context is thoroughly detailed
for the reader’s convenience.

The section is organized as follows. Section 3.2.1 recalls definitions for the differential, the gradient,
and the transpose operation in the Hilbertian context. We then sketch briefly in section 3.2.2 how the
formulas (3.1.5) and (3.1.6) can be formally obtained, before stating the properties of the null space step
ξJ(x) and its relation to Lagrange multipliers by means of a dual problem in lemma 3.1. Finally, the
decrease properties of the obtained dynamical system are reviewed in section 3.2.3.

3.2.1 Notation and first-order optimality conditions

The following definition sets the notation conventions about differentiability and gradients in Hilbert
spaces used throughout this chapter. Note that they may differ from those used by other authors
because a clear distinction is needed for our shape optimization purposes between gradient and Fréchet
derivatives.

Definition 3.1. 1. A vector-valued function g : V → Rp is differentiable at a point x ∈ V if there
exists a continuous linear mapping Dg(x) : V → Rp such that

g(x+ h) = g(x) + Dg(x)h+ o(h) with
o(h)

||h||V
h→0−−−→ 0. (3.2.2)

Dg(x) is called the Fréchet derivative of g at x.

2. If g : V → Rp is differentiable, for any µ ∈ Rp, the Riesz representation theorem [76] ensures the
existence of a unique vector Dg(x)T µ ∈ V satisfying

∀µ ∈ Rp,∀ξ ∈ V, 〈Dg(x)T µ, ξ〉V = µTDg(x)ξ, (3.2.3)

where the superscript T stands for the usual transpose of a vector in the Euclidean space Rp. The
linear operator Dg(x)T : Rp → V thus defined is called the transpose of Dg(x) .
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3. If J : V → R is a scalar function differentiable at x ∈ V , the Riesz representation theorem ensures
the existence of a unique vector ∇J(x) ∈ V satisfying

∀ξ ∈ V, 〈∇J(x), ξ〉V = DJ(x)ξ. (3.2.4)

This vector ∇J(x) is called the gradient of J at x.

Throughout the chapter, the explicit mention to x is sometimes omitted in the notation for differentials
or gradients when the considered point x ∈ V is clear.

Remark 3.1. 1. If V is the (finite-dimensional) Euclidean space Rk, equipped with the standard
inner product, the Fréchet derivative and the transpose of the differential of a vector valued function
g : Rk → Rp are respectively given by the Jacobian matrix (Dg)ij = ∂jgi and its transpose
(DgT )ij = (DgT )ij = ∂igj . In the literature, the differential matrix Dg is often denoted with the
nabla symbol ∇g. For the sake of clarity, we reserve the ∇ symbol to denote the gradient of scalar
functions J : V → R, and it holds that ∇J(x) = DJ(x)T 1. The calligraphic transpose notation T
appearing in the objects DJ(x)T or Dg(x)T encodes at the same time the operator transposition
(reversing the input and range spaces) and the Riesz identifications.

2. Still in the case where V = Rk is finite-dimensional and a is given by a symmetric definite positive
matrix A (that is 〈ξ, ξ〉V = ξTAξ), the transpose of a p× k matrix M : Rk → Rp with respect to
a is MT = A−1MT . As we shall see in section 3.6, in shape optimization applications, 〈, 〉V often
stands for the bilinear form associated to an elliptic operator, hence the calligraphic transpose T
encompasses the extension and regularization step of the shape derivative outlined in section 1.4.1.
If V is the tangent space to some Riemannian manifold, the inner product 〈, 〉V can be interpreted
as a metric and ∇J(x), as given by (3.2.4), is the covariant gradient with respect to this metric.

3. When V is a general Hilbert space, for a vector-valued function g : V → Rp with coordinates
g(x) = (gi(x))1≤i≤p, Dg : V → Rp is the ‘row’ matrix whose entries are the p linear forms Dgi(x) :
V → R. The transpose Dg(x)T is the ‘column’ matrix gathering the p vectors (∇gi(x))1≤i≤p
obtained by solving the p identification problems:

∀ξ ∈ V, 〈∇gi(x), ξ〉V = Dgi(x)ξ; (3.2.5)

more precisely:

∀µ ∈ Rd, Dg(x)T µ =

p∑
i=1

µi∇gi(x).

In particular, the p× p matrix DgDgT ∈ Rp×p has entries

(DgDgT )ij = 〈∇gi,∇gj〉V = Dgi(x)(∇gj(x)).

Throughout this section, the equality constraints defined by the function g are said to be qualified
at a point x ∈ V if

rank(Dg(x)) = p, or equivalently Dg(x)Dg(x)T is an invertible p-by-p matrix. (3.2.6)

Note that (3.2.6) makes sense even at points x ∈ V where g(x) 6= 0, a fact that we shall use extensively
in the sequel.

Let us then recall the classical definitions of critical points in terms of the first-order necessary
optimality conditions (KKT) for the equality-constrained problem (3.2.1):

Definition 3.2 (see [70, 244]). A point x∗ is said to satisfy the Karush, Kuhn and Tucker conditions
(KKT) for the equality constrained minimization problem (3.2.1) if and only if there exists λ(x∗) ∈ Rp
such that:  ∇J(x∗) + Dg(x∗)T λ(x∗) = 0,

g(x∗) = 0.
(3.2.7)
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3.2.2 Definitions and properties of the null space and range space steps ξJ and ξC

We are now in position to define the null space and range space steps ξJ(x) and ξC(x) featured in
the ODE (3.1.11) for equality constrained problems in the present Hilbert space setting, owing to the
definition (3.2.3) of the transpose:

Definition 3.3. For any point x ∈ V satisfying the constraint qualification condition (3.2.6), the null
space and range space directions ξJ(x) and ξC(x) associated to (3.2.1) are respectively defined by:

ξJ(x) := (I −DgT (DgDgT )−1Dg)∇J(x), (3.2.8)

ξC(x) := DgT (DgDgT )−1g(x). (3.2.9)

Let us provide a formal intuition motivating the expressions (3.2.8), (3.2.9) and the dynamical system
(3.1.3). A classical practice in Lagrange multiplier methods for optimization which is inspired from the
KKT optimality conditions (3.2.7) is to search for an iterative optimization scheme (indexed by the
iteration number n) of the form (see also [59])

xn+1 = xn −∆t(αJ∇J(xn) + Dg(xn)T λn), (3.2.10)

where λn ∈ Rp is a tentative value for the Lagrange multiplier λ in (3.2.7), αJ is a user-defined coefficient
and ∆t is the step increment between successive iterations. We determine the value of λn by imposing
that the value g(xn+1) of the constraint decrease by a factor (1 − αC∆t), up to some lower order term
in ∆t. Since

g(xn+1) = g(xn)−∆tDg(xn)(αJ∇J(xn) + Dg(xn)T λn) + o(∆t),

the requirement that g(xn+1) ' (1− αC∆t)g(xn) suggests the rule:

λn = (Dg(xn)Dg(xn)T )−1 (αCg(xn)− αJDg(xn)∇J(xn)) . (3.2.11)

We recognize then a time discretization scheme of the ODE (3.1.11) by replacing λn with the above
value (3.2.11) in (3.2.10).

Properties of the null space step ξJ

In the finite-dimensional case where V = Rk, it is well-known that the null space step ξJ(x) defined by
(3.2.8) is the orthogonal projection of the gradient ∇J(x) of the objective function onto the null space
of the constraints

Ker(Dg(x)) = {ξ ∈ V |Dg(x)ξ = 0},

which is also the tangent space at x to the manifold {y ∈ V | g(y) = g(x)}. Of course, this is still true
when V is a Hilbert space, as recalled in the next lemma.

Lemma 3.1. Let x ∈ V be a point satisfying the qualification condition (3.2.6) The following properties
hold:

1. The space V has the following orthogonal decomposition:

V = Ker(Dg(x))⊕ Ran(Dg(x)T ),

where we have introduced the range Ran(Dg(x)T ) := {Dg(x)T λ |λ ∈ Rp} of Dg(x)T .

Moreover, the operator Πg(x) : V → V defined by

Πg(x) = I −DgT (DgDgT )−1Dg(x) (3.2.12)

is the orthogonal projection onto Ker(Dg(x)).

2. When Πg(x)(∇J(x)) 6= 0, −ξJ(x) = −Πg(x)(∇J(x)) is the best normalized feasible descent direction
for J in the sense that

− ξJ(x)

||ξJ(x)||V
= arg min

ξ∈V
DJ(x)ξ

s.t.

{
Dg(x)ξ = 0

〈ξ, ξ〉V ≤ 1.

(3.2.13)
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3. The null space direction ξJ(x) = Πg(x)(∇J(x)) is the closest least squares approximation to ∇J(x)
within the space Ker(Dg(x)). It alternatively reads

ξJ(x) = ∇J(x) + Dg(x)T λ∗(x), (3.2.14)

where the Lagrange multiplier λ∗(x) := −(DgDgT )−1Dg∇J(x) is the unique solution to the fol-
lowing least squares problem that is the dual of (3.2.13):

λ∗(x) = arg min
λ∈Rp

||∇J(x) + Dg(x)T λ||V . (3.2.15)

Remark 3.2. The qualification condition (3.2.6) is essentially used in the computation of the orthog-
onal projection onto Ker(Dg(x)) from formula (3.2.12). Most of the statements of this chapter could
circumvent this hypothesis by relying on a Singular Value Decomposition (SVD) of Dg(x).

Proof. 1. Any ξ ∈ V may be decomposed as ξ = Πg(x)(ξ)+(I−Πg(x))(ξ), where it is straightforward
to verify that Πg(x)(ξ) ∈ Ker(Dg(x)), and (I−Πg(x))(ξ) ∈ Ran(Dg(x)T ). In addition, Ker(Dg(x))
and Ran(Dg(x)T ) are orthogonal for the inner product 〈·, ·〉V since from (3.2.3), one has,

∀ζ ∈ Ker(Dg(x)), ∀λ ∈ Rp, 〈Dg(x)T λ, ζ〉V = λTDg(x)ζ = 0.

2. It follows from the first point that for any ξ ∈ Ker(Dg(x)) such that ||ξ||V ≤ 1,

DJ(x)ξ = 〈∇J(x), ξ〉V = 〈Πg(x)(∇J(x)), ξ〉V ≥ −||Πg(x)(∇J(x))||V ,

whence we easily infer that ξ := −Πg(x)(∇J(x))/||Πg(x)(∇J(x))||V is the global minimizer of
(3.2.13).

3. The Pythagore identity yields, for any ξ ∈ Ker(Dg(x)),

||∇J(x)− ξ||2V = ||(I −Πg(x))∇J(x)||2V + ||Πg(x)∇J(x)− ξ||2V ≥ ||∇J(x)−Πg(x)∇J(x)||2V .

Hence the orthogonal projection Πg(x)(∇J(x)) is the best approximation of ∇J(x) within the
space Ker(Dg(x)). Recalling from the first point that the range Ran(Dg(x)T ) is the orthogonal
complement of Ker(Dg(x)), we obtain also, for any λ ∈ Rp,

||Πg(x)(∇J(x))||V = ||∇J(x)− (I −Πg(x))(∇J(x))||V ≤ ||∇J(x) + Dg(x)T λ||V ,

whence the expression (3.2.14) and the minimization property (3.2.15) follow. Note that the unique-
ness of the solution λ∗(x) to (3.2.15) results from the qualification condition (3.2.6).

Finally, the optimization problem (3.2.13) can be rewritten as

min
ξ∈V

〈ξ,ξ〉V ≤1

max
λ∈Rp

DJ(x)ξ + λTDg(x)ξ.

Hence the (formal) dual problem of (3.2.13) reads:

max
λ∈Rp

min
ξ∈V

〈ξ,ξ〉V ≤1

DJ(x)ξ + λTDg(x)ξ.

According to the definitions (3.2.3) and (3.2.4) of the gradient and of the Hilbertian transpose, the
latter problem rewrites:

max
λ∈Rp

min
ξ∈V

〈ξ,ξ〉V ≤1

〈∇J(x) + Dg(x)T λ, ξ〉V = − min
λ∈Rp

||∇J + DgT λ||V ,

where for given λ ∈ Rp, the value

ξ∗ := − ∇J(x) + Dg(x)T λ
||∇J(x) + Dg(x)T λ||V

is that achieving the minimum in the minimization problem at the left-hand side of the above
identity. This shows that (3.2.15) is the dual problem of (3.2.13).
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Properties of the range space step ξC

The next lemma characterizes the range space step ξC(x), defined by (3.2.9), as the unique Gauss-Newton
direction for the minimization of the constraint function g(x) which is tangential to the (linearized) set
of constraints:

Lemma 3.2. Let x ∈ V satisfy the qualification condition (3.2.6); then:

1. The range space step ξC(x) = DgT (DgDgT )−1g(x) is orthogonal to Ker(Dg(x)):

∀ξ ∈ Ker(Dg(x)), 〈ξC(x), ξ〉V = 0.

2. −ξC(x) is a descent direction for the violation of the constraints:

Dg(x)(−ξC(x)) = −g(x). (3.2.16)

3. The set of solutions to the Gauss-Newton program

min
ξ∈V
||g(x) + Dg(x)ξ||2 (3.2.17)

is the affine subspace {−ξC(x) + ζ | ζ ∈ Ker(Dg(x))} of V .

Proof. 1. This easily follows from the point 1. of lemma 3.1.

2. This is an immediate consequence of the definition (3.2.9) of ξC(x). Note that (3.2.16) means that
−ξC(x) is a descent direction for the violation of the constraints in the sense that it ensures that
any coordinate gi(x), i = 1, ..., p, decreases along −ξC(x) if gi(x) ≥ 0 and increases if gi(x) ≤ 0.

3. Since (3.2.17) is a convex optimization problem, a necessary and sufficient condition for ξ ∈ V to
be one solution is given by the usual first-order condition:

∀ζ ∈ V, (g(x) + Dg(x)ξ)T (Dg(x)ζ) = 〈Dg(x)T (g(x) + Dg(x)ξ), ζ〉V = 0,

which rewrites:
Dg(x)T Dg(x)ξ = −Dg(x)T g(x).

Since the matrix (DgDgT ) is invertible (as a consequence of the qualification condition (3.2.6)),
this is in turn equivalent to:

Dg(x)ξ = −g(x).

Finally, (3.2.16) states that −ξC(x) is one particular solution to the above equation; therefore, any
two solutions of this problem differ by some ζ such that Dg(x)ζ = 0.

3.2.3 Decrease properties of the equality constrained gradient flow

The main features of the definitions of ξJ(x) and ξC(x) are the facts that ξJ is orthogonal to the set
of constraints, i.e. Dg(x)ξJ(x) = 0, and that −ξC(x) decreases the violation of the constraints while
being orthogonal to ξJ(x). These ensure that the values of the constraint functional g(x(t)) decrease to
zero along the trajectories of the ODE (3.1.3), independently of the behavior of ξJ(x). Then, as soon
as the violation of the constraint becomes sufficiently small, the objective function J decreases without
affecting the asymptotic vanishing of g(x(t)). We review these properties in the next proposition, which
was also observed in [317] in the finite-dimensional context.

Proposition 3.1. Assume that the trajectories x(t) of the flow{
ẋ = −αJ(I −DgT (DgDgT )−1Dg(x))∇J(x)− αCDgT (DgDgT )−1g(x)

x(0) = x0

(3.2.18)

exist on some time interval [0, T ] for T > 0, and that the qualification condition (3.2.6) holds at any
point x(t), t ∈ [0, T ]. Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0). (3.2.19)
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2. J(x(t)) decreases ‘as soon as the violation (3.2.19) of the constraints is sufficiently small’ in the
following sense: assume that rank(Dg) = p on K = {x ∈ V | ||g(x)||∞ ≤ ||g(x0)||∞} and that

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞, (3.2.20)

where σp(x) is the smallest singular value of Dg(x). Then there exists a constant C > 0 such that

∀t ∈ [0, T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (3.2.21)

3. Any stationary point x∗ of (3.2.18) satisfies the first-order KKT conditions (3.2.7) of the optimiza-
tion program (3.2.1), that is:{

g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.
(3.2.22)

Proof. 1. Using the definition (3.2.18), the decreasing property (3.2.16) together with the fact that
ξJ(x) is orthogonal to Ker(Dg(x)), we obtain:

d

dt
(g(x(t))) = −αCg(x(t)),

whence (3.2.19) follows easily.

2. Let us introduce the eigenvalue decomposition

Dg(x)Dg(x)T =

p∑
i=1

σi(x)2ui(x)ui(x)T , where σ1(x) ≥ . . . ≥ σp(x) > 0, ui(x)Tuj(x) = δij ,

of the symmetric, positive definite p × p matrix Dg(x)Dg(x)T . Let then vi(x)† : V → R be the
linear form defined for any ξ ∈ V by vi(x)†ξ = σi(x)−1ui(x)TDg(x)ξ and let vi(x) be the vector
in V such that ∀ξ ∈ V, 〈vi(x), ξ〉V = vi(x)†ξ; more explicitly, vi(x) = σi(x)−1Dg(x)T ui(x). These
definitions allow to write a singular value decomposition for Dg(x); it is indeed easily verified from
the definitions of ui(x) and vi(x) that:

Dg(x) =

p∑
i=1

σi(x)ui(x)vi(x)†, and Dg(x)T =

p∑
i=1

σi(x)vi(x)ui(x)T

with 〈vi(x),vj(x)〉V = vi(x)†vj(x) = δij . We now calculate:

DgT (DgDgT )−1g(x) =

p∑
i=1

σ−1
i (x)(ui(x)Tg(x))vi(x),

whence we obtain the following inequality:

∀x ∈ V, |DJ(x)DgT (DgDgT )−1g| ≤ σ−1
p (x)||∇J(x)||V ||g(x)||. (3.2.23)

Since
d

dt
J(x(t)) = −αJDJ(x(t))ξJ(x(t))− αCDJ(x(t))ξC(x(t)),

it follows that d
dtJ(x(t)) < 0 as soon as αJ |DJ(x(t))ξJ(x(t))| > αC |DJ(x(t))ξC(x(t))|. Thus, from

(3.2.19) and (3.2.23), the constant C in (3.2.21) can be selected as

C = p
αC
αJ
||g(x0)|| sup

x∈K

[
σ−1
p (x)||∇J(x)||V

]
. (3.2.24)

3. Since the vectors ξJ(x) and ξC(x) are orthogonal for any point x ∈ V , a stationary point x∗ of
(3.2.18) must satisfy

Πg(x∗)(∇J(x∗)) = 0, and DgT (DgDgT )−1g(x∗) = 0, (3.2.25)

and so the first KKT condition in (3.2.7) is satisfied with the value λ = −(DgDgT )−1Dg(x∗)∇J(x∗)
of the Lagrange multiplier. Then left multiplication by Dg in the second identity in (3.2.25) implies
g(x∗) = 0, which completes the proof.
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Remark 3.3. The solutions to the dynamical system (3.2.18) are defined for small time if ξJ and ξC are
locally Lipschitz vector fields, which is the case if e.g. J and g are of class C2 [127]. In the case where V
is finite-dimensional, the assumption (3.2.20) is satisfied if the set K = {x ∈ V |g(x) ≤ g(x0)} is bounded
and the functions J and g are C1 functions. It is worth noting that even if the present regularity of J
and g is not strong enough to ensure the existence of solutions to (3.2.18), similar properties to those of
proposition 3.1 hold for the discretized scheme

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)), (3.2.26)

which is sufficient for optimization. One can indeed verify that:

1. At first order, the constraints decrease with a geometric rate: g(xn+1) = (1−αC∆t)g(xn)+o(∆t).

2. An accumulation point x∗ of the sequence (xn)n∈N satisfies g(x∗) = 0 and is a KKT point of the
problem (3.2.1), satisfying (3.2.7).

Remark 3.4. It is possible to control more accurately the pace at which each of the constraints de-
creases in (3.2.19): consider a diagonal matrix of positive coefficients K = diag(κi)1≤i≤p and replace the
definition (3.2.9) of ξC(x) by

ξC(x) := DgT (DgDgT )−1Kg(x).

Then each constraint function gi decreases at its own rate κiαC along the solution x(t) of (3.2.18):

∀t ∈ [0, T ], gi(x(t)) = e−κiαCtgi(x0).

3.3 Extension to equality and inequality constraints

We now proceed to extend the dynamical system (3.1.3) or (3.2.18) so as to handle inequality constraints
as well. We return to the full optimization problem (3.1.2), still posed in a Hilbert space V with inner
product 〈·, ·〉V , and where the objective J : V → R, equality constraints g : V → Rp and inequality
constraints h : V → Rq are differentiable functions.

Inspired by the methodology developed in section 3.2, we still propose to solve the equality and
inequality constrained problem (3.1.2) thanks to a dynamical system of the form:{

ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.3.1)

whose discretized version reads:

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)). (3.3.2)

In what follows, notation conventions related to index sets associated to inequality constraints are
introduced in section 3.3.1. The range space step ξC(x) is defined in section 3.3.2 from a formula
analogous to (3.1.6). The definition of the null space step ξJ(x) is examined in details in section 3.3.3; it

involves a procedure discriminating a relevant subset Î(x) ⊂ Ĩ(x) of the saturated or violated constraints,
which relies on the introduction of the dual problem (3.1.8). Finally, the properties of the flow (3.3.1)
are outlined in section 3.3.4.

3.3.1 Notation and preliminaries

For the convenience of the reader, a few notation conventions from the introduction are now made more
precise. The set of indices of saturated or violated inequality constraints at x ∈ V is denoted by Ĩ(x):

Ĩ(x) = {i ∈ {1, . . . , q} |hi(x) ≥ 0}, (3.3.3)

and q̃(x) := Card(Ĩ(x)) is the number of such constraints. For a subset I ⊂ {1, ..., q}, the vector
hI(x) = (hi(x))i∈I collects the inequality constraints indexed by I and CI(x), defined by (3.1.4), collects
all equality constraints g(x) and those selected inequality constraints hI(x).

In the present context, the constraints are said to be qualified at x ∈ V if the linearized saturated or
violated constraints are independent, that is,

rank(DCĨ(x)(x)) = p+ q̃(x). (3.3.4)
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If the point x satisfies the constraints, (3.3.4) is one usual qualification condition (of course, there are
other possible qualification conditions, see [70, 244]), but let us insist again that we leave the room
for this definition to apply to points x where constraints are not satisfied. Define ΠCI : V → V , the
orthogonal projection operator onto Ker(DCI(x)), by

ΠCI = I −DCI(x)T (DCI(x)DCI(x)T )−1DCI(x), (3.3.5)

and let (λI(x),µI(x)) ∈ Rp × RCard(I)
+ be the corresponding Lagrange multipliers:λI(x)

µI(x)

 := −(DCIDC
T
I )−1DCI(x)∇J(x). (3.3.6)

Last but not least, let us recall the necessary first-order optimality conditions (the KKT conditions)
for equality and inequality constrained problems:

Definition 3.4 (KKT conditions, [70, 244]). A point x∗ ∈ V is said to satisfy the Karush, Kuhn and
Tucker conditions for (3.1.2) if and only if there exist λ(x∗) ∈ Rp and µ(x∗) ∈ Rq+ such that:

∇J(x∗) + Dg(x∗)T λ(x∗) + Dh(x∗)T µ(x∗) = 0,

g(x∗) = 0, h(x∗) ≤ 0,

∀i = 1, ..., q, µihi(x
∗) = 0.

(3.3.7)

3.3.2 Definition of the range space step

Definition 3.5 (range space step). The range step ξC(x) associated with the optimization problem
(3.1.2) is defined by

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (3.3.8)

where Ĩ(x) is the subset of saturated or violated constraints, defined by (3.3.3).

The purpose of the range space step ξC(x) is to decrease the violation of the constraints as we shall
see in proposition 3.5 below. The counterpart of lemma 3.2 holds exactly in this context, in particular:

1. ξC(x) is orthogonal to Ker(DCĨ(x)).

2. −ξC(x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ(x)(−ξC(x)) = −CĨ(x)(x).

3.3.3 Definition and properties of the null space step

The definition of the null space direction ξJ(x) is slightly more involved than in the equality constrained
case since it is not obtained by replacing Dg(x) by DCĨ(x) in (3.2.8). It requires the introduction of a

different subset Î(x) ⊂ Ĩ(x), which is now detailed.

The null space step ξJ(x) is sought, up to a change of sign, as a best normalized descent direction
diminishing violated or saturated inequality constraints. Following the characterization lemma 3.1 for
equality constrained problems, −ξJ(x) shall be set positively proportional to the solution ξ∗(x) of the
following minimization problem:

ξ∗(x) = arg min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ(x)(x)ξ ≤ 0

||ξ||V ≤ 1.

(3.3.9)

The problem (3.3.9) could be solved directly with standard quadratic programming algorithms. However,
it is convenient to characterize explicitly the minimizer ξ∗(x) of (3.3.9) by examining the dual problem.
This will allow us to obtain in definition 3.6 an explicit formula for the null space direction ξJ(x), in the
form of (3.1.5).
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Proposition 3.2. Let x ∈ V satisfy the qualification condition (3.3.4). There exists a unique couple of

multipliers λ∗(x) ∈ Rp and µ∗(x) ∈ Rq̃(x)
+ solution to the following quadratic optimization problem which

is the dual of (3.3.9):

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.3.10)

Proof. Problem (3.3.9) is equivalent to the following min-max formulation:

min
ξ∈V

〈ξ,ξ〉V ≤1

max
λ∈Rp
µ∈Rq̃(x)+

DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ.

Exchanging formally the min and the max and performing the maximization with respect to ξ as in the
proof of lemma 3.1 yields that (3.3.10) is the dual problem of (3.3.9) up to a change of sign (the duality
gap between (3.3.10) and (3.3.9) will be shown to vanish in proposition 3.3). The program (3.3.10) brings

into play the closed convex set Rp × Rq̃(x)
+ and the least squares functional

(λ,µ) 7→

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) + DCĨ(x)(x)T

λ
µ

∣∣∣∣∣∣
∣∣∣∣∣∣
V

.

The latter is strictly convex over Rp×Rq̃(x)
+ by virtue of (3.3.4). Hence, (3.3.10) has a unique solution.

The optimization problem (3.3.10) belongs to the class of non negative least squares problems; it can
be solved efficiently with a number of dedicated solvers, such as cvxopt [41] or IPOPT [310]. One nice
feature of (3.3.10) lies in that its dimension is the number p+ q̃(x) of saturated or violated constraints,
which is small for many practical cases, e.g. in all the shape optimization applications considered in this
thesis. It is also possible to exploit the ‘sparsity’ of the constraints when p+ q̃(x) is large, see remark 3.8
below.

The next proposition relates the optimal values and the solutions ξ∗(x) and (λ∗(x),µ∗(x)) of the
primal and dual problems (3.3.9) and (3.3.10). In essence, we show that the optimal feasible descent
direction ξ∗(x) of (3.3.12) is the projection of the gradient ∇J(x) onto the cone of feasible directions.
The proof follows classical arguments of linear programming duality theory and it is detailed for the
convenience of the reader.

Proposition 3.3. Let x ∈ V satisfy the qualification condition (3.3.4) and denote

m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V

the value of the dual problem (3.3.10). Then the value of the primal problem (3.3.9) is p∗(x) = −m∗(x)
and the following alternative holds:

1. m∗(x) = 0: the first line of the KKT conditions (3.3.7) for the minimization problem (3.1.2) holds

with (necessarily unique) Lagrange multipliers (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x) = 0. (3.3.11)

One particular minimizer of (3.3.9) is ξ∗(x) = 0.

2. m∗(x) > 0: (3.3.11) does not hold and there exists a unique minimizer ξ∗(x) to (3.3.9), given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
. (3.3.12)

Proof. Let ξ ∈ V be a feasible direction for the problem (3.3.9), i.e. Dg(x)ξ = 0, DhĨ(x)(x)ξ ≤ 0 and

||ξ||V ≤ 1. Then for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it holds

DJ(x)ξ ≥ DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ

= 〈∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ, ξ〉V
≥ −||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V

(3.3.13)
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Since (3.3.13) holds for any feasible direction ξ for (3.3.9), and for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it follows:

min
ξ∈V

ξ feasible for (3.3.9)

DJ(x)ξ ≥ − min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.3.14)

Therefore, we have proven that p∗(x) ≥ −m∗(x). We now examine the alternative m∗(x) = 0 or
m∗(x) > 0:

1. If m∗(x) = 0, then (3.3.14) implies p∗(x) ≥ 0. Therefore, the value of (3.3.9) is p∗(x) =
−m∗(x) = 0, attained in particular at ξ∗ = 0, and more generally at any feasible ξ∗ ∈ V satisfying
µ∗(x)TDhĨ(x)(x)ξ∗ = 0, as follows readily from the KKT conditions for (3.3.9). Furthermore, the

KKT equation (3.3.11) is satisfied by definition of m∗(x) = 0.

2. Assume now m∗(x) > 0. The KKT condition for (3.3.9) states that for any local optimum ξ′, there

exists (λ′,µ′) ∈ Rp × Rq̃(x)
+ and α ≥ 0 such that,

∀ξ ∈ V, (DJ(x) + λ′TDg(x) + µ′TDhĨ(x)(x))ξ = −α〈ξ′, ξ〉V . (3.3.15)

Using Riesz identifications of the gradient and the differentials, we obtain

αξ′ = −(∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′),

and since m∗(x) > 0, it is necessary that α > 0. The complementarity condition α(〈ξ′, ξ′〉V −1) = 0
yields then ||ξ′||V = 1, which readily implies:

ξ′ = −
∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′

||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V
.

Then the complementarity condition for (3.3.9) implies µ′TDhĨ(x)(x)ξ′ = 0. Therefore it holds

that
DJ(x)ξ′ = DJ(x)ξ′ + λ′TDg(x)ξ′ + µ′TDhĨ(x)(x)ξ′

= 〈∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′, ξ′〉V
= −||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V .

(3.3.16)

The previous equation together with the inequality (3.3.13) with ξ = ξ′ then implies that (λ′,µ′)
achieves the minimum of (3.3.10). By uniqueness, this implies λ′ = λ∗(x) and µ′ = µ∗(x), hence
ξ′ = ξ∗(x). Furthermore, p∗(x) = DJ(x)ξ∗(x) = DJ(x)ξ′ = −m∗(x).

Finally, the next proposition characterizes explicitly the expression of the optimal descent direction ξ∗(x)
from the signs of the multiplier µ∗(x), and highlights in which sense the problem (3.3.9) is combinatorial.
Let us recall the definitions (3.3.5) and (3.3.6) for the projection operator ΠCI and the multipliers
(λI(x),µI(x)) which are used in the result.

Proposition 3.4. In the context of point (2) in proposition 3.3, let ξ∗(x) and (λ∗(x),µ∗(x)) be the

minimizers of the primal and dual problems (3.3.9) and (3.3.10). Define the subset Î(x) ⊂ Ĩ(x) by

Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. (3.3.17)

1. (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î(x) by:λ∗(x)

µ̂∗(x)

 =

λÎ(x)(x)

µÎ(x)(x)

 = −(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x)∇J(x), (3.3.18)

ξ∗(x) = −
ΠCÎ(x)(∇J(x))

||ΠCÎ(x)(∇J(x))||V
, (3.3.19)

where µ̂∗(x) := (µ∗i (x))i∈Î(x) is the vector collecting all positive components of µ∗(x).
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2. Î(x) is equivalently the unique solution to either of the following discrete optimization problems:

Î(x) = arg max
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0,
(3.3.20)

Î(x) = arg min
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. µI(x) ≥ 0.
(3.3.21)

In particular, Î(x) is the unique subset I ⊂ Ĩ(x) satisfying simultaneously both feasibility conditions

DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0 and µI(x) ≥ 0.

Proof. 1. The complementary condition for the primal and dual problems (3.3.9) and (3.3.10) reads

∀i ∈ Ĩ(x), µ∗i (x)Dhi(x)ξ∗(x) = 0. (3.3.22)

Therefore, Dhi(x)ξ∗(x) = 0 for all indices i ∈ Î(x), which implies that DCÎ(x)(x)ξ∗(x) = 0.

Then, after left multiplication of (3.3.12) by (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x), we obtain (3.3.18), whence

(3.3.19) follows.

2. Let I ⊂ Ĩ(x) a subset satisfying DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0. This implies that

ξ = −ΠCI (∇J(x))/||ΠCI (∇J(x))||V

is feasible for the primal problem (3.3.9), and we obtain by definition of ξ∗(x) that

− ||ΠCÎ(x)(∇J(x))||V = DJ(x)ξ∗(x) ≤ DJ(x)ξ = −||ΠCI (∇J(x))||V , (3.3.23)

whence the maximization property (3.3.20).

For I ⊂ Ĩ(x) satisfying µI(x) ≥ 0, we obtain feasible multipliers (λ,µ) for the dual problem
(3.3.10) by taking µ to be equal to µI on the indices of I and extended by 0 in the complementary

subset Ĩ(x) \ I. Then the optimality of (λ∗(x),µ∗(x)) for this dual problem reads:

||ΠCÎ(x)(∇J(x))||V = ||∇J + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
≤ ||∇J(x) + Dg(x)T λ+ DhT

Ĩ(x)
µ||V = ||ΠCI (∇J(x))||V ,

(3.3.24)

whence the minimization property (3.3.21).

Remark 3.5. In view of (3.3.17), the optimal multiplier µ∗(x) can be interpreted as an indicator

variable specifying which constraints of Ĩ(x) are ‘not aligned’ with the gradient ∇J(x) and should be

kept in the subset Î(x). The best descent direction (in the sense of (3.3.9)) is obtained by projecting

the gradient ∇J(x) onto the tangent space of the constraint subset Î(x) rather than onto the full set of

violated or saturated constraints Ĩ(x). Indeed, the descent direction ξ = −ΠCĨ(x)
∇J(x) that would be

obtained by projecting ∇J(x) on the whole set Ĩ(x) would only keep them all constant at first order,
i.e. Dhi(x)ξ = 0, (see remark 3.9 for more details). It is therefore more efficient to project ∇J(x) only

on those constraints associated to the indices i ∈ Î(x), thus allowing the remaining ones (associated

to i ∈ Ĩ(x) \ Î(x), indicating vanishing multipliers µ∗i (x) = 0) to decrease since the calculated descent
direction ensures that Dhi(x)ξ∗(x) ≤ 0 holds for all i = 1, ..., q.

Remark 3.6. The use of a dual problem such as (3.3.10) in order to obtain information about which
constraints should remain active is classical in active sets methods, see e.g. [77, 187, 244]. In principle,

the optimal subset Î(x) could be found by solving the discrete problems (3.3.20) or (3.3.21). However,
we expect that in practice, it is more efficient to rely on iterative solvers relying on gradient descent
for solving the dual problem (3.3.10), e.g. a cone programming solver or a non negative least squares
algorithm such as [77]. This is what we do in the sequel.
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Having introduced the subset Î(x) (defined in (3.3.17)), we are now able to define the null space
direction ξJ(x) in the present context: −ξJ(x) is set to be a positive multiple of the optimal descent
direction ξ∗(x) supplied by (3.3.19).

Definition 3.6. For any point x ∈ V satisfying the constraint qualification (3.3.4), the null space
direction ξJ(x) at x for the optimization problem (3.1.2) is defined by:

ξJ(x) := ΠCÎ(x)(∇J(x)) = (I −DCÎ(x)(x)T (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (3.3.25)

where Î(x) is the optimal set defined by (3.3.17).

The main point in definition 3.6 is that, while all violated and saturated constraints are taken into
account in the Gauss-Newton direction ξC(x) defined by (3.3.8), only those constraints in Î(x), not
aligned with the gradient ∇J(x), occur in the definition of ξJ(x).

Remark 3.7. With our notation, the optimization scheme proposed by Barbarosie et. al. [59, 60] reads{
xn+1 = xn −∆t∇J(xn)−DCTI(xn)νn

νn = −∆t(DCI(xn)DC
T
I(xn))

−1DCI(xn)∇J(xn) + DCTI(xn)(DCI(xn)DC
T
I(xn))

−1CI(xn),
(3.3.26)

where the set I(xn) is obtained by removing indices from Ĩ(xn) one by one, starting from the index i0
associated with the most negative multiplier νn,i0 < 0, until all of them become non negative. Therefore,

the set I(xn) used in this strategy and that Î(xn) featured in our strategy, given by (3.3.17), do not
coincide in general; one could think of configurations where the procedure of [60] would fail to find the

optimal set Î(xn) (for example if i0 ∈ Î(xn)) and would project the gradient on a less optimal subset of
constraints. We note that no convergence result is given by the authors about this procedure.

Remark 3.8. Let us discuss two extreme cases related to the involved computational effort in the
numerical implementation of (3.3.25). Upon discretization, we may assume that V = Rk is a finite-
dimensional space.

1. If the total number p+ q̃ of saturated or violated constraints is small compared to the dimension k
of V , it is best, for numerical efficiency, to assemble the small square matrix (DCĨ(x)DC

T
Ĩ(x)

) and

to invert it by a direct method.

2. If V = Rk is equipped with an inner product encoded by a matrix A, and if p+ q̃ is of the order of k
or larger, the computation of the inverse of (DCÎ(x)DC

T
Î(x)

) can be expensive. However, it can be

still tractable if both DC and A are sparse matrices. For instance, this occurs in the case of bound
constraints on the optimization variable x = (x1, ..., xk), e.g. constraints of the form αi ≤ xi ≤ βi,
i = 1, ..., k. Recalling from remark 3.1 that in this setting, DCT

Î(x)
= A−1DCT

Î(x)
, it can be verified

that the vector
X := A−1DCT

Î(x)
(DCÎ(x)A

−1DCT
Î(x)

)−1DCÎ(x)∇J(x)

can be computed as the solution to the sparse linear system A −DCT
Î(x)

DCÎ(x) 0

X
Λ

 =

 0

DCÎ(x)∇J(x)

 ,
where Λ ∈ Rp+Card(Î(x)) is an extra slack variable, which yields the null space directions ξJ(x) =
∇J(x)−X. A similar strategy based on the sparsity of A and DCÎ(x) can be used to compute the

range space direction ξC(x) of (3.3.8), or to solve the dual quadratic subproblem (3.3.10).

Remark 3.9. As we have already mentioned, the Lagrange multiplier µ∗(x) given by (3.3.18) may be
understood as an indicator of which inequality constraints are aligned with the gradient of J . To further
highlight this, it is instructive to consider the particular situation where the gradients of the constraint
functions are orthogonal, i.e.:

〈∇gi(x),∇gj(x〉V ) = 0, for i, j = 1, ..., p, i 6= j,

〈∇hi(x),∇hj(x〉V ) = 0, for i, j = 1, ..., q, i 6= j,

〈∇gi(x),∇hj(x〉V ) = 0, for i = 1, ..., p, j = 1, ..., q.



3.3.4. Decrease properties of the trajectories of the null space ODE 123

In this case, it easily follows from the Pythagore theorem that for any (λ,µ) ∈ Rp × Rq̃(x)
+ ,

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||2V =

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) +

p∑
i=1

λi∇gi(x) +
∑
j∈Ĩ(x)

µj∇hj(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

V

= ||∇J(x)||2V +

p∑
i=1

(
λ2
i ||∇gi(x)||2V + 2λi〈∇J(x),∇gi(x〉V )

)
+
∑
j∈Ĩ(x)

(
µ2
j ||∇hj(x)||2V + 2µj〈∇J(x),∇hj(x〉V )

)
.

Therefore the minimization problem (3.3.10) is separable with respect to the variables (λ,µ) ∈ Rp×Rq̃(x)
+ :

(λ∗i (x))1≤i≤p and (µ∗i (x))i∈Ĩ(x) are the respective solutions to the minimization problems:

∀i ∈ 1 . . . p, λ∗i (x) = arg min
t∈R

(
t2||∇gi(x)||2V + 2t〈∇J(x),∇gi(x〉V )

)
,

∀i ∈ Ĩ(x), µ∗i (x) = arg min
t∈R
t≥0

(
t2||∇hi(x)||2V + 2t〈∇J(x),∇hi(x〉V )

)
,

which yields eventually:

λ∗i (x) = −〈∇J(x),∇gi(x〉V )

||∇gi(x)||2V
, µ∗i (x) =

 0 if 〈∇J(x),∇hi(x)〉V ≥ 0,

− 〈∇J(x),∇hi(x)〉V
||∇hi(x)||2V

otherwise.

Hence, µ∗i (x) is positive if and only if the direction −∇J(x) leads to an increase (i.e. a violation) of the
ith inequality constraint.

In the general case where all the constraint gradients are not mutually orthogonal, the interpretation
of µ∗(x) is similar, up to the additional complication that (3.3.10) accounts for the combinatorics behind
the possible alignments between different constraint gradients. In the following, with a slight abuse of
language, we shall nevertheless refer to the indices i ∈ Ĩ(x)\ Î(x) as those associated to constraints which
are ‘aligned’ with ∇J(x).

3.3.4 Decrease properties of the trajectories of the null space ODE

The final result of this section is the counterpart of proposition 3.1 in the case of the equality and
inequality constrained optimization problem (3.1.2).

Proposition 3.5. Assume that the trajectories x(t) of the flow{
ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.3.27)

with ξJ and ξC given by (3.3.8) and (3.3.25) exist on some interval [0, T ] for T > 0 and are such that:

(a) the set Ĩ(x(t)) defined in (3.3.3) is constant over [0, T ]:

∀t ∈ [0, T ], Ĩ(x(t)) = Ĩ(x0);

(b) the constraints remain qualified along the flow x(t), in the sense of (3.3.4).

Then the following properties hold true:

1. The violation of the constraints decreases exponentially:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0) and hĨ(x(t))(x(t)) ≤ e−αCthĨ(x0))(x0). (3.3.28)

2. J(x(t)) decreases ‘as soon as the violation (3.3.28) of the constraints is sufficiently small’ in the fol-
lowing sense. Assume that rank(DCĨ(x0)(x)) is maximal for all x in K = {x ∈ V | ||CĨ(x0)(x)||∞ ≤
||CĨ(x0)(x0)||∞} and

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞. (3.3.29)
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where σp(x) is the smallest singular value of DCĨ(x)(x). Then there exists a constant C > 0 such

that

∀t ∈ [0, T ], ||ΠCÎ(x(t))
(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (3.3.30)

3. Any stationary point x∗ of the flow (3.3.27) satisfies the KKT optimality conditions (3.3.7) which
equivalently rewrite: {

∇J(x∗) + Dg(x∗)T λ∗(x∗) + DhĨ(x∗)(x
∗)T µ∗(x∗) = 0,

(g(x∗) = 0 and hĨ(x∗)(x
∗) = 0)⇔ CĨ(x∗)(x

∗) = 0,
(3.3.31)

where (λ∗(x∗),µ∗(x∗)) ∈ Rp × Rq̃(x
∗)

+ are defined in (3.3.10) or (3.3.18).

Proof. 1. The definition (3.3.8) of ξC(x(t)) implies DCĨ(x(t))ξC(x(t)) = CĨ(x(t))(x(t)), and since

−ξJ(x(t)) is positively proportional to ξ∗(x(t)) (proposition 3.3), it holds

DCÎ(x(t))ξJ(x(t)) = 0, −DhĨ(x(t))\Î(x(t))(x(t))ξJ(x(t)) ≤ 0.

Therefore we obtain

d

dt
CÎ(x(t))(x(t)) = −αCCÎ(x(t))(x(t)) and

d

dt
hĨ(x(t))\Î(x(t))(x(t)) ≤ −αChĨ(x(t))\Î(x(t))(x(t))

(3.3.32)
from which (3.3.28) follows by application of Gronwall’s lemma.

2. The proof is identical to that of proposition 3.1.

3. A stationary point x∗ of (3.3.27) satisfies by definition −αJξJ(x∗)− αCξC(x∗) = 0. Left multipli-
cation of this identity by DCĨ(x∗)(x

∗) yields:

− αJDCĨ(x∗)(x
∗)ξJ(x∗)− αCCĨ(x∗)(x

∗) = 0. (3.3.33)

Remembering now that from definition (3.3.9),

−DCĨ(x∗)ξJ(x∗) ≤ 0 and CĨ(x∗)(x
∗) ≥ 0,

equality in (3.3.33) can hold only if both terms vanish. In particular, we infer that CĨ(x∗)(x
∗) = 0,

a fact which implies ξC(x∗) = 0 and which encompasses the last two lines of the KKT conditions
(3.3.7). Returning to the fact that −αJξJ(x∗)−αCξC(x∗) = 0 , we obtain that ξJ(x∗) = 0, which
corresponds to the first line in (3.3.7). This completes the proof.

Remark 3.10. Since the sets Ĩ(x) or Î(x) are subject to change as soon as inequality constraints become
active or inactive, or if not enough regularity holds, the ODE (3.3.27) has in general a discontinuous
right-hand side and is defined only formally (note that a rigorous mathematical meaning could still
be provided with the theory of non smooth ODEs, see [126, 158]). However and as discussed further
on in the next remarks, its discretization makes sense and exhibits the same decrease properties as its
continuous counterpart for sufficiently small steps ∆t.

Remark 3.11. The assumption (a) in proposition 3.5, whereby the index set Ĩ(x(t)) remains constant
is essentially made to ensure that the right-hand side of the flow (3.3.27) is continuous. Indeed, in such
a case, the range space direction ξC(x(t)) is continuous by its definition (3.3.8), while the null space step
ξJ(x(t)) is continuous because

ξJ(x(t)) = ∇J(x(t)) + DCĨ(x(t))

λ∗(x(t))

µ∗(x(t))


and it can be shown that the multipliers (λ∗(x(t)),µ∗(x(t))) defined by (3.3.10) are continuous functions.

At a time T corresponding to a sudden change of the index set Ĩ(x(t)), we assume that the solution x(t)

can be extended by restarting the ODE (3.3.27) with the new index set Ĩ(x(T )). From (1) in proposi-
tion 3.5, the bound h(x(t)) ≤ e−αCth(x(0)) still holds after the time T for all constraints i ∈ {1, . . . , q}:
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constraints are asymptotically satisfied. Properties (2) and (3) remain true, up to an adjustment of the

constant C in (3.3.30) (which can be taken global since there are finitely many possible sets Ĩ(x(t))).

There may exist situations where the set of asymptotically saturated constraints Ĩ(x(t)) could oscillate
indefinitely. However (2) states that x(t) always keeps improving (in the sense of (3.3.30)), and (3) states
that if x(t) eventually converges, it is necessarily towards a KKT point.

Remark 3.12. In practice, the analysis of proposition 3.5 is sufficient because, similarly to the conclu-
sions of remark 3.3, analogous properties hold for the discrete scheme

xn+1 = xn −∆t
(
αJξJ(xn) + αCξC(xn)

)
. (3.3.34)

Indeed, one can easily check that:

1. Up to first order, the violation of the constraints decreases at a geometric rate:

C(xn+1) = (1− αC∆t)C(xn) + o(∆t). (3.3.35)

This suggests that in order to obtain a stable scheme, one must a priori select αC and ∆t such
that 0 < αC∆t < 2.

2. An accumulation point x∗ of the sequence (xn)n∈N is feasible, i.e. CĨ(x∗)(x
∗) = 0 and is a KKT

point.

Finally, note that one flexibility of this ODE approach is that at the continuous level, the results of propo-
sition 3.5 do not depend on the values of the parameters αJ > 0 and αC > 0. Therefore the convergence
of the discrete scheme towards the continuous trajectory should hold as soon as the discretization step
size ∆t > 0 is sufficiently small.

3.4 Numerical discretization and time-stepping schemes for the null space ODE

This short section describes practical implementation details for the discretization of the ODE (3.1.3)
by an explicit Euler scheme. Two important issues are discussed respectively in sections 3.4.1 and 3.4.2.
First, we propose small adaptations in the computation of ξJ(x) and ξC(x) in order to account for the
discontinuous changes of the right-hand side −(αJξJ + αCξC). Then, a merit function is proposed for
adapting the time step ∆t. The complete implementation of the algorithm is summarized in section 3.4.3
below.

3.4.1 Accounting for discontinuities near the inequality constraint barriers

A potential issue when implementing directly the Euler time-stepping scheme (3.3.2) comes from the fact
that the vector fields ξJ and ξC given by (3.3.8) and (3.3.25) are characterized by the same discontinuities

as the discrete index mapping x 7→ Ĩ(x). As a result, abrupt oscillations of the discrete optimization

path (xn) may occur near the boundary of the feasible set: if hi(xn) = 0 and i ∈ Î(xn) for some index
i ∈ {1, . . . , q}, then in the definition (3.3.25) of ξJ(xn), the gradient ∇J(xn) is projected tangentially to
the constraint hi, but it is not projected after any slight deviation (e.g. due to the discretization) making
this constraint inactive (hi(xn+1) < 0). This kind of issue is very classical in the discretization of ODEs
with discontinuous vector fields and can be tackled by various methods, see e.g. [126] for a review.

In this section, we suggest a simple alternative that works well in practice to stabilize trajectories
near these boundaries: inequality constraints are felt from a short distance by replacing the set Ĩ(xn) in

(3.1.7) with the set Ĩε(xn) of inequality constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ −εi}. (3.4.1)

The tolerances εi > 0 can be estimated in an automatic fashion, independent of an arbitrary rescaling
of the constraints, thanks to an posteriori bound we now detail. Let h be a user-defined parameter
accounting for the distance from the optimization path at which the constraints should be felt.

Assume now that the current point xn satisfies the constraint hi up to the uncertainty h on its
location: by this we mean that there exists some unknown point x∗n such that ||x∗n−xn|| ≤ h, hi(xn) > 0
and hi(x

∗
n) = 0. Then the error h for the location of xn propagates to the constraint values hi(xn)

according to the following inequality:

hi(xn) = |hi(xn)− hi(x∗n)| ' |Dhi(xn)(x∗n − xn)| ≤ ||∇hi(xn)||V h. (3.4.2)
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It is therefore natural to set
εi := ||∇hi(xn)||V h (3.4.3)

for the value of εi in (3.4.1). In our implementation relying on the discretization of (3.1.3), the parameter
h is set proportional to the time step ∆t: h = K∆t for a constant K to be defined by the user. The
parameter h should be defined in accordance with the typical distance ||∆x||V = ||xn+1−xn||V between
two successive iterations; in the academic examples in section 3.5 below considering optimization in
Rk, we may set e.g. h = 0.01 for a typical increment size ||∆x||V ' 0.1. For our shape optimization
applications in section 3.6, h is typically of the order of the discretization mesh size, see section 3.6.2
below.

Note that more generally, the a posteriori bound (3.4.2) allows to assert whether a constraint Ci(xn)
can be considered as satisfied or not with respect to the numerical discretization.

The dual problem (3.3.10) is then solved with Ĩε(xn) instead of Ĩ(xn) in order to obtain a new subset

of indices Îε(xn) which indicates which constraints are likely to be not aligned with the gradient ∇J(xn)
when crossing the barrier {h = 0}. The null space and range space steps ξJ(xn) and ξC(xn) in step 4 of
algorithm 3.1 are finally replaced with ξJ,ε(xn) and ξC,ε(xn) computed as follows:

ξJ,ε(xn) := (I −DCT
Îε(xn)

(DCÎε(xn)DC
T
Îε(xn)

)−1DCÎε(xn))∇J(xn), (3.4.4)

ξC,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DC
T
I∗ε (xn))

−1CI∗ε (xn)(xn), (3.4.5)

where I∗ε (xn) = Ĩ(xn)∪ Îε(xn) is the set of constraints that are either violated, saturated or not aligned

with the gradient ∇J(xn) at h = −(ε1, ..., εq)
T . The use of Îε(xn) in the definition of ξJ,ε(xn) ensures

that the gradient ∇J(xn) is being projected tangentially to the constraint on a small layer near the
boundary of the feasible set. As a result, no abrupt discontinuity occurs anymore for ξJ,ε and ξC,ε
when crossing the boundary of the feasible domain while remaining in this layer. Including constraints
i ∈ Îε(xn) in the Gauss-Newton direction ξC,ε(xn) even if they are satisfied (i.e. if −εi ≤ hi(xn) ≤ 0)
further allows to stabilize the values of these constraints closer to zero.

3.4.2 Time step adaptation based on a merit function.

The ODE (3.1.3) is discretized by an explicit scheme of the form:

xn+1 = xn −∆tn
(
αJξJ(xn) + αCξC(xn)

)
, (3.4.6)

with a variable time step ∆tn > 0. The practical implementation of such a strategy is often guided by
a merit function, i.e. an indicator allowing to detect that a step has been too large, a situation where
a choice has to be made regarding whether the step should be reduced or accepted. For our null space
algorithm, a merit function which resembles very much that of the Augmented Lagrangian Method is
readily available, however with a specific choice of multipliers:

Lemma 3.3. For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn(x) := αJ

(
J(x) + Λ(xn)TCĨ(xn)(x)

)
+
αC
2
CĨ(xn)(x)TS(xn)CĨ(xn)(x) (3.4.7)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to the dual prob-

lem (3.3.10) (see (3.3.18)) and S(xn) = (DCĨ(xn)(xn)DCĨ(xn)(xn)T )−1 is symmetric positive definite.

Then (3.4.6) is a gradient step for decreasing the function meritxn , namely:

∇meritxn(xn) = αJξJ(xn) + αCξC(xn).

Proof. It is a straightforward computation of the gradient of (3.4.7).

A possible implementation of an optimization strategy of the form (3.4.6) based on this merit function
is summarized in algorithm 3.1, which requires the introduction of a few extra parameters:

• time step: choose a fixed time step ∆t > 0.

• maxtrials: the optimization time step is decreased up to maxtrials times until the value of the
merit function has decreased. If the merit function has not decreased after all maxtrials steps,
the smallest step is accepted.
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• tolLag: a small threshold for the values of the Lagrange multipliers µ∗i under which these are

considered to be 0 (we took tolLag=1e-8). This value is used for the identification of the set Î(xn)
according to the definition (3.3.17); it should be set in accordance with the machine precision and
that of the quadratic programming solver for the dual problem (3.3.10).

Let us emphasize that these parameters have a quite intuitive and physical meaning, so that the task of
assigning their values does not involve fine tunings in practice.

Importantly, the rescaling induced by the inverse of the correlation matrix (DCĨ(xn)DC
T
Ĩ(xn)

)−1

normalizes all the constraints; in particular, the whole algorithm 3.1 is invariant under multiplication of
the constraints by arbitrary positive constants (up to the machine precision for the step 3); a preliminary
rescaling of the constraints is therefore not required from the user.

3.4.3 Overall algorithm pseudo code

The resulting algorithmic implementation of the null space gradient flow taking into account both adap-
tations of section 3.4.1 and (3.4.2) is summarized in algorithm 3.1 below.

3.5 Comparisons with other methods and illustrations on academic test cases

This section is purely pedagogical and serves to illustrate and compare our null space gradient flow to
other classical first order methods for constrained optimization problems. The method of slack variables
for treating inequality constraints with the equality constrained gradient flow (3.1.11) is reviewed and
compared with our method in section 3.5.1. The comparison of our gradient flow algorithm with the
more classical SLP and Augmented Lagrangian methods are presented in section 3.5.2.

3.5.1 Comparison with the method of slack variables for inequality constraints

It is classical to introduce slack variables so as to turn inequality constraints in the problem (3.1.2) into
equality constraints of an augmented problem including these additional variables. This section briefly
reviews the method investigated by [277] in the context of dynamical system approaches to constrained
optimization and compares it with our method based on the dual problem (3.3.10).

The method of slack variables consists in replacing the problem (3.1.2) with the following equivalent
one, involving q extra variables (z1, . . . , zq) ∈ Rq:

min
x∈V
z∈Rq

J(x)

s.t. C(x, z) = 0,

(3.5.1)

where the augmented vector of constraints C(x, z) reads:

C(x, z) :=


g(x)

h1(x) + 1
2z

2
1

...

hq(x) + 1
2z

2
q

 ∈ Rp+q.

Problem (3.5.1) is an equality constrained optimization problem of the form (3.2.1), set over the Hilbert
space

Ṽ := V × Rq, with inner product 〈(x, z), (x′, z′)〉Ṽ := 〈x, x′〉V + zT z′.

It can be solved thanks to the proposed algorithm in section 3.2 for equality-constrained problems. The
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Algorithm 3.1 Discretization of the null space gradient flow (3.3.27), based on a merit function.

for n = 1 . . . maxiter do
1. Compute the gradients ∇J(xn), ∇gi(xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by solving, if
necessary, the identification problem (3.2.3) and (3.2.4).
2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi(xn)||V h.

3. Determine the set Ĩ(xn) of active or violated constraints and the set Ĩε(xn) of constraints
violated “up to εi”:

Ĩ(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ 0}

Ĩε(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ −εi}.

4. Denote by q̃ε := Card(Ĩε). Solve the dual problem

(λ∗ε(xn),µ∗ε(xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn). Infer the subset Îε(xn) ⊂ Ĩε(xn) indicating
which constraints must remain active (proposition 3.4) :

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i(xn) > tolLag}. (3.4.8)

5. Let I∗ε (xn) := Ĩ(xn) ∪ Îε(xn). Extract the vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) (defined by

(3.1.4)) and compute

ξJ(xn) = (I −DCT
Îε(xn)

(DCÎε(xn)DC
T
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC(xn) = DCTI∗ε (xn)(DCI∗ε (xn)DC
T
I∗ε (xn))

−1CI∗ε (xn).
(3.4.9)

for k = 1 . . . maxtrials do
Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC(xn)).

if meritxn(xn+1) < meritxn(xn) then
break

end if
end for

end for
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associated gradient flow for (3.5.1) reads:

ẋ(t)

ż(t)

 = −αJ(I −DCT (DCDCT )−1DC)

∇J(x(t))

0

− αCDCT (DCDCT )−1C(x(t), z(t)),

x(0)

z(0)

 =

x0

z0

 ,
(3.5.2)

where (x0, z0) ∈ Ṽ is a suitable initialization. In our implementation, for comparison purposes, the
variable z is initialized with a value z0 ∈ Rq in such a way that the inequality constraints of (3.1.2) which
are inactive for x0 (i.e. hi(x0) < 0) are associated with satisfied equality constraints Cp+i(x0, z0) = 0 in
(3.5.1):

∀i ∈ {1, . . . , q}, z0,i =
√

2|hi(x0)|.

In the finite-dimensional setting V = Rk and when J , g and h are C2 functions, Schropp and Singer
proved in [277] that:

(i) stationary points of the extended flow (3.5.2) are exactly critical points of (3.1.2), that is points x∗

satisfying (3.3.7) but with µ(x∗) ∈ Rq possibly negative;

(ii) among all possible critical points, only KKT points (fulfilling all three conditions (3.3.7) with
µ(x∗) ∈ Rq+) are asymptotically stable equilibria.

As a consequence, the solution vector x(t) to (3.5.2) converges in practice to a KKT point for problem
(3.1.2).

The main differences between the slack variable approach and our proposed flow (3.3.27) for dealing
with equality and inequality constrained problems can be summarized as follows.

1. Any point xcrit satisfying the constraints (CĨ(xcrit)(x
crit) = 0) and ΠCĨ(xcrit)(∇J(xcrit)) = 0 is a

stationary point of the extended dynamical system (3.5.2), although it might violate the full KKT
condition (because (3.3.6) may yield possible negative values of the multiplier µĨ(xcrit)(x

crit)). In

contrast, x∗ is a stationary points of the flow (3.3.27) if and only if it is a true feasible KKT point;
see proposition 3.5.

2. The computation of ξJ(x) and ξC(x) in our flow (3.3.27) requires to invert a matrix of size at most
(p+ q̃(x))-by-(p+ q̃(x)) with q̃(x) the number of active or violated constraints at x. The process of
equalizing inequality constraints as in [277, 282] rather requires to invert the full (p+ q)-by-(p+ q)
matrix DC(x, z)DC(x, z)T . Our method is therefore more efficient if q̃(x) � q, that is if a lot of
inequality constraints are inactive.

3. At feasible points, our ODE (3.3.27) follows the best locally admissible descent direction (with
respect to the norm of V ). This is not the case for the extended ODE (3.5.2). Therefore, from a
common feasible point x, the ODE (3.3.27) always decreases the objective function with a steeper
slope dJ/ds with respect to the parameterization induced by the path length s, defined as a function
of the time t by

s(t) =

∫ t

0

||ẋ(α)||V dα. (3.5.3)

This property is illustrated in the academic examples of section 3.5, and in particular on Figure 3.9a
below.

All in all, our observations based on the simple numerical examples of the next section 3.5.3 tend
to illustrate that both flows (3.3.27) and (3.5.2) may have equivalent performances for solving the non
linear optimization problem (3.1.2), this performance being measured in term of the total length

S =

∫ +∞

0

||ẋ||V dt
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covered by the optimization path to reach the optimum. However, the two ODEs (3.3.27) and (3.5.2)
yield optimization paths of essentially different natures. Our null space flow (3.3.27) ignores inactive
constraints and those aligned with the gradient of the objective function. As a result, it produces non
smooth paths that are more likely to reach quickly the saturation of the constraint. The extended
flow (3.5.2) yields smoother trajectories that more likely stay away from the constraints, at the cost of
inverting at every step the full matrix DC(x, z)DC(x, z)T of the size of the total number of constraints
(active and inactive).

3.5.2 Comparisons with ‘iterative’ optimization algorithms

This part compares the null space gradient flow with a few classical first order methods for constrained
optimization which are not directly interpretable as the discretization of some dynamical system. We
consider in the next paragraphs the Augmented Lagrangian Method and Sequential Linear Programming
(SLP). Many other algorithms exist and could have been examined, such as the Method of Feasible
Directions (MFD) [327, 308] or the Method of Moving Asymptotes (MMA) [298]. These methods can
be considered as more or less sophisticated variant of SLP: they both rely on the resolution of linearized
subproblems over a trust region that must be determined by the user. These methods present therefore
similar characteristics to the SLP method. The reader is referred to the textbooks [244, 70] for further
material on iterative methods for constrained optimization.

The Augmented Lagrangian method

The Augmented Lagrangian Method is an optimization algorithm which is very popular partly because
of its implementation simplicity: it consists in replacing (3.1.2) with a sequence of unconstrained mini-
mization problems

min
x∈V

Lk(x) = J(x) + λTk g(x) + µTk h(x) +
αk
2
||g(x)||2 +

αk
2
||hĨ(x)(x)||2. (3.5.4)

Here, the tentative Lagrange multipliers have been denoted λk and µk in order to be consistent with
our previous notation. The parameter αk serves to penalize the violation of the constraints.

A sequence xn which hopefully converges to a solution to the original problem (3.1.2) is typically
computed by alternating gradient steps for the unconstrained minimization of (3.5.4),

xn+1 = xn −∆t

(
∇J(xn) + Dg(xn)T λk + Dh(xn)T µk + αkDg(xn)T g(xn) + αkDhĨ(xn)(xn)T hĨ(xn)

)
(3.5.5)

with updates of the Lagrange multipliers λk, µk, and possibly (but this is not compulsory) of the
penalization parameter αk. Note that the iteration indices n and k may be independent: one major
difficulty of the method lies in the correct initialization and updates of the parameters λk, µk, αk.
Generally, the parameter αk is assumed to be constant, and an update rule is commonly assumed for
updating λk and µk (see [244]):

λk+1,i := λk,i + αkgi(x
∗
k), 1 ≤ i ≤ p, µk+1,j :=

µk,j + αkhj(x
∗
k) if hj(x

∗
k) > −µk,j

αk
0 otherwise,

, 1 ≤ j ≤ q

(3.5.6)
where x∗k is a minimizer for (3.5.4). Of course, in practice, (3.5.6) is not computed with the true minimizer
x∗k but with a current iterate xn obtained after one or more iterations of (3.5.5).

Besides being very difficult to use as soon as the problem involves more than one constraint, this
algorithm is rather slow, because it uses tentative values for the Lagrange multipliers λk and µk rather
than the optimal multipliers λ∗(xn),µ∗(xn) of (3.3.10). As a result, it can take a lot of iterations for
λk and µk to converge to the correct multipliers, often resulting in oscillations around the constraints
at convergence. Recall that actually, lemma 3.3 highlights that our null space algorithm can be seen as
an Augmented Lagrangian Method with a “clever” choice of λk,µk, and αk (in fact, αk is replaced by
the symmetric positive definite matrix S(xn)).

The examples of section 3.5.3 rely on the implementation of this algorithm available in [150]. The
step αk is kept constant equal to 1.1, and (3.5.6) is performed after every single iteration of (3.5.5), which
means n = k.
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Sequential Linear Programming

The SLP algorithm is a very popular first order method for equality and inequality constrained problems.
The descent direction given by the SLP algorithm is of the form (3.3.34). The main idea of the method
is to obtain the next iterated xn+1 by solving a linearized version of the original problem (3.1.2) around
the current guess xn:

xn+1 := arg min J(xn) + DJ(xn) · (xn+1 − xn)

s.t.


g(xn) + Dg(xn) · (xn+1 − xn) = 0

h(xn) + Dh(xn) · (xn+1 − xn) ≤ 0

||xn+1 − xn||V ≤ δ.

(3.5.7)

The constraint ||xn+1 − xn||V ≤ δ requires that xn+1 should be found in a trust region of size δ > 0
around xn (otherwise the value of the subproblem (3.5.7) could be −∞ due to unbounded minimizing
sequences). Note that when the original problem (3.1.2) is set in Rk, this constraint is more often
expressed as a bound constraint

−δ ≤ xn+1,i − xn,i ≤ δ, ∀1 ≤ i ≤ k,

because this allows to use gradient projection methods [244].

Actually, there is a connection between null space iterates (3.3.34) and SLP iterates. Indeed, assume
that the constraint ||xn+1 − xn||V ≤ δ is saturated and that the inequality constraints

hi(xn) + Dhi(xn) · (xn+1 − xn) ≤ 0

get saturated for i belonging to some index set In. Then it is readily verified (in the line of the point 2.
of lemma 3.1, or in the line of proposition 3.4) that the solution of (3.5.7) is explicitly given by

xn+1 = xn − αn(I −DCTIn(DCInDCTIn)−1DCIn)∇J(xn)−DCTIn(DCInDCTIn)−1CIn(xn) (3.5.8)

where CI =
[
g(xn) hI

]T
is the vector of saturated linearized constraints, and αn > 0 is a scaling

coefficient given by

αn =

√
δ2 − ||DCTI (DCIDCTI )−1CI(xn)||2V

||(I −DCTI (DCIDCTI )−1DCI)∇J(xn)||V
.

Note that if the trust region size δ is too small, i.e. if

δ < ||DCTI (DCIDC
T
I )−1CI(xn)||V

then the problem (3.5.7) does not have a solution.
The scheme (3.5.8) is a variant of the discretization (3.3.34) of the null space gradient flow, up to the

redefinition of αC and αJ . The index set In may also be different from Î(xn), because the subproblem
(3.5.7) sees all the constraints while the null space method sees only the active or violated ones.

As is underlined by the expression of αn, the major problem of the SLP method is the fact that
the SLP subproblem (3.5.7) may not have a solution if the trust region parameter δ is too small. Some
additional tuning operations are usually done to face this issue, see e.g. [174]. This issue is partly due
to the fact that the update scheme (3.5.8) is not the discretization of some ODE, because the range
space step DCTIn(DCInDCTIn)−1CIn(xn) has not been scaled by some small parameter (e.g. by δ in our
case). The SLP method directly imposes constraints to be satisfied at first order, whereas our null space
method requires rather constraints to decrease by a factor αC∆t at the next iteration (see the discussion
at the beginning of section 3.2.2 and remark 3.3). Note that in contrast with the SLP method, the primal
and dual subproblems (3.3.9) and (3.3.10) always admit a solution.

In the following examples of section 3.5.3, the SLP method is implemented with the code available
in [150]. Let us note that this implementation of the SLP method does not solve the subproblem (3.5.7)
in the unfeasible domain, but a variant in order to deal with violated constraints.
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3.5.3 Comparative academic test cases in the euclidean space Rk

In this section, we consider simple and illustrative academic examples in order to compare qualitatively
the above strategies for dealing with inequality constraints in optimization problems; we consider:

• the method of section 3.5.1 for equalizing inequality constraints by means of slack variables; see
(3.3.27). This strategy is hereafter labeled as ‘SLACK’;

• the proposed null space flow (3.3.27) in section 3.3.2, based on the dual problem (3.3.10) for solving
the combinatorial character of the constraints. This method is labeled as ‘NLSPACE’;

• an alternative, naive version of (3.3.27) which does not take advantage of the use of a dual problem,
and simply projects ∇J(x(t)) on all the violated constraints:

ẋ = −αJ ξ̃J(x(t))− αCξC(x(t))

ξ̃J(x) := (I −DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1DCĨ(x))∇J(x)

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x).

(3.5.9)

In other words, all the violated or saturated constraints are taken into account in the computation
of both the null space and range space directions ξJ(x) and ξC(x). This strategy is labeled as
‘NLSPACE (no dual)’;

• the Augmented Lagrangian Method of section 3.5.2, labeled as ‘AULG’;

• the Sequential Linear Programming algorithm of section 3.5.2, labeled as ‘SLP’.

To achieve our comparison purpose, algorithm 3.1 is implemented for the discretization of (3.3.27),
(3.5.2) and (3.5.9), with straightforward adaptations for equalizing slack variables or disabling the res-
olution of the dual problem. In all the considered cases, we have set the values of αJ and αC such
that αJ/αC = 5/3. The step size ∆t for the discretization of the ODE (3.1.3) was chosen sufficiently
small to compute continuous paths with satisfying accuracy. Our discussion is exclusively focused on
the continuous trajectories of the considered ODEs. In particular, we do neither discuss the issue of the
selection of the time step, nor the efficiency of these methods in terms of the needed number of iterations
required to achieve convergence.

In order to compare the three methods without bias, we consider the arc length s(t) (defined in
(3.5.3)) as the common reference time for the three ODEs (3.3.27), (3.5.2) and (3.5.9); recall indeed that
this quantity is invariant under any monotone parameterization change of the time t. In the convergence
figures below, optimized quantities are then plotted with respect to the pseudo time s(t) in abscissa; for
example we plot the graph t 7→ (s(t), J(x(s(t)))) in order to account for the evolution of the objective
function J . The SLP and Augmented Lagrangian methods are not dynamical system approaches: we
decided not to include them when plotting convergence histories for the objective function and constraints
because the arc length s(t) would not make sense for these.

We shall also plot the evolution of the Lagrange multipliers s 7→ µ(x(s)) associated with ξJ(x(s)) or

ξ̃J(x(s)) for the ODEs (3.3.27) and (3.5.9). For that purpose, these Lagrange multipliers are defined on

the violated indices i ∈ Ĩ(x(s)) by (3.3.18) for the null space flow (3.3.27), and by

µ(x(s)) := −(DCĨ(x(s))DC
T
Ĩ(x(s))

)−1DCĨ(x(s))∇J(x(s)) (3.5.10)

for the flow (3.5.9) that does not use the dual problem (3.3.10). For the indices i ∈ {1, . . . , q} \ Ĩ(x(s)),
the value of the Lagrange multiplier is set to µi(x(s)) := 0 by convention. We do not plot Lagrange
multipliers for the ODE (3.5.2) using slack variables because these are defined with respect to the
extended variables (x(s), z(s)).

The examples of this section take place in the optimization set V = R2, which is equipped with the
usual euclidean inner product; the Hilbert transposition T = T coincides with the usual transposition
operator (see definition 3.1). For simplicity, these examples only involve inequality constraints; we
consider the following three scenarios:

Test case 1: the initial point is unfeasible and the gradient of the objective function ∇J(x) is always
aligned with the directions of the constraints;

Test case 2: the initial point is unfeasible, but the gradient∇J(x) may not be aligned with the direction
of constraints;

Test case 3: one of the constraints becomes inactive in the course of the optimization path.
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Test case 1 : unfeasible initialization with initial gradient aligned with the constraints.

Our first example features the following problem, reproduced from [150]:

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

(3.5.11)

This test case is designed so that for the chosen initial point x0 = (1.5, 2.25), the gradient of the objective
function ∇J(x) is ‘aligned’ with the linear constraint h2, in the sense that

−∇h2(x0) · ∇J(x0) < 0.

Hence at least for small times (in fact during the whole optimization path), the constraint h2 can be
ignored since the minimization of J is naturally concurrent with a decrease of the value of h2.

The optimization paths taken by the solutions of the three ODEs (3.3.27), (3.5.2) and (3.5.9) are
plotted on Figure 3.2. The associated convergence histories for the values of the objective and constraint
functions are displayed on Figure 3.3. Note the oscillations characterizing the Augmented Lagrangian
Method to travel tangentially to the constraint boundary. The SLP algorithm is able to compute the
tangential projection of ∇J(x(t)) onto the constraint set; it finds a path that is similar to the one of the
null space method.
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Figure 3.2: Optimization test case 1: optimization paths for an unfeasible initialization x0 with ∇J(x0) aligned
in the direction of the constraints.

Let us comment the trajectory followed by the null space flow (3.3.27) in details. The gradient of
the objective function remains aligned with the constraint h2, which is associated with a zero Lagrange
multiplier µ2(x(s)) (see Figure 3.4). During the first part of the optimization, the first constraint h1 is
not violated, hence the multiplier µ1(x(s)) is also set to zero. As a result, both constraints are ignored
when computing the null space direction, which is set equal to the gradient: ξJ(x(s)) = ∇J(x(s)). The
optimization path x(s) follows then almost the direction of the gradient ∇J(x(s)) (without projection),
up to a small deviation induced by the non zero Gauss-Newton direction ξC(x(s)) in the unfeasible
domain. When the hyperbolic constraint represented by h1 becomes violated, the gradient is not aligned
anymore with this constraint and the dual problem (3.3.10) yields a non-zero Lagrange multiplier µ1(x(s))
(near s = 1.4). From this point, the gradient ∇J(x(s)) is then projected tangentially to the constraint
h1 till the optimum is attained.



134 Chapter 3. Null space gradient flows for constrained shape optimization

In contrast, the path of the ODE (3.5.9) (which does not involve the dual problem (3.3.10)) fails to
find the optimum as it is unable to unstick from the first saturated constraint. Notably, the gradient
∇J(x) is kept being projected tangentially to the violated constraint h2 while it should not, which could
have been detected from the negativity of the computed Lagrange multiplier µ2 (see Figure 3.4).

Finally, the extended ODE (3.5.2) making use of slack variables feels the constraint h1 from some
distance, inducing a deviation of the trajectory in the direction of the optimum before reaching the
saturation of the constraint. This allows the trajectory x(s) to find globally a slightly shorter path than
our null space flow (3.3.27).
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Figure 3.3: History curves for the optimization test case 1.
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Figure 3.4: Evolution of the Lagrange multipliers µ1(x(s)), µ2(x(s)) for the optimization test case 1.

Test case 2 : unfeasible initialization with initial gradient not aligned with the constraints.

We now devise a test case where the gradient of the initialization is not aligned with the constraints.
The feasible domain is the same as in the previous test case but the objective function is different:

min
(x1,x2)∈R2

J(x1, x2) := (x1 − 2)2 + (x2 − 2)2

s.t.

 h1(x1, x2) := −x2 +
1

x1
≤ 0

h1(x1, x2) := x1 + x2 − 3 ≤ 0.

(3.5.12)

We keep the same initialization x0 = (1.5, 2.25). Corresponding optimization paths and convergence
curves are displayed on Figs. 3.5 and 3.6.
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For this example, the linear constraint h2 is not aligned with the gradient along the optimization
path of the null space gradient flow (3.3.27). This is associated with a non-zero Lagrange multiplier
µ2(x(s)) > 0 (see Figure 3.7): the gradient∇J(x(s)) is kept being projected tangentially to the constraint
h2 when computing ξJ(x(s)). Here, the combination with the Gauss-Newton direction ξC(x(s)) allows
to decrease simultaneously the objective function and the violation of the constraints, which enables the
optimization path to reach directly the optimum when hitting the feasible set. Note that the convergence
curve Figure 3.6a depicts a monotonically increasing objective function J after s ≥ 0.5 (although we are
minimizing J); this is of course due to the fact that constraints are never satisfied.
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Figure 3.5: Optimization problem of section 3.5.3: unfeasible initialization x0 with ∇J(x0) not aligned in the
direction of the constraints.
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Figure 3.6: History curves for the optimization test case 2.

Since the constraint h2 remains active from initialization to the optimum, the optimization path is
unchanged when disabling the dual problem (ODE (3.5.9)). Finally, the path selected by the extended
flow (3.5.2) to reach the optimum is very similar to the one of our method, although slightly longer.

Test case 3: a saturated inequality constraint becoming inactive along the optimization
path

This last optimization test case is designed to illustrate the relevance of the dual problem for detecting
when a saturated inequality constraint ceases to be saturated. We consider a disconnected unfeasible
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Figure 3.7: Evolution of the Lagrange multipliers µ1(x(s)), µ2(x(s)) for the optimization test case 2.

domain made from the reunion of a half-space and the interior region of a parabola:

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0.

(3.5.13)

The feasible domain and optimization paths starting from the initialization x0 = (3, 3) are displayed on
Figure 3.8. Associated convergence curves are reported on Figure 3.9. The optimization paths obtained
with the Augmented Lagrangian Method and the SLP method are also depicted. We observed oscillations
of the SLP method in the region close to both constraints. We note as well, again, the tendency of the
Augmented Lagrangian Method iterates to oscillate around the constraints.

For the null space flow (3.3.27), four different stages occur as is visible on the evolution of the Lagrange
multipliers µ1(x(s)), µ2(x(s)) reported on Figure 3.10:

1. From s = 0 to s = 1.73, the trajectory x(s) remains in the feasible domain. Lagrange multipliers
µ1(x(s)) = µ2(x(s)) = 0 are set to 0 and the null space direction ξJ(x(s)) = ∇J(x(s)) coincides
with the gradient of the objective function, until x(s) hits the parabolic barrier, which corresponds
to the saturation of the first constraint h1.

2. From s = 1.73 to s = 4.4, the resolution of the dual problem yields a non zero multiplier µ1(x(s)) >
0. The optimization trajectory x(s) remains tangent to the first constraint, until reaching a limit
point such that ∇J(x(s)) · ∇h1(x(s)) = 0. At this moment, it is not necessary to project the
gradient tangentially to this constraint any more, and the values of both Lagrange multipliers
µ1(x(s)) = µ2(x(s)) are equal to 0.

3. From s = 4.4 to s = 6.5, both constraints h1 and h2 are ignored and the trajectory x(s) follows
the gradient −∇J(x(s)), till the saturation of h2.

4. From s = 6.5 to s = 7.1, the second Lagrange multiplier µ2(x(s)) > 0 has a positive value; x(s)
evolves then tangentially to this constraint till the optimum is attained.

As illustrated on Figure 3.8, the use of the dual problem is key in the detection of the moment when
the optimization trajectory x(s) needs to be released from active inequality constraints. Because of the
discrete nature of the time stepping, the path followed by the ODE (3.5.9) necessarily enters slightly the
violated parabolic domain. Since it does not use the information provided by the dual problem (3.3.10),
the gradient ∇J(x(s)) is kept being projected tangentially to the constraint h1 till x(s) converges to
some stationary point (which is not a KKT point). As can be seen on Figure 3.10, the optimization
trajectory followed by this ODE coincides with the one of the flow (3.3.27), till the instant s = 4.4 at
which the Lagrange multiplier µ1(x(s)) becomes negative (which violates the feasibility condition of the
dual problem (3.3.10)). Note that using larger steps could have allowed the trajectory x(s) to exit “by
chance” the unfeasible domain, and in that case convergence to the optimum would have been obtained.
However this would not reflect the actual behavior of the continuous solutions of (3.5.9).
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Figure 3.8: Optimization problem of section 3.5.3 : feasible initialization x0 but the optimization has to find a
path across the parabolic domain.
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Figure 3.9: History curves of the null space algorithm for the optimization problem of section 3.5.3.
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Finally, the extended ODE (3.5.2) using slack variables finds a smooth path to the optimum. Since
inactive constraints are felt from distance, the trajectory x(s) is able to remain more strictly in the
feasible domain for all times. The total length of the optimization path is almost the same than the one
of the null space flow (3.3.27) (note the steeper descending slopes dJ/ds for the latter at intersection
points of the two trajectories, see the point (3) in the discussion of section 3.5.1).

3.6 Optimization within the set of Lipschitz subdomains: applications to shape

optimization

Our ultimate goal is to apply our optimization strategy to shape and topology optimization problems.
In such applications, the optimization set is not a vector space V as in (3.1.2) but a more general set X
of shapes in Rd (d = 2 or 3 in standard applications):

X = {Ω ⊂ D | Ω Lipschitz}, (3.6.1)

where D ⊂ Rd is an enclosing ‘hold-all’ domain. Since X is not a Hilbert space, the present context
does not fall into the optimization framework described in sections 3.2 and 3.3. However, X may be
endowed with a manifold structure, which makes it possible to extend our dynamical system (3.3.1) to
this context, up to small adaptations that we now describe.

In the whole section (and in the next chapters of the thesis), we consider a generic shape optimization
problem

min
Ω∈X

J(Ω)

s.t.

{
g(Ω) = 0

h(Ω) ≤ 0,

(3.6.2)

for shape differentiable objective and constraint functions J : X → R, g : X → Rp and h : X → Rq (in
the sense of chapter 1, definition 1.1). In section 3.6.1, we outline the analogy between the resolution of
(3.6.2) with the method of Hadamard and classical methods for the optimization on smooth manifolds.
Then, we explain how to extend the null space algorithm 3.1 to this setting, and in particular how the
classical extension and regularization step of shape derivatives (outlined in chapter 1, section 1.4.1) is
naturally included in our method when using the definition (3.2.3) of the Hilbertian transposition T .
A few implementation details regarding the normalization of the descent direction with respect to the
mesh size are discussed in section 3.6.2. Finally, section 3.6.3 concludes this chapter with some further
numerical illustrations of our constrained optimization algorithm in the context of shape optimization:
we consider the model example of shape optimization of a bridge structure subjected to multiple load
cases and featuring 10 constraints.

3.6.1 Manifold structures for shape optimization

Our extension of the previous material to the shape optimization context is inspired by ‘classical’ opti-
mization strategies on a smooth embedded manifold M ⊂ Rk. In this context, a descent direction at a
point xn ∈M for some objective functional is typically sought as an element ξn ∈ TxnM of the tangent
space TxnM to M at xn; see e.g. [141, 5]. Then one relies on a retraction ρxn , that is a mapping

ρxn : TxnM →M

satisfying the following two consistency conditions:
ρxn(0) = xn

∀ξ ∈ TxnM ,
d

dt

∣∣∣∣
t=0

ρxn(tξ) = ξ.

The mapping ρxn then allows to convert ξn into a practical update of the actual point xn on M :

xn+1 := ρxn(∆tξn), (3.6.3)

where ∆t > 0 is the descent step; see [6] and Figure 3.11. Since the new point xn+1 belongs to M , this
procedure can be repeated iteratively.
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Figure 3.11: Optimization on a manifold M : a retraction map ρxn is used to project a tangential motion
∆tξn ∈ TxnM from xn ∈M back onto the optimization domain M .

The same idea can be used to apply the methods of sections 3.2 and 3.3 to the optimization problem
(3.6.2), posed over the set of shapes X . To this end, we rely on Hadamard’s method (reviewed in
chapter 1), which considers variations of a shape Ω ∈ X of the form

ρΩ(θ) := (I + θ)(Ω), for θ ∈W 1,∞(D,Rd) with ||θ||W 1,∞(D,Rd) < 1, (3.6.4)

Formally, the set W 1,∞(D,Rd) may be interpreted as the tangent space to X at Ω and the mapping ρΩ,
which is defined by (3.6.4) on a neighborhood of θ = 0 in W 1,∞(D,Rd), plays the role of a retraction.
Other definitions are possible for such a transformation dictating how a shape should evolve according
to a vector field θ, see the discussion of chapter 1, section 1.4.2. Note also that more rigorous manifold
structures on shape spaces can be formulated, see e.g. [44, 278].

Usually, in the context of a general embedded manifold M ⊂ Rk, a differential structure on M is
defined first (inducing a notion of derivative on M ), and the definition of a suitable retraction is inferred
accordingly. In the framework of Hadamard’s method however, it is the retraction ρΩ itself, that is the
parametrization (3.6.4) by deformation fields θ, that is used to define the notion of derivative. Indeed,
the definition of shape derivative of chapter 1, definition 1.1 is equivalent to saying that a functional
J(Ω) is shape differentiable if and only if J ◦ ρΩ is differentiable.

The key ingredient for applying the null space algorithm algorithm 3.1 to this context is the compu-
tation of the gradient ∇J(Ω) and transposes Dg(Ω)T and Dh(Ω)T of the shape derivatives of the con-
straints. Following definition 3.1, these are computed by introducing a Hilbert space V ⊂W 1,∞(D,Rd)
with scalar product 〈·, ·〉V and by solving identification problems (3.2.3) and (3.2.4). Our practical
implementation follows the strategy described in chapter 1, section 1.4.1: we set either

V = H1(D,Rd) with ∀θ,θ′ ∈ V, 〈θ,θ′〉V :=

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx (3.6.5)

or

V = {v∇dΩ | v ∈ H1(D)} with ∀v, w ∈ V, 〈v∇dΩ,w∇dΩ〉V :=

∫
D

(γ2∇v · ∇w + vw)dx. (3.6.6)

The implicit dependence of V with respect to Ω is omitted. As mentioned in chapter 1, the parameter
γ is set proportional to the minimum mesh element size hmin.

In light of the previous discussion, the proposed dynamical system (3.3.1) for tackling shape opti-
mization problems of the form (3.6.2) is extended and discretized as follows.

1. The null space and range space directions ξJ(Ω) and ξC(Ω) are computed as elements of V thanks
to the formulas (3.3.8) and (3.3.25). This requires the computation of the gradient ∇J(Ω) and
of the transposes DgT (Ω), DhT (Ω) via the resolution of identification problems such as (3.2.3)
and (3.2.4). In particular, steps 1 to 5 of algorithm 3.1 including the resolution of the dual problem
(3.3.10) are achieved from the knowledge of the Fréchet derivatives and of their transposes.

2. The update (3.3.2) of the design from one iteration of the process to the next is performed by using
the retraction map ρΩ as in (3.6.3):

Ωn+1 := ρΩn(−∆t(αJξJ(Ωn) + αCξC(Ωn))); (3.6.7)
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in practice, the step 6 of algorithm 3.1 is adapted accordingly.

In our applications, let us recall that (3.6.7) is carried out by relying on the mesh evolution technique
reviewed in chapter 1, section 1.4.2: at every iteration n, the current shape Ωn is explicitly discretized as
a submesh of a triangulated mesh Tn of D (see e.g. Figure 3.15 below). This also means that one does
not use the retraction map ρΩ of (3.6.4) naturally considered by the method of Hadamard but rather
the one ρ̃Ω associated with the use of the level set method described in eqn. (1.4.12) of chapter 1.

3.6.2 Adaptive normalizations for the null space and range space directions

We rely on algorithm 3.1 for our implementation of the null space flow (3.3.1) for numerical shape
optimization. A few comments are in order regarding the appropriate scaling of the null and range space
steps in relation with the size of the mesh discretization; we define accordingly variable coefficients αJ,n
and αC,n for the descent direction θn in (3.6.8).

For stability reasons, the vertices of the current mesh Tn discretizing Ωn should move by a distance
which equals at most a few mesh elements in order to produce the subsequent shape Ωn+1. Hence, the
minimum edge length hmin of the computational mesh is a natural candidate for the limiting step size
value h of the discussion in section 3.4.1. In our practical implementation, we set ∆t = 1 and a descent
direction θn(x) is computed by estimating

θn := −(αJ,nξJ(Ωn) + αC,nξC(Ωn)), (3.6.8)

where αJ and αC of the update (3.6.7) have been replaced by dynamic coefficients αJ,n and αC,n.

The parameters αJ,n and αC,n scaling the null space and range space steps ξJ(Ωn) and ξC(Ωn)
are updated dynamically in order to control the step size ||θn||L∞(D,Rd). Note that the infinity norm is
considered because all values of the displacement θn should be of the order of the mesh size. We consider
AJ and AC two user-defined parameters, which are expressed in terms of the minimum edge length hmin

for a clearer intuitive meaning. The coefficients αJ,n and αC,n are updated at every iteration according
to the following rules:

αJ,n :=



AJhmin

||ξJ(Ωn)||L∞(D,Rd)

if n < n0

AJhmin

max(||ξJ(Ωn)||L∞(D,Rd), ||ξJ(Ωn0)||L∞(D,Rd))
if n ≥ n0

(3.6.9)

αC,n := min

(
0.9,

AChmin

max
(
1e-9, ||ξC(Ωn)||L∞(D,Rd)

)) . (3.6.10)

These normalizations ensure that the null space and range space steps always remain smaller than AJ
and AC times the mesh size:

∀n ≥ 0, ||αJ,nξJ(Ωn)||L∞(D,Rd) ≤ AJhmin and ||αC,nξC(Ωn)||L∞(D,Rd) ≤ min(0.9, AChmin).

Actually, the null space component αJ,nξJ(Ωn) of θn is scaled to be exactly of the size AJhmin for the
first n0 iterations:

∀1 ≤ n ≤ n0, ||αJ,nξJ(Ωn)||L∞(D,Rd) = AJhmin.

Then, ξJ(Ωn) is allowed to converge to 0 as n→∞.
The range step αC,nξC(Ωn) is also set to remain smaller than the constant 0.9, in view of the stability

condition 0 < αC∆t < 2 (see remark 3.12). The role of the constant 1e-9 is only to avoid division by 0
when no constraint is active.

Remark 3.13. Since we measure step sizes with the infinity norm ||θn||L∞(D) rather than with the
Hilbertian norm ||θn||V = ||θn||H1(D,Rd), the tolerance bounds (3.4.3) need to be updated with respect
to this norm as follows:

εi := hmin

∫
∂Ω

|vCi(Ωn)|ds,

where it is assumed that the shape derivative of each constraint functional Ci(Ωn) can be written as a
boundary integral featuring the scalar field vCi(Ωn):

DCi(Ωn)(θ) :=

∫
∂Ω

vCi(Ωn)θ · nds.
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3.6.3 Illustrations on a multiple load structural shape optimization test case

In this final section, we illustrate the efficiency of our optimization strategy on a practical structural
design problem. Two possible configurations are investigated for the shape optimization of a bridge
structure subjected to multiple loads, featuring either multiple objective criteria or multiple constraint
functions.

Shape optimization setting

We consider the shape optimization of a bridge-like structure Ω contained in a two-dimensional rectan-
gular hold-all domain D ⊂ R2 with size 10 × 2. The boundary of ∂Ω is divided into disjoint regions
as:

∂Ω = Γ ∪ ΓD ∪
8⋃
i=0

Γi,

where

• ΓD is a non-optimizable part of the boundary on which the structure Ω is clamped, made of two
segments with unit length at the lower extremities of D.

• For i = 0, . . . , 8, Γi is a non-optimizable subset of the upper side of D given by

Γi :=

[
i
10

9
, (i+ 1)

10

9

]
× {2}, ∀0 ≤ i ≤ 8;

Γi is subjected to a unit, vertical downward traction load gi = (0,−1).

• The remaining region Γ is traction-free and it is the only region of ∂Ω which is subject to opti-
mization.

Non-optimizable material layers of width 0.1 are additionally imposed on the upper part of the domain
D and above each component of ΓD; see Figure 3.12. We consider nine different load cases, that are

ΓD ΓD

g0

Γ0

g1

Γ1

g2

Γ2

g3

Γ3

g4

Γ4

g5

Γ5

g6

Γ6

g7

Γ7

g8

Γ8

Figure 3.12: Geometric setting for the multiple load case test case

obtained by applying successively and exclusively each of the loads gi on the region Γi. In each situation,
the corresponding elastic displacement ui is the unique solution in H1(Ω,Rd) to the linearized elasticity
system: 

−div(Ae(ui)) = 0 in Ω

Ae(ui)n = 0 on Γ

Ae(ui)n = gi on Γi

Ae(ui)n = 0 on Γj for j 6= i

ui = 0 on ΓD,

(3.6.11)

where we recall that e(u) = (∇u + ∇uT )/2 is the strain tensor associated to the displacement u and
Ae(u) = 2µe(u) + λTr(e(u))I is the corresponding stress tensor, involving the Hooke’s law A. The
Young modulus and the Poisson ratio are set to E = 15 and ν = 0.35, which corresponds to λ = 12.96
and µ = 5.56.

Starting from the initial structure Ω0 depicted in Figure 3.13, we are interested in the simultaneous
minimization of the volume Vol(Ω) of Ω and in the maximization of all the compliances Ci(Ω) associated
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with each load case gi. These quantities are defined by:

Vol(Ω) :=

∫
Ω

dx, Ci(Ω) :=

∫
Ω

Ae(ui) : e(ui)dx, (3.6.12)

and their shape derivatives read (see chapter 2):

DVol(Ω)(θ) =

∫
Γ

θ · nds, DCi(Ω)(θ) = −
∫

Γ

Ae(ui) : e(ui)θ · nds. (3.6.13)

Volume minimization with maximum compliance constraint

A first possible way to address this case featuring multiple concurrent objectives is to minimize the
volume Vol(Ω) subject to an upper bound constraint on the individual compliances Ci(Ω):

min
Ω∈X

Vol(Ω)

s.t. Ci(Ω) ≤ C for all i ∈ I
(3.6.14)

where I ⊂ {0, 1, . . . , 8} is a set of indices for the considered load cases. The value of the threshold C in
(3.6.14) is set to a fraction of the maximum of the compliances Ci(Ω0) of the initial design Ω0:

C = 0.7 max
i=0,...,8

∫
Ω0

Ae(ui) : e(ui)dx (3.6.15)

We solve (3.6.14) in the following three configurations:

1. Case 1: single load case: I = {4} (only the central load g4 is applied)

2. Case 2: three load cases: I = {0, 4, 8} (only the central load g4 and the two extreme loads g0 and
g8 are applied).

3. Case 3: all load cases: I = {0, 1, . . . , 8} (all nine loads are considered).

Figure 3.13: Initialisation Ω0 (solid in black) for the shape optimization examples of section 3.6. The thin white
layer at the bottom is a non optimizable part of the domain.

Let us emphasize that for this example (and the next ones), no fine tuning of the algorithm parameters
AJ and AC (determining the update of the values of αJ,n and αC,n in (3.6.8)) of section 3.6.2 is required.
The only intuition guiding our choice for this particular test case is that the value of AJ should be set
lower than AC . Indeed, a too high value of AJ might entail a too quick decrease of the volume, which
would incur dramatic topological changes violating the rigidity constraints. Therefore these parameters
were set to AJ = 1 and AC = 2 for this test case. The minimum mesh size is hmin = 0.03.

The optimized shapes obtained in the three aforementioned situations are shown on Figure 3.14. The
meshes of the initial and final designs, as well as several intermediate shapes corresponding to the nine
load test-case are shown on Figs. 3.15 and 3.16. The convergence histories in the three situations are
reported on Figs. 3.17 to 3.19. They allow to verify the decrease of the objective function even after
the saturation of the constraints. Note that for this example and the one to follow, we observed that
Î(Ωn) coincides with Ĩ(Ωn) at every iteration, however this situation is very specific to this test case
and does not reproduce in generality1. As expected, the optimal value found for the volume of the solid
distribution increases with the number of imposed constraints. The major structural change between the
different situations is the addition of extra vertical bars of material near the extremities of the structure.

1for instance the thermoelasticity test cases of chapter 2, section 2.5.5 for which the volume constraint does not saturate
featured Ĩ(Ωn) 6= Î(Ωn)
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 3.14: Optimized shapes for three possible configurations of the volume minimization problem (3.6.14)
subject to maximum compliance constraint.

Figure 3.15: Meshes of the initialization and final shapes for the nine load case of Figure 3.14c ((3.6.14)).

Figure 3.16: Intermediate minimizing shapes for the nine load case of the volume minimization problem of (3.6.14)
(iterations 0, 5, 10, 20, 80, and 300).
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.44Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C4 = 1.29.

Figure 3.17: Convergence history curves for the single load case of (3.6.14).
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.46Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C0 = 1.29, C4 = 1.30, C8 = 1.28.

Figure 3.18: Convergence history curves for the three load case of (3.6.14).
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.50Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C0 = 1.29, C1 = 1.28, C2 = 1.28, C3 = 1.29, C4 = 1.29,
C5 = 1.29, C6 = 1.29, C7 = 1.30, C8 = 1.29.

Figure 3.19: Convergence history curves for the nine load case of (3.6.14).
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Min/Max compliance optimization with a volume constraint

We now consider a different approach where the maximum value of the compliances Ci(Ω) is minimized
with an equality volume constraint:

min
Ω∈X

max
i∈I

Ci(Ω)

s.t. Vol(Ω) = ρ0Vol(D)
(3.6.16)

for a target volume fraction ρ0 = 0.5 of elastic material and for the three load sets I introduced in the
previous subsection. This problem may be given the form (3.1.2) after introducing a slack variable m:

min
(Ω,m)∈X×R

m

s.t.

{
Vol(Ω) = ρ0Vol(D)

Ci(Ω) ≤ m for all i ∈ I.

(3.6.17)

The optimization must now be performed with respect to both the slack variable m and the domain
geometry Ω, which demands minor adaptations of our optimization algorithm (similar e.g. to those in

section 3.5.1): the optimization set X ×R is equipped with the tensorized tangent space Ṽ = V ×R and
differentials are identified to gradients thanks to the inner product 〈·, ·〉Ṽ defined by

∀(v, w) ∈ H1(D,R)×H1(D,R), (l,m) ∈ R× R, 〈(v, l), (w,m)〉Ṽ := 〈v, w〉V + lm, (3.6.18)

where 〈·, ·〉V is the scalar product of (3.6.5) or (3.6.6). The slack variable m is initialized with the
maximum value of the compliance of the initial structure Ω0 over all the considered loads:

m0 := max
i∈I

Ci(Ω0), (3.6.19)

and its values mn are then updated along with the shape Ωn according to algorithm 3.1.

The resulting optimized structures are shown on Figure 3.20 for each of the three considered con-
figurations and the associated convergence histories are displayed on Figs. 3.21 to 3.23 for the single,
triple and nine load cases respectively. Note that sudden, abrupt peaks on the constraint curves corre-
spond to topological changes (e.g. at iteration 38 for the nine load case) for which the displacements
corresponding to the extremal loads g0 and g8 are especially sensitive. The decrease of all compliance
functions is observed even after all the inequality constraints are saturated, which occurs as soon as
where all compliances achieve a common value. As expected, the optimal design found for the nine load
minimum compliance case (Figure 3.14c) is similar (up to a few bars) to the corresponding one found
for the volume minimization (Figure 3.20c): indeed, both cases reach at convergence a volume fraction
Vol(Ω) = 0.5Vol(D) and a maximum compliance max Ci(Ω) ' 1.30.
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 3.20: Optimized shapes for three possible configurations of the min/max optimization problem (3.6.17).
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(a) Objective function m. Final value m = 1.13.
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(b) Compliance Ci(Ω). Final value: C4 = 1.14.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraint Hi = Ci −m

Figure 3.21: Convergence history curves for one load case of (3.6.17).
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(a) Objective function m. Final value m = 1.18.
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(b) Compliance Ci(Ω). Final values: C0 = 1.17, C4 =
1.19, C8 = 1.17.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints values: Hi = Ci −m.

Figure 3.22: Convergence history curves for three load case of (3.6.17).
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(a) Objective function m (eqn. (3.6.17))
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(b) Compliance values Ci(Ω). Final values: C0 = 1.29,
C1 = 1.29, C2 = 1.30, C3 = 1.31, C4 = 1.31, C5 = 1.31,
C6 = 1.30, C7 = 1.29, C8 = 1.29.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints Hi = Ci −m

Figure 3.23: Convergence history curves for nine load case of (3.6.17).
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The introduction has been partly modified in regards with this new section and the original motivations
of the thesis. Some background material redundant with the previous chapters has also been removed.

4.1 Introduction

One of the key challenges regarding the systematic integration of topology optimization methods in
industrial applications is the need for taking into account geometric constraints. These come very often
from the final manufacturing process which generally brings into play constraints on the geometry of
shapes; for instance minimum thickness constraints, maximum thickness constraints, minimum distance
between members, casting constraints; see [320, 88, 178, 234] or the recent survey [220].

For our multiphysics shape optimization purposes, the starting motivation for the present chapter
originates from the need for tackling non penetration constraints in liquid liquid heat exchangers design.
In the next chapter 6 (section 5.1), we consider the heat exchanger design problem of Figure 4.1 featuring
two fluid phases Ωf,hot ⊂ D and Ωf,cold ⊂ D. A very natural specification of the problem is that these
two phases should not interpenetrate during the optimization process of the union Ω = Ωf,cold ∪ Ωf,cold
of the two phases. Very few works have investigated the enforcement of this non-mixing condition;
we are actually only aware of the thesis of Papazoglou [255] in the context of density based topology
optimization.

Among the variety of methods proposed in the literature to enforce geometric constraints, several
works [29, 30, 109, 110, 234] have proposed to formulate them by means of integral functionals involving
the signed distance function dΩ (see chapter 1, section 1.3) to the optimized domain Ω. More precisely,
the shape Ω is sought among all possible subsets of a fixed ‘hold-all’ domain D ⊂ Rd (with still d = 2, 3
in applications) as the solution of a constrained minimization problem of the form:

min
Ω⊂D

J(Ω), s.t. P (Ω) ≤ 0, where P (Ω) :=

∫
D

j(dΩ(x))dx, (4.1.1)

149



150 Chapter 4. A variational method for computing shape derivatives of geometric
constraints along rays

d(Ωf,hot,Ωf,cold) ≥ dmin

D

Ωf,cold

Ωf,hot

Thot

Tcold

Figure 4.1: Setting for a 2-d fluid fluid heat exchanger design problem (treated in chapter 6, section 5.1). A hot
fluid phase Ωf,1 ⊂ D is entering at the top left with a temperature Thot, and a hot fluid phase Ωf,2 is entering
in the reverse direction at the bottom right inlet. Both phases should remain at a distance d(Ωf,1,Ωf,2) > dmin

from one another.

where J(Ω) is the objective function, j : R → R is a given, smooth function, and P (Ω) is a geometric
constraint. The above framework is quite appealing insofar as the signed distance function dΩ naturally
lends itself to clear mathematical formulations of maximum, minimum thickness constraint functionals
(and the other aforementioned geometric criteria). For instance, the non penetration constraint of the 2-d
heat exchanger problem of Figure 4.1 can be conveniently formulated with the signed distance function
of either of the phases Ωf,hot or Ωf,cold, because it is sufficient to require the two phases to remain at a
distance dmin > 0 from one another:

∀x ∈ Ωf,hot, dΩf,cold(x) ≥ dmin.

This pointwise constraint can then be captured by an integral criterion P (Ωf,hot) as in (4.1.1), see
section 5.1.

Allaire, Jouve and Michailidis [30] have shown that the problem (4.1.1) is amenable to numerical
treatments by means of standard (e.g. steepest-descent) optimization algorithms. However, several
technical stages in its numerical implementation pose difficulties. The leading motivation of the present
chapter is to introduce a new variational method that make geometric constraints substantially simpler
to implement in the framework of the method of Hadamard.

Let us provide a little more details about the main numerical issues raised by the implementation of
(4.1.1), while staying at an explanatory level; see sections 4.3.1 and 4.4 below for full details. The use of
traditional optimization methods for the program (4.1.1) relies (in particular) on the knowledge of the
shape derivative of the considered constraint functional Ω 7→ P (Ω) (chapter 1, definition 1.1). It was
shown in [23] that the shape derivative of P (Ω) as in (4.1.1) has the form

DP (Ω)(θ) =

∫
∂Ω

u θ · n dy, (4.1.2)

where dy refers to the surface measure on ∂Ω, and the function u ∈ L1(∂Ω) is given by the formula

u(y) = −
∫
x∈ray(y)

j′(dΩ(x))
∏

1≤i≤n−1

(1 + κi(y)dΩ(x))dx, ∀y ∈ ∂Ω. (4.1.3)

In (4.1.2) and (4.1.3), n and κi(y) stand for the unit normal vector to ∂Ω pointing outward Ω and the
(n − 1) principal curvatures of ∂Ω respectively; the set ray(y) is the normal ray that originates from
y ∈ ∂Ω and that stops at either the boundary ∂D of the hold-all domain, or at the skeleton (or medial
axis) Σ of Ω; see Figure 4.2a for an illustration. The normal velocity θ = −un is then exploited by
optimization algorithms (such as our null space method of chapter 3, algorithm 3.1) as a constraint
gradient to build a descent update for the shape Ω. The numerical component of this program raises the
need to calculate the quantity u : ∂Ω→ R defined in (4.1.3).

In principle, the formula (4.1.3) featuring integration along the normal rays to ∂Ω can be implemented
efficiently. In particular, its numerical evaluations at several points y ∈ ∂Ω can be performed in parallel.
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(a) The shape optimization setting: shape Ω ⊂ D, skeleton Σ with
normal rays (ray(y))y∈∂Ω, local coordinate change η, outward
normal vector n, center of curvature C, orthogonal projection
p∂Ω(x) of a point x ∈ D onto ∂Ω. ( see chapter 1, section 1.3 for
the definitions).

(b) Integration along rays requires the detection of the
skeleton of the shape and the computation of the tri-
angle path at the mesh level, that is the intersection
points of each triangle with the ray.

Figure 4.2: Definition of geometric quantities and integration along normal rays.

However, the practical implementation when all the functions involved in the integrand of (4.1.3) are
discretized on a computational mesh is not trivial: it requires the computation of (i) the ray trajectories
on the discrete mesh (for instance by some variant of the method of characteristics), as exemplified on
Figure 4.2b, and (ii) the principal curvatures κi of the boundary ∂Ω the numerical discretization of
Ω. As we shall illustrate in our numerical investigations, the accurate calculation of these quantities
—even when ∂Ω is endowed with a discretization as an explicit triangulated surface—is not trivial and
is still an active research direction, already in the case of two space dimensions, and especially in the
three-dimensional context [233, 270, 143].

The objective of this chapter is to introduce a robust and easy to implement method that allows to
compute integral quantities such as (4.1.3) by solving a variational problem for advection-like operators
which alleviates the need for resorting to direct integration along rays. This yields an efficient numerical
method to calculate shape derivatives of geometric constraints, which is very simple to implement using
a standard finite element software, and which does not raise any additional algorithmic difficulty in 3-d
than in 2-d.

Our numerical method for the calculation of (4.1.3) is based on the following variational problem, set
over a suitable Hilbert space Vω:

Find u ∈ Vω such that ∀v ∈ Vω,
∫
∂Ω

uvds+

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx = −
∫
D\Σ

j′(dΩ)vdx,

(4.1.4)
where ω > 0 is a rather arbitrary weight function (over which relevant assumptions shall be stated later
on), and Σ is the closure of the skeleton set Σ of Ω (see Figure 4.2a and section 4.3.1 below). Indeed,
our key result is to show that (4.1.4) is well-posed, and that the trace of its unique solution u on ∂Ω is
exactly (4.1.3).

A formal insight that allows to see this is the following: assume that for any v0 ∈ C0(∂Ω), the function
v satisfying v = v0 on ∂Ω and taking constant values along the rays normal to ∂Ω (i.e. ∇dΩ · ∇v = 0
in D\Σ) belongs to the space Vω. Using v as a test function in the variational formulation (4.1.4) then
yields:∫

∂Ω

uv0ds =

∫
∂Ω

uvds+

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx

= −
∫
D\Σ

j′(dΩ)vdx = −
∫
y∈∂Ω

∫
z∈ray(y)

j′(dΩ(z))
∏

1≤i≤n−1

(1 + κi(y)dΩ(z))ds

 v0(y)dy, (4.1.5)

where the last equality follows from a change of variables allowing to rewrite integration on D \ Σ as a
nested integration on points y ∈ ∂Ω and on elements z in ray(y) (see (4.2.7) and (4.2.9) below). Since
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v0 ∈ C0(∂Ω) can be chosen arbitrarily in (4.1.5), the identity (4.1.3) follows. These considerations are
made rigorous in section 4.2.5.

The variational formulation (4.1.4) makes it possible to compute integrals (4.1.3) along the normal
rays to ∂Ω without the need to calculate these rays or the curvatures κi explicitly on a discretization (i.e.
a mesh) of the ambient space. This feature is especially convenient for shape optimization applications
relying on the level set method, as described in section 4.4; there, the gradient of the signed distance
function ∇dΩ is easy to calculate on an unstructured mesh of the considered hold-all domain D from a
P1 approximation of dΩ. The variational formulation (4.1.4) can then be readily implemented in a finite
element framework, even if the boundary Γ = ∂Ω is not meshed explicitly. Our method requires only a
rough estimate of the location of the skeleton Σ, upon a judicious choice of the weight ω in (4.1.4); see
the numerical examples in section 4.3. Let us emphasize that the variational approach (4.2.5) is equally
simple to implement in any space dimension while the 3-d implementation of geometric integration along
rays would require much more efforts than in 2-d.

Last, the previous arguments work identically when ∇dΩ is replaced with an arbitrary C1 vector field
β: we obtain that a variational formulation analogous to (4.1.4) (given in (4.2.5)) allows to compute
integrals quantities along the characteristics curves of β, which is subject to offer wider applications
than shape optimization.

With these perspectives in mind, the present chapter is organized as follows. Section 4.2 carefully
discusses the mathematical setting that guarantees the existence and uniqueness of a solution to the
variational problem (4.1.4) (in fact its generalization to arbitrary vector fields β), and the justification
of the key identity (4.1.3) satisfied by the trace of its solution. For this purpose, we provide a variational
theory for the advection operator β · ∇ associated to arbitrary C1 vector fields β on the weighted graph
space Vω; in particular, the existence of traces on Γ and an adapted Poincaré inequality for functions
v ∈ Vω are obtained. Note that many related works are available about these matters (e.g. [131, 144]),
however they usually rely on strong boundedness assumptions on the divergence of β (typically div(β) ∈
L∞(D)), which do not hold for our shape optimization applications (4.2.8) and (4.2.9). Indeed, in the
latter situation where β = ∇dΩ, the divergence div(∇dΩ) typically blows up near Σ; hence the need
for our different approach. Our approach requires rather the existence of a flow η (see (4.2.1) below)
associated with the vector field β.

In section 4.3, we investigate the numerical accuracy of our variational method for calculating integrals
along characteristic curves in the shape optimization setting (4.2.8) where β = ∇dΩ. After a short review
of the properties of the signed distance function, we compare the direct numerical integration along
rays with the use of our variational method on several numerical examples where the value of (4.1.3) is
analytically known. We also consider “practical” cases where some of the regularity assumptions imposed
by our framework are not fulfilled. Most importantly, we illustrate how the selection of an appropriate
weight ω in the variational formulation (4.1.4) allows to deal with the presence of cracks in the working
domain, for instance the skeleton Σ in shape optimization when it is not explicitly meshed.

The last two sections are dedicated on numerical applications. Section 4.4 illustrates the simplicity
and effectiveness of our method on practical shape optimization applications. Section 4.4 elaborates on
the works [25, 30, 110] concerned with manufacturing constraints: we demonstrate that our variational
method allows for a convenient and efficient implementation of maximum and minimum thickness con-
straints in structural design. Finally, section 5.1 applies the method in order to enforce a non-mixing
constraint for liquid-liquid heat exchanger problems of such as the one depicted in the above Figure 4.1.

4.2 Weighted graph space of the advection operator β · ∇ for velocity fields

of class C1

This section is concerned with the mathematical analysis of a slightly more general variational problem
than (4.1.4): ∇dΩ is replaced by a rather arbitrary vector field β. This setting and some technical
assumptions are described in section 4.2.1. In order to obtain the well-posedness of the correspond-
ing variational problem and the trace identity (4.1.3), suitable functional spaces Vω are introduced in
section 4.2.2 in which the directional derivative β · ∇ naturally makes sense.

Then, section 4.2.3 investigates the density of C1 functions in the graph space Vω. In section 4.2.4,
we establish a trace theorem for functions in Vω and we provide a Poincaré-type inequality. These two
ingredients allow us to prove in section 4.2.5 the well posedness of the variational problem (4.1.4) and of
the identity in this more general context involving arbitrary fields β.
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4.2.1 Preliminaries, notation and assumptions

Preliminaries and notation

Let U ⊂ Rd, Γ ⊂ U and β : U → Rd be respectively a (possibly non smooth) bounded open set, a
hypersurface and a vector field of class C1. Note we do not require Γ to be a compact manifold ( Γ may
differ from its closure Γ); in this case, we require Γ to be a manifold with boundary, which in particular
prevents Γ from showing spiralling patterns near its ends—an assumption which is needed for technical
reasons (see e.g. the proof of lemma 4.3 below). Two examples of admissible settings are represented on
Figure 4.3.

We assume that Γ is a Poincaré section or a stream surface for β, meaning that for any y ∈ Γ, there is
a unique characteristic curve s 7→ η(y, s) passing through y = η(y, 0) at time s = 0, and that lives in the
domain U on some maximal interval s ∈ (ζ−(y), ζ+(y)). In other words, for any y ∈ Γ, (ζ−(y), ζ+(y)) is
the maximum existence interval such that the solution s 7→ η(y, s) of the ordinary differential equation

d

ds
η(y, s) = β(η(y, s)),

η(y, 0) = y,
(4.2.1)

remains in the domain U (note that by definition, ζ− ≤ 0 ≤ ζ+). We assume that ζ− and ζ+ are
continuous, bounded functions on Γ, satisfying the following separation condition:

∃ε > 0, ∀y ∈ Γ, ζ+(y)− ζ−(y) > ε. (4.2.2)

The vector field β is required to be U -filling, in the sense that its related flow η realizes a C1 diffeomor-
phism from the tensor product set

W = {(y, s) | y ∈ Γ, s ∈ (ζ−(y), ζ+(y))}, (4.2.3)

onto U (see [212], Chap. IV), where W is a manifold obtained as an open subset of the tensor product
of Γ with the real line R (note that the “open” character of W comes from the continuity assumption
on ζ− and ζ+).

Finally, we denote by |Dη| the Jacobian of the local coordinate change η:

∀y ∈ Γ,∀s ∈ (ζ−(y), ζ+(y)), |Dη|(y, s) = |det(∇η)|(y, s), (4.2.4)

where the Jacobian matrix of η reads ∇η =
[
∂yη ∂sη

]
and ∂y denotes the collection of derivatives

with respect to the (n− 1) tangential coordinates of Γ.

(a) Domain U featuring a crack Σ ⊂ ∂U . (b) Smooth domain U .

Figure 4.3: Two types of admissible domain U , with U -filling vector field β and stream surface Γ, in the framework
of section 4.2.1.

Remark 4.1. Let us consider a particular case where U is a smooth bounded domain in Rd, and Γ ⊂ ∂U
is defined as the inlet boundary of the flow field β, i.e.

Γ := {x ∈ ∂U |β(x) · n(x) < 0},
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where n is the unit normal vector to ∂U , pointing outward U , the separation condition (4.2.2) exactly
requires that the inflow and outflow boundaries be separated by a positive minimum distance, which is
a rather classical assumption in the study of the advection operator, see e.g. Section 2.1.3 in [125]. In
our case, assumption (4.2.2) is required in the proof of proposition 4.2.

The main point of this section is to mathematically justify that given rather arbitrary function
f : U → R and weight ω ∈ C0(U,R∗+), the trace of the solution u to the variational problem

Find u ∈ Vω such that ∀v ∈ Vω,
∫

Γ

uvds+

∫
U

ω(β · ∇u)(β · ∇v)dx =

∫
U

fvdx (4.2.5)

is given explicitly in terms of line integrals by the formula

∀y ∈ Γ, u(y) =

∫ ζ+(y)

ζ−(y)

(f ◦ η |Dη|)(y, s)ds, (4.2.6)

which yields a numerical method for computing (4.2.6) by solving (4.2.5).

Throughout the chapter, the considered measure on W is that induced by the standard product
measure of the surface measure dy on Γ and of the Lebesgue measure ds on R. Thus, the space L1(W )
of integrable functions on W is defined as the space of measurable functions f : W → R such that∫

Γ

∫ ζ+(y)

ζ−(y)
|f(y, s)|dsdy < +∞. Integration of f over W is then defined by:

∫
W

f(y, s)dsdy :=

∫
Γ

∫ ζ+(y)

ζ−(y)

f(y, s)dsdy.

Under these notations, the classical change of variable formula between manifolds reads (see [212], Chap.
XVI):

∀f ∈ L1(U),

∫
U

fdx =

∫
W

f ◦ η|Dη|dsdy, (4.2.7)

where the Jacobian |Dη| is defined by (4.2.4).

The shape optimization setting as a particular case

The shape optimization setting outlined in the introduction, which is exemplified on Figure 4.2a, reduces
to the particular case

U = D\Σ, Γ = ∂Ω, β = ∇dΩ. (4.2.8)

where Ω ⊂ D are bounded Lipschitz domains of Rd (note that in order for β = ∇dΩ to be a C1 vector
field, Ω is assumed to be in fact a C2 domain in all what follows).

The bound functions ζ−(y) and ζ+(y) are the distances at which ray(y) hits either the skeleton Σ of
Ω or the boundary ∂D of the hold-all domain D.

In this situation, the local coordinate change η and its Jacobian |Dη| are explicitly given by (see sec-
tion 4.3.1)

η(y, s) = y + s∇dΩ(y), |Dη|(y, s) =

d−1∏
i=1

(1 + κi(y)s), ∀y ∈ ∂Ω, ∀s ∈ (ζ−(y), ζ+(y)), (4.2.9)

so that the function u of (4.1.3) coincides with the expression (4.2.6) for f = −j′(dΩ). Let us emphasize
that, in this context, the open set U is not smooth because it features a “crack”, namely the skeleton Σ
(we call it a “cracked domain” in Figure 4.2a); in particular, U is not located on one side of its boundary.
This “lack of smoothness” of U prevents from using many convenient results from functional analysis
[302], and thus raises the need for several technical ingredients in the sequel, which otherwise would have
been fairly classical.

Assumptions on weight functions ω

Let us now consider a weight function ω : U → R, which will be one of the key ingredients of our
variational formulation (4.2.5), satisfying the following assumptions:
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(H1) ω ∈ C0(U,R∗+) is a positive, continuous function on U .

(H2) The transported weight α := ω ◦ η|Dη| ∈ C0(W,R∗+) over W is such that the function

gα : Γ −→ R+ ∪ {+∞}

y 7−→
∫ ζ+(y)

ζ−(y)

α(y, s)ds
(4.2.10)

is uniformly bounded, i.e. gα ∈ L∞(Γ).

(H3) The transported weight α = ω ◦ η|Dη| over W is such that the function

hα : Γ −→ R+ ∪ {+∞}

y 7−→
∫ ζ+(y)

ζ−(y)

[
α(y, s)

∫ s

0

α−1(y, t)dt

]
ds

(4.2.11)

is uniformly bounded: hα ∈ L∞(Γ).

Note that, above and in the sequel, the notations α−1(y, s) = 1/α(y, s) and ω−1(y, s) = 1/ω(y, s)
are used for the inverses of the scalar weights α and ω respectively, whereas the notation η−1 : U 7→W
shall stand for the reciprocal mapping of the diffeomorphism η.

Hypothesis (H1) is essentially a regularity assumption, positivity being no surprise for ω to be an
admissible weight in the variational formulation (4.2.5). Notice that no assumption is made about
the behavior of ω near the boundary of U ; in particular, ω(x) may tend to 0 as x approaches ∂U .
Hypothesis (H2) is an upper-boundedness assumption for α. The weights that we are going to consider
in our practical applications in section 4.3.3 will satisfy (H1) and (H2) almost automatically. Finally,
(H3) is roughly a monotonicity constraint for the decay of α towards 0 as s→ ζ±(y). In practice, we will
rely on the following lemma which provides a simple monotonicity condition under which the condition
(H3) is fulfilled, indicating that the class of weights satisfying (H3) is large enough.

Lemma 4.1. Let α ∈ C0(W,R∗+) be a weight of the product form:

∀(y, s) ∈W, α(y, s) = f(y, s)g(y, s) (4.2.12)

where f and g are two positive functions on W satisfying:

(i) There exist two constants g−, g+ ∈ R such that for all (y, s) ∈W , 0 < g− ≤ g(y, s) ≤ g+.

(ii) For any y ∈ Γ, the real function s 7→ f(y, s) is non increasing on (0, ζ+(y)) and non decreasing on
(ζ−(y), 0).

Then α satisfies the condition (H3).

Proof. Under the above conditions, it holds, for any y ∈ Γ and for s ∈ (0, ζ+(y)):∣∣∣∣α(y, s)

∫ s

0

α−1(y, t)dt

∣∣∣∣ ≤ g+

g−
f(y, s)

∫ s

0

f−1(y, t)dt ≤ g+

g−
ζ+(y) ≤ g+

g−
||ζ+ − ζ−||L∞(Γ).

Arguing in the same fashion allows to prove a similar estimate when s ∈ (ζ−(y), 0), which finally implies
that ||hα||L∞(Γ) ≤ g+

g−
||ζ+ − ζ−||2L∞(Γ); this allows to conclude.

Remark 4.2. The statement of lemma 4.1 does not require f or g to be continuous on W .

Remark 4.3. From the Liouville theorem for ordinary differential equations [95], it holds

∀(y, s) ∈W, |Dη|(y, s) = exp

(∫ s

0

div(β) ◦ η(y, t)dt

)
. (4.2.13)

Therefore, it is straightforward to verify that (H1) to (H3) are satisfied for the constant weight ω =
1 whenever div(β) ∈ L∞(U)—a customary assumption in the study of advection operators; see e.g.
[51, 195, 125, 257, 67].

Our setting, based on (H1) to (H3), allows to handle more general velocity fields β, with unbounded
divergence, which leaves room for the Jacobian |Dη| to vanish on the boundary ∂U . This feature is crucial
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to deal with the shape optimization setting (4.2.8); in there, the divergence div(β) of β = ∇dΩ blows up
near centers of curvatures C ∈ Σ (see Figure 4.2a and section 4.3.1 below) where one of the principal
curvatures κi is such that −κi(p∂Ω(x))dΩ(x) → 1 as x → C. For instance, consider the following very
simple situation where Ω = D is the unit ball in two space dimensions. Its skeleton reduces to a single
point, its center. Then,

∀x ∈ D\{0}, dΩ(x) = ||x|| − 1, ∆dΩ(x) =
1

||x||
,

where ||x|| is the euclidean norm in R2. Therefore ∆dΩ(x) blows up at the center x = 0 which implies
div(∇dΩ) /∈ L∞(D\Σ). However, in this case, (H1) to (H3) hold for ω = 1: from

∀(y, s) ∈ ∂Ω× (−1, 0), η(y, s) = (1 + s)y, |Dη(y, s)| = 1 + s,

we obtain that α(y, s) = 1 + s and α(y, s)
∫ s

0
α−1(y, t)dt = (1 + s) log(1 + s) are uniformly bounded on

W = ∂Ω× (−1, 0).

In the following, for a weight ω satisfying (H1), we denote by L2
ω(U) and L2

α(W ) the weighted spaces

L2
ω(U) =

{
v measurable |

∫
U

ωv2dx < +∞
}
, L2

α(W ) =

{
ṽ measurable |

∫
W

αṽ2dx < +∞
}
,

(4.2.14)

with respective corresponding L2 norms ||v||L2
ω(U) :=

(∫
U
ωv2dx

)1/2
and ||ṽ||L2

α(W ) =
(∫
W
αṽ2dsdy

)1/2
.

4.2.2 Definition of the graph space Vω of the advection operator β · ∇

We recall that the assumption β ∈ C1(U,Rd) implies that div(β) belongs to L∞loc(U).

Definition 4.1 (Derivative along characteristic curves). Let v ∈ L1
loc(U) be a locally integrable function

on U . The directional derivative β · ∇v ∈ D′(U) is the distribution on U defined by

∀φ ∈ C∞c (U),

∫
U

(β · ∇v)φdx =

∫
U

(−(β · ∇φ)v − div(β)φv)dx. (4.2.15)

Remark 4.4. The definition (4.2.15) of β · ∇ mimics the integration by part formula that holds for
functions v of class C1. Considering test functions φ ∈ C∞c (U) allows to avoid imposing classical regularity
requirements on the open domain U such as that being locally located on one side of its boundary [302].

Definition 4.2 (Graph space of the operator β · ∇). Let ω ∈ C0(U,R∗+) be a positive weight on U . The
weighted graph space Vω of the advection operator β · ∇ is defined by:

Vω = {v ∈ L2
ω(U) |β · ∇v ∈ L2

ω(U)}. (4.2.16)

Vω is a Hilbert space when it is endowed with the norm

||v||Vω :=

(∫
U

ωv2dx+

∫
U

ω|β · ∇v|2dx

)1/2

.

Remark 4.5. The completeness of Vω follows from very standard arguments, see e.g. [306, 125]. It is
also easy to see from the assumption ω ∈ C0(U,R∗+) that the inclusion L2

ω(U) ⊂ L1
loc(U) holds.

Let us then introduce corresponding notions of derivative with respect to the s variable and of graph
space on the set W :

Definition 4.3 (Graph space of the derivative ∂s). Let α ∈ C0(W,R∗+) be a positive weight on W . The
weak derivative ∂sṽ ∈ D′(W ) of a function ṽ ∈ L1

loc(W ) is the distribution defined by

∀φ ∈ C∞c (W ),

∫
W

∂sṽφdyds = −
∫
W

ṽ∂sφdyds. (4.2.17)

The weighted graph space of the operator ∂s is defined by:

Ṽα = {ṽ ∈ L2
α(W ) | ∂sṽ ∈ L2

α(W )}. (4.2.18)

This space is a Hilbert space when it is equipped with the norm

||ṽ||Ṽα :=

(∫
W

αṽ2dsdy +

∫
W

α|∂sṽ|2dsdy

)1/2

.
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Remark 4.6. The defining identity (4.2.15) of the weak derivative β · ∇v also holds for test functions
φ ∈ C1

c (U), as follows from a standard density argument. Likewise, (4.2.17) holds for test functions φ
which are only continuously differentiable with respect to the s variable.

The motivation behind the introduction of the spaces Ṽα is that they allow to transfer the difficulty of
studying the “curvilinear” directional derivative β · ∇ over the domain U , to that of the more standard,
“flat” derivative ∂s over W . The price to pay is the need to account for the weight of the Jacobian |Dη|
resulting from the change of variables. This point is made precise by the following technical lemma.

Lemma 4.2. Let ω ∈ C0(U,R∗+) be a positive weight on U , and let α = ω ◦ η|Dη|. The following
equivalence holds true:

v ∈ Vω ⇔ v ◦ η ∈ Ṽα.

Additionally, for any v ∈ Vω, the function ṽ = v ◦ η satisfies:

(i) ∂sṽ = (β · ∇v) ◦ η,

(ii) ||v||Vω = ||v ◦ η||Ṽα .

Proof. Let v ∈ Vω; it follows from the change of variables (4.2.7) that ṽ := v ◦ η belongs to L2
α(W ).

Moreover, we observe that ṽ has a weak derivative ∂sṽ given by:

∂sṽ = (β · ∇v) ◦ η. (4.2.19)

Indeed, using the definition (4.2.15) of the weak derivative along β with a test function φ ∈ C1
c (U) of the

form φ = φ̃ ◦ η−1 for an arbitrary φ̃ ∈ C1
c (W ) (see remark 4.6), then using (4.2.7), we obtain:

∀φ̃ ∈ C1
c (W ),

∫
W

(β · ∇v) ◦ η φ̃|Dη|dsdy =

∫
W

(−∂sφ̃ ṽ − div(β) ◦ η φ̃ṽ)|Dη|dsdy, (4.2.20)

where we have used the equality ∂sφ̃ = (β · ∇φ) ◦ η. Now using that |Dη| is continuously differentiable
with respect to s with ∂s|Dη| = div(β)◦η|Dη|, as a consequence of the Liouville formula (4.2.13), (4.2.20)
rewrites:

∀φ̃ ∈ C1
c (W ),

∫
W

(β · ∇v) ◦ η φ̃|Dη|dsdy =

∫
W

(−∂sφ̃ ṽ|Dη| − ∂s|Dη|φ̃ṽ)dsdy = −
∫
W

ṽ∂s(φ̃|Dη|)dsdy.

By a standard density argument, the above equality holds more generally for functions φ̃ that are only
continuously differentiable with respect to s on W . Therefore, taking φ̃ = ψ̃/|Dη| as a test function in
the above equation for arbitrary ψ̃ ∈ C1

c (W ) yields (4.2.19). The change of variables (4.2.7) now yields

||v||Vω = ||v ◦ η||Ṽα , and so v ◦ η ∈ Ṽα.

Conversely, one proves in a similar way that if ṽ is in Ṽα, the function v = ṽ ◦ η−1 belongs to Vω,
which terminates the proof.

Remark 4.7. In the following we prove a density result, a trace theorem and a Poincaré inequality
in Ṽα and we then obtain the direct counterparts of these results in the setting of the graph space Vω
thanks to the above lemma 4.2. There exists actually a wide literature about weighted Sobolev spaces
such as Ṽα [148, 207, 209, 306], in which analogous results are proved for weights α in the so-called
Mückenhoupt class A2 (see e.g. [136] for a definition of the class Ap). Our working assumptions however
are of a different nature: for instance, the hypothesis (H3) essentially requires that the inverse weight
α−1 belong to the Mückenhoupt class A1.

4.2.3 Density of functions of class C1 in the weighted space Vω

We now examine the density of C∞(W ) ∩ Ṽα in Ṽα, whence we shall infer the density of C1(U) ∩ Vω in
Vω—the loss of regularity between both statements coming from the fact that the coordinate change η
is only of class C1 on W .

Our study classically involves mollifying functions; since the space Ṽα of interest contains functions
defined on the manifold W , a little treatment is in order. In particular, we shall need the so-called
Ahlfors regularity of Γ (see [115]); this is the purpose of the next lemma, whose proof is outlined for the
convenience of the reader. Here and throughout the chapter, B(y, h) ⊂ Rd stands for the open ball with
center y and radius h. The measure of a Lebesgue measurable set A ⊂ Rd is denoted by |A|.
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Lemma 4.3 (Area covered by extrinsic balls on an embedded manifold). Let Γ ⊂ Rd be a C1 hypersurface
such that either Γ is compact (Γ = Γ) or Γ is a compact manifold with boundary. Then there exists h0 > 0
and constants m > 0 and M > 0 depending only on Γ such that for any 0 < h < h0,

∀y ∈ Γ, mhd−1 ≤ |Γ ∩B(y, h)| ≤Mhd−1. (4.2.21)

Proof. Since Γ is compact, there exist finitely many open subset Vi ⊂ Rd, i = 1, ..., N , such that
Γ ⊂

⋃
i Vi, and for each i = 1, ..., N , there exists a local coordinate chart φi : Ui ⊂ Rd−1 → φi(Ui) ⊂ Γ

such that φi(Ui) = Vi ∩ Γ. The set Ui is a convex open subset of Rd−1 if Vi ∩ ∂Γ = ∅; when the latter

intersection is not empty, Ui is of the form Ui = Ũi ∩ Rd−1
+ , where Ũi ⊂ Rd−1 is a convex open subset,

and Rd−1
+ is the upper half-space of Rd−1. Let h0 > 0 be a Lebesgue’s number associated with this cover,

that is:
∀y ∈ Γ, ∃i ∈ {1, ..., N} , B(y, h0) ⊂⊂ Vi. (4.2.22)

Now, given y ∈ Vi, one has for any 0 < h < h0:

|Γ ∩B(y, h)| =
∫

Γ

1B(y,h)dz =

∫
φi(Ui)

1B(y,h)dz =

∫
Ui

1φ−1
i (B(y,h))|Dφi|dx,

where i is the index supplied by (4.2.22) and 1A denotes the characteristic function of a subset A ⊂ Rd,
and |Dφi| is the Jacobian associated to the change of variables between manifolds induced by φi.

Let σd−1(∇φi(x)) ≤ σ1(∇φi(x)) be respectively the smallest and the largest singular values of the
n× (n− 1) Jacobian matrix ∇φi(x), and let 0 < σ− ≤ σ+ be defined by:

σ− = min
i=1,...,N

inf
x∈Ui

σd−1(∇φi(x)), σ+ = max
i=1.,...N

sup
x∈Ui

σ1(∇φi(x)).

Applying the Taylor formula to φi yields:

∀i = 1, ..., N, ∀(x0, x1) ∈ Ui, σ−||x1 − x0|| ≤ ||φi(x1)− φi(x0)|| ≤ σ+ ||x1 − x0||.

Therefore, possibly shrinking the value of the constant h0 supplied by (4.2.22) and taking x0 = φ−1
i (y),

we obtain:

∀0 < h < h0, B

(
x0,

h

σ+

)
⊂ φ−1

i (B(y, h)) ⊂ B
(
x0,

h

σ−

)
⊂ Ui.

Finally, denoting by |Bd−1| the volume of the unit ball in Rd−1, we obtain:

1

2
|Bd−1|

(
σ−
σ+

)d−1

hd−1 ≤
∫
Ui

1B(x0,h/σ+)|Dφi|dx

≤
∫
Ui

1φ−1
i (B(y,h))|Dφi|dx = |Γ ∩B(y, h)|

≤
∫
Ui

1B(x0,h/σ−)|Dφi|dx ≤ |Bd−1|
(
σ+

σ−

)d−1

hd−1,

which completes the proof.

In what follows, the hypersurface Γ is the one introduced by section 4.2.1. In the next lemma, we
construct the kernels ρh and ξh which shall be used for mollification purposes in W .

Lemma 4.4. For any h > 0, there exist two positive, smooth functions ρh ∈ C∞c (Rd × Rd,R) and
ξh ∈ C∞c (R,R) satisfying the conditions:

(i) For all points y ∈ Rd, supp(ρh(y, ·)) ⊂ B(y, h).

(ii) For any y ∈ Rd,
∫

Γ
ρh(y, z)dz = 1.

(iii) There exist constants C > 0 and h0 > 0 depending only on Γ such that

∀0 < h < h0, ∀z ∈ Γ,

∫
Γ

ρh(y, z)dy ≤ C. (4.2.23)

(iv) supp(ξh) ⊂ [−h, h] and
∫
R ξh(s)ds = 1.
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Proof. Let ρ ∈ C∞c (Rd,R) be a smooth, positive function such that supp(ρ) ⊂ B(0, 1), ρ ≤ 1 on Rd and
ρ|B(0,1/2) = 1; we define ρh by:

∀h > 0,∀(y, z) ∈ Rd × Rd, ρh(y, z) :=
ρ(y−zh )∫

Γ

ρ

(
y − z
h

)
dz

; (4.2.24)

note that ρh(y, z) is not a function of (y − z). The conditions (i) and (ii) of the statement are obviously
satisfied by (4.2.24). The condition (iii) is a consequence of lemma 4.3, which implies:

∀0 < h < h0, ∀y ∈ Γ,

∫
Γ

ρ

(
y − z
h

)
dz ≥

∣∣∣∣Γ ∩B(y, h2
)∣∣∣∣ ≥ m(h2

)d−1

,

∀0 < h < h0, ∀z ∈ Γ,

∫
Γ

ρ

(
y − z
h

)
dy ≤ |Γ ∩B(z, h)| ≤Mhd−1,

so that (4.2.23) holds with C = 2d−1M/m.
Eventually, a function ξh satisfying (iv) is constructed from any positive function ξ ∈ C∞c (R,R) with

compact support inside [−1, 1] and unit integral over R, by setting ξh = h−1ξ(·/h).

Definition 4.4 (Mollification on the tensor product manifold W ). For h > 0, let ρh and ξh be two
functions as in the statement of lemma 4.4. For any u ∈ L1

loc(W ), (y, s) ∈W and h > 0 sufficiently small
(depending on (y, s)), the mollification of u is the function uh = ρhξh ∗ u defined by

(ρhξh ∗ u)(y, s) =

∫
Γ

∫
R
ρh(y, z)ξh(s− t)u(z, t)dtdz. (4.2.25)

Note that for a given open subdomain W1 ⊂⊂ W and because Γ is compact, there exists h0 > 0,
depending on W1, sufficiently small so that (4.2.25) makes sense for any (y, s) ∈W1 and 0 < h < h0.

Lemma 4.5. The following properties hold true:

(i) If u ∈ L1
loc(W ), for any subdomain W1 ⊂⊂ W and for h > 0 sufficiently small, the convolution

ρhξh ∗ u is of class C∞ on W1.

(ii) If u ∈ Ṽα, then for any subdomain W1 ⊂⊂W and for h sufficiently small, ∂s(ρhξh ∗u) = ρhξh ∗∂su.

(iii) If φ ∈ C0(W,R) then ρhξh ∗ φ→ φ in L∞loc(W ) as h→ 0.

Proof. (i) This results from the Lebesgue dominated convergence theorem and the smoothness of ρh
and ξh.

(ii) This is again a consequence of the Lebesgue dominated theorem and of an integration by parts:

∀(y, s) ∈W1, (ρhξh ∗ ∂su)(y, s) =

∫
Γ

∫
R
ρh(y, z)ξh(s− t)∂su(z, t)dtdz

=

∫
Γ

∫
R
ρh(y, z)∂sξh(s− t)u(z, t)dtdz = ∂s(ρhξh ∗ u).

(iii) For a given subset W1 ⊂⊂ W , let ε > 0 and h1 > 0 be uniform continuity constants for φ on W1,
i.e.

∀ 0 < h < h1, (y, s) ∈W1, (z, t) ∈W1, (||y − z|| < h and |s− t| < h)⇒ |φ(z, t)− φ(y, s)| < ε.

Then for any 0 < h < h1:

∀(y, s) ∈W1, |ρhξh ∗ φ(y, s)− φ(y, s)| =
∣∣∣∣∫

Γ

∫
R
ρh(y, z)ξh(s− t)(φ(z, t)− φ(y, s))dtdz

∣∣∣∣
≤ ε

∫
Γ

∫
R
ρh(y, z)ξh(s− t)dtdz = ε.
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Proposition 4.1. Let α ∈ C0(W,R∗+). Then for any function u ∈ L2
α,loc(W ), uh := ρhξh ∗ u belongs to

L2
α,loc(W ) ∩ C∞(W ) and uh → u in L2

α,loc(W ).

Proof. We adapt the proof of Prop. 1.18, p.30 in [268]. Let W1 ⊂⊂ W be an open subset of W and
consider another open subset W2 such that W1 ⊂⊂ W2 ⊂⊂ W . For ε > 0, let φ ∈ C0(W ) be such that
(see [269]):

||u− φ||L2
α(W2) < ε. (4.2.26)

From lemma 4.5, ρhξh ∗φ→ φ in L∞(W1) as h→ 0 and so, for h small enough, ||ρhξh ∗φ−φ||L2
α(W1) ≤ ε.

Then,

||u− uh||L2
α(W1) ≤ ||u− φ||L2

α(W1) + ||φ− ρhξh ∗ φ||L2
α(W1) + ||ρhξh ∗ φ− ρhξh ∗ u||L2

α(W1). (4.2.27)

The first two terms in the right-hand side of (4.2.27) are controlled by ε owing to the previous discussion;
as for the last term, we get from the Cauchy-Schwarz inequality:

∀(y, s) ∈W1, |ρhξh ∗ (φ− u)(y, s)|2 =

∣∣∣∣∫
Γ

∫
R
ρh(y, z)ξh(s− t)(φ(z, t)− u(z, t))dtdz

∣∣∣∣2
≤
(∫

Γ

∫
R
ρh(y, z)ξh(s− t)α−1(z, t)dtdz

)(∫
Γ

∫
R
ρh(y, z)ξh(s− t)α(z, t)|φ(z, t)− u(z, t)|2dtdz

)
.

Multiplying both sides by α and integrating over W1 yields:

||ρhξh ∗ (φ− u)||2L2
α(W1)

≤ ||α(ρhξh ∗ α−1)||L∞(W1)

∫
(y,s)∈W1

(∫
Γ

∫
R
ρh(y, z)ξh(s− t)α(z, t)|φ(z, t)− u(z, t)|2dtdz

)
dsdy

≤ C||α(ρhξh ∗ α−1)||L∞(W1)||φ− u||2L2
α(W2),

where C is the constant supplied by the condition (iii) in the statement of lemma 4.4. By assumption,
α−1 is a continuous function on W2, which implies by lemma 4.5 that α(ρhξh ∗α−1)→ 1 in L∞(W1). In
particular, ||α(ρhξh ∗ α−1)||L∞(W1) is bounded by some constant C ′. Finally, using (4.2.26), we obtain
from (4.2.27) that for h > 0 small enough:

||u− uh||L2
α(W1) ≤ (CC ′ + 2)ε,

which is the desired result.

We conclude this subsection with the desired density result of C1 functions in Vω:

Corollary 4.1. (i) Let α ∈ C0(W,R∗+) be a positive weight on W ; the space C∞(W ) ∩ Ṽα is dense

in Ṽα.

(ii) Let ω ∈ C0(U,R∗+) be a positive weight on U ; the space C1(U) ∩ Vω is dense in Vω.

Proof. The proof of the density (i) of C∞(W ) ∩ Ṽα in Ṽα relies on a partition of unity argument and on
the properties of lemma 4.5 and proposition 4.1, exactly along the lines of the proof of Theorem 5.15 in
[268], to which the reader is referred for details.

The density (ii) of C1(U) in Vω follows then from the density of C∞(W )∩ Ṽα in Ṽα with α = ω ◦η|Dη|
and by composition with the C1 diffeomorphism η.

Remark 4.8. Corollary 4.1 does not imply the density of C1(U) in Vω. A result of this kind would
require careful regularity assumptions on ∂U and on the behavior of ω near ∂U .

4.2.4 Trace theorem and Poincaré inequality in Vω

In this section, the trace operator on Γ is defined and studied for functions in the weighted space Vω,
or equivalently for functions in Ṽα on Γ × {0} = {(y, 0) | y ∈ Γ}. In the sequel, with a little abuse of
notations, the latter set Γ× {0} is identified with Γ.



4.2.4. Trace theorem and Poincaré inequality in Vω 161

Proposition 4.2 (Trace theorem). Let ω ∈ C0(U,R∗+) be a positive weight on U . The trace operator

γ : C1(U) → L2(Γ)

v 7→ γ(v) = v|Γ
(4.2.28)

induces a bounded operator Vω → L2(Γ); there exists a constant C > 0 (possibly depending on the weight
ω) such that

∀v ∈ Vω, ||γ(v)||L2(Γ) ≤ C||v||Vω . (4.2.29)

Proof. Introducing α = ω ◦ η|Dη|, using the change of variables (4.2.7) and the density result of corol-
lary 4.1, it is enough to prove that there exists a constant C > 0 such that:

∀ṽ ∈ C∞(W ) ∩ Ṽα, ||γ(ṽ)||L2(Γ) ≤ C||ṽ||Ṽα . (4.2.30)

Let us consider the following partition of Γ: Γ = Γ+ ∪ Γ−, where Γ+ = {y ∈ Γ | ζ−(y) ≥ −ε/2},
Γ− = Γ\Γ+, and ε is the parameter featured in the separation condition (4.2.2). Then

∀y ∈ Γ+, 0 < ε/2 < ζ+(y),

∀y ∈ Γ−, ζ−(y) < −ε/2 < 0.

Now, let a = ε/2 and ξ ∈ C∞c (R) be such that ξ(0) = 1 and ξ(−a) = ξ(a) = 0. Let K be the bounded

measurable set defined by K := (Γ−×[−a, 0])∪(Γ+×[0, a]) ⊂W . Then for any function ṽ ∈ C∞(W )∩Ṽα,
it holds: ∫

Γ

|ṽ(y, 0)|2dy =

∫
Γ

|ṽ(y, 0)2ξ(0)|dy =

∫
Γ−

∫ 0

−a
∂s(ṽ

2ξ)dsdy +

∫
Γ+

∫ 0

a

∂s(ṽ
2ξ)dsdy

≤
∫
K

∣∣2ṽ∂sṽξ + ṽ2∂sξ
∣∣dsdy

≤ 2||α−1ξ||L∞(K)||ṽ||L2
α(W )||∂sṽ||L2

α(W ) + ||α−1∂sξ||L∞(K)||ṽ||2L2
α(W )

≤ (2||α−1ξ||L∞(K) + ||α−1∂sξ||L∞(K))||ṽ||2Ṽα ,

which implies (4.2.30) and therefore terminates the proof of proposition 4.2.

Remark 4.9. The proof of proposition 4.2 supplies the existence of the trace on Γ of an arbitrary
function ṽ ∈ Ṽα, which we shall also denote by ṽ|Γ.

For later purposes (see section 4.2.5), we shall need the surjectivity of the above trace operator; this
is the purpose of the next proposition.

Proposition 4.3 (Surjectivity of traces). Let ω ∈ C0(U,R∗+) be a positive continuous weight.

(i) The trace operator defined by (4.2.28) is surjective from Vω onto L2(Γ):

L2(Γ) = {v|Γ | v ∈ Vω}.

(ii) If ω additionally satisfies (H2), then any function v0 ∈ L2(Γ) can be extended constantly along the
characteristics of β: there exists v ∈ Vω such that v|Γ = v0 and β · ∇v = 0.

Proof. (i) We rather prove that L2(Γ) = {ṽ|Γ | ṽ ∈ Ṽα}, where α = ω ◦ η|Dη|; see remark 4.9. To this
end, consider ξ and K be as in the proof of proposition 4.2. For an arbitrary function v0 ∈ L2(Γ),
we define ṽ by the formula

ṽ(y, s) := v0(y)ξ(s) a.e. in W.

Obviously, ṽ(y, 0) = v0(y) and ∂sṽ(y, s) = v0(y)∂sξ(s), whence the Cauchy-Schwarz inequality
yields:∫

W

αṽ2dsdy =

∫
Γ

∫ ζ+(y)

ζ−(y)

α(y, s)ξ(s)2v0(y)2dsdy < ||α||L∞(K)||ξ||L2(R)||v0||2L2(Γ) < +∞,

∫
W

α|∂sṽ|2dsdy =

∫
Γ

∫ ζ+(y)

ζ−(y)

α(y, s)v0(y)2|∂sξ(s)|2dsdy ≤ ||α||L∞(K)||∂sξ||L2(R)||v0||2L2(Γ) < +∞.

Hence ṽ is a function in Ṽα such that ṽ|Γ = v0, which is the desired result.
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(ii) If (H2) is satisfied, then for an arbitrary function v0 ∈ L2(Γ), we simply define ṽ by the formula:

ṽ(y, s) := v0(y) a.e. in W.

Then, clearly ∂sṽ = 0; what’s more, one has ṽ ∈ L2
α(W ) as follows from the following estimate:∫

W

αṽ2dsdy =

∫
Γ

∫ ζ+(y)

ζ−(y)

α(y, s)v0(y)2dsdy ≤ ||gα||L∞(Γ)||v0||2L2(Γ), (4.2.31)

where gα is as in the statement of (H2). Hence the function ṽ belongs to Ṽα, and so v := ṽ ◦ η−1 is
an element of Vω which has the desired properties owing to lemma 4.2.

We now prove a Poincaré-type inequality in the spaces Vω under the additional assumptions (H2) and (H3)
about the weight ω.

Proposition 4.4 (Poincaré type inequality on Vω). Let ω ∈ C0(U,R∗+) be a weight satisfying the as-
sumptions (H1) to (H3). Then there exists a constant C > 0 (depending on ω) such that:

∀v ∈ Vω,
∫
U

ω v2dx ≤ C
[∫

Γ

v2dy +

∫
U

ω|β · ∇v|2dx

]
. (4.2.32)

Proof. Introducing again α = ω ◦ η|Dη| ∈ C0(W,R∗+) and using the change of variables (4.2.7), we rather
prove the analogous Poincaré inequality in W , that is:

∀ṽ ∈ Ṽα,
∫
W

αṽ2dsdy ≤ C
[∫

Γ

ṽ2ds+

∫
W

α|∂sṽ|2dsdy

]
. (4.2.33)

Furthermore, since C∞(W )∩ Ṽα is dense in Ṽα, it is enough to prove that (4.2.33) holds for ṽ ∈ C∞(W )∩
Ṽα, which we now do. To this end, for arbitrary ṽ ∈ C∞(W ) ∩ Ṽα, a use of Taylor’s formula yields:

∀(y, s) ∈W, ṽ(y, s) = ṽ(y, 0) +

∫ s

0

∂sṽ(y, t)dt. (4.2.34)

In (4.2.34), the Cauchy-Schwarz inequality implies that, for (y, s) ∈W :

∫ s

0

|∂sṽ(y, t)|dt ≤
(∫ s

0

α−1(y, t)dt

)1/2
(∫ ζ+(y)

ζ−(y)

α|∂sṽ|2(y, t)dt

)1/2

. (4.2.35)

Now squaring (4.2.34), using the Young’s inequality (∀a, b ∈ R, (a + b)2 ≤ 2a2 + 2b2) together with
(4.2.35), then multiplying by α(y, s), we obtain:

∀(y, s) ∈W, α(y, s)|ṽ(y, s)|2 ≤ 2α(y, s)|ṽ(y, 0)|2 + 2α(y, s)

∫ s

0

α−1(y, t)dt

∫ ζ+(y)

ζ−(y)

α(y, t)|∂sṽ|2(y, t)dt.

(4.2.36)
Integrating (4.2.36) over W now results in:

∫
W

αṽ2dsdy ≤ 2

∫
Γ

ṽ2(y, 0)

(∫ ζ+(y)

ζ−(y)

α(y, s)ds

)
dy + 2

∫
Γ

hα(y)

(∫ ζ+(y)

ζ−(y)

α|∂sṽ|2ds

)
dy

≤ 2||gα||L∞(Γ)

∫
Γ

ṽ2dy + 2||hα||L∞(Γ)

∫
W

α|∂sṽ|2dsdy,

where gα and hα are the functions featured in (H2) and (H3). This completes the proof of (4.2.33), and
so that of proposition 4.4.

Remark 4.10. This Poincaré type inequality is close in spirit to the “curvilinear” Poincaré inequality
of Azerad [50, 51], who considered the weight ω = 1 and vector fields β satisfying divβ = 0.
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4.2.5 Well-posedness of the variational problem (4.2.5)

We are now in a position to state and prove the main result of this section.

Proposition 4.5. Let ω ∈ C0(U,R∗+) be a positive weight on U , satisfying the assumptions (H1) to (H3).
Then:

(i) For any function f ∈ L2
ω−1(U), there exists a unique solution u ∈ Vω to the variational problem

Find u ∈ Vω such that ∀v ∈ Vω,
∫

Γ

uvds+

∫
U

ω(β · ∇u)(β · ∇v)dx =

∫
U

fvdx. (4.2.37)

(ii) The trace u|Γ ∈ L2(Γ) of the solution u to (4.2.37), is independent of the weight ω; it is given by:

u(y) =

∫ ζ+(y)

ζ−(y)

f ◦ η|Dη|ds a.e. on Γ. (4.2.38)

Proof. (i) The assumption f ∈ L2
ω−1(U) ensures that v 7→

∫
U
fvdx is a continuous linear form on Vω

owing to the Cauchy-Schwartz inequality:

∀v ∈ Vω,
∣∣∣∣∫
U

fvdx

∣∣∣∣ ≤ ||f ||L2
ω−1 (U)||v||L2

ω(U).

Moreover, the Poincaré inequality of proposition 4.4 ensures the coercivity on Vω of the bilinear
form

(u, v) 7→
∫

Γ

uvdy +

∫
U

ω(β · ∇u)(β · ∇v)dx.

Hence, the classical Lax-Milgram theorem (see e.g. [144]) yields the existence and uniqueness of a
solution u ∈ Vω to (4.2.37).

(ii) Since ω satisfies (H2), it follows from proposition 4.3 (ii) that for any v0 ∈ C0(Γ), there exists a
function v ∈ Vω such that v|Γ = v0 and β · ∇v = 0. Taking v as an admissible test function in
(4.2.37) and using once again the change of variables (4.2.7) yields:

∀v0 ∈ C0(Γ),

∫
Γ

uv0dy =

∫
U

fvdx =

∫
Γ

v0(y)

(∫ ζ+(y)

ζ−(y)

f ◦ η|Dη|ds

)
dy, (4.2.39)

whence (4.2.38).

Remark 4.11. Problem (4.2.5) or (4.2.37) can be solved, for an arbitrary choice of weight ω satisfying
(H1) to (H3), if the right hand side satisfies f ∈ L2

ω−1(U). This holds true, for example when f belongs
to L∞(U), as soon as the weight ω satisfies: ω−1 ∈ L1(U). The latter property is not a consequence of
(H1) to (H3) as explained in Remark 4.13.

Remark 4.12. If (H2) is not satisfied, which is the case if for example ω blows up “too fast” near some
part of the boundary of U , functions v ∈ Vω are expected to vanish near this part of ∂U and then Vω
may not contain all functions which are constant along the characteristic curves of β.

4.3 Numerical methods for integration along normal rays

This section provides recipes for the implementation of the variational formulation (4.2.5) with the finite
element method, and numerical comparisons with the line integral formula (4.2.6). For simplicity and
because we are motivated by our shape optimization applications, this comparison is considered in the
context where these lines are normal rays to the shape.

The general setting of section 4.2 to the shape optimization context outlined in the introduction;
in section 4.3.1. We then clarify, for comparison purposes, some of the algorithmic stages required
by the direct integration of (4.2.6) along rays in section 4.3.2—such as the numerical computation of
the principal curvatures κi of the considered shapes, and the delicate detection of their skeleton on
unstructured meshes—. We discuss next in section 4.3.3 the construction of suitable weights ω that
allow to to solve accurately the variational problem (4.2.5) by means of P1 conforming finite elements.
Finally, in section 4.3.4, we compare on several 2-d analytical examples the numerical calculations of
(4.2.6) by means of our variational formulation (4.2.5) with those produced by direct integration of this
formula along rays.
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4.3.1 Shape optimization context: normal rays and flow map of the signed distance func-
tion gradient

This section explicits the shape optimization context in the framework of the previous section 4.2 and
in the perspective of applying the variational problem (4.2.5) for enforcing distance constraints. A fixed,
bounded and Lipschitz ‘hold-all’ open domain D ⊂ Rd is considered, as well as a bounded C2 open
subdomain Ω ⊂ D.

The vector field β is given by the gradient of the signed distance function:

U = D\Σ, Γ = ∂Ω, β = ∇dΩ. (4.3.1)

The bound functions ζ−(y) and ζ+(y) correspond to the extremities of the normal rays as follows:

Definition 4.5 (Normal rays). For y ∈ ∂Ω, the ray emerging from y is the one-dimensional segment

ray(y) :=
{
x ∈ D\Σ, p∂Ω(x) = y

}
= {y + s∇dΩ(y) | s ∈ (ζ−(y), ζ+(y))}. (4.3.2)

where ζ−(y) and ζ+(y) are the maximum distances at which ray(y) hits either the skeleton Σ or the
boundary ∂D of the hold-all domain:

∀y ∈ ∂Ω, ζ+(y) = sup{s ≥ 0 | {y + t∇dΩ(y) | t ∈ [0, s)} ∩ (Σ ∪ ∂D) = ∅}, (4.3.3)

∀y ∈ ∂Ω, ζ−(y) = inf{s ≤ 0 | {y + t∇dΩ(y) | t ∈ (s, 0]} ∩ (Σ ∪ ∂D) = ∅}. (4.3.4)

The functions ζ− and ζ+ are continuous on ∂Ω (see [82] or [215]).

Finally, the next proposition explicits the local coordinate change η and its Jacobian |Dη| featured in
the identity (4.2.6) (see [64] and chapter 1, section 1.3). Because this will be useful when investigating
the formulation of relevant weights ω in lemma 4.6, we also recall the value of ∆dΩ.

Proposition 4.6 (Shape optimization setting). Let Ω ⊂ D be a domain of class C2; then the signed
distance function dΩ is of class C2 on the open set U := D\Σ. Hence β := ∇dΩ is a vector field of class
C1 on U ; the associated flow map η : W → D\Σ is a diffeomorphism of class C1, whose expression reads:

∀(y, s) ∈W, η(y, s) = y + s∇dΩ(y), (4.3.5)

where W is the set defined by (4.2.3). The inverse flow mapping η−1 : U →W is given by

∀x ∈ U, η−1(x) = (p∂Ω(x), dΩ(x)). (4.3.6)

The divergence of the vector field β = ∇dΩ and the Jacobian |Dη| of the flow map η are respectively given
by

∀x ∈ D\Σ, div(∇dΩ)(x) = ∆dΩ(x) =

d−1∑
i=1

κi(p∂Ω(x))

1 + dΩ(x)κi(p∂Ω(x))
, (4.3.7)

∀(y, s) ∈W, |Dη|(y, s) = |det(∇η)|(y, s) =

d−1∏
i=1

(1 + sκi(y)). (4.3.8)

4.3.2 Computing curvatures and detecting the skeleton for direct integration along the
rays

Before going to the numerical aspects of our variational method, we clarify important practical details
which are required in the implementation of the direct integration along characteristics involved in the
calculation of (4.2.6).

We first discuss the delicate issue of detecting mesh triangles crossing the skeleton Σ of Ω when
traveling along the rays (note that this step is not required by our variational method). Then, we detail
the method we used to compute the curvature κ (there is only one curvature κ := κ1 in 2-d) required
in the line integral formula (4.1.3). Note that these steps serve only for comparison purposes with our
variational method. These are fairly classical numerical issues which could otherwise be addressed with
more sophisticated techniques, see e.g. [270, 124].

For our present numerical applications, the hold-all domain D is equipped with a simplicial mesh T
featuring a discretization of the domain Ω as a submesh. The only information we use about Ω is an
accurate approximation dh of the signed distance function dΩ as an element of the space Vh of Lagrange
P1 finite element, where h is the maximum mesh element size. In our context, this approximation dh is
obtained by the algorithm of [111] implemented in the software program mshdist.
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Detection of the skeleton Σ of Ω and identification of normal rays

The numerical detection of Σ in the course of the identification of the set ray(y) for some given point
y ∈ ∂Ω is achieved by assessing the following criterion (independently of the dimension), holding at the
continuous level (see [122]):

∀y ∈ ∂Ω, ∀z0, z1 ∈ ray(y),
dΩ(z1)− dΩ(z0)

(z1 − z0) · ∇dΩ(y)
= 1.

In our implementation, when computing the ray emerging at some point y ∈ ∂Ω (which is detected by
the fact that dh(y) = 0), we travel the triangles in the mesh T in the normal direction n = ∇dh(y), and
we stop the calculation of the ray in the triangle T ∈ T where the entering and exiting points z0 and z1

satisfy: ∣∣∣∣dh(z1)− dh(z0)

||z1 − z0||
− sign(dh(z0))

∣∣∣∣ ≥ tolRay, (4.3.9)

where tolRay a small tolerance (set to 0.3 in our implementation). This provides meanwhile an approx-
imate location of the skeleton Σ, up to a tolerance of the order of the mesh size.

Our criterion (4.3.9) differs from that used in the related works [30, 234]. In there, the authors detect
Σ by looking at changes in the monotonicity of the signed distance function dh along the ray, i.e. they
rely on the following property of the (continuous) signed distance function dΩ:

∀y ∈ ∂Ω, ∀z0, z1 ∈ ray(y), (dΩ(z1)− dΩ(z0))((z1 − z0) · ∇dΩ(y)) ≥ 0. (4.3.10)

Our personal experiment with the above criterion suggests that it may sometimes fail to detect the
skeleton Σ accurately, because such a change in monotonicity may simply not occur when the ray
is supposed to cross Σ in the neighborhood of center of curvatures (see remark 1.10). Our criterion
(4.3.9) may also fail depending on the chosen tolerance parameter, but it offered visible improvements
(Figure 4.4) in our academic test-cases. Note that when integrating along the ray, the last triangle,
where the skeleton is hit, is included in the integration.

(a) Criterion (4.3.9) (b) Criterion (4.3.10)

Figure 4.4: Comparison between the two criteria of section 4.3.2 for the detection of Σ when travelling along rays
in an unstructured mesh (Skeleton displayed in the black line).

Estimating the curvature κ of a 2-d subdomain based on its signed distance function

In this part, we detail our method for the numerical approximation, in 2-d, of the principal curvature κ
(there is only one in 2-d) from the knowledge of a P1 discretization dh of the signed distance function dΩ

at the nodes of the mesh T . We essentially rely on the fact that in 2-d, κ is given by the trace of ∆dΩ on
the boundary ∂Ω (in view of (4.3.7). In 3-d, the estimation of ∆dΩ would not be sufficient to evaluate
the values of both principal curvatures κ1 and κ2: these could e.g. be computed from the eigenvalues of
the Hessian matrix ∇2dΩ.

Our first step towards estimating ∆dΩ consists in calculating a P1 interpolation gh ∈ Vh × Vh of the
piecewise constant gradient ∇dh by solving the following variational problem:

∀ψh ∈ Vh × Vh,
∫
D

gh · ψhdx =

∫
D

∇dh · ψhdx. (4.3.11)

The approximation of the divergence div(∇dΩ) is then calculated as the (piecewise constant) divergence of
the reconstructed field gh. Unfortunately, this procedure generally produces a very noisy approximation
characterized by a lot of spurious oscillations when the mesh resolution increases (see Figure 4.5). In
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order to overcome this difficulty, we calculate a regularization κh of this noisy estimation with a Laplace
kernel, namely we solve:

Find κh ∈ Vh such that ∀ψh ∈ Vh,
∫
D

(
γ2
h∇κh · ∇ψh + κhψh

)
dx =

∫
D

div(gh)ψhdx, (4.3.12)

where γh > 0 is a regularization length scale (equal to 3hmax where hmax is the maximum edge length
in the mesh). This procedure yields satisfying results in practice (even with shapes Ω characterized by
discontinuous curvatures, up to some over smoothing near the discontinuities), although we do not have
a proof of convergence of the approximation κh towards the exact function ∆dΩ.

Let us illustrate our method by considering the example of an ellipse Ω inside a square-shaped hold-all
domain D: let D and Ω be defined by

D = {(x1, x2) ∈ R2 | |x1| < 2 and |x2| < 2}, Ω =

{
(x1, x2) ∈ D | x

2
1

a2
+
x2

2

b2
< 1

}
, (4.3.13)

where a = 1.5 and b = 1. The skeleton of Ω is explicitly known in this case: Σ = {(x1, 0) | |x1| < a−b2/a}
and the curvature κ of ∂Ω at a point y = (y1, y2) is given by κ(y) = ab/γ3 with γ =

√
b2

a2 y
2
1 + a2

b2 y
2
2 .

The difference between the exact curvature κ(y) of ∂Ω and its reconstruction κh (at the boundary nodes
discretizing ∂Ω) using both procedures (4.3.11) and (4.3.12) is represented in Figure 4.5.

(a) Zoom on a mesh discretization of an ellipse Ω ⊂ D
with a maximum edge length hmax=0.08.
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(b) Estimated values of ∆dΩ on ∂Ω.

(c) Zoom on a finer mesh discretization of Ω ⊂ D with
a maximum edge length hmax=0.02.
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(d) Estimated values of ∆dΩ on ∂Ω.

Figure 4.5: Estimation of ∆dΩ on the mesh T for the shape Ω in (4.3.13) and for two different mesh resolutions.
The x coordinate on the right-hand graphs represents the arc length coordinate on ∂Ω when the starting point
is the green reference point. Estimates of the mean curvature of ∂Ω, div(gh) and κh (see (4.3.11) and (4.3.12)
for the definitions) are compared to the analytical value κ(y).

4.3.3 Admissible numerical weights built upon the signed distance function

In this section, we discuss the numerical resolution of the variational problem (4.2.5) in the shape
optimization context (4.2.8) and (4.2.9) (see also proposition 4.6). The numerical setting is the same
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as that of the previous section 4.3.2: the hold-all domain D is equipped with a simplicial mesh T (i.e.
composed of triangles in 2-d, or tetrahedra in 3-d, although our method would work with other kinds of
meshes) featuring a discretization of the domain Ω as a submesh, and we rely on the Lagrange P1 finite
element method for the discretization of (4.2.5) on account of its robustness and ease of implementation.
In other terms, the approximation uh to the solution u ∈ Vω of (4.2.5) is sought in the space Vh of
continuous piecewise linear functions on each simplex of T .

We start by introducing some motivations for the use in (4.2.5) of weights ω vanishing on the skele-
ton, and we provide (in lemma 4.6 below) a formula for analytical and admissible weights satisfying
approximately this property. We then discuss the issue of computing numerically these weights. Finally,
we perform a few numerical experiments where we show that weights vanishing on the skeleton make P1

finite elements able to capture discontinuous test functions across the skeleton, which allows to confirm
numerically the latter motivations.

Motivations for weights vanishing on the skeleton

As already mentioned, our final target is to calculate the trace (4.2.6) on Γ = ∂Ω of u. In the continuous
setting of section 4.2, this trace does not depend on the choice of the weight ω as long as it fulfills (H1)
to (H3), so that in principle, any such weight could be used. However, when U is a cracked domain
(typically, the skeleton Σ is a crack in the working domain, i.e., U = D\Σ) and the crack is not explicitly
discretized in the mesh T , then the most simple choice ω = 1 (which is an admissible weight on account of
lemma 4.6 below) might not work well in practice. Indeed and as we shall illustrate below in this section,
test functions of (4.2.5) which belong to Vω with ω = 1 are in general discontinuous across Σ and not
well captured by P1 finite elements. In many shape optimization applications, discretizing the skeleton
Σ of the current domain Ω at every iteration of the optimization process or resorting to discontinuous
finite elements (in order to be able to set ω = 1) is very inconvenient, for instance if working with fixed
structured meshes as it is performed in many applications built on the level set method [26, 311].

Therefore, we shall be interested in determining weights ω adapted to our commitment to use the
space Vh of Lagrange P1 finite elements for the resolution of (4.2.5) without the need for an accurate
discretization of the skeleton Σ (alternative approaches could be to use discontinuous finite elements close
to the skeleton, or to have a zero weight on the degrees of freedom corresponding to modes close to the
skeleton and to remove the null space in the corresponding linear system, but they seemed to be more
complicated to implement, at least to us). The weight ω should be chosen in such a way that arbitrary
functions v ∈ Vω are well approximated (in the norm || · ||Vω ) by functions vh ∈ Vh, as is reflected by the
classical Céa’s lemma (see e.g. [144]):

||u− uh||Vω≤ C inf
vh∈Vh

||u− vh||Vω , (4.3.14)

for a constant C > 0 (which possibly depends on ω). The space Vh of Lagrange P1 elements is a conformal
finite element space in the sense that the inclusion Vh ⊂ Vω always holds (because functions of Vh are
smoother than those of Vω), however Vh may be “too small” to guarantee a correct approximation of
discontinuous solutions u ∈ Vω in the sense of (4.3.14). Heuristically, and without looking for a very
precise statement, these considerations call for the choice of a weight ω almost vanishing on Σ, so that
the approximation error ||u− vh||Vω in (4.3.14) attributes a lesser weight to a neighborhood of Σ where
u is expected to be discontinuous while the functions vh ∈ Vh are continuous.

We now provide explicit candidates for weights ω which fulfill the conditions (H1) to (H3) while
taking small values near the skeleton, that we are going to use in our practical implementations.

Lemma 4.6. For any real numbers q ≥ 0, r ≥ 0, the weight

ω =
1

1 + |dΩ|q|∆dΩ|r
(4.3.15)

satisfies the conditions (H1) to (H3) (this includes in particular the constant weight ω = 1/2 for q = r =
0).

Proof. At first, it follows readily from the definition that ω belongs to C0(U,R∗+), and is uniformly
bounded on U , so that (H1) and (H2) are trivially satisfied. We then define κ−(y) and κ+(y) by:

κ−(y) = min(0,min
i
κi(y)), κ+(y) = max(0,max

i
κi(y)), (4.3.16)
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as well as the corresponding multiplicities m−(y) and m+(y):

m±(y) = Card({i ∈ { 1, . . . , n− 1} |κi(y) = κ±(y)}).

Using formula (4.3.7) for ∆dΩ, the weight α = ω ◦ η|Dη| is decomposed as

α(y, s) =

∏d−1
i=1 (1 + κi(y)s)

1 + |s|q
∣∣∣∑i

κi(y)
1+κi(y)s

∣∣∣r =

∏d−1
i=1 (1 + κi(y)s)r+1∏d−1

i=1 (1 + κi(y)s)r + |s|q
∣∣∣∑i κi(y)

∏
j 6=i(1 + κj(y)s)

∣∣∣r
= f(y, s)g(y, s)

(4.3.17)

where f and g are the following functions:

f(y, s) = (1 + sκ−(y))m−(y)(r+1)1s≥0(s) + (1 + sκ+(y))m+(y)(r+1)1s<0(s), (4.3.18)

g(y, s) =

∏
i,κi 6=κ−(1 + κi(y)s)r+11s≥0(s) +

∏
i,κi 6=κ+

(1 + κi(y)s)r+11s<0(s)∏d−1
i=1 (1 + κi(y)s)r + |s|q

∣∣∣∑i κi(y)
∏
j 6=i(1 + κj(y)s)

∣∣∣r . (4.3.19)

Then, f satisfies clearly the monotonicity condition (ii) in the statement of lemma 4.1 and g is a contin-
uous function on each of the domains W− = {(y, s) ∈ W | s ≤ 0} and W+ = {(y, s) ∈ W | s ≥ 0}, that
does not vanish on the compact sets W− and W+. The assumptions of lemma 4.1 are therefore fulfilled,
so that ω satisfies (H3). This terminates the proof.

Remark 4.13. • When it comes to solving (4.2.5) by relying on proposition 4.5 with some data
f ∈ L∞(U), it is useful to observe that f belongs to L2

ω−1(U) as soon as the weight ω satisfies
ω−1 ∈ L1(U) (see Remark 4.11), which is the case if it is of the form (4.3.15) with r < 2. In the
following numerical experiments, we shall see however that using values for r which are larger than
2 still provides good results in practice: in general, taking higher values of q and r yields a faster
decay of ω near the skeleton.

• Taking r > 0 ensures that the weight (4.3.15) will vanish at points x ∈ Σ that are centers of
curvatures (for which ∆dΩ blows up). Taking q > 0 allows to make sure that ω = 1/2 on ∂Ω
whatever the value of r, and to accentuate the decay of ω near the skeleton. Not that in general,
ω will not vanish on points x ∈ Σ that are not centers of curvatures. However, it still takes very
small values on Σ and it is convenient to use in the implementation. There is no unicity of weights
appropriate for the numerical computation and variants can easily be imagined.

• For the most general setting where U is an arbitrary open set, the methodology of this section
extends naturally by considering weights ω which vanish on the cracked parts of ∂U that are not
explicitly meshed.

Numerical computations of the weight based on the Laplacian of the signed distance func-
tion

For our numerical applications below, we shall use the weights of lemma 4.6 in the definition of our
variational formulation (4.2.5). This requires the computation of the Laplacian ∆dΩ on the triangulated
mesh T based on the P1 estimation of the signed distance function dΩ. For this purpose, we use the
same regularization method outlined in section 4.3.2 for the computation of the numerical curvature.

Importantly, from proposition 4.5, the variational formulation (4.2.5) is rather insensitive to the
choice of the weight ω, and as a result the estimation of ∆dΩ does not need to be very accurate as
long as it takes large values near the skeleton (as we shall illustrate below in section 4.3.3). In contrast,
the estimation of the principal curvatures κi for the direct method would need to be accurate. From
a numerical standpoint, the formula (4.3.15) featuring ∆dΩ at the denominator is convenient to obtain
numerically vanishing weights near the skeleton (even if (4.3.15) truely vanish for r > 0 at centers of
curvatures). Indeed, ∇dΩ is discontinuous across the skeleton, which should reflect in high numerical
values of ∆dΩ when computing numerically the divergence div(∇dΩ) with the method of section 4.3.2.
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Assessing the choice of the weight ω when using a P1 discretization: generating numerical
test functions constant along rays

In this section, we perform several numerical experiments about the influence of the choice of the weight
function ω in the resolution of the variational problem (4.2.5) using the Lagrange P1 finite element
method. With this perspective in mind, and in the 2-d numerical setting described in sections 4.3.2
and 4.3.3, we consider the issue of generating numerical functions v ∈ Vω which are constant along the
normal rays to the shape Ω. Namely, we solve the boundary-value problem{

∇dΩ · ∇v = 0 in D\Σ,
v = v0 on ∂Ω,

(4.3.20)

for given data v0 ∈ L2(∂Ω).
Using the variational setting of section 4.2, we show that it is possible to obtain the solution v to

(4.3.20) by solving a variational problem of the same nature of (4.2.5).

Proposition 4.7. Let ω ∈ C0(D\Σ,R∗+) be a weight satisfying (H1) to (H3). There exists a unique
solution v ∈ Vω to the following variational problem:

Find v ∈ Vω such that ∀w ∈ Vω,
∫
∂Ω

vwds+

∫
D\Σ

ω(∇dΩ · ∇v)(∇dΩ · ∇w)dx =

∫
∂Ω

v0wds. (4.3.21)

The solution v is independent of the choice of ω as long as (H1) to (H3) are satisfied, and it is given by
the formula:

v(x) = v0(p∂Ω(x)), a.e. x ∈ D\Σ. (4.3.22)

Proof. To see that (4.3.20) and (4.3.21) are equivalent, it is sufficient to take v ∈ Vω constant along rays
in (4.3.21) as in the proof of proposition 4.5, which yields v = v0 on ∂Ω, and then ∇dΩ · ∇v = 0.

The formulation (4.3.21) is to be compared to the so-called Galerkin Least Square formulation and SUPG
methods for advection-reaction problems [144], with the difference that usual assumptions of uniformly
bounded divergence (which do not hold in our applications) are replaced with the regularity assumptions
of section 4.2.1.

Remark 4.14. The problem of building constant functions along normal rays of the form (4.3.20) may
be solved on unstructured meshes owing to variants of the fast marching algorithm; see e.g. [97].

We now verify that a good approximation of the solution v to (4.3.20) (or more precisely (4.3.21)),
which is in particular discontinuous across the skeleton Σ of Ω, can be obtained either by truncating
manually the skeleton from the computational mesh T and taking the weight ω = 1, or by selecting
a weight ω taking “small” values near Σ. For the latter experiment, we use the weight ω = 1/(1 +
|dΩ|3.5|∆dΩ|2) (see also remark 4.13 about the “small” values of ω near Σ). Of course, removing the
skeleton from the mesh is not a straightforward task in full generality but it is performed here for the
sake of comparison.

Let us consider again the ellipse example of (4.3.13). We consider two different computational meshes
T and T ′. The former is a triangular mesh of D, and the latter T ′ is a triangular mesh of D\Σ (i.e. the
skeleton Σ has been manually removed). In both T and T ′, the considered shape Ω is explicitly discretized
as a submesh; see Figure 4.6 for an illustration. The variational problem (4.3.21) is numerically solved
for a boundary datum v0 ∈ L2(∂Ω) given by (see Figure 4.7d):

∀(y1, y2) ∈ ∂Ω, v0(y1, y2) = cos(3y1)2 + 20y2, (4.3.23)

and the computed finite element solution is plotted on Figure 4.7 in the following three situations.

• The mesh T ′ is used, in which D and Ω ⊂ D are meshed explicitly, and where a thin layer around
Σ has been manually removed (see Figure 4.6c). The solution v to (4.3.21) is computed using the
constant weight ω = 1 and the result is displayed on Figure 4.7a. As expected, the fact that Σ is
absent from T ′ allows the numerical solution v to have very different values on either sides of Σ.

• The mesh T of D (where Σ has not been removed) is used (see Figure 4.6b), and v is computed with
the constant weight ω = 1; the result is represented on Figure 4.7b. The formulation (4.3.21) proves
numerically stable with the choice ω = 1, but it tends to over smoothen the sharp discontinuities
of v near the skeleton Σ, which results in a loss of accuracy for the extension problem (4.3.20).
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(a) Mesh T of the hold-all domain D with Ω ⊂ D (in
blue) discretized as a submesh.

(b) Zoom on the mesh T .

(c) Zoom on the mesh T ′ (skeleton Σ truncated)

Figure 4.6: The two meshes T and T ′ used for the numerical example of section 4.3.3.

• The mesh T of D is used again, but the solution v to (4.3.21) is now computed by using the
weight ω = 2/(1 + |dΩ|3.5|∆dΩ|2); the result is represented on Figure 4.7c. The obtained numerical
solution is much closer to the expected result (4.3.22): the values of the solution function v look
constant along the normal rays up to a small neighborhood of the skeleton (of the size of the
mesh element size), where sharp variations are observed, as expected. The numerical procedure in
this case seems therefore to achieve the same order of accuracy than in the experiment using the
truncated mesh T ′.

4.3.4 Numerical comparisons between the variational method and direct integration along
rays

We now investigate the numerical evaluation of the function u ∈ L2(∂Ω) in (4.2.6) for several 2-d
academic configurations of domains D, Ω and functions f . In particular, we compare the evaluation
of u obtained by direct integration along rays (i.e. implementing directly the formula (4.2.6)) to that
obtained by solving the variational formulation (4.2.5) on meshes T (resp. T ′) of D in which Ω is
explicitly discretized and the skeleton Σ of Ω is not removed (resp. is removed).

A domain with trivial skeleton: the case of a circle

We first consider the case where Ω is a disk enclosed in a larger disk D:

D = {(x1, x2) ∈ R2 |x2
1 + x2

2 < 4}, and Ω = {(x1, x2) ∈ R2 |x2
1 + x2

2 < 1}; (4.3.24)

see Figure 4.8. In this case, the skeleton Σ is reduced to the point 0. The considered function f is:

∀x = (x1, x2) ∈ D, f(x1, x2) = x2,

which belongs to the finite element space Vh, and is therefore amenable to an exact integration when the
travel procedure along rays of section 4.3.2 is used.

In this situation, the sought function u, given by (4.2.6), is known analytically; a calculation in polar
coordinates indeed yields:

∀(y1, y2) ∈ ∂Ω, u(y1, y2) =
8

3
y2. (4.3.25)

Comparisons are displayed on Figure 4.9 between the version of u obtained after direct integration
along rays, and the numerical solutions of (4.2.5) obtained for various choices of weight functions ω on
the mesh T of D (where Σ has not been removed). We observe a good match between the variational
and the direct method. As expected, the solutions computed thanks to our variational method are less
accurate when the constant weight ω = 1 is chosen. A significant increase in accuracy is achieved by
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(a) Mesh T ′, ω = 1. (b) Mesh T , ω = 1

(c) Mesh T , ω = 2/(1 + |dΩ|3.5|∆dΩ|2)

0 2 4 6 8
−20

−10

0

10

20

(d) Input function v0(y1, y2) = cos(3y1)2 + 20y2 for the
problem (4.3.21). The horizontal coordinate is the arc
length with the green point as reference point.

Figure 4.7: Numerical resolution of the problem (4.3.20) using the variational problem (4.3.21) for various weights,
with or without removing the skeleton Σ from the computational mesh.
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selecting a weight ω vanishing at the center of the circle, i.e. ω = 1/(1 + |dΩ|3.5|∆dΩ|3.5). Note that
this weight does not fulfill the condition ω ∈ L1

ω−1(U) (see remark 4.12), but works well in numerical
practice.

(a) The mesh T for D (part corresponding to Ω in blue) (b) The numerical solution u extended constantly along
rays. The green point provides the 0 reference for the hor-
izontal axes of Figure 4.9.

Figure 4.8: Setting of the disk test case of (4.3.24) in section 4.3.4.
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(a) ω = 1
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(b) ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5)

Figure 4.9: Comparison between direct integration along rays, analytical formula (4.1.3), and finite element
solution of (4.2.5) for two choices of weights ω for the example of the test case of (4.3.24) in section 4.3.4. In
the legends of this figure and all those to follow, uAnalytic, uRays and uVariational refer respectively to the
analytical value of u, its numerical estimation using (4.2.38), and the trace of the variational solution of (4.2.5).

A C2 domain with non trivial skeleton

We take on the example (4.3.13) where Ω is an ellipse inside a square-shaped hold-all domain D, reusing
both meshes T and T ′ depicted on Figure 4.6. To evaluate the influence of the skeleton on our numerical
method, we compute the quantity (4.2.5) for a function f which is supported in Ω only (see Figure 4.10):

f(x1, x2) = (1 + x2)1Ω(x1, x2) . (4.3.26)

The presence of the constant 1 in (4.3.26) avoids the “simplification” of having f vanishing on Σ. After
an explicit calculation based on (4.2.6), the exact solution is given by:

∀y = (y1, y2) ∈ ∂Ω, u(y) = (1 + y2)ζ− −
ζ2
−
2

(
y2

ζ−
+ κ(1 + y2)

)
+
y2

3
κζ2
−, (4.3.27)

with κ = ab
γ3 , ζ− = γb

a , γ =
√

b2

a2 y
2
1 + a2

b2 y
2
2 .

The numerical trace u (which is extended along rays using (4.3.21) to ease the visualization) obtained
by solving the variational formulation (4.2.5) on T or T ′, and for various choices of weights, is represented
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Figure 4.10: The function f for the identification problem (4.2.6) for the ellipse test case (4.3.13) of section 4.3.4.

on Figure 4.11. On Figure 4.12, we compare for each of these strategies the boundary values of the
numerical trace u to that computed with (4.1.3) by direct integration along rays, and to the analytical
expression (4.3.27).

We note that the solutions obtained by integrating along rays are generally characterized by small
spurious oscillations. We explain this error by the fact that our criterion (4.3.9) detects the skeleton up to
an error proportional to the mesh size (the actual location of the skeleton is not estimated within the last
travelled triangle; see Figure 4.13). Such a procedure could be improved by using more accurate skeleton
detection methods; see for instance the works [37, 45] in the field of computer graphics. We verify that
the amplitude of these oscillations decreases with the size of the mesh, as shown on Figure 4.12d.

(a) Mesh T ′ (skeleton manually trun-
cated), ω = 1

(b) Mesh T , ω = 1. (c) Mesh T , ω = 2/(1+ |dΩ|3.5|∆dΩ|3.5)

Figure 4.11: The numerical solution u of the variational problem (4.2.5) extended constantly along rays (for
visualization purpose). Inaccuracies occur if the skeleton Σ is not removed from the mesh or if the weight ω does
not vanish in its vicinity.

A C1 domain, with discontinuous curvature

We now consider the case where Ω is a stadium, i.e. the reunion of a rectangle and two half-disks. Define
(see Figure 4.14)

D = {(x1, x2) ∈ R2 | |x1| ≤ 2 and |x2| < 2} (4.3.28)

and

Ω = {(x1, x2) ∈ D | (|x1| < 0.5 and |x2| < 0.5) or (x1 − 0.5)2 + x2
2 < 0.25 or (x1 + 0.5)2 + x2

2 < 0.25}.
(4.3.29)

The domain Ω is not of class C2, and the curvature κ of the boundary ∂Ω is discontinuous at the
points where x1 = ±0.5. Hence, this example does not fall into the admissible setting of proposition 4.6,
and there is, in principle, no guarantee that our variational method based on (4.2.5) should still work.

In this example, the skeleton Σ of Ω is explicitly given by Σ = {(x1, 0) | |x1| ≤ 0.5}. We calculate the
function u in (4.2.6) associated to the datum function f defined by (4.3.26); the analytical solution u for
this problem is given by

u(y1, y2) =


1

2
+

1

8
sign(y1) if |y1| < 0.5,

1

4
+
y2

6
if |y1| > 0.5.

In particular, u is ill-defined at the points x ∈ ∂Ω where the curvature is discontinuous.
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(a) Mesh T ′, ω = 1
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(b) Mesh T , ω = 1
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(c) Mesh T , ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5)
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(d) Mesh T , ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5) (Fine mesh of
Figure 4.5c)

Figure 4.12: Comparison between the results of a direct integration along rays and our variational method for
the ellipse example of section 4.3.4.

Figure 4.13: Numerical rays for the ellipse and stadium examples of section 4.3.4. The inaccuracy of the direct
integration along rays is related to that of the skeleton detection within the last triangle. The triangle paths are
colored in transparent blue (the darker, the more often visited); depicting that some mesh triangles might not
be crossed by all the rays or some triangles may be visited more often than others.
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(a) Mesh T of the bulk domain D with Ω ⊂ D (in
blue) discretized as a submesh.

(b) Zoom on the mesh T .

(c) Zoom on the mesh T ′ (skeleton Σ truncated)

Figure 4.14: Meshes used for the stadium example of section 4.3.4.

Both methods for the numerical evaluation of u (i.e. the direct integration along rays and our
variational method) are applied, and the results are represented on Figure 4.15. Even though this
example does not fit into the admissible setting of section 4.2, the results indicate that our numerical
method still works, up to over-smoothing inaccuracies of the computed solution u near the discontinuities
of the curvature κ.
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(a) Mesh T ′, ω = 1
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(c) Mesh T , ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5)
(d) Variational solution u on the mesh T , ω = 2/(1 +
|dΩ|3.5|∆dΩ|3.5) extended constantly along rays.

Figure 4.15: Comparison between the direct integration along rays and our variational method for the stadium
example of section 4.3.4.
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A test case involving a Lipschitz domain Ω with angular corners

In this last example, we consider the following situation:

D = {(x1, x2) ∈ R2 | |x1| ≤ 2 and |y| ≤ 2}, Ω = {(x1, x2) ∈ D | max(x2
1/2− x2 − 1, x2) ≤ 0}, (4.3.30)

together with the datum function f :

f(x1, x2) = cos(6x1)2,

as illustrated on Figure 4.16. Again, the theoretical framework of section 4.2 does not apply to the
present situation because:

• The vector field ∇dΩ is not of class C1 on U and is not U -filling: the reunion of all the rays emerging
from points y ∈ ∂Ω does not cover the whole set U = D\Σ;

• The flow η of this vector field is not of class C1, because the curvature κ of the boundary (and even
the normal vector) is discontinuous at the corners. Numerically, |∆dΩ| blows up in the whole area
filled by the skeleton and the set of points that are not covered by normal rays.

Still, the quantity u given by (4.2.6) can be calculated analytically wherever it makes sense. A few
elementary, albeit technical computations yield:

u(y1, y2) =

{
cos(6y1)2(2− λ−(s−1(y1))) if y2 ≥ 0,

φ(λ+(y1))− φ(λ−(y1)) if y2 ≤ 0
(4.3.31)

where

λ−(t) =
t2/2− 1

1 + 1/
√

1 + t2
, λ+(t) = min((2/|t| − 1), t2/2)

√
1 + t2, (4.3.32)

s−1 is the reciprocal function of t 7→ s(t) =
(

1 + λ−(t)√
1+t2

)
t and φ is a primitive function of λ 7→ cos(6t(1+

λ/
√

1 + t2))2(1 + λ/(1 + t2)3/2).
A numerical approximation to this function u is computed by using either a direct integration along

rays or our variational method based on (4.2.5), on a single mesh T where the skeleton Σ is not removed,
and using three possible choices of the weight ω. The results are represented on Figure 4.17. In all
cases, the observed numerical inaccuracies, characterized by very high values, are concentrated near the
angular corners of Ω, while the method yields satisfying accuracy on the remaining smooth parts of
∂Ω. Again, we observe the poor accuracy associated to the choice of a constant weight ω = 1. For this
example, a uniformly small weight ω = 1e−10 seems to yield a better accuracy than the previous choice
ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5).

(a) The numerical mesh T for D (Ω in blue) (b) The numerical function f

Figure 4.16: Setting for the non smooth example of section 4.3.4.
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(b) ω = 2/(1 + |dΩ|3.5|∆dΩ|3.5)
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(c) ω = 1e− 10
(d) Numerical solution u obtained with ω = 1e − 10 (ex-
tended along rays with (4.3.21))

Figure 4.17: Comparison between direct integration along normal rays and our variational method for the non
smooth example of section 4.3.4.
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4.4 Applications to maximum and minimum thickness constraints in shape opti-

mization

We now show how the general method proposed in section 4.2 and the inferred numerical methods
in section 4.3 allow to efficiently implement geometric constraints, namely maximum and minimum
thickness constraints in shape optimization, as the original motivation for our work. Here no comparison
is made between our new variational approach and the previous method (using direct integration along
rays) to evaluate the shape derivatives of the related shape functionals. The optimized shapes and
topologies resulting from the variational method are very similar to those obtained in the previous works
[30, 234]. There is no clear gain in computational time but there is a very substantial simplification of
the implementation (which would be tremendous in 3-d).

4.4.1 Shape optimization setting for linearly elastic structures

In this section, we consider situations where only the mechanical displacement u of a structure comes into
play. For compatibility with the notation of the present chapter, the domain to be optimized associated
to the solid structure is denoted Ω ⊂ D (and not Ωs as in chapter 2). Any such shape Ω is clamped on
a part ΓD of its boundary, and traction loads g ∈ L2(ΓN ) are applied on a disjoint region of ∂Ω; the
complement Γ := ∂Ω\(ΓD ∪ΓN ) is traction-free and body forces are omitted for simplicity; Γ is the only
region of the boundary ∂Ω which is subject to optimization.

In this situation, the displacement uΩ of the shape is characterized as the unique solution inH1(Ω,Rd)
to the linearized elasticity system: 

−div(Ae(uΩ)) = 0 in Ω,

Ae(uΩ) · n = g on ΓN ,

Ae(uΩ) · n = 0 on Γ,

uΩ = 0 on ΓD,

(4.4.1)

where e(u) := 1
2 (∇u+∇uT ) is the strain tensor associated to the displacement u and A is the Hooke’s

law, defined for any symmetric n × n matrix by Ae(u) = 2µe(u) + λTr(e(u))I involving the Lamé
coefficients λ, µ which characterize the physical properties of the constituent material.

In this context, we consider structural optimization problems of the form

min
Ω⊂D

J(Ω), s.t. P (Ω) ≤ 0, (4.4.2)

where J(Ω) is a performance criterion, which will typically be the volume Vol(Ω) or the compliance C(Ω)
of shapes:

Vol(Ω) =

∫
Ω

dx, C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx, (4.4.3)

and P (Ω) is a geometric constraint

P (Ω) =

∫
D

j(dΩ) dx, (4.4.4)

involving the signed distance function dΩ to Ω and a given smooth function j : R→ R.

The shapes derivatives of the volume and compliance functions are classically given by (see chapter 2):

DVol(Ω)(θ) =

∫
Γ

θ · ndy, and DC(Ω)(θ) = −
∫

Γ

Ae(uΩ) : e(uΩ)(θ · n)dy. (4.4.5)

where we recall that dy stands for the surface measure on Γ. The shape derivative of the geometric
constraint P (Ω) in (4.4.4) is given by (see the reminders of chapter 1, section 1.3.2)

DP (Ω)(θ) =

∫
D\Σ

j′(dΩ(x))d′Ω(θ)(x)dx =

∫
Γ

uθ · ndy. (4.4.6)

The “Eulerian” derivative d′Ω(θ) of the signed distance function dΩ is defined on U = D\Σ by:

∀x ∈ D\Σ, d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)), (4.4.7)
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and the scalar function u : Γ→ R reads:

u(y) = −
∫
s∈ray(y)

j′(dΩ(s))
∏

1≤i≤n−1

(1 + κi(y)dΩ(s))ds,

as follows from an application of the coarea formula with the help of the material recalled in chapter 1,
section 1.3.2.

Using the conclusions of section 4.2, the function u in (4.4.6) may be conveniently evaluated by solving
the variational problem:

Find u ∈ Vω such that ∀v ∈ Vω,
∫
∂Ω

uvdy +

∫
D\Σ

ω(∇dΩ · ∇u)(∇dΩ · ∇v)dx = −
∫
D\Σ

j′(dΩ(x))vdx,

(4.4.8)
for a suitable weight ω satisfying (H1) to (H3), as discussed in section 4.3. Note how easily (4.4.6) is
retrieved by taking the test function v = −d′Ω(θ) in (4.4.8). Since θ · n ∈ L∞(∂Ω), the derivative given
by (4.4.7) is indeed an admissible test function d′Ω(θ) ∈ Vω, for it belongs to L∞(D \Σ) and is constant
along normal rays.

In our numerical implementation, we set ω = 1/(1 + 100|dΩ∆dΩ|3.5) in order to solve (4.4.8) with P1

finite elements, the constant 100 being selected to increase the slope of the weight near the skeleton.

4.4.2 Shape optimization under a maximum thickness constraint

We first consider structural optimization problems featuring a maximum thickness constraint. Following
the work in [30, 234], a shape Ω ⊂ D is said to have maximum thickness lower than dmax > 0 provided:

∀x ∈ Ω, dΩ(x) ≥ −dmax/2. (4.4.9)

Loosely speaking, this amounts to saying that the skeleton Σ of Ω lies at a distance of at most dmax from
the boundary ∂Ω. Following closely [30, 234], the pointwise constraint (4.4.9) is relaxed into a single
integral constraint formulated in terms of the following penalty functional PMaxT(Ω):

PMaxT(Ω) ≤ dmax

2
, where PMaxT(Ω) :=


∫

Ω

h(dΩ)d2
Ωdx∫

Ω

h(dΩ)dx


1/2

, (4.4.10)

and h is a regularized Heaviside function centered at dmax/2:

∀x ∈ R, h(x) =
1

2

(
1 + tanh

(
x− dmax/2

αfdmax/2

))
. (4.4.11)

The parameter αf in (4.4.11) tunes the level of regularization; in our context, it is set to αf = 4hmax

5dmax
,

where hmax is the maximum edge length of the computational mesh of D.
A simple calculation yields the shape derivative of PMaxT(Ω):

DPMaxT(Ω)(θ) = − 1

2PMaxT(Ω)

∫
Ω

h(dΩ)d2
Ωdx(∫

Ω

h(dΩ)dx

)2h(0)

∫
Γ

θ · ndy

+
1

2PMaxT(Ω)

∫
Ω

h′(dΩ)d2
Ω + 2h(dΩ)dΩ∫

Ω

h(dΩ)dz

−

∫
Ω

h(dΩ)d2
Ωdz(∫

Ω

h(dΩ)dz

)2h
′(dΩ)

 d′Ω(θ)dx, (4.4.12)

where the term involving d′Ω(θ) is then computed using the variational formulation (4.4.8).

In the forthcoming examples of section 4.4.2, we solve the optimization problem of minimizing the
volume Vol(Ω) of the structure while imposing that the compliance C(Ω) do not exceed a given threshold
gmax, as well as the maximum thickness constraint (4.4.10), namely:

min Vol(Ω)

s.t.


C(Ω) ≤ gmax

PMaxT(Ω) ≤ dmax

2
.

(4.4.13)
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Optimization of the shape of a two-dimensional arch

Our first test-case reproduces that considered in §8.1.1 of [30], whose setting is displayed on Figure 4.18a:
in a square-shaped domain D, the considered shapes are clamped on both their bottom left and bottom
right corners, and a vertical load g = (0,−20) is applied at the middle of their bottom side.

Starting from an initial shape arbitrarily perforated with several holes, the optimization problem
(4.4.13) is solved with and without including the maximum thickness constraint, using the numerical
values gmax =7.00 and dmax =0.12 when they are relevant.

g

1

1

0.05

(a) Setting of the optimization problem (b) Optimized shape without maximum
thickness constraint (max |dΩ| =0.10).

(c) Optimized shape with max-
imum thickness constraint
(max |dΩ| =0.07).

Figure 4.18: Physical setting and optimized shapes obtained in the two-dimensional arch optimization test-case
of section 4.4.2.

The resulting optimized shapes in both cases are displayed on Figs. 4.18b and 4.18c. Several interme-
diate shapes as well as the convergence histories of the computation are displayed on Figs. 4.19 to 4.21.
The obtained shapes are quite analogous to those obtained by [30, 234] where the calculation of the
shape derivative of PMaxT(Ω) relied on a direct numerical integration along rays.

(a) Without thickness constraint.

(b) With maximum thickness constraint.

Figure 4.19: Iterations 0, 5, 40, 65, 100 and 200 in the shape optimization example of a 2-d arch of section 4.4.2.

Optimization of a two-dimensional MBB-Beam

We consider now the classical MBB-Beam test-case depicted on Figure 4.22a: in a box D with dimensions
3× 1, a material shape Ω is constrained to no horizontal motion on the left boundary, and to no vertical
motion on the bottom right corner. A vertical load g = (0,−10) is applied on the top left corner,
and the optimization problem (4.4.13) is considered again, with the numerical values for the thresholds
gmax =30.00 and dmax=0.16.

The resulting optimized shapes with and without including the maximum thickness constraint in
(4.4.13) are represented on Figs. 4.22b and 4.22c and the convergence histories of the computation are



4.4.3. Shape optimization examples under a minimum thickness constraint 181

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Volume Vol(Ω)

0 50 100 150 200 250 300
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

(b) Compliance C(Ω)

Figure 4.20: Optimization histories for the optimization problem (4.4.13) without maximum thickness constraint.
Final values: volume Vol(Ω) = 0.19, and compliance C(Ω) =7.00.
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Figure 4.21: Optimization histories for the optimization problem (4.4.13) with maximum thickness constraint.
Final values: volume Vol(Ω) = 0.19, compliance C(Ω) =7.30, and penalty PMaxT(Ω) =0.06.

shown on Figs. 4.23 to 4.24.

4.4.3 Shape optimization examples under a minimum thickness constraint

We now turn to the implementation of a minimum thickness constraint thanks to our variational method.
Following [30, 234], we say that a shape Ω has minimum thickness greater than dmin if

∀y ∈ ∂Ω, ζ−(y) < −dmin/2. (4.4.14)

In other words, the boundary ∂Ω is at a minimum distance dmin/2 of the part Σ ∩ Ω of the skeleton
located inside the shape.

Enforcing a minimum thickness as a hard constraint (i.e. rather than a penalty term in the objective
function) is by no means a straightforward task, because:

1. Our definition (4.4.14) of minimum thickness involve the distance to the skeleton ζ−, which is not
differentiable with respect to the shape,

2. It is not clear how to formulate (4.4.14) by mean of a penalty functional such as (4.4.10) to penalize
localizations on the shape that do not meet the thickness requirement,

3. Even if we were able to enforce the constraint at each iteration, such would prevent topology
changes to occur naturally, which would be an issue in numerical practice.

We propose in the following a more flexible setting to enforce such a requirement in a structural
optimization problem. Elaborating on ideas proposed in [234, 88, 92, 222], the minimum thickness
requirement is implemented in the objective function rather than in the constraints: we minimize a
penalty functional PMinT(Ω) for the minimum thickness under constraints on the volume and compliance
of shapes, i.e. we solve:

min PMinT(Ω)

s.t.

{
C(Ω) ≤ gmax

Vol(Ω) ≤ Vmax.

(4.4.15)
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g
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(a) Setting of the optimization problem. Small black areas correspond to non optimiz-
able parts of the design domain.

(b) Optimized shape without maximum thickness constraint (max dΩ =0.36).

(c) Optimized shape with maximum thickness constraint.

Figure 4.22: Physical setting and obtained optimized shapes in the 2-d MBB beam optimization test-case of
section 4.4.2 (max |dΩ| =0.26).
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Figure 4.23: Optimization histories for the shape optimization problem (4.4.13) of the 2-d MBB-Beam of sec-
tion 4.4.2 without including a maximum thickness constraint. Final values: volume Vol(Ω) =1.88, and compliance
C(Ω) =29.96.
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Figure 4.24: Optimization histories for the shape optimization problem (4.4.13) of the 2-d MBB-Beam of sec-
tion 4.4.2 with maximum thickness constraint. Final values: Vol(Ω) =1.96, compliance: C(Ω) =30.03, and
penalty PMaxT(Ω) =0.25.

This strategy is expected to work because our optimization algorithm is designed to satisfy violated con-
straints first, before then attempting to reduce the objective function while maintaining the constraints
respected.

The penalty functional PMinT(Ω) we considered in our case when solving (4.4.15) is taken from [234]
and is specially designed to have a zero derivative when the constraint (4.4.14) is satisfied:

PMinT(Ω) = −
∫

Ω

d2
Ω max(dΩ + dmin/2, 0)2dx. (4.4.16)

The shape derivative of PMinT(Ω) is given by

DPMinT(Ω)(θ) = −
∫

Ω

2(dΩ max(dΩ + dmin/2, 0)2 + d2
Ω max(dΩ + dmin/2, 0))d′Ω(θ)dx. (4.4.17)

Note that an increase in perimeter entails a decrease in the value of PMinT(Ω), but this behavior is
tempered in our case by the volume constraint. Variants can be considered to address such an issue, and
we refer to [234] for the details.

Optimization of the shape of a 2-d cantilever beam with minimum thickness constraint

We first consider the classical two-dimensional cantilever benchmark example, as depicted on Figure 4.25:
in a box D with size 2×1, shapes Ω are clamped on their left-hand side, and a vertical load g = (0,−10)
is applied on the middle of their right-hand side.

The optimization problem (4.4.15) is solved with the parameter values gmax =70.00 and Vmax =0.80.
The resulting optimized shapes are displayed on Figure 4.26 without including minimum thickness con-
straint (we minimize the volume Vol(Ω) subject to the compliance constraint as in (4.4.13)), and with
the minimum thickness for two different values of dmin. The corresponding convergence histories are
shown on Figs. 4.27 to 4.29.

g

2

1

Figure 4.25: Setting of the cantilever test case of section 4.4.3.
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(a) Optimized shape without including minimum thickness
constraint.

(b) Optimized shape with minimum thickness constraint
(dmin = 0.1).

(c) Optimized shape with minimum thickness constraint
(dmin = 0.2).

Figure 4.26: Optimization of the shape of the 2-d cantilever of section 4.4.3 under minimum thickness constraint.
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Figure 4.27: Optimization history for the 2-d cantilever optimization problem (4.4.13) of section 4.4.3 without
minimum thickness constraint. Final values: volume Vol(Ω) =0.75, and compliance C(Ω) =70.29.

0 50 100 150 200 250 300
−0.027

−0.026

−0.025

−0.024

−0.023

−0.022

−0.021

−0.020

(a) Minimum thickness PMinT(Ω)

0 50 100 150 200 250 300
70

75

80

85

90

95

(b) Compliance C(Ω)

0 50 100 150 200 250 300
0.8

0.9

1.0

1.1

1.2

1.3

1.4

(c) Volume Vol(Ω)

Figure 4.28: Optimization history for the 2-d cantilever optimization problem (4.4.13) of section 4.4.3 with
minimum thickness constraint. (dmin = 0.1) Final values : volume Vol(Ω) =0.80, compliance: C(Ω) =70.26.



4.4.3. Shape optimization examples under a minimum thickness constraint 185

0 50 100 150 200 250 300
−0.050

−0.045

−0.040

−0.035

−0.030

−0.025

(a) Minimum thickness PMinT(Ω)

0 50 100 150 200
30

35

40

45

50

55

60

(b) Compliance C(Ω)

0 50 100 150 200 250 300
0.8

0.9

1.0

1.1

1.2

1.3

1.4

(c) Volume Vol(Ω)

Figure 4.29: Optimization history for the 2-d cantilever optimization problem (4.4.13) of section 4.4.3 with
minimum thickness constraint. (dmin = 0.2). Final values: volume Vol(Ω) =0.80, and compliance: C(Ω) =70.09.

Shape optimization of a 2-d MBB Beam under a minimum thickness constraint

We now apply the same methodology on the MBB beam test-case of section 4.4.2. Optimized shapes are
compared on Figure 4.30 without minimum thickness constraint (the result being that of Figure 4.22b),
and for two values of dmin. The corresponding convergence histories are shown on Figs. 4.23, 4.31
and 4.32. Finally, some intermediate shapes of the optimization process are reprinted on Figure 4.33.

One observes that for the last case of Figure 4.30c with dmin = 0.2, the minimum thickness constraint
is not satisfied everywhere but a substantial improvement is visible over the first design of Figure 4.30a.
Notably, this approach is sufficiently flexible to guide the optimization path towards shapes with very
different topologies.

(a) Optimized shape without minimum thickness constraint.

(b) Optimized shape with minimum thickness constraint (dmin = 0.1).

(c) Optimized shape with minimum thickness constraint (dmin = 0.2).

Figure 4.30: Minimum thickness optimization for a cantilever test case of section 4.4.3.
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Figure 4.31: Convergence histories for the MBB-Beam test-case of section 4.4.3 with minimum thickness con-
straint. (dmin = 0.1). Final values: volume Vol(Ω) =1.89, and compliance C(Ω) =30.17.
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Figure 4.32: Convergence curves for the MBB-Beam test-case of section 4.4.3 with minimum thickness constraint
(dmin = 0.2). Final values: volume Vol(Ω) =1.89, and compliance C(Ω) =30.18.
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(a) No minimum thickness constraint (setting of Figure 4.22b).

(b) Minimum thickness constraint with dmin = 0.1

(c) Minimum thickness constraint with dmin = 0.2

Figure 4.33: Optimization histories for the MBB beam test-case with minimum thickness constraints of sec-
tion 4.4.3: Iterations 0, 10, 40, 100, 150 and 200.
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Heat exchangers are a very topical issue in the topology optimization community with the publication
of an increasing number of dedicated works [255, 258, 189, 271, 275, 205, 10, 104, 116, 225, 266, 303]
This chapter reports on two independent case studies considering the shape optimization of two models
of 2-d heat exchangers.

Section 5.1 considers a liquid-liquid heat exchanger featuring two fluid phases that must not inter-
penetrate. The cornerstone of the optimization problem is the treatment of the non-mixing condition:
in our approach, it is imposed by using a minimum distance constraint between the two phases which
lends itself to the variational method of chapter 4. This test case is inspired from a similar case study
investigated by Papazoglou [255] with a very different (density based) method.

Section 5.2 then addresses the topology optimization of a different, air-oil heat exchanger. The
aim is to determine the shape of the cross sections of oil pipes cooled down by an air flow. We rely
on a different physical model, featuring a thermostatic boundary condition for the temperature on
the optimized interface, which is very convenient to make the problem two dimensional. Since the
optimization problem favors the apparition of very thin and elongated structures, a minimum thickness
constraint is implemented to improve numerical convergence towards more manufacturable designs.

This part is an application of the material developed in the previous chapters: the formulas of
chapter 2 for the shape derivatives of coupled thermal fluid problems, the null space algorithm of chapter 3
for optimization drives the resolution of the optimization problem, and we rely on the variational method
of chapter 4 in order to enforce non penetration or minimum thickness constraints.

5.1 Design optimization of 2-d liquid-liquid heat exchangers with a non-mixing

constraint

This section investigates the shape optimization of a 2-d heat exchanger featuring two liquid phases that
must not interpenetrate. The physical setting considered is described in section 5.1.1. The mathematical
formulation of the optimization problem, including the modeling of the non-penetration constraint is
outlined in section 5.1.2. Details about the computation of associated shape derivatives are provided in
section 5.1.3. Finally, numerical results are presented in section 5.1.4.

5.1.1 Physical setting

We consider a ‘hold-all’ domain D = [0, 10] × [0, 10] = Ωs ∪ Ωf which is the disjoint union of a solid
phase Ωs and a fluid phase Ωf . The fluid phase Ωf = Ωf,hot ∪Ωf,cold is itself constituted of two distinct
channels Ωf,hot and Ωf,cold whose shapes are to be optimized. The phases Ωf,hot and Ωf,cold enter
the domain D with respective inlet temperatures Thot = 100 and Tcold = 0. All other boundaries are
adiabatic, corresponding to a zero Neumann condition ∂T/∂n = 0 for the temperature field T . Two

189
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possible configurations are considered about the location of the inlets and described in the schematic of
Figure 5.1 below:

• Test case 1 (Figure 5.1a): the two liquid phases enter D in opposite directions. The inlet and outlet
cross sections share a common size a = 2.

• Test case 2 (Figure 5.1b): the two liquid phases enter from the same side of D with inlet and outlet
cross sections having a smaller common size a = 1.

Following the notation convention of chapter 2, the reunion of the two inlets, of the two outlets, and of
total fluid-solid interface to be optimized are denoted respectively by ∂ΩDf , ∂ΩNf and Γ. These test cases
are very similar to those considered by Papazoglou [255].
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(a) Test case 1: A hot fluid phase Ωf,hot ⊂ D is entering
from the upper left side of D with a temperature Thot, and
a cold fluid phase Ωf,cold is entering in the reverse direction
from the lower right inlet.
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(b) Test case 2: A hot fluid phase Ωf,hot ⊂ D is entering
from the upper left side of D with a temperature Thot, and
a cold fluid phase Ωf,cold is entering in the same direction at
the lower left inlet (boundary conditions not represented).

Figure 5.1: Settings of the two test cases considered in the optimal design of the heat exchangers of section 5.1
featuring the non-mixing condition d(Ωf,hot,Ωf,cold) ≥ dmin.

The physics involved in this problem are those described in chapter 2, section 3.6.3: the velocity of
the fluid velocity and pressure (v, p) are characterized by the Navier-Stokes equations in the total fluid
domain

Ωf := Ωf,cold ∪ Ωf,hot

while the temperature field T in the whole domain D is determined by the equations of conduction-
convection in both solid and liquid phases Ωs and Ωf :



−div(σf (v, p)) + ρ∇v v = 0 in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩDf

σf (v, p)n = 0 on ∂ΩNf

v = 0 on Γ,

(5.1.1)
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

−div(kf∇Tf ) + ρcpv · ∇Tf = 0 in Ωf

−div(ks∇Ts) = 0 in Ωs

T = 100 on ∂ΩDf ∩ ∂Ωf,hot

T = 0 on ∂ΩDf ∩ ∂Ωf,cold

−kf
∂Tf
∂n

= 0 on ∂ΩNT ∩ ∂Ωf

−ks
∂Ts
∂n

= 0 on ∂ΩNT ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

on Γ.

(5.1.2)

For each of the considered test cases, both fluid phases Ωf,cold and Ωf,hot are assumed to have the same
density ρ = 1 and thermal conductivity kf = 10. They enter the domain D from the inlet boundaries
∂ΩDf ⊂ ∂D with a parabolic velocity profile with maximum norm ||v0||∞ = 1, and they exit at outlet

boundaries ∂ΩNf ⊂ ∂D with the vanishing normal stress condition σf (v, p) ·n = 0, where we recall that
the fluid stress tensor is defined by the Newton law

σf (v, p) := 2νe(v)− pI.

The viscosity ν is the same for both fluids; it is computed by the formula ν := ρa||v0||∞/Re where
Re = 60 is the Reynolds number and a is the size of the inlet (a = 2 or a = 1 for the respective test cases
1 and 2). The capacity coefficient of the fluids is calculated by cp := kfPe/(νRe) with the Péclet number
given by Pe := 500. The solid phase Ωs is assumed to have a larger thermal conductivity coefficient
ks = 110 than the fluid.

5.1.2 Formulation of the shape optimization problem

The aim of the optimal design problem is to find the shape of both fluid phases Ωf := Ωf,cold ∪ Ωf,hot
which maximizes the heat exchanged between the “hot” and “cold” phases under a maximal pressure
drop constraint and a non-mixing condition. This exchanged heat is mathematically appraised by the
opposite of an objective functional J(Ωf ,v(Ωf ), T (Ωf )) which is to be minimized:

J(Ωf ,v(Ωf ), T (Ωf )) := −

(∫
Ωf,cold

ρcpv · ∇Tdx−
∫

Ωf,hot

ρcpv · ∇Tdx

)
.

This quantity can indeed be interpreted as the heat transferred because an integration by part (see also
chapter 2, section 2.5.7) implies that

−J(Ωf ,v(Ωf ), T (Ωf )) =

∫
∂Ωf,cold

ρcpT v · ndy −
∫
∂Ωf,hot

ρcpT v · ndy.

The above expression turns out to be exactly the heat exiting the cold phase minus the one leaving the
hot phase (to be maximized), up to additional constant terms depending on inlet boundary values.

Following chapter 2, section 2.5.7, the pressure drop constraint reads

DP(Ωf ) :=

∫
∂ΩDf

pdy −
∫
∂ΩNf

pdy ≤ DP0

where DP0 is a given threshold value. In our implementation, this value is set according to the initial
domain Ω0

f :

DP0 :=

{
2DP(Ω0

f ) in test case 1,

5DP(Ω0
f ) in test case 2.

The initial domain Ω0
f features two straight pipes which are displayed for each case 1 and 2 on Figure 5.2

below.

Let us now discuss the modeling of the non-mixing condition between both fluid phases. In his
thesis, Papazoglou [255] proposed a multi-material model suited to the use of density based topology
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(a) Test case 1 (b) Test case 2

Figure 5.2: Initial distribution of the fluid domain Ω0
f (in white).

optimization. In the context of the method of Hadamard for shape optimization, the “hot” and “cold”
domains at stake are explicitly defined at every iteration which makes it possible to formulate the non-
mixing constraint in a geometric fashion.

The key idea is to consider the two signed distance functions dΩf,cold and dΩf,hot associated with
the two fluid phases Ωf,cold and Ωf,hot. Following the introduction, this non-penetration condition is
enforced by requiring the hot phase to remain at a minimum distance dmin from the cold phase, which
can mathematically be formulated as:

∀x ∈ Ωf,cold, dΩf,hot(x) ≥ dmin, (5.1.3)

or equivalently
∀x ∈ ∂Ωf,cold, dΩf,hot(x) ≥ dmin. (5.1.4)

Note that the roles of Ωf,hot and Ωf,cold in (5.1.3) and (5.1.4) are interchangeable. For our applications,
we set dmin = 0.15 for the test case 1, and dmin = 0.05 for the test case 2. Following the strategy of Allaire,
Jouve and Michailidis in [30, 234], we consider averaged penalty functionals in order to approximate the
pointwise constraint (5.1.4). Such can be obtained by reformulating (5.1.4) with the infinity norm:∣∣∣∣∣∣∣∣ 1

dΩf,hot

∣∣∣∣∣∣∣∣
L∞(∂Ωf,cold)

≤ 1

dmin
. (5.1.5)

Classically, we consider an approximation of the infinity norm by a Lp norm, which yields an averaged
penalty functional Pcold→hot(Ωf ):

Pcold→hot(Ωf ) :=

(∫
∂Ωf,cold

(
1

dΩf,hot

)p
dy

) 1
p

'
∣∣∣∣∣∣∣∣ 1

dΩf,hot

∣∣∣∣∣∣∣∣
L∞(∂Ωf,cold)

. (5.1.6)

For our application, the parameter p involved is set to p = 4.

Remark 5.1. The formulation (5.1.4) involving ∂Ωf,hot is preferred to that (5.1.3) set on the whole
domain Ωf,hot, because we expect that averaging on a smaller set in (5.1.6) yields in some sense a more
accurate approximation of the infinity norm.

Remark 5.2. This constraint on the distance between the two connected components Ωf,cold and Ωf,hot
is substantially different to the requirement of a minimum thickness for the solid phase Ωs. The use of
the signed distance functions to Ωf,cold (or to Ωf,hot) makes it possible to formulate an actual constraint,
which is much more involved for a minimum thickness for Ωs, in comparison with the approach proposed
by [30] and in section 4.3.4.

In order to balance the effect of the constraint (5.1.6) over both fluid phases: we introduce the sym-
metrized version of (5.1.6):

Phot→cold(Ωf ) :=

(∫
∂Ωf,hot

(
1

dΩf,cold

)p
dy

) 1
p

. (5.1.7)
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It is then convenient to formulate the non-penetration constraint in terms of the harmonic mean of
Phot→cold and Pcold→hot, which yields an averaged measure of the distance d(Ωf,cold,Ωf,hot) between
both phases; the non penetration constraint (5.1.5) is approximated by the following one:

Qhot↔cold(Ωf ) :=
2

Phot→cold(Ωf ) + Pcold→hot(Ωf )
≥ dmin. (5.1.8)

All in all, the considered optimization problem reads:

min
Ωf⊂D

J(Ωf ) = −

(∫
Ωf,cold

ρcpv · ∇Tdx−
∫

Ωf,hot

ρcpv · ∇Tdx

)

s.t.


DP(Ωf ) =

∫
∂ΩDf

pds−
∫
∂ΩNf

pds ≤ DP0

Qhot↔cold(Ωf ) ≥ dmin.

(5.1.9)

This optimization problem is solved with the null space gradient flow described in chapter 3 and the
level set based mesh evolution algorithm of chapter 1, section 1.4.2. The shape derivatives of J(Ωf )
and DP (Ωf ) are computed with the formulas given in volume form in chapter 2, proposition 2.3. The
calculation of the shape derivative of the penalty functional Qhot↔cold(Ωf ) is described in the next
section.

5.1.3 Shape derivative of the non-mixing constraint Qhot↔cold(Ωf )

The expression of the shape derivative of Qhot↔cold(Ωf ) is easily obtained from those of Pcold→hot and
Phot→cold. Since the latter have similar expressions, we content ourselves with an outline of the calculation
of the shape derivative of Pcold→hot. A straightforward computation yields

DPcold→hot(Ωf )(θ) =
1

p

(∫
∂Ωf,cold

1

|dΩf,hot |p
dy

) 1
p−1 [∫

∂Ωf,cold

(
∂

∂n
+ κ

)(
1

|dΩf,hot |p

)
(θ · n)dy

−
∫
∂Ωf,cold

p

|dΩf,hot |p+1
d′Ωf,hot(θ)dy,

]
(5.1.10)

where we recall that d′Ωf,hot(θ) is the Eulerian derivative of the signed distance function dΩf,hot to Ωf,hot
(see chapter 1, section 1.3.2). The first term of the above right-hand side has the usual structure of a
boundary integral which can be easily numerically evaluated as a linear form in terms of θ ·n. The last
term is computed thanks to the variational method proposed in chapter 4. To be quite specific in this
setting involving two distinct phases, we solve

Find uhot ∈ Vω such that ∀v ∈ Vω,∫
∂Ωf,hot

uhotvdy +

∫
D\Σhot

ω(∇uhot · ∇dΩf,hot)(∇v · ∇dΩf,hot)dx =

∫
∂Ωf,cold

p

|dΩf,hot |p+1
vdy, (5.1.11)

where Σhot denotes the skeleton set of Ωf,hot and the weight ω is given by

ω = 1/(1 + 100|dΩf,hot∆dΩf,hot |3.5.

The reader is referred to chapter 4, section 4.2 regarding the definition of the space Vω, which is discretized
with P1 finite elements. Finally, the last integral term in (5.1.10) is readily obtained from the formula∫

∂Ωf,cold

p

|dΩf,hot |p+1
d′Ωf,hot(θ)dy = −

∫
∂Ωf,hot

uhot θ · ndy,

where the right-hand side is a boundary integral involving θ · n which can be easily discretized in our
finite element setting.
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5.1.4 Numerical results for two different configurations

Numerical results are depicted on Figs. 5.3 and 5.5 for the respective test cases 1 and 2. For each test
case, we plot the initial and final designs, the temperature T and the velocity field v, as well as some
intermediate shapes obtained with our algorithm and the convergence histories for the objective and
constraint functionals. We retrieve serpentine shapes as observed in [255].

This test case exhibits two striking features. At first, our approximation (5.1.6) of the L∞ norm
constraint by the averaged penalty functional Pcold→hot(Ωf ) with a Lp norm (p = 4 in our case) works
(surprisingly) very well: the ‘ideal’ pointwise constraint seems to be imposed at all intermediate iterations.
On a different note, it is remarkable that our overall method is able to keep finding better shapes even
after the saturation of the distant constraint, which happens very early in the optimization process. The
reader will notice that some noise affect the convergence curves: we attribute it to inaccuracies related
to the rather large Péclet and Reynolds number considered.

Finally, let us mention that we did not need a very fine mesh of the region of Ωs in between the cold and
the hot domains Ωf,cold and Ωf,hot to handle the distance constraint (5.1.8). We plot on Figs. 5.4 and 5.6
the final meshes of the optimized shape for the respective test cases 1 and 2. For the second test case, it
is visible that a resolution of about ten mesh elements (which means a skeleton located at approximately
five mesh elements only) in between the two pipes allows for a satisfying approximation of the shape
derivative of the distance constraint from the resolution of the variational problem (5.1.11).

5.2 Topology optimization of a 2-d air-oil heat exchanger

We now report on a study issued from a collaboration with Safran Aero Boosters. The problem at hand is
concerned with the optimization of the cross section of an air-oil heat exchanger. Although the original
problem is three-dimensional, a few assumptions allow to reduce it to 2 dimensions. The approach
followed in this part is different to that of the previous section 5.1: it is not necessary to prescribe a
non-mixing constraint for the air and oil phases because we consider a different physical model in which
there is no “solid” phase Ωs; the air phase occupies a domain Ωf to be optimized, and the oil phase is
described by an isothermal boundary condition on ∂Ωf .

The general setting of the considered problem is described in section 5.2.1. Let us emphasize that
the physical model considered in this setting is essentially the same as the fluid thermal model (5.1.1)
and (5.1.2) of the previous section up to a change of boundary conditions on the optimized air-oil interface.
The optimization problem is then mathematically formulated in section 5.2.2, where we define objective
and constraint functions. A minimum thickness constraint is considered for the oil phase in order to
improve the convergence towards manufacturable designs. Section 5.2.3 presents a variety of numerical
results for different initializations and settings of the constraints. We mention the consideration of a
different fluid model featuring a boundary condition on the stagnation pressure in section 5.2.4, which
could be of direct interest for realistic industrial applications. The interesting point is the use of the
rotational formulation of the Navier-Stokes equations [106]. However, our numerical results with this
adaptation are not conclusive. We finally conclude in section 5.2.5 with a few general remarks about the
extension of this approach to more realistic 3-d systems characterized by large Reynolds numbers.

5.2.1 Setting of the case study

The objective of the study is the optimization of the shape and topology of a 2-d air-oil heat exchanger.
The optimization domain D contains an air phase which occupies a subdomain Ωf ⊂ D to be optimized.
The complementary D \Ωf is filled up with oil. The setting of the problem is depicted on the schematic
of Figure 5.7. After a 3-d extrusion in the z direction, the system is interpreted as a heat exchanger
featuring air flowing in the x direction and cooling down oil channels flowing in the transverse z direction.
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(a) Initial design (b) Optimized design

(c) Initial temperature field (d) Final temperature field. (e) Final norm fields for the fluid ve-
locity.

(f) Intermediate iterations 0, 10, 20, 30, 40 and 200
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(g) Objective function J(Ωf ). Final
value: J(Ωf ) =-1.5e+04.
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(h) Penalty functional Qcold↔hot for
the non-mixing constraint. Final
value: Qcold↔hot(Ωf ) = 0.15.
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(i) Pressure drop DP(Ωf )/DP(Ω0
f ).

Final value: DP(Ωf )/DP(Ω0
f ) = 2.3.

Figure 5.3: Optimization results for the test case 1 (cold and hot inlets entering D from opposite sides) of
section 5.1.

Figure 5.4: Zoom on a mesh of an intermediate optimization iteration.
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(a) Initial design (b) Optimized design

(c) Initial temperature field (d) Final temperature field. (e) Final norm fields for the fluid velocity.

(f) Intermediate iterations 0, 8, 20, 50, 88 and 200
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(g) Objective function J(Ωf ). Final
value: J(Ωf ) =-2.5e+04.
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(h) Penalty functional Qcold↔hot for
the non-mixing constraint. Final
value: Qcold↔hot(Ωf ) = 0.05.
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(i) Pressure drop DP(Ωf )/DP(Ω0
f ).

Final value: DP(Ωf )/DP(Ω0
f ) = 1.9.

Figure 5.5: Optimization results for the test case 2 (cold and hot inlets entering D from the same side) of
section 5.1.

Figure 5.6: Zoom on a mesh of an intermediate optimization iteration.
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H = 1

L = 0.85

D

Ωf

AIR INLET

OIL INLET

∂Ωf,in

∂Ωf,out

Γ

∂Ωf,wall

∂Ωf,wall

x

y
z

Figure 5.7: Setting of the air-oil heat exchanger of section 5.2.

The oil filling the phase D\Ωf has a much higher thermal conductivity than air so that its temperature
T can be considered to be uniform: T = Toil in D\Ωf . Assuming in addition the interface Γ to be made
of a solid phase that is assumed to be a sufficiently thin and conductive material, it is sufficient to
describe the system by the single physics of the air phase with a thermostatic temperature condition
T = Toil on the interface Γ.

The objective of the study is to demonstrate the feasibility of topology optimization with the method
of Hadamard for the maximization of the heat exchanged between the two phases, under a maximum
constraint on the outlet pressure drop.

5.2.2 Physical modeling and formulation of optimization problems

The air phase is characterized by fluid velocity and pressure (v, p) solutions to the incompressible steady
state Navier-Stokes equations:

−div(σf (v, p)) + ρ∇v v = 0 in Ωf

div(v) = 0 in Ωf

v = v0 on ∂Ωf,in

σf (v, p)n = 0 on ∂Ωf,out

v = 0 on ∂Ωf,wall

v = 0 on Γ,

(5.2.1)

where the fluid stress tensor is given by σf (v, p) = 2νe(v)− pI as in the previous section 5.1. The fluid
velocity v then determines a temperature field T through the following convection diffusion equation:

−div(kf∇T ) + ρcpv · ∇T = 0 in Ωf

T = Tin on ∂Ωf,in

−kf
∂T

∂n
= 0 on ∂Ωf\∂Ωf,in

T = Toil on Γ.

(5.2.2)

This model differs from the one considered in the previous section (equations (5.1.1) and (5.1.2)) due to
the fact that a thermostatic boundary condition T = Toil is imposed on the interface Γ rather than a
diffusion model within the complementary subdomain D\Ωf . Note that we assume, as in our previous
studies, a zero normal temperature flux on the wall and outlet boundaries ∂Ωf,wall and ∂Ωf,out. The
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Input velocity ||v0|| Pressure loss threshold DP0 Re Pe

Configuration 1 10 1300 40 475

Configuration 2 25 1030 100 1200

Configuration 3 40 475 160 1900

Table 5.1: Configurations considered for the input velocity and pressure constraint values.

fluid is entering the left boundary ∂Ωf,in with a parabolic velocity profile v0 with maximum norm value
||v0||∞. The “cold” air flow Ωf is entering with a temperature Tin := 310. The temperature of the
“hot” oil phase D\Ωf flowing in the opposite direction is constant and it is given by Toil = 400. The
capacity and density coefficients of the fluid are set to ρ = 1, cp = 1. Several values are considered for
the viscosity ν, the conductivity coefficient kf and for the intensity ||v0||∞, which are discussed below.

Definition of objective and constraint functions The goal is to maximize the exchanged heat
between the air phase and the oil phase while imposing an upper bound on the static pressure drop:

min
Ωf⊂D

J(Ωf ) := −
∫

Ωf

ρcpv · ∇Tdx

s.t. DP(Ωf ) :=

∫
∂Ωf,in

pds−
∫
∂Ωf,out

pds ≤ DP0.

(5.2.3)

Upon integration by parts, the objective function J(Ωf ) rewrites as the opposite of the heat transported
from the inlet boundary ∂Ωf,in to the outlet boundary ∂Ωf,out:

J(Ωf ) = −

(∫
∂Ωf,in

ρcpTv · nds+

∫
∂Ωf,out

ρcpTv · nds

)
.

Although mathematically equivalent, we prefer to use the volume form in (5.2.3) which seems to us more
accurate numerically (following the previous section and chapter 2, section 2.5.7).

The optimization problem (5.2.3) is solved for several values for the input velocity ||v0||∞ and the
pressure loss threshold DP0. The details of the considered three situations are provided in Table 5.1
below.

Reynolds, Péclet numbers and numerical values of the physical parameters Since we do
not rely on a turbulent model in the Navier-Stokes equations (5.2.1) for the determination of the fluid
velocity and pressure (v, p), our study is restricted to moderate values of Reynolds and Péclet numbers.
The viscosity and conductivity coefficients ν and kf are computed so as to fix the Reynolds and Péclet
number

Re :=
ρ||v0||∞H

ν
, Pe :=

ρcp||v0||∞H
kf

to the values provided for each configuration in Table 5.1.

Minimum thickness constraint for the oil phase cross section The resolution of the optimization
problem (5.2.3) tends to produce very thin and elongated shapes for the oil cross section. These are
favorable for the optimization problem (5.2.3), however they are numerically unstable. Indeed, small
components of the design thinner than the prescribed mesh size tend to disappear due to numerical
diffusion during the optimization process. We therefore consider an alternative version of (5.2.3) which
tends to impose a minimum thickness dmin of the oil channels. This constraint could also be of interest in
the perspective of the manufacturing process. We follow the strategy proposed in chapter 4, section 4.4.3:
the performance of the system J(Ωf ) is prescribed to be at least as good as a threshold value J0, and
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we minimize instead an energy E(Ωf ) which favors areas of D\Ωf thicker than dmin:

min
Ωf⊂D

E(Ωf ) := −
∫
D\Ωf

d2
Ωf

max(−dΩf + dmin/2, 0)2dx

s.t.

{
DP(Ωf ) ≤ DP0

J(Ωf ) ≤ J0.

(5.2.4)

The reader is referred to chapter 4 for the computation of the shape derivative of E(Ωf ). The threshold
value J0 measuring the performance of the heat exchange is determined empirically from the values
obtained with the resolution of the original problem (5.2.3) which does not feature the minimum thickness
constraint. For our application, we took J0 = 10000.

Shape derivatives for the heat exchanger problem The physics considered for this test case is
essentially the same as that of (5.1.1) and (5.1.2); the only difference is the Dirichlet boundary condition
T = Toil on the interface Γ. It is easily verified that the shape derivative formulas provided in proposi-
tions 2.3 and 2.4 are still valid up to a change of boundary condition for the thermal adjoint equation:
the adjoint problem (2.4.9) is solved with the boundary condition S = 0 on Γ. Then, it can be shown
that the shape derivative of an arbitrary functional J(Ωf ,v(Ωf ), p(Ωf ), T (Ωf )) in volume and surface
forms read respectively:

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ))

]
(θ) =

∂J

∂θ
(θ) +

∫
Ωf

[−(σf (v, p) : ∇w + ρw · ∇v · v)div(θ)] dx

+

∫
Ωf

[σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ) + ρw · (∇v∇θ) · v]dx

−
∫

Ωf

div(θ)(kf∇T · ∇S + ρcp(v · ∇T )S)dx

+

∫
Ωf

[
kf (∇θ +∇θT )∇T · ∇S + ρcpv · (∇θT∇T )S

]
dx,

(5.2.5)

d

dθ

[
J(Γθ,v(Γθ), p(Γθ), T (Γθ))

]
(θ) =

∂J

∂θ
(θ) +

∫
Γ

(
2νe(w) : e(v) + kf

∂T

∂n

∂S

∂n

)
(θ · n)ds. (5.2.6)

where the notation J refers to the modified functional of (2.4.7) introduced in chapter 2.

5.2.3 Numerical results

Both optimization problems (5.2.3) and (5.2.4) are solved for the three configurations considered in
Table 5.1. Since there is no unique solution, we propose a set of 24 results obtained by varying the
shape chosen for the initialization. These are reported in the Table 5.2 below where we display the
final temperature and kinetic energy fields. We note that our optimization algorithm is able to (i)
create recirculating fluid regions favorable to heat exchange and (ii) make the transverse oil channels
assume an aerodynamic shape limiting the output pressure loss. We also observe that the effect of the
minimum thickness constraint in (5.2.4) is most significant on configurations with maximal input velocity
||v0||∞ = 40 which feature the most elongated structures. A few intermediate shapes are reported in
Figs. 5.8a to 5.8c.

We relied on a rather fine mesh resolution (the minimum edge size was of the order of hmin = 0.003),
which is illustrated on Figure 5.9 where the mesh of the final shape is displayed for one of the test cases.

These results point out that a rather large variety of candidate shapes may be satisfactory solutions
for the heat exchanger problem (5.2.3). Although the test case remains academic because we do not take
turbulence into account, these rather unconventional designs further highlight longer term perspectives
for topology optimization in the context of coupled fluid thermal industrial applications.

Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)
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Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 1
||v0||∞=10
DP0=1300
Jfinal =4350
DPfinal =1113
Without min.
thickness con-
straint

Test case 2
||v0||∞=10
DP0=1300
Jfinal =4346
DPfinal =1217
With min.
thickness con-
straint

Test case 3
||v0||∞=25
DP0=1030
Jfinal =8089
DPfinal =983
Without min.
thickness con-
straint

Test case 4
||v0||∞=25
DP0=1030
Jfinal =9742
DPfinal =1030
With min.
thickness con-
straint
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Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 5
||v0||∞=40
DP0=475
Jfinal =3472
DPfinal =392
Without min.
thickness con-
straint

Test case 6
||v0||∞=40
DP0=475
Jfinal =7285
DPfinal =520
With min.
thickness con-
straint

Test case 7
||v0||∞=10
DP0=1300
Jfinal =4086
DPfinal =1308
Without min.
thickness con-
straint

Test case 8
||v0||∞=10
DP0=1300
Jfinal =4168
DPfinal =1188
With min.
thickness con-
straint
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Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 9
||v0||∞=25
DP0=1030
Jfinal =7667
DPfinal =968
Without min.
thickness con-
straint

Test case 10
||v0||∞=25
DP0=1030
Jfinal =7508
DPfinal =1112
With min.
thickness con-
straint

Test case 11
||v0||∞=40
DP0=475
Jfinal =5731
DPfinal =479
Without min.
thickness con-
straint

Test case 12
||v0||∞=40
DP0=475
Jfinal =6847
DPfinal =524
With min.
thickness con-
straint
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Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 13
||v0||∞=10
DP0=1300
Jfinal =4208
DPfinal =1140
Without min.
thickness con-
straint

Test case 14
||v0||∞=10
DP0=1300
Jfinal =4252
DPfinal =1157
With min.
thickness con-
straint

Test case 15
||v0||∞=25
DP0=1030
Jfinal =7785
DPfinal =1022
Without min.
thickness con-
straint

Test case 16
||v0||∞=25
DP0=1030
Jfinal =8711
DPfinal =1106
With min.
thickness con-
straint
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Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 17
||v0||∞=40
DP0=475
Jfinal =6236
DPfinal =470
Without min.
thickness con-
straint

Test case 18
||v0||∞=40
DP0=475
Jfinal =7822
DPfinal =498
With min.
thickness con-
straint

Test case 19
||v0||∞=10
DP0=1300
Jfinal =3361
DPfinal =1149
Without min.
thickness con-
straint

Test case 20
||v0||∞=10
DP0=1300
Jfinal =3582
DPfinal =1064
With min.
thickness con-
straint



5.2.4. An alternative model featuring a stagnation pressure boundary condition 205

Test case T (Initial design) T (Optimized design) ||v||2 (Optimized design)

Test case 21
||v0||∞=25
DP0=1030
Jfinal =2972
DPfinal =986
Without min.
thickness con-
straint

Test case 22
||v0||∞=25
DP0=1030
Jfinal =5330
DPfinal =1589
With min.
thickness con-
straint

Test case 23
||v0||∞=40
DP0=475
Jfinal =2847
DPfinal =476
Without min.
thickness con-
straint

Test case 24
||v0||∞=40
DP0=475
Jfinal =4925
DPfinal =1051
With min.
thickness con-
straint

Table 5.2: Topology optimization results for the air-oil heat exchanger case study.

5.2.4 An alternative model featuring a stagnation pressure boundary condition

Industrial specifications of heat exchangers often impose prescribed input pressure values Pin and Pout
at the inlet and the outlet of the system rather than the upper bound condition DP(Ωf ) ≤ DP0 on the
pressure loss. Furthermore, Pin and Pout correspond to the “stagnation” pressure p + ρv2/2 (v = ||v||2
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(a) Test case 8, ||v0||∞=25

(b) Test case 10, ||v0||∞=10

(c) Test case 12, ||v0||∞=40

Figure 5.8: Iterations 0, 10, 20, 100, 200, 400 for several test case configurations.

Figure 5.9: Mesh of the final shape of a test case featuring ||v0|| = 10.
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in our case) rather than the static pressure p (the “stagnation pressure” can be directly experimentally
measured with pitot tubes). These considerations suggest to consider a variant of the optimization
problem (5.2.3) where the pressure loss constraint would be enforced as a boundary condition involving
the pressures Pin and Pout in the Navier-Stokes equations (5.1.1).

It turns out that it is indeed possible to impose the value of the stagnation pressure upon a judicious
rewriting of the Navier-Stokes equations in their classical “rotational form”.

Rewriting of the physical model and shape derivatives

The Navier-Stokes system in rotational form classically reads

−ν∆v +∇
(
p+

1

2
||v||2

)
+ ρ(∇× v)× v = 0 in Ωf

div(v) = 0 in Ωf

p+
1

2
ρ||v||2 = Pin on ∂Ωf,in

v × n = 0 on ∂Ωf,in

p+
1

2
ρ||v||2 = Pout on ∂Ωf,out

v × n = 0 on ∂Ωf,out

v = 0 on ∂Ωf,wall

v = 0 on Γ.

(5.2.7)

The associated variational formulation then reads (see the works of Conca et. al. [105, 106]):

Find (v, q) ∈ Vv,q such that ∀(w, r) ∈ Vv,q,∫
Ωf

[ν(∇× v) · (∇×w) + ρ(∇× v)× v ·w − rdiv(v)− qdiv(w)]dx

= −
∫
∂Ωf,in

Pinw · nds−
∫
∂Ωf,out

Poutw · nds (5.2.8)

where Vv,q is the functional space

Vv,q = {(v, q) ∈ H1(Ω,Rd)× L2(Ω)/R |v = 0 on Γ ∪ ∂Ωf,wall and v × n = 0 on ∂Ωf,in ∪ ∂Ωf,out}.

We then consider the minimization problem (5.2.3) without the pressure loss constraint:

min
Ωf⊂D

J(Ωf ). (5.2.9)

Since the variational formulation (5.2.8) is different to that associated with the more standard Navier-
Stokes equations (5.2.1), the shape derivative of J(Ωf ) needs to be recomputed. Very briefly, the adjoint
fluid variable, denoted (w, r), is obtained by solving the following variational problem:

Find (w, r) ∈ Vv,q such that ∀(w′, r′) ∈ Vv,q,∫
Ωf

ν(∇×w) · (∇×w′) + ρ(∇×w′)× v ·w + ρ(∇× v)×w′ ·w − rdiv(w′)− r′div(w)dx

= −
∫

Ωf

ρcpw
′ · ∇TSdx+

∂J

∂(v, q)
· (w′, r′). (5.2.10)

The thermal adjoint variable S is computed by the previous equation of chapter 2, (2.4.9). It can then
be shown that the shape derivative of an arbitrary functional J(Γ,v, q, T ) reads in surface form:

d

dθ

∣∣∣∣
θ=0

[J(Ωθ,vθ, qθ, Tθ)] · θ =
∂J

∂θ
· θ +

∫
∂Ωf

(
ν(∇×w) · (∇× v) + kf

∂T

∂n

∂S

∂n

)
(θ · n)ds. (5.2.11)

Remark 5.3. This rotational formulation does not allow to prescribe the stagnation pressure P +
ρ||v||2/2 on some parts of the boundary ∂Ωf , and the normal stress flux σf (v, p) ·n at some other parts,
which could be also of industrial interest. However, this might be possible by resorting to a different
variational treatment accounting for these boundary conditions, see [68].
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Numerical results

Our numerical results do not seem conclusive; the main reason lies in that the boundary condition on the
stagnation pressure does not allow to bound sufficiently the values of the velocity in the whole domain.
Indeed, the prescribed input and output pressure tends to make the flow velocity very large between close
obstacles: the Reynolds number is not well controlled, which makes the numerical treatment difficult.

However when the optimization succeeds, the optimized shapes look similar to those obtained pre-
viously with the pressure loss imposed as a constraint. An instance of such shapes is illustrated on
Figure 5.10 below. For these reasons, it seems to us preferable to stick to the first approach (5.2.3) (or

(a) Initial shape (T ) (b) Optimized shape (T ) (c) Optimized shape (||v||)

Figure 5.10: An optimization result for the shape optimization of the problem (5.2.9) featuring the Navier-Stokes
equations (5.2.7) with a boundary condition on the stagnation pressure p+ ρv2/2.

its reformulation (5.2.4) accounting for the minimum thickness constraint), which is also that followed
by the majority of academics involving heat exchangers, e.g. [116, 255].

5.2.5 Conclusions

In this study, we have demonstrated the relevance of shape and topology optimization for generating
unconventional heat exchanger designs. The method could be extended to other choices of physical
models up to the use of different formulas for the shape derivatives: future work could take into account
much larger, turbulent, Reynolds and Péclet numbers by considering turbulence models. Once again, we
emphasize the ability of the method to take into account arbitrary and multiple optimization constraints.
The extension to true 3-d test cases at low Reynolds number would not add additional theoretical
difficulties in principle; however the implementation is delicate and still the object of ongoing work.

Let us mention, however, that several difficulties are still to be expected regarding the applications of
such shape optimization methods to realistic industrial applications featuring large Reynolds and Péclet
numbers (typically of the order of 30,000 or more).

First, when the Reynolds number is large, the assumption of stationary velocity and pressure fields
does not make sense because it is well known that stationary solutions are unstable; the time-dependent
solution varying rather on some attractor [304].

Second, even assuming the optimization to be numerically tractable, current heat exchanger designs
suggest that optimal topologies would be characterized by a microstructure featuring very small details
periodically repeated. Such designs would be very difficult to obtain with the method of Hadamard
because very costly to mesh explicitly. It seems to us that a homogenization approach would be relevant
for tackling such design problems. The recent works of [254, 166, 27] provide some perspectives regarding
the automatic generation of optimized microstructures from homogenized models in the context of linear
elasticity. In the final chapter 7, we provide a few preliminary theoretical contributions towards the
application of such methods for fluid models.
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This chapter attempts to demonstrate the ability of multiphysics shape optimization by the method
of Hadamard to deal with 3-d problems approaching industrial test cases.

From the numerical point of view, the extension of the shape optimization algorithm outlined in
chapter 1, section 1.4 from 2-d to 3-d is delicate. Several additional ingredients are required in order
achieve a satisfactory efficiency, or even to be able to achieve a single optimization run (for fluid appli-
cations). The first section 6.1 outlines the most important features of our implementation: we namely
discuss the use of domain decomposition techniques and preconditioning for the resolution of the 3-d
multiphysics state equations involved in our shape optimization test cases. We also provide beforehand
a brief presentation of our python/FreeFEM implementation, and some details about various technical
operations (rarely described in the litterature) applied in the course of optimization iterations in order
to enforce non-optimizable regions, symmetry and non-degeneracy of discretized shapes.

In the next section 6.2, we present a variety of 3-d test cases solved thanks to our implementation.
Four examples are considered: the first three of them are single physics applications in either linear
elasticity, heat conduction, or fluid mechanics. The fourth one is a true multiphysics example; it is
concerned with fluid-structure interaction. These test cases are described as moderately large-scale, in
the sense that the problems considered make extensive use of parallel computing and preconditioning in
order to be run in reasonable CPU time, however their size remains rather small (our largest test case
features up to 1.7 millions degrees of freedom) when compared to that of industrial problems (reaching
about the billion of degrees of freedom). Our results, however, are promising and are preliminary to
more challenging applications.

6.1 Implementation recipes for 3-d constrained topology optimization of mul-

tiphysics system

In this section, we discuss several aspects of our implementation in python (version 3.6) and FreeFEM

[183] for 3-d shape and topology optimization of coupled thermal-fluid elastic systems. The first two
sections 6.1.1 and 6.1.2 provide information regarding several choices of programming paradigms. Sec-
tion 6.1.3 describes several “hidden” operations applied to shapes in the course of optimization iterations,
in order to account for non-optimizable regions, symmetry, or to avoid mesh degeneracy. Finally, our
parallel implementation of finite element operations using domain decomposition and preconditioning is
discussed in section 6.1.4.

209
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6.1.1 Abstract programming paradigm for constrained shape optimization

A single implementation of the null space gradient flow algorithm as described in chapter 3, algorithm 3.1
is used for both 2-d and 3-d problems, which could in principle be used for any optimization problem
set on a manifold as soon as a generic minimal set of ingredients (described below) is provided.

In a few words, the algorithm was implemented in python via a nullspace function whose prototype
reads

def nullspace(problem: Optimizable, params=None, results=None):

"""

Solve the optimization problem

min J(x)

x in V

under the constraints

g_i(x)=0 for all i=1..p

h_j(x)<=0 for all j=1..q

problem: an instance of the class Optimizable

params: a dictionary of optimization parameters

results: a previous output of the nullspace function

(the algorithm will restart from the last iteration)

"""

The most important argument of the function nullspace is the variable problem which instantiates an
abstract class Optimizable. An Optimizable object encodes a generic optimization problem

min
x∈X

J(x)

s.t.

{
gi(x) = 0 for 1 ≤ i ≤ p

hj(x) ≤ 0 for 1 ≤ j ≤ q.

(6.1.1)

The set X is assumed to be a manifold equipped with the structure outlined in chapter 3, section 3.6.1
whose representative illustration is reproduced on Figure 6.1 below with the current notation. In order

retract(x, dx)

x

dx

X

Figure 6.1: Tangential motion and retraction on an abstract manifold X .

to solve (6.1.1), it is sufficient that the following information be provided (e.g. as object methods) by
the supplied instance problem of an Optimizable object:

• J, gi, hj : X → R: objective functions and constraints;

• DJ, Dgi, Dhj : X → Rn: Fréchet derivatives of objective and constraints as functions. Here, n is
thought of as the dimension of the tangent space of X to x ∈ X . For such a given x, DJ(x)T dx is
the variation of the objective function J at x along the tangent direction dx ∈ Rn;

• A : X → Rn×n: local inner product needed for the computation of gradients

∇J(x) := A(x)−1DJ(x), ∇gi(x) := A(x)−1Dgi(x), ∇hj(x) := A(x)−1Dhj(x) ∈ Rn.
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Of course, A(x) must be a symmetric positive definite matrix.

• retract : X ×Rn → X : a retraction that convert a current point x and a tangent vector dx ∈ Rn
into a new point retract(x, dx) ∈ X on the manifold X . This mapping must be compatible with
the previous definitions of the derivatives DJ, Dgi and Dhj in the following sense:

J(retract(x,∆tdx)) = J(x) + ∆t DJ(x)T dx + o(∆t) as ∆t→ 0.

• accept: an optional function that is called by the optimization algorithm when the next point
x ∈ X is accepted, which serves e.g. for saving current available information before proceeding to
the next iteration.

The above ingredients constitute all the necessary information required by any first order optimization
algorithm acting on a manifold (equipped with a retraction), and in particular by the null space algorithm
outlined in chapter 3, algorithm 3.1. In our implementation for shape optimization, the current guess
x contains the path to the current mesh file of the optimized domain, and dx is a finite element vector
discretizing a deformation field. The function A returns the finite element matrix associated with the
regularization, while retract encodes the advection and remeshing step. When passing from 2-d to 3-d,
or if we were to rely on other numerical representations of shapes (e.g. using the level set method on
a fixed), it is sufficient to update the above functions A and retract accordingly. This programming
paradigm allows us to implement separately 2-d and 3-d test case (which required different solvers for
the physical state equations), while calling the same null space optimization algorithm.

6.1.2 Interfacing python and FreeFEM

Our treatment of 2-d and 3-d shape optimization test cases with the method of Hadamard is implemented
in both programming languages python and FreeFEM [183]:

1. on the one hand, the nullspace optimization routine of the previous section is conveniently im-
plemented in python, which is a very user-friendly language and which allows for easy debugging.
For instance, it is possible to pause a running instance of the code at any step of the optimization
process (such as calling mmg for remeshing, computing the signed distance function with mshdist,
etc. . . );

2. on the other hand, FreeFEM is used for all finite element related operations: the assembly of
sparse matrices discretizing variational forms, integration on meshed subdomains or boundaries,
the resolution of linear systems, the use of domain decomposition methods, mesh interpolation,
etc. . . In particular, the language relies on a C + + kernel which allows to run these operations
very efficiently. Furthermore, the syntax of the language is very close to mathematics and it allows
to easily implement the expressions of the shape derivatives of chapter 2, propositions 2.3 and 2.4
(see also [34] for detailed examples of the use of FreeFEM in topology optimization).

The interface between both languages is realized thanks to a preprocessing meta-language: special in-
structions are added to FreeFEM (non executable) source files which are then parsed by a python routine
and converted into a proper .edp file to be executed by FreeFEM. An example of such an augmented
.edp code taken from our 2-d implementation is provided below:

SET (FLUID_DOMAIN,"3")

DEFAULT (THERMIC_ENABLED,"0")

IF THERMIC_ENABLED

solve thermic(T,S)=

int2d(Th,$FLUID_DOMAIN)(kf*grad(T)'*grad(S)

IF FLUID_ENABLED

\\+rho*cp*grad(T)'*[vx,vy]*S

ENDIF

\\)

+int2d(Th,$SOLID_DOMAIN)(ks*grad(T)'*grad(S))

IFDEF Qf

-int2d(Thf)($Qf*S)

ENDIF
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IFDEF Qs

-int2d(Ths)($Qs*S)

ENDIF

IFDEF h

+int1d(Th,$BCTN)($h*S)

ENDIF

IFDEF T0

+on($BCTD,T=$T0)

ENDIF

\\;

ENDIF

This piece of code implements the variational form of chapter 2, (2.4.3):

thermic(T,s) =

∫
Ωs

ks∇T · ∇Sdx+

∫
Ωf

(kf∇T · ∇S + ρcpSv · ∇T )dx

=

∫
Ωs

QsSdx+

∫
Ωf

QfSdx+

∫
∂ΩNT

hSds.

The blue keywords SET, DEFAULT, IF, etc. . . correspond to preprocessing instructions parsed by python:
they determine sections of the code to be included in the final executable depending on the values of the
preprocessing variables prefixed by the dollar ‘$’ symbol. For instance, the term ρcpSv · ∇T will not be
included in the final code if $FLUID ENABLED is not set to 1. The dollar prefixed variables can be easily
accessed from the python implementation, or assigned directly in the FreeFem code with the instructions
SET or DEFAULT. The double backslash symbols ‘\\’ indicates that the previous line carriage return must
be removed. For instance, if $THERMIC ENABLED=1, $FLUID ENABLED=1, $T0=100 and $BCTD=1, then
the above source code is converted by our python parser as the following “standard” FreeFEM source
code

solve thermic(T,S)=

int2d(Th,3)(kf*grad(T)'*grad(S)+rho*cp*grad(T)'*[vx,vy]*S)

+int2d(Th,2)(ks*grad(T)'*grad(S))

+on(1,T=100);

Such a preprocessing language proves to be very convenient in order (i) to use a single source code for
all our test cases whatever the number of considered physical equations and (ii) to easily change test
case parameter values from either python or FreeFEM thanks to the dollar prefixed variables and (iii)
maintain a good readability of the implementation.

FreeFEM source files augmented with preprocessing instructions are called by the various functions
J,DJ, A, retract, etc. . . declared in the implementation of an Optimizable object (see the previous
section 6.1.1). Below is reported a typical output of a running instance of our 2-d code, which offers
a clear picture of all the elementary steps of the shape optimization algorithm outlined in chapter 1,
algorithm 1.1.

0. J=0.1079 G=[0.302] H=[]

FreeFem++ 01_cantilever/01_run/scripts/sensitivities.edp -nw (0.44)

FreeFem++ 01_cantilever/01_run/scripts/scalar_product.edp -nw (0.29)

advect -nocfl -dt 1.0 01_cantilever/01_run/meshes/Th_0000.mesh -c

01_cantilever/01_run/scalars_dir/phi_0000.chi.sol

-s 01_cantilever/01_run/tmp/theta.sol

-o 01_cantilever/01_run/tmp/phi.o.sol (0.08)

FreeFem++ 01_cantilever/01_run/scripts/symmetrize.edp -nw (0.27)

mmg2d_O3 -nr -hmin 0.02 -hmax 0.1 -hgrad 1.3 -hausd 1e-4 -ls

-sol 01_cantilever/01_run/tmp/phi_tmp.sol

-out 01_cantilever/01_run/tmp/Th.o.mesh

01_cantilever/01_run/meshes/Th_0000.mesh (0.16)

mv 01_cantilever/01_run/tmp/Th.o.mesh 01_cantilever/01_run/tmp/Th_tmp.mesh (0.00)

mshdist -v 0 -ncpu 1 01_cantilever/01_run/tmp/Th_tmp.mesh -dom -fmm (0.03)
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FreeFem++ 01_cantilever/01_run/scripts/solve_state.edp -nw (0.43)

[...]

6.1.3 Processing operations on level set functions: generation of initial designs, taking
into account non-optimizable regions, symmetrization and regularization

We now describe a few very classical operations that are implemented in most level-set based topology
optimization codes but which are not often detailed in published works. The context and notation
assumed are that of chapter 2: a hold-all domain D ⊂ Rd (d = 2 or 3) is considered, and the goal is
to optimize the shape of the interface Γ = ∂Ωs ∩ ∂Ωf between a solid subdomain Ωs ⊂ D and a fluid
subdomain Ωf = D\Ωs.

Generation of initial meshes and initial designs

Our implementation relies on a fully explicit mesh discretization of the hold-all domain D featuring the
design shape Ωf ⊂ D as a submesh. This is very convenient for solving finite element problems on Ωf
or Ωs, since boundary conditions can then be applied in a straightforward manner on the boundary ∂Ωf
or ∂Ωs.

It is worth mentioning that generating an initial mesh featuring a correct topology respecting user-
defined labels on the boundary triangles is an art by itself: there exist several software programs in order
to do this (such as TetGen [283] or gmsh [167]). For our purposes, we found very convenient to do it in
a level-set fashion assisted with the help of the library mmg [108]:

1. a first mesh T0 for the computational domain D is generated. Usually, D is a box so that this step
is very easily achieved, for instance using a FreeFEM command of the kind

// Generate a mesh for the box domain [0,2]*[0,1]*[0,1]

mesh3 Th = cube(60, 40, 40, [x*2,y,z]);

2. a level set function φ is generated on the domain D such that the negative subdomain of φ on ∂D,

{x ∈ ∂D |φ0(x) < 0}

delimits a set of connected components on the boundary of D associated with various boundary
conditions. The level set of φ0 is explicitly discretized within T0 and remeshed with mmg so that a
new mesh T1 where these boundary patches are explicitly meshed is obtained;

3. the obtained boundary patches are tagged with specific labels according to the desired boundary
conditions (see e.g. the red patches on Figure 2.3 below);

4. an initial design D = Ωs ∪ Ωf is proposed by the user under the form of a level-set function φ1

(satisfying φ1 ≤ 0 in Ωf ). An initial mesh T of D featuring the initially proposed design for Ωf
discretized as a submesh and the correct boundary labels is obtained by discretizing the negative
subdomain of φ1 in T1. Note that boundary labels do not need to be rewritten neither at this step
nor at subsequent stages of the optimization because the remeshing library mmg preserves meshed
interfaces between any two regions labeled with distinct tags.

Classically, complex initial domains can be generated by applying min-max operations to level-set
functions associated with elementary shapes (such as sphere or half-spaces), since minimum and maxi-
mum of two level-set functions amount to considering to respectively the intersection and the reunion of
the corresponding subdomains [247].

Non optimizable subdomains

It is very customary to impose that some non-optimizable subdomains ω belong either to the fluid or
the solid part Ωf or Ωs. A particular attention must be given to the treatment of this constraint during
the computation step of a descent direction θ ∈W 1,∞(D,Rd): this deformation θ should satisfy

θ · nω ≥ 0 on ∂ω (6.1.2)
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where nω denotes the outward normal to ω. The constraint (6.1.2) ensures that the boundary of the
optimized shape does not penetrate the non optimizable region ω. In principle, this requirement could
be imposed as an additional constraint in the mathematical program determining the current descent
direction from the knowledge of the shape derivatives. For instance, in the context of the unconstrained
minimization of an objective functional J(Γ), a “best” descent direction θ taking into account the non
optimizable region ω could be obtained by solving the quadratic minimization problem

min
θ∈V

DJ(Γ)(θ)

s.t.

{
θ · nω ≥ 0

||θ||V ≤ 1,

(6.1.3)

where || · ||V is the regularizing norm considered for the identification of DJ(Γ) with a gradient (see
chapter 1, section 1.4.1).

In practice, it is easier to solve (6.1.3) by replacing the inequality constraint θ ·nω ≥ 0 with an equality
constraint θ ·nω = 0, or even by simply imposing that θ = 0 on ω. This is precisely what we do in all our
numerical examples with satisfactory results. The descent direction θ solving the optimization problem
(6.1.3) is then used as an advection field driving the evolution of a level-set function φ for the optimized
shape Ωf ( see the step 2 of the algorithm algorithm 1.2 recalled in chapter 1). In principle, imposing
θ · nω ≥ 0 on ∂ω should guarantee at the continuous level that the interface of the optimized shape
do not penetrate ∂ω. Unfortunately, due to numerical inaccuracies, too large time-steps, or incorrect
initial designs, a post-treatment of the advected function is used in order to correct small violations of
the non-optimizable region. Let us introduce

• a level-set function Φω associated with the non-optimizable region ω, i.e.

∀x ∈ ω, Φω(x) < 0 and ∀x ∈ D\ω, Φω(x) ≥ 0;

• a level-set function Ψ associated with the distribution X ⊂ ω of material desired in the non-
optimizable region of ω, i.e. it should always hold

{x ∈ ω |Ψ(x) < 0} ⊂ Ωf and {x ∈ ω |Ψ(x) > 0} ⊂ Ωs.

Then denoting by φ the obtained level set function for the next iteration after the advection step, we
perform the operation (see Figure 6.2 below)

φ← min(max(φ,−Φω),max(Ψ,Φω)), (6.1.4)

which corresponds to the domain update

Ωf ← (Ωf ∩ (D\ω)) ∪ X . (6.1.5)

ω
D

Ωf Ωs

X

ω
D

Ωf Ωs

Figure 6.2: Illustration of the level-set operation (6.1.4) enforcing non-optimizable regions ω: the distribution of
material Ω inside the domain ω should match exactly the red set X . After the operation, Ω is the new blue color
domain on the right.
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Note that the post-treatment (6.1.4) is only a “projection” of Ωf onto the set of shapes fulfilling the
requirement that Ωf ∩ ω = X . To be consistent with this operation, i.e. to guarantee that it does not
affect the decreasing property (6.1.3) of θ, it is very important to impose the condition (6.1.2), or at
least θ · nω = 0 on ∂ω.

Remark 6.1. In the context where a fixed computational domain D containing the optimized shape
Ω is used, the boundaries of D should be set as non-optimizable as well, because deformations making
Ω larger than D should not be allowed. A slight difference of implementation was considered regarding
this point whether we use either the surface or the volume expression of the shape derivative:

• if the surface expression (2.4.14) of the shape derivative is used, then the considered space of
deformation fields is

V = {v∇dΩf | v ∈ H1(D)},

that is the set of vector fields aligned with the constant extension of the normal to ∂Ωf . Since
shape derivatives are written as surface integrals over Γ ⊂ ∂Ωf , and we make sure numerically that
Γ never becomes a subset of ∂D, no constraint is required on the value of v regarding the fact that
∂D is a non-optimizable boundary.

• if the volume expression (2.4.14) of the shape derivative is used, then

V = H1(D,Rd)

and it is necessary to enforce that θ ·nD ≥ 0 on ∂D where nD is the outward normal to D. In our
implementation, we rather enforce θ · nD = 0 in the identification problem (6.1.3).

Enforcing symmetries of the iterated domains

Many optimization test cases feature inherent domain symmetries; it is then expected that locally optimal
designs for these problems should also be symmetric. In many contributions of the literature, symmetry
is used in order to reduce the size of the computational domain: the overall optimization is performed
on only one part of the domain D, and the final design on D as a whole is inferred by symmetry.

However, it is sometimes desirable to perform the computations involved involved in the resolution of
the shape optimization problem on the whole domain D and to symmetrize shapes as a post-treatment.
Such a post-treatment is needed because in general, numerical inaccuracies tend to quickly make op-
timized shapes nonsymmetric when the computational mesh is not symmetric. In our implementation
where each intermediate design is obtained with a level set function φ, the symmetry of φ with respect
to a given symmetry transformation S1 (satisfying S1 ◦ S1 = I) is enforced by the operation

φ← 1

2
(φ+ φ ◦ S1) (for one symmetry S1).

Likewise, invariance of the design with respect to two symmetry transformations S1, S2 (satisfying S1 ◦
S1 = S2 ◦ S2 = I) is imposed via

φ← 1

5
(φ+ φ ◦ S1 + φ ◦ S2 + φ ◦ S1 ◦ S2 + φ ◦ S2 ◦ S1) (for two symmetries S1, S2).

The compositions φ◦S1, φ◦S2 are computed by interpolation (which is an automatic feature in FreeFEM).
These transformations ensure that the updated level set function satisfies φ ◦ S1 = φ and φ ◦ S2 = φ.

Regularization of the level-set function to avoid mesh degeneracy

A very important ingredient for handling topological changes in the context of the mesh evolution method
of [24] is a regularization of the level-set function. After the step 2 of algorithm 1.1, a level-set function
φ is obtained at the vertices of a computational mesh of D whose negative subdomain corresponds to
the new shape. A new mesh of D is then created in which this updated shape exists as a submesh (step
3 in algorithm 1.1). Before performing this remeshing step, φ is regularized into a new level set function

φ̃ by solving the elliptic problem

Find φ̃ ∈ H1(D), such that ∀ψ ∈ H1(D),

∫
D

(γ2∇φ̃ · ∇ψ + φ̃ψ)dx =

∫
D

φψdx. (6.1.6)
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The regularizing length scale is typically set to γ = 0.01hmin where hmin is the desired minimum mesh
edge size. It may appear surprising that one regularizes φ at a scale lower than the mesh size. In fact, the
minimum mesh size hmin provided to mmg might be violated if the input topology of the mesh prescribes
it: for instance, mmg would never remove a bubble of arbitrary size in an input mesh because the topology
of the computed output mesh would then change (see [108]). If the Hadamard’s shape derivative dictates
to continuously decrease the size of these bubbles at every optimization step, the resulting successive
meshes quickly degenerate and the finite element resolution becomes impossible. Removing these bubbles
(or any other topological features much smaller than hmin) by the pretreatment (6.1.6) allows to avoid
these issues.

Handling connectivities of the meshes for finite element related operations.

A particular care must be paid in the implementation of the variational formulations (2.4.2) to (2.4.4)
for the state equations, or in the calculation of the shape derivatives (2.4.13) and (2.4.14). Indeed,
the state variables at play (v, p), T,u (as well as the adjoint variables) are living on different meshes:
the fluid variables (v, p) and the elastic variable u are for instance solved on submeshes of the global
meshed domain D corresponding respectively to the fluid or to the solid subdomains Ωf ,Ωs. As a result,
interpolation matrices are extensively used in order to transfer nodal information from one mesh to
another (e.g. for transferring the value of σf (v, p) on the fluid interface Γ seen as a boundary of the
meshed domain Ωf , to the solid interface Γ seen as a boundary of the meshed domain Ωs). This is
achieved in FreeFEM thanks to the instruction interpolate;

6.1.4 Domain decomposition and preconditioning for 3-d variational problems

Passing from the 2-d implementation to its 3-d counterpart is theoretically without difficulty, but it
requires in practice a substantial amount of effort. We shall not discuss the (quite important) differences
between 2-d and 3-d regarding remeshing issues (the reader is again referred to [108]); we shall focus
instead on the difficulties related to the resolution of variational problems by the finite element method.

The cornerstone of the passage from 2-d to 3-d lies in the assembly and inversion of large sparse
linear systems obtained from the discretization of the physical equations of chapter 2, (2.4.2) to (2.4.4).
Generally, linear systems resulting from 2-d applications are sufficiently small so that a direct factorization
based method can be used [305]. In 3-d, it is possible to use direct methods only for very low resolution
problems: indeed, modern direct solvers based on LU factorizations such as MUMPS [38] have a complexity
of order O(N2) (N is the number of degrees of freedom of the finite element approximation) which
becomes quickly too expensive in terms of both CPU time and required memory. In this context, one
classically resorts to iterative methods merely based on matrix-vector products, which are relatively
inexpensive to compute due to the sparsity of the matrices involved in the context of finite element
problems. The most popular iterative methods are the conjugate gradient method (CG) for symmetric
positive definite problems, and GMRES for the general non symmetric case.

The treatment of large sparse systems as usually encountered in large scale 3-d applications involves
two additional ingredients:

1. preconditioning : iterative methods may take many iterations to converge in reasonable CPU time
for ill-conditioned linear systems [173]. It is often possible to accelerate the resolution of such linear
systems

Ax = b, (6.1.7)

by left or right multiplying the (large) square matrix A and the vector b with a preconditioner M :

MAx = Mb or AMy = b. (6.1.8)

A good preconditioner M is a square matrix approximating well the inverse of A. In that case,
it is expected that iterative methods applied to (6.1.8) will converge in much less iterations than
when applied to the original problem (6.1.7).

2. domain decomposition: the computational domain D is divided into a number m of subdomains:
D = D1∪· · ·∪Dm. Very roughly, the inverses of the “restrictions” A1, . . . , Am of the finite element



6.1.4. Domain decomposition and preconditioning for 3-d variational problems 217

matrix A to these subdomains are used to build a block preconditioner

M :=


A−1

1

. . .

A−1
m

 .
This allows to distribute the resolution of the linear system (6.1.7) on multiple cpus, because all
operations involving the restriction inverses A−1

1 , . . . , A−1
m (or their approximation using a limited

number of GMRES iterations) can be performed in parallel.

For our applications, we rely on the PETSc library [54, 55, 56] and its interface in FreeFEM developed
by Jolivet [199, 132] which allows to solve finite element problems with a large library of state-of-the-
art preconditioned iterative methods. The domain decomposition step was achieved thanks to a macro
buildMinimalist (see [198]):

// Partition the mesh Th for the finite element space Pk and compute

// associated partition of unity D and connectivity arrays arrayIntersection

// and restrictionIntersection

buildMinimalist(Th, D, arrayIntersection, restrictionIntersection, Pk);

//Now, Th is one of the submeshes of the domain decomposition [...]

Importantly, the use of these techniques requires a significant amount of effort, because the whole im-
plementation needs to be thought parallel for scalability; this includes operations ranging from the finite
element matrix assembly, the evaluation of volume or surface integrals, up to the numerical assembly
and regularization of shape derivatives (2.4.13) and (2.4.14).

We now detail the choice (physics dependent) preconditioners for the weakly coupled fluid thermal
mechanical system (2.2.1) to (2.2.3). For these matters, we have been very much assisted by Pierre
Jolivet and his tutorial on FreeFEM [198].

Linear elasticity: the linear elasticity system (2.2.3) is an elliptic vector system. The Geometric
Algebraic Multigrid preconditioner (GAMG) is known to be very efficient for solving linear elasticity
problems [8] (among other smoothed aggregation methods). The idea of multigrid methods is to construct
a preconditioner by using the (iterative) inverses of the elasticity operator restricted to coarser meshes;
these are much cheaper to compute and allow to obtain good approximations of the low frequency
component of the solution.

We used the GAMG preconditioner in our FreeFEM implementation by calling

// set GAMG preconditioner for elasticity matrix AElasticity

string petsc_options_elasticity = "-pc_type gamg -ksp_type gmres -ksp_max_it 200"

+" -pc_gamg_threshold 0.01";

set(AElasticity, sparams = petsc_options_elasticity, nearnullspace = Rb);

The variable Rb contains the near null space of the elasticity operator (i.e. rigid body modes on the
whole computational domain), it is required to help the preconditioner to achieve good performance.

Heat conduction-convection For the convective heat problem (2.2.2), we rely on the pointwise
aggregation multigrid preconditioner (BoomerAMG) implemented in the hypre library [149] which is
supposed to be slightly more efficient than gamg for scalar problems (in fact, for our moderately large
applications, the difference was not obvious). This preconditioner was used in our implementation by
calling

// set BoomerAMG preconditioner for the thermic system matrix AThermic

string petsc_options_thermic = "-pc_type hypre";

set(AThermic, sparams = petsc_options_thermic, nearnullspace = Rb);

This time, the near null space variable Rb corresponds to the constant functions. Note that for these
first two considered physics, we observed that the use of the standard conjugate gradient method con-
verges well without the need for a preconditioner (the latter allows nevertheless to significantly speed
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up this convergence). This situation is very particular to the fact that the partial differential operators
corresponding to these physics are elliptic (if no convection is involved).

Navier-Stokes equations Solving the 3-d steady state Navier-Stokes equations is much more chal-
lenging than the previous elasticity and heat conduction problems, because unpreconditioned iterative
solvers fail to converge in a reasonable amount of time.

Our implementation of the resolution of the steady state incompressible Navier-Stokes equations
relies on the Augmented Lagrangian Preconditionner recently described in [238, 279] and for which the
source code is available in FreeFEM. The main ingredient of this method is the addition of a penalization
term for the divergence constraint in the variational formulation (2.4.2) associated with the nonlinear
Navier-Stokes problem (2.2.1):

Find (v, p) ∈ Vv,p(Γ) such that ∀(w, q) ∈ Vv,p(Γ),∫
Ωf

[σf (v, p) : ∇w + ρw · ∇v · v − qdiv(v)− pdiv(w) + γdiv(v)div(w)] dx =

∫
Ωf

ff ·wdx. (6.1.9)

The coefficient γ > 0 penalizes the constraint div(v) = 0. The resolution of the nonlinear problem (6.1.9)
is performed with the Newton method: at each step k ≥ 0 of the process, an increment (δvk, δpk) is
computed by solving the linearization of (6.1.9) around (vk, pk):

Find (δvk, δpk) ∈ Vv,p(Γ) such that ∀(w, q) ∈ Vv,p(Γ),∫
Ωf

[σf (δvk, δpk) : ∇w + ρw · ∇vk · δvk + ρw · ∇(δvk) · vk − qdiv(δvk)− δpkdiv(w)] dx

+

∫
Ωf

γdiv(δvk)div(w)dx =

∫
Ωf

ff ·wdx. (6.1.10)

The next iterate (vk+1, pk+1) is then obtained by setting

vk+1 := vk + δvk, pk+1 := pk + δpk.

In our implementation, the initial guess (v0, p0) is the solution of the Stokes counterpart problem to
(6.1.9) (obtained with ρ = 0). The difficult part of the method is the resolution of the so-called Oseen
problem (6.1.10) which turns to be very poorly ill-conditioned. For our application we rely on the
Augmented Lagrangian preconditioner of [238]. It relies on the use of a suitable preconditioner for the
block matrix discrete operator associated to the problem (6.1.10), which is of the form:

AOseen =

A BT

B 0

 (6.1.11)

where A is the matrix discretizing the bilinear form

(δvk,w) 7→
∫

Ωf

[σf (δvk, δpk) : ∇w + ρw · ∇vk · δvk + ρw · ∇(δvk) · vk + γdiv(δvk)div(w)] dx

and B is the discretization of the divergence operator (w, q) 7→
∫

Ωf
qdivwdx. The linear solver GMRES

is very slow to converge if it is called directly on (6.1.11). A preconditioner is obtained by using the
inverse of A (or an approximation of it); following [238], we use the (right) preconditioner MOseen given
by

MOseen :=

A−1 0

B S,

 (6.1.12)

where the inverse A−1 is estimated thanks to an additive Schwarz method (ASM; see [313]). The matrix
S is an approximation of the pressure Schur complement S = −BA−1BT , it is estimated from its inverse
S−1 = −(γ + 1/Re)Mp where Mp is the mass matrix associated with (p, q) 7→

∫
Ωf
pqdx and Re = ρ/ν

is the Reynolds number (see [238] for the details). Many variants of this technique using A−1 to obtain
a preconditioner exist, which can be related to Uzawa-type methods [52]. Note that setting γ > 0 in
(6.1.9) is required for the (flexible) GMRES solver to converge.

To be very specific, this preconditioner is implemented in FreeFEM thanks to the following lines of
code:
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// set Augmented Lagrangian preconditioner for the Oseen matrix AOseen

string paramsOseen = " -ksp_type fgmres -pc_type fieldsplit "

+ " -pc_fieldsplit_type multiplicative -ksp_atol 1e-6";

+ " -fieldsplit_velocity_pc_type asm -fieldsplit_velocity_pc_asm_overlap 1 "

+ " -fieldsplit_velocity_sub_pc_type lu "

+ " -fieldsplit_velocity_sub_pc_factor_mat_solver_type mumps";

+ " -fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_ksp_rtol 1e-1 "

+ " -fieldsplit_velocity_ksp_pc_side right"

+ " -fieldsplit_velocity_ksp_restart 50";

+ " -fieldsplit_pressure_pc_type jacobi -fieldsplit_pressure_ksp_type cg "

+ " -fieldsplit_pressure_ksp_max_it 5";

set(AOseen, sparams=paramsOseen, fields=fields[], names=names,

schurPreconditioner = S, schurList = listX[]);

The pressure block term S is inverted by a CG method. The parameter listX refers to the matrix blocks
with the “velocity” or “pressure” labels.

Note that we also use this preconditioner for the resolution of the fluid adjoint problem (6.2.10) which
involves the transpose of the Oseen matrix. Note that some adaptation of this method would be needed
if the objective function were to depend on the pressure, because the divergence div(w) of the fluid
adjoint variable w would not equal zero.

Comparative performance of various stages of the parallel finite element implementation
We report in Table 6.1 various running times corresponding to the main operations performed during
one iteration of our optimization algorithm. For simplicity, we considered a situation where only the
fluid physics is involved and modeled by a Stokes system. More precisely, the following operations of our
overall implementation are accelerated by parallel computing thanks to the use of domain decomposition:

1. all steps required for solving the state equations (2.2.1) to (2.2.3);

2. the computation of the values of the objective and constraint functions;

3. all steps required for computing the shape derivative of these functionals, including the resolution
of adjoint systems;

4. the resolution of identification problems of the form (1.4.4) which feature the linear inversion of an
elliptic problem.

We note, in Table 6.1, that the most computationally expensive tasks consisted in the resolution of the
Stokes problem and its adjoint, as well as the various finite element matrix or vector assembly steps. All
things considered, the scaling obtained is quite satisfactory and allowed us to run fluid shape optimization
test cases in reasonable CPU time.

6.2 A few (moderately) large-scale three dimensional multiphysics applica-

tions

In this whole section, we go back to the three physics setting of chapter 2: a computational domain
D = Ωs∪Ωf ⊂ R3 is given, which is the disjoint union of solid and fluid phases Ωs and Ωf . The behavior
of the fluid-solid system is described by the weakly coupled system of partial differential equations (2.2.1)
to (2.2.3), which determines the fluid velocity and pressure fields (v, p) in Ωf , the:temperature field T
in D and the elastic displacement u for Ωs. The ultimate goal is to optimize the shape of the interface
Γ = Ωs ∩ Ωf (a three dimensional surface) in order to solve constrained optimization problems of the
form

min
Γ

J(Γ,v(Γ), p(Γ), T (Γ),u(Γ))

s.t.

{
gi(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) = 0, 1 ≤ i ≤ p,
hj(Γ,v(Γ), p(Γ), T (Γ),u(Γ)) ≤ 0, 1 ≤ j ≤ q,

(6.2.1)

where the notation convention is that introduced in chapter 2. In what follows, we treat four instances of
the program (6.2.1). Our first three sets of examples involve only one physics at a time. In section 6.2.1,
we examine very classical problems in linear elasticity, by considering the optimization of mechanical
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Action 1 cpu 4 cpus 8 cpus

Loaded meshes 0.48 0.48 0.49

Partitioning 0.05 7.0 6.5

Saved partitioning data 0.82 0.3 0.21

Build Stokes Matrix and Rhs 10.73 2.7 1.38

Solved Stokes problem 56.42 18.72 10.98

Built interpolate Fhf1vp matrix 0.38 0.16 0.09

Computed objective J 6.96 2.12 1.17

Read partitioning data 1.53 0.71 0.51

Adjoint fluid matrix assembly 18.8 5.51 2.59

Connectivity operation for non optimizable subdomains 3.97 1.27 0.69

Riesz matrix built 4.14 1.31 0.71

Assemble adjoint fluid RHS 6.25 1.8 0.89

Adjoint fluid problem resolution 103.84 38.04 23.24

Assemble volumetric shape derivative 72.68 20.9 10.92

Identification of the shape derivative of J to a gradient 1.67 0.66 0.5

Total FreeFEM running CPU time 308.14 112.53 71.55

Table 6.1: Running cpu times (2.60 GHz) for all finite element operations processed at every optimization
iteration. The test case considered is the drag minimization around an obstacle for a 3-d Stokes problem featuring
approx 22,000 vertices.

structures subject to either traction or torsion loads. The originality of our work is the treatment of
these problems with the mesh evolution technique of [24] at much higher resolutions than in the seminal
paper. We also discuss qualitative differences between the use of the surface expression (2.4.14) of the
shape derivative and that of the volume expression (2.4.13).

The next section 6.2.2 considers an optimal design problem in pure heat conduction, which is a 3-d
extension of the 2-d case treated in section 2.5.7. Although the physics at play is the least complicated
to solve among the four considered situations (it involves only a scalar elliptic problem), the obtained
final design is very intricated and illustrates well the efficiency of our mesh evolution method and the
remeshing library mmg.

The third context of interest is that of shape and topology optimization in fluid mechanics; we tackle
in section 6.2.3 the very classical problem of finding optimal aerodynamic designs with respect to the
induced lift and drag forces. This problem has been the object of much effort in the literature, see
e.g. [191, 260]; however, these contributions most often consider industrial contexts featuring very high
Reynolds numbers and where the shape to optimize is parameterized by a small number of parameters
(which make sense because very small design update can lead to a substantial increase of performance).
Often, automatic differentiation is used rather than Hadamard’s shape derivatives in order to obtain
the sensitivity to these parameters in the context of the resolution of the physics with industrial codes.
The novelty of our work is the application of our topology optimization method, relying on analytic
Hadamard’s shape derivatives, which allows to compute optimal aerodynamic designs (at low Reynolds
number) without resorting to any parameterization of the shape.

Finally, our fourth and last test case of section 6.2.4 features two weakly coupled physics: a vertical
plate is pushed down by a fluid; the problem at hand is to find a distribution of solid material around
the plate in order to make the whole structure the least compliant as possible. This is the most com-
putationally involved test case considered in this thesis: discretization meshes at play contained up to
250,000 vertices in the fluid domain (and the same in the solid domain), which required the resolution
of linear systems featuring more than 2× 106 degrees of freedom.

All these results can still be considered as preliminary: future work will seek to find optimal designs
for convective heat transfer problems where both fluid mechanics and thermal conduction interact. Many
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improvements could be considered in order to reach much larger, industrial size problems: one of the
limiting factor which prevented us to obtain such results lies in the fact that many important steps of the
optimization algorithm are still sequential, including for instance the remeshing step or the computation
of the signed distance function.

6.2.1 Cantilever beam subject to traction or torsion loads

We start by reproducing the classical benchmark test case of a 3-d cantilever beam subject to either a
flexural or a torsion load. The computational domain D is a box of dimensions 2 × 1 × 1. The solid
structure is fixed at four squares of size 0.3×0.3 located on the left-hand side of the boundary ∂D as
depicted on Figure 6.3. A force g is applied on a disk-shaped region at the center of the right-hand side
of ∂D; two cases are considered:

• traction load : we set g := −ey where (ex, ey, ez) denotes the canonical basis of R3, i.e. the load g
is vertical, pointing downward;

• torsion load : we set

g =


0

(z−0.5)√
(y−0.5)2+(z−0.5)2

− (y−0.5)√
(y−0.5)2+(z−0.5)2


which corresponds to a torsion force field.

The goal is to minimize the compliance of the structure Ωs under a volume constraint:

min J(Ωs,u(Ωs)) :=

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) :=

∫
Ωs

dx = Vtarget.

(6.2.2)

where Vtarget is a target volume, set to 0.15 in this example.

Figure 6.3: Computational domain for the 3-d cantilever test case of section 6.2.1 subjected to a bending load.
The blue regions correspond to four square-shaped Dirichlet boundaries to which the whole structure is fixed,
and a disk-shaped Neumann boundary to which either a traction or a torsion force field is applied.

The former situation, involving traction load has already been treated with the level set mesh evolu-
tion algorithm in [24], with a much smaller resolution however (18,081 vertices in [24] vs. 108,605 in our
case for the first mesh).

Note that for the four numerical examples presented below, convergence was not fully attained as
the objective function was still decreasing at the end of the performed iterations. However it is expected
that more iterations would not substantially change the physical outline of the shape.
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Traction test case Two numerical results are shown for the traction test case on Figs. 6.4 and 6.5
corresponding to the use of respectively the surface and volume expressions of the shape derivative.
The optimization paths are quite different. Qualitatively, the use of the surface expression of the shape
derivative (identified with a gradient via the inner product of chapter 1, (1.4.8)) seems to favor the
creation of holes while less topological changes occur when the volume expression is used (identified
with a gradient via the inner product of chapter 1, (1.4.7)) which favors the occurrence of walls rather
than bars on this example. These plots further illustrate the use of remeshing: the level set mode of mmg
(option -ls) makes it possible to obtain high quality meshes of the shape at every optimization iteration.

The convergence histories for the objective and constraint functions in both cases are provided in
Figure 6.6. The final designs obtained by using either the surface or volume expression of the shape
derivative show very similar performance.

Figure 6.4: From top left to bottom right: iterations 0, 10, 20, 40, 100 and 400 of the optimization of a 3-d
cantilever under traction load (section 6.2.1) using the surface expression of the shape derivative.

Torsion test case Optimization results for the torsion test case are shown on Figs. 6.7 and 6.8 corre-
sponding to the use of either the surface or volume expressions of the shape derivative. The convergence
histories for the objective and constraint functions are plotted on Figure 6.9. For this test case, a clear
difference is observed between both computations the use of the volume expression favors a shell-shaped
structure without bars at the upper end at the end of the iterations, which seems to be more efficient at
least for the first iterations (note again that convergence is not fully attained).

6.2.2 Optimal design for pure thermal heat conduction

We now focus on the optimization of a pure heat conduction test case (only the thermal equation of
chapter 2, (2.2.2) is solved). The problem considered is the direct extension to 3-d of the test case
previously treated in chapter 2, section 2.5.3. The setting is represented on Figure 6.10: the hold-all
domain D is a box with size 1 × 1 × 1. It is divided between two phases Ωs with (low) conductivity
ks = 1 and Ωf with (high) conductivity kf = 100. A Dirichlet boundary condition is imposed on a small
square of size 0.4 × 0.4 at the bottom face of ∂D where the temperature is prescribed to T = 0. All
other external boundaries of the cube D are adiabatic (∂T/∂n = 0). The whole domain is heated with
a source Qs = Qf = 104 and the goal is to find the shape of the interface Γ = ∂Ωs ∩ ∂Ωf of the two
materials which minimizes the average temperature over D subject to a volume constraint:

min
Γ

J(Γ, T (Γ)) =

∫
D

Tdx

s.t. Vol(Ωf ) = Vtarget.

(6.2.3)
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Figure 6.5: From top left to bottom right: iterations 0, 10, 20, 40, 100 and 280 of the optimization of a 3-d
cantilever subjected to a traction load (section 6.2.1) using the volume expression of the shape derivative. Note
the angle view is not the same as in Figure 6.4 for better visualization.
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(a) Objective function J(Ωs).
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(b) Volume fraction Vol(Ωs)/Vol(D).

Figure 6.6: Convergence histories for the 3-d cantilever test cases subjected to a traction load of section 6.2.1
using either the surface or volume expression of the shape derivative.
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Figure 6.7: From top left to bottom right: iterations 0, 10, 20, 40, 100 and 400 of the optimization of a 3-d
cantilever subjected to a torsion load (section 6.2.1) using the surface expression of the shape derivative.

Figure 6.8: From top left to bottom right: iterations 0, 10, 20, 40, 100 and 350 of the optimization of a 3-d
cantilever subjected to a torsion load (section 6.2.1) using the surface expression of the shape derivative.
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(b) Constraint G0.

Figure 6.9: Convergence histories for the 3-d cantilever test case (subjected to a torsion load) of section 6.2.1
using either the surface or volume expression of the shape derivative.

Figure 6.10: Setting for the pure conduction test case.
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In this three-dimensional context, the volume constraint is set to Vtarget := 0.05.

Results are reported on Figs. 6.11 and 6.12, relying on the volume expression for the shape derivative.
The resolution of the mesh varies from 63,761 vertices for the initial design to 206,464 for the final design.
Remarkably, the remeshing software mmg and our optimization method are able to capture sheet like
structures not thicker than one or two mesh element size. For this numerical example, the difference
with the use of the surface expression of the shape derivative is very striking (we report a design obtained
with the surface expression on Figure 6.13): the optimized shape presents much less details in the latter
case and achieves a worse performance, as illustrated on Figure 6.14. Naturally, a lot of other factors
come into play which could also account for the differences (such as the level of regularization of the
shape derivative), for which we do not have a definitive explanation.

6.2.3 Lift–Drag topology optimization for aerodynamic design

This section investigates 3-d shape and topology optimization for lift-drag problems in aerodynamic
design. The lift functional is the vertical force generated by a flow around an obstacle; it is commonly
defined as a surface integral involving the normal stress tensor. The drag is the energy dissipated by
the fluid around the obstacle. Lift-Drag shape optimization is a very classical problem which has been
the object of a very large amount of contributions, see e.g. [259, 236, 191, 192, 142, 211, 175]. However,
these references have considered situations very close to realistic applications where

(i) the physics is more challenging than in our case, featuring for instance compressible fluids or
characterized by much larger Reynolds numbers;

(ii) the shape design is usually described by means of CAD parameters to optimize;

(iii) very small updates of the shape may lead to substantial gains of efficiency. In this context, it makes
sense to seek for improved geometries by means of very small deformations of the proposed CAD
design.

Few works have actually tried to apply shape and topology optimization techniques, were the design
shape is allowed to deform freely, to lift-drag problems: we are essentially aware of [100, 205, 164, 307].
In what follows, we treat a lift-drag optimization problem with the method of Hadamard and our topology
optimization framework on 2-d and 3-d examples featuring a very small Reynolds number (Re = 200).
We are not aware, to the best of our knowledge, of analogous results in the 3-d setting.

A first part of this section is devoted to the computation of the shape derivative of this functional:
although it has already been considered in several works of the literature, the calculation and the nu-
merical implementation of the resulting formulas do not seem completely standard to us; we propose a
special treatment based on a classical idea of [63, 137].

In a second part, we present 2-d and 3-d numerical designs for an instance of the lift-drag optimization
problem.

Shape derivatives of the lift functional

Let D = Rd be a computational domain featuring a liquid phase Ωf flowing around a solid obstacle
Ωs ⊂⊂ D. The notation convention is again that assumed in chapter 2: the flow is entering the domain
from a Dirichlet boundary ∂ΩDf with a given velocity v = v0 and exits the domain with a zero normal

stress boundary condition σf (v, p) ·n = 0 on ∂ΩNf . The remaining part of the fluid boundary is the solid

interface Γ = ∂Ωf\(∂ΩDf ∪ ∂ΩNf ) which is to be optimized.

The lift generated by the obstacle is the total force exerted by the fluid on the solid interface Γ =
Ωf ∩ Ωs = ∂Ωs in the vertical, y-direction:

Lift(Γ,v(Γ), p(Γ)) := −
∫

Γ

ey · σf (v, p) · nds, (6.2.4)

where we recall that the fluid stress tensor is given by σf (v, p) = 2νe(v)−pI, and the notation a ·M ·b :=
aTMb for any vectors a, b ∈ Rd and matrix M ∈ Rd×d. Note that the minus sign accounts for our
convention of chapter 2 whereby the normal n is pointing outward the fluid domain. Several authors
have considered the optimization of the lift functional, e.g. in [292], [214] based on surrogate models,
[206] based on control points, [205] with the SIMP method and a different objective functional, and
[262, 246] in a time varying setting, [219]. Several difficulties are involved in the evaluation of the shape
derivative of the lift functional:
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Figure 6.11: From top left to bottom right: iterations 0, 5, 15, 30, 100 and 258 of the optimization of a 3-d design
for heat conduction using the volume expression of the shape derivative (test case of section 6.2.2).
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Figure 6.12: Different 3-d views of the optimized design for the heat conduction test case of section 6.2.2.

Figure 6.13: Optimized 3-d design for heat conduction obtained with the surface expression of the shape derivative
(test case of section 6.2.2).
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Figure 6.14: Convergence histories for the 3-d heat conduction test case of section 6.2.2 using either the volume
or the surface expression of the shape derivative.
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1. from the theoretical point of view, the partial derivative (v, p) 7→ ∂Lift/∂(v, p) is not a continuous
linear form of H1(Ωf )×L2(Ωf ): the fact that the normal derivative σf (v, p) ·n has a trace on Γ (as
an element of H−1/2(Ωf ,Rd)) is related to the fact that (v, p) solves the Navier-Stokes system (see
chapter 2, section 2.4) but it may not be true for arbitrary variations (w, q) ∈ H1(Ωf )× L2(Ωf );

2. even assuming a different variational setting where these partial derivatives would make sense (see
[296] for an example of such setting), the functional is posed on the boundary. Introducing as in
chapter 2 the transported function

Lift(θ, v̂, p̂) := Lift(Γθ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1), (6.2.5)

the computation of the partial derivative
∂Lift

∂θ

is not straightforward since (i) it involves the gradient of v, and (ii) the variations of the normal
n come into play. This approach has been followed by [292] for the compressible Navier-Stokes
equations.

Here, we propose an alternative method, which relies on a reformulation of the lift functional (6.2.4) as a
volume integral: let X ∈ H1(Ωf ) be any extension of the constant function 1 on Γ (i.e. X = 1 on Γ) and
vanishing on the complementary boundary (i.e. X = 0 on ∂Ωf\Γ). In our particular implementation, X
is obtained as the solution to the following Poisson problem:

−∆X = 0 in Ωf

X = 1 on Γ

X = 0 on ∂Ωf\Γ
(6.2.6)

The function Xey yields then an extension of the vector field ey vanishing on ∂Ωf\Γ, which enables to
rewrite Lift(Γ) as a volume integral:

Lift(Γ) = −
∫

Γ

Xey · σf (v, p) · nds

= −
∫

Ωf

div(Xσf (v, p) · ey)dx

= −
∫

Ωf

(∇X · σf (v, p) · ey + Xdiv(σf (v, p)) · ey)dx

=

∫
Ωf

(Xff · ey − ρXey · ∇v · v −∇X · σf (v, p) · ey)dx

(6.2.7)

where we have used the state equation −div(σf (v, p))+ρ∇vv = ff to obtain the last line. This rewriting
is rather classical and is often used in numerical applications, since it is known to yield a more accurate
evaluation of the lift functional [63, 137].

Remark 6.2. The last equality of (6.2.7) can be considered as a definition for the meaning of the normal
derivative σf (v, p) ·n in (6.2.4), since it does not depend on the chosen extension X ∈ H1(Ωf ) satisfying
X = 1 on Γ and X = 0 on ∂Ωf\Γ (from the variational formulation (2.4.2)).

Equation (6.2.7) can now be easily differentiated with respect to the shape. Let us introduce the func-
tional spaces Vv,p(Γ) and VX (Γ) associated with the solutions (v, p) and X :

Vv,p(Γ) := {(w, q) ∈ H1(Ωf ,Rd)× L2(Ωf )R |w = 0 on ∂Ωf},

VX (Γ) := {Ψ ∈ H1(Ωf ) |Ψ = 0 on ∂Ωf .}

We also denote by v0 + Vv,p(Γ) and 1 + VX (Γ) the affine spaces

v0 + Vv,p(Γ) := {(v, p) ∈ H1(Ωf ,Rd)× L2(Ωf )R |v = 0 on ∂Ωf\∂ΩDf and v = v0 on ∂ΩDf },

1 + VX (Γ) := {X ∈ H1(Ωf ) | X = 0 on ∂Ωf\Γ and X = 1 on Γ.}
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In what follows, we assume that the extension X of the constant function 1 on Γ is given by the
solution to the Poisson problem (6.2.6). We denote, for any θ ∈W 1,∞(D,Rd), (v̂, p̂) ∈ v0 + Vv,p(Γ) and

X̂ ∈ 1 + VX ,
Lift(θ, v̂, p̂, X̂ ) := Lift(Γθ, v̂ ◦ (I + θ)−1, p̂ ◦ (I + θ)−1, X̂ ◦ (I + θ)−1) (6.2.8)

the transported functional on the reference situation. Note that since Lift does not depend on the choice
of the extension X satisfying X = 1 on Γ, (6.2.8) and (6.2.5) coincide for such X . Then, with the notation
of chapter 2:

∀θ ∈W 1,∞(D,Rd),
∂Lift

∂θ
(θ) =

∫
Ωf

(Xff · ey − ρXey · ∇v · v −∇X · σf (v, p) · ey)div(θ)dx

+

∫
Ωf

(ρXey · ∇v∇θ · v + (∇θT∇X ) · σf (v, p) · ey + ν∇X · (∇v∇θ +∇θT∇vT ) · ey)dx,

∀θ ∈W 1,∞(D,Rd),
∂Lift

∂θ
(θ) =

∫
Γ

(Xff · ey − ρXey · ∇v · v −∇X · σf (v, p) · ey)θ · nds

+

∫
Γ

((∇X · n)(n · σf (v, p) · ey) + ν(∇X · ∇v · n)(ey · n) + ν(ey · ∇v · n)(∇X · n))θ · nds

=

∫
Γ

[ff · ey + 2νe(v) : (∇X ⊗ ey)]θ · nds,

(6.2.9)

∀(w′, q′) ∈ Vv,p(Γ)
∂Lift

∂(v, p)
(w′, q′) = −

∫
Ωf

(ρXey · ∇w′ · v + ρXey · ∇v ·w′ +∇X · σf (w′, q′) · ey)dx,

The simplifications in the second equality of (6.2.9) are classical consequences of the tangential gradients
∇Γv = 0 and ∇ΓX being 0 on Γ.

Finally, the partial derivative with respect to X is zero, because an easy integration by part implies
that

∀Ψ′ ∈ VX (Γ),
∂Lift

∂X
(Ψ′) = −

∫
Γ

Ψ′ey · σf (v, p) · nds = 0.

Therefore, there is no contribution of the variations of the extension X defined in (6.2.6) to the shape
derivative of Lift.

All in all, applying the result of chapter 2, propositions 2.3 and 2.4 yields expressions for the shape
derivative of Lift (eqn. (6.2.4)) in surface and volume forms:

Proposition 6.1. Let (w, q) ∈ Vv,p(Γ) the adjoint fluid variables solutions to

∀(w′, q′) ∈ Vv,p(Γ),∫
Ωf

(
σf (w, q) : ∇w′ + ρw · ∇w′ · v + ρw · ∇v ·w′ − q′div(w)

)
dx =

∂Lift

∂(v, p)
(w′, q′). (6.2.10)

The lift functional Γ 7→ Lift(Γ,v(Γ), p(Γ)) is differentiable with respect to the shape and the shape deriva-
tive reads (in volumetric form):

∀θ ∈W 1,∞(D,Rd),
d

dθ

∣∣∣∣
θ=0

[
Lift(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ)

=
∂Lift

∂θ
(θ) +

∫
Ωf

[w · div(ff ⊗ θ)− (σf (v, p) : ∇w + ρw · ∇v · v)div(θ)] dx

+

∫
Ωf

[σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ) + ρw · (∇v∇θ) · v]dx (6.2.11)

or (in surface form):

d

dθ

∣∣∣∣
θ=0

[
Lift(Γθ,v(Γθ), p(Γθ), T (Γθ),u(Γθ))

]
(θ) =

∂Lift

∂θ
(θ) +

∫
Γ

(ff ·w + σf (w, q) : ∇v)ds. (6.2.12)

The above formulas are easily implemented in our shape and topology optimization framework; they
are at the basis of the resolution of the test cases presented in the next paragraph.
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Numerical test cases

We consider the problem of maximizing the Lift generated by a flow obstacle Ωs ⊂⊂ D subject to an
upper bound constraint on the drag (so that the obstacle remains aerodynamic). In addition, the volume
occupied by the obstacle and the location of its center of mass are prescribed:

min − Lift(Γ,v(Γ), p(Γ))

s.t.


Drag(Γ,v(Γ), p(Γ)) ≤ DRAG0

Vol(Ωf ) = V0

X(Ωs) :=
1

|Ωs|

∫
Ωs

xdx = x0.

(6.2.13)

The drag functional has been considered in chapter 2, section 2.5.4; it is defined by

Drag(Γ,v(Γ), p(Γ)) :=

∫
Ωf

σf (v, p) : ∇vdx =

∫
Ωf

2νe(v) : e(v)dx.

The constant DRAG0 is set to αDRAG∗ (α = 1.1 in 2-d and α = 1.5 in 3-d) where DRAG∗ is the value of the
minimum drag problem subject to the same volume and position constraints.

We start by solving the problem in 2-d; the setting is identical to that of section 2.5.4: D = [0, 1]×[0, 1],
Vtarget = 0.03, x0 = (0.5, 0.5), ||v0|| = 1, ρ = 1, ν = 1/200 and Re = 200. The flow is entering the
left-hand boundary with velocity v0 = ex and it exits the right-hand boundary with zero normal stress
(σf (v, p) ·n = 0). A slip boundary condition v ·n = 0 is prescribed at other boundaries. The minimum
drag value computed for this example is DRAG∗ ' 0.11, so that the upper bound constraint is given by
DRAG0 = DRAG∗ × 1.1 = 0.121. The initial and optimized shapes with the corresponding velocity fields
are shown on respectively Figure 6.15. A few intermediate iterations are shown on Figure 6.16, and
the optimization histories are reported on Figure 6.18. Finally, the mesh discretizing the final shape
is plotted on Figure 6.17; both the boundary of the obstacle and the outlet were refined in order to
numerically capture boundary layers and vortex patterns.

(a) Initial design

(b) Final design

Figure 6.15: Optimization results for the 2-d lift-drag optimization problem of section 6.2.3. The norm of the
velocity field v is plotted on the right.

Our design is slightly similar to those obtained in the work [205] with a completely different method:
a density based approach was used and a different expression was used to estimate the lift functional.

We then solve the same problem in 3-d: the hold-all domain is the box D = [0, 1]× [0, 1]× [0, 1]. A
flow is entering with a velocity v0 = ex on the left-hand side of the domain. A slip boundary condition
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Figure 6.16: Intermediate iterations 0, 8, 30, 80 and 200 for the 2-d lift-drag optimization problem of section 6.2.3

Figure 6.17: Mesh of the final shape for the 2-d lift-drag optimization problem of section 6.2.3.
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(c) Center of mass constraint X(Ωs) = (x, y).
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(d) Drag constraint Drag(Γ,v(Γ), p(Γ)).

Figure 6.18: Convergence histories for the 2-d lift-drag optimization test case of section 6.2.3.
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v ·n = 0 is imposed at other boundaries of the cube. The physical parameters are still set to ν = 1/200
and ρ = 1 corresponding to Re = ρhvmax

ν = 200 (the characteristic length is h = 1). The volume fraction
target is set to Vtarget = 0.01. For this configuration, the computed value for the minimum drag problem
is DRAG∗ = 0.0304 which yields an upper bound DRAG0 = 1.5× DRAG∗ = 0.0456.

The optimized shape with associated velocity profile is shown on Figure 6.19. The final fluid mesh
features 54,299 vertices. The finite element problems associated with the Navier-Stokes and adjoint equa-
tions are solved by using the domain decomposition technique described in section 6.1.4 with 12 cpus
(2.60GHz). Convergence histories are shown on Figure 6.18. A single resolution of the state equations
including domain decomposition and the Newton loop with the Newton method takes approximately 2
minutes. The computation of the shape derivative, including adjoing system resolutions takes approxi-
mately the same time. Every remeshing step (not performed in parallel) is achieved within approximately
one minute.

(a) Initial shape (b) Optimized design

(c) Optimized design (other 3-d views)

Figure 6.19: Optimized shape for the 3-d lift-drag maximization problem of section 6.2.3.

6.2.4 A 3-d fluid-structure interaction test case

Our last test case is concerned with a rather large-scale fluid-structure interaction problem. A fluid is
entering the box D = [0, 4] × [0, 1] × [0, 1] with an input velocity v0 = yex on the left-hand boundary.
A no-slip boundary condition v = 0 is prescribed on the bottom face of the domain. The top and side
faces assume a slip boundary condition v · n = 0. The flow exits the domain with a zero normal stress
boundary condition σf (v, p) ·n = 0. A mechanical structure Ωs ⊂ D is fixed (u = 0) on a square patch of
the bottom face and is subjected to the stress induced by the fluid (namely, u is the solution to (2.2.3)).

A vertical plate is set as a non optimizable part of the mechanical structure (as well as a small layer
above the bottom Dirichlet boundary): the setting is made visible on Figure 6.21. The goal is to find how
to distribute additional material in order to make the structure Ωs as rigid as possible. The problems
features of course a volume constraint on the mechanical structure, so that it reads

min
Γ

J(Γ,u(Γ)) =

∫
Ωs

Ae(u) : e(u)dx

s.t. Vol(Ωs) = Vtarget.

(6.2.14)

The Reynolds number, fluid density and viscosity are respectively set to Re = 60, ρ = 1 and ν =
ρh||v0||∞/Re = 0.012 (the characteristic length is h = 0.7 corresponding to the height of the non-
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Figure 6.20: Convergence histories for the 3-d lift-drag optimization test case of section 6.2.3.

Figure 6.21: Setting of the fluid-structure interaction test case. A flow is entering from the left-hand side; a
no-slip boundary condition is imposed at the bottom wall, and a slip boundary condition on the other side walls.
The flow is pushing against a non optimizable vertical mechanical plate tightened to the bottom wall with a zero
Dirichlet boundary condition (on the red surface).
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Solving state equations 24 cpus 15’

Computing shape derivatives and gradients 24 cpus 2’

Advection of the level-set function sequential 24”

Symmetrization and regularization of the level-set function 24 cpus 13”

Remeshing sequential 2’

Computation of the signed distance function sequential 3’

Table 6.2: Running times for the first iteration (220,283 mesh nodes) of the fluid-structure interaction test case
of section 6.2.4.

optimizable plate and ||v0||∞ = 1). The Lamé coefficients of the mechanical structure are λ = 0.00529
and µ = 0.0476.

The optimized shape obtained with the volume expression of the shape derivative is plotted on
Figure 6.22. Note that for this example, we did not see a clear difference in performance between the
results arising from the use of the volume and the surface expressions of the shape derivative. Not
surprisingly, the final design has an aerodynamic profile in order to reduce the stress applied by the fluid
flow.

This example is our most computationally involved test case. Finite element computations were run
in parallel on 24 cpus (2.60GHz) . The number of mesh nodes varies from 220,283 for the first iteration
(including 132,775 nodes in the fluid domain, which means approx. 1,7 millions degrees of freedom for
the linearized fluid system) to 82,454 (including 66,021 nodes in the fluid domain) at the last iteration.
Running cpu times for the first mesh (220,283 mesh nodes) are listed in Table 6.2. The most intensive task
is the resolution of the state equations (the running time mentioned includes all domain decomposition
steps, finite element matrix assembly, the Newton loop for the Navier-Stokes system, etc. . . ).

Although these results are promising, we are still far from realistic industrial system sizes (featuring
the order of the billion of elements). We had difficulties in going to mesh sizes reaching the million of
vertices because the cost of remeshing becomes prohibitive. So far, this step is performed sequentially;
future works could benefit from making this step run in parallel as well.
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(a) Initial shape

(b) Final design

(c) Final design (front and back views respectively on the left and on the right).

Figure 6.22: Optimized design for the 3-d fluid structure interaction test case of section 6.2.4.
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Figure 6.23: Intermediate iterations 0, 40, 100, 125, 175 and 300 for the fluid structure test case of (6.2.14).

Figure 6.24: Linear elastic deformation of the solid structure under the load force applied by the fluid for the
test case of (6.2.14).

0 50 100 150 200 250 300
0

50

100

150

200

250

(a) Objective function J(Ωs,u(Ωs)).

0 50 100 150 200 250 300

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Volume fraction Vol(Ωs)/Vol(D).

Figure 6.25: Convergence history for the fluid-structure interaction optimization test case of section 6.2.4.
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7.1 Introduction

This final chapter is an opening towards the use of topology optimization for the design of fluid systems
by the homogenization method. Our motivation originates from the observation that many industrial
applications in the aeronautic industry involve multi-scale designs. For instance, heat exchangers feature
periodic patterns visible at a microscopic scale which are geometrically modulated over larger scales
(Figure 7.1). They are integrated into a suitable macroscopic structure so as to maximize the exchange
surface between hot and cold phases, while limiting the output pressure loss.

When it comes to automatically generate such multi-scale structures, the topology optimization
techniques based on the method of Hadamard described in the previous chapters reach their limits.
Indeed, the numerical optimization of the shapes of highly resolved composite structures would require
the use of very fine meshes so as to capture the most microscopic details of the fluid flowing in the whole
structure and to update the tiniest details of its boundaries; the numerical computation would be very
costly and probably very slow to converge.

The goal of this chapter is to lay down theoretical material that would allow, ultimately, to design fluid
systems by homogenization methods similar to those available in the context of topology optimization
of mechanical structures [65, 58, 18, 254, 27]. In the latter contexts, they specifically allow to generate

239
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(a) Industrial gas-liquid heat exchanger design
featuring blade patterns (Figure from [169]).

(b) Industrial air-water heat exchanger design featuring tube pat-
terns (Figure from COMSOL multiphysics [239]).

Figure 7.1: Two examples of heat exchanger designs featuring periodically repeated patterns.

multi-scale designs by optimizing simultaneously both the microstructure of a mechanical system and
its macroscopic shape. Unfortunately, these methods do not extend in a straightforward manner to
fluid systems, because the homogenization theory which accounts for the effective physics of the fluid in
a porous medium is different. Several homogenized models exist depending on various scaling regimes
assumed by the microstructure pattern (namely, the Darcy, Brinkman, or Stokes regimes [272, 14]) which
makes it unclear which effective model should be used to describe a context featuring all possible regimes
simultaneously at different locations in the domain.

In this chapter, we derive high order homogenized models for the Stokes system (in periodic domains)
which unify the three classical regimes. The mathematical methodology is inspired from the works of
Bakhvalov and Panasenko [53], Smyshlyaev and Cherednichenko [287], and Allaire et. al. [33]; it is based
on (non standard) two-scale asymptotic expansions and formal operations on related power series which
give rise to several families of tensors and homogenized equations at any order. These formal expansions
are then justified thanks to rigorous error estimates.

The obtained higher order homogenized models are higher order corrections of the Darcy model: in
the low-volume fraction limit where the obstacle size assume one of the three classical regimes of the
literature, they specialize to either the Stokes, the Brinkman, or the Darcy equation. Since these higher
order formulations unify the three regimes, we expect these could open the way to the development of
homogenization methods for the topology optimization of fluid systems. Furthermore, a by-product of the
use of higher order models is to yield a more accurate description of the effective physics characterizing
porous media in contexts where the size of the microstructure (a parameter ε which is assumed to be
close to zero in the homogenized model) is not so small.

The remainder of the chapter is organized as follows. Section 7.2 outlines the motivations for the
use of higher order homogenized model for the Stokes system and provides a summary of our main
mathematical results. The notation and mathematical setting used in the remainder of the chapter are
also introduced.

In order to highlight the main features of our derivation, and for pedagogical purposes, the next
sections investigate higher order homogenized equations for several elliptic problems with an increasing
order of complexity. We start with a study of the perforated Poisson problem in section 7.3, which
is a simplified, scalar version of the Stokes system. In Section 7.4 we consider the elasticity system
with Dirichlet boundary conditions on the holes (rather than Neumann ones as is more customarily
considered). It is the direct vectorial analogue of the Poisson system which is characterized by an
important difference: high order homogenized models of the scalar problem feature only differential
operators of even order, while differential operators of odd orders are present in the vectorial context.
However these vanish in case of symmetries. Finally, the Stokes system in a porous medium (7.2.13) is
treated in section 7.5, which requires additional work due to the pressure variable and the associated
divergence constraint.

7.2 Motivations from shape optimization and summary of results

This section motivates and present our main results developed in thorough details in the next parts. We
start by providing in section 7.2.1 a brief account of the homogenization method for topology optimization
of mechanical structures. The difficulties that arise when considering the application of these methods
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for the design of fluid systems, related to the emergence of three different homogenized regimes, are
stressed in section 7.2.2. We then provide a summary of our main results in section 7.2.3 regarding the
high order homogenization of Stokes flow in porous media which could address some of these difficulties
in future works. Finally, the general mathematical setting and the notation conventions used in the
remainder of the work are introduced in section 7.2.4.

7.2.1 Shape optimization by the homogenization method in linear elasticity

The homogenization method is a powerful technique for the topology optimization of mechanical struc-
tures: it allows to capture multi-scale designs characterized by geometrically modulated micro-structures
[65, 18, 254, 177, 27]. Let D = [−L,L]d be a given computational rectangular domain and consider the
problem of finding the shape assumed by a distribution of two materials characterized by constant elastic
Hooke’s tensors A0 and A1 in the respective domains Ω ⊂ D and D\Ω:

min
Ω⊂D

J(Ω,u(Ω))

s.t.

{
−div(A(1Ω)∇u) = f in D

u = 0 on ∂D,

(7.2.1)

The elastic tensor in (7.2.1) is given by A(1Ω) := 1ΩA0 + (1−1Ω)A1 where 1Ω denotes the characteristic
function of Ω and f is a source term. The main point of the homogenization method is to replace the
design problem (7.2.1) of finding shapes Ω by a relaxed one expressed in terms of composite microstruc-
tures which are not shapes but rather limits of minimizing sequence of shapes. In theory, one can
formulate a relaxed version of (7.2.1) posed over the whole set of such possible limits (the G-closure, see
[18]). However, for practical applications, it may be sufficient to consider periodic microstructures with
a geometrically modulated pattern: such microstructures can be parameterized by varying parameters
(a1(x), . . . , am(x)), as illustrated on Figure 7.2. This allows to replace (7.2.1) with a “homogenized”

ε

a1

a2

a3

Figure 7.2: A periodic medium with varying microstructure parameterized by the size (a1, a2) and orientation
a3 of a rectangular inclusion. Note that in [27], the parameter a3 rather parameterizes the orientation of the
periodic cells themselves than only their inner rectangular pattern.

relaxed problem

min
(a1,...,am)∈L∞(D,Rd)

J∗(a1, . . . , am,u(a1, . . . , am))

s.t.

{
−div(A∗(a1, . . . , am)∇u) = f in D

u = 0 on ∂D,

(7.2.2)

where A∗(a1, . . . , am) is an effective tensor characterizing the stiffness of the composite material obtained
by mixing A0 and A1 according to the microstructure pattern determined by a1, . . . am.

The problem (7.2.2) is easier to solve than (7.2.1): it reduces to rather standard parametric opti-
mization with respect to the (a1, . . . , am). Furthermore, the state variable u can be evaluated in the
“homogeneous” domain D, without the need for discretizing all the geometric details of the microstruc-
ture. The difficulty of the method lies the post-treatment needed to actually reconstruct a sequence of
shapes approaching the optimal parameterized microstructure; see the contributions [254, 35, 166] for a
description of some (delicate) algorithms that allow to perform this task in both 2-d and 3-d.
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7.2.2 Three homogenized regimes for a Stokes flow in a porous medium

The ultimate motivation would be to apply similar methods for the topology optimization of fluid systems.
The optimization problem at play would be formulated in terms of the Stokes (or the Navier-Stokes)
equation (instead of (7.2.1)):

min
Ω⊂D

J(Ω,u(Ω), p(Ω)),

s.t.


−∆u+∇p = f in Ω

div(u) = 0 in Ω,

u = 0 on ∂Ω,

(7.2.3)

where (u, p) denotes the fluid velocity and pressure couple (extended by zero outside the optimization
domain Ω). However, it is not straightforward to derive a relaxed formulation such as (7.2.3) because the
available homogenization theory for the Stokes system (7.2.3) is substantially different to the one for the
elasticity system (7.2.1). This difference comes from the fact that the shape Ω characterizing the mixture
(of material A0 and A1 for the elasticity system, or of fluid and solid in the solid system) arises in the
elasticity problem (7.2.1) through the piecewise constant Hooke’s tensor A(1Ω), whereas it occurs in the
Stokes system (7.2.3) in terms of a zero Dirichlet (no-slip) boundary condition u = 0 on the boundary
of the holes ∂Ω. In contrast with (7.2.1), there is no known theory that would characterize the G-closure
of the Stokes system featured in (7.2.3), i.e. the set of all possible limit models obtained by considering
minimizing sequences of domains. Instead, the literature [272, 12, 14] describes the occurrence of three
possible homogenized regimes (described below) depending on the scaling ratio between the size of the
periodic inclusions and their relative distance.

To be more precise, let us place ourselves in the classical context of periodic homogenization for (7.2.3),
which as motivated above, may be sufficient for shape optimization purposes. We assume D := [−L,L]d

to be a d-dimensional box filled with periodic obstacles ωε := ε(Zd + ηT ) ∩ D. The fluid domain Y
is assumed to be connected, see the introduction of section 7.5 for precise assumptions. we denote by
P = (0, 1)d the unit cell, and by Y := P\ηT the unit perforated cell. The boundary of the obstacle T is
assumed to be smooth. The setting is illustrated on Figure 7.3. The parameter ε denotes the size of the
periodic cell and is assumed to be small. The parameter η is another rescaling of the obstacle T within
each cell of size ε (which will allow us later to consider the so-called low volume fraction limit case where
η is small comparatively to ε). The working, porous domain is denoted by Dε := D\ωε, and we consider

Y

ηT

P = [0, 1]d

Dε

Figure 7.3: The perforated domain Dε and the unit cell Y = P\(ηT ).

the solution (uε, pε) of the following Stokes system:
−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

(7.2.4)

where f is now required to be a smooth, D–periodic right hand-side. The periodicity assumption for uε
is classical in homogenization and is used to avoid difficulties related to the arising of boundary layers
(see [216, 326, 19]). The literature accounts for several homogenized equations depending on how the size
aε = ηε of the holes compares to the critical size σε := εd/(d−2) in dimension d ≥ 3 or σε := exp(−1/ε2)
for d = 2 [242, 105, 11, 15]:
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• if aε = o(σε), then the holes are “too small” and (uε, pε) converges as ε→ 0 to the solution (u, p)
of the Stokes equation in the homogeneous domain D:

−∆u+∇p = f in D

div(u) = 0

u is D–periodic.

(7.2.5)

• if aε = σε, then (uε, pε) converges as ε→ 0 to the solution (u, p) of the Brinkman equation
−∆u+ Ψ∗u+∇p = f in D

div(u) = 0

u is D–periodic,

(7.2.6)

where the so-called strange term Ψ∗u involves a symmetric positive definite d× d matrix Ψ∗ that
can be computed by means of an exterior problem in Rd\T when d ≥ 3, and which is equal to πI
if d = 2 (see [11]).

• if σε = o(aε) and aε = ηε with η → 0 as ε → 0, then the holes are “large” and (ad−2
ε ε−duε, pε)

converges to the solution (u, p) of the Darcy problem
Ψ∗u+∇p = f in D

div(u) = 0 in D

u is D–periodic,

(7.2.7)

where Ψ∗ is the same symmetric positive definite d× d matrix as in (7.2.6).

• if aε = ηε with the ratio η fixed, then (ε−2uε, pε) converges to the solution (u, p) of the Darcy
problem 

M0u+∇p = f in D

div(u) = 0 in D

u is D–periodic,

(7.2.8)

where M0 is another positive symmetric d × d matrix (which depends on η). Furthermore it can
be shown that M0/| log(η)| → Ψ∗ if d = 2, and M0/ηd−2 → Ψ∗ (if d ≥ 3) when η → 0, so that
there is a continuous transition from (7.2.8) to (7.2.7), see [13].

These three different regimes, namely Stokes, Brinkman, and Darcy, raise practical difficulties in view of
applying the homogenization method for shape optimization. Indeed, it is not clear which regime to use
in order to write down a relaxed problem (7.2.2) in a context where the shape of the holes ηT ≡ η(x)T (x)
would be allowed to be modulated along the domain D: in regions featuring very tiny obstacles, one
should use the Stokes or Brinkman equation (7.2.5) and (7.2.6), however one should use the Darcy model
(7.2.8) when the obstacles become large enough.

In fact, there is a continuous transition between all regimes which can be captured by higher order
homogenized equations, and which is the purpose of the present chapter. Corrective terms scaled by
higher powers of ε can be added to the Darcy equation (7.2.8), which reduce to one of (7.2.5) to (7.2.7)
in the other scaling regimes considered.

7.2.3 High order homogenized equations for the Stokes problem: summary of results

The main result of this chapter is the derivation of higher order homogenized equations for the Stokes
system (7.2.4). For a desired order K ∈ N, there exists a homogenized model of order 2K + 2 which can
be written 

2K+2∑
k=0

εk−2DkK · ∇kv∗K +∇q∗K = f ,

div(v∗K) = 0,

v∗K is D–periodic,

(7.2.9)
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and which determines a so-called higher order homogenized solution (v∗K , q
∗
K) (definition 7.8). Note that

(v∗K , q
∗
K) depends on ε, but this dependence is implicitly understood for simplicity of notation. The

notation

DkK := (DkK,i1...ik,lm)1≤i1...ik≤d,1≤l,m≤d

designates a k-th order matrix valued tensor involving k indices i1 . . . ik associated with partial derivatives
and two indices l,m associated with spatial coordinates; it can be computed thanks to a procedure
involving the resolution of cell problems. The k-th order differential operator DkK · ∇k is obtained by
contracting the k indices i1 . . . ik with k partial derivatives and performing a matrix product with the
other two indices l,m:

(DkK · ∇kv∗K)l := DkK,i1...ik,lm∂
k
i1...ik

v∗K,m,

where (v∗K,m)1≤m≤d denote the components of v∗K and an implicit summation over the repeated indices
i1, . . . ik and m is assumed.

Equation (7.2.9) is said to be of “higher order” (namely of order 2K + 2 with K ∈ N) because v∗K
(respectively q∗K) yields an approximation of uε (respectively pε)) of order εK+3 (respectively εK+1) in
the L2(D) norm: in proposition 7.39 below, we prove the following error bounds with a constant CK(f)
that depends only on f , K (and a priori on the shape of the obstacle ηT ):∣∣∣∣∣

∣∣∣∣∣uε −
K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
H1(D,Rd)

≤ CK(f)εK+2

∣∣∣∣∣
∣∣∣∣∣pε −

(
q∗K +

K−1∑
k=0

εk−1βk(·/ε) · ∇kv∗K

)∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK(f)εK+1.

The variables Nk(·/ε) and βk(·/ε) are respectively matrix and vector valued corrector tensors which are
periodic in the cell P (Figure 7.3) and which do not depend on f ,v∗K , p

∗
K . Furthermore, Nk vanishes on

the boundary of the obstacle ∂(ηT ) so that a function multiplied by Nk(·/ε) vanishes on the boundary
of the holes ∂ωε.

Our methodology is based on the existence of “criminal” ansatz for the velocity and pressure solution
(uε, pε). The “classical” ansatz reads formally

uε =
+∞∑
i=0

εi+2ui(x, x/ε), pε(x) =
+∞∑
i=0

εi(p∗i (x) + εpi(x, x/ε)), x ∈ Dε. (7.2.10)

where the functions ui(x, y) and pi(x, y) are periodic in the variable y ∈ P (see eqn. (7.5.2) below).
To our knowledge, very few works have investigated higher order homogenized models for the Stokes
equation. Most of the available works have considered situations with low regularity for f and D (see
[272, 12]), where the homogenization process can be justified only for the first terms of the ansatz (7.2.10).
Error bounds for the higher order terms (namely the result of proposition 7.37) have been obtained in
[228, 74]. A few additional works have sought corrector terms from physical modelling considerations
[159, 47, 46].

By introducing a suitable family of k-th order tensors (X k,αk) obtained as the solutions to cell
problems, we obtain that (7.5.2) rewrites more explicitly (see proposition 7.29)

uε(x) =

+∞∑
i=0

εiX i(x/ε) · ∇i(f(x)−∇p∗ε(x)),

pε(x) = p∗ε(x) +

+∞∑
i=0

εi+1αi(x/ε) · ∇i(f(x)−∇p∗ε(x)),

x ∈ Dε. (7.2.11)

The ansatz for uε is a first instance of what [33] called an “asymptotic crime”, because the function p∗ε
it features is a homogenized pressure which is itself a formal power series in ε (see (7.5.3)).

Despite being explicit, the ansatz (7.2.11) is not fully satisfactory because it requires the knowledge
of the partial derivatives of f at any order, which may be difficult to obtain numerically. One of our
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main results is proposition 7.33, where we show that (uε, pε) can be formally decomposed as
uε(x) =

+∞∑
i=0

εiN i(x/ε) · ∇iu∗ε(x),

pε(x) = p∗ε(x) +

+∞∑
i=0

εi−1βi(x/ε) · ∇iu∗ε(x)

∀x ∈ Dε. (7.2.12)

The ansatz (7.2.12) is not standard and is different from (7.2.11); it is “even more” criminal because
it expresses both oscillating solution uε, pε in terms of their formal, non-oscillating averaged u∗ε, p

∗
ε

(which both depend themselves on ε, see (7.5.3)). Since the average of the tensor N0 over the unit cell
P is the 2×2 identity tensor while the average of the other tensors (Nk)k≥1 and (βk)k≥0 is zero (see
proposition 7.34), formally averaging (7.2.12) with respect to the fast variable x/ε shows that the variable
(u∗ε, p

∗
ε) can be indeed interpreted as a formal homogenized average of (uε, pε) of “infinite” order.

Criminal ansatz have been first derived in Bakhvalov and Panasenko (1989) [53] concerned with the
conductivity equation with heterogeneous diffusivity tensor (and no holes). They have then been used in
Smyshlyaev and Cherednichenko (2000) [287] to obtain higher order homogenized equation for a scalar
elasticity model with discontinuous Hooke’s tensor, and in [274, 33] in the context of the wave equation.

In proposition 7.32, we obtain that (u∗ε, p
∗
ε) solves the following formal “infinite-order” homogenized

equation, 
+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f ,

div(u∗) = 0,

u∗ε is D–periodic.

(7.2.13)

which involves a different family of constant tensors (Mk)k∈N. Our higher order homogenized models
(7.2.9) of order 2K+ 2 turn out to be truncations of (7.2.13) in the sense that the first K+ 1 coefficients
coincide: DkK = Mk for 0 ≤ k ≤ K. Truncating directly (7.2.13) yields, in general, an ill-posed model
[20]. This fact is classical and several methods have been proposed to address this issue and obtain
nonetheless well-posed higher order models see e.g. [35, 22, 3, 4, 33]. In our case, we adapt an idea
from [287], whereby the coefficients DkK for K + 1 ≤ k ≤ 2K + 2 are obtained thanks to a minimization
principle which makes indeed (7.2.9) well-posed. Let us stress, however, that this choice is not unique.

A rather surprising feature lies in the fact that (7.2.9) and (7.2.13) feature operators of odd order
terms. This fact is to relate the vectorial context: the tensors DkK and Mk are symmetric and anti-
symmetric valued matrices for respectively even and odd k (corollary 7.9). This property ensures that
eventually, the operators DkK · ∇k and Mk · ∇k are symmetric operators (see remark 7.20). Tensors DkK
(with k = 2p+1, p ∈ N) are a priori not zero (this assertion may be difficult to prove, however numerical
results supporting this assertion are provided in section 7.4.5 below); we shall see nevertheless that these
tensors vanish in the case where the obstacle ηT is symmetric with respect to the cell axes.

A legitimate question is to ask whether (7.2.9) or (7.2.13) reduces indeed to either of the equations
(7.2.5) to (7.2.8) under the various possible scaling regimes for the sizes of the periodic obstacles. The
answer is affirmative let us first mention that keeping the terms of lowest powers in (7.2.13) yields the
Darcy model (7.2.8) (the tensor M0 is the same). Furthermore, we prove the following asymptotics in
the low volume fraction limit η → 0 (in corollary 7.12) and assuming d ≥ 3:

ε−2M0 ∼ ηd−2/ε2Ψ∗, (7.2.14)

ε−1M1 = o
(
ε(ηd−2/ε2)

)
, (7.2.15)

ε0M2 → −I, (7.2.16)

∀k ≥ 1, ε2k−2M2k = o

((
ε2

η(d−2)

)k−1
)
, (7.2.17)

∀k ≥ 1, ε2k−1M2k+1 = o

(
ε

(
ε2

η(d−2)

)k−1
)
. (7.2.18)

where I is the d-by-d identity matrix. The first convergence result (7.2.14) has been obtained in [13], it
expresses the continuous transition of the Darcy tensor M0 in (7.2.7) towards the Brinkman tensor Ψ∗ in
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(7.2.6). These asymptotics involve the ratio ηd−2/ε2, which naturally brings into play the classical critical
scaling η ∼ ε2/(d−2) (i.e. σε = εε2/(d−2) = εd/(d−2) for the holes). Therefore, the Stokes, Brinkman, or
Darcy regimes (7.2.5) to (7.2.7) are retrieved in sense that the coefficients Mk of (7.2.13) converge to
those of these three equations as η, ε→ 0.

To conclude, let us outline how such higher order homogenized models could be used for topology
optimization of fluid flows. For K = 0, (7.2.9) rewrites in the form of a second order elliptic problem:

D2
0 · ∇2v∗0 + ε−1D1

0 · ∇v∗0 + ε−2D0
0v
∗
0 +∇q∗K = f ,

div(v∗0) = 0,

v∗0 is D–periodic.

(7.2.19)

We shall see that (7.2.19) yields the same order of approximation O(ε3) of uε as the more classical Darcy
equation (7.2.8). However, (7.2.19) makes sense for all three regimes simultaneously: it provides missing
corrector terms that are not visible, at first order, in the Darcy regime (7.2.7). Further, it can be verified
that the tensors D2

0 satisfy the same asymptotics as the tensors Mk for 0 ≤ k ≤ 2. The formulation
(7.2.19) is expected to be amenable for the development of a numerical topology optimization method:
upon a suitable choice of parameterization (a1, . . . , am) of the microstructure, a relaxed formulation of
(7.2.3) could be

min
(a1,...,am)∈L∞(D,Rd)

J∗(a1, . . . , am,v
∗
K(a1, . . . , am), q∗K(a1, . . . , am))

s.t.

{
D2

0(a1, . . . , am) · ∇2v∗0 + ε−1D1
0(a1, . . . , am) · ∇v∗0 + ε−2D0

0(a1, . . . , am)v∗0 +∇q∗K = f ,

v∗K is D–periodic,

(7.2.20)

where J∗ would be a consistent relaxation of J and the functions (a1, . . . , am) 7→ Dk0(a1, . . . , am) could be
computed in an off-line step (following [27]). This model is second order for any type of microstructure
and contains all three regimes simultaneously, which solves our initial issue. Higher order models could be
used similarly to capture contexts where the size ε is only moderately small. Our work opens interesting
perspectives for the topology optimization of liquid-liquid heat exchangers because our model can be
extended in a straightforward manner to multicomponent fluid domains, see the appendix of section 7.5.6)
for a discussion.

Finally let us notice that (7.2.20) is a generalization of the model of Borrvall and Petersson [71, 72]
which is commonly used in density based methods for fluid topology optimization: it is a version of
(7.2.6) where the Brinkman tensor Ψ∗ is assumed to be a scalar and is used as a penalization to enforce
v = 0 in “solid” regions modeled by large values of Ψ∗. Some variants, however, have been proposed
such as the Darcy model [324].

7.2.4 Setting and notation conventions related to tensors

In all what follows, the setting considered is that of Figure 7.3. D := [−L,L]d is a d-dimensional box
filled with periodic obstacles ωε := ε(Zd + ηT ) ∩ D. P = (0, 1)d is the unit cell, and Y := P\ηT the
unit perforated cell. The boundary of the obstacle T is assumed to be smooth. The perforated domain
is Dε := D\ωε.

Below and further on, we consider scalar and vectorial functions such as

u : D × P → R, u : D × P → Rd

which are both D and P–periodic with respect to respectively the first and the second variable. Their
respective values are denoted by u(x, y) and u(x, y) where the arguments x and y are called respectively
the “slow” and the “fast” variable. The partial derivative with respect to the variable yj (respectively
xj) is written simply ∂j instead of ∂yi (respectively ∂xj ) where the context is clear, i.e. when the function
to which it is applied depends only on y (respectively only on x).

The star–“∗”– symbol is used to denote the average of such functions with respect to the y variable:

u∗(x) :=

∫
P

u(x, y)dy, u∗(x) :=

∫
P

u(x, y)dy.
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For functions depending only on the y variable, it will be sometimes more convenient to write this average
with the usual angle bracket symbols. For instance, if X : P → Rd is a vector field in the cell P , then
its average is defined by

< X >:=

∫
P

X (y)dy.

In all what follows, unless otherwise specified, the Einstein summation convention over repeated subscript
indices is assumed (but never on superscript indices). Vectors of Rd are written in bold face notation.

The notation conventions used for tensor related operations are summarized in the nomenclature below.

Scalar, vector, and matrix valued tensors and their coordinates

b Vector of Rd

(bj)1≤j≤d Coordinates of the vector b.

bk Scalar valued tensor of order k (bki1···k ∈ R for 1 ≤ i1, . . . , ik ≤ d)

bk Vector valued tensor of order k (bki1...ik ∈ Rd for 1 ≤ i1, . . . , ik ≤ d)

Bk Matrix valued tensor of order k (Bki1...ik ∈ Rd×d for 1 ≤ i1, . . . , ik ≤ d)

(bkj )1≤j≤d Coordinates of the vector valued tensor bk seen as scalar tensors of order k.

(Bklm)1≤l,m≤d Coefficients of the matrix valued tensor Bk seen as scalar tensors of order k.

bki1...ik,j Coefficient of the vector valued tensor bk (1 ≤ i1, . . . ik ≤ d and 1 ≤ j ≤ d).

Bki1...ik,lm Coefficient of the matrix valued tensor Bk (1 ≤ i1, . . . ik ≤ d and 1 ≤ l,m ≤ d).

Tensor products

bp ⊗ ck−p Tensor product of scalar tensors of order p and k:

(bp ⊗ ck−p)i1...ip := bpi1...ipc
k−p
ip+1...ik

. (7.2.21)

ap ⊗ bk−p Tensor product of a p-th order scalar tensor ap and a k − p-th order vector valued
tensor bk−p:

(ap ⊗ bk−p)i1...ik := api1...ipb
k−p
ip+1...ik

. (7.2.22)

Bp ⊗ Ck−p Tensor product of the p-th order and a k − p-th order d × d matrix valued tensors
Bp = (Bplm)1≤l,m≤d and Ck−p = (Ck−plm )1≤l,m≤d:

(Bp ⊗ Ck−p)i1...ik,lm := Bpi1...ip,ljC
k−p
ip+1...ik,jm

, (7.2.23)

Hence a matrix product is implicitly assumed in the notation Bp ⊗ Ck−p.

Bp : Ck−p Tensor product of two p-th order and k − p-th order matrix valued tensors:

(Bp : Ck−p)i1...ik := Bpi1...ip,lmC
k−p
ip+1...ik,lm

. (7.2.24)

bp · ck−p Tensor product of two vector valued tensors bp and ck−p:

(bp · ck−p)i1...ik := bpi1...ik,mc
k−p
ip+1...ik,m

. (7.2.25)

Bp · ck−p Tensor product of a matrix valued tensor Bp and a vector valued tensors ck−p:

(Bp · ck−p)i1...ik,l := Bpi1...ik,lmc
k−p
ip+1...ik,m

. (7.2.26)

Contraction with partial derivatives
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bk · ∇k Differential operator of order k associated with a scalar tensor bk: for any smooth
scalar field v,

bk · ∇k := bki1...ik∂
k
i1...ik

. (7.2.27)

bk · ∇k Differential operator of order k associated with a vector tensor bk: for any smooth
vector field v,

bk · ∇kv = bki1...ik,l∂
k
i1...ik

vl. (7.2.28)

Bk · ∇k Differential operator of order k associated with a matrix valued tensor Bk: for any
smooth vector field v,

(Bk · ∇kv)l = Bki1...ik,lm∂
k
i1...ik

vm. (7.2.29)

Special tensors

δij Kronecker symbol: δij = 1 if i = j and δij = 0 if i 6= j.

I Identity tensor of order 2:

Ii1i2 = δi1i2 = ej ⊗ ej .

The identity tensor is another notation for the Kronecker tensor.

I2k Identity tensor of order 2k:

I2k :=

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I .

(ej)1≤j≤d Vectors of the canonical basis of Rd.

ej Scalar valued tensor of order 1 given by ej,i1 := δi1j (with 1 ≤ j ≤ d).

Bk,lK Bilinear tensor of order k + l which may be either scalar or matrix valued:

• if Bk,lK is a scalar tensor, then for any smooth scalar fields v and w:

Bk,lK ∇
kv∇lw := Bk,lK,i1...ik,j1...jl∂

k
i1...ik

v ∂lj1...jlw.

• if Bk,lK is a matrix valued tensor, then for any smooth vector fields v,w ∈
C∞(Rd):

Bk,lK ∇
kv∇lw := Bp,kK,i1...ip,j1...jk,lm∂

p
i1...ip

vl ∂
k
j1...jk

wm.

With a small abuse of notation, we consider zeroth order tensors b0 to be constants (i.e. b0 ∈ R) and
we still denote by b0 ⊗ ck := b0ck the tensor product with a k-th order tensor ck. The same convention
also applies to vector valued and matrix valued tensors.

Since a k-th order tensor (scalar, vector, or matrix valued) Bk makes sense when contracted with k
partial derivatives as in (7.2.27) to (7.2.29), the order in which the indices i1, . . . , ik are written in
Bki1,...ik does not matter in general. However the ordering of spatial indices l,m of a matrix valued tensor

Bk = (Bki1...ik,lm) does matter.

Finally, in the whole work, we write C, CK or CK(f) to denote universal constants that do not depend
on ε but whose values may change from lines to lines (and which may depend on η).

Remark 7.1. In a limited number of places, the superscript or subscript indices p and q are used.
Naturally, these are not to be confused with the pressure variables pε or qε introduced in section 7.5.
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7.3 High order homogenization for the perforated Poisson problem

Our first study is concerned with the high order homogenization of the perforated Poisson problem:
−∆uε = f in Dε

uε = 0 on ∂ωε

uε is D–periodic.

(7.3.1)

where f ∈ C∞(D) is a smooth D–periodic right-hand side. The system (7.3.1) can be considered as a
simplified scalar version of the Stokes problem (7.2.4). Our objective is to derive well-posed high order
homogenized equations for (7.3.1) of arbitrary order, which reduce to the three classical regimes (see
[103]) analogous to (7.2.5) to (7.2.7) in the low volume fraction limit η → 0.

Remark 7.2. The D–periodicity assumption for f and uε is classical in homogenization; it is used in
order to avoid difficulties related to boundary layers. There exist other settings in which we expect our
analysis would also work, for instance if the domain D is smooth, if f ∈ C∞c (D) is compactly supported
in D, and if (7.3.1) is supplemented with a Dirichlet boundary condition on ∂D (see [217]).

Let us summarize the main steps of our analysis. We start by writing the traditional (see e.g. [217])
two-scale ansatz for the solution of (7.3.1):

uε(x) =
+∞∑
i=0

εi+2ui(x, x/ε), (7.3.2)

where ui(x, y) is a P–periodic function in y satisfying ui(x, y) = 0 for y ∈ ∂(ηT ). Here and in all
what follows, equalities involving infinite power series such as (7.3.2) are formal and without a precise
meaning of convergence (which shall rather be justified in the section 7.3.4 dedicated to error estimates).
We search for higher order “homogenized” equations for the “homogenized” macroscopic approximation

u∗ε(x) :=

+∞∑
i=0

εi+2

∫
Y

ui(x, y)dy. (7.3.3)

Our method can then be decomposed into the following steps:

1. introducing a family of k-th order scalar tensors (X k(y))k∈N) (vanishing on ηT and obtained as
the solutions of cell problems (see definition 7.1)), we show in proposition 7.1 that (7.3.2) reads
explicitly:

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇if(x). (7.3.4)

Introducing the averaged tensors of order i, X i∗ :=
∫
Y
X i(y)dy, (7.3.3) reads similarly

u∗ε(x) =

+∞∑
i=0

εi+2X i∗ · ∇if(x). (7.3.5)

2. We construct constant tensors M i by inversion of the formal equality(
+∞∑
i=0

εi−2M i · ∇i
)(

+∞∑
i=0

εi+2X i∗ · ∇i
)

= I, (7.3.6)

which yields (by left multiplication in (7.3.5)) the following formal, infinite order homogenized
equation for u∗ε(x):

+∞∑
i=0

εi−2M i · ∇iu∗ε(x) = f(x). (7.3.7)

3. We substitute the expression for f(x) given by (7.3.7) into the ansatz (7.3.4) so as to recognize a
formal double series product

uε(x) =

(
+∞∑
i=0

εiX i(x/ε) · ∇i
)(

+∞∑
i=0

εiM i · ∇i
)
u∗ε(x). (7.3.8)
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Introducing a new family of tensors Nk(y) defined by the Cauchy product

Nk(y) :=

k∑
p=0

X p(y)⊗Mk−p, y ∈ Y,

we are able to express the oscillating solution uε in terms of its formal average u∗ε as follows:

uε(x) =

+∞∑
i=0

εiN i(x/ε) · ∇iu∗ε(x). (7.3.9)

4. In order to obtain well-posed homogenized equations of finite order, we consider truncated versions
of functions of the form of (7.3.9):

wε(v)(x) :=

K∑
i=0

εiN i(x/ε) · ∇iv(x).

We then formulate a minimization problem for v by restriction of the one associated with uε:

min
v∈HK+1(D)

∫
D

(
1

2
|∇wε(v)|2 − f(x)wε(v)(x)

)
dx

s.t.v is D–periodic.

(7.3.10)

Averaging over the fast variable x/ε (by using lemma 7.3), we obtain a limit minimization problem
involving an approximate energy J∗K (see section 7.3.3) which does not depend on x/ε,

min
v∈HK+1(D)

J∗K(v, f, ε)

s.t. v is D–periodic.
(7.3.11)

Its Euler-Lagrange equation (see definition 7.5) yields a well-posed homogenized equation of order
2K + 2:

K+1∑
k=0

ε2k−2D2k
K · ∇2kv∗K = f, (7.3.12)

where the tensors D2k
K are inferred from J∗K . We then prove in proposition 7.13 that its solution

v∗K ∈ HK+1(D) yields a high order approximation of uε thanks to the following error estimate:∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK(f)εK+3, (7.3.13)

for a constant CK(f) which depends only on K and f .

The most essential step of the methodology is the derivation of the non-classical ansatz (7.3.9).
We shall see (proposition 7.9) that the tensor N0 is of average

∫
Y
N0(y)dy = 1 and Nk is of average∫

Y
Nk(y)dy = 0 for k ≥ 1: averaging (7.3.9) with respect to the fast variable x/ε yields consistently the

formal “homogenized average” u∗ε.
Let us stress that in the available works of the literature concerned with high order homogenization

of scalar conductivity equations and its variants [53, 287, 33] (where the inhomogeneity arises through
the discontinuity of the conductivity coefficient), the criminal ansatz (analogous to (7.3.9)) is readily
obtained from the classical one (analogous to (7.3.2)) because the tensors Nk and X k coincide in these
contexts (check for instance [53, 20]). This does not occur in our case because of the Dirichlet boundary
condition on ∂(ηT ).

The remainder of this part is organized as follows: in section 7.3.1, we examine the definition of the
family of tensors X k yielding the classical ansatz (7.3.3). We state several properties of the tensor X k and
review classical error estimate results for the traditional ansatz. In section 7.3.2, we detail the procedure
which allows to obtain the family of constant tensors Mk and the criminal ansatz (7.3.9) involving the
new tensors Nk(y). This allows us to derive in section 7.3.3 the higher order “homogenized energy”
J∗K and its associated high order homogenized equation (7.3.12). We prove the well-posedness of this
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equation and that its first K + 1 coefficients coincide with those of (7.3.7). Section 7.3.4 is dedicated
to the proof of the error estimate (7.3.13) justifying the higher order homogenization process. We show
in section 7.3.5 that the coefficients of the infinite order homogenized equation (7.3.7) converge to those
of the original Poisson equation (7.3.1) in the low-volume fraction limit when the obstacle’s size η → 0,
which allows us to retrieve the three classical regimes and the arising of the celebrated “strange term”
(see [103]) for the critical size η ∼ ε2/(d−2). Lastly, we establish in section 7.3.6 symmetry properties for
the homogenized tensors X k∗ and Mk when the obstacle ηT is invariant with respect to cell symmetries.

7.3.1 Formal infinite order two-scale expansions and tensors X k

The first step of our methodology is to insert formally the ansatz (7.3.2) into the Poisson system (7.3.1).
Because it will help highlight the occurrence of double series structures, we also assume (although it is
not fully necessary) that the right-hand side f depends on ε and admits the following formal expansion:

f(x) =

+∞∑
i=0

εifi(x).

Evaluating the Laplace operator against (7.3.2) yields then formally

−∆uε =

+∞∑
i=−2

εi+2(−∆yyui+2 −∆xyui+1 −∆xxui)

where we use the convention u−2(x, y) = u−1(x, y) = 0, and where −∆yy, −∆xy, −∆xx are the operators

−∆xx := −divx(∇x·), −∆xy := −divx(∇y·)− divy(∇x·), −∆yy := −divy(∇y·).

Identifying all powers in ε yields then the traditional cascade of equations (obtained e.g. in [217]):{
−∆yyui+2 = fi+2 + ∆xyui+1 + ∆xxui for all i ≥ −2

u−2(x, y) = u−1(x, y) = 0.
(7.3.14)

Definition 7.1. We define the family of tensors (X ki1...ik(y))k∈N of order k by recurrence as follows:

−∆yyX 0 = 1 in Y

−∆yyX 1 = 2∂jX 0 ⊗ ej in Y

−∆yyX k+2 = 2∂jX k+1 ⊗ ej + X k ⊗ I in Y, for all k ≥ 0

X k = 0 on ∂(ηT )

X k is P–periodic.

(7.3.15)

Lemma 7.1. Assume that the boundary of the perforated cell Y is smooth. Then, for any k ∈ N, the
tensor X k is well-defined and is smooth, namely it holds X k ∈ C∞(Y ). In particular, X k ∈ L∞(Y ) ∩
H1(Y ).

Proof. Since the constant function 1 is smooth, standard regularity theory for the Laplace operator −∆yy

(see [176, 76, 146]) implies X 0 ∈ C∞(Y ). The result follows by induction by repeating this argument to
X 1 and X k+2 for any k ≥ 0.

Proposition 7.1. The solutions (ui(x, y))i≥0 to the cascade of equations (7.3.14) are given by

∀i ≥ 0, ui(x, y) =

i∑
k=0

X k(y) · ∇kfi−k(x), x ∈ D, y ∈ Y. (7.3.16)

Recognizing a Cauchy product, the ansatz (7.3.2) can be formally written as the following infinite power
series product:

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇if(x) = ε2

(
+∞∑
i=0

εiX i(x/ε) · ∇i
)(

+∞∑
i=0

εifi(x)

)
. (7.3.17)
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Proof. We proceed by induction. The cases i = 0 and i = 1 are simple consequences of (7.3.14). If the
result holds until rank i+ 1, then

−∆yyui+2(x, y) = fi+2(x) +

i+1∑
k=0

2∂jX k(y) · ∇k(∂jfi+1−k(x)) +

i∑
k=0

X k · ∇k(∆fi−k(x))

= fi+2(x) +

i∑
k=−1

2(∂jX k+1(y)⊗ ej) · ∇k+2fi−k(x) +

i∑
k=0

(X k(y)⊗ I) · ∇k+2fi−k(x)

= fi+2(x) + 2∂jX 0(y)∂jfi+1(x) +

i∑
k=0

(−∆yyX k+2(y)) · ∇k+2fi−k(x).

Whence

ui+2(x, y) = X 0(y)fi+2(x) + X 1
j (y)∂jfi+1(x) +

i∑
k=0

X k+2(y) · ∇k+2fi−k(x) =

i+2∑
k=0

X k(y) · ∇kfi+2−k(x).

In what follows, we are going to derive high order PDEs for the “infinite order” homogenized solution
(7.3.3). Following the notation conventions introduced in section 7.2.4, we find convenient to introduce
averaged functions u∗i and tensors X i∗ labelled with the star “*” notation:

Definition 7.2. For any i ∈ N, the averaged functions and tensors with respect to the fast variable are
denoted by:

u∗i (x) :=

∫
Y

ui(x, y)dy. (7.3.18)

X i∗ :=

∫
Y

X i(y)dy. (7.3.19)

Remark 7.3. These are average on the unit cell P = [0, 1]d, although the integral is written on the
domain Y , because ui(x, ·) and X i vanish on P\Y = ηT (see Figure 7.3).

In the next proposition we show that X 2p∗ depends only on the lower order tensors X p and X p−1

and that X 2p+1∗ is null for any p ∈ N. Similar formulas have been obtained for the wave equation in
heterogeneous media, see e.g. Theorem 3.5 in [4], and also [3, 264].

Proposition 7.2. For any 0 ≤ p ≤ k, the following identity holds for the tensor X k∗:

X k∗ =

∫
Y

X kdy = (−1)p
∫
Y

(X k−p ⊗ (−∆yyX p)−X k−p−1 ⊗X p−1 ⊗ I)dy, (7.3.20)

with the convention that X−1 = 0. In particular, for any p ∈ N:

• X 2p+1∗ = 0

• X 2p∗ depends only on the tensors X p and X p−1:

X 2p∗ = (−1)p
∫
Y

(∂jX p ⊗ ∂jX p −X p−1 ⊗X p−1 ⊗ I)dy. (7.3.21)

Proof. We proceed again by induction. Formula (7.3.20) holds true for p = 0 by using the convention
X−1 = 0 and −∆yyX 0 = 1. Assuming now the result true for p < k, we may perform the following
integration by parts thanks to the boundary conditions satisfied by the tensors X k:

X k∗ =(−1)p
∫
Y

(X k−p ⊗ (−∆yyX p)−X k−p−1 ⊗X p−1 ⊗ I)dy

=(−1)p
∫
Y

(−∆yyX k−p ⊗X p −X k−p−1 ⊗X p−1 ⊗ I)dy

=(−1)p
∫
Y

((2∂jX k−p−1 ⊗ ej + X k−p−2 ⊗ I)⊗X p −X k−p−1 ⊗X p−1 ⊗ I)dy

=(−1)p
∫
Y

(−2∂jX p ⊗ ej −X p−1 ⊗ I)⊗X k−p−1 + X k−p−2 ⊗X p ⊗ I)dy

=(−1)p+1

∫
Y

((−∆yyX p+1)⊗X k−p−1 −X k−p−2 ⊗X p ⊗ I)dy.



7.3.1. Formal infinite order two-scale expansions and tensors X k 253

Hence the formula is proved at order p+ 1.
Now, the formula at order p = k reads

X k∗ = −
∫
Y

X 0(−∆yyX k)dy = −
∫
Y

X k(−∆yyX 0)dy = −X k∗,

which implies X k∗ = 0 if k is odd. Formula (7.3.21) follows easily from (7.3.20) with k = 2p.

The following result demonstrates that X k(y) is not identically equal to zero (although some components
X ki1...ik(y) could vanish for some set of indices i1, . . . , ik, e.g. in case of symmetries of the obstacle ηT ).

Proposition 7.3. The following identity holds:

−∆yy(∂ki1...ikX
k
i1...ik

) = (−1)k(k + 1). (7.3.22)

Proof. The results naturally holds true for k = 0. For k = 1, it holds

−∆yy∂iX 1
i = ∂i(2∂iX 0) = 2∆X 0 = −2.

Assuming the result till rank k − 1, the formula still holds at rank k because

−∆yy∂
k
i1...ik

X ki1...ik = ∂ki1...ik(2∂ikX
k−1
i1...ik−1

+ X k−2
i1...ik−2

δik−1ik)

= 2∆yy(∂k−1
i1...ik−1

X k−1
i1...ik−1

) + ∆yy(∂k−2
i1...ik−2

X k−2
i1...ik−2

)

= −2(−1)k−1k − (−1)k−2(k − 1)

= (−1)k(k + 1).

The next result can be found in classical textbooks, see e.g. [217]. It states error estimates for the
truncated classical ansatz (7.5.2):

Proposition 7.4. Denote uε,K the truncated ansatz of (7.3.17) at order K:

∀x ∈ D, uε,K(x) :=

K∑
i=0

εi+2X i(x/ε) · ∇if(x). (7.3.23)

Then assuming f is D–periodic, the following bound holds:

||uε − uε,K ||H1(Dε) ≤ CKε
K+2||f ||HK+2(D) (7.3.24)

for a constant CK independent of f and ε (but depending on K).

Proof. It is sufficient to observe that the remainder rε(x) = uε(x)− uε,K(x) satisfies

−∆rε = (εK+1(∆xyuK + ∆xxuK−1) + εK+2∆xxuK))(x, x/ε).

and the terms (∆xyuK)(x, x/ε), (∆xxuK−1)(x, x/ε) and (∆xxuK)(x, x/ε) can be bounded in the L2(D)
norm by CK ||f ||HK+2 . The result follows from

||∇rε||2L2(Dε,Rd) ≤ CKε
K+1||f ||HK+2(D)||rε||L2(Dε) ≤ CKε

K+2||f ||HK+2(D)||∇rε||L2(Dε,Rd),

where we have used the classical Poincaré inequality of lemma 7.2 below.

Lemma 7.2 (see e.g. Lions 1981 [217]). There exists a constant C independent of ε such that for any
φ ∈ H1(Dε) satisfying φ = 0 on the boundary ∂ωε of the holes, the following Poincaré inequality holds:

||φ||L2(Dε) ≤ Cε||∇φ||L2(Dε,Rd).

In the final part of this section, we provide a few insights highlighting in which sense the homogenized
average u∗ε of (7.3.3) is an approximation of uε. Let us recall the following important lemma (see e.g.
Appendix C of [287] or [16, 138]):
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Lemma 7.3. Let φ a P = [0, 1]d–periodic function and f ∈ C∞(Dd) a smooth D–periodic function.
Then for any k ∈ N arbitrarily high, the following inequality holds:∣∣∣∣∫

D

f(x)φ(x/ε)dx−
∫
D

∫
P

f(x)φ(y)dydx

∣∣∣∣ ≤ (2L)d/2

|2π|k

∣∣∣∣∣∣∣∣φ− ∫
P

φdy

∣∣∣∣∣∣∣∣
L2(P )

||f ||Hk(D)ε
k. (7.3.25)

Proof. The key idea is to perform integration by parts by differentiating f and integrating φ. Without
loss of generality, we may assume φ to be of average zero, i.e.

∫
P
φdy = 0. We show by induction that

for any k ≥ 0, there exists a function φki1...ik with 1 ≤ i1 . . . ik ≤ d satisfying

∑
1≤i1,...ik≤d

||φki1...ik ||
2
L2(P ) ≤

1

|4π2|k
||φ||2L2(P ), (7.3.26)∫

P

φki1...ikdy = 0, (7.3.27)

and such that ∫
D

f(x)φ(x/ε)dy = (−1)k
∫
D

εk∂ki1...ikfφ
k
i1...ik

(x/ε)dx. (7.3.28)

Obviously, the above identities hold true for k = 0. Assuming now that the results holds till rank k ≥ 0,
we introduce ψki1...ik ∈ H

1(P ) the unique solution to the following Laplace problem:
−∆ψki1...ik = φki1...ik in P

ψki1...ik is P–periodic∫
P

ψki1...ikdy = 0.

(7.3.29)

Such function actually exists because of the compatibility condition (7.3.27); this allows us to define

φk+1
i1...ik+1

:= ∂ik+1
ψki1...ik .

It is clear from the periodicity of ψki1...ik that (7.3.27) holds at rank k+1, and it holds from the variational
formulation of (7.3.29)

d∑
ik+1=1

||φk+1
i1...ik+1

||2L2(P ) = ||∇ψki1...ik ||
2
L2(P,Rd) ≤

1

4π2
||φki1...ik ||

2
L2(P ),

because 1/(4π2) is the Poincaré constant of [0, 1]d. Summing over the indices i1 . . . ik and applying
hypothesis (7.3.26) at rank k yields the same estimate (7.3.26) at rank k+1. We may subsequently write∫

D

∂ki1...ikfφ
k
i1...ik

(x/ε)dx =

∫
D

ε∂ki1...ikfdiv(φk+1
i1...ik+1

(x/ε)eik+1
)dx

= −
∫
D

ε∂k+1
i1...ik+1

f(x)φk+1
i1...ik+1

(x/ε)dx,

from where (7.3.28) follows at rank k + 1.
Let us finally prove (7.3.25). From (7.3.28) and the Cauchy-Schwartz inequality, we obtain∣∣∣∣∫

D

f(x)φ(x/ε)dx

∣∣∣∣2 ≤ ε2k||f ||2Hk(D)

∑
1≤i1...ik

∫
D

|φki1...ik(x/ε)|2dx ≤ ε2k||f ||2Hk(D)

(2L)d

|4π2|k
||φ||2L2(P ),

whence the result.

Remark 7.4. The constant 2π in (7.3.25) is related to the fact that the unit cell is of size 1 (it would
be one for a cell of length 2π), it is therefore no surprise that it scales with the same power k than ε.

This lemma implies that u∗ε is an approximation of uε in a distributional sense:
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Proposition 7.5. Denote by u∗ε,K the average of the truncated ansatz uε,K (eqn. (7.3.23)) with respect
to the fast variable, namely

u∗ε,K(x) :=

K∑
i=0

εi+2u∗i (x) =

K∑
i=0

εi+2X i∗ · ∇if(x). (7.3.30)

Then u∗ε,K is a (K + 3)− th order approximation of uε in the following weak sense:

∀ψ ∈ C∞c (D),

∣∣∣∣∫
D

uε(x)ψ(x)dx−
∫
D

u∗ε,K(x)ψ(x)dx

∣∣∣∣ ≤ CK(ψ)||f ||HK+2(D)ε
K+3,

for a constant CK(ψ) depending only on K and ψ.

Proof. We write∣∣∣∣∫
D

uε(x)ψ(x)dx−
∫
D

u∗ε,K(x)ψ(x)dx

∣∣∣∣
≤
∫
D

|(uε(x)− uε,K(x))ψ(x)|dx+

∣∣∣∣∫
D

(uε,K(x)− u∗ε,K(x))ψ(x)dx

∣∣∣∣
(7.3.31)

Let MK(ψ) > 0 a constant such that ||∇kψ||L∞(D,Rd) ≤ MK(ψ) for any 0 ≤ k ≤ K + 1. The first term

is bounded by ||uε − uε,K ||L2(D)||ψ||L2(D) ≤ CKMK(ψ)εK+3||f ||HK+2(D) according to proposition 7.4.

The second term is bounded by CKMK(ψ)||f ||HK+1(D)ε
K+3 (up to the use of a larger constant CK) as

a consequence of the important Lemma 7.3 stated above.

Remark 7.5. More elaborate arguments can be proposed for providing u∗ε(x) with a physical interpre-
tation, e.g. by considering shifted cell averages (see [287, 102]).

7.3.2 Formal infinite order homogenized equation and criminal ansatz: tensors Mk and

Nk

We now detail the steps (2) and (3) of the procedure outlined in the introduction of this section. Let us
recall that the first tensor X 0∗ is a strictly positive number, since (7.3.21) implies X 0∗ =

∫
Y
|∇X 0|2dy.

Proposition 7.6. Let (Mk)i∈N be the family of k-th order tensors defined by induction as follows:
M0 = (X 0∗)−1,

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp.
(7.3.32)

Then it holds, given the definitions (7.3.14) and (7.3.18) for u∗i :

∀i ≥ 0, fi(x) =

i∑
k=0

Mk · ∇ku∗i−k(x). (7.3.33)

Recognizing a Cauchy product, this can be rewritten formally in terms of the following “infinite order”
homogenized equation for u∗ε (defined in (7.3.5)):

+∞∑
i=0

εi−2M i · ∇iu∗ε = f. (7.3.34)

Proof. We proceed by induction. The case i = 0 results from the identity u∗0(x) = X 0∗f0(x) which yields
f0(x) = (X 0∗)−1u∗0(x). Then, assuming the result (7.3.33) holds till rank i − 1, we average equation
(7.3.16) with respect to the y variable to obtain

u∗i =

i∑
p=0

X p∗ · ∇pfi−p = X 0∗fi +

i∑
p=1

X p∗ · ∇pfi−p.
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By inversion of the nonzero coefficient X 0∗, we obtain the following expression for fi:

fi = (X 0∗)−1

(
u∗i −

i∑
p=1

i−p∑
q=0

(X p∗ ⊗Mq) · ∇p+qu∗i−p−q

)

= (X 0∗)−1

u∗i − i∑
p=1

i∑
k=p

(X p∗ ⊗Mk−p) · ∇ku∗i−k

 (change of indices k = p+ q )

= (X 0∗)−1

(
u∗i −

i∑
k=1

k∑
p=1

(X p∗ ⊗Mk−p) · ∇ku∗i−k

)
(inversion of summation)

= (X 0∗)−1

(
u∗i −

i∑
k=1

(
k−1∑
p=0

X k−p∗ ⊗Mp

)
· ∇ku∗i−k

)
(change of index p↔ k − p)

= M0u∗i +

i∑
k=1

Mk · ∇ku∗i−k,

which concludes the proof.

Corollary 7.1. Mk = 0 for any odd value of k.

Proof. This follows from proposition 7.2 and the recurrence formula (7.3.32).

It is possible to write a more explicit formula for the tensors Mk:

Proposition 7.7. The tensors Mk are explicitly given by M0 = (X 0∗)−1 and:

∀k ≥ 1, Mk =

k∑
p=1

(−1)p

(X 0∗)p+1

∑
i1+···+ip=k
1≤i1...ip≤k

X i1∗ ⊗ · · · ⊗ X ip∗. (7.3.35)

Proof. We prove it by induction. For k = 1, the result is true because

M1 = −(X 0∗)−1M0X 1∗ = −(X 0∗)−2X 1∗

which is exactly (7.3.35). Assuming (7.3.35) holds till rank k ≥ 1, we now compute

Mk+1 = −(X 0∗)−1
k∑
p=0

X k+1−p∗ ⊗Mp

= −(X 0∗)−1M0X k+1∗ − (X 0∗)−1
k∑
p=1

p∑
q=1

(−1)q

(X 0∗)q+1
X k+1−p∗ ⊗

∑
i1+···+iq=p
1≤i1...iq≤p

X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ − (X 0∗)−1
k∑
q=1

(−1)q

(X 0∗)q+1

k∑
p=q

∑
i1+···+iq=p
1≤i1...iq≤p

X k+1−p∗ ⊗X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ − (X 0∗)−1
k∑
q=1

(−1)q

(X 0∗)q+1

∑
i1+···+iq+1=k+1
1≤i1...iq+1≤k+1

X iq+1∗ ⊗X i1∗ ⊗ · · · ⊗ X iq∗

= −(X 0∗)−2X k+1∗ +

k+1∑
q=2

(−1)q

(X 0∗)q+1

∑
i1+···+iq=k+1
1≤i1...iq≤k+1

X i1∗ ⊗ · · · ⊗ X iq∗,

from where the result follows.

Remark 7.6. This result essentially states that
∑+∞
k=0 ε

kMk · ∇k is the formal series expansion of(
+∞∑
k=0

εkX k · ∇k
)−1

.
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Indeed, it is elementary to show the following identity for the inverse of a power series
∑+∞
k=0 akz

k with
(ak) ∈ CN , z ∈ C and radius of convergence R > 0:

(
+∞∑
k=0

akz
k

)−1

= a−1
0 +

+∞∑
k=1

 k∑
p=1

(−1)p

ap+1
0

∑
i1+···+ip=k
1≤i1...ip≤k

ai1ai2 . . . aip

 zk. (7.3.36)

The infinite order homogenized equation (7.3.34) is not fully satisfactory because it is not immediately
clear how to truncate the operator

∑+∞
i=0 ε

iM i·∇i so as to obtain a well-posed problem. Several techniques
have been proposed in the literature to obtain well posed equations in the context of the homogenization
of the conductivity or wave equation; we can mention among them a Boussinesq trick [35, 22, 3, 4] or
a filtering method [33]. Here, we propose to follow a “variational” method inspired by [287], which is
based on the existence of a “criminal” ansatz of the form (7.3.9). This ansatz is obtained by writing the
oscillatory part ui(x, y) in terms of the non oscillatory part u∗i (x), which is obtained from the formal
equality (7.3.8):

Proposition 7.8. Given the previous definitions of X i,M i, u∗i , the following equality holds:

∀i ≥ 0, ui(x, y) =

i∑
k=0

(
k∑
p=0

Mp ⊗X k−p(y)

)
· ∇ku∗i−k(x). (7.3.37)

Proof. It suffices to substitute (7.3.33) into (7.3.16), which yields

ui(x, y) =

i∑
p=0

i−p∑
q=0

(X p(y)⊗Mq) · ∇p+qu∗i−p−q(x)

=

i∑
p=0

i∑
k=p

(X p(y)⊗Mp−k) · ∇ku∗i−k(x) (change of indices k = p+ q)

=

i∑
k=0

k∑
p=0

(X p(y)⊗Mp−k) · ∇ku∗i−k(x) (interversion of summation)

(7.3.38)

The result follows by performing a last change of indices p→ k − p.

We are now able to introduce the tensors N i of (7.3.9) and their related differential operators:

Definition 7.3. For any k ≥ 0, we denote by Nk(y) the k-th order tensor

Nk(y) :=

k∑
p=0

Mp ⊗X k−p(y). (7.3.39)

Recognizing a Cauchy product, the identity (7.3.37) can be formally written in terms of the following
“criminal” ansatz which expresses the oscillating solution uε in terms of its formal homogenized averaged
u∗ε (defined in (7.3.5)):

uε(x) =

∞∑
i=0

εiN i(x/ε) · ∇iu∗ε(x), x ∈ Dε. (7.3.40)

The last proposition of this section gathers several important properties for the tensors Nk that are dual
to those of the tensors X k.

Proposition 7.9. The tensor Nk(y) satisfies:

1.
∫
Y
N0(y)dy = 1 and

∫
Y
Nk(y)dy = 0 for any k ≥ 1,

2. For any k ≥ 0, using the convention N−1 = N−2 = 0:
−∆yyN

0 = M0

−∆yyN
1 = 2∂jN

0 ⊗ ej +M1

−∆yyN
k+2 = 2∂jN

k+1 ⊗ ej +Nk ⊗ I +Mk+2.

(7.3.41)
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3. For any k ≥ 0,

−∆yy(∂ki1...ikN
k
i1...ik

) = (−1)k(k + 1)M0. (7.3.42)

4. For any 1 ≤ p ≤ k − 1,

Mk = (−1)p+1

∫
Y

(Nk−p ⊗ (−∆yyN
p)−Nk−p−1 ⊗Np−1 ⊗ I)dy, (7.3.43)

In particular, M2p depends only on the tensors Np and Np−1, which depend themselves only on the
first p+ 1 tensors X 0 . . . X p.

Proof. 1. is a consequence of the definition (7.3.32) for the tensor Mk which can be rewritten as

∀k ≥ 1,

∫
Y

Nk(y)dy =

k∑
p=0

X k−p∗ ⊗Mp = 0,

and for k = 0, it holds
∫
Y
N0(y)dy = M0X 0∗ = 1.

2. The first two equalities of (7.3.41) are easily verified. The third line is obtained by writing

−∆yyN
k =

k∑
p=0

Mk−p ⊗ (−∆yyX p)

=

k∑
p=2

Mk−p ⊗ (2∂jX p−1 ⊗ ej + X p−2 ⊗ I) +Mk−1 ⊗ (2∂jX 0 ⊗ ej) +Mk

= 2∂j

(
k∑
p=1

Mk−p ⊗X p−1

)
⊗ ej +

(
k−2∑
p=0

Mp ⊗X k−p−2

)
⊗ I +Mk,

from where the result follows.

3. The proof of (7.3.42) is identical to that of proposition 7.3.

4. We start by proving the result for p = 1 with k > 1: using the point 1., we may write

Mk =

∫
Y

N0 ⊗Mkdy =

∫
Y

N0 ⊗ (−∆Nk − 2∂jN
k−1 ⊗ ej −Nk−2 ⊗ I)dy

=

∫
Y

M0 ⊗Nkdy +

∫
Y

(2∂jN
0 ⊗ ej ⊗Nk−1 −N0 ⊗Nk−2 ⊗ I)dy

=

∫
Y

((−∆yyN
1)⊗Nk−1 −N0 ⊗Nk−2 ⊗ I)dy.

If the result now holds until rank p with 1 ≤ p ≤ k − 2, we obtain the result at rank p + 1 with
analogous computations:

Mk = (−1)p+1

∫
Y

(Mk−p + 2∂jN
k−p−1 ⊗ ej +Nk−p−2 ⊗ I)⊗Np −Nk−p−1 ⊗Np−1 ⊗ I)dy

= (−1)p+1

∫
Y

((−2∂jN
p ⊗ ej −Np−1 ⊗ I)⊗Nk−p−1 +Nk−p−2 ⊗Np ⊗ I)dy

= (−1)p+1

∫
Y

((∆yyN
p+1 +Mp+1)⊗Nk−p−1 +Nk−p−2 ⊗Np ⊗ I)dy.

7.3.3 Homogenized equations of order 2K + 2: tensors BK and DK

We now detail the step (4) of the introduction of this section which allows to to obtain a well-posed
variational problem of order 2K + 2 by truncating the infinite homogenized equation (7.3.7). Error
estimates are then proved in section 7.3.4.
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For any u ∈ H1(D) and f ∈ L2(D), we denote by J(u, f) the energy

J(u, f) :=

∫
D

(
1

2
|∇u|2 − fu

)
dx.

It is well known that uε (identified with its extension by 0 in D\Dε) is the solution to the following
minimization problem:

uε = arg min
w∈H1(Dε)

J(w, f)

s.t.

{
w = 0 on ∂ωε

w is D–periodic.

In this part, we follow the method of [53, 287] in order to obtain a minimization problem for an ap-
proximation of the formal homogenized average u∗ε. The main idea to obtain well-posed homogenized
equations of finite order is to consider truncations wε,K of the “criminal” ansatz (7.3.9) of the form:

wε,K(v)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv(x), x ∈ Dε, (7.3.44)

where the function v does not depend on the fast variable x/ε and is sought to approximate the formal
homogenized average u∗ε. Note that Nk(y) is extended by 0 in D\Dε for (7.3.44) to make sense. We
consider the following approximate minimization problem for the function v:

min
v∈HK+1(D)

J(wε(v), f)

s.t. v is D–periodic.
(7.3.45)

The next step is to eliminate the fast variable x/ε in (7.3.45) (by using lemma 7.3) and to read a higher
order homogenized equation from the first order optimality condition. In order to do so, we introduce
several additional tensors that arise in the averaging process.

Definition 7.4 (Tensors Ñk
j and Bl,mK ). For any K ∈ N, 1 ≤ j ≤ d and 0 ≤ k ≤ K + 1, let Ñk

j (y) (with
implicit dependence with respect to K) be the k-th order tensor defined by

Ñk
j (y) =


∂jN

0(y) if k = 0

∂jN
k(y) +Nk−1(y)⊗ ej if 1 ≤ k ≤ K

NK(y)⊗ ej if k = K + 1.

(7.3.46)

We define a family of constant bilinear tensors Bl,mK of order l +m by the formula

Bl,mK :=

∫
Y

Ñ l
j(y)⊗ Ñm

j (y)dy, for any 0 ≤ l,m ≤ K + 1, (7.3.47)

where the Einstein summation convention still assumed over the repeated subscript index 1 ≤ j ≤ d.

Remember that, following the convention of section 7.2.4, we denote by Bl,mK ∇lv∇mv the bilinear con-
traction

Bl,mK ∇
lv∇mv := (Bl,mK )i1...ilj1...jm(∂li1...ilv)(∂mj1...jmv).

The bilinear tensors allow us to formulate an approximate energy J∗K(v, f, ε) defined for any periodic
function v ∈ HK+1(D) by:

J∗K(v, f, ε) :=

∫
D

1

2

K+1∑
l,m=0

εl+m−2Bl,mK ∇
lv∇mv − fv

dx. (7.3.48)

The definition of the energy J∗K(v, f, ε) is motivated by the following asymptotic provided by lemma 7.3,
which holds with any m ≥ 0 arbitrarily high:

J(wε,K(v), f) = J∗K(v, f, ε) + o(εm).

More precisely, the following result holds:
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Proposition 7.10. Assume f ∈ C∞(D) and D–periodic. Let v ∈ C∞(D) be a smooth D–periodic
function and wε,K(v) ∈ C∞(Dε) be the truncated ansatz of the form of (7.3.44). The following asymptotic
estimate holds true with m ≥ 0 arbitrarily high:

|J(wε,K(v), f)− J∗K(v, f, ε)| ≤ CK,m(||∇m+2v||2L∞(D,Rd) + ||f ||2Hm(D))ε
m.

for a constant CK,m depending only on m and K.

Proof. For any 1 ≤ j ≤ d, the partial derivative ∂xjwε,K(v) reads

∂xjwε,K(v) =

K∑
k=0

(
εk−1∂yjN

k(·/ε) · ∇kv + εkNk(·/ε)⊗ ej · ∇k+1v
)

=

K+1∑
i=0

εk−1Ñ i
j(·/ε) · ∇kv,

by definition (7.3.46) of the tensors Ñk
j . The computation of the energy J(wε,K(v), f) yields then

J(wε,N (v), f)

=

∫
D

1

2

K+1∑
l,m=0

εl+m−2(Ñ l
j(x/ε) · ∇lv)(Ñm

j (x/ε) · ∇mv)−
K∑
l=0

εl(N l(x/ε) · ∇lv(x))f(x)

 dx.

The result follows from the application of lemma 7.3 and by using that Nk(x/ε) is of average 1 if k = 0
and 0 otherwise (proposition 7.9).

The approximate energy (7.3.48) is used (instead of J(wε(v), f) in (7.3.45)) in order to build a (well-
posed) higher order homogenized equation:

Definition 7.5. For any K ∈ N, we call homogenized equation of order 2K + 2 the Euler-Lagrange
equation associated with the minimization problem

min
v∈HK+1(D),
D–periodic

J∗K(v, f, ε). (7.3.49)

This equation reads explicitly in terms of a higher order homogenized solution v∗K ∈ HK+1(D) as
K+1∑
k=0

ε2k−2D2k
K · ∇2kv∗K = f

v∗K is D–periodic,

(7.3.50)

where the constant tensors D2k
K are defined by the formula for any 0 ≤ k ≤ K + 1:

D2k
K :=

2k∑
l=0

(−1)lBl,2k−lK , (7.3.51)

assuming the convention Bl,mK = 0 for any l > K + 1 or m > K + 1.

Proof. Let us detail slightly the derivation of (7.3.50). The Euler-Lagrange Equation of (7.3.49) reads,
after a suitable integration by parts:

l+1∑
l,m=0

εl+m−2 1

2
((−1)l + (−1)m)Bl,mK ∇

l+mv∗K = f.

Since (−1)k + (−1)l vanishes when k and l are not of the same parity, only terms such that k+ l is even
are not zero in the above equation. Hence, it rewrites as (7.3.50) with

D2k
K =

∑
l+m=2k

1

2
((−1)l + (−1)m)Bl,mK =

2k∑
l=0

1

2
((−1)l + (−1)2k−l)Bl,2k−lK ,

which eventually yields the desired expression (7.3.51).
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Remark 7.7. Naturally, the higher order homogenized solution v∗K of (7.3.50) depends on ε, but we
omit this dependence for the sake of notational simplicity.

Remark 7.8. Let us examine equation (7.3.50) at order K = 0. It reads

D2
0 · ∇2v∗0 + ε−2D0

0v
∗
0 = f. (7.3.52)

The constant coefficient D0
0 is given by

D0
0 = B0,0

0 =

∫
Y

Ñ0
0,jÑ

0
0,jdy =

∫
Y

|∇N0|2dy = (M0)2

∫
Y

|∇X 0|2dy = (X 0∗)−1.

The tensor D2∗
0 reads

D2
0 = −B1,1

0 = −
∫
Y

Ñ1
0,j ⊗ Ñ1

0,jdy = −
∫
Y

|N0(y)|2ej ⊗ ejdy

= −
(∫

Y

|N0(y)|2dy

)
I = −(M0)2

(∫
Y

|X 0(y)|2dy

)
= −

(
1

(X 0∗)2

∫
Y

|X 0(y)|2dy

)
I.

Importantly, (7.3.52) does not coincide with the two term truncation of the infinite order homogenized
equation (7.3.34), which would read instead:

M2 · ∇2v∗0 + ε−2M0v∗0 = f.

Indeed, formulas (7.3.21) and (7.3.35) imply

M2 =
1

(X 0∗)2

∫
Y

(∂jX 1 ⊗ ∂jX 1 − |X 0|2I)dy 6= D2
0.

However, the coefficients M0 and D0
0 do coincide,

Before stating the next proposition establishing the existence and uniqueness of the high order homog-
enized solution v∗K , let us underline the following result which is an obvious, but somewhat important
consequence of the definition (7.3.47):

Lemma 7.4. The dominant tensor BK+1,K+1
K is symmetric and non-negative.

Proposition 7.11. Assume further that the dominant tensor BK+1,K+1
K is non-degenerate, that is there

exists a constant ν > 0 such that

∀ξ = ξi1...iK+1
∈ Rd

K+1

, BK+1,K+1
K · ξξ ≥ ν|ξ|2. (7.3.53)

Then there exists a unique periodic solution v∗K ∈ HK+1(D) to the homogenized equation (7.3.50) of
order 2K + 2.

Proof. Let us consider the space VK := {v ∈ HK+1(D) | v is D–periodic } and introduce a : VK×VK →
R and b : VK → R the respective bilinear and linear forms defined for any v ∈ VK by

a(v, v) =

∫
D

K+1∑
k,l=0

εk+l−2Bk,lK ∇
kv∇lvdx, (7.3.54)

b(v) =

∫
D

fvdx. (7.3.55)

The homogenized equation (7.3.50) reduces then to the following variational problem:

Find v∗K ∈ VK such that ∀v ∈ VK , a(v∗K , v) = b(v). (7.3.56)

From there, one could directly rely on the theory of Fredholm operators [231] to conclude. However
we shall show with elementary arguments that a is coercive, which will allow us to apply Lax-Milgram
theorem.
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Under the non-degeneracy assumption (7.3.53), it is readily obtained that there exists a constant Cε
(depending on ε) such that

∀v ∈ VK(D), a(v, v) ≥ (ε2Kν)||∇K+1v||2L2(D,Rd) + ε−2M0||v||2L2(D) − Cε||v||HK+1(D)||v||HK(D).

Remembering M0 > 0 and applying the following Young’s inequality

∀x, y ∈ R, |xy| ≤ x2

2γ
+
γy2

2

for a sufficiently small γ > 0, we obtain the existence of two constants αε,K > 0 and βε,K > 0 (that
depend on ε and K) such that

∀v ∈ VK(D), a(v, v) ≥ αε,K ||v||2HK+1(D) − βε,K ||v||
2
HK(D). (7.3.57)

Furthermore, (7.3.47) together with the proof of proposition 7.10 allow to rewrite a(v, v) as

a(v, v) =

∫
D

∫
Y

∣∣∣∣∣
∣∣∣∣∣(ε−1∇y +∇x)

(
K∑
k=0

εkNk(y) · ∇kv(x)

)∣∣∣∣∣
∣∣∣∣∣
2

dx.

Then,
∫
D

∫
Y
u(x, y)2dydx ≥

∫
D

∣∣∫
Y
u(x, y)dy

∣∣2 dx implies the following inequality:

∀v ∈ VK , a(v, v) ≥ ||∇v||2L2(D,Rd). (7.3.58)

We shall now prove that (7.3.57) and (7.3.58) together imply the coercivity of a on the space VK , that
is we claim there exists a constant cε,K > 0 such that

∀v ∈ VK , a(v, v) ≥ cε,K ||v||2HK+1(D). (7.3.59)

Assume the contrary is true, then one can find a sequence (vn) of functions satisfying ||vn||HK+1(D) = 1
and such that a(vn, vn) → 0. Up to extracting a relevant subsequence, we may assume that vn ⇀ v
weakly in HK+1(D) and vn → v strongly in HK(D). Then the polarization identity together with
(7.3.57) and the positivity of a allow to show that (vn) is a Cauchy sequence in VK :

∀l,m ∈ N, αε,K ||vl−vm||2HK+1(D) ≤ a(vl − vm, vl − vm) + βε,K ||vl − vm||2HK(D)

= 2a(vl, vl) + 2a(vm, vm)− a(vl + vm, vl + vm) + βε,K ||vl − vm||2HK(D)

≤ 2a(vl, vl) + 2a(vm, vm) + βε,K ||vl − vm||2HK(D)

l,m→∞−−−−−→ 0.

Therefore vn → v strongly in VK . The continuity of a implies then a(v, v) = limn→+∞ a(vn, vn) = 0.
The property (7.3.58) yields then that v is a constant. Therefore, 0 = a(v, v) = ε−2M0||v||2L2(D), which

implies v = 0. This is in contradiction with the fact that ||vn||HK+1(D) = 1 for any n ≥ 0 and the strong
convergence of (vn). Finally, the coercivity (7.3.59) and the continuity of a and b over VK ensure that
all the assumptions of the Lax-Milgram theorem are fulfilled, which yields existence and uniqueness to
the problem (7.3.56).

Remark 7.9. The non degeneracy assumption (7.3.53) is automatically fulfilled for any shape of obstacle
ηT when K = 0. It could fail to be satisfied for particular obstacle shapes for K ≥ 1 (e.g. under strong
symmetries with respect to the cell axes).

Before going to the proof of error estimates for the higher homogenized solution v∗K , we provide a
last result which shows that the high order homogenized equation (7.3.50) is in some sense a truncation
of the formal infinite order homogenized equation (7.3.34). This fact was also observed by [287] for a
(scalar) antiplane elasticity model.

Proposition 7.12. The first K + 1 homogenized coefficients of the homogenized equation (7.3.50) of
order 2K + 2 coincide with those of the formal equation (7.3.34):

∀k ≤ bK/2c, D2k
K = M2k.
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Proof. We show the following, slightly more general, result:

∀k ≤ K, Mk =

k∑
l=0

(−1)lBl,k−lK , (7.3.60)

which is sufficient for our purpose because of (7.3.51). For k, l ≤ K, the coefficient Bl,k−lK is given by
(from (7.3.46))

Bl,k−lK =

∫
Y

(∂jN
l +N l−1 ⊗ ej)⊗ (∂jN

k−l +Nk−l−1 ⊗ ej)dy,

where we use the convention N−1 = N−2 = 0. After an integration by parts, we rewrite Bl,k−lK as follows:

Bl,k−lK =

∫
Y

(−∆N l − 2∂jN
l−1 ⊗ ej −N l−2 ⊗ I)⊗Nk−ldy

+

∫
Y

(∂jN
l ⊗Nk−l−1 ⊗ ej +N l−1 ⊗Nk−l−1 ⊗ I + ∂jN

l−1 ⊗Nk−l ⊗ ej +N l−2 ⊗Nk−l ⊗ I)dy

=

∫
Y

(M l ⊗Nk−l)dy +Bk,l +Bk,l−1

where Bk,l is the k-th order tensor defined by

Bk,l :=

∫
Y

(∂jN
l ⊗Nk−l−1 ⊗ ej +N l−1 ⊗Nk−l−1 ⊗ I)dy.

Using now the point 1. of proposition 7.9 and recognizing a telescopic series, we finally obtain

k∑
l=0

(−1)lBl,k−lK = (−1)kMk +

k∑
l=0

((−1)lBk,l − (−1)l−1Bk,l−1)

= (−1)kMk + (−1)kBk,k − (−1)−1Bk,−1.

The result follows from the fact that Mk = 0 when k is odd and Bk,k = Bk,−1 = 0 with our convention
N−10.

7.3.4 Error estimates and justification of the higher order homogenization process

The main result of this subsection is proposition 7.13 below: we show that the truncated ansatz wε,K(v∗K)
(equation (7.3.44)) built from the solution v∗K of the homogenized equation (7.3.50) yields an approxi-
mation of the original solution uε of order K + 2 in the H1(D) norm, and of order K + 3 in the L2(D)
norm.

The first step of the proof consists in showing that under periodicity assumptions, uε can be effectively
approximated by truncated ansatz of the form of (7.3.44):

Lemma 7.5. Let u∗ε,K be the average of the truncated expansion uε,K (7.3.23)):

∀x ∈ D, u∗ε,K(x) :=

K∑
k=0

εk+2u∗k(x).

There exists a constant CK(f) independent of ε such that∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇ku∗ε,K

∣∣∣∣∣
∣∣∣∣∣
H1(D)

≤ CK(f)εK+2.

Proof. We use proposition 7.8 to rewrite

uε,K(x) =

K∑
i=0

i∑
k=0

ε2+iNk(x/ε) · ∇ku∗i−k(x) =

K∑
k=0

K∑
i=k

εkεi−k+2Nk(x/ε) · ∇ku∗i−k(x)

=

K∑
k=0

εkNk(x/ε) · ∇k
(
K−k∑
i=0

εi+2u∗i (x)

)

=

K∑
k=0

εkNk(x/ε) · ∇ku∗ε,K(x)−
K∑
k=0

K∑
i=K−k+1

εk+i+2Nk(x/ε) · ∇ku∗i (x).
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Hence using the result of proposition 7.4,∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(· /ε) · ∇ku∗ε,K

∣∣∣∣∣
∣∣∣∣∣
H1(D)

≤ ||uε − uε,K ||H1(D) +

∣∣∣∣∣
∣∣∣∣∣uε,K −

K∑
k=0

εkNk(x/ε) · ∇ku∗ε,K(x)

∣∣∣∣∣
∣∣∣∣∣
H1(D)

≤ CK ||f ||HK+2(D)ε
K+2 + εK+3

K∑
k=0

K∑
i=K−k+1

||Nk(·/ε) · ∇ku∗i ||H1(D)

≤ CK ||f ||HK+2(D)ε
K+2 + CKε

K+2||f ||H2K+1(D)

whence the result.

In order to state our final result, we need the following lemma providing uniform estimates of the partial
derivatives of v∗K :

Lemma 7.6. The solution v∗K of (7.3.50) belongs to C∞(D) and for any m ∈ N, there exists a constant
Cm that does not depend on ε such that

||v∗K ||Hm+2(D) ≤ Cm||f ||Hm(D)ε
2. (7.3.61)

Proof. The result is obvious by solving (7.3.50) explicitly with Fourier expansions.

Using the previous results, ideas that resemble those of Cea’s Lemma allow finally to derive the following
error estimate for the higher order ansatz wε,K(v∗K) (eqn. (7.3.44)):

Proposition 7.13. Let v∗K be the solution to the homogenized equation (7.3.50) of order 2K + 2. There
exists a constant CK(f) independent of ε (but depending on K and f) such that the following error
estimates hold: ∣∣∣∣∣

∣∣∣∣∣uε −
K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
H1(D)

≤ CK(f)εK+2. (7.3.62)

∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK(f)εK+3. (7.3.63)

Proof. From, lemma 7.3 and by the definition (7.3.49) of wε,K(v∗K), itnfer holds for any smooth periodic
function φ ∈ C∞(D) and with any m ≥ 0 arbitrarily high:∣∣∣∣∣
∫
D

∇vε,K · ∇

(
K∑
k=0

εkNk(x/ε) · ∇kφ(x)

)
dx−

∫
D

fφdx

∣∣∣∣∣ ≤ Cmεm||φv∗K ||Hm+2(D)

≤ C ′mεm||φ||Hm+2(D)||f ||Hm(D).

Furthermore by definition of uε it also holds:∣∣∣∣∣
∫
D

∇uε · ∇

(
K∑
k=0

εkNk(x/ε) · ∇kφ(x)

)
dx−

∫
D

fφdx

∣∣∣∣∣
≤ Cmεm||fφ||Hm(D) ≤ C ′mεm||f ||Hm(D)||φ||Hm+2(D).

Therefore uε − vε,K is nearly orthogonal in the H1 scalar product (up to some terms of order O(εm) ≤
C ′mε

m(||φ||Hm+2(D)||f ||Hm(D)) to the test fields of the form wε,K(φ) :=
∑K
k=0 ε

kNk(·/ε) · ∇kφ. Hence
with successively φ = v∗K and φ = u∗ε,K :

||∇(uε−wε,K(v∗K))||2L2(D,Rd) =

∫
D

|∇(uε − wε,K(v∗K))|2dx

≤
∫
D

∇(uε − wε,K(v∗K)) · ∇uεdx+ C ′mε
m||f ||Hm(D)||v∗K ||Hm+2(D)

≤
∫
D

∇(uε − wε,K(v∗K)) · ∇
(
uε − wε,K(u∗ε,K)

)
dx

+ C ′mε
m||f ||Hm(D)||v∗K ||Hm+2(D) + C ′′mε

m||f ||Hm(D)||u∗ε,K ||Hm+2(D).
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From the definition (7.3.30) and the regularity estimate lemma 7.6, we infer that

||u∗ε,K ||Hm+1(D) ≤ Cm||f ||HK+m+1 and ||v∗K ||Hm+1(D) ≤ Cm||f ||Hm+3(D).

Hence we finally obtain

||∇(uε−wε,K(v∗K))||2L2(D,Rd) ≤
1

2
||∇(uε − wε,K(v∗K))||2L2(D,Rd) +

1

2

∣∣∣∣∇ (uε − wε,K(u∗ε,K)
)∣∣∣∣2

L2(D,Rd)

+ Cmε
m||f ||HK+m+1(D)

≤ 1

2
||∇(uε − wε,K(v∗K))||2L2(D,Rd) + CKε

2K+4||f ||HK+2(D) + Cmε
m||f ||HK+m+1(D)

where we have applied Young’s inequality |ab| ≤ 1
2 (a2 + b2) and the error bound (7.3.24) in the last

two lines. Setting m = 2K + 4 implies the first error estimate (7.3.62). Then (7.3.63) follows from the
Poincaré inequality of lemma 7.2.

Remark 7.10. We knew already from proposition 7.4 with K = 0 that ||uε −N0(x/ε)ε2X 0∗f ||H1(D) =
O(ε2). Therefore, the solution wε,K(v∗K) obtained from the homogenized equation (7.3.50) of order 2 with
K = 0 does not provide a better order of magnitude. However, we may argue that the approximation
N0(x/ε)v∗0 is better in the energy norm, since from the minimization principle (7.3.49), it must hold

||uε −N0(·/ε)v∗0 ||H1(D) ≤ ||uε −N0(x/ε)ε2X 0∗f ||H1(D) +O(εm)

for any arbitrarily large value of m. The next section will provide additional supporting arguments that
(7.3.50) provides more robust homogenized approximations since this equation does not degenerate when
the size η of the obstacle ηT vanishes (it converges to the Poisson problem without holes).

Remark 7.11. We could have hoped, at first glance, to obtain similar bounds for (7.3.1) in case where
the periodicity condition on ∂D is replaced by a Dirichlet boundary conditions v∗K = 0 on ∂D. Indeed,
the truncated ansatz wε,K(v∗K) would then satisfy simultaneously the boundary conditions vε,K = 0 on
∂D and ∂ωε. However our proposed error analysis does not extend in a straightforward manner: one
of the difficulty lies in that the result of lemma 7.6 does not hold because of the arising of of boundary
layers of vε,K and uε near ∂D. See [216, 19] for some examples of treatments of related problems.

Remark 7.12. There are other ways to build well-posed higher order homogenized equations, for in-
stance by filtering the right-hand side f [33], or by resorting to a Boussinesq trick [20, 3, 264]. These
approaches yield order K estimates by solving order K equations only (instead of 2K+ 2 as in (7.3.50)),
however they resort to the evaluation of some partial derivatives of f to the right-hand side (which may
be a numerically delicate task).

Remark 7.13. The proof of proposition 7.13 is inspired from [287], however it does not extend straight-
forwardly to the context of the Stokes system (7.2.3) because of the divergence constraint. A different
proof is proposed in the dedicated section 7.5.3.

7.3.5 Low volume fraction limits when the size of the obstacle tends to zero

The purpose of this section is to establish asymptotics for the tensors X k∗ and Mk in the low volume
fraction limit, namely when the size η of the obstacle vanishes to zero. Our main result is stated in
corollary 7.2, which implies that the infinite order homogenized equation (7.3.34) converges formally to
either of the three classical regimes of the literature (namely, to the original Laplace equation (7.3.1), or
to the analogue of the Brinkman or Darcy equation (7.2.6) and (7.2.7)).

In this whole subsection, it is assumed, for simplicity, that the space dimension is greater than 3:

d ≥ 3. (7.3.64)

The case d = 2 requires a specific treatment (see e.g. [13]), although very similar results could be stated.

The hole ηT is assumed to be strictly included in the unit cell for any η ≤ 1 (it does not touch the
boundary): ηT ⊂⊂ P . For a given function ṽ ∈ L2(η−1P ), we denote by < ṽ > the average < ṽ >:=
ηd
∫
η−1P

ṽ(y)dy. Following the methodology of [13] (and also [196]), we shall use several times the
following useful lemma:
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Lemma 7.7. Assume d ≥ 3. There exists a constant C > 0 independent of η > 0 such that for any
ṽ ∈ H1(η−1P\T ) which vanishes on the hole ∂T and which is η−1P periodic, the following inequalities
hold:

||ṽ||L2(η−1P\T ) ≤ Cη−d/2||∇ṽ||L2(η−1P\T,Rd), (7.3.65)

| < ṽ > | ≤ C||∇ṽ||L2(η−1P\T,Rd), (7.3.66)

||ṽ− < ṽ > ||L2(η−1P\T ) ≤ Cη−1||∇ṽ||L2(η−1P\T,Rd), (7.3.67)

||ṽ− < ṽ > ||L2d/(d−2)(η−1P\T ) ≤ C||∇ṽ||L2(η−1P\T,Rd). (7.3.68)

Proof. See [13, 210].

Let us also recall that for any v ∈ H1(P\(ηT )), if ṽ is taken to be the rescaled function ṽ(y) ≡ v(ηy)
in the rescaled cell η−1P\T , then the L2 norms of the functions and their gradients are related by the
following identities:

||v||L2(P\(ηT )) = ηd/2||ṽ||L2(η−1P\T ) and ||∇v||L2(P\(ηT ),Rd) = ηd/2−1||∇ṽ||L2(η−1P\T,Rd).

We also need to consider the so-called Deny-Lions space D1,2(Rd\T ) for which we recall the definition
(the reader is referred to [13, 11, 15] and also [243], p.59. for more details).

Definition 7.6 (Deny-Lions space). The Deny-Lions space D1,2(Rd\T ) is the completion of the space
of smooth functions by the L2 norm of their gradients:

D1,2(Rd\T ) := D(Rd\T )
||∇·||

L2(Rd\T,Rd) .

When d ≥ 3, it is admits the following characterization:

D1,2(Rd\T ) = {φ measurable | ||φ||L2d/(d−2)(Rd\T ) < +∞ and ||∇φ||L2(Rd\T,Rd) < +∞}.

We introduce Ψ the unique solution to the exterior problem
−∆Ψ = 0 in Rd − T

Ψ = 0 on ∂T

Ψ→ 1 at ∞,
(7.3.69)

and we denote by Ψ∗ the normal flux

Ψ∗ :=

∫
Rd\T

|∇Ψ|2dx = −
∫
∂T

∇Ψ · nds,

where n is the normal pointing inward T . The condition Ψ → 1 at ∞ is to be understood in the sense
that Ψ− 1 ∈ D1,2(Rd\T ).

The following result provides asymptotics for the tensors X k and their averages X k∗. The special case
k = 0 is a reformulation of Theorem 3.1 of [13] (see also [196]) to the case of the Poisson system.

Proposition 7.14. Assume d ≥ 3. For any k ≥ 0, denote by X̃ 2k and X̃ 2k+1 the rescaled tensors in
η−1P\T defined by:

∀x ∈ η−1P\T, X̃ 2k(x) := η(d−2)(k+1)X 2k(ηx) and X̃ 2k+1(x) := η(d−2)(k+1)X 2k+1(ηx).

Then:

1. there exists a constant C > 0 independent of η > 0 such that:

∀η > 0, ||∇X̃ 2k||L2(η−1P\T,Rd) ≤ C and ||∇X̃ 2k+1||L2(η−1P\T,Rd) ≤ C; (7.3.70)

2. the following asymptotic convergences hold:

X̃ 2k ⇀
Ψ

|Ψ∗|k+1
I2k, weakly in H1

loc(Rd\T ) (7.3.71)
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X̃ 2k+1 ⇀ 0 weakly in H1
loc(Rd\T ) (7.3.72)

X 2k∗ ∼ 1

η(d−2)(k+1)|Ψ∗|k+1
I2k, (7.3.73)

where we recall the definition I2k :=

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I of section 7.2.4.

Remark 7.14. Let us recall that we already know X 2k+1∗ = 0 for any k ∈ N (proposition 7.2). However
this is not the case in the vectorial context; in that case we shall adapt the arguments in order to obtain
asymptotics also for X 2k+1∗ (proposition 7.27 below).

Proof. The result is proved by induction.

1. Case 2k for k = 0. The tensors X̃ 0 satisfies−∆X̃ 0 = ηd in η−1P\T , hence for any Φ ∈ H1(η−1P\T )
which is η−1P–periodic, it holds∫

η−1P\T
∇X̃ 0 · ∇Φdy = ηd

∫
η−1P\T

Φdy +

∫
∂T

(∇X̃ 0 · n)Φds. (7.3.74)

Setting Φ = X̃ 0 in (7.3.74) and using successively the Cauchy-Schwartz inequality and lemma 7.7
yields

||∇X̃ 0||2L2(η−1P\T,Rd) = ηd
∫
η−1P\T

X̃ 0dy ≤ ηdη−d/2||X̃ 0||L2(η−1P\T ) ≤ C||∇X̃ 0||L2(η−1P\T,Rd).

This implies the first equality of (7.3.70) for k = 0. Furthermore, (7.3.66) also shows that < X̃ 0 >
is bounded by a constant independent of η. Hence, up to extracting a subsequence, there exists a
constant c0 ∈ R and a function Ψ̂0 such that

< X̃ 0 >→ c0 and X̃ 0 ⇀ Ψ̂0 weakly in H1
loc(Rd\T ) when η → 0.

Furthermore, the lower semi-continuity of the H1
loc(Rd\T ) norm and (7.3.68) imply that Ψ̂0 − c0

belongs to D1,2(Rd\T ) (see [13] for a detailed justification). Setting now Φ with compact support

in Rd\T in (7.3.74) and passing to the limit when η → 0 yields that Ψ̂0 is solution to the exterior
problem 

−∆Ψ̂0 = 0 in Rd\T

Ψ̂0 = 0 on ∂T

Ψ̂0 → c0 at ∞.

(7.3.75)

Obviously, the unique solution to this problem is given by Ψ̂ = c0Ψ. Finally, the constant c0 can
be identified by setting Φ = 1 in (7.3.74), which yields

−
∫
∂T

∇Ψ̂0 · nds = lim
η→0
−
∫
∂T

∇X̃ 0 · nds = 1.

Therefore, c0 = 1/Ψ∗ from where (7.3.71) follows for k = 0. Since the obtained limit is unique, the
convergence holds for the whole sequence. Then (7.3.73) follows from a simple change of variable.

2. Case 2k + 1 for k = 0. It holds −∆X̃ 1 = 2η∂jX̃ 0 ⊗ ej , hence for any Φ ∈ H1(η−1P\T ) which is
η−1P–periodic:∫

η−1P\T
∇X̃ 1 · ∇Φdy =

∫
η−1P\T

2η(∂jX̃ 0 ⊗ ej)Φdy +

∫
∂T

(∇X̃ 1 · n)Φds. (7.3.76)

Taking Φ = X̃ 1
j for a given fixed j yields

||∇X̃ 1
j ||2L2(η−1P\T,Rd) =

∫
η−1P\T

2η∂jX̃ 0(X̃ 1
j − < X̃ 1

j >)dy

≤ 2η||∂jX̃ 0||L2(η−1P\T )||X̃ 1
j − < X̃ 1

j > ||L2(η−1P\T )

≤ Cηη−1||∇X̃ 1
j ||L2(η−1P\T,Rd).

(7.3.77)
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This implies the second part of (7.3.70) for k = 0. As before, this means that up to extracting a

subsequence, we may assume the existence of a constant vector c1 ∈ Rd and a first order tensor Ψ̂1

such that < X̃ 1 >→ c1 and X̃ 1 ⇀ Ψ1 in H1
loc(Rd\T ) (note that we already know that < X̃ 1 >= 0

and c1 = 0 but the coming ideas will extend to the vectorial case) with X̃ 1 − c1 belonging to

D1,2(Rd\T ). Setting Φ with compact support in Rd\T in (7.3.76) yields that Ψ̂1 is solution to the
exterior problem 

−∆Ψ̂1 = 0 in Rd\T

Ψ̂1 = 0 on ∂T

Ψ̂1 → c1 at ∞.

(7.3.78)

Therefore, Ψ̂1 = c1Ψ and the constant c1 is identified by taking Φ = 1 in (7.3.76), which states
that:

−
∫
∂T

∇Ψ̂1 · nds = lim
η→0
−
∫
∂T

∇X̃ 1 · nds = 0.

This implies c1 = 0 and (7.3.72) is obtained for k = 0.

3. General case. We now complete the proof by induction on k. Assuming the result holds till rank
k, we compute

−∆X̃ 2k+2 = 2ηd−1∂jX̃ 2k+1 ⊗ ej + ηdX̃ 2k ⊗ I,

−∆X̃ 2k+3 = 2η∂jX̃ 2k+2 ⊗ ej + ηdX̃ 2k+1 ⊗ I.

Hence for any Φ ∈ H1(η−1P\T ) which is η−1P–periodic:∫
η−1P\T

∇X̃ 2k+2 · ∇Φdy =

∫
η−1P\T

(2ηd−1∂jX̃ 2k+1 ⊗ ej + ηdX̃ 2k ⊗ I)Φdy+

∫
∂T

(∇X̃ 2k+2 ·n)Φds,

(7.3.79)∫
η−1P\T

∇X̃ 2k+3 · ∇Φdy =

∫
η−1P\T

(2η∂jX̃ 2k+2 ⊗ ej + ηdX̃ 2k+1 ⊗ I)Φdy +

∫
∂T

(∇X̃ 2k+3 · n)Φds.

(7.3.80)

Setting Φ = X̃ 2k+2 and Φ = X̃ 2k+3 respectively in the above variational formulations (for a fixed
set of indices), applying the Cauchy-Schwartz inequality and using lemma 7.7 yield

||∇X̃ 2k+2||2L2(η−1P\T,Rd) ≤ Cη
d−1||∇X̃ 2k+1||L2(η−1P\T,Rd)||X̃ 2k+2− < X̃ 2k+2 > ||L2(η−1P\T )

+ ηd||X̃ 2k||L2(η−1P\T )||X̃ 2k+2||L2(η−1P\T )

≤ (C ′ηd−2 + C ′′)||∇X̃ 2k+2||L2(η−1P\T,Rd),
(7.3.81)

||∇X̃ 2k+3||2L2(η−1P\T,Rd) ≤ 2η||∇X̃ 2k+2||L2(η−1P\T,Rd)||X̃ 2k+3− < X̃ 2k+3 > ||L2(η−1P\T )

+ ηd||X̃ 2k+1||L2(η−1P\T )||X̃ 2k+3||L2(η−1P\T )

≤ C||∇X̃ 2k+3||L2(η−1P\T,Rd).

(7.3.82)

This implies (7.3.70) at rank k+1. Still up to extracting a subsequence, there exists tensor functions

Ψ̂2k+2, Ψ̂2k+3 and constant tensors c2k+2 and c2k+3 such that

< X̃ 2k+2 >→ c2k+2 and < X̃ 2k+3 >→ c2k+3 when η → 0

X̃ 2k+2 ⇀ Ψ̂2k+2 and X̃ 2k+3 ⇀ Ψ̂2k+3 weakly in H1
loc(Rd\T ) when η → 0.

The very same previous arguments yield eventually Ψ̂2k+2 = c2k+2Ψ and Ψ̂2k+3 = c2k+3Ψ. Finally,
setting Φ = 1 in (7.3.79) and (7.3.80) entails

−
∫
∂T

∇Ψ̂2k+2 · nds = lim
η→0
−
∫
∂T

∇X̃ 2k+2 · nds = lim
η→0

< X̃ 2k > ⊗I =
1

|Ψ∗|k+1
I2k+2

−
∫
∂T

∇Ψ̂2k+3 · nds = lim
η→0
−
∫
∂T

∇X̃ 2k+3 · nds = lim
η→0

< X̃ 2k+1 > ⊗I = 0.

This implies c2k+2 = I2k+2/|Ψ∗|k+2 and c2k+3 = 0, which concludes the proof.
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Remark 7.15. This result seems to indicate that we may have not found the best scaling for the odd
order tensors X 2k+1 since we were unable to identify a non zero weak limit. However the established
bounds are sufficient for our purpose and extend to the vectorial case.

We are now able to identify the asymptotic behavior of the constant tensors Mk. Recall we already
know that M2k+1 = 0 in this scalar context (corollary 7.1).

Corollary 7.2. Assume d ≥ 3. The following convergences hold for the tensors Mk as η → 0:

M0 ∼ ηd−2|Ψ∗|, (7.3.83)

M2 → −I, (7.3.84)

∀k > 1, M2k = o

(
1

η(d−2)(k−1)

)
. (7.3.85)

Proof. We replace the asymptotics of proposition 7.14 in the explicit formula (7.3.35) for the tensor Mk.
(7.3.83) is a consequence of the definition M0 = (X 0∗)−1. (7.3.84) is obtained by writing

M2 = −((X 0∗)−1)2X 2∗ ∼ −η
2(d−2)|Ψ∗|2

η2(d−2)|Ψ∗|2
I = −I.

Finally, by eliminating terms of odd orders in (7.3.35), we may write for any k ≥ 1,

M2k =

2k∑
p=1

(−1)p

(X 0∗)p+1

∑
i1+···+ip=k
1≤i1...ip≤k

X 2i1∗ ⊗ · · · ⊗ X 2ip∗

=

2k∑
p=1

(−1)pη(p+1)(d−2)|Ψ∗|p+1
∑

i1+···+ip=k
1≤i1...ip≤k

I2i1

η(d−2)(i1+1)|Ψ∗|i1+1
⊗ · · · ⊗ I2ip

η(d−2)(ip+1)|Ψ∗|ip+1

+ o

(
1

η(k−1)(d−2)

)

=
I2k

η(k−1)(d−2)|Ψ∗|k−1

 2k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1

+ o

(
1

η(k−1)(d−2)

)
.

Then (7.3.85) results from the last summation being zero:

∀k > 1,

k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1 = 0. (7.3.86)

There are several ways to obtain the latter formula. A rather direct argument in the spirit of the proof
of proposition 7.7 is to apply the identity (7.3.36) to the power series 1/(1− z) =

∑
k∈N z

k which yields

1− z = 1 +

+∞∑
k=1

 k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1...ip≤k

1

 zk,

from where (7.3.86) follows by identifying the powers in zk.

Remark 7.16. We can retrieve formally in corollary 7.2 the different classical asymptotic regimes for
the perforated problem (7.3.1) depending on the size of the hole aε = ηε [13, 11, 103, 273]:

1. If 1 ≥ aε >> εd/(d−2), that is η goes to zero at a smaller rate than ε2/(d−2), then the zeroth order
term ε−2M0 ∼ ε−2ηd−2|Ψ∗| is dominant in the infinite order homogenized equation (7.3.34), which
is analogous to the “Darcy” regime

ε−2M0u∗ε ' f.
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2. If aε = εd/(d−2), the coefficients of the infinite order homogenized equation (7.3.34) converge to
those of

−∆u∗ + Ψ∗u∗ = f.

This corresponds to the “Brinkman” regime with the well-known “strange” reaction term [103].

3. If aε = o(εd/(d−2)), that is the size of the hole η goes to zero at a rate faster than ε2/(d−2), then
there is no strange term and the coefficients of (7.3.34) converge to those of the initial Poisson
problem (7.3.1):

−∆u∗ = f.

7.3.6 Simplifications for the tensors X k∗ and Mk in case of symmetries

In this last subsection, we analyze how the homogenized tensors X k∗ and Mk simplify when the obstacle
ηT is symmetric with respect to the cell axes. This is a classical step in the theory of homogenization;
our methodology follows e.g. section 6 in [35].

In all what follows, we denote by S := (Sij)1≤i,j≤d an arbitrary orthogonal symmetry (satisfying
S = ST and SS = I). We shall in corollary 7.4 below specialize S to either of the two kinds of following
cell symmetries:

• for 1 ≤ l ≤ d, we consider the symmetry Sl with respect to the hyperplane orthogonal to el:

Sl := I − 2ele
T
l ; (7.3.87)

• for 1 ≤ m 6= l ≤ d, we consider the symmetry Slm with respect to the diagonal hyperplane
orthogonal to el − em:

Slm := I − eleTl − emeTm + ele
T
m + eme

T
l . (7.3.88)

Recall the Laplace operator is invariant under orthogonal symmetries S (satisfying SS = I and ST = S):
for any smooth scalar field X ,

−∆(X ◦ S) = −(∆X ) ◦ S. (7.3.89)

Proposition 7.15. If the cell Y = P\ηT is invariant with respect to a symmetry S, i.e. S(Y ) = Y ,
then the following identity holds for the cell solutions X k of eqn. (7.3.15):

X ki1...ik ◦ S = Si1j1 . . . SikjkX kj1...jk . (7.3.90)

Proof. The result is proved by induction on k. For k = 0, it holds

−∆yy(X 0 ◦ S) = 1 ◦ S = 1

and the symmetry of Y implies that X 0 ◦S also satisfies the boundary conditions of (7.4.7). This implies
X 0 ◦ S = X 0. For k = 1, we write

−∆yy(X 1
i1 ◦ S) = 2(∂i1X 0) ◦ S = 2∂j1(X 0 ◦ S)Si1j1 = 2∂j1X 0Si1j1 .

This implies similarly X 1
i1
◦ S = Si1j1X 1

j1
. Finally, if the result holds till rank k + 1 with k ≥ 0, then

−∆yy(X k+2
i1...ik+2

◦ S) = 2(∂ik+2
X k+1
i1...ik+1

) ◦ S + δik+1ik+2
X ki1...ik ◦ S

= 2Sik+2jk+2
∂jk+2

(X k+1
i1...ik+1

◦ S) + Sik+1jk+1
Sik+2jk+2

δjk+1jk+2
X ki1...ik ◦ S

= −Si1j1 . . . Sikjk+2
∆yyX k+2

j1...jk+2
,

whence the result at rank k + 2.

Corollary 7.3. If the cell Y = P\ηT is invariant with respect to a symmetry S, then the constant
tensors X k∗ and Mk satisfy, for any set of indices 1 ≤ i1, . . . , ik ≤ d:

X k∗i1...ik = Si1j1 . . . SikjkX k∗j1...jk (7.3.91)

Mk
i1...ik

= Si1j1 . . . SikjkM
k
j1...jk

(7.3.92)

with implicit summation over the repeated indices j1 . . . jk.
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Proof. Equality (7.3.91) results from the previous proposition and the following change of variables:

X k∗i1...ik =

∫
Y

X ki1...ikdy =

∫
Y

X ki1...ik ◦ Sdy.

Equality (7.3.92) can be obtained by applying (7.3.91) in the formula (7.3.35).

Corollary 7.4. 1. If the cell Y is symmetric with respect to all cell axes el, i.e. Sl(Y ) = Y for any
1 ≤ l ≤ d, then

X k∗i1...ik = 0 and Mk
i1...ik

= 0

whenever there exists a number r occurring with an odd multiplicity in the indices i1 . . . ik, i.e.
whenever

∃r ∈ {1, . . . , d}, Card{j ∈ {1, . . . , k} | ij = r} is odd .

2. If the cell Y is symmetric with respect to all diagonal axes orthogonal to (el−em), i.e. Sl,m(Y ) = Y
for any 1 ≤ l < m ≤ d, then for any permutation σ ∈ Sd,

X k∗σ(i1)...σ(ik) = X k∗i1...ik .

Mk
σ(i1)...σ(ik) = Mk

i1...ik
.

Proof. 1. The symmetry Sl is a diagonal matrix satisfying Slel = −el and Sleq = eq for q 6= l.
Hence, replacing S by Sl in (7.3.91), it holds

X k∗i1...ik = (−1)δi1l+···+δiklX k∗i1...ik ,

which implies the result.

2. Applying (7.3.91) to the symmetry Sl,m yields the result for σ = τ where τ is the transposition
exchanging l and m. Since this holds for any transposition, this implies the statement for any
permutation σ.

Let us illustrate how the previous corollary translates for the tensors M2 and M4:

• if Y is symmetric with respect to the cell axes (el)1≤l≤d, then only the coefficients of the form M2
ii,

M4
iijj , M

4
iiii with 1 ≤ i, j ≤ d and i 6= j are non zeros (in particular M2 is diagonal).

• if in addition Y is symmetric with respect to the hyperplane orthogonal to el − em, then these
coefficients do not depend on the chosen distinct indices i and j: M2 is a multiple of the identity
and M4 reduces to two effective coefficients.

7.4 High order homogenization for the perforated elasticity system

This section extends the previous analysis to the elasticity system. For a periodic, smooth, vectorial
right-hand side f ∈ C∞(D,Rd), we consider now uε to be the solution of the elasticity system

−div(A∇uε) = f in Dε

uε = 0 on ∂ωε

uε is D periodic.

(7.4.1)

The displacement uε is assumed to be zero on ∂ωε: physically, (7.4.1) models a mechanical structure
clamped with many screws.

In (7.4.1), A := (Aijkl)1≤i,j,k,l≤d is a 4th order tensor written in standard notation, which means that
for any d× d matrix P := (Pkl)1≤k,l≤d, AP is the d× d matrix defined by (AP )ij := AijklPkl. Hence, it
holds

A∇u = Aijkl∂luk

for a vector field u := (uk)1≤k≤d ∈ Rd. Note that this notation differs slightly from our notational
conventions of section 7.2.4, whereby A ≡ A2 would rather be considered a second order matrix valued
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tensor, see (7.4.40) below. The fourth order tensor A is assumed symmetric, positive definite in the
following sense:

∀P,Q ∈ Rd×d, P : AQ = AP : Q

∃ν > 0, ∀P ∈ Rd×d, P : AP ≥ νP : P,

where “:” denotes the Frobenius scalar product on d× d matrices: P : Q = PijQij .
In a more classical setting, A can be considered to be the Hooke’s tensor for isotropic homogeneous
materials, defined for two given Lamé constants λ, µ > 0 as follows:

A∇v = µ(∇v +∇vT ) + λTr(∇v), (7.4.2)

although we do not rely on this assumption in what follows.

Hereafter, we reproduce and extend the analysis of section 7.3 to the elasticity system (7.4.1). The
main difference with the analysis of section 7.3 lies in the vectorial nature of the problem. This reflects
in the following substantial changes with respect to the scalar context:

• tensors X k, Mk, Nk become matrix valued (e.g. X ki1...ik is a d × d matrix for any set of indices
i1 . . . ik);

• odd order tensors X 2k+1∗ and M2k+1 do not, in general, vanish anymore (we provide numerical
evidence for this fact in section 7.4.5 below) but are antisymmetric matrix valued. However, these
odd order tensors vanish in the case where the obstacle ηT is symmetric with respect to the cell
axes;

• even order tensors X 2k∗ and M2k are symmetric matrix valued;

• low volume fraction asymptotics remain valid, and it turns out that strange odd order operators
ε2k+1M2k+1 · ∇2k+1 disappear as η → 0.

7.4.1 Formal infinite order two-scale asymptotics and matrix valued tensors X k

Again, we consider the traditional two-scale ansatz

uε =

+∞∑
i=0

εi+2ui(x, x/ε) (7.4.3)

where the unknowns ui(x, y) are now vector functions ui : D × Y → Rd D and P–periodic. Similarly
as before and this is not compulsory, we assume that f itself can depend on ε in the form of a formal
power series in ε featuring only non-oscillating terms:

∀x ∈ D, f(x) =

+∞∑
i=0

εif i(x). (7.4.4)

Inserting formally the ansatz (7.4.3) into the elasticity system (7.4.1) yields the cascade of equations
Ayyui+2 = −Axyui+1 −Axxui + fi+2, ∀i ≥ −2

u−2(x, y) = u−1(x, y) = 0,

ui(x, ·) = 0 on ∂(ηT )∀i ≥ 0,

ui(x, ·) is P–periodic ∀i ≥ 0,

(7.4.5)

where the operators Axx,Axy and Ayy are defined by

Ayy := −divy(A∇y·), Axy := −divx(A∇y·)− divy(A∇x·), Axx := −divx(A∇x·).

We introduce an additional differential operator ∂Al acting on differentiable vector fields v as follows:

∂Al v :=
1

2
(A∇v · el + div(A[veTl ])). (7.4.6)
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The operator ∂Al behaves like a partial derivative in the direction el. It can be verified that ∂Al is an
antisymmetric operator: if v and w are two smooth P–periodic functions vanishing on the hole ∂(ηT ),
then it holds ∫

Y

v · ∂Al wdy =
1

2

∫
Y

(v ·A∇w −w ·A∇v) · eldy

= −
∫
Y

w · ∂Al vdy.

The system (7.4.5) can be solved by introducing matrix valued tensors X k : Y → Rd×d: they are defined
from their column vectors (X k

j )1≤j≤d by a recurrence analogous to (7.3.15):

AyyX 0
j = ej in Y,

AyyX 1
j = 2∂Al X

0
j ⊗ el in Y,

AyyX k+2
j = 2∂Al X

k+1
j ⊗ el + (A[X k

je
T
l ] · em)el ⊗ em in Y,

X k
j = 0 on ∂(ηT ),

X k
j is P–periodic

∀k ≥ 0, ∀1 ≤ j ≤ d. (7.4.7)

The coefficients of the matrix valued tensor X k := [X k
1 . . . X

k
d] are then given by

X kij = X k
j · ei, 1 ≤ i, j ≤ d.

Finally, we associate to these tensors a family of differential operators X k · ∇k defined for any smooth
vector field v := (vq)1≤q≤d ∈ C∞(D,Rd) by (X k · ∇kv)p := X ki1...ik,pq∂

k
i1...ik

vq, following the conventions
of section 7.2.4.

Remark 7.17. With our notational conventions, the non bold symbols ⊗el and ⊗em refer to the tensor
part of X k and indicates the occurrence of additional indices l and m, which is consistent with the
definition (7.2.22). For instance the last line of (7.4.7) must be read as

AyyX k+2
i1...ik+2,j

= 2∂Aik+2
X k+1
i1...ik+1,j

+A[X k
i1...ik,j

eTik+1
] · eik+2

.

Remark 7.18. There is no coupling between X k
j and X k

l for j 6= l: the columns of X k are defined from
uncorrelated recurrences.

Using a methodology similar to section 7.3, we may prove

Proposition 7.16. The solutions uk of the cascade of equations (7.4.5) are given by

ui(x, y) =

i∑
k=0

X k(y) · ∇kf i−k(x), (7.4.8)

which can be formally written as the following double series product

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇if(x) =

(
+∞∑
i=0

εi+2X i(x/ε) · ∇i
)(

+∞∑
i=0

εif i(x)

)
, x ∈ Dε.

Proof. The result is obtained as in proposition 7.1, by using the following two identities which hold for
a scalar function f ∈ C∞(D) and a vector field a ∈ C∞(Y,Rd):

Axy(f(x)a(y)) = −2∂xjf(x)∂Ayja(y),

Axx(f(x)a(y)) = −∂2
xlxm

f(x)A[a(y)eTl ] · em.

Following section 7.3, we denote by X i∗ and u∗i the averages of X i(y) and ui(x, y) with respect to the y
variable:

X i∗ :=

∫
Y

X i(y)dy, u∗i (x) :=

∫
Y

ui(x, y)dy, ∀x ∈ D, ∀i ∈ N. (7.4.9)
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Our main objective is the derivation of high order homogenized equations yielding an approximation of
the “infinite order” homogenized solution formally defined by

u∗ε(x) :=

+∞∑
i=0

εi+2u∗i (x) =

+∞∑
i=0

εi+2X i∗ · ∇if(x), x ∈ D. (7.4.10)

Our first step is to extend the identities of proposition 7.2 to the present context: we show that X 2k∗

and X 2k+1∗ are respectively symmetric and antisymmetric matrix valued tensors.

Proposition 7.17. For any 0 ≤ p ≤ k, the following identity holds for the matrix valued tensor X k∗:

∀1 ≤ i, j ≤ d, X k∗ij = (−1)p
∫
Y

(AyyX p
i ·X

k−p
j −A[X p−1

i eTl ] : [X k−p−1
j eTm]⊗ el ⊗ em)dy, (7.4.11)

where the convention X−1
i = 0 is assumed. In particular, for any k ≥ 0:

• X 2k∗ takes values in the set of d× d symmetric matrices:

∀1 ≤ i, j ≤ d, X 2k∗
ij = X 2k∗

ji .

• X 2k+1∗ takes values in the set of d× d antisymmetric matrices:

∀1 ≤ i, j ≤ d, X 2k+1∗
ij = −X 2k+1∗

ji .

Furthermore, X 2k∗ and X 2k+1∗ depend only on (X k
j )1≤j≤d and (X k−1

j )1≤j≤d as implied by the following
identities:

X 2k∗
ij = (−1)k

∫
Y

(A∇X k
i : ∇X k

j −A[X k−1
i eTl ] : [X k−1

j eTm]⊗ el ⊗ em)dy. (7.4.12)

X 2k+1∗
ij = (−1)k

∫
Y

(X k
i ·A∇X

k
j −X k

j ·A∇X
k
i ) · el ⊗ eldy

+ (−1)k
∫
Y

(A[X k−1
j eTl ] : [X k

i e
T
m]−A[X k−1

i eTl ] : [X k
je
T
m])⊗ el ⊗ emdy.

(7.4.13)

Remark 7.19. 1. There is no reason for the odd order tensors X 2k+1∗ being zero for all k ≥ 0.
Although it does not seem straightforward to exhibit a particular shape of hole for which it could be
proved that X 2k+1∗ 6= 0, numerical experiments tend to confirm this conjecture (see section 7.4.5).
This fact is an important difference with the scalar case.

2. We shall see in section 7.4.4 below that odd order tensors X 2k+1∗ and M2k+1 vanish under sym-
metry assumptions of the periodic pattern Y .

3. Identity (7.4.12) is similar to (7.3.21): X 2k∗ is a difference betweent two positive tensors.

It can also be shown that the tensors X k
j take linearly independent vector values in Rd (in particular,

there must exist non zero components of X k
j for any 1 ≤ j ≤ d):

Proposition 7.18. For any 1 ≤ j ≤ d, the following identity holds:

∀k ≥ 0, Ayy(∂ki1...ikX
k
i1...ik,j

) = (−1)k(k + 1)ej .

Proof. The result is obtained by adapting the proof of proposition 7.3 and by using the following formulas
which hold for any smooth vector field X ∈ C∞(Y ):

− ∂j∂Aj X = AyyX , (7.4.14)

−∂2
lm(A[XeTl ] · em) = AyyX .
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7.4.2 High order homogenized equations: tensors Mk, Nk, BK and DK

We now derive high order homogenized equations for the perforated elasticity problem (7.4.1) following
the methodology described in the beginning of section 7.3.2.

Let us start by recalling the matrix X 0∗ is symmetric positive definite as a consequence of the identity

X 0
ij =

∫
Y

A∇X 0
i : ∇X 0

jdy, 1 ≤ i, j ≤ d,

and of the linear independence of the vector fields (X 0
j )1≤j≤d (proposition 7.18).

Proposition 7.19. We define a family (Mk) of tensors of order k by induction as follows:
M0 = (X 0∗)−1

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp ∀k ≥ 1.
(7.4.15)

Then the source terms fi (eqn. (7.4.4)) are given in terms of the averaged ansatz terms u∗i through the
following identity:

∀i ≥ 0, fi(x) =

i∑
k=0

Mk · ∇ku∗i−k(x). (7.4.16)

Recognizing a Cauchy product, this formula can be rewritten formally as the following “infinite order
homogenized equation” for the averaged ansatz u∗ε (eqn. (7.4.10)):

+∞∑
i=0

εi−2Mk · ∇ku∗ε = f . (7.4.17)

The explicit formula for the tensors Mk of proposition 7.7 extends to the vectorial setting:

Proposition 7.20. For any k ≥ 1, the tensor Mk of (7.4.15) reads explicitly

Mk =

k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1,...,ip≤k

(X 0∗)−1 ⊗X i1∗ ⊗ (X 0∗)−1 ⊗ · · · ⊗ (X 0∗)−1 ⊗X ip∗ ⊗ (X 0∗)−1. (7.4.18)

We now introduce the tensors Nk which allow to write the criminal ansatz expressing uε in terms of
u∗ε:

Proposition 7.21. Let Nk be the k-th order matrix valued tensor defined by

Nk(y) :=

k∑
p=0

X k−p(y)⊗Mp, y ∈ Y.

Then the terms ui(x, y) of the oscillating ansatz (7.4.3) can be written in terms of their averages u∗i (x)
(eqn. (7.4.9)) as follows:

∀i ≥ 0, ui(x, y) =

i∑
k=0

Nk(y) · ∇ku∗i−k(x). (7.4.19)

Recognizing a Cauchy product, this formally rewrites in terms of the following “criminal” ansatz express-
ing the oscillating solution uε in terms of its formal average u∗ε:

uε(x) =

+∞∑
k=0

εkNk(x/ε) · ∇u∗ε(x), x ∈ Dε. (7.4.20)

The next proposition summarizes the properties of the tensors Nk and of their columns vectors
(Nk

j )1≤j≤d
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Proposition 7.22. Let (Nk
j )1≤j≤d be the column vectors of the matrix tensors Nk:

∀1 ≤ i, j ≤ d, Nk
j := Nkej .

The tensors Nk and vector fields Nk
j satisfy:

1.
∫
Y
N0(y)dy = I and

∫
Y
Nk(y)dy = 0 for any k ≥ 1;

2. for any 1 ≤ j ≤ d, it holds
AyyN0

j = M0ej

AyyN1
j = 2∂Al N

0
j ⊗ el +M1ej

AyyNk+2
j = 2∂Al N

k+1 ⊗ el + (A[Nk
j e

T
l ] · em)⊗ el ⊗ em +Mk+2ej ;

3. Ayy(∂ki1...ikN
k
i1...ik,j

) = (−1)k(k + 1)M0ej , for any k ≥ 0;

4. For any 1 ≤ p ≤ k − 1,

Mk
ij = (−1)p+1

∫
Y

(AyyNp
i ·N

k−p
j −A[Np−1

i eTl ] : [Nk−p−1
j eTm]⊗ el ⊗ em)dy.

In particular, M2k and M2k+1 depend only on the tensors Nk and Nk−1, which depend themselves only
on the first k + 1 tensors X 0 . . .X k.

Importantly, the next proposition states that the tensors M2k and M2k+1 are also respectively symmetric
and antisymmetric matrix valued (which could also be seen from (7.4.18)):

Corollary 7.5. For any k ≥ 0,

• M2k is a symmetric matrix valued tensor, and the following identities hold:

M0
ij =

∫
Y

A∇N0
i : ∇N0

j dy, (7.4.21)

∀k ≥ 1, M2k
ij = (−1)k+1

∫
Y

(A∇Nk
i : ∇Nk

j −A[Nk−1
i eTl ] : [Nk−1

j eTm]⊗ el ⊗ em)dy. (7.4.22)

• M2k+1 is an antisymmetric matrix valued tensor, and the following identities hold:

∀k ≥ 0, M2k+1
ij = (−1)k+1

∫
Y

(Nk
i ·A∇Nk

j −Nk
j ·A∇Nk

i ) · el ⊗ eldy

+ (−1)k+1

∫
Y

(A[Nk−1
j eTl ] : [Nk

i e
T
m]−A[Nk−1

i eTl ] : [Nk
j e

T
m])⊗ el ⊗ emdy,

where the convention N−1 = 0 is assumed.

Remark 7.20. It may appear quite surprising that odd order differential operators ε2k−1M2k+1 ·∇2k+1

arise in the “infinite order” homogenized equation (7.4.17), while the original operator −div(A∇·) is
symmetric. In fact, there is no contradiction because the antisymmetry of M2k+1 compensates the one
induced by odd order derivatives which makes M2k+1 · ∇2k+1 be a symmetric operator. Indeed, for two
vector fields u := (ui)1≤i≤d,v = (vi)1≤i≤d, it holds∫

Y

v ·M2k+1 · ∇2k+1udy =

∫
Y

(M2k+1
ij · ∇2k+1uj)vidy =

∫
Y

(−1)2k+1(M2k+1
ij · ∇2k+1vi)ujdy

=

∫
Y

(−1)2k+1(−1)(M2k+1
ji · ∇2k+1vi)ujdy =

∫
Y

u ·M2k+1 · ∇2k+1vdy.

Remark 7.21. If the original tensor A acts on symmetric matrices (e.g. if A is given by the Hooke’s
Law (7.4.2)), which means Aijkl = Aijlk for 1 ≤ i, j, k, l ≤ d, the same property is a priori not necessarily
verified for the homogenized tensor M2, which would mean M2

i1i2,pq
= M2

i1q,pi2
(see the formulas (7.4.18)

and (7.4.13)). We interpret this physically by the fact that inhomogeneities in the obstacle may translate
in M2 being sensitive to the antisymmetric part of the gradient. The same remark applies as well for
the other tensors Mk: partial derivative indices cannot a priori be permuted with spatial indices. Such
occurs however in case of symmetries of the obstacle, see the dedicated section 7.4.4.
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We now derive well-posed homogenized equations of higher but finite order, which are in principle
amenable to numerical computations. Following section 7.3.3, recall uε is the solution to the energy
minimization problem

min
w∈H1(Dε,Rd)

J(u,f) :=

∫
D

(
1

2
A∇u : ∇u− f · u

)
dx

s.t.

{
w = 0 on ∂ωε

w is D–periodic.

We consider truncated criminal ansatz wε,K(v) depending on a non oscillating vector function v ∈
HK+1(D) obtained by truncation of (7.4.20):

wε,K(v)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv(x), x ∈ Dε. (7.4.23)

This allows us to consider a minimization problem for the function v which is sought to approximate the
formal infinite average u∗ε of (7.4.10):

min
v∈HK+1(D)

J(wε,K(v),f)

s.t. v is D–periodic.
(7.4.24)

Still following (7.3.3), we eliminate the fast variable x/ε in (7.4.24) by applying lemma 7.3 which yields
an approximate energy J∗K(v,f , ε) which we now define.

For a given K ∈ N, 1 ≤ j ≤ d and 0 ≤ k ≤ K + 1, we denote by (Ñ l
p,j)1≤j≤d the d vector tensors

defined for 1 ≤ j ≤ d by

Ñ l
p,j(y) :=


∂pN

0
j (y) if l = 0

∂pN
l
j(y) +N l−1

j (y)⊗ ep if 1 ≤ l ≤ l,
NK
j (y)⊗ ep if l = K + 1.

(7.4.25)

Then we define a constant, bilinear matrix valued tensor Bk,lK of order k + l:

Bl,mK,ij :=

∫
Y

A[Ñ l
p,ie

T
p ] : [Ñm

q,je
T
q ]dy, ∀1 ≤ i, j ≤ d, (7.4.26)

where the summation over the repeated indices p and q and a tensor product in the double contraction is
implicitly assumed, following the convention of section 7.2.4. Recall that for a vector field v := (vp)1≤p≤d
we denote by Bl,mK ∇lv∇mv the contraction

Bl,mK ∇
lv∇mv := (Bl,mK,pq)i1...ilj1...jm∂

l
i1...il

vp∂
m
j1...jmvq.

The tensors Bl,m allow us to formulate a new energy J∗K(v,f , ε):

J∗K(v,f , ε) :=

∫
D

1

2

K+1∑
k,l=0

εk+l−2Bk,lK ∇
kv∇lv − f · v

 dx. (7.4.27)

The definition of the energy J∗K is motivated by the following result, which can be obtained by a straight-
forward adaptation of the proof of proposition 7.10:

Proposition 7.23. Assume f ∈ C∞(D,Rd) and D–periodic. For any smooth D–periodic vector field
v ∈ C∞(D,Rd) and truncated ansatz wε,K(v) ∈ C∞(Dε) of the form of (7.4.23), the following energy
asymptotic holds true with m ≥ 0 arbitrarily high:

|J(wε,K(v),f)− J∗K(v,f , ε)| ≤ CK,m(||∇m+2v||2L∞(D,Rd×d) + ||f ||2Hm(D,Rd)).

Homogenized equations are obtained by considering the new minimization problem where J(wε,K(v),f)
is replaced with J∗K(v,f , ε) in (7.4.24).
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Definition 7.7. For any K ∈ N, we call homogenized equation of order 2K + 2 the Euler-Lagrange
equation associated with the minimization problem

min
v∈HK+1(D,Rd),

D periodic

J∗K(v,f , ε). (7.4.28)

This equation reads explicitly in terms of a higher order homogenized solution v∗K ∈ HK+1(D,Rd) as
2K+2∑
k=0

εk−2DkK · ∇kv∗K = f

v∗K is D–periodic,

(7.4.29)

where the constant (matrix valued) tensors DkK are defined by the following formula for any 0 ≤ k ≤
2K + 2:

∀1 ≤ i, j ≤ d, DkK,ij :=



k∑
K=0

(−1)l
1

2
(Bl,k−lK,ij + Bl,k−lK,ji ), if k is even

k∑
K=0

(−1)l
1

2
(Bl,k−lK,ij − Bl,k−lK,ji ), if k is odd,

(7.4.30)

where the convention Bl,mK = 0 whenever l > K + 1 or m > K + 1 is assumed.

Again, an important difference with the scalar case (eqn. (7.3.50)) is the occurrence of differential
operators ε2k−1D2k+1

K ·∇2k+1 of odd orders in the homogenized equation (7.4.29). The k-th order tensor
DkK is also symmetric matrix valued for even values of k, and antisymmetric otherwise, which was to be
expected from remark 7.20.

Remark 7.22. Let us examine (7.4.29) at order K = 0. It reads

D2
0 · ∇2v∗0 + ε−1D1

0 · ∇v∗0 + ε−2D0
0v
∗
0 = f

where one can verify that the tensors D0
0, D1

0 and D2
0 are respectively given by

D0
0 = M0, (7.4.31)

D1
0 = M1, (7.4.32)

D2
0,ij = (X 0∗)−1

ip (X 0∗)−1
jq

∫
Y

A[X 0
pe
T
l ] : [X 0

qe
T
m]⊗ el ⊗ emdy, 1 ≤ i, j ≤ d. (7.4.33)

The physical interpretation of the rather very strange term ε−1D1
0 · ∇v∗0 does not seem obvious to us.

Observing that the dominant tensor BK+1,K+1
K of (7.4.26) is symmetric and nonnegative, the well-

posedness result of proposition 7.11 extends without difficulty:

Proposition 7.24. Assume further the dominant tensor D2K+2
K = (−1)K+1BK+1,K+1

K is non-degenerate,
that is there exists a constant ν such that

∀ξ = ξi1...iK+1,j ∈ Rd
K+1

× Rd, BK+1,K+1
K ξξ ≥ ν|ξ|2. (7.4.34)

Then there exists a unique solution v∗K ∈ HK+1(D,Rd) to the homogenized equation (7.4.29).

Finally, it remains to verify that (7.4.29) is a truncation in some sense of the infinite order homogenized
equation (7.4.17):

Proposition 7.25. The first K+1 homogenized coefficients of the homogenized equation (7.4.29) coincide
with those of the formal infinite order homogenized equation (7.4.17):

∀0 ≤ k ≤ K, DkK = Mk.
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Proof. We follow the proof of proposition 7.12. For 0 ≤ k, l ≤ K and 1 ≤ i, j ≤ d, the coefficient Bl,k−lK,ij

is given by

Bl,k−lK,ij =

∫
Y

A[(∂pN
l
i +N l−1

i ⊗ ep)eTp ] : [(∂qN
k−l
j +Nk−l−1

j ⊗ eq)eTq ]dy.

After integration by parts, the following identities hold:∫
Y

A[∂pN
l
ie
T
p ] : [∂qN

k−l
j eTq ]dy =

∫
Y

A∇N l
i : ∇Nk−l

j dy =

∫
Y

AyyN l
i ·Nk−l

j dy,

∫
Y

A[N l−1
i ⊗ epeTp ] : [∂qN

k−l
j eTq ]dy = −

∫
Y

div(A[N l−1
i eTp ]) ·Nk−l

j ⊗ epdy.

This allows to rewrite Bl,k−lK,ij as follows:

Bl,k−lK,ij =

∫
Y

(AyyN l
i − 2∂Ap N

l−1
i ⊗ ep −A[N l−2

i eTp ] · eq ⊗ ep ⊗ eq) ·Nk−l
j dy +Bk,lij +Bk,l+1

ij

where Bk,lij is the k-th order tensor defined by

Bk,lij :=

∫
Y

(A∇N l−1
i : [Nk−l

j ] +A[N l−2
i eTp ] : [Nk−l

j eTq ]⊗ ep ⊗ eq)dy.

Hence we obtain, recognizing a telescopic series:

k∑
l=0

(−1)lBl,k−lK,ij =

k−l∑
l=0

(−1)l
∫
Y

(M lei) ·Nk−l
j dy +

k∑
l=0

((−1)lBk,lij − (−1)l+1Bk,l+1
ij )

= (−1)k(Mkei) · ej +Bk,0ij − (−1)k+1Bk,k+1
ij

= (−1)kMk
ji.

From there, we obtain

Dkij =
1

2
((−1)kMk

ji +Mk
ij)

which concludes the proof since we know that both Mk and Dk are symmetric for even k and antisym-
metric otherwise.

Remark 7.23. This result may not be optimal, i.e. DkK = Mk may hold up to k = K + 1 under some
circumstances, because equality (7.4.32) is not explained by the previous proposition.

The proof of the error estimates in proposition 7.13 for the scalar case relied essentially on the
coercivity of the operator −∆ on the space H1(D). The results extends therefore without difficulty to
the vectorial context due to the coercivity of the operator −div(A∇·) on H1(D,Rd):

Proposition 7.26. Let v∗K the solution to the homogenized equation (7.4.29) of order 2K + 2. There
exists a constant CK(f) independent of ε such that the following error estimates hold:∣∣∣∣∣

∣∣∣∣∣uε −
K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
H1(D,Rd)

≤ CK(f)εK+2. (7.4.35)

∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
L2(D,Rd)

≤ CK(f)εK+3. (7.4.36)

7.4.3 Low volume fraction limits when the size of the obstacle tends to 0

We now extend the results of section 7.3.5 to the vectorial context: we establish low volume fraction
asymptotics for the tensors X k∗ and Mk when the size η of the obstacle (ηT ) converges to zero. Again,
we assume

d ≥ 3, (7.4.37)
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although analogous results could be stated for d = 2. For 1 ≤ j ≤ d, we introduce the solution Ψj to
the exterior problem 

−div(A∇Ψj) = 0 in Rd\T
Ψj = 0 on ∂T

Ψj → ej at ∞,
(7.4.38)

where the boundary condition Ψj → ej at infinity means Ψj − ej ∈ D1,2(Rd\T ). We denote by
Ψ∗ := (Ψ∗ij)1≤i,j≤d the matrix collecting the normal stress components:

Ψ∗ij :=

∫
Rd\T

A∇Ψi : ∇Ψjdx = −
∫
∂T

ej ·A∇Ψi · nds, (7.4.39)

where we recall that the normal n is assumed to point inward T . In this section, we write A2 in order to
refer to the 4-th order elasticity tensor A seen as a second order matrix valued tensor: for given derivative
indices 1 ≤ i1, i2 ≤ d and spatial indices 1 ≤ l,m ≤ d,

A2
i1i2,lm := Ali1mi2 (7.4.40)

which also means

A2
ij = Ailjmel ⊗ em = A[eie

T
l ] : [eje

T
m]el ⊗ em, 1 ≤ i, j ≤ d. (7.4.41)

Proposition 7.14 extends as follows:

Proposition 7.27. Assume d ≥ 3. For any k ≥ 0, and 1 ≤ j ≤ d, let X̃
2k

j and X̃
2k+1

j be the rescaled
vector tensors in η−1P\T defined by

∀x ∈ η−1P\T, X̃
2k

j (x) := η(d−2)(k+1)X 2k
j (ηx) and X̃

2k+1

j (x) := η(d−2)(k+1)X 2k+1
j (ηx).

Then:

1. there exists a constant C > 0 independent of η > 0 such that:

∀η > 0, ||∇X̃
2k

j ||L2(η−1P\T,Rd×d) ≤ C and ||∇X̃
2k+1

j ||L2(η−1P\T,Rd×d) ≤ C, (7.4.42)

2. the following convergences hold as η → 0:

X̃
2k

i ⇀ c2kij Ψj weakly in H1
loc(Rd\T,Rd), (7.4.43)

X̃
2k+1

i ⇀ 0 weakly in H1
loc(Rd\T,Rd), (7.4.44)

X 2k∗ ∼ 1

η(d−2)(k+1)
c2k, (7.4.45)

X 2k+1∗ = o

(
1

η(d−2)(k+1)

)
, (7.4.46)

where c2kij denote the coefficients of the 2k-th order matrix valued tensor c2k := (c2kij )1≤i,j≤d given
by:

c2k := (Ψ∗)−1 ⊗
k times︷ ︸︸ ︷

A2 ⊗ (Ψ∗)−1 · · · ⊗A2 ⊗ (Ψ∗)−1 . (7.4.47)

Proof. The proof follows the lines of that of proposition 7.10, so we content ourselves with highlighting
only the main differences that are due to the vectorial setting. The results is proved by induction on k.

1. Case 2k for k = 0. The vector valued tensor X̃
0

i satisfies AyyX̃
0

i = ηdei in η−1P\T , hence for any
test function Φ ∈ H1(η−1P\T,Rd) which is η−1P–periodic, it holds∫

η−1P\T
A∇X̃

0

i : ∇Φdx = ηd
∫
η−1P\T

Φ · eidx+

∫
∂T

Φ ·A∇X̃
0

i · nds. (7.4.48)
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Substituting Φ = X̃
0

i in (7.4.48) and using lemma 7.7 yields ||∇X̃
0

i ||L2(η−1P\T,Rd×d) ≤ C. Then

(7.3.66) implies that < X̃
0

i > is bounded in Rd as η → 0. Up to the extraction of a subsequence,

there exists a matrix c0 = (c0ij)1≤i,j≤d and vector fields (Ψ̂0
i )1≤i≤d such that

< X̃
0

i > · ej → c0ij and X̃
0

i ⇀ Ψ̂0
i weakly in H1

loc(η
−1P\T,Rd) as η → 0.

Passing (7.4.48) to the limit when η → 0 with a compactly supported Φ ∈ C∞(η−1P\T,Rd)
yields then −div(A∇Ψ̂0

i ) = 0 in Rd\T . From (7.3.68) and the lower semi-continuity of the

H1
loc(η

−1P\T,Rd) norm, we know that Φ̂0
i −c0ijej belongs to D1,2(Rd\T,Rd), which readily implies

Ψ̂0
i = c0ijΨj . Setting now Φ = ej in (7.4.48), using the continuity of the normal force (7.4.39) with

respect to the weak convergence in H1
loc(Rd\T,Rd), we obtain

−
∫
∂T

ej ·A∇Ψ̂0
i · nds = c0ipΨ

∗
pj = δij .

This means exactly c0 = (Ψ∗)−1, from where the results follows for X̃
0

i .

2. Case 2k + 1 for k = 0. The tensor X̃
1

i satisfies AyyX̃
1

i = 2η∂Al X̃
1

i ⊗ el which can be rewritten∫
η−1P\T

A∇X̃
1

i : ∇Φdx =

∫
η−1P\T

2η∂Al X̃
0

i ·Φ⊗ eldx+

∫
∂T

Φ ·A∇X̃
1

i · nds (7.4.49)

for any periodic Φ in H1(η−1P\T,Rd). Again, arguments analogous to those of the proof of

proposition 7.14 imply ||∇X̃
1

i ||L2(η−1P\T,Rd×d) ≤ C and | < X̃
1

i > | ≤ C, from where, up to the
extraction of a subsequence, we obtain as above the existence of a matrix valued tensor c1 such
that

< X̃
1

i > · ej → c1ij and X̃
1

i ⇀ c1ijΨj weakly in H1
loc(η

−1P\T,Rd) as η → 0.

Passing (7.4.49) to the limit with Φ = ei implies in this case

c1ipΨ
∗
pj = 0,

from where we infer c1 = 0 and the convergence results for X̃
1

i .

3. General case. Assuming the results hold till rank k, it holds

AyyX̃
2k+2

i = 2ηd−1∂lX̃
2k+1

i ⊗ el + ηdA[X̃
2k
eTl ] · em ⊗ el ⊗ em, (7.4.50)

AyyX̃
2k+3

i = 2η∂lX̃
2k+2

i ⊗ el + ηdA[X̃
2k+1

eTl ] · em ⊗ el ⊗ em. (7.4.51)

Writing their associated variational formulations as above and adapting the arguments of the proof

of proposition 7.14, we obtain ||∇X̃
2k+2

i ||L2(η−1P\T,Rd×d) ≤ C and ||∇X̃
2k+3

i ||L2(η−1P\T,Rd×d) ≤ C.
Repeating the above arguments, we obtain, up to the extraction of a subsequence, the existence of
matrix valued tensors c2k+1 and c2k+3 such that

< X̃
2k+2

i > · ej → c2k+2
ij and X̃

2k+2

i ⇀ c2k+2
ij Ψj weakly in H1

loc(η
−1P\T,Rd) as η → 0.

< X̃
2k+3

i > · ej → c2k+3
ij and X̃

2k+3

i ⇀ c2k+3
ij Ψj weakly in H1

loc(η
−1P\T,Rd) as η → 0.

The last step consists in passing the variational formulations for X̃
2k+2

i and X̃
2k+3

i to the limit
with the test function Φ = ej in order to identify c2k+2

ij and c2k+3
ij . Performing this computation

yields
c2k+2
ip Ψ∗pj = A[c2kip epe

T
l ] : [eje

T
m]⊗ el ⊗ em,

c2k+3
ip Ψ∗pj = A[c2k+1

ip epe
T
l ] : [eje

T
m]⊗ el ⊗ em.

Rewriting A into the matrix valued tensor A2 following the notation (7.4.40), the above two equa-
tions read c2k+2Ψ∗ = c2k ⊗ A2 and c2k+3Ψ∗ = c2k+1 ⊗ A2. The result follows by using (7.4.46)
and (7.4.47) at rank k.
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We are finally able to obtain the full asymptotics for the coefficients of the homogenized equation (7.4.29)
when the size η of the hole converges to zero:

Corollary 7.6. Assume d ≥ 3. The following convergence hold for the matrix valued tensors Mk as
η → 0:

M0 ∼ ηd−2Ψ∗, (7.4.52)

M1 = o
(
ηd−2

)
, (7.4.53)

M2 → −A2, (7.4.54)

∀k > 1, M2k = o

(
1

η(d−2)(k−1)

)
, (7.4.55)

∀k > 1, M2k+1 = o

(
1

η(d−2)(k−1)

)
. (7.4.56)

Proof. We reproduce the proof of corollary 7.2 with small adaptations due to the vectorial context.
(7.4.52) is immediate with M0 = (X 0∗)−1. As for M2, we write according to (7.4.18):

M2 = −(X 0∗)−1 ⊗X 2∗ ⊗ (X 0∗)−1 + (X 0∗)−1 ⊗X 1∗ ⊗ (X 0∗)−1 ⊗X 1∗ ⊗ (X 0∗)−1

= −η
2(d−2)

η2(d−2)
Ψ∗ ⊗ c2 ⊗Ψ∗ + o

(
η3(d−2)

η2(d−2)

)
= −Ψ∗ ⊗ (Ψ∗)−1 ⊗A2 ⊗ (Ψ∗)−1 ⊗Ψ∗ + o(ηd−2)

= −A2 + o(ηd−2).

The identity (7.4.56) for M2k+1 is obtained by using (7.4.18), where we observe that, for any 0 ≤ p ≤
2k + 1 and indices 1 ≤ i1 . . . ip ≤ 2k + 1 such that i1 + · · · + ip = 2k + 1, there exists at least one odd
index iq with 1 ≤ q ≤ p. Using (7.4.46), we obtain therefore

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ X ip∗ ⊗ (X 0∗)−1 = o

(
η(p+1)(d−2)

η(p+bi1/2c+···+bip/2c)(d−2)

)
= o

(
1

η(d−2)(k−1)

)
,

which eventually implies (7.4.56). Finally, in order to obtain the result for M2k with k > 1, we separate
the summands of (7.4.18) into two categories. For a given p such that 1 ≤ p ≤ 2k and indices 1 ≤
i1, . . . , ip ≤ d such that i1 + · · ·+ ip = 2k, there are only two possibilities:

1. there exists at least one odd index iq, in that case the above reasoning implies as well

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ X ip∗ ⊗ (X 0∗)−1 = o

(
1

η(d−2)(k−1)

)
;

2. all indices i1 + · · ·+ ip are even, in that case we may write, as η → 0:

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ X ip∗ ⊗ (X 0∗)−1 ∼ 1

η(d−2)(k−1)
Ψ∗ ⊗ ci1 ⊗ . . .Ψ∗ ⊗ cip ⊗Ψ∗

∼ 1

η(d−2)(k−1)

k − 1 times︷ ︸︸ ︷
A2 ⊗ (Ψ∗)−1 ⊗ · · · ⊗A2 ⊗ (Ψ∗)−1⊗A2.

In both case, the asymptotics obtained for (X 0∗)−1 ⊗ X i1∗ ⊗ · · · ⊗ X ip∗ ⊗ (X 0∗)−1 do not depend on
the choice of indices 1 ≤ i1, . . . , ip ≤ d. This allows to eventually obtain, by isolating even indices
i1 := 2j1, . . . , ip := 2jp in the formula (7.4.18):

M2k =
1

η(d−2)(k−1)

k − 1 times︷ ︸︸ ︷
A2 ⊗ (Ψ∗)−1 ⊗ · · · ⊗A2 ⊗ (Ψ∗)−1⊗A2

 2k∑
p=1

(−1)p
∑

2j1+···+2jp=2k
1≤j1,...,jp≤k

1


+ o

(
1

η(d−2)(k−1)

)
.

The result follows by using the identity (7.3.86).
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Remark 7.24. We have retrieved formally in the previous corollary the classical three regimes of ho-
mogenized equations [11, 105] depending on the hole size aε = ηε:

1. if 1 ≥ aε >> εd/(d−2), that is η goes to zero at a smaller rate than ε2/(d−2), then the zeroth order
term ε−2M0 ∼ ε−2ηd−2Ψ∗ is dominant in the infinite order homogenized equation (7.4.29);

2. if aε = εd/(d−2), the coefficients of the infinite order homogenized equation (7.4.29) converge to
those of

−div(A∇u∗) + Ψ∗u∗ = f ,

which corresponds to a “Brinkman” regime with strange reaction term Ψ∗u∗. Interestingly, the
very strange first order term ε−1M1 · ∇ disappears because M1ε = o(ε1), although this term
dominates the second order term M2 · ∇ for a fixed size η > 0. All other contributions εkMk · ∇k
for k > 2 vanish equally, at rates o(1) and o(ε) for respectively even and odd values of k;

3. if aε = o(εd/(d−2)), then the hole are “too small” to be seen by the homogenized model and the
coefficients of (7.4.29) converge to those of the elasticity problem (7.4.1) in the homogeneous domain
D (without holes):

−div(A∇u∗) = f .

7.4.4 Simplifications for the tensors X k∗ and Mk in case of symmetries

This last section generalizes the results of section 7.3.6 to the elasticity context: our main result is
corollary 7.7 where we obtain symmetry properties for the tensors X k∗ and Mk in case where the
obstacle (ηT ) is symmetric with respect to the cell axes.

Throughout this part, it is assumed that the elasticity tensor A commute with orthogonal symmetries
S := (Sij)1≤i,j≤d in the following sense:

A(SMS) = S(AM)S. (7.4.57)

This property is notably satisfied by the Hooke’s law (7.4.2). We use below the following technical
lemma:

Lemma 7.8. Under the assumption (7.4.57), the following identities hold for any smooth vector field
X :

Ayy(SX ◦ S) = S(AyyX ) ◦ S, (7.4.58)

∂Ai (SX ◦ S) = SijS(∂Aj X ) ◦ S. (7.4.59)

Proof. We write

Ayy(SX ◦ S) = −div(A∇(SX ◦ S)) = −div(A[S(∇X ) ◦ SS])

= −Sdiv(A(∇X ) ◦ S)S = −SA[(∇∂iX ) ◦ S] · SejSij
= −SA[(∇∂iX ) ◦ S]ei = −Sdiv(A∇X ) ◦ S,

which proves (7.4.58). Equation (7.4.59) follows from

∂Ai (SX ◦ S) =
1

2
(A∇(SX ◦ S) · ei + div(A[SX ◦ SeTi ]))

=
1

2
(A[S(∇X ) ◦ SS] · ei + div(SA[X ◦ S(Sei)

T ]S))

=
1

2
(SA(∇X ) ◦ S · Sei + SA[Slj(∂lX ) ◦ S(Sei)

T ]S · ej)

=
1

2
(SA(∇X ) ◦ S · Sei + SA[(∂lX ) ◦ S(Sei)

T ]SSel)

=
S

2
(A(∇X ) ◦ S · (Sijej) + div(A[X (Sijej)

T ]) ◦ S).
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Proposition 7.28. If the cell Y = P\ηT is invariant with respect to a symmetry S, i.e. S(Y ) = Y ,
then the following identity holds for the vector valued tensors (X k

l )1≤l≤d of eqn. (7.4.7):

SX k
i1...ik,l

◦ S = Si1j1 . . . SikjkSlmX k
j1...jk,m

. (7.4.60)

As a consequence, the following identities hold for the constant matrix valued tensors X k∗ and Mk:

X k∗i1...ik,lm = Si1j1 . . . SikjkSlpSmqX k∗j1...jk,pq (7.4.61)

Mk
i1...ik,pq

= Si1j1 . . . SikjkSlpSmqM
k
j1...jk,pq

. (7.4.62)

Proof. We start by proving (7.4.60) by induction. It holds Ayy(SX 0
l ◦S) = Sel ◦S = Smlem. If the cell

is S symmetric, then SX 0
l ◦ S also satisfies the boundary conditions of (7.4.7), we obtain therefore

SX 0
l ◦ S = SlmX 0

m,

which is the result at rank k = 0. For k = 1, we write

Ayy(SX 1
i1,l ◦ S) = 2S(∂Ai1X

0
l ) ◦ S = 2Si1j1∂

A
j1(SX 0

l ◦ S) = 2Si1j1∂
A
j1(SlmX 0

m),

which implies SX 1
i1,l ◦ S = Si1j1SlmX 1

j1,m and the result at rank k = 1. Assuming now that the result
holds till rank k + 1 with k ≥ 0, we write

Ayy(SX k+2
i1...ik+2,l

◦ S) = 2S(∂Aik+2
X k+1
i1...ik+1,l

) ◦ S + SA[X k
i1...ik,l

◦ SeTk+1] · ek+2.

The previous arguments and the result at rank k + 1 imply the following equality for the first term:

2S(∂Aik+2
X k+1
i1...ik+1,l

) ◦ S = Si1j1 . . . Sik+2jk+2
Slm∂

A
jk+2

X k+1
j1...jk+1,m

.

Furthermore, using the result at rank k, we can rewrite the second term as follows:

SA[X k
i1...ik,l

◦ SeTik+1
] · eik+2

= A[SX k
i1...ik,l

◦ SeTik+1
S] · Seik+2

= A[SX k
i1...ik,l

◦ S(Seik+1
)T ] · Seik+2

= Si1j1 . . . Sik+2jk+2
SlmA[X k

j1...jk,m
ejk+1

] · ejk+2
.

The two above equalities imply the result at rank k + 2.

Eqn. (7.4.61) then follows by the following change of variables:

X k∗i1...ik,lm =

∫
Y

el ·X k
i1...ik,m

dy =

∫
Y

(Sel) · (SX k
i1...ik,m

◦ S)dy.

Remarking that (7.4.61) rewrites also as

X k∗i1...ik = Si1j1 . . . Sikjk(SX k∗j1...jkS),

eqn. (7.4.62) follows by rewriting the summand of (7.4.18) as

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ (X 0∗)−1 ⊗X ip∗ ⊗ (X 0∗)−1

= (X 0∗)−1S ⊗ SX i1∗S ⊗ · · · ⊗ S(X 0∗)−1S ⊗ SX ip∗S ⊗ S(X 0∗)−1 (7.4.63)

before using identity (7.4.61).

Following the proof of corollary 7.4, we obtain simplifications for the tensors X 2k∗ and M2k as well as
the vanishing of the tensors X 2k+1∗ and M2k+1 in case the obstacle ηT is symmetric with respect to the
cell axes. Recall (7.3.87) and (7.3.88) for the definition of Sl and Sl,m.

Corollary 7.7. 1. If the cell Y is symmetric with respect to all cell axes el, i.e. Sl(Y ) = Y for any
1 ≤ l ≤ d, then

X k∗i1...ik,pq = 0 and Mk
i1...ik,pq

= 0

whenever a given integer 1 ≤ r ≤ d occurs with an odd multiplicity in the indices i1 . . . ik, pq.

In particular, this implies X 2k+1∗ = 0 and M2k+1 = 0.
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2. If the cell Y is symmetric with respect to all diagonal axes orthogonal to (el−em), i.e. Sl,m(Y ) = Y
for any 1 ≤ l < m ≤ d, then for any permutation σ ∈ Sd,

X k∗σ(i1)...σ(ik),σ(p)σ(q) = X k∗i1...ik,pq.

Mk
σ(i1)...σ(ik),σ(p)σ(q) = Mk

i1...ik,pq
.

Let us illustrate how the previous properties translate for the tensors M2 and M4:

• if the cell Y is symmetric with respect to all cell axes (el)1≤l≤d, only the coefficients of the form

M2
ii,jj ,M

2
ij,ij ,M

2
ii,ii

with i 6= j are non zero. For M4, only the coefficients of the form

M4
iijj,kk,M

4
iijk,jk,M

4
iiii,jj ,M

4
iijj,ii,M

4
iiij,ij ,M

4
iiii,ii

are non zero with distinct integers i, j, k.

• If in addition the obstacle is symmetric with respect to all diagonal axes, then the values of the
above coefficients do not depend on the choice of the distinct integers i, j, k. As a result, M2

reduces to at most three coefficients (the material is said to be orthotropic), and M4 reduces to at
most 6 coefficients for d ≥ 3, and to 4 coefficients for d = 2.

7.4.5 Appendix: numerical evidences for the “very strange” tensors X 1∗ and M1 being
nonzero

In this appendix, we report on some numerical computations performed in 2-d in order to assess the
magnitude of the tensors X 1 and M1 for a particular (non symmetric) shape of hole ηT . We consider
a cell P = [0, 1] × [0, 1] perforated with a “boomerang” shaped hole (see Figure 7.4), parameterized by
the following system of equations {

x(t) = 0.5 + r(cos(t) + 2 cos(2t))

y(t) = 0.5 + 2r sin(t),
(7.4.64)

where t ∈ [0, 2π] and r = 0.15. The cell Y = P\(ηT ) is discretized into a triangular mesh (represented
on Figure 7.4a) whose maximum edge size was hmax=0.007. The elasticity tensor is given by the Hooke’s
law

A∇u = µ(∇u+∇uT ) + λdiv(u),

where the Lamé parameters are µ = 0.1 and λ = 1.
By using the finite element method with P1 finite elements, we solve the first cell problem of (7.4.7)
determining X 0

j for j = 1, 2: {
AyyX 0

j = ej ,

X 0
j is P–periodic,

j = 1, 2.

The numerical solutions obtained for X 0
j with j = 1, 2 are represented on Figs. 7.4 and 7.5 below. They

are used to compute the constant tensors X 0∗, X 1∗, M0 and M1 from the formulas (7.4.13) and (7.4.18):

X 0∗
ij =

∫
Y

X 0
j · eidy, (7.4.65)

X 1∗
l,ij =

∫
Y

(X 0
i ·A∇X

0
j −X 0

j ·A∇X
0
i ) · eldy, (7.4.66)

M0 = (X 0∗)−1, (7.4.67)

M1 = −(X 0∗)−1X 1∗(X 0∗)−1. (7.4.68)

These computations are performed in FreeFEM [183]; we obtain the following numerical values:

X 0∗ =

 0.145 -4.30e-7

-4.30e-7 0.0765

 (7.4.69)
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(a) Mesh considered for the unit cell Y .

(b) Norm field ||X 0
1||. (c) Norm field ||X 0

2||.

Figure 7.4: The unit cell considered for the numerical example of section 7.4.5 and the first two vector valued
tensors X 0

i for i = 1, 2.

(a) Deformation of Y by X 0
1. (b) Deformation of Y by X 0

2.

Figure 7.5: Deformation of the unit cell Y according to the first two vector valued tensors X 0
i for i = 1, 2.
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X 1∗
1 =

1.05e-21 1.52e-6

-1.52e-6 -2.98e-22

 , X 1∗
2 =

-7.16e-22 0.00237

-0.00237 -1.670e-21

 , (7.4.70)

M0 =

 6.90 3.88e-05

3.88e-05 13.1

 , (7.4.71)

M1
1 =

1.074e-18 1.37e-4

-1.37e-4 1.93e-18

 , M1
2 =

1.67e-15 0.214

-0.214 3.15e-15

 , (7.4.72)

where we have denoted by X 1∗
i and M1

i the i-th (matrix valued) component of these tensors of order 1.
These results strongly suggest that the tensor M1 is not zero (with e.g. the value M1

1,12 = 0.214). As a
result, we expect the odd order differential operator ε−1M1 · ∇ to have an impact when solving the high
order homogenized equation (7.4.17).

7.5 High order homogenization for the Stokes system in a porous medium

This last section is devoted to the high order homogenization of the Stokes system, which was our initial
motivation: 

−∆uε +∇pε = f in Dε

div(uε) = 0 in Dε∫
Dε

pεdx = 0,

uε = 0 on ∂ωε

uε = is D–periodic.

(7.5.1)

In the sequel, we consider the following two classical assumptions for the distributions of the holes ωε,
following [12]:

(H4) Y ⊂ P , as a subset of the unit torus (opposite matching faces are identified) is a smooth connected
set.

(H5) The fluid component Dε is a smooth connected set.

Remark 7.25. Assumption (H5) does not necessarily imply (H4), see [7] for a counterexample. As-
sumption (H4) is not very restrictive and can easily be generalized to the case where the subset Y has
m connected components with m ∈ N (see section 7.5.6 for a more precise discussion). Assumption
(H5) is stronger, but is also more physical. It forbids the existence of isolated fluid inclusions. Most
of our derivations of homogenized tensors and homogenized equations only assume (H4). However, we
rely on both assumption (H4) and (H5) when stating error bounds in section 7.5.3, because we use some
technical results of [12] (namely Theorem 2.3 of this reference).

We start as previously by considering formal two-scale ansatz (uε, pε) of the form

uε =

+∞∑
i=0

εi+2ui(x, x/ε), pε(x) =

+∞∑
i=0

εi(p∗i (x) + εpi(x, x/ε)), x ∈ Dε. (7.5.2)

where the functions ui(x, y) and pi(x, y) are periodic in the variable y ∈ P . The decomposition (7.5.2)
for the pressure pε is not the one commonly assumed in the literature, where it is more usually written
only in terms of pi(x, x/ε). Of course, there is no loss of generality in adding the non oscillating function
p∗i , which turns to be very convenient in the sequel. In order to fix the value of p∗i and pi(x, y), p∗i is
required to have zero average with respect to the variable x, and the oscillating functions pi are required
to have zero average with respect to the variable y:∫

D

p∗i (x)dx = 0,

∫
Y

pi(x, y)dy = 0, ∀i ≥ 0.
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Assuming these conventions, our goal is to derive and analyze high order equations for the formal
homogenized averages u∗ε and p∗ε defined by

u∗ε(x) :=

+∞∑
i=0

εi+2

∫
Y

ui(x, y)dy, p∗ε(x) :=

+∞∑
i=0

εip∗i (x). (7.5.3)

In the following, the methodologies of the previous sections 7.3 and 7.4 are applied to derive higher
order homogenized equations for the perforated Stokes system (7.5.1). Most of the ingredients remain
analogous to the case of the elasticity system, however additional technical difficulties occur in the proof
of error estimates due to the incompressibility constraint div(uε) = 0.

This part is organized as follows. In section 7.5.1, we introduce cell problems and their solution
tensors (X k,αk) which allow to identify the functions ui, p

∗
i and pi of the ansatz (7.5.2). Similarly

to what occurs in the context of the elasticity system investigated in section 7.4, we prove that the
averaged tensors X k∗ are symmetric matrix valued matrices for even values of k, and antisymmetric
valued matrices otherwise. In section 7.5.2, we show that the formal averages u∗ε and p∗ε are the solution
of a formal, “infinite order” homogenized equation involving tensors Mk. Introducing new tensors Nk

and βk, we obtain “criminal” ansatz expressing uε and pε in terms of the derivatives of u∗ε and p∗ε. These
tensors are used to build well-posed homogenized equations (eqn. (7.5.44)) of finite order, by using a
minimization principle.

Section 7.5.3 is concerned with the error analysis of the homogenized approximations of (uε, pε)
generated by our procedure: our main result is stated in proposition 7.39 where we show that the
solution (v∗K , q

∗
K) of the homogenized equation of order 2K + 2 yield approximations of (uε, pε) in the

L2(Dε) norm of orders K + 3 and K + 1 for the velocity and the pressure respectively. In section 7.5.4,
we investigate low volume fraction limits where the obstacle size η converges to zero: we prove the
“coefficient-wise” convergence of the infinite order homogenized equation towards either of the three
classical homogenized regimes depending on how η scales with respect to the critical size εd/(d−2). We
then establish in section 7.5.5 simplification properties for the tensors X k∗ and Mk in case the obstacle
ηT is symmetric with respect to the axes of the unit cell Y , which includes the vanishing of odd order
tensors X 2k+1∗ and M2k+1 in this case. Finally, section 7.5.6 briefly discusses the extension of our results
to domains featuring multiple connected components in view of future applications to heat exchangers.

Remark 7.26. Following section 7.2.4, remember that the integers p, q ∈ N may be used as a subscript
or superscript indices when writing tensors in a limited number of places. Naturally, they should not to
be confused with the pressure variables denoted by pε, pi or q∗K .

7.5.1 Formal infinite order two scale expansions: tensors (X k,αk)

As in the previous sections, we still assume (for the derivation of two-scale asymptotic expansions only)
that the right-hand side f can be formally decomposed into a power series in ε:

∀x ∈ D, f(x) =

+∞∑
i=0

εif i(x). (7.5.4)

Inserting (7.5.2) into the Stokes system (7.5.1) yields the following cascade of equations

−∆yyui+2 +∇ypi+2 = fi+2 −∇xp∗i+2 −∇xpi+1 + ∆xyui+1 + ∆xxui, ∀i ≥ −2,

divy(ui+2) = −divx(ui+1), ∀i ≥ −2,

u−2 = u−1 = 0,∫
D

p∗i dx = 0, ∀i ≥ 0,

p−1 = 0,

ui(x, ·) = 0 on ∂(ηT )

ui(x, ·) is P–periodic for any x ∈ D, ∀i ≥ 0,

ui(·, y) is D–periodic for any y ∈ P , ∀i ≥ 0,

(7.5.5)

where the operators −∆yy, −∆xy, −∆yy are defined by

−∆xx = −divx(∇x·), −∆xy = −divx(∇y·)− divy(∇x·), −∆yy := −divy(∇y·).
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We introduce a family of respectively vector valued tensors (X k
j (y))1≤j≤d and scalar valued tensors

(αkj (y))1≤j≤d defined by induction as the unique solutions in H1(Y ) × L2(Y )/R to the following cell
problems:{

−∆yyX 0
j +∇yα0

j = ej in Y,

divy(X 0
j ) = 0 in Y

(7.5.6)

{
−∆yyX 1

j +∇yα1
j = (2∂lX 0

j − α0
jel)⊗ el in Y

divy(X 1
j ) = −(X 0

j− < X 0
j >) · el ⊗ el in Y,

(7.5.7)

{
−∆yyX k+2

j +∇yαk+2
j = (2∂lX k+1

j − αk+1
j el)⊗ el + X k

j ⊗ I in Y

divy(X k+2
j ) = −(X k+1

j − < X k+1
j >) · el ⊗ el in Y,

∀k ≥ 0 (7.5.8)

where < X k
j > denotes the cell average of the vector field X k

j :

< X k
j >:=

∫
Y

X k
j (y)dy.

Equations (7.5.6) to (7.5.8) are supplemented with the following boundary conditions:
∫
Y

αkjdy = 0

X k
j = 0 on ∂(ηT )

X k
j is P–periodic,

∀k ≥ 0. (7.5.9)

Similarly as before, we introduce the k-th order matrix valued tensors X k whose columns are the vector
valued tensors (X k

j ):

(X kij(y))1≤i,j≤d :=
[
X k

1(y) . . . X k
d(y)

]
, ∀y ∈ Y, ∀k ≥ 0.

We also denote by αk the k-th order vector valued tensor whose coordinates are the scalar tensors αkj :

αk(y) := (αkj (y))1≤j≤d, ∀y ∈ Y, ∀k ≥ 0.

From the definition (7.5.9), the tensors αkj are of zero average. Following the previous sections, we use

a star notation to denote the averages of the tensor X k and of the functions ui:

X k∗ :=

∫
Y

X k(y)dy, ∀k ≥ 0, (7.5.10)

u∗i (x) :=

∫
Y

ui(x, y)dy, ∀x ∈ D, ∀i ≥ 0. (7.5.11)

The tensors X k and αk allow to solve the cascade of equations (7.5.5):

Proposition 7.29. Assume (H4). The solutions ui(x, y), pi(x, y) of the cascade of equations (7.5.5) are
given by

ui(x, y) =

i∑
k=0

X k(y)·∇k(fi−k(x)−∇p∗i−k(x)), pi(x, y) =

i∑
k=0

αk(y)·∇k(fi−k(x)−∇p∗i−k(x)), (7.5.12)

where the functions p∗i are uniquely determined recursively as the solutions to the following elliptic system:
−divx(X 0∗∇xp∗i ) = divx(X 0∗fi)−

i∑
k=1

div(X k∗ · ∇k(fi−k −∇xp∗i−k)) in Dε,∫
D

p∗i dx = 0

∀i ≥ 0. (7.5.13)
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Since the average functions u∗i (eqn. (7.5.11)) are given by

u∗i (x) =

i∑
k=0

X k∗ · ∇k(fi−k(x)−∇p∗i−k(x)),

recognizing Cauchy products allows to rewrite identities (7.5.12) and (7.5.13) in terms of formal equality
of power series:

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇i(f(x)−∇p∗ε(x)), (7.5.14)

u∗ε(x) =

+∞∑
i=0

εi+2X i∗ · ∇i(f(x)−∇p∗ε(x)), (7.5.15)

pε(x) = p∗ε(x) +

+∞∑
i=0

εi+1αi(x/ε) · ∇i(f(x)−∇p∗ε(x)), (7.5.16)

div(u∗ε(x)) = 0. (7.5.17)

Proof. The result is proved by induction. The case i = −1 is straightforward thanks to the convention
u−1 = p−1 = 0. Assuming these results hold till rank i+ 1 with i ≥ −2, we compute, replacing (7.5.12)
into (7.5.5):

(−∆yyui+2 +∇ypi+2)(x, y) = (fi+2,j(x)− ∂jp∗i+2(x))ej

+

i+1∑
k=0

(−αkj (y)el ⊗ el + 2∂lX k
j (y)⊗ el) · ∇k+1(fi+1−k,j(x)− ∂jp∗i+1−k(x))

+

i∑
k=0

(X k
j (y)⊗ I) · ∇k+2(fi−k,j(x)− ∂jpi−k(x))

= (fi+2,j(x)− ∂jp∗i+2(x))ej + (2∂lX 0
j (y)⊗ el − α0

j (y)el ⊗ el) · ∇(fi+1,j(x)− ∂jp∗i+1(x))

+

i∑
k=0

(2∂lX k+1
j (y)⊗ el − αk+1

j (y)el ⊗ el + X k
j (y)⊗ I) · ∇k+2(fi−k,j(x)− ∂jp∗i−k(x))

divy(ui+2)(x, y) = −
i+1∑
k=0

(X k
j (y) · el ⊗ el) · ∇k+1(fi+1−k,j(x)− ∂jp∗i+1−k(x)).

(7.5.18)
The system (7.5.18) admits a unique solution (ui+2, pi+2) with

∫
Y
pi+2(x, y)dy = 0 if and only if the

following compatibility condition (the so-called “Fredholm alternative”) holds:

∀i ≥ −1,

∫
Y

divy(ui+2)(x, y)dy = −
i+1∑
k=0

[< X k
j > · el ⊗ el] · ∇k+1(fi+1−k,j(x)− ∂jp∗i+1−k(x)) = 0.

The above equation can be rewritten in terms of an equation determining p∗i+1 given the values of p∗k for
0 ≤ k ≤ i:

< X 0
j > · el∂l(fi+1,j − ∂jp∗i+1) = −

i+1∑
k=1

[< X k
j > · el ⊗ el] · ∇k+1(fi+1−k,j − ∂jp∗i+1−k),

which is a rewriting of (7.5.13) (at order i + 1 with any i ≥ −1). In particular, this identity allows to
rewrite the second equation of (7.5.18) as

divy(ui+2)(x, y) = −
i+1∑
k=0

[(X k
j (y)− < X k

j >) · el ⊗ el] · ∇k+1(fi+1−k,j(x)− ∂jp∗i+1−k(x)). (7.5.19)
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By linearity, (7.5.18) and (7.5.19) and the cell problems (7.5.6) to (7.5.8) imply

ui+2(x, y) = (fi+2,j(x)− ∂jp∗i+2(x))X 0
j (y) + X 1

j (y) · ∇(fi+1,j(x)− ∂jp∗i+1(x))

+

i∑
k=0

X k+2
j (y) · ∇k+2(fi−k,j(x)− ∂jp∗i−k(x))

pi+2(x, y) = (fi+2,j(x)− ∂jp∗i+2(x))α0
j + α1

j (y) · ∇(fi+1,j(x)− ∂jp∗i+1(x))

+

i∑
k=0

αk+2
j (y) · ∇k+2(fi−k,j(x)− ∂jp∗i−k(x)),

which is exactly the result (7.5.12) at rank i+ 2.

Remark 7.27. The truncation of the series (7.5.15) at first order yields the well-known Darcy’s law
The next terms of the series have been obtained in [228, 74], at least up to the order i = 1.

Remark 7.28. The ansatz (7.5.14) involves a bit of asymptotic crime because it features p∗ε which is
itself a formal power series in ε (recall its definition (7.5.3)). Although this ansatz is criminal, it remains
close to the classical ansatz (7.5.2). Therefore, in the subsequent sections, the denomination “criminal
ansatz for the Stokes system (7.5.1)” is used exclusively for referring to the more severe asymptotic crime
(7.5.32) introduced hereafter.

The identities of propositions 7.2 and 7.17 for the average of the tensors X k∗ extend as follows in the
context of the fluid system (7.5.1):

Proposition 7.30. For any k ≥ 0 and 0 ≤ p ≤ k, the following identity holds for the matrix valued
tensor X k∗:

∀1 ≤ i, j ≤ d, X k∗ij = (−1)p
∫
Y

((−∆yyX p
i +∇αpi ) ·X

k−p
j +∇αk−pj ·X p

i −X k−p−1
j ·X p−1

i ⊗ I)dy (7.5.20)

with X−1
i = 0 by convention. In particular, for any k ≥ 0:

• X 2k∗ takes values in the set of d× d symmetric matrices:

X 2k∗
ij = (−1)k

∫
Y

(∇X k
i : ∇X k

j +∇αki ·X
k
j +∇αkj ·X

k
i −X k−1

i ·X k−1
j ⊗ I)dy (7.5.21)

• X 2k+1∗ takes values in the set of d× d antisymmetric matrices:

X 2k+1∗
ij = (−1)k

∫
Y

(X k
i · ∇X

k
j −X k

j · ∇X
k
i + αkiX

k
j − αkjX

k
i ) · el ⊗ eldy

+ (−1)k
∫
Y

(X k−1
j ·X k

j −X k−1
i ·X k

j )dy.

(7.5.22)

Proof. The result holds for p = 0 because

X k∗ij =

∫
Y

X k
j · eidy =

∫
Y

X k
j · (−∆yyX 0

i +∇α0
i )dy.

Assume now that (7.5.20) holds till rank p with k > p ≥ 0, and let us show that it implies the result at
rank p+ 1. We write, after an integration by parts and by using (7.5.6) to (7.5.8):

X k∗ij = (−1)p
∫
Y

(−X p
i ·∆X k−p

j − αpi div(X k−p
j )− αk−pj div(X p

i )−X k−p−1 ·X p−1
i ⊗ I)dy

= (−1)p
∫
Y

[
(X p

i · (2∂lX
k−p−1
j − αk−p−1

j el)⊗ el + X k−p−2
j ⊗ I −∇αk−pj ) ·X p

i

+ αpiX
k−p−1
j · el ⊗ el + αk−pj X p−1

i · el ⊗ el −X k−p−1
j ·X p−1

i ⊗ I
]
dy

= (−1)p
∫
Y

[
−X k−p−1

j · ((2∂lX p
i − α

p
i el)⊗ el + X p−1

i ⊗ I) + αk−p−1
j div(X p+1

i )

−∇αk−pj ·X p
i − α

k−p
j div(X p

i ) + X k−p−2
j ·X p

i ⊗ I
]
dy

= (−1)p
∫
Y

[−X k−p−1
j · (−∆yyX p+1

i +∇αp+1
i )−∇αk−p−1

j ·X p+1
i + X k−p−2

j ·X p
i ⊗ I]dy,
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whence (7.5.20) at rank p+ 1.

The expression (7.5.21) for X 2k∗
ij is obtained by setting k ← 2k and p← k in (7.5.20). The expression

for X 2k+1∗
ij is obtained by setting k ← 2k + 1 and p ← k and performing the following integration by

part:

X 2k+1∗
ij = (−1)k

∫
Y

((−∆yyX k+1
j +∇αk+1

j ) ·X k
i +∇αki ·X

k+1
j −X k

j ·X
k−1
i ⊗ I)dy

= (−1)k
∫
Y

[((2∂lX k
j − αkjel)⊗ el + X k−1

j ⊗ I) ·X k
i + αkiX

k
i · el ⊗ el −X k

j ·X
k−1
i ⊗ I]dy,

from where one recognizes (7.5.22).

We end this part with a result analogous to that of proposition 7.18 which yields as a corollary the linear
independence of the tensors (X kj )1≤j≤d and the positive definiteness of the permeability tensor X 0∗.

Proposition 7.31. The following identities hold for any 1 ≤ j ≤ d:

∀k ≥ 0, −∆yy(∂ki1...ikX
k
i1...ik,j

) +∇

(
k∑
p=0

(−1)p∂k−pi1...ik−p
αk−pi1...ik−p,j

)
= (−1)k(k + 1)ej , (7.5.23)

div(∂ki1...ikX
k
i1...ik,j

) = 0. (7.5.24)

Proof. We prove the following identity by induction on k,

∀k ≥ 0, −∆yy(∂ki1...ikX
k
i1...ik,j

) +∇(∂ki1...ikα
k
i1...ik,j

)

= (−1)k(k + 1)ej − (−1)k
k−1∑
p=0

(−1)p∇(∂pi1...ipα
p
i1...ip,j

), (7.5.25)

which is equivalent to (7.5.23). The identity clearly holds at rank k = 0 and k = −1 by assuming the
convention X−1

j = 0. Assume it to be true up to rank k − 1, we write

−∆yy(∂ki1...ikX
k
i1...ik,j

) +∇(∂ki1...ikα
k
j ) = ∂ki1...ik

(
(2∂ikX

k−1
i1...ik−1,j

− αk−1
i1...ik−1,j

eik) + δikik−1
X k−2
i1...,ik−2,j

)
= 2∆yy(∂k−1

i1...ik−1
X k−1
i1...ik−1,j

) + ∆yy(∂k−2
i1...ik−2

X k−2
i1...ik−2,j

)−∇(∂k−1
i1...ik−1

αk−1
i1...ik−1,j

)

= 2

(
−(−1)k−1kej + (−1)k−1

k−2∑
p=0

(−1)p∇(∂pi1...ipα
p
i1...ip,j

) +∇(∂k−1
i1...ik−1

αk−1
i1...ik−1,j

)

)

+

(
−(−1)k−2(k − 1)ej + (−1)k−2

k−3∑
p=0

(−1)p∇(∂pi1...ipα
p
i1...ip,j

) +∇(∂k−2
i1...ik−2

αk−2
i1...ik−2,j

)

)
−∇(∂k−1

i1...ik−1
αk−1
i1...ik−1,j

)

= (−1)k(k + 1)ej − (−1)k
k−3∑
p=0

(−1)p∇(∂pi1...ipα
p
i1...ip,j

) + (2(−1)2k−3 + 1)︸ ︷︷ ︸
−1=−(−1)k(−1)k−2

∇(∂k−2
i1...ik−2

αk−2
i1...ik−2,j

)

−(−1)︸ ︷︷ ︸
−(−1)=−(−1)k(−1)k−1

∇(∂k−1
i1...ik−1

αk−1
i1...ik−1,j

),

from where (7.5.25) follows at rank k.
The second equality is obtained similarly by writing

div(∂ki1...ikX
k
i1...ik,j

) = −∂ki1...ik(X k−1
i1...ik−1,j

− < X k−1
i1...ik−1,j

>) · eik
= −div(∂k−1

i1...ik−1
X k−1
i1...ik−1,j

).

Corollary 7.8. Assume (H4). The family of k-th order vector valued tensors (X k
j )1≤j≤d is linearly

independent. In particular, the matrix

X 0∗ = (X 0∗
ij )1≤i,j≤d with X 0∗

ij =

∫
Y

∇X 0
i : ∇X 0

jdy, ∀1 ≤ i, j ≤ d,

is symmetric positive definite.
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Proof. (see also [272]) Let (λj)1≤j≤d be some coefficients such that
∑d
i=1 λjX

k
j = 0. Then proposi-

tion 7.31 implies the existence of a periodic function φ satisfying

∇φ = (−1)k(k + 1)

d∑
j=1

λjej . (7.5.26)

From the fact that Y is connected, there exist constant coefficients (Ci)1≤i≤d such that

∀x ∈ Y, φ(x) = (−1)k(k + 1)

d∑
j=1

(λjxj + Cj).

Remembering that φ must be a P–periodic function, this is possible only if λj = 0 for all 1 ≤ j ≤ d.

7.5.2 Higher order homogenized equations: tensors Mk, Nk, βk and DK

In this section, we derive an “infinite order” homogenized equation (eqn. (7.5.29) below) for the formal
average u∗ε, before outlining how to truncate so as to obtain well-posed homogenized equations of finite
order (eqn. (7.5.39) below). Since the ansatz (7.5.14) has the same structure than (7.4.8) in the elasticity
case considered in section 7.4, the construction of the tensors Mk andNk

j follows similarly. The following

definition makes sense because we recalled in corollary 7.8 that the Darcy permeability tensor X 0∗ is
invertible.

Proposition 7.32. Let Mk be the tensor of order k defined by induction as follows:
M0 = (X 0∗)−1

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp, ∀k ≥ 1.
(7.5.27)

The source terms fi (eqn. (7.5.4)) are given in terms of the averaged ansatz terms u∗i (x) and p∗i (x)
through the following identity:

∀i ≥ 0, fi(x)−∇p∗i (x) =

i∑
k=0

Mk · ∇ku∗i−k(x). (7.5.28)

The above identity together with (7.5.13) can be rewritten formally as the following “infinite order”
homogenized equation for the homogenized averages u∗ε and p∗ε(x) of (7.5.3):

+∞∑
i=0

εi−2M i · ∇iu∗ε +∇p∗ε = f in D

div(u∗ε) = 0 in D∫
D

p∗εdx = 0

u∗ε is D–periodic.

(7.5.29)

Since the family of tensors (Mk)k∈N is defined by the same recurrence than (7.4.15) in the elasticity case,
the explicit formula for Mk given in proposition 7.20 holds without modification:

Mk =

k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1,...,ip≤k

(X 0∗)−1⊗X i1∗⊗(X 0∗)−1⊗· · ·⊗(X 0∗)−1⊗X ip∗⊗(X 0∗)−1, ∀k ≥ 1. (7.5.30)

We now introduce matrix valued tensors Nk and vector valued tensors βk which allow to obtain “criminal
ansatz” expressing the velocity and pressure (uε, pε) in terms of their formal average (u∗ε, p

∗
ε).

Proposition 7.33. Let Nk and βk be respectively the k−th order matrix valued and vector valued tensors
defined by

Nk(y) :=

k∑
p=0

X k−p(y)⊗Mp, βk(y) :=

k∑
p=0

(−1)pMp ·αk−p(y), ∀y ∈ Y.
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Then the terms ui(x, y) and pi(x, y) of the oscillating ansatz (7.5.14) and (7.5.16) can be rewritten in
terms of the averages u∗i (eqn. (7.5.11)) and p∗i as follows:

∀i ≥ 0, ui(x, y) =

i∑
k=0

Nk(y) · ∇ku∗i−k(x), pi(x, y) =

i∑
k=0

βk(y) · ∇ku∗i−k(x). (7.5.31)

These equations can be rewritten formally in terms of the following “criminal ansatz” for (uε, pε):

∀x ∈ Dε, uε(x) =

+∞∑
i=0

εiN i(x/ε) · ∇iu∗ε(x), pε(x) = p∗ε(x) +

+∞∑
i=0

εi−1βi(x/ε) · ∇iu∗ε(x). (7.5.32)

Proof. The proof is identical to that of proposition 7.8: the key ingredient is to substitute (7.5.28) into
(7.5.12). Performing the same change of indices as in (7.3.38) yields

ui(x, y) =

i∑
k=0

k∑
p=0

(X p(y)⊗Mp−k) · ∇ku∗i−k(x),

pi(x, y) =

i∑
k=0

k∑
p=0

((Mp−k)T ·αp(y)) · ∇ku∗i−k(x).

The result follows, where we use (Mp−k)T = (−1)p−kMp−k as stated in corollary 7.9 below.

In what follows, we denote by (Nk
j )1≤j≤d and by (βkj )1≤j≤d respectively the column vectors and the

coefficients of Nk(y) and βk(y):

∀1 ≤ i, j ≤ d, Nk
j := Nkej and βkj := βk · ej .

In addition, the convention N−1
j = 0 is assumed. The proposition 7.22 and its corollary 7.5 extend as

follows in the context of the Stokes system:

Proposition 7.34. The k-th order tensors Nk, (Nk
j )1≤j≤d, βk and (βkj )1≤j≤d satisfy:

(i)
∫
Y
N0(y)dy = I and

∫
Y
Nk(y)dy = 0 for any k ≥ 1;

(ii)
∫
Y
βk(y)dy = 0 for any k ≥ 0;

(iii) ∀k ≥ −2, ∀1 ≤ j ≤ d,{
−∆yyN

k+2
j +∇βk+2

j = (2∂lN
k+1
j − βk+1

j el)⊗ el +Nk
j ⊗ I +Mk+2ej ,

div(Nk+2
j ) = −(Nk+1

j − <Nk+1
j >) · el ⊗ el;

(7.5.33)

(iv) for any k ≥ 0,

−∆yy(∂ki1...ikN
k
i1...ik,j

) +∇

(
k∑
p=0

(−1)p∂k−pi1...ik−p
βk−pi1...ik,j

)
= (−1)k+1(k + 1)M0ej ; (7.5.34)

(v) for any 1 ≤ p ≤ k − 1,

Mk
ij = (−1)p+1

∫
Y

((−∆yyN
p
i +∇βpi ) ·Nk−p

j +∇βk−pj ·Np
i −N

p−1
i ·Nk−p−1

j ⊗ I)dy. (7.5.35)

Proof. (i) and (ii) are straightforward consequences of (7.5.27).

(iii) is obtained by writing, for k ≥ 0 (implicit summation on the repeated index j assumed):

−∆yyN
k+2
j +∇βk+2

j = −∆yy

(
k+2∑
p=0

X k+2−p
i (y)⊗Mp

ij

)
+∇

(
k+2∑
p=0

αk+2−p
i (y)⊗Mp

ij

)

=

k∑
p=0

[
(2∂lX k+1−p

i − αk+1−p
i el)⊗ el + X k−p

i ⊗ I
]
Mp
ij + (2∂lX 0

i − α0
i el)M

k+1
ij +Mk+2

ij ei

= (2∂lN
k+1
j − βk+1

i el)⊗ el +Nk
j ⊗ I +Mk+2ej .
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div(Nk+2
j ) =

k+2∑
p=0

div(X k+2−p
i )Mp

ij = −
k+1∑
p=0

Mp
ij(X

k+1−p
i − < X k+1−p

i >) · el ⊗ el.

The proof is identical for k = −1 and k = −2.

(iv) is obtained by following the proof of proposition 7.31 and using (7.5.33).

(v) is obtained by induction following the proof of proposition 7.9 and by using (7.5.33). The case
p = 1 with k ≥ 2 is treated by writing

Mk
ij =

∫
Y

N0
i ·Mkejdy

=

∫
Y

N0
i · (−∆Nk

j +∇βkj − (2∂lN
k−1
j − βk−1

j ej)⊗ el −Nk−2
j ⊗ I)dy

=

∫
Y

(−∆N0
i ·Nk

j + 2∂lN
0
i ·Nk−1

j ⊗ el +∇βk−1
j ·N1

i −N0
i ·Nk−2

j ⊗ I)dy

=

∫
Y

(Nk
j ·M0ei −∇β0

i ·Nk
j + (−∆N1

i +∇β1
i + β0

i el ⊗ el −M1ei) ·Nk−1
j )dy

+

∫
Y

(∇βk−1
j ·N1

i −N0
i ·Nk−2

j ⊗ I)dy

=

∫
Y

((−∆N1
i +∇β1

i ) ·Nk−1
j +∇βk−1

j ·N1
i −N0

i ·Nk−2
j ⊗ I)dy.

We now assume the result holds till rank 1 ≤ p < k − 1 and we prove it at rank p+ 1:

Mk
ij = (−1)p+1

∫
Y

(−∆Nk−p
j ·Np

i + βpiN
k−p−1
j · el ⊗ el +∇βk−pj ·Np

i −N
p−1
i ·Nk−p−1

j ⊗ I)dy

= (−1)p+1

∫
Y

(−∇βk−pj + (2∂lN
k−p−1
j − βk−p−1

j el)⊗ el +Nk−p−2
j ⊗ I +Mk−pej) ·Np

i dy

+ (−1)p+1

∫
Y

(βpiN
k−p−1
j · el ⊗ el +∇βk−pj ·Np

i −N
p−1
i ·Nk−p−1

j ⊗ I)dy

= (−1)p+1

∫
Y

(−Nk−p−1
j · ((2∂lNp

i − β
p
i el)⊗ el +Np−1

i ⊗ I +Mp+1ei))dy

+ (−1)p+1

∫
Y

(−∇βk−p−1
j ·Np+1

i +Nk−p−2
j ·Np

i ⊗ I)dy

= (−1)p+1

∫
Y

(−Nk−p−1 · (−∆Np+1
i +∇βp+1

i )−∇βk−p−1
j ·Np+1

i +Nk−p−2
j ·Np

i ⊗ I)dy.

Corollary 7.9. For any k ≥ 0,

• M2k is a symmetric matrix valued tensor, and the following identities hold:

M0
ij =

∫
Y

∇N0
i : ∇N0

j dy,

∀k ≥ 1, M2k
ij = (−1)k+1

∫
Y

(∇Nk
i : ∇Nk

j +∇βki ·Nk
j +∇βkj ·Nk

i −Nk−1
i ·Nk−1

j ⊗ I)dy.

• M2k+1 is an antisymmetric matrix valued tensor, and the following identities hold:

∀k ≥ 0, M2k+1
ij = (−1)k+1

∫
Y

(Nk
i · ∇Nk

j −Nk
j · ∇Nk

i + βkiN
k
j − βkjNk

i ) · el ⊗ eldy

+ (−1)k+1

∫
Y

(Nk−1
j ·Nk

i −Nk−1
i ·Nk

j )⊗ Idy.
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We now use the criminal ansatz to derive well-posed homogenized equations of (finite) order 2K + 2.
The formal identities (7.5.32) lead us to introduce the following truncated ansatz wε,K(v) and qε,K(v, φ)
for the velocity and pressure:

∀v ∈ HK+1(D,Rd), wε,K(v)(x) :=

K∑
k=0

εkNk(x/ε) · ∇kv(x), x ∈ Dε, (7.5.36)

∀q ∈ L2(D), ∀v ∈ HK+1(D), qε,K(v, φ)(x) := φ+

K∑
i=0

εi−1βi(x/ε) · ∇iv(x), (7.5.37)

where v and φ are functions that are sought to approximate the homogenized averages u∗ε and p∗ε
respectively. Following the methodology of sections 7.3.3 and 7.4.2, we build well-posed homogenized
equations of higher–but finite–order from a minimization principle.
Recall that the solution uε to the Stokes problem (7.5.1) is the unique minimizer of the constrained
problem

uε = arg min
w∈H1(Dε,Rd)

J(w,f) :=

∫
D

(
1

2
∇w : ∇w − f ·w

)
dy

s.t.


div(w) = 0 in Dε,

w = 0, on ∂ωε,

w is D–periodic.

(7.5.38)

We consider the following minimization problem for the function v ∈ HK+1(D,Rd) sought to approxi-
mate u∗ε:

min
v∈HK+1(D,Rd)

J(wε,K(v),f)

s.t.

{
div(v) = 0 in D,

v is D–periodic.

(7.5.39)

Applying lemma 7.3 to (7.5.39) in order to pass to the limit in the terms of J(wε,K(v),f) which depend
on the oscillating variable x/ε , we obtain as in proposition 7.23, the existence of a functional J∗K such
that

∀v ∈ C∞(D,Rd), J(wε,K(v),f) = J∗K(v,f , ε) + o(εm)

holds with m ∈ N arbitrarily large. Following the derivations of section 7.4.2, the approximate energy
J∗K(v,f , ε) reads

J∗K(v,f , ε) :=

∫
D

1

2

l+1∑
l,m=0

εl+m−2Bl,mK ∇
lv∇mv − f · v

 dx, (7.5.40)

and the constant, matrix valued tensors Bl,mK of order l +m are defined by the formula

Bl,mK,ij :=

∫
Y

Ñ l
p,i · Ñm

p,jdy, 1 ≤ i, j ≤ d, 0 ≤ l,m ≤ l + 1. (7.5.41)

The vector valued tensors Ñ l
p,j are still given as in (7.4.25) by

Ñ l
p,j(y) :=


∂pN

0
j (y) if l = 0

∂pN
l
j(y) +N l−1

j (y)⊗ ep if 1 ≤ l ≤ K,
NK
j (y)⊗ ep if l = K + 1.

1 ≤ j, p ≤ d. (7.5.42)

Replacing J(wε,K(v),f) by J∗K in (7.5.39) allows us to derive a well-posed homogenized equation of
order 2K + 2 for the Stokes problem:
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Definition 7.8. For any K ∈ N, we call homogenized equation of order 2K + 2 the Euler-Lagrange
equation associated with the minimization problem

min J∗K(v,f , ε)

s.t.


v ∈ HK+1(D,Rd),

div(v) = 0 in D,

v is D–periodic.

(7.5.43)

This equation reads explicitly in terms of a higher order homogenized solution v∗K and a higher order
homogenized pressure q∗K ∈ L2(D) as:

2K+2∑
k=0

εk−2DkK · ∇kv∗K +∇q∗K = f ,

div(v∗K) = 0,∫
D

q∗Kdx = 0,

v∗K is D–periodic,

(7.5.44)

where the constant (matrix valued) tensors DkK are defined by the following formula for any k ≥ 0:

∀1 ≤ i, j ≤ d, DkK,ij :=



k∑
l=0

(−1)l
1

2
(Bl,k−lK,ij + Bl,k−lK,ji ), if k is even

k∑
l=0

(−1)l
1

2
(Bl,k−lK,ij − Bl,k−lK,ji ), if k is odd,

(7.5.45)

where the convention Bl,mK = 0 for l > K + 1 or m > K + 1 is assumed.

Remembering BK+1,K+1
K is nonnegative according to (7.5.41), adapting the proof of proposition 7.11

yields that the bilinear form associated with the energy (7.5.40) is symmetric and positive definite, under
the additional non-degeneracy assumption

∃ν > 0, ∀ξ = ξi1...iK+1,j ∈ Rd
K+1

× Rd, BK+1,K+1
K ξξ ≥ ν|ξ|2. (7.5.46)

From there, standard theory for saddle point problems based on the zero divergence constraint (see e.g.
the textbooks [304, 301, 171, 144]) yields existence and uniqueness of a solution for (7.5.44):

Proposition 7.35. Assume the dominant tensor D2K+2
K = (−1)K+1BK+1,K+1

K is non-degenerate, that
is there exists a constant ν > 0 such that (7.5.46) holds. Then there exists a unique velocity and pressure
couple (v∗K , q

∗
K) ∈ HK+1(D,Rd)× L2(D)/R solving the higher order homogenized equation (7.5.44).

Finally, our next proposition (which we shall use in the proof of our error estimates in the next section)
states that (7.5.44) is indeed a “truncation” of the infinite order homogenized equation (7.5.29).

Proposition 7.36. The first K+1 homogenized coefficients of the homogenized equation (7.4.29) coincide
with those of the formal infinite order homogenized equation (7.4.17):

∀0 ≤ k ≤ K, DkK = Mk.

Proof. We follow the proof of proposition 7.12. For 0 ≤ k, l ≤ K and 1 ≤ i, j ≤ d, the coefficient Bl,k−lK,ij

is given by

Bl,k−lK,ij =

∫
Y

(∂pN
l
i +N l−1

i ⊗ ep) · (∂pNk−l
j +Nk−l−1

j ⊗ ep)dy

=

∫
Y

(−∆yyN
l
i − 2∂pN

l−1
i ⊗ ep −N l−2

i ⊗ I) ·Nk−l
j dy

+

∫
Y

(∂pN
l−1
i ·Nk−l

j ⊗ ep + ∂pN
l
i ⊗Nk−l−1

j ⊗ ep)dy

+

∫
Y

(N l−2
i ·Nk−l

j ⊗ I +N l−1
i ·Nk−l−1

j ⊗ I)dy.
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Using the identities (7.5.33) and performing an integration by part, we may write∫
Y

(−∆yyN
l
i − 2∂pN

l−1
i ⊗ ep −N l−2

i ⊗ I) ·Nk−l
j dy =

∫
Y

(−∇βli − βl−1
i ep ⊗ ep +M lei) ·Nk−l

j dy

=

∫
Y

[M lei ·Nk−l
j − (βliN

k−l−1
j + βl−1

i Nk−l
j ) · ep ⊗ ep]dy.

This allows to rewrite Bl,k−lK,ij as follows:

Bl,k−lK,ij =

∫
Y

M lei ·Nk−l
j dy +Bk,lij +Bk,l+1

ij

where Bk,l is the k-th order tensor defined by

Bk,l :=

∫
Y

[
(∂pN

l−1
i ·Nk−l

j − βl−1
i Nk−l

j · ep)⊗ ep +N l−2
i ·Nk−l

j ⊗ I
]

dy.

Recognizing a telescopic series, this allows to obtain

k∑
l=0

(−1)lBl,k−lK,ij = (−1)kMk
ji

from where the result follows as in the proof of proposition 7.25.

7.5.3 Error estimates and justifications of the higher order homogenization process

This section is devoted to establishing error estimates for the approximation of the oscillating solution
(uε, pε) by means of the truncated two-scale ansatz (7.5.36) and (7.5.37) and of the higher order homog-
enized equation (7.5.44). We obtain error bounds for the classical and criminal truncated ansatz (eqn.
(7.5.14), (7.5.16) and (7.5.32) respectively) in propositions 7.37 and 7.38. We then prove approximation
results for the solution of the homogenized equation of order 2K + 2 (eqn. (7.5.39)) in proposition 7.39,
which is our main result.

The mathematical analysis of the present situation is more difficult than the one of the perforated
scalar and elasticity systems of the previous sections 7.3 and 7.4 because of the zero-divergence constraint
(see e.g. [301, 304, 171, 12] for an overview of topics related to this matter); as a consequence, several of
the previous arguments need to be adapted. Therefore, we start by stating a few technical results (more
particularly, corollary 7.11) that we need in our proofs.

In this section, we use the following notation when referring to Sobolev spaces of D–periodic functions:

H1
per(Dε,Rd) := {v ∈ H1(Dε,Rd) |v is D–periodic},

H1
per(D,Rd) := {v ∈ H1(D,Rd) |v is D–periodic}.

The following lemma is due to [152], it establishes the existence of a continuous right inverse for the
divergence Bε—so-called a Bogovskii’s operator—with a bound explicit in ε on the uniform continuity
constant:

Lemma 7.9. Assume (H4) and (H5). There exists a linear operator Bε : L2(Dε)→ H1
per(Dε,Rd) and

a constant C independent of ε satisfying, for any φ ∈ L2(Dε) such that
∫
Dε
φdx = 0:

(i) div(Bεφ) = φ in Dε,

(ii) Bεφ = 0 on ∂ωε,

(iii) ||∇(Bεφ)||L2(Dε,Rd×d) ≤ Cε−1||φ||L2(Dε), for a constant C > 0 independent of φ and ε.

Proof. We follow the proof of [152], Lemma 2.1., which is also inspired by [14], Lemma 2.2.4. Let

φ ∈ L2(Dε) and consider the extension φ̃ ∈ L2(Dε) defined by

φ̃ =

{
φ in Dε

0 in ωε.
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Let B : L2(D)→ H1
per(D,Rd) be the “classical” Bogovskii’s operator in the non perforated domain D:

there exists a constant C > 0 independent of ε and φ such that

div(Bφ̃) = φ̃ in D (7.5.47)

||∇(Bφ̃)||L2(D,Rd×d) ≤ C||φ̃||L2(D) = C||φ||L2(Dε). (7.5.48)

From [12] (Theorem 2.3) (by adapting the proof to the periodicity with respect to D), there exists a
linear restriction operator qε : H1

per(D,Rd)→ H1
per(Dε,Rd) satisfying the following properties:

1. ∀v ∈ H1
per(D,Rd), qεv = 0 on ∂ωε;

2. ∀v ∈ H1
per(D,Rd), v = 0 in ωε ⇒ qεv = v in Dε;

3. ∀v ∈ H1
per(D,Rd), ||qεv||L2(Dε,Rd) + ε||∇(Rεv)||L2(Dε,Rd×d) ≤ C(||v||L2(D,Rd) + ε||∇v||L2(D,Rd×d))

for a constant C > 0 independent of ε;

4. ∀v ∈ H1
per(D,Rd), div(v) = 0 in D ⇒ div(qεv) = 0 in Dε.

Following an observation of [152] (see the proof of Lemma 2.1) and looking closely to the construction of
the operator Rε in [12], it can be shown that Rε satisfies in fact the following property, which is stronger
than (4):

(4*) ∀v ∈ H1
per(D,Rd), div(v) = 0 in ωε ⇒ div(qεv) = div(v) in Dε.

Following [152], we set

Bεφ := qε(Bφ̃).

The resulting operator Bε satisfies (i) to (iii). Indeed:

(i) div(Bφ̃) = 0 in ωε yields, according to (4*):

div(qε(Bφ̃)) = div(Bφ̃) = φ̃ = φ in Dε;

(ii) is a straightforward consequence of the property (2);

(iii) is obtained by writing

ε||∇(Bεφ)||L2(Dε,Rd×d) = ε||∇(qε(Bφ̃))||L2(Dε,Rd×d)

≤ C(||Bφ̃||L2(D,Rd) + ε||∇(Bφ̃)||L2(D,Rd×d))

≤ C||∇(Bφ̃)||L2(D,Rd×d) (from the Poincaré inequality in D)

≤ C||φ||L2(D) (from (7.5.48)).

Let us remark that the previous lemma implies an estimation of the inf-sup constant associated with the
perforated Stokes problem in terms of ε:

Corollary 7.10 (inf-sup constant for the perforated Stokes problem). There exists a constant C > 0
independent of ε such that

inf
φ∈L2(Dε)∫
Dε

φdx=0

sup
v∈H1

per(Dε,Rd)

v=0 on ∂ωε

∫
Dε

φ div(v)

||φ||L2(Dε)||∇v||L2(Dε,Rd×d)

dx ≥ Cε.

Proof. The result is obtained by writing, for any φ ∈ L2(Dε) satisfying
∫
Dε
φdx = 0:

sup
v∈H1

per(Dε,Rd)

v=0 on ∂ωε

∫
Dε

φdiv(v)

||φ||L2(Dε)||∇v||L2(Dε,Rd×d)

dx ≥
∫
Dε

φdiv(Bεφ)

||φ||L2(D)||∇(Bεφ)||L2(Dε,Rd×d)

dx

≥
∫
Dε

φ2

||φ||L2(Dε)Cε
−1||φ||L2(Dε)

dx =
1

C
ε,

where the constant C above is that of the point (iii) of lemma 7.9.
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Corollary 7.11. Assume (H4) and (H5). For any h ∈ L2(Dε,Rd) and g ∈ L2(Dε) satisfying
∫
Dε
gdx =

0, let (v, φ) ∈ H1(Dε,Rd)× L2(Dε) be the unique solution to the Stokes problem

−∆v +∇φ = h in Dε

div(v) = g in Dε∫
Dε

φdx = 0

v = 0 on ∂ωε

v is D–periodic.

(7.5.49)

There exists a constant C independent of ε, h and g such that

||∇v||L2(Dε,Rd×d) + ε||φ||L2(Dε) ≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε)), (7.5.50)

Proof. We use the operator Bε of lemma 7.9 to lift the divergence of v. Let w := v−Bεg ∈ H1
per(Dε,Rd),

then it holds: {
div(w) = 0 in Dε,

w = 0 on ∂ωε.

After an integration by part, we obtain:

||∇w||2L2(Dε,Rd×d) =

∫
Dε

h ·wdx−
∫
Dε

∇(Bεg) : ∇wdx

≤ ||h||L2(Dε,Rd)||w||L2(Dε,Rd) + ||∇(Bεg)||L2(Dε,Rd×d)||∇w||L2(Dε,Rd×d)

≤ C(ε||h||L2(Dε,Rd) + ||∇(Bεg)||L2(Dε,Rd×d))||∇w||L2(Dε,Rd×d),

where the last inequality is a consequence of lemma 7.2. Therefore, simplifying by ||∇w||L2(Dε,Rd×d) and
using the point (iii) of lemma 7.9, we obtain

||∇v||L2(D,Rd×d) ≤ ||∇w||L2(Dε,Rd×d) + ||∇(Bεg)||L2(Dε,Rd×d)

≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε)),

which proves the first part of the bound (7.5.50) on ∇v. The bound on the pressure is then classically
obtained thanks to a reasoning analogous to that of the one of corollary 7.10. Using Bεφ a test function,
we obtain:

||φ||2L2(Dε)
=

∫
Dε

φdiv(Bεφ)dx = −
∫
Dε

∇φ ·Bεφdx

=

∫
Dε

(−∆v − h) ·Bεφdx =

∫
Dε

(∇v · ∇(Bεφ)− h ·Bεφ)dx

≤ ||∇v||L2(Dε,Rd×d)||∇(Bεφ)||L2(Dε,Rd×d) + ||h||L2(Dε,Rd)||Bεφ||L2(Dε,Rd)

≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε))||∇(Bεφ)||L2(Dε,Rd×d)

≤ Cε−1(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε))||φ||L2(Dε),

whence the result.

The previous lemma allows to establish a convergence result analogous to proposition 7.4 for the trun-
cation of the “classical” ansatz (7.5.2), which are defined for any K ∈ N by

uε,K(x) :=

K∑
i=0

εi+2ui(x, x/ε), pε,K(x) :=

K∑
i=0

εi(p∗i (x) + εpi(x, x/ε)). (7.5.51)

We recall equations (7.5.5) and (7.5.12) for the definition of ui and pi. The next result is the extension
of proposition 7.4 to the context of the Stokes system:

Proposition 7.37. Assume (H4) and (H5). Let (uε, pε) ∈ H1
per(Dε,Rd) × L2(Dε) the solution to

(7.5.1). Let (uε,K , pε,K) the truncated ansatz at rank K defined by (7.5.51). There exists a constant
CK > 0 independent of ε and f such that

||uε − uε,K ||L2(D,Rd) + ε||∇(uε − uε,K)||L2(Dε,Rd×d) ≤ CKεK+3||f ||HK+3(D,Rd), (7.5.52)

||pε − pε,K ||L2(Dε) ≤ CKε
K+1||f ||HK+3(D,Rd). (7.5.53)
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Proof. By using that ui(x, y) and pi(x, y) are the solutions to the cascade of equations (7.5.5), we obtain,
for any K ′ ∈ N,

∀x ∈ Dε, (−∆uε,K′ +∇pε,K′)(x)

=

K′−2∑
i=−2

εi+2(−∆xxui −∆xyui+1 −∆yyui+2)(x, x/ε) +

K′−2∑
i=−2

εi+2(∇xp∗i+2 +∇xpi+1 +∇ypi+2)(x, x/ε)

− (εK
′+1∆xxuK′−1 + εK

′+2∆xxuK′ + εK
′+1∆xyuK′)(x, x/ε) + εK

′+1(∇xpK)(x, x/ε)

= f − (εK
′+1∆xxuK′−1 + εK

′+2∆xxuK′ + εK
′+1∆xyuK′ + εK

′+1∇xpK)(x, x/ε).

div(uε,K′)(x) =

K′−2∑
i=−2

εi+3(divxui+1 + divyui+2)(x, x/ε) + εK
′+2(divxuK′)(x, x/ε)

= εK
′+2(divxuK′)(x, x/ε).

From standard regularity theory, it can be easily shown that∣∣∣∣∣∣(εK′+1∆xxuK′−1 + εK
′+2∆xxuK′ + εK

′+1∆xyuK′ + εK
′+1∇xpK)(·, ·/ε)

∣∣∣∣∣∣
L2(Dε,Rd)

≤ CKεK
′+1||f ||HK′+2(D,Rd),

||εK
′+2(divxuK′)(·, ·/ε)||L2(Dε) ≤ CKε

K′+2||f ||HK′+1(D,Rd).

Therefore, applying the result of corollary 7.11 to (vε, qε) := (uε − uε,K′ , pε − pε,K′) with K ′ := K + 1,
we infer the existence of a constant CK > 0 such that

||uε − uε,K+1||H1(Dε,Rd) ≤ CK(εK+3||f ||HK+3(D,Rd) + εK+2||f ||HK+2(D,Rd))

||pε − pε,K+1||L2(Dε) ≤ CK(εK+2||f ||HK+3(D,Rd) + εK+1||f ||HK+2(D,Rd)).

Finally, let us remark that uε,K+1 and pε,K+1 are high order corrections of uε,K and pε,K :

||uε,K+1 − uε,K ||H1(Dε,Rd) = ||εK+3uK+1(·, ·/ε)||H1(Dε,Rd) ≤ CKεK+2||f ||HK+1(D,Rd)

||pε,K+1 − pε,K ||L2(D) =
∣∣∣∣∣∣εK+1

(
p∗K+1 + εpK+1(·, ·/ε)

)∣∣∣∣∣∣
L2(Dε)

≤ CKεK+1||f ||HK+1(D,Rd).

The result follows by using the triangle inequality.

Remark 7.29. The term εK+1pK(x, x/ε) can be removed in the truncated ansatz pε,K of (7.5.51)
because it is of order εK+1 in the L2 norm.

Remark 7.30. As a result of the scaling ε−1 in corollary 7.11, we pay a factor ε−1 in the error induced
by the non zero divergence constraint. However we are able to obtain the right order of ε in the error
estimates (7.5.52) and (7.5.53) thanks to the use of higher order terms. This phenomenon is quite
classical in the truncation analysis of two-scale expansions where the higher order terms of the ansatz
are used to establish the estimate and removed at the end (see e.g. [74, 19]).

Remark 7.31. In [12], the following convergence is obtained (in a setting involving much lower regularity
for f and D):

Pε → p∗0 in L2(D),

where Pε is the extension of the pressure pε to the whole domain D defined as follows. Denote by (Pε〉 )〉
and the collection of cells of size ε and by (Y εi ) their corresponding fluid part. The extension of the
pressure Pε is defined by:

Pε =


pε in Dε,

1

|Y εi |

∫
Y iε

pεdx in Pε〉 \Y
ε
〉 for each 〉. (7.5.54)

This convergence results can be retrieved formally very naturally in view of the ansatz (7.5.2). Indeed,
our estimates of proposition 7.37 yield

||pε − p∗0||L2(Dε) ≤ Cε
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for a constant independent of C. Furthermore, if x ∈ Y εi , it can also be expected, with q ≥ 0 as large as
one likes:

1

|Y εi |

∫
Y iε

pεdx '
+∞∑
i=0

εi
(

1

|Y |

∫
Y

p∗i (x)dy + ε
1

|Y |

∫
Y

pi(x, y)dy

)
+ o(εq) = p∗0(x) + o(ε),

which suggests indeed that Pε → p∗0 in the whole domain D = Dε ∪ ωε.

We now show that uε and pε can be indeed approximated by criminal expansions of the form of
(7.5.14) and (7.5.16); the following result is the analogous of lemma 7.5 for the present Stokes context.

Proposition 7.38. Let u∗ε,K , p
∗
ε,K the averages of the truncated expansions uε,K and pε,K of (7.5.51):

∀x ∈ D, u∗ε,K(x) :=

K∑
k=0

εk+2u∗i (x), p∗ε,K(x) :=

K∑
k=0

εkp∗k(x).

There exists a constant CK(f) independent of ε such that∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇ku∗ε,K

∣∣∣∣∣
∣∣∣∣∣
H1(D,Rd)

≤ CK(f)εK+2 (7.5.55)

∣∣∣∣∣
∣∣∣∣∣pε −

(
p∗ε,K +

K−1∑
k=0

εk−1βk(·/ε) · ∇ku∗ε,K

)∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK(f)εK+1. (7.5.56)

Proof. The proof of the error bound for (7.5.55) follows exactly the same lines of lemma 7.5.The result
is obtained by using the estimates (7.5.52) and (7.5.53) together with the identities (7.5.31).

Remark 7.32. We need only K−1 derivatives in the truncated criminal ansatz (7.5.56) for the pressure,
because the term of highest order has a norm of order εK (recall u∗ε,K has a norm of order ε2).

We now turn to our main result which states that the solution (v∗K , q
∗
K) of the homogenized equation

(7.5.39) of order 2K + 2 yields higher order approximations of (uε, pε) with error bounds similar to
those of (7.5.55) and (7.5.56). Our proof is slightly different from that of proposition 7.13 because the
variational framework is different and the treatment of the divergence constraint is more delicate. In
order to prove our result, we need beforehand the following regularity estimate for the solution (v∗K , q

∗
K):

Lemma 7.10. The solution (v∗K , q
∗
K) of (7.5.44) is smooth and for any m ∈ N, there exists a constant

Cm(f) depending only on m and f such that

||vK∗ ||Hm(D,Rd) ≤ Cm(f)ε2.

Proof. This can be obtained by solving (7.5.44) explicitly with Fourier series.

Proposition 7.39. Let (v∗K , q
∗
K) be the unique solution to the homogenized equation (7.5.44) of order

2K + 2. There exists a constant CK(f) depending only on K and f (and a priori on the shape of the
hole (ηT )) such that the following error estimates hold:∣∣∣∣∣

∣∣∣∣∣uε −
K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
L2(D,Rd)

≤ CK(f)εK+3,

∣∣∣∣∣
∣∣∣∣∣uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗K

∣∣∣∣∣
∣∣∣∣∣
H1(D,Rd)

≤ CK(f)εK+2,

∣∣∣∣∣
∣∣∣∣∣pε −

(
q∗K +

K−1∑
k=0

εk−1βk(·/ε) · ∇kv∗K

)∣∣∣∣∣
∣∣∣∣∣
L2(D)

≤ CK(f)εK+1.
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Proof. Let us compute

−∆wε,K+1(v∗K) =

K∑
k=0

εk−2(−∆Nk
j − 2∂lN

k−1
j ⊗ el −Nk−2

j ⊗ I)(·/ε) · ∇kv∗K,j

− εK−1(2∂lN
K
j ⊗ el +NK−1

j ⊗ I)(·/ε) · ∇K+1v∗K,j − εKNK
j (·/ε)⊗ I · ∇K+2v∗K,j

− εK+1∆(NK+1
j (·/ε) · ∇K+1v∗K,j),

∇qε,K(q∗K ,v
∗
K) = ∇q∗K +

K∑
k=0

εk−2el(∂lβ
k
j + βk−1

j ⊗ el)(·/ε) · ∇kv∗K,j + εK−1el(β
K
j ⊗ el)(·/ε) · ∇Kv∗K,j .

Summing the two equations and using (7.5.33), we obtain

−∆wε,K(v∗K) +∇qε,K(q∗K ,v
∗
K) =

K∑
k=0

εk−2Mk · ∇kv∗K +∇q∗K

− εK−1(2∂lN
K
j ⊗ el +NK−1

j ⊗ I)(·/ε) · ∇K+1v∗K,j − εKNK
j (·/ε)⊗ I · ∇K+2v∗K,j

− εK+1∆(NK+1
j (·/ε) · ∇K+1v∗K,j). (7.5.57)

We now use proposition 7.36 and (7.5.44) to rewrite

K∑
k=0

εk−2Mk · ∇kv∗K +∇q∗K = f −
2K+2∑
k=K+1

εk−2DkK · ∇kv∗K . (7.5.58)

Let us also compute the divergence of wε,K+1(v∗K):

div(wε,K+1(v∗K)) =

K+1∑
k=0

εk−1(div(Nk
j )(·/ε) · ∇kv∗K,j + (Nk−1

j (·/ε) · el ⊗ el) · ∇kv∗K,j)

+ εK+1NK+1
j (·/ε) · el ⊗ ·∇K+2v∗K,j

=

K+1∑
k=0

εk−1(−(Nk−1
j (·/ε)− <Nk−1

j >) · el ⊗ el · ∇kv∗K,j + (Nk−1
j (·/ε) · el ⊗ el) · ∇kv∗K,j)

+ εK+1NK+1
j (·/ε) · el ⊗ el · ∇K+2v∗K,j

= div(v∗K) + εK+1NK+1
j (·/ε) · el ⊗ el · ∇K+2v∗K,j = εK+1NK+1

j (·/ε)⊗ el · ∇K+2v∗K,j .

(7.5.59)

We now apply corollary 7.11 to estimate (vε, qε) := (uε − wε,K+1(v∗K), pε − qε,K(v∗K , q
∗
K)). Equations

(7.5.1) and (7.5.57) to (7.5.59) imply that (vε, qε) solves the following Stokes system:

−∆vε +∇qε = hε in Dε

div(vε) = gε ∈ Dε

vε = 0 on ∂ωε,∫
D

qε = 0,

vε is D–periodic,

where the source functions hε and gε are given by

hε := −
2K+2∑
k=K+1

εk−2DkK · ∇kv∗k − εK−1(2∂lN
K
j ⊗ el +NK−1

j ⊗ I)(·/ε) · ∇K+1v∗K,j

− εKNK
j (·/ε)⊗ I · ∇K+2v∗K,j − εK+1∆(NK+1

j (·/ε) · ∇K+1v∗K,j),

(7.5.60)

gε := εK+1NK+1
j (·/ε)⊗ el · ∇K+2v∗K,j . (7.5.61)

Using the result of lemma 7.10, we infer the existence of a constant CK(f) independent of ε such that

||hε||L2(D,Rd) ≤ CK(f)εK+1,
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||gε||L2(D) ≤ CK(f)εK+3.

Therefore, the estimates of corollary 7.11 yield

||uε −wε,K+1(v∗K)||H1(D,Rd) = ||vε||H1(D,Rd) ≤ CK(f)εK+2,

||pε − qε,K(v∗K , q
∗
K)||L2(D) = ||qε||L2(D) ≤ CK(f)εK+1.

The final result follows from the triangle’s and the following estimates:

||wε,K+1(v∗K)−wε,K(v∗K)||H1(D,Rd) = ||εK+1NK+1 · ∇K+1v∗K ||H1(D,Rd) ≤ CK(f)εK+2.

||qε,K(v∗K , p
∗
K)− qε,K−1(v∗K , q

∗
K)||L2(D) = ||εK−1βK · ∇Kv∗K ||L2(D) ≤ CK(f)εK+1.

Remark 7.33. The above proof further highlights that there is not a unique way to derive well-posed
higher order homogenized equations such as (7.5.44): what is important is the fact that the first K + 1
coefficients of the equation satisfied by (v∗K , q

∗
K) are those of the “infinite order” homogenized equation

(7.5.29): DkK = Mk for 0 ≤ k ≤ K + 1. More precisely, the approximation result of proposition 7.39
holds provided lemma 7.10 holds and∣∣∣∣∣

∣∣∣∣∣
K∑
k=0

εk−2Mk · v∗K +∇q∗K − f

∣∣∣∣∣
∣∣∣∣∣ ≤ CK(f)εK+1.

The coefficients DkK for K+1 ≤ k ≤ 2K+2 are selected in such a way that (7.5.39) is well posed, which is
the case when defining DkK from the energy minimization principle (7.5.43). In the next section 7.5.4, we
provide evidences that (7.5.44) is a “well-behaved” equation when it is obtained from the minimization
principle, because it contains all three classical homogenized regimes in the low-volume fraction limit
where the obstacle’s size η → 0.

7.5.4 Low volume fraction limits when the size of the obstacle tends to 0

This section is devoted to the study of the asymptotics of the tensors X k∗, Mk and DkK in the low volume
fraction limit where the obstacle’s size vanishes, i.e. η → 0. In this whole subsection, we assume again,
for simplicity, that the space dimension is greater than 3:

d ≥ 3.

The notation convention is that of sections 7.3.5 and 7.4.3. We recall the inequalities in lemma 7.7 that
we are going to use extensively. We also need the following technical result which yields estimates of
Stokes solutions in the domain η−1P\T uniform in η → 0.

Lemma 7.11. Consider h ∈ L2(η−1P\T,Rd) and g ∈ L2(η−1P\T ) satisfying
∫
η−1P\T gdx = 0. Let

(v, φ) ∈ H1(η−1P\T,Rd)× L2(η−1P\T ) be the unique solution to the following Stokes system:

−∆v +∇φ = h in η−1P\T
div(v) = g in η−1P\T∫

η−1P\T
φdx = 0

v = 0 on ∂T

v is η−1P–periodic.

(7.5.62)

There exists a constant C > 0 independent of η,h and g such that

||∇v||L2(η−1P\T,Rd×d) + ||φ||L2(η−1P\T )

≤ C(η−1||h− < h > ||L2(η−1P\T,Rd) + η−d| < h > |+ ||g||L2(η−1P\T )). (7.5.63)

Proof. From Lemma 2.2.4 in [14], for any η > 0, there exists a linear “Bogovskii’s” operator Bη :
L2(P\(ηT ))→ H1(P\(ηT ),Rd) satisfying for any φ ∈ L2(P\(ηY )) such that

∫
P\(ηT )

φdy = 0:
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(i) div(Bηφ) = φ,

(ii) Bηφ = 0 on ∂(ηT ),

(iii) Bηφ is P–periodic,

(iv) ||∇(Bηφ)||L2(P\(ηT ),Rd×d) ≤ C||φ||L2(P\(ηT )) for a constant C independent of η and φ.

For any φ̃ ∈ L2(η−1P\T ) such that
∫
η−1P\T φ̃dy = 0, we define

B̃η(φ̃) := η−1
[
Bη(φ̃(η−1 ·))(η ·)

]
.

The operator B̃η : L2(η−1P\T ) → H1(η−1P\T,Rd) satisfies the following properties: for any φ̃ ∈
L2(η−1P\T ) such that

∫
η−1P\T φ̃dx = 0,

(i) div(B̃ηφ̃) = φ̃ in η−1P\T ,

(ii) B̃ηφ̃ = 0 on ∂T ,

(iii) B̃ηφ̃ is η−1P–periodic,

(iv) ||∇(B̃ηφ̃)||L2(η−1P\T,Rd×d) ≤ C||φ̃||L2(η−1P\T ) for a constant C independent of η and φ.

The proof follows then classically along the lines of corollary 7.11. Upon an integration by parts and by
using lemma 7.7, it is readily obtained with w := v − B̃ηg:

||∇w||2L2(η−1P\T,Rd×d) =

∫
η−1P\T

h ·wdy

=

∫
η−1P\T

(h− < h >) · (w− < w >)dy +

∫
η−1P\T

< h > · < w > dy

≤ C
(
||h− < h > ||L2(η−1P\T,Rd)||w− < w > ||L2(η−1P\T,Rd) + η−d| < h > | | < w > |

)
≤ C

(
η−1||h− < h > ||L2(η−1P\T,Rd) + η−d| < h > |

)
||∇w||L2(η−1P\T,Rd×d).

(7.5.64)

for a constant C > 0 independent of η and h. This implies

||∇v||L2(η−1P\T ) ≤ ||∇w||L2(η−1P\T,Rd×d) + ||∇(̃bηg||L2(η−1P\T,Rd×d)

≤ C
(
||∇w||L2(η−1P\T,Rd×d) + ||g||L2(η−1P\T )

)
,

whence the bound on ||∇v||L2(η−1P\T,Rd×d) by using (7.5.64). The bound for the pressure is obtained by
writing∫
η−1P\T

φ2dx =

∫
η−1P\T

φdiv(Bηφ)dx = −
∫
η−1P\T

∇φ ·Bηφdx =

∫
η−1P\T

(∇v : ∇(Bηφ)−h · (Bηφ))dx,

from where (7.5.63) follows analogously.

For any 1 ≤ j ≤ d, let us introduce the unique solution (Ψj , σj) to the exterior Stokes problem

−∆Ψj +∇σj = 0 in Rd\T
div(Ψj) = 0 in Rd\T

Ψj = 0 on ∂T

Ψj → ej at ∞
σj ∈ L2(Rd\T ).

(7.5.65)

The boundary condition Ψj → ej at infinity must be understood in the sense that Ψj − ej belongs
to the Deny-Lions space D1,2(Rd\T,Rd) (see definition 7.6). Similarly, the pressures σj are uniquely
determined by the condition σj ∈ L2(Rd\T ) (see e.g. Lemma 1.1, chapter V. of [163]). We denote by
Ψ∗ := (Ψ∗ij)1≤i,j≤d the matrix collecting the drag force components:

Ψ∗ij :=

∫
Rd\T

∇Ψi : ∇Ψjdx = −
∫
∂T

ej · (∇Ψi − σiI) · nds, (7.5.66)
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where the normal n is pointing inward T . The asymptotics of X 0 and X 0∗ have been obtained in of
Theorem 3.1 in [13]. The following proposition extends propositions 7.14 and 7.27 to the Stokes system:
it improves the result of [13] by providing asymptotics for the whole family of tensors (X k)k∈N and
(X k∗)k∈N.

Proposition 7.40. Assume d ≥ 3. For any k ≥ 0 and 1 ≤ j ≤ d, denote by (X̃
2k

j , α̃
2k
j ) and

(X̃
2k+1

j , α̃2k+1
j ) the rescaled tensors in η−1P\T defined as follows:

∀x ∈ η−1P\T,

{
X̃

2k

j (x) := η(d−2)(k+1)X 2k
j (ηx)

α̃2k
j (x) := η(d−2)(k+1)−1α2k

j (ηx)
,

X̃
2k+1

j (x) := η(d−2)(k+1)X 2k+1
j (ηx)

α̃2k+1
j (x) := η(d−2)(k+1)−1α2k+1

j (ηx).

Then:

1. there exists a constant C independent of η > 0 such that

∀η > 0, ||∇X̃
2k

j ||L2(η−1P\T,Rd×d) + ||α̃2k
j ||L2(η−1P\T ) ≤ C,

∀η > 0, ||∇X̃
2k+1

j ||L2(η−1P\T,Rd×d) + ||α̃2k+1
j ||L2(η−1P\T ) ≤ C;

2. the following convergences hold as η → 0:

(X̃
2k

i , α̃
2k
i ) ⇀ (c2kij Ψj , c

2k
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ), (7.5.67)

(X̃
2k+1

i , α̃2k+1
i ) ⇀ (0, 0) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ), (7.5.68)

X 2k∗ ∼ 1

η(d−2)(k+1)
c2k, (7.5.69)

X 2k+1∗ = o

(
1

η(d−2)(k+1)

)
, (7.5.70)

where c2kij denote the coefficients of the 2k-th order matrix valued tensor c2k := (c2kij )1≤i,j≤d given
by

c2k := (Ψ∗)−(k+1)I2k with I2k =

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I .

Proof. Following proposition 7.27, the result is proved by induction on k.

1. Case 2k with k = 0. The tensor (X̃
0

i , α̃
0
i ) satisfies−∆X̃

0

i +∇α̃0
i = ηdei in Rd\T

div(X̃
0

i ) = 0 in Rd\T,
(7.5.71)

as well as the other boundary conditions of (7.5.62). Therefore lemma 7.11 yields

||∇X̃
0

i ||L2(η−1P\T,Rd×d) + ||α̃0
i ||L2(η−1P\T ) ≤ Cη−dηd| < ei > | ≤ C.

From (7.3.66), we also obtain that < X̃
0

i > is bounded. Hence, up to extracting a subsequence,

there exists a constant matrix c0 := (c0ij)1≤i,j≤d, and fields (Ψ̂0
i , σ̂

0
i )1≤i≤d such that

< X̃
0

i > · ej → c0ij ,

(X̃
0

i , α̃
0
i ) ⇀ (Ψ̂0

i , σ̂
0
i ) weakly in H1

loc(η
−1P\T,Rd)× L2

loc(η
−1P\T ).

Multiplying (7.5.71) by a compactly supported test function Φ ∈ C∞c (Rd\T ) and integrating by
parts yields ∫

η−1P\T
(∇X̃

0

i : ∇Φ− α̃0
i div(Φ))dx =

∫
η−1P\T

ηdΦ · eidx.
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Passing to the limit as η → 0 then implies
−∆Ψ̂0

i +∇σ̂0
i = 0 in Rd\T

div(Ψ0
i ) = 0 in Rd\T

Ψ0
i = 0 on ∂T.

Furthermore, by applying the point (7.3.68) of lemma 7.7 and by using the lower semi-continuity of

the Lebesgue space norms, we infer (Φ̂0
i −c0ijej , σ̂0

i ) ∈ D1,2(Rd\T )×L2(Rd\T ). Hence, by linearity,

it is necessary that (Φ̂0
i , σ̂

0
i ) = (c0ijΨj , c

0
ijσj) where (Ψj , σj) are the solution to the exterior problem

(7.5.65). Integrating (7.5.65) by parts against the test function Φ = ej then yields

0 = ηd
∫
η−1P\T

δijdx+

∫
∂T

ej · (∇X̃
0

i − α̃0
i I) · ndx.

Passing to the limit as η → 0 by using the continuity of the drag force with respect to the weak
convergence and (7.5.66) yields then

0 = δij +

∫
∂T

ej · (∇Φ̂0
i − σ̂0

i ) · ndx = δij − c0ipΨ∗pj .

This implies c0 = (Ψ∗)−1 as claimed, and the convergence of the whole sequence by uniqueness of
the limit. The asymptotic for X 0∗ as η → 0 is obtained by a simple change of variable y = ηx:

X 0∗
ij = ei ·

∫
P\(ηT )

X 0
jdy = η2−dηdei ·

∫
η−1P\T

X̃
0

jdy ∼ η2−d < X̃
0

j > · ei ∼ η2−dc0ji.

2. Case 2k + 1 with k = 0. The tensor (X̃
1

i , α̃
1
i ) satisfies−∆X̃

1

i +∇α̃1
i = η(2∂lX̃

0

i − α̃0
jel)⊗ el in η−1P\T

div(X̃
1

i ) = −η(X̃
0

j− < X̃
0

j >) · el ⊗ el in η−1P\T.
(7.5.72)

Applying lemma 7.11 and remarking that < 2∂lX̃
0

i − α̃0
i el >= 0, we obtain

||∇X̃
1

i ||L2(η−1P\T,Rd×d) + ||α̃1
i ||L2(η−1P\T ) ≤ C.

Integrating (7.5.72) by parts against a compactly supported test function Φ ∈ Cc(Rd\T ) and
passing to the limit as η → 0, we obtain with similar arguments, the existence of a matrix valued
tensor c1 := (c1ij))1≤i,j≤d (of order 1) such that, up to the extraction of a subsequence:

< X̃
1

i > · ej → c1ij ,

(X̃
1

i , α̃
1
i ) ⇀ (c1ijΨj , c

1
ijσj) weakly in H1

loc(η
−1P\T,Rd)× L2

loc(η
−1P\T ).

Integrating (7.5.72) by parts against the test function ej and passing to the limit as η → 0 yields
in this context

0 = c1ijΨ
∗
pj

whence c1 = 0.

3. General case. Assuming the result holds till rank k, we write the differential equations satisfied by
the rescaled tensors:−∆X̃

2k+2

i +∇α̃2k+2
i = ηd−1(∂lX̃

2k+1

i − α̃2k+1
i el)⊗ el + ηdX̃

2k

i ⊗ I in η−1P\T

div(X̃
2k+2

i ) = −ηd−1(X̃
2k+1

i − < X̃
2k+1

i >) · el ⊗ el in η−1P\T.
(7.5.73)

−∆X̃
2k+3

i +∇α̃2k+3
i = η(∂lX̃

2k+2

i − α̃2k+2
i el)⊗ el + ηdX̃

2k+1

i ⊗ I in η−1P\T

div(X̃
2k+3

i ) = −η(X̃
2k+2

i − < X̃
2k+2

i >) · el ⊗ el in η−1P\T.
(7.5.74)
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Using lemma 7.7, lemma 7.11 and the point (1) of the proposition at rank k, we readily obtain

||∇X̃
2k+2

i ||L2(η−1P\T,Rd×d) + ||α̃2k+2
i ||L2(η−1P\T ) ≤ C,

||∇X̃
2k+3

i ||L2(η−1P\T,Rd×d) + ||α̃2k+3
i ||L2(η−1P\T ) ≤ C.

Repeating the above arguments, we obtain, up to the extraction of a subsequence, the existence of
matrix valued tensors c2k+2 and c2k+3 such that

< X̃
2k+2

i > · ej ⇀ c2k+2
ij , and < X̃

2k+3

i > · ej ⇀ c2k+3
ij ,

(X̃
2k+2

i , α̃2k+2
i ) ⇀ (c2k+2

ij Ψj , c
2k+2
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ),

(X̃
2k+3

i , α̃2k+3
i ) ⇀ (c2k+3

ij Ψj , c
2k+3
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ).

The last step consists in integrating (7.5.73) and (7.5.74) by part against the test function ej and
to pass to the limit as η → 0 to identify c2k+2

ij and c2k+3
ij . Performing this computation as above,

we obtain
0 = c2kij ⊗ I − c2k+2

ip Ψ∗pj ,

0 = c2k+1
ij ⊗ I − c2k+3

ip Ψ∗pj

from where we infer c2k+2 = c2k(Ψ∗)−1 ⊗ I, c2k+3 = c2k+1(Ψ∗)−1 ⊗ I, hence the result (recall
c1 = 0 from the point (2) of the proof).

Using the identity (7.5.30), we obtain the asymptotics for the coefficients Mk of the infinite order
homogenized equation (7.5.29).

Corollary 7.12. Assume d ≥ 3. The following convergences hold for the matrix valued tensors Mk as
η → 0:

M0 ∼ ηd−2Ψ∗, (7.5.75)

M1 = o
(
ηd−2

)
, (7.5.76)

M2 → −I, (7.5.77)

∀k ≥ 1, M2k = o

(
1

η(d−2)(k−1)

)
, (7.5.78)

∀k ≥ 1, M2k+1 = o

(
1

η(d−2)(k−1)

)
. (7.5.79)

Proof. The proof is identical to that of corollary 7.6 by substituting A2 with I.

7.5.5 Simplifications for the tensors X k∗ and Mk under symmetries

This final subsection generalizes the results of sections 7.3.6 and 7.4.4 to the Stokes system: we examine
how the symmetries of the obstacle ηT with respect to the cell axes reflect into the coefficients of the
matrix valued tensors X k∗ and Mk. Our final result is stated in corollary 7.13, it is based on the following
elementary lemma:

Lemma 7.12. Let S ∈ Rd×d an orthogonal symmetry, i.e. S = ST and SS = I. The following identities
hold for any smooth vector field X and scalar field α:

−∆(SX ◦ S) +∇(α ◦ S) = S(−∆X +∇α) ◦ S, (7.5.80)

div(SX ◦ S) = div(X ) ◦ S, (7.5.81)

∂i(SX ◦ S) = SijS(∂jX ) ◦ S. (7.5.82)

Proof. The first two identities are obtained by writing

−∆(SX ◦ S) +∇(α ◦ S) = −S∂ijX ◦ SSilSjl + S(∇α) ◦ S
= −S(∆X +∇α) ◦ S,

div(SX ◦ S) = Tr(∇(SX ◦ S)) = Tr(S(∇X ) ◦ SS) = Tr((∇X ) ◦ S) = div(X ) ◦ S.
Identity (7.5.82) is an elementary consequence of the chain rule.
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Proposition 7.41. If the cell Y = P\(ηT ) is invariant with respect to a symmetry S, i.e. S(Y ) = Y ,
then the following identity holds for the tensors (X k

l , α
k
l ) (defined in (7.5.6) to (7.5.8)):

SX k
i1...ik,l

◦ S = Si1j1 . . . SikjkSlmX k
j1...jk,m

, (7.5.83)

αki1...ik,l ◦ S = Si1j1 . . . SikjkSlmα
k
j1...jk,m

. (7.5.84)

As a consequence, the following identities hold for the constant matrix valued tensors X k∗ and Mk:

X k∗i1...ik,lm = Si1j1 . . . SikjkSlpSmqX k∗j1...jk,pq (7.5.85)

Mk
i1...ik,lm

= Si1j1 . . . SikjkSlpSmqM
k
j1...jk,pq

. (7.5.86)

Proof. We follow the proof of proposition 7.28, that is we prove (7.5.83) and (7.5.84) by induction. Using
section 7.5.5, we easily obtain{

−∆yy(SX 0
l ◦ S) +∇y(α0

l ◦ S) = Sel ◦ S = Sel = Smjem,

div(SX 0
l ◦ S) = 0.

Since the cell is symmetric with respect to S, (SX 0
l ◦ S, α0

l ◦ S) satisfies the same boundary conditions
(7.5.9) than Smj(X 0

m, α
0
m), therefore these are equal and we infer (7.5.83) and (7.5.84) at rank k = 0.

We then write, for a given 1 ≤ i1 ≤ d:

−∆yy(SX 1
i1,l ◦ S) +∇y(α1

i1,l ◦ S) = S(2∂i1X
0
l − α0

l ei1) ◦ S
= Si1j1(2∂j1(SX 0

l ◦ S)− α0
l ◦ Sej1)

= Si1j1Slm(2∂j1X
0
m − α0

mej1),

divy(SX 1
i1,l ◦ S) = −(X 0

l ◦ S− < X 0
l >) · ei1

= −SlmS(X 0
m− < X 0

m >) · ei1
= −Si1j1Slm(X 0

m− < X 0
m >) · ej1 ,

where we used < X 0
l >=< X 0

l ◦ S >. This implies similarly (7.5.83) and (7.5.84) at rank k = 1.
Assuming now the result holds till rank k + 1 with k ≥ 0, we prove with the same arguments that it
holds at rank k + 2:

−∆yy(SX k+2
i1...ik+2,l

◦ S) +∇y(αk+2
i1...ik+2,l

◦ S)

= S(2∂ik+2
X k+1
i1...ik+1,l

− αk+1
i1...ik+1,l

eik+2
) ◦ S + SX k

i1...ik,l
◦ Sδik+1ik+2

= Sik+2jk+2
(2∂jk+2

(SX k+1
i1...ik+1,l

◦ S)− αk+1
i1...ik+1,l

◦ Sejk+2
)

+ Sik+1jk+1
Sik+2jk+2

δjk+1jk+2
SX k

i1...ik,l
◦ S

= Si1j1 . . . Sik+2ik+2
Slm[(2∂jk+2

X k+1
j1...jk+1,m

− αk+1
j1...jk+1,m

ejk+2
) + δjk+1jk+2

X k
j1...jk,m

]

divy(SX k+2 ◦ S) = −(X k+1
i1...ik+1,l

◦ S− < X k+1
i1...ik+1,l

>) . . . eik+2

= −Si1j1 . . . Sik+1jk+1
SlmS(X k+1

j1...jk+1,m
− < X k+1

j1...jk+1,m
>) · eik+2

= −Si1j1 . . . Sik+2jk+2
Slm(X k+1

j1...jk+1,m
− < X k+1

j1...jk+1,m
>) · ejk+2

.

The identities (7.5.85) and (7.5.86) follow as in the proof of proposition 7.28.

Corollary 7.13. 1. If the cell Y is symmetric with respect to all cell axes (el)1≤l≤d, then

X k∗i1...ik,pq = 0 and Mk
i1...ik,pq

= 0

whenever any given integer 1 ≤ l ≤ d occurs an odd number of times in the indices i1 . . . ik, p, q.

In particular, this implies X 2k+1∗ = 0 and M2k+1 = 0.

2. If the cell Y is symmetric with respect to all diagonal axes orthogonal to (el−em), i.e. Sl,m(Y ) = Y
for any 1 ≤ l < m ≤ d, then for any permutation σ ∈ Sd,

X k∗σ(i1)...σ(ik),σ(p)σ(q) = X k∗i1...ik,pq.

Mk
σ(i1)...σ(ik),σ(p)σ(q) = Mk

i1...ik,pq
.
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Proof. The proof is identical to that of corollary 7.7.

7.5.6 Appendix: extension to multicomponent fluid domains

Let us outline in this appendix how the previous methodologies could be extended to the case where the
unit cell Y (a subset of the torus, i.e. opposite matching boundaries are identified) has m connected
components (Yl)1≤q≤m instead of one as assumed in (H4). Related models could be of interest for
topology and shape optimization of multicomponent fluid systems, such as heat exchangers [255, 303].

In such a case the ansatz for the pressure pε(x) of (7.5.2) must be modified as follows:

uε(x) =

+∞∑
i=0

εi+2ui(x, x/ε), pε(x) =

+∞∑
i=0

εi

(
m∑
l=1

p∗,li (x)1Yl(x/ε) + εpi(x, x/ε)

)
(7.5.87)

where m homogenized pressures p∗,li (x) are now involved, with 1 ≤ l ≤ m and i ∈ N. The uniqueness of
the decomposition is obtained by imposing the average of pi to be zero in every connected component:

∀1 ≤ l ≤ m, ∀x ∈ D,
∫
Yl

pi(x, y)dy = 0,

∫
D

p∗,li (x)dx = 0.

This ansatz yields m homogenized pressures (p∗,lε )1≤l≤m and velocity fields (u∗,lε )1≤l≤m for each of the
corresponding connected fluid components:

∀1 ≤ l ≤ m, u∗,lε (x) :=

+∞∑
i=0

εi+2

∫
Yl

ui(x, y)dy, p∗,lε (x) :=

+∞∑
i=0

εip∗,li (x).

The analysis of section 7.5.1 can be easily adapted to this new context. A Fredholm alternative,
analogous to (7.5.13), yields an elliptic second order equation determining the value of the m pressures

p∗,li :

divx(X 0∗,l∇x(fi −∇xp∗,li )) = −
i∑

k=1

div(X k∗,l · ∇k(fi−k −∇xp∗,li−k)), ∀i ≥ 0,∀1 ≤ l ≤ m,

where X 0∗,l
ij :=

∫
Yl
X 0
j · eidy. Then the velocity and pressure ui(x, y) and pi(x, y) of the ansatz (7.5.87)

read

ui(x, y) =

i∑
k=0

X k(y) · ∇k(fi−k(x)− 1Yl(y)∇p∗,li−k(x))

pi(x, y) =

i∑
k=0

αk(y) · ∇k(fi−k(x)− 1Yl(y)∇p∗,li−k(x)),

where the summation over the repeated index l is assumed. These conclusions are not surprising: we
have just verified that the homogenization theory for a fluid system with m components is that of m
homogenized systems of single component (obtained e.g. by replacing m−1 fluid components with solid).
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Birkhäuser Boston, Boston, MA, 1997, pp. 45–93.

[104] P. Coffin and K. Maute, Level set topology optimization of cooling and heating devices using
a simplified convection model, Structural and Multidisciplinary Optimization, 53 (2016), pp. 985–
1003.

[105] C. Conca, F. Murat, and O. Pironneau, The Stokes and Navier-Stokes equations with bound-
ary conditions involving the pressure, Japanese journal of mathematics. New series, 20 (1994),
pp. 279–318.

[106] C. Conca, C. Pares, O. Pironneau, and M. Thiriet, Navier-Stokes equations with im-
posed pressure and velocity fluxes, International journal for numerical methods in fluids, 20 (1995),
pp. 267–287.
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vol. 48, Springer Science & Business Media, 2006.

[185] , Shape variation and optimization, vol. 28 of EMS Tracts in Mathematics, European Math-
ematical Society (EMS), Zürich, 2018.
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Numérique de l’Université Pierre et Marie Curie, (1976).
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[302] , An introduction to Sobolev spaces and interpolation spaces, vol. 3, Springer Science & Busi-
ness Media, 2007.

[303] R. Tawk, B. Ghannam, and M. Nemer, Topology optimization of heat and mass transfer
problems in two fluids-one solid domains, Numerical Heat Transfer, Part B: Fundamentals, 76
(2019), pp. 130–151.

[304] R. Temam, Navier stokes equations: Theory and numerical analysis, vol. 45, North-Holland Pub-
lishing Company, 1977.

[305] L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, Siam, 1997.

[306] B. O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Springer, 2007.

[307] M. G. Ukken and M. Sivapragasam, Aerodynamic shape optimization of airfoils at ultra-low
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Titre : Optimisation de formes de systèmes multiphysiques

Mots clés : Optimisation topologique, remaillage, transfert thermique convectif, interaction fluide-structure,
contraintes géométriques, modèles homogénéisés d’ordres élevés.

Résumé : Cette thèse est consacrée à l’optimisa-
tion de la topologie et de la forme de systèmes mul-
tiphysiques motivés par des applications de l’indus-
trie aéronautique. Nous calculons les dérivées de
forme de fonctions de coût arbitraires pour un modèle
fluide, thermique et mécanique faiblement couplé.
Nous développons ensuite un algorithme de type gra-
dient adapté à la résolution de problèmes d’optimi-
sation de formes sous contraintes qui ne requiert
par de réglage de paramètres non physiques. Nous
introduisons ensuite une méthode variationnelle qui
permet de calculer des intégrales le long de rayons
sur un maillage par la résolution d’un problème va-
riationnel qui ne requiert pas la détermination ex-
plicite de ces lignes sur la discrétisation spatiale.
Cette technique nous a ainsi permis d’imposer une
contrainte de non-mélange de phases pour une ap-
plication à l’optimisation d’échangeurs de chaleur bi-
tubes. Tous ces ingrédients ont été employés pour

traiter une variété de cas tests d’optimisation de
formes pour des systèmes multi-physiques 2-d ou 3-
d. Nous avons considéré des problèmes à une seule,
deux ou bien trois physiques couplées en 2-d, et
des problèmes de tailles relativement élevées en 3-
d pour la mécanique, la conduction thermique, l’op-
timisation de profils aérodynamiques, et de la forme
de systèmes en interaction fluide-structure. Un der-
nier chapitre d’ouverture est consacré à l’étude de
modèles homogénéisées d’ordres élevés pour les
équations de Stokes en milieu poreux. Ces équations
d’ordres élevés englobent les trois régimes ho-
mogénéisés classiques—Stokes, Brinkman et Darcy–
associés à divers rapports d’échelles pour la taille des
obstacles. Elles pourraient permettre, lors de futurs
travaux, de développer de nouvelles méthodes d’op-
timisation pour la conception de systèmes fluides ca-
ractérisés par des motifs multiéchelles, tels que les
échangeurs thermiques industriels.

Title : Shape and topology optimization of multiphysics systems

Keywords : Topology optimization, remeshing, convective heat transfer, fluid-structure interaction, geometric
constraints, high order homogenization.

Abstract : This work is devoted to shape and topo-
logy optimization of multiphysics systems motivated
by aeronautic industrial applications. Shape deriva-
tives of arbitrary objective functionals are computed
for a weakly coupled thermal fluid-structure model.
A novel gradient flow type algorithm is then develo-
ped for solving generic constrained shape optimiza-
tion problems without the need for tuning non-physical
metaparameters. Motivated by the need for enforcing
non-mixing constraints in the design of liquid-liquid
heat exchangers, a variational method is developed
in order to simplify the numerical evaluation of geome-
tric constraints: it allows to compute line integrals on
a mesh by solving a variational problem without requi-
ring the explicit knowledge of these lines on the spatial
discretization. All these ingredients allowed us to im-

plement a variety of 2-d and 3-d multiphysics shape
optimization test cases: from single, double or three
physics problems in 2-d, to moderately large-scale 3-
d test cases for structural design, thermal conduction,
aerodynamic design and a fluid-structure interacting
system. A final opening chapter derives high order ho-
mogenized equations for the Stokes system in a po-
rous medium. These high order equations encompass
the three classical homogenized regimes—namely
Stokes, Brinkman and Darcy—associated with dif-
ferent obstacle’s size scalings. They could allow, in fu-
ture works, to develop new topology optimization me-
thods for the design of fluid systems characterized by
multi-scale patterns such as industrial heat exchan-
gers.

Université Paris-Saclay
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