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Résumé court 

 

L'arthrose de cheville est une dégénérescence progressive du cartilage caractérisée par 

une douleur et une incapacité fonctionnelle importante. Cependant, bien que la marche soit 

améliorée suite à une arthrodèse ou à une prothèse totale de cheville, les patients présentent 

toujours une altération de la fonction du membre inférieur. Afin d'améliorer notre 

compréhension des déficiences fonctionnelles associées à cette pathologie et à ces traitements 

chirurgicaux connexes, une revue systématique de la littérature a été réalisée. Celle-ci démontre 

un manque de caractérisation de cette pathologie dans les études d'analyse de marche. Cela 

signifie que les conséquences fonctionnelles sont difficiles à définir sans tenir compte des 

changements morphologiques et structurels du pied liés à l’arthrose. Par conséquent, des 

groupes homogènes de patients ont été recrutés sur base de l’étiologie de l’arthrose et de la 

présence de déformations concomittantes. L’analyse cinétique des articulations intrinsèques du 

pied chez ces patients a montré que les altérations de la fonction n’étaient pas limitées à la 

cheville douloureuse, mais affectaient également les articulations adjacentes du pied. De plus, 

les déformations du pied associées à l’arthrose de cheville influencent la mécanique du pied 

durant la marche. Enfin, une étude pilote a été réalisée pour donner une première évaluation de 

la prothèse totale de cheville sur la performance biomécanique des patients souffrant d'arthrose. 

Nos résultats ont révélé que la mécanique de la cheville après prothèse ressemble à celle des 

chevilles saines mais que leurs performances biomécaniques restent diminuées par rapport à 

des sujets asymptomatiques. 
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Résumé long 

 

L'arthrose de cheville est une maladie chronique caractérisée par une dégénérescence 

progressive des articulations, une douleur et une incapacité importante. Ainsi, environ 1 % de 

la population adulte au monde vit avec une arthrose symptomatique de la cheville.1,4,7  

L'objectif de ce projet de doctorat est d'étudier la biomécanique du pied chez des patients 

souffrant d'arthrose de cheville à l'aide d'une plateforme d'examen clinique avancée composée 

d'un système d’analyse du mouvement, de mesures de forces et des pressions plantaires.  

En complément, une première évaluation a été fournie sur la façon dont la mise en place 

d’une prothèse totale de cheville est bénéfique pour la performance biomécanique des patients 

souffrant d'arthrose post-traumatique de la cheville. 

La fonction physique évaluée chez les patients souffrant d'arthrose de cheville à l'aide 

du questionnaire SF-36 rempli par les patients était équivalente ou supérieure à celle des 

patients atteints d'insuffisance rénale terminale, d'insuffisance cardiaque congestive ou de 

douleurs au niveau des vertèbres cervicales.1,4,7 A noter que les patients souffrant d'arthrose de 

cheville sont généralement plus jeunes que ceux qui souffrent d'arthrose du genou ou de la 

hanche.1,7 L'allongement probable de la durée de vie, associé à la diminution importante de la 

qualité de vie, majore l'effet profondément néfaste de l'arthrose de cheville sur l'incapacité 

fonctionnelle des patients.4 Cependant, bien que la marche soit améliorée suite à une arthrodèse 

ou à une prothèse totale de cheville par rapport à leur situation préopératoire, les patients 

présentent toujours une altération de la fonction du membre inférieur.2,3,5,8 

Mesurer et documenter les résultats de ces interventions chirurgicales est un processus 

complexe : la première question est de savoir quel point de vue des résultats, patient ou 

chirurgien, doit être exploré. En effet, de nos jours, il existe de plus en plus de données 

probantes utilisant des mesures rapportées par les patients pour évaluer les résultats de prothèse 

totale de la cheville ou d’arthrodèses tibio-talo-calcanéennes et tibio-taliennes, reconnaissant 

l'importance d’appréhender le ressenti du patient à l'égard de sa chirurgie. Toutefois, 

l’évaluation des résultats déclarés par les patients n’est pas suffisamment affinée pour rendre 

compte de leur état de rétablissement et de leur capacité à s’adapter aux limitations 

fonctionnelles prévues ou imprévues suite à leur chirurgie.  
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Par conséquent, la première partie du présent projet de doctorat vise à présenter une 

première tentative d'évaluation et à comparer des résultats chirurgicaux après une prothèse 

totale de la cheville, une arthrodèse tibio-talo-calcanéenne et une arthrodèse tibio-talienne en 

analysant la perception du patient sur son sentiment de rétablissement (Chapitre 2).  

Ainsi, les données probantes ont montré que près de la moitié des patients ont fait état 

de meilleurs résultats postopératoires, sans symptômes résiduels, quel que soit le type de 

chirurgie pratiquée. Cela signifie également que la seconde moitié des patients souffrent encore 

de déficiences fonctionnelles et de limitations dans leurs activités de la vie quotidienne.  

Afin d'améliorer notre compréhension des déficiences fonctionnelles associées à 

l'arthrose de  cheville et aux traitements chirurgicaux connexes, la deuxième partie de ce projet 

de doctorat consiste à présenter une analyse quantitative de la crédibilité scientifique et de 

l'utilité clinique des connaissances actuelles concernant l'évaluation de l'effet biomécanique lors 

de la mise en place d’une prothèse totale de la cheville et des arthrodèses de cheville sur les 

patients atteints d'arthrose de cheville au stade terminal (Chapitre 3).  

Par ailleurs, même si l'arthrose de cheville est, dans une large mesure, liée à une 

altération de la marche,6 la revue systématique de la littérature et la méta-analyse effectuées 

dans le cadre de ce projet de doctorat ont montré que le nombre d'études qualitatives et 

prospectives sur l’analyse de la marche chez cette population est limité. En effet, il semble que 

l'évaluation objective de la marche ne soit pas suffisamment intégrée dans l'évaluation et la 

prise en charge de l'arthrose de cheville. Par conséquent, les informations sur le comportement 

du pied chez ces patients avant et après traitement chirurgical font défaut. Cependant, nous 

avons également constaté qu'il existe un manque de caractérisation de l'arthrose de cheville 

dans les études d'analyse de la marche. Cela signifie que les conséquences fonctionnelles sont 

difficiles à définir sans tenir compte des changements morphologiques et structurels du pied 

associés à l'arthrose de cheville.  

Par conséquent, le présent projet de doctorat a mis au point une plateforme d'examen 

clinique avancée qui englobe certains défis et avantages liés à la combinaison d'un système de 

capture de mouvement, d'une plateforme de force et d'une plateforme de pression plantaire. Dès 

lors, l'intégration de ces dispositifs nous a permis de créer un modèle cinétique du pied à quatre 

segments permettant d’estimer la génération ou l’absorption des puissances articulaires au 

niveau du pied et de la cheville durant la marche.  
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Le présent projet a complété la distribution intrinsèque de la puissance des articulations 

du pied par une variable "simple" qui encapsule une relation angulaire 3D entre les vecteurs du 

moment et les vecteurs de la vitesse angulaire d’une même articulation, dans le but de traduire 

les données cinétiques en une mesure "simple" de la fonction des articulations du pied pendant 

la marche (Chapitre 4). Cette première estimation du comportement cinétique des multiples 

articulations du pied a révélé qu'elles adoptent une configuration stalibilized-resistive pendant 

la majeure partie de la phase d’appui de la marche.  

À notre connaissance, aucune recherche antérieure n'a été effectuée chez des patients 

souffrant d'arthrose de cheville à l'aide d'un modèle cinématique et cinétique de pied à quatre 

segments. Cette approche a le potentiel de montrer des comportements cinématiques et 

cinétiques qu'un modèle du pied représenté par un seul segment rigide masquerait ainsi que de 

donner des informations supplémentaires sur la fonction de l'avant-pied en mesurant la 

cinématique et la cinétique des articulations de Chopart et de Lisfranc (Chapitres 5 et 6).  

De plus, le présent projet s'est intéressé au manque de caractérisation de l'arthrose de 

cheville et des déformations ostéoarticulaires associées, identifiées grâce à notre revue 

systématique de la littérature, et a incorporé des variables radiologiques statiques et 

dynamiques. Par conséquent, l'un des premiers objectifs du projet était de classer les patients 

en différents groupes en fonction de l'étiologie de leur arthrose de cheville. Ainsi, l'étiologie la 

plus courante observée chez les patients recrutés était l'arthrose post-traumatique de cheville. 

Ce sous-type d'arthrose de cheville survient le plus souvent suite aux fractures et  à l’instabilité 

chronique de cheville. Comme la nature du traumatisme est différente pour ces deux étiologies, 

on peut s'attendre à ce que les deux sous-types d'arthrose post-traumatique de cheville 

présentent une mécanique du pied différente pendant la marche. Étonnamment, nous n'avons 

trouvé aucune différence significative dans les angles et les moments articulaires du pied entre 

les deux groupes pathologiques.  

Cependant, l’exploration de la cinétique des articulations intrinsèques du pied des deux 

sous-groupes par rapport aux sujets asymptomatiques a révélé que l'altération de la mécanique 

du pied n'était pas limitée à la cheville douloureuse, mais touchait également les articulations 

voisines du pied, comme les articulations de Lisfranc et la première métatarso-phalangienne.  

Nous pensons également que l'absence de différences observées dans les angles et les 

moments articulaires du pied entre les deux groupes pathologiques pourrait s'expliquer par la 

présence de déformations concomitantes du pied et de la cheville associées à l'arthrose de 

cheville pouvant affecter la mécanique intrinsèque du pied et de l'articulation de la cheville 

pendant la marche. Par conséquent, le présent projet a étudié l'effet des déformations 
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ostéoarticulaires du pied et de la cheville mesurées radiologiquement sur la cinématique et la 

cinétique des articulations du pied et de la cheville chez des patients souffrant d'arthrose post-

traumatique de cheville.  

Ainsi, d'après les radiographies standards dites « en charge », les patients ont été classés 

en trois groupes de déformation ostéoarticulaire du pied et de la cheville (cavus, planus et 

neutre). Cette nouvelle approche du profilage des patients a alors révélé trois résultats clés :  

1) nos données semblent fournir d'autres preuves de l'interrelation entre la structure du 

pied et les modifications de la mécanique du pied ; 

2) le groupe d’arthrose de cheville présentant une déformation ostéoarticulaire de type 

cavus tente de réduire la déformation varisante intra-articulaire de la cheville au 

niveau des articulations du Chopart et du Lisfranc ; 

3) aucune différence significative des angles et des moments articulaires n'a été 

observée entre le groupe atteint d'arthrose ayant des déformations ostéoarticulaires 

de type pied plat et le groupe atteint d'arthrose sur pied normo axé.  

Dès lors, ces résultats indiquent que la désaxation de l'arrière-pied et de la cheville, tel 

qu’évalué sur un plan radiographique, influence la mécanique du pied pendant la marche chez 

les patients souffrant d'arthrose post-traumatique de la cheville. 

Enfin, une étude pilote (Chapitre 7) a été réalisée pour donner une première évaluation de 

la façon dont la prothèse totale de cheville est bénéfique pour la performance biomécanique des 

patients souffrant d'arthrose post-traumatique de la cheville. Nous avons donc étudié l'effet de 

la prothèse totale de cheville sur les angles, les moments et la puissance de l'articulation de la 

cheville à l'aide d'un modèle cinématique et cinétique de pied à un et plusieurs segments. Nos 

résultats ont révélé que la mécanique de la cheville après prothèse totale ressemble à celle des 

chevilles saines, mais que leur performance biomécanique en termes d'angles et de moments 

articulaires reste réduite par rapport aux sujets témoins asymptomatiques.  

De plus, nous avons constaté que le choix de modèle du pied peut modifier l'interprétation 

clinique pour évaluer si une intervention chirurgicale comme la prothèse totale de cheville est 

bénéfique ou non à la performance biomécanique d'un patient. Par conséquent, il est important 

sur le plan clinique d'évaluer la cinématique et la cinétique de l'articulation de la cheville à l'aide 

d'une approche de modélisation multi-segments du pied. 
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En conclusion, ce projet de doctorat vise à contribuer à une meilleure compréhension de la 

(patho) mécanique de l'arthrose de cheville par le développement d’une plateforme d'examen 

clinique avancée. L'intégration de tous les dispositifs composant cette dernière nous a permis 

de créer un modèle cinématique et cinétique du pied à quatre segments, fournissant des 

informations précieuses pour le raisonnement et l'interprétation cliniques futurs. Nous sommes 

convaincus que la combinaison d'une telle plateforme d'examen clinique avancée en association 

avec des informations cliniques et radiographiques nous aidera à mieux comprendre le 

complexe biomécanique du pied et de la cheville. 
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Abstract 

 

Ankle osteoarthritis is a degenerative joint disease characterized by significant pain and 

disability. Although gait is improved after surgery, patients still experience impaired lower limb 

function. Therefore, this doctoral project compared outcomes following common surgical 

procedures for ankle osteoarthritis by analyzing patients’ perception of recovery. Evidence 

showed that half of the patients were still experiencing functional impairments after surgery. 

To increase our understanding of functional impairment experienced by these patients, a meta-

analysis was performed to assess the biomechanical effects of total ankle replacement and ankle 

arthrodesis during gait. It showed that characterization of ankle osteoarthritis is lacking in gait 

studies and that functional consequences are difficult to define without considering the 

morphological and structural changes associated with this pathology. Therefore, homogenous 

study groups of patients were recruited based on the aetiology of ankle osteoarthritis and the 

presence of concomitant foot deformities. Analyzing the kinetics of the intrinsic foot joints of 

ankle osteoarthritis patients revealed that the impairment in foot mechanics was not restricted 

to the painful ankle joint, but also affected neighboring foot joints. Further evidence showed 

that malalignment of the hindfoot and the ankle does indeed influence foot mechanics during 

gait. Finally, a pilot study providing a first estimation of how total ankle replacement benefits 

the biomechanical performance of patients, revealed that ankle mechanics after surgery 

resembles that of unaffected ankles, but remain impaired compared to control subjects.  
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Foreword 

 

This doctoral project was initiated by Dr. Thibaut Leemrijse, Dr. Jean-Luc Besse, Prof. 

Laurence Chèze and Paul-André Deleu with a view to achieving a broader and more meaningful 

picture of the functional health of patients that are treated surgically for foot and ankle 

pathologies. For many years, the orthopaedic foot and ankle surgeons of the Foot & Ankle 

Institute (Brussels) and Dr. Jean-Luc Besse (Hospices Civils de Lyon) have had a strong 

commitment to clinical and translational research. One of the main research interests of both 

research groups is the surgical management of ankle osteoarthritis. Currently the two most 

common surgical procedures for ankle osteoarthritis are total ankle replacement and ankle 

arthrodesis. Although both procedures show good short- and mid-term outcome results, several 

complications have been reported in long-term studies. Therefore, to improve patient care, both 

research teams proposed the present research project. This project fits within the work of a 

larger interdisciplinary and multi-centric research group on foot and ankle biomechanics.  

During the last three years, as a part-time PhD student, I had the privilege to initiate the 

present multicenter study in two foot and ankle research centers (Lyon and Brussels). This PhD 

manuscript presents the preliminary results of this long-term on-going interdisciplinary and 

multi-center project. It represents also the successful collaboration of multiple disciplines (i.e., 

podiatrist, orthopaedic surgeons, engineers) required to grasp the complexity of ankle 

osteoarthritis. 

This thesis dissertation is written in English. However, in accordance to the internal rules 

and regulations of the Doctoral School, a thesis written in English requires a short and a long 

summary in French in the preliminary pages. In addition, the first chapter of this thesis 

dissertation describing the anatomy of the foot and ankle was also written in French.  
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General introduction 

 

Osteoarthritis of the ankle is a common chronic disorder characterized by progressive 

joint degeneration, significant pain and disability, affecting approximately 1% of the world’s 

adult population living with symptomatic ankle osteoarthritis.1,10,16,23,30 Post-traumatic ankle 

osteoarthritis accounts for up to 79.5% of all cases of ankle osteoarthritis.7,31 This fraction with 

post-traumatic aetiology is far greater in the ankle compared to the knee or the hip.7 Numerous 

clinical and epidemiologic studies of patients suffering from ankle osteoarthritis have identified 

previous trauma as the most common aetiology.31,36 Post-traumatic ankle osteoarthritis may be 

secondary to ankle-related fractures (post-fracture) and to chronic ankle instability (post-

sprain).31 Evidence suggests that post-fracture ankle osteoarthritis results either from 

irreversible cartilage damage which occurs at the time of the fracture, or from chronic cartilage 

overloading which occurs as a result of post-fracture articular incongruity. The evidence also 

suggests that post-sprain ankle osteoarthritis results from pathological cartilage overloading due 

to chronic joint instability.22 Less common causes of ankle osteoarthritis are rheumatoid 

arthritis, hemochromatosis, haemophilia, neuropathic arthropathy, primary osteoarthritis, post-

infectious arthritis, clubfoot deformity and avascular necrosis of the talus.35,36 

The degree of self-reported physical impairment in patients with isolated ankle joint 

osteoarthritis using the SF-36 questionnaire was equivalent to or worse than that of patients 

with end-stage hip osteoarthritis, end-stage kidney disease or congestive heart failure.1,16,30 The 

disability related to end-stage ankle osteoarthritis can represent a considerable economic burden 

for both society and the individual patient.15 Recently, a Canadian study reported an 

employment rate of 56% in patients, younger than 55 years affected by end-stage ankle 

osteoarthritis, much lower than the expected employment rate of 79.2% of an age-matched 

population.  

Significant biomechanical impairment of the entire foot and lower limb has been 

reported in patients suffering from post-traumatic ankle osteoarthritis.32,37 Their gait is 

asymmetric and characterized by a decreased walking speed, a decreased stride length and a 

reduced mobility of the ankle joint complex.38 They also seem to adopt an antalgic walking 

strategy to prevent shear loading through their painful joint.38 
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The surgical management of ankle osteoarthritis is generally reserved for failed medical 

management (i.e. assistive devices, physiotherapy, orthotics, viscosupplementation) where 

functional disability affects a patient’s quality of life.29 Currently, the “gold standard” surgical 

treatment is ankle arthrodesis, which provides good pain relief and a relatively well-

documented long-term survivalship.11,13,18,34,35 However, ankle arthrodesis leads to deficits in 

work and leisure activities and to adjacent joint degeneration,4,9,14,24,39 thought to be a 

consequence of altered mechanical loads as a result of the change in function of the ankle.4,5,9,14 

These disadvantages have encouraged the use of motion-sparing procedures such as total ankle 

replacement, the potential benefits of which are conserving the existing pre-operative ankle 

range of motion, improving gait and protecting the adjacent joints6,8,20, although the last of these 

has not yet been proven.26 Despite these persuasive arguments in favour of a total ankle 

replacement rather than an ankle arthrodesis, long-term clinical and radiological results of total 

ankle replacement are not as satisfactory as those of total hip and knee replacements.8  

Although the biomechanical performance was improved after successful total ankle 

replacement and ankle arthrodesis compared to their pre-operative situation, patients are still 

experienced impaired lower leg function.8,12,18,24,26 Recently, Pinsker and colleagues (2016) 

used advancing patient-reported outcome measures to assess if patients who had undergone a 

total ankle replacement and ankle arthrodesis could cope with ongoing residual deficits.24 Even 

though most patients reported positive post-operative outcomes, only 15% perceived 

themselves as having no residual deficits.24 This means that 85% of these patients have to make 

compensatory functional adaptations to remain capable of performing basic activities of daily 

living. These compensations are known as accessory offending motion hypermobility, which 

takes the path of least resistance of motion and is an underlying characteristic of degenerative 

joint disease.17 Studies showed secondary postoperative arthritic changes in the ipsilateral 

adjacent joints, with most degeneration occurring in the subtalar joint, followed by the midtarsal 

joints.9,33 This is the result of tissue trauma caused by repeated compensatory movements during 

activities of daily living. When these arthritic changes become symptomatic, additional surgical 

procedures will be required, exacerbating the functional deficiencies.19 Unfortunately, these 

secondary functional limitations and compensatory adaptations and their impact on structures 

of neighboring joints during activities of daily living have been little studied.  

Nowadays, there exists a growing body of evidence using patient-reported outcome 

measures to evaluate the outcome of total ankle replacement and ankle arthrodesis and 

describing levels of function from the patient’s perspective.3,25,27 However, they largely neglect 

whether patients are coping with ongoing limitations.25 In contrast, three-dimensional gait 
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analysis is the state of the art for measuring simultaneously lower limb joint kinematics and 

kinetics during activities of the daily living. Two narrative reviews of the literature show that 

three-dimensional gait analysis has a great potential for assessing the biomechanical 

performance of a surgical intervention such as total ankle replacement and ankle arthrodesis 

aimed at improving function in the foot and lower limb.2,21 

To provide a more detailed and objective description of foot and lower limb function 

during activities of daily living, quantitative measurements are needed. Quantitative evaluations 

such as three-dimensional movement analysis during gait have been used to functionally 

evaluate patients before and after a total ankle replacement and ankle arthrodesis in the 

literature.2,21,28 A major drawback, however, is the oversimplification of foot mechanics 

neglecting the complex interaction between forefoot, midfoot, hindfoot and ankle. The 

simplified representation of the foot as a single functional segment is still widely used to assess 

the impact of ankle osteoarthritis and the effect of total ankle replacement and ankle arthrodesis. 

This could lead potentially to clinical misinterpretations of how a therapeutic intervention 

benefits or degrades the biomechanical performance of patients as the estimated changes simply 

reflect methodological errors inherent in modelling the foot as a single conventional rigid 

segment.40 Consequently, information on foot behavior in patients suffering from ankle 

osteoarthritis before and after their surgical treatment is lacking. However, it may also be argued 

that characterization of ankle osteoarthritis is lacking in gait analysis studies. This means that 

functional consequences are difficult to define without considering the morphological and 

structural changes associated with the ankle osteoarthritis. 

Therefore, the present doctoral project aims at enhancing the clinical understanding of 

ankle osteoarthritis (foot dynamics) by integrating three tools (three dimensional multi-segment 

foot model, ground reaction force and plantar pressure measurements). The integration of these 

tools makes it possible to enhance interpretation of a clinical complex phenomenon such as 

ankle osteoarthritis. It allowed us to create a four-segment kinematic and kinetic foot model to 

better characterize the functional consequences of ankle osteoarthritis on the multiple joint of 

the foot. This doctoral project, in our opinion, enables detection of complex pathomechanical 

pathways associated with ankle osteoarthritis which, once determined, may become important 

diagnostic and treatment tools to improve patient care. 
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Aim of the doctoral project 

The combined assessment of intrinsic foot joint angles, moments and power during 

walking in patients suffering from ankle osteoarthritis is assumed to be of clinical interest, 

however, this is not yet clearly defined and originates mainly from the anecdotal experience. 

The aim of this doctoral project was to combine different methodologies in an advanced clinical 

examination platform and to explore the potential clinical usefulness. Interpretation of the 

results provided by the platform, should always consider the morphological and structural 

changes associated with the ankle osteoarthritis. It is hypothesized that the use of the platform 

will contribute to a better understanding of foot and ankle biomechanics in patients suffering 

from ankle osteoarthritis. This was investigated in a survey study, a critical analysis of the 

literature and clinical studies.  

The aim of the survey study was to provide a first assessment and comparison of surgical 

outcomes following total ankle replacement, tibio-talo-calcaneal, and tibiotalar arthrodeses by 

capturing patients’ perception of their feeling of recovery. The question “Are you better ?” is 

of primary importance for a clinician, giving the patient’s a critical appraisal of the patient on 

the effect of their surgical treatment.   

The critical analysis of the literature addressed a number of methodological 

considerations associated with the development of the advanced clinical examination platform.  

The specific objectives and questions of this critical analysis of the literature were:  

1) To explore the existing literature on ankle osteoarthritis and its surgical treatments 

2) To explore how inclusion criteria were defined for ankle osteoarthritis 

3) To explore how concomitant foot and ankle deformities associated with ankle 

osteoarthritis were assessed 

4) To investigate if a single rigid foot model or a multi-segment foot model was used 

5) To determine whether total ankle replacement patients maintain or improve their pre-

operative dorsi-/plantarflexion ankle motion during gait?  

6) Do total ankle replacement and ankle arthrodesis patients improve their foot mechanics 

relative to their pre-operative state? 
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Subsequently, the development of the advanced clinical examination platform to assess the 

foot and ankle biomechanics of patients suffering from ankle osteoarthritis was initiated. The 

specific objectives of the development of the platform were: 

1) The integration and synchronization in time and in space of a motion capture system, a 

force plate and a plantar pressure plate, identical in 2 different locations (Lyon & 

Brussels) to initiate a multi-center study 

2) The development of an in-house made Matlab© program. Due to the multi-dimensional 

feature of the integrated measurement protocol, a program that allows handling of the 

crucial clinical parameters was developed. An innovative step in our in-house made 

Matlab© program was the development of a multi-segment kinematic and kinetic foot 

model. 

Finally, the possible value of the advanced clinical examination platform in increasing the 

clinical insight in foot biomechanics of patients suffering from ankle osteoarthritis was 

assessed. The specific objectives and hypotheses of this clinical part were :  

1) To estimate the intrinsic foot joint kinematics and kinetics using a four-segment foot 

model as well as characterizing the three-dimensional angular relationship between the 

joint moment and the joint angular velocity vectors, in an attempt to provide a “simple” 

measure of the  function of intrinsic foot joints during gait 

2) To compare the foot kinematics and kinetics of patients suffering from post-fracture 

ankle osteoarthritis to patients suffering from post-sprain ankle osteoarthritis. In 

supplement, each pathologic group was individually compared to an asymptomatic 

group of peer-matched control subjects. 

3) To investigate the effect of ankle and hindfoot malalignment on the gait kinematics and 

kinetics of multiple joints of the foot and ankle complex in patients suffering from post-

traumatic ankle osteoarthritis 

4) To investigate the effect of total ankle replacement on the ankle joint angles, moments 

and power assessed with a one-segment and multi-segment kinematic and kinetic foot 

models 

5) To compare the outcome difference in ankle joint angles, moments and power from 

preoperative to postoperative condition between the two modelling approaches in 

patients treated surgically by a total ankle replacement.  
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INTRODUCTION 

 

Nous avons naturellement tendance à envisager les choses que nous ne connaissons pas en 

faisant des analogies avec celles que nous connaissons et que nous comprenons. 

Il est logique de penser que la roue tourne autour d’un axe ; comme il semble facile de 

comprendre que la cheville permet un mouvement de flexion extension et l’image d’une 

charnière nous vient alors à l’esprit. Cependant, les forces axiales que subit la région talonnière 

lors de chaque pas doivent se transformer en énergie, sans aucune lésion tissulaire, pour nous 

permettre de quitter l’avant pied et les orteils sous une forme propulsive. 

 Il est donc utile d’avoir une bonne représentation de l’anatomie du pied et de la cheville 

afin de mieux en comprendre les notions biomécaniques et ses explorations décrites dans ce 

projet de doctorat.  

Sous le terme « anatomie » nous évoquerons successivement et très succinctement les 

structures osseuses, ligamentaires et tendineuses. Nous mettrons volontairement de côté des 

éléments aussi essentiels que les structures vasculaires, artérielles ou veineuses, la peau et son 

tissu sous-cutané. De même, la description des éléments neurologiques ne sera pas abordée.  

Les structures articulaires sont recouvertes par des zones cartilagineuses qui représentent 

des surfaces de glissement. Le cartilage est donc soumis à des contraintes et tout excès risque 

d’entraîner une détérioration de cette surface de glissement et finalement, voir apparaître 

l’arthrose.  

Quant à elles, les structures ligamentaires réunissent entres elles les différentes pièces 

osseuses et donnent passivement la rigidité et la stabilité à notre structure anatomique. Là aussi, 

tout excès de contrainte, par défaut d’axe ou d’alignement, peut être à l’origine d’une faillite du 

système et sera révélé par une laxité articulaire. Ce mécanisme de laxité peut expliquer lui aussi 

les phénomènes d’arthrose par perte de congruence des surfaces articulaires. 

Les structures tendineuses sont actives et permettent d’animer le pied et la cheville, elles 

génèrent donc le mouvement. Les muscles à l’origine de chaque tendon sont définis comme 

extrinsèques lorsque leur corps est situé en dehors du pied c’est à dire dans la jambe et sont 

principalement propulseurs. Les intrinsèques sont situés à l’intérieur du pied entre le calcanéus 

et leur point d’insertion tendineuse ; ils sont alors plutôt stabilisateurs. Les forces qui animent 

les tendons doivent idéalement être synchronisées et harmonieuses lors du déroulement du pas 

au risque de provoquer un déséquilibre. 
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ANATOMIE GENERALE 

Globalement, on définit différentes régions au niveau du pied et de la cheville. On considère 

comme « cheville », la région tibio-talienne caractérisée par l’extrémité distale du tibia et de la 

malléole fibulaire (malléole externe) et le talus (anciennement appelé astragale). Cette région 

est privée de toutes insertions tendineuses. Cette véritable pince s’appuie sur la surface 

articulaire du talus, qui lui-même s’assoie sur le calcanéus, os de la région talonnière. 

Entre ces os, talien et calcanéen, existe deux zones articulaires ; la postérieure est appelée 

articulation sous talienne proprement dite et l’antérieure se prolonge au niveau de l’articulation 

dite de Chopart à laquelle participe l’os naviculaire situé plus antérieurement. L’ensemble de 

ces structures osseuses sont reliées par un système ligamentaire complexe et forment les 

structures osseuses de la région de l’arrière-pied. 

La partie du « médio-pied » est caractérisée par la présence osseuse de l’os naviculaire situé 

en avant de la tête talienne. Le cuboïde est comme son nom l’indique, de forme cubique situé à 

la partie antérieure du calcanéus et en relation latérale et plantaire par rapport à l’os naviculaire. 

Les trois cunéiformes sont situés à la partie antérieure du naviculaire. Le 3e cunéiforme a 

lui aussi une relation articulaire latérale avec la partie supérieure du cuboïde. 

L’articulation transverse dite de « Lisfranc » délimite antérieurement le médio-pied à 

« l’avant pied » qui est formé de cinq métatarsiens relativement parallèles à la suite desquels se 

prolongent les orteils composés de deux phalanges au niveau du premier rayon et de trois 

phalanges au niveau des petits orteils. 

MOUVEMENT DU PIED ET DE LA CHEVILLE 

 

La forme de chaque os détermine la création de mouvements complexes qui ne sont jamais 

des rotations ou des translations pures mais toujours une combinaison des deux. 

Le mouvement de la cheville pourrait être considéré comme un des plus simples au niveau 

de l’arrière-pied. Cependant, il semble difficile de le définir comme un cylindre autour d’un 

axe de rotation comme on peut le retrouver au niveau d’une charnière. En effet, l'articulation 

de la cheville, d'un point de vue ostéologique et syndesmologique, est une articulation 

essentielle pour la fonction de flexion dorsale et plantaire du pied par rapport à la jambe. Le 

talus est un os clé de la jonction entre le pilon tibial et les articulations de l'arrière-pied. 

L’extrémité distale du tibia appelée également pilon tibial comprend une surface articulaire 

supérieure et une surface sur la malléole médiale. Cette surface articulaire est complétée 

latéralement par la malléole fibulaire pour former la pince bi-malléolaire qui est une structure 
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dynamique. Elle s’appuie sur l’os talien, dont on peut différencier le corps et le col, et est 

caractérisée par la présence de surfaces articulaires multiples que ce soit sur sa partie supérieure 

en rapport avec la pince bi-malléolaire ou sur sa partie inférieure en rapport avec la surface 

articulaire du calcanéus. Cette région représente le corps. La partie antérieure de l’os considérée 

comme le col se termine par une tête elle aussi recouverte d’une surface articulaire en relation 

avec la concavité de l’os naviculaire.  

Les relations articulaires de la cheville entre le pilon tibial et le talus ne sont pas cylindriques 

mais variables et l’analogie doit plutôt être faite par rapport à un segment tronconique 

définissant cependant un mouvement dont le centre rotatoire n’est pas fixe. De plus, la forme 

antéro-postérieure de la surface articulaire du talus n’est pas parallèle et se trouve plus large 

dans la partie antérieure que postérieure. Ceci oblige la pince bi-malléolaire à s’ouvrir lors des 

mouvements de flexion dorsale et de se refermer lors des mouvements de flexion plantaire. Ce 

jeu dynamique de la pince bi-malléolaire est autorisé par les mouvements complexes de 

l’articulation syndesmotique située entre le tibia et la malléole fibulaire qui est elle-même 

stabilisée par les ligaments syndesmotiques qui autorisent de fins mouvements de rotation-

ascension de la malléole fibulaire lors des mouvements de flexion-extension de la cheville. 

L’anatomie de l’articulation sous talienne est elle aussi complexe à évoquer. Comme 

souligné précédemment, il existe des surfaces articulaires situées entre le talus et le calcanéus 

délimitées par un puissant ligament inter-osseux qui a été comparé à une haie élevée entre les 

deux secteurs articulaires. Le calcanéus, au niveau de sa structure osseuse, est lui-même défini 

par la tubérosité que représente la partie postérieure saillante du talon, et le site d’insertion du 

puissant tendon calcanéen (Achille). L’os se prolonge ensuite par son apophyse antérieure en 

relation avec le cuboïde et médialement une apophyse de soutien asymétrique appelé 

sustentaculum tali, région qui participe au soutien de la tête talienne. Cette morphologie, 

totalement asymétrique, présente de multiples variantes morphologiques qui expliquent 

parfaitement le polymorphisme que l’on peut retrouver au niveau des formes de l’arrière-pied. 

Une région talonnière déformée latéralement, ou en dehors, caractérisera ce qu’on appelle un 

valgus de l’arrière-pied et à l’inverse, une déformation médiale ou en dedans, caractérisera le 

varus de l’arrière-pied. Ces déformations relatives de l’arrière-pied accentueront ou pas le 

porte-à-faux qui caractérise la structure architecturale de l’arrière-pied. Il est probable que les 

formes de rayon de courbure articulaire favorisent une stabilité ou une instabilité rotatoire plus 

ou moins importante entre le talus et le calcanéus. Une insuffisance de soutien au niveau du 

sustentaculum tali favorisera l’instabilité de la tête talienne qui aura tendance à caractériser un 

pied plat et inversement la superposition de l’os talien au-dessus du calcanéus caractérisera le 
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morphotype de pied creux. On comprend immédiatement que le démembrement de morphotype 

de pied ou de structure osseuse que ce soit par l’anatomie palpatoire, par l’analyse des 

radiographies ou du CT-scanner, aura un impact fondamental sur la biomécanique du pied et 

inversement.  

D’un point de vue grossièrement biomécanique, on comprendra que la résultante de force 

du tendon calcanéen sera modifiée sur l’ensemble du pied et de la cheville lorsqu’il existe une 

désaxation ou un défaut d’alignement de l’arrière-pied en valgus ou en varus. Les rétractions 

tendino-musculaires que l’on peut retrouver au niveau du triceps qui anime ce tendon calcanéen, 

elles aussi, auront un impact positif ou négatif sur les mouvements articulaires de l’arrière-pied 

et du médio-pied. 

Au niveau ligamentaire, un puissant système unit les différentes malléoles aux os de 

l’arrière-pied. Au niveau médial ou interne, on retrouve une structure fondamentale appelée 

ligament collatéral médial qui stabilise intimement la malléole médiale à la face interne du talus 

sur ses fibres profondes et le sustentaculum tali sur ses fibres superficielles. Ce ligament se 

prolonge antérieurement jusqu’au bord médial du naviculaire et complète, sous forme de 

hamac, le soutien de la tête talienne en prolongeant le sustentaculum tali dans sa région 

plantaire. Cette partie ligamentaire plus communément appelée « spring ligament » sera très 

souvent retrouvée comme déficiente lorsqu’il existe une déformation en pied plat. 

Au niveau latéral de la cheville, il existe également un complexe ligamentaire caractérisé 

par trois ligaments principaux, un faisceau antérieur entre la malléole fibulaire et le talus, un 

faisceau moyen entre la malléole fibulaire et le calcanéus, et un faisceau postérieur lui aussi 

talo-fibulaire. Ces structures stabilisatrices passives seront elles aussi plus ou moins sollicitées 

en fonction de l’alignement présent ou absent au niveau de l’arrière-pied. 

Comme déjà évoqué pour le tendon calcanéen, les structures tendineuses extrinsèques 

glissent dans des gouttières para malléolaires postérieures latérales et médiales à l’arrière-pied. 

Les tendons fibulaires sont situés dans la partie latérale de la cheville et s’insèrent sur la partie 

haute de la fibula et de la membrane inter-osseuse au sein de la jambe. Ils se réfléchissent au 

niveau de la malléole fibulaire et participent donc indirectement aux mouvements de celle-ci 

lors de la flexion-extension de la cheville. Ils se terminent respectivement au niveau de la base 

du cinquième métatarsien pour le fibulaire court et à la base du premier métatarsien pour le 

fibulaire long. Ils se distinguent autour du tubercule latéral du calcanéus qui sera lui aussi un 

point de repère important lors de la palpation de sa structure osseuse. De plus, ils ont une 

relation intime avec les structures ligamentaires latérales dont ils pondèrent la tension lors des 

mouvements de la cheville et de l’arrière-pied. 
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Dans la partie médiale de la cheville, on retrouve le tendon du tibial postérieur qui termine 

son insertion sur le bord interne ou médial du naviculaire et participe dès lors à la stabilité de 

l’arche médiale du pied. Sa gaine répond, elle aussi intimement sous sa face profonde, aux 

fibres superficielles du complexe ligamentaire médial et donc au spring ligament. Le tendon 

fléchisseur de l’hallux semble également un vecteur fonctionnel non équivoque. Il est issu de 

la face postérieure de la jambe et après s’être réfléchi sur le bord postérieur du talus, il glisse 

sous la partie plantaire du sustentaculum tali. A ce niveau, lors de sa contraction, il exerce une 

force dynamique d’élévation de cette apophyse calcanéenne médiale. Il entraîne ou stabilise dès 

lors indirectement un mouvement de valgus au niveau de la tubérosité calcanéenne. Son 

insertion se termine au niveau de la base de la phalange distale du gros orteil sur laquelle il 

génère une force de propulsion fondamentale lors de la phase terminale du pas. 

L’articulation sous talienne antéro-médiale est en continuité avec la surface articulaire de 

la tête talienne s'opposant à la concavité articulaire du naviculaire. Elle est renforcée, comme 

nous avons pu le voir, par la gaine et le tendon du tibial postérieur. Il existe donc 

anatomiquement, au niveau sous talien, une articulation individualisée en postérieur et une 

articulation antéro-médiale poly-articulaire où interviennent d'importants ligaments de soutien 

(spring ligament) en continuité avec la concavité naviculaire qui reçoit la tête du talus. Cette 

région anatomique appelée communément articulation de Chopart représente la jonction entre 

les os dit de « l’arrière-pied » et ceux du « médio-pied ». Si la description anatomique en est 

relativement simple, son examen clinique et son exploration mécanique semblent beaucoup 

plus compliqués. Elle participe de façon évidente à la jonction et à la transmission des forces 

axiales de la jambe vers la partie antérieure du pied dont l’avant-pied est caractérisé par sa 

palette métatarsienne où l’on retrouve uniquement des forces de propulsion. 

Le segment du médio-pied dont la mobilité du Chopart est difficile à évaluer cliniquement 

présente relativement peu de mobilité et il existe, à l’opposé de la surface articulaire avec le 

talus au niveau du naviculaire, une surface articulaire qui reçoit la base des trois os cunéiformes. 

Ces trois surfaces reçoivent le nom de ligne innominée. Il n’existe sur cette interligne 

pratiquement aucune mobilité reconnue. Le 3e cunéiforme par contre, oppose en direction 

latérale et plantaire, une surface articulaire avec le cuboïde où là aussi des mouvements peu 

décrits se rencontrent. 

La partie distale des surfaces articulaires des cunéiformes et du cuboïde s’oppose aux bases 

des cinq métatarsiens au niveau d’une ligne transverse appelée communément articulation de 

Lisfranc. 
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Le clavier métatarsien est caractérisé par une mobilité franche entre le premier cunéiforme 

et la base du premier métatarsien. Cette articulation cunéo-métatarsienne du premier rayon 

présente des mouvements composites de flexion-adduction, extension-abduction d’une dizaine 

de degré et participe de façon formelle à la stabilité de l’arche médiale du pied. Cette articulation 

est renforcée par de puissants ligaments plantaires entre les cunéiformes et la base du premier 

métatarsien. Sur la base de cette dernière, au niveau plantaire s’insère le tendon terminal du 

tendon long fibulaire qui, après s’être déroulé sur la face latérale du pied, se réfléchit sur la 

gouttière cuboïdienne pour traverser ensuite la voûte plantaire. Son action franche est celui d’un 

stabilisateur de la base du premier métatarsien avec un mouvement de flexion du premier rayon. 

La base du 2e et du 3e métatarsien s’enclave de façon rigide stable avec son cunéiforme 

respectif. Latéralement, le 4e et le 5e métatarsien s’opposent à la surface articulaire du cuboïde 

avec un secteur de mobilité de 20 à 30°en flexion-extension. Sur la base du 5e métatarsien, on 

décrit la styloïde métatarsienne qui est elle aussi un élément palpatoire essentiel du bord latéral 

du pied et le site d’insertion du tendon terminal du court fibulaire. 

Dans la région dite de l’avant-pied, la palette métatarsienne se termine par des surfaces 

articulaires de type condylienne qui s’appuient sur une structure capsulo-ligamentaire 

fondamentale appelée la plaque plantaire. Les plaques plantaires sont des structures fibro-

cartilagineuses en forme de hamac en continuité intime avec la partie plantaire des bases 

phalangiennes des différents orteils. La structure la plus développée est la plaque plantaire du 

premier rayon dans laquelle s’insère les os sésamoïdiens afin d’en renforcer sa structure et d’y 

permettre l’insertion des différents muscles intrinsèques qui stabilisent partiellement le premier 

rayon. 

Lors de la phase de propulsion, il est communément admis que les têtes métatarsiennes 

roulent au sein de ces plaques plantaires en maintenant, lorsqu’il n’existe pas d’anomalie 

anatomique, les orteils plaqués en appui au niveau du sol. Ces plaques plantaires sont reliées de 

façon intime à un réseau fibreux en continuité évidente avec l’aponévrose plantaire et la peau 

et qui fait le lien rigide et plantaire entre les structures de l’avant-pied et de l’arrière-pied. On 

voudrait décrire plus loin cette région d’amortissement-cisaillement dont les relations sont 

intimes par ce réseau fibreux à la structure cutanée et entrelacé du tissu graisseux noyé 

d’éléments veineux ; mais nous nous le sommes interdit dans l’introduction. 

L’aponévrose plantaire est donc une structure fondamentale divisée en trois composants : 

un médial, un central et un latéral. L’aponévrose est une structure rigide peu déformable insérée 

sur la tubérosité du calcanéus qui s’étend progressivement en éventail pour s’insérer au niveau 

des différentes structures fibro-cartilagineuses de l’avant-pied dont principalement les plaques 
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plantaires. Son rôle est fondamental dans la stabilité du pied et évite grossièrement 

l’effondrement de la structure osseuse en arche lors de sa mise en contrainte par le poids du 

corps. 

Ce mécanisme est renforcé par l’ensemble des muscles intrinsèques du pied, bien présent 

au niveau du premier rayon sous forme de court fléchisseur, d’abducteur et d’adducteur de 

l’hallux. Les muscles interosseux sont de courtes structures musculaires insérées entre les 

métatarsiens qui se terminent sur les bases des premières phalanges des orteils. On retrouve 

également les courts fléchisseurs qui donnent un effet de flexion de la phalange par rapport à 

l’articulation métatarso-phalangienne. 

 

CONCLUSION 

 

Ce survol extrêmement simplifié et rapide de la richesse de l’anatomie du pied et de la 

cheville nous évoque toute la complexité de cet organe proprioceptif qui nous permet 

d’effectuer des performances décrites comme simples lors de la marche mais beaucoup plus 

complexes lors de la course, du sport ou de l’adaptation sur des terrains irréguliers. Le but n’est 

pas de donner une description structurée de l’anatomie mais uniquement d’en survoler les 

caractéristiques complexes et intriquées qui justifient la mise en œuvre d’examen et d’analyse 

paracliniques extrêmement sophistiqués afin de pouvoir comprendre et déterminer au mieux la 

fonction relative de chacun de ses segments ou régions. 
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ABSTRACT 

 

Background: Total ankle replacement (TAR), tibio-talo-calcaneal (TTC), and tibiotalar 

(TT) arthrodeses are common surgical procedures used to treat end-stage ankle osteoarthritis. 

Patient-reported outcome measures (PROMS) are increasingly used to evaluate these surgeries. 

However, they lack at capturing patients’ perceived recovery state and ability to cope with 

potential functional limitations. Therefore, this study aimed at evaluating and comparing the 

postoperative surgical outcome of TAR, TTC, and TT arthrodeses by considering 3 PROMS, 

satisfaction rate and a self-reported perceived recovery state.  

 

Methods: This study consisted of a cross-sectional survey aiming at retrospectively 

analyzing patient postoperative satisfaction and PROMS (FAOS, FFI and SF-12) following 

TAR (n = 51), TTC (n = 51) and TT (n =50). In addition, each patient was asked to classify 

himself in one of the following self-reported perceived recovery statements: ‘Recovered-

Resolved’ (better with no symptoms or residual effects); ‘Recovered-Not Resolved’ (better with 

some residual effects); ‘Not Recovered’ (not better). Comparisons were performed between 

surgeries and between patients’ perceived recovery groups.  

 

Results: Almost 50% of the patients reported themselves in the ‘Recovered-Resolved’ 

group. Recovered-Resolved group showed higher patient satisfaction and PROMS scores 

compared to Recovered-Not Resolved and to Not Recovered groups. However, TAR group did 

not show higher satisfaction and better PROMS scores compared to the two arthrodesis groups. 

Finally, no difference in distribution of patients’ perceived recovery state was observed between 

the surgeries. 

 

Conclusion: Almost half of the patients reported better postoperative outcomes with no 

symptoms or residual effects independent of the type of the surgery that was performed.  
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BACKGROUND 

 

Ankle osteoarthritis is a progressive and degenerative joint disease. The etiology of 

osteoarthritis is frequently posttraumatic or secondary to chronic ankle instability which can be 

associated with a malalignment of the hindfoot.7,9 It is characterised by severe pain, loss of 

autonomy, functional limitations, diminished health-related quality of life, and, in later stages, 

an inability to perform daily tasks.1,14,23 Saltzman et al. (2006) have measured the degree of 

physical impairment in patients suffering from ankle osteoarthritis, end-stage kidney disease 

and congestive heart failure using the SF-36.22 They showed that the degree of physical 

impairment in these different groups were similar suggesting that suffering from ankle 

osteoarthritis can be considered as a severe disabling medical problem.22 Currently, tibiotalar 

arthrodesis, tibio-talo-calcaneal arthrodesis and total ankle replacement are the three common 

surgical solutions proposed for end-stage debilitating ankle osteoarthritis. Both procedures aim 

at removing pain and maintaining a satisfactory function of the lower limb.15  

Measuring and documenting the outcome of these surgical procedures is a complicated 

process. The first question that needs to be addressed is whose perspective (patient versus 

surgeon) of outcomes should be explored. From a clinical point of view, the most common 

methods of assessment of surgical procedures for end-stage ankle osteoarthritis are clinical 

range of motion, radiographic measurements, alignment and quantitative data such as three-

dimensional gait analysis.17 In contrast, patient’s definition of surgical outcome will vary from 

a patient to another and will be based on personal issues that are pertinent to him such as 

resuming physical activities or pain relief. Nowadays, there exists a growing body of evidence 

using patient-reported outcome measures (PROMS) to evaluate the outcome of total ankle 

replacement (TAR), tibio-talo-calcaneal (TTC), and tibiotalar (TT) arthrodeses recognizing the 

importance of capturing the patient’s perspective of his surgery.2,19,26,28 However, these 

PROMS are not sufficiently fine-tuned to capture patients’ perceived recovery state and ability 

to cope with the expected and or un-expected potential functional limitations after their surgery. 

When assessing surgical outcome, surgeons should wonder which impairment and limitation 

does the patient experience and whether the patient will be able to adapt and perform his desired 

daily activities after surgery. In fact, discrepancies may be observed between the clinical and 

radiographic results and the actual patient satisfaction. 

Recently, Pinsker et al. (2016) evaluated both ankle arthroplasty and arthrodesis by 

comparing PROMS (using the SF-12, the EuroQol-5, the SMFA and the AOS scores) to the 
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self-reported patient-perceived recovery state regarding residual impairments and limitations.19 

They showed a concordance between the results of the different outcome measures and the self-

reported patient-perceived recovery state despite a non-homogeneous distribution between 

TAR (n = 85) and TT arthrodesis (n = 15). 

Therefore, the present study aimed at evaluating and comparing the surgical outcome of 

TAR, TTC, and TT arthrodeses by considering 3 PROMS (SF-12, FAOS and FFI), a general 

satisfaction percentage, and a self-reported classification measuring whether the patient can 

cope with ongoing symptoms or limitations [i.e.: 1. Recovered-Resolved (R-R); 2. Recovered, 

not Resolved (R-NR); 3. Not Recovered (NR)]. Three hypotheses were tested in this study. 

First, it was expected that R-R patients would obtain high satisfaction scores and present no or 

low difficulties in performing activities of daily living (ADL), that R-NR patients would have 

midrange satisfaction and difficulties in performing ADLs, and that NR patients would report 

low satisfaction and high difficulties in performing ADLs. Secondly, TAR patients would report 

higher satisfaction, and no or lower difficulties in performing ADLs compared to TT or TTC 

patients. Finally, it was expected that R-R group would be composed of a majority of TAR 

patients. 

 

MATERIALS & METHODS 

Study Design and Sampling 

Participants in this study were all operated in the same hospital by 2 senior orthopaedic foot 

and ankle surgeons between April 2010 and March 2017. Patients were eligible to take part in 

this study if they had (1) undergone TAR, TTC or TT for post-fracture ankle osteoarthritis (PF 

OA), ankle osteoarthritis due to chronic ankle instability (Insta OA) and idiopathic ankle 

osteoarthritis (Idiop OA), (2) a minimum of 12 months follow-up, (3) 18 years of age or older 

and (4) the ability to complete the requested survey. Patients suffering from inflammatory 

arthritis (lupus, haemochromatosis, rheumatoid arthritis), diabetic osteoarthropathy and 

neurological diseases were excluded from this study. The rationale for this exclusion criteria is 

that differences in issues of importance have been found between foot surgery patients with and 

without rheumatoid arthritis.24 Based on these criteria, potential eligible patients were contacted 

by phone. Criteria to take part in this study were explained and consent was obtained prior to 

the study. A survey was then sent to them for completion. The study was approved by the local 

ethics committee. 
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Survey Content 

Demographic items: Patients were asked to provide demographic data including age, 

gender, height, weight, and actual or last professional occupation which was classified as 

physical (farmer, plumber, ...) or sedentary (secretary, accountant, ...) activity (Table 2.1). 

 

Self-reported Recovery State: Patients were then asked to select one of the three statements 

that best described their self-perceived recovery state.3,19 Patients classified themselves as 

‘Recovered-Resolved’ (R-R) [i.e.: I’m better with no symptoms or residual effects], 

‘Recovered, Not Resolved’ (R-NR) [i.e.: I’m better but I experience some residual effect. 

Nevertheless, I have figured out ways to avoid them or can cope/live with them] and ‘Not 

Recovered’ (NR) [i.e.: I’m not better at this point in time].  

 

Satisfaction: Overall satisfaction was evaluated postoperatively based on 3 items: (1) ability 

to perform daily activities; (2) symptom relief defined by the fact that the ankle can be forgotten; 

and (3) decreased physical pain. Patients were asked to rate these items on a 5-point scale (i.e.: 

0 = very dissatisfied; 1 = dissatisfied; 2 = neither satisfied nor dissatisfied; 3 = satisfied, as 

expected; 4= very satisfied, better than expected).3,24 

 

Functional Status: To assess functional abilities, patients were asked postoperatively to 

complete the Foot Functional Index (FFI) which is a reliable and valid scale to evaluate the 

effectiveness of a treatment in patients with conditions affecting the foot and ankle.5,20,25 This 

score was rated by postoperative TAR and TT patients as the most likely to change due to 

surgery compared to frequently used PROMS such as AOS, AOFAS, LEFS, WOMAC and 

SFMA.18 The Foot Function Index is scored from 0 to 100, with a lower score representing a 

better outcome. In addition, the FFI was completed by 3 additional criteria from the Foot and 

Ankle Outcome Scale (FAOS) relating to symptoms (swelling and stiffness) and pain 

frequency.8,21 The FAOS is scored from 0 to 100, with a higher score representing better scores.  

 

Health Status: To measure health-related quality of life, patients completed postoperatively 

the Short Form-12 version (SF-12). This questionnaire consisted of twelve questions measuring 

8 health domains to assess physical and mental health.11,14,27 High scores represent better mental 

and physical health. SF-12 was found to be a satisfactory  psychometrical tool for the 

assessment of health-related quality of life in patients suffering from end-stage ankle 
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osteoarthritis and their related surgical treatments.12,14,16 Moreover, the physical component of 

SF-12 is strongly correlated with the physical component of the SF-36 which is well supported 

by evidence of reliability, validity, and responsiveness for patients suffering from ankle 

osteoarthritis.12,14  

Statistical Analysis 

The skewness and kurtosis scores were calculated and compared to the results of the 

ShapiroWilk tests to determine whether the variables were normally distributed. If 

discrepancies were found between the results for the same variable, data was plotted to make 

an informed decision about the (non-) normality of the data. Depending on the data distribution, 

the one-way ANOVA test (normal distribution) or the Kruskal-Wallis test (non-normal 

distribution) were used to determine if there were any statistical difference for each variable 

between the 3 surgical procedures and the 3 self-reported recovery groups. In the case of normal 

distribution, if a significant difference was found for a variable between the 3 surgical procedure 

groups, the Gabriel’s post hoc test was used to indicate groups’ differences as group sizes were 

slightly unequal [i.e.: TAR (n = 51) ;  TTC (n = 51) ; TT (n = 50)]. However, in the case of 

normal distribution, if a significant difference was found for a variable between the 3 recovery 

groups, Games-Howell’s post hoc test was performed to detect groups’ differences as sample 

sizes were unequal [i.e.: R-R (n = 75) ; R-NR (n = 62) ; NR (n = 15)]. In the case of non-normal 

distribution, if a significant difference was found between groups, Dunn’s post hoc test was 

carried out on each pair of groups.  To test the third hypothesis in this study, Pearson’s chi 

square test was used to determine if there is a significant association between the self-reported 

recovery state and the surgical procedure groups. Statistical significance was set at P ≤ .05 and 

the SPSS Statistics software (Version 25) was used to analyse data (SPSS Inc., Chicago, Illinois, 

USA). 

 

RESULTS 

Sample Description 

Searching the foot and ankle registry of our department identified two hundred fourteen 

eligible patients. Inspection of the visit notes allowed us to exclude 24 participants due to death 

(n=3) and invalid contact details (n=21). In addition, two participants refused to participate in 

the study. Of the 188 participants who consented to participate, 152 participants (TAR n=51; 
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TTC n=51; TT n=50) completed and responded accurately to the questionnaire, representing 

80% valid response rate. 

The final sample (n= 152; 51.3% female) had a mean age of  62.5 ± 12 years (mean±SD) 

and had a mean body mass index of 28.5 ± 5.5 kg/m2. The preoperative diagnosis was post-

fracture osteoarthritis (PF OA) in 107 (70.4%) ankles, osteoarthritis due to chronic ankle 

instability (Insta OA) in 30 (19.7%) ankles and idiopathic osteoarthritis (Idiop OA) in 15 (9.9%) 

ankles (Table 2.1 & 2.2). Professional activities were classified as sedentary in 63.8% of the 

participants. The mean postoperative follow-up duration was 46 ± 20.8 months (Tables 2.1 & 

2.2). 

 

Sample Description by Recovery Group 

There was a significant difference in patient’s age between the self-reported recovery 

groups [F(2, 149) = 8.23, P < .001, ω = 0.29] ; R-R group was significantly older than the R-

NR group (P = .002) and the NR group (p = .009). No statistical difference was found for age 

between the R-NR group and the NR group. There was also no significant difference in BMI 

[H(2) = 3.38, P = .184] and in follow-up duration [H(2) = .154, P = .926] between recovery 

groups (Table 2.1). No significant association was observed between the preoperative diagnosis 

and the self-reported recovery groups (χ² (4) = 2.78, P = .596). 

 

Sample Description by Surgical Procedure 

There was a significant difference in patients’ age between the surgical procedures [F(2, 

149) = 12.08, P < .001, ω = .36]; TT patients were significantly younger than TAR (p < .001) 

and TTC patients (P = .028) (Table 2.2). No significant difference in BMI was observed 

between the three types of interventions [H(2) = 5.44, P = .066]. However, there was a 

significant difference in follow-up duration between the different types of surgery [H(2) = 

17.49, P < .001] ; TAR patients had a significant longer follow-up duration (55.7 ± 21.3) than 

TTC patients (44.5 ± 21.3; P = .025, r = .21), and TT patients (37.7 ± 15.5; P < .001, r = .33) 

(Table 2.2). A significant association was found between the preoperative diagnosis and the 

types of surgical procedures (χ² (4) = 17.07, P = .002). 
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Table 2-1 : Demographic description by recovery groupa 

 

R-R 

(n=75 ; 49.3%) 

R-NR 

(n=62 ; 40.8%) 

NR 

(n=15 ; 9.9%) 

Total Sample  

(n = 152 ; 100%) 

Gender (n, % F) 33 (44%) 33 (53.2%) 12 (80%) 78 (51.3%) 

Age (Y) *,*** 66.3 ± 10.8 (36-85) 59.3 ± 12.6 (30-85) 57.1 ± 9.6 (42-72) 62.5 ± 12 (30-85) 

Prof (n, % Sed) 48 (64%) 37 (59.7%) 12 (80%) 97 (63.8%) 

BMI 27.9 ± 4.7 29.5 ± 6.3 27.2 ± 5.52 28.5 ± 5.51 

Follow-up (months) 46.5 ± 20.9 (13-96) 45.5 ± 21.1 (14-93) 45.9 ± 20.5 (13-68) 46.0 ± 20.8 (13-96) 

Pre-operative 

diagnosis     

PF OA (n, %) 50 (66.7%) 45 (72.6%) 12 (80%) 107 (70.4%) 

Insta. OA (n, %) 17 (22.7%) 10 (16.1%) 3 (20%) 30 (19.7%) 

Idiop. OA (n, %) 8 (10.7%) 7 (11.3%) 0 (0%) 15 (9.9%) 

Abbreviations: *, significant difference between R-R and R-NR ; ***, significant difference between R-R and NR 

; R-R, Recovered- Resolved ; R-NR , Recovered, Not Resolved ; NR, Not Recovered ; F, female ; Y, year ; Prof, 

profession ; Sed, Sedentary ; BMI, Body Mass Index ; M, Months ; PF OA, Post-Fracture Ankle Osteoarthritis ; 

Insta. OA, Ankle osteoarthritis due to chronic ankle instability ; Idiop OA, Idiopathic ankle osteoarthritis. 
aUnless otherwise stated, values refer to mean ± standard deviation (range). 

 

Table 2-2 : Demographic description by surgical procedurea 

 

 
TAR  

(n=51) 

TTC  

(n=51) 

TT  

(n=50) 

Total Sample  

(n = 152) 

Gender (n, % W.) 29 (56.9%) 22 (43.1%) 27 (54%) 78 (51,3%) 

Age (Y) **, *** 67.8 ± 11.2 (41-85) 62.7 ± 10.3 (38-81) 56.9 ± 12 (30-83) 62.5 ± 12 (30-85) 

Prof (n, % Sed) 37 (72.5%) 29 (56.9%) 31 (62%) 97 (63.8%) 

BMI  28.3 ± 4.4 29.91 ± 6.6 27.2 ± 5.0 28.48 ± 5.5 

Follow-up 

(months) *, *** 

55.7 ± 21.3 (16-96) 44.5 ± 21.3 (13-90) 37.7 ± 15.5 (13-66) 46 ± 20.8 (13-96) 

Pre-operative 

diagnosis 

    

PF OA (n, %) 42 (82.4%) 27 (52.9%) 38 (76%) 107 (70.4%) 

Insta. OA (n, %) 3 (5.8%) 19 (37.3%) 8 (16%) 30 (19.7%) 

Idiop. OA (n, %) 6 (11.8%) 5 (9.8%) 4 (8%) 15 (9.9%) 

Abbreviations: *, significant difference between TAR and TTC arthrodesis ; **, significant difference between 

TTC and TT arthrodesis ; ***, significant difference between TAR and TT arthrodesis ; TAR, Total Ankle 

Replacement ; TTC, Tibio-talo-Calcaneal arthrodesis ; TT, Tibiotalar arthrodesis ; F, female ; Y, year ; Prof, 

profession ; Sed, Sedentary ; BMI: Body Mass Index ; M, Months ; PF OA, Post-Fracture Ankle Osteoarthritis ; 

Insta. OA, Ankle Osteoarthritis due to chronic Ankle Instability ; Idiop OA, Idiopathic Ankle Osteoarthritis. 
aUnless otherwise stated, values refer to mean ± standard deviation (range). 
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Difference in Health-Related Outcome Measures Across Recovery Groups 

Satisfaction: There was a significant difference in satisfaction score between the self-

reported recovery groups [H(2) = 107.85, P < .001]; R-R group had overall a higher satisfaction 

rate compared to R-NR group (P < .001, r = .68) and to NR group (P < .001, r = .66). R-NR 

group showed also higher satisfaction rate than NR group (P = .008, r = .24) (Table 2.3 & 

Figure 2.1). 

Functional status: There was a significant difference between the recovery groups in FAOS 

score [H(2) = 61.002, P < .001]; planned comparison showed that R-R group had a higher 

FAOS score compared to R-NR group (P < .001, r = .55) and NR group (P < .001, r = .45). A 

significant difference was also found in FFI score between the recovery groups [H(2) = 88.58, 

P < .001]; significant differences were observed between R-R and R-NR (P < .001, r = -.63),  

R-R and NR (P < .001, r = -.59), and R-NR and NR groups (P = .029, r = -.21) with lower 

scores achieved by R-R patients, followed by R-NR and NR patients. 

Health Status: Significant differences were found in the SF-12 PC [F(2, 149) = 39.48, P < 

.001, ω = .58] and in the SF-12 MC [F(2, 149) = 23.21, P < .001, ω = .48] between the self-

reported recovery groups. Games-Howell post-hoc tests revealed that there were highly 

significant differences between every self-reported recovery group for both SF-12 sub-scores 

(P < .001). P-value only differed between R-NR and NR groups for the SF-12 MC (P = .002) 

(Table 2.3 & Figure 2.1). 

In agreement with the first hypothesis,  the three recovery groups displayed postoperatively 

a logical gradient of satisfaction, FFI, SF-12 PC and SF-12 MC scores (except for the FAOS) 

with the better results achieved by R-R patients, followed by R-NR and NR patients (Table 

2.3). 

 

Figure 2.1 : Satisfaction & health-related outcome measures by recovery group 
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Table 2-3 : Description of surgical procedure groups and outcome measures by recovery groupa 

 

 

R-R 

(n=75) 

R-NR 

(n=62) 

NR 

(n=15) 

Total Sample  

(n = 152) 

TAR 31 (41.3%) 17 (27.4%) 3 (20%) 51 (33.6%) 

TTC 24 (32%) 23 (37.1%) 4 (26.7%) 51 (33.6%) 

TT 20 (26.7%) 22 (35.5%) 8 (53.3%) 50 (32.9%) 

Satisfaction *,**,*** 92.6% ± 9.2 60.9% ± 16.5 26.1% ± 14.7 73.1% ± 25.3 

FAOS *,*** 78.4 ±18.3 48.5 ± 23.5 36.3 ± 22.8 62.0 ± 266 

FFI *,**,*** 15.6 ± 12.8 47.4 ± 21.9 74.2 ± 111 34.4 ± 26.2 

SF-12 PC *,**,*** 44.7 ± 8.5 35.4 ± 7.3 29.4 ± 3.5 39.4 ± 9.4 

SF-12 MC *,**,*** 50.7 ± 8.3 43.7 ± 10.7 34.2 ± 8.1 46.2 ± 10.6 

Abbreviations: *, significant difference between R-R and R-NR ; **, significant difference between R-NR and NR 

; ***, significant difference between R-R and NR ; R-R, Recovered- Resolved ; R-NR , Recovered, Not Resolved 

; NR, Not Recovered ; TAR, Total Ankle Replacement ; TTC, Tibio-talo-Calcaneal arthrodesis ; TT, Tibiotalar 

arthrodesis ; FAOS, Foot and Ankle Outcome Score ; FFI, Functional Foot Index ; SF-12, Short Form-12 ; PC, 

Physical Component ; MC, Mental Component. 
aUnless otherwise stated, values refer to mean ± standard deviation (range). 

Difference in Health-Related Outcome Measures Across Surgical Procedure 

Groups 

Satisfaction: There was a significant difference between the three different surgical 

procedures in satisfaction score [H(2) = 9.09, P = .011]. TAR patients were significantly more 

satisfied than TT patients (P = .009, r = .24). In contrast, TAR patients showed no significantly 

higher satisfaction rates compared to TTC patients. One could also observe a trend in mean 

satisfaction score decreasing gradually between the TAR (80.7% ± 22.5), the TTC (71.3% ± 

26.9) and the TT (67.2% ± 24.9) groups (Table 2.4 & Figure 2.2). 

Functional Status: There was no significant difference in the FAOS score between the 

surgical procedures [H(2) = 3.96, P = .14]. However, TAR patients seem to score better at the 

FAOS score (67.3 ± 18.9) than TTC patients (63.5 ± 27.4) and TT arthrodesis (55.2 ± 31.1). 

Planned comparisons indicated a significant difference [H(2) = 7.74, P = .021] in FFI scores 

between the three surgical procedure groups. TAR patients showed a lower FFI score compared 

to TT patients (P = .02 , r = -.23).  
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Figure 2.2 : Outcome measures by surgical procedure 

Health Status: No significant difference was observed between the different surgical 

procedures in SF-12 PC [H(2) = 1.53, P = .465] and SF-12 MC scores [F(2, 149) = 1.13, P = 

.33]. However, results displayed a gradual decrease for both scores between the three surgical 

procedure groups with better results achieved by TAR patients, followed by TTC patients and 

TT patients (Table 2.4 & Fig. 2). 

Therefore, the second hypothesis was not demonstrated as almost none of the above 

described results were significant. However, a general trend can be observed as TAR patients 

showed better PROMS scores and satisfaction results compared to TTC and TT patients. 

Table 2-4 : Description of recovery group and outcome measures by surgical procedurea 

 

TAR 

(n=51) 

TTC 

(n=51) 

TT 

(n=50) 

Total Sample 

(n = 152) 

R-R (n, %) 31 (60.8%) 24 (47.1%) 20 (40%) 75 (49.3%) 

R, NR (n, %) 17 (33.3%) 23 (45.1%) 22 (44%) 62 (40.8%) 

NR (n, %) 3 (5.9%) 4 (7.8%) 8 (16%) 15 (9.9%) 

Satisfaction *** 80.7% ± 22.5 71.3% ± 26.9 67.2% ± 24.9 73.1% ± 25.3 

FAOS  67.3 ± 18.9 63.5 ± 27.4 55.2 ± 31.1 62.0 ± 26.6 

FFI *** 27.0 ± 22.2 33.3 ± 25.4 43.1 ± 28.6 34.4 ± 26.2 

SF-12 PCb  40.5 ± 8.9 39.0 ±9.0 38.7 ± 10.4 39.4 ± 9.4 

SF-12 MCc  47.6 ± 8.9 46.6 ± 11.7 44.47 ± 11.0 46.2 ± 10.6 

Abbreviation: ***, significant difference between TAR and TT arthrodesis ; TAR, Total Ankle Replacement ; TTC, 

Tibio-talo-Calcaneal arthrodesis ; TT, Tibiotalar arthrodesis ; R-R, Recovered- Resolved ; R,NR , Recovered, Not Resolved ; 

NR, Not Recovered ; FAOS, Foot and Ankle Outcome Score ; FFI, Functional Foot Index ; SF-12, Short Form-12 ; PC, 

Physical Component ; MC, Mental Component. 
aUnless otherwise stated, values refer to mean ± standard deviation (range). 
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Association between Surgical Procedures and Recovery Groups 

There was no significant association between the types of surgery and the recovery 

groups (χ² (4) = 6.28, P = .18) meaning that the last hypothesis of this study was not 

demonstrated. However, it appeared that R-R group was composed of a higher number of TAR 

patients. In contrast, half of the NR group was composed of TT patients. (Figure 2.3). 

 

 

Figure 2.3 : Surgical procedures by recovery group 

 

DISCUSSION 

This study aimed at assessing the surgical outcomes of three common procedures (TAR, 

TTC, and TT) to treat end-stage ankle osteoarthritis by attempting to capture patients’ 

perception of their sense of recovery. As expected, there was a concordance between the 

patient’s self-reported recovery state, satisfaction, and PROMS scores. However, no clear 

difference in outcome scores was found to favour a surgical procedure over another.   

The present study has attempted to emphasize the importance of patient satisfaction and 

self-reported recovery state while evaluating surgical outcome. In contrast to traditional 

outcome measures of a surgical procedure,  patients’ recovery state is not only reflected in 

changes or resolution of the state of a disease (end-stage ankle osteoarthritis), but could also be 

described as an adjustement to the way of life or an adaptation to live with the disorder.4 In 

addition, the perception of recovery is highly contextualized and influenced by many factors 

such as age, the ability to resume work or to cope with functional limitations, carefully selecting 

and resuming leisure activities, and many others.4,17 This indicates that two patients could mean 
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different things while saying that they have recovered from their surgery. Therefore, it is 

essential that health professionals understand the full impact of a disease on a patient’s life in 

order to completely understand what recovery means for him following surgery while 

evaluating surgical outcomes.  

Three main hypotheses were tested in this study. Our first hypothesis is in agreement 

with previous evidence as a concordance was demonstrated between the patients’ self-reported 

recovery state, satisfaction, and PROMS scores.19 Interestingly, a notable difference in the 

distribution of participants in the three self-reported recovery groups was found compared to 

the findings of Pinsker et al. (2016). In contrast to their results, the percentage of ‘Recovered-

Resolved’ patients (50%) was three times higher in the present study. A possible explanation 

might be that patients received a more thorough explanation prior to surgery about potential 

functional limitations related to their surgery, and therefore, might adapt better their functional 

expectations prior to surgery decreasing the risk of becoming disappointed. Consequently, they 

might cope better with their recovery state and potential functional limitations experienced 

postoperatively. The authors strongly believe that capturing patients’ expectations and 

functional issues prior to surgery is a key element to obtain effective surgical outcomes.2 

However, it is difficult to develop questions that appropriately capture patients’ expectations in 

all clinical conditions; the “one measure for all” approach adopted by many may not be 

appropriate as issues of importance differs from one patient to another. 

Secondly, it was not demonstrated that the TAR group would obtain a higher satisfaction 

percentage and no or limited difficulties in performing ADLs compared to TTC and TT groups 

(except for satisfaction and FFI scores between TAR and TT groups). In fact, from a surgical 

point of view, it was expected that TAR group would have better PROMS scores  than TTC 

and TT groups as TAR is a motion-sparing surgery. Surprisingly, our results revealed that 

preserving ankle motion does not statistically increase patient satisfaction and PROMS scores. 

Nonetheless, a general trend can be observed as overall, TAR patients seem to have better 

satisfaction and PROMS scores compared to TTC and TT patients. However, this trend can 

potentially be explained  by the mean age of each surgical group. TAR patients (67.8 ± 11.2) 

were older than TT (56.9 ± 12) and TTC patients (62.7 ± 10.3). Studies have already 

demonstrated that satisfaction following a surgery increases with age.2,6,23 Consequently, one 

could argue that better results can be observed in TAR patients as they were older than TTC 

and TT patients.  

The third hypothesis was also not demonstrated. No statistical difference was found 

suggesting that a higher number of TAR patients would classify themselves as ‘Recovered-
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Resolved’ (R-R) group compared to TT and TTC patients. Based on these results, one may 

conclude that the motion sparing procedure is not more likely to result in a ‘Recovered-

Resolved’ self-reported recovery state over the two types of arthrodesis procedures. However, 

a general trend can be observed, and it appears that there were more TAR patients in the R-R 

group and a higher number of TT patients in the NR group. This trend can be explained by 

various factors including age and expectations. In fact, TT patients were younger than the two 

other groups, meaning that they might have more difficulties in adapting their behaviours and 

daily activities. This resilient behaviour to adapt at a younger age was described by Baltes’s 

(1990) theory of selective optimization with compensation (SOC).3 His theory is related to 

strategies to cope with age-related changes such as ‘selecting fewer, but important goals, pursue 

these goals in an optimized way, and by doing so, apply adequate compensatory means to 

overcome internal or external barriers’.10 In this perspective, patient’s expectations are 

adjusted to permit the subjective experience of satisfaction. Based on this theory, one could 

argue that older patients can more easily adopt these strategies in contrast to younger patients, 

who could be more resilient to changes. Moreover, in their study, Gignac, Cott & Badley (2002) 

have shown that older adults with osteoarthritis used more often compensation strategies (i.e.: 

‘efforts to meet goals by new means’) in contrast to younger adults who tend to use optimization 

strategies (i.e.: ‘efforts to augment or enrich one’s reserves in order to continue functioning’).13 

Therefore, these differences in strategies to cope with changes will impact their sense of 

limitations and satisfaction following surgery. Furthermore, our results showed that R-R 

patients were older than R-NR patients (P = .002), and NR patients (P = .009). One may 

therefore conclude that the results of the present study agreed well with previous studies 

demonstrating the relationship between age and satisfaction following surgery.2,6,23  

Another explanation might be that patients who underwent a TTC arthrodesis in contrast 

to TT arthrodesis had lower functional expectations. Ajis et al. (2013) have reported that fewer 

TT patients met their desired activity level after surgery compared to TTC patients. They also 

found that TT patients were also much more likely to attribute their unmet level of activity to 

their operated ankle compared to TTC patients.2 Evidence suggested that patients who 

underwent TTC arthrodesis must go through a longer period of convalescence and might 

therefore consider their surgery more ‘seriously’ as the TT arthrodesis is extended to the 

subtalar joint. Consequently, it might be easier for them to meet their expectations following 

surgery in contrast to patients who underwent TT arthrodesis.2 The present results provide 

further evidence that TT patients had lower satisfaction rates and PROMS score which appeared 

to be mostly prevalent in the ‘Not-Recovered’ group. 
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One of the strengths of this study was the ability to include and analyse the surgical 

indications, which were divided into 3 groups: post-fracture ankle osteoarthritis, ankle 

osteoarthritis due to chronic ankle instability, and idiopathic ankle osteoarthritis. Results have 

shown that there were no significant associations between the patient-perceived recovery state 

and the surgical indications (P = .596), which excludes the idea that surgical outcomes were 

influenced by preoperative diagnosis discrepancies. 

This study has some limitations. First, the present study was a retrospective study with 

the limitation that no PROMS scores were collected prior to surgery. Second, one might argue 

that the high level of satisfaction in this study could potentially be explained by a biased sample 

selection underlying that unsatisfied patients would not agree to engage in this study. However, 

only 2 patients have explicitly refused to take part in the study. Finally, PROMS were composed 

of closed questions forcing patients to give an answer that does not accurately represent their 

opinion. However, this shortcoming was partially tackled by being able to classify themselves 

in one of the three self-perceived recovery statements.  

 

CONCLUSION 

This study provides a first attempt in assessing and comparing surgical outcomes following 

TAR, TTC, and TT arthrodeses by capturing patients’ perception of their sense of recovery. An 

unexpected finding was that R-R group was not exclusively composed of TAR patients. 

Evidence suggests that patients with a TT or a TTC arthrodesis could also classify themselves 

as ‘being better with no residual limitations’. However, to obtain a positive surgical outcome, 

it appears that it is crucial to improve the patient - doctor communication, especially with 

younger patients. They have higher expectations prior to surgery and different ways of coping 

with functional limitations than older patients. Consequently, a patient’s concerns and 

expectations should be considered prior to surgery in order to meet the patient’s expectations 

and to avoid patient’s misconceptions of surgical outcomes.  

 

 

 

 

 

 



 33 

REFERENCES 

 

1.  Agel J, Coetzee JC, Sangeorzan BJ, Roberts MM, Hansen ST. Functional limitations of 

patients with end-stage ankle arthrosis. Foot Ankle Int. 2005;26(7):537-539.  

2.  Ajis A, Tan K, Myerson MS. Ankle Arthrodesis vs TTC Arthrodesis: Patient Outcomes, 

Satisfaction, and Return to Activity. Foot Ankle Int. 2013;34(5):657-665.  

3.  Baltes PB, Baltes MM. Psychological perspectives on successful aging: The model of 

selective optimization with compensation. In Baltes PB, Baltes MM (Eds.) Successful 

Aging: A Psychological Model. New York, USA Cambridge University Press 1990:1-

34. 

4.  Beaton DE, Tarasuk V, Katz JN, Wright JG. “ Are You Better ?” A Qualitative Study of 

the Meaning of Recovery. Arthritis Rheum. 2001;45(3):270-279. 

5.  Budiman-Mak E, Conrad J, Roach K. The Foot Function Index : a Measure of Foot Pain 

and Disability. J Clin Epidemiol. 1991;44(6):561-570. 

6.  Cohen G. Age and health status in a patient satisfaction survey. Soc Sci Med. 

1996;42(7):1085-1093. 

7.  Deleu P-A, Devos Bevernage B, Gombault V, Maldague P, Leemrijse T. Intermediate-

term Results of Mobile-bearing Total Ankle Replacement. Foot Ankle Int. 

2015;36(5):518-530. 

8.  Domsic RT, Saltzman CL. Ankle osteoarthritis scale. FOOT ANKLE Int. 

1998;19(7):466-471. 

9.  Ewalefo SO, Dombrowski M, Hirase T, et al. Management of Posttraumatic Ankle 

Arthritis: Literature Review. Curr Rev Musculoskelet Med. 2018;11(4):546-557.  

10.  Freund AM, Baltes PB. The orchestration of selection, optimization, and compensation: 

An action-theoretical conceptualization of a theory of developmental regulation. In: 

Control of Human Behavior, Mental Processes, and Consciousness; Lawrence Erlbaum 

Associates Inc; 2000:35-58. 

11.  Gandek B, Ware JE, Aaronson NK, et al. Cross-Validation of Item Selection and Scoring 

for the SF-12 Health Survey in Nine Countries : Results from the IQOLA Project. J Clin 

Epidemiol. 1998;51(11):1171-1178. 

12.  Gandhi SK, Warren Salmon J, Zhao SZ, Lambert BL, Gore PR, Conrad K. Psychometric 

evaluation of the 12-Item Short-Form Health Survey (SF-12) in osteoarthritis and 

rheumatoid arthritis clinical trials. Clin Ther. 2001; 23(7):1080-1098. 



 34 

13.  Gignac MAM, Cott C, Badley EM. Adaptation to disability: Applying selective 

optimization with compensation to the behaviors of older adults with osteoarthritis. 

Psychol Aging. 2002;17(3):520-524. 

14.  Hurst NP, Ruta DA, Kind P. Comparison of the MOS short form-12 (SF12) health status 

questionnaire with the SF36 in patients with rheumatoid arthritis. Br J Rheumatol. 

1998;37(8):862-869. 

15.  Leemrijse T, Besse J-L, Devos Bevernage B, Valtin B. Pathologie Du Pied et de La 

Cheville. 2e édition. Elsevier Masson; 2015. 

16.  Nodzo SR, Miladore MP, Kaplan NB, Ritter C a. Short to midterm clinical and 

radiographic outcomes of the Salto total ankle prosthesis. Foot Ankle Int. 2014;35(1):22-

29. 

17.  Parker J, Nester CJ, Long AF, Barrie J. The problem with measuring patient perceptions 

of outcome with existing outcome measures in foot and ankle surgery. Foot Ankle Int. 

2003; 24(1):56-60. 

18.  Pinsker E, Inrig T, Daniels TR, Warmington K, Beaton DE. Reliability and Validity of 

6 Measures of Pain , Function , and Disability for Ankle Arthroplasty and Arthrodesis. 

Foot Ankle Int. 2015;36(6):617-625. 

19.  Pinsker E, Inrig T, Daniels TR, Warmington K, Beaton DE. Symptom Resolution and 

Patient-Perceived Recovery Following Ankle Arthroplasty and Arthrodesis. Foot Ankle 

Int. 2016;37(12):1269-1276.  

20.  Pourtier-piotte C, Pereira B, Soubrier M, Thomas E, Gerbaud L, Coudeyre E. French 

validation of the Foot Function Index (FFI). Ann Phys Rehabil Med. 2015;58(5):276-

282. 

21.  Roos EM, Brandsson S, Karlsson J. Validation of the foot and ankle outcome score for 

ankle ligament reconstruction. Foot Ankle Int. 2001; 22(10):788-794. 

22.  Saltzman CL, Zimmerman B, O’Rrourke M, Brown T, Buckwalter J, Johnston R. Impact 

of comorbidities on the management of Health in Patients with Ankle Osteoarthritis. J 

Bone Jt Surg. 2006;88(11):2366-2372. 

23.  Schuh R, Hofstaetter J, Krismer M, Bevoni R, Windhager R, Trnka H-J. Total ankle 

arthroplasty versus ankle arthrodesis. Comparison of sports, recreational activities and 

functional outcome. Int Orthop. 2012;36(6):1207-1214. 

24.  Vallier GT, Petersen SA, LaGrone MO. The Keller resection arthroplasty: A 13-year 

experience. Foot Ankle. 1991;11(4):187-194. 

 



 35 

25.  Venditto T, Tognolo L, Rizzo RS, et al. 17-Italian Foot Function Index with numerical 

rating scale: Development, reliability, and validity of a modified version of the original 

Foot Function Index. Foot. 2015;25(1):12-18. 

26.  Venkataramanan V, Gignac MA, Dunbar M, et al. The importance of perceived 

helplessness and emotional health in understanding the relationship among pain , 

function, and satisfaction following revision knee replacement surgery. Osteoarthr 

Cartil. 2013;21(7):911-917. 

27.  Ware JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: Construction of 

Scales and Preliminary Tests of Reliability and Validity. Source Med Care Med 

CARE.1996;34(3):220-233.  

28.  Younger ASE, Wing KJ, Glazebrook M, et al. Patient Expectation and Satisfaction as 

Measures of Operative Outcome in End-Stage Ankle Arthritis : A Prospective Cohort 

Study of Total Ankle Replacement Versus Ankle Fusion. Foot Ankle Int. 

2015;36(2):123-134. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

Chapter 3 : Change in gait biomechanics after total ankle 
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ABSTRACT 

 

Background: The aim of this systematic review with meta-analysis was to determine the 

change in gait biomechanics after total ankle replacement and ankle arthrodesis for end-stage 

osteoarthritis.  

 

Methods: Electronic databases were searched up until May 2019. Peer-reviewed journal 

studies including adult participants suffering from end-stage ankle osteoarthritis and reporting 

pre- and post-operative kinematics, kinetics and spatio-temporal effects of total ankle 

replacement and ankle arthrodesis during walking were included. Seventeen suitable studies 

were identified and assessed according to methodological and biomechanical qualities. Meta-

analysis was performed by calculating the effect size using standard mean differences between 

pre- and post-operative gait status.  

 

Findings: Seventeen studies with a total of 883 patients were included. Meta-analysis 

revealed a significant improvement in lower limb kinematics, kinetics and spatio-temporal 

parameters after total ankle replacement. However, no significant effect on maximum ankle 

plantarflexion, knee and hip range of motion and cadence was found for fixed-bearing 

prosthesis. Improvement in gait biomechanics after ankle arthrodesis was limited to ankle 

moment, hip range of motion and walking speed.  

 

Interpretation: The currently available evidence base of research papers evaluating changes 

in gait biomechanics after total ankle replacement and ankle arthrodesis is limited by a lack of 

prospective research, low sample sizes and heterogeneity in the patho-etiology of ankle 

osteoarthritis. Following total ankle replacement for end-stage ankle osteoarthritis, 

improvements were demonstrated for spatio-temporal, kinematic and kinetic gait patterns 

compared to the pre-operative measrures. Improvements in gait mechanics after ankle 

arthrodesis were limited to walking speed, ankle moment and hip range of motion.  

 

Keywords: Osteoarthritis; Ankle replacement; Arthroplasty; Arthrodesis; Gait Analysis; 

Biomechanics 
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INTRODUCTION 

Osteoarthritis (OA) of the ankle is a common chronic disorder characterized by progressive 

joint degeneration, significant pain and disability, with approximately 1% of the world’s adult 

population living with symptomatic ankle OA.1,14,21,33,42  Currently, the “gold standard” surgical 

treatment is ankle arthrodesis (AA), which provides good pain relief and a relatively well-

documented long-term survivalship of AA.15,16,23,46,47 However, AA leads to deficits in work 

and leisure activities and to adjacent joint degeneration,4,12,20,34,53 thought to be a consequence 

of altered mechanical loads as a result of the change in function of the ankle.4,6,12,20 These 

disadvantages have encouraged the use of motion-sparing procedures such as total ankle 

replacement (TAR), the potential benefits of which are conserving the existing pre-operative 

ankle range of motion (RoM), improving gait and protecting the adjacent joints5,10,27, although 

the latter has not yet been proven.35  

Three-dimensional gait analysis (3DGA) is the state of the art of measuring lower limb joint 

kinematics and kinetics simultaneously during activities of the daily living. Three narrative 

reviews of the literature showed that 3DGA has considerable potential for evaluating functional 

outcomes of TAR and AA aimed at improving function at the foot and lower limb.3,29,36 

However, these papers did not assess the treatment effect of the procedures, which raises 

questions regarding the evidence supporting the biomechanical value of TAR and AA in 

patients suffering from end-stage ankle OA. The relative advantages of TAR versus AA 

continue to be one of the most debated topics in foot and ankle surgery. Do TAR patients 

maintain or improve their pre-operative dorsi-/plantarflexion ankle motion during gait? Do 

TAR and AA patients improve their foot mechanics relative to their pre-operative state? The 

debate also continues as to which ankle prosthesis design should be used to provide the best 

clinical outcome, the evidence from the TAR group overall being unclear. The objective of this 

review is to present a quantitative assessment of the scientific credibility and clinical utility of 

the present knowledge regarding the assessment of the biomechanical effect of TAR and AA in 

patients suffering from end-stage ankle OA.  

METHODS 

The systematic review protocol was developed in accordance to the guidelines provided by 

the Preferred Reporting of Systematic Reviews and Meta-Analysis (PRISMA) Statement.30 The 

protocol for the review was registered in the International Prospective register for Systematic 

Reviews (PROSPERO; registration no. CRD42018110053). 
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Search strategy 

The Population, Intervention, Comparison and Outcome (PICO) framework was used to 

define the search strategy. The following databases were searched from inception: Cochrane 

Library, PubMed and Web of Science (via ISI Web of Knowledge) (until May 2019). The three 

main groups of keywords covering all MeSH terms and keywords related to “ankle 

osteoarthritis”, “biomechanical and locomotion metrics” and “ankle arthrodesis / ankle 

prosthesis” were used in this review (example for PubMed in Figure 3.1). Databases were 

searched by two reviewers, with agreement required on the number of search hits achieved 

before screening was initiated. References and abstracts of studies were stored alphabetically 

using the reference management software Mendeley (Elsevier, Netherlands). Additional 

relevant papers were found by examining the reference lists of papers identified in the initial 

searches. Duplicate references sourced from different electronic searches were removed. The 

inclusion and exclusion process was performed by two reviewers (JLB & PAD) based on the 

title and abstract of the identified  papers. A full-text evaluation was undertaken if the title and 

abstract did not provide adequate information. A consensus meeting was held to resolve any 

areas of disagreement between reviewers, and the opinion of a 3rd reviewer (AN) was sought if 

a consensus was not reached. To affirm the inclusion of all eligible studies, one reviewer (PAD) 

subsequently manually screened the reference lists of all included articles. 

 

Eligibility criteria 

Studies published in English as full papers were eligible for inclusion in this review when 

they met the following criteria: 1) participants were adults aged ≥18 years undergoing primary 

TAR and AA; 2) ankle OA was the principal indicator for surgical  intervention; 3) studies  

reported at least pre-operative and post-operative gait data; 4) a minimum of 12 months follow-

up providing evidence of any pre- to post-operative changes in gait;2,50 5) the use of non-

invasive/in-vivo 3DGA using a motion capture system to collect at least joint kinematic data 

based on the trajectories of skin-mounted markers.); and 6) the participants were able to perform 

the given task unaided. Studies including participants with a history of other major medical 

conditions affecting gait or previous surgery (e.g. neuromuscular diseases, revision lower limb 

arthroplasty, etc.) were not eligible for inclusion. Letters, conference proceedings, case reports, 

cadaveric studies, bone pin (invasive) studies, abstracts and reviews were excluded from the 

review. 
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Figure 3.1 : Pubmed search strategy & flow diagram of search results 

 

 

 



 41 

Methodological quality assessment 

A modified version of the Downs and Black Quality Index was used to evaluate the 

methodological quality of the selected papers.17 The methodological quality of the papers was 

assessed using a subset of the data extracted to gauge both internal and external validity. Two 

reviewers (PAD, LC) independently evaluated the quality of each study, and any discrepancies 

were resolved during a consensus meeting. The opinion of a 3rd reviewer (AN) was sought if a 

consensus could not be reached. The modified version of the Downs and Black Quality Index17 

is scored out of 26, with higher scores indicating higher-quality studies. The studies were ranked 

using the following classifications: “high quality” (HQ) having scores greater than 21; 

“moderate quality” (MQ) having scores between 17 and 21; “fair quality” (FQ) having scores 

between14 and 17 and “poor quality” (PQ) having scores lower than 14.13 A Kappa inter-rater 

agreement test (Kappa (K) statistic) was used to evaluate the agreement between the two 

reviewers (PAD and LC). The K value was interpreted as follows: scores < 0.20 rated as Poor, 

scores between 0.21-0.40 rated as Fair, scores between 0.41-0.60 rated as Moderate, scores 

between 0.61-0.80 rated as Good, and scores between 0.81-1.00 rated as Very good. Studies 

rated as “poor quality” were excluded from the systematic review. 

 

Outcome measures and data extraction 

A data-extraction file created in Cochrane Review Manager (RevMan, V.5, Cochrane 

Collaboration, Oxford, UK) was used to extract numerical data from all studies by two 

reviewers (PAD & AN). Once completed, one of the two reviewers compared the original data 

with the extracted data to verify that the data were extracted accurately from the studies included 

in the meta-analysis. The primary outcome measures for this review were spatiotemporal, 

kinematic and kinetic parameters reported during level walking. Means and standard deviations 

(SD) for all gait variables relating to the affected ankle were extracted for pre-operative and the 

final post-operative assessments in order to determine the long term effect of surgery on gait 

function, as functional recovery can take 6 to 12 months. To assist the interpretation of findings, 

one investigator (PAD) extracted data regarding study design, participant characteristics and 

publication details.50 
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Data synthesis and analysis 

Where adequate data were reported, means and standard deviations (SDs) of the following 

gait variables were used to calculate standardized mean differences (SMD and 95% confidence 

intervals) between pre- and post-operative  assessments using Cochrane Review Manager (V.5) 

(RevMan, V.5, Cochrane Collaboration, Oxford, UK): ankle RoM, maximal ankle dorsiflexion 

and plantarflexion angle, maximal ankle moment, maximal ankle power, knee RoM, hip RoM, 

walking speed, cadence, stance duration and step length. When means and SDs were not 

reported by the authors estimations were made using the methodology described by Wan et al. 

and medians and interquartile ranges used.51 Meta-analyses were performed by calculating the 

effect size using the standardized mean differences, and a random-effects model. Interpretation 

of SMD magnitude was based on previous recommendations, where SMD values were 

considered large (> 1.2), medium (0,6-1,2) or small (< 0,6). No significant differences were 

considered to have been identified from the meta-analysis when the 95% confidence interval 

was exceeded 0 (P < 0.05). When appropriate data (e.g. means and SDs) were not provided in 

the publication, authors were contacted with a request to provide additional data. In the case of 

non-response, the variables were recorded as “not reported” and excluded for further analysis.26 

Forest plots were produced using Cochrane Review Manager (V.5) to facilitate the 

interpretation of SMD values and their respective 95% Confidence Interval (CI). Results of 

studies were pooled if adequate homogeneity was found to occur in terms of research design 

and outcome measures. The level of statistical heterogeneity for pooled data was tested by using 

a chi-squared test and I2 statistics.25 Heterogeneity was defined as high (>75%), moderate (50-

75%), and low (25-50%).25 When adequate data were reported in the same international system 

of units, mean differences (MD and 95% confidence intervals) between pre- and post-operative 

time points were calculated. 

 

Evidence-based recommendations 

Based on the previous publication of van Tulder et al. (2003), levels of evidence were 

assigned for each variable of interest, based on the statistical outcomes and methodological 

quality of the included studies.48  
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Levels of evidence-based recommendations (van Tulder et al., 2003) are : 

- Strong evidence derived from three or more studies, including a minimum of two high 

quality (HQ) studies that are statistically homogenous; may be associated with a 

statistically significant or non-significant pooled results.  

- Moderate evidence was based on statistically significant pooled results derived from 

multiple studies that are statistically heterogeneous, including at least one high quality 

study (HQ); or from multiple moderate quality (MQ) or fair quality (FQ) studies which 

are statistically homogenous.  

- Limited evidence was based on results from one high quality study (HQ) or multiple 

moderate (MQ) or fair quality (FQ) studies that are statistically heterogeneous.  

- Very limited evidence was based on results from one fair quality study (FQ). 

- No evidence was based on pooled results insignificant and derived from multiple studies 

regardless of quality that are statistically heterogeneous.  

 

RESULTS 

Review selection and identification 

Details of the search results and the process of inclusion and exclusion are shown in Figure 

1.  A total of 6475 citations were retrieved from the electronic database search. After applying 

the eligibility criteria and searching reference lists, 129 references were identified as being 

eligible for full-text review based on their title and abstract. Of these, 112 papers were 

subsequently excluded, the main reasons for exclusion being cadaveric studies, finite element 

studies and studies without preoperative gait data. Seventeen papers were included for final 

review.  

Quality assessment 

The Downs and Black scale checklist scores ranged from 9 to 23 of a possible 26 (Appendix 

file 1). Of the 17 studies included, 2 had a score lower than 14 (rated as “poor quality”).9,19 One 

study was rated as high-quality scoring between 26 and 22,39 and two studies were rated as 

“moderate quality” scoring between 18 and 21.11,37 Twelve studies were rated as “fair quality” 

scoring between 14 and 17.5,6,8,22,24,27,32,38,40,41,44,45 The Kappa inter-rater agreement value, 

including the assessment of the 17 studies, was 0.747 (95% CI 0682 to 0.813). indicating a good 

agreement between the two reviewers (PAD and LC). Of the 17 papers, 14 were case series 

studies, 1 was a prospective cohort study and 2 were retrospective studies (Table 3.1)
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Table 3-1 : Study and patient characteristics (NA : not applicable, NR : not reported, SD : standard deviation, FB : Fixed-bearing, MB : Mobile-bearing; Ankle prostheses : Salto 
Talaris® (Integra Life Sciences, USA), INBONE (Wright Medical Technology, USA); STARTM (Stryker, Orthopaedics, USA)  ; Agility (Depuys Synthes USA), Hintegra (Integra, US); AES 

(Ankle Evolutive System, Transystem, France), BOX (Bologna-Oxford,,Finsbury, UK), Mobility (Depuy, UK). 

Author 

(Year) 

Study 

Design 

Sample size (M/F ratio) Mean age, SD (years) 
Sub-type 

Ankle OA 

Type of 

Prosthesis 

Biomechanica

l Model 

Foot as 1 

segment 

Walking 

speed 
Joints Plane 

Follow-

up 

Quality 

score 

TAR AA CTRL TAR AA CTRL 

Segal 

Cl Biomech 

201837 

Case series 20 (8/12) 13 (10/3) NA 
59.9 ± 

8.7 

53.4 ± 

9.8 
NA NR 

FB (Agility / 

Salto Talaris) 
Plug-in Gait Yes 

Self-

selected 

Ankle, 

Knee, Hip 
Sagittal 37 17 

Brodsky FAI 

201738 Case series 76 (28/48) NA NA 
61.1 ± 

10.3 
NA NA 

PT 42 /  

7 RA /  

27 PM 

MB (STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 12.8 16 

Tenenbaum 

FAS 201739 Case series 

Old : 21 

(8/13) 
NA NA 

74.6 ± 

3.4 
NA NA NR 

MB (STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 

27,4 

15 
Young : 21 

(4/17) 
NA NA 

55.4 ± 

2.8 
NA NA NR 26,2 

Queen 

CORR 

201734 

Case series 

FB : 15 

(7/8) 
NA NA 

61 ± 

13 
NA NA NR 

FB (Salto 

Talaris) Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 

12 

23 

MB : 18 

(4/14) 
NA NA 65 ± 9 NA NA NR MB (STAR) 12 

Brodsky BJJ 

201616 Case series NA 
20 

(10/10) 
NA NA 

58.95 

± 14.8 
NA 

PT 12 / 

PM 8 
NR 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 24 15 

Grier G&P 

201640 Case series 

Neutral : 

32 (NR) 
NA NA 

63.5 ± 

9.6 
NA NA NR 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Frontal 

24 

15 
Varus : 38 

(NR) 
NA NA 

61.6 ± 

7.7 
NA NA NR 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

24 

Valgus : 

23 (NR) 
NA NA 

64.6 ± 

11.0 
NA NA NR 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

24 
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Caravaggi Cl 

Biomech 

20151 

Retrospecti

ve cohort 

study 

10 (5/5) NA 
20 

(11/9) 

55 

(rang

e 36 

to 70) 

NA 

28 

(range 

23 to 

36) 

NR MB (BOX) 
IOR LLM 

2007 
Yes 

Self-

Selected 

Ankle, 

Knee, Hip 
3D 60 12 

Queen FAI 

201441 Case series 

TAL : 22 

(NR) 
NA NA 

62.5 ± 

11.1 
NA NA 

PT 19 / 

PM 3 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 

12 

14 
GSR : 37 

(NR) 
NA NA 

60.7 ± 

9.5 
NA NA 

PT 29 / 

PM 4 / 

Other 2 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

12 

TAR : 170 

(NR) 
NA NA 

64.0 ± 

9.4 
NA NA 

PT 136 / 

PM 24 / 

Other 7 

FB & MB 

(INBONE / 

Salto Talaris / 

STAR) 

12 

Queen JBJS 

201442 Case series 

FB : 41 

(NR) 
NA NA 

63.8 ± 

9.0 
NA NA NR 

FB (Salto 

Talaris) 
Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 

24 

16 

MB 49 

(NR) 
NA NA 

62.4 ± 

10.9 
NA NA NR MB (STAR) 24 

Queen Cl 

Biomech 

201443 

Case series 78 (46/32) NA NA 
63.6 ± 

9.0 
NA NA NR 

FB & MB 

(Salto Talaris 

/ STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 24 17 

Choi FAI 

201335 Case series 21 (5/16) NA NA 
69 ± 

6.9 
NA NA 

PT 12 / 

PM 8 / 

HEMA 1 

FB (Salto 

Talaris) 
Plug-in Gait Yes 

Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 37,2 18 

Flavin FAI 

20132 
Case series 14 (5/9) 14 (3/11) NA 

56.9 ± 

8.6 

60.7 ± 

16.3 
NA 

17 PT, 4 

PM, 4 

CAI, 4 PT 

+ CAI 

MB (STAR) 
Milwaukee 

Foot Model 
No 

Self-

selected 

Ankle, 

Hindfoot 

Sagittal, 

Frontal 
12 12 

Queen FAI 

201236 Case series 51 (27/24) NA NA 
65.0 ± 

8.3 
NA NA NR 

FB (INBONE 

/ Salto 

Talaris) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

selected 
Ankle Sagittal 24 20 
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Hahn FAI 

201244 Case series 9 (4/5) 9 (6/3) NA 
53.9 ± 

8.7 

62.7 ± 

10.7 
NA NR NR Plug-in Gait Yes 

Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 12 16 

Brodsky 

JBJS 201118 Case series 50 (10/40) NA NA 
60.8 ± 

11.1 
NA NA 

PT & PM 

47 / RA 3 
MB (STAR) 

Modified 

Helen Hayes 

market set 

Yes 
Self-

Selected 

Ankle, 

Knee, Hip 
Sagittal 49 15 

Ingrosso 

G&P 200917 

Retrospecti

ve cohort 
10 (8/2) NA 

20 

(11/9) 

57.4 ± 

NR 
NA 

27.9 ± 

NR 

PT 9 / 

PSOA 1 
MB (BOX) 

IOR LLM 

2007 
Yes 

Self-

Selected 

Ankle, 

Knee, Hip 
3D 12 16 

Valderraban

o Cl 

Biomech 

200747 

Prospective 

cohort 
15 (6/9) NA 

15 

(6/9) 

53.3 ± 

NR 
NA 

52.9 ± 

NR 
PT 15 MB (Hintegra) 

Helen Hayes 

marker set 
Yes 

Self-

Selected 

Ankle, 

Knee, Hip 
3D 12 16 



 47 

Sample selection, composition and description 

Study details including sample sizes, participant demographics and type of prosthesis used 

are shown in Table 3.1. The number of participants ranged from 9 to 229 in the 17 studies. 

Gender male:female ratio was not reported in 3 studies. The subtype of OA was reported in 8 

of the 17 studies. The characterization of the investigated ankle OA describing the subtype of 

ankle OA and its associated osteo-articular deformity was poorly described in 14 studies. Post-

traumatic ankle OA was the most common aetiology reported by subjects in all of the included 

studies. Only one study reported the radiographic severity of ankle OA prior to surgery.49 The 

most common intervals between intervention and follow up were 12 and 24 months (range: 12 

to 49 months). 

Study procedures related to gait specific measurement protocol 

Conventional marker setups and lower limb models available with the Motion Capture 

systems were most commonly used for gait data acquisition, and kinematic and kinetic 

computation (Table 3.1). The foot was modelled in most of the studies as a single rigid element, 

except for the study of Flavin (2013). Variables relating to the mechanical behaviour of the 

lower limb were limited to the sagittal plane in 12 of the included studies. 

Outcome measures 

A summary of findings for each gait variable in the meta-analysis is shown in Table 3.2 & 

3.3  and Supplementary Materials (cfr Appendix) with detailed information of the magnitude 

of effects and the strength of evidence provided below. 

Ankle dorsi- / plantarflexion RoM  

Based on the overall pooled SMD from 11 studies totalling 280 participants, 

moderate evidence indicated an increase in ankle RoM after the implantation of TAR 

(SMD: 0.68, 95%CI 0.51 to 0.85) with a MD of 3.20° (95%CI 2.44-3.96)(Figure 

3.2). Mobile-bearing TAR showed similar improvements in ankle RoM to the fixed-

bearing TAR (Table 3.3).5,8,9,11,19,24,27,39,45,50 

There was limited evidence  of no change in ankle dorsi-/plantarflexion RoM 

after an AA in the 17 studies (Figure 3.2).6,19,24 
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Figure 3.2 : The change in gait parameters (Ankle Dorsi-/Plantar-flexion RoM, Peak Ankle Plantarflexion Moment, Peak 

Ankle Power Generation) following total ankle replacement (TAR global, Mobile-bearing prosthesis and Fixed-bearing 

prosthesis) compared to pre-operative status 
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Figure 3.3 : The change in all gait parameters (Ankle Dorsi-/Plantar-flexion RoM, Peak Ankle Plantarflexion Moment, 

Peak Ankle Power Generation) following ankle arthrodesis compared to pre-operative status. 
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Maximum ankle dorsiflexion angle  

8 studies reported moderate evidence of an increase in ankle dorsiflexion angle 

after the implantation of a TAR (SMD: 0.37, 95%CI 0.14 to 0.59) with a MD of 1.72° 

(95%CI 0.70-2.73).8,9,11,19,27,37,44,45 Fixed-bearing TAR showed similar 

improvements in ankle dorsiflexion angle to the mobile-bearing TAR (Table 

3.3).11,37,44 

Limited evidence indicated no change in ankle dorsiflexion angle after an 

AA.6,19,44 

 

Maximum ankle plantarflexion angle  

Moderate evidence indicated an increase in ankle plantarflexion angle after 

implantation of a TAR (SMD: 0.37, 95%CI 0.14 to 0.60) with a MD of 2.03° (95%CI 

1.07-2.99).8,9,11,19,27,39,44,45 Six studies8,9,19,27,39,45 analysing mobile-bearing prostheses 

reported moderate evidence of an increase in ankle plantarflexion angle after 

implantation (SMD: 0.38, 95%CI 0.06 to 0.71) with a MD of 2.18° (95%CI 0.78-

3.58). However, pooled data of studies analysing fixed-bearing prostheses showed 

moderate evidence of no increase or decrease in ankle plantarflexion RoM after 

surgery.11,37,44 

Limited evidence of no change in ankle plantarflexion angle after an AA.6,19,44 

 

Peak plantarflexion ankle moment  

Based on the pooled SMD from 10 studies totalling 224 participants, there was 

moderate evidence of an increase in peak plantarflexion ankle moment (SMD: 0.39, 

95%CI 0.15 to 0.64) after TAR (Table 3.2 & 3.3, Figure 3.2).5,9,11,19,24,27,39,44,45,50  No 

MD could be given for studies analysing mobile-bearing prostheses as two of the 

studies9,27 normalized the data by a length measurement as well as a weight 

measurement.  

There was moderate evidence of an increase in ankle moment after an AA (SMD: 

0.54, 95%CI 0.17 to 0.92) with a MD of 0.16 N.m/kg (95%CI 0.05 to 0.27)(Figure 

3.3).6,19,24,44 
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Table 3-2 : Summary findings for gait parameters. Change from pre-operative to post-operative status and quality of 

the evidence related to Standard Mean Difference (SMD) : A : Total ankle replacement : pre-operative versus post-

operative; B ; Ankle arthrodesis : pre-operative versus post-operative (NA: Not applicable, MD : mean difference, deg: 

degrees, HQ: High quality, MQ : Moderate Quality, FQ : Fair quality) 

 

A. Total ankle replacement : pre-operative versus post-operative 

Variables 
SMD/ 
MD 

Mean 
Lower 
95% CI 

Higher 
95% CI 

I2 
Overall 
effect 

Evidence Quality studies Effect 

Ankle RoM 
(deg) 

SMD 0.68 0.51 0.85 0 P <0.00001 

Moderate 

HQ (Queen et al., 2017); MQ (Choi 
et al.,2013), FQ (Valderrabano et al., 

2007; Ingrosso et al., 2009; Brodsky et. al., 
2011; Hahn et al., 2012; Tenenbaum et 

al., 2017; Brodsky et al., 2017), PQ (Flavin 
et al., 2013; Caravaggi et al., 2015) 

Medium 

MD 3.20 2.44 3.96 0 P <0.00001 

Ankle DF 
RoM (deg) 

SMD 0.37 0.14 0.59 27 P <0.001 

Moderate 

MQ (Queen et al., 2012; Choi et al., 
2013), FQ (Ingrosso et al., 2009; 

Tenenbaum et al., 2017; Brodsky et al., 
2017; Segal et al., 2018), PQ (Flavin et al., 

2013; Caravaggi et al., 2015) 

Small 

MD 1.72 0.70 2.73 32 P =0.0009 

Ankle PF 
RoM (deg) 

SMD 0.37 0.14 0.60 25 P =0.001 

Moderate 

HQ (Queen et al., 2017), MQ (Choi et 
al., 2013), FQ (Ingrosso et al., 2009; 

Tenenbaum et al., 2017; Brodsky et al., 
2017; Segal et al., 2018), PQ (Flavin et al., 

2013; Caravaggi et al., 2015) 

Small 

MD 2.03 1.07 2.99 11 P <0.0001 

Ankle 
Moment 
(N.m/kg) 

SMD 0.39 0.15 0.64 36 P =0.002 

Moderate 

HQ (Queen et al., 2017), MQ (Choi et 
al., 2013), FQ (Valderrabano et al., 2007; 

Ingrosso et al., 2009; Brodsky et. al., 2011; 
Tenenbaum et al., 2017; Segal et al., 

2018), PQ (Flavin et al., 2013; Caravaggi et 
al., 2015) 

Small 

MD NA NA NA NA NA 

Ankle Power 
(W/kg) 

SMD 0.71 0.53 0.88 0 P <0.00001 

Moderate 

HQ (Queen et al., 2017), MQ (Choi et 
al., 2013),  FQ (Valderrabano et al., 2007; 
Brodsky et. al., 2011; Tenenbaum et al., 
2017; Brodsky et al., 2017; Segal et al., 

2018), PQ (Flavin et al., 2013) 

Medium 

MD 0.28 0.18 0.38 51 P <0.00001 

Knee RoM 
(deg) 

SMD 0.37 0.04 0.70 43 P =0.03 

Moderate 

MQ (Choi et al., 2013), FQ (Brodsky 
et. al., 2011; Hahn et al., 2012; 

Tenenbaum et al., 2017; Segal et al., 
2018) 

Small 
MD 2.92 0.17 5.67 55 P =0.04 

Hip RoM 
(deg) 

SMD 0.62 0.38 0.86 0 P <0.00001 

Moderate 

MQ (Choi et al., 2013), FQ (Brodsky 
et. al., 2011; Hahn et al., 2012; 

Tenenbaum et al., 2017; Segal et al., 
2018) 

Medium 
MD 3.90 2.33 5.46 9 P <0.00001 

Walking 
speed (m/s) 

SMD 1.02 0.85 1.19 35 P <0.00001 

Moderate 

HQ (Queen et al., 2017), MQ (Queen 
et al., 2012; Choi et al., 2013), FQ 

(Valderrabano et al., 2007; Ingrosso et al., 
2009; Brodsky et. al., 2011; Hahn et al., 
2012; Queen et al., 2014; Grier et al., 

2016; Tenenbaum et al., 2017; Brodsky et 
al., 2017; Segal et al., 2018), PQ (Flavin et 

al., 2013; Caravaggi et al., 2015) 

Medium 

MD 0.23 0.19 0.27 55 P <0.00001 

Cadence 
(steps/min) 

SMD 0.66 0.45 0.87 15 P <0.00001 

Moderate 

MQ (Choi et al., 2013),FQ 
(Valderrabano et al., 2007; Brodsky et. al., 

2011; Hahn et al., 2012; Tenenbaum et 
al., 2017; Brodsky et al., 2017; Segal et al., 

2018), PQ (Flavin et al., 2013) 

Medium 

MD 8.14 6.03 10.25 2 P <0.00001 

Stance 
Duration 

(%) 

SMD -0.35 -0.55 -0.15 0 P =0.0005 

Moderate 

MQ (Queen et al., 2012; Choi et al., 
2013), FQ (Valderrabano et al., 2007;  

Ingrosso et al., 2009; Brodsky et. al., 2011; 
Tenenbaum et al., 2017), PQ (Caravaggi et 

al., 2015) 

Small 
MD -0.01 -0.62 0 3 P =0.001 

Step Length 
(m) 

SMD 0.75 0.98 26 26 P <0.00001 

Moderate 

MQ (Queen et al., 2012; Choi et al., 
2013), 

FQ (Valderrabano et al., 2007; 
Tenenbaum et al., 2017; Brodsky et al., 

2017;  Segal et al., 2018), PQ (Flavin et al., 
2013) 

Medium 
MD NA NA NA NA NA 
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B. Ankle arthrodesis: pre-operative versus post-operative 

Variables 
SMD / 

MD 
Mean 

Lower 

95% CI 

Higher 

95% CI 
I2 

Overall 

effect 
Evidence Quality studies Effect 

Ankle RoM 

(deg) 

SMD -0.16 -0.99 0.68 71 P = 0.71 
Limited 

FQ (Hahn et al., 2012; Brodsky et al., 

2016), PQ (Flavin et al., 2013) 
No effect 

MD -0.49 -3.48 2.51 75 P = 0.75 

Ankle DF 

RoM (deg) 

SMD 0.64 -0.42 1.70 83 P = 0.24 
Limited 

FQ (Brodsky et al., 2016, Segal et al., 

2018), PQ (Flavin et al., 2013) 
No effect 

MD 3.64 -2.23 9.51 87 P = 0.22 

Ankle PF 

RoM (deg) 

SMD -0.11 -1.20 0.97 85 P = 0.84 
Moderate 

FQ (Brodsky et al., 2016, Segal et al., 

2018), PQ (Flavin et al., 2013) 
No effect 

MD -0.54 -7.45 6.38 87 P = 0.88 

Ankle 

Moment 

(N.m/kg) 

SMD 0.54 0.17 0.92 0 P = 0.005 

Moderate 

FQ (Hahn et al., 2012; Brodsky et al., 

2016, Segal et al., 2018), PQ (Flavin et al., 

2013) 

Small 
MD 0.16 0.05 0.27 0 P = 0.004 

Ankle 

Power 

(W/kg) 

SMD 0.35 -0.06 0.76 0 P = 0.09 

Moderate 
FQ (Brodsky et al., 2016, Segal et al., 

2018), PQ (Flavin et al., 2013) 
No effect 

MD 0.17 -0.03 0.36 0 P = 0.09 

Knee RoM 

(deg) 

SMD 0.34 -0.09 0.77 0 P = 0.12 
Moderate 

FQ (Hahn et al., 2012; Brodsky et al., 

2016, Segal et al., 2018) 
No effect 

MD 1.43 -0.53 3.38 0 P = 0.15 

Hip RoM 

(deg) 

SMD 0.89 0.44 1.34 0 P <0.0001 
Moderate 

FQ (Hahn et al., 2012; Brodsky et al., 

2016, Segal et al., 2018) 
Medium 

MD 4.77 2.54 7.00 0 P = 0.0001 

Walking 

speed (m/s) 

SMD 0.76 0.37 1.15 0 P <0.0001 

Moderate 

FQ (Hahn et al., 2012; Brodsky et al., 

2016, Segal et al., 2018), PQ (Flavin et al., 

2013) 

Medium 
MD 0.17 0.09 0.24 0 P <0.00001 

Cadence 

(steps/min) 

SMD 0.30 -0.07 0.68 0 P = 0.11 

Moderate 

FQ (Hahn et al., 2012; Brodsky et al., 

2016, Segal et al., 2018), PQ (Flavin et al., 

2013) 

No effect 
MD 3.05 -0.24 6.34 0 P = 0.07 

Stance 

Duration 

(%) 

SMD -0.20 -0.83 0.42 NA NA 

Very Limited FQ (Brodsky et al., 2016) No effect 
MD 0 -0.01 0.01 NA NA 

Step Length 

(m) 

SMD 0.13 -0.84 1.10 0.79 P = 0.79 
Limited 

FQ (Brodsky et al., 2016, Segal et al., 

2018), PQ (Flavin et al., 2013) 
No effect 

MD 0.03 -0.05 0.11 0.43 P = 0.43 
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Maximal ankle power 

The overall pooled SMD from 8 studies totalling 271 participants showed 

moderate evidence that patients exhibited an improvement in ankle power generation 

after TAR compared to pre-operative levels (SMD: 0.71, 95%CI 0.53 to 0.88) with 

a MD of 0.28 W/kg (95%CI 0.18 to 0.38) (Table 3.2 & 3.3, Figure 

3.2).5,8,11,19,39,44,45,50 Three studies indicated moderate evidence that ankle power did 

not change after an AA (Figure 3.3).6,19,44 

 

Knee flexion/extension RoM  

There was moderate evidence that patients with a TAR exhibited an improvement 

in knee flexion/extension RoM after implantation (SMD: 0.37, 95%CI 0.04 to 0.70) 

of a MD 2.92° (95%CI 0.17 to 5.67).5,11,24,44,45 Two studies5,45 showed limited 

evidence of an improvement in knee flexion/extension RoM after implantation of a 

mobile-bearing ankle prosthesis (SMD: 0.61, 95%CI 0.29 to 0.91) with a MD of 

4.87° (95%CI 1.29 to 8.26). Two studies using fixed-bearing ankle prostheses 

showed moderate evidence that there was no difference between pre- and post-

operative knee flexion/extension RoM.39,44 

Three studies indicated moderate evidence that knee flexion/extension RoM did 

not change after an AA.6,24,44 

 

Hip Flexion/Extension RoM  

The papers provided moderate evidence that patients with a TAR exhibited an 

improvement in hip flexion/extension RoM after implantation (SMD: 0.62, 95%CI 

0.38 to 0.86) with a MD of 3.90° (95%CI 2.33 to 5.46).5,11,24,44,45 The meta-analysis 

indicated evidence of moderate heterogeneity between studies analysing fixed-

bearing prostheses  (I2 = 62%), which was not the case for mobile-bearing prostheses 

and yielded no significant difference between pre- and post-operative conditions 

(SMD: 0.55, 95%CI -0.17 to 1.28).39,44 

There was moderate evidence of an increase in hip flexion/extension RoM after 

an AA (SMD: 0.89, 95%CI 0.44 to 1.34) with a MD of 4.77° (95%CI 2.54 to 

7.00).6,24,44 
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Figure 3.4 : The change in walking speed following total ankle replacement  and ankle arthrodesis compared to pre-

operative status 

 

Walking speed 

Fourteen studies totalling 534 participants reported moderate evidence that 

patients with a TAR exhibited an increase in walking speed after surgery (Table 3.2 

& 3.3, Figure 3.4) (SMD: 1.02, 95%CI 0.85 to 1.19) with a MD of 0.23 m/s (95%CI 

0.19 to 0.27).5,8,9,11,19,22,24,27,37,39,41,44,45,50 Four studies reported moderate evidence of 

an increase in walking speed after an AA (SMD: 0.76, 95%CI 0.37 to 1.15) with a 

MD of 0.17 m/s (95%CI 0.09 to 0.24) )(Figure 3.4).6,19,24,44 
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Cadence 

Based on the overall pooled SMD of 8 studies totalling 247 participants, there 

was moderate evidence that patients with a TAR exhibited an increase in cadence 

after implantation (SMD: 0.66, 95%CI 0.45 to 0.87) with a MD of 8.14 steps/min 

(95%CI 6.03 to 10.25).5,8,11,19,24,44,45,50 In contrast to the data for mobile-bearing 

prostheses, the meta-analysis yielded no significant difference in the cadence after 

implantation of a fixed-bearing ankle prosthesis.11,44 

There was moderate evidence that cadence did not change after an AA.6,19,24,44 

 

Stance duration (% of the gait cycle) 

Based on a total of 7 studies totalling 199 participants, moderate evidence was 

found that patients exhibited a decrease in stance duration after the implantation of 

ankle prosthesis regardless of the type of prosthesis that was implanted (Table 3.2 & 

3.3) (SMD: -0.35, 95%CI -0.55 to -0.15 and MD -0.01%, 95%CI -0.02 to 

0.00).5,9,11,27,37,45,50 

One study reported very limited evidence that stance duration did not change after 

an AA.6 

Step Length 

Moderate evidence was demonstrated that patients with a TAR exhibited an 

increase in step length after implantation (SMD: 0.75, 95%CI 0.52 to 

0.98).8,11,19,37,44,45,50 No MD could be established as one study37 normalized step 

length by the height of the subjects. The meta-analysis indicated evidence of 

moderate heterogeneity between studies analysing fixed-bearing prostheses  (I2 = 

62%), in contrast to that for mobile-bearing prostheses, and yielded a significant 

difference between pre- and post-operative conditions (SMD: 0.84, 95%CI 0.32 to 

1.36).11,37,44 Four studies indicated moderate evidence of an increase in step length 

after implantation of a mobile-bearing ankle prosthesis (SMD: 0.66, 95%CI 0.42 to 

0.90) with a MD of 0.06m (95%CI 0.02 to 0.09).8,19,45,50 

Limited evidence was demonstrated for no change in step length after an AA.6,44 
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Table 3-3 : Summary findings for gait parameters. Change from pre-operative to post-operative status and quality of 

the evidence related to Standard Mean Difference (SMD) : A : Mobile-bearing, B) Fixed-bearing. (NA: Not applicable, MD : 

mean difference, deg: degrees, HQ: High quality, MQ : Moderate Quality, FQ : Fair quality) 

 

A. Mobile-bearing total ankle replacement 

Variables SMD/ MD Mean 
Lower 

95% CI 

Higher 

95% CI 
I2 

Overall 

effect 
Evidence Quality studies Effect 

Ankle RoM 

(deg) 

SMD 0.64 0.46 0.83 0 P< 0.00001 

Moderate 

HQ (Queen et al., 2017), FQ 

(Valderrabano et al., 2007; Ingrosso et 

al., 2009; Brodsky et. al., 2011; 

Tenenbaum et al., 2017; Brodsky et al., 

2017), PQ (Flavin et al., 2013; Caravaggi 

et al., 2015) 

Medium 

MD 3.32 2.32 4.07 0 P< 0.00001 

Ankle DF RoM 

(deg) 

SMD 0.23 0.01 0.046 0 P =0.04 

Moderate 

FQ (Ingrosso et al., 2009; Tenenbaum et 

al., 2017; Brodsky et al., 2017), PQ 

(Flavin et al., 2013; Caravaggi et al., 

2015) 

Small 
MD 1.3 -0.02 2.61 22 P =0.05 

Ankle PF RoM 

(deg) 

SMD 0.38 0.06 0.71 46 P =0.02 

Moderate 

HQ (Queen et al., 2017), FQ (Ingrosso et 

al., 2009; Tenenbaum et al., 2017; 

Brodsky et al., 2017), PQ (Flavin et al., 

2013; Caravaggi et al., 2015) 

Small 

MD 2.18 0.78 3.58 31 P =0.002 

Ankle 

Moment 

(N.m/kg) 

SMD 0.39 0.06 0.71 47 P =0.02 

Moderate 

HQ(Queen et al., 2017), FQ 

(Valderrabano et al., 2007; Ingrosso et 

al., 2009; Brodsky et. al., 2011; 

Tenenbaum et al., 2017), PQ (Flavin et 

al., 2013; Caravaggi et al., 2015) 

Small 

MD NA NA NA NA NA 

Ankle Power 

(W/kg) 

SMD 0.73 0.53 0.92 0 P< 0.00001 

Moderate 

HQ(Queen et al., 2017) 

FQ (Valderrabano et al., 2007; Brodsky 

et. al., 2011; Tenenbaum et al., 2017; 

Brodsky et al., 2017), PQ (Flavin et al., 

2013) 

Medium 

MD 0.28 0.15 0.41 64 P< 0.00001 

Knee RoM 

(deg) 

SMD 0.60 0.29 0.91 7 P =0.0001 
Limited 

FQ (Brodsky et. al., 2011; Tenenbaum et 

al., 2017) 
Medium 

MD 4.78 1.29 8.26 48 P =0.007 

Hip RoM 

(deg) 

SMD 0.69 0.39 0.99 0 P< 0.00001 
Limited 

FQ (Brodsky et. al., 2011; Tenenbaum et 

al., 2017) 
Medium 

MD 4.58 2.70 6.45 0 P< 0.00001 

Walking 

speed (m/s) 

SMD 0.91 0.71 1.11 5 P< 0.00001 

Moderate 

HQ (Queen et al., 2017), 

FQ (Valderrabano et al., 2007; Ingrosso 

et al., 2009; Brodsky et. al., 2011; 

Tenenbaum et al., 2017; Brodsky et al., 

2017), PQ (Flavin et al., 2013; Caravaggi 

et al., 2015) 

Medium 

MD 0.19 0.14 0.24 30 P< 0.00001 

Cadence 

(steps/min) 

SMD 0.75 0.49 1.02 31 P< 0.00001 

Moderate 

FQ (Valderrabano et al., 2007; Brodsky 

et. al., 2011; Tenenbaum et al., 2017; 

Brodsky et al., 2017), PQ (Flavin et al., 

2013) 

Medium 
MD 8.63 5.91 11.34 26 P< 0.00001 

Stance 

Duration (%) 

SMD -0.30 -0.55 -0.05 0 P =0.02 

Moderate 

FQ (Valderrabano et al., 2007; Ingrosso 

et al., 2009; Brodsky et. al., 2011; 

Tenenbaum et al., 2017) , PQ (Caravaggi 

et al., 2015) 

Small 
MD -0.01 -0.02 0 10 P =0.03 

Step Length 

(m) 

SMD 0.66 0.42 0.90 0 P< 0.00001 

Limited 

FQ (Valderrabano et al., 2007; 

Tenenbaum et al., 2017; Brodsky et al., 

2017), PQ (Flavin et al., 2013) 

Medium 
MD 0.06 0.02 0.09 59 P =0.0007 
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B. Fixed-bearing total ankle replacement 

Variables 
SMD/ 

MD 
Mean 

Lower 

95% CI 

Higher 

95% CI 
I2 

Overall 

effect 
Evidence Quality studies Effect 

Ankle RoM 
SMD 0.95 0.46 1.44 0 P =0.0001 

Moderate 
HQ (Queen et al., 2017); 

MQ (Choi et al.,2013) 
Medium 

MD 3.42 1.21 5.63 41 P =0.002 

Ankle DF RoM 

SMD 0.55 0.07 1.03 56 P =0.02 

Limited 

MQ (Queen et al., 2012; Choi et al., 

2013), 

FQ (Segal et al., 2018) 

Small 
MD 2.21 0.66 3.76 41 P =0.005 

Ankle PF RoM 

SMD 0.27 -0.11 0.64 0 P =0.16 

Moderate 

HQ (Queen et al., 2017); 

MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

No 

effect MD 1.29 -0.39 2.96 11 P <0.0001 

Ankle 

Moment 

(N.m/kg) 

SMD 0.52 0.14 0.90 0 P=0.007 

Moderate 

HQ (Queen et al., 2017); 

MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

Small 
MD 0.16 0.02 0.30 15 P=0.03 

Ankle Power 

(W/kg) 

SMD 0.64 0.22 1.06 16 P=0.003 

Moderate 

HQ (Queen et al., 2017); 

MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

Medium 
MD 0.28 0.13 0.43 0 P=0.0002 

Knee RoM 
SMD -0.07 -0.50 0.37 0 P =0.77 

Moderate 
MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

No 

effect MD -0.43 -3.49 2.63 0 P =0.78 

Hip RoM 
SMD 0.55 -0.17 1.28 62 P =0.13 

Limited 
MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

No 

effect MD 3.42 -1.57 8.41 74 P =0.18 

Walking 

speed (m/s) 

SMD 0.86 0.49 1.24 37 P <0.00001 

Moderate 

HQ (Queen et al., 2017); 

MQ (Queen et al., 2012; Choi et al., 

2013); 

FQ (Segal et al., 2018) 

Medium 
MD 0.19 0.12 0.26 39 P <0.00001 

Cadence 

(steps/min) 

SMD 0.45 0.01 0.89 0 P =0.05 
Moderate 

MQ (Choi et al., 2013); 

FQ (Segal et al., 2018) 

No 

effect MD 6.01 0.26 11,77 0 P =0.04 

Stance 

Duration (%) 

SMD -0.45 -0.78 -0.12 0 P =0.007 
Moderate 

MQ (Queen et al., 2012; Choi et al., 

2013), 
Small 

MD -0.01 -0.02 0 0 P =0.009 

Step Length 

(m) 

SMD 0.84 0.32 1.36 62 P =0.001 
Limited 

MQ (Queen et al., 2012; Choi et al., 

2013), FQ (Segal et al., 2018) 
Medium 

MD NA NA NA NA NA 

 

 

DISCUSSION 

This systematic review aimed to synthesise previous research evaluating the biomechanical 

effect of  TAR and AA in patients suffering from end-stage ankle OA. There is currently limited 

to moderate evidence that all spatio-temporal variables are improved following TAR 

irrespective of the type of prosthesis implanted. Segal (2018) suggested that TAR patients 

improved their walking speed by increasing their cadence.44 In contrast, very limited to 

moderate evidence was shown by the systematic review that there is no improvement in spatio-

temporal variables after an AA except for walking speed. 
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The main advantage of TAR over AA is the conservation of the existing pre-operative ankle 

RoM.5,10,27 Data pooling of ankle kinematics showed a medium effect (3.20°) in increasing the 

dorsi-/plantarflexion RoM of the replaced ankle, using skin markers to assess motion. This 

methodology may well have resulted in an over-estimation of bone motion due to soft tissue 

artefact.31,52 The increase in RoM found could also be attributed to accessory offending motion 

hypermobility of the adjacent foot joints in studies where the foot was considered to be one 

rigid segment (Table 3.2). There was moderate evidence that experimental errors or natural gait 

variability could account for only a small increase in RoM for dorsiflexion (1.72°) and for 

plantarflexion (2.03°) during gait.43 In the light of these results, it seems that TAR does increase 

the pre-operative ankle RoM. In contrast, a reduced ankle RoM should be an expected outcome 

for AA. Although the ankle joint is fused, four studies reported the ankle dorsi- and/or 

plantarflexion RoM.7,19,24,44 The movements reported in these studies could be due to the rigid 

foot model used in the studies, the motion reported not being due to true ankle RoM, but the 

resulting compensation of the neighbouring joints. Future prospective studies evaluating TAR 

or AA should therefore use a 3D multi-segment foot model to avoid erroneus motion data 

relating of the surgical effects on foot mechanics.  

A second advantage of TAR over AA is the protection of the adjacent and non-adjacent 

joints.5,10,27 Conventional gait models were used in all the studies included in this review, 

allowing the evaluation of function of the neighbouring joints (i.e. hip, knee) pre and post 

surgery (Table 3.1). Twelve of the seventeen studies limited their analysis to the affected joint 

without considering the entirety of the lower kinetic chain. From a biomechanical point of view, 

such consideration is an important facet of any procedure since the segments of the lower limb 

are a linked system.18,28 Moderate evidence was found indicating that TAR patients increase 

their flexion-extension RoM at the knee and the hip post-operatively.5,11,24,44,45 In contrast, the 

evidence suggests that arthrodesis patients show no post-operatively change in knee RoM, but 

an increase (4.77°) in hip RoM. This would seem to reinforce the notion that patients suffering 

from the ankle OA compensate more at the hip than at the knee for reduced ankle RoM.44 Future 

studies should combine 3D lower limb models with 3D multi-segment foot models to enhance 

our understanding of the functional compensatory adaptations occurring at the neighbouring 

joints after TAR and AA.  

Moderate evidence was found that all ankle kinetic variables are improved following TAR. 

Increase in peak plantar flexion moment and ankle power generation is a good indicator of an 

improvement in the ability to use the foot to propel forward and an increase in the strength of 

the calf muscles.27 AA studies demonstrated moderate evidence of an increase in ankle 
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dorsiflexion moment. However, there was also moderate evidence of a lack of effect on the 

generation of ankle power during gait. 

During the past decade, development of TAR design has resulted in two major types: 

mobile-bearing implants, where the polyethylene meniscal bearing is free to slide on both tibial 

and talar articular surface components fixed to the bones, and fixed-baring implants, where the 

meniscal bearing is fixed to the tibial component.29 Unfortunately, there is a paucity of 

randomized trial studies which analyse differences in gait mechanics in patients with a fixed- 

versus mobile-bearing TAR. Only one study39 considered this topic, and revealed no difference 

in outcomes between the two implant types. Pooled data from trials testing the two types of 

prosthesis individually showed limited differences in gait mechanics after TAR using the two 

implant designs (Table 3.3), the differences possible being the result of experimental error or 

natural gait variability.43 

There were of course limitations associated with the studies included in this review. The 

methodological quality assessment of the studies allowed the identification of several 

methodological limitations, such as the absence of outcome measurer blinding and reporting of 

methodological validity. Moreover, the categorisation of ankle OA was limited and non-

specific in most of the studies. The heterogeneity in the patho-etiology of ankle OA means that 

the functional consequences are difficult to define without considering the morphological and 

structural changes associated with the ankle OA, thereby making it difficult to generate 

meaningful pooled results for specific ankle OA sub-types. Only one study50 included in the 

review had an intervention group composed exclusively of post-traumatic ankle OA. In contrast 

to the global TAR results, patients suffering from post-traumatic ankle OA showed no evidence 

of an effect of TAR on peak plantarflexion moment, stance duration or step length. Future 

studies should clearly define the sub-type of end-stage ankle OA and their associated 

osteoarticular deformity. In the absence of this information, caution should be exercised when 

considering results generated by pooled data. A further limitation of the review was the lack of 

access to data generated or analysed in several of the papers. Where necessary authors were 

contacted with a request to provide additional data. Unfortunately, none of our requests were  

met, decreasing the number of studies and participants included in the meta-analysis.  
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CONCLUSION 

 

Current research evaluating changes in gait biomechanics after TAR and AA is limited by 

a lack of prospective research, low sample sizes and heterogeneity in the patho-etiology of ankle 

OA. Meta-analysis revealed a significant increase in lower limb kinematics, kinetics and spatio-

temporal parameters after total ankle replacement. Improvement in gait variables after ankle 

arthrodesis was limited to ankle moment, hip range of motion and walking speed. Future studies 

should combine 3D lower limb models with 3D multi-segment foot models to enhance our 

understanding of the functional compensatory adaptations of the neighbouring joints after TAR 

and AA. 
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ABSTRACT 

 

Background: This study evaluated the 3D angle between the joint moment and the joint 

angular velocity vectors at the Ankle, Chopart, Lisfranc and First Metatarso-phalangeal joints, 

and investigated if these joints are predominantly driven or stabilized during gait. 

 

Methods: The participants were 20 asymptomatic subjects. A four-segment kinetic foot 

model was used to calculate and estimate intrinsic foot joint moments, powers and angular 

velocities during gait. 3D angles between the joint moment and the joint angular velocity 

vectors were calculated for the Ankle, Chopart, Lisfranc, and First Metatarso-phalangeal joints.  

When the 3D vectors were approximately aligned  the moment was considered to  result in 

propulsion (angle <60o) or resistance (angle >120o) at the joint. When the 3D vectors are 

approximately orthogonal (angle close to 90°), the moment was considered to stabilize the joint. 

 

Results: The results showed that the four intrinsic joints of the foot are never fully 

propelling, resisting or being stabilized, but are instead subject to a combination of the three 

effects during the majority of the stance phase of gait. However, the results also show that 

during pre-swing all four of the joints are subject to moments that result purely in propulsion. 

At heel off, the propulsive configuration appears for the Lisfranc joint first at terminal stance, 

then for the other foot joints at pre-swing in the following order: Ankle joint, Chopart joint and 

First Metatarso-Phalangeal joint. 

 

Conclusions: Intrinsic foot joints adopt a stabilized-resistive configuration during the 

majority of the stance phase,  with the exception of pre-swing during which all joints were 

found to adopt a propulsive configuration. The notion of stabilization, resistance and propulsion 

should be further investigated in subjects with foot and ankle disorders. 

 

Keywords : Foot kinetics, Multi-segment foot, Inverse dynamics, walking 
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BACKGROUND 

 

Adequate measurement of the complex intrinsic movement of the foot and ankle 

complex during walking has been impeded for decades by the simplified representation of foot 

as a single functional segment.11 The development of three-dimensional (3D) multi-segment 

foot models partially tackled this major shortcoming of the established 3D lower limb models 

and showed their clinical value through the detection of intrinsic foot mobility impairments 11. 

During the last decade, foot and ankle biomechanics were essentially described through the 

kinematics of the gait cycle as determined from cadaver, invasive bone pins, biplanar 

videoradiography and non-invasive surface marker studies, and plantar pressure 

measurements.22,23,31–33 Recently, multi-segment kinetic foot models have received increasing 

attention in methodological and clinical studies providing new insights into how the intrinsic 

joints of the foot can have individual power distributions.2,4,10,41 While kinematic multi-segment 

foot models can demonstrate the motion of the various intrinsic joints of the foot, establishing 

the kinetics  of these joints represent a new series of challenges: definition of inter-segment 

joint centers, estimation of segmental shear forces and definition of segment inertial 

properties.10 Despite these technical and methodological challenges, joint moments and powers 

have been able to provide new insights into the dynamic contribution of the Chopart and 

Lisfranc joints during gait,  and new mechanisms of foot dysfunction in specific foot and ankle 

pathologies.10,14,39 

Based on the literature, kinetic analysis of intrinsic foot joints seems to be a valuable 

way for uncovering the role of foot and ankle during locomotion. However, the clinical 

interpretation of joint power remains an area of debate and not without controversies in the field 

of biomechanics. Although subject to challenge, joint power has been reported separately for 

the frontal, sagittal and transverse planes, which has revealed inconsistent results at the 

ankle.1,5,15 The scientific community has also associated joint power with muscle action and 

energy transfer.12,18,19 However, their link with joint power has been widely criticized in the 

literature.12,18,19 The difficulty is largely in the attribution of energy transfer (e.g. storage in 

elastic structures, muscle action) and in the allocation of forces to the agonist-antagonist and 

multi-joint muscles.12,41 The nature of the foot and ankle further increases the complexity of 

interpretation by the fact that, compared to the other major joints of the lower limb, intrinsic 

foot joints share common ligament and muscle tendon structures. Further analysis integrating 

in-vivo medical imaging37 with musculo-skeletal models43 would be required to shed light on 
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the contribution of each of the anatomical structures to foot and ankle function. It is therefore 

proposed that the joint power be supplemented by an angle (M) which encapsulates a 3D 

angular relationship between the joint moment (M) and the joint angular velocity () vectors, 

in an attempt to translate kinetic data into a “simple” functional relationship expressed in an 

accessible format applicable to the lower limb joints (ankle, knee, hip)12 When the 3D vectors 

M and  are aligned (0° or 180°), the moment results in propulsion or resistance. When the 3D 

vectors M and  are orthogonal (90°), the moment stabilizes the joint.12 The 3D angle M  

between the joint moment (M) and the joint angular velocity () revealed that the ankle joint 

generally adapts a resistive configuration (at midstance) followed by a propulsive configuration 

(at pre-swing) in healthy adults. 

Based on current knowledge on the estimation of foot joint kinetics, this study proposes 

to expand the calculation of M  to a four-segment kinetic foot model. Our hypothesis is that 

intrinsic foot joints are only partially propelling, resisting or stabilized due to the complex 

contributions of intrinsic and extrinsic foot muscles, ligaments and multiple joint surfaces. 

Therefore, the objective of this study was to analyse M  at the Chopart, Lisfranc and first 

metatarso-phalangeal joints during the stance phase of gait and to investigate if these joints are 

predominantly propelling, resisting or stabilized. Angle M was also computed at the ankle 

joint with the foot considered to be a multi-segment system  and a single segment for 

comparison. 

 

METHODS 

Subjects 

Twenty asymptomatic adult subjects participated in the study (male/female ratio 14/6; 

age : 45.35  11.97 ; height, 1.75  0.08; weight : 75.5  9.13; BMI : 24.62  2.50; walking 

speed 1.39  0.15). Participants were included if 1) they were able to walk barefooted 

independently, without support, 2) they had no history of orthopaedic, neurological or 

musculoskeletal problems affecting their gait. All participants were volunteers and signed the 

informed consent approved by the local ethical committee (B200-2017-061). 
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Protocol 

The simultaneous assessment of kinematics, kinetics, and plantar pressure 

measurements of each subject was achieved through the use of an advanced clinical 

examination platform combining a motion capture system, a force plate and a plantar pressure 

plate. The motion capture system consisted of 8 Miqus cameras (Qualysis, Göteborg Sweden) 

to capture the kinematic data (200Hz) of the participant while walking over a 10 meters 

walkway at a self-selected speed.6 In the middle of the walkway, a Footscan® pressure plate 

(dimensions 0.5m x 0.4m, 4096 sensors, 2.8 sensors per cm2, RSscan International, Paal, 

Belgium) was mounted upon a custom made AMTI-force plate (dimensions 0.5 x 0.4m, 

Advanced Mechanical Technology, Inc., Watertown, MA, US). The force plate was custom-

made to fit the surface dimensions of the plantar pressure plate. This  set-up allowed for the 

detection of specific gait events as well as for a continuous calibration of the pressure plate with 

the force plate using a Footscan® 3D interface box (RSscan International, Paal, Belgium). Data 

from the pressure and force plates were measured at a sampling rate of 200Hz. The integration 

and synchronization of the three different hardware devices was achieved through the use of a 

Miqus Sync unit interface (Qualysis, Göteborg Sweden).  

Thirty-two 8mm retro-reflective markers were mounted over anatomical landmarks 

according to the Instituto Orthopedico Rizzoli 3D multi-segment foot model (RFM).23 The skin 

markers were mounted using double-sided adhesive tape. After maker placement, the 

participants were asked to walk barefoot, at a self-selected speed until five valid trials were 

recorded. A trial was considered valid when the following criteria were met: 1) walking speed 

was within predetermined boundaries, 2) no visual adjustment was made in gait pattern to 

contact the pressure plate and 3) a clear contact with the pressure plate.8 All marker trajectories 

were computed by Qualysis Tracking Manager 2.16 (Qualysis, Göteborg Sweden). 

Data analysis 

 Inter-segment 3D rotations were calculated according to an adapted version of Instituto 

Orthopedico Rizzoli 3D multi-segment foot model developed by Deschamps et al. (2017) (IOR-

4Segment-model 1) following ISB recommendations, where dorsiflexion/plantarflexion 

(sagittal plane) is defined as rotation about the medio-lateral axis of the proximal segment, 

adduction/abduction (transversal plane) about the vertical axis of the distal segment and 

inversion/eversion (frontal plane) about an axis orthogonal to the first two axes.23,44 

 Joint forces (F) and moments (M) were computed in the Inertial Coordinate System by a 

bottom-up inverse dynamic method using a Newton-Euler recursive algorithm based on a 
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homogeneous matrix formalism during the stance phase of gait.24 Kinematic and force data 

were filtered using a low-pass zero-lag, 4th order, Butterworth filter, with a cut-off frequency 

of 10 Hz. Inertia and weight parameters of each foot segment were discounted as the inertia 

effects were negligible during gait compared to the external forces. The force plate data were 

distributed over each foot segment using the proportionality scheme described by Morlock & 

Nigg (1991) and validated by Saraswat et al. (2014) based on the distribution of the vertical 

ground reaction forces as measured by each sensor of the plantar pressure platform (i.e. if 15% 

of the total vertical force acted on the forefoot, it was assumed that 15% of the total horizontal 

force also acted on the forefoot).30,39 The estimation of the subarea of each foot segment was 

achieved for each time frame by projecting the position of the retro-reflective markers vertically 

on the sensor matrix of the plantar pressure platform. The resulting center of pressure (CoP) of 

each estimated subarea was then used as the CoP for each foot segment in then inverse dynamics 

calculations. The joint moments were expressed in the proximal segment coordinate system. 

 For the computation of foot kinematics and kinetics, a virtual cuboid marker was created 

and defined as being at 2/3 of the distal distance between the peroneal tubercle and the base of 

the fifth metatarsal (Figure 4.1). Inter-segment center definitions of the four segment foot model 

were based on Deschamps et al. (2017). For both kinematic and kinetic foot models, the ankle 

joint center was defined as the midpoint between the malleoli markers. Ankle joint motion was 

described between the foot and the shank for the one-segment foot model (hereafter referred as 

Ankle), and between the calcaneus and the shank for the multi-segment foot model (hereafter 

referred as Shank-Calcaneus) (Figure 4.1). Calcaneus-Midfoot center (hereafter referred as 

Chopart joint) was determined as being the midpoint between the cuboid and the navicular 

bone. Midfoot-Metatarsus center (hereafter referred as Lisfranc joint) was determined as being 

on the base of the second metatarsal. First Metatarso-Phalangeal joint center  was the projection 

of first metatarsal head marker vertically at mid distance to the ground.10  

 In supplement to the joint power, the 3D angle M between the joint moment (M) and 

the joint angular velocity () vectors was calculated as described by Dumas and Chèze (2008). 

When the 3D vectors M and  are mainly aligned (M <60° or > 120°), the moment  either 

results in propulsion (P) or resistance (R). When the 3D vectors M and  are almost orthogonal 

(M >60° and <120°), the moment stabilizes the joint (S).12 Inter-segment kinematic and 

kinetic computations were performed using an in-house constructed Matlab program. Joint 

moments and powers were normalized by subject-mass and all variables were time-normalized 

for the stance phase.  
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Figure 4.1 : Inter-segment center definitions were defined according to an adapted version of Rizzoli foot model (Leardini 

et al. 2007) developed by Deschamps et al. (2017) (IOR-4Segment-model 1). Markers name : upper ridge of the posterior 

surface of the calcaneus (FC); peroneal tubercle (FPT); sustentaculum tali (FST); virtual cuboid marker (FCub), tuberosity of 

the navicular bone (FNT);  first, second and fifth metatarsal base (FMB, SMB, FMT); first, second and fifth metatarsal head 

(FM1,FM2, FM5); PD6 : distal dorso-medial aspect of the head of the proximal phalanx of the hallux; First Metatarso-

phalangeal joint center (FM1; Midfoot-Metatarsus center (SMB); Calcaneus-Midfoot center (ID) 
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RESULTS 

 

The 3D angle M curves show that the four joints are never fully propelling, resisting or 

stabilized, but adopt a stabilized-resistive configuration during most of the stance phase, except 

at pre-swing with all joints in a propulsive configuration (Figure 4.5). At loading response, all 

major joints quickly show a peak resistance (Ankle, Shank-Calcaneus, Lisfranc) or a 

stabilization configuration (Chopart) followed by a short period of stabilization occurring first 

at ankle, Shank-Calcaneus and then for Lisfranc joints. The First Metatarso-Phalangeal joint 

demonstrates a propulsive configuration during loading response. During midstance, the Ankle 

and Shank-Calcaneus predominantly show a resistive configuration, whereas the Chopart 

adapts a stabilized-resistive configuration. In contrast, Lisfranc and First Metatarso-Phalangeal 

joints show a stabilized configuration. The propulsive configuration appears for Lisfranc joint 

first at terminal stance, then for other foot joints at pre-swing in the following order : shank-

calcaneus, Ankle, Chopart and First Metatarso-Phalangeal joint. 

 

Ankle versus Shank-Calcaneus joints 

The Ankle and shank-Calcaneus joint powers remained low during the stance phase, 

except at loading response, when a peak of negative power occurred corresponding to a resistive 

configuration (both joints 161°), and during pre-swing when a peak of positive power occurred 

corresponding to a propulsive configuration (Shank-Calcaneus 50° versus Ankle 26°) 

(Figure 5). The 3D angle M of both joints demonstrated a high variability during loading 

response and at the end of midstance (Figure 4.5). 

At loading response, the moments and angles (Figure 4.2-4.4) of both joints showed a 

predominantly dorsiflexion inter-segmental action, and a combination of plantarflexion and 

eversion movements. At midstance, the joint moments and angles of both joints showed a 

plantarflexion inter-segmental action and a dorsiflexion movement. At terminal stance and pre-

swing, the joint moments and angles of both joints showed a predominantly plantarflexion inter-

segmental action combined with a plantarflexion movement. Both peak power generation and 

absorption were lower in the Shank-Calcaneus joint than in the Ankle joint. 
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Figure 4.2 : Mean 3D kinematics (degrees) for the Ankle, Shank-Calcaneus (Sha-Cal), Chopart joint (Cal-Mid), Lisfranc 

joint (Mid-Met), First Metatarso-Phalangeal joint (1st Metatarso-Phal). Standard deviations are visualized as bands. 

 

Calcaneus-Midfoot (Chopart) 

The Calcaneus-Midfoot power remained low during the stance phase, except during 

terminal stance when a peak of negative power occurred corresponding to a resistive 

configuration (143°), and during pre-swing when a peak of positive power occurred 

corresponding to a propulsive configuration (36°). The 3D angle M demonstrated a high 

variability during loading response and midstance (Figure 4.5). 

At loading response, Calcaneus-Midfoot power was negligible and the moments and 

angles showed a predominantly plantarflexion inter-segmental action and a combination of 

dorsiflexion and eversion movements (Figure 4.2-4.4). Calcaneus-Midfoot power was also low 
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during midstance and the 3D angle M  demonstrated a stabilised-resistive configuration. At 

terminal stance, the moments and angles showed a predominantly plantarflexion inter-

segmental action combined with a dorsiflexion movement.  At pre-swing, the moments and 

angles showed a predominantly plantarflexion inter-segmental action combined with a 

plantarflexion movement.  

Midfoot-Metatarsus (Lisfranc) 

The Midfoot-Metatarsus power remained low during the stance phase, except at the end 

of terminal stance and the beginning of pre-swing when a peak of positive power was seen to 

occur corresponding to a propulsive configuration (33°). The 3D angle M  demonstrated a 

high variability during midstance and terminal stance (Figure 4.5). 

At loading response, Midfoot-Metatarsus power was negligible and the moments and 

angles showed a predominantly plantarflexion inter-segmental action and a combination of 

dorsiflexion and inversion/eversion movements (Figure 4.2-4.4). Midfoot-Metatarsus power 

were also low during midstance and the 3D angle M  demonstrated a stabilised configuration 

(90°). At terminal stance, the moments and angles showed a predominantly plantarflexion 

inter-segmental action combined with a plantarflexion movement.  The moments and angles at 

the transition between terminal stance and pre-swing showed a predominantly plantarflexion 

inter-segmental action combined with a plantarflexion movement. In contrast to the ankle and 

Chopart joints, the Lisfranc joint demonstrated a stabilized configuration at the end of pre-

swing. The moments and angles showed an eversion inter-segmental action combined with an 

eversion movement. 

 

First metatarso-phalangeal  

The First Metatarso-Phalangeal power remained low during the stance phase, except at 

pre-swing when a peak of negative power was seen to occur corresponding to a resistive 

configuration (peak at 163°). The 3D angle M  demonstrated a high variability during the 

entire stance phase, except during pre-swing (Figure 4.5). 

 The First Metatarso-Phalangeal power was negligible from loading response to terminal 

stance. 3D angle M  showed a propulsive configuration at loading response and a stabilised 

configuration during midstance. At terminal stance and pre-swing, the moments and angles 

showed a predominantly plantarflexion inter-segmental action combined with a dorsiflexion 

movement (Figure 4.2-4.4). 
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Figure 4.3 : Mean 3D angular velocities (degrees/second) for the Ankle, Shank-Calcaneus (Sha-Cal), Chopart joint (Cal-

Mid), Lisfranc joint (Mid-Met), First Metatarso-Phalangeal joint (1st Metatarso-Phal). Standard deviations are visualized as 

bands. 
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Figure 4.4 : Mean 3D joint moments (Nm/kg) for the Ankle, Shank-Calcaneus (Sha-Cal), Chopart joint (Cal-Mid), Lisfranc 

joint (Mid-Met), First Metatarso-Phalangeal joint (1st Metatarso-Phal). Standard deviations are visualized as bands. 

 
 
 
 
 
 
 
 
 
 
 
 



 78 

 

 
 

Figure 4.5 : Mean 3D joint power (Watt/kg) and mean 3D angle between joint moment and joint angular velocity 

vectors for the Ankle, Shank-Calcaneus (Sha-Cal), Chopart joint (Cal-Mid), Lisfranc joint (Mid-Met), First Metatarso-

Phalangeal joint (1st Metatarso-Phal). Standard deviations are visualized as bands. Subphases of the gait cycle. 

Abbreviations : R : resistance configuration; P : propulsion configuration; S : stabilisation configuration. 
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DISCUSSION 

 

The current study proposes the use of a 3D angle M, which encapsulates a 3D angular 

relationship between the joint moment (M) and the joint angular velocity () vectors, in an 

attempt to provide a “simple” measure of the  function of intrinsic foot joints during gait. Our 

hypothesis was confirmed by the results which showed that the intrinsic foot joints are never 

fully propelling, resisting or stabilized, but instead adopt a stabilized-resistive configuration 

during most of the stance phase, with the exception of during pre-swing when all joints adopt a 

propulsive configuration. This stabilized-resistive configuration keeps the foot from collapsing 

while bearing weight, allowing stabilization of the foot and thus accomplishing the stability 

requirements of locomotion.40  

This  study expanded the calculation of 3D angle M  from a lower limb model to a 

four-segment kinetic foot model. The 3D angle M pattern of the Ankle joint found in this 

study was generally similar to that proposed by Dumas and Chèze (2008).12 The most notable 

difference between the results of the two studies was  that during loading response Dumas and 

Chèze (2008) found a stabilized configuration as opposed to the resistive configuration found 

in this study. The decomposition of 3D angle M revealed that this discordance in configuration 

is likely to arise from different kinematic patterns, as Dumas and Chèze (2008) found a 

predominant combination of abduction and external rotation movements, whereas  this study 

showed a combination of plantarflexion and eversion movements. It may be concluded that the 

observed differences may therefore come from the variation in foot kinematics between 

participants, since both studies used the same joint center, anatomical landmarks and reference 

frame to model the ankle joint.  

A point of interest which deserves discussion is the critical role of the method by which 

the ankle joint is modelled. The simplified representation of the foot as a single functional 

segment is still widely used to quantify ankle joint kinetics in clinical biomechanical studies. 

The results showed that both peak power generation and absorption to be lower in the Shank-

Calcaneus joint than in the Ankle joint (Figure 4.5). This is in accordance with previous gait 

studies for asympatomatic3,26,45 and symptomatic14 subjects. However, in terms of 3D angle 

M waveforms, the Shank-Calcaneus joint and the Ankle joint  showed similar waveforms 

during the stance phase of gait. 

Adding 3D angle M waveforms to the computation of foot kinetics creating a four-

segment foot model  enabled the discovery of new insights into how the Chopart and Lisfranc 
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joints are contributing to foot function from midstance to pre-swing. However, the 

interpretation of 3D angle M of both joints during loading response should be undertaken 

with care, as the forefoot may not yet be in contact with the ground, and their respective joint 

moments were found to be close to zero. The computed 3D angle M waveforms of both joints 

appear to correspond with their respective functional anatomy. The Lisfranc joint shows 

predominantly a stabilized configuration during midstance,  possibly caused by the anatomical 

stiffness of the tarsometatarsal joints. The passive stability of the Lisfranc joint is largely 

provided by the plantar ligaments and the second metatarsal with its encased base between the 

cuneiforms. The peroneus longus tendon, inserted at the plantar aspect of the first metatarsal 

base, and the first cuneiform further contribute to  the stabilization of the first ray in opposition 

to dorsiflexion moments that are commonly exerted by ground reaction forces acting plantar to 

the first metatarsal head.36 In contrast to the Lisfranc joint, the Chopart joint has considerably 

more freedom of movement and requires a  resistive-stabilized configuration to control the 

deformation of the longitudinal arch under load, and to avoid collapsing during midstance and 

propulsion. Recent evidence suggests that the stability of the longitudinal arch is not only 

provided by the passive structures (e.g. plantar ligaments and plantar fascia), but also by 

contraction of the plantar intrinsic foot muscles.29 These muscles act as local stabilisers 

increasing the inter-segmental stability of the longitudinal arch. They have small cross-sectional 

areas and therefore produce small rotational moments.29 Flexor hallucis longus and tibialis 

posterior provide further substantial dynamic support to the medial longitudinal arch. These 

muscles provide both resistive and propulsive capabilities during gait.27,42 

The foot’s rigidity in late stance is mainly attributed to the windlass and midtarsal 

locking mechanisms.17,28 The stiffening of the foot is required to resist the ground reaction 

forces and  allow efficient propulsion of the body in late stance. At heel off, 3D angle M  

waveforms of the ankle and Lisfranc joints are simultaneously adopting a propulsive 

configuration at terminal stance, which means that both joints are predominantly being driven 

by their respective plantarflexion moments, and thus contributing to power generation (Figure 

4.4-4.5). Recent studies suggest that this power generation at the Lisfranc joint during terminal 

stance is the result of  the Windlass mechanism.3,10,13 The activation of this mechanism results 

in tension the plantar fascia by winding it around the metatarsal heads as the toes extend in 

terminal stance.17 The power generated at the Lisfranc joint would then  in turn result in the 

optimal repositioning of the bones around the Chopart joint.16 The reorientation of the midfoot 

bones were mainly characterized in our results by a plantarflexion moment combined with a 



 81 

dorsiflexion and inversion movement of the Chopart joint resulting in a  resistive configuration. 

This phenomenon is often referred in the literature as the midtarsal locking mechanism.28,35 

However, the term “locking” seems inappropriate as rotational  movement at the Chopart joint 

was observed at terminal stance. It has also been suggested that the increased tension in the 

plantar fascia, and possibly other muscle-tendon structures, would result in a shortening and 

rise of the longitudinal arch through flexion and adduction of the metatarsals in combination 

with an inversion of the rearfoot.7,17 The longitudinal arch raise would then induce a first ray 

plantarflexion, an inversion of the Chopart joint, an inversion of the rearfoot, and ankle 

dorsiflexion.16 At 65% of the stance, the resistive configuration adopted by the Chopart joint is 

converted into a propulsive configuration where the moments and angles show predominantly 

a plantarflexion inter-segmental action combined with a plantarflexion movement (Figure 4.2-

4.5). This configuration conversion allows the Chopart joint to contribute to power generation. 

Elastic recoil of the tibialis posterior as well as of the plantarflexors of the ankle and toes’ 

further add to power generation at the Chopart and ankle joints during terminal stance and pre-

swing.10 

A last point of interest is the functioning of the First Metatarso-phalangeal joint  during 

propulsion, which tends to absorb relatively more power than the joints distal to the Ankle joint 

(Figure 4.5). The ankle and the First Metatarso-Phalangeal joints, among all joints of the foot, 

undergo the largest ranges of motion in the sagittal plane, while moving in opposite directions 

during the majority of the stance phase of gait. Both joints are crossed by the tendon of flexor 

hallucis longus, which acts as a plantarflexor of the ankle and a joint-stabilizer of the First 

Metatarso-Phalangeal joint. Further active stabilization of the hallux against the ground is 

provided by the flexor hallucis brevis, adductor and abductor hallux muscles which exert a 

plantar flexion moment. Evidence suggests that this power absorption observed at the First 

Metatarso-Phalangeal joint could be the result of the flexion-pressor pull of the intrinsic foot 

muscles and the flexor hallucis longus to stabilize the hallux against the ground and to 

counteract the dorsiflexion and eversion moments externally produced by the ground reaction 

forces.20,38 Kelly et al. (2014) further suggested that the intrinsic foot muscles also served to 

decrease the stress on passive elements, such as the plantar ligaments, plantar fascia and plantar 

plate, crossing the First Metatarso-Phalangeal joint.21 It may therefore be concluded that the 

resistive configuration adopted by the First Metatarso-Phalangeal joint at terminal stance and 

pre-swing is in accordance with earlier findings describing the mechanisms countering the 

ground reaction forces. 
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There are several limitations to this study. A first issue concerns the estimation of the 

center of pressure and resultant ground reaction forces for each foot segment, derived from 

combining force and pressure data. The use of a proportionality scheme was originally validated 

for the calculation of joint kinetics of a three segment foot model and not for a four segment 

foot model.39 Validity of the proportionally scheme was assessed by comparing the predicted 

shear forces obtained from the same experimental setup as the present study with the measured 

shear forces obtained by asking the participants to adopt a 3 step controlled foot placement 

approach on two adjacent force plates during a walking trial. Mean differences of less than 3% 

between the shear force measured by 2 adjacent force plates and the shear force predicted by 

the proportionality scheme in the hindfoot and forefoot segments were found in a paediatric 

population. However, these results should be viewed with care as errors in the determination of 

the point of force application have been found towards force plate edges.25 Therefore, the results 

of the current study should be considered as an estimation and further research is needed. A 

second limitation is the use of skin markers to estimate joint centers and segmental kinematics. 

Soft tissue artefacts have been reported to reach 3.29 mm on the surface of the foot22, and the 

impact of this error on the estimation of the moments and powers is difficult to estimate.  A 

third limitation concerns the recruitment of asymptomatic participants, which does not mean 

that all feet were entirely free of degenerative changes in foot structure (e.g. clinical 

osteoarthritic changes). Studies have shown that a sizeable percentage of asymptomatic 

individuals may present abnormal findings of soft tissues on magnetic resonance imaging 9,34. 

Finally, since walking speed results in different foot kinetics, the effect of walking speed on 3D 

angle M should be further investigated in future studies.10  

 

CONCLUSION 

  

This study reports a first attempt to gain additional insight into the kinetic behaviour of 

multiple foot joints through the use of a “simple” variable  (3D angle M) during gait. Intrinsic 

foot joints adopt a stabilized-resistive configuration during the majority of the stance phase. 

Results of the current study should be considered with care as skin markers and a 

proportionality scheme were used to estimate foot joint kinematics and kinetics. The notion of 

stabilization, resistance and propulsion should be further investigated in subjects with foot and 

ankle disorders. 
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ABSTRACT 

 

Background: The most common etiologies for post-traumatic end-stage ankle osteoarthritis 

are ankle fractures and chronic ankle instability. As the nature of trauma is different for these 

two etiologies, it might be expected that the two subtypes of post-traumatic ankle osteoarthritis 

would display different foot mechanics during gait. The overall objective of this study was to 

compare the foot kinematics and kinetics of patients suffering from post-fracture ankle 

osteoarthritis with those of patients suffering from post-sprain ankle osteoarthritis.  

 

Methods: Twenty-nine subjects with post-traumatic ankle osteoarthritis and fifteen 

asymptomatic control subjects participated in this study. A four-segment kinematic and kinetic 

foot model was used to calculate intrinsic foot joint kinematics and kinetics during gait. Anova 

and statistical parametric mapping were used to compare the data from the two groups.  

 

Findings: No differences in the joint angles and moments were found between the two post-

traumatic ankle osteoarthritis groups. Both osteoarthritis groups showed decreased spatio-

temporal variables, and reduced ankle joint angles and moments compared to the control 

subjects. Post-fracture ankle osteoarthritis group were found to exhibit lower power generation 

at the Lisfranc joint complex, and lower power absorption at the first metatarso-phalangeal joint 

compared to the control group.  

 

Interpretation: No differences were found in foot joint mechanics between the two post-

traumatic ankle osteoarthritis groups. However, both pathological groups showed altered foot 

mechanics during gait compared to the control subjects. Alteration in foot mechanics was not 

limited to the painful ankle joint, but also affected the kinetics of the neighbouring foot joints. 

 

Keywords: post-traumatic osteoarthritis; ankle osteoarthritis; foot kinetics; foot 

kinematics; gait 
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INTRODUCTION 

 

Ankle osteoarthritis (OA) is a progressive and degenerative joint disease affecting 

approximately 1% of the world’s adult population.26 Recent publications have demonstrated 

that the degree of physical impairment from ankle osteoarthritis is at least as severe as that from 

congestive heart failure and hip osteoarthritis using the SF-36.9,22 Numerous clinical and 

epidemiologic studies of patients suffering from ankle osteoarthritis have identified previous 

trauma as the most common aetiology.21,26 Post-traumatic ankle osteoarthritis most frequently 

occurs secondary to ankle-related fractures (post-fracture) and to chronic ankle instability (post-

sprain).21 Evidence suggests that post-fracture ankle osteoarthritis results either from 

irreversible cartilage damage which occurs at the time of the fracture, or from chronic cartilage 

overloading which occurs as a result of post-fracture articular incongruity. The evidence also 

suggests that post-sprain ankle osteoarthritis results from pathological cartilage overloading due 

to chronic joint instability.15 

Significant biomechanical alterations of the entire foot and lower limb have been 

reported in patients suffering from post-traumatic ankle osteoarthritis.24,28 Their gait is 

asymmetrical and characterized by a decreased walking speed, decreased stride length and 

reduced mobility of the ankle joint complex.29 They also seem to adopt an antalgic walking 

strategy to prevent shear loading through the painful joint.29 Despite this knowledge, no study 

has so far compared the gait mechanics of patients suffering from post-fracture ankle 

osteoarthritis to those of patients suffering from post-sprain ankle osteoarthritis. Moreover, 

ankle joint kinetics reported in patients suffering from post-traumatic ankle osteoarthritis have 

in the past been calculated using a rigid foot modelling approach, which is known to  

overestimate the amount of ankle joint power, potentially leading to clinical 

misinterpretations.6,30 The development of a more full understanding of the difference in the 

gait mechanics, including those of both the ankle joint and intrinsic joints of the foot, of these 

two subgroups of patients is therefore required. Currently, to the authors’ knowledge, no 

research has been conducted using patients suffering from the two types of post-traumatic ankle 

osteoarthritis using a four-segment kinetic foot model. This approach may show kinetic patterns 

to occur that a rigid foot model would mask, and give additional information regarding forefoot 

function by assessing Chopart and Lisfranc joint complex kinetics. 

The overall objective of this study was to compare the foot kinematics and kinetics of 

patients suffering from post-fracture ankle osteoarthritis with those of patients suffering from 
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post-sprain ankle osteoarthritis. As the nature of the causative trauma is different, one might 

expect that the two types of post-traumatic ankle osteoarthritis would display different foot 

mechanics during gait. In addition, each pathological group was individually compared to an 

asymptomatic group of peer-matched control subjects. 

 

METHODS 

Participants 

A convenience sample of twenty-nine subjects with post-traumatic ankle osteoarthritis 

and fifteen asymptomatic subjects (CTRL) participated in this study (Table 5.1). All patients 

suffered from post-traumatic ankle osteoarthritis secondary to ankle-related fracture (post-

fracture (PF OA; n=15 subjects; 9 males and 6 females) or to chronic ankle instability (post-

sprain (PS OA; n=14 subjects; 9 males and 5 females). Exclusion criteria for both post-

traumatic groups were (1) being younger than 18 years, (2) systemic or neurological diseases, 

(3) any medical problem other than post-traumatic ankle osteoarthritis that could possibly affect 

gait. The inclusion criteria for the pathological groups were post-traumatic end-stage ankle 

osteoarthritis with an indication for either ankle fusion or total ankle replacement. The severity 

of ankle osteoarthritis was scored using the Canadian Orthopaedic Foot & Ankle Society 

(COFAS) classification system (Table 5.1).12 Control subjects (10 males and 5 females) were 

peer-matched with both PF and PS OA groups according to their demographics. Exclusion 

criteria for the control subjects were any medical problems that could possibly affect normal 

gait. The local ethical committee approved the study (B200-2017-061) and all participants 

signed an informed consent form. 

Data collection 

Participants were first fitted with sixteen 8mm retro-reflective markers on the foot and 

shank in accordance with the multi-segment Rizzoli foot model.13 The measurement protocol 

was started by asking participants to walk at a self-selected speed along a 10m walkway in 

which a pressure plate (Footscan®, dimensions 0.58 m x 0.42 m, 4096 sensors, 2.8 sensors per 

cm2, RSscan International, Paal, Belgium) was mounted upon an AMTI force plate (Advanced 

Mechanical Technology, Inc., Watertown, MA, US). The force plate was custom-made to fit 

the surface dimensions of the plantar pressure plate. The advantage of this set-up was the 

continuous calibration of the pressure plate with the force plate using an RsScan® 3D interface 

box (RSscan International, Paal, Belgium). A passive optoelectronic motion analysis system 
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(Qualysis, Göteborg Sweden) comprised of 8 Miqus cameras tracked the kinematic data of the 

participants while walking over the instrumented walkway. The integration and synchronization 

of the three hardware devices was achieved by connecting them using a Miqus Sync unit 

interface (Qualysis, Göteborg Sweden). Data from the three hardware devices were measured 

at a sampling rate of 200Hz. Data was collected from five valid trials for each participant. A 

trial was considered valid when the foot under investigation made a clear contact with the 

pressure and force plate combination without visible gait adjustments. Walking speed was also 

required to remain relatively constant across all trials of a recording session. All marker 

trajectories were calculated using Qualysis Tracking Manager 2.16 (Qualysis, Göteborg 

Sweden). 

Data analysis 

Inter-segment center definitions of the four segment foot model were based on an adapted 

version of Instituto Orthopedico Rizzoli 3D multi-segment foot model developed by 

Deschamps et al. (2017) (IOR-4Segment-model 1) (Figure 5.1).2 The ankle joint center was 

defined as the midpoint between the malleoli markers, and motion at this joint was considered 

to describe the motion between the foot and the shank. This was the only joint considered in 

the 1-segment foot model. In the 4-segment model, the same joint center was used to describe 

the motion between the calcaneus and the shank (hereafter referred as shank-calcaneus). To 

define the calcaneus-midfoot joint center, an additional virtual cuboid marker  was created and 

defined as being at 2/3 of the distal distance between the peroneal tubercle and the base of the 

fifth metatarsal. The calcaneus-midfoot joint center was defined as the midpoint between the 

cuboid and the navicular bone (hereafter referred as Chopart joint). The midfoot-metatarsus 

center (hereafter referred as Lisfranc joint complex) was defined as being on the base of the 

second metatarsal. The first metatarso-phalangeal joint center was defined as being at 

intersection of the projection of the first metatarsal head marker vertically at mid distance and 

the floor.2 Inter-segment 3D rotations were calculated according to IOR-4Segment-model 1 of 

Deschamps et al. (2017) following ISB recommendations.2 

 Joint forces (F) and moments (M) were calculated in the Inertial Coordinate System using 

a bottom-up inverse dynamic method utilising a Newton-Euler recursive algorithm based on a 

homogeneous matrix formalism during the stance phase of gait.14 Kinematic and force data 

were filtered using a low-pass zero-lag, 4th order, Butterworth filter, with a cut-off frequency 

of 10 Hz. Inertia and weight parameters of each foot segment were not accounted for 

considering that the inertia effects were negligible during stance in comparison to the external 
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forces.8,20 The force plate data were distributed over each foot segment using a validated 

proportionality scheme.5,23 The estimation of the subarea of each foot segment was achieved 

for each time frame by projecting the markers’ position vertically onto the sensor matrix of the 

pressure platform. The resulting center of pressure (CoP) of each estimated subarea was then 

used as the CoP for the corresponding foot segment in the inverse dynamics calculations. The 

joint moments were expressed in the proximal segment coordinate system. In addition to the 

joint power, the 3D angle M between the joint moment (M) and the joint angular velocity () 

vectors was calculated as described by Dumas and Chèze (2008).3 When the 3D angle M was 

smaller than 60° or greater than 120°, the moment was considered  to result mainly in the joint 

being driven  in propulsion (P) or resistance (R) respectively. If the 3D angle M was between  

60° and 120°, the moment was considered to result in the joint being mainly stabilized (S).3 An 

in-house written Matlab© program (The Mathworks Inc., Natick, Massachusetts, US) was used 

for inter-segment kinematic and kinetic computations. Internal joint moments and powers were 

normalized by subject-mass, and all one-dimensional data were time-normalized to 100% of 

the stance phase. 

 

 

Figure 5.1 : Inter-segment center definitions were defined 

according to an adapted version of Rizzoli foot model (Leardini et 

al. 2007) developed by Deschamps et al. (2017) (IOR-4Segment-

model 1). Markers name: upper ridge of the posterior surface of 

the calcaneus (FC); peroneal tubercle (FPT); sustentaculum tali 

(FST); virtual cuboid marker (FCub), tuberosity of the navicular 

bone (FNT);  first, second and fifth metatarsal base (FMB, SMB, 

FMT); first, second and fifth metatarsal head (FM1,FM2, FM5); 

PD6: distal dorso-medial aspect of the head of the proximal 

phalanx of the hallux; First Metatarso-phalangeal joint center 

(FM1; Midfoot-Metatarsus center (SMB); Calcaneus-Midfoot 

center (ID) 
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Statistical analysis 

First, a Shapiro-Wilk test was used to check for data normality. A one-way ANOVA test 

and Kruskal-Wallis test were used to identify statistically significant differences between 

groups for demographic and spatio-temporal data. In cases where significant differences were 

observed, a Post hoc Tukey honest significant difference test was used to indicate which groups 

were different. An adjusted P-value (0.05/3=0.017) was used to control the type 1 error rate 

when performing multiple comparisons. All statistical tests were conducted using SPSS 

(version 25, IBM Corp, Chicago, USA).  

One-dimensional statistical parametric mapping (SPM) was used to compare foot 

kinematics and kinetics between groups using an open-source code (v.M.0.4.5; 

www.spm1d.org) in Matlab© (The Mathworks Inc., Natick, Massachusetts, US).7,17 The main 

advantages of this methodological approach are that SPM regards the whole time-series as the 

unit of observation, and that time dependence is incorporated directly in the statistical testing. 

The scalar output one-way between subjects ANOVA (SPM{F}) was calculated separately for 

each time interval. To test the null hypothesis, the critical threshold at which only  = 5% of 

smooth random curves would be expected to cross was calculated. This threshold was based on 

estimates of trajectory smoothness gained from temporal gradients19 and Random Field 

Theory.17 This approach was validated for 1D data.18 Individual probability values were then 

calculated for each supra-threshold cluster that could have resulted from an equally smooth 

random process. If statistical significance was reached in the SPM{F}, then post-hoc two-

sample t-test (SPM{t})(post-hoc p-value 0.05/3 = 0.017) was performed to determine the 

between-group differences (using the same processes as described above to establish the 

significance of the SPM{F}). 

 

RESULTS 

 Demographic and spatio-temporal data 

No significant differences between the groups were found for age, weight, height or BMI 

(Table 5.1). No significant differences were found between PF OA and PS OA groups for 

walking speed or stride length (Table 5.1). However, both post-traumatic ankle OA groups 

showed significantly shorter stride lengths (P<0.001) and slower walking speeds than the 

control group (P<0.001). 

 

 

http://www.spm1d.org/
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Table 5-1 : Demographic and spatio-temporal data between 1)  post-sprain post-traumatic ankle osteoarthritis (PS OA); 2) post-traumatic post-fracture ankle osteoarthritis (PF OA) and 3) 

asymptomatic control subjects (CTRL). Abbreviations: COFAS: Canadian Orthopaedic Foot & Ankle Society classification system for ankle osteoarthritis (Type 1 has isolated ankle osteoarthritis; 

Type 2 signifies ankle osteoarthritis associated with intra-articular ankle deformity or a tight heel cord or both, Type 3 patients have ankle osteoarthritis  with deformity of the hind- or 

midfoot, tibia or forefoot; and Type 4 includes Type 1 to Type 3 plus subtalar or calcaneocuboid or talonavicular osteoarthritis); SD:standard deviation; BMI: body mass index; N.S.: not 

significant. *Post hoc Tukey honestly test (adjusted p-value 0.3/3=0.017). 

 

 PS OA (n=15 ankles) PF OA (n=15 ankles) CTRL (n= 15 ankles) 
ANOVA (F)a / 

Kruskal-Wallis (H)b 

CAI OA vs 

PF OA 

CAI OA vs 

CTRL 

PF OA vs 

CTRL 
 Mean SD Min-Max Mean SD Min-Max Mean SD Min-Max F / H P-value P-value P-value P-value 

Age (years) 63.86 5.96 51-70 58.47 9.79 38-74 59.67 7.96 43-70 3.216 (H) 0.196 N.S. N.S. N.S. 

Height (m) 1.72 0.11 1.48-1.90 1.73 0.08 1.57-1.85 1.72 0.07 1.63-1.83 0.218 (H) 0.897 N.S. N.S. N.S. 

Weight (kg) 82.64 12.50 59-100 84.13 15.09 64-111 77.36 15.85 53-111 0.888 (F) 0.419 N.S. N.S. N.S. 

BMI 28.01 4.23 21.7-34.6 28.01 4.21 21.4-34.6 26 4.27 20.0-34.6 1.109 (F) 0.34 N.S. N.S. N.S. 

Walking 

Speed (m/s) 
0.91 0.17 0.61-1.27 0.97 0.19 0.65-1.27 1.25 0.15 0.96-1.46 16.498 (F) < 0.001 0.592* < 0.001* < 0.001* 

Stride 

Length 

(% Height) 

0.64 0.05 0.56-0.75 0.65 0.09 0.44-0.75 0.78 0.06 0.66-0.88 19.835 (F) < 0.001 0.940* < 0.001* < 0.001* 

C
O

F
A

S
 Type 1 4 Type 1 7 

N/A 

    

Type 2 5 Type 2 0     

Type 3 5 Type 3 6     

Type 4 1 Type 4 2     
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SPM analysis 

The results showed significant SPM{F} main effects for all three groups for foot kinematics 

(ankle, shank-calcaneus, Chopart), and kinetics (ankle, shank-calcaneus, Chopart, Lisfranc, 

first metatarso-phalangeal joints). Post-hoc comparisons of the time-series data showed no 

differences between PF OA and PS OA groups for all foot kinematic and kinetic variables. In 

contrast, differences were shown in kinematics and kinetics between PF OA and CTRL groups 

and between PS OA and CTRL groups. 

Foot joint angles 

During loading response and midstance, the PF OA group showed a more 

abducted shank-calcaneus joint position (P=0.003; 0-60%) associated with a less 

abducted position of the Chopart joint (P=0.012; 4-26%) compared to the CTRL 

group. Further significant differences were found at pre-swing, where the ankle and 

shank-calcaneus joints of both pathological groups exhibited a less plantarflexed 

position (PS vs CTRL : ankle (P=0.006) & shank-calcaneus (P=0.017); PF vs CTRL 

: ankle (P=0.012) & shank-calcaneus (P=0.015)) as well as a less adducted shank-

calcaneus position compared to CTRL (PS vs CTRL : shank-calcaneus (P=0.017); 

PF vs CTRL : shank-calcaneus (P=0.016)) (Figure 5.2). 

 

Joint moments 

Comparison of the joint moments of all intrinsic joints of the foot of the two 

pathological groups to those of the CTRL group, showed the largest differences to 

occur in the sagittal plane at between pathological 60% and 86% of the stance phase 

of gait (P<0.001)(Figure 5.3-5.5). The PS OA group also showed a decreased 

abduction moment at the ankle (P=0.007; 57-62%) and the shank-calcaneus joint 

(P<0.001; 54-66%) compared to the CTRL group. In contrast, the PF OA group 

showed only a decreased abduction moment at the shank-calcaneus joint (vs CTRL : 

P<0.001; 54-66%). With respect to the frontal plane, significant differences were 

only observed for the ankle joint (for both pathological groups) and for the first 

metatarso-phalangeal joint (PF OA) compared to CTRL. 
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Figure 5.2 : Kinematic waveforms representation with +/- 1 standard deviation cloud for the intrinsic joints of the foot: 

Ankle (between the Foot and Shank); Sha-Cal: Shank-Calcaneus ; 1st Metatarso-Phal: 1st Metatarso-Phalangeal joint. PS OA 

group (blue), CTRL group (green) and PF OA (purple); DF: dorsiflexion ; PF: plantarflexion; Add: Adduction ; Abd :Abduction ; 

Inv: Inversion ; Ev: Eversion. 
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Figure 5.3 : Kinetic between-group comparison of inter-segmental Ankle and Shank-Calcaneus joint moment (Mz) during 

the stance phase of gait. PS OA group (blue), CTRL group (green) and PF OA (purple). Absorption. A-C,G-I:Mean kinetic 

trajectories with their respective standard deviation clouds. D-F, J-L: SPM results: SPM{t} is the trajectory of the post-hoc two-

sample t-test. The dotted red lines indicate the random field theory threshold for significance and p-values indicate the 

likelihood that a random process of the same temporal smoothness would be expected to produce a suprathreshold cluster 

of the observed size. 
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Figure 5.4 : Kinetic between-group comparison of inter-segmental Ankle and Shank-Calcaneus joint power during the 

stance phase of gait. PS OA group (blue), CTRL group (green) and PF OA (purple). Abbreviations: Gen (+): Generation ; Abs (-

): Absorption. A-C,G-I: Mean kinetic trajectories with their respective standard deviation clouds. D-F, J-L: SPM results: SPM{t} 

is the trajectory of the post-hoc two-sample t-test. The dotted red lines indicate the random field theory threshold for 

significance and p-values indicate the likelihood that a random process of the same temporal smoothness would be expected 

to produce a suprathreshold cluster of the observed size. 
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Figure 5.5 : Kinetic between-group comparison of inter-segmental Lisfranc joint moment (Mz) and power during the 

stance phase of gait. PS OA group (blue), CTRL group (green) and PF OA (purple). Abbreviations: Gen (+): Generation; Abs (-): 

Absorption. A-C,G-I: Mean kinetic trajectories with their respective standard deviation clouds. D-F, J-L: SPM results: SPM{t} is 

the trajectory of the post-hoc two-sample t-test. The dotted red lines indicate the random field theory threshold for 

significance and p-values indicate the likelihood that a random process of the same temporal smoothness would be expected 

to produce a suprathreshold cluster of the observed size. 



 100 

Power and 3D angle M 

During loading response, a significantly lower ankle power absorption was observed for 

both pathological groups (PS vs CTRL (P=0.004; 6-11%); PF vs CTRL (P=0.012; 3-8%)) 

(Figure 5.4). In addition, the PS OA group demonstrated a lack of resistance-configuration 

during loading response (P=0.015) compared to the CTRL group based on 3D angle M. At 

the end of midstance, the PF OA group showed a lower ankle power absorption compared to 

the CTRL group. At heel off, significantly lower ankle and shank-calcaneus power generation 

were observed for both pathological groups compared to the CTRL group (Figure 5.4). More 

noteworthy differences in power patterns were observed for the PF OA group highlighting 

lower Lisfranc joint complex power generation (P<0.001; 79-87%) as well as lower power 

absorption at the first metatarso-phalangeal joint (P<0.001; 75-85%) compared to CTRL 

(Figure 5.5). 

 

DISCUSSION 

 

To our knowledge, this was the first study to compare the foot kinematics and kinetics of 

patients suffering from post-fracture ankle osteoarthritis to those of patients suffering from 

post-sprain ankle osteoarthritis. We did not find any differences in joint angles and moments 

between the pathological groups. We believe that there may be two possible explanations for 

this lack of differences. Firstly, patients suffering from end-stage ankle osteoarthritis adopt an 

antalgic walking strategy to prevent shear loading through their painful ankle joint.29 This may 

suggest that the results of this study could be attributed to the fact that both pathological groups 

had adopted a similar walking pattern to avoid pain in their arthritic ankle. Secondly, patients 

with ankle osteoarthritis often present concomitant foot and ankle deformities, which may affect 

the intrinsic foot joint mechanics during gait.10,11 It is therefore plausible to suggest that both 

pathological groups may have had similar intra- and extra-articular foot and ankle deformities, 

the effects of which masked the more subtle differences resulting from the primary pathologies. 

Future biomechanical studies should therefore include the assessment of intra- and extra-

articular foot and ankle deformities, the addition of which may provide further insight into the 

mechanical deficits associated with ankle osteoarthritis. 
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One of the objectives of this study was also to compare the foot mechanics of patients 

suffering from post-traumatic ankle osteoarthritis to those of a group of asymptomatic subjects. 

Overall, the gait alterations identified were comparable with corresponding results from 

previous studies. The gait of our post-traumatic patients was characterized by a decreased 

walking speed, decreased stride length and reduced ankle kinematics and kinetics in comparison 

with the CTRL group.1,24,26 A reduction in sagittal plane range of motion (ROM) at the ankle 

and shank-calcaneus joints, particularly during pre-swing, as well as a reduced transverse plane 

ROM at the shank-calcaneus joint, were observed in both pathological osteoarthritis groups 

compared to the CTRL group. These findings are in accordance with those from previous 

studies.1,24,29 In contrast to the results of Valderrabano et al. (2007), no significant reduction in 

ROM was observed in the frontal plane. However, both post-traumatic ankle osteoarthritis 

groups tended to have a more inverted ankle and shank-calcaneus joint position during loading 

response and early midstance compared to the CTRL group. Furthermore, the PF OA group 

exhibited a significantly more adducted position of the Chopart joint during the same period of 

gait. It is reasonable to assume that the inverted hindfoot position, in association with a more 

adducted position of the Chopart joint, may be explained by a co-contraction phenomenon 

between the tibialis anterior and gastrocnemius muscle, both foot and ankle adductor and 

invertor muscles, in an attempt to keep the ankle joint stable from heel strike to midstance.25 

Multi-segment kinetic foot models have recently been shown to be sensitive enough to 

detect differences between the gait of healthy subjects and the gait of patients with ankle 

osteoarthritis.6,20 This study has provided further insight into the kinetic behavior of the Chopart 

joint and Lisfranc joint complex by using a four-segment foot model. The results showed that 

both post-traumatic ankle osteoarthritis groups displayed significantly less plantarflexion 

moment for all intrinsic joints of the foot during propulsion compared to the control group. 

Valderrabano et al. (2007) suggested that the reduction of moments in post-traumatic ankle 

osteoarthritis may be a consequence of the associated atrophy and weakness of the lower leg 

muscles or a protective gait strategy to reduce loading in the painful joint.29 

Direct comparison between the two ankle osteoarthritis groups revealed no differences in 

joint power. However, when the two groups were individually compared to the CTRL group, 

the results suggested that PS OA reduces power generation only at the ankle and shank-

calcaneus joints, whereas PF OA  results in reductions in joint power at the ankle and shank-

calcaneus joints as well as at the Lisfranc and first metatarso-phalangeal joints. This could be 

explained by the nature of trauma in the PF OA group, as the soft-tissue envelope around the 

fractured ankle may have become scarred and inelastic due to fibrosis after osteosynthesis 
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surgery, affecting the functioning of the extrinsic foot muscle tendons, and thus the function of 

the joints distal to the ankle joint. Previous studies have provided further evidence of lower leg 

muscle dysfunction in patients suffering from end-stage post-traumatic ankle osteoarthritis 

resulting from secondary arthritic muscle atrophy, arthrogenous muscle inhibition or a 

combination of the two.16,25 

Since walking speed affects foot kinetics, caution should be exercised when interpreting the 

differences in joint moments and power between our pathological groups and the control group 

as their walking speed differed.4 However, it is of interest to note that the 1D-analysis did not 

reveal any significant differences in the 3D angle M variable between the groups. This could 

mean that subjects suffering from post-traumatic ankle osteoarthritis have adapted their gait to 

avoid loading the painful ankle without affecting how the joints of the foot are driven or 

stabilized by the moments. The findings therefore suggest that walking speed may  not fully 

explain the differences observed in foot kinetics between the CTRL and the ankle osteoarthritis 

groups. Future studies investigating foot joint kinetics should address this limitation by 

comparing symptomatic subjects with speed-matched control subjects. 

 

CONCLUSION 

 

This paper provides the first quantification and comparison of multi-segment foot 

kinematics and kinetics between subjects suffering from post-fracture ankle osteoarthritis and 

post-sprain ankle osteoarthritis. No significant differences were found between the two 

pathological groups. However, it was found that the alteration in foot mechanics in the two 

pathological groups was not limited to the painful ankle joint, but also affected the kinetics of 

the adjacent and non-adjacent foot. 
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ABSTRACT 

 

Background: Ankle and hindfoot malalignment is a common finding in patients suffering 

from post-traumatic ankle osteoarthritis. However, no studies have addressed the effect of 

concomitant foot deformities on intrinsic foot kinematics and kinetics. Therefore, the objective 

of this study was to investigate the effect of ankle and hindfoot malalignment on the kinematics 

and kinetics of multiple joints in the foot and ankle complex in patients suffering from post-

traumatic ankle osteoarthritis. 

 

Methods: Twenty-nine subjects with post-traumatic ankle osteoarthritis participated in this 

study. Standardized weight-bearing radiographs were obtained preoperatively to categorize 

patients as having cavus, planus or neutral ankle and hindfoot alignment, based on 4 X-ray 

measurements. All patients underwent standard gait assessment. A 4-segment foot model was 

used to estimate intrinsic foot joint kinematics and kinetics during gait. Statistical parametric 

mapping was used to compare foot kinematics and kinetics between groups.  

 

Findings: There were 3 key findings regarding overall foot function in the 3 groups of post-

traumatic ankle osteoarthritis: (i) altered frontal and transverse plane joint angles and moments 

of the hindfoot and Chopart joint in the cavus compared to the planus group; (ii) in cavus OA 

group, Lisfranc joint abduction sought to compensate the varus inclination of the ankle joint; 

(iii) there were no significant differences in joint angles and moments between the planus and 

neutral OA groups. 

 

Interpretation: Future studies should integrate assessment of concomitant foot and ankle 

deformities in post-traumatic ankle osteoarthritis, to provide additional insight into associated 

mechanical deficits and compensation mechanisms during gait. 

 

Keywords: ankle osteoarthritis, malalignment, foot kinetics, kinematics, gait 
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INTRODUCTION 

 

End-stage ankle osteoarthritis rarely occurs in isolation, but more often presents 

concomitant ankle and hindfoot deformities.18 As the ankle is a weight-bearing joint, the intra-

articular load distribution is not only influenced by the alignment of the tibiotalar joint itself 

but is also highly dependent on extra-articular mechanical forces related to the 3D orientation 

of the subtalar joint, anatomic variants in the hindfoot joints, and alignment of the medial 

column of the foot.16 Malalignment of the ankle and hindfoot joints in ankle osteoarthritis has 

been investigated intensively in the last decade, mainly on conventional radiography and 

weight-bearing computed tomographic scans.16–18 However, there is a paucity of literature 

regarding the interrelationship between structural changes to underlying bony anatomy and 

alterations in foot mechanics during gait in patients suffering from post-traumatic ankle 

osteoarthritis.10,12,15 Khazzam et al. (2006) used radiographic tibiotalar alignment 

measurements to correct the orientation and segment-embedded reference frames of their foot 

model.15 Unfortunately, the effect of this angle on foot kinematics was not assessed. The 

interrelationship between radiographic tibiotalar alignment measure and plantar pressure 

distribution was investigated by Horisberger et al. (2009), who found that post-traumatic ankle 

osteoarthritis patients with a varus malalignment had a significantly greater pressure center 

excursion index than those with valgus malalignment.12 In terms of kinematics and kinetics, 

Grier et al. (2016) investigated the effect of preoperative tibiotalar malalignment on 

postoperative lower-limb coronal plane mechanics during gait after total ankle replacement 

associated with realignment surgery. Patients with preoperative tibiotalar malalignment showed 

biomechanics similar to that of patients with neutral preoperative alignment.10 However, the 

nature of the deformity was characterized only by a single radiographic value assessing the 

intra-articular ankle deformity, regardless of any concomitant foot deformities. The impact of 

concomitant foot deformities on intrinsic foot mechanics in post-traumatic ankle osteoarthritis 

has not been explored, as foot kinematics and kinetics were generally computed on a rigid foot 

modeling approach, without information on Lisfranc and Chopart joint function. The present 

study therefore aimed to investigate the effect of ankle and hindfoot malalignment on the gait 

kinematics and kinetics of multiple joints of the foot and ankle complex in patients suffering 

from post-traumatic ankle osteoarthritis.  
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METHODS 

Participants 

Twenty-nine subjects with post-traumatic ankle osteoarthritis scheduled for primary 

total ankle replacement or ankle fusion between January 2017 and June 2019 participated in 

this study (Table 6.1). This study was approved by the local review board (B200-2017-061) and 

all participants signed an informed consent form. Exclusion criteria were (1) age <18 years, (2) 

systemic or neurological disease, and (3) any medical problem other than post-traumatic ankle 

osteoarthritis liable to affect gait. Standardized weight-bearing radiographs of the foot and the 

ankle were obtained preoperatively to assess the concomitant foot and ankle deformities and 

categorize them in three deformity groups. Cavus type (hereafter referred as cavus OA) was 

defined as: varus position of the hindfoot and ankle joint complex, bony dorsum deformity of 

the midfoot characterized by dorsiflexion of the talus within the ankle, upward position of the 

metatarsals with respect to the ground, and high medial longitudinal arch (Figure 6.1 A,B,C). 

Planus type (hereafter referred as planus OA) was defined as: valgus position of the hindfoot 

and ankle joint complex, collapse deformity of the midfoot characterized by a plantar flexion 

of the talus within the ankle, downward position of the metatarsals with respect to the ground, 

and low medial longitudinal arch (Figure 6.1 D,E,F). Neutral type ((hereafter referred as neutral 

OA) had no midfoot, hindfoot or ankle malalignment. Osteoarthritis severity was scored on the 

Canadian Orthopaedic Foot & Ankle Society (COFAS) classification system (Table 6.1)18: 

Type 1, isolated ankle osteoarthritis; Type 2, ankle osteoarthritis associated with intra-articular 

ankle deformity or tight heel cord or both; Type 3, ankle osteoarthritis  with deformity of the 

hindfoot, midfoot, tibia or forefoot; and Type 4, Type 1 to 3 with subtalar or calcaneocuboid or 

talonavicular osteoarthritis.18  

Radiographic assessment 

Radiographic assessment comprised: (1) standardized anteroposterior ankle Méary view 

to measure the hindfoot deformity (<90° = valgus; >90° = varus) and intra-articular ankle varus 

or valgus alignment (Tibia-Talus) (<90° = valgus; >90° = varus);18,21 (2) standardized weight-

bearing lateral foot (and ankle) view to measure the midfoot deformity as the talar/1st metatarsal 

angle (≥10°)18( 170° = bony dorsum deformity;  190° = collapse deformity) and the medial 

longitudinal arch deformity as Djian-Annonier angle (≥10°) ( 115° = high arch;  130° = low 

arch) (Table 6.1 & Figure 6.1).5 
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Table 6-1 : Demographic, spatio-temporal and radiographic data for the three patient groups: post-traumatic ankle osteoarthritis associated with planus foot deformity (Planus OA), with 

cavus foot deformity (Cavus OA), and without foot deformity (Neutral OA). Abbreviations: COFAS: Canadian Orthopaedic Foot & Ankle Society classification system for ankle osteoarthritis; 

MLA: medial longitudinal arch; SD: standard deviation; BMI: body mass index; N/A: not applicable; N.S.: not significant. Statistics: Depending on the distribution of the demographic and 

spatio-temporal data, 1-way ANOVA (normal distribution) or Kruskal-Wallis test (non-normal distribution) were used to assess statistical differences for each variable between the three 

groups. *Gabriel’s post-hoc test (adjusted P-value 0.3/3=0.017); ** post-hoc Mann-Whitney U test (adjusted P-value 0.3/3=0.017). 

 

 Planus OA (n=8 ankles) Cavus OA (n=10 ankles) Neutral OA (n=12 ankles) 
ANOVA (F)a / 

Kruskal-Wallis (H)b 

Planus OA 

vs 

Cavus OA 

Planus OA 

vs 

Neutral OA 

Cavus OA 

vs 

Neutral OA 
 Mean SD Min-Max Mean SD Min-Max Mean SD Min-Max F / H P-value P-value P-value P-value 

Age (years) 63.50 11.32 38-74 61.44 7.4 51-73 59.17 7.3 46-68 2.848 (H) 0.241 N.S. N.S. N.S. 

Height (m) 1.71 0.12 1.48-1.87 1.73 0.08 1.65-1.90 1.73 0.1 1.57-1.90 0.171 (F) 0.844 N.S. N.S. N.S. 

Weight (kg) 84.6 11.00 69-99 79.6 12.3 65-100 85.5 16.4 59-111 0.511 (F) 0.606 N.S. N.S. N.S. 

BMI 29.1 3.79 24.3-33.8 26.5 4.21 22.0-34.6 28.4 4.32 21.4-34.6 0.940 (F) 0.403 N.S. N.S. N.S. 

Walking 

Speed (m/s) 
0.88 0.21 0.61-1.27 0.98 0.17 0.73-1.22 0.95 0.17 0.65-1.27 0.693 (F) 0.509 N.S. N.S. N.S. 

Stride 

Length (% 

Height) 

0.63 0.07 0.56-0.75 0.65 0.06 0.58-0.74 0.66 0.08 0.45-0.75 0.424 (F) 0.659 N.S. N.S. N.S. 

Meary 

(degrees) 
79.6 2.86 75-84 91.4 4.03 85-99 85.5 2.84 81-90 28.513 (F) < 0.001 < 0.001* 0.002* 0.001* 

MLA 

(degrees) 
126.4 10.41 108-141 110.6 4.62 104-115 118.9 4.66 111-126 14.967 (H) 0.001 0.002** 

0.044 

(N.S.)** 
0.002** 

TALOM1 

(degrees) 
187.5 11.07 174-202 170.4 6.54 162-185 178.4 5.07 170-186 11.513 (F) < 0.001 <0.001* 0.038 (N.S.)* 0.055* 

TibiaTalus 

(degrees) 
83.6 7.07 72-93 97.2 7.5 90-109 89.5 3.9 82-93 12.610 (H) 0.002 0.001** 0.052** 

0.022 

(N.S.)** 

COFAS 

Type 1 1 Type 1 2 Type 1 8     

Type 2 2 Type 2 3 Type 2 0     

Type 3 5 Type 3 4 Type 3 2     

Type 4 0 Type 4 1 Type 4 2     
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Figure 6.1 : (A,C,D,F) Standardized anteroposterior ankle Méary radiographic view to measure the hindfoot deformity. 

Hindfoot axis with respect to the ground (γ angle: valgus  80 degrees; varus  95 degrees) and the intra-articular ankle varus 

or valgus alignment (position of the talus with respect to the axis of the tibia: 80° valgus;  100° varus);12,19 (B,E) Standardized 

weight-bearing lateral foot (and ankle) radiographic view to measure the midfoot deformity as the talar/1st metatarsal angle 

(β1 angle:  170° high arch (cavus);  190° low arch (planus)) and medial longitudinal arch deformation as the Djian-Annonier 

angle (β2 angle:   115° high arch (cavus);  130° low arch (planus)). Fig 1 A,B,C are foot and ankle deformities associated 

with the planus OA group; D,E,F, associated with the cavus OA group. Fig. F shows the “zig-zag” deformity, as the subtalar 

joint goes in the opposite direction (valgus) of the tibiotalar deformity (varus). 

Data collection 

In the measurement session, patients walked at self-selected speed over a 10m walkway 

in which an AMTI (Advanced Mechanical Technology, Inc., Watertown, MA, USA) with 

embedded force plate and Footscan® pressure plate (0.58 m x 0.42 m; 4,096 sensors, 2.8 

sensors per cm2; RSscan International, Paal, Belgium). The force plate was custom-made to fit 

the dimensions of the pressure plate. This set-up provided continuous calibration of the pressure 

plate with respect to the force plate, using an RsScan® 3D box. Sixteen 8mm retro-reflective 

markers were placed on the foot and shank of each participant, according to the multi-segment 

Rizzoli foot model.19 To record kinematic data during walking over the walkway, a passive 

optoelectronic motion analysis system (Qualysis, Göteborg Sweden) consisting of 8 Miqus 
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cameras was used, sampling at 200 Hz. All marker trajectories were computed by Qualysis 

Tracking Manager 2.16 (Qualysis, Göteborg Sweden). Integration and synchronization of the 

3 hardware devices used a Miqus Sync unit interface (Qualysis, Göteborg Sweden). Data from 

the force and pressure plates were measured at a sampling rate of 200 Hz. Five representative 

trials were collected per participant. A trial was considered representative when the foot of 

interest made clear contact with the pressure plate without visual adjustment in walking 

behavior. Walking speed was required to be similar across all trials in a given recording session.  

 

 

Figure 6.2 : Inter-segment centers were defined according to an adapted version of Rizzoli’s foot model (Leardini et al. 

2007) developed by Deschamps et al. (2017) (IOR-4Segment-model 1). Marker names: upper ridge of the posterior surface 

of the calcaneus (FC); peroneal tubercle (FPT); sustentaculum tali (FST); virtual cuboid marker (FCub), tuberosity of the 

navicular bone (FNT); 1st, 2nd  and 5th metatarsal base (FMB, SMB, FMT); 1st, 2nd  and 5th metatarsal head (FM1, FM2, FM5); 

PD6: distal dorso-medial aspect of the head of the proximal phalanx of the hallux; 1st metatarso-phalangeal joint center (FM1; 

midfoot-metatarsus center (SMB); calcaneus-midfoot center (ID) 
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Data analysis 

Inter-segment center definitions of the 4-segment foot model were based on an adapted 

version of Rizzoli’s 3D multi-segment foot model, developed by Deschamps et al. (2017) (IOR-

4Segment-model 1) (Figure 6.2).4 The main differences between IOR-4Segment-model 14 and 

Rizzoli’s foot model19 consists in the creation of a virtual cuboid marker at two-thirds of the 

distal distance between the peroneal tubercle and the base of the fifth metatarsal, and in the 

definition of the calcaneus-midfoot joint center. Inter-segment 3D rotations were computed 

according to Deschamps et al.’s IOR-4Segment-model 1  (2017), following ISB 

recommendations4, and were defined as follows: shank-calcaneus joint (midpoint between the 

malleoli markers, describing the shank-calcaneus center), Chopart joint (midpoint between the 

cuboid and the navicular bone, describing the calcaneus-midfoot center), Lisfranc joint (at the 

second metatarsal base, describing the midfoot-metatarsus center), and 1st metatarso-phalangeal 

joint (projection of 1st metatarsal head marker vertically at mid distance to the ground, 

describing the metatarsus-hallux center).  

 Joint forces (F) and moments (M) were computed in the inertial coordinate system by a 

bottom-up inverse dynamic method using a Newton-Euler recursive algorithm based on a 

homogeneous matrix formalism during the stance phase of gait.20 Kinematic and force data 

were filtered using a low-pass zero-lag 4th order Butterworth filter, with 10 Hz cut-off 

frequency. Inertia and weight parameters of each foot segment were neglected, considering that 

inertia effects during stance are negligible compared to external forces.23 The force plate data 

were distributed over each foot segment using a validated proportionality scheme.8,24 The 

subarea of each foot segment was estimated for each time frame by projecting the markers’ 

position vertically on the sensor matrix of the pressure platform. The resulting center of pressure 

(CoP) of each estimated subarea was used as the CoP for the corresponding foot segment in 

inverse dynamics calculations. The joint moments were expressed in the proximal segment 

coordinate system. In supplement to the joint power, the 3D angle M between the joint 

moment (M) and the joint angular velocity () vectors was calculated as described by Dumas 

and Chèze (2008).7 When the 3D angle M is <60° or >120°, the moment mainly drives the 

joint, with, respectively, propulsion or resistance; when it is between  60° and 120°, the moment 

mainly stabilizes the joint.7 Inter-segment kinematic and kinetic computations and extraction 

of discrete spatio-temporal variables (walking speed and stride length) were performed using 

an in-house Matlab© program (The Mathworks Inc., Natick, MA, USA). Internal joint 
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moments and powers were normalized by subject-mass and all 1D data were time-normalized 

to 100% of the stance phase. 

Statistical analysis 

First, the Shapiro-Wilk test was used to check data normality. One-way ANOVA and 

Kruskal-Wallis test were used to identify significant differences between groups for 

demographic, spatio-temporal and radiographic variables. For significant differences, Gabriel’s 

post-hoc test or the Mann-Whitney-U test (adjusted P-value (0.5/3=0.017) were used to indicate 

which groups were different. All statistical tests were conducted on SPSS software (version 25, 

IBM Corp, Chicago, USA). One-dimensional statistical parametric mapping (SPM) was used 

to compare foot kinematics and kinetics between groups, using an open-source code (v.M.0.4.5; 

www.spm1d.org) in Matlab© (The Mathworks Inc., Natick, MA, USA).5,16 The main 

advantages of this methodological approach is that SPM regards the whole time-series as the 

unit of observation and that time-dependence is incorporated directly in statistical testing. 1D-

SPM 1-way ANOVA over the normalized time series was used to confirm significant 

differences between groups. If statistical significance was reached, a post-hoc 1D-SPM 2-

sample t-test (post-hoc P-value 0.05/3 = 0.017) was used to determine between which groups 

the significant differences occurred. 

 

RESULTS 

Demographic, spatiotemporal and radiographic data 

No inter-group differences were found for the demographic and spatio-temporal variables 

(Table 6.1). Significant differences were found between the cavus and planus OA groups for 

all radiographic parameters. The cavus OA group also showed significantly greater medial 

longitudinal arch deformation than the neutral OA group. Méary angle was significantly 

different on all between-groups comparisons.  

SPM analysis 

There were significant SPM{F} main effects between the three groups for all the intrinsic 

foot joints.  

 

 

 

http://www.spm1d.org/
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Planus OA versus neutral OA 

Post-hoc comparisons showed no differences between planus and neutral OA 

groups for any foot joint angles or moments. However, 1D-analysis revealed that the 

planus OA group exhibited a greater shank-calcaneus power pattern (P=0.016; 93-

94%) at end of stance phase than the neutral OA group.  

 

Cavus OA versus neutral OA 

The cavus OA group showed a more inverted angle of the shank-calcaneus joint 

(P=0.017, 0-6% & P<0.001, 10-72%) associated with a more abducted angle of the 

Lisfranc joint (P<0.001; 0-100%) than the neutral OA group during almost the entire 

stance phase. The 1st metatarso-phalangeal joint showed greater dorsiflexion 

(P=0.013; 40-50%) in the cavus than in the neutral OA group during midstance. Post-

hoc comparisons showed no differences in kinetics between these two groups. 

 

Cavus OA versus planus OA  

 The main differences observed between the planus and cavus OA groups all 

concerned the frontal and transverse plane (Figure 6.3-6.4). The planus OA group 

showed a significantly more everted shank-calcaneus joint angle (P<0.001; 0-77%) 

associated with a more abducted Chopart joint angle (P<0.001; 0-94%) than the 

cavus OA group. The moment patterns revealed that the planus OA group exhibited 

larger shank-calcaneus inversion moment (P<0.001; 10-35%) than the cavus OA 

group (Figure 6.4). During propulsion, the cavus OA group showed larger shank-

calcaneus abduction moment (P<0.001; 88-95%) than the planus OA group. 

However, no differences were observed for power or 3D M angle patterns between 

the cavus and planus OA groups.  
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Figure 6.3 : Kinematic waveform representation with ±1 standard deviation cloud for the intrinsic foot joints: Sha-Cal: 

Shank-Calcaneus; 1st Metatarso-Phal: 1st Metatarso-Phalangeal joint. Cavus OA group (blue), Neutral OA group (green) and 

Planus OA (purple); DF: dorsiflexion; PF: plantar flexion; Add: Adduction; Abd: Abduction; Inv: Inversion; Ev: Eversion. 
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Figure 6.4 : Kinetic between-group comparison of inter-segmental Shank-Calcaneus joint moments (Mx & My) during 

the stance phase of gait. Cavus OA group (blue), Neutral OA group (green) and Planus OA group (purple);  Sha-Cal: Shank-

Calcaneus; A-C,G-I: Mean kinetic trajectories with their respective standard deviation clouds. D-F, J-L: SPM results: SPM{t} is 

the trajectory of the post-hoc 2-sample t-test. The dotted red lines indicate the random field theory threshold for significance, 

and p-values indicate the likelihood that a random process of the same temporal smoothness would be expected to produce 

a suprathreshold cluster of the observed size. 
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Figure 6.5 : Kinetic between-group comparison of 3D angle M  of the Shank-Calcaneus and Chopart joints during the 

stance phase. Cavus OA group (blue), Neutral OA group (green) and Planus OA group (purple);  Sha-Cal: Shank-Calcaneus; 

When the 3D angle M is <60° or >120°, the moment mainly drives the joint, with, respectively, propulsion (P) or resistance 

(R). When the 3D angle M is between  60° and 120°, the moment mainly stabilizes the joint (S); A-C,G-I: Mean kinetic 
trajectories with their respective standard deviation clouds. D-F, J-L: SPM results: SPM{t} is the trajectory of the post-hoc 2-
sample t-test. The dotted red lines indicate the random field theory threshold for significance, and p-values indicate the 
likelihood that a random process of the same temporal smoothness would be expected to produce a suprathreshold cluster 
of the observed size. 
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DISCUSSION 

 

To our knowledge, this was the first study to investigate the effect of ankle and hindfoot 

malalignment on the intrinsic foot mechanics in patients suffering from post-traumatic ankle 

osteoarthritis. Results showed that the cavus OA group presented a distinctive pattern of joint 

angles and moments compared to the neutral and planus OA groups. These differences shed 

light on a number of radiographic concepts which are currently used regarding the 

compensatory mechanism of the neighboring joints of the ankle, and in particular in the surgical 

management of intra- and extra-articular deformities in ankle osteoarthritis.  

Concerning 3D inter-segmental rotations and actions, the most important differences were 

observed between the cavus and planus OA groups in the shank-calcaneus and Chopart joints 

during almost the entire stance phase. Our data seem to provide further evidence of the 

interrelationship between foot structure and alterations in foot mechanics. The cavus OA group 

showed a significantly greater inverted shank-calcaneus joint angle and a more adducted 

Chopart joint angle than the planus OA group. It is further believed that the etiology of these 

differences is mainly guided by the multiplanar orientation of the talus, guided in turn by the 

geometry of the subtalar joint.13 Radiographic and anatomical studies suggested that pes cavus 

feet have a high vertical subtalar joint axis associated with a talar head placed tightly within a 

subtalar joint geometry featuring a V-shaped groove, limiting subtalar joint motion.6,13 In 

contrast, the subtalar joint in pes planus feet seems to be characterized by a lower vertical axis 

associated with larger and relatively flat articular facets, allowing greater range of motion in 

the subtalar joint.1,13 This notion of talar head stability provided by the orientation of the axis 

and the subtalar joint geometry is further underpinned by the 3D M angle of the shank-

calcaneus and Chopart joints. Even though, with the numbers available, no significant 

difference could be demonstrated here, it could be observed from the 3D M  angle waveforms 

that both joints in the planus OA group adapted a more resistant configuration than in the cavus 

OA group (Figure 6.5). This could mean that the planus OA group has to counter higher external 

forces than the cavus OA group, to keep the foot from collapsing and to stabilize it during 

walking.  
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 Another noteworthy finding in our study was the significant difference in joint angles 

between the cavus and the neutral OA groups. As expected, the cavus OA group showed a more 

inverted angle of the shank-calcaneus joint than the neutral OA group during a significant part 

of the stance phase. One may expect from the kinematic coupling between the foot segments 

that cavus OA would exhibit a more adducted angle of the Lisfranc joint in association with the 

inverted position of the shank-calcaneus joint compared to neutral OA; instead, a significantly 

more abducted position of the Lisfranc joint was found. This ‘twist” in the osteo-articular 

geometry of foot may represent a compensatory mechanism to counter the varus inclination of 

the ankle joint and therefore to reduce the stress concentration located in the medial part of the 

joint. We further believe that this mechanism originates from an eversion of subtalar joint to 

compensate for the varus deformity of the ankle joint.11,16 This osteo-articular configuration of 

the hindfoot and ankle joint complex has often been referred as the “zig-zag” deformity, as the 

subtalar joint goes in the opposite direction to the tibiotalar deformity (Figure 6.1.F).11   

The positioning of the 1st metatarso-phalangeal joint was also found to be significantly 

different, as the cavus OA group showed less hallux plantar flexion with respect to the forefoot 

than the neutral OA group. This reduced plantar flexion of the 1st metatarso-phalangeal joint 

may reduce loading underneath the hallux during the stance phase. This finding is supported by 

comparable studies analyzing kinematic and plantar pressure measurements between normal, 

planus and cavus feet.2,3  

 The majority of the significant differences were found in the cavus group versus both 

the neutral and planus groups. In contrast, no significant differences in joint angles or moments 

were observed between the planus and neutral groups. This suggests that the present results 

may be attributed to these two pathologic groups adopting a similar walking pattern to avoid 

pain in their arthritic ankle. Inspection of between-group comparisons found that the cavus OA 

group had significantly greater radiographic deformities than the neutral and planus OA groups. 

Only one variable differed significantly between the planus and neutral OA groups. This could 

mean that the difference in malalignment of the ankle and hindfoot between these two groups 

was not sufficiently great to be detected dynamically during gait.  

 The findings of this study should be considered in the context of two limitations. First, 

our classification of multi-joint, multi-planar foot deformities was based on 2D plain weight-

bearing radiographs. Assessment of submalleolar deformity is challenging, due to the limited 

imaging modalities. New-generation weight-bearing CT scans may be a valuable tool to better 

represent the 3D orientation of the hindfoot and ankle malalignment in ankle osteoarthritis. 

Moreover, partitioning of the total ground reaction forces acting on the calcaneus segment was 
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based on an estimation method (proportionality scheme) which combined pressure and force 

plate data together with marker placement data. Even though this proportionality scheme was 

validated, the reported ankle joint moments and powers should be regarded as estimates. A 

second limitation was the use of skin markers to estimate joint centers and segment kinematics. 

Soft-tissue artefacts have been reported to be as much as 3-4 mm on the surface of the foot.14 

The impact of these errors on the estimation of the moments and powers is currently difficult 

to estimate. 

 

CONCLUSION 

 

Three key findings in overall foot function were observed between three groups of post-

traumatic ankle osteoarthritis: (i) altered frontal and transverse plane joint angles and moments 

of the hindfoot and Chopart joints in the cavus OA group compared to the planus OA group; 

(ii) the cavus ankle group, Lisfranc joint abduction tried to reduce the varus inclination of the 

ankle joint; and (iii) there were no significant differences in joint angles or moments between 

the planus OA group and the neutral OA group. These findings indicate that malalignment of 

the hindfoot and the ankle as revealed by radiographic assessment does indeed influence foot 

mechanics during gait in patients suffering from post-traumatic ankle osteoarthritis.  
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 ABSTRACT 

 

Background: Kinetic foot models showed that computing ankle joint moments and power 

with a rigid foot modeling approach overestimates ankle joint power. Nevertheless, studies 

continue to implement rigid foot models to assess the effect of total ankle replacement on gait. 

Therefore, our aim was to compare the effect of total ankle replacement on ankle joint angles, 

moments and power as assessed on a 1-segment versus a multi-segment kinematic and kinetic 

foot model. In addition to the comparison between pre- and postoperative conditions of the 

patients, postoperative condition were compared to a peer-matched control group. 

Methods: A sample of 10 subjects with post-traumatic ankle osteoarthritis scheduled for 

total ankle replacement and 10 asymptomatic subjects was recruited. A 1-segment and a multi-

segment kinematic and kinetic foot model were used to calculate intrinsic foot joint kinematics 

and kinetics during gait. A first linear mixed model was used to investigate the effect of total 

ankle replacement (preop versus postop) and the effect of the foot model on ankle joint 

kinematic and kinetic analysis. A second linear mixed model was used to compare ankle joint 

kinematics and kinetics between groups and the effect of the foot model. Statistical parametric 

mapping was used to statistically compare pre- to post-operative differences between the two 

modeling approaches. 

Findings: Ankle and shank-calcaneus joint angles did not improve postoperatively except 

for an increase in range of motion during the loading response phase. Peak plantar flexion 

moment and peak power generation of both the ankle and the shank-calcaneus joints improved 

postoperatively, but remained reduced compared with asymptomatic control subjects. No 

difference in pre- to post-operative outcome was found between the two modelling approaches 

for the ankle joint. 

Interpretation: The effect of total ankle replacement on ankle kinematics is limited. 

However, the ankle joint kinetics of the two modelling approaches improved postoperatively. 

Pre- to post-operative outcome difference in ankle joint kinematics and kinetics was not 

significantly overestimated when computed with 1-segment rigid foot model. Although no 

significant difference could be demonstrated, we strongly believe that neglecting the intrinsic 

foot joints can hinder our clinical understanding of how a therapeutic intervention benefits or 

degrades the patient’s biomechanical performance. 
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INTRODUCTION  

 

Currently, therapeutic success in total ankle replacement is primarily assessed on 

clinical, radiographic and questionnaire outcomes.5,22 Recent publications have indicated that 

function is not systematically restored, even if clinical and radiographic parameters show 

ilmprovement.22,31 Therefore, during the last decade, substantial efforts have gone into 

characterizing the impact of total ankle replacement on ankle joint angles and moments during 

gait.15 These studies showed that, implantation of a total ankle replacement prosthesis improved 

ankle joint angles and moments compared to preoperative values, but that they remain impaired 

compared to asymptomatic subjects.1,15  

Over the last decade, an increasing number of 3D multi-segment kinematic foot models 

have become available for clinical use and have clearly shown their clinical relevance in 

detecting intrinsic foot mobility impairments.14 Recently, multi-segment kinetic foot models 

have received increasing attention in methodological and clinical studies, providing new 

insights into the individual power distributions of the intrinsic joints of the foot.2,6,18,33 These 

kinetic foot models further highlighted the shortcomings of computing ankle joint moments and 

power with a rigid foot modeling approach, as it overestimates ankle joint power,8,33 potentially 

leading to clinical misinterpretation of how a therapeutic intervention benefits or degrades 

biomechanical performance, as the estimated changes simply reflect methodological errors 

inherent to conventionally modeling the foot as a single rigid segment.33 Nevertheless, gait 

analysis studies continue to implement a rigid foot modeling approach to assess the effect of 

total ankle replacement on ankle joint angles and moments.29,30  

The purpose of this pilot study was to compare the effect of total ankle replacement on 

ankle joint angles, moments and power as assessed on 1-segment versus multi-segment 

kinematic and kinetic foot models, comparing pre- to post-operative difference between the two 

modeling approaches. We also assessed the effects of the foot model and of the surgical 

intervention. In supplement, the postoperative ankle kinematics and kinetics of the patients 

were compared to a peer-matched control group. It was hypothesized that ankle joint angles, 

moments and power improve after total ankle replacement but remain different from the control 

group, irrespective of the ankle joint modeling approach, and that the effect of total ankle 

replacement on ankle joint angles and moments is overestimated on a 1-segment compared to 

a multi-segment foot model.  
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METHODS 

Participants 

 

A sample of 10 asymptomatic and 10 symptomatic adult patients participated in the 

study (Table 7.1). All patients suffered from post-traumatic ankle osteoarthritis scheduled for 

primary total ankle replacement between January 2017 and June 2019. Severity of ankle 

osteoarthritis was scored using the Canadian Orthopaedic Foot & Ankle Society (COFAS) 

classification system (Table 7.1).12 The inclusion criteria for the pathologic group were: post-

traumatic end-stage ankle osteoarthritis with indication for total ankle replacement; exclusion 

criteria comprised: (1) age <18 years, (2) systemic or neurological disease, and (3) any medical 

problem other than post-traumatic ankle osteoarthritis liable to affect gait. All patients were 

scheduled for total ankle replacement within 2 weeks of their preoperative data collection, and 

were tested again 1 year after surgery. A two-component fixed-bearing Cadence prosthesis 

(Integra Life Sciences, Plainsboro, NJ, USA) was implanted in all patients. Control subjects 

were peer-matched according to demographics; exclusion criteria comprised any medical 

problem possibly affecting normal gait. The local review board approved the study (B200-

2017-061) and all participants signed an informed consent form.  

 

Table 7-1 : Demographic data of patients and control subjects (Abbreviations: CTRL: control subjects; BMI: body mass index; 

SD: standard deviation; N/A: not applicable; preop: preoperative; postop: postoperative) 

 

Ankle osteoarthritis 

patients 
CTRL subjects P-values 

 
Mean SD Mean SD 

Patients  

vs CTRL 

Preop  

vs Postop 

Age (years) 62.7 8.1 61.9 6.4 0.810 N/A 

Height (m) 1.7 0.1 1.7 0.1 0.928 N/A 

Weight (kg) 80.5 14.2 73.9 17.6 0.370 N/A 

BMI (kg/m²) 27.6 4.3 25.2 4.4 0.237 N/A 

Male:Female 4 6 6 4 N/A N/A 

    Preop Walking speed (m/s) 0.93 0.17 
1.18 0.13 

0.001 
0.009 

Postop Walking  speed (m/s) 1.08 0.17 0.134 

Preop Stride length (% Height) 0.66 0.06 
0.76 0.06 

0.001 
0.002 

Postop Stride length (% Height) 0.74 0.06 0.430 

                                             COFAS 

 

  
  
  
  
  

 

Type 1 2  

Type 2 1  

Type 3 5  

Type 4 2  
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Data collection  

The measurement session consisted in asking participants to walk at a self-selected speed 

over a 10m walkway in which a Footscan® pressure plate (0.5m x 0.4m, 4,096 sensors, 2.8 

sensors per cm2; RSscan International, Paal, Belgium) was mounted on a AMTI-force plate (0.5 

x 0.4m; Advanced Mechanical Technology, Inc., Watertown, MA, USA) custom-made to fit 

the surface dimensions of the pressure plate. This set-up provided continuous calibration of the 

pressure plate with respect to the force plate, using an RsScan® 3D box. Sixteen 8mm retro-

reflective markers were placed on the foot and shank of each participant according to the multi-

segment Rizzoli foot model.13 A passive optoelectronic motion analysis system (Qualysis, 

Göteborg Sweden) composed of 8 Miqus cameras tracked kinematic data during walking over 

the instrumented walkway. The 3 different hardware devices were integrated and synchronized 

by connecting them all up to the Miqus Sync unit interface (Qualysis, Göteborg Sweden). Data 

from the 3 devices were measured at a sampling rate of 200Hz. Patients suffering from ankle 

osteoarthritis often experience pain during barefoot walking; to avoid maladaptive walking 

strategies, 3 representative trials were collected per participant, a trial being considered 

representative when the foot of interest made clear contact with the pressure plate without visual 

adjustments in walking behavior. Walking speed was required to remain similar across all trials 

in a given recording session.  

Data analysis 

Ankle joint angles and moments were calculated from the rigid Rizzoli foot model 

(hereafter referred as the ankle joint)16 and the multi-segment IOR-4Segment-model 1 

(hereafter referred as shank-calcaneus joint).6 In this study, the term joint signifies the modeled 

biomechanical interaction between two body segments. In the rigid Rizzoli foot model, the 

ankle joint is defined as the interaction between a rigid-body shank (tibia + fibula) and a rigid-

body 1-segment foot. In the 4-segment model, the shank-calcaneus joint refers to the interaction 

between a rigid-body shank (tibia + fibula) and a rigid-body calcaneus segment. The joint center 

of both joints was defined as the midpoint between the 2 malleoli markers. Inter-segment 3D 

rotations were calculated according to rigid Rizzoli foot model and the multi-segment IOR-

4Segment-model 1, following ISB recommendations.6,13,32 

Joint forces (F) and moments (M) were computed in the Inertial Coordinate System by a 

bottom-up inverse dynamic method using a Newton-Euler recursive algorithm based on a 

homogeneous matrix formalism during the stance phase of gait.17 Kinematic and force data 

were filtered using a low-pass zero-lag 4th order Butterworth filter, with cut-off frequency of 
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10 Hz. Inertia and weight parameters of each foot segment were discounted, as the inertia 

effects were negligible compared to external forces during stance.10,27 The force plate data were 

distributed over each foot segment using a validated proportionality scheme.7,28 Subarea per 

foot segment was estimated for each time frame by projecting the marker positions vertically 

on the sensor matrix of the pressure platform. The resulting center of pressure (CoP) of each 

estimated subarea was then used as the CoP for the corresponding foot segment in the inverse 

dynamics calculations. Joint moments were expressed in the proximal segment coordinate 

system. An in-house Matlab© program (The Mathworks Inc., Natick, MA, USA) was used for 

inter-segment kinematic and kinetic computations. Internal joint moments and powers were 

normalized by subject-mass and all 1-dimensional data were time-normalized to 100% of the 

stance phase.  

The main characteristic for ankle osteoarthritis is the alteration of the sagittal plane ankle 

mechanics. Therefore, the following discrete zero-dimensional variables were extracted from 

the sagittal plane: range of motion of both joints for 5 gait sub-phases (stance phase, loading 

response, midstance, terminal stance and pre-swing), peak plantar flexion and dorsiflexion 

angles, peak plantar flexion moment and peak ankle power generation. Even though joint power 

is computed from 3D data, ankle joint power represents a variable of interest as it is essentially 

generated by the ankle plantarflexor muscles. In addition, walking speed and stride length were 

extracted as discrete zero-dimensional spatio-temporal variables. 

Statistics 

First, the Shapiro-Wilk test was used to check data normality. Independent t-tests 

(significance threshold, p<0.05) were conducted to compare demographic data between 

asymptomatic and symptomatic participants. A linear mixed model was used to model the 

relationship of dependent variables (RoM for each subphase of interest of the gait cycle; peak 

plantar flexion moment and peak ankle power generation) over time (pre- versus post-

operative) in patients receiving total ankle replacement for post-traumatic ankle 

osteoarthritis.19,26 All results were analyzed in 3 ways: according to time, to foot model, and to 

time plus foot model, each as the main effect. A second linear mixed model was used to model 

the relationship of dependent variables (RoM for each subphase of interest of the gait cycle; 

peak plantar flexion moment and peak ankle power generation) between groups (patients versus 

controls).19,26 All results were analyzed in 3 ways: according to group, to foot model, and to 

group plus foot model, each as the main effect. All statistical tests used R software, version 

3.4.3. (https://www.r-project.org/; The. R Foundation for Statistical Computing, Vienna, 

https://www.r-project.org/
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Austria). Considering that there were 7 statistical tests performed on the dorsi-/plantarflexion 

kinematic curve of each modelling approach of the ankle joint, the significance threshold was 

corrected to  = 0.007 (0.05/7) for the kinematic data to control the type 1 error rate when 

performing multiple comparisons. Significance threshold was set at  = 0.05 for joint moment 

and power variables.  

One-dimensional statistical parametric mapping (SPM) was used to statistically compare 

pre- to post-operative difference values between the two ankle joint modeling approaches for 

the dorsiflexion and plantar flexion joint angles, joint angular velocity, dorsiflexion and plantar 

flexion joint moments, and joint power using an open-source code (v.M.0.4.5; 

www.spm1d.org) in Matlab© (The Mathworks Inc., Natick, MA, USA).5,16 The main 

advantages of this methodological approach is that SPM regards the whole time-series as the 

unit of observation and that time-dependence is incorporated directly in statistical testing. 1D-

SPM paired t-test over the normalized time series was used to assess significant differences 

between pre- and post-operative conditions. 

RESULTS 

Demographic and spatiotemporal data 

No significant differences between the two groups were found for age, weight, height or 

BMI (Table 7.1). The spatiotemporal parameters showed a statistically significant improvement 

in walking and stride length after surgery, with the postoperative values comparable to controls 

(Table 7.1).  

Pre- versus post-operative condition 

Time as main effect. No significant ‘time’ effect was found for the kinematic variables 

except for the loading response. However, a nearly significant increase in range of motion was 

observed for midstance (P = 0.008). Significant increases in peak plantar flexion moment (P = 

0.002) and in peak power generation (P = 0.007) were found after surgery.    

Foot model as main effect. A significant ‘foot model’ effect was found, in which ankle 

osteoarthritis patients showed higher values both pre- and post-operatively for peak plantar 

flexion, peak power generation, loading response and pre-swing range of motion on the 1-

segment (ankle) than on the multi-segment (shank-calcaneus) foot model (Table 7.2). 

Time plus foot model as main effect. No significant ‘time plus foot model’ effect was found 

for any of the investigated variables (Table 7.2). 

http://www.spm1d.org/
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Table 7-2 : Kinematic and kinetic comparison of ankle joint outcome variables measured with a 1-segment and a multi-segment foot model between pre- and post-operative conditions. P-

values for kinematic variables ( = 0.007) and for kinetic variables ( = 0.05) of between-times effect, between-models effect and time*foot model interaction effect are presented. Bold P-

values indicate significant difference. 
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Table 7-3 : Kinematic and kinetic comparison of ankle joint outcome variables measured with a 1-segment and a multi-segment foot model in control subjects and patients after total ankle 

replacement (TAR). P-values for kinematic variables ( = 0.007) and for kinetic variables ( = 0.05) of between-times effect, between-models effect and time*foot model interaction effect are 

presented. Bold P-values indicate significant difference. 
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Control subjects versus patients after total ankle replacement 

Group as main effect. A significant ‘group’ effect was found for peak plantar flexion, and 

stance phase and pre-swing range of motion, with total ankle replacement patients showing 

lower peak and range of motion values than controls (Table 7.3). Significant differences in peak 

plantar flexion moment (P=0.021) and peak power generation (P = 0.016) were found, with 

control subjects showing higher peak values than patients.  

Foot model as main effect. A significant ‘foot model’ effect was found, with total ankle 

replacement patients and control subjects all showing lower range of motion and peak values 

(peak plantar flexion, and stance, midstance and pre-swing range of motion) on the 1-segment 

(ankle) than on the multi-segment (shank-calcaneus) foot model (Table 7.3). A significant ‘foot 

model’ effect was also found for peak plantar flexion moment and peak joint power generation. 

Group plus foot model as main effect. No significant ‘group plus foot model’ effect was 

found for any of the investigated variables (Table 7.3). 

 

 Outcome differences between ankle joint and shank-calcaneus joint 

1D-analysis did not reveal any differences in pre- to post-operative change between the 

ankle joint and shank-calcaneus joint for any of the variables of interest (Figure 7.1). 
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Figure 7.1 : A-D: Pre- to post-operative outcome differences between the two ankle joint modeling approaches (blue line: ankle joint; green line: shank-calcaneus joint) for the dorsiflexion-

plantar flexion joint angle (A), joint angular velocity (B), dorsiflexion-plantar flexion joint moment (C) and joint power (D). E,F,G,H: SPM{t} is the trajectory of the post-hoc paired t-test. The 

dotted red lines indicate the random field theory threshold for significance and p-values indicate the likelihood that a random process of the same temporal smoothness would to produce a 

suprathreshold cluster of the observed size. Abbreviations: DF: dorsiflexion; PF: plantarflexion; Gen (+): Generation; Abs (-): Absorption. 
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DISCUSSION 

 

The aim of this pilot study was to compare the effect of total ankle replacement on ankle 

joint angles, moments and power assessed with a 1-segment versus a multi-segment kinematic 

and kinetic foot model. The first hypothesis was only partially confirmed by the results, as the 

ankle and shank-calcaneus joint angles did not improve post-operatively, except for an increase 

in range of motion during the loading response phase. However, the peak plantar flexion 

moment and peak power generation of both ankle and shank-calcaneus joints improved 

postoperatively, mainly due to patients’ ability to walk faster with less pain after surgery. Few 

studies analyzed fixed-bearing prostheses, and reported contrasting results in terms of increase 

and decrease in ankle joint angles and moments after surgery.4,23–25,29 These contrasting results 

may arise from differences in fixed-bearing implant designs between and within studies. 

Another explanation may be the data extraction from biomechanical curves in a relatively small 

number of so-called “summary” metrics (e.g. range of motion values during sub-phases of the 

gait cycle): as each point on the biomechanical curve has a relationship with other points on the 

curve, such data reduction may inflate the ‘false positives’ observed with traditional null-

hypothesis significance testing and even lead to opposing results.20 However, there seems to be 

a general agreement in earlier studies as well as in the present results, that gait mechanics after 

total ankle replacement remains impaired compared with asymptomatic control subjects.   

One of the objectives of the present study was to compare the effect of total ankle 

replacement on ankle joint kinematics and kinetics computed with a 1-segment (ankle) and 

multi-segment (shank-calcaneus) foot model. The outcome of the linear mixed model showed 

that the ‘foot model’ had a significant effect on range of motion, peak plantar flexion and peak 

power generation estimates. This is in accordance with earlier studies highlighting the 

overestimation of ankle joint angles and peak power generation by the 1-segment foot model 

compared to the multi-segment foot model.3,8,33 However, no research yet confirmed this 

overestimation in patients treated surgically for post-traumatic ankle osteoarthritis. 

Furthermore, no previous research investigated the effect of the foot modeling approach on how 

a surgical intervention such as total ankle replacement is estimated to benefit or degrade 

biomechanical performance. The present study showed no difference in pre- to post-operative 

outcome between the two modelling approaches for the ankle joint (Table 7.2 and Figure 7.1). 

However, the danger of modeling the foot as a single rigid body is that motion occurring in the 

intrinsic foot joints may add an extra rotation of the foot segment relative to the shank. This 
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could then overestimate ankle joint kinematics and angular velocity, resulting in overestimation 

of ankle joint power. Although no significant difference could be demonstrated on the present 

data, the pre- to post-operative outcome difference curves suggest that the peak values were 

greater on the 1-segment (ankle) foot model than on the multi-segment (shank-calcaneus) foot 

model. Therefore, we strongly believe that neglecting the intrinsic foot joints can hinder our 

clinical and scientific understanding of how a therapeutic intervention benefits or degrades the 

patient’s biomechanical performance. 

The findings of this pilot study should be considered in the context of three limitations. 

Firstly, sample size was limited to 10 symptomatic and 10 asymptomatic subjects. To detect a 

minimal clinical change between pre- and post-operative conditions for the variables of interest 

in the ankle joint (range of motion, peak dorsi- and plantar flexion, peak plantar flexion moment 

and peak power generation), 35 participants would be needed to detect a significant difference 

with 80% power and a p-value at 0.05. A second limitation was the partitioning of the total 

ground reaction forces acting on the calcaneus segment based on an estimation method 

(proportionality scheme) which combined pressure and force plate data together with marker 

placement data. Even though this proportionality scheme was validated, the reported ankle joint 

moments and power should be regarded as estimates. A third limitation was the use of skin 

markers to estimate joint centers and segment kinematics. Kessler et al. (2019) compared foot 

motion measured by biplanar videoradiography and optical motion capture,11 and found soft-

tissue artefacts of 3.29 mm on the surface of the foot.11 However, they found also strong 

agreement between the two systems for foot motion in the sagittal plane which is the anatomical 

plane of interest of this pilot study. The impact of these soft tissue errors on the estimation of 

the foot joint moments and powers is difficult to determine. Therefore, the results of the current 

study should be considered as an estimation and further research is needed. 

 

CONCLUSION 

 

This paper provides a first estimation of the effect of total ankle replacement on ankle joint 

angles, moments and power assessed with a 1-segment and a multi-segment kinematic and 

kinetic foot model. The foot modeling approach may affect the clinical interpretation of how a 

surgical intervention such as total ankle replacement benefits or degrades the patient’s 

biomechanical performance. Therefore, it is of clinical relevance to assess ankle joint 

kinematics and kinetics on a multi-segment foot modeling approach. 
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Additional reflections and future directions 

Methodological considerations 

The implementation of an advanced clinical examination platform involved some additional 

methodological considerations, which were outside the scope of the gait studies presented in 

this doctoral project.  

Firstly, marker placement is often impaired by the close anatomical proximity of foot 

segments, which may amplify the effect of marker placement errors on subsequent angular 

calculations. The inter- and intra-session reliability of the Rizzoli Foot Model used in this 

doctoral project was found to be good to excellent (CMC > 0.88) in both an asymptomatic and 

a symptomatic population.6,7 Standardized pre- and post-operative weight-bearing foot and 

ankle radiographs were systematically taken for each patient, allowing the clinician to measure 

and estimate the orientation of the foot bones prior to gait analysis, and thus reduce the risk of 

marker placement error. Recently, efforts were made to develop a foot-related device to 

standardize marker placement at the calcaneus irrespective of anatomical landmarks.5,24 The 

authors suggested that variations in marker placement between therapists were considerably 

reduced when their calcaneal marker device was used, rather than the palpation method.5 Their 

efforts to develop such custom-made devices are to be applauded. However, to the author’s 

knowledge, their use in clinical gait analysis departments or in clinical research is limited to the 

teams who developed the device. Therefore, the present doctoral project initiated the 

development of a heel device to standardize and facilitate marker placement on the calcaneus 

(Figure Heel device 1). Unlike in previously reported calcaneal devices, rulers were integrated 

in the device, enabling the inter-position between each segment of the device to be recorded 

and preoperative marker placement to be replicated for postoperative gait assessment. The 

added value of such a device remains to be evaluated.  

 

Figure Heel Device 1 : The “Heel Device” was designed to 
standardize marker placement on the sustentaculum tali and the lateral 
apex of the peroneal tubercle. 

 

 

 

 

 

 



 141 

Secondly, soft-tissue artefacts must be considered in segmental foot analysis.14,20,27 The 

assumption in the present doctoral project was that the movement of the overlying skin 

accurately represents the actual movement produced by the underlying bone, which is known 

as the rigid-body assumption. To assess the errors in experimental data due to violation of the 

rigid-body assumption, studies compared the use of bone-mounted markers with skin-mounted 

markers20,27, and found no systematic error pattern in the degree of skin motion over the 

underlying foot bones and that the degree of error varied between subjects and between 

anatomical sites. Recently, Kessler et al. (2019) compared foot motion measured by biplanar 

videoradiography and optical motion capture.14 They found good agreement between the two 

systems for foot motion in the sagittal plane, and reported soft-tissue artefacts of 3.29 mm on 

the surface of the foot.14 The impact of these errors on the estimation of foot joint moments and 

powers is difficult to assess. Therefore, the results of the current study should be considered as 

an estimate, and further research is needed. 

 Thirdly, a more comprehensive, detailed and accurate view of foot mechanics was 

obtained by integrating plantar pressure measurements with a 3D motion analysis system. In 

the present doctoral project, integration means that both marker trajectories and plantar pressure 

measurements are measured simultaneously. Plantar pressure was measured by placing a 

standard Footscan® pressure plate (0.5m x 0.4m, 4,096 sensors, 2.8 sensors per cm2; RSscan 

International, Paal, Belgium) on top of an AMTI-force plate (0.5 x 0.4m; Advanced Mechanical 

Technology, Inc., Watertown, MA, US). The force plate was custom-made to fit the surface 

dimensions of the plantar pressure plate. This set-up enabled continuous calibration of the 

pressure plate with respect to the force plate, using a Footscan® 3D interface box (RSscan 

International, Paal, Belgium), and also synchronized the motion analysis system and the 

pressure plate by measuring the optimal signal correlation between the force signals of both the 

pressure and force plates.11 Furthermore, this ‘fusion’ approach allowed us to create a 4-

segment kinetic foot model, providing new insights into the individual power distributions of 

the intrinsic joints of the foot. However, the scientific community has formulated doubts about 

the method used to partition the total ground reaction forces acting on each foot segment. In the 

present doctoral project, the force plate data were distributed over each foot segment using the 

proportionality scheme described by Morlock & Nigg (1991) and validated by Saraswat et al. 

(2014).19,22 The validity of the proportionality scheme was assessed by comparing the predicted 

shear forces obtained from the same experimental setup as the present study with the measured 

shear forces obtained by asking the participants to adopt a 3-step controlled foot placement 

approach on two adjacent force plates during a walking trial. Mean differences between the 
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shear force measured by 2 adjacent force plates and the shear force predicted by the 

proportionality scheme in the hindfoot and forefoot segments in a pediatric population were 

less than 3%. The clinical applicability of the proportionality scheme was further investigated 

in ankle and hindfoot osteoarthritis subjects, revealing insignificant over- and under-estimation 

errors in multi-segment foot kinetics by comparing estimated shear forces versus shear forces 

measured by the adjacent force-plate method.9 However, these results should be viewed with 

caution, as errors in determining the point of force application have been found towards the 

edges of the force plate.17 Although this proportionality scheme seems to be validated, the 

reported ankle joint moments and powers in the present doctoral project should be regarded as 

estimates. However, during the last decade, there seems to be an emerging interest in the 

development of plantar shear-stress measurement technologies. Integrating such devices in our 

current measurement set-up could provide further insight into partitioning errors and the clinical 

validity of the proportionality scheme.  

Finally, gait analysis has progressed during recent decades and is now considered the 

gold standard for the functional assessment of lower-limb pathologies.10 Moreover, in our 

opinion, functional evaluation of patients’ capabilities should be investigated not only during 

gait, but also during other more demanding motor tasks. Activities of daily living are not limited 

to straight walking tasks, but require the ability to adapt in order to avoid obstacles, to support 

the entire body weight on different terrains, and to change speed and direction as needed to 

meet functional objectives.18,23 Currently, no literature exists on the use of 3D multi-segment 

foot models and plantar pressure measurements in foot and ankle patients in demanding motor 

tasks that challenge the various foot segments during the complex functions frequently 

performed in daily life. Demanding motor tasks have proved to be valuable in discriminating 

subjects with knee disorders,7 inducing ranges of motion in knee rotation out of the sagittal 

plane large enough to exceed experimental error and variability across repeated trials.13 

Consequently, the change in skeletal kinematics in pathologic patients was more detectable than 

during walking. Therefore, we strongly believe that future studies should incorporate 

demanding motor tasks to evaluate the functional capacity of patients, to provide further insight 

into their foot mechanics. Furthermore, assessment of these demanding motor tasks should not 

be restricted to artificial conditions created in the gait laboratory, but could also be evaluated 

in more natural environment through the use of wearable sensors.  
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Clinical considerations 

In contrast to hip and knee osteoarthritis, the etiology of osteoarthritis and arthritis in 

the ankle joint is often secondary to a group of diseases (rheumatoid pathology, hemophilia, 

hemochromatosis, etc.) or injuries (fracture, ankle sprain, etc.). The loss of joint space and 

cartilage frequently results from a progressive pathomechanical process induced by joint and 

bone geometry as well as by soft-tissue imbalance. As a consequence of the individual 

pathomechanical processes associated with ankle osteoarthritis, ‘ankle osteoarthritis’ covers a 

large diversity of categories, subtypes and levels of involvement. It is therefore reasonable to 

assume that there is also a wide variety in gait biomechanics. The interpretation of results can 

only be valid if this large variability is taken into account.  

In research, this is theoretically managed by strict implementation of inclusion and 

exclusion criteria, to recruit a homogenous study group. However, the systematic review and 

meta-analysis performed in the present doctoral project showed that the ankle osteoarthritis 

being investigated, in terms of subtype and associated osteo-articular deformities, was poorly 

described in 14 of the 17 included gait studies.  

Evaluating concomitant joint deformities and intrinsic foot mobility plays an essential 

role in the surgical management of patients suffering from ankle osteoarthritis.15,16 However, 

these key factors and the corresponding alterations in foot biomechanics have never been truly 

investigated (Cf. Chapters 5 & 6). Chapter 6 aimed at comparing the effect of ankle and hindfoot 

malalignment on the gait kinematics and kinetics of multiple joints of the foot and ankle 

complex in patients suffering from post-traumatic ankle osteoarthritis. Our data seem to provide 

further evidence of the interrelationship between foot structure and alterations in foot 

mechanics. Therefore, future studies should further investigate this interrelationship, by 

breaking down the three deformity groups of Chapter 5 into the subgroups presented in Figure 

Ankle OA Classification. Profiling groups of patients has proved to be a powerful approach in 

medicine, and is often the first step in treatment algorithms. In ankle osteoarthritis, 

classification may be used to understand and treat dysfunction, with three major objectives: 

understanding biomechanical factors related to etiology, predicting progression, and designing 

optimal treatment strategies. The major challenge associated with the profiling approach is to 

be able to recruit a sufficient number of patients to create homogeneous study groups for each 

ankle osteoarthritis profile. The low prevalence (1% of the adult population) of ankle 

osteoarthritis further complicates recruitment.  The number of patients suffering from 

symptomatic hip and knee osteoarthritis is 9 to 10 times higher than those suffering from 
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symptomatic ankle osteoarthritis.3,4,13 Therefore, the present doctoral project initiated a 

multicenter study in two foot and ankle research centers (Lyon and Brussels), following the 

same research protocol. Recruitment of preoperative ankle osteoarthritis cases has recently 

started in Lyon (January 2019) and will provide adequate sample size for meaningful statistics. 

No such multicenter studies have previously been developed.  

Critical appraisal of the literature further reveals that the effect of ankle arthrodesis and total 

ankle replacement is poorly understood from the point of view of foot biomechanics, as the foot is still 

implemented as a rigid functional segment in gait studies (Chapter 3). There is also a lack of knowledge 

concerning the correlation between ankle arthrodesis or total ankle arthroplasty positioning and the 

patient’s foot mechanics. Although gait is improved after total ankle replacement or ankle arthrodesis 

compared to the preoperative situation, patients still experience impaired lower-limb function.1,8,21,26 

They have to make compensatory functional adaptations to remain capable of performing basic activities 

of daily living. These compensations are known as accessory offending motion hypermobility, which 

takes the path of least resistance of motion and is an underlying characteristic of degenerative joint 

disease.10 Studies showed secondary postoperative arthritic changes in the ipsilateral adjacent joints, 

with most degeneration occurring in the subtalar joint, followed by the midtarsal joints.2,25 This is the 

result of tissue trauma caused by repeated compensatory movements during activities of daily living. 

When these arthritic changes become symptomatic, additional surgical procedures will be required, 

exacerbating the functional deficiencies.12 Unfortunately, these secondary functional limitations and 

compensatory adaptations and their impact on structures of neighboring joints during activities of daily 

living have been little studied. Therefore, we strongly believe that future studies should extend 

biomechanical assessment of the affected to the adjacent and non-adjacent foot joints in order to improve 

postoperative care.  
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General conclusion  

 

In conclusion, this doctoral project provided biomechanical insight into the (patho-

)mechanics of ankle osteoarthritis by developing an advanced clinical examination platform. 

The integration of all the hardware devices composing the platform enabled the creation of a 4-

segment kinematic and kinetic foot model, providing valuable information for future clinical 

reasoning and interpretation. We strongly believe that the combination of such an advanced 

clinical examination platform in association with clinical and radiographic information will 

help us to gain further insight into the complex of foot and ankle biomechanics. Before being 

able to determine an optimal approach, further research is needed. The present doctoral project 

suggests that profiling ankle osteoarthritis patients solely according to etiology would be a 

considerable limitation, whereas a biomechanical approach integrating clinical and 

radiographic information to develop a new classification system may be the state-of-the-art 

methodological approach for future studies on the mechanical component of ankle 

osteoarthritis, forming the basis for research on etiology, prediction and treatment of 

pathological conditions related to ankle osteoarthritis.    
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Appendix 1 : Chapter 3 : Supplementary material 1 : Results of modified Downs and Black scale 
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Appendix 2 : Chapter 3 : Supplementary material 2 : The change in gait parameters (Ankle 

Dorsiflexion RoM, Ankle Plantarflexion RoM) following total ankle replacement (TAR 

global, Mobile-bearing prosthesis and Fixed-bearing prosthesis) compared to pre-

operative status 
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Appendix 3 : Chapter 3 : Supplementary material 3 : The change in gait parameters (Knee 

and Hip RoM) following total ankle replacement (TAR global, Mobile-bearing prosthesis 

and Fixed-bearing prosthesis) compared to pre-operative status 
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Appendix 4 : Chapter 3 : Supplementary material 4 : The change in spatio-temporal 

parameters (Cadence, Stance Duration, Step Length) following total ankle replacement 

(TAR global, Mobile-bearing prosthesis and Fixed-bearing prosthesis) compared to pre-

operative status 
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Appendix 5 : Chapter 3 : Supplementary material 5 : The change in all gait parameters 

(Ankle Dorsiflexion RoM, Ankle Plantarflexion RoM, Knee and Hip RoM) following ankle 

arthrodesis compared to pre-operative status. 
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Appendix 6 : Chapter 3 : Supplementary material 6 : The change in spatio-temporal 

parameters (Cadence, Stance Duration, Step Length) ) following ankle arthrodesis 

compared to pre-operative status 

 

 


