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Resumé de la These

La plupart des problèmes de physique sont formulés en termes de système dynamiques, et
beaucoup de ces systèmes dynamiques ont une structure dite de Poisson. Deux exemples,
considérés dans ce travail, sont un corps rigide non autonome (auquel nous nous référons
comme “Toupie Pulsante”), et une particule classique relativiste chargée. Nous allons
proposer une généralisation de la théorie de perturbation Hamiltonienne pour les algebres
de Lie, qui donc peut être appliquée à l’étude de ce type de systèmes dynamiques.

Une algebre de Lie1 est un espace vectoriel V sur un corps K et avec une opération
bilinéaire, ici notée par un crochet 2 { } (autour du premier argument), et satisfaisant
deux propriétés (ici A,B,C ∈ V),

{A}B = −{B}A (alternance) (1)

{{A}B}C + {{B}C}A + {{C}A}B = 0 (identité de Jacobi) (2)

Une algèbre de Poisson V est une algèbre de Lie avec aussi un produit associatif

(A · B) · C = A · (B · C)

ayant la propriété distributive par rapport au crochet de Lie

{A ·B}C = A ·
(
{B}C

)
+
(
{A}C

)
·B

Les algèbres de Lie sont omniprésentes en physique, et dans le cas de la physique clas-
sique, elles sont pour la plupart des algèbres de Poisson: c’est le cas de la mécanique clas-
sique, Newtonienne et aussi relativiste, électrodynamique, relativité générale, mécanique
des fluides et théorie cinétique.

En general, un système dynamique est un flot sur un ensemble, ce qui pour nous est
un algèbre de Lie V. Un flot est un groupe de transformations à un paramètre qui associe,
à un élément donné F ∈ V (la condition initiale), un autre élément F (t) ∈ V, pour toute
valeur du paramètre t.

Un concept clé pour définir un flot sur V est la derivation: une application linéaire
D : V→ V satisfaisant la propriété de Leibnitz:

D{A}B = {DA}B + {A}DB

On peut construire une dérivation par le crochet de Lie: si on fixe D ∈ V, alors {D} est
une dérivation.

Après avoir choisi une dérivation H, on construit le flot

A(t) = etHA0 ≡
∞∑
n=0

tnHn

n!
A0

1Dans ce qui suit, la référence principale est toujours le livre d’Arnold [5].
2Habituellement, dans la littérature, le crochet englobe les deux arguments: {A,B} ∈ V. Notre

notation insiste sur ce point: une fois le premier élément (ici A) fixé, on obtient une opération linéaire,
communément notée dans la littérature par {A, }.

i



qui est la solution de 
dA

dt
= HA

A(0) = A0

Si H ≡ {H}, alors H est appelé l’“Hamiltonien”. On appelle un système de ce type
“système Hamiltonien”.

A titre d’exemple, on considère une particule chargée non-relativiste dans un champ
magnétique statique. Ce problème est defini sur l’algèbre de Poisson C∞(X), ou X est une
variété à 6 dimensions (l’espace de phase) avec coordonnées {x,v}. Si on denote par e la
charge électrique et par B le champ magnétique, le crochet est3

{A}B =
∂A

∂v

∂B

∂x
− ∂A

∂x

∂B

∂v
+
e

c

∂A

∂v

[[
B
]]∂B
∂v

et la Hamiltonienne est Hm
def
= 1

2
mvv, où m est la masse de la particule. Les équations

de mouvement résultantes sont

ẋ = {Hm}x ≡ v , v̇ = {Hm}v ≡
e

m

[[
v
]]
B

Un autre exemple d’intérêt pour cette thèse est la Toupie (également connue sous le
nom de Corps Rigide). L’algèbre est {f : R3 → R} et le crochet est defini par

{F}G = M
[[
∂MF

]]
∂MG , M ∈ R3

Ce crochet a une propriété intéressante: il donne zero quand il est evalué sur la fonction
MM (appelé un élément de Casimir). Vu que le Casimir represente geometriquement la
coordonnée radiale d’un système de coordonnées sphériques, il s’agit en fait d’un crochet
entre des fonctions sur S2.

Un système Hamiltonien est dit canonique s’il est ecrit dans un ensemble de coor-
données de dimension pair, généralement désigné par (pi, qi)

n
i=1 ≡ (p, q), tel que on peut

ecrire le crochet comme
{A}B =

∂A

∂p

∂B

∂q
− ∂B

∂q

∂A

∂p

Les coordonnées canoniques ont été considérées depuis longtemps la seule option pour les
systèmes Hamiltoniens, donc la plupart des méthodes et des théorèmes de la mécanique
classique (surtout la théorie des perturbations) nécessite une structure canonique. Un
théorème de Darboux affirme qu’on peut introduire, sur une algèbre de Poisson quel-
conque, au moins localement, un ensemble des coordonnées canoniques, éventuellement
apres avoir quotienté les Casimirs.

Mais les coordonnées non canoniques ont aussi leurs avantages.
3Les lettres en gras indiquent les vecteurs sur R3; nous éviterons plutôt la notation avec les indices.
Une surligne dénote une transposition par rapport à la métrique euclidienne, et le résultat est un

covecteur. Lorsqu’un covecteur est suivi d’un vecteur, la contraction est implicite. La dérivation par un
covecteur donne un vecteur, tandis que la dérivation par un vecteur résulte dans un covecteur.
On utilise des covecteurs plutôt que des vecteurs pour dénoter les coordonnées. La raison est liée au

Théorème de Lie-Poisson.
Un double crochet carré

[[ ]]
indique le produit vectoriel sur R3; il s’agit en fait d’un crochet de Lie.
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Si le système Hamiltonien ne vient pas de la transformation de Legendre d’un système
lagrangien (comme c’est le cas dans la mécanique classique), la forme fonctionnelle des
coordonnées canoniques peut ne pas être évidente. Ça arrive souvent dans les théories
fluides, qui ont une structure de Poisson comme conséquence du théorème de Lie-Poisson.

On a déjà introduit la Toupie: c’est une structure de Poisson sur l’espace de phase R3

qui a un Casimir. Une fois que ce dernier est quotienté, on obtient une espace de phase
reduit à S2 (il faut imaginer d’introduire des coordonnées spheriques sur R3); là, il est
possible d’introduire des coordonnées canoniques. Cependant, elles ne sont pas définies
sur toute la sphère (la géométrie différentielle nous montre qu’il est impossible de couvrir
la sphère avec une seule carte).

L’utilisation de coordonnées canoniques peut impliquer “the representation of physi-
cally interesting quantities by means of awkward mathematical constructions”, mais aussi
introduire une dépendance de jauge non désirée. Ces deux aspects sont évidents dans
l’exemple de la particule chargée. Lorsque dans la description non canonique de ce sys-
tème on utilise le champ magnétique pour construire le crochet, la description canonique
implique plutot le potentiel magnétique A (lié au champ magnétique par B = curlA)
dans l’Hamiltonien Hmc = |p − eA|2/(2m).

En fait, si on calcule {Hmc} avec le crochet canonique on trouve

ẋ = {Hmc}x =
1

m

(
p− eA

)
≡ v , ṗ = {Hmc}p =⇒ v̇ =

e

m

[[
v
]]
curlA

Ici on a introduit une liberté de jauge dans le système, et les calculs sont plus compliqués.
Ceci nous ramène au but de cette thèse: construire une théorie Hamiltonienne pour les

Algèbres de Lie, qui peuvent donc être appliquées également aux systèmes Hamiltoniens
non canoniques. Voici un bref aperçu des trois chapitres composant la thèse: la theorie des
perturbations; son application à un Toupie non-autonome; la reduction de la dynamique
d’une particule chargée.

1. Theorie Algèbrique des Perturbations Hamiltoniennes.
Une approche très efficace a la théorie des perturbations en mécanique classique est

la théorie KAM. En general, un Hamiltonien H0 est dit integrable s’il détermine une
foliatione de l’espace de phase en tores invariants. Dans la théorie des perturbations, on
cherches le tores d’un Hamiltonien quelconque H en le décomposant en H = H0 + V ,
où H0 est intégrable et V est une autre fonction (la perturbation), “plus petite” (par
rapport à une quelque norme) que H0. Le théorème KAM affirme qu’une ensemble de
tores de H0 n’est pas détruit, mais seulement déformé, par la perturbation (sous des
hypothèses appropriées sur H). En fait il est possible de conjuger l’Hamiltonien H à un
autre Hamiltonien, disons H̃, qui préserve un tore prescrit de H0. La première étape est
de construire une “transformation principale”, pour supprimer la partie la plus forte de
la perturbation: en effet, V est divisé en un une partie “bonne” (qui conserve le tore) et
une partie “mauvaise”, qui est quadratique en V . La deuxième étape, c’est l’iteration de
cette transformation, dont on obtient un algorithme superconvergent pour construire H̃.
Et on peut montrer que l’algorithme est bien défini pour un ensemble dense des tores.

Plusieurs variations du théorème de KAM ont été proposée: pour les difféomorphismes
de l’anneau, pour les systèmes présympletiques, pour les champs de vecteurs; cependant,
une version pour les systèmes de Poisson (qui ne nécessite pas des coordonnées angle-
action) n’a pas encore été proposée. Dans le premier chapitre, on propose une version de
la “transformation principale” pour une algèbre de Lie V. Comme d’habitude, un système
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dynamique est associé à une dérivation H, qui est ensuite divisé en

H = H0 + {V }

Le système non perturbé est associé à H0, qui peut être une dérivation interne ou externe.
La perturbation par contre doit être interne, en fait elle est {V }. Comme il nous manque la
notion de «tore», on la remplace par une sous-algèbre B ⊂ V, invariante par H0. Ensuite,
on montre comment construire une transformation pour diviser la perturbation V en une
partie qui préserve B et une autre, disons V∗, qui est quadratique en V . On a besoin d’un
projecteur R : V→ B et un opérateur Γ: V→ derV tel que

[H](Γf) = {(1−R)f} ,∀f ∈ V

Cette équation peut être appelée une «équation homologique» par analogie avec la théorie
des perturbations en mécanique classique. Ensuite, on montre que 4

e[ΓV ](H + {V }) = H∗ + {V∗} , H∗
def
= H + {RV }

Donc, la transformation eΓV conjugue la (derivation) Hamiltonienne perturbée H à H∗,
modulo des corrections quadratique dans la norme de V . L’amélioration est que H∗
préserve B, comme H0.

Maintenant, ΓV ∈ derV, ce qui peut poser problèmes par rapport à la convergence de
la série de Lie. On demande que l’algèbre V soit dotée d’une échelle de normes de Banach:
une famille de normes labellisées par un parametre (disons s); alors, il est possible de
borner Γ “avec perte”, c’est-à-dire qu’on change s, et on perd un peu de régularité.

Cette approche à la théorie des perturbations est basée sur une methode introduite par
Vittot dans [92]. Le développement le plus important de cette partie serait d’identifier
un algorithme pour resoudre l’equation homologique avec H∗ en place de H; c’est à
dire, de construire deux operateurs Γ∗ et R∗, et l’on pourrait appliquer iterativement
la transformation induite. Une deuxième amélioration serait de fournir une échelle des
normes de Banach générique pour les algèbres de Poisson. Avec ces éléments, il devrait
être possible de construire quantitativement l’itération dans le cadre générique.

2. La Toupie Pulsante.
Dans le deuxième chapitre, on applique notre theorie algebrique des perturbations

pour étudier la dynamique d’une Toupie non-autonome (ou Toupie Pulsante). On a dejà
discuté la structure de Poisson non-canonique de la Toupie. La Toupie Pulsante a la meme
structure, et elle peut étre étudiée comme une perturbation de la Toupie statique, qui est
un système intégrable. Ce systeme est l’un des exemples les plus basiques de systeme
de Poisson non-canonique, affichant des caractéristiques typiques (comme des Casimirs)
même sur un espace de phase de basse dimension.

L’algèbre et le crochet de la Toupie sont

VTop
def
= C∞(R3∗ → R) 3 f, g =⇒ {f, g}(M ) = M

[[
∂Mf

]]
∂Mg ,

où M ∈ R3 and M ∈ R3∗ ≡ R3. Le Casimir est ρ2 def
= M2

1 + M2
2 + M2

3 et evidemment
il a la proprieté {ρ}F = 0 , ∀F ∈ VTop. L’energie (Hamiltonien) est E = 1

2
MLM , où

L = diag(I−1
1 , I−1

2 , I−1
3 ) une matrice symétrique appellée tenseur d’inertie. Physiquement,

les trois valeurs propres Ii contiennent l’information sur la géométrie du corps.
4[ ] est le commutateur entre les dérivations, qui est aussi un crochet de Lie.
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Dans une Toupie Pulsante, les quantités Ii deviennent des fonctions du temps; physique-
ment, on peut imaginer un mécanisme qui bouge des morceaux internes du corps dans le
temps. Pour décrire la Toupie pulsante, on considére l’algèbre

VTT
def
= C∞

((T
R

)
→ VTop

)
3 f = f

(
M , t

)
avec le même crochet de la Toupie statique. On choisirait T (un tore) pour un système
périodique (comme dans la première partie de ce chapitre), ou R, pour un dépendance
temporelle générique (comme dans la deuxième partie du chapitre).

2.1. On a etudié en première lieu une Toupie symétrique (dont I1 = I2) et péri-
odique. Une Toupie statique symétrique admet une description canonique en coordon-
nées sphériques (ρ, ϕ, θ) (l’action étant cos(ϕ)). La Toupie Pulsante est alors analogue
à un système canonique dégénéré (un système canonique ne dépendant pas de toutes les
actions). On prouve, pour ce système, une variante du théorème KAM, en appliquant de
manière itérative notre formule de perturbation. Dans la figure suivante on montre deux
portrait de phase pour une Toupie Pulsante symétrique. La figure sur la gauche se réfère
au système sans perturbation, par contre, dans celle à droite, on ajoute une perturbation
V ∝M2

2 cos(t). On voit qu’une partie des orbites sur la gauche est detruit dans la figure
à droite, d’autres ne sont que déformées: elles correspondent aux données initiales pour
lesquelles la transformation eΓV converge.

(a) ε = 0 (b) ε = 0.1

Figure 1: Portrait de phase du type “time-2π” pour une Toupie Pulsante. Cet à dire qu’on
represente ici seulement les iterations aux temps multiples entier de 2π. Ici X = cos(ϕ). A
gauche, une Toupie imperturbé (et donc statique) avec Ii = 1/i, i = 1, 2, 3. A droite, une

Toupie avec perturbation, donc I2 = 1/
(
2 (1 + 0.1 cos(t))

)
2.2. Dans un deuxième moment, on a considéré une Toupie non symétrique et non

périodique. Dans ce cas, nous n’avons pas introduit des coordonnées sur la sphere, mais
on a travaillé directement avec le crochet sur R3, et ciblé la sous-algèbre B = ker(∂t) de
fonctions indépendantes du temps. Dans ce cas on voit une analogie aussi avec la théorie
de Floquet, ce qui le rend encore plus intéressant.Cette fois on a montre que, pour des
perturbations avec support compact [0, T ] dans le temps, notre “transformation principale”
peut étre applique iterativement. Ça signifie que si la perturbation est suffisamment faible
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ou elle agit pour un temps suffisamment court T , les valeurs des observables à l’avenir ne
diffère pas beaucoup de leur valeur au moment t = 0.

3. La Particule Chargée.
Le problème de l’électrodynamique classique est de déterminer la dynamique des par-

ticules chargées sujettes à des champs électriques et magnétiques, selon les équations de
Newton (en fait, leur version relativiste), et en même temps l’évolution des champs qui
ont les particules comme sources, selon les équations de Maxwell.

Les équations de Maxwell-Vlasov sont un modèle mathématique pour ce problème;
elles ont une structure de Poisson (non canonique), comme a eté montré par Morri-
son [63]. On pourrait donc résoudre le problème de l’électrodynamique classique par la
théorie des perturbations (qu’on a construit) aux equations de Maxwell-Vlasov. Alors,
la dynamique des particules dans des champs donnés est le système non perturbé, tandis
que leur rétroaction sur les champs serait décrite de manière perturbative. Nous sommes
guidé par l’observation empirique: en physique des plasmas, la dynamique d’un ensemble
de particules chargées est dominée par le champ magnétique. En fait, on observe un mou-
vement giratoire s’enroulant autour des lignes de champ magnétique, avec une fréquence
qui définit l’échelle de temps la plus élevée du problème. Le reste de la dynamique est
beaucoup plus lent.

La première étape de ce plan ambitieux est la caractérisation des trajectoires non
perturbées, pour definir la sous-algebre invariante B. À cette fin, on considère deux
“théories de réduction”5 pour la dynamique des particules chargées.

3.1. La première est présentée ici pour la première fois: on l’appelle une “réduction
Eulerienne”. Dans cette approche, on essaye de reduire de moitié le nombre de degres
de liberté d’une particule chargée; en particulier, par l’integration exacte des degrees de
liberté de la velocité. C’est equivalent à donner la description fluide du mouvement d’une
seule particule, d’où le nom «Eulerien». En effet, on calcule le champ de vitesse V associé
à la force de Lorentz, de sorte que la dynamique complète est réduite à ẋ = V (t,x). Si
le champ obéit à une équation différentielle partielle, qu’on écrive sous la forme

Ec(t,x) +
[[
V (t,x)

]]
Bc(t,x) = 0

alors l’équation de Newton pour la vitesse est satisfaite identiquement. Les champsEc,Bc

sont les champs électromagnétiques avec des corrections liées à la dynamique de la par-
ticule. Cette description est équivalente à donner un changement de variables, où les
degrés de vitesse de liberté sont remplacés par trois paramètres constants (disons α) qui
détermine le champ de vitesse (donc il faudrait plutot ecrire V (t,x,α)). Trouver des
solutions pour V est important car, bien que les équations de Newton+Lorentz décrivent
un problème fondamental de la physique, peu de résultats analytiques sont disponibles
dans la littérature.

3.2. La deuxième méthode de réduction est la célèbre theorie du Centre Guide6 qui est
utilisée en physique des plasmas pour introduire un ensemble de coordonnées adaptée à la
description des trajectoires «hélicoïdales» des particules qui tourne autour des lignes de
champ magnétique. Avec ces coordonnées la dynamique est découplée dans le mouvement
lent d’un point (le Centre Guide) qui suit les lignes de champ, et une rotation rapide de la
particule réelle autour de ce point. Cependant, dans l’approche commune, les coordonnées
du Centre Guide sont définies de manière perturbative Vu qu’il manque la forme fermée

5C’est à dire, une méthode pour réduire le nombre de degrés de liberté d’un système dynamique
6introduite en origine par Littlejohn [54], voir aussi la revue par Cary et Brizard [15]
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de la transformation, on n’a pas de moyennes pour etudier sur quelles regions de l’espace
de phase elle est effectivement bien definie.

On préfère suivre une nouvelle approche non perturbative à cette theoire, introduit
recemment par Di Troia [22], [23]. Dans ce nouvelle methode on introduit un ensemble
de coordonnées du Centre-Guide {T,X, ζ, µ ε}, definies exactement (aussi dans le cadre
relativiste):

• Le Centre Guide est le cadre de référence, ayant coordonnées (T,X) dans le système
du laboratoire, où une particule chargée se déplace sur une trajectoire périodique;

• La gyrophase ζ est l’angle dont cet trajectoire periodique est parametrisée;

• Le moment magnetique µ est propotionnel par (m/e) à l’action canonique associée
à la gyrophase;

• La transformation de Centre-Guide TGC est choisie de façon que la nouvelle forme de
Poincaré-Cartan est $GC = P 0 dT − P dX + m

e
µ dζ, avec champs P 0(T,X, ε, µ)

et P (T,X, ε, µ);

La velocité du Centre-Guide est encore un champ, donné par

mγV (T,X, ε, µ) = P (T,X, ε, µ) − eA(T,X)

et il se trouve qu’elle obeit encore à

Ec(T,X) +
[[
V
]]
Bc(T,X) = 0

La velocité du Centre-Guide est alors definie exactement comme la solution de cette
equation. Dans ce travail on a derivé pour la première fois les equations du mouvement
relativistes, et leur structure de Poisson. On trouve aussi des proprietées géometriques de
ces coordonnées: le Centre Guide n’est pas une particule, dans le sens qu’il ne satisfait
pas W 0 = 1/

√
1− V V (où W 0 est l’energie cinetique), sauf si µ→ 0.

L’inconvénient principal de ce nouvelle approche est que la forme explicite de la trans-
formation TGC n’a pas encore été fournie, de sorte que la relation entre les nouvelles
coordonnées et les anciennes n’est pas connue; un développement intéressant serait de
pouvoir construire cette carte, au moins dans certains exemples. Dans le même temps, la
vitesse du Centre Guide est la solution d’une équation différentielle aux derivées partielles
impliquant les expressions explicites des champs électromagnétiques: serait il possible
d’élaborer des coordonnées du Centre Guide directement à partir de cette solution, de
sorte que leur relation avec les coordonnées des particules pourrait être déduite a posteri-
ori, ou même ignorée? De nouveau, le développement le plus intéressant serait de fournir
des exemples explicites.
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1

Introduction

Most problems in Physics are set in terms of dynamical systems, and many of these
dynamical systems have a so-called Poisson structure. Two examples, considered in this
work, are a non-autonomous Rigid Body (to which we refer as “Throbbing Top”), and
a classical relativistic charged particle. We will propose a generalization of Hamiltonian
perturbation theory for a Lie algebraic setting, which can be applied to this type of
dynamical systems.

A Lie algebra1 is a vector space V over a field K and with a bilinear operation, here
denoted by a bracket2 { } (embracing the first argument), and satisfying two properties
(here A,B,C ∈ V),

{A}B = −{B}A (1.1)

{{A}B}C + {{B}C}A + {{C}A}B = 0 (1.2)

As a consequence of (1.1) we say that the bracket is alternating ; the second property (1.2)
is instead called Jacobi identity.

A Poisson algebra V is a Lie algebra with also an associative product

(A · B) · C = A · (B · C)

having the distributive propert with respect to the Lie bracket

{A ·B}C = A ·
(
{B}C

)
+
(
{A}C

)
·B

Lie algebras are ubiquitous in physics, and in the case of classical physics, they are
most of times Poisson algebras: this is the case of classical mechanics [5], fluid dynamics
and plasma physics [64], kinetic theory [76], special and general relativity [58].

Broadly speaking, a dynamical system is a flow on some set, which for us is a Lie
algebra V. A flow is a one-parameter group of applications associating, to a given element
F ∈ V (the initial condition), another element F (t) ∈ V, for any value of the parameter
t. If V = C∞(X→ R), then the set X is called the phase space.

1In what follows, the main reference is always understood to be the book of Arnold [5].
2Usually in the literature the bracket embraces both arguments: A,B ∈ V. Our notation emphatizes

that, once the first element (here A) is fixed, we get a linear operation, commonly denoted in the literature
by {A, ·}.
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A key concept to define a flow on V is the derivation: a linear application D : V→ V
which satisfy the Leibnitz property:

D{A}B = {DA}B + {A}DB

A possible way of building a derivation is by the Lie bracket: once D ∈ V is fixed, {D}
is a derivation.

After choosing a derivation H, we build the flow

A(t) = etHA0 ≡
∞∑
n=0

tnHn

n!
A0 (1.3)

which is the solution of 
dA

dt
= HA

A(0) = A0

(1.4)

in the sense that we can plug A(t) from (1.3) into the system (1.4) and get an identity. If
H ≡ {H}, then H is called the “Hamiltonian”. We call the system (1.4) a “Hamiltonian
system”.

As an example let us consider the charged particle in a static magnetic field, in the
non-relativistic approximation. The phase space is the Poisson algebra C∞(X), X being
a 6-dimensional manifold with coordinates {x,v}. Denoting by e the electric charge and
by B the magnetic field, the bracket is3

{F}G =
∂F

∂v

∂G

∂x
− ∂F

∂x

∂G

∂v
+
e

c

∂F

∂v

[[
B
]]∂G
∂v

(1.5)

and the Hamiltonian is Hm
def
= 1

2
mvv, where m is the mass of the particle. The resulting

equations of motion are

ẋ = {Hm}x ≡ v , v̇ = {Hm}v ≡
e

m

[[
v
]]
B (1.6)

Another example of interest for this dissertation is the Top (also known as the Rigid
Body). The phase space is {f : R3 → R} and the bracket is defined by

{F}G = M
[[
∂MF

]]
∂MG , M ∈ R3 (1.7)

This bracket has an interesting property: it preserves the functionMM (called a Casimir
element), independently of the second argument. As the Casimir has the meaning of
“radial coordinate” for a spherical coordinate system, we may in fact think of a bracket
between functions on S2.

3 Bold letters denote vectors on Rn; we will rather avoid index notation.
An overline denotes transposition with respect to the Euclidean metric, and the result is a covector.

When a covector is followed by a vector, contraction is intended. Derivation by a covector gives a vector,
while derivation by a vector results in a covector.
There’s a deep reason, related to the Lie-Poisson theorem, for which we use a covector rather than a

vector to denote a set of coordinates; this is discussed in the appendix A.1.3.
A double square bracket

[[
·
]]
denotes the cross vector product. We denote this operation by a bracket

because it is, in fact, a Lie bracket.
We give a resume of the notation and of this topics in appendix A.3.
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A Hamiltonian system is called canonical if it has an even-dimensional set of coordi-
nates, usually denoted by (pi, qi)

n
i=1 ≡ (p, q), which put the bracket in the form

{A}B =
∂A

∂p

∂B

∂q
− ∂B

∂q

∂A

∂p
(1.8)

Canonical coordinates have been considered for long time the only option for Hamiltonian
systems, so that many efficient methods and theorems of classical mechanics (above all,
perturbation theory) require a canonical structure. A theorem by Darboux [5], [53] states
that any Poisson algebra can be reduced, at least locally, to a canonical one, eventually
by quotienting out some dimensions4.

But non-canonical coordinates have also their advantages.
If the dynamical system doesn’t come from the Legendre transform of a Lagrangian

one (is the case for classical mechanics), the functional form of canonical coordinates may
not be evident. This happens often in fluid mechanics, where the Poisson structure is a
consequence of the Lie-Poisson theorem (see for instance [65]).

We already mentioned the Top (that will also be the subject of chapter 3): it is a
Poisson structure for functions on R3 which has a Casimir. Once the latter is quotienting
out, we get a bracket for functions on S2, and it is possible to introduce canonical coor-
dinates on this set. However, they are not defined over the whole S2 at once (it is known
from differential geometry that it is not possible to cover the whole sphere with a single
chart).

The use of canonical coordinates may involve “the representation of physically interest-
ing quantities by means of awkward mathematical constructions” [55], or it may introduce
an undesired gauge dependence. Both of these aspects are evident in the example of
the charged particle. Indeed, while the non-canonical description of this system involves
the magnetic field in the bracket (as seen in equation (1.5)), the canonical description
involves the magnetic potential A (related to the magnetic field by B = curlA) in the
Hamiltonian Hmc = |p − eA|2/(2m). Indeed by computing {Hmc} with the bracket (1.8),
then

ẋ = {Hmc}x , ṗ = {Hmc}p

are equivalent to equations (1.6); however, the system is no more gauge free, and the
computations are rather cumbersome.

This leads us back to the purpose of this thesis: to build a Hamiltonian perturbation
theory for Lie algebras, which can thus be applied also to non-canonical Hamiltonian
systems.

A very efficient approach to perturbation theory in classical mechanics is KAM the-
orem. In classical mechanics, a Hamiltonian H0 is called integrable if it determines a
foliation of the phase space into invariant tori. In perturbation theory one aims at finding
the tori of a generic Hamiltonian H by decomposing it as H = H0 + V , where H0 is
integrable, and V is another function (the perturbation), “smaller” (with respect to some
norm) than H0. The KAM theorem states that a set of tori of H0 are not destroyed but
only deformed by the perturbation (under suitable hypothesis on H). This is shown by
conjugating the Hamiltonian H to another Hamiltonian, say H̃, which preserves some
prescribed torus of H0. A “main step map” is built, to delete the strongest part of the
perturbation: indeed, V is split into a “nice” part (which preserves the torus) and a “bad”

4We are referring to the Casimir elements.
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part, which is of order |V |2. By iterating this map we get superconvergent algorithm to
build H̃. And it can be shown that the tori for which the algorithm is well defined form
a dense set.

Adapted versions of the KAM theorem have been provided for classical mechanics
without action-angle variables [20], presymplectic mechanics [2], vector fields [8]; however,
a version adapted for Poisson systems is still missing. In chapter 2 we propose a version
of the “main step map” set on a Lie-algebra V. The unperturbed system is associated
to a derivation H0. As we are missing the notion of “torus”, we replace it with the more
general one of a subalgebra B ⊂ V, invariant by H0. Then we add a perturbation in the
form of an inner derivation, H0 7→ H = H0 + {V }, for some V ∈ V. We then show how
to build a map to split the perturbation V into a part which preserves B and another,
say V∗, which is quadratic in the magnitude of V . The map is defined by a Lie series and
we pose some minimal hypothesis to achieve its convergence. This is a generalization of
an approach introduced by Vittot in [92].

In chapter 3 we apply our perturbation formula to study the dynamics of a non
autonomous Top: we call this system a Throbbing Top. As already discussed, the Top
has a non-canonical Poisson structure; however, the Top is also an integrable system,
and so out of scope for perturbation theory. This is no more true if a parametrical
time-dependence is added: indeed in this case the integrability is lost. We consider two
particular cases:

1. a symmetric5 Top with periodic time-dependence. In this case a chart on S2 can be
introduced, in which the Lie bracket is reduced to a nearly canonical form. Moreover
the system is described by three coordinates: two of them are angles and don’t
appear in the stationary Hamiltonian. Then we are nearly in a classical mechanical
system; indeed we show that our perturbation formula can be iteratively applied to
provide a full KAM theorem. This shows also that our method is compatible with
the existing theory;

2. a non-symmetric Top with non-periodic time-dependence: in this case we use the
non-canonical structure (1.7) and target the algebra of time-independent functions.
This case is more analogous to Floquet theory rather than KAM theory, which
makes it even more interesting because, to our knowledge, a Floquet theory for
non-periodic dynamical systems has not yet been proposed. We show that, for
perturbations with compact support [0, T ] in time, the algorithm converges. This
means that if the perturbation is sufficiently weak or applied for a sufficiently short
time T , the values of the observables in the future do not differ much from their
value at time t = 0.

Another physical problem to which we may apply perturbation theory is classical
electrodynamics. We already discussed the non-canonical Poisson structure of the charged
particle. This represents half of “the problem” of classical electrodynamics: the charged
particles evolve according to Newton equations, with forces given by the fields; the second
part of the problem is to determine the evolution of the fields which have the perticles
themselves as sources, according to Maxwell equations.

5For those acquainted with the topic, we call symmetric a Top with two equals momenta of inertia.
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One mathematical model for this problem are the Maxwell-Vlasov equations. This
dynamical system has a (non-canonical) Poisson structure (this was shown by Morrison:
see [63] and also [64]). So we may attempt to achieve the solution of the problem of
classical electrodynamics by applying perturbation theory to the Maxwell-Vlasov equa-
tions. The dynamics of the particles in given fields is the unperturbed system, while field
fluctuations may be described perturbatively. We are led by the empirical observation
that the dynamics of a set of charged particles is always dominated by the magnetic field:
we observe a gyratory motion wrapping around the magnetic field lines, with a frequency
that defines the highest time-scale of the problem. The rest of the dynamics is much
slower.

The first step of this ambitious plan, is the characterization of the unperturbed tra-
jectories, which would define the invarian sualgebra B. For this purpose, in chapter 4
we consider two reduction theories6 for the charged particle dynamics:

• The first one is presented here for the first time: we call it “Eulerian reduction”.
In this approach we try to fix half of the degrees of freedom of the charged parti-
cle motion. The resulting picture is like the fluid description of the single particle
motion, hence the name “Eulerian”. Indeed, we propose the velocity field V (x, t)
associated to the Lorentz force, so that the full dynamics is reduced to ẋ = V (x, t).
This picture may be thought as a change of variables to a new system of coordi-
nates where the velocity degrees of freedom have been replaced by three constants
parameters determining the field V . We computed the Poisson structure in the new
Picture. Finally, we tried also to figure out some method to compute V . These
results are important because, despite the Newton+Lorentz equations describe a
very fundamental problem of physics, nearly no analytical results are available in
the literature;

• The second reduction method is the well known Guiding Centre theory7 which
is used in plasma physics to introduce a set of coordinates adapted to describe
the “helicoidal” trajectories winding around the magnetic field lines, as commonly
observed both in nature and in laboratory experiments. With these coordinates the
dynamics is decoupled in the slow motion of a point (the Guiding Centre) stick to
the field lines, and a fast rotation around it. However, in the common approach,
the Guiding Centre coordinates are defined perturbatively and only up to a finite
number of orders. As a consequence, they are not suited for an exact characterization
of the trajectories. Instead we will consider a new non-perturbative approach to
the theory, which has been proposed by Di Troia [22], [23]. In this approach the
new coordinates are defined exactly, also in the relativistic setting; however, the
equations of motion have been derived only in the Newtonian approximation. We
derive the relativistic equations of motion as well as their Poisson structure. We also
observe some geometrical consequences of the result: in particular, the gyrophase
appears as a sort of “internal clock”, in the same way as proper time.

6By the term “reduction theory”, we refer to a method to reduce the number of degrees of freedom of
a dynamical system.

7see for instance the recent review by Cary and Brizard [15] for a large overview on both the established
version, originally proposed by Littlejohn [54], and its historical development.
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About the notation

We will try to keep using a coherent notation throughout the manuscript.
In footnote 3 we’ve given an overview on our notation on vectors. It’s rather unusual

but very practical, and we beg pardon for the time that the reader will spend on getting
used to it. We recall that Bold Letters denote vectors.

As a general rule, Doubled Letters will denote sets, while Calligrafic Letters will denote
linear applications (with the exception of the set C∞, which could be confused with the
set of complex numbers C)

Instead Sans Serif letters will denote matrices; however, skew-symmetric matrices can
be also denoted by calligrafic letters as they are derivations if built as Lie brackets with
respect to the cross product.

The use of the letters in chapter 3 is indepedent of that of chapter 4; this means that,
for instance, a quantity called ω in one chapter won’t have anything to do with another
quantity called ω in the other chapter. Instead the letters introduced in the first chapter 2
on the general perturbation theory will have the same meaning in the whole manuscript.
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2

Perturbation Theory on a Lie Algebra

“ Striclty speaking, there does not exists a KAM Theorem
(“KAM” standing for the initials of A.N. Kolmogorv, V.I.
Arnold and J.K. Moser), however, normally, it refers to

(variations of) Kolmogorov’s theorem. Here, we follow this
tradition. ” [17]

In this chapter we propose a method to perform perturbation theory for dynamical
systems on Lie algebras. We call them Hamiltonian systems, as they are a generalization of
Hamilton equations of classical mechanics. A perturbation theory for Hamiltonian systems
was proposed by Vittot in [92]: in his method, a perturbed Hamiltonian is conjugated to a
new one, preserving the kernel of the original Hamiltonian. The conjugation was built by
a single Lie transform, but the formal proof of its convergence required some very strong
hypothesis (the boundedness, in the sense of Banach, of some derivation operators). Here
we develop further this approach, with two main novelties. First, we target any subalgebra
of the phase space, invariant by the flow of the unperturbed Hamiltonian. The conjugation
is built by a kind of superconvergent algorithm1, as is commonly done in KAM theory.

This chapter is organized in three sections2: an informal introduction, which follows;
a more technical description of our method, in section 2.2, and finally a (very succint)
historical survey on KAM theory, in section 2.3.

2.1 Introduction
In classical mechanics, the phase space is a symplectic manifold X, and we consider the
Lie algebra of analytical functions defined on it3. An Hamiltonian H0 is called integrable
if it determines a foliation of phase space into invariant tori. In perturbation theory, one
looks for the tori of H = H0 + V , where V is called a perturbation of H0. In the KAM
method, the problem is tackled in an indirect way: after choosing one torus of H0, the
perturbed Hamiltonian H is conjugated to a new one, say H̃, preserving the chosen torus.
Moreover it can be shown that the tori of H0 for which the conjugation exists is dense.

1Even though, unfortunately, we were not able to push the formal proof of convegence to all orders,
as we will see.

2We think that the original material in this chapter is presented in a sufficiently compact way that a
concluding section won’t be needed.

3The bracket being given by (1.8)
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The conjugation is built algorithmically, by iteration of a well chosen canonical trans-
form. The transform isn’t required to delete all the perturbation at once. Instead, at
each step, the perturbation is split into what preserves the original torus, and a “remain-
der”. Then, only part of this “remainder” is deleted: the part linear in the perturbation
strength4. Terms of higher order are kept: they will be deleted in the following steps,
when the procedure is iterated.

Once the canonical transform has been applied and the perturbation has been reduced
in strength, one ends up with a new (reduced) dynamical system: and this reduced dy-
namical system satisfies again the orginal hypothesis; however, if the original magnitude
of V was ε, the new perturbation has magnitude ε2. So the “main step map” can be
applied again; after this passage, the perturbation will be of order ε4. The iteration of
this process generates the new Hamiltonian H̃.

A key element to this theory are the action-angle coordinates: here denoted by
{Ai, ϑi}ni=1, they are a preferred set of canonical coordinates for the phase space X, in
which the flow takes the simple form

Ȧi = 0 , ϑ̇i =
∂H(A)

∂Ai
≡ ωi , i = 1, . . . , n

So, these coordinates are needed to define a notion of integrability, or equivalently, the
foliation in tori (a torus is a level surface of the Ais). We may say that action-angle
variables encode the informations we have on the unperturbed flow. To avoid the use of
these coordinates, we will ask for a subalgebra B preserved by the unperturbed flow. This
replaces the notion of integrability5

2.2 The Algebraic “Main Step” Map
Given a Lie algebra V with bracket { }, to define a dynamical system on it we introduce
the space derV of derivations of V,

derV def
=
{
D : V→ V s.t. D{F}G = {DF}G+ {F}DG, ∀F,G ∈ V

}
(2.1)

Inner derivations are those for which D ≡ {D}. Derivations which are not inner are called
outer.

Once a derivation H is fixed, a dynamical system is given by

ḟ = Hf (2.2)

A perturbation of this dynamical system is

H → H + {V }

In our perturbation theory, the original derivation H can be of any type, also outer, but
the perturbation must be inner.

4Sometimes a parameter ε is added in front of the perturbation; then the “perturbation strength” is
ε. Instead one may think of ε simply as the norm of V ; we follow this second approach.

5When action-angles are available, we may of course use of them to define the invariant subalgebra

B =
{
f ∈ C∞(M), {f}Ai = Ai , i = 1, . . . , n

}
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Another tool that will be needed is a scale of norms (described in detail in A.1.1). A
norm is a function V→ R+, with two properties of triangular inequality and linearity:

‖F +G‖ ≤ ‖F‖ + ‖G‖ , ‖λF‖ = |λ|‖F‖ ; ∀F ∈ V, λ ∈ K

A scale of norms is a sequence of norms ‖ ‖rr∈I, where I is an ordered set, such that

‖F‖r1 ≤ ‖F‖r2 , ∀r1, r2 ∈ I , r1 ≤ r2

In the next proposition, we propose a formula, henceforth called “the main step for-
mula”, to conjugate the perturbed derivation H+ {V } to another one, where the pertur-
bation V is split into a term preserving the same subalgebra ofH, plus a new perturbation
V∗, smaller than V . The conjugation is defined by a Lie series. By assuming that there
exist a scale of Banach norms (see appendix A.1.1) defined on V, we give minimal hy-
pothesis to ensure the convergence of the series. In figure 2.1 we provide a scheme of all
the quantities involved in our formula.

EndV

H

etH

(ΓV )

e(ΓV )

derV
(inner)

{V }

{RV }

R

V

V

B
RV

Figure 2.1: A scheme of all the elements of our perturbation formula, and their domain of
definition. The two most important sets are the Lie algebra V, in green, and the space of endo-
morphisms EndV ∼= V⊗ V∗. B is a sub-Lie algebra of V. Inside the endomorphisms there are
many subspaces, and we are interested in particular in two of them, which are the derivations and
the projectors. The latter contains R : V→ B. The derivations are those endormorphisms which
satisfy (2.1), and they contain the subset of inner derivations, which are of type {f}, f ∈ V.
Derivations which are not inner are called outer: for instance we have H, which may be equal to
{H} (as in the case of classical mechanics), for some H ∈ V, but not necessarily. The application
Γ takes an element of V and maps it to an element of EndV and it is a key element in our KAM
formula. Finally, the operator G is an Endormorphism and it can replace Γ in the sense that it

may be possible to have Γf ≡ {Gf}, f ∈ B.
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Proposition 1. Let V be a Lie algebra with bracket { } and with a scale of Banach
norms {‖ ‖r}r∈I. Let H ∈ derV and ‖V ‖s <∞ for some s ∈ I.

Assume that there exist

(i) a Lie sub-algebra B ⊆ V such that HB ⊆ B, and 6 V 6∈ B;

(ii) a projector R : V→ B and a function Ξ: I→ R+ such that ∀δ ∈ I

‖NV ‖s−δ < Ξ(δ)‖V ‖s N def
= I−R (2.3)

(iii) an operator Γ: V→ derV and a function Λ: I × I → R+ such that ∀d, δ ∈ I,
(d+ δ) < s and ∀F ∈ Vs−δ

[H,ΓF ] = {NF} (2.4)

‖(ΓV )F‖s−δ−d ≤ Λ(d, δ) ‖V ‖s ‖F‖s−δ (2.5)

εδ =
1

2
sup
n∈N

(
1

n!

n∏
j=1

Λ
( δ
n
,

(j − 1)δ

n

))−1/n

∈ (0,∞) (2.6)

Then
e[ΓV ](H + {V }) = H∗ + {V∗} H∗

def
= H + {RV } (2.7)

and for any I 3 µ < s/3 we have

‖V ‖s ≤ εµ =⇒ ‖V∗‖s−3µ ≤ κ εµ
2 (2.8)

for some real positive constant κ.

Remark 1. We recall that R is a projector if R2 = R or equivalently NR = 0

Remark 2. If we can write ΓF = {GF}, then by the Jacobi identity

[H,ΓF ] = [{H}, {GF}] = {HGF}

So the fourth hypothesis can be rewritten in a much simpler way,

HGF = NF, ∀F ∈ V (2.9)

Proof. We start by expanding the l.h.s. of equation (2.7),

e[ΓV ](H + {V }) = H + [ΓV ]H +
∞∑
l=2

[ΓV ]l

l!
H + {V } + (e[ΓV ] − 1){V }

By hypothesis (2.4), [ΓV ]H = −[H]ΓV = −{NV } so that

∞∑
l=2

[ΓV ]l

l!
H = −

∞∑
l=2

[ΓV ]l−1

l!
[H]ΓV =

= −
∞∑
l=2

[ΓV ]l−1

l!
{NV } = −e

[ΓV ] − 1− [ΓV ]

[ΓV ]
{NV }

6The case V ∈ B is trivial.
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the latter expression being formal. Then

e[ΓV ](H + {V }) = H− {NV } − e[ΓV ] − 1− [ΓV ]

[ΓV ]
{NV }+ {V }+ (e[ΓV ] − 1){V } =

= H + {RV }+ (e[ΓV ] − 1){V } − e[ΓV ] − 1− [ΓV ]

[ΓV ]
{NV } (2.10)

Now consider the following identity in V,

[ΓV ]{F} = {(ΓV )F} (2.11)

which holds because ΓV is a derivation, by definition. In fact, ∀l ∈ N,

[ΓV ]lF = [ΓV ]l−1[ΓV ]F = [ΓV ]l−1{(ΓV )F} = [ΓV ]l−2{(ΓV )2F} = . . . = {(ΓV )lF}

so that

(e[ΓV ] − 1){V } =
∞∑
l=1

[ΓV ]l

l!
{V } =

∞∑
l=1

{(ΓV )lV }
l!

= {
∞∑
l=1

(ΓV )lV

l!
} = {(eΓV − 1)V }

One can proceed analogously to prove that

e[ΓV ] − 1− [ΓV ]

[ΓV ]
{NV } = {e

ΓV − 1− ΓV

ΓV
NV }

Now, if we inject

V∗ = (eΓV − 1)V − eΓV − 1− ΓV

ΓV
NV (2.12)

into equation (2.10) we recover the thesis (2.7).
To make the previous formal manipulation meaningful, it’s sufficient to show that eΓV

is bounded with loss from Vs to Vs−µ (it’s easier to study convergence on an algebra
rather than on the space of its derivations). Then e[ΓV ] can be computed by the following
relation,

e[A] B = eA B e−A, ∀A,B ∈ derV (2.13)

which is readily proven by using a series expansion on both sides,∑
N≥0

[A]N

N !
B =

∑
n≥0,m≥0

An

n!
B (−A)m

m!

On the r.h.s. we use a change of variable, m 7→ N − n,

∑
N≥0

N∑
n=0

An B (−A)N−n

n!(N − n)!
(2.14)

Instead by the relation

[A]NB =
N∑
k=0

(
N

k

)
Ak B (−A)N−k

the l.h.s of (2.13) can be rewritten as∑
N≥0

∑
k=0

Ak B (−A)N−k

k! (N − k)!

11



By renaming an index, the above is equal to expression (2.14).
Now consider the expression (ΓV )nF , as n varies. For n = 1 we can apply hypothe-

sis 2.5 with δ = 0 and d = µ to get

‖(ΓV )F‖s−µ ≤ Λ(µ, 0) ‖V ‖s ‖F‖s

Now let n ≥ 1 and for any 1 ≤ j ≤ n, consider the operator

(ΓV )j : Vs−(j−1)µ/n → Vs−jµ/n

By applying hypothesis 2.5 with d = µ/n and δ = (j − 1)µ/n we get

‖(ΓV )jF‖s−µ ≤ Λ(µ
n
, (j−1)µ

n
) ‖V ‖s ‖(ΓV )j−1F‖s−(j−1)µ/n

and, iterating the above n times,

∥∥(ΓV )nF
∥∥
s−µ ≤

n∏
j=1

Λ(µ
n
, (j−1)µ

n
)‖V ‖sn‖F‖s

We can finally bound eΓV with loss,

∥∥eΓV F
∥∥
s−µ ≤

∞∑
n=0

1

n!

∥∥(ΓV )nF
∥∥
s−µ ≤

∞∑
n=0

1

n!

n∏
j=1

Λ(µ
n
, (j−1)µ

n
)‖V ‖sn‖F‖s ≤

≤
∞∑
n=0

(
‖V ‖s
2εµ

)n
‖F‖s ≤ 2‖F‖s (2.15)

where we also used equation (2.6) and the hypothesis that ‖V ‖s < εµ.
To bound the norm of V∗ we use a similar technique,

‖V∗‖s−3µ =
∥∥∥∑
l≥1

(ΓV )l

l!
V −

∑
l≥2

(ΓV )l−1

l!
NV

∥∥∥
s−3µ

≤

≤
∑
l≥1

1

l!

∥∥∥(ΓV )lV − (ΓV )l−1

l + 1
NV

∥∥∥
s−3µ

≤ (2.16)

≤
∑
l≥0

1

l!

∥∥∥(ΓV )l
1

l + 1

(
(ΓV )V +

1

l + 1
(ΓV )NV

)∥∥∥
s−3µ

≤ (2.17)

≤
∞∑
n=0

(
‖V ‖s
2εµ

)n(∥∥(ΓV )V
∥∥
s−2µ

+ ‖(ΓV )NV ‖s−2µ

)
≤ (2.18)

≤ 2
(
Λ(2µ, 0)‖V ‖2

s + Λ(µ, µ)‖V ‖s ‖NV ‖s−µ︸ ︷︷ ︸
≤Ξ(µ)‖V ‖s

)
≤ κ ε2µ/3 (2.19)

where we used hypothesis 2.5, 2.3 and also that, for any positive integer l, 1/(l + 1) < 1,
1/(l + 2) < 1. So we proved equation (2.8).
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2.2.1 A hint of the Iteration Procedure

The second part of the proof of KAM theorem would work in the following way. Suppose
that we can apply formula (2.7) to the dynamical system H + {RV }, being V∗ the new
perturbation. We would need two operators R∗ and Γ∗ which satisfy

R2
∗ = R , ranR ⊆ B , [H + {RV }]Γ∗F = {(I−R∗)F} , ∀F ∈ V

It may happen that R∗ = R, but it is not granted. Then we have:

e[Γ∗V∗](H + {RV }+ V∗) = H + {RV }+ {R∗V∗}+ V∗∗

where now V∗∗ = O(V 2
∗ ) = O(V 4). By iterating infinitely many times one would eventually

get to

H∞ = H +
∞∑
i=1

{R∗ . . . ∗︸ ︷︷ ︸
i−times

V∗ . . . ∗︸ ︷︷ ︸
i−times

} so that H∞B ⊆ B (2.20)

So that the perturbed system H + {V } has been conjugated to H∞.
Equivalently, define a map T by

T ≡ · · · ◦ eΓ∗∗V∗∗ ◦ eΓ∗V∗ ◦ eΓV =⇒ T (H + V)T −1 = H∞

Then
T −1H∞ T T −1 B ⊆ T −1 B

By defining B̃ : = T −1B the above equation can be rewritten as

(H + {V })B̃ ⊆ B̃

where we read that the algebra B is structurally stable under perturbation, but it get
deformed into B̃, like the tori of classical mechanics. Still in other words, if H preserves
some subalgebra B, then it is possible to build a new subalgebra B̃ preserved by the
perturbed system H+ {V }. This is possible if B satisfies some conditions that ensure the
existence of T .

Unfortunately, up to now we have not been able to provide an algorithm to build the
operators R∗ and Γ∗ in this generical setting. In the following chapter, we will make this
iteration mechanism quantitative in two examples.

2.3 A brief historical survey

The literature on KAM theory is immense; here we propose a modest review without any
claim of completeness, focusing on those developments we met in developing our work.

In 1954 Kolmogorov proposed a new way to overcome the convergence issues of classical
perturbation theory [47]. The main novelty of this approach was to focus on a single torus,
and to build a superconvergent algorithm which conjugates the perturbed Hamiltonian to
a new one, preserving the prescribed torus. Convergence was assured by the “Diophantine
condition” and by non-degeneracy of the Hamiltonian. Also, the Hamiltonian was required
to be analytic. The proof was so concise that it was accused to be incomplete [3]. However,
a new proof of the theorem, following the original guidelines of Kolmogorov, was provided
by Benettin, Galgani, Giogilli and Strelcyn in 1984 [7].
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In 1963 Arnol’d [3], [4] gave a new proof of the theorem, with a few technical differen-
cies. Also, he dropped the non-degeneracy condition assumed by Kolmogorov, in place of
another one, called the isoenergetic non-degeneracy. In 1962 also Moser provided a result
analogous to Kolmogorov’s theorem in the framework of area-preserving twist mappings
of an annulus ( [68], [71]), dropping the analiticity condition for finite differentiability (up
to order 333). In the context of Hamiltonian mechanics the requirement for analiticity of
the perturbation was dropped by Poschel [78]; later by Salamon dropped also the analitic-
ity of the Hamiltonian [83]. The Diophantine condition was relaxed by Russman [81] and
even further by Bruno [94].

One line of research in KAM theory has been the development of an inversion theorem
for Frechet spaces; it began with the works of Moser [70], [69], introducing the theorem
nowadays called the Nash-Moser theorem. On this topic, we mention also the works of
Zehnder [95], [96], Hamilton [45], Herman [8] and more recently Fejoz [37]. For a nice
introduction see Raymond [79].

Another line of research was the relation between KAM and Renormalization theory:
this was studied by Greene [42] and his student MacKay [57] for twist maps of the an-
nulus, and by Gallavotti (see for instance [38]) and Doveil and Escande [29], [30], [27] for
Hamiltonians. For the relation between these lines of research and plasma physics, see
also [28].

Among the developments of KAM theory we mention also: a lagrangian formulation
of the theorem proposed by Zehnder and Salamon [84]; a version adapted to nearly inte-
grable systems on Poisson manifolds (based on action angle coordinates, but admitting a
degeneracy in the symplectic form) by Li and Yi [52]; De La Llave, Gonzales, Jorba and
Villanueva who proposed a KAM algorithm for Hamiltonian systems without action-angle
variables [20]; De La Llave and Alishah for a KAM theorem for presymplectic systems [2];
Bounemura and Fischler, who recently proposed a new proof where diophantine estimates
for small divisors are replaced by continued fractions approximations [9].

Finally we mention the works by Vittot [24], [92], [93]. He proposed an algebraic
perturbation theory, which required an operator G such that {H}2G = {H}; the reader
can recognize a particular case of theorem 1, in the case of inner derivations (see remark
2), and having chosen B = ker{H}. However, instead of proposing an iteration mechanism
à la Kolmogorov, the author proposes a formula to perform the perturbation transform
in one step: given a perturbed system {H + V }, define W ∈ V by

V = F (W ), F (W ) = e−{GW}RW +
1− e−{GW}

{GW}
NW

Then,
e{GW}(H + V ) = H + RW

Unfortunately, the method was proven to work only if {G } is bounded in the sense of
Banach.
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3

The Throbbing Top

In this chapter we apply the perturbation theorem of chapter 2 to study the dynamics of
a Throbbing Top (that is, a Top which moments of inertia are given functions of time).

Physically, the name “Top”, or “Rigid Body” denotes a set of points (in the physical
space) which mutual distances remain constant in time. In the absence of external forces,
the dynamics of a Rigid Body is a rotation around an axis (hence the picture of a Top).
The axis is in the direction of the angular momentum vector M , while its modulus
determines the spinning frequency: to determine the dynamics of the Top we need to
solve a dynamical system for its angular momentum M .

This dynamical system has been deeply studied in the literature, under different points
of view: as an integrable system, as a dynamical system on a Lie group, and as a Poisson
system; see for instance [5], [21], [32], [31], [51], [89], [91], [59], [61]. The Top has the
advantage of being a low dimensional example, involving less severe calculations that
sometimes may be even performed explicitly. And a Throbbing Top can be described
as a perturbation of the stationary Top, retaining the same bracket (with all the related
features)1

The chapter is organized in three main sections:

• the first section 3.1, is an introduction in which we recall the equations of motion for
the Top, discuss their conserved quantities, and their solution, their Lie structure,
and how these properties change when we switch to a non-autonomous Top;

• in the second section 3.2 we study the dynamics of symmetric Throbbing Top: we
introduce a chart on the sphere, in which the bracket is redressed to a canonical one,
and the Hamiltonian is diagonalized; we introduce the operators needed to apply
our perturbation theory, and a scale of Banach norms. By iteratively applying our
“main step formula” we recover a full KAM theorem. We also show the results of
some numerical simulations;

• in the third section 3.3 we study the dynamics of a non-symmetric and non-periodic
Throbbing Top; in this case we don’t introduce any chart and adopt a novel ap-
proach to define an invariant algebra and a new scale of Banach norms. Again, our
perturbation formula can be applied and also iterated.

1this is the reason why we use the name Top rather than Rigid Body : as the properties of the body
are changing in time, it’s not “rigid”.
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As we are dealing with a dynamical system in R3, for the rest of this chapter we will
use the notations introduced in section A.3.

3.1 About the Rigid Body (or Top)

Here we propose a basic review on the rigid body dynamics; for more details see for
instance [59], [5], [31], [51]. The properties of the Top (its shape, mass distribution . . . )
are “summarized” by a matrix, called the “inertia tensor”. This matrix is symmetric, so
there exist a reference frame in which it is diagonal; the coordinates of this reference
frame will be called M1,M2,M3 because they represent the 3 components of the angular
momentum vector M . The equations of motion of the rigid body in these coordinates
read 

Ṁ1 =
( 1

I3

− 1

I2

)
M2M3

Ṁ2 =
( 1

I1

− 1

I3

)
M3M1

Ṁ3 =
( 1

I2

− 1

I1

)
M1M2

(3.1)

The numbers {Ii}3
i=1 are the eigenvalues of the inertia tensor, called “moments of iner-

tia”; they are always positive. In general an ordering like I1 > I2 > I3 or the opposite
I1 < I2 < I3 is assumed. The special cases I1 = I2 = I3 and I1 = I2 (or I2 = I3) are re-
spectively known as the “spherical top”, and as the “symmetric top”.

Equations (3.1) have two conserved quantities, namely

ρ2 def
= M2

1 + M2
2 + M2

3 (3.2)

E =
1

2
MLM , L =

I−1
1 0 0
0 I−1

2 0
0 0 I−1

3

 (3.3)

The first quantity is the modulus of M : its conservation implies that the motion of the
angular momentum is itself a rotation. The second one has the meaning of (kinetic)
energy. The two conserved quantities determine two surfaces in R3, a sphere and an
ellipsoid, so that the point of the vector M lies at each instant on their intersection, or,
equivalently, the trajectories of the system (3.1) are given by the intersections of the two
objects. As a consequence, there exists a set of accessible values for the energy: given ρ
and the moments of inertia, the system will have a solution only for

ρ2/(2I3) ≤ E ≤ ρ2/(2I1) (3.4)

(if I1 > I3). Outside of this range of values, the ellipsoid and the sphere have no intersec-
tion, so the system (3.1) has no solution.

For completeness, we give a description of the trajectories. In the case of a spherical
top, the only solution is the identity, Mi(t) = Mi(0). In the case of a symmetric top, the
solution is a uniform rotation around the third axis (M3 is constant in time), if I1 = I2;
or around the first axis (M1 is constant in time), if I2 = I3. Now let I1 > I2 > I3, (but
the description would be analogous with the opposite ordering). The phase space is
partioned by the dynamics into four different open and disjoint subsets. Following the
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notation of [89], they are

U−1 =
{

(M1,M2,M3) ∈ R3 s.t. I1 < 2E ρ−2 < I2, M1 < 0
}

U+
1 =

{
(M1,M2,M3) ∈ R3 s.t. I1 < 2E ρ−2 < I2, M1 > 0

}
U−3 =

{
(M1,M2,M3) ∈ R3 s.t. I2 < 2E ρ−2 < I3, M3 < 0

}
U+

3 =
{

(M1,M2,M3) ∈ R3 s.t. I2 < 2E ρ−2 < I3, M3 > 0
} (3.5)

To each set belongs one of the four elliptic equilibrium points, ρ2 = E/(2I1,3). Instead for
ρ2 = E/(2I2) we get the four separatrices joining the two hyperbolic equilibrium points
of coordinates M1 = M3 = 0. Inside each of the charts the trajectory can be explicitly
expressed in terms of Jacobi elliptic functions. For instance, in U+

3 ,

M1(t) = sign(M0
1 )

√
I1

ρ

√
ρ2 − 2I3E

I1 − I3

cn
(
ω(t− t0)|m

)
M2(t) = − sign(M0

1 )

√
I2

ρ

√
ρ2 − 2I3E

I2 − I3

sn
(
ω(t− t0)|m

)
M3(t) =

√
I3

ρ

√
2I1E − ρ2

I1 − I3

dn
(
ω(t− t0|m)

)

ω = −

√
(ρ2 − 2I1E)(I3 − I2)

I1I2I3

(3.6)

m =
(ρ2 − 2I3E)(I1 − I2)

(ρ2 − 2I1E)(I3 − I2)

The trajectories on U−3 will have the same analitical form, but with opposite sign of M3;
those on U±1 are found by exchanging the roles of M1 and M3.

In figure 3.1 we also plot a few trajetories for a rigid body with moments Ii = i.

3.1.1 Lie-Poisson structure for the Rigid Body

The space R3 is a Lie algebra with the bracket
[[ ]]

(the vector product). As a conse-
quence of the Lie-Poisson theorem (which is discussed in section A.1.3, see also [59]), the
set

VTop
def
= C∞(R3∗ → R) (3.7)

is a Poisson algebra with bracket

{F,G}
(
M
)

= M
[[
∂MF

]]
∂MG, ∀F,G ∈ VTop (3.8)

The operator ∂M on V is defined by

N∂Mf = lim
η→0

f(M + ηN )− f(M )

η

and it takes elements of V into elements of R3. This is evident from the definition: when
we act on ∂Mf with an element N ∈ R3∗, we get a scalar.
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M1 M2

M3

M1 M2

M3

Figure 3.1: A few trajectories of the system (3.1) with parameters I1 = 1, I2 = 2, I3 = 3. The
trajectories were generated by a code emplying a Runge-Kutta 4th order integration scheme and
step h = 0.001. The initial data were randomly generated with the unique constraint of having
all the same value of ρ = 2. Conservation of the energy and of ρ was achieved up to numerical

precision.

If we consider as Hamiltonian the function E of equation (4.41) then by Ṁ = {E}M
we recover the system (3.1).

The function ρ defined by equation (3.2) has the property {ρ}F = 0 , ∀F ∈ VTop; we
call it a Casimir element [59]. A Casimir element is constant under the flow determined
by any Hamiltonian; in fact, it is a property of the algebra, not of the flow. Each Casimir
element determines one dimension of a Poisson algebra that is frozen by any dynamics,
for any Hamiltonian. Thus the dynamics of a Top takes place in a two dimensional space:
a sphere of radius ρ. It is possible to show that, given a dynamical system on a Poisson
algebra, by quotienting away the Casimir elements, we get a canonical system. And a two
dimensional, autonomous canonical system is integrable2, and so is the case for the Top.

2In the context of sympletic mechanics, a dynamical system of dimension 2n is called integrable if it
has n quantities in involution (i.e. having zero bracket) among themselves and with the Hamiltonian. As
an obvious consequence, a canonical Hamiltonian system is always integrable for n = 1, which is the case
of the Top.
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3.1.2 The Throbbing Top

We switch to a non-autonomous Top following the method described in the appendix
A.1.2. So, from the algebra (3.7) we pass to the algebra

VTT
def
= C∞

((T
R

)
→ VTop

)
3 f = f

(
M , t

)
(3.9)

again with the bracket (3.8). We will choose T (a torus) for a periodic system (as in
section 3.2), or R, for a generical time-dependence (as in section 3.3). In particular, as
the time variable doesn’t enter in the bracket, ρ is still a Casimir. This means that the
energy, even if it is fluctuating, has to respect the bound (3.4). And the bound itself may
start fluctuating, if the fluctuation is added to I1 or I3.

The unperturbed Hamiltonian is still given by (3.3). We are interested in perturbations
of type

V =
1

2
MA(t)M (3.10)

where A(t) is a 3 × 3 diagonal matrix with time dependent coefficients. Physically, this
will represent a top for which the moments of inertia are changing in time.

The new dynamical system is

Ḟ = HF + {V }F , H = {E} + ∂t (3.11)

In particular, for F = Mi, i = 1, 2, 3 and V given by (3.10) with

A(t) =

0 0 0
0 ε cos(νt) 0
0 0 0

 (3.12)

we recover the Euler-Poinsot equations with

I2 7→ I2/(1 + I∅2 ε cos(νt))

In figure 3.1 we plot the trajectories of this dynamical system, and also in two other
cases, when a similar perturbation is applied to I1 and to I3 (see also the captions of the
subplots). We observe the typical features observed in dynamical systems with coexistence
of order and chaos. The separatrices disappear, and are replaced by orbits spanning a two-
dimensional area. Around the elliptic equilibrium points, some of the original trajectories
are only deformed, some others are lost and leave place to a set of new equilibrium points;
some of the new equilibrium points are elliptic, and new closed orbits appear around
them.

3.2 The symmetric case
By definition a Top is symmetric if two moments of inertia are equal; here we fix I1 =
I2 ≡ I⊥. In this case we consider the change of coordinates (see [21], [44]),

{M1,M2,M3} 7→ {ρ,X, θ} :


M1 = ρ

√
1−X2 cos(θ)

M2 = ρ
√

1−X2 sin(θ)

M3 = ρX
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M1
M2

M3

(a) I1 = 1, I2 = 2/(1 + 0.2ε cos(t)), I3 = 3

M1 M2

M3

(b) I1 = 1, I2 = 2, I3 = 3/(1 + 0.3ε cos(t))
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M1 M2

M3

(c) I1 = 1/(1 + 0.1 cos(t))1, I2 = 2, I3 = 3

Figure 3.1: A few trajectories of the system (3.1) with time-dependent moments, as denoted in
the subcaptions. The trajectories were generated by a code employing a Runge-Kutta 4th order
integration scheme and step h = 2. The initial data were randomly generated with the unique
constraint of having all the same value of ρ = 2; conservation of the latter along the simulation

was also checked.
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with X ∈ (−1, 1) and θ ∈ [0, 2π). These coordinates don’t cover the whole sphere, as the
north and south poles are excluded. However, in the stationary case the poles are elliptic
equilibria, so they are not very interesting for the dynamics. In the non-autonomous
case the energy is still subject to the bound (3.4). If the bound is strengthened to strict
inequalities then the dynamics will never reach the poles.
Remark 3. The functions f(X, θ, t) are only a subalgebra of the whole algebra VTT (defined
in (3.9)); after making a further restriction to analytic functions, we are left with a new
subalgebra Vsymm ⊆ VTT . The bracket (3.8) restricted to Vsymm becomes3

{F}G =
1

ρ

(
∂XF ∂θG − ∂θF ∂XG

)
(3.13)

The new bracket contains no derivatives in ρ, coherently with the definition of a Casimir.
The Hamiltonian (3.3) becomes

Esymm =
ρ2

2

(
1−X2

I⊥
+
X2

I3

)
≡ ρ2

2
∆X2 +

ρ2

2I⊥
(3.14)

where we have set ∆ = 1
I3
− 1

I⊥
.

We see that the coordinates X, θ both redress the bracket and diagonalize the Hamil-
tonian, like action-angle coodinates in classical mechanics. Another similarity is that any
Hamiltonian will be at most quadratic in X, as seen by equations (4.41) and (3.10). How-
ever, at variance with classical mechanics, the phase space S2 × T is not the cotangent
bundle of anything.

3.2.1 A scale of Banach norms for Vsymm

Functions in Vsymm admit the Fourier representation

F (X, θ, t) =
∑
l,m∈Z

Fl,m(X) eilt+imθ (3.15)

In analogy with classical mechanics, we build a complex extension of the domain ofX. The
procedure for the complexification of a Lie algebra is described in section A.2, however,
we don’t need it as it’s evident that the complexification of R is C. For any X ∈ (−1, 1),
we consider a ball Br(x) ⊆ C of radius4 r ∈ R+ centered at X. The radius r has to be
sufficiently small so that |X ± r| < 1. Then we define the set

Ar
def
=

⋃
X∈(−1,1)

Br(X)

The algebra Vsymm is a subalgebra of

Vr
def
= C∞(Ar ⊗ T2)

for any r. Each space Vr is endowed with the Banach norm∥∥f∥∥
r

def
=
∑
l,m∈Z

∣∣fl,m(X)
∣∣
r
er(|l|+|m|) ,

∣∣fl,m∣∣r def
= sup

X∈Ar
|f(X)| (3.16)

So we have a scale of Banach norms {
∥∥ ∥∥

r
}r∈R+ and a scale of Banach spaces {Vr}r∈R+ .

The properties of this norm are collected in the following proposition.
3by abuse of notation, we use the same symbol { } as before
4we denote by R+ the set of positive reals
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Proposition 2. Let r, δ, d ∈ R+ with d+ δ < r. Let also W ∈ Vr, Z ∈ Vr−δ . Then

‖∂XW‖r−d ≤
1

d
‖W‖r (3.17)

‖∂θW‖r−d ≤
1

ed
‖W‖r (3.18)

‖{W}Z‖r−d−δ ≤
2

ρed(d+ δ)
‖W‖r‖Z‖r−δ (3.19)

Proof. As Ar ⊆ C, the Cauchy inequality (see for instance [41], or also appendix A.1.1)

|∂Xf |r−δ ≤
1

δ
|f |r

holds, and it implies that

‖∂XW‖r−d =
∑
l,m

e(r−d)(|l|+|m|)∣∣∂XWl,m

∣∣
r−d ≤

∑
l,m

e(r−d)(|l|+|m|) |Wl,m|r
d

≤ ‖W‖r
d

To prove formula (3.18) we need the following identity,

x, α, β ∈ R+ =⇒ xαe−βx ≤
( α
eβ

)α
(3.20)

Then

‖∂θW‖r−d =
∑
l,m

|imWl,m|r−d e(r−d)(|l|+|m|) =

=
∑
l,m

|m| |Wl,m|r−d e(r−d)(|l|+|m|) ≤ 1

ed

∑
l,m

|Wl,m|r−d er(|l|+|m|) ≤
1

ed
‖W‖r

Finally, to prove formula (3.19) we need the two previous ones, and eq. (3.20) as well.

‖{W}Z‖r−δ−d =
1

ρ

∥∥∂XW ∂θZ − ∂θW∂XZ
∥∥
r−δ−d =

=
∥∥∥ ∑
L,M∈Z;l,m∈Z0

eiLt+iMθi
(
∂XWL−l,M−m×

×mZl,m − (M −m)WL−l,M−m ∂Xfl,m
)∥∥∥

r−δ−d
=

=
∑
L,M∈Z

e(r−δ−d)(|L|+|M |)
∣∣∣∣ ∑
l,m∈Z0

(
∂XWL−l,M−m×

×mZl,m − (M −m)WL−l,M−m ∂XZl,m
)∣∣∣∣
r−δ−d

≤ 1

ρ

∑
L,M∈Z

e(r−d−δ)(|L|+|M |)
∑
l,m∈Z

(
|m|
∣∣∂XWL−l,M−m

∣∣
r−δ−d |Zl,m|r−δ−d +

+ |M −m| |WL−l,M−m|r−δ−d
∣∣∂Xf ∣∣r−δ−d)
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≤ 1

ρ

∑
L,M,l,m∈Z

(
e(r−d−δ)(|L−l|+|M−m|) e(r−δ)(|L−l|+|M−m|) |Zl,m|r−δ−d e−d(|l|+|m|)|m|︸ ︷︷ ︸

≤1/(e(d+δ))

×

× |WL−l,M−m|r
d+ δ

+ er(|L−l|+|M−m|) |WL−l,M−m|r−δ−d e(r−δ−d)(|l|+|m|) |Z|r−δ
d
×

× e−(δ+d)(|L−l|+|M−m|)(|M −m|+ |L− l|)︸ ︷︷ ︸
≤1/(e(δ+d))

)
≤ 2

ρed(d+ δ)
‖W‖r‖Z‖r−δ

3.2.2 Application of Proposition 1 to the Symmetric Throbbing Top

Before proceeding we make a further change of coordinates

X = x0 + x =⇒ ∂X 7→ ∂x

where x0 ∈ (−1, 1) is fixed and x is sufficiently small so that x0 + x ∈ (−1, 1). This
change of variables is simply a translation and it doesn’t affect the algebraic and metric
properties that we introduced up to now. Let us also define

Q
def
= ∂2

xxH|x=0 (3.21)

so that, for instance, {Esymm} = ρx0∆∂θ + {1
2
Qx2}

Now we will show that all the hypothesis of Proposition 1 are satisfied for the sym-
metric Throbbing Top, that is, by system (3.11) on the algebra Vsymm with E = Esymm.

1. First we look for a subalgebra B of Vsymm, invariant by H. Lead again by analogy
with classical mechanics, we choose

B =
{
F (ρ, x, θ, t) ∈ V s.t. F (ρ, 0, θ, t) = 0, ∂xF (ρ, 0, θ, t) = 0

}
(3.22)

By definition we have F ∈ B ⇐⇒ P≥2F2 = F2, but neither {H} nor ∂t can decrease the
degree in x of a polynomial. So HB ⊆ B.

2. As a second step we build the projector R (and thus N = I−R). We choose

R def
= Rs −K, N def

= Ns +K (3.23)

where Rs,Ns and K are defined in table 3.1. It’s evident that Rs takes values in B, and
then R = Rs −K ≡ Rs(1−K). In point (4) we show that NR = 0 so we can conclude
that they are both projectors.

3. The third step is to build the operator Γ. Still making reference to table 3.1,
consider the following operator:

G = Gs + ρθA− xGsQ(A+ ∂θGsP0) (3.24)

It acts on elements of V, but it doesn’t take values in V, because the function θ doesn’t5
belong to V. Nevertheless we can formally compute

Γf = {Gf} = {Gsf} − ρ−1Af∂x − {xGsQ(A+ ∂θGsP0)f} (3.25)
5θ is not periodic in θ!
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∮
: f(x, θ, t) 7→

∫ 2π

0
dθ
∫ 2π

0
dtf(x, θ, t) ≡ f0,0(x)

χ
def
= 1−

∮
: f 7→

∑
l,m∈Z0

fl,m(x)eimθ+ilt,Z0
def
= Z\{0}

Pk :
∑

n≥0 anx
n 7→ akx

k k ∈ N, an ∈ R ∀n ∈ N

P≥k :
∑

n≥0 anx
n 7→

∑
n≥k anx

n

Rs
def
=
∮
P0 + P≥2

Ns
def
= χP0 + P1 ≡ 1−Rs

Gs : f 7→
∑

l,m∈Z0

−iP≤1fl,m(x)

ρx0∆m+l
eimθ+ilt

A def
=
( ∮

Q
)−1 ∮

P0(∂x −Q∂θGs)

K def
= ρ2x0∆A + {1

2
Qx2}xGs

(
P0∂x − QA−Q∂θGsP0

)
Table 3.1: Here we group some of the operators defined on V and needed for the KAM algorithm.
We are using the Fourier representation (3.15), the 1s are to be intended as identity operators,

H is the Hamiltonian, and Q has been defined in equation (3.21).

where the “illegal” θ got cancelled by the bracket, so Γ goes from V to derV. This
construction is usefull because we could apply Remark 2 and prove hypothesis 2.4 in
the form (2.9). But before doing so, there is another complication to overcome, because
H 6= {H}; we have to verify also that

[∂t]{P} = {∂tP}, ∀P ∈ V (3.26)

i.e.
∂t{P}R − {P}∂tR = {∂tP}R, ∀R ∈ V

For the l.h.s. above we have

∂t{P}R − {P}∂tR =

= ∂t{
∑
l′∈Z

Pl′(x, θ)e
il′t}

∑
l∈Z

Rl(x, θ)e
ilt − {

∑
l′∈Z

Pl′(x, θ)e
il′t}∂t

∑
l∈z

Rl(x, θ)e
ilt =

=
∑
L,l∈Z

eiLtiL{PL−l(x, θ)}Rl(x, θ) −
∑
L,l∈Z

eiLt{PL−l(x, θ)}ilRl(x, θ) =

=
∑
L,l∈Z

eiLti(L− l){PL−l(x, θ)}Rl(x, θ)

while for the r.h.s

{∂t
∑
l′∈Z

Pl′(x, θ)e
il′t}

∑
l∈Z

Rl(x, θ)e
ilt =

∑
L∈Z

eiLti(L− l){PL−l(x, θ)}Rl(x, θ)

so formula (3.26) is established.
Now it’s really sufficient to check (2.9), which we rewrite explicitly:

(ρx0∆∂θ + ∂t + {1
2
Qx2}) (Gs + ρθA− xGsQ(A+ ∂θGsP0))f = N f
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We use
{1

2
Qx2} = xQ∂θ − 1

2
x2(∂θQ)∂x

and we get

χP≤1f + {1
2
Qx2}Gsf − xχP≤1Q(A+ ∂θGsP0)f + xQAf

•
+ ρx0∆Af

∼

+{1
2
Qx2}xGsQ(A+ ∂θGsP0)f

�

= (χP0 + P1)f + ρx0∆Af
∼

+

−{1
2
Qx2}xGsQAf

�

+ xQAf
•

+ {1
2
Qx2}xGsP0∂xf − {1

2
Qx2}xGsP0Q∂θGsf

�

All the terms underlined in the same way cancel among themselves, and we are left with

{1
2
Qx2}Gsf + xQAf − x(χQ)Af − xχQ∂θGsP0f =

∮
P1f + {1

2
Qx2}xGsP0∂xf

Now we observe that xP0∂xf = P1f so that there is a partial cancellation among the
first and the latter term in the above equation, and there remains

{1
2
Qx2}GsP0f + x

( ∮
Q
)
Af − xχQ∂θGsP0f =

∮
P1f

Then we insert the explicit expressions of {1
2
Qx2} and that of A as it can be found in

table 3.1,

xQ∂θGsP0f
�

+ x

∮
P0∂xf

4

− x

∮
Q∂θGsP0f

�

− xχQ∂θGsP0f
�

=

∮
P1f

4

Again we underlined in the same way all the terms that cancels out. We conclude that
equation (2.9) is satisfied.

4. Here we show that GR = 0, so that HGR = NR = 0. So,

GR = [Gs + θA − xGsQ (A + ∂θGsP0) ]×
× [Rs − ρ∆x0A − {1

2
Qx2}xGs (P0∂x − QA − Q∂θGsP0)]

Next we observe the following equalities

GsRs ∝ χP≤1(

∮
P0 + P≥2)) = 0

ARsf =
(∮

Q
)−1(∮

P0∂xP≥2 −
∮
Q∂θGsRs

)
= 0

AA ∝ A
∮
P0 = 0

GsA ∝ Gs
∮
P0 = 0

so we are left with

GR =
(
− Gs − θA+ xGsQ(A+ ∂θGsP0)

)
{1

2
Qx2}xGs(P′∂x −QA−Q∂θGsP0)︸ ︷︷ ︸

∈ran(Rs)

= 0

26



5. In next proposition 3 we prove the inequalities (3.28) and (3.29), which are respec-
tively of type 2.5 and 2.3, with

Λ(d, δ) =
C(τ, γ, r, δ, d, q)

q3 d (d+ δ)2τ+2
, Ξ(δ) =

C̃

q3 δ2τ+3

We see that some extra hypothesis on Q and on the product ρ∆x0 are required. In
particular condition (1) of Proposition 3 is usually called the “diophantine condition”;
in section 3.2.5 we show that, once ρ and ∆ have been fixed, the set of values of x0

which satisfy this hypothesis is large in a measure theoretic sense. We can also compute,
according to equation (2.6),

εµ =
1

2
sup
n∈N

(
1

n!

n∏
j=1

Λ
(
µ
n
, (j−1)µ

n

))−1/n

=
1

2
sup
n∈N

(
1

n!

n∏
j=1

C

q3 µ
n

(
jµ
n

)2τ+2

)−1/n

=

=
q3µ2τ+3

2C
sup
n∈N

(nn
n!

)2τ+3

=
q3µ2τ+3

2C
sup
n∈N

(
e1−1/n

)2τ+3

=
q3µ2τ+3

2C
(3.27)

Proposition 3. Consider the Lie algebra Vsymm with the scale of Banach norms (3.16).
Let V,Q ∈ Vr for some r ∈ R+.

Define two operators R,N by (3.23) and an operator Γ by (3.25).
Assume there exist real numbers γ, ρ,∆ > 0, τ > 1, 0 < q < 1 and −1 < x0 < 1 such

that:

(1) x0, ρ,∆, γ and τ satisfy
∣∣ ρ∆x0m + l

∣∣ ≥ γ
(
|l|+ |m|

)−τ
, ∀l,m ∈ Z0;

(2) |Q00| ≥ q;

(3) ‖Q‖r ≤ q−1;

Then ∀d, δ ∈ R+, d+ δ < r and ∀W ∈ Vr , ∀Z ∈ Vr−δ, the following inequalities hold

‖(ΓW )Z‖r−δ−d ≤
C ‖W‖r ‖Z‖r−δ
q3d(d+ δ)2τ+2

(3.28)

‖NW‖r−δ ≤
C̃ ‖W‖r
q3 δ2τ+3

(3.29)

‖RW‖r−δ ≤
C̃ ‖W‖r
q3 δ2τ+3

(3.30)

where C and C̃ are constants depending on τ, γ, e, q, ρ, δ, d.

Proof. By definition,

(ΓW )Z = {GsW}Z − (AW ) ∂xZ − {xGsQAW}Z − {xGsQ∂θGsP0W}Z
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We will study each of the four terms on the r.h.s. separately.

‖{GsW}Z‖r−δ−d =
∑
L,M∈Z

e(r−δ−d)(|L|+|M |)

ρ
×

×
∣∣∣∣ ∑
l,m∈Z0

Wl,m,1 (M −m)ZL−l,M−m − m (P≤1Wl,m) ∂xZL−l,M−m
x0∆ρm+ l

∣∣∣∣
r−d
≤

≤
∑

L,M∈Z;l,m∈Z0

e(r−δ−d)(|L−l|+|M−m|) e(r−δ−d)(|l|+|m|) (|m|+ |l|)τ

γρ
×

×
(
|Wl,m,1|r−δ−d |M −m| |ZL−l,M−m|r−δ−d − |m|

∣∣P≤1Wl,m)
∣∣
r−δ−d

∣∣∂xZL−l,M−m∣∣)∣∣∣∣
r−δ−d

≤

≤ 1

ργ

∑
L,M,l,m∈Z

er(|l|+|m|)
(

1

ed

( τ

e(d+ δ)

)τ
e(r−δ)(|L−l|+|M−m|) |Wl,m|r

d+ δ
|ZL−l,M−m|r−δ−d +

+
( τ + 1

e(d+ δ)

)τ+1

e(r−δ−d)(|L−l|+|M−m|) |Wl,m|r−δ−d
|ZL−l,M−m|r−δ

d

)
≤

≤ τ τ + (τ + 1)(τ+1)

γρeτ+1(d+ δ)τ+1d
‖W‖r ‖Z‖r−δ ≡

C1

(d+ δ)τ+1d
‖W‖r ‖Z‖r−δ

In going from the 4th to the 5th line we used the condition (1); and in the last passage
we introduced a constant C1 for conciseness. Next we consider

AW =
1

Q0,0

(
P0

∑
n≥0

(n+1)W0,0,n+1 x
n−
∮ ∑

L,M∈Z;l,m∈Z0

meiLt+iMθ

x0ρ∆m+ l
QL−l,M−mWl,m,0

)
=

=
W0,0,1

Q0,0

− 1

Q0,0

∑
l,m∈Z0

m

x0ρ∆m+ l
Q−l,−mWl,m,0

So that

|AW | ≤
∣∣∣W0,0,1

Q0,0

∣∣∣+
∑
l,m∈Z0

∣∣∣ mQ−l,−mWl,m,0

Q0,0(x0ρ∆m+ l)

∣∣∣ ≤
≤ 1

q
‖∂xW0,0‖r−δ−d +

1

qγ

∑
l,m∈Z0

(|m|+ |l|)(τ+1) ‖P0W‖r e−r(|m|+|l|) |Q−l,−m|

where I used |P0Wl,m|r ≤ ‖P0W‖re−r(|l|+|m|). Continuing:

|AW | ≤ ‖W‖r
q(d+ δ)

+
(τ + 1)τ+1

qγ(er)τ+1
‖W‖r

∑
l,m∈Z0

|Ql,m| ≤

≤ ‖W‖r
q(d+ δ)

+
(τ + 1)τ+1

q2γ(er)τ+1
‖W‖r ≤

C2‖W‖r
q2(d+ δ)τ+1

(3.31)

where in the last passage we used δ + d ≤ r so that r−1 ≤ (d+ δ)−1, and C2 is a constant.
Then for the second term of equation (3.2.2) we have

‖(AW )∂xZ‖r−δ−d ≤
∑
l,m∈Z

er(|l|+|m|) |aW | 1
d
|Zl,m|r−δ ≤

C2‖W‖r‖Z‖r−δ
q2 d (d+ δ)τ+1
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The third term of equation (3.2.2) reads

{xGsQAW}Z =
1

ρ

∑
L,M∈Z

eiLt+iMθ(AW )×

×
∑
l,m∈Z0

(
Ql,m (M −m)ZL−l,M−m − xmQl,m ∂xZL−l,M−m

x0ρ∆m+ l

)

so that
∥∥{xGsQAW}Z∥∥r−δ−d ≤ |AW |

ρ

∑
L,M∈Z e

(r−δ−d)(|L|+|M |)×

×
∣∣∣∣ ∑
l,m∈Z0

Ql,m (M −m)ZL−l,M−m − xmQl,m ∂xZL−l,M−m
x0ρ∆m+ l

∣∣∣∣
r−δ−d

≤

≤ |AW |
ργ

∑
L,M,l,m∈Z

e(r−δ−d)(|L−l|+|M−m|) e(r−δ−d)(|l|+|m|)|Ql,m|×

×
(
|M−m| (|m|+ |l|)

τ

γ
|ZL−l,M−m|r−δ−d + |x|r−δ−d

∣∣∂xZL−l,M−m∣∣r−δ−d (|m|+ |l|)τ+1

γ

)
≤

≤ |AW |
ργ

(
1

ed
‖Z‖r−δ

( τ

e(d+ δ)

)τ
‖Q‖r +

|r|
d

( τ + 1

e(d+ δ)

)τ+1

‖Z‖r−δ‖Q‖r
)
≤

≤ C3‖W‖r‖Z‖r−δ
q3 d (d+ δ)2τ+2

where C3 is another constant.

Finally, the fourth term of equation (3.2.2) is

{xGsQ∂θGsP0W}Z =

=

{
xGs

∑
L,M,l,m∈Z0

eiLt+iMθmWl,m,0QL−l,M−m

x0ρ∆m+ l
,
∑

l1,m1∈Z

Zl1,m1e
il1t+im1θ

}
=

=
∑

L1,M1∈Z;L,M,l,m∈Z0

eiL1t+iM1θ
(
mWl,m QL−l,M−m (M1 −M)ZL1−L,M1−M +

− xM mWl,mQL−l,M−m ∂xZL1−L,M1−M

)
/
(
ρ(x0ρ∆M + L)(x0ρ∆m+ l)

)
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so that

‖{xGsQ∂θGsP0W}Z‖r−δ−d ≤
∑

L1,M1,L,M,l,m∈Z

(
e(r−δ−d)(|L1−L|+|M1−M |)×

× e(r−δ−d)(|L|+|M |)|Wl,m,0| |QL−l,M−m|
(|m|+ |l|)τ+1

ργ2

(
|M1 −M | ×

× |ZL1−L,M1−M | (|M |+ |L|)τ + |x|(|M |+ |L|)τ+1|∂xZL1−L,M1−M |r−δ−d

)
≤

≤ ‖Z‖r−δ
qργ2deτ+1

‖W‖r
((

2τ

d+ δ

)τ(
2(τ + 1)

e(d+ δ)

)τ+1

+ |r|
(

2(τ + 1)

d+ δ

)τ+1(
2(τ + 1)

e(d+ δ)

)τ+1)
≡

≡ C4‖W‖r‖Z‖r−δ
q d (d+ δ)2τ+1

with a fourth constant C4. By defining

C = (C1 q
3 + C2 q)(d+ δ)τ+1 + C3 + (d+ δ)q2C4

we end up with the thesis.
To prove the second and third inequalities, we start by observing that

‖NsV ‖r−µ = ‖χP0V + P1V ‖r−µ ≤ ‖V ‖r−µ

‖RsV ‖r−µ = ‖
∮
P0V + P2V ‖r−µ ≤ ‖V ‖r−µ

Then we consider

‖KV ‖r−µ ≤ |x0∆ρAV | +
∥∥{1

2
Qx2}xGs(P0∂x −QA−Q∂θGsP0)V

∥∥
r−µ

By (3.31),

|x0∆ρAV | ≤ |x0| ρ∆
∣∣AV ∣∣ ≤ ρ∆

C2

q2 µτ+1
‖V ‖r

To the next term we apply equation (3.19) of Proposition 2 with δ = d = µ/2,∥∥{1
2
Qx2}xGs(P0∂x −QA−Q∂θGsP0)V

∥∥
r−µ ≤

≤ 4

ρeµ2

∥∥1
2
Qx2

∥∥
r

∥∥xGs(P0∂x −QA−Q∂θGsP0)V
∥∥
r−µ/2

We have ∥∥1
2
Qx2

∥∥
r
≤ 1

2
‖Q‖r|x2|r ≤ (2q)−1

and∥∥xGsP0∂xV
∥∥
r−µ/2 =

∑
l,m∈Z0

∣∣∣ Vlm1x

x0ρ∆m+ l

∣∣∣
r−µ

2

e(r−µ/2)(|l|+|m|) ≤

≤
∑
l,m∈Z0

|Vlm1x|r−µ/2
(
|m|+ |l|

)τ
γ−1 e(r−µ/2)(|l|+|m|) ≤ 1

γ

(2τ

eµ

)τ+1

‖V ‖r
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and∥∥xGsQAV ∥∥r−µ/2 =
∣∣AV ∣∣ |x|r−µ/2 ∥∥GsQ∥∥r−µ/2 ≤

≤
∣∣AV ∣∣ ∑

l,m∈Z0

γ−1(|l|+ |m|)τe(r−µ/2)(|l|+|m|)|Ql,m| ≤

≤ C2

γq2µτ+1
‖V ‖r

1
(

2τ

eµ

)τ
‖Q‖r ≤

C2

γq3µτ+1

(
2τ

eµ

)τ
‖V ‖r

And finally

∥∥xGsQ∂θGsP0V
∥∥
r−µ

2
=

∑
L,M∈Z0

e(r−µ
2

)(|L|+|M |)

|x0∆ρM + L|

∣∣∣∣ ∑
l,m∈Z0

mQL−l,M−mvl,m,0
x0∆ρm+ l

∣∣∣∣ ≤
≤

∑
L,M,l,m∈Z

e(r−µ
4

)(|L|+|M |)e−
µ
4

(|L|+|M |) (|M |+ |L|)τ

γ

(|m|+ |l|)τ

γ
|QL−l,M−m||Vl,m,0| ≤

≤
(4τ

eµ

)τ 1

γ2

∑
L,M,l,m∈Z

er(|L|+|M |)e−
µ
4

(|L−l|+|M−m|)e−
µ
4

(|l|+|m|) (|m|+ |l|)τ

γ
|QL−l,M−m||Vl,m,0| ≤

≤
(4τ

eµ

)τ(4(τ + 1)

eµ

)τ+1‖V ‖r
γ2q

We can conclude that

‖KV ‖r−µ ≤
C̃‖V ‖r
q3µ2τ+3

and so

‖NV ‖r−µ ≤ ‖NsV ‖r−µ + ‖KV ‖r−µ ≤ ‖V ‖r +
C̃1‖V ‖r
q3µ2τ+3

≡ C̃‖V ‖r
q3 µ2τ+3

and analogously

‖RV ‖r−µ ≤ ‖RsV ‖r−µ + ‖KV ‖r−µ ≤ ‖V ‖r +
C̃1‖V ‖r
q3µ2τ+3

≡ C̃‖V ‖r
q3 µ2τ+3

where C̃1, C̃ are constants depending on µ, τ, γ, q, ρ,∆, e.

3.2.3 A KAM theorem for the Symmetric Throbbing Top

Now we prove a KAM theorem for the symmetric Throbbing Top by iteratively applying
Proposition 1.

Theorem 1. Consider the dynamical system (3.11) on the algebra Vsymm and with E =
Esymm. Define Q as in equation (3.21) and ρ,∆, γ, τ, q ∈ R+ as in Proposition 3. Then
there exist ε0, r ∈ R+ such that if ‖V ‖r ≤ ε, the for a large class of initial data, the
trajectories of this dynamical system can be mapped to trajectories of a static Top.
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Proof. We have shown in the previous section that Proposition 1 can be applied to the
dynamical system we are considering, by choosing B as in (3.22), R as in (3.23) and Γ as
in (3.25). Thus by formula (2.7) we can map H + {V } into H∗ + {V∗}. This is possible,
in particular, if X(t = 0) = x0 satisfy the Diophantine condition (1) of Proposition 3; as
we discussed, the set of these values is large in a measure theoretic sense. We have to
choose a loss µ0 ∈ R+ such that µ0 < r/3, so that ‖V∗‖r−3µ < κ ε20.

Now we want to show that Proposition 1 can be applied to H∗+ {V∗} ≡ H+ {RV }+
{V∗}, so with the same values of ρ,∆ and x0 but

Q 7→ Q∗
def
= Q+ ∂2

xx(RV ) r 7→ r∗ ≡ r − µ

and of course V 7→ V∗. We need to verify that there exist a new constant q∗ for which
hypothesis (2) and (3) of Proposition 3 are again satisfied. By using inequality (3.30) of
Proposition 3,

‖Q∗ −Q‖r−µ = ‖∂2
xxRV ‖r−µ ≤

2

r2
‖RV ‖r ≤

i2 ε C̃

r2q3µ2τ+3

where we used equations (3.17), (3.30), and the Cauchy inequality. In the same way

|Q∗0,0 −Q0,0| =
∣∣∣ ∮ ∂2

xxRV
∣∣∣ ≤ 2

r2

∣∣∣ ∮ RV ∣∣∣
r
≤ 2 ε C̃

r2q3µ2τ+3

So we have

‖Q∗‖r−µ ≤ ‖Q‖r0−µ + ‖Q∗ −Q‖r0−µ ≤
1

q
+

εC̃

r2q3µ2τ+3
≤ 1

q − εC̃
r2q3µ2τ+3

≡ 1

q∗

where the last inequality holds as long as

0 ≤ εC̃

r2q3µ2τ+
≤ q ≤ 1

This condition is to be confronted with formula (3.27); they are compatible if

q ≥ C̃/(C r2) (3.32)

At the same time, |Q0,0| ≤ |Q0,0 −Q∗0,0| + |Q∗0,0| so

|Q∗0,0| ≥ |Q0,0| − |Q∗0,0 −Q0,0| ≥ q − εC̃

q3µ2τ+5
≡ q∗

So Proposition 1 can be applied to H∗ + {V∗}. We may build a sequence of dynamical
systems by

e[ΓiVi](Hi + {Vi}) = Hi+1 + {Vi+1}
where V0 ≡ V , and

Hi = x0ρ∆∂θ + ∂t + {1
2
Qix2}, Q0 ≡ Q

Γif = {Gf} = {Gsf} − ρ−1Aif∂x − {xGsQi(Ai + ∂θGsP0)f}

Ai =
(∮

Qi
)−1

∮
P0(∂x −Qi∂θGsP0).
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The sequence would converge to the static Top

H∞ = H +
∞∑
i=0

RiVi

To show that the sequence exists, we need three sequences {εi, µi, qi}i∈N such that

ΓiVi : Vri → Vri+1
, ‖Qi‖ri < (qi)

−1 , |Qi
0,0| > qi , ‖Vi‖ri < ε2µi

where ri ≡ r −
∑i−1

j=1 µj. Moreover they must satisfy:

(a) εi = q3
i µi

2τ+3/(2C) as we computed at point 5 of section 3.2.2;

(b) qi ≥ C̃/(Cr2
i ), coherently with equation (3.32);

(c) 0 < µi <
ri
3
, as required by Proposition 1;

(d)
∑∞

i=1 µi < r, to ensure that the operator H∞ is well defined on Vr∞ , being

r∞ = r −
∞∑
j=1

µj > 0

(e) limi→∞ εi = 0, so we can conclude that V∞
def
= limi→∞ Vi = 0;

(f) 0 < q∞ < qi < 1, ∀i ∈ N as required by Proposition 3;

We choose

εi =
ε0

(i+ 1)2(2τ+3)
, µi =

1

(1 + i)2

(
2C ε0
q3
i

) 1
2τ+3

so that condition (a) is satisfied. Also condition (e) is evidently satisfied. Now we compute

∞∑
i=0

µi =
∞∑
i=0

1

(1 + i)2

(
2C ε0
q3
i

) 1
2τ+3

≤
(

2C ε0
q3
∞

) 1
2τ+3

∞∑
i=1

1

i2
≤ π2

6

(
2C ε0
q3
∞

) 1
2τ+3

Both conditions (c) and (d) are satisfied by imposing
∑∞

i=0 µi < r/3 and, by the result
above, we get (

2C ε0
q3
∞

) 1
2τ+3

≤ 2 r

π2
(3.33)

Then for the sequence {qi}i∈N we propose

qi = qi−1

(
1− 1

(i+ 1)2

)
= q0

i+1∏
j=2

(
1− 1

j2

)
By taking the logarithm of both sides, and using that log(1− x) ≥ − log(4)x for x ∈ [1

2
, 1],

we get

log(qi) = log(q0) +
i+1∑
j=2

log
(

1− 1

j2

)
≥

≥ log(q0)−
i+1∑
j=2

log(4)

j2
≥ log(q0)−

∞∑
j=1

log(4)

j2
= log(q0 2−π

2/3)
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We set q∞ = q0 2−π
2/3 and q0 < 1 so condition (f) is satisfied. If we plug this value for q∞

into equation (3.33) we get

ε0 ≤
q3

0

C

(
r

π2

)2τ+3

2(4+2τ−π2)(2τ+3)/(1−π2) (3.34)

Finally, we rewrite condition (b) as r2 ≥ C̃/(qC) and, being 1/q ≥ 1, we get a lower
bound on r,

r ≥
√
C̃/C

3.2.4 Numerical experiments

In this section we show some numerical simulations of dynamical system (3.11) with the
Hamiltonian given by (3.14) and a perturbation V like in equation (3.10) with the matrix
A given by (3.12), so that

V =
ε

2
M2

2 cos(t) =
ρ2ε

2
(1−X2) sin2(θ) cos(t) (3.35)

That is, we solved the Euler-Poinsot equations (3.1) with I−1
2 7→ (I−1

2 + ε cos(t))−1. We
employed a Runge-Kutta numerical scheme of 4th order, with a time step equal to 10−4.
We checked for conservation of the Casimir ρ, and, in the unperturbed (thus static) case,
also of energy.

The system is described in the four coordinates ρ,X, θ, t, but the trajectories can be
visualized in 2-dimensional plots. Indeed, ρ is constant being a Casimir, while, to get rid

M1
M2

M3

Figure 3.2: A phase portrait for the model described in this subsection 3.2.4. So, the pertur-
bation is given by Eq. (3.35). Numerical values of the parameters are I1 = I2 = 1, I3 = 1

3 and
ε = 0.4. As one can see, for these intermediate values of the perturbation, some of the tori (those

near to the separatrix) are broken, others persist.
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(a) ε = 0 (b) ε = 0.1

(c) ε = 0.4. These points are same that
were used to plot figure 3.2

(d) ε = 1

Figure 3.3: Symmetric case, with perturbation given by Eq. (3.35). Here I1 = I2 = 1 and
I3 = 1

3 .

of time, we used the “time-2π-mapping”: it is the map which results from the solution
of a periodic dynamical system, by taking the evolved points only at instants which are
integer multiples of the period of the perturbation, in this case 2π. In practice, the code
solved the equations in the M1,M2,M3 coordinates, we took their values at each time
step for which t = 2πn, n ∈ N, and then compute X and θ.

In figure 3.3 we can see the 4 plots relative to different values of ε. For ε = 0,
the trajectories are straight lines: the system is integrable and the trajectories are level
surfaces of the Hamiltonian (which is the same as being surface levels of x). When ε > 0,
this is no more true and chaos appears. We see that it starts to appear around the
resonances, which are the values X = x0, where the diophantine condition (and thus
theorem 1) is broken. They are solutions of

ρ∆x0m+ l = 0

for the unknown x0. In our simulations we fixed (arbitrarily) ρ =
√

2 and ∆ = 2. Because
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of equation (3.35), m ∈ {0,±2} and l ∈ {±1}. Thus the resonant values of x0 are

x0 = − l

2
√

2m
,m 6= 0 =⇒ x0 = ± 1

4
√

2
≈ ±0.18

for any value of ε. Indeed, it is around these points that chaos appears; this is particularly
evident in the upper right plot of figure 3.3.

In figure 3.4 we report the results of simulations for a slightly different perturbation,

V =
ε

2
M2

2 cos2(t) =
ρ2ε

2
(1− x2) sin2(θ) cos2(t) (3.36)

so that in this case l,m ∈ {0,±2}, and the resonances are located around

x0 = ± 1

2
√

2
≈ ±0.35 and x0 = 0

Again, this are precisely the points around which we see that the tori are broken, even
for very low values of ε.

Figure 3.4: Symmetric case, with the perturbation given by Eq. (3.36). Here I1 = I2 = 1, I3 =
1
3 , ε = 0.1.

3.2.5 About the Diophantine condition

The diophantine condition, that we required in hypothesis (1) of Proposition 3 was in-
troduced by Kolmogorov in his paper of 1954 [47]. Here we want to show that the set
of values of x0 which satisfy the Diophantine condition have a great relative measure in
(−1, 1).

Let ρ,∆ ∈ R be positive constant. The equality

ρ∆x0m + l = 0 (3.37)

denotes a straight line in the m, l plane. If m, l were continuous variables, any value x0

would denote a straight line of angular coefficient k ≡ x0ρ∆, with k ∈ (−ρ∆, ρ∆). But
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-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5  6

x
0
 = -0.18

x
0
 = 0.25

Figure 3.5: In this picture we plot the portion of the m, l plane with positive m. We show a
grid to underline the integer values, because we are mostly interested by them. We also plot a
straight line given by equation (3.37), with ρ =

√
2 and ∆ = 2 (these values are chosen to make

some comparison with section 3.2.4. Two green lines correspond to x0 = ±1, which are the limit
values for x0. One (purple) line corresponds to a value chosen randomly of x0 = 0.25 and finally
a red line corresponds to x0 = −0.18, a value chosen again to confront with 3.2.4. In fact we
see that this line passes very near to the point (2, 1), a fact that we underlined in the previous

section.

m, l are descrete, so there are only certain values of x0 which can satisfy the equality:
those for which k is rational.

Now consider the inequality

|ρ∆x0m+ l| < Ψ(|l|, |m|) (3.38)

with Ψ : Z2
0 → R positive definite. Geometrically, the inequality above defines a “strip”

of width 2Ψ around each of the straight lines defined by equation (3.37) which has a
rational angular coefficient x0ρ∆. Moreover the points x0 which satisfy the inequality
(3.38) evidently are those which do not satisfy the diophantine condition; we will show
now that they constitute a “small” (in a measure theoretic sense) subset of (−1, 1).

The segment (−1, 1) 3 x0 can be identified with the arc on the circle of radius r ≡
1/(2 atan(ρ∆)) centered at the origin and bounded by the intersections with the two
straight lines of angular coefficiens ±ρ∆ (see figure 3.5). Its total length is 1. We cut
away from this arc all the small arcs which are the intersections with the strips defined
by (3.38), and we assume Ψ(l,m) ≡ ϕ(|l|+ |m|). In the end we cut away a set of measure

µ =
∑
l,m∈Z0

Ψ(l,m) =
∑
s>0

ϕ(s)
∑

l,m∈Z0s.t.|l|+|m|=s

=
∑
s>0

2(s− 1)ϕ(s)

Let R 3 γ, τ > 0, and define ϕ(s) = γs−τ . Now

µ = 2γ
(∑
s>0

1

sτ−1
−
∑
s>0

1

sτ
)

so that the term in parenthesis is bounded for τ > 2. We see that µ ∝ γ, and γ can be
taken arbitrarily small.
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3.3 The case of the Non-Symmetric Throbbing Top
In this section we tackle the problem of the Throbbing Top, with I1 > I2 > I3. The
dynamical system is again (3.11), set on the algebra (3.9) with t ∈ R. We recall that the
bracket is again given by (3.8) in accordance to the Lie-Poisson theorem.

We will consider as unperturbed the flow of the autonomous system, so B ≡ ker
(
∂t
)
.

This is a subalgebra because the bracket is time-independent. Moreover B is invariant by
H since H ∈ B while ∂t gives 0 while acting on B. By using Proposition 1 we will prove
that under suitable conditions on the perturbation, the trajectories of the Throbbing Top
stick to those of a static top. But first we need to build a new scale of Banach norms.

3.3.1 A new scale of norms

The Poisson structure for the Top is built by applying the Lie-Poisson theorem to the
algebra R3 3M , (we recall that the bracket is given by the cross product). Now we apply
to R3 by the general complexification method described in the appendix A, section A.2;
the result is

C3 def
= R3 ⊕ R3 (3.39)

with dual C3∗. Moreover, as the space C3 is metric, we can identify C3∗ = C3.
The Lie-Poisson theorem can be applied to (3.39), to get the new Lie-Poisson algebra

VC
def
= C∞(C3 → C)

with the Lie-Poisson bracket (
{f}g

)
(Z̄) = Z̄

[[
∂Z̄f

]]
∂Z̄g

and the Casimir ρ2
C(Z̄) = Z̄Z. We can also define the non-autonomous problem on the

algebra
ṼC

def
= C∞(R→ VC)

again with the same (time-independent) bracket of VC . A few remarks:

• the transposition on C3 obeys (A.18) and it shouldn’t be confused with complex
conjugation, denoted by Z†;

• the quantity ρC is not positive definite (but this is not a problem);

• however, when the imaginary part of Z̄ is zero, the bracket on VC reduces to that
of V, and the Casimir ρC becomes the real Casimir ρ;

• as a consequence of last point, we have that VTT ⊂ ṼC .

Let us consider the set

E def
=
{
Z̄ ∈ C̄3 , ρC(Z̄) = ρEC

}
⊃ S2

Any dynamics of the complexified bracket takes place on E because it preserves the
Casimir ρC ; again, for zero imaginary part of Z̄ the set E reduces to the sphere S2.

Finally we introduce the domain

Eβ
def
=
⋃
Z̄∈E

Bβ(Z̄)
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where Bβ(Z̄) is a ball in C3 centered in Z̄ and of radius β. Now we can define a scale of
Banach spaces, endowing, for all r ∈ R+. Eβ with the Banach norm∥∥f∥∥

β

def
= sup

Z̄∈Eβ , t∈R

∣∣f(Z̄, t)
∣∣ (3.40)

which bound from above, for any r, the supremum norm on V∥∥f∥∥∞ def
= sup

M∈S2, t∈K

∣∣f(M , t)
∣∣

The derivative of a function f ∈ VC is defined as

ζ̄∂Z̄f(Z̄) = lim
η→0

f(Z̄ + ζ̄η) − f(Z̄)

η

so it belongs to C3 ⊗ ṼC . A natural extension of the norm (3.40) to this set is

‖∂Z̄f(Z̄)‖β
def
= sup

W̄∈C̄3

sup
Z∈Eβ , t∈R

∣∣W̄∂Z̄f(Z̄, t)
∣∣

|W̄ |3

where | |3 is the norm on C3, defined by |Z| def
=
√
Z̄†Z, and extended by duality to C3∗,

i.e. |Z̄| ≡ |Z|. We assume that on E the following variant of the Cauchy equality holds,

W̄∂Z̄H(Z̄) =

∮
dθe−iθH(Z̄ + W̄eiθ)

by which we can bound (with loss) the derivation operator on VC . Indeed, for any δ̄ ∈ C̄3,
with δ = |δ̄| ∈ R+ we have

∥∥∂Z̄f∥∥β ≤
∥∥δ̄∂Z̄f∥∥β
|δ̄|

≤ sup
Z̄∈Eβ

∣∣ ∮ dθe−iθf(Z̄ + δ̄eiθ)
∣∣

|δ̄|
≤ sup

Z̄∈Eβ ,ζ̄∈Eδ(Z̄)

|f(ζ̄)|
δ
≤

∥∥f∥∥
β+δ

δ

We can also bound the bracket. Let δ, d be positive reals such that d < δ, d + δ < β; we
have∥∥{f}g∥∥

β−δ−d = sup
Z̄∈Eβ−δ−d, t∈R

∣∣∣Z̄[[∂Z̄f]]∂Z̄g∣∣∣ ≤
≤ sup

Z̄∈Eβ−δ−d, t∈R

∣∣Z̄∣∣ ∣∣∂Z̄f ∣∣ ∣∣∂Z̄g∣∣ ≤ ρEC
d(d+ δ)

∥∥f∥∥
β

∥∥g∥∥
β−δ (3.41)

Now we have all the tools to formulate the following:

Proposition 4. Consider the dynamical system (3.11) on the algebra (3.9) with t ∈ R.
Assume that the perturbation V (M , t) ∈ VTT has compact time support [0, T ]. If there
exists two positive real numbers β and ε such that ‖V ‖β ≤ ε0 and 2π2

√
T ε0 ρC < 3r, then

there exists a static Top with Hamiltonian H̃ whose flow is conjugated to that of HTT .

Proof. Having chosen the invariant subalgebra B as the set of time independent functions,
a choice for the operators R and Γ is

Rf(M , t) = f(M , 0) (3.42)

Γf
def
= {Gf} , (Gf)(t)

def
=

∫ t

0

dσe(σ−t){H}(N f)(σ) , N def
= 1−R (3.43)
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It’s evident that R takes values in B and that R2 = R. To check hypotheses 2.4, after
recalling the remark 2, we consider

(
{H} + ∂t

)
(Gf)(t) = {H}

∫ t

0

dσe(σ−t){H}(N f)(σ) +

+ e(σ−t){H}(N f)(σ)|σ=t −
∫ t

0

dσe(σ−t){H}{H}(N f)(σ) = (N f)(t) (3.44)

Hypothesis 2.3 is proven without much effort,∥∥N f∥∥
β−δ =

∥∥f(Z̄, t)− f(Z̄, 0)
∥∥
β−δ ≤ 2

∥∥f∥∥
β

so that Ξ = 2. To find a function Λ which satify hypothesis 2.5, we start by using
equation (3.41), ∥∥{GV }g‖β−δ−d ≤ 1

d(d+ δ)

∥∥(GV )
∥∥
β

∥∥g∥∥
β−δ , ∀g ∈ VTT

Then we consider∥∥Gf∥∥
β
≤ sup

Z̄∈Eβ ,t
|t| sup

0≤σ≤t

∣∣∣e(σ−t){H}(N f)(M , σ)
∣∣∣ ≤ sup

Z̄∈Eβ ,t
2|t|
∣∣∣V ∣∣∣

where in the last passage we used the fact that the set Dβ is invariant by e(σ−t){H}. If now
we use the hypothesis that V has compact time support [0, T ], we find∥∥(ΓV )g‖β−δ−d ≤

2T ρC
d(d+ δ)

∥∥V ∥∥
β

∥∥g∥∥
β−δ , ∀g ∈ VTT (3.45)

which is a inequality of type 2.5, with Λ(d, δ)) = (2 ρC T )/(d(d+ δ)). And we can compute

εµ =
1

2
sup
n∈N

(
1

n!

n∏
j=1

Λ
( µ
n
,
(j − 1)µ

n

))−1/n

=
1

2
sup
n∈N

(
1

n!

n∏
j=1

2 ρC T n
2

µ2 j

)−1/n

≤ µ2

4 ρC T
sup
n∈N

e(1/n− 1) ≡ µ2

4 ρC T

We can also prove a simple iteration mechanism. Indeed, by the perturbation formula we
get a new Hamiltonian H∗ = ∂t + {H + RV }, but we can keep the same operator R
(3.42) and define the new operator G∗ as

G∗f(t)
def
=

∫ t

0

dσe(σ−t){H+RV }(N f)(σ)

and it’s evident now that it will satisfy the same bound (3.45). In general at ith iteration
we will have

Gif(t)
def
=

∫ t

0

dσe(σ−t){H+
∑i
k=1RVk}(N f)(σ), V0 = V , G0 = G , G1 = G∗

To perform the iteration we need then two sequences {εi, µi}i∈N representing, respectively,
the perturbation strength and the loss of domain at i-th step. They are related by
εi = µ2

i /(4TρC). We require

lim
i→∞

εi = 0
∞∑
i=0

µi < β/3
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The limit implies that the final perturbation will be equal to 0; the inequality implies
that after the iteration the new static dynamical system will be defined on Vβ∞ with
β∞ > 2β/3. We choose (ansatz)

εi =
ε0

(i+ 1)4
=⇒ µi =

2
√
T ρC ε0

(i+ 1)2

Evidently εi → 0 for i→∞ while

∞∑
i=0

µi = 2
√
ε0 T ρC

∞∑
i=1

1

i2
=

2π2

6

√
Tε0ρC =⇒

√
Tε0ρC
β

<
3

2π2

We can conclude that the flow of HTT is conjugated to that of H̃ = H +
∑∞

i=0RVi.

3.4 Conclusion

In this chapter we applied a general perturbation theory for Poisson systems, presented
in chapter 2, to study the dynamics of a non-autonomous Top.

We first considered a symmetric periodic Top. We found many common elements with
classical mechanics, as we have a set of action-angle-like coordinates: two angles, which
are the azimuthal angle and time, plus the cosine of the polar angle, which behaves like
the action associated to the azimuthal angle6. However, we also see some novelties: one
angle does not have an associated action7 and it does not appear even in the bracket;
also, the phase space has not the structure of a cotangent bundle. We introduced a scale
of Banach norms on the algebra of functions, and proved that our algebraic perturbation
formula can be applied. Moreover, we have shown that the process can be iterated, by
following the standard KAM procedure, to conjugate the Throbbing Top to a Static Top.

We also considered a non-symmetric Top, with a non-periodic prescribed time-depen-
dence. In this case even more novelties appear: we don’t have action-angle variables
nor a canonical structure. The concept of invariant “tori” was replaced by a properly
chosen invariant subalgebra of the phase space: the set of time-independent observables.
It is “invariant” as a consequence of our choice about the splitting of the full evolution
operator into “main part” and “perturbation”. We see more analogies with Floquet theory
[35], [25], [90] rather than with KAM theory; this makes the result even more interesting,
as a generalization of Floquet theory for non-periodic dynamical systems has not yet been
proposed. But we still borrowed some ideas of KAM theory: to introduce a scale of Banach
norms we used a complexification of the dominion, and a 3-dimensional generalization
of the Cauchy inequality. The algebra of the Top is built by the Lie-Poisson theorem
applied to the Lie algebra (phase space) (R3,

[[ ]]
). To get the complexified Top we

don’t complexify directly the Top algebra; we complexified instead the phase space, and
then applied again the Lie-Poisson theorem. In this way we naturally get the new bracket
(with the complexified Casimir). We were able again to apply iteratively our perturbation
theory to conjugate also in this case, the non-autonomous Top to an autonomous one,
for a perturbation with compact support in time. Note that this second analysis can be

6Note that the polar angle has the units of an angle, in the sense that it is measured in radiants;
however, it takes values on the compact [0, π], and not on the torus.

7In classical mechanics, when the Hamiltonian doesn’t depend on all of the actions, the system is
called degenerate. For a KAM theorem for degenerate systems see for instance [4] and [77].
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applied, as a special case, to a symmetric top in the case of a non-periodic perturbation,
which wasn’t considered in the first part of the chapter.

The investigation the non-symmetric top with periodic perturbation is left for future
work. Another improvement to look for is related to convergence with respect to the
time variable, in the case of a non-periodic system: we assumed finite time support for
the perturbation, t < T , to get an upper bound on the perturbation strength of order
ε ≈ T−1, as in the theory of adiabatic invariants. It would be interesting to go beyond
this type of estimate, by introducing some scaling of the norm also with respect to time.
Finally, a difference emerged between the two examples we considered: in the second
one (non-periodic non-symmetric Top) the operator Γ was defined for any function of
the algebra VTT ; however, it was bounded only for the perturbation V . Instead, in the
other example (symmetric and periodic Top) Γ was defined by fixing Q, so it’s related
to a particular system; by suitable hypothesis on Q, it is bounded when acting on any
function of VTT . We feel not at ease with this behaviour, as if there is a more elegant
definition of Γ waiting to be unveiled.
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4

The Charged Particle

In this chapter we consider the following problem: to characterize the dynamics of a
relativistic charged particle under the influence of external electric and magnetic fields
(or simply, an electromagnetic field). The fields are fixed: we assume that retroaction of
the particle on the field is negligible. The dynamical system, as well as its geometric and
Poisson strutures, are discussed in section 4.1.

This problem is of interest for many reasons. On a fundamental level, the Maxwell-
Vlasov equations provide a self-consistent description of a set of charged particles inter-
acting with an electromagnetic field. These equations may be solved perturbatively: the
fluctuations of the fields are perturbations of the trajectories in a fixed field. For the
laboratory and industrial applications, knowledge of the particles trajectory is a key ele-
ment to design magnetic fields for an efficient particle confinement, in view, for instance,
of magnetized fusion. For the numerical applications, a partial knowledge of the trajec-
tories may lead to a semplification of the equations of motion, allowing to speed up the
computations.

While finding an analytical solution for the trajectory of a particle in an arbitrary field
is an impossible task, we aim instead at developing some methods to reduce the number of
degrees of freedom of the problem. Indeed, in this chapter we will consider two approaches
of this type. We call the first one, described in section 4.2, an “Eulerian reduction”: we
fix half of the degrees of freedom by computing the velocity vector field associated to the
Lorentz force. This vector field is the result of a partial differential equation, so that
a formal analogy with the Eulerian description of a fluid arises, hence the name. We
also derive the Poisson structure in this picture, as well as some simple solutions. The
second reduction theory that we consider, described in section 4.3, is a new approach to
the well known Guiding Centre Theory, proposed by Di Troia in [23]. The key is the
geometric (not perturbative!) definition of the Guiding Centre as the reference frame in
which a charged particle is seen moving on a closed and periodic trajectory. Interestingly
enough, the Guiding Centre velocity happens to be a field again. Here we compute for
the first time the Guiding Centre equations of motion, and their Poisson structure, in
the relativistic regime. We find also a curious geometrical consequence, that the Guiding
Centre is not a particle.
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4.1 The dynamical system
The equations of motion for a particle of mass m and charge e, subject to an electric field
E and a magnetic field B are

dx

dt
=

w

mγ

dw

dt
= eE − e

mγ

[[
B
]]
w γ =

√
1 +

w2

m2

(4.1)

Here t denotes time and x the position of the particle in some (“laboratory”) reference
frame. The velocity of the particle is v def

= dx/dt whilew def
= mγv is the kinetic momentum.

The particle kinetic energy is mγ =
√
m2 +ww.

We considered the equations of motion in cgs units and fixed the physical dimensions
as follows. The 3 fundamental dimensions are a length L, a time T, a mass M. c, e,m are
fundamental constants. We set c = 1, so L = T and v = dx/dt is dimensionless. Instead
[m] = M as one would expect. Then we have that [w] = M, [ε] = M. Finally, e appears
always next to a field so it’s sufficient to set [eE] = M/L and [eB] = M/L.

7-dimensional dynamics

The phase space of system (4.1) is a 6-dimensional space of coordinates (x,w), however,
usually in special relativity one considers a 7-dimensional space of coordinates {t,x,w},
where the trajectory is parametrized by a scalar variable called proper time and denoted
here by s. A 7th equation is then added to the system,

dt

ds
= γ

while in the other equations we replace d/dt = γ−1d/ds. The extended system is chosen to
underline the geometric structure underlying special relativity: t and x are the coordinates
of a four-dimensional manifold, called the spacetime, which is endowed with a metric
structure:

η = dt⊗ dt − dx⊗ dx

The proper time s has the physical meaning of time coordinate of a reference frame in
which the particle is seen at rest (hence the name: “proper time”).

Electromagnetic Potentials and Gauge Invariance

It is known [34] that an electromagnetic field can be charaterized by a vector potential
A(t,x) and a scalar potential Φ(t,x) such that

B =
[[
∂x
]]
A, E = −∂tA− ∂xΦ (4.2)

Their definition is not unique, as we have the freedom to choose a scalar function g and
to redefine

Â = A+ ∂xg, Φ̂ = Φ − ∂tg (4.3)

If we compute the fields from the hatted potentials, we get the same result as from the
original ones. This is called the “gauge freedom”, and the function g is called the gauge
function. The gauge freedom is considered somehow “unphysical” because it is not possible
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to detect the gauge in a physical experiment1 (in physical experiments we measure fields
and not potentials), so there’s not a way to define it.

Poisson structure, static case

It is possible to introduce a Poisson structure for the system (4.1). We start by considering
a static situation, with no electric field. In this case the phase space is

V = C∞({x,w}) (4.4)

We observe that in this case energy is conserved.
As the phase space has a differentiable structure, the Lie product can be defined by

the aid of the hodge differential d and of a bivector π, in the following way

{v}w def
= dw(dv π), v, w ∈ C∞({x,w})

We call π the Poisson bivector (see also appendix C.1). This bracket is anticommutative
by definition. The Jacobi identity is implied either by

{π, π}M = 0

({, }M being the Schouten-Nijenhuis bracket [48]), or if π is the inverse of a symplectic
form (a closed non-degenerate 2-form, see again appendix C.1).

For the static charged particle we consider the bivector

π
def
= ∂w ∧ ∂x + e ∂w

[[
B
]]
∂w (4.5)

which is the inverse of the symplectic form

σB = dw ∧ dx − e dx
[[
B
]]
dx (4.6)

in the sense that
σB (dw π) = dw , σB dx π = dx

In our notation, the rules for annihilating forms and vectors read

dw ∂w = I = dx ∂x

The first is readily checked

dxπ = −∂w =⇒ dxπ = −∂w =⇒ σB(dxπ) = dx

Then the second

dw π = ∂x + e
[[
B
]]
∂w =⇒ dwπ = ∂x − e ∂w

[[
B
]]

so
σB (dw π) = dw − e dx

[[
B
]]

+ b dx
[[
B
]]

= dw

Finally, the closedness of σ is equivalent to the homogeneous Maxwell equation divB = 0,

dσB = ed
(
B
[[
dx
]]
dx
)

= e ∂xB︸︷︷︸
≡divB

dx
[[
dx
]]
dx︸ ︷︷ ︸

volume form onR3

1Not in classical physics
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The other homogeneous Maxwell equation reads
[[
∂x
]]
E = 0 and it impliesE = −∂xΦ(x)

(this is of course a particular case of (4.2)). Now we consider as Hamiltonian the canonical
energy

ε = mγ + eΦ (4.7)

so the Hamiltonian vector field reads

H = dεπ =
wdw

mγv
π =

w

mγv
∂x +

ew
[[
B
]]

mγv
∂w + eE ∂w

Then the system {
ẇ = Hw
ẋ = Hx

is equivalent to (4.1) with ∂tE = 0 and ∂tB = 0.

Poisson structure, general case

If the fields are no more static, the inhomogeneous Maxwell equations read,

∂xB = 0 ,
[[
∂x
]]
E + ∂tB = 0 (4.8)

but only the first of them is satisfied as a consequence of the Jacobi identity of π; the
second equation does not hold in this picture. The correct dynamical system may be
recovered by the Hamiltonian vector field

H =
(
d(mγ) − eEdx

)
π

but the inhomogeneous Maxwell equations wouldn’t be implied.
Another possibility, that was considered for instance in [72], is to autonomize the

system (4.1), by extending the phase space with two dimensions, {t, Pt} where Pt is the
momentum conjugate to t. The symplectic form is also extended to

σEB = dw ∧ dx + dPt ∧ dt − e dx
[[
B
]]
dx + e dxE ∧ dt

So time has become a coordinate and evolution is parametrized by a new parameter τ .
Now the closedness of σEB implies both Maxwell equations:

dσEB = −edx
[[
∂tB

]]
dx ∧ dt − e∂xB dx

[[
dx
]]
dx + edx

[[[[
∂x
]]
E
]]
dx ∧ dt (4.9)

dσEB
!

= 0 =⇒
{
−∂tB +

[[
∂x
]]
E = 0∂myV ecxB = 0 (4.10)

By a calculation similar to point E, but a bit more tedious, the inverse bivector is found,

πe = ∂w ∧ ∂x + ∂Pt ∧ dt + e ∂w
[[
B
]]
∂w + e ∂Pt ∧E∂w

The new Hamiltonian is
He = Pt +

√
m2 + ww

We compute the Hamiltonian vector field,

He =
wdw

mγ
+ ∂t +

1

mγ
w
[[
B
]]
∂w + eE∂w −

eEw

mγ
∂Pt
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which is equivalent to the equations of motion

dt

dτ
= 1

dx

dτ
=

w

mγ

dw

dτ
= eE +

e

mγ

[[
B
]]
w

dPt
dτ

= −eEw
mγ

which is the autonomization of (4.1) (see [60]). We have two new equations: the first
one says that the new coordinate we have introduced has the meaning of time, the fourth
says instead that Pt, the momentum conjugate to time, has the meaning of energy. In-
deed, the fourth equation states the (non-)conservation of energy, and in the autonomous
description, where Pt is the Hamiltonian and equals mγ, is a consequence of the third
equation.

4.2 The Eulerian reduction
In this section we try to develop a method to drastically reduce the number of degrees of
freedom of system (4.1), from 6 to 3. In fact we search for a vector field W (x, t) such
that the dynamical system

dx

dt
=

w

mγ

∣∣∣∣
w=W (x,t)

(4.11)

describe the same dynamics of the first equation of system (4.1), while the second equation
is identically satisfied by setting w = W . It’s here that we see an analogy with the Euler
description of fluid dynamics.

We can accomplish this reduction by a change of coordinates, from w to a new set of
three variables, α, without changing the position x. The new variables will have a very
simple dynamics,

dα

dt
= 0 (4.12)

The vector field W of equation (4.11) has the meaning of diffeomorphism from the old
coordinates {x,w} to a new set of coordinates {x,α}.

To derive an equation for W we start by computing its time derivative

d

dt
W = ∂tW +

dx

dt
∂xW +

dα

dt
∂αW

!
=

dw

dt

By injecting in the above equations (4.1) and (4.12), we find

∂tW +
( 1

mγ
W ∂x

)
W = eE − e

mγ

[[
B
]]
W (4.13)

A very simple (but also common) case is E = 0 and static B; in this case γ is constant,
and equation (4.13) becomes simply

(W∇)W = −e
[[
B
]]
W (4.14)
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A question remains about the physical meaning of the variables α. They should be
related to the initial data of the problem. In fact, in the original problem (4.1) 6 initial
data are given; if the Eulerian Reduced equations are assumed to be equivalent to it,
we have to use all the 6 initial data, and the three of them referred to the velocity can
enter the problem only as values of the coordinates α. For instance, by imposing some
constraint of the following type,

w(x0,α) = α (4.15)

In this case the new coordinates are strictly identified with the initial data for the velocity
(actually, for the momentum). We may more generally choose them as combinations of
the initial velocities, depending also on the problem at hand. For instance, in the absence
of an electric field the modulus of W is constant and can be identified with one of them.
Indeed we will make this choice in section 4.2.5.

An alternative look for equation (4.13)

We use the vectorial identity[[
W
]][[

∂x
]]
W = ∂xWW︸ ︷︷ ︸

≡ 1
2
∂x(h2−1)

− (W ∂x)W =⇒

( 1

mγ
W ∂x

)
W =

1

2h
∂x(h2 − 1) +

1

mγ

[[
W
]][[

∂x
]]
W

to rewrite equation (4.13) as

−∂tW − ∂xh+ eE +
1

mγ

[[
W
]](
eB +

[[
W
]])

Upon defining

eEc = eE − ∂xh − ∂tW , eBc = eB +
[[
∂x
]]
W (4.16)

we find a new form for equation (4.13),

Ec +
[[ W
mγ

]]
Bc = 0 (4.17)

The fields defined in (4.16) are called “canonical” because they are defined by using the
energy and momentum of the particle as scalar and vector potential for the electromagnetic
field. Equation (4.17), which was written for the first time in [22], will be useful to trace
a parallelism with Guiding Centre theory, as we will do in section 4.3.2.

The Jacobian

Finally, we recall that the Jacobian J of a change of variable is defined as the proportion-
ality factor between the old and new volume form on the phase space:

dw1 ∧ dw2 ∧ dw3 ∧ dx1 ∧ dx2 ∧ dx3 = Jdα1 ∧ dα2 ∧ dα3 ∧ dx1 ∧ dx2 ∧ dx3

and for our transformation {x,w} 7→ {x,α} we find

J = ∂α1W
[[
∂α2W

]]
∂α3W (4.18)
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4.2.1 The Guiding Particle Solution

If we consider equation (4.17) and set Ec = 0, we are left with[[
W
]](
eBc) =

[[
W
]](
eB +

[[
∂x
]]
W
)

= 0

which is equivalent to
1

λ
W = eB +

[[
∂x
]]
W (4.19)

Here λ is some scalar function. The solution of this equation in the case
∣∣[[∂x]]W ∣∣� |W |

was called the “Guiding Particle” solution in [22]. To have an idea of the physical meaning
of the equation above, we search for a solution iteratively. First we assume that the curl
of W is completely negligible. We get an approximate solution as

W (0) = λeBb

where we put B = Bb and b has unit norm. The approximate solution is then used to
find a better approximation:

W (1) = λeBb + λ
[[
∂x
]]
W (0) (4.20)

If we set w‖
def
= bW and then λ = w‖/(eB0), equation (4.20) turns into (4.21),

W (1) = w‖b +
w‖
eB0

[[
∂x
]](
w‖b

)
(4.21)

This formula is interesting in that it resembles the standard guiding centre velocity in the
case of null magnetic moment [15].

4.2.2 The Poisson structure after the Eulerian Reduction

Now we look for the Poisson structure in the coordinates {x,α}. We will consider as a
starting point the static structure (4.5), as it is not clear to us if all of the three variables
α can be constant in the non-static case.

A very efficient method to compute the new Poisson bivector, is to perform the change
of variables into σB, and then invert the resulting new symplectic 2-form. In general we
are proposing the following logical scheme to invert a bivector:

πold
inversion−→ σold

change of variables−→ σnew
inversion−→ πnew

The reason to choose this path is that a change of variables for forms is well defined, while
for derivations it is not the case2.

To compute the new symplectic 2-form, we start by computing

w 7→ W (x,α) =⇒ dw 7→ dW = dαD + dx ∂xW

where we called D = ∂αW . By plugging the above into σB we get

σ∗ = dαD ∧ dx + dx ∂xW ∧ dx − e dx
[[
B
]]
dx

= dαD ∧ dx − dx
[[[[

∂x
]]
W + eB

]]
dx

2A choice of connection would be needed.
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To find the inverse bivector, we pose an ansatz:

π∗ = ∂α ∧ M ∂x + e ∂α B∗ ∂α

with unknown matrices M and B∗, the latter being skew-symmetric by hypothesis. Then
we impose the relations

σ∗ dα π∗ = dα and σ∗ dx π∗ = dx (4.22)

So we compute

dα π∗ = M ∂x + eB∗ ∂α =⇒ dα π∗ = ∂xM − e ∂α B∗ =⇒
σ∗ dα π∗ = dxD eB∗ − dx

[[[[
∂x
]]
W + eB

]]
M + dαDM

and σ∗ dx π∗ = dxAM. We see that the equations (4.22) are satisfied iff
DM = 1

eDB∗ =
[[[[

∂x
]]
W + eB

]]
M

MD = 1

If detD 6= 0, so that D is invertible, the system is solved by M = D−1 and

eB∗ = D
−1[[[[

∂x
]]
W + eB

]]
D−1 (4.23)

We see that imposing B∗ = 0 is equivalent to ask[[
∂x
]]
W + eB = 0 (4.24)

If such condition is realized, the new coordinates α resemble Hamiltonian actions, as they
all commute among themselves (but they are not yet conjugated to to an angle). We
observe that (4.24) corresponds to the limit λ → ∞ of equation (4.19), so it gives one
very particular solution for the Eulerian velocity.

If we introduce a vector potential A, such that B =
[[
∂x
]]
A, then equation (4.24)

becomes
W = −eA + ∂xg (4.25)

where g is some gauge function. This kind of solution was already considered in [23] where
it is also noted the following: in classical mechanics the canonical momentum is defined
by

P
def
= W + eA ≡ ∂xg

In the Hamilton-Jacobi solution of the dynamics, the canonical momentum is equal to
the spatial gradient of Hamilton’s principal function (usually denoted by S). So, in
this context the magnetic gauge coincides with Hamilton’s principal function3. And the
solution of equation (4.25) was called the gyrating particle, or simply gyroparticle, if the
trajectory is closed and periodic. In that case, the origin of this coordinate system is
called the Guiding Centre, according to definition 1.

3There exists in fact a general relation between gauge trasforms and canonical transforms, which is
evident in the lagrangian description. This is discussed in appendix C.
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4.2.3 Example: a constant uniform magnetic field

We consider a costant uniform magnetic field in cartesian coordinates, B = B0ez. The
solution of equations (4.1) can be computed explicitly:

w(t) = exp
(
− ωt

γ

[[
ez
]])

(−
[[
ez
]]2

)w0 + wz0ez

x(t) =
1

eB0

[[
ez
]]

exp
(
− ωt

γ

[[
ez
]])
w0 +

w0
z t

mγ
ez + Xex + Y ey

(4.26)

(see appendix A.3 for the exponential of a skew-symmetric matrix). The second equation
is the parametrization of a helix. The particle is turning with constant frequency ω/γ =
eB0/(mγ) (ω is called the Larmor frequency) around a magnetic field line of coordinates
x = X, y = Y . The particle is also traslating along the field line with constant velocity
w0
z/mγ ≡ v0

z . By evaluating at t = 0 the second equation (4.26) we compute

X = x0 −
w0
y

eB0

, Y = y0 +
w0
x

eB0

The angle between the velocity vector of the particle and the magnetic axis, defined
by tanφ = (v0

z)
2/
√

(v0
x)

2 + (v0
y)

2, is called the pitch angle, while the angle ζ = ωt/γ is
called the gyrophase. The second equation of (4.26) can be inverted by multiplying on
the left by

[[
ez
]]
,

− exp
(
− ωt

γ

[[
ez
]])[[

ez
]]2
w0 = eB0

[[
ez
]]

(x−X)

where we defined X def
= Xex + Y ey. and it can be plugged into the former equation to

give
w = eB0

[[
ez
]]

(x−X) + w0
zez (4.27)

The quantity ρ def
= −

[[
ez
]]2

(x(t) − X) is constant and is called the Larmor radius. We
have ww = (eB0)2ρ2 + (w0

z)
2 by which the single particle energy can be rewritten as

h = m

√
1 +

(w0
z

m

)2
+ ω2ρ2

Formula (4.27) has the meaning of moment as a function the position, or moment
field, and indeed is a solution of (4.14). If x0 is the initial position, we define

α = eB0

[[
ez
]]

(x0 −X) + w0
zez

to rewrite equation (4.27) as

W = α − eB0

[[
ez
]]

(x− x0) (4.28)

so that α is the initial velocity: α = W (x0,α).
In figure 4.2 we plot the result of simple numerical simulations of the trajectory given

by direct integration of (4.1), and that given by the GC solution (4.28). As one can
see, there’s perfect agreement between the two, i.e., between the full dynamics and its
“Eulerian reduction”.
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Figure 4.1: The trajectory of a charged particle in a constant uniform magnetic field field in
cartesian coordinates (x, y, z). We solved numerically (4.1) with B = B0ez, for a total of 6
degrees of fredom. We also solved d

dtx = W (x,α)/(mγ), with W given by (4.28), and the
result are the red crosses. As one can see, there’s perfect agreeement with the two solutions (but
in the second case we had to solve only 3 equations instead of 6). We used a Runge-Kutta 4th
order scheme, with a step of h = 0.001 for both simulations. The initial data are x0 = (1, 0, 0),
α = (0.6, 1.1, 0.3) ≡ w0 and ω = 1. The blue line is the magnetic field line of coordinates
x = X, y = Y around which the particle is turning, and it coincides also with the GC trajectory

(see section 4.3).

4.2.4 Another example: the toroidal field

We call “toroidal” a magnetic field of type B = B0eτL/R, where R, τ, z are the cylin-
drical coordinates (τ is called toroidal angle in fusion context) and L is a constant with
dimentions of a length. Here B0 is a constant measuring the field strength. This magnetic
field is produced, for instance, by a thin wire along the z-axis4

One can check that a solution of (4.14) for the toroidal magnetic field is

W = B0

(
α1 α2

R
eτ + log

( R
α2

)
ez ±

√
α2

3 + α2
1

(
1− α2

R

)
− log

( R
α2

)
eR

)
(4.29)

A particle following with this velocity is turning around a point which is itself turning
around the z-axis, and drifting along it. We may also describe this trajectory as an
helix, winding around another helix, winding around the z-axis. The meaning of the new
coordinates α in this second example is as follows: R = α2 is the radial coordinate of the
centre of gyration, while α1 and α3 are related to the extrema of this circle. In fact, the
R−component of the field W is equal to zero in the two points r± (we may call them

4By a little perturbation of the “toroidal field”, we get a common model for magnetic fields in tokamaks:

B = B0eτ/R+
[[
∇f(R, τ.z)

]]
eτ

A field of this type is called axysimmetric, because it is invariant for rotation around the z-axis.
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“turning points”) defined by

log(r±) = ±
√
α2

3 + α2
1(1− r−2

± )

The factor ± in front of the R−component of W arises because the field is singular at
the inversion points. In fact the Jacobian is

J =
Mα3

R

√
α2

3 + α2
1

(
1− α2

R

)
− log

(
R
α2

)
so it is singular at the turning points: the solution (4.29) is not well defined over the
whole space.

 0
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Figure 4.2: Here we plot the trajectory of a charged particle in a “toroidal field” B = B0eτ/R
in cylindrical coordinates (R, τ, z). More precisely we are visualizing the (R, z) projection of
motion. The continuous line is the numerical solution of (4.1) for a total of 6 degrees of fredom.
The points instead come from the solution of d

dtx = W (x,α)/(mγ), with W given by (4.28),
(we are plotting just one point every 100). The sign of the R−component of the field was changed
as an external input each time there was a change in the sign We see perfect agreeement among
the two solutions. We used a Runge-Kutta 4th order scheme, with a step of h = 0.001 for both

simulations. The initial data are x0 = (1, 0, 0), α = (0.6, 1.1, 0.3) ≡ w0 and eB0 = 1.

4.2.5 Euler angles decomposition

Here we discuss one method by which we tried to solve (4.14). Spoiler alert: this approach
is still work in progress, and we have not come to a point yet, so the reader may wish to
skip this section.

To get a natural generalization of the constant uniform field case (section 4.2.3), the
pitch angle ϕ and gyrophase ζ can be interpreted as Euler angles; this leads to the following
ansatz,

W = α3

(
b cosϕ + sinϕ

(
cos ζ + sin ζ

[[
b
]])
u
)

(4.30)
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Here b is again the unit norm along the magnetic field, while u is a unit vector in the
plane orthogoanal to b. As the modulus of W is constant, we identify it with with α3

(we recall that the α are constants, which values are determined by any combination of
the initial velocities).

In this description the pitch angle and the gyrophase cannot be independent variables
(the only independent variables are x); rather, they are fields:

ϕ = ϕ(x,α) ζ = ζ(x,α)

We choose to define
α1 = ϕ(x|t=0,α) α2 = ζ(x|t=0,α)

The Jacobian

One can also compute (here k ∈ {1, 2, 3})

∂αkW =
(
b cosϕ − sinϕ(cos ζ + sin ζ

[[
b
]]

)u
)
δk,3 +

− α3

(
b sinϕ + cosϕ(cos ζ + sin ζ

[[
b
]]

)u
)
∂αkϕ+

+ α3

(
b cosϕ + sinϕ(sin ζ − cos ζ

[[
b
]]

)u
)
∂αkζ

where δi,j is the kronecker delta. Then

J(x,α) = α2
3 sinϕ

(
∂α1ϕ∂α2ζ − ∂α2ϕ∂α1ζ

)
and in particular

J(x|t=0,α) = α2
3 sinϕ

So we need to ask that sinϕ 6= 0, for the map (4.30) to be well defined.

The new equations of motion

We define w def
= W /α3 and we compute

α−2
3 (W∇)W ≡ (w∇)w = (cosϕ − sinϕ sin ζ

[[
u
]]

)(w∇)b+

+ sinϕ (cos ζ + sin ζ
[[
b
]]

) (w∇)u + sinϕ (− sin ζ + cos ζ
[[
b
]]

)u (w∇)ζ +

+
(
− b sinϕ + cosϕ(cos ζ + sin ζ

[[
b
]]

)u
)

(w∇)ϕ

Now we observe that equation (4.14) lives on the plane W⊥, infact

W (W∇)W = 0

This is the same as saying that equation (4.14), although being 3-dimensional, is in fact
equivalent to two equations; they are found for instance by multiplying equation (4.14)
on the left respectively by b and by W

[[
b
]]
. The results are{

b(w∇)w = 0

α2
3 b
[[
w
]]

(w∇)w = e
m
Bα3 sin2 ϕ

By some vectorial algebra, the upper two equations lead to{
w∇ϕ = − cos ζ u(w∇)b − sin ζ b

[[
u
]]

(w∇)b

eB0 = (w∇)ζ + b
[[
u
]]

(w∇)u + Φ (w∇)b (cos ζ
[[
b
]]
− sin ζ)u

(4.31)
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where we defined Φ
def
= cotϕ which is well defined for 0 < ϕ < π as we assumed sinϕ 6= 0.

If we plug w = α−1
3 W with W given by (4.30) in system (4.31) we end up with

(w∇)ϕ = 1
2

sinϕ
(
∇b + sin 2ζ u

([[
b
]]

(u∇)b − (u
[[
b
]]
∇)b

)
+

− cos 2ζ u
(
(u∇)b + (u

[[
b
]]
∇)
[[
b
]]
b
))
− cosϕ (b∇)b eζ

[[
b
]]
u

(w∇)ζ = eB0 + cosϕu
([[
b
]]

(b∇)u + 1
2

([[
b
]]

(u∇) + (u
[[
b
]]
∇)
)
b
)

+

+ sinϕu
[[
b
]]

(ueζ
[[
b
]]
∇)u + Φ cosϕ (b∇)b (sin ζ − cos ζ

[[
b
]]

)u+

+ 1
2

sin 2ζ cosϕu
(
(u∇) +

[[
b
]]

(u
[[
b
]]
∇))b+

+ 1
2

cosϕ cos 2ζ u
([[
b
]]

(u∇)− (u
[[
b
]]
∇)
)
b

The new equations of motion are partial differential equations for the functions ϕ and
ζ. Their solution is a formidable task, for which we have not figured out a general
method. But we see that we have a great ambition: the vector field W is defined over a
3-dimensional space, but we want to “squeeze” all of the information on the 3 coordinates
in only two scalar variables, that is, we are looking for a bijection between a 3 dimensional
and a 2 dimensional space.

4.3 Non-perturbative Guiding Centre Theory
As it was seen in section 4.2.3, under the influence of a constant uniform magnetic field,
the trajectory of a charged particle is a helix, given by the superposition of two motions: a
gyration in the plane orthogonal to the magnetic field, with constant (Larmor) frequency
ω; and a translation of the center of gyration along the magnetic field line, with constant
velocity. Qualitatively, we observe a kind of helix even when the fields are no more
constant and uniform, if the particle is subject to a sufficiently strong magnetic field; and
the gyration period is always much smaller than any other time-scale involved.

Guiding Centre Theory is a mathematical theory to make this description quantitative:
indeed the name “Guiding Centre” refers to the point drifting along the magnetic field
lines, and around which the helix wraps. And it is a reduction theory, because the gyratory
motion is decoupled from the drift.

Historically, the two cornerstones of Guiding Centre theory are represented by the
works of Northrop [74], [73], [75] of the 1960ies, and those of Littlejohn [53], [54], [55], [56]
of the 1980ies; a recent comprehensive survey has been provided by Cary and Brizard [15].
Northrop applied, to the Newton equations with Lorentz force, a method by Kruskal [49]
to asymptotically remove fast oscillations from a generical dynamical system. By this
method it is possible to compute an adiabatic invariant, also expressed as an asymptotic
series. In principle the algorithm is defined up to arbitrary order, however, it requires a
fastly increasing amount of algebra5. Littlejohn switched to the Lagrangian description
of electrodynamics, and used a combination of Lie and gauge trasforms to define the GC
coordinates perturbatively. The method is strongly model dependent, as the choice of the
orders of magnitude of the various physical quantities has to be assumed a priori and has

5the method of Kruskal has been reconsidered by Burby in the recent paper [13] in the light of a
variational principle for fast-slow systems.
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an influence on the result. Moreover the method is not defined iteratively6, and it has
been pushed up to fourth order in the recent paper by Brizard and Tronko [11]. In this
approach there is no control on the convergence of the transform, while some numerical
evidencies on the presence of chaos in phase space have been found [14].

Another approach to Guiding Centre theory, based on canonical coordinates was re-
cently proposed by Neishtadt and Artemyiev [72]. The change of coordinates is defined
exactly, however, the magnetic moment is still only an adiabatic invariant, not an exactly
conserved quantity. We also mention a recent effort by Scott [86] to build the Guiding
Centre reduction only by gauge transforms.

In this section we will consider on a novel approach to GC theory, proposed by Di Troia
in the two works [22] and [23]. The Guiding Centre coordinates are defined geometrically,
not by their expansion in the particles coordinates, and thus closed equations to compute
them are provided. To introduce the theory we start by revisiting the exact solution for
the constant and uniform magnetic field.

The constant uniform magnetic field, again

The dynamics of a cherged particle in a constant and uniform magnetic field was described
at length in section 4.2.3. From equation (4.26), or equivalently from equation (4.27), we
deduce that there exists one reference frame in which the particle moves on a closed and
periodic trajectory: the frame moving along z with constant velocity V = v0

zez. We call
Guiding Centre, and denote by X, the origin of this reference frame. It can be shown
that in the presence of a uniform and constant electric field E0, the velocity of the center
of gyration would be instead

V = v0
zez +

[[
E0

]]
B0

|B0|2
(4.32)

The trajectory of the particle is a circle parametrized by an angle ζ which evolves in time
according to the law

ζ = −ωt
γ
≡ −ωs (4.33)

Hence we give the following definitions.

Definition 1. The Guiding Centre (henceforth GC) is the reference frame in which a
charged particle moves on a closed and periodic trajectory; its coordinates in the laboratory
frame are denoted by T,X. The gyrophase ζ is the angle which parametrizes the trajectory
performed by a charged particle in the GC description.

Here we recall that a trajectory is closed and periodic in space iff it is closed in phase
space. So the gyrophase is an angle in phase space.

If we also introduce a constant µ def
= B0ρ

2 (where B0 is the field strength and ρ was
called the Larmor radius) and a function k = (m/e)(ω/µ) the single particle energy can
be written

h = m

√
1 +

WW

m2
− e

m
ω µ

6We should however mention a work by de Guillebon and Vittot [43] in which an algorithm to push
the trasformation to arbitrary order has been proposed.
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where W is the guiding centre kinetic momentum. The vector potential for a constant
uniform magnetic field is

A(x) = 1
2

[[
B
]]

(x−X) + ∂xg

with some gauge function g. If the potential is computed on the particle trajectory then
it equals

A|traj = 1
2
ρB0eτ + ∂xg

The velocity field was instead given by (4.28), the constant α3 being 0 in the GC frame,
so

w|traj = −eρB0eτ

So there is one gauge function in which the integrability condition (4.25) can be achieved,
and its value is

g = −1
2
eB0ρ

2τ ≡ eµζ

where in the second passage we made the natural identification of the τ angle of cylindrical
coordinates with the gyrophase ζ, and we used ∂xτ ≡ eτ/R, R being equal to ρ on the
trajectory. We are lead to this final definition,

Definition 2. The magnetic moment µ is propotional by (m/e) to the canonical momen-
tum associated to the gyrophase. The gauge function of the Guiding Centre transform is
m/e times the product of the magnetic moment and of the gyrophase.

4.3.1 The Guiding Centre Transform

We start from the Lagrangian description of the charged particle dynamics, which is
described in appendix C. The Lagrange form l of classical electrodynamics is exact, so
there exists a Poincaré-Cartan 1-form

$ = −p dx + ε dt (4.34)

so that l = d$. The form of Poincaré-Cartan involves the potentials A and Φ (see
section 4.1): indeed p and ε are the canonical momentum and canonical energy,

p
def
= w + eA(t,x) ε

def
= mγ + eΦ(t,x)

So we are shifting to a gauge-dependent description. However, as it can be seen by
definition 2, the gauge freedom is a key element to introduce the magnetic moment.

We call GC transform TGC the map conjugating the original phase space coordinates
{t,x,w} to the new set of coordinates {T,X, ζ, µ, ε}, and is chosen in such a way that

TGC : $ → $GC , $GC = P 0 dT − P dX + m
e
µ dζ (4.35)

where P 0 and P are functions of {T,X, ε, µ}, defined by

P (T,X, ε, µ) = W (T,X, ε, µ) + eA(T,X)

P 0(T,X, ε, µ) = W 0(T,X, ε, µ) + eΦ(T,X)
(4.36)

Here W and W 0, respectively the GC kinetic moment and kinetic energy, are also fields.
According to definition 2, the magnetic moment µ appears in $GC as proportional to
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the momentum canonically associated to the gyrophase, and the term (m/e)µζ can be
interpreted as the gauge function of the GC transform.

We compute

d$GC = dε ∂εP
0 ∧ dT + dµ ∂µP

0 ∧ dT − e dXEc ∧ dT − dε ∂εP ∧ dX +

− dµ ∂µP ∧ dX + e dX
[[
Bc

]]
dX + m

e
dµ ∧ dζ (4.37)

where we introduced again the “canonical magnetic field” (e/m)Bc
def
=
[[
∇
]]
P and the

“canonical electric field” (e/m)Ec
def
= −∂XP 0 − ∂TP , as in equations (4.16). However, the

fields in equation (4.39b) are evaluated at the guiding centre coordinates {T,X} while
those in equation (4.17) at the particle coordinates {t,x}.

We look for a vector field C = Ṫ ∂T + Ẋ∇ + ζ̇∂ζ + µ̇∂µ + ε̇∂ε in the null space of
d$GC

7,

d$GCC = dε ∂εP
0 Ṫ − dT ∂εP

0 ε̇ + dµ ∂µP
0 Ṫ − dT ∂µP

0 µ̇ − e dXEc Ṫ +

+ e dT ẊEc + e dX
[[
Bc

]]
Ẋ − dε ∂εP Ẋ + dX ∂εP ε̇+

− dµ ∂µP Ẋ + dX ∂µP µ̇ + m
e
dµ ζ̇ − m

e
dζ µ̇ = 0

The expression above is equivalent to the five equations

µ̇ = 0 (4.38a)

− ṪEc +
[[
Bc

]]
Ẋ + ε̇∂εP = 0 (4.38b)

−EcẊ + ε̇∂εP
0 = 0 (4.38c)

m
e
ζ̇ = −Ṫ ∂µP 0 + Ẋ∂µP (4.38d)

P 0 ∂εP
0 − P ∂εP = 0 (4.38e)

where we have deleted a term in (4.38b) as a consequence of (4.39a). We have to check
the compatibility of equations (4.38b) and (4.38c). We multiply the former scalarly by
Ẋ and the latter by Ṫ ,

−Ṫ EcẊ + ε̇ Ẋ∂εP = 0, −Ṫ EcẊ + ε̇ Ṫ ∂εP
0 = 0

So, they are compatible in virtue of equation (4.38e), or equivalently, the latter equation
is redundant in system (4.38).

Finally, we have the freedom to set Ṫ = 1 to get the equations of motion with respect

7Here the overdot denotes derivation with respect to some parameter, say τ . As we will see, we have
the freedom to set Ṫ = 1, so that this parameter has the meaning of (GC) time, but also Ṫ = γ, so that
the parameter may be identified with proper time. See also the appendix C.2.
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to the GC time. By setting also V ≡ dX/dT , we find

dµ

dT
= 0 (4.39a)

−Ec +
[[
Bc

]]
V +

dε

dT
∂εP = 0 (4.39b)

−EcV +
dε

dT
∂εP

0 = 0 (4.39c)

m

e

dζ

dT
= − ∂µP 0 + Ẋ∂µP (4.39d)

P 0∂εP
0 − P ∂εP = 0 (4.39e)

As a final note, we can confront equation (4.39b) with equation (4.17). Here we have a
term proportional to the derivative in time of the single-particle energy, which doesn’t
appear in the Eulerian reduction. But in the Eulerian reduction we set dα/dt = 0, and
one of the α had the meaning of energy. If we consider a static system, where we would
find dε/dT = 0, the equations would be the same. So, not only in both reductions the
velocity of the particle is replaced by a field, but we also find that this field obeys in both
cases to the same equation.

4.3.2 From Lagrangian to Hamiltonian Formulation

In this section we build a Poisson structure for the system (4.39). on the phase space X of
coordinates {X, ζ, µ ε}. A generical overview of the method can be found in the appendix
C, section C.1. The lagrange form l = d$GC is split as

l = σ − h ∧ dT

where σ is the symplectic 2-form and does not contain terms proportional to dT , and h
the “Hamiltonian 1-form”. From the Lagrange form (4.37) we get

σ = −dε ∂εP ∧ dX − dµ ∂µP ∧ dX + e dX
[[
Bc

]]
dX + (m/e) dµ ∧ dζ (4.40)

h = e dXEc − dε ∂εP
0 − dµ ∂µP

0 (4.41)

Then we search for a (Poisson) bivector πGC which “inverts” σ in the sense that
σZπGC = Z for any vector field Z on X. Then the Hamiltonian vector field is given
by hπGC . The inverse of σ exists if σ is closed and with zero kernel. Having defined the
Hodge differential on X by

dX = dX∂X + dζ∂ζ + dµ∂µ + dε∂ε

and then the closedness of σ on X follows from nothing that σ = dX
(
m
e
µζ − P dX

)
. The

candidate πGC has to solve the equations

(σ∂X)πGC = ∂X (σ∂ζ)πGC = ∂ζ (σ∂ε)πGC = ∂ε (σ∂µ)πGC = ∂µ (4.42)

We consider an ansatz for πGC ,

πGC = ξ∂ε ∧ ∂ζ + ∂XA∂X + ∂ε ∧ z∂X + e
m
∂µ ∧ ∂ζ + ∂ζ ∧ s∂X (4.43)
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with vector fields z and s, a scalar function ξ and a skew-symmetric matrix A to be
determined. In principle we may also include a term coupling µ and X, and another
one coupling µ and ε, but they turn out to be necessarily null, so we omitted them. We
compute

σ∂X = e dX
[[
Bc

]]
− dµ ∂µP − dεP

σ∂ε = dX∂εP σ∂ζ = m
e
dµ

σ∂µ = dX∂µP − m
e
dζ = ∂µP dX − e−1dζ

By plugging (4.43) and the above into equations (4.42), we get

σ∂XπGC = −e
[[
Bc

]]
A∂X + e

[[
Bc

]]
z∂ε + e

[[
Bc

]]
s∂ζ − e

m
∂µP ∂ζ − ξ∂εP ∂ζ − ∂εPz∂X

σ ∂ε πGC = ∂εPA∂X − ∂εPz∂ε − ∂εPs∂ζ

σ∂ζπGC = m
e
e
m
∂ζ = ∂ζ

σ∂µπGC = ∂µPA ∂X − ∂µPz∂ε + ∂µPs∂ζ + ∂µ

which are equivalent to the following

− e
[[
Bc

]]
A − ∂εP z = I (4.44a)[[

Bc

]]
z = 0 (4.44b)

ξ ∂εP + (e/m)∂µP − e
[[
Bc

]]
s = 0 (4.44c)

∂εP z = −1 (4.44d)

∂εPA = 0 (4.44e)

∂εPs = 0 (4.44f)

∂µPA − (m/e)s = 0 (4.44g)

∂µP z − (m/e)ξ = 0 (4.44h)

∂µPs = 0 (4.44i)

The last equation is automatically satisfied as a consequence of (4.44g). Consider the
following ansatz:

A =
m

eBc

[[
bc
]]

z = −ηbc ∂εP =
bc
η

(4.45)

for some unknown scalar function η, and having defined bc
def
= Bc/Bc. Now equations

(4.44a), (4.44b), (4.44d) and (4.44e) are satisfied. Equations (4.44g) and (4.44h) give
then the following definitions

s = −(1/mBc)
[[
bc
]]
∂µP (4.46a)

ξ = (e/m)ηbc∂µP (4.46b)
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As a consequence (4.44f) is satisfied. Finally, equation (4.44c) gives

e −1
mBc

[[
bc
]]2
∂µP −

e

m
∂µP −

e

m
∂εPz∂µP = 0(

−
[[
bc
]]2 − I + bcbc

)
∂µP = 0

which is an identity. We end up with the following bivector,

πGC =
e

m
η
(
bc∂µP

)
∂ζ ∧ ∂ε +

e

m
∂µ ∧ ∂ζ − η ∂ε ∧ bc∂X +

+
1

eBc

∂X
[[
bc
]]
∂X + ∂ζ ∧

∂µP
[[
bc
]]

mBc

∂X (4.47)

As a final note, we underline that the condition for the existence of (4.47) is that Bc 6= 0.
This is the condition for σ to have empty kernel.

Hamilton’s equations

With the Hamiltonian form (4.41), and the bivector (4.47) we find the Hamiltonian vector
field

hπGC = η ∂εP
0 bc∂X −

e

m
∂µP

0 ∂ζ + Ec

[[
Bc

]]
B2
c

∂X +

+
e

m
η bcEc∂ε −

e

mB2
c

(
Ec
[[
Bc

]]
∂µP

)
∂ζ + η

e

m
∂εP

0
(
bc∂µP

)
∂ζ

which is equivalent to the equations of motion

dX

dT
= η ∂εP

0 bc +
Ec
[[
Bc

]]
B2
c

dζ

dT
=

e

m

(
η∂εP

0 bc∂µP +
Ec
[[
Bc

]]
∂µP

B2
c

− ∂µP
0

)
dε

dT
= η bcEc

dµ

dT
= 0

As η is free, we define
η∂εP

0 = Vb
def
= bcV (4.48)

and the system above is reduced to

dX

dT
= Vbbc +

[[
Ec
]]
Bc

B2
c

(4.49a)

dζ

dT
=

e

m

(
V ∂µP − ∂µP

0
)

(4.49b)

dε

dT
=

Vb bcEc
∂εP 0

(4.49c)

dµ

dT
= 0 (4.49d)
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The compatibility of the system (4.49) with (4.38) is clear, after one considers the
following: from the ansatz (4.45) and the definition (4.48) we get

∂εP = bc∂εP
0/Vb (4.50)

then, if we multiply equation (4.38b) on the left by
[[
Bc

]]
we get

V = Vbbc +

[[
Ec
]]
Bc

B2
c

(4.51)

and if this result is plugged into dX/dT = V , it leads to equation (4.49a).
Finally, we stress the analogy between equation (4.51) and equation (4.32), which is an

exact equation, but only for constant and uniform fields, and between equation (4.51) and
equation (3.13) of Cary and Brizard [15]: in that work, instead of the canonical fields, the
"starred" fields E∗,B∗ appear; in the light of this new approach they can be interpreted
as a first order approximation to the canonical fields. Or, the canonical fields are the
resummation of any perturbative expansion.

4.3.3 Conservation of the Lagrangian

The lagrangian function L is defined by $ = Lds, s being the proper time, and for the
charged particle, by using (4.34),

L = −m − e
(
Φ(t,x)u0 − A(t,x)u

)
where u0 ≡ dt/ds = γ and u def

= dx/ds = γv. Instead by $GC = LGCds we get

LGC = −W 0U0 + UW − e
(
Φ(T,X)U0 − A(T,X)U

)
+ µ

m

e

dζ

ds

A reasonable hypothesis is to ask invariance in form of the Lagrangian [23]: we want the
new trajectories to describe again a charged particle. This is achieved by imposing

m

e
µ
dζ

ds
= −m − U0W 0 + WU

Now we recall equation (4.38d) and we inject it in the above, with the result

−µ
(
U∂µW − U0∂µU

0
)

= −m + U0W 0 −UW

log
(
(W 0)2 −WW −m2

)
= log

(
e k(T,X)µ

)2

W 0 =

√
m2 + WW + e2 k2(T,X)µ2 (4.52)

for some real k = k(T,X) which is constant with respect to µ and also to ε (as a
consequence of equation (4.38e)).

In special relativity “massive particles” are point particles obeying the dispersion rela-
tion w0 =

√
m2 +ww. Equation (4.52) implies that in the limit µ→ 0 the GC becomes

a massive particle, otherwise it is not, and the magnetic moment measures this difference.
From equation (4.52) we can compute

∂µW
0 = V ∂µW +

k2µ

W 0

62



By plugging the above into equation (4.39d) or into equation (4.38d) we respectively get

dζ

dT
= − e

m

k2µ

W 0
⇐⇒ dζ

ds
= − e

m
k2µ (4.53)

and the latter equation defines the gyrofrequency ω def
= −(e/m)k2µ. We may finally rewrite

W 0

m
=

√
1 +

WW

m2
− e

m
ω µ

4.3.4 A hint for future developments

In the Hamiltonian description, we would involve V rather than U . If we assume, by
analogy with the particle description, that W = W 0V , we may rewrite equation (4.52)
as

(W 0)2 = m2 +WW + e2k2µ2 =⇒ W 0 =

√
m2 + e2k2µ2

1 − V V
≡ γ

∣∣
V

√
m2 + e2 k2 µ2

or, upon setting κ ≡ ek/m,
U0 = γ

∣∣
V

√
1 + κ2 µ2

In terms of metric, U0 = dT/ds; if we also define dτ =
√

(e/m)µ dζ, then the last formula
can be rewritten in the following suggestive way,

dT 2 = ds2 + dX2 + dτ 2 (4.54)

to be confronted with the usual formula of special relativity (see [50])

dt2 = ds2 + dx2

The latter says that the (infinitesimal( time interval experienced by a particle in the
lab frame is the sum of a (infinitesimal) displacement in space plus a (infinitesimal)
increment of the proper-time. Equation (4.54) says that the infinitesimal time interval
experienced by a particle in the GC frame is proportional to the sum of the (infinitesimal)
GC displacement, plus the (infinitesimal) proper-time increment, plus the (infinitesimal)
gyrorotation. Equation (4.54) may also be read as the definition of a metric over a 5-
dimensional space. For more quantitative considerations on this last aspect, see [23].

4.4 Conclusions
In this chapter we studied two possible reduction theories for the relativistic charged
particle dynamics. They are methods to reduce the number of degrees of freedom of this
dynamical system.

One is Guiding Centre theory, which has been studied for decades in plasma physics. In
this theory we aim at associating a pair of hamiltonian action-angle coordinates µ, ζ to the
(fast) gyrating motion of a charged particle around a magnetic field line. The remaining
degrees of freedom describe the (slow) motion of a point sticking to the field lines (the
Guiding Centre). We focused on a novel non-perturbative and relativistic approach,
introduced in [22], [23]. Emphasis is put not on the explicit form of the GC transform,
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which we don’t claim to know8; instead we impose some properties of the new Guiding
Centre coordinates, and deduce a new Lagrange form. The Guiding Centre transform in
then exact, but the drawback is that we don’t know its explicit form, nor the relation
between the particle coordinates and the GC coordinates. However, it has been shown [23]
that, if the non-perturbative Lagrange form is expanded in the inverse of the magnetic
field strength, at first order the result coincides with those of the perturbative approach.
We have computed for the first time the new equations of motion, and their Poisson
structure.

We also presented an entirely new theory, that we called the Eulerian reduction. In
this second case we aim at finding the vector field associated to the Lorentz equation, so
that half of the degrees of freedom of the problem is cut away. It was natural to build
this theory as a change of variable from the particle coordinates {t,xw} to a new set
{t,x,α} for which we have also computed the Poisson structure. The α are constants,
with values determined by the initial data on the velocity. We mention (see section 4.2.1
that very similar equations were found in [22], in what was called the “Guiding Particle”
solution of motion.

Both after the Eulerian and GC reductions, the kinetic momentum w is a field obeying

w =
(Bcw)Bc +

[[
Ec
]]
Bc

|Bc|2

Unfortunately, this is not an algebraic relation, but a very complicated Partial Differential
Equation. We recall that in the two cases the fields are evaluated at different coordinates:
at the particle coordinates for the Eulerian velocity, at the GC coordinates for the GC
velocity. Nevertheless, the fact that the same equation appears suggests that some relation
exists between the two theories; understanding this relation may be the key to fill the gaps
still affecting both of them.
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5

Conclusions and Future Perspectives

So, the point of this work was to propose a perturbation theory for non-canonical Poisson
systems. Many dynamical systems in physics are Poisson systems. Classical mechanics
is a very particular example of Poisson system, so particular that it is called “canonical”.
The KAM theorem is a way to perform perturbation theory in classical mechanics, with
nice mathematical properties. Even when it is possible to turn a Poisson system into a
canonical one, this may require cumbersome calculations and/or restrictive hypothesis,
so that being able to work in the original setting would be desirable. Extensions of the
KAM theorem have already been provided for classical mechanics without action-angle
variables [20], presymplectic mechanics [2], vector fields [8]; a conjecture for Lie algebroids
has also been proposed [1]. We took inspiration from the KAM theorem to build a
first order perturbation formula for Poisson systems (equivalent to what is commonly
called “iterative lemma” in KAM theory); we applied it to study the dynamics of a non-
autonomous Top, and we showed that our formula could be iterated to provide a full KAM
theorem. Then, in an effort to apply our method also to classical electrodynamics, we
studied the dynamics of a charged particle in a given electromagnetic field. This material
was divide into three chapters, and we tried to make each of them self-contained, so here
we will focus only on the links between the different chapters, and the most interesting
hints for future developments.

In chapter 2 we showed how to build a Lie series to perform a first order perturbation
reduction on a generical Poisson algebra V. We start from a derivation of H and we split
it into a “main part” H0, which preserves a given subalgebra B ⊆ V, and a “perturbation”
{V }; then we conjugate the given system to a second system, which preserves B at first
order in the magnitude of V . To build the conjugation, we need a kind of right inverse Γ
of the Hamiltonian, that can be defined “outside” of B. To bound this operator a scale of
Banach norms was needed; we don’t know any general method to build them outside the
classical setting, so we required generically the existence of such a metric structure. An
iteration mechanism to recover a full KAM theorem was described qualitatively, and it
was made quantitative in the examples of chapter 3. The most important development of
this part would be to identify an algorithm to build the “right inverse” Γ at each iteration
of the “main step map”; in principle this would also provide a sequence of functions to
bound their norm at each step. A second improvement would be to provide a generical
scale of Banach norms for Poisson algebras. With these elements it should be possible to
build quantitatively the iteration in the generical setting.

In the application to the symmetric Throbbing Top, we proposed an awkward expres-
sion for the right inverse Γ, which requires the unperturbed Hamiltonian. When compared
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to the clean expression of the same operator in the context of the non-periodic Top, we
feel that a more straighforward expression for Γ is waiting to be unveiled; it may also
shed some light on the general iteration process and also on a general method to build
the right inverse, adapted to B but not to the Hamiltonian.

In the study of the non-periodic Throbbing Top, we see that by our algebraic pertur-
bation method we managed to conjugate a non-autonomous system to an autonomous
one. This creates a parallel with Floquet theory, and also a starting point (hope?) for
an extension of the latter to non-periodic systems. A major point needing improvement
here, is the very rough estimates for the Banach norms; we couldn’t apply the common
tools of KAM theory: neither weighted Fourier norms, as we don’t have a Fourier series in
time, nor the Cauchy estimates, because they require analiticity in time, so they exclude
the constant functions, which are exactly the set that we were targeting.

In chapter 4 we focused on the non-perturbative approach to Guiding Centre theory
[23], which we consider a major novelty in the field; it sheds new light on the physical
meaning of the Guiding Centre reduction, leaving aside the cumbersome calculations and
heavy mathematical artillery that often come together with the more widespread approach
of Littlejohn [15]. It allows to go beyond the perturbative expansion, which convergence is
a major issue, often ignored [14]. And it is naturally set in a relativistic framework, which
is not the case for the perturbative approach. The major drawback is that the explicit form
of the Guiding Centre trasform has not been provided yet, so that the relation between the
new coordinates and the old ones is not known; one interesting development would be to
build it, at least in some simple example. At the same time, the Guiding Centre velocity
is the solution of a partial differential equation involving the explicit expressions of the
electromagnetic fields: it may be possible to work out the Guiding Centre coordinates
directly from this solution, so that their relation with the particle coordinates could be
deduced a posteriori. Then, again, the most interesting development would be to provide
working examples.

“ If you had really started this affair, you might be
expected to finish it. But you know well enough now that
starting is too great a claim for any, and that only a small

part is played in great deeds by any hero. ”
Gandalf, in The Lord of the Rings by J. R. R. Tolkien
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A

Some mathematical tools

A.1 About Lie Algebras
For the contents of this section the main reference is [46].

A Lie algebra is a vector space V over a field K with a bilinear operation { , } which
is alternating (here V,W,Z ∈ V)

{V,W} = −{W,V }

and satisfies the Jacobi identity

{V, {W,Z}} + {W, {Z, V }} + {Z, {V,W}} = 0

This operation is called a Lie bracket.
If on V we define both a Lie bracket and an associative product

(A ·B) · C = A · (B · C)

such that the Leibnitz identity holds,

{A, B · C} = {A,B} · C + B · {A,C}

then V is a Poisson algebra (and the bracket is called Poisson bracket).

The dual of V is the set V∗ : V→ K. The space of endomorphisms of V is defined by

EndV = V⊗ V∗ (A.1)

This space is a Lie algebra on its own with the bracket given by the commutator [ , ],

[F ,G] = FG − GF , F ,G ∈ EndV

The space of derivations of V is defined by

derV def
= {D ∈ EndV s.t. ∀V,W ∈ V,

D{V,W} = {DV,W} + {V,DW} } (A.2)

and it’a Lie subalgebra of EndV.
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For any element F ∈ V, we can consider the application “bracket with F ” which
is an element of derV which maps any G ∈ V into {F,G} ∈ V. Analogously, for any
F ∈ derV we can consider the application “bracket with F ” which, in this case, is an
element of der derV and maps any G ∈ derV into [F ,G] ∈ derV. We introduce the
following notation for this applications: we write the bracket with a single argument. So
{H} ≡ {H, · } and [H] ≡ [H, · ]. In the manuscript we adopted directly this notation,
and we nearly never wrote the bracket with two arguments. The image of “bracket with
F ” is always a derivation; any derivation built in this way is called an inner derivation.
A derivation which is not inner is called outer.

For any derivation A the operator

eA ≡
∞∑
n=0

An

n!
(A.3)

is called a Lie series.

A dynamical system on the algebra is given by{
Ḟ = HF
F (0) = F0

where H is a derivation, either inner or outer. Its formal solution is F (t) = etHF0, and
etH is called the flow of H.

There exists an application ∧ on V, called exterior product or wedge product which
acts in the following way: if we call “vectors” the elements of V, then the exterior product
of two vectors is a “bivector”,

v, w 7→ v ∧w

Its name is due to the following: if σ is an element of V∗, then it maps a byvector into
a vector

σ(v ∧w) = (σv)w − (σw)v

The exterior product is alternating by definition.

We say that the algebra V is metric if there exists an application

¯. . . : V→ V

called the transposition, and with the property

v̄ w = w̄ v ∀v, w ∈ V (A.4)

If the transposition is injective, it is possible to identify

V̄ = V∗

Moreover, we say that the transposition has the Killing property if

v̄{v} = 0 (A.5)
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A.1.1 Metric structure on the algebra

The main source for this section is the book by Reed and Simon on functional analysis [80].
An expression like (A.3) has only a formal meaning, unless we introduce a quantitative

way to define a notion of convergence. This can be done by a introducing a norm. A
(Banach) norm is a function ‖ ·‖ : V→ R+ (where R+ are the positive real numbers) with
properties

‖A + B ‖ ≤ ‖A‖ + ‖B‖ (A.6)
‖λA‖ = |λ|‖A‖ (A.7)
‖A‖ = 0 =⇒ A = 0 (A.8)

A function from V to R+ which satisfy only properties A.6 and A.7 is called a seminorm
instead.

Most of times it’s impossible to bound from above a derivation by means of a norm.
By “bounding a derivation” D ∈ derV we mean that ∀A ∈ V,

‖DA‖ ≤ ‖A‖

This becomes possible if instead of a norm, we consider a scale of norms {‖ · ‖s}s∈I,
where s is called an “index” and I is some set, usually the positive integers or the positive
reals. For an algebra V with a scale of Banach norms indexed by s ∈ I we introduce the
notation

Vs = {f ∈ V s.t. ‖f‖s ≤ ∞}

and we assume by convention that

W ∈ Vs1 =⇒ W ∈ Vs2 ,∀s2 < s1

We call {Vs}s∈I a scale of Banach spaces.
We say that a derivation D is bounded with loss if

‖DA‖s−δ ≤ α(δ)‖A‖s

for any A ∈ Vs, s, δ ∈ I.

Example 1. A paradigmatical example is the following [41]: on the complex plane C we
define the sets

Br(0)
def
= {z ∈ C s.t. |z| < r}

Then, on the space C∞(C) we consider the scale of norms (indexed by r ∈ R+)

|f(z)|r
def
= sup

z∈Br
|f(z)|

The Cauchy inequality states that |∂zf(0)| ≤ 1
r
|f(z)|r from which we get the upper bound

|∂zf |r−δ ≤
1

δ
|f |r

So by loosing a “layer” of width δ of the original domain, it was possible to bound from
above the derivation operator on C.
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A.1.2 Non-autonomous Hamiltonian Systems

Here we discuss a general method to add an explicit time-dependence to a dynamical
system on a Lie algebra; it is an alternative to the commonly employed methods of
autonomization [31] or contact structures [10].

Let K be an additive group, and consider the following space,

Ṽ def
= C∞(K 7→ V) ∼= V⊗ C∞(K→ R)

Ṽ 3 v(·) : t 7→ v(t) ∈ V , ∀t ∈ K

The variable t ∈ K will represent time, so K = T (a torus) if we consider a periodic
time-dependence, or K = R for a non-periodic time-dependence.

We extend the bracket of V to Ṽ by the following rule,

∀v, w ∈ V, [v, w](t) ≡ t 7→ [v(t), w(t)]

and so Ṽ inherits the Lie-algebra structure of V.
The operator ∂t : Ṽ→ Ṽ, defined by

∂t : v(t) 7→ dv(t)

dt

is a derivation of Ṽ: infact, by the linearity of ∂t and the bilinearity of { , }, we have

∂t{v, w}(t) =
{dv(t)

dt
, w(t)

}
+
{
v(t),

dw(t)

dt

}
, ∀v, w ∈ V

Finally, we can define a non-autonomous dynamical system on Ṽ,

Ḟ = HF + ∂tF (A.9)

This choice is made for coherence: if F is time independent, then we have the same
dynamics of V, while ṫ = 1 as one would naturally expect.

A.1.3 The Lie-Poisson theorem

The Lie-Poisson theorem states that, if V is a Lie algebra with some bracket [ , ], then
the space C∞(V∗) is a Poisson algebra, called the “Lie-Poisson” algebra associated to V,
with an associative product ◦ and a Lie bracket { , }. We propose a constructive proof
of this theorem. It is only a formal proof, as we won’t introduce any metric structure to
study the convergence of the series involved. This proof also enlightens an analogy with
a bosonic Fock space in quantum mechanics.

We denote by V∗ the dual space of V, i.e. the space of linear functionals on V,

V∗ def
= {σ : V 7→ R, σ linear} (A.10)

Then the double dual space of V is the dual space of V∗,

V∗∗ def
= C∞(V∗) ≡ {f : V∗ → R} (A.11)

It is easy to show that V ⊂ V∗∗; indeed, one can build the map

V 7→ V∗∗ : v 7→ v̌ (A.12)

v̌(σ)
def
= σ(v), ∀σ ∈ V∗
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We call V̌ the image of the map (A.12); moreover, for the rest of this section, we’ll denote
by small letters (v, w, . . . ) elements of V and by the same checked letters (v̌, w̌, . . . ) their
images by the map (A.12).

On V̌ we can define an associative product ◦ by

(v̌ ◦ w̌)σ
def
= σ(v)σ(w)

where, on the right, we have the product of two real numbers. The new product ◦
inherits linearity and commutativity from the product on R; moreover it is associative by
construction:

((v̌ ◦ w̌) ◦ ž)σ = σ(v)σ(w)σ(z)

On V̌ we can also define a Lie product {·} by(
{v̌}w̌

)
σ

def
= σ([v]w) (A.13)

The properties of linearity, antisymmetry and Jacobi identity of {·} follow from those
of [ , ] and from the linearity of σ. Finally, we have the freedom to impose the Leibnitz
property of {·} with respect to ◦ by construction:

{v̌ ◦ w̌}ž def
= v̌ ◦ {w̌}ž +

(
{v̌}ž

)
◦ w̌

Next, we define the space of “n-vectors” as the n-th power of V̌ by itself,

V̌ ◦n = {v̌1 ◦ v̌2 ◦ · · · ◦ v̌n; vi ∈ V̌ i = 1, . . . , n}

The space

V̂ ≡
∞⊕
n=0

V̌ ◦n (A.14)

is the algebra of sums of n-vectors; we may call them “polynomials”. This space, with the
product ◦ and {·}, is the Lie-Poisson algebra.

A.2 Complexification of a Lie Algebra
Let V be a Lie algebra with bracket { }. The complexification of V is defined as the set

VC def
= V⊕ V

with the rules

{v ⊕ w}(x⊕ y)
def
= ({v}x − {w}y)⊕ ({w}x + {v}y) (A.15)

(v ⊕ w)∗
def
= v ⊕ (−w) (A.16)

I(v ⊕ w)
def
= (−w)⊕ v (A.17)

The second and third rule, in particular, agree with the usual definition of transposition
and imaginary unit of the complex numbers. If V is metric with the Killing property, the
complexification V̂ is endowed with the transposition

v ⊕ w = v̄ ⊕ w̄ (A.18)
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We check that the property (A.4) is satisfied,

v ⊕ w (x⊕ y) = (v̄ ⊕ (−w̄))(x⊕ y) = v̄x − w̄y

x⊕ y (v ⊕ w) = (x̄⊕ (−ȳ))(v ⊕ w) = x̄v − ȳw

We can check that the complexified algebra has also the Killing property (if the original
algebra does),

v ⊕ w {v ⊕ w} (x⊕ y) = (v̄ ⊕ (−w̄)){v ⊕ w}(x⊕ y) =

= (v̄ ⊕ (−w̄)({v}x − {w}y)⊕ ({w}x + {v}y) = − (v̄{w} + v̄{w})y (A.19)

but by the Killing property on V we have

v + w{v + w} = 0 = v̄{w} + w̄{v}

so also equation (A.19) equals 0.

A.3 About Rn

We denote by boldletters vectors on Rn; their set is again Rn. The space Rn has a canonical
metric structure, that we will denote by an overbar. As a consequence, Rn∗ ∼= Rn; here
Rn∗ is defined according to (A.10), and its elements are called covectors. For example, if
v ∈ Rn, then

v =

v1
...
vn

 , w = (w1, . . . , w3), wv = w1v1 + . . .+ w3v3

A matrix M is an object mapping a vector into a vector, so it can be represented as
the justaposition of a vector and a covector,

M = a1a2, a1,a2 ∈ Rn

The derivative operator ∂x is defined by

v∂xf = lim
t→0

f(x+ tv)− f(x)

t
, ∀f : Rn∗ → R

The result is a vector: in fact we act on ∂xf with a covector v to get a scalar.

A.3.1 Vector fields

Let W be an affine space, called the phase space. We call vector field an element of
C∞(W → Rn). All of the notation above evidently applies to vector fields as well. We
can also derive a vector field:

v∂xw = lim
t→0

w(x+ tv)−w(x)

t
, ∀w ∈ C∞(W→ Rn)

In this case, the result is a matrix
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A.3.2 Coordinate systems on Rn

A coordinate system on Rn is a set of n functions {qi}ni=1. They define the basis vectors
by ∇qi. If these basis vectors are orthogonal to each other, we say that {qi}ni=1 is a system
of orthogonal coordinates. Usually (and in particular in this dissertation) orthogonal
coordinate systems are preferred. The basis vectors have not unit norm,

∇qi∇qj = λ2
i δi,j

where δij is the Kronecker delta. Unit vectors are defined by

ei
def
= λ−1

i ∇qi

The 1-forms coincides with covectors on Rn; their set is denoted by Λ1(Rn) and it has a
canonical basis {dqi}i∈N

dqi
def
= λ−1

i ∇qi
so that one has dqi ej = δij. A directional derivative can be defined by

∂i
def
= λai ∇qi∇

with a to be determined by the condition

δij
!

= ∂iqk = λai∇qi∇qk = λa+2
i δik =⇒ a = −2

so
∂i ≡ λ−2

i ∇qi∇ ≡ λ−1
i ei

For a basis of unit vectors, the completeness relation holds,

I =
n∑
i=1

ei ei

Usually the cartesian coordinates are chosen as “fundamental”, and different coordinate
systems are defined starting from them. The cartesian coordinates, usually denoted by
{xi}ni=1, are defined by λi = 1, ∀ i ∈ {1, . . . n}.

A.3.3 A special case: n = 3

R3 is a Lie algebra, the bracket being the cross product,

[[
v
]]
z =

v2z3 − v3z2

v3z1 − z3v1

v1z2 − v2z2


The bracket is usually denoted by v ×w or also by v ∧w, but we denote it by a double
square bracket

[[
·
]]
to underline that it’s a Lie bracket. And coherently with the notations

adopted in the previous sections, we consider the application “bracket with v” and denote
it by the brackets with a single argument. It is known that the image of this map is
explicitly given by a matrix,

v 7→
[[
v
]]
≡

 0 −v3 v2

v3 0 −v1

−v2 v1 0


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The rule for the double cross product reads[[
v
]][[
w
]]
z = wvz − vwz (A.20)

In particular, for a unit vector e,

e2 = ee − I (A.21)

With the latter result it is possible to evaluate

exp
(
− t
[[
e
]])

=
∞∑
k0

tk

k!

[[
e
]]k

=
∞∑
n=0

t2n

(2n)!
(ee − I)n +

∞∑
n=0

t2n+1

(2n+ 1)!
(ee − I)

[[
e
]]

It is possible to prove by induction,

(ee − I)n = (−1)n+1ee + (−1)nI

And so

exp
(
− t
[[
e
]])

=
∞∑
n=0

(−1)nt2n

(2n)!
I) +

∞∑
n=1

(−1)n+1t2n

(2n)!
ee +

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!

[[
e
]]

=

= cos(t)(ee − I) + sin(t)
[[
e
]]

+ ee

In the case of a vector without unit norm, equation (A.21) is replaced by

e2 =
ee

ee
− I

By inserting the nabla into (A.20), we get the followig rules[[
v
]][[
∇
]]
z = z′v − z′v (A.22)[[

∇
]][[
∇
]]
z = ∇ div z −4z (A.23)

Cartesian coordinates on R3 are usually denoted by x, y, z; we use the notations
e1, e2, e3 for the corresponding unit vectors.

Often used on R3 are also the cylindrical coordinates R, τ, z. As we wrote above,
different coordinate systems are defined starting from the cartesian one; in this case

R =
√
x2 + y2, tan τ =

y

x
, z = z

The cylindrical unit vectors are denoted by eR, eτ , ez. One has λR = 1, λz = 1 and
λτ = R so that ∇τ = R−1eτ .
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B

A WKB ansatz for equation (3.20)

In this appendix we describe our efforts to try to solve equation (4.14), by the so-called
“WKB approximation”. The latter is a method to cope with singular perturbations, con-
ceived in the 1930ies to compute the semiclassical limit of Schrödinger equation [82].

We speak of singular perturbation when a differential equation has a small parame-
ter which multiplies the derivative of highest order; when the parameter goes to 0, the
dimension of the space of solutions is reduced1. In the case of equation (4.14), the small
parameter is q def

= 1/(eB0), where B0 is a constant and stands here for the “typical” mag-
netic field strength, so that the limit eB0 → ∞ means a very strong field, so that the
particle sticks to a field line: the usual picture of translation plus gyration is reduced only
to translation.

In quantum mechanics, Schrödinger equation is also a singular perturbation (the small
parameter being ~). However, we have two extra difficulties with respect to the original
development of the method: we deal with a partial differential equation, which is also
a vectorial equation, and the derivative of highest order is highly non-linear (being the
convective derivative). In the literature, a WKB theory for partial differential equations
was proposed in [62]. Instead, we don’t know about a general method for a WKB solution
for vectorial equations.

We start by considering the following decomposition

W = bΦ + µ eλB/q B2u (B.1)

where u is a unit norm vector, in the plane perpendicular to b, and B def
=
[[
b
]]
; µ, λ and Φ

are scalar quantities, which for the moment are left free. A projection of equation (4.14) on
the direction b of the field, and on the plane perpendicular to it, is achieved by multiplying
the equation on the left respectively by b and by B. The results are{

b(W ∂x)W = 0

qB(W ∂x)W = BµeλB/qB2u
(B.2)

1A very simple analogy exists with algebraic equations. The solutions of a second order algebraic
equation ax2 + bx+ c = 0 are

x± =
−b±

√
b2 − 4ac

2a

In the limit a→ 0, one finds x+ → −c/b, which in fact is the solution of bx + c = 0. However, x− →∞.
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By injecting the decomposition (B.1) in the r.h.s. of both equations we get
Φ(b∂x)Φ + µ(reλB/qB2∂x)Φ = 0

ΦB(W ∂x)b − eλB/q
(
Bu(W ∂x)µ− µ

q
B2u(W ∂x)λ

)
=

Bµ

q
eλB/qB2u

(B.3)

To solve the equations above, we expand Φ =
∑

n Φnq
n and µ =

∑
n µnq

n,

N∑
n=0

Φn(b∂x)ΦN−n +µn(rB2e−λB/q∂x)ΦN−n = 0

N∑
n=0

(
ΦnB(WN−n∂x)b− eλB/qBu(WN−n∂x)µn

)
+

+
N+1∑
n=0

eλB/qµnB2u(WN+1−n∂x)λ = BµN+1e
λB/qB2u

(B.4)

Can we get a recursive algorithm to compute all the quantities involved? We explicitly
write the first orders. The lowest order corresponds to N = −1,

µ0e
λB/q((W 0∂x)λ − B

)
B2u = 0

which is a scalar equation with possible solutions µ0 = 0 or (W ∂x)λ = B. Then for
N = 0 the equations (B.6) read

(b ∂x)
Φ2

0

2
+ µ0 r B2 eλB/q Φ0 = 0

Φ0 B (W ∂x) b − µ0 e
λB/q(Bu(W 0 ∂x)µ0 + B2 u (W 1 ∂x)λ

)
+

+ eλB/qµ1 B2u (W 0 ∂x)λ = Bµ1 e
λB/qB2 u

which means 3 more constraints: a scalar equation and a vectorial equation in two di-
mensions. With the first two orders, we have 4 equations in the 7 unknowns: λ, µ0, µ1,
Φ0, Φ1, r1 and r2. Apparently we have 3 degrees of freedoms left, but actually there are
3 more constraints coming from the initial data (equation (4.15)). Going to next order
N = 1,

Φ0 (b∂x)Φ1 + Φ1 (b∂x)Φ0 − µ0 (rB2e−λB/q∂x)Φ1 − µ1(rB2e−λB/q∂x)Φ0 = 0

Φ0B(W 1∂x)b+ Φ1B(W 0∂x)b+ eλB/qB2u(µ0W 2 + µ1W 1 + µ0W 0)∂xλ = Bµ2e
λB/qB2u

We have added three more equations, but only two unknowns, Φ2 and µ2, so the problem
seems to be overdetermined. Moreover, the same issue is found at every order: we add
three equations but only two unknowns.

Alternatively, instead of (B.1), one may try an expansion like

W = Φb + eλB/qB2u , Φ =
∞∑
n=0

Φnq
n , u =

∞∑
n=0

unq
n
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by which the system (B.2) gives

N∑
n=0

Φn(b∂x)ΦN−n + (rnB2e−λB/q∂x)ΦN−n = 0 (B.5)

N∑
n=0

(
ΦnB(WN−n∂x)b− eλB/q(WN−n∂x)Bun

)
+

+
N+1∑
n=0

eλB/qB2un(WN+1−n∂x)λ = BeλB/qB2uN+1 (B.6)

The first two orders, for N = −1 and N = 0 give

eλB/qB2u0

(
W 0∂xλ−B

)
= 0

1
2
(b∂x)Φ0 + r0B2e−λB/q∂xΦ0 = 0

Φ0 B(W 0∂x)b − eλB/q
(

(W 0∂x)Bu0 + B2u0(W 1∂x)λ + B2u1

(
(W 0∂x)λ−B

))
= 0

which is a system of 4 equations in the 7 unknowns λ, Φ0, Φ1, u0, u1. We recall that
we have exactly 3 more (algebraic) equations (4.15), so the system may be solvable.
Moreover, at each N−th order we add three equations and three unknowns ΦN+1 and
uN+1. However, a number of issues remain:

• The constraints (4.15). How can they be applied? It seems that one needs to write
the full series to be able to apply them. In this case, they can’t be used to fix some
terms of the series itself.

• At each N−th order, the unknown WN+1 appears into equation (B.6) in a very
nonlinear way, namely in the form of the differential operator WN+1∂x, so it is
really difficult to figure a way to invert the equation and build a recursive scheme.

Unfortunately, we have not yet figured out a way to overcome these difficulties. We
finally mention that very recently a connection between the WKB method and guiding
centre theory has been reconsidered by Burby in [13].
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C

The Lagrangian description of dynamics

The Lagrangian descrition is one possible way of building dynamical systems, and a very
common one in classical mechanics. Here we follow a bit unusual geometric description
of the method, following Souriau [87].

It is unusual in the name, as it is often called “non-canonical Hamiltonian”, for instance
by the Guiding Centre community, or “pre-symplectic”, or “Cartan”, or “Poincaré-Cartan”.
However, we prefer to keep the name “Hamiltonian” for a dynamical system, may it be
smooth or not, which possesses a Lie algebraic structure, which is not the case for the
present approach (even though a relation with Hamiltonian mechanics exists, as we are
going to see).

On the other hand, the name “Lagrangian” usually refers to an analytical description
of the dynamics, where the phase space is a smooth manifold, and a dynamical system
is built by computing the Euler-Lagrange equations associated to a given “Lagrangian
function” (see for instance [51], [5]). This is not the case here.

The Lagrangian description of dynamics requires a smooth structure: the presymplectic
manifold, which is a manifold Y with a (differentiable field of) 2-form l such that ker(l)
has constant dimension, and dl = 0. Souriau names l the Lagrange form, and that’s why
we are calling this formalism the “Lagrangian description”.

The principle is straighforward: the dynamics is a motion along ker(l). More explicitly,
a vector field C on Y is determined by lC = 0, and then a dynamical system by1 ẏ = C,
for any coordinate set y on Y.

C.1 Relation with Hamiltonian formulation

Starting from a presymplectic manifold, it is possible to build a Hamiltonian dynamical
system. Indeed, the manifold2 X def

= Y/ ker(l) has the structure of a symplectic manifold.
This means that the restriction of l on X, that we will denote by σ, is closed and with
zero kernel. This conditions ensures the existence of a bivector π which is the inverse of
σ in the sense that, for any vector field X on X,

(σX) π = X

1the overdot means derivation with respect to some parameter τ , which is not necessarily a physical
time

2A geometrical note: the manifold X is called the leaf of Y by the foliation determined by l.
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σ is called the symplectic form while π is called the Poisson byvector. The Poisson bivector
defines a bracket on C∞(X→ R) by

{f}g = dg(df π)

This bracket is alternating because of the alternance of π, while the Jacobi identity is a
consequence of dσ = 0.

The “time” of the Hamiltonian system is the coordinate parametrizing ker(l), let us
call it t. The difference l−σ is interpreted as the (wedge) product of dt by a Hamiltonian
1-form h,

l = σ − h ∧ dt
If we call x a set of coordinates on X, the Hamiltonian system is given by

d
dt
x = hπ

Finally we observe the following: let again x be a coordinate set on X, and y be a
coordinate set on Y. Then we may write y = {t,x}. The two-form l is closed in Y, which
means that

dYl = dy∂yl = 0

Instead, σ is closed on X,
dXσ = dx∂xσ = 0

C.2 Example: Relativistic Mechanics
The dynamics of a charged particle, as described by system (4.1), on the 7-dimensional
manifold of coordinates {t,x,w} is determined by the following Lagrangian,

lr = dw ∧ dx + eE dx ∧ dt − w
mγ
dw ∧ dt + e dx

[[
B
]]
dx (C.1)

where γ =
√

1 +ww/m (as usual).
A vector field C on {t,x,w} has the general form3 C = ṫ ∂t + ẋ ∂x + ẇ ∂w, and we

impose it to lie in ker(l),

0
!

= lrC

= dw ẋ − dx ẇ − e dtE ẋ + eṫE dx +
ṫ

mγ
w dw +

dt

mγ
w ẇ − e dx

[[
B
]]
ẋ

= dw

(
ẋ − ṫw

mγ

)
+ dx

(
eE ṫ − e

[[
B
]]
ẋ − ẇ

)
+ dt

(
wẇ

mγ
− eEẋ

)
Now we equate each term to zero. If we assume that ṫ > 0 we can replace the overdot with
a derivative by t. This tantamounts to divide everything by ṫ and making the substitutions
ẋ/ṫ→ dx/dt, ẇ/ṫ→ dw/dt. Then one gets the following 7 equations,

dx

dt
=

w

mγ
dw

dt
= eE − e

mγ

[[
B
]]
w

− eEw + w
dw

dt
= 0

3Denoting the components of the field by the dotted coordinate name is a shortcut. To be precise we
should write C = Ct∂t + . . . and then put ṫ = Ct, . . . .
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The third equation follows from the second one after multiplying on the left by w. So
we have a 6-dimensional system, as one would expect: we started from a 2-form on a
7-dimensional manifold, but we assumed that dim(ker(l)) = 1.

If we kept t as a coordinate, we would have a free degree of freedom. If we use it
to add to our system the equation ṫ = γ, then the system is parametrized with respect
to the socalled “proper time”, the physical time measured in a reference frame where the
observer is at rest.

Finally, it is possible to show that imposing dl = 0 to (C.1), leads to the inhomogeneous
Maxwell equations,

∂xB = 0
[[
∂x
]]
E + ∂tB = 0

This is called Maxwell’s principle.

C.3 The Poincaré-Cartan 1-form
If X has the structure of a cotangent bundle, then l = d$, then $ is called the Poincaré-
Cartan one-form. This is the case in classical mechanics.

Any chart on the phase space of type {p,x, t} which turns the Poincaré-Cartan 1-form
into

$ = pdx − H(p, q) dt

is called a canonical set of coordinates (see for instance [5]; this definition is equivalent
to the one that was given in the introduction of the dissertation). Instead if one “mess
up” $ before differentiating, the resulting equations of motion are Hamiltonian but non-
canonical. This is what is commonly done among the Guiding Centre community after
the works of Littlejohn [16], [56], [15], [23].

The Poincaré-Cartan (henceforth PC) description of electrodynamics requires the po-
tentials A,Φ instead of the fields4 E,B. In fact it can be shown that lr = d$r with

$r =
(
p − eA

)
dx − d

(
ε + eΦ) dt

The Poincaré-Cartan 1-form introduces a new freedom, for the transformation

$r → $̂r = $ + dg (C.2)

gives the same lr and thus the same dynamics. This is called a gauge tranformation, and
indeed it includes as a particular case the gauge invariance of classical electrodynamics:
if we choose as g the gauge function of equations (C.2) then $̂r would have the same
functional form as if the hatted potentials of equations (C.2) were directly replaced into
$r.

As a final note, in classical mechanics canonical transformations are also defined by
equation (C.2), but the function g is usually denoted by S and called Hamilton’s principal
function. The equivalence of Gauge transforms and a canonical transforms was discussed
by Elsasser in [26].

4We recall that, as a consequence of the inhomogeneous Maxwell equations,

E = −∂xΦ − ∂tA B =
[[
∂x
]]
A

So defining the fields by the potentials is equivalent to require the inhomogeneous Maxwell equations.
However, the potentials are gauge dependent (see section 4.1).
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Abstract

The Hamiltonian formulation of classical mechanics reveals an underlying Lie algebraic
structure which is a key element for developing an efficient perturbation theory. But Lie
structures are met in a wider class of dynamical systems, called Poisson systems; some
examples are, among others, fluid dynamics, electrodynamics, kinetic theory. In the first
part of this thesis, we propose a purely algebraic approach to classical perturbation theory
to extend its scope to any Poisson system. In this method, introduced in [Vittot, 2004],
a (Lie) transform allows to split the perturbation into a term preserving the unperturbed
flow, and a smaller correction, quadratic in the original perturbation strength.

The second part of the dissertation is about the dynamics of a Throbbing Top (a non-
autonomous Rigid Body). Being probably the most basic example of Poisson system, the
Top was a natural choice for an application of our theory. We consider first a symmetric
Top with periodically dependent momenta of inertia; by introducing a suitable set of
coordinates, the system is reduced to a nearly classical description; indeed we show that
our theorem applies and reproduce the KAM theorem of classical mechanics. Then we
switch to a non symmetric Top with non-periodically fluctuating momenta of inertia: in
this case we study for which conditions the static trajectories give a good approximation
to those of the non-autonomous system.

In the third part of this work we study the dynamics of a magnetically confined particle.
In this case the unperturbed flow is the dynamics in an arbitrary given electromagnetic
field; then by perturbation theory one may reduce the dimensionality of the dynamics,
or study the retroaction of the particle on the field. However, providing an efficient
description of the unperturbed flow is a formidable task, related to the long-standing
issue of Guiding Centre Theory in plasma physics. Recently a novel relativistic and non-
perturbative approach to Guiding Centre theory has been proposed [Di Troia, 2018]. We
derive the equations of motion and their Poisson structure in this description.



Résumé

La formulation Hamiltonienne de la mécanique classique révèle une structure algébrique
de Lie sous-jacente qui est un élément clé pour développer une théorie de perturbation
efficace. Mais on trouve des structures de Lie dans une classe plus grande de systèmes
dynamiques, appelé systèmes de Poisson; certains exemples sont, entre autres, la dy-
namique des fluides, l’électrodynamique, la théorie cinétique. Dans la première partie
de cette thèse, on propose une approche purement algébrique à la théorie classique des
perturbations, qui s’applique donc à tout les système de Poisson. Dans cette méthode,
introduite dans [Vittot, 2004], une transformation (de Lie) permet de diviser la perturba-
tion en un terme préservant le flot non perturbé, et une correction plus petite, quadratique
par rapport à la perturbation originale.

Dans la deuxième partie de la thèse on considere la dynamique d’une Toupie Pulsante
(un Corps Rigide non autonome). S’agissant probablement de l’exemple le plus basique
de système de Poisson, la Toupie était un choix naturel pour une application de notre
théorie. Nous considérons d’abord une toupie symétrique àvec des moments d’inertie
qui oscille periodiquement. En introduisant des coordonnées appropriées, le système est
réduit à un systeme presque classique: en effet, on montre que notre théorème s’applique
et reproduit le théorème de KAM de la mécanique classique. Puis on considere une Toupie
non symétrique avec moments d’inertie qui presentent des fluctuations quelconques: dans
ce cas, on etudie sous quelles conditions les trajectoires du systeme sont proches de celle
du système statique.

Dans la troisième partie de ce mémoire, on étudie la dynamique d’une particule chargée
confinée magnétiquement. Dans ce cas le flot non perturbé est la dynamique dans un
champ électromagnétique donné arbitraire. Alors par la théorie des perturbations on
peut réduire la dimensionnalité de la dynamique, ou étudier la rétroaction de la particule
sur le champ. Cependant, fournir une description du flot non perturbé est une tâche
redoutable, liée à la question de longue date de la théorie du centre-guide en physique des
plasmas. Récemment une version relativiste et non perturbative de la théorie des centres
guides a été proposée [Di Troia, 2018]. Nous dérivons les équations du mouvement et leur
structure de Poisson dans cette description.


