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Abstract
Cette thèse présente un modèle résilient pour piloter un avion basé sur une

logique non monotone. Ce modèle est capable de gérer des solutions à partir
d’informations incomplètes, contradictoires et des exceptions. C’est un problème
très connu dans le domaine de l’Intelligence Artificielle (Artificial Intelligence
(AI)), qui est étudié depuis plus de 40 ans. Pour ce faire, nous utilisons la logique
des défauts pour formaliser la situation et trouver des actions possibles. Grâce
à cette logique, nous pouvons transformer les règles de pilotage en défauts. En-
suite, lorsque nous calculons les solutions, plusieurs options peuvent en résulter.
À ce stade, il existe un critère de décision opportuniste pour choisir la meilleure
solution. Le contrôle du système se fait via la propriété de résilience. Nous redé-
finissons cette propriété comme l’intégration de la logique non monotone dans
le modèle de Minsky. En conséquence, il est démontré que le modèle de rési-
lience proposé pourrait être généralisé aux systèmes intégrant une connaissance
du monde contenant des situations, des objectifs et des actions. Enfin, nous pré-
sentons les résultats expérimentaux et la conclusion de la thèse en discutant des
perspectives et des défis pour les orientations futures. Différentes applications
dans d’autres domaines sont prises en compte pour l’intérêt du comportement
du modèle.

Mots clés : Logique Non-monotone, Logique des défauts, Résilience, Intelli-
gence Artificielle, Modèle de Marvin Minsky, Prise de Décisions, UAV, Représen-
tation des Connaissances, Raisonnement Incertain, Systèmes Embarqués.

This thesis presents a resilient model to pilot an aircraft based on a non-
monotonic logic. This model is capable of handling solutions from incomplete,
contradictory information and exceptions. This is a very well known problem in
the field of AI, which has been studied for more than 40 years. To do this, we use
default logic to formalise the situation and find possible actions. Thanks to this
logic we can transform the piloting rules to defaults. Then, when we calculate
the solutions, several options could result. At this point an opportunistic deci-
sion criteria takes place to choose the better solution. The control of the system
is done via the property of resilence, we redefine this property as the integration
of the non-monotonic logic in the Minsky’s model. As a result, it is shown that
the proposed resilient model could be generalised to systems that incorporate a
knowledge of the world that contains situations, objectives and actions. Finally,
we present the experimental results and conclusion of the thesis discussing the
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prospects and challenges that exist for future directions. Different applications
in other fields are taken into account for the interest of the model’s behavior.

Keywords: Default Logic, Resilience, Artificial Intelligence, Marvin Minsky’s
model, Decision-Making, UAV, Knowledge Representation, Reasoning under Un-
certainty, Embedded Systems.

Esta tesis presenta un modelo resistente para pilotar un avión basado en una
lógica no monótona. Este modelo es capaz de manejar soluciones a partir de
informaciones incompletas, contradictorias y excepciones. Este es un problema
muy conocido en campo de la Inteligencia Artificial (AI), que se ha estudiado
durante más de 40 años. Para hacer esto, usamos la lógica por defectos para
formalizar la situación y encontrar posibles acciones. Gracias a esta lógica, pode-
mos transformar las reglas de pilotaje en defectos. Luego, cuando calculamos las
soluciones, pueden surgir varias opciones. En este punto, tiene lugar un criterio
de decisión oportunista para elegir la mejor solución. El control del sistema se
realiza a través de la propiedad de resilencia. Redefinimos esta propiedad co-
mo la integración de la lógica no monotónica en el modelo de Minsky. Como
resultado, se muestra que el modelo resistente propuesto podría generalizarse a
sistemas que incorporan un conocimiento del mundo que contiene situaciones,
objetivos y acciones. Finalmente, presentamos los resultados experimentales y
la conclusión de la tesis sobre las perspectivas y los desafíos que existen para
futuras direcciones. Se tienen en cuenta diferentes aplicaciones en otros campos
para el interés del comportamiento del modelo.

Palabras claves: Lógica No monótona, Lógica por Defectos, Resiliencia, Inteli-
gencia Artificial, Modelo de Marvin Minsky, Toma de Desiciones, UAV, Represen-
tación del Conocimiento, Razonamiento bajo Incertidumbre, Sistemas Embebi-
dos.
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Introduction
This thesis presents a resilient model to pilot an Unmanned Aerial Vehicle

(UAV) based on a non-monotonic logic. This model is capable of handling solu-
tions from incomplete and contradictory information. This is a very well known
problem in AI, which has been studied for more than 40 years. An UAV is any
plane without a pilot and generally the control system is on the ground. It should
be considered that the plane does have a pilot that is in a fixed station on land.
However, the problem does not change since the UAV must have control of the
navigation, trajectory, legislations to respect. . . There are UAV that use control
methods for autonomous purposes. Nevertheless, they are based on petri nets
or differential equations, for discrete and continuous modeling, respectively. In
both cases, they can not solve the problem of incomplete and contradictory in-
formation. For this purpose, we are going to model the behavior of a pilot. On
one hand, he could have information from the control tower in contradiction
with the current situation, it could be an emergency. On the other hand instru-
ments on board could show partial information. This leads us to also consider
the weather conditions because climate changes constantly. It is with all this that
the pilot must make decisions to carry out his mission. To do this, we use default
logic to formalise the situation and find possible conclusions. At this point an op-
portunistic decision criteria takes place to choose the better solution, taking into
account security, priority. . . The control of the system is done via the property of
resilence. We redefine this property as the integration of the non-monotonic logic
in the Minsky’s model. Thanks to this, we can determine a horizon of conver-
gence. This horizon can be short or long according to the current situation and
goal. In the same way, this model will allow us to know the behavior. As a result,
it is shown that the proposed resilient model could be generalised to systems
that incorporate a knowledge of the world that contains situations, objectives
and actions. Finally, the implementation in a microcomputer is performed. The
composition of the thesis is described below.

Chapter 1 introduces the external and internal parts of an airplane, as well
as the theory of flight where the lift, thrust, drag and gravity interact. Similarly,
we explain the phases of a flight and the challenges of piloting. For this it is
essential to study the behavior of a pilot. Because in reality, a pilot must take
into account not only the information he sees in the cabin (air speed, altitude,
variometer, compass. . . ) but also what happens outside the cabin. Throughout
the mission, a pilot must be in communication with the control tower following
the orders, as there is an airspace regulation that must be respected. Pilots that
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Incomplete and
Contradictory
Informations

(Chapter 1 & 2)

Piloting

Non-Monotonic
Reasoning

and Resilience
(Chapter 2 & 3)

Trajectory and
Flight Dynamics

(Chapter 1)

Practical Case
(Chapter 4)

Figure 0.1: Composition of the different chapters of the thesis.

fly, only have a fixed radio frequency to communicate with the control tower.
This makes all the pilots listen to the communication at the same time. Even
if the control tower communicates with a particular pilot. In addition, if the
ground controller sends orders to a specific pilot but another or others have an
emergency, they must violate the airspace regulations to solve their problems. On
the other hand, the climate changes constantly (wind, snow, hail. . . ) and can
affect the sensors. The airspeed sensor provides an important information that
allows an airplane to lift. If it does not have the necessary airspeed, the airplane
will not generate the necessary force to descend in altitude. These factors can
easily lead to contradictions, changing to a reasoning under uncertainty, despite
this, a pilot must make decisions to carry out his mission.

Chapter 2 presents the formalisation of the problem, which allows reasoning
under uncertainty in the presence of incomplete and contradictory information.
We will see that classical logic has limitations and we must move on to non-
monotonic reasoning. For this we used a particular logic to solve the problem,
default logic. Thanks to this logic we can transform the piloting rules to default
rules. Then, when we calculate the solutions several options could result. Once
the solutions have been calculated, an opportunistic notion is used to choose the
best option according to criteria such as security, energy, priority. . . of each rule
listed. The implementation in SWI-Prolog calculates the solutions for a given
situation.

Chapter 3 concerns the control part, but also the definition and properties of
resilience. The KOSA model is described containing the set of knowledge and
the sub-set of objectives, situations and actions. The fact of being able to for-
malise the knowledge in this manner allows us to incorporate it into the Minsky’s
model. To make a better capture of the property of resilience in our model. For
that, new definitions such as short-term and long-term objectives had been de-

12



scribed. Consequently, the discrete and continuous behavior of the KOSA model
is presented.

Chapter 4 presents the experimental results of this thesis. A resilient decision
making system for an UAV based on non-monotonic logic is embedded on a mi-
crocontroler. We explain the configuration of SWI-Prolog for the microcomputer
and to interface it with sensors and others electrical circuits.

Finally, the conclusion of the thesis discussing the prospects and challenges
that exist for future directions that still require study. Different applications in
other fields are taken into account for the interest of the model’s behavior under
other complex dynamic environments.
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1 Challenges of Piloting and
Motivation

The objective of this section is to present the external and internal parts of an
airplane, as well as the theory of flight where the force of sustentation, thrust,
drag and gravity interact. Similarly, Bernoulli’s principle that is the fundamental
principle for the flight of aircraft. Equally important, to present the phases of a
flight. Subsequently, the challenges of piloting and finally the motivation of this
research topic are exposed.

Summary
1.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Phases of Flight . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.2 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Challenges of Piloting . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1. Background and Context
We are going to study the rules of piloting and how a pilot manages these rules

in the face of unusual events. Through the history of aviation, piloting have had
different problems that are related to decision-making with incomplete and con-
tradictory information. Pilots should consider as much as the variables of the
airplane, communication with the control tower, as well as the climatological
conditions. For the first two, there is a set of instruments inside the cabin. It
shows information such as: airspeed, vertical speed, turning angles. . . In addi-
tion, the weather conditions change constantly. Airplanes have instruments to
know about it. Radars and navigation systems that give to pilots the climate
update. But the storms, snow, wind and fog are unpredictable. All this does that
a pilot could make bad decisions.

An answer to this problem was the automatic flight control. Automatic flight
control dates back to the 1920s, and during the II World War there were already
rudimentary autopilots. The idea was that automation could mitigate pilots’
flight routines and allow them to focus on situational awareness and other care
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priorities. Technology evolved and by the 20th century, autopilots were more
sophisticated. Especially in safety, detecting problem quickly and effectively in
comparison with human pilots. A person sometimes may not see the increase
of a variable in an indicator, instead a computer can detect signs of danger and
send an alert.

Hereafter, we will briefly present the most relevant information about the dif-
ferent parts of the aircraft, theory of flight, phases of flight and trajectory analy-
sis. Finally, challenges of piloting and motivation will be present.

We all know that an airplane has two wings, thanks to them will create the
necessary force to fly. The distance that go from one wing to the other is called
wingspan, Figure 1.1. The stiffness of a wing will depend mainly on the mast
and internal structure. The coating can be made of wood, metal or plastic. There
are free spaces within the structure that are generally used for the fuel. It is
known as leading edge and trailing edge to the front and back sides of the wing,
respectively. The trailing edge is articulated, this is to orient the surface. These
orientations modify the curving of the wing allowing flying at low speed.

At the end of the wings are the ailerons. When the airplane is flying these
movements allow an inclination to the left or to the right. These have an oppo-
site movement, up or down. The fuselage is the structure that joins the wings
ensuring the rigidity of the airplane. Like the wings, the fuselage has a coating
that can be made of wood, metal or plastic. The positioning of the wings with the
fuselage can be of two levels: wings down or wings up. At the rear of the fuse-
lage are the stabilizers. They usually have a cross shape. Where the vertical part
corresponds to a fixed part, called drift, and further back has a mobile surface
which is articulated for the steering rudder. The horizontal part is constituted by
a fixed part in which the depth rudder is articulated, Figure 1.1 (Nancy 2016).
The aim of the landing gear is to ensure the airplane’s handling and to cushion
the effects suffered when the airplane touches the ground.

In the cabin we have the cockpit, to get inside it is necessary to climb over
the wing, this is for low wing aircrafts. The pilot usually occupies the left seat.
In this way he has access to all the controls. The steering wheel and rudder
constitute the main flight controls. Sometimes the steering wheel is replaced by
a handle, however it has the same function, Figure 1.2. The steering wheel can
move forward and backward allowing to control the depth. In the same way, the
steering wheel is used laterally from left to right which control the ailerons. And
the pedals control the steering rudder, but this it used principally to control the
airplane on the ground, Figure 1.3.

Instruments on Board
There are many instruments in the cabin, as we can see in the Figure 1.2.

However, only six are essential to be able to fly. Commercial, private airplanes
and gliders, they have it (DGAC/SFACT 1992). Generally, this set of indicators
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Figure 1.1: Parts of an airplane.

are:

Altimeter: shows the aircraft’s altitude (in feet) above sea-level. As the
aircraft ascends, the altimeter to indicate a higher altitude and vice versa.

Airspeed indicator: shows the aircraft’s speed (in knots) relative to the
surrounding air. It works by measuring the ram-air pressure in the aircraft’s
Pitot tube relative to the ambient static pressure.

Vertical speed indicator: sometimes called a variometer or also rate of
climb indicator, senses changing air pressure, and displays that information
to the pilot as a rate of climb or descent in feet per minute or meters per
second.
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Figure 1.2: Cabin of an airplane.

Attitude indicator: also known as an artificial horizon. Shows the aircraft’s
relation to the horizon. From this a pilot can tell whether the wings are
level roll, if the aircraft nose is pointing above or below the horizon pitch,
Figure 1.6.

Turn indicator: This instrument includes the Turn-and-Slip Indicator and
the Turn Coordinator, which indicate rotation about the longitudinal axis.
When an airplane begins to turn a centrifugal force will be generated and
will make altitude lose, the challenge of the pilot is to compensate for the
fall in altitude by increasing the airspeed and also increasing the angle of
attack (positive pitch). In other words, it is important to keep the indicator
in the center so that you have a planar turn, or else it will spill, that is, the
airplane will rotate orthodoxy.

Heading indicator: displays the aircraft’s heading with respect to magnetic
north when set with a compass.

Theory of Flight
Flying is a phenomenon that has long been part of the nature. Birds fly not

only with the beating of their wings but also by planning long distances when
they spread them. Thanks to the principles of physics it is possible to fly. Based
on these principles, man has created airplanes and has been able to counteract
the force of gravity. A flight heavier than air is possible thanks to the balance of
four physical forces: lift, drag, weight and thrust. For this, the plane must have
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Figure 1.3: Controls of an airplane.

a balance of its lift with its weight, and also its thrust must exceed its drag. An
airplane uses its wings to generate lift and its engines for the thrust, Figure 1.5.
To reduce the drag the aircraft has a smooth shape and the weight will be defined
by the material with which it is made. To stay in the air, the forces acting on the
airplane must be null:

−→
L + −→D + −→T + −→W = −→0 . The air is a means used by the

airplanes to generate lift. It is composed of particles of 78 % nitrogen, 21 %
oxygen and 1 % other gases and it has physical properties such as expansion,
contraction, fluidity, mass and density. It should be mentioned that the density
of the air (ρ) depends of the height (h), the equation that defines it is given by:

ρ = ρsealevel · exp−β·h = 1.255Kg/m3, β = 1
9.042m (1.1)

And for dynamic pressure (q̃), it is given by:

Vair = [v2
x + v2

y + v2
z ]

1/2
air

q̃ = 1
2 · ρ · h · V

2
air (1.2)

Where Vair is the airspeed in the three components vx,y,z.
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Figure 1.4: Cockpit: six basic instruments.

(a) Forces on an airplane
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(b) Bernoulli’s principle

Figure 1.5: Aerodynamic principles of an airplane.

The fundamental principle that makes airplanes fly is called lift. This aero-
dynamic effect was described by Bernoulli studying the liquids. However, air
can be considered as a fluid with certain properties. This effect happens when
an object with a determinate shape and surface crosses the air. It is then that
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the particles of the air will have two trajectories. Through the upper part of the
wing, the particles of the air will travel faster generating an out of low pressure.
At the bottom of the wing the air particles will travel at a lower speed generating
a higher pressure force. The ideal way to have the maximum strength of lift is
shown in the Figure 1.5, a classic form of an airplane wing. Depending on the
speed of the body, in this case of the airplane, there will be more or less lift. If
there is more speed then it will have more lift and vice versa. The angle of attack
is the angle formed between the wing and the direction of the air. This is an
important condition which allows to increase or decrease the lifting force.

Lift
For an airplane starts flying, it must have a force that is equal or greater than

the weight (mass × force of gravity). This force is called lift and it is created by
the flow of air on a supporting surface. The shape of the lifting surface causes
a flow of air with higher velocity in the upper part than in the lower part. The
increase in speed causes a low pressure. However, the opposite occurs in the
lower part. The air pressure is greater under the lifting surface, this generates
a lift force. To better understand this phenomenon, it is necessary to make use
of two important equations in physics. The pressure variations of the air flow
are described by the Bernoulli’s equation. This equation was discovered by the
Swiss mathematician Daniel Bernoulli to explain the pressure variations exerted
by water currents. The Bernoulli’s equation is described as:

P + 1
2 · ρ · V

2 = constant (1.3)

Where P is the pressure, ρ is the density of the fluid and V is the velocity of
the moving object or fluid. The second important equation that must be taken
into account is the continuity equation. Which simply says that given a flow, the
product of density, cross-sectional area and velocity is constant. This equation is
defined as:

ρ · A · V = constant (1.4)

Where ρ is the density, A is the area transversal and V is the velocity. Making
use of the Equation (1.3) and (1.4) it can be better understood how the air flows
on the surface and generates the lift force. The shape of a bearing surface is
usually asymmetric, because the area of the upper part is larger than the lower
one. When a flow of air passes through the supporting surface, it will move more
through the upper part than through the lower one. According to the continu-
ity equation, having a greater displacement will cause an increase in velocity to
occur. The Bernoulli equation shows that an increase in velocity has an effect
on the decrease in pressure. The faster the flow, the lower the pressure. The air
flowing on a bearing surface will have a decrease in pressure in the upper part

20



Roll!

y

x

Pitch!

z

Yaw!

Figure 1.6: Airplane body axes.

and an increase in the lower part. Resulting a force of total pressure upwards.
This pressure force is lift. The design of the shape of the lifting surface depends
on the usefulness of the plane. For this reason there is no predetermined form.
Engineers use the lift coefficient to know a lift measurement obtained for a par-
ticular shape. Lift is directly proportional to the dynamic pressure and wing
area.

lift = CL · (
1
2 · ρ · V

2) · S (1.5)

Where S is the wing area and dynamic pressure is 1
2 · ρ · V

2. In the design of a
wing of an airplane it is very important to have a high lift coefficient.

In Figure 1.6, pitch is the angle formed by the airplane when has rotated
around “x-axis”. Similarly, roll is formed by the airplane when has rotated, but
around “y-axis”, and yaw is the angle formed when the airplane rotates around
“z-axis”.

When the pilot turns to the left or right forces such as as centrifugal and tan-
gential will appear. These two forces influence the trajectory of an airplane. The
pilot must compensate for these effects of these two forces to follow the desired
trajectory. When you turn left or right, due to aerodynamic effects due to these
two forces, the plane will lose altitude. Then the pilot must increase the angle of
attack and increase the speed to compensate for that loss of altitude, Figure 1.7.

Drag
Any object that crosses the air will have a resistance to the flow of it. This

resistance is called drag. Drag is the product of many physical phenomena. The
wings of a plane are designed to be as smooth as possible to reduce drag force
to the maximum. As a lift, drag is proportional to the dynamic pressure and the
area over which it acts. The coefficient drag, analogously that the lift coefficient.
This is a measure of the amount of dynamic pressure transformed into drag. In
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Figure 1.7: Forces acting in an airplane.

practical terms, engineers usually design wings with a drag coefficient as low as
possible in magnitude. Low drag coefficient are more interesting because the
efficiency of the plane increased when drag decreases.

drag = CD · (
1
2 · ρ · V

2) · A (1.6)

Weight
Weight is a limiting factor when airplanes are deferred. The higher the weight

of the plane requires more lift compared to a lighter plane. A higher weight
also requires more thrust to accelerate on land. But also in a light aircraft the
distribution of the weight is important. It must be balanced for the flight, much
weight on the back or front can cause instability. The weight can be calculated
thanks to Newton’s second law:

W = m · g (1.7)

Where W is weight, m is mass and g is the acceleration due to gravity on Earth.

Thrust
When an object is propelled it generates different physical principles. Which

are thermodynamic, aerodynamic, fluid and physical mechanics. Thrust is a
force that is described by Newton’s second law. The basic form of this law is
defined as:

F = m · a (1.8)

Where F is force, m is mass and a is acceleration. Acceleration is the change of
speed with respect to time. Therefore, Thrust is produced by the acceleration of
a mass of air.
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Flight Dynamics
A manner of studying aircraft dynamics is to use Newton’s laws. The equations

of motion of a particle can be studied from a Newtonian frame. The translation
movement causes an object to change its position with respect to a frame of
reference. The frame of reference is fixed and the position of the particle is
r = (x, y, z), Figure 1.8. The speed of the particle is defined as below:

v = ∂x

∂t
= ẋ = [ẋ, ẏ, ż] = [νx, νy, νz] (1.9)

The movements of an airplane has rotations and translations in the three axes.

~y

~z

Origin

~x

(x,y,z) •

(a) Position

~y

~z

Origin

~x

•Particle νy

νz

νx

(b) Speed

Figure 1.8: Newtonian frame.

When it is tilting up or down, turning to the right or to the left, etc. this will
add other forces (DGAC/SFACT 1992). These forces that act on in any direction,
can be described by Newton’s laws. Newton’s first law says that if there is no
force (F ) on an object with a mass (m), it will remain at rest or will continue in
rectilinear motion at a constant speed (v). Retaining its momentum: ∂(m·v)

∂t
= 0,

m · v(t1) = m · v(t2). The second law says that if a force acting on a fixed mass
object will have a speed change with acceleration proportional to the direction
of that force. F = m · a = ∂(m·v)

∂t
. For three dimensions it should consider force

F = [fx, fy, fz], I3 is an unitary matrix, so acceleration will be defined as:

a = ∂v

∂t
= 1
m
· F = 1

m
· I3 · F =

1/m 0 0
0 1/m 0
0 0 1/m

 ·
fxfy
fz

 (1.10)

We know that acceleration is defined as the rate of change in speed:

v̇ = ∂v

∂t
=

v̇xv̇y
v̇z


l

= 1
m
· F =

1/m 0 0
0 1/m 0
0 0 1/m

 ·
fxfy
fz

 (1.11)
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And speed is defined as the rate of change in distance:

ṙ = ∂r

∂t
=

ẋẏ
ż


l

= v =

vxvy
vz


l

(1.12)

Eventually, the third law says that to every action there is a contrary force of
equal magnitude (Hull 2007)). Remembering the balance of aerodynamic forces,
we know that lift (Fl) can be calculated as following:

Fl =

fxfy
fz


l

= [Fgravity + Faerodynamics + Fthrust]l (1.13)

v̇(t) = ∂v(t)
∂t

= 1
m
· F =

fx/mfy/m
fz/m

 =

axay
az


l

(1.14)

The speed of the airplane is a variable that must be considered all the time t,
as previously mentioned this it is proportional to lift. To calculate it, we should
solve the next equation:

v(T ) =
∫ T

0

∂v(t)
∂t

+ v(0) =
∫ T

0

1
m
· F∂t+ v(0) =

∫ T

0
a · ∂t+ v(0) (1.15)

Where v(0) is the initial speed in three dimensions. This is the solution in space:vx(T )
vy(T )
vz(T )

 =
∫ T

0

fx/mfy/m
fz/m

 ∂t+

vx(0)
vy(0)
vz(0)

 =
∫ T

0

axay
az

 ∂t+

vx(0)
vy(0)
vz(0)

 (1.16)

To know the distance traveled, where r(0) is the reference in three dimensions:

ṙ(t) = ∂r(t)
∂t

= v(t) =

ẋẏ
ż

 =

vx(t)vy(t)
vz(t)

 (1.17)

r(T ) =
∫ T

0

∂r(t)
∂t

∂t+ r(0) =
∫ T

0
v(t)∂t+ r(0) (1.18)
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x(T )
y(T )
z(T )

 =
∫ T

0

vx(t)vy(t)
vz(t)

 ∂t+

x(0)
y(0)
z(0)

 (1.19)

The gravitational force (m · g) is independent of the position. The gravitational
acceleration is g. Where g0 ≈ 9.807 m/s2 at the earth’s surface:

(Fgravity)l = (Fgravity)E = m · gE = m ·

 0
0
go


E

(1.20)

To know the dynamics of the trajectory with no aerodynamics force and constant
gravity, initial conditions for speed and position are: vx(0) = vx0, vz(0) = vz0,
x(0) = x0 and z(0) = z0. The components of acceleration and speed are defined
as:

v̇x(t) = 0
v̇z(t) = −g(+zup)
ẋ(t) = vx(t)
ż(t) = vz(t)

(1.21)

Finally, we should solve these equations:

vx(T ) = vx0

vz(T ) = vz0 −
∫ T

0
g∂t = vz0 − g · T

x(T ) = x0 + vx0 · T

z(T ) = z0 + vz0 · T −
∫ T

0
g · t∂t = z0 + vz0 · T −

g · T 2

2 (1.22)

The dynamic analysis of an airplane is very well known with the mathemati-
cal model that involves accelerations and speeds in the three axes, but there
are many restrictions in order to have linear equations(Duke, Antoniewicz, and
Krambeer 1988) and find a solution within a reasonable period of time.

Next, we present a complete model with respect to the previous equations
which do not contain parameters such as the angle of the runway, aerodynamic
slope, etc. This model takes into account the movements in the wheels and air-
craft pitch caused by the deceleration on the runway. For this, the angle of the
runway is evaluated, considered as a constant in some parts of the runway, we
should considerate two new variables as α (incidence) and q (pitching speed).
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Applying the principles of the dynamics of solids, we obtain the mechanical equa-
tions of soil and flight. Obtaining the following system of equations, for the two
axes. Where Mv is the mass of aircraft, V is the ground speed, β is the skid, Vair
is the air speed, C is the aerodynamic coefficient. Fy,av,ar is the front or back tire
drift force, g is the gravity, φ is the roll angle, J is the moments of inertia, p is the
roll speed. df is the front wheelbase, dr is the back wheelbase, dt is the stub axle,
K is the rigidity of the shock absorber, R is the amortization, Y is the center of
gravity with ground reference. F is the thrust, γ is the runway slope, α is the
angle of incidence, N is the static charge (Villaumé 2002).

For lateral axe:

Mv · V (β̇ + r) = ρ

2 · V
2
air · S · Cy + Fyav + Fyar,1 + Fyar,2 ·Mv · g · φ

Jzz · ṙ − Jxz · ṗ = ρ

2 · V
2
air · S · l · Cn + df · Fyav − dr · (Fyar,1 + Fyar,2) + dt,ar · (Fxar,2 − Fxar,1)

−Jxz · ṙ + Jxx · ṗ = ρ

2 · V
2
air · S · l · Cl −Kφ · φ−Rφ · p

φ̇ = p

ψ̇ = r

Ẏ = V · (ψ + β) (1.23)

For longitudinal axe:

Mv · V̇ = −ρ2 · V
2
air · S · Cx + F − Fxar,1 − Fxar,2 −Mv · g · γrunway

Jyy · q̇ = ρ

2 · V
2
air · S · l · Cm −Kα · α−Rα · q + df · (Nar,1 +Nar,2)− h · (Fxar,1 + Fxar,2)

α̇ = q

Ẋ = V (1.24)

Actually, computers on board have programmed these kind of equations above
presented. Thanks to these equations solutions such as pitch, roll and yaw angles
are calculated. The main purpose is to know the angles and follow a desired
path previously programmed, knowing informations such as lineal speed and
rotational accelerations, to control the airplane by engines. To understand how
a pilot does a flight, it is important to mention that a flight is segmented in
different states. These are described in the next section.

1.1.1. Phases of Flight
We begin by describing the basic circuit called traffic pattern. It is one of the

basic maneuvers to take-off and land. However, it contains the necessary rules to
carry out, even a long flight. Next, we explain the different states of flight for an
airplane. Since most of these states are the same for motor-gliders. First of all,
the pilot needs to know airplane states, so he uses the cockpit. The cockpit is a
set of instruments on board that displays parameters such as airspeed (Miles/h),
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artificial horizon (pitch and roll), variometer (Feet/s), altitude (Feet), com-
pass,. . . Traffic pattern circuit, Figure 1.9, has different flight stages. It starts at
the point Sp where the airplane is in Rest. When the pilot is ready and he has
the authorization, he increases all the engine power to get a right airspeed to
take-off (point a). This is airplane should climb to a suitable height (point b).
After that, the pilot should turn the yoke to the left making an orthogonal path
to the runway (point c). At this point, he turns again the yoke to the right having
constant airspeed, constant altitude and zero vertical speed. When he arrives to
the point d he will prepare to land. Turning the yoke to the right, decreasing
in altitude and having negative vertical speed, until arrive to the point e. Once
again, he should turn the yoke to the right to continue decreasing in altitude and
having a stable roll and negative pitch, until point f . After this point, airplane
touches the ground. Final point Fp is where airplane state is again in Rest.

~x

~z

~ySp

Fp

s0

s1

s2

s3

s4

s5

s6

a

b
Wind

cd

e

f

Figure 1.9: Traffic Pattern: basic circuit.

1.1.2. Trajectory Analysis
The segmentation of a flight makes each stage more understandable, it can

be analyzed in the following way. This assignment of stages was made by us,
however, we take them of the flight manual, having eight states but the most
relevant states are five, Figure 1.10. To travel from point A to point B, an airplane
has to take off, climb, descend and land, Figure 1.9. The traffic pattern circuit
could be represented as follows:

Rest (RS): When an airplane is at rest, airspeed and variometer indicators
are approximately zero and the engine may be off. This could be happen
before take-off or after landing.

Start (ST): When a pilot has authorization to take-off, this is the initial-
ization to have a necessary airspeed before take-off. Here the airplane is
going to take a force greater than its weight. To take-off a lot of energy
must be spent to reach the right speed and increase the angle of attack to
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have more lift and increase in altitude. This is necessary to overcome the
weight of the airplane. To maintain a constant slope climbing, a decreasing
airspeed needs a pitch up variation. In other words, a pilot must increase
the angle of attack to climb with a constant slope, if airspeed is not enough.

Takeoff (TO): Once an airplane exceeds the speed limit to take-off. A pilot
must pull the yoke to have a positive pitch (0°<]<60°), this will cause that
the airplane increases its altitude and variometer will be positive.

Climb (CM): After take-off, a pilot will keep the angle of attack constant
(0°<pitch ] <60°), increasing in altitude.

Bank Turn (BT): When a pilot wants to turn to the right or to the left,
this will allow him change the path direction. Turning to turn the right, a
positive roll is 0<roll ] <60, to turn to the left, a negative roll is -60°<roll
] <0°.

Steady flight(SF): A flight in a straight line is considered such as stable
state, however, this it will happen when an airplane has a desired altitude.
So pitch and roll angles should be ≈ 0°. In this stage the balance of the 4
forces must be fulfilled. In most cases, computer on-board will be adjusting
the variations to maintain this balance.

Descend (DC): When a pilot wishes to descend in altitude, either to con-
verge at a desired altitude, evade an obstacle or to start landing stage.
A negative pitch must be done, -60°< ] <0°. In the same way such as
climbing stage, if an airplane has not much airspeed then the pilot should
increase the angle of attack, if not airplane will fall down.

Final approach(FA): This is a state which a pilot decided to land, we say
a pre-landing. Such as take-off stage, a pilot needs an authorization from
the control tower. If a pilot has not a permission then he can not land, but
if he has an emergency then he can land, so he will break the principle of
the legislation.

Landing(LD): It is the final stage of a flight, when an airplane touchdown.
Its altitude decreases and variometer indicates ≈ 0° or a negative vertical
speed. It is the most complicated part of a flight because a pilot should find
the right airspeed and angle of attack to touchdown at runway properly.

In view of the above and having regard that a mission has a start point and final
point. Next, we will see how a pilot plans a mission.
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1.2. Challenges of Piloting
The principle of navigation of an airplane is made through three basic ele-

ments: a chronometer, airspeed and distance. Before flying, a pilot makes a
preliminary plan on a map of the points he wishes to go, marking the starting
point and the point of arrival. Since the maps show the distances between cities,
mountains, even lakes, a pilot must do a basic calculation to know the time it
will take to get to a point of interest. Knowing that v = d

t
or t = d

v
. Where d is

the distance from one point to another on the map, v is the airspeed of the air-
plane, and t is the time it will take to reach to final point. This technique is valid
as long as the weather conditions are ideal, this means, when there is no wind.
However, when this does not happen, there is a drift in the same wind direction.
This directly affects the flight path, because the original plan would no longer
be followed. For this a pilot must correct this drift, Figure 1.10 (Nancy 2016).
The simplest path is a straight line, but there is no certainty that it is an environ-
ment without obstacles or without disturbances of the climate (wind, rain, etc.),
so a pilot should be able to compensate and control these uncertain effects. A
pilot must not only be hanging on the information he sees in the cabin and what
happens outside during a flight. Throughout the course he must also be in com-
munication with the control tower. Knowing that there is only one fixed radio
frequency to communicate with all the other pilots that are flying as well. Also
taking into account that aeronautical regulations must be respected. Believe it
or not, this demands a lot of concentration and can cause bad decisions. On one
hand, it could have the information of the control tower in contradiction with
the current situation, e.g. an emergency. On the other hand the instruments
could show partial informations, Figure 1.5. This leads us to also consider the
weather conditions. Because the climate changes constantly. With all this a pilot
must make decisions to carry out his mission, Figure 1.10.

1.3. Motivation
In this thesis we have a dual purpose. In the first place, to develop a model

based on Non-Monotonic Reasoning (NMR), in order to make decisions even
with partial and contradictory information. Secondly, to consider the property
of resilience which is particularly important for adapting changes and last the
implementation of the model in an embedded computer for an UAV.

Actually, there are UAV that use control methods for doing autonomous pur-
poses. However, they are based on petri nets or differential equations (Guilliard,
Rogahn, Piavis, et al. 2018). In both cases, they can not solve the problem of
incomplete and contradictory information (Tabor, Guilliard, and Kolobov 2018).
This is a very important topic in AI that has been studied for more than 40 years.
It should be pointed out that in this thesis we are not considering methods such
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Figure 1.10: Decomposition in phases of a flight mission and Flight plan.

as learning (clustering, neural networks, genetic algorithms. . . ) or controls laws
(PID, adaptive control, robust control. . . ) We address this problem from the
point of view of AI using NMR, more especially Reiter’s Default Logic (DL).

Currently, most of the autonomous systems are based on bayesian networks,
petri nets or differential equations. Bayesian networks have two major problems.
The first focus on the computational difficulty of searching for unknown infor-
mation. Since the probability of each solution must be calculated for all branches
of the network. This being a problem NP-hard knowing the number of variables
and combinations. The second problem focuses on inference. It must be borne in
mind that an excessive optimistic or pessimistic mathematical hope of the quality
of the inference will alter the network and invalidate previous results (Kolobov
2016; Kapoor, Dey, Kolobov, et al. 2017). Selecting the correct distribution that
describes the data has a remarkable quality of the response of the network (Nie-
dermayer 2008). Meanwhile petri nets have limitations in terms of complexity.
The models are usually very complex for analysis. In practice it is necessary to
make modifications and restrictions for its operation in a particular application
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(Murata 1989).
Another manner for modelling systems is to use integro-differential equations

or state-space form (Fossen 2011). But, there are no applicable general meth-
ods to solve partial differential equations. However, there are methods that can
be used for very particular cases. The Split-step method is a pseudo-spectral
method for the solution of non-linear partial differential equations, e.g. nonlin-
ear Schrodinger equation. An alternative is the use of numerical methods with
finite differences or finite elements. In both cases high performance computers
are required (Bellman, Kashef, and Casti 1972). E.g. in a flight of a 787 aircraft
could generate a Terabyte of data. Only the engines send information of 5000
parameters. Companies like Boeing, are starting to use AI to interpret this data,
and thus be able to have more efficient equipment. The most used techniques are
the incorporation of missions previously learned from more than 1000 human
flights controlled experiences. Machine learning uses history data and statistical
methods to perform future solutions, e.g. regression model.This method is im-
practical when there are new exceptions. In the most cases, it should be add all
the exceptions in the computer on board to be able to cover as most scenarios as
possibles. This means that all the exceptions must be known, this can be a very
big number.

We are going to approach the problem from the point of view of artificial intel-
ligence. We use default logic, created by Raymond Reiter (Reiter 1980). This is a
non-monotonic logic, which has a main characteristic which it allows us to solve
situations with partial, contradictory information and exceptions. Exceptions
that are the main theme in piloting. Chapter 2 contains everything related to
this topic, as well as the model used for decision making. The second objective is
about applying the property of resilience to our non-monotonic model obtained,
we applied this property thanks to Minksy’s model, the theoretical aspect can be
found in chapter 3. Chapter 4 addresses the practical side, it explains implemen-
tation on the microcomputer, physical, electrical and electronic characteristics of
our UAV.

Conclusion
In this chapter we described the parts of an airplane, how it is controlled and

we saw the laws that govern it. As well as the mathematical models that can be
used for modelling. An analysis of the trajectory was described, which can be
summarized in five main phases (Rest, Start, Takeoff, Climb, Bank turn, Steady
flight, Descend, Final approach and Land). Eventually, we described the chal-
lenges of piloting, like environment without obstacles or without disturbances of
the climate (wind, rain, snow. . . ), so a pilot should be able to compensate and
control these uncertain effects. Eventually, the motivation of this thesis.
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2 Non-Monotonic Reasoning
The objective of this section is to present a formalization of our problem allowing

to reasoning under uncertainty, incomplete and contradiction informations. We will
see that classical logic has limitations, and we have to move to NMR. For this we
present a particular logic which is a means by which we can carry out our problem.
After having solved the problem of contradictions and incomplete information, this
can have several solutions. For this, an opportunistic notion is taken into account
to choose the best option according to the criteria made. Eventually, we will see an
implementation in prolog which allows us to calculate the possible solutions in a
given situation.

Summary
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2.1. Classical Logic
Logic is a particular way of thinking. This allows us to reach conclusions con-

sidering certain information to find an answer. But also, logic study the formal
principles and systems of inference. It is used in many fields of research such as
mathematics, science or philosophy. Nature and the human sciences are based
on logical, analytical, systematic and objective thinking to investigate and dis-
cover. Our cognitive capacity for logical thinking is based on rationality.

The formal systems of logic, e.g. propositional, predicate, modal, conditional,
mathematical. . . , are symbolic constructions in a particular language designed

32



to analyze and model modes of inference. For example, deductive, inductive and
abductive.

In order for a system to reason, learn or explain its knowledge, it must first
formalize its ideas. It is normal that when we learn something first we must
know what it is that represents such a thing. So we need to use an appropriate
language so that knowledge must be formalized. Next, a specific language is
presented for the aforementioned purpose. The language of First-Order Logic,
abbreviated FOL. There are other types of logic, however, for its convenient ex-
pressiveness, FOL will be used.

A language is a set of words or symbols that represent something. Which has
three characteristics. The first one is the syntax. In this we have two types of
symbols: logical and non-logical. The logical symbols are those that have a fixed
meaning like: the connectors (¬,∧,∨, ∃, ∀), the last two are called quantifiers;
and variables that are a source of infinite symbols, are usually denoted as: x, y, z.
Non-logical symbols are those that have a meaning depending on the application.
Here we can find the symbolic functions detonated generally as: a, b, c, f , and
the symbolic predicates which are denoted as: P,Q,R. The second feature is
semantics. It focuses on the meaning of expressions. And the third on pragmatics
that deals with how we use the meaning of the expressions of a representation in
a language as part of a knowledge base about the world to later make inferences.
Expressing knowledge in FOL is very natural. Knowledge is the representation
of the world which satisfies certain properties (Moore 1981; Moore 1984). In
the next section we will see the limitations of classical logic.

Limits of Classical Logic
In mathematical logic, the set of predicates in a formal language is the com-

ponent that constitutes the syntax of a theory. A model of a theory is a structure
that satisfies the predicates of this theory. FOL is an extension of classical logic.
It is a formal system that uses quantifiers such as ∃,∀ over variables. FOL consists
of rules describing what valid sentences are and how these rules can be inter-
preted in models. The principle of second-order logic is the same, only that it
has more expressive power. This allows to arbitrarily quantify certain sets in the
model. FOL has a set of derivation rules which is complete. This is what Godel’s
theorems of completeness indicates. Unfortunately for second order logic, this
rule set has no derivation. This means that there is no way to capture what it
means for one thing to follow another.

A theory is a set of predicates, expressed in a certain language. To give some
examples, Peano’s arithmetic is a theory, Zermelo-Fraenkel set (ZFC) is also a
theory. The theories can be consistent. This means that it does not contain a
statement of P and its denial ¬P . Also the theories can be complete, meaning
that they contain even P or ¬P for each statement of P . FOL is a formal system
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(not a theory). A theory is a set of axioms from which consequences can be
derived. The set of derived rules is called complete if each semantic consequence
is also a syntactic consequence.

Having thus described the principles of FOL, we can start by use it to formalize
the pattern circuit. We could say: “An airplane is landing”. In logic we have:
land(airplane). Another instance could be: “A pilot increase the engine power”.
In FOL we have: engine(pilot, increase) and so on. These kind of predicates
would define the basis ontology of this world. In this way and making use of the
flight manual we can represent more predicates, because it contains all necessary
information for piloting, including technical descriptions, physical limitations of
the airplane, rules and emergency procedures. But all these information are
generals that depending on the situation could have contradictory rules. For
instance, there is a rule that says the minimum over flight height will never be
less than 500 feet, in fact this altitude depends of the agglomeration. This rule
could be expressed in FOL, considering that x = airplane, as follows:

∀x, [altitude(x)→ (x > 500)] (2.1)

But when an airplane lands its altitude is less than 500 feet. This could be
expressed as follows:

∀x, [land(x)→ (x < 500)] (2.2)

Another more general rule covers the notion about aircraft. That is, it is very
well known that aircraft have tires in the landing gear, which just allows them to
land and take off. We can formalize this with the following rule:

∀y, [aircraft(y)→ tires(y)] (2.3)

But we also know that floatplanes are aircrafts that do not have wheels. So, we
can have the following formalization:

∀y, [floatplanes(y)→ aircraft(y)] (2.4)

∀y, [aircraft(y)→ ¬tires(y)] (2.5)

We can see that formalization (2.1) and (2.2) are contradictory, and formaliza-
tion (2.3) and (2.5) are too. This is because of classical logic, such as FOL. Clas-
sical logic is monotonous. This property is very important in the world of math-
ematics, because it allows to describe lemmas previously demonstrated. But this
property cannot be applied to uncertain, incomplete information and exceptions,
as we saw with the predicates previously. This is, by adding new information or
set of formulas to a model, the set of consequences of this model is not reduced.
This is a limitation of classical logic. We have formally the property of monotony
is: A ` w then A ∪ B ` w. In other words, adding new information to a model,
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the consequences are not reduced.
Remembering what we saw in the Section 1.2. Piloting is an human activity

susceptible to having partial information, contradictory situations and excep-
tions. Because of environment change, maybe emergencies, respect aeronautical
and security regulations. Taking all this into account, a pilot must follow his
desired flight path. He enters into reasoning under uncertainty. We can see that
it is a non-monotonic problem. Especially when we work on Knowledge Rep-
resentation (KR) and human reasoning. This kind of problem is well known in
AI. It has been studied from along time (Minsky 1974; Reiter 1981; McCarthy
1990). In order to tackle it we have to move from this framework of classical
logic. Because a pilot uses non-monotonic reasoning when has new information,
he verifies them and could break them.

The objective is to represent what is known in FOL and to be able to decide
what to do by deducting a conclusion, which will allow to do certain actions.
The act of doing actions could create new situations. This brings us to the rep-
resentation of knowledge about exceptions, contradictory situations, and also of
the general knowledge of common sense.

The Need of Non-monotonic Reasoning
The problem leads directly to the general representation of common sense

knowledge. We can say that an airplane can fly through the sky unless some-
thing prevents it from doing so. The need of NMR is indispensable in this thesis.
As we saw in Section 2.1, classical logic has limits, for example the principle of
explosion. Moving to another non-monotonic framework we can carry out the
explosion principle and nevertheless reach a conclusion. When a pilot goes from
the “point A” to the “point B”, he has to make decisions at every moment and
those decisions come from a NMR where any information can be contradictory
and incomplete because of environment, legislation, unexpected situations. . . .
However, a pilot must take actions that allows to reach goals, for example, to
determine altitude, to stay for a certain time at a certain altitude, and so on. In
recent decades the development and study of UAV has increased in order to ex-
tend the flight time. Since a pilot has a certain amount of hours, this is caused by
fatigue and can have an impact on the decisions of a pilot. An UAV has the same
mechanical and aerodynamic problems as a private or commercial aircraft. All
this type of airplanes, they are governed by the same physical principle: susten-
tation. It is important to note that this study is being carried out in a non-military
manner. However, the problem does not change since the UAV must have control
of the navigation, trajectory, legislations to respect. . .
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2.2. Non-monotonic Logic
As we previously said, we have to move to NMR framework. KR and human

reasoning have a better understanding using this class of reasoning. NMR is a
kind of reasoning where we make assumptions about things to jump to conclu-
sions. This type of reasoning is presented in many human situations. That is
to say, each new information we learn can modify or invalidate previous deduc-
tions. This reasoning began to be studied since the 1970s, J. McCarthy, D. McDer-
mott, Reiter and others were interested in studying non-monotonous inference,
resulting in default reasoning, epistemic reasoning and more (El-Azhary, Edrees,
and Rafea 2002). One of the most studied and has had good results in practical
terms, has been the default logic, proposed by Reiter (Reiter 1980; Reiter 1981).
The advantages of non-monotonic reasoning are to increase applications in real
domain and to have greater freedom in order to learn things. To formalize this
type of reasoning, we will present in more detail why it is important to use this
logic in this thesis.

Non-Monotonic Logic (NML) allow us to tackle the principle of explosion. This
principle is present when you have in a knowledge an information and the denial
of the same information, but nevertheless you can conclude a thing. There are
different types of logic that treat this principle, one of them is the paraconsistent
logic that was developed in the 2000s. It has different uses in different areas, to
describe behaviors in psychology, economics and also in other sciences (Béziau
1999). We know that FOL is expressive, which allows us to describe almost
anything in a natural way. FOL uses objects, relations or predicates, functions,
connectivities and quantifiers. Let’s imagine that we have a world of a certain
theme and it is represented in FOL. And we would like to know something in
particular about that world. But we can find ourselves with the problem that
what we are looking for is an exception. This means that within the world cer-
tain characteristics are met but not all, which will prevent us from concluding
anything. Assuming we find the particular thing, this can have two explanations.
The first is that the world contains explicit facts that constant what we are look-
ing for. And the other explanation is that there is a universal way to conclude
our search. Airplanes have engines. Say that airplanes have three wheels. This
makes us think of some kind of aircraft. Therefore it is not possible to say that
all airplanes have three wheels. One solution could be to list all the exceptions
in which the airplanes do not have three wheels: All the airplanes that are not
P1 or P2 or . . . or Pj have three wheels., Where Pj are all the particular cases.
Then the problem is to know those cases and be able to cover at least the vari-
ants such as commercial aircraft, transatlantic, helicopters, floatplane. . . those
that land on the water or snow, those who land on an aircraft carrier. . . . Due to
the large number of cases, it is for this reason the importance of distinguishing
between a universal form, properties for all instances, and a generic one, general
properties. Much of our common sense knowledge of the world appears to be
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contained in a general way. This is why it is important to consider a formalism
in FOL that allows us to capture general, but not totally universal, of knowledge.

In real life, there are exceptions where a pilot must land on highways, lakes
or aircraft carrier if we talk about the army. In all the above cases, a pilot must
make a decision to land. It should be noted that given this situation there will
be contradictions, since generally an airplane lands on a runway. However, ex-
ceptions may occur and the aforementioned rule can not always be met. This is
the case when an airplane must land on a highway, parking lot and even on the
sea or lake. What can we say about the following statement: Normally, aircraft
have tires that allow them to take-off and land. But an helicopter is an aircraft
that has no tires. Climatic conditions, air traffic and even agglomeration are
some of the elements that make piloting an activity where NMR is used. A pilot
must consider all these aspects that are changing. The weather can hinder the
visibility, the airplane can suffer turbulences due to the temperature and atmo-
spheric pressure of the area. Equally important the air-traffic, a pilot is always
in communication with the control tower, since each airplane must respect the
area regulations, Figure 2.1. As described in the Section 2.1 that piloting, flight
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Figure 2.1: Flight environment.

environment. . . are governed by rules. For example, from the Federal Aviation
Agency (FAA) the rule 91.7 dictates that: “No person may operate an aircraft un-
less it is in an airworthy condition” and “Pilot-In-Command (PIC) is responsible for
determining whether that aircraft is in condition for safe flight”. Rule 91.137: “No
one can operate an aircraft in the designed area unless aircraft is carrying event per-
sonnel”. Rule 91.319: “Operate under Visual Flight Rules (VFR), day only, unless
otherwise authorized”. Well, we just saw some rules of piloting which are very
general. Below we will discuss the subject of default reasoning, which allows
us to reason in the presence of general information.This is a type of reasoning
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in which conclusions are reached based on what is commonly true. Assuming
that airplanes usually land on land. Under what circumstances is it possible to
conclude that an airplane that touches the water (lake, sea, channel . . . ) is an
airplane? It will depend on the circumstances because particular cases are infini-
ties. When an airplane is not prepared to land on water but for some reason it
should land on water, he will do it.

2.3. Default Logic
It is one of the best known formalizations for default reasoning, created by

Raymond Reiter. Which allows to infer arguments based on partial and con-
tradictory information as premises. In Reiter (1980) a default theory is a pair
∆ = (D,W ), where D is a set of defaults and W is a set of formulas in FOL. A de-
fault d is: A(X):B(X)

C(X) , where A(X), B(X), C(X) are well-formed formulas. Where
X = (x1, x2, x3, . . . , xn) is a vector of free variables (non-quantified). A(X) are
the prerequisites, B(X) are the justifications and C(X) are the consequences.
Intuitively a default means,“if A(X) is true, and there is no evidence that B(X)
might be false, then C(X) can be true”. When defaults are used it means exten-
sions are calculated and we can have zero, one or more extensions. An extension
can be seen as a set of beliefs of acceptable alternatives.

2.3.1. Extension
An extension is a possible set of knowledge about the world. Formally, an

extension of a default theory ∆ is a set E of logical formulas Reiter 1980 with
the smallest set that must verify the following property: If d is a default of D,
whose the prerequisite is in E, without the negation of its justification is not in
E, then the consequent of d is in E.

Definition 1. Let ∆ = (D,W ), an extension E of ∆ is define:

E = ⋃∞
i=0 Ei with:

E0 = W and,

for i > 0, Ei+1 = Th(Ei) ∪ {C(X) | A(X):B(X)
C(X) ∈ D, A(X) ∈ Ei,¬B(X) 6∈ E}

Where Th(Ei) is the set of formulas derived from Ei.

There are two types of implications, skeptical and credulous. A skeptical rea-
soning is whether a formula deduced in a default theory is deduced by all its
extensions. And a credulous reasoning is if a formula deduced in a default the-
ory is deduced by at least one of its extensions (Berzati, Anrig, and Kohlas 2002).
We can have a normal default theory when a default follows the form: A(X):C(X)

C(X) .
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The main characteristic of having a normal default theory is that at least one
extension is always guaranteed. The original version of the definition of an ex-
tension is difficult to compute in practice. Because ¬B 6∈ E supposes that E
is known, but E is not yet calculated. In the case of normal defaults, E is an
extension of ∆ iff: we replace ¬B(X) 6∈ E by ¬C(X) 6∈ Ei. Another variant
that we can have is a semi-normal default theory, which has the following form:
A(X):B(X)∧C(X)

B(X)∧C(X) , Etherington (1987) demonstrates the conditions to prove the ex-
istence of extensions. In this thesis, we use the normal form to represent piloting
rules. Because there is a case where the extension calculation can be null, so no
extensions. In this manner, we can have the guarantee of being able to perform
actions even when we have an extremely unusual situation, because actions are
contained in extensions.

Example 1. Using default logic, from formalization (2.1) and (2.2), we have:

d1 = ((altitude(x) > 500) ∧ roll(x , stable)) : steady_flight(x)
steady_flight(x)

d2 = ((altitude(x) ≤ 500) ∧ roll(x , stable)) : land(x)
land(x)

d3 = (land(x) ∧ obstacle) : climb(x)
climb(x)

In natural sense, d1 describes if x has an altitude more than 500 feet with
a stable roll, and it is possible that x is in a steady flight, then x is in a steady
flight. Default d2 describes that if x has an altitude less than 500 feet with a stable
roll, and it is possible that x lands, then x lands. And default d3 describes if x
lands and there is an obstacle, and it is possible to climb, then x climbs. Now,
we are going to use these three defaults assuming that we have the following
information:

W = {(alt(x) ≤ 500), roll(x , stable), obstacle}

From ∆ = (D,W ), we calculate the set of extensions. We find E1 = W
⋃ land(x),

where x lands, by using the default d2. On the other hand, we find E2 =
W

⋃ climb(x), where x climbs, by using the default d3. We have two coherent
solutions. Solving the problem of contradictory information.

There are mandatory rules that cover flight physics, security and more. For
instance, in case of engine failure, x lands. Or if there is an obstacle in the
runway, x must not land. But if x has an emergency, a pilot must land to not die,
so the risk is enormous. The mandatory rules will have a high weight, because
of priority and security. When different solutions are computed we should take
into account criteria such as emergency, security, regulation, energy. . . In the
next section we are going to describe the different manner to choose an option
of a multiple alternatives. The chosen one will be the one that complies with the
imposed restrictions function.
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2.4. Decision Making under Uncertainty
Decision making problem is one of the most important field in multiple cri-

teria decision (Triantaphyllou 2000). It exists many methods such as: Pareto
analysis, decision matrix analysis, prospect theory. . . In this section we present
a non-probabilistic model to decision-making under uncertainty. In real life, we
interact in a non-deterministic environment that cannot be really described by
probabilistic or mathematical models. This is because every situations could
change over time. Decision-making is a problem that everyday we do. Let’s
take an example, when we decide to go buy orange juice from your home to
the market. Let’s think you have enough money to buy orange juice, so you are
ready to go at the market place by walking. Before you close the door of your
apartment, you don’t know what is the next situation, maybe the elevator is not
working and you need to use the stairs or maybe the street that you usually use is
closed for repairs. It should be noted that, as can be seen in these two examples,
non-monotonic and non-probabilistic decision-making is presented. Because of
non-monotonic world, we have also non-probabilistic decisions. We can not be
sure that if you use the elevator 20% of the chances it will not work, or 6% of
the chances street will be close for repairs. In this part there are different meth-
ods to use, since we have a problem of optimization multi-criteria (Sion 1958;
Chiles and McMackin 1996; Cvetkovic and Parmee 2002; Moshman 2004; Park,
Johnson, and Kuipers 2012; Shieh, Li, and Yang 2017).

A priopri: Decision→ Optimization.

Progressives: Decision↔ Optimization.

A posteriori: Optimization→ Decision.

Decision-making is done in a non-probabilistic manner, in others words, when a
person must make a decision he does not have to calculate a distribution. The
problem is not trivial because we have to perform a function that minimizes the
risks and maximizes the benefits like that we can find an optimal option which
will converge according to a goal. Since the extensions contain actions that will
be applied.

2.4.1. Probabilistic
This kind of decision-making which is based on probabilities for each alterna-

tive. In this model we have a previous quantification of the samples for each
case. Therefore, a number of experiences must be performed, statistically 1000
times, to have a considerable percentage of certainty. Considering the following
Table 2.1, where the alternatives can be appreciated, in our case they are fixed
points found, and their respective weights and probabilities.
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Alternatives
Criteria

0.4 0.2 0.4
d2 4 4 5
d3 3 3 2
d4 3 2 3

Table 2.1: Weighted criteria.

A commonly decision-making used is called weighted product. In which is
defined by the following notation:

P (AK/AL) =
n∏
j=1

(aKj/aLj)wj (2.6)

For K,L = 1, 2, 3, . . . ,m.

Applying the Equation (2.6) to the Table 2.1, we will obtain the following results,
to compare d2 with d3:

P (d2/d3) = (4/3)0.4 × (4/3)0.2 × (5/2)0.4 = 1.71443 > 1

To compare d2 with d4:

P (d2/d4) = 1.58089 > 1

To compare d3 with d4:

P (d3/d4) = 0.92213 < 1

In order to make a comparative decision, the result of the operation is compared
with the unit, this comparison is empirical. If the result is greater than unity, it
can be concluded that d2 is better than d3, (d2 > d3). Otherwise, if the result is
less than the result, we can conclude that it is not the best option, as it can be
shown in the next result. So, using the model of the Equation (2.6), we have that
d2 > d3, d2 > d4 and d4 > d3. Concluding that d2 is the better option, in second
place d4 and the last place d3 (d2 > d4 > d3).

2.4.2. Non-Probabilistic
The advantage of being able to work with non-probabilistic models is that it

reduces the quantity of complex operations, for example power operation is not
necessary, as we saw before. Another advantage is that it is not necessary to
make experiences of the alternatives. The principle is very simple, we ponder all
the solutions in order to put priority, in our case are defaults. In other words, a
default which has a higher value than the others, it is the most important. We
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will start by defining a vector that goes from the lowest to the highest priority,
Table 2.2. This can be seen as a scale of importance, priority, risk,. . . For non-
probabilistic models, the aforementioned table will be taken as a reference for
the others three types of criteria that do not use probabilities. The first model

Score
Very low Low Medium High Very high

0 1 2 3 4

Table 2.2: Criteria scale.

presented is called MaxiMax. The idea is to find the best of the best for each case.
In other words, it would be choose the best possible and then take the actions
with the highest values, this model is also called optimist. If we calculate three

Alternatives Criteria BestA B C
d2 1 0 1 1
d3 4 2 4 4
d4 3 2 3 3

Table 2.3: Maximax criteria.

alternatives, as defaults with different criteria and ponderation. For MaxiMax,
the best choice is d3, because for each alternative we maximize the values and
then we take the maximum value of them, Table 2.3.

For the second model, Maximin, we will choose the best of the worst alterna-
tive for each case, this model is also called pessimist. With the same alternatives

Alternatives Criteria WorstA B C
d2 1 0 1 1
d3 4 2 4 4
d4 3 2 3 3

Table 2.4: Maximin criteria.

and criteria as before, but now for this model, the best choice is d2, because
we maximize the values of alternatives and then we take the minimum value
of them, Table 2.4. And finally, Minimax, for this model is necessary to make
an intermediate calculation before choosing an alternative. This intermediate
stage is called opportunistic loss (or regret) matrix. Formally, the set of regrets
is defined as:
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Definition 2. For each set of calculated extensions, there will be an opportunistic
matrix.

∀E,∃ mr = min {max (ci)− cj}

Where mr is the minimization of the difference between the maximum value
of the criteria ci and alternatives cj, for all extensions. To calculate the matrix of
alternatives, the following formula must be followed: regret (R) = payoff received
(P) - best payoff (B).

R = P −B

For each criteria/situation, regret = highest value - smallest value. Then, we
choose the maximum value, and finally we choose the minimum of the maximum
value. This will allow us to know what can happen before the event happens and
choose the best alternative.

Alternatives Criteria
d2 1 0 1
d3 4 2 4
d4 3 2 3

Regret table
d2 4-1 = 3 2-0=2 4-1=3
d3 4-4 = 0 2-2=0 4-4=0
d4 4-3 = 1 2-2=0 4-3=1

Table 2.5: Minimax criteria.

Alternatives Criteria MiniMax
d2 3 2 3 3
d3 0 0 0 0
d4 1 0 1 1

Table 2.6: Regret table.

For the same alternatives and criteria, for this model the best solution is d3.
First it should be calculated the regret/loss matrix, Table 2.6, second, we maxi-
mize the values and then we take the minimum of them. In this thesis, we use
this model due to its opportunistic characteristic. Because it creates an opera-
tional space where it shows us the losses, before event happens and then choose
the best option. In this manner, we optimize in the opportunist way and then we
choose a decision, referring to an “a posteriori" decision making. The biggest ad-
vantage of this model is that it has more flexibility in terms of predicting events,

43



precisely because of the calculation of the matrix. We formally define our model
of choice of extensions.

Definition 3. For each default (d) there is a weighting (p). When the extensions
are calculated, the one that satisfies the opportunistic notion will be chosen.

Proof. Knowing that each rule has a weight, dx = {0, 1, 2, · · · 100}. The set of
solutions is E = {dx1, dx2, dx3, · · · }, each rule containing certain criteria, E =
{[xd1, yd1, zd1], [xd2, yd2, zd2], [xd3, yd3, zd3], · · · }. We must normalize for each crite-
rion:

C1n
xd1

+ C2n
xd2

+ C3n
xd3

+ · · · ∈ |C1n|

C1n
yd1

+ C2n
yd2

+ C3n
yd3

+ · · · ∈ |C2n|

C1n
zd1

+ C2n
zd2

+ C3n
zd3

+ · · · ∈ |C3n|

...

Creating standardized weights for each solution: En = {|C1n|, |C2n|, |C3n|, · · · },
En−1 = {|C1n−1|, |C2n−1|, |C3n−1|, · · · }, En−2 = {|C1n−2|, |C2n−2|, |C3n−2|, · · · }. . .
We obtain the following standard table of the solutions with their criteria: Applying

Ext-Crit C1 C2 C3 · · ·
En Xn Yn Zn · · ·
En−1 Xn−1 Yn−1 Zn−1 · · ·
En−2 Xn−2 Yn−2 Zn−2 · · ·
... ... ... ... . . .

Table 2.7: Normal extension-criteria table.

the opportunistic principle which in theory of the decision leads us to consider the
minimax function, we find the solution, En.
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2.5. Study Case
Isabel’s thesis is the first research where extensions are calculated in prolog

language, her thesis was about “Modelling of Submarine Navigation” (Isabelle
Toulgoat, Botto, De Lassus, et al. 2009; I. Toulgoat 2011; I. Toulgoat, P. Siegel,
and A. Doncescu 2011; Isabelle Toulgoat, Pierre Siegel, and Lacroix 2011). Later,
this application inspired to use it in the study of biological systems (Le, A. Don-
cescu, and P. Siegel 2013; A. Doncescu and P. Siegel 2015), and now for piloting.

In this section, we are going to present the representation of defaults D and
facts W for our case. Default set D embeds actions that will take into account:
exceptions, partial and contradictory knowledge. Accurate informations and mu-
tual exclusions are in W . Mutual exclusions are actions that can not happen at
the same time. All the information of the pilot and airplane will be described
inside of two sets. For example, this can be like “a pilot and an airplane are on
runway” and also “a pilot does a checklist”. The goal is to derive conclusions,
they are expressed such as defaults. To takeoff three defaults are described:

d0 = (authorization(pilot, takeoff) ∧ ¬obstacle) : motor(pilot, on)
motor(pilot, on)

d1 = motor(pilot, on) : motor(pilot,max)
motor(pilot,max)

d2 = airplane(airspeed) > 1000 : yoke(pilot, pull)
yoke(pilot, pull)

This happen when we assume that a pilot is in the airplane and he has the
authorization to takeoff, which was sent from the control tower. Otherwise, we
can conclude that he will wait for the authorization signal. For the following
flight phases, general rules are also presented, for the next states such as climb:

d3 = airplane(airspeed) > 1000 : yoke(pilot, pull)
yoke(pilot, pull)

General rule for bank-turn:

d4 = airplane(altitude) > 1000 : yoke(pilot, left)
yoke(pilot, left)

d5 = airplane(altitude) > 1000 : yoke(pilot, right)
yoke(pilot, right)
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Motor Pitch
motor(pilot, on) yoke(pilot, push)
motor(pilot, half) yoke(pilot, neutral_p)
motor(pilot, off) yoke(pilot, pull)

Roll Yaw
yoke(pilot, left) rudder(pilot, left)

yoke(pilot, neutral_r) rudder(pilot, neutral)
yoke(pilot, right) rudder(pilot, right)

Table 2.8: Actions in FOL.

General rule for steady-flight:

d6 = airplane(altitude) > 1000 : yoke(pilot, neutral)
yoke(pilot, neutral)

d7 = airplane(altitude) > 1000 : motor(pilot, half)
motor(pilot, half)

General rule for descend:

d8 = airplane(descend) : yoke(pilot, push)
yoke(pilot, push)

General rule for final-approach:

d9 = airplane(variometer) < 0 : yoke(pilot, neutral)
yoke(pilot, neutral)

General rule for landing:

d10 = airplane(altitude) < 10 ∧ ¬obstacle : motor(pilot, off)
motor(pilot, off)

A pilot can apply different actions: engine power, elevator, ailerons and rudder.
These actions are defined by the following predicates, Table 2.8. It should be
noted that mutual exclusion must be considered. Since in our model it can not
be true yoke(pilot, push) and yoke(pilot, pull), because it is physically impossible.
They are considered as positive literals. For example, given a situation, only four
predicates can be true and these must be different.

2.5.1. Implementation in Prolog
The implementation to calculate the extensions is done in Prolog. Prolog is a

powerful and flexible programming language. This language means “logical pro-
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gramming”, but in french “PROgrammation LOGgique”. Among its main tools is
the recognition of patterns, tree structure for data and automatic regression. It
was specially made to solve problems involving objects and the relationships
between them. The ease with which you can work in this language is very pow-
erful, both in Artificial Intelligence and in non-numerical programming. We can
have the following rules as an example: if X is closer to the observer than Y and
Y is closer than Z, then X is closer than Z. Thus prolog can reason about spatial
relationships and their consistencies based on general rules. This idea emerged
in the 70s when it began to use logic as a programming language. Some people
were developing the theoretical aspect as Robert Kowalski in Edinburgh, Maarten
Vaan Emden also in Edinburgh and the experimental side Alain Colmerauer in
Marseille. Eventually it evolved but became popular when David Warren made
a very efficient implementation in Edinburgh in the mid-70s.

We start to represent the information of the cockpit, Glider(x) where x are the
information of the sensors. For instance, airspeed is represented with three infor-
mations, using prolog syntax we have: “Airspeed([low,stable,high])”, low indi-
cates that the measure is less than a value, stable is between two values and high
indicates more than another value, analogy for: “Altimeter([low,stable,high])”.
“Pitch([up,center,down])”, up describes a positive angle of attack, center is no
inclination and down describes a negative angle of attack, the same way but
vertical speed: “Variometer([up,stable,down])”. “Roll([left,center,right])”, left
indicates turing to the left, center is no turning and right indicates turning to the
right, analogy for: “Turncoord([left,center,right])” but tangential force. Finally,
“Compass([n,s,e,w])”, n,s,e,w indicate the direction of the airplane to the north,
south, east and west, respectively.

2.5.2. Facts and Rules
In Prolog there are two important components: the facts and the rules. The

facts are a collection of truths in the domain, and usually they are ground atoms;
The rules are used to extend the vocabulary, expressing new relationships based
on basic facts, usually containing quantifiers.

runway(airplane1, cabin(pilot1)).
runway(airplane2, cabin(pilot2)).
authorization(cabin(pilot1), airplane1).
. . .
takeoff(x, y)← runway(x, y)
takeoff(x, y)← authorization(y, x)
flying(y, x)← takeoff(x, y)
. . .
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As we can see, the rules: takeoff(x, y) ← authorization(y, x) can be read as “x
take-off for y if y has the authorization to take-off x”. This rule will be true if
the right side is true. From the facts we know that there are two airplanes in
the runway and “pilot 1” of the “airplane 1” has authorization to take-off. The
first rules is to know if the airplane is located in the runway, and if it is true
and authorization too, airplane take-off, therefore it will fly. Unless another facts
invalidates this rule. To find the solutions to our system it is necessary to solve
a set of logical equations. Computational difficulties are the biggest challenge in
this type of case. However, with the use of the horn clauses, complexity becomes
more manageable and the expressiveness suffices for many purposes. Clauses
are the simplest type of formula. Formally, a clause is a disjunction of literals
l1∨l2∨l3∨. . .∨ln. A Horn clause is a clause with a maximum of one positive literal.
It’s a formula defined as (f1 ∧ f2 ∧ f3 ∧ . . . ∧ fi)→ g, where fi and g are positive
literal. Similarly, the formula defined as ¬(f1 ∧ f2 ∧ f3 ∧ . . . ∧ fi) is equivalent to
the negative Horn clause(literals can not be true simultaneously). An example of
mutual exclusion: ∀t,¬(glider(pilot, yoke_left)∧glider(pilot, yoke_right). When
Prolog is working in a proof, it will consider false what he can not prove true,
and vice versa. This is known as the theory of closed worlds. In simple terms,
the negation of a predicate does not imply that all time is false, simply that it
is not demonstrable with the information given. This principle is called Closed
World Assumption, it means that everything that is not known is considered false
(Reiter 1981).

For our purposes, we define clauses as rules of piloting. These rules follow a
specific syntax which has the form: cl(text, δ, A, C, ω). Where text could be a
chain of characters as comment, δ could be a real fact “hard” or default “def”, A
and C are the prerequisite and consequent, and finally ω is the priority weight
and could be a vector of criteria, Table 2.7. The theoretical computational com-
plexity is

∑p
2. In our implementation normal defaults and Horn clauses are used

only. Allowing to compute the extensions in a quasi-linear time. However, if we
increase the number of defaults, the calculation time does not increase exponen-
tially, others applications (Le, A. Doncescu, and P. Siegel 2013; A. Doncescu and
P. Siegel 2015). An algorithm for the calculation of extensions is presented. It
is based on normal defects, this guarantees the calculation of at least one exten-
sion.

Conclusion
In chapter 2 was described how the problem was studied. We start by mod-

eling basic rules of piloting by FOL. But the representation of the rules and en-
vironment can not be solved by classical logic. Piloting rules are uncertain and
contradictories and they have to verify them at every time. Non-monotonic logic
has a great advantage in these kind of cases. It is an important tool in Artificial
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Algorithm 1 Calculation of extensions.
Require: E = ∅
procedure Extension(E = ∪Ni=0Ei)

Initialization
CalculExtension(E)
while there is a default A(X):C(X)

C(X) that has not yet been inspected do
Select the default D
Verify A(X) are true
Verify C(X) is consistent with W
Add C(X) to W

end while
Backtracking(deleting C(X) added to W)
CalculExtension(E)

end procedure

Intelligence because it captures reasoning under uncertainty. In our approach,
an algorithm based on default logic is proposed. We did a simulation of take-off
situation and we found 5 extensions that are consistent subsystems. When we
have two or more solutions we must choose one of them. We ponder all the de-
faults depending on security, priority, legislation. . . Decision making is based on
an opportunistic notion. Which makes a non-probabilistic analysis of the possible
scenarios before they occur (Sion 1958; Chiles and McMackin 1996; Triantaphyl-
lou 2000). The results provide the basis for an autonomous motor-glider. The
theoretical computational complexity is

∑p
2. Normal defaults, Horn clauses and

normal criteria weights are used only. Allowing to compute the extensions in a
quasi-linear time. We presented short and simple Prolog programs. For initial
tests(around 100 rules), we calculate all extensions in milliseconds. The aver-
age calculation takes 1956600 Logical Inferences Per Second (LIPS) and 0.049
seconds of central processing unit (CPU) time on a MacBook.

49



3 Resilience
The objective of this section is to present the definition and properties of resilience.

We will see the KOSA model, which is a model which contains a set of knowledge
described in objectives, situations and actions. To make a better capture of the
property of resilience in our model based on Reiter’s defaults logic, we will define
concepts such as short and long objectives. We will make use of Marvin Minsky’s
theory, as well as the definition of new concepts. Finally, we will present the discrete
and continuous behavior of the total model.

Summary
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Adaptive Cycles . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 KOSA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Situations, Objectives and Actions . . . . . . . . . . . . . . 56
3.2.2 Short- and Long-term Objectives . . . . . . . . . . . . . . . 56
3.2.3 Minsky’s Model . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.4 Continuous Model . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 Discrete Model . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Piloting as a Resilient System . . . . . . . . . . . . . . . . . . . . . 60

3.1. Definition
This thesis arises from the concern of being able to capture the notion of re-

silience using a language that allows to represent any knowledge in a natural
way. But first, what is resilience? It is the property of a system that has the abil-
ity to absorb and to adapt in the presence of disturbances. Crawford S Holling
(1973) introduced the term of the resilience to model the dynamics of natural
disasters (Chandra 2010; S. Goerger, Madni, and Eslinger 2014). In other fields
of science the concept of resilience is defined as the property of a system to ab-
sorb and anticipate perturbations. In ecology, resilience aids to understand natu-
ral disasters behavior. In engineering, resilience ensures consistency, robustness
and stability (Sitterle, Freeman, S. R. Goerger, et al. 2015), even in uncertain
environments (Zhang, Mahadevan, Sankararaman, et al. 2018), or can be de-
fined as safety management which concentrated on no matter what situation
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under pressure, it will converge successfully (Crawford Stanley Holling 1996;
Woods and Hollnagel 2017). In psychology is the overcome a personal difficulty
or stress’ life, (Fletcher and Sarkar 2013; McEwen, Gray, and Nasca 2015). In
economy is a moment in which there is a balanced situation of diverse variables.

When a system suffers disturbances, internally its states are reconfigured.
These modifications can cause exceptions and contradictions, this can be seen
as a disorder of the states. This disorder will have a behavior in the face of the
magnitude of the shock witnessed. If the system is sufficiently resilient, it can
absorb shocks easily. In the worst case, it can collapse because it is not very
resilient. Once the system has absorbed the shock, it will resume its previous
behavior.

The concept and definition of resilience was introduced by Crawford S Holling
(1973) to describe behaviors of ecological systems, studying the stability of them.
Resilience is the property of a system of persisting. This being a quantitative
characteristic to absorb changes of variables and parameters and continue to
persist. On the other hand, stability is the ability of a system to return to its equi-
librium point after having suffered a disturbance. It is said that a system is very
stable when it returns faster to its equilibrium point, and has fewer fluctuations.
Eventually, he describes resilience like adaptatives cycles (Crawford S Holling
2001).

When a system is affected by a constant external changes, it is confronted to
the unexpected. In most of the cases, it will find a stable point then constancy
of its behavior is less important than its persistence. To better explanation, let’s
give an example. We can imagine the following drawing where we have a ball
and different local minimums. If we apply a force to the ball, the ball will find
another local minimum different from the initial one. However, it will depend
on the surface. If the ball is on an almost flat surface, it will be very easy to find
another local minimum. Otherwise if the surface has a concave surface, it will
make very difficult for the ball to find another local minimum. The fact that the
ball is difficult to get out of its local minimum means that it is very stable, since
any force on it will have no effects. In contrast, if the ball is affected by some
external force where it makes leave the original local minimum and find another,
this indicates that the ball is unstable. In the Figure 3.1, field vectors represents
a behavior, depending on initials conditions we will have different solutions.

The stability gives emphasis to the balance, maintaining a predictable world
and keeping the least number of fluctuations before external disturbances. Hav-
ing a management based on resilience, this can maintain the options. Resilience
implies persistence, so it does not require an accurate capacity to predict the fu-
ture. The qualitative capacity is sufficient for the system to absorb and adapt to
future events for any unexpected way.

In control theory, a very well known way to study the stability in dynamics
systems is Lyapunov function. This function has a point of equilibrium xo of a
homogeneous equation ẋ = f(x) will be stable if all the solutions of the equation
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Figure 3.1: Systems with different behaviors.

are found in a environment of xo and remain in xo for all subsequent time. In
mathematics, it is a condition in which disturbances in a system do not produce
drastic effects on it. Lyapunov function involves differential equations which are
not of much interest in this thesis. When the system suffers disturbances, it will
respond with a behavior that will be defined by many internal factors that de-
termine the reaction time, shock absorption, change of objectives. . . Figure 3.1.
Figure 3.2 shows that at the time of a disturbance the internal states of the sys-
tem will enter a reconfiguration zone, Pmin, this can be like the calculation of
the extensions from our point of view in DL. Therefore, when the system has a
solution, it will begin the recovery process ,Set− point, towards the objective it
had before the collision. A possible behavior before perturbation could be (a)
from Figure 3.1. After perturbations and depending on what extensions chosen
E0 . . . E3, could result such as (b) or (c).
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Figure 3.2: Resilient system.

3.1.1. Adaptive Cycles
In the theory formulated by Crawford S Holling (2001), resilience is defined

such as adaptive cycles too. These are three properties: potential, connected-
ness and adaptability. Potential determines future solutions, it also determines
the limits of what is achievable. Connectedness is the degree of connectivity be-
tween internal variables and processes, this is a measure that can describe the
level of flexibility or rigidity of the control (sensitivity or not to disturbances).
And finally, the ability to adapt, this is the resilience of the system, reflecting its
vulnerability to an unpredictable or unexpected event.

Resilience can be formally described under three principles which were already
addressed. To explore the solutions of a given situation, we calculate extension
thanks to a default theory, Section 2.3, remembering that it is important to take
into account the use of normal defects. The second principle is the opportunistic
normal function for the choice of an extension, Section 2.5. We must also include
the Minsky’s model, thanks to this model we can determine a convergence hori-
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zon. This horizon can be short or long according to the current situation. In the
same way, this model will allow us to know the orbit in the world of knowledge,
as well as its behavior, Section 3.2.5. With the set of these principles, we can
describe the property of resilience. The major contribution of this thesis focuses
on a model that is presented below.

3.2. KOSA Model
The proposition of a model based on a non-monotonic logic and resilient is

called KOSA model. As we presented in Section 1.2, the problem is reasoning
under uncertainly to follow up different objectives. Here, the problem lies about
piloting an airplane where several criteria must be taken into account, the height
of the flight will depend on the agglomeration of the area, indicated by the FAA,
criteria may include priorities, risk, security, legislation. . . This is what a pilot
has such as information/situation, Figure 1.9. The representation for each flight
states in default logic, these are general rules. Firstly, a pilot has to do the
checklist to be sure everything is good, according to the regulation.

Definition 4. Two predicates are defined in the world K. The first one describes
the properties of the airplane and situations.

F (G) ⊇ S,O

Where F are the information of the cockpit, situations. . . and G is a vector of
free variables. Some examples could be that the cockpit of the airplane shows
an altitude of 1000 feet, altitude(glider, 1000). the cockpit of the airplane shows
an airspeed of 80 Knots, airspeed(glider, 80), the cockpit of the airplane shows a
vertical speed of -10 feet/min, variometer(glider,−10), but also it can describe
the situations, for instance, from the control tower the glider has authorization
to take-off, authorization(glider, takeoff), glider has an obstacle in front of him,
obstacle(glider), glider has an emergency, emergency(glider) and so on. And the
second predicate defines all the actions that a pilot can do.

P (Q) ⊇ A

For instance, a pilot turns the yoke to the left, the follows sentences could be
described as do(pilot, yoke, left), a pilot pulls the yoke, do(pilot, yoke, pull), a pilot
turns on the motor, do(pilot,motor, on) and so on.

The KOSA model is a generalization for the representation of resilient systems.
This model is composed of a NML based on DL, non-probabilistic decision mak-
ing and the Minsky’s model. The latter will be explained in detail later in this
section. This is a general model that can be used not only for piloting an air-
plane. But also in all system that human reasoning is involved. From solving
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Figure 3.3: Architecture KOSA.

problems like playing chess to driving a car. Because both in chess and driving
a car, decision-making under uncertainty is always present. In a game of chess,
a player “A” guess the strategy of player “B” to win. Driving car is more complex
because the environment change, there are more drivers, we can see that such
as more players.

All the systems have an objective as a goal, when new information becomes,
maybe a shock, new situations are present. For example, certain biological sys-
tems controlled the level of x chemical concentration. Or power electric system
controls the voltage required for a good operation of the circuits, e.g. in a moth-
erboard, cellphones, electric cars. . . But we never know when a shock or disturb
will happen. These examples before mentioned are resilience, biological sys-
tems can naturally regulate chemical concentration to maintain alive y number
of cells. In power electric system, regulation of voltage or current generally done
by PWM. The principle of PWM is that frequency changes when impedance of
the load changes, like that the level of Root Mean Square (RMS) of voltage or
current in the load connected is maintained.

To illustrate the notion of the model, in the Figure 3.3 we have an architec-
ture of how it is shaped where we can see that on the top of the pyramid we
have the knowledge of the world K, in which the system is located. There are
different layers and they are interconnected to make function as a feedback con-
trol system. Under the layer knowledge we have the layer of the objectives O.
The interaction between these two layers are of the utmost importance since, if
there are no objectives, the system will be in an indeterminate cycle. Below we
have the states or situations S. It should be mentioned that depending on the
objectives, the interaction of these stages will be the cause of the evolution of
the system, converging to those objectives. And finally, in the lowest part of the
pyramid are the actions A. These are the ones that will be in direct contact with
the environment. To understand the operation of the architecture, we will begin
by formally defining the four layers.
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3.2.1. Situations, Objectives and Actions
Definition 5. A world K is composed of objectives-O, situations-S and actions-A.

{S,O,A} ⊆ K | S ⊆ ∅ , O ⊆ ∅ A ⊆ ∅

Firstly, the set of situations (S) contains information about parameters of an
airplane (altimeter, airspeed, variometer. . . ), environment. . . . On the other side,
the set of actions (A) are what a pilot does physically (increase or decrease the
engine power, turn the yoke to the left or right, . . . ). In this context, the situ-
ations and actions are represented by positive literals. For a certain situation,
the challenge is to calculate the extensions that contain actions which allow to
approach the desired objective (O). For instance, when an airplane is placed at
the start point (Sp), Figure 1.9, assuming it has the authorization and it is possi-
ble to take-off, then the airplane take-off. This objective could be described by a
default as follows:

(rest(x) ∧ authorization) : takeoff(x)
takeoff(x) (3.1)

In the same way, we could describe when a plane (starts at some point a) wants
to maintain an altitude greater than 1500 feet with a north direction, to reach to
the point b. A default could be as follows:

((altitude(x) > 1500) ∧ compass(x, north)) : point(x, b)
point(x, b) (3.2)

These are just two defaults as examples, but we can include many others in O.
We consider two kind of objectives, short and long-term.

3.2.2. Short- and Long-term Objectives
When a pilot has a disturbance of any kind, he will naturally move away from

the objective (O), this it could be land, take-off, climb. . . However, he must
make actions to achieve the goal. A pilot is in constant revision of knowledge,
taking information from the cockpit, environment and even from the control
tower. Additionally, a pilot should respect air regulations and navigation laws.
For a better understanding, we introduce the following concepts. The short-
terms occur when there are perturbations and airplane moves away from the
long-term objective. Thus, a pilot will find another short-goal to get closer and
converge. For instance, when an airplane is climbing (from the point a to the
point b, Figure 1.9) to 1500 feet and there are wind disturbances, Equation (3.1)
is considered a sub-goal. On the other hand, a long-term objective is, for in-
stance, maintain a steady flight for 5 minutes with an altitude of 1500 feet,
Equation (3.2) is considered a long objective.
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Definition 6. In the world K, there is always a resilience trajectory R.

∀S,∀O, ∀A ⊆ K ∃ R (3.3)

Short-term objectives have very fast change in comparison with long-term.
Nevertheless, short-terms will allow to achieve long-term. As the system evolves
and disturbances appear, exploration is an important stage of the model. Be-
cause this part it is the main process to find different sub-goals that will allow
to absorb a shock ζ. Sub-goals g are related to the extensions since they contain
actions to converge to the final goal. It is so that the system can jump between
sub-goals and have a resilient behavior. So to apply the property of resilience
in our model, inside the world K we will study the property of resilience, Fig-
ure 3.4. Since we know that the KOSA model has an evolution over time, we
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β

K
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A

Figure 3.4: Representation of KOSA model.

are interested to study its form and properties. We can define a trajectory which
has to satisfy 4 properties: reorganization (α), exploration (β), release (γ) and
conservation (δ), Figure 3.4 (Crawford S Holling 2001; Sitterle, Freeman, S. R.
Goerger, et al. 2015; Zhang, Mahadevan, Sankararaman, et al. 2018). Accord-
ing to the theory made by Holling, we can identify the four properties for our
system. The first corresponds to the exploration, in this part is where we have a
situation and we will look for or explore solutions. These solutions are the fixed
points of a default theory, Section 2.3. Organization and conservation are con-
tained in what we define as non-probabilistic decision making. It is important to
note that the model used creates an operational space where the alternatives are
sorted according to the losses and then choose the best and achieve a desired
goal. Finally, we can define the release as the interaction of our system with
the environment in which situations develop. In other words, when the system
has chosen a solution, it will have to execute actions that will move towards an
objective. To know if a goal was completed or to know the distance to it, we
consider the Minsky’s model.
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3.2.3. Minsky’s Model
In this thesis the control part is made thanks to Minsky’s model. This model

was created by Marvin Minsky, who was one of the fathers of artificial intel-
ligence, along with others such as John McCarthy, Allen Newell and Herbert
Simon. Marvin Minsky created a general concept that can be applied in both
psychology and engineering. The principle of this model lies in the fact of hav-
ing three fundamental parts. The first is a current situation in which an event
develops, the second is a situation in which we want to be. And finally, we have
a result of the difference between the current situation and the situations we
want to be. This result will be the corresponding actions to reach the desired
situation, Figure 3.5. Once the objective is achieved, we can have more future
objectives, thus, repeating the same principle to converge with others (Minsky
1974; Minsky 2006).

Want

Now

Diff

Figure 3.5: Minsky’s model.

3.2.4. Continuous Model
This representation allows us to describe, as in the Figure 3.2, the solutions

and internal connections for every situation S. Thanks to this, we can see how
strong or weak is the model when perturbations are present. But if we would
like to see the resilience we should increase one dimension. In K there is a
set of situations, objectives and actions. We can find a dynamic of the fixed
points, take up the meaning of Reiter (1980), remembering that the fixed points
are solutions of a situation. So if these points have a dynamic, we can make a
projection towards and study the trajectory or orbits of these points. That will
happen when the system evolves from a situation to another future situation.

The representation in Figure 3.6 is proposed for a better understanding the
property of resilience. This is why we have two sets: K and Υ. In Υ is contained
the resilient behavior. The behavior can have different orbits. As Crawford S
Holling (1973) established it may be an ∞ orbit. In the same manner, we can
have circular or elliptical orbits. These forms will depend strongly on the con-
nection of the internal states, the closer they are to each other, the system will
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Figure 3.6: Trajectory of resilience.

respond quickly to disturbances. This is also related to the distance of the hori-
zon between the objectives, while the shorter the horizon, the quicker it will
react. Otherwise it will take more time to react if the horizon between objectives
is long. In the world Υ there is a function that allows visualizing the dynamics
of situations, objectives and actions. Mathematically it is defined as:

Υ(f) : S ∩O → O ∩ A

In this plane only the interaction two states can be useful, for example of the
Minsky’s model these states can be the current and future situation. Being able
to capture the behavior of the world K.

3.2.5. Discrete Model
We take a look at the discrete representation, Figure 3.7. At the begging Sp

the computation of four extensions: {g0, g1, g3, g5}, according to our decision-
making model g1 is chosen and then the system interacts with the environment.
At some point, disturb ζ1 occurs and extensions are computed one more time:
{g1, g4, g5, g6}, the better solution is g6 and then interaction happens again. This
process occurs every time disturbs ζ appear. In this sense, computing and choos-
ing extensions, trajectories (M, ?) are created. For the first resilient trajectory
(M), we have: RM = {g5, ζ0, g4, ζ1, g3, ζ2, g6, ζ3, g5, ζ4, g4, ζ5, g6, . . .} and for the sec-
ond trajectory (?), we have: R? = {g1, ζ0, g6, ζ1, g3, ζ2, g6, ζ3, g5, ζ4, g4, ζ5, g1, . . .}
This representation of trajectories was made with a small number of extensions
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Figure 3.7: Evolution of a goal G, switching sub-goals g when a disturb ζ occurs.

and disturbances, for a greater number we have the following definition.

Definition 7. The convergence of an objective G is the sum of the product of the
sub-objectives g and disturbances ζ.

Formally we can define the sequences of the trajectory as the sum of the prod-
uct of the subgoals and shocks/disturbances:

∞⋃
i=0

Gi =
∞⋃
i=0

gi · ζi (3.4)

3.3. Piloting as a Resilient System
In this section, we consider piloting as a resilient system. We must make use

of some principles already explained. It is important to emphasize that to be
realizable this example, we must take into account normal defaults, normal op-
portunistic function and Minsky’s model. These three points are make possible
to explain this ability of systems to absorb shocks and converge to a goal. An
interesting point of the model is if we increase the number of defaults, we will
increase the degrees of freedom. This is an important remark, because we con-
sider degree of freedom a space in O where it could pass a trajectory. In this
example, we describe a “take off” situation, where extensions are calculated,
then choosing the best solution to converge to the objective. Supposing that all
conditions are ready, and at some time t he will suffer a disturbance D. We can
see in the Figure 3.9 others goals which are different flight states. We start in
O, where a glider has not airspeed, v ≈ 0, so it is considerate rest state (RS). If
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Figure 3.8: Takeoff behaviors.

we do not have the information about authorization, so we consider that autho-
rization is false. We have a predicate “glider(X)”, it is a formalization of “glider
has X”. Where X = {x1, x2, x3, . . . , xn} is a vector with all information from the
instruments. Next predicate “glider(airspeed_zero)” is a formalization of “glider
has not airspeed”1. So, in RS has:

W = {glider(airspeed_zero), glider(altimeter_zero), glider(variometer_zero),
glider(¬motor_on), glider(batt_status_green)}

d10 = g(airs_zero) ∧ g(var_zero) ∧ g(¬motor_on) : pilot(yoke_p_neutral)
pilot(yoke_p_neutral)

d11 = g(airs_zero) ∧ g(var_zero) ∧ g(¬motor_on) : pilot(yoke_r_neutral))
pilot(yoke_r_neutral)

d25 = g(var_zero) : ¬pilot(motor_on)
¬pilot(motor_on)

E0 = {d10, d11, d25}

d11 = g(airs_zero), g(var_zero), g(¬motor_on) : pilot(yoke_r_neutral)
pilot(yoke_r_neutral)

d25 = g(var_zero) : ¬pilot(motor_on)
¬pilot(motor_on)

1As a matter of space, we use the following syntax: glider=g.
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Figure 3.9: Different situations in a flight.

d28 = g(var_zero) : pilot(yoke_push)
pilot(yoke_push)

E1 = {d11, d25, d28}

For the moment, we control three variables: pitch, roll and motor. With pitch and
roll, glider can move in all directions and motor allows to increase or decrease
glider airspeed. Using our default, extensions are calculated. In E0, a pilot will
put: pitch and roll neutral position and motor off (d10, d11, d25). On the other
hand, in E1, a pilot will put: positive pitch and roll neutral position and motor
off (d11, d25, d28). In both cases, glider speed is zero. At that point, if a pilot has
not the authorization he can not take-off. Otherwise, he will take-off as a sub-
objective, then will climb as another sub-objective, and so on until he reaches an
objective.

We present a model that describes the evolution of a pilot reasoning. In reality
a pilot makes two movements, he observes the horizon and next the cockpit, af-
ter that he does actions, he repeats this over and over again. This dynamic could
be represented such as Figure 3.10. The model has transitions but the notion of
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time is considered as an external parameter, that is, transitions only occur be-
tween situations. For example, if we have a situation si and if it is possible to go
to the situation si+1, we should do actions. Firstly, we start with a default theory

∆ = {D,W, S}

E = {E1, E2, ..., En} Choice

En = {A, S+}

∆+ = {D,W, S+}

∆← ∆+

Figure 3.10: Resilient System of a pilot Based on Default Logic.

∆ = (D,W, S). Where D are the set of defaults, W are the set of FOL and S are
the parameters of an airplane, environment, control tower. . . We are considering
that ∆ is a default theory before a transition and ∆+ is a default theory after a
transition. Similarly, S is a situation observed before a transition and S+ is a sit-
uation observed after a transition. From ∆, the set of extensions E is computed.
Each extension contains actions. Once we have the solutions we must choice the
better extension that brings us closer to the goal, then decision-making is based
as before. After a pilot applies actions he takes observations again (cockpit and
environment) passing information from S to S+. Then it goes back to ∆ to com-
pute extensions and choose the better one again. Sometimes for an airplane it
is impossible to converge to the desired goal and alternative objectives must be
found. In the set of objectives (O) the property of resilience is carried out. The
following algorithm is the representation of the KOSA model, where it can be
seen that the convergence to a target is made by an epsilon error. This error cor-
responds to the difference in the Minsky model. Once the difference is less than
the epsilon error, this indicates that the objective has been met and another new
objective is sought. In classical control, the study of dynamic systems, such as
electrical, mechanical, hydraulic. . . can be modeled using block representation.
These could have positive and/or negative feedback. If we consider two systems,
A and B, which are connected. Positive feedback is a process in which the effects
of small perturbations in A affect B, producing disturbances in B which will also
affect A. This can lead to the collapse of both A and B. Positive feedback has
to cause instability, generally the response is increasing exponential, increase of
oscillations, chaotic behavior or divergence of the equilibrium point. Negative
feedback is when a system reduces variations in its output, which are caused by
changes in its input. Negative feedback leads to stability or equilibrium point,
reducing the effects of disturbances. Resilience includes both feedbacks, hav-
ing the ability to organize the behavior of a system allowing to use the same
feedback connection such as both positive and negative. Thanks to the use of

63



Algorithm 2 Evolution of resilient model
Require: {D,W, S} 6∈ ∅
procedure Evolution(∆,∆+)

while (O 6∈ ∅) do
while (|| ~Oi|| > ε) do

E ← ∆ = (D,W, S)
A←Min Max E . Choice
return A
∆+ = (D,W, S+)
S ← S+

end while
end while
return A

end procedure

a normal default theory, normal model of decision-making and Minsky’s model,
our proposition of a model that can capture the property of resilience, the inter-
connections of the states of the system, whether they have positive or negative
feedback, it can be possible.

Conclusion
In this part was presented the definition of resilience, and the KOSA model.

The KOSA model is a generalization for the representation of resilient systems.
This model is composed of situations, objectives and actions. We show our com-
plete model which is the model based on the non-monotonous logic, the decision
making with the opportunistic criteria and the Minsky’s model which describes
how the mind get goals by changing the set of axioms in use (Minsky 1974; Min-
sky 2006). From our model in the Figure 3.10, we could consider the “Now”
such as the actual situation S and “Want” such as S+, the long-term objectives.
The differences will be the actions that we should do to converge to the main
objective. Thanks to these three great notions we can capture the property of
resilience.

The control of our model is done thanks by both concepts, the property of
resilience and Minksy’s model. The principle of Minsky’s model lies in the fact
of having three fundamental parts. The first is the current situation in which
an event develops, the second is a situation in which we want to be or arrive.
And finally, the result of the difference between two situations. This result will
be the corresponding actions to reach the desired situation. Once the objective
is achieved we can have more future objectives. The KOSA model converges to
sub-goals and goals when the current situation is inside of an epsilon error. This
error corresponds to the difference in the Minsky model.
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4 Practical Case
The objective of this section is to describe the system which we validated our

NMR and resilient model. Computer on board, sensors and electrical elements are
described. SWI-Prolog setup for our embedded computer and Microcontroller Unit
(MCU) interface are described. Eventually, solar cells calculation about current
and voltage needed are presented. The objective of this section is to show practical
results, including articles published about this research.

Summary
4.1 Motor-glider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Embedded Computer . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Setup Access . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Running a Situation . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Inertial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Pitot Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 IMU Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1. Motor-glider
Actually new directions open to use airplane or any aerial vehicle for different

applications in an autonomous way. In this thesis we are using an UAV, but
it is not confined to the military fields. They are used in many areas such as
agriculture, construction, entertainment. . . A glider is kind of airplane which has
really good advantages in terms of weight and aerodynamics. The principle of a
glider is that it uses the “vertical” wind (thermal and dynamic energy). As in the
nature, there are various species of birds using the same principle: albatrosses
and condors. An experienced pilot of glider can maintain a flight for a long time,
in a day with good weather, without using the engine as propulsion.

We are using a motor-glider which is a glider equipped with an engine, a scale
model. In fact, it can be launched with just one hand. In a real-scale glider
it must be guided by a cable with a master airplane which will reach a certain
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altitude. For a real motor-glider this can take-off and climb without assistance, in
contrast with a “normal” glider that is non-motorized. The problems of piloting
a motor-glider are the same as piloting an airplane.

We are currently developing a prototype which will allow us to validate our
model. The airplane that we use is of the registered trademark, SkyScout R2GO
Hitec. This included different accessories, Figure 4.1, such as remote control,
Lithium-Polymer (LiPo) 1300mAh batteries, Hitex HS-55 servo-motors, C2812-
1100 Brushless motor, Minima 6S receiver, Brushless Motor Controller (BMC) 18
amp. . .

Figure 4.1: Motor-glider used.

The model has the next specification: wingspan: 1366 mm, weight:(all-up
weight min.) 700 grams (g), length: 977 mm, wing area: 28 dm2 (wing +
tail plane, excl. fuselage) and wing loading: 25 g/dm2. Electrical system is
composed by a 11.1 Volts (V) LiPo 1300mAh battery. This is the main source
of energy for the receiver, servo-motors and Brushless motor. There is a voltage
regulator between the LiPo battery and MCU receiver which brings 5 V, for the
servo-motors and MCU.
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(a) Up to down: Wireless,IMU, Pitot sensors, MCU and buck converter.

(b) GPS sensor. (c) Ultrasonic sensor.

Figure 4.2: Devices used.

4.2. Embedded Computer
In the market there are a lot of choices of embedded computers, one of the

constraints is about consummation of energy, Table 4.1. We choose a micro-
computer called Raspberry Pi Zero which has 0.8 Watts (W) of consummation.
Within the range of this type of microcomputers this is the most optimal ver-
sion in energy. The dimensions of embedded computer are 65mm long x 30mm
wide x 5mm thick, it is thin because of miniaturization of components and con-
nections. The embedded computer is powered with 5 volts and is based on
an ARM architecture. It is equipped with different serial communication proto-
cols (Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), Universal
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(a) Microcomputer

(b) Interface MCU pinouts

Figure 4.3: Embedded systems.

Asynchronous Receiver-Transmitter (UART)). It includes 40 digital input/output
pins, some of them are destined to 5 V, 3.3 V and ground, 0 V. The computer
has a micro-SD reader, where the operating system could be executed. A micro-
HDMI input where a screen can be connected. Two connections micro-usb, one
is to connect peripherals (keyboard and mouse) and the other is for the power
supply. We can connect different sensors to the microcomputer. For example,
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inertial sensor like a gyroscope which measures the rotation of the motor-glider.
It is very accurate for fast movements, that is, fast rotations. An accelerometer
that can measure static and dynamic forces at any given time. And eventually,
a magnetometer which allows us to estimate the direction of the motor-glider
by detecting the magnetic flux on earth. With these three sensors we can have
almost all the information of cockpit.

Embedded Systems RAM CPU Power
Model B Rev.2 512MB 700MHz ARMv6-rev 7 3.5W
Model Zero 512MB 1GHz Single Core 0.8W

Table 4.1: Embedded computer CPU table.

How control a servo-motor?
This is a digital modulation, called PWM, which can be used to control the

position and speed of motors and servo-motors, but also the intensity of the light
in a led. . . This type of digital signal is characterized by having high (+ 5V) and
low (0V or earth) values for any time. We can change the amount of time in
which this signal remains high or low, this is called Duty Cycle. This parameter
is dimensionless and is usually a percentage, that is, 100% corresponds to +
5V (high) and 0% corresponds to 0V (low). The microcomputer has a problem
with the generation of this type of signals, that is, it is very unstable. For this
reason we use an interface MCU that provides a better PWM signal in terms
of stability. This is, we connected a LED to the embedded computer and we
generated a digital signal with a frequency fixed. The result obtained was a
variable light intensity. If we do the same experiment with our MCU, the result
is more stable. We show the most important characteristics of two models of
embedded computer. In Figure 4.4 we can see the variation of the duty cycle
generated from the MCU interface and the angle of a servomotor. This curve
was obtained with a linear function that takes the value of the duty cycle.

4.2.1. Setup Access
First we need to download and install latest Jessie. We’re using Jessie Lite

but plain Jessie Raspbian should work too. You need May 2016 or later (tested
with 2016-05-27). Then edit config.txt and also cmdline.txt. After burning
the SD card, do not eject it from your computer! Use a text editor to open up
the config.txt file that is in the SD card post-burn. Go to the bottom and add
dtoverlay=dwc2 as the last line. Save the config.txt file as plain text and then
open up cmdline.txt. After rootwait (the last word on the first line) add a space
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Figure 4.4: Controlling a servo with PWM.

and then modules-load=dwc2,g_ether. Put the micro sd card on the raspberry,
and connect only the micro usb to the usb computer.

If you enable SSH on your Pi, you can then also SSH in to “raspberrypi.local”.

$ ssh pi@raspberrypi . l o c a l
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: POSSIBLE DNS SPOOFING DETECTED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The ECDSA host key fo r r a spbe r ryp i . l o c a l has changed ,
and the key fo r the corresponding IP address fe80 : : ac0a :1 bba :19b7

:9412%bridge100
i s unknown . This could e i t h e r mean tha t
DNS SPOOFING i s happening or the IP address f o r the host
and i t s host key have changed at the same time .

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you r i g h t now (man−in−the−middle

a t t a ck ) !
I t i s a l so p o s s i b l e tha t a host key has j u s t been changed .
The f i n g e r p r i n t f o r the ECDSA key sent by the remote host i s
SHA256 : tF+CT6tc8I+EO/FVTaTjPXuTqusHAgs2fJMFz4wQl0g .
P lease contac t your system admin i s t r a to r .
Add c o r r e c t host key in / Users / j o s e l u i s / . ssh /known_hosts to get r i d

of t h i s message .
Offending ECDSA key in / Users / j o s e l u i s / . ssh /known_hosts :1
ECDSA host key fo r ra spbe r ryp i . l o c a l has changed and you have

requested s t r i c t checking .
Host key v e r i f i c a t i o n f a i l e d .

Here the solution, edit the ∼/.ssh/known_hosts file and delete the line that
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contains the offering key: “fe80 : : ac0a : 1bba : 19b7 : 9412%bridge100”
The embedded system that is used is based on an ARM architecture. It has

different serial communication protocols. It can be fed with 5 volts. It is made
up of 40 digital input and output pins, some of them are destined to 5v, 3.3v
and ground. With these voltages different sensors can be fed. A micro-sd reader,
where the operating system could be executed, in our case it is one based on
debian. A micro-HDMI input where a screen can be connected. Two connections
micro-usb, one is to connect peripherals (keyboard and mouse) and the other is
for the power supply. finally, it has a connection for a camera.

To connect to the embedded computer, you simply plug a micro-USB cable
to a USB port on your computer. In this way, we will have the power supply
and communication for the embedded computer. Previously, a configuration was
made to emulate Ethernet via USB connection. Since your computer you can
execute the following command from a terminal.

$ ssh pi@raspberrypi . l o c a l

Following these instructions, we can install SWI-Prolog on the embedded com-
puter1:

$ g i t c lone h t tp s : // gi thub . com/SWI−Prolog / swipl−devel . g i t
$ cd swipl−devel
$ . / prepare
$ . / con f igure
$ make
$ [ sudo ] make i n s t a l l

In this last part you must be patient because it may take a few minutes. But
if you did all the previous steps without any error message, you can run SWI-
Prolog from the embedded computer by executing on terminal: swipl. To know
the version: swipl –version. In our case, we are using: SWI-Prolog version
7.7.8. To execute any command you must include a dot at the end, then press
enter.

4.2.2. Running a Situation
We define clauses as rules of piloting. These rules follow a specific syntax

which has the form: cl(text, δ, A, C, ω). Where text could be a chain of charac-
ters as comment, δ could be a real fact “hard” or default “def”, A and C are the
prerequisite and consequent, and finally ω is the priority weight, (A. Doncescu
and P. Siegel 2015). To find the solutions it is necessary to solve a set of log-
ical equations. Computational difficulties are the biggest challenge. However,
using Horn clauses, complexity is reduced and the expressiveness suffices. This
kind of negative clause is used to express events that are not possible (mutual

1If we have a problem about “autoconf”. We should do: sudo apt-get update and then sudo
apt-get install autoconf
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exclusion), for example, physically a pilot can not have the rudder up and down
at the same time. The theoretical computational complexity is

∑p
2. In our im-

plementation normal defaults (A:C
C

) and Horn clauses are used only. Allowing
to compute the extensions in a quasi-linear time. However, if we increase the
number of defaults, the calculation time does not increase exponentially.

Being in the right directory you can run a program “.pl” with “consult(file_-
name).”, If the compilation was done correctly, a message will appear: true.
In our case, we have: “consult(condor_inference).” and then we use a
clause: “run_condor2.”, which will compile two parts. The first one is the non-
monotonic reasoning part and the second one is the representation of the current
situation under a syntax described before. The informations captured by sensors
correspond to real facts and they can be described as follows:

c l ( ’ ’ , dur , [ ] , g l i d e r ( airspeed_low ) , [ ] ) .
c l ( ’ ’ , dur , [ ] , g l i d e r ( p i t c h _ s t a b l e ) , [ ] ) .
c l ( ’ ’ , dur , [ ] , g l i d e r ( r o l l _ s t a b l e ) , [ ] ) .
c l ( ’ ’ , dur , [ ] , g l i d e r ( a l t imeter_ low ) , [ ] ) .
c l ( ’ ’ , dur , [ ] , g l i d e r ( var iometer_zero ) , [ ] ) .

This facts describe the current situation of an airplane, in our case a glider, hav-
ing no inclination or rotation, low airspeed and altitude, and no vertical speed.
With this we can assume that the glider is motionless. Due to limited space to
write, we will take the following notation; for the glider g, zero vertical speed is
var_zero, no inclination or rotation is pch_stb, rll_stb, and authorization is auth.
In the same way defaults are represented as:

c l ( ’ ’ , def , [ g( var_zero ) , g ( pch_stb ) , g ( r l l _ s t b ) , auth ] , p i l o t ( motor ) , [ ] ) .

This default can represent a possible solution, where the prerequisite (infor-
mation of six-pack and authorization) is true and there are not contradictions
with the conclusion, then we jump to pilot(motor). This conclusion is an ac-
tion of turning on the engine to take off. There are 12 possibles actions: 3
for the pitch, roll, yaw and motor. If we consider the following information,
G : {g(pitch_stable), g(roll_stable), g(motor_off), g(low_alt), g(low_airspeed)},
we ask to prolog what we can do with, could we take-off? Using the syntax
described above we can use G as real facts. Then we consult our code and we
obtain 5 different extensions. Table 4.2 contains the solutions calculated: E0
has {d16, d17, d20}. In the same way E1 has {d16, d17, d21}, likewise for the others
defaults. We can use the following notation, A:C

C
≡ A : C → C. Defaults used
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are:

d16 = g(roll_stable) : pilot(yoke_roll_neutral)→ pilot(yoke_roll_neutral),
d17 = g(pitch_stable) : pilot(yoke_pull)→ pilot(yoke_pull),

d18 = g(low_alt) : pilot(yoke_roll_neutral)→ pilot(yoke_roll_neutral),
d19 = g(low_alt) : pilot(yoke_push)→ pilot(yoke_push),

d20 = g(low_alt) : pilot(motor)→ pilot(motor),
d21 = g(low_alt) : ¬pilot(motor)→ ¬pilot(motor)

From G the best extension we can choose is E3. Because it has the combinations

Extensions d16 d17 d18 d19 d20 d21
E0 � � �
E1 � � �
E2 � � �
E3 � � �
E4 � � �

Table 4.2: Extensions calculated for a takeoff situation.

of the actions {pilot(yoke_pull), pilot(yoke_roll_neutral), pilot(motor)} needed
to reach the goal: take-off, assuming that the authorization is true. Since the
extension E0:

{pilot(yoke_roll_neutral), pilot(yoke_pitch_neutral), pilot(motor)}

The result is a straight flight that’s not the goal, it would probably be a so-
lution to be able to have more speed and later take-off. The extension E1
has: {pilot(yoke_roll_neutral), pilot(yoke_pitch_neutral),¬pilot(motor)}, there
is no movement on the glider because the engine is off. The E2 extension has:
{pilot(yoke_roll_neutral), pilot(yoke_push),¬pilot(motor)}, same result as the
previous extension, no movement because the engine is off. And finally, the
E4 extension has: {pilot(yoke_pull), pilot(yoke_pitch_neutral),¬pilot(motor)},
same result as the previous extension, no movement because the engine is off.
After making a decision and applying actions, the model will capture information
from the sensors to close the cycle, Figure 3.10. This will lead to change objec-
tives, for example after taking off now the new one will be to climb a certain
height, if possible. In Figure 3.9, we can see different situations of an airplane,
but also different objectives, (J.-L. V. Medina, Pierre Siegel, and Andrei Doncescu
2017).

In Table 4.3, we can make an analysis when our system has enough informa-
tion it can reduce the CPU calculations, 7 facts with 95% of CPU reducing logical
inferences per second (Lips), therefore more solutions (13 extensions). On the
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Facts Extensions Instanced clauses CPU Lips
7 13 115 95% 114,131
5 13 113 98% 117,176
4 10 112 97% 130,098

Table 4.3: Comparative table on the results obtained from three different situations.

other hand, if it has uncertain and incomplete informations the interpreter will
have to do more calculations, 4 facts with 97% of CPU increasing Lips, which
is normal since it should demonstrate more clauses, therefore less solutions (10
extensions).

4.3. Sensors
We incorporated some sensor to bring autonomy by itself. We start with an

inertial sensor which is an embedded system. This is in a single board there
are three devices such as accelerometer, gyroscope, magnetometer and pressure
sensor. Today we will analyze graphs with the accelerometer and gyroscope
data to establish a semantic / syntax (if not the appropriate word) and be able
to represent knowledge. This definition of semantics / syntax will allow us to
use the algorithm (written in prolog) to make decisions (stabilize the plane,
choose a trajectory, optimize energy, etc.) Pending, analyze the rotation files
to establish the syntax of knowledge representation and then merge it with the
prediction algorithm in prolog. To have a reference in the axes of the IMU with
respect to the axes of rotation of the aircraft (glider) it is necessary that they
are coordinated to carry out the representation of the rotation (in logic of first
order).

4.3.1. Inertial
The sensor that is being used is the MPU9255 of the WaveShare brand. It

is a 10 DOF IMU sensor. This integrated by a gyroscope (detection in 3 axes),
accelerometer (detection in 3 axes), electronic compass (compass-detection in
3 axes), pressure sensor and temperature. Which uses a serial communication
protocol, I2C. This type of sensor has the advantage of working with 5 V or 3.3
V. Thanks to I2C embedded computer and IMU can communicate. Physical pins
3 and 5 (or GPIO 2-3) of microcomputer are destined for this purpose. Doing
the right connections, we can execute from the terminal: sudo python main_-
MPU9255.py and read data from the sensor. In case it does not work, verify
the connections previously mentioned. A complementary filter, this is a filter
that uses the data of the accelerometer and the gyroscope to have an accurate
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signal of the movements made by the object. It is a filter commonly used for
its efficiency and simplicity, Equation (4.1). Since it does not require complex
operations and its calculation time is extremely short. Its implementation is very
fast and easy.

anglei = 0.98 ∗ (anglei−1 + gyro ∗ dt) + 0.02 ∗ (acc) (4.1)

The following graph shows the rotations of the X axis. We can see 3 different
types of functions. One of them is the rotation using the accelerometer, the other
is using the gyroscope; Both rotations are with respect to the same axis X. And
the last graph is the fusion of the previous information, that is to say, using the
information of accelerometer and of the gyroscope a better estimate of the real
angle is carried out, Figure 4.5. Graphic representation in space: pitch, roll and

(a) Accelerometer (b) Gyroscope

(c) Magnetometer (d) Sensor fusion

Figure 4.5: Data from IMU.

yaw. It is used a complementary filter. The gyroscope measures the rotation of
the object. It is very accurate for fast movements, that is, fast rotations. But a
disadvantage is that over time has a cumulative error. The accelerometer on the
other hand can measure static and dynamic forces at any given time. However,
it captures data with a lot of fluctuating information (noise) and to have a good
reading one must wait a considerable time, Figure 4.6.
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Figure 4.6: 3D representation of the pitch and roll.

4.3.2. Pitot Tube
Wind speed sensor plays an important role. This element is used to deter-

mine if the angle of attack should be increased or decreased so as not to lose
lift. MPXV7002DP is a differential pressure sensor which allows to calculate the
airspeed. The difference of pressures are analog values so these should be con-
verted to digital, thanks to Analog to Digital Converter (ADC) and then a linear
equation. To calculate velocity through the pressures, total pressure = static
pressure + dynamic. Bernoulli’s equation: (ps + r×v2

2 ) = pt, where r = density,
v= velocity, p = pressure. So, v2 = 2(pt−ps)

r
.

4.3.3. GPS
A GPS sensor used is a GY-NEO6MV2 New NEO-6M GPS Module NEO6MV2

with Flight Control EEPROM MWC APM2.5 Large Antenna. With the use of GPS
you can locate an object on the ground, the principle is based on the triangula-
tion of satellites that are in orbit. To access the received data, a communication
protocol called NMEA must be configured, as well as it must be supported by the
microcomputer. This is a sample of the type of data sent by the sensor.

$GPGGA, , , , , , 0 , 0 0 , 2 5 . 5 , , , , , , * 7A
$GPGLL , , , , , , V ,N*64
$GPGSA , A, 1 , , , , , , , , , , , , , 2 5 . 5 , 2 5 . 5 , 2 5 . 5 * 0 2
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$GPGSV,1 ,1 ,00*79
$GPRMC, , V , , , , , , , , , ,N*53
$GPVTG, , , , , , , , ,N*30
$GPZDA, , , , , , * 4 8
$GPTXT,01 ,01 ,01 ,ANTENNA OK*35

Thanks to the GPS data it is possible to correct the wind drift, knowing previously
the desired trajectory. As presented in the Section 1.2.

4.4. IMU Interfacing
Servo-motors, IMU,GPS, pitot tube. . . are connected a MCU. It is a Nano V3

ATmega328/CH340G. Compatible for Arduino Nano V3.0. It has built-in digital
inputs and outputs, as well as the management of PWM signals. Supports se-
rial communication protocols, which are ideal for the interconnection to other
devices. It was not easy programming MCU from the embedded computer, via
ICSP. Some connections are not directly linked. Signature problem and GPIO
lines were the problem. Installing avrdude2 tool, then adding following lines to
“avrdude_gpio.conf”:

# Linux GPIO con f i gu ra t i on f o r avrdude .
# Change the l i n e s below to the GPIO pins connected to the AVR .
programmer
id = " pi_1 " ;
desc = " Use the Linux s y s f s i n t e r f a c e to bi tbang GPIO l i n e s " ;
type = " l inuxgp io " ;
r e s e t = 8;
sck = 11;
mosi = 10;
miso = 9;
;

This command verify communication and signature:

$ sudo avrdude −p m328p −C ~/avrdude_gpio . con f i g −c pi_1 −v

Using the next connections3, problems were solved. First, we make our code us-
ing “program_name.ino” (Arduino code). We compile, using “make” command,
creating “build” folder. Inside the folder we get our “program_name.hex” then
we need to write our program. This command burn the flash with a specific
“hex” file (arduzero.hex).

$ sudo avrdude −p m328p −C ~/avrdude_gpio . con f i g −c pi_1 −v −U f l a s h :
w: arduzero . hex : i

2https://learn.adafruit.com/program-an-avr-or-arduino-using-raspberry-pi-gpio-pins/overview
3https://www.arduino.cc/en/Tutorial/ArduinoISP
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Programming from the Embedded Computer
We should do a previous configuration before burn a code from our embedded

computer to the MCU interface. First, we should install avrdude compiler and
define physical pins to establish a good In-Circuit Serial Programming –or In-
System Programming– (ICSP) communication4. Next, another configuration5 it
should do, when Makefile is created it should add the next lines:

AVRDUDE_CONF = /home/ pi / avrdude_gpio . conf
AVRDUDE_ARD_PROGRAMMER = pi_1

A file will contain the following lines;

ARDUINO_DIR = / usr / share / arduino
BOARD_TAG = uno
ARDUINO_PORT = /dev/ttyACM0
ARDUINO_LIBS =
#USER_LIB_PATH = /home/ pi /SBR/ arduino / l i b s
USER_LIB_PATH = / usr / share / arduino / l i b r a r i e s

AVRDUDE_CONF = /home/ pi / avrdude_gpio . conf
AVRDUDE_ARD_PROGRAMMER = pi_1

If there is a problem, the address where this file is located should be: include
/usr/share/arduino/Arduino.mk To carry out a test, an example code will be
compiled from the microcomputer to later program that code in the MCU inter-
face, file (.ino) is an example of:

void setup () {
// i n i t i a l i z e d i g i t a l pin LED_BUILTIN as an output .
pinMode (12 , OUTPUT) ;
}
// the loop func t ion runs over and over again fo r eve r
void loop () {
d i g i t a l W r i t e (12 , HIGH) ; // turn the LED on (HIGH i s the vo l tage

l e v e l )
delay (100) ; // wait f o r a second
d i g i t a l W r i t e (12 , LOW) ; // turn the LED o f f by making the vo l tage

LOW
delay (1000) ; // wait f o r a second
}

In the same folder it should contain both files: name.ino and Makefile. To com-
pilate, we should execute “make” and with “make upload” we burn the code
to the interface. This command is to know some information about our MCU
connected.
$ sudo avrdude −p atmega328p −C ~/avrdude_gpio . conf −c pi_1 −v

4https://learn.adafruit.com/program-an-avr-or-arduino-using-raspberry-pi-gpio-pins/overview
5http://www.robot-maker.com/forum/tutorials/article/88-compilation-sur-rpi-et-upload-sur-
arduino-directement-depuis-le-pi-en-ligne-de-commande/
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Power System
The following diagram shows the complete diagram of the power system of

the entire circuit. The solar stage is not connected, as well as the converter that
recharges the 11.1 v battery. The part that includes the battery, regulator, micro-
computer, interface, sensors and motors, is currently installed, Figure 4.7. The
microcomputer, interface and different sensors are connected to their respective
power supplies and communication protocols. Servomotors are also connected
to the interface to control the angle.

Conclusion
Results of the different sensors are shown, the installation of the microcom-

puter is also described. The inertial sensor provides the accelerations, angular
velocities and measurements of the earth’s magnetic field, using this data and a
complementary filter, we get the facts W . These three information, it allows us
to know the orientation of the motor-glider in space, for instance, if it is going
up, down, turning. . . Altitude is provided by the GPS module but also it is calcu-
lated by an atmospheric pressure sensor. Pitot tube is an instrument that allows
to measure the static and dynamic pressure, and thus to know the airspeed of
the airplane, based on the Bernoulli’s equation. For obstacle detection an ultra-
sonic sensor is used, with a max. detecting distance of 4-5m. The aileron control
is done by servomotors through PWM signal. The circuit on board is supplied
with 11.1 V and 1300mAh LiPo battery. In the microcomputer, SWI-Prolog was
installed. Until now, we have 110 defaults and the extensions are calculated
in the order of milliseconds (Le, A. Doncescu, and P. Siegel 2013; A. Doncescu
and P. Siegel 2015). We successfully installed “SWI-prolog version 7.7.8” in
an embedded computer and a model of a non-monotonic reasoning was imple-
mented. We tackled the problem of incomplete and uncertain information by
formalizing the flight rules using default logic. We had good results in terms of
calculation time, thanks to use Horn clauses and normal defaults only, since one
of the restrictions is the low energy consumption (0.8 Watts), running at 1 GHz
ARM11 (single core) and 512 Mb of RAM.
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Conclusion
In this thesis it was possible to demonstrate that a problem can be modeled

piloting rules in logic. Using FOL which is very expressive, and we can represent
almost every situation. The limitation of the principle of non-contradiction of
classical logic was overcome thanks to no-monotonic logic. Where default logic
is a very effective tool to deal with issues such as exceptions, impartial and con-
tradictory information. A default theory is a pair ∆ = (D,W ), where D is a set
of defaults and W is a set of formulae in FOL. A default d is: A(X):B(X)

C(X) , where
A(X), B(X), C(X) are well-formed formulae. Intuitively a default means,“if
A(X) is true, and there is no evidence that B(X) might be false, then C(X)
can be true”. Once defaults, extensions are calculated and there may be no, one
or several extensions. Normal defaults can guarantee at least one extension. We
saw different decision-making models. We used an opportunistic model which
creates an operational space where it shows us the losses that we should have
before the event happens, then chooses the best option. In this manner, we op-
timised then a decision is made, referring to an “a posteriori" decision making.
The biggest advantage of this model is that it has more flexibility in terms of
predicting events, precisely because of the calculation of a regret matrix. The
fact of choosing an extension under the help of a minimization or maximization
function does not completely ensure the desired behavior. This was resolved by
applying the property of resilience and Minsky’s model. In the theory formu-
lated by Crawford S Holling (2001), resilience is defined such as adaptive cycles.
These are three properties: potential, connectedness and adaptability. Potential
determines future solutions, it also determines the limits of what is achievable.
Connectedness is the degree of connectivity between internal variables and pro-
cesses, this is a measure that can describe the level of flexibility or rigidity of the
control (sensitivity or not to disturbances). And finally, the ability to adapt, this
is the resilience of the system, reflecting its vulnerability to an unpredictable or
unexpected event.

We proposed a model called KOSA, which generalized the representation of a
resilient system. This model is composed of a NML based on DL, non-probabilistic
decision making and the Minsky’s model. Thanks to this, we can determine a
horizon of convergence. This horizon can be short or long according to the cur-
rent situation and goal. In the same way, this model allowed us to know the
behavior. A general model that can be used not only for piloting an airplane. But
also in all system that human reasoning is involved. From solving problems like
playing chess to driving a car. Because both in chess and driving a car, decision-
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making under uncertainty is always present. A control part was made thanks to
Minsky’s model. In principle lies three fundamental parts; the first is a current
situation in which an event develops, the second is a situation in which we want
to be, and finally, we have a result of the difference between the current situa-
tion and the situations we want. This result will be the corresponding actions to
reach the desired situation.

The airplane that we use is of the registered trademark, SkyScout R2GO Hitec.
This included different accessories, Figure 4.1, such as remote control, LiPo
1300mAh batteries, Hitex HS-55 servo-motors, C2812-1100 Brushless motor,
Minima 6S receiver, BMC 18 amp. . . We choose a microcomputer called Rasp-
berry Pi Zero which has 0.8 W of consummation. Within the range of this type
of microcomputers this is the most optimal version in energy. The dimensions of
embedded computer are 65mm long x 30mm wide x 5mm thick, it is thin because
of miniaturization of components and connections. Sensors were connected, the
MPU9255 of the WaveShare brand. It is a 10 DOF IMU sensor. This integrated by
a gyroscope (detection in 3 axes), accelerometer (detection in 3 axes), electronic
compass (compass-detection in 3 axes), pressure sensor and temperature. Which
uses a serial communication protocol, I2C. This type of sensor has the advantage
of working with 5 V or 3.3 V. A complementary filter was implemented, this is
a filter that uses the data of the accelerometer and the gyroscope to have an ac-
curate signal of the movements made by the object. It is a filter commonly used
for its efficiency and simplicity. Since it does not require complex operations and
its calculation time is extremely short. Its implementation is very fast and easy.
Finally, we successfully installed “SWI-prolog version 7.7.8” in an embedded
computer and a model of a non-monotonic reasoning was implemented.

Future Works
The implementation is currently in progress with good results, sensors were

connected and Prolog was installed. This is a motivation to have a resilient model
able to find thermal and to be able to fly as long as possible autonomously.

4.5. Energy System
This is currently taking place, but we are trying use a solar cells system with

the next characteristics: Polycrystalline Solar Photovoltaic Cell, this one can pro-
vide 0.5 V, 0.2 W and 52× 26mm as physical dimensions. Because LiPo batteries
need a properly charging and discharging of voltage and current, we should use
a control charger: 3S, 10A, 12 V Lithium Batterie Charger Protection. Solar cells
system provided around +12 V, but embedded computer works with +5 V so we
should include also a Power Control System: XL6009 DC-DC Adjustable Step-up
boost Power Converter.
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Solar cell Converter

Battery
11.1v

Regulator RPi
5v

Arduino
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uart
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Figure 4.7: Connections of the complete system.

Solar Cells
Measures of glider wing are: length(L) ≈ 48.4cm and width(W ) ≈ 16.5cm.

In order to respect physical area, we are going to calculate the number of solar
cells. A solar cell has a Max. Power of 0.43 W, 0.5 V, 0.45A and an efficiency of
17%.

L ≈ 48.4 cm

W ≈ 16.5 cm

(a) Wing
L = 5.2 cm

W = 5.2 cm

(b) Solar cell

Figure 4.8: Dimensions of a wing and solar cell.

We calculate the number of solar cells: Solar(L)
Cell(L) = 48.4 cm

9.3077 cm
= 9.3077 cells, to be

realistic we have 9 cells. Every cell produces 0.5 v, so we have 9∗0.5 v = 4.5 v. On
the other hand, we calculate the number of lines, Solar(W )

Cell(W ) = 16.5 cm
5.2 cm

= 3.17307
lines, again to be realistic we will have 3 lines. In theory, if we multiply the
number of lines and total of voltage for each line, we will have 3 ∗ 4.5 v = 13.5 v
in one wing.

Our battery has 11.1 v, we must connect a protection system this will help for
overcharging and discharging levels voltage. This module will charge our three
batteries at the same time for having an equal voltage level. Nevertheless, all
these modules need 12.6 v as polarization. For that solar cells should provide
a voltage more or equal that 12.6, supposing that we use previous solar cell
dimensions as we calculated before. There are different configuration to connect
solar cells, serial or parallel. To increase voltage serial connection is used. To
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increase current parallel connection is used.

I
A

i1 i2 i3

B

V

Figure 4.9: Connection of solar cells for a wing.

From Figure 4.8 is calculated a 4.5 v and 3 lines, Figure 4.9. That is V = 4.5 v
and I = 3∗ 0.45 A = 1.35 A for one wing. Of course, we can mix configuration to
have different values of current and voltage. We should have 13.5 v and 0.90 A,
that will be good to charge batteries with system protection. That is connecting 9
cells in serial (4.5v) and 2 lines in parallel (0.90A), let’s call this module A. Now,
if we connect three modules, we will have 13.5 v and 0.90 A, For simplification
of calculations the reduction of the circuit can be replaced by a current source,
Figure 4.10. Implemented autonomous power system this will allow us to aim to
find thermal to recharge the batteries and continue flying. A glider is one of the
most relevant aircraft, in terms of the ratio of the distance traveled and the loss
of altitude. Making it more efficient to fly than other aircrafts. An autonomous
motor-glider, a convenient choice(cost) in terms of weight and aerodynamics.
The principle of a glider is that it uses the “vertical” wind (thermal and dynamic
energy). It is to “climb”, which that means to increase in altitude and reach
an updraft, while “descent”, expresses the rate of descent in a downward burst.
“Zero” descent means that updrafts are strong enough to maintain flight, but
not enough to allow climbing. As in the nature, there are various species of
birds using the same principle. For example: albatross and condor. The scenario
of the search for thermal springs is not monotonous, since to use a glider we
must know in real time the climatological conditions which have a non-linear
and unpredictable behavior, Figure 4.11. We think that using our resilient model
unpredictable aspects could be captured, it would be interesting and motivating
to be able to do something of this importance.
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(a) Connection of solar cells in two wings.
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(b) Simplification of the solar circuit.

Figure 4.10: Connection of solar cells in two wings and simplification of the circuit.

Articles
1. The first article deals with the description of the instruments that allow a

pilot to take the pertinent actions to control an airplane. This information
is represented in Reiter’s logic allowing us to calculate fixed points. Even-
tually an operating system and data fusion are described (V. Medina, Pierre
Siegel, and Andrei Doncescu 2017).

2. The second article talks about a take-off simulation where information as
default and calculation of extensions are represented. These extensions are
analyzed to take into account the effects of the combinations of actions
(J.-L. V. Medina, Pierre Siegel, and Andrei Doncescu 2017).

3. The third article is focused on the use of the property of resilience to our
non-monotonic model, having the ability of recovering in face of a con-
tradiction. Theoretically, the desired behavior is shown in a discrete and
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continuous representation (J. L. V. Medina, Pierre Siegel, and Andrei Don-
cescu 2018).

4. This article presents an intelligent and adaptable system. This definition
covers any system where the knowledge base contains the objectives, situa-
tions and actions. It is an intelligent system because it proves assumptions
with axioms. It is also an adaptable system because the property of re-
silience is considered. This property is included thanks to default logic,
decision making model and Minsky’s model. This last article was accepted
for ICARCV 2018.
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Based on Non-Monotonic Logic
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Abstract: In this article we study the case of an autonomous motor-glider. The aims of the aircraft is to maintain its
flight as long as possible, taking advantage of the rising air from the ground, known as thermals, despite of
limited energy resources and possible external influences, such as turbulences. The pilot task being to make
decisions with incomplete, uncertain or even contradictory information, as well as driving to the desired path
or destination. We propose the formulation of a model from the point of view of logical theory, using non-
monotonic logic and more specifically default logic, to tackle these problems. Finally, we present the results
of a simulation for further application in a glider(reduced model) which use solar cells for power management
in embedded system.

1 INTRODUCTION

The glider is one of the most relevant aircraft, in terms
of the ratio of the distance traveled and the loss of
altitude. Making it more efficient to fly than other
aircrafts. In this paper, we focus on an autonomous
glider(reduced model), a convenient choice(cost) in
terms of weight and aerodynamics. The principle of a
glider is that it uses the “vertical” wind (thermal and
dynamic energy). It is to “climb”, which that means
to increase in altitude and reach an updraft, while “de-
scent”, expresses the rate of descent in a downward
burst. “Zero” descent means that updrafts are strong
enough to maintain flight, but not enough to allow
climbing. As in the nature, there are various species
of birds using the same principle. For example: alba-
tross and condor. To perform those flight maneuvers,
a pilot must take decisions concerning the flight sit-
uation from the cockpit. He has access to different
instruments showing altitude, wind speed, inclination
of the aircraft, etc. Another constraint is that he also
needs to find thermals, respecting the aeronautical and
security regulations. Taking these considerations into
account, the pilot must follow his desired flight path
applying control commands. Increasing or decreasing
altitude, turning to the right or left, etc. These rules
are applicable to many types of aircraft. We intro-
duce a discrete model of flight rules. This method is

based on non-monotonic logic. There are different re-
search proposals in non-monotonic logic reasoning:
default reasoning, autoepistemic reasoning, reason-
ing in the presence of contradictory information and
negative reasoning (El-Azhary et al., 2002). On an-
other side, we can consider our model as a resilient
system. These systems have the ability to resist and
adapt from disturbances. They also are highly adap-
tive, having the capability to merge information, make
decisions, interact with multiple agents and have a
memory to facilitate learning (Goerger et al., 2014;
Chandra, 2010). The main objective is to present a
system based on flight rules capable to choose actions
with incomplete information. The case study is pre-
sented in section 2. In section 3 classical logic rep-
resentation is described. Section 4 is dedicated to the
theoretical definition of default logic and its proper-
ties. Section 5 contains an explanation of the logical
system using default logic representation and finally,
section 6 practical case is described.

2 RELATED WORK

Research shows (Toulgoat et al., 2011; Toulgoat,
2011; Doncescu and Siegel, 2015; Le et al., 2013)
that prove decision-making by non-monotonic logic
is encouraging in the field of artificial intelligence. A
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pilot is a person who has the function of guiding an
aircraft in flight. Generally, the main cockpit flight
control are: control yoke, rudder pedals and engine
speed. Aircraft cockpit provides necessary informa-
tion to control the trajectory and operation of the air-
craft (de l’Aviation Civile., 1992).

2.1 Flight Indicators

On-board aircraft the basic set of instruments, also
called “six pack”(de l’Aviation Civile., 1992). These
six instruments are standard and many cockpits basic
indicators are:

• Altimeter: shows the aircraft’s altitude (in feet)
above sea-level. As the aircraft ascends, the al-
timeter to indicate a higher altitude and vice versa.

• Airspeed indicator: shows the aircraft’s speed (in
knots) relative to the surrounding air. It works
by measuring the ram-air pressure in the aircraft’s
Pitot tube relative to the ambient static pressure.

• Vertical speed indicator: sometimes called a var-
iometer or also rate of climb indicator, senses
changing air pressure, and displays that informa-
tion to the pilot as a rate of climb or descent in
feet per minute or meters per second.

• Attitude indicator: also known as an artificial
horizon. Shows the aircraft’s relation to the hori-
zon. From this the pilot can tell whether the
wings are level (roll, Fig. 1) and if the aircraft
nose is pointing above or below the horizon (pitch,
Fig. 1).

• Turn indicator: This instrument includes the
Turn-and-Slip Indicator and the Turn Coordina-
tor, which indicate rotation about the longitudinal
axis.

• Heading indicator: displays the aircraft’s heading
with respect to magnetic north when set with a
compass.

2.2 Flight Control

One time the pilot knows the flight situation through
on-board instruments, he must take decisions and ap-
ply control commands(actions). Thereby accurately
correcting the trajectory. For flight control, the pilot
has 3 types of controllers. Generally, these controllers
are in much type of aircrafts (de l’Aviation Civile.,
1992). Description of controllers for our case, are de-
scribed below:

• Yoke: has the function of controlling in both pitch
and roll (Fig. 1).

Figure 1: Definition of aircraft body axes.

1. Pitch controller: When the yoke is pulled back
the nose of aircraft rises and when it is pulled
forward the nose descend.

2. Roll controller: When the yoke is turned right
the aircraft rolls to the right(turning right) and
when it is turned left the aircraft rolls to the
left(turning left).

• Rudder: also pedal direction. When pilot push
left pedal, rudder deflects to the left and when pi-
lot push right pedal, rudder deflects to the right.
With rudder, pilot can not use it to turn left or turn
right. Rudder is important for flight stabilization.

• Engine power: When pilot turn on the engine, it
provides propulsion to the aircraft, if necessary.

Aircraft control systems are based on integro-
differential equations or state-space form (Fossen,
2011). We present another method/solution tackled
from the perspective of Artificial Intelligence. Next,
we introduce how we can describe the issue by using
logical representation.

3 CLASSICAL LOGIC
REPRESENTATION

To describe actions, we use classical logic language
L (Propositional or First-Order Logic). In L, we can
represent, for example, motor(ti) to say that motor is
active at the time ti. Or altitude(low, ti) to say that
the altitude is decreasing at the time ti. We are in a
logical framework, so it is possible to represent al-
most everything we want in a natural way. Classical
logic, such as First-Order Logic is monotonous. What
it means, A ` w then A[B ` w. This is, by adding
new information or set of formulas to a model, the set
of consequences of this model is not reduced. The
property of monotony is very important in the world
of mathematics, because it allows to describe lemmas
previously demonstrated. But this property cannot be
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applied to uncertain and incomplete information. But
in real world, non-monotonic is presents in many sit-
uations, this is, each new information we learn can
modify or invalidate previous deductions. A classic
example is:“Birds typically fly”. This expression can-
not be translated by the formula bird(X) ! f ly(X),
which will signify that all birds fly. But, there are ex-
ceptions to this rule (i.e. if X = Penguin, by definition
a penguin is a bird but he not fly). These exceptions
are well known in Artificial Intelligence. In the next
table, we represent the actions that pilot can do to cor-
rect the trajectory of the glider. We consider a discrete
system with three possible actions for each of the con-
trollers, except for the motor(which it has two states),
resulting 11 states.

Table 1: Possible actions.

Roll: Pitch:
yoke(le f t, ti) yoke(pull, ti)

yoke roll(neutral, ti) yoke pitch(neutral, ti)
yoke(right, ti) yoke(push, ti)

Yaw: Propulsion:
rudder(le f t, ti) motor(ti)

rudder(neutral, ti) non motor(ti)
rudder(right, ti)

For the first approach, we will explicitly give basic
pilot rules. For example, we might say, “the yoke is
to the right position at the time t”. We can represent
in classical logic: yoke(le f t, ti). We use this nota-
tion: var = variometer, ther= thermal, alt = altitude,
non ther = non thermal, srh th = searching thermal.
A set of rules is explicitly given:

var(up, ti)^non motor(ti) ! ther(ti+1) (1)

batt(low, ti)^alt(low, ti) ! land(ti+1) (2)

non ther(ti)^alt(low, ti) ! land(ti+1) (3)

non ther(ti)^alt(low, ti) ! srh th(ti+1) (4)

non motor(ti)^ var(up, ti)^
turn(le f t, ti) ! yoke(right, ti+1)

(5)

non motor(ti)^ var(up, ti)^
turn(right, ti) ! yoke(le f t, ti+1)

(6)

var(up, ti)^non motor(ti) ! alt(up, ti+1) (7)

batt(low, ti)^non motor(ti) ! alt(down, ti+1) (8)

motor(ti)^ yoke(pull, ti+1) ! alt(up, ti+1) (9)

Intuitively, we can say,“the variometer is in-
creasing at the time t”, in logical representation is:
var(up, ti). It is of course possible to add oth-
ers rules(Aeronautics Legislation) to take into ac-
count relations between the real scenario and our

logical system. These logical formulations be-
fore presented, are problematic because there is a
conflict. If for example we have a set of for-
mulas: F = {var(up, ti),non motor(ti),batt(low, ti)},
and now, we infer (rule 7 and 8) F : alt(up, ti+1) and
alt(down, ti+1), which is a contradiction. To solve this
conflict, we use non-monotonic logic, more specifi-
cally, the default logic.

3.1 Definition of Non-monotonic Logic

It is a family of formal logic devised to capture and
represent inference, reserving the right to retract de-
ductions when new information is added. The first
works in the field of non-monotonic logics began with
the realization to precise characterization of defeasi-
ble reasoning. Among the pioneers of the field in
the late 1970’s were J. McCarthy (McCarthy, 1980;
McCarthy, 1986), D. McDermott and J. Doyle, and
R. Reiter(Reiter, 1980). Deriving in different non-
monotonic logics(Sombé, 1990; Suchenek, 2006;
Delgrande and Schaub, 2005; Delgrande and Schaub,
2003) reasoning: default reasoning(Reiter, 1980), au-
toepistemic reasoning, reasoning in the presence of
contradictory information, counterfactual reasoning,
priority reasoning, and negative reasoning(El-Azhary
et al., 2002).

3.2 Definition of Default Logic

A default theory T consists of a set of facts W ,
which are formulas of First-Order logic and a set
of defaults D, which are rules of inference (Re-
iter, 1980; Grigoris, 1999; Lukaszewicz, 1988; Lif-
schitz, 1999). The main representational tool is that
of a default rule, or simply a default. A default is

an inference rule of the form:
A(X) : B(X)

C(X)
, where

A(X),B(X),C(X) are well-formed formulas (First-
Order Logic). Where X = (x1,x2,x3, ...,xn) as a vec-
tor of free variables(non-quantified). A(X) are the
prerequisites, B(X) are the justifications and C(X) are
the consequent. Intuitively, a default means:“if A(X)
is true, and there is no evidence that B(X) might be
false, then C(X) can be true”. Default rules are used
to create extensions. These can be contemplated as
a set of inferences. It is named normal default, if
B(X) = C(X).

3.3 Definition of Extension

When defaults are calculated, the number of formu-
las inferred in the knowledge base W increase. An
extension of the default theory D = (D,W ) is a set E
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of logical formulas(Reiter, 1980). An extension must
to verify following property: If d is a default of D,
whose the prerequisite is in E, without the negation
of its justification is not in E, then the consequent of
d is in E. Formally, E is an extension of D if and only
if:

• E = [•
i=0Ei with:

• E0 = W and for i � 0

Ei+1 = T h(Ei)[{C(X)|A(X) : B(X)

C(X)
2D, A(X)2

Ei and ¬B(X) 62 E}
where T h(Ei) is the set of formulas derived from

Ei. The previous definition is difficult to apply in
practice. Because ¬B 62 E supposes E is known,
but E is not yet calculated. In the case of normal
defaults(B(X) = C(X)), an extension is defined: E is
an extension of D if and only if:
• E = [•

i=0Ei with:

• E0 = W and for i � 0

Ei+1 = T h(Ei)[{C(X)|A(X) : C(X)

C(X)
2D, A(X)2

Ei and ¬C(X) 62 Ei}
where T h(Ei) is the set of formulas derived from

Ei. According to Reiter(Reiter, 1980), if all defaults
are normal, it exists at least one extension. Extensions
are defined by a fixed point.

4 DEFAULT LOGIC
REPRESENTATION

Flight rules are described by a set of rules. For exam-
ple, alt(up) is a positive literal, means that the glider
increases in altitude. The dynamic of the system can
be described by var(up, t), which means that the var-
iometer at the time t is increasing. Clauses are the
simplest type of formula. Formally, a clause is a dis-
junction of literals l1 _ l2 _ l3 _ ..._ ln. A Horn clause
is a clause with a maximum of one positive literal.
It’s a formula defined as ( f1 ^ f2 ^ f3 ^ ...^ fi) ! g,
where fi and g are positive literal. Similarly, the for-
mula defined as ¬( f1 ^ f2 ^ f3 ^ ...^ fi) is equivalent
to the negative Horn clause(literals can not be true si-
multaneously). In default logic, we have two sets of
rules. The set D of defaults and the set W of facts.
For example, set W : batt(good) that is an elementary
fact says that battery has sufficient power. And set

D:
batt(good) : motor(on)

motor(on)
, this default rule means,

“Generally when battery has sufficient power, motor
is on”. Therefore, we introduce normal defaults rep-
resentation.

4.1 Set of Default [D]

The set of inference rules D describes possibles ac-
tions, including incomplete and contradictory infor-
mation. It represents a normal default. By using de-
fault logic, the rules(7, 8 and 9 in section 3) above
could be expressed intuitively as:

7’ If var(up, ti),non motor(ti) are true, and if
alt(up, ti+1) is not contradictory, then alt(up, ti+1)
is true.

8’ If batt(low, ti),non motor(ti) are true, and
if alt(down, ti+1) is not contradictory, then
alt(down, ti+1) is true.

9’ If motor(ti),yoke(pull, ti+1) are true, and if
alt(up, ti+1) is not contradictory, then alt(up, ti+1)
is true.

Taking the rules(7’,8’ and 9’), default logic repre-

sentation is presented, d =
A(X) : C(X)

C(X)
.

d1 =
var(up, ti)^non motor(ti) : alt(up, ti+1)

alt(up, ti+1)

d2 =
batt(low, ti)^non motor(ti) : alt(down, ti+1)

alt(down, ti+1)

d3 =
motor(ti)^ yoke(pull, ti+1) : alt(up, ti+1)

alt(up, ti+1)

4.2 Set of Default [W]

The set of facts W represents accurate and non-
revisable information. The facts are formulas always
true. Unary clauses are elementary source of informa-
tion. We can use such a clause to represent a mutual
exclusions. For example, taking the rule “The motor-
glider can not search a thermal and land at the same
time”, 8t,¬(glider(search ther, ti)^glider(land, ti)).

4.3 Extensions Calculation

To illustrate the use of the default logic,
we give in the next paragraph an exam-
ple of calculation by using the Algorithm 1.
W = motor(o f f , t),alt(down, t),var(down, t),
batt(good, t). With: 8t,¬(glider(land, t + 1) ^
glider(srh th, t + 1)). Intuitively, W means that
glider has not using motor(as propulsion), its altime-
ter is decreasing, its variometer is decreasing and its
battery has sufficient power at time ti, respectively.

The Algorithm 1 presented below is written in
Prolog. Our algorithm calculates the extensions.
As the clauses are Horn clauses, and as the de-
faults are normal. The results obtained using a
set D(subsection 4.1) and a set W (subsection 4.2)
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are: E0 = {glider(srh th, t),motor(o f f , t),alt(down, t),
var(down, t),batt(good, t)}

d0 =
alt(down, t)^ var(down, t) : glider(srh th, t +1)

glider(srh th, t +1)
(10)

E1 = {glider(land, t),motor(o f f , t),alt(down, t),
var(down, t),batt(good, t)}

d1 =
alt(down, t)^ var(down, t) : glider(land, t +1)

glider(land, t +1)
(11)

We can see that W uses a rule that says
glider(srh th, t +1) and glider(land, t +1) are mutu-
ally exclusive. According to this rule, it is not pos-
sible to use d0 and d1 at the same time. If d0 is
used, glider(land, t + 1) is added to the extension,
then mutual exclusive will cancel d1. In the same
way, if d1 is used we cannot use d0. We obtain 2
contradictory extensions(solutions). In the first one
there is glider(srh th, t + 1)(The glider can search
a thermal at time t + 1) and the other one there is
glider(land, t +1)(The glider can land at time t +1).
In this way, the conflict shown in section 3 is resolved.

Data: E = /0 (Set of extensions E is empty)
Result: E = [N

i=0Ei
Initialization;
CalculExtension(E);
while there is a default (A(X) : C(X))/C(X)
that has not yet been inspected do

Select the default D;
Verify A(X) are true;
Verify C(X) is consistent with W ;
Add C(X) to W ;

end
Backtracking(deleting C(X) added to W );
CalculExtension(E);

Algorithm 1: Calculation of extensions.

In practice, the choose of extension corresponds
a weight to each default considering its importance.
An example could be, to search a thermal is more pri-
ority (more weight) than land(Toulgoat, 2011; Grig-
oris, 1999). These decisions are based on weighted
product model: P(AK/AL) = ’n

j=1(aK j/aL j)
w j for

K,L = 1,2,3, ...,m. Using this method we ponder ex-
tensions then we select the best response.

5 APPLICATION

In this section we present the practical application
and current work. In the Fig. 2 shows the different
parts of our discrete model. On the left side in the

Figure 2: Operating diagram.

Fig. 2, we have the Input such as data, which acces-
sible from electronic devices. Different data are air-
speed, altitude, angles of pitch and roll, etc. Block Set
of facts[W] accepts data for knowledge representa-
tion. Next, Calculation of extensions and Action cho-
sen blocks are the representation of our Algorithm 1.
Finally, we have Output such as an action to apply.
Certainly to the servo-motors to control pitch, roll
and eventually yaw(Fig. 1). These actions will be
applied to a glider(reduced model,Sky Scout version
R2GO). Our glider is equipped with a motor, in case
he needs desperate increase his altitude or find a rising
air. On the other hand, the motor-glider is equipped
with an on-board computer. Prolog has been installed
and sensors have been successfully implemented. The
Algorithm 2 is presented which represents the blocks
of Pre-processing and Set of facts[W], described in
Fig. 2. Ts is sampling time in seconds.

Data: From electronic device [I]
Result: Set of facts [W ]
Initialization of electronics devices;
while Ts=1 do

CaptureData(I) from electronics devices;
DescriptionFacts(W) by following our

syntax;
end

Algorithm 2: Knowledge representation.

Data are from the Inertial Measurement
Unit(IMU). An electronics device which collects
angular velocity and linear acceleration data. Usually
a combination of accelerometers and gyroscopes,
sometimes also magnetometers. An IMU works by
detecting changes in rotational attributes like pitch,
roll and yaw, using gyroscopes. On the other hand,
signal processing techniques(Fig. 2) has tremendous
potential in the information fusion theory and in
practical applications. Important part because is the
process of integration of multiple data for knowledge
representation. The acquisition of knowledge is
defined by rules(subsection 4.3). In Fig. 3, rotation
on the X axis is represented, the combination of
accelerometer(circle) and gyroscope(line) data, the
result is a signal(triangle) that we use to describe the
world.
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Figure 3: Data fusion.

6 CONCLUSIONS

In our approach, an algorithm based on default
logic is proposed to tackle contradictory information.
Flight rules are uncertain, because many situations in-
clude contradictions and we have to verify them. Fur-
thermore, aeronautics legislation is based on contra-
dictory rules. Non-monotonic logic has a great advan-
tage in these kind of cases. We presented a simulation
of a glider searching thermals. The results provide
the basis for an autonomous motor-glider. We pre-
sented short and simple Prolog programs. For initial
tests(around 100 rules), we calculate all extensions in
a short time. The calculation takes 1956600 Logical
Inferences Per Second (LIPS) and 0.049 seconds of
central processing unit (CPU) time on a MacBook.
Discrete model is currently being developed for test-
ing. Sensors and on-board computer set-up is com-
plete. We configured an embedded system, installing
prolog (SWI-Prolog). We also have installed an em-
bedded sensor with 10 degrees of freedom (DOF). To
capture data, such as altitude, acceleration, pitch, roll,
yaw, etc. for knowledge representation. More rules
are currently incorporated to take into account the
aeronautics legislation and solar power management
for on-board systems.
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Résumé
Le pilotage d’un avion consiste à faire divers choix d’ac-
tions pour réaliser une trajectoire. Mais les différentes
phases de vol ont un environnement changeant, en consé-
quence on peut avoir des informations incertaines. Les
situations peuvent changer en fonction des situations ex-
ternes, telles que les perturbations atmosphériques, ou si-
tuations de sécurité et urgence du pilote. Le problème d’un
pilote est alors contrôler l’aéronef dans des situations in-
certaines. Donc la commande de vol est un problème non-
monotone. Nous présentons une méthode pour contrôler un
planeur prenant en compte des facteurs d’incertitude et de
contradiction.

Mots Clef
Logique non monotone, Logique des défauts, Représen-
tation des connaissances, Planification, Moteur-planeur,
Règles de pilotage.

Abstract
Aircraft piloting consist of making various choices of ac-
tions to realize a trajectory. But different phases of flight
have a changing environment, therefore, We can have un-
certain information. Situations may change depending on
external conditions, such as atmospheric disturbances or
safety and emergency situations of the pilot. The problem
of a pilot is then to control the aircraft in uncertain si-
tuations. So flight control is a non-monotonic problem. We
present a method for controlling a glider taking into ac-
count factors of uncertainty and contradiction.

Keywords
Non monotonic logic, Default logic, Knowledge represen-
tation, Planning, Motor-Glider, Rules of piloting.

1 Introduction
La stabilisation des aéronefs, à différentes étapes du vol,
est une partie importante pour une trajectoire bien définie.
Il y a quatre forces qui maintiennent l’avion dans l’air :
La force de portance, de traînée, le poids et la traction [2].
Une fois que l’aéronef est dans l’air, il doit s’orienter et se
déplacer dans l’espace pour réaliser la trajectoire désirée.

Généralment, les angles «roll», «pitch» et «yaw» sont utili-
sées pour mesurer l’orientation et l’inclinaison. Les avions
ont besoin des moteurs comme agents propulseurs, cela
permet d’avoir la vitesse nécessaire pour décoller et res-
ter dans l’air [2]. Dans la plupart des cas, le contrôle de
l’aéronef sont modélisés par des équations différentielles
et des matrices de rotation [8]. Nous abordons le problème
du point de vue de l’intelligence artificielle. Pour aborder
cette problématique nous utilisons une théorie de la logique
non-monotones. Nous utilisons un motoplaneur (planeur
disposant d’un moteur d’appoint). L’avantage d’utiliser ce
type d’aéronef, c’est parce que, il est l’un des meilleurs en
termes de sa finesse (rapport entre la portance et la traînée).
La finesse est liée aussi au rapport entre à la distance au sol
et l’altitude perdue. Par exemple, s’il s’est déplacé de 40
km avec une perte d’altitude de 1 km, alors sa finesse est
de 40. Dans les règles de pilotage, il y a des cas contradic-
toires ou incertains, si un pilote a une urgence (soit un pro-
blème technique, soit pour des raisons de sécurité, etc.), il
doit violer certaines règles pour résoudre la problématique.
Dans cet article nous allons présenter une méthode basée
sur une logique non monotone pour la conduite d’un vol
stable, prenant en compte l’incertitude et l’imprécision de
l’information[1][7]. Nous présentons dans la section sui-
vante la représentation des connaissances et la logique clas-
sique. La définition et les caractéristiques de la logique non
monotone sont comprises dans la section 3. La représenta-
tion du système en logique des défauts est dans la section
4. Dans la section 5, nous décrivons une simulation d’une
situation de vol avec toutes les solutions possibles et fina-
lement les conclusions dans la section 6.

2 Représentation des Connaissances
La représentation des connaissances est une partie impor-
tante en intelligence artificielle car elle donne une descrip-
tion de l’environnement qui sera interpréter par un ordi-
nateur. Dans ce contexte, grâce au capteur IMU 1 (Fig. 1),
nous disposons de la mesure de différentes variables phy-
siques (vitesses et accélérations, Fig. 2), avec lesquelles
nous pouvons représenter les conditions spatio-temporelles
du planeur. Ces informations vont permettre d’inférer les

1. Inertial Measurement Unit.
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(a) Motoplaneur utilisé (b) Capteur IMU avec 10
degrés de liberté

FIGURE 1 – Axes de reférence du planeur(a) et du cap-
teur(b), les dessins n’ont pas à l’échelle.

FIGURE 2 – Représentation dynamique du vol.

actions pour atteindre un objectif : décollage, atterrissage,
tourner à droite ou à gauche, etc.

2.1 En logique classique
Avec la logique classique nous pouvons décrire des situa-
tions qui se passent dans la vie réelle ou encore représen-
ter le monde. Dans la vie réelle, il y a des situations ou
règles contradictoires. Si on prend l’exemple suivant, on
peut représenter en logique classique le constat : “Lles ovi-
pares pondent des œufs", avec la règle : layEggs(X) !
ovipare(X). Maintenant, si nous considérons X =
Ornithorynque, par définition, l’ornithorynque est un
mammifère, or il pond des oeufs. En conséquence, la règle
précédente ne peut pas être satisfaite. La logique classique
est donc limitée, car elle ne prend en compte ni les aspects
d’imprécisions ni ceux d’exceptions. Afin de traiter ce type
de problématique, nous proposons d’utiliser la logique non
monotone, plus particulièrement, la logique des défauts.

3 Logique Non-monotone
J. Mc-Carthy [5], D. Mc-Dermott et J. Doyle, et R. Rei-
ter [6] ont été les premiers auteurs à travailler avec la lo-
gique non monotone dès la fin dès années 1970. Une lo-
gique monotone ne peut pas gérer les incertitudes (comme
vu l’exemple présenté dans la section 2.1). La logique non-
monotone est une logique formelle qui ne respecte pas
la propriété de la monotonie, définie comme : A ` w,
A
S

B ` w. Si on a un modèle A, et on ajoute des in-
formations de B, on ne peut pas réduire les conclusions de
w. Ainsi, elle permet de capturer et représenter le raisonne-
ment par défauts (faits incertains et contradictoires). C’est

un problème classique en Intelligence Artificielle. Une des
logiques les plus connue et étudiée pour traiter cette pro-
blématique est la logique des défauts. C’est cette logique
que nous présenterons dans la suite de ces travaux.

3.1 Logique des défauts

Une théorie des défauts T consiste en un ensemble de faits
W , qui sont des formules en logique de premier ordre
et un ensemble de défauts D, qui sont des règles d’infé-
rence [6]. L’outil de représentation principal est la règle
de défaut. Un défaut est une règle d’inférence sous la

forme :
A(X) : B(X)

C(X)
, où A(X), B(X), C(X) sont des

formules bien formées (en logique de premier ordre). Où
X = (x1, x2, x3, . . . , xn) est un vecteur de variables libres
(non quantifiées). A(X) est le prérequis, B(X) est la jus-
tification et C(X) est la conséquence. Il est possible d’uti-
liser la notation suivante, A(X) : B(X) ! C(X). In-
tuitivement, une règle de défaut signifie : “Si A(X) est
vrai, et il n’y a aucune preuve que B(X) soit faux, alors
C(X) est vrai ". Il est défini comme un défaut normal, si
B(X) = C(X). Les règles des défaut sont utilisées pour
calculer des extensions.

3.2 Définition d’extension

Une extension de la théorie des défauts � = (D, W ), est
un ensemble E des formules logiques [6]. Une extension
doit vérifier la propriété suivante : Si d est un défaut de
D, dont le prérequis est dans E, sans que la négation de
sa justification ne soit dans E, alors la conséquence de d
est dans E. Formellement, E est une extension de � si et
seulement si :

— E = [1
i=0Ei avec :

— E0 = W et pour i � 0

Ei+1 = Th(Ei) [ {C(X)|A(X) : B(X)

C(X)
2 D,

A(X) 2 Ei et ¬B(X) 62 E}
Où Th(Ei) est l’ensemble de formules dérivés de Ei. La
définition précédente est difficile à appliquer dans la pra-
tique. Parce que ¬B(X) 62 E suppose E est connu, mais
E n’est pas encore calculé. Nous allons prendre la défi-
nition des défauts normaux, c’est-à-dire, B(X) = C(X).
Une extension est définie : E est une extension de � si et
seulement si :

— E = [1
i=0Ei avec :

— E0 = W et pour i � 0

Ei+1 = Th(Ei) [ {C(X)|A(X) : C(X)

C(X)
2 D,

A(X) 2 Ei et ¬C(X) 62 Ei}
Où Th(Ei) est l’ensemble de formules dérivés de Ei. Se-
lon Reiter [6], si tous les défauts sont normaux, il existe au
moins une extension. Les extensions sont définies comme
points fixes ou solutions.
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4 Représentation en Logique des Dé-
fauts

Dans cette section nous présentons les ensembles de faits
W et de défauts D. Nous donnons également un exemple
de calcul des extensions.

4.1 L’ensemble des faits W

W est un ensemble de faits vrais. Par exemple,
glider(decrease, t), signifie que le planeur a perdu de
l’altitude au temps t par rapport au temps t � 1. Dans
cet ensemble, nous pouvons aussi décrire des exclusions
mutuelles, ce sont des situations qui ne peuvent pas se
produire en même temps. Par exemple pour les actions,
le planeur ne peut pas tourner à gauche et à droite si-
multanément au même temps t. Formellement cette ex-
clusion mutuelle est représentée de la façon suivante :
8t, ¬(yoke(pull, t + 1) ^ yoke(push, t + 1)).

4.2 L’ensemble des défauts D

L’ensemble des règles d’inférence D décrit des actions
possibles en prenant en compte les informations incom-
plètes et contradictoires de l’environnement. Chaque règle
est représenté sous la forme de défaut normal (Section 3.1).
Par exemple, glider(decrease, t) : yoke(pull, t + 1)

yoke(pull, t + 1)
. Intuitive-

ment, cela signifie, “Si le glider(decrease, t) est vrai, et si
c’est possible que yoke(pull, t + 1), alors yoke(pull, t +
1)”. Autrement dit, si c’est possible de faire une action, on
la ferra.

4.3 Exemple de calcul
Voici, nous avons une fonction F qui représente les faits
vrais. Cette représentation d’écrit la situation du planeur
au temps t (pour la fonction glider(X, t), elle sera notée
comme g(X, t)).

F : g(decrease, t), g(turn_left, t), g(motor_off, t),

g(low_altitude, t), g(low_airspeed, t).

Nous pouvons dire en français que : le planeur perd de l’al-
titude, il tourne à gauche, il a le moteur coupé et une vi-
tesse basse au moment t. Nous nous posons la question
suivante : Quelles actions devons-nous faire pour avoir un
vol stable? Avec cette information, nous pouvons calcu-
ler les extensions (ensemble des actions) possibles pour at-
teindre l’objectif : vol stable. Ensuite, nous montrons les
extensions avec les différents défauts obtenus (Fig. 3) :

E0 = {g(decrease, t), g(turn_left, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d6 =
g(decrease, t) : yoke(pull, t + 1)

yoke(pull, t + 1)
(1)

d8 =
g(decrease, t) : motor(on, t + 1)

motor(on, t + 1)
(2)

d14 =
g(turn_left, t) : yoke(right, t + 1)

yoke(right, t + 1)
(3)

Solution vide,
E = []

E0 = W

d14

d8 d9

d6 d7

E0 E1 E2

FIGURE 3 – Représentation graphique de calcul des exten-
sions.

E1 = {g(decrease, t), g(turn_left, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d6 =
g(decrease, t) : yoke(pull, t + 1)

yoke(pull, t + 1)
(4)

d9 =
g(decrease, t) : motor(off, t + 1)

motor(off, t + 1)
(5)

d14 =
g(turn_left, t) : yoke(right, t + 1)

yoke(right, t + 1)
(6)

E2 = {g(decrease, t), g(turn_left, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d7 =
g(decrease, t) : yoke(push, t + 1)

yoke(push, t + 1)
(7)

d9 =
g(decrease, t) : motor(off, t + 1)

motor(off, t + 1)
(8)

d14 =
g(turn_left, t) : yoke(right, t + 1)

yoke(right, t + 1)
(9)

Nous pouvons constater que dans chaque extension calcu-
lée, nous avons des sous-systèmes cohérents [3][4]. Main-
tenant, nous avons résolu le problème de contradiction,
présenté au début (Section 1). Nous pouvons ajouter des
règles plus complexes pour une base de connaissances plus
complète.

5 Simulation : Décollage
Dans cette section nous simulons une situation de dé-
collage et nous calculons toutes les solutions possibles
pour cette phase de pilotage. Les principaux éléments qui
conduisent à l’objectif souhaité sont :

— État : C’est la représentation de la situation de l’ob-
jet (planeur) à chaque instant du temps.

— Temps : C’est l’instant entre les états.
— Action : C’est l’activité à réaliser afin d’atteindre

l’objectif.
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A

B

C

FIGURE 4 – Situation A.

Ces éléments sont clés pour inférer les actions suivantes.
Dans le calcul sont considérés les trois aspects précédents.
Dans cette situation (Fig. 4) nous avons les informations
suivantes (pour la fonction glider(X, t) vue précédem-
ment, elle sera notée comme g(X, t)) :

G : g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),

g(low_altitude, t), g(low_airspeed, t).

Si nous appliquons la théorie des défauts, plus particulière-
ment la logique des défauts (Section 3.1), nous obtenons 5
différentes extensions ou solutions.

E0 = {g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d16 =
g(roll_stable, t) : yoke_roll(neutral, t + 1)

yoke_roll(neutral, t + 1)
(10)

d17 =
g(pitch_stable, t) : yoke_pitch(neutral, t + 1)

yoke_pitch(neutral, t + 1)
(11)

d20 =
g(low_altitude, t) : motor(on, t + 1)

motor(on, t + 1)
(12)

E1 = {g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d16 =
g(roll_stable, t) : yoke_roll(neutral, t + 1)

yoke_roll(neutral, t + 1)
(13)

d17 =
g(pitch_stable, t) : yoke_pitch(neutral, t + 1)

yoke_pitch(neutral, t + 1)
(14)

d21 =
g(low_altitude, t) : motor(off, t + 1)

motor(off, t + 1)
(15)

E2 = {g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d16 =
g(roll_stable, t) : yoke_roll(neutral, t + 1)

yoke_roll(neutral, t + 1)
(16)

d19 =
g(low_altitude, t) : yoke(push, t + 1)

yoke(push, t + 1)
(17)

d21 =
g(low_altitude, t) : motor(off, t + 1)

motor(off, t + 1)
(18)

E3 = {g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d17 =
g(pitch_stable, t) : yoke_pitch(neutral, t + 1)

yoke_pitch(neutral, t + 1)
(19)

d18 =
g(low_altitude, t) : yoke(pull, t + 1)

yoke(pull, t + 1)
(20)

d20 =
g(low_altitude, t) : motor(on, t + 1)

motor(on, t + 1)
(21)

E4 = {g(pitch_stable, t), g(roll_stable, t), g(motor_off, t),
g(low_altitude, t), g(low_airspeed, t)}

d17 =
g(pitch_stable, t) : yoke_pitch(neutral, t + 1)

yoke_pitch(neutral, t + 1)
(22)

A

B

C

(a) Objectif 1 (b) Objectif 2

(c) Objectif 3

D

(d) Objectif 4

FIGURE 5 – Différents objectifs pendant le vol.

d18 =
g(low_altitude, t) : yoke(pull, t + 1)

yoke(pull, t + 1)
(23)

d21 =
g(low_altitude, t) : motor(off, t + 1)

motor(off, t + 1)
(24)

La meilleure extension et/ou solution de la situa-
tion A simulée précédemment (Fig. 4) est l’extension
E3 qui a les combinaisons des actions {yoke(pull, t +

1), yoke_pitch(neutral, t + 1), motor(on, t + 1)} nécessaires
pour atteindre l’objectif : décollage. Puisque l’exten-
sion E0 a : {yoke_roll(neutral, t + 1), yoke_pitch(neutral, t +

1), motor(on, t + 1)}, le résultat est un vol droit que ce n’est
pas l’objectif. L’extension E1 a : {yoke_roll(neutral, t +

1), yoke_pitch(neutral, t + 1), motor(off, t + 1)}, il n’y a
pas de mouvement sur le planeur car le moteur
est coupé. L’extension E2 a : {yoke_roll(neutral, t +

1), yoke(push, t + 1), motor(off, t + 1)}, même résultat que
l’extension précédente, pas de mouvement car le moteur
est coupé. Et finalement, l’extension E4 a : {yoke(pull, t +

1), yoke_pitch(neutral, t+1), motor(off, t+1)}, même résultat
que l’extension précédente, pas de mouvement car le mo-
teur est coupé. Le choix d’une extension (ensemble des ac-
tions) est basé sur une analyse multicritère [3]. Nous avons
choisi le modèle de produits pondérés car il permet de faire
une analyse adimensionnelle sur les alternatives. Ensuite,
nous montrons la définition :

P (AK/AL) =
Qn

j=1(aKj/aLj)
wj pour

K, L = 1, 2, 3, ..., m.

Nous montrons sur la Fig. 5 les différents objectifs qui sont
les différents étapes de pilotage.

6 Conclusion
La logique non-monotone est un outil important en Intel-
ligence Artificielle car elle permet de capturer le raison-
nement incertain. Nous avons fait une simulation d’un cas
contradictoire (décollage) et nous avons constaté que la lo-
gique des défauts peut gérer les situations d’incertitudes et
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des contradictions, de cette façon, nous avons obtenu 5 ex-
tensions ou solutions qui sont sous-systèmes cohérentes.
Nous sommes en train d’améliorer les aspects des déci-
sions, pour cela nous étudions l’optimum de Pareto. Le
théorème de Pareto n’est pas sensible aux déséquilibres
dans la répartition des ressources. Ce point est important
pour résoudre le problème de gestion de l’énergie du sys-
tème.
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Résumé
Dans cet article, nous présentons un système résilient

pour un moto-planeur, basé sur une logique non-monotone.
Les systèmes écologiques, biologiques et autres sont rési-
lients, par exemple, les catastrophes naturelles, les bancs de
poissons et les nuées d’oiseaux. C’est une propriété qui per-
mets d’absorber les perturbations et de surmonter les adver-
sités. Le pilotage est également un système résilient car il
peut avoir des situations conflictuelles et l’environnement
est imprévisible. Le pilote doit alors changer de comporte-
ment. Quand un pilote fait face à ce genre de situations, il
entre dans un raisonnement incertain, malgré le fait qu’il
doive prendre des décisions pour différents objectifs. Nous
introduisons un modèle résilient non-monotone pour pilo-
ter un moto-planeur autonome. Ce modèle n’inclut pas la
notion de temps. La logique des défauts a été utilisée pour
trouver des points fixes à partir d’informations ambiguës et
conflictuelles. Le modèle proposé ici contient une connais-
sance du monde avec un ensemble de situations, d’objectifs
et d’actions. Après le calcul des solutions plausibles, la prise
de décision est basée sur une théorie non-probabiliste. Nous
avons défini une notion de stabilité dans des situations de
pilotage incertaines en utilisant la propriété de résilience.

Abstract
This article presents a resilient system for a motor-

glider based on non-monotonic logic. Resilience is the prop-
erty of a system allowing to absorb disturbances and over-
coming adversities. Ecological, biological and many other
systems are resilient, for instance, natural disasters, fish
school and birds flock. Piloting is also a resilient system be-
cause it could have conflicting situations and environment
is unpredictable, so behavior change. When a pilot faces
such kind of situations, he enters into uncertain reasoning,
despite the fact that he must take decisions for different ob-
jectives. We introduce a non-monotonic resilient model to
pilot an autonomous motor-glider. This model does not in-
clude the notion of time to make decisions. Default logic
is used to find fixed points from ambiguous and conflicting

information. The resilient model proposed here contains a
world knowledge with a set of situations, objectives and ac-
tions. After computation of plausible solutions, decision-
making is based on a non-probabilistic theory. We define a
notion of stability in uncertain situations of flight using the
property of resilience.

1 Introduction

After many decades of research in the field of aeronau-
tics today new directions open to use plane or any aerial
vehicle for different applications in an autonomous way.
Definition of autonomous aerial vehicle (UAV) is a pro-
grammed vehicle which receives directions from a source
placed at a distance apart from it. It can be flown without
a pilot by using a particular system on the ground. Using
UAV is not only confined to the military fields. They are
used in many areas such as agriculture, construction, enter-
tainment, and so far. In our study, we are using a motor-
glider. Motor-glider has many constraints when is flying,
besides, the pilot has short time to make decisions. He
considers certain information and thus be able to make ac-
tions, for instance, increase or decrease the engine power,
turn the steering wheel to the right, pull, etc. A motor-glider
is equipped with an engine motor, which allows to take-
off and climb without assistance, in contrast with a normal
glider that is non-motorized. In the 70’s, Holling introdu-
ced the term of resilience to model the dynamics of natural
disasters [5]. In other fields of science the concept of re-
silience is defined as the property of a system to absorb
and anticipate perturbations [4]. In ecology, resilience aids
to understand natural disasters behavior [5, 1]. In enginee-
ring, resilience ensures consistency, robustness and stabi-
lity [5, 14], even in uncertain environments [16]. Piloting
use non-monotonic reasoning when environment change,
it should take decisions because perturbations appear. In
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this paper, we present a model based on non-monotonic lo-
gic and the property of resilience, both we will allow us
to tackle the problem of uncertain reasoning with incom-
plete information and stability of an autonomous motor-
glider. The sections are composed in the next order. First,
the traffic pattern circuit for airplanes and states of flight
are explained. Non-monotonic reasoning and default logic
are presented in section 3. The complete model as well as
situations, objectives and actions are described in section
4. The properties of resilience and stability are explained
in section 5. The implementation of the model is described
in section 6. Finally, conclusion is described in section 7.

2 Traffic Pattern Circuit

Every pilot knows the traffic pattern circuit. It is one
of the basic maneuvers to take-off and land. However, it
contains the necessary rules to carry out a long flight. Next,
we explain the different states of flight for an airplane.
Since most of these states are the same for motor-gliders.
First of all, the pilot needs to know airplane states, so he
uses the cockpit. The cockpit is a set of instruments on
board that displays parameters such as airspeed (Miles/h),
artificial horizon (pitch and roll) 1, variometer (Feet/s), al-
titude (Feet), compass,. . .

Traffic pattern circuit, Fig. 1, has different flight stages.
It starts at the point S p where the airplane is in Rest.
When the pilot is ready and he has the authorization, he
increases all the engine power to get a right airspeed to
take-off (point a). This is airplane should climb to a suitable
height (point b). After that, the pilot should turn the yoke to
the left making an orthogonal path to the runway (point c).
At this point, he turns again the yoke to the right having
constant airspeed, constant altitude and zero vertical speed.
When he arrives to the point d he will prepare to land.
Turning the yoke to the right, decreasing in altitude and
having negative vertical speed, until arrive to the point e.
Once again, he should turn the yoke to the right to continue
decreasing in altitude and having a stable roll and negative
pitch, until point f . After this point, airplane touches the
ground. Final point Fp is where airplane state is again in
Rest. In order to formalize the circuit, we represent know-
ledge using First-Order Logic (FOL). This is a formal lan-
guage, which allows to represent almost everything in natu-
ral sense, it is expressiveness. We could say : “An airplane
is landing”. Using FOL, we have : land(airplane). Ano-
ther instance could be : “Pilot increase the engine power”.
In FOL we have : engine(pilot, increase) and so on. The
flight manual contains all necessary information to pilot an
airplane, including technical descriptions, physical limita-
tions, rules and emergency procedures. But all these infor-

1. Pitch is the angle formed by the airplane when has rotated around
“y-axis”. Similarly, roll is formed by the airplane when has rotated, but
around “x-axis”.
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Figure 1 – Traffic Pattern.

mation are generals that depending on the situation could
have contradictory rules. For instance, there is a rule that
says the minimum over flight height will never be less than
500 feet, in fact this altitude depends of the agglomeration.
This rule could be expressed in FOL, considering that x =

airplane, as follows :

altitude(x)→ (x > 500) (1)

But when an airplane lands its altitude is less than 500 feet.
This could be expressed as follows :

land(x)→ (x < 500) (2)

General rules are described in the flight manual but pilot
is the one who finally decides if he violates such rules. We
can see that equation (1) and (2) are contradictory. This is
a limitation of classical logic, because it is monotonous.
Formally the property of monotony is : A ` w then A ∪ B `
w. In other words, adding new information to a model, the
consequences are not reduced. This kind of problem, about
contradictions and exceptions is well known in Artificial
Intelligence. It has been studied from along time [10, 9].
We can see that it is a non-monotonic problem. In order to
tackle it we have to move from this framework of classical
logic. Because pilot use non-monotonic reasoning when he
has new information and he can break the rules.

3 Non-monotonic Reasoning and Default
Logic

Non-monotonic reasoning is a class of reasoning where
we make assumptions about things jumping to the conclu-
sions. Humans use kind of reasoning, this is the way we
can do in situations with incomplete and contradictory
information. Pilot does the same thing because environ-
ment change and he will have exceptions. In the 1970s,
J. McCarthy, D. McDermott, Reiter and others started stu-
dies on non-monotonic inference, deriving in default rea-
soning, autoepistemic reasoning and more others. A ro-
bust formalization with exceptions is that Reiter proposed,
default logic [12]. In default logic, a default theory is a
pair ∆ = (D,W), where D is a set of defaults and W is
a set of formulas strictly in FOL. A default d is : A(X):B(X)

C(X) ,
where A(X), B(X),C(X) are well-formed formulas. Where

2
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X = (x1, x2, x3, . . . , xn) is a vector of free variables(non-
quantified). A(X) are the prerequisites, B(X) are the justi-
fications and C(X) are the consequences. Intuitively a de-
fault means,“if A(X) is true, and there is no evidence that
B(X) might be false, then C(X) can be true”. When defaults
are used it means extensions are calculated. An extension
of a default theory ∆ is a set E of logical formulas [12]
with the smallest set that must verify the following pro-
perty : If d is a default of D, whose the prerequisite is in E,
without the negation of its justification is not in E, then the
consequent of d is in E.

Definition 1. E is an extension of ∆ iif :
— E =

⋃∞
i=0 Ei with :

— E0 = W and
— for i > 0, Ei+1 = Th(Ei) ∪ {C(X) | A(X):B(X)

C(X) ∈ D,
A(X) ∈ Ei ∧ ¬B(X) < E}

where Th(Ei) is the set of formulas derived from Ei.

The previous definition is difficult to compute in prac-
tice. Because ¬B < E supposes that E is known, but E is
not yet calculated. In the case of normal defaults, B(X) =

C(X), E is an extension of ∆ iif : we replace ¬B(X) < E by
¬C(X) < Ei. According to Reiter if all defaults are normal,
it exists at least one extension. Extensions are defined such
as fixed points.

Example 1. Using default logic, from predicates (1)
and (2) we have 3 defaults, which contains general in-
formation about altitude, where alt = altitude, x =

airplane, std_ f gt = steady_ f light :

d1 =
((alt(x) > 500) ∧ roll(x, stable)) : std_ f gt(x)

std_ f gt(x)
(3)

d2 =
((alt(x) ≤ 500) ∧ roll(x, stable)) : land(x)

land(x)
(4)

d3 =
(land(x) ∧ obstacle) : climb(x)

climb(x)
(5)

In natural sense, d1 describes if x has an altitude more
than 500 feet with a stable roll, and it is possible that x is
in a steady flight, then x is in a steady flight. Default d2
describes that if x has an altitude less than 500 feet with a
stable roll, and it is possible that x lands, then x lands. And
default d3 describes if x lands and there is an obstacle, and
it is possible to climb, then x climbs. Now, we are going
to use these three defaults assuming that we have the follo-
wing information :

W = {(alt(x) ≤ 500), roll(x, stable), obstacle} (6)

From ∆ = (D,W), we calculate the set of extensions. We
find E1 = W ∪ land(x), where x lands, by using the default
d2. On the other hand, we find E2 = W ∪ climb(x), where x
climbs, by using the default d3. We have two coherent so-
lutions. Solving the problem of contradictory information.

There are mandatory rules that cover flight physics, se-
curity and more. For instance, in case of engine failure, x
lands. Or if there is an obstacle in the runway, x must not
land. But if x has a fault, the pilot must land to not die, so
the risk is huge. In this case, the extension calculated will
have a high weight. When different solutions are compu-
ted we should take into account criteria such as emergency,
security, regulation, energy, etc. to choose the better deci-
sion. Situations are constantly changing because environ-
ment change. Using probabilities to choose one of them it
is not the idea, such as Weighted Product Model or Weigh-
ted Sum Model [15]. We propose another manner to make
decisions from a different point of view. We are in uncer-
tain framework, we consider a non-probabilistic model. We
focus on the opportunist model [2]. This model creates an
opportunistic loss (or regret) matrix [13]. Formally, the set
of regrets is defined as :

∀E,∃ mr = min {max (ci) − c j} (7)

Where mr is the minimization of the difference between the
maximum value of the criteria ci and alternatives c j, this is
for all extensions.

Example 2. Let us consider extensions and criteria. Crite-
ria are information about the system or environment. Ha-
ving two extensions, E0 and E1. E0 has a higher value of

Table 1 – Criteria Table.

EXTENSION CRITERIA
Energy Risk

E0 5 2
E1 2 3

energy than E1, that is, E0 has a good status of battery or
gas, for example. On the other hand, E0 is less dangerous
that E1, in terms of risk (e.g. agglomeration). Regrets are
calculated, E0 : {0, 1} and E1 : {3, 0}. In order to obtain
the better decision of these two extensions. E0 is the better
option which minimize the risk (mr), which make sense, in
real-life if an airplane has enough energy and pilot makes
actions that are not dangerous, he will choose them.

Until now we present how to solve a problem with in-
complete and contradictory information as well as the way
to choose the better option when we have several exten-
sions. In the next section we are going to introduce new
concepts, taking into account the property of resilience and
non-monotonic to reason.

4 Non-monotonic Model

When a pilot has a disturbance of any kind, he will na-
turally move away from the objective (O), this it could be
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land, take-off, climb. . .However, he must make actions to
achieve the goal. Pilot is in constant revision of behavior,
taking information from the cockpit, from the environment
and even from the control tower. Additionally, pilot should
respect air regulations and navigation laws. For a better un-
derstanding, we introduce the following concepts.

4.1 Situations, Objectives and Actions

Firstly, the set of situations (S ) contains information
about parameters of the airplane (altimeter, airspeed, va-
riometer. . .), environment, etc. On the other side, the set
of actions (A) are what the pilot does physically (increase
or decrease the engine power, turn the yoke to the left or
right, . . .) to the airplane. In this context, the situations
and actions are represented by positive literals. We consi-
der that for a certain situation, the challenge is to calculate
the extensions that contain actions which allow to approach
the desired objective (O). For instance, when an airplane is
placed at the start point (S p), Fig. 1, assuming it has the
authorization, and it is possible to take-off, then the plane
take-off. This objective could be described by a default as
follows :

(rest(x) ∧ authorization) : takeo f f (x)
takeo f f (x)

(8)

In the same way, we could describe when a plane (starts
at some point a) wants to maintain an altitude greater than
1500 feet with a north direction, to reach to the point b. A
default could be as follows :

((alt(x) > 1500) ∧ compass(x, north)) : point(x, b)
point(x, b)

(9)

These are just two defaults as examples, but we can include
many others in O. We consider two kind of objectives, short
and long-term. The short-terms occur when there are per-
turbations and airplane moves away from the long-term ob-
jective. Thus, pilot will find another short-goal to get closer
and converge. For instance, when the airplane is climbing
(from the point a to the point b, Fig. 1) to an altitude of
1500 feet and there are wind disturbances, equation (8) is
considered a sub-goal. On the other hand, a long-term ob-
jective is, for instance, maintain a steady flight for 5 mi-
nutes with an altitude of 1500 feet, equation (9) is conside-
red a long objective.

Definition 2. In the world K, there is always a resilience
trajectory R.

∀S ,∀O,∀A ⊆ K ∃ R (10)

Short-term objectives have very fast change in compari-
son with long-term. Nevertheless, short-terms will allow
to achieve long-term. As the system evolves and distur-
bances appear, exploration is an important stage of the mo-
del. Because this part it is the main process to find different

sub-goals that will allow to absorb the shock ζ. Sub-goals
g are related to the extensions since they contain actions
to converge to the final goal. It is so that the system can
jump between sub-goals and have a resilient behavior. If

S p

g0

g1

g2

g3

g4

g5

g6

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

G

Figure 2 – Evolution of a goal G, switching sub-goals g
when a disturb ζ occurs : M and ? are the trajectories crea-
ted.

we take a look at the discrete representation, Fig. 2. We
have at the begging S p the computation of four exten-
sions : {g0, g1, g3, g5}, according to our decision-making
model g1 is chosen and then the system interacts with the
environment. At some point, disturb ζ1 occurs and exten-
sions are computed one more time : {g1, g4, g5, g6}, the
better solution is g6 and then interaction happens again.
This process occurs every time disturbs ζ appear. In this
sense, computing and choosing extensions, trajectories (M
, ?) are created. For the first resilient trajectory M, we
have : RM = {g5, ζ1, g4, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g6, . . .}
and for the second trajectory (?), we have : R? =

{g1, ζ1, g6, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g1, . . .}

4.2 Model

We present a model that describes the evolution of pilot
reasoning. In reality pilot makes two movements, he ob-
serves the horizon and next the cockpit, after that he does
actions, he repeats this over and over again. This dynamic
could be represented such as Fig. 3. The model has transi-
tions but the notion of time is not considered. For example,
if we have a situation si and if it is possible to go to the
situation si+1, we should do actions. Firstly, we start with

∆ = {D,W, S }

E = {E1, E2, ..., En} Choice

En = {A, S +}

∆+ = {D,W, S +}
∆← ∆+

Figure 3 – Reasoning of a pilot based on default logic.
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a default theory ∆ = (D,W, S ). Where D are the set of de-
faults, W are the set of FOL and S are the parameters of
the airplane, environment, control tower, etc. We are consi-
dering that ∆ is a default theory before a transition and ∆+

is a default theory after a transition. Similarly, S is a si-
tuation observed before a transition and S + is a situation
observed after a transition. From ∆, the set of extensions
E is computed. Each extension contains actions. Once we
have the solutions we must choice the better extension that
brings us closer to the goal, then decision-making is based
as before. After pilot applies actions he takes observations
again (cockpit and environment) passing information from
S to S +. Then it goes back to ∆ to compute extensions and
choose the better one again. Sometimes for an airplane it
is impossible to converge to the desired goal and alterna-
tive objectives must be found. In the set of objectives (O)
the property of resilience is carried out. This is the property
will be described in the next section.

5 Resilience

The concept of resilience is defined as the property of
a system to absorb and anticipate perturbations [4]. So to
apply this property to our model, let consider a knowledge
world K, Fig. 4, which contains the set of situations (S ),
objectives (O) and actions (A). Inside the world K we will
study the property of resilience. Since we know that the lo-
gic model has an evolution, we are interested to study its
form and properties. We can define a trajectory as the satis-
faction of 4 main properties : reorganization (α), explora-
tion (β), release (γ) and conservation (δ), Fig. 4 [6, 14, 16].
We consider that Non-monotonic reasoning is exploration,
Choice is reorganization and conservation, and finally in-
teraction with environment is release. Trajectory has a form
as closed loop that converge a stable equilibrium [5]. In
control theory [8] stability is defined as follows :

Definition 3. A non-linear time-invariant system with x′ =

f (x), f : Rn → Rn. It has a point xe ∈ Rn is an equilibrium
point of the system if f (xe) = 0. It is global asymptotically
stable, if for every trajectory x(t), we have x(t) → xe as
t → ∞. It is locally asymptotically stable near or at xe if
there is R > 0, s.t. ||x(0) − xe|| ≤ R⇒ x(t) = xe as t → ∞.

We consider Lyapunov’s definition for our study. For
every short and long-term objective O a neighborhood (ε)
of the exact point of convergence is defined as follows :

0 < ‖O‖ < ε (11)

In our model, stability will be when every objective O
is inside ε. In this context, we define : R ≡ O, where
R is the theoretical trajectory of resilience and O is the
trajectory of objectives of our model [6]. If the equiva-
lence is valid, then the system will have stability in term

of resilience. Theoretical trajectory is defined as follow :
R : {. . . α, β, γ, δ, α, . . .}. An interesting point of the model
is if we increase the number of defaults, we will increase
the degrees of freedom. This is an important remark, be-
cause we consider degree of freedom a space in O where it
could pass a trajectory.

α

δ

γ

β

K

S

O

A

Figure 4 – Non-monotonic Resilience Stability.

6 Implementation

We are using a reduced-size model of motor-glider with
a wingspan of 1366mm (53.75 in.), an overall length of
977mm (38.5 in.) and a HBM 2812-1100 Brushless Mo-
tor. On board a microcomputer based on Linux operating
system is installed, it has the next characteristics : a cpu
running at 1 GHz ARM11 (single core), 512 Mb of RAM
and power consummation of 0.8 Watts. The microcomputer
contains physical digital ports with serial communication
protocols which allow to connect different devices. The
inertial sensor provides the accelerations, angular veloci-
ties and measurements of the earth’s magnetic field. These
three information, it allows us to know the orientation of
the motor-glider in space, for instance, if it is going up,
down, turning. . .Altitude is provided by the GPS module
but also it is calculated by an atmospheric pressure sensor.
Pitot tube is an instrument that allows to measure the sta-
tic and dynamic pressure, and thus to know the airspeed
of the airplane, based on the Bernoulli’s equation. For obs-
tacle detection an ultrasonic sensor is used, with a max.
detecting distance of 4-5m. The aileron control is done by
servomotors through PWM signal. The circuit on board is
supplied with 11.1 Volts and 1300 mAh LiPo battery. In
the microcomputer, SWI-Prolog was installed. Until now,
we have 80 defaults and the extensions are calculated in the
order of milliseconds. However, if we increase the number
of defaults, the calculation time does not increase much,
since horn clauses are used [7, 3].

7 Conclusion

We introduced a resilient model for an autonomous air-
plane, using non-monotonic logic, in particular, default lo-
gic. We tackled contradictory and incomplete information
to manage aviation rules and make decisions. We defined
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a non-probabilistic model to choose an extension consi-
dering criteria such as security, energy, emergency. . .We
used the property of resilience to find alternative solutions,
when disturbs occur, and converge to the objective or sub-
objectives. We described stability using Lyapunov’s defi-
nition. The implementation is currently in progress with
good results. This is a motivation to have a resilient model
able to find thermal and to be able to fly as long as possible
autonomously. We are also interesting to study Minsky’s
model, Fig.5, which describes how the mind get goals by
changing the set of axioms in use [10, 11]. From our mo-
del in the Fig.3, we could consider the “Now” such as the
actual situation S and “Want” such as S +, the long-term ob-
jectives. The differences will be the actions that we should
do to converge to the main objective.

Want

Now

Diff

Figure 5 – Minsky’s model.
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