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Résumé 
 

 
La surveillance de la réponse structurale est fondamentale pour estimer la performance des 

bâtiments et réduire les pertes lors de futurs séismes. Un moyen pratique de détecter les 

changements de comportement structural consiste à analyser les variations des propriétés élastiques 

lors d'excitations dynamiques. Dans ce travail, on montre que les variations de la fréquence 

fondamentale des bâtiments lors de tremblements de terre (faibles à forts) pourraient être expliquées 

par des processus élastiques non linéaires qui se produisent à l'intérieur du matériau, et qui 

finalement affectent le comportement macroscopique global des bâtiments. Ces processus 

élastiques non linéaires sont responsables de la diminution temporaire ou permanente de la rigidité 

structurale, pouvant expliquer les processus de récupération des propriétés élastiques observés à la 

suite d'événements sismiques. Cette étude comble le fossé entre des expériences de laboratoire à 

l'échelle microscopique et des observations sismologiques à l'échelle macroscopique, où l’élasticité 

non linéaire est également observée. Dans un premier temps, une base de données sismiques établie 

dans le cadre de cette thèse est présentée, incluant des réponses de bâtiments instrumentés de façon 

permanente dans le monde: des milliers d’enregistrements de mouvements sismiques et plusieurs 

bâtiments du Japon et des États-Unis ont été traités, apportant des connaissances utiles pour le 

domaine du génie parasismique, notamment pour la prédiction empirique de la réponse structurale 

en fonction de mesures d'intensité du mouvement au sol. Les incertitudes associées à la prédiction 

d’endommagement sont présentées, ainsi que l'évaluation de la vulnérabilité d'un bâtiment sous 

forme de courbes de fragilité. Ensuite, la base de données est utilisée pour analyser les signatures 

élastiques non linéaires dans les bâtiments, en particulier les effets de la dynamique lente (ou 

relaxation). Les variations des fréquences de résonance sont étudiées à court et à long terme, en 

estimant la contribution du sol à la réponse du système sol-structure. Différents états structuraux 

sont déduits en fonction des amplitudes de chargement et propriétés observées via les 

enregistrements. Des modèles de relaxation développés en laboratoire sont ensuite adaptés aux 

données des bâtiments afin de caractériser la densité de fissuration et les hétérogénéités, en 

effectuant des comparaisons entre les états structuraux avant et après de fortes excitations telles que 

le séisme de 2011 (Mw=9) de Tohoku (Japon). Les effets des chargements sont observés lors de la 

récupération des séquences de répliques. Les résultats sont étendus à différentes typologies de 

bâtiments, en analysant l'influence du matériau et des caractéristiques de chargement, notamment 

les taux de déformation. Enfin, quelques conclusions générales sont présentées, ainsi qu'une 

perspective de travail utilisant des outils de machine learning pour prédire la réponse de bâtiments 

en fonction de signatures élastiques non linéaires observées. 

Mots clés: surveillance sismique des structures, elasticité nonlinéaire, dynamique lente, base 
de données sismiques, réponse dynamique des bâtiments. 
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Abstract 
 

 

Seismic monitoring of structures: characterization of building 

response by analyzing nonlinear elasticity and slow dynamics. 

 

Monitoring structural response is fundamental for evaluating the performance of buildings and 

reducing losses during future earthquakes. One practical way to detect changes in structural 

behavior is analyzing variations of elastic properties during dynamic excitations. Here we show 

that variations in the fundamental frequency of buildings during (weak -to- strong) earthquakes 

might be explained by nonlinear elastic processes carried out within the structural material, 

which affect the global macroscopic structural behavior. These nonlinear elastic processes are 

responsible for both transitory and permanent structural softening, and might explain the 

intriguing recovery effects observed in the fundamental frequency of buildings following 

seismic events. This study bridges the gap between microscale laboratory experiments and 

macroscale seismological observations, where nonlinear elasticity is also observed. In the first 

part of this study, a new seismic database of building responses is presented: thousands strong 

motion recordings and several buildings from Japan and US were processed, providing useful 

tools for the earthquake engineering community, notably for the empirical prediction of 

structural response as a function of several ground motion intensity measures. Examples of 

uncertainties associated to damage prediction are presented, as well as the vulnerability 

assessment of a building throughout fragility curves. Next, the seismic database is used to 

analyze nonlinear elastic signatures in buildings, particularly the slow dynamics or relaxation 

effects. Variations of resonant frequencies are monitored at both short and long-term, 

estimating the contribution of soil in the response of the system soil-structure. Different levels 

of damage are inferred according to loading amplitudes and structural states. Some laboratory-

based models of relaxation are adapted to the building data in order to infer crack-density and 

heterogeneities over time, making comparisons between structural states before and after large 

excitations such as the Mw 9 Tohoku earthquake. Conditioning effects are observed during the 

backbone recovery of aftershocks sequences. The results are extended to different building 

typologies, analyzing the influence of structural material and loading features, notably strain-

rates. Finally, some general conclusions are presented, together with a perspective work using 

machine learning to predict building response based on nonlinear elastic signatures. 

Keywords: seismic structural health monitoring, nonlinear elasticity, slow dynamics, 
earthquake database, dynamic building response. 
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Glossary  

 
 
Bond system: set of cracks, voids, defects and other heterogeneities between the particles that 

constitute a material.  

 

Drift ratio, or structural drift: maximum relative displacement between the top and the bottom 

of a building normalized by its height. The drift ratio is considered a proxy of structural 

deformation, and therefore, of structural damage.  

 

Nonlinear Elasticity: atypical nonlinear behavior characterized by nonlinear effects manifested 

at very small deformations, within the elastic range.  

 

Relaxation, or recovery, or Slow dynamics: process in which the elastic properties of a material 

recover over time after being altered due to an external loading. Some relaxation models intend 

to describe this process (i.e. Snieder et al., 2017; Shokouhi et al., 2017a; Ostrovsky et al., 2019).  

 

Relaxation parameters: parameters computed from the relaxation models applied to the 

earthquake data recorded in buildings. Relaxation parameters are: 

- τmin characteristic initial time of the relaxation process 

- τmax characteristic final time of the relaxation process   

- p slope of the relaxation process 

- τc characteristic time of the relaxation spectrum 

- Amax maximum amplitude of the relaxation spectrum 

- bw bandwidth of the relaxation spectrum 

- a and G proxies for the elasticity before and during the relaxation, respectively  
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Introduction 

 
 

Earthquakes are the natural events most likely to have devastating consequences. However, the 

occurrence of earthquakes alone does not explain the number of victims caused during these 

events. Approximately 75% of the fatalities attributed to earthquakes are caused by the collapse 

of buildings (Coburn and Spence, 2002). Economic losses also depend more on the 

construction’s quality than on the severity of the seismic shaking. To reduce both casualties and 

economic losses due to earthquakes it is therefore essential to guarantee earthquake-resistant 

structures. We must therefore develop our knowledge of seismic hazard to improve building 

design and to update seismic building codes. All of these actions require detailed understanding 

of structural behavior under seismic excitation, which is a complex and multi-disciplinary 

problem, involving a high degree of uncertainty.  

 

To assess the expected performance of structures subjected to earthquakes, the Pacific 

Earthquake Engineering Research Center (PEER) proposes Performance-Based Earthquake 

Engineering (PBEE), a robust methodology aimed at improving seismic risk decision-making 

(i.e. Moehle and Deierlein, 2004). The methodology divides the assessment process into four 

main elements (Fig. 1): 1) Definition of a ground motion Intensity Measure, IM, which 

characterizes in probabilistic terms the input ground motion features that affect structural 

response (for example, peak ground or spectral values); 2) Calculation of Engineering Demand 

Parameters, EDP, which describe the structural response to the input ground motion (e.g. 

structural deformations or peak accelerations); 3) Description of Damage Measures, DM, to 

characterize the condition of the structure in relation to the EDP (for example cracking, spalling, 

collapse); and 4) Calculation of Decision Variables, DV, which is the translation of damage 

into quantities that can be used in risk management decisions (i.e. repair costs, casualty rates, 

downtime). Underlying the PBEE methodology, there is a probabilistic framework representing 

the uncertainties inherent to each step of the earthquake performance assessment process 

(Figure 1). 

 

In the context of seismic risk assessment, the estimation of the fundamental -or natural or 

resonant- frequency is a relevant issue. The fundamental frequency is the primary dynamic 

property of a building system. Dependent on mass and stiffness, this parameter is used in both 

the design of new buildings and the assessment of existing ones. The fundamental frequency 

describes the behavior of buildings under different loadings, including earthquakes (i.e. 
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Trifunac et al., 2001; Kohler et al., 2005; Clinton et al., 2006; Guéguen et al., 2016; Chiauzzi 

et al., 2012; Astorga et al., 2018 and 2019). In most building codes, the fundamental period 

appears in the equation to calculate the design base shear and lateral forces. Given that the 

structural period cannot be measured for a structure that has not yet been built, most codes 

provide empirical formulae to estimate the natural period based on the building’s typology (i.e. 

material, structural system, height), based on past experience and recorded responses of existing 

buildings (i.e. Goel and Chopra, 1996; Todorovska et al., 2006).  

 

 

Figure 1.  Underlying probabilistic framework of PBEE (according to Moehle and Deierlein, 2004).  

 

A linear-elastic response is generally assumed for structures below a certain level of 

deformation; this is usually around 10-3 for common buildings. Below this threshold, the stress 

vs. strain relationship is assumed to be linear, with no alteration of fundamental frequency. 

Above this threshold, the structural response is expected to enter the nonlinear range, usually 

accompanied by non-reversible, plastic deformations (i.e. damage). However, several authors 

have proved that the behavior of fundamental frequency in buildings is more complex, 

manifesting both nonlinear and elastic properties under different loading conditions (i.e. Kohler 

et al., 2005; Johnson, 2006; Clinton et al., 2006; Guéguen et al., 2016; Michel and Guéguen, 

2010; Chiauzzi et al., 2012; Astorga et al., 2018 and 2019). 

 

For example, Clinton et al., (2006) observed that the natural frequencies of the Millikan Library 

in California changed significantly during strong shaking, but also showed measurable changes 

during minor earthquakes and weather conditions at strain levels below 10-6 (well below the 

threshold generally defined for nonlinear behavior). Similarly, Kohler et al., (2005) detected 

frequency variations during earthquakes and ambient vibrations in the UCLA Factor Building; 

Todorovska et al., (2006) observed analogous behavior in the responses of 21 buildings during 

weak and strong earthquakes. The above authors observed that the building frequencies 

recovered somewhat after moderately severe shaking events, which is a sign of elasticity. 
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Transient frequency variations during seismic excitation have been interpreted as a transitory 

nonlinear softening in system stiffness, attributed to the nonlinear response of the soil-structure 

interaction (i.e. Todorovska and Trifunac, 2008, Todorovska, 2009) or to nonlinearities in the 

system caused by the opening/closing of preexisting cracks in the superstructure (i.e. Luco et 

al., 1987; Clinton et al., 2006; Michel and Guéguen, 2010; Mikael et al., 2013). These variations 

might occur in the short or long term, and may or may not be reversible (i.e. Clinton et al., 

2006; Todorovska and Al Rjoub, 2006). Permanent frequency variations might appear if 

structural damage occurs (i.e. Celebi et al., 1993; Dunand et al., 2006; Clinton et al., 2006). In 

this case, the frequency recovery is only partial, and does not reach the pre-excitation value. 

For example, Figure 2 shows the fundamental frequency variations of a building in Ecuador 

during the Mw 7.8 earthquake in April, 2016 (after Guéguen, 2016, personal communication). 

Higher acceleration causes frequency drops, followed by total recovery (i.e. during the 

foreshock and the aftershock) or partial recovery (i.e. during the mainshock). The nonlinear 

structural softening and recovery observed in buildings after earthquakes are not clearly 

understood and have not been properly characterized. However, analogous behavior has been 

observed in laboratory tests on granular materials. Despite significant progress, the underlying 

physical processes are still unknown.  

 

 
Figure 2.  Fundamental frequency variations of a building in Ecuador during the Mw 7.8 earthquake in 
April, 2016. Frequency drops corresponding to loading acceleration are observed followed by partial or 
total recovery, according to permanent or transient structural softening, respectively. (After Guéguen, 
2016, personal communication) 

 

Several studies (i.e. McCall and R.A. Guyer, 1994; Guyer et al., 1995; Guyer and Johnson, 

1999; Johnson and Sutin, 2005) in heterogeneous media such as rocks, soils, concrete, and most 

of the materials on Earth, have reported anomalous nonlinearity that cannot be explained by 
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conventional theory (Landau and Lifshitz, 1986). The authors observed unexpected 

nonlinearity and recovery effects with hysteresis and discrete memory under quasi-static and 

dynamic loadings. In such media subjected to wave amplitudes in the order of 10-6 in 

deformation, a rapid drop (~ µs) of the elastic properties is observed, temporarily shifting the 

material from its equilibrium state. When the stress disappears, the material slowly recovers its 

elastic properties (~ minutes, hours), returning to a state of equilibrium. This recovery is called 

slow dynamics. A phenomenological behavior has been introduced to describe these nonlinear-

elastic materials (i.e. Guyer and Johnson, 1999 and 2009; Johnson and Sutin, 2005), 

considering the origin of the nonlinear response to be at the scale of the microstructure. The 

physical phenomena linked to this behavior are not yet fully understood, but they are believed 

to be related to the presence of microcracks and to processes occurring in the contacts between 

grains within the material (i.e. the bond system). The authors observed that the nonlinear-elastic 

response governs the behavior of highly heterogeneous materials, such as concrete. A 

simplified scheme of this nonlinear elasticity is shown in Figure 3.    

 

 
Figure 3.  Schematic representation of nonlinear elasticity, originated at the microstructure scale, where 
the bond system (i.e. contacts between grains, cracks, etc.) controls the behavior. The system, initially 
in a state of equilibrium, is disturbed by an excitation (i.e. wave), causing frequency to fall sharply. The 
system is in temporary disequilibrium. When the excitation ceases, frequency slowly shifts back to its 
previous value as the particles within the microstructure are rearranged. The system returns to its original 
state (if no damage occurred) or to a new state of equilibrium (in the case of residual damage). 
(According to McCall and R.A. Guyer, 1994; Guyer et al., 1995; Guyer and Johnson, 1999; Ostrovsky 
and Johnson, 2001; Johnson and Sutin, 2005).  

 

Sens-Schönfelder et al. (2018) suggest that the observation of nonlinear elasticity is related to 

the physics of friction. The authors associate softening with small-scale damage due to shear 

motion of internal contacts; they relate healing (recovery) to a thermally-activated process of 

connections creation (i.e. capillary bridges, chemical bonds) across the internal contacts. 

Likewise, several other studies (Johnson and Jia, 2005; Snieder et al., 2017; Delrue et al., 2018; 
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Ostrovsky et al., 2019) also relate non-classical nonlinear elasticity to friction conditions and 

thermally-activated processes between particles within the material. In the Earth’s crust, 

nonlinear drops in elastic properties are also observed during earthquakes (i.e. Rubinstein and 

Beroza, 2004; Brenguier et al., 2008; Brenguier et al., 2014; Bindi et al., 2018), together with 

long-term recovery of the shallow layers and fault zone: a healing of cracks that is attributed to 

the same slow dynamic process as that observed in laboratory studies. These conclusions from 

laboratory tests and seismological observations imply that it might be possible to characterize 

variations of internal properties -which might be related to damage- by analyzing nonlinear 

elastic processes.  

 

Currently, most methods to identify and evaluate damage in materials are based on 

nondestructive testing (NDT), which is particularly effective to detect discontinuities and 

differences in the material’s characteristics. Different NDT techniques can be used to generate, 

propagate and receive ultrasound waves that travel throughout the material specimen, revealing 

wave distortions to detect, localize and characterize damage features. Some authors have 

employed NDT to identify damage in concrete (Goueygou et al., 2008; Garnier et al., 2013; 

Payan et al., 2014; Shokouhi et al., 2017b), and several other materials, including sandstone, 

Plexiglas, and aluminum (i.e. Van Den Abeele et al., 2000b and 2001; Jin et al., 2018; TenCate 

and Johnson, 2019). Evidence of nonlinear signatures has been found, including hysteresis, 

transient elastic softening and slow relaxation, indicating micro-scale damage. Legland et al., 

(2017) used NDT to detect and characterize defects using a controlled-damage protocol 

performed in a meter-scale concrete structure. The authors detected an increase in nonlinearity 

levels due to crack generation. After post-tensioning, the crack closes, which can be confirmed 

by the residual nonlinearities.   

 

In this study, we analyze real earthquake data recorded in real buildings. Specifically, variations 

of fundamental frequencies in buildings of different typologies are monitored to detect 

nonlinear elastic processes that might be related to damage. We found surprising similarities 

with previous observations. Despite the different scales and techniques used, different loading 

and boundary conditions, different natures and levels of complexity, clear signatures of 

nonlinear elastic behavior and slow dynamics are apparent. As with NDT studies, we also detect 

elastic parameter frequency drops followed by recovery, and evidence of the opening and 

closing of cracks after seismic -damaging- excitation.         
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Given the resemblances with previous observations, it is likely that structural response under 

different earthquake loadings is controlled by similar micro-scale processes to those seen in 

various materials at laboratory and seismological scales. Furthermore, the use of real 

earthquake data allows actual structural behavior to be characterized, enabling the development 

and calibration of models based on real responses, thus reducing the uncertainties linked to 

assumptions made during modeling. Data-driven measurements are also useful to understand 

the interaction between building response and ground motion, and thus to define the parameter 

that best characterizes the damaging nature of earthquakes. Another advantage of in situ 

measurements is that actual building vulnerability can be analyzed at different damage levels, 

provided a sufficiently large range of earthquake loadings is available.   

 

The main objective of this study is therefore to provide data-driven elements about the response 

of buildings to real earthquakes, while explaining the internal nonlinear elastic processes 

occurring within the structures, and how they are linked to damage. 

 

In the first chapter of this study, we introduce the NDE1.0 database, used throughout the study. 

This new database compiles information on IM and EDP parameters computed from thousands 

of earthquakes recorded in several buildings, providing fundamental information for earthquake 

engineering applications (i.e. PBEE). For example, what is the link between structural response 

and ground motion? Which IM parameter provides the least variability in the prediction of 

EDP?        

 

In the second chapter, we identify the nonlinear elastic signatures detected in a building 

monitored over a 20-year period. Fundamental frequency drops and slow dynamics, correlated 

with loading parameters and structural state, are observed between and during seismic events. 

What causes this behavior? How does the soil contribute to the soil-structure response? 

 

The third chapter presents a detailed analysis of slow dynamics in buildings, studied through 

the recovery of fundamental frequencies after a single earthquake or a sequence of seismic 

events. Different relaxation models are adapted and applied to the building data. Hysteresis and 

discrete memory are observed during aftershock cycles. The behavior of parameters linked to 

relaxation, or recovery, helps to explain how slow dynamics can be a proxy of structural health.  

 

In the fourth chapter, we analyze nonlinear elastic response in buildings of different 

typologies, monitored over long periods of time, showing frequency variations and relaxation 
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parameters over time and different damage levels. Is it possible to extrapolate the results 

observed in one building to other buildings with different characteristics? What variability is 

associated with the structural material? What is the influence of loading amplitude and loading 

rate on the response observed?  

 

Finally, our conclusions are presented, along with perspectives for future works.   
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1  
1. NDE1.0 – A NEW DATABASE OF EARTHQUAKE DATA RECORDINGS 

FROM BUILDINGS FOR ENGINEERING APPLICATIONS  

 
 

In this chapter we introduce a new database of earthquakes and building responses that is used 

throughout the thesis. After the description of the data, basic statistics and relationships between 

intensity measures and engineering demand parameters are processed for earthquake 

engineering purposes. As example, experimental fragility curves are presented, including 

analysis of uncertainties. Performance Based Earthquake Engineering solution is tested using 

experimental data for building specific performance assessment. This chapter is published in 

the Bulletin of Earthquake Engineering.  

 
Astorga A.L., Guéguen P., Ghimire S., Kashima T. (2019). NDE1.0 – a new database of 
earthquake data recordings from buildings for engineering applications. Bulletin of Earthquake 

Engineering. DOI: https://doi.org/10.1007/s10518-019-00746-6 
 
 

Abstract  

Over the last two decades, seismic ground motion prediction has been significantly improved 

thanks to the development of shared, open, worldwide databases (waveform and parametric 

values). Unlike seismic ground motion, earthquake data recorded in buildings are rarely shared. 

However, their contribution could be essential for evaluating the performance of structures. 

Increasing interest in deploying instrumentation in buildings gives hope for new observations, 

leading to better understanding of behavior. This manuscript presents a flat-file containing 

information on earthquake responses of buildings. Herein, we present the structure of the 

NDE1.0 flat-file containing structural response parameters (i.e. drift ratio, peak top values of 

acceleration, velocity and displacement, pre- and co-seismic fundamental frequencies) 

computed for several intensity measures characterizing ground motion (i.e. peak ground values 

of acceleration, velocity and displacement, spectral values, Arias intensity, strong motion 

duration, cumulative absolute velocity, destructive potential). The data are from real earthquake 

recordings collected in buildings over the years. Some building, site and earthquake 



 10 

characteristics are also included (i.e. structural design, shear wave velocity, magnitude, 

epicentral distance, etc.). This 1.0 version contains 8,520 strong motion recordings that 

correspond to 118 buildings and 2,737 events, providing useful information for analyses related 

to seismic hazard, variability of building responses, structural health monitoring, nonlinear 

studies, damage prediction, etc. 

 

Keywords: structural response, seismic database, earthquakes, buildings. 

 

1.1. Introduction 

The probabilistic estimation of losses due to earthquake damage of buildings requires the 

analysis of different and independent components. The underlying probabilistic framework 

proposed by the Pacific Earthquake Engineering Research (PEER) for performance-based 

earthquake engineering (PBEE) divides the analysis into four main components related to 

seismic hazard, earthquake response of structures, probability of damage, and losses/repair 

costs. Each component includes uncertainties that affect the final loss estimates. Baker and 

Cornell (2008) propose a procedure for propagating uncertainties between the components of 

the approach, combining both random and epistemic uncertainties to quantify total uncertainty 

in seismic loss estimation. 

 

The uncertainty resulting from the characterization of seismic ground motion has been shown 

to make a significant contribution to the results of probabilistic seismic hazard analysis (PSHA) 

(Porter, 2003; Douglas, 2003), affecting the outcomes of structural response analysis and the 

final result of the PBEE process. Al Atik et al., (2010) provide a comprehensive description of 

the variability in ground motion prediction models and their standard deviations, considering 

components of inter- (between) and intra- (within) event residuals. In turn, performance 

assessment related to building/earthquake behavior also adds uncertainties to the analysis, 

because of assumptions related to material properties, boundary conditions, and structural state 

for existing buildings. For structures in design, most recent analyses are carried out by 

incremental dynamic analysis (IDA) using a set of synthetic or real recordings to obtain 

numerical models of structural responses and to determine uncertainty in performance 

assessment (Iervolino, 2017). Numerical methods are efficient but they are often not 

representative of actual structural behavior, and might not be cost-effective for large-scale 

analyses. The data recorded in civil engineering structures, having been established many years 

ago, notably by a number of seminal papers (e.g., Housner, 1959; Jennings and Kuroiwa, 1968), 

have made a significant contribution to our understanding of the physical processes involved. 
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These data enable the calibration of numerical models, as well as the development of new 

empirical models, just as equations have been used for predicting ground motion. 

  

The recent worldwide growth of seismological networks has certainly boosted the development 

of ground motion prediction equations (i.e. Douglas, 2011). They are based on flat-files of 

parameters created by national or international research programs (i.e. the NGA-West2 

database, the IRIS earthquake browser, the Engineering Strong Motion ESM database, etc.). 

However, earthquake data in buildings have not benefitted from this progress. The California 

Strong Motion Instrumentation Program (CSMIP, www.conservation.ca.gov/cgs/smip), and to 

a lesser extent the French National Building Array Program (NBAP, Péquegnat et al., 2008; 

Limongelli et al., 2019) are the only open-access data programs known. Other networks exist, 

including Japanese, Italian and Turkish programs, but their non-open data policy in a uniform 

and comprehensive format does not allow the same development of extensive research as 

ground motion prediction data has enjoyed. However, Perrault and Guéguen (2015) have shown 

the relevance of such data for improving engineering demand parameter (EDP) prediction 

models for a given intensity measure (IM), by testing the sufficiency and effectiveness of the 

IM and considering the associated uncertainties. 

 

The aim of this manuscript is to present the New Earthquake Data recorded in buildings 

(NDE1.0), i.e. a flat-file providing post-processed data for IM values (e.g. peak ground values, 

spectral values, duration), EDP values (e.g. structural drift, acceleration, displacement or 

velocity at the top floor), as well as building details (e.g. design, resonance frequency, co-

seismic frequency, number of floors) and earthquake characteristics (e.g. magnitude, distance). 

The data from the Japanese and Californian networks used in this study are presented first. The 

methodology for processing IM and EDP parameters is then described, and some cross-

correlated analysis and uncertainty values are discussed. Finally, the usefulness of the NDE1.0 

flat-file for engineering seismology and earthquake engineering is illustrated using examples 

of possible applications and analyses. 

 

1.2. Data description 

The information in the flat-file of this study was obtained by processing accelerometric time-

history files downloaded from the US Centre for Engineering Strong Motion Data (CESMD) 

website and the Japanese Building Research Institute (BRI) within the framework of a two-

party agreement with the authors. BRI has operated the building instrumentation program since 

1957. BRI currently operates more than eighty strong motion instrumented buildings. The BRI 
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website (https://smo.kenken.go.jp) provides information on the instrumented buildings, a 

technical description of the building array, acceleration waveforms and response spectra of 

earthquake data. Accelerometric time histories at different floors of the building can be 

provided by the BRI upon request. In the US, CESMD (https://strongmotioncenter.org) 

provides raw and processed worldwide strong-motion data for earthquake engineering 

applications. CESMD is a cooperative center integrating data from the CGS California Strong 

Motion Instrumentation Program, the USGS National Strong Motion Project, and the Advanced 

National Seismic System, which includes building array data.  

 

Figure 1.1 shows the locations of the earthquakes and buildings (1.1a) included in NDE1.0, the 

distribution of data by magnitude (1.1b) and the amount of data for each building characteristic 

(1.1c). In total, 118 buildings and 8,520 recordings from 2,737 events were processed. The 

buildings are mainly steel frame (S) (56) or reinforced concrete (RC) structures (37). There are 

also 12 steel-reinforced concrete (SRC) buildings, 9 masonry (M) and 4 wooden (W) structures. 

The buildings are also ranked according to the Hazus' building classification (FEMA, 1999) 

based on building height: low-rise (1 to 3 floors) corresponding to 26% of the data, mid-rise (4 

to 7 floors) corresponding to 31% of the data, and high-rise buildings (≥ 8 floors) corresponding 

to 43% of the data. This study focuses only on accelerometric data on the ground and top floors, 

recorded in the two horizontal components, corresponding to the longitudinal and transversal 

directions of the structures.  

 

 

Figure 1.1 a) Geographical distribution of the events (circles) and buildings (squares) in the database. 
b) Normalized histograms showing event distribution according to magnitude M. c) Number of 
buildings in the database according to construction material.  
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NDE1.0 contains earthquakes of magnitudes ranging from 2.4 to 9.1 (JMA magnitude) and 3.5 

to 7.3 (moment magnitude Mw) for the Japanese and US data, respectively. The normalized 

distribution of events according to magnitude is shown in Figure 1.1b. The mean value 

corresponds to magnitude 5.1 and 68% of the data are between magnitude 4.0 and 6.2. The 

strongest magnitude corresponds to the Mw. 9.1 Tohoku earthquake (March 11, 2011) recorded 

by almost all Japanese building arrays. The US data include seminal earthquakes, such as the 

Mw 7.2 Landers event in 1992 and the Mw 7.3 Baja California earthquake in 2010. According 

to Ambrasey et al. (2005), 10% of the dataset fall within the criteria of interest for earthquake 

engineering, i.e. magnitude M≥5 and epicentral distance R ≤100 km (Fig. 1.2a). Moreover, 50% 

of the data have epicentral distances of less than 142.2km and 50% have magnitudes above 5.1. 

The remaining data also provide interesting information to help understand the IM/EDP 

relationships involved in weak-to-moderate shaking. Figure 1.2b shows the 

Magnitude/Distance distribution for the Japanese ANX building which contributed the most 

data to the NDE1.0 flat-file. With 1,630 earthquakes recorded in both directions over a 

monitoring period of 20 years (June 1998-July 2018), this building has been the subject of 

specific analyses in this study.  

 

 
Figure 1.2 Magnitude-distance relationship corresponding to a) the entire database and b) the specific 
ANX (Japan) building. Magnitude and distance distributions are shown at the right and top of each plot, 
respectively. a) The red crosses correspond to M≥5 and R ≤100km. The black dashed curve corresponds 
to all data and the red solid curve corresponds to earthquakes with M≥5 and R ≤100. b) The red dot 
represents the Tohoku earthquake for the ANX building. 

 

Accelerometric time histories were processed according to Boore's recommendations (2005). 

Firstly, trends and mean values were removed, and a Butterworth filter of order 2 was applied 

between 0.1 Hz and the Nyquist frequency. Velocities and displacements were then computed 

by numerical integration of the acceleration records. Figure 1.3 shows the log-normal 

distribution of the peak ground acceleration (PGA), velocity (PGV) and displacement (PGD) 

values from our database, ranging from 0.07cm/s2 to 333cm/s2, 2x10-3cm/s to 42.4cm/s and 
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3x10-4cm to 12.7cm, respectively. At the top floor, peak top acceleration (PTA), velocity (PTV) 

and displacement (PTD) vary from 9x10-2 to 908cm/s2, from 3x10-3 to 159.6cm/s, and from 

3x10-4 to 45.8cm, respectively. Logarithmic means and standard deviations are equal to � = 

0.773 and � = 0.500 for PTA, � = -0.314 and � = 0.587 for PTV and � = -1.170 and � = 0.675 

for PTD. The relationship between peak ground and peak top values is given in Figure 4. Unlike 

the ASCE Standard (2006) and FEMA 450 (2004), which define the value of the PTA/PGA 

ratio of 3.0 regardless of building typology, the PTA/PGA value observed is equal to 2.0, and 

velocity and displacement ratio values are 2.4 and 1.7, respectively, considering both Japanese 

and US buildings.  

 

Figure 1.3d shows also the log-normal distribution of the drift values (∆) computed for the 

buildings in the database, ranging from 3.47x10-7cm/cm to 1.16x10-2cm/cm. Structural drift is 

computed as the relative displacement between the top and bottom signals divided by the inter-

sensor distance. This parameter is generally linked, in the first order, to a damage index, 

considered to indicate structural deformation. Drift ratio thresholds related to damage states are 

defined according to building typology (i.e. material, height, or structural system), performance 

level and seismic design. For example, the Hazus technical handbook (FEMA, 1999) defines 

four ∆-based damage states for RC-framed, high-rise buildings: 0.0025, 0.0043, 0.0117, and 

0.03 for slight, moderate, extensive and complete damage levels, respectively. The percentages 

of data in the NDE1.0 flat-file exceeding these Hazus thresholds are 0.25% and 0.09% for slight 

and moderate damage, respectively (Figure 1.3d). Total drift ratios, however, represent the 

response assuming a single degree of freedom (SDOF) system, and inter-story drifts must be 

computed using intermediary height sensors.  

 

 

Figure 1.3 Overview of several intensity measures and engineering demand parameters from the 
NDE1.0 flat-file. a) peak ground acceleration values (PGA), b) velocity (PGV), c) displacement (PGD), 
and d) drift ratios, including all the flat-file data. Mean and standard deviation values are indicated (in 
log). The vertical red dashed lines show the mean+/- one standard deviation, and the dotted black lines 
(d) indicate the slight and moderate damage thresholds for RC high-rise buildings. 
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Figure 1.4 Relationship between peak ground and peak top values for US (gray crosses) and Japanese 
(black dots) buildings. a) acceleration, b) velocity, and c) displacement. The linear regression model +/- 
σ (red lines) corresponds to log(Y) = a + b	log(X). The PTX/PGX ratio is given by slope ‘b’ and 
indicated in each plot. 

 
1.3. Data processing: the Wigner-Ville distribution 

Values of fundamental frequency of the buildings were computed at the beginning and during 

each seismic event. Using time-frequency distributions (Neild et al., 2003), we monitor 

instantaneous small frequency variations that occur over time in the presence of external 

perturbations. We used a Cohen’s class distribution (Cohen, 1989), also called energy 

distribution. The energy of a signal x(t) can be deduced from the squared modulus of either the 

signal or its Fourier transform, i.e.  

 	�0 = 1 |�(�)|5	��78
98 = 1 |�(�)|5	��78

98 																																																																																																(1.1) 
 

We can interpret |x(t)|2 and |X(ω)|2 as energy densities, respectively in time t and in frequency 

ω. The time-frequency energy distribution is covariant by translation in time and in frequency 

(Cohen, 1989). This means that if we integrate the time-frequency energy density along one 

variable, we obtain the energy density corresponding to the other variable. Applied to buildings, 

where energy is carried by resonance modes, Cohen’s class tracks the energy variation at the 

considered modal frequency in time. In this study, we considered the Wigner-Ville (WV) 

distribution designed for the analysis of non-stationary signals, and defined thus: 

 ��0(�, �) = 1 � A� + �2D �∗ A� − �2D �9H5IJK�78
98 �																																																																																(1.2) 

 
This is one of the simplest methods to obtain the time-frequency distribution of the energy of a 

signal. The definition of WVx requires knowledge of the quantity �(� + �/2)	�5(� − �/2) over 

[−∞,+∞], which can be problematic in practice with discrete signals producing interferences. 
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We therefore considered a windowed version of the Wigner-Ville distribution, called the 

pseudo Wigner-Ville distribution, noted PWV, given by the following equation: 

 	�PQ0(�, �) = 1 ℎ(�)� A� + �2D �∗ A� − �2D �9H5IJK�78
98 �																																																																				(1.3) 

 

where h(�) is a classical windowing function. This windowing is equivalent to a frequency 

smoothing of the WV function that attenuates oscillation of the interferences compared with 

WV. However, this formulation shows the classical time-frequency distribution trade-off 

between time and frequency resolutions: by selecting a short time window h, the smoothing 

function will be narrow in time and wide in frequency, and vice versa. PWV is then only 

controlled by the short-time window h(t). We can therefore add a degree of freedom to the 

distribution, by considering a separable smoothing function g(t), to allow progressive and 

independent control in both time and frequency of the smoothing applied to the PWV. This new 

distribution is called the smoothed-pseudo Wigner-Ville distribution (sPWV), as follows: 

 ��PQ0(�, �) = 1 ℎ(�)78
98 1 �(� − �)� A� + �2D �∗ A� − �2D 	��	�9H5IJK�78

98 �.																																	(1.4)	
            
The previous time-frequency trade-off is now replaced by a compromise between the joint time-

frequency resolution and the amplitude of the interferences. However, Eq. 1.4 shows that a 

time-frequency domain in the vicinity of each (t,ω) point is delimited, within which the 

weighted average of the time-frequency values is computed. The energy band of the distribution 

remains broad, making it difficult to distinguish slight variations of the frequency carrying the 

maximum energy. A reassignment method has been proposed (Kodera et al., 1976; Auger and 

Flandrin, 1995) to solve the trade-off between the reduction of misleading interferences and a 

sharp concentration of the signal component. This method states that there are no physical 

reasons why the WV values should be symmetrically distributed around each point (t,ω), which 

is considered as the geometrical center of the domain. Consequently, their average must be 

assigned at the center of gravity, which is much more representative of the local energy 

distribution of the signal than the geometric center of this domain. In practice, the reassignment 

method (δ operator) shifts each value of the time-frequency distribution from any point (t,ω) to 

the center of gravity (�,W �W)	of the signal energy distribution around (t,ω). The mathematical 

implementation of the reassignment proposed by Kodera et al. (1976) is developed in Auger 

and Flandrin (1995) for several classical time-frequency methods. Equation 1.4 is then modified 

to the reassigned rsPWV distribution, whose value at any point (t’, ω’) is the sum of all the 

distribution values reassigned to this point, i.e.: 
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���PQ(�Y, �Y; ℎ) = 1 1 ��PQ(�, �; ℎ)�\�Y − �̂(�; �, �)^�\�Y − �W(�; �, �)^��	��78
98

78
98 													(1.5) 

 

Several other time-frequency distribution methods are available in the literature but Michel and 

Guéguen (2010) compared several time-frequency distributions of accelerograms recorded in 

buildings, with and without reassignment. They concluded on the efficiency of the rsPWV 

distribution for our application, i.e., for tracking the fast dynamic variation of the energy 

position in resonance frequency during earthquakes, reducing both interferences and the 

aforementioned trade-off. In this study, rsPWV was applied automatically to the whole dataset, 

using a 4th order of decimation in frequency and 2,048 frequency points (N). Time h and 

frequency g smoothing windows were taken to be default Hamming windows, with N/10 and 

N/4 points, respectively. Furthermore, instantaneous maximum energy value variations are 

tracked using a 3rd order Savitzky-Golay (polynomial smoothing window) filter with a size 

equal to 15% of the triggered window (i.e. time window of the duration of the record). Figure 

1.5 shows an example of the rsPWV distribution and the curve corresponding to the Savitzky-

Golay filter. The characteristic values of the resonance frequency observed during each 

earthquake are automatically picked (and manually checked) from this curve for efficient 

application to the whole dataset.  

 

 
Figure 1.5 a) Time-frequency distribution during an earthquake, computed using the Wigner-Ville 
distribution. b) Reassigned smoothed-pseudo Wigner-Ville distribution (i.e. rsPWVx) applied to the plot 
in a). The solid black line corresponds to the Savitzky-Golay function. Pre-seismic fi and co-seismic fmin 
fundamental frequencies are indicated. The color scale represents the energy intensity. c) Acceleration 
time history at the top of the building, with idx_fi as the first arrival time. 
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- The pre-seismic value fi associated with the elastic fundamental frequency is computed by 

the Fourier transform of the zero-padded (16,384 samples) pre-event noise window. The 

first arrival time (i.e. idx_fi) of the earthquake is obtained by applying the STA/LTA 

algorithm (Short Term Average to Long Term Average), with STA/LTA = 2.  

- fmin corresponds to the co-seismic minimum value of the fundamental frequency computed 

from the time-frequency distribution of each record. Indeed, co-seismic variations of 

frequency are reported as related to structural health and nonlinear processes, generally 

associated with the opening/closing of preexisting cracks (i.e. Clinton et al., 2006; 

Todorovska and Trifunac, 2007; Astorga et al, 2018, 2019). In the flat-file, fmin corresponds 

to the average value of ± 10 samples around the minimum value observed in the smoothing 

function. 

 

1.4. Structure of the NDE1.0 flat-file 

The flat-file is divided into 4 information levels corresponding to (1) building and earthquake 

characteristics, (2) building response and engineering demand parameters, (3) ordinate and 

spectral values of intensity measures, and (4) duration of ground motion. 

 

1.4.1. Building and earthquake characteristics 

Building information (i.e. geographical coordinates, number of floors, structural material) is 

summarized in Table 1.1, as given by the BRI and CESMD websites (network_ID).  

 

Building_ID is the unique code of each building based on the nomenclature of data providers. 

B_lat and B_long correspond to the latitude and longitude of the building location, given in 

decimal degrees. 

Vs30 is the equivalent shear wave velocity for the first 30 meters of the uppermost soil layer. 

Vs30 was obtained from the Japan Seismic Hazard Information Station (j-shis.bosai.go.jp) and 

the USGS Vs30 map viewer application (http://usgs.maps.arcgis.com).   

 

Height is the distance between the top and bottom sensors, used to compute structural drift. 

Floors is the total number of floors in the building, excluding basements and penthouses. 

Material describes the material of the structural elements of the building: Reinforced Concrete 

(RC), Steel (S), Steel-Reinforced Concrete (SRC), Masonry (M) and Wood (W), completed by 

the structural system when available. 
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Table 1.1 General building information in the NDE1.0 flat-file 

Building information 

ID Description Units 

Network_ID Strong motion network operator  

Building_ID 
Building identification code. Subscript 'x' or 'y' corresponds to the two 
horizontal, orthogonal directions of the building 

 

B_lat Geographic latitude of the building  degree 

B_long Geographic longitude of the building degree 

Vs30 
Average shear wave velocity of the site at a depth of between 0 and 30 
meters  

m/s 

Height Distance between the top and bottom sensors cm 

Floors Total number of floors in the building  

Material Structural material of the building   

 
Table 1.2 contains a summary of earthquake characteristics, with E_Lat, E_Long, Magnitude 

and Epicentral distance related to epicentral information about the earthquake, i.e., latitude, 

longitude, magnitude and distance to the building; all information was provided by the network 

operator. 

 
Record_ID identifies the accelerometric datafile according to earthquake occurrence and sensor 

position. For example, in Record_ID 201103111446_ANX_8FE_180_1: 

- Field 1 (12 digits) corresponds to the date and time of the earthquake in the format 

YYYYMMDDhhmm (Y: Year, M: Month, D: Day, h: hour, m: minute). The example 

refers to the earthquake occurring on March 11, 2011, at 14:46 hours, local time. 

- Field 2 (3 or 4 digits) corresponds to the Building_ID. 

- Field 3 specifies the floor and location of the sensor. For example, '8FE' corresponds to 

a sensor situated on the 8th floor, east-oriented. 'BF' indicates the basement.  

- Field 4 (3 digits) corresponds to the azimuth of the sensor, measured in degrees from 

the north.  

- Field 5 indicates whether the orientation of the sensor coincides (1), or not (0), with one 

of the main directions of the building.  

 

Table 1.2 Earthquake information in the NDE1.0 flat-file 

Earthquake information 

ID Description Units 

Record_ID 
Name of the record containing the building and earthquake 
information 

 

E_lat Latitude of the epicenter degree 

E_long Longitude of the epicenter degree 

Magnitude  Magnitude of earthquake  Mw or MJMA 

Epicentral distance Distance of the epicenter from the building km 
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1.4.2. Building response and engineering demand parameters 

The parameters related to building response (Table 1.3) are PTA, PTV, PTD and ∆.  

In the NDE1.0 flat-file, the total drift ratio ∆ reported in Table 1.3 corresponds to the maximum 

value computed in four ways: 

- Maximum relative displacement between the top and bottom 

- Relative displacement computed between the maximum values at the top (PTD) and 

bottom (PGD) 

- Relative displacement at the time of the PTD. 

- Relative displacement between top and bottom at the time corresponding to the co-

seismic frequency (i.e. fmin). 

 

Table 1.3 Parameters related to building response in the NDE1.0 flat-file 

Building responses 

ID Description Units 

fi Elastic frequency, i.e. pre-seismic fundamental frequency Hz 

fmin 
Minimum value of fundamental frequency during the earthquake, i.e. co-seismic 
fundamental frequency 

Hz 

PTA Peak acceleration recorded by the top sensor cm/s2 

PTV Peak velocity computed at the top of the building cm/s 

PTD Peak displacement computed at the top of the building cm 

drift_ratio 
Maximum relative displacement between the top and bottom sensors normalized 
by building height 

cm/cm 

 
The NDE1.0 flat-file provides the pre-seismic fi and co-seismic fmin fundamental frequency 

values required to compute the spectral IM and to analyze nonlinear elastic processes in the 

following chapters. Values of fi and fmin were computed as explained in the section 1.3. 

 

1.4.3. Intensity of ground motion 

The NDE1.0 flat-file includes several ground motion intensity parameters, classified as 

ordinary and spectral intensity measures (Tables 1.4 and 1.5, respectively). In addition to PGA, 

PGV and PGD, Arias Intensity (i.e. Ia, Arias, 1970), Destructive Potential (DP, Araya and 

Saragoni, 1984), and Cumulative Absolute Velocity (i.e. CAV, EPRI, 1988) are computed from 

the acceleration time histories a(t). Ia is an energy-based parameter that includes both amplitude 

and duration of the seismic shaking. It is often linked to the cumulative damage experienced by 

a structure, where damage is considered to be proportional to the energy dissipated per unit 

weight during the overall duration of the motion. Ia is defined as: 
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 	�� = �2�1 �5(�)cd
e ��																																																																																																																																						(1.6) 

 
where g is the acceleration due to gravity and tf is the total duration of the recording. DP is a 

modification of Ia, where the frequency content of the earthquake is considered, as follows: 

 	�� = ���e5 																																																																																																																																																											(1.7) 
 
where v0

2 is the number of zero crossings per unit of time. CAV is assumed to reflect the 

damaging potential of seismic loading. CAV is given by:  

 ��� = 1 |�(�)|cd
e ��																																																																																																																																								(1.8) 

 
where |�(�)| is the absolute value of the acceleration time history. 
 

Table 1.4 Ordinary IMs in the NDE1.0 flat-file 

Ordinate intensity measures 

ID Description Units 

PGA Peak acceleration recorded by the bottom sensor cm/s2 

PGV Peak velocity computed at the base of the building  cm/s 

PGD Peak displacement computed at the base of the building cm 

Ia Arias intensity cm/s 

DP Destructive potential cm*s 

CAV Cumulative absolute velocity cm/s 

 

In Table 1.5, spectral value-based IMs are provided for a 5% damping ratio. The frequency 

information suggests that spectral values should be more closely related to damage potential 

than peak values. We use the algorithms given by Papazafeiropoulos (2015), based on 

Newmark and Hall (1982) to generate response or pseudo-response spectra values, considering 

both frequencies: pre-seismic (Sa1, Sv1 and Sd1) and co-seismic (Sa2, Sv2 and Sd2) 

frequencies for acceleration, velocity and displacement, respectively. In order to take into 

consideration the frequency shift during the seismic loading, the NDE1.0 flat-file also includes 

the mean spectral values computed between fmin and fi (Avg_Sa, Avg_Sv and Avg_Sd). This 

approach has been used by Bommer et al. (2004) and Perrault and Guéguen (2015) to take into 

account the co-seismic nonlinear response of buildings, also reducing the uncertainties in the 

prediction of EDP (Perrault and Guéguen, 2015). 
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Table 1.5 Spectral values of IMs in the NDE1.0 flat-file 

Spectral intensity measures 

ID Description Units 

Sa1 Pseudo-spectral acceleration for the spectral frequency of fi (ξ=5%) cm/s2 

Sv1 Pseudo-spectral velocity for the spectral frequency of fi (ξ=5%) cm/s 

Sd1 Spectral displacement for the spectral frequency of fi (ξ=5%) cm 

Sa2 Pseudo-spectral acceleration for the spectral frequency of fmin (ξ=5%) cm/s2 

Sv2 Pseudo-spectral velocity for the spectral frequency of fmin (ξ=5%) cm/s 

Sd2 Spectral displacement for the spectral frequency of fmin (ξ=5%) cm 

Avg_Sa Mean pseudo-spectral acceleration between Sa1 and Sa2 cm/s2 

Avg_Sv Mean pseudo-spectral velocity between Sv1 and Sv2 cm/s 

Avg_Sd Mean spectral displacement between Sd1 and Sd2 cm 

 

1.4.4. Strong motion duration 

Ground motion duration is often considered as a key parameter determining structural damage 

(i.e. Bommer and Martínez-Pereira, 1999; Araya and Saragoni, 1980). However, most recent 

analyses related to duration as a damage predictor are based on numerical simulations rather 

than experimental data (i.e. Chandramohan et al. 2016; Barbosa et al. 2017). The seminal 

definition of strong motion duration was proposed by Trifunac and Brady (1975), who consider 

that the significant duration is achieved at 95% of Ia. In this study, we compute different strong 

motion durations, summarized in Table 1.6, and defined as follows: 

- Bracketed duration, DB (Fig. 6a): total time between the first and the last exceedance of 

a specific acceleration threshold (i.e. a0). Four acceleration thresholds are defined: 0.05g 

(i.e. DB1), 0.1g (i.e. DB2), 0.15g (DB3), and 0.20g (DB4).  

- Effective duration, DE (Fig. 6b):  defined by DE = tf - t0, where t0 corresponds to the time 

at which 0.01m/s of cumulative energy is reached in the Husid diagram (i.e. energy 

build-up plot, Ia) and tf corresponds to the time at which Ia=0.125 m/s. 

- Uniform duration, DU: sum of the time intervals during which acceleration exceeds a 

specific acceleration threshold. Four acceleration thresholds are considered in the flat-

file: 0.05g (i.e. DU1), 0.1g (i.e. DU2), 0.15g (i.e. DU3), and 0.20g (i.e. DU4). 

- Significant duration, DS (Fig. 6b): defined as the time interval over which a specific 

percentage of total energy is accumulated on the Husid diagram. Intervals 

corresponding to (5-75)% and (5-95)% of total energy are considered, indicated as DSa1 

and DSa2, respectively. Durations based on cumulative energy computed from velocity 

(i.e. DSv1 and DSv2) and displacement signals (i.e. DSd1 and DSd2) are also determined, as 

suggested by Trifunac and Brady (1975).   
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- Zhou and Xie (1984) duration, DZX, defined as:  

Dno = 2p∫ (r9rs)t.ut(r)vrwxy ∫ ut(r)vrwxy 	     where      t{ = ∫ r.ut(r)vrwxy∫ ut(r)vrwxy 																																																																													(1.9) 
 

tc is the center of gravity of a2(t) along the time axis, a(t) is the acceleration at a given time t, 

and tr is the total duration of ground motion.  

 

 
Figure 1.6 Schematic view of several duration definitions given for two different acceleration time 
histories. a) Bracketed duration. The horizontal dashed line corresponds to the threshold level of 
acceleration. b) Significant strong motion duration computed for (5-75) % and (5-95) % of total energy 
based on the Husid diagram. 

 

Table 1.6 Definitions of strong motion duration in the NDE1.0 flat-file 

Strong motion duration 

Parameter Description Units 

DE Time interval between 0.01m/s and Ia=0.125 m/s using the Husid diagram s 

DB  (1,2,3 or 4) 
Total time between the first and the last exceedance of the acceleration threshold, i.e. 
0.05g (DB1), 0.10g (DB2), 0.15g (DB3) and 0.20g (DB4) 

s 

DU (1,2,3 or 4) 
Sum of the time intervals during which acceleration exceeds the acceleration threshold, 
i.e. 0.05g (DU1), 0.10g (DU2), 0.15g (DU3) and 0.20g (DU4)  

s 

DSa (1or 2) 
Duration corresponding to (5-75) % (i.e. DSa1) and (5-95) % (i.e. DSa2) of total energy 
associated with ground motion acceleration. 

s 

DSv (1or 2) 
Duration corresponding to (5-75) % (i.e. DSv1) and (5-95) % (i.e. DSv2) of total energy 
associated with ground motion velocity. 

s 

DSd (1or 2) 
Duration corresponding to (5-75) % (i.e. DSd1) and (5-95) % (i.e. DSd2) of total energy 
associated with ground motion displacement. 

s 

DZX Zhou and Xie (1984) duration s 

 

1.5. Empirical prediction of building response P(EDP|IM) and associated 

uncertainties  

One key step in the PBEE framework is the prediction of EDP for a given IM (i.e. P(EDP|IM)). 

These relationships are based on statistical regressions between IM and EDP. EDP follows a 

lognormal distribution for a uniform distribution of ground motion parameters (Perrault and 
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Guéguen, 2015) and therefore a log-linear functional form is considered to estimate the value 

of EDP | IM. The functional form proposed corresponds to a first-degree polynomial written 

as: 

 log(∆) = a + b log(IM) + ε																																																																																																																								(1.10) 
 
where a and b are coefficients obtained by linear regression, and e is the standard error used to 

determine the efficiency of the IM in predicting ∆ (Shome and Cornell, 1999; Luco, 2002). 

 

In Figure 1.7, the functional form is applied to estimate ∆ variability of the buildings as a 

function of PGA and PGV for the Japanese (1.7a) and US (1.7b) data. We observe that it is 

PGV and not PGA that gives the smallest EDP variability (� = 0.346 and � = 0.437 for the 

Japanese and US data, respectively; compared with PGA values of � = 0.518 and � = 0.518 for 

Japanese and US data, respectively). This has also been reported by several previous studies in 

different contexts (i.e. Wald et al. 1999, Bommer and Alarcon, 2008; Akkar and Bommer, 2007; 

Lesueur et al., 2013; Perrault and Guéguen, 2015). This observation does not depend on 

building design.  

 

 
Figure 1.7 Correlation between drift ratio (∆) and ordinary intensity measures (left) PGA and (right) PGV for a) 
all Japanese data and b) all US data. The red solid and dashed lines correspond to the mean ± � of the functional 
form log(∆) = a + b log(IM) + ε with σ=mean(ε) 

 

Figure 1.8 shows the plot of the same results using spectral averaged values Avg_Sa and 

Avg_Sv. For the Japanese data (Fig. 1.8a), average spectral values reduce the uncertainties of 

predicted EDP compared with peak values (Fig. 1.7) (�=0.352 for Avg_Sa and �=0.293 for 
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Avg_Sv). However, for the US buildings (Figure 8b), the standard deviations are only slightly 

reduced, suggesting additional parameters controlling P(EDP|IM), such as building typology or 

earthquake parameters (Perrault and Guéguen, 2015). Further analyses using the NDE1.0 flat-

file could be carried out on the efficiency and sufficiency of each IM (see Table A1 in the 

appendix for the results for all IMs in the NDE1.0 flat-file). Table A1 shows reduced variability 

for US and Japanese buildings after sorting by material (particularly wooden US structures and 

steel Japanese structures).  

   
   

 
Figure 1.8 Correlation between drift ratio (∆) and spectral intensity measures Avg_Sa and Avg_Sv for a) all 
Japanese data and b) all US data. The solid and dashed lines correspond to the mean ± σ of the functional form log(∆) = a + b log(IM) + ε with σ=mean(ε) 

 

Figure 1.9 shows the prediction of co-seismic frequency fmin as a function of PGA, according 

to functional form (Eq. 1.10), assuming fmin as a proxy of the co-seismic capacity of the structure 

related to non-ductile/ductile transition (Table A2 in the appendix summarizes all the σ values). 

The variability in the prediction of fmin for all Japanese data (Fig. 1.9a) is 0.212, which is 

reduced to 0.086 and 0.048 when the data are sorted by material type, such as SRC (Fig. 1.9c) 

or S (Fig. 1.9d). For RC buildings (Fig. 1.9b), the data are more scattered, due to different 

characteristics (i.e. number of floors, different structural systems, such as shear-walls, frames, 

etc.) but also because heterogeneous and fractured RC materials are more sensitive to loading. 

Indeed, several authors have demonstrated the influence of the microstructure on nonlinear 

elastic behavior, proving that granular/heterogeneous materials (e.g., rocks, concrete, damaged 
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materials) show a wide range of nonlinear elastic responses (Guyer and Johnson, 1999; TenCate 

et al., 2000; Rivière et al., 2015 and 2016). This was also confirmed in by Astorga et al. (2019) 

for civil engineering structures. 

 
In table A2, the results of the variability of functional form suggest that considering 

fundamental frequency as EDP yields a lower variability than ∆, suggesting that fundamental 

frequency could be used for predictive models of structural response. Finally, by testing and 

combining the most effective IMs, further studies could be conducted on P(EDP | IM) in an 

attempt to reduce EDP prediction uncertainties, such as structural drift or co-seismic resonance 

frequency.  

 

 

Figure 1.9 P(fmin|PGA) models. a) all Japanese data, b) Japanese RC buildings, c) Japanese SRC buildings, 
and d) Japanese steel buildings. The solid and dashed lines correspond to the mean ± σ of the functional 
form indicated in the title of the figures. � values are also indicated. The Y-axis corresponds to values 
of fmin normalized by the minimum value of each data group. 

  

1.6. Uncertainties related to building-specific damage prediction 

For structural performance analysis, Luco and Cornell (2007) defined a sufficient IM as the 

ground motion parameter that renders building response, then associated seismic damage, 

conditionally independent of earthquake magnitude and source-to-building distance. With 

respect to seismic ground motion variability, most GMPEs activities have focused on 

understanding its origin, making the most of the large amount of data published over the past 

decade. Al Atik et al. (2010) described the uncertainties of seismic ground motion by 

decomposing total variability into between-event (τ)	and within-event (ϕ) variability. Along the 

same lines as Al Atik et al., (2010), a preliminary analysis is presented herein to examine the 
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origin of the variability in the structural response, using the so-called Building Damage 

Prediction Equation (BDPE), first introduced by Perrault and Guéguen (2015) and 

corresponding to Eq. 1.10. The total standard deviation of the BDPE is thus given by: 
 σ = ��5 +�5																																																																																																																																																(1.11) 
 

σ represents the total variability of the BDPE, in this case associated with ∆ regardless of the 

magnitude and distance parameters. τ represents the median deviation of the BDPE for a given 

magnitude considering all observations, and ϕ corresponds to the deviation of individual 

observations from the earthquake-specific median prediction (given a magnitude).  

  

Figure 1.10 shows the (∆= f(R) | M [5.0, 5.5, 6.0, and 6.5]) relationship, illustrating the 

equivalent between-event and within-event variability of ∆ as a function of R. For Japanese 

buildings, the three components of the variability (ϕ, τ and σ) increase with magnitude, i.e. 

structural response (for EDP=Δ) does not appear to be conditionally independent of magnitude 

and distance. The ϕ component is of the same order of magnitude as the σ associated with total 

variability, i.e. the within-event component contributes most to total variability of the building 

damage prediction equation. ϕ is also one order of magnitude higher than τ, indicating that, for 

EDP=Δ, between-event variability contributes less to the prediction of Δ regardless of ground 

motion and building typology. 
 

 
Figure 1.10 Between-event and within-event components of drift variability given epicentral distance 
for Japanese data with magnitudes M = [5.0, 5.5, 6.0 and 6.5]. Black dashed lines are the medians of the 
data ranked by magnitude. The red line is the total median model considering all the data. The between-
event variability is quantified by �,	which represents the distance between the mean model for a given 
magnitude and the total median model. The within-event variability is quantified by �, corresponding 
to the distance between the markers and the corresponding model in magnitude.  
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In the same way, the variability of EDP between and within different building materials (e.g., 

S or RC), for a given IM, is shown in Figure 1.11. For S buildings (m=S) and given PGV values 

(Fig. 11a), the within-material variability (i.e. ϕm), between-material variability (i.e. τm) and 

total material variability (i.e. σm) are one order of amplitude smaller than for reinforced concrete 

(m=RC) in the drift ratio prediction. The effect of the structural material on the expected 

response can be quantified, in addition to the results in Figure 1.9 and Tables A1 and A2, as 

well as the larger dispersion observed for RC structures, as mentioned above. The BDPE must 

be also cross-analyzed with IM sufficiency regardless of typology (Luco and Cornell, 2007). 

The sufficiency of IM is evaluated by analyzing the residuals for a given M and R (i.e. Buratti, 

2012), as shown in figures 1.11b and 1.11c. In these figures, the residuals increase slightly with 

distance and magnitude when considering PGV as IM, i.e. the building response (∆) is not 

totally conditionally independent of magnitude and distance.  

 

 
Figure 1.11 a) Between-material and within-material variability in the prediction of drift ratio as a function of 
PGV. Linear regressions of ∆ = f (PGV) are presented for Japanese S (dashed line) and RC (dashed-dotted 
line) buildings. The solid line corresponds to the median prediction model for all Japanese data. �,	�	and	ϕ 
values are indicated for each building-class model. b) Analysis of PGV residuals with respect to M. c) Same with 
respect to R. 

 

1.7. Seismic vulnerability assessment and performance-based analysis 

The NDE1.0 flat-file provides useful information for the development of experimental 

vulnerability functions and performance-based approaches for existing buildings. These 

functions include lognormal fragility curves that give the probability of a structure exceeding 

different states of damage. Damage states can be based on drift thresholds, for example (FEMA, 

1999). The general form of a fragility curve is a cumulative lognormal distribution defined by: 
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�[��|��] = � � 1��� ln � ��������,����																																																																																																																(1.12) 
where ������,�� is the median value of the IM at which the building reaches the threshold of the 

damage state, ds. �ds is the standard deviation of the natural logarithm of the IM for the given 

damage state, and � is the standard normal cumulative distribution function. 

 

Figure 1.12 shows the fragility curves for the ANX building, i.e. the building that experienced 

the most earthquakes in NDE1.0. Several IMs are tested to estimate the probability of exceeding 

the slight damage state (i.e. Δ=0.0025). Fragility curves are computed using the procedure given 

by Porter et al. (2007), where the mean and standard deviation values (i.e. ������,�� and βds, 

respectively) are computed as follows: 

 

������,�� = ��� �1��log( ��)�
��� �						��� = � 1� − 1�(log	(�� ������,��)⁄ )5�

��� 																																												(1.13) 
 

with N the number of samples exceeding Δ = 0.0025, and ri the EDP value at which damage 

occurs in sample i. In the case of the ANX building (Fig. 1.12), spectral velocity values (i.e. 

Sv1) and the average spectral displacement value (i.e. Avg_Sd) provide smaller standard 

deviations in the prediction of slight damage (i.e. σ = 0.386 and σ = 0.363, respectively). Among 

the peak ground motion values, PGV is the best predictor (i.e. σ = 0.439). These data enable 

building-specific vulnerability assessment, with the advantage of considering the actual 

responses of the structures and their evolution over time. Indeed, Astorga et al. (2018) reported 

the time variation of the ANX building fundamental frequency, due to the cumulative effects 

of earthquakes. Consequently, the efficiency of IMs in the prediction of the building response 

may also be time-dependent.  

 

Iervolino (2017) assesses uncertainties for PBEE considering both the IM approach and the 

EDP approach. The author used 30-recorded accelerograms and utilized the IDA method to 

compute building model failure. For each record, the minimum IM-value causing the unwanted 

structural response was used, and the estimators of equation (1.13) (i.e. mean and standard 

deviation) were applied to obtain the fragility curves. Figure 1.13 shows an example of the 

experimental IM-approach applied to the Japanese SRC buildings, considering slight damage 

and Avg_Sa as IM. In NDE1.0, five buildings exceed the slight damage threshold (Δ=0.0025).  
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Figure 1.12 Fragility curves for the ANX building in Japan considering slight damage (Δ = 0.0025). 
Mean and standard deviation values associated with the lognormal distribution are shown in each plot. 

 

In Figure 1.13, the crosses indicate the spectral values above which the damage threshold is 

exceeded, and the (log-normal) probability distribution of these values is displayed. The 

corresponding cumulative distribution function (i.e. fragility curve) is shown in the right plot, 

with a lognormal mean of µ = 5.25 and standard deviation (Eq. 1.13) equal to β = 0.24. The 
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corresponding probabilities of exceeding the slight damage state for this typology-specific 

analysis (SRC Japanese buildings) are: 

 
P [ds=slight ⏐ Sa = 149.90 cm/s2 (µ - β)] = 0.28 

P [ds=slight  | Sa = 190.57 cm/s2 (µ)] = 0.50 

P [ds=slight  | Sa = 242.26 cm/s2 (µ + β)] = 0.92 

 

Furthermore, for Sa = 210 cm/s2, Japanese SRC buildings have a probability of 0.66 of 

exceeding the slight damage threshold (shaded area in Fig. 1.13). Structural fragility can 

actually be determined given different IMs and structural performances, resulting in the (µ, β) 

pair of fragility parameters for given failures, and quantifying the between-record variability of 

response for a same-class building. Record-to-record variability means that the parameters (µ, 

β) are expected to change when a different sample is used. Finally, structural fragility could 

also be integrated into the underlying PBEE framework along seismic hazard, yielding an 

annual failure rate for the structure/building-class in a specific seismic prone region.  

    

 

Figure 1.13  (Left) Example of the IM-approach for fragility assessment, using the correlation between 
spectral acceleration (i.e. Avg_Sa) and building response (i.e. drift ratio) for 5 SRC-buildings from the 
database. The vertical dashed line indicates the threshold of the slight damage state (i.e. drift = 0.0025). 
The horizontal dashed line indicates a hypothetical value of the expected ground motion IM (i.e. 210 
cm/s2). The log-normal distribution of the IM/EDP relationship is displayed, with the shaded area 
indicating the probability of exceeding the damage threshold given the Sa value. (Right) Fragility curve 
corresponding to the left plot. The probability of exceeding the damage threshold is given as a function 
of mean and standard deviation values. 

 

1.8. Conclusions 

Buildings with permanent instrumentation can make a significant contribution to improving our 

understanding of the physical response of structures to earthquakes. Data collected in civil 
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engineering structures are fundamental to the validation and calibration of existing models and 

the physical concepts used for structures in design, and to the development of empirical 

relationships for the prediction of real structural behavior. In particular, a key feature of 

performance-based earthquake engineering is the estimation of the uncertainties involved in the 

(ED|IM) relationship. The inclusion of data from real earthquakes in building-specific studies 

makes it possible to imagine data-driven damage prediction relationships, associated with the 

reduction of epistemic uncertainty. The epistemic uncertainties in (EDP|IM) are not yet 

processed properly, and such uncertainties contribute to the overall prediction of damage and 

loss parameters. Even at low levels of deformation, real earthquake data might enable better 

understanding of the physical processes occurring in structures.  

 

This study presents the first version of a new flat-file of earthquake recordings for building 

damage prediction (NDE1.0). Some applications are given as examples of experimental 

evaluations of structural response and correlated performance. We tested the variability 

between some IMs and EDPs, and developed empirical fragility curves using NDE1.0 data. 

Using a quantitative assessment, we confirmed the reduction in variability associated with the 

(EDP|IM) relationship when PGV or spectral values are considered. However, parameters 

characterizing building response, such as co-seismic frequency, could also be considered to 

estimate structural degradation and earthquake-related damage rather than structural drift, with 

lower variability.  

 

With NDE1.0, we initiated an analysis of within-event and between-event variability as well as 

within-typology and between-typology variability. Identification of the various components of 

building-response variability is a promising step towards improving PBEE. Indeed, some 

apparent variability can be changed to epistemic uncertainty. Considering that full-scale 

observations in structures are much more representative of physical and natural activated 

processes than even the most sophisticated laboratory or numerical experiments, the only way 

to improve earthquake building response prediction is to create extensive and comprehensive 

flat-files or databases with earthquake recordings from permanently instrumented structures. 

With more data and more information on building response, such as co-seismic frequency, 

building features and IM efficiency, epistemic uncertainties could be reduced or even 

eliminated. If epistemic uncertainty is not reduced, the mean building response considered for 

vulnerability functions or equivalent IDA approaches will be unchanged, broadening the 

building response fractile. This would mean that the fractiles of the loss function would be 

increased for PBEE and would have to be included in a logic-tree based approach.  
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Further studies are required in the fields of efficiency and sufficiency of IMs, the relationship 

between drift and frequency reduction, and the prediction of structural drift, with special 

emphasis on the estimation of uncertainties. This approach is still useful for studying the 

different components of the uncertainty related to building response and identifying strategies 

for further studies to reduce this uncertainty. Additional data will be integrated in an extended 

version of the flat-file, starting with French National Building Array program. The objective is 

to draw the attention and interest of a broader research community, and to involve data 

contributions from additional national networks, as well as to increase the number of 

instrumented structures worldwide in order to build a sound and comprehensive program of 

data-driven structural performance-based analysis.  
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2  
2. NONLINEAR ELASTICITY OBSERVED IN BUILDINGS: THE CASE OF 

THE ANX BUILDING (JAPAN)  

 
 

In this chapter we provide evidence of nonlinear elastic behavior in buildings, analyzing the 

particular case of the ANX building in Japan, where nonlinear elastic signatures are observed 

at short and long-term monitoring of earthquake data. We focus on the variations of resonance 

frequencies to study transitory and permanent modifications of structural properties. The 

possible origins of this behavior are discussed, including the effects of soil, to characterize 

structural damage. The content of this chapter is published in the Bulletin of the Seismological 

Society of America.  

 
Astorga A., Guéguen P., and Kashima, T. Nonlinear elasticity observed in buildings during a 
long sequence of earthquakes. Bull Seismol Soc Am 2018; 108(3A): 1185–1198. Vol. 108, No. 
3A, DOI: 10.1785/0120170289 
 

 

Abstract 

Nonlinear elasticity is evidenced by the variation of the elastic properties of a system under 

slight strain and their recovery after loading. These characteristics have been previously 

observed at the scale of the laboratory sample and at the Earth’s crust immediately after strong 

earthquakes. In this chapter, we observe that the nonlinear elastic response can be observed in 

a similar manner in civil engineering structures. Herein, we study a Japanese building under 

permanent monitoring since 1998 and during the Tohoku (Mw 9.0) 2011 seismic sequence. 

First, we observe that under low strain, the resonance frequency of the building decreases 

continuously until a plateau value is reached, characterizing the continuous damage process 

with repeated dynamic loading forces conditioning the structure. After each earthquake, intra-

event recovery of the resonance frequency is observed. A strong variation of the resonance 

frequency is seen after the Tohoku earthquake, characterizing the damage state of the building, 

but this is followed by long-term recovery (over about six months) of the elastic properties. By 

analyzing the site response, we conclude on the moderate contribution of the nonlinear soil-
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structure interaction to the slow dynamics observed after the Tohoku earthquake, and we 

assume that the degree of heterogeneities (cracks) present in the structural elements of the 

building governs the nature of the nonlinear elastic response. Analysis of these variations might 

represent an easy and suitable way of monitoring structural health. 

 

Keywords: nonlinear elasticity, slow dynamics, resonance frequency, ANX building, Japan, 

sequence of earthquakes, cracks, monitoring structural health. 

 

2.1. Introduction 

In earthquake engineering and structural design, the idealized response of a civil engineering 

structure to a pattern of loading (i.e., earthquake) may be simplified by an equivalent bi-linear 

elastoplastic system. Within the linearly elastic range, the system has a natural vibration 

frequency. Deformation is proportional to loading according to a linear relationship, which is 

in turn proportional to the stiffness of the structure. Elasticity implies that the unloading-

reloading path is reversible. After the yield point, a nonlinear response (plastic) is observed and 

the loading-deformation relationship for the structural elements undergoing cyclic 

deformations becomes nonlinear and hysteretic. This is typically accompanied by a variation 

of the natural vibration frequency, associated with a certain level of degradation or damage. 

However, another type of behavior, known as nonlinear elasticity, has been observed in 

different materials and at different scales, ranging from laboratory tests (i.e. Johnson and 

Rasolofosaon, 1996; Guyer and Johnson, 1999; Ostrovsky and Johnson 2001; Guyer and 

Johnson, 2009; TenCate, 2011; Rivière et al., 2015) to the crust of the Earth (i.e. Brenguier et 

al., 2008; Brenguier et al., 2014).  

 

Laboratory tests on materials such as rocks, soils and concrete have shown a nonlinear response 

in the stress-strain domain, corresponding to resonance frequency shifts at low strain values, 

and a slow dynamic pattern (Guyer and Johnson 1999; Johnson and Sutin, 2005; TenCate, 2011; 

Renaud et al., 2014). Recently, nonlinear elasticity was also observed on the scale of buildings 

Guéguen et al. (2016) assuming that the variation of the natural vibration frequency at low-

strain values (<10-5) was associated with the elastic properties. Moreover, a recovery process, 

called slow dynamics, that returns the material properties to the original or a new equilibrium 

state, usually accompanies nonlinear elasticity after a damaging event (TenCate and Shankland, 

1996; Guyer and Johnson, 2009). The recovery of the observables (i.e., frequency, velocity, 

etc.) in many experiments varies logarithmically with time (Johnson and Sutin, 2005a; Guyer 

and Johnson 2009; TenCate, 2011). A similar log-time recovery of observables has also been 
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reported after strong earthquakes in the Earth’s crust (Sawazaki et al., 2006; Brenguier et al. 

2008, Brenguier et al. 2014) or in the shallow upper layers of sediments, corresponding mostly 

to a change in shear velocity (Wu et al., 2009a; Sawazaki et al., 2009; Bonilla et al., 2011; 

Takagi and Okada, 2012). 

 

Snieder et al. (2017) assumed the recovery of observables is a consequence of different 

combined relaxation mechanisms operating on different spatial and temporal scales, including 

healing rates, breaking of capillarity bonds of different sizes within fractures. Irrespective of 

the mechanisms involved, the nature of the relaxation is governed by the extent of the 

heterogeneities in the material (Guyer and Johnson, 1999), which can also represent the level 

of damage. In buildings, Kohler et al. (2007), Bodin et al. (2012) and Guéguen et al. (2016) 

have shown a recovery process of the elastic properties of the structures under strong and weak 

motions. In these cases, relaxation was monitored by the time-variation of their resonance 

frequency during earthquakes or weak loading. Assuming an invariant scale mechanism (i.e., 

from the lab to the Earth’s crust) associated with the relaxation, this behavior can be analyzed 

as a proxy of the health of structures. Considering that data from real-scale buildings are much 

more relevant compared to even the most sophisticated laboratory experiments or numerical 

simulations, the use of such data makes it possible to improve our knowledge of the 

mechanisms involved in civil engineering structures, with a view to predicting their dynamic 

response or monitoring structural health.  

 

In this chapter, we use approximately 20 years of seismic recordings from the ANX building 

(Japan) to analyze the fluctuations of the fundamental frequency under strong motions that 

induce different levels of deformation in the structure. The main objective is to confirm the 

presence of nonlinear elasticity in buildings and to observe the short- and long-term recovery 

of the structure’s elastic properties during an extensive earthquake sequence. The first section 

presents a brief description of the ANX building and the data analyzed. Then, the tracking of 

the fundamental frequency of the building is discussed and interpreted as a characteristic of 

nonlinear elasticity. Finally, some conclusions and discussions are provided on the observation 

of structural dynamics and health monitoring during earthquake sequences. 

 

2.2. Description of the ANX building and data 

Located in Tsukuba, approximately 60km northwest of Tokyo (Japan), the Annex (ANX) 

building hosts the Japanese Urban Disaster Prevention Research Center. ANX is an 8-storey, 

steel-framed reinforced concrete (SRC) structure, with one basement floor (Kashima, 2004; 
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Kashima, 2014). Figure 2.1 shows the plan and section views of the ANX building, as well as 

the location of the sensors whose data were used in this study. The building rests on soft soil 

through a spread foundation (8.2m deep). The soil column is layered with clay and sandy-clay 

materials to a depth of at least 40m. Its construction was completed in March 1998 and the 

building has been monitored since its completion by a dense network of instruments operated 

by the Building Research Institute (BRI). This monitoring system is composed of eleven 3C 

accelerometric sensors oriented along the main horizontal and vertical directions, spread over 

the height of the building. Another seven 3C accelerometers complete the ANX network, 

located in the nearby ground on the surface and in boreholes at three different depths.  

 

 
Figure 2.1 Picture, plan and section views of the ANX building. The triangles represent the 2 
horizontal components of the accelerometric sensors used in this study, (BFE = Basement East corner; 
8FE = 8th Floor East corner; A01 = Ground Level sensor; A14 = borehole sensor 14m deep). Figure 
simplified from Kashima (2014). 
 

Since 1998, the ANX building array has recorded a large number of earthquakes. In this study, 

a total of 1630 earthquakes occurring between June 1998 and May 2018 were considered for 

each direction of the building, including the main shock of the great Tohoku earthquake (Mw 

9.0) in March of 2011 and its aftershocks sequence, which caused slight structural damage that 

included cracking in several walls and broken expansion joints, leading to retrofitting works 

some months after the event (Kashima, 2014). The data consist in triggered time histories of 

accelerometric sensors, sampled at 100Hz. Figure 2.2 shows the geographic location of the 

building and the epicenter positions of the earthquakes (2.2a), the magnitude (JMA) – epicentral 

distance distribution (2.2b), and the acceleration at the bottom of the building versus the 

structural deformation (2.2c). Structural deformation or structural drift (Δ, chapter 1) was 

calculated as the relative displacement between top and basement, divided by the building 

height, 34 m. The data correspond to earthquakes of magnitudes ranging from 2.6 to 9.0 (Mw), 

and epicentral distances from 1 to 1726km. Peak Ground Acceleration (PGA) recorded by the 

nearby free-field station (sensor A01) ranges from 0.4 to 279.3cm/s2, corresponding to Peak 

Top Accelerations (PTAs) from 0.39 to 596.80cm/s2. Obviously, the highest values of PTA and 
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PGA correspond to the largest Mw 9.0 Tohoku earthquake in March 2011, located 330km 

northeast of the ANX building (Fig. 2.2a). All these data have produced total structural drifts 

ranging from 10-7 to 10-3 (cm/cm). We analyzed all pairs of sensors between the top and the 

bottom in both horizontal directions. Herein, because of results similarity, we only consider one 

pair of sensors, that is, eighth floor east corner (8FE) at the top, and basement east corner (BFE) 

in the basement (Fig. 2.1). The elastic frequency of the building is 1.85Hz (+/- 0.04Hz) in the 

X-270 direction and 1.63Hz (+/- 0.08Hz) in Y-180. These values were estimated from the first 

ten events recorded at the beginning of the measurements in 1998.  

 

 
Figure 2.2 a) Epicenter location of the earthquakes used in this chapter. The square indicates the 
position of the ANX building. The star indicates the epicenter of the Tohoku Mw 9.0 earthquake. b) 
Magnitude (Japan Meteorological Agency [JMA]) versus the epicentral distance of the earthquakes with 
respect to the ANX building. The red dot corresponds to the 2011 Tohoku event c) Peak value of 
acceleration at the bottom of the ANX building, PBA, versus maximum structural deformation (or 
maximum structural drift) Δmax, computed for the ANX building during each earthquake (using the BFE 
and the 8FE sensors).  
 

2.3. Data processing 

As explained in the chapter 1, data were processed according to the Boore (2005) 

recommendations for processing strong-motion accelerograms. Velocities and displacements 

were obtained by integrating the acceleration data, after removing the mean and trend from the 

time-histories. The signals were filtered using a Butterworth filter of order 2 between 0.1Hz 

and the Nyquist frequency (50Hz). The signals were then tapered with a Tukey cosine window 

(10%). Figure 2.3 shows the time history of accelerations, velocities and displacements, as well 

as the accelerometric Fourier spectrum for the Tohoku earthquake recorded by the sensor 8FE 

(X direction). In this study, the Engineering Demand Parameters (EDPs) considered are PTA, 

Δ or both. The maximum interstory drift ratio is usually considered to represent the structural 

response and damage level. In structural design, the damage-control limit state can be defined 

by material strain limits and by design drift limits intended to restrict damage. It is also 
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comparatively straightforward to compute drift limits from strain limits (Presley, 2000). By 

analogy with the laboratory experiments, Δ will be considered in this study as a proxy of the 

strain value of the system.  

 

 
Figure 2.3 a) Acceleration, velocity, and displacement time histories of the Mw 9.0 Tohoku earthquake 
recorded by sensor 8FE in the X direction. b) Fourier transform in acceleration. 
 

The nonlinear response of the ANX building is studied by monitoring the co-seismic variation 

of its resonance frequency (Fig. 2.4). The coseismic frequency (i.e. fmin) is the minimum value 

observed when computing the reassigned version of the Wigner-Ville time-frequency 

distribution (See chapter 1 for details of the procedure to obtain fmin). Figure 2.4a shows an 

example of the transitory fluctuations of resonant frequency during short-term monitoring (i.e. 

within the duration of one earthquake). The behavior is defined by an initial drop of frequency 

corresponding with the arrival and strongest portion of the excitation (i.e. from the pre-seismic 

fundamental frequency fiapp, to the co-seismic value fmin), followed by the recovery of frequency 

from fmin. This is a similar behavior to that observed in laboratory experiments (i.e. Rivière et 

al., 2015 and 2016). Moreover, the dynamic nonlinear elastic behavior observed at the 

laboratory scale is related to the pattern of loading (i.e. Guyer and Johnson, 1999, 2009). 

Therefore, we use the duration of the strongest motion (i.e. DSM, chapter 1) as a parameter 

linking the nonlinear elastic response to the pattern of loading. In engineering seismology, the 

potential for damage of seismic ground motion is usually associated with the DSM, containing 

the maximal loading energy and much shorter in time than the total duration. The most classical 

definition is given by Trifunac and Brady (1975), that is, DSM corresponds to the time between 

5% and 95% of the total cumulative energy. Two additional frequencies are therefore also 

considered (Fig. 2.4a), equivalent to f95 and f99 and corresponding to the time at 95% and 99.9% 

of the total signal energy, respectively. The total energy of the signal is computed by the Arias 

intensity (Ia) function (Arias, 1970), explained in the chapter 1.  An example of the cumulative 
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energy is given in Fig. 2.4c. Note that because of the triggered nature of the data we call 

'apparent' values the initial and final frequencies (fiapp and ffapp, respectively) to indicate initial 

and final values observed in the triggered earthquake window. It is noticeable that the first part 

of the recovery process is faster, and falls within the DSM region (i.e. 'Segment 1' in figure 

2.4a). Therefore, it is likely affected by conditioning/loading effects. On the other hand, we 

make the hypothesis that the recovery after f95 is not affected by on-going loading, but rather is 

related to the state of the structure. This second part of the recovery is slower than the previous 

one. The slow dynamics is studied in detailed in the chapter 3, by analyzing the 'Segment 2' 

(i.e. from f95 to ffapp).  

 
Figure 2.4 Example of the analysis applied to the recordings, corresponding to a moderate earthquake 
(15 March 2011) recorded by the sensor 8FE (X direction of the ANX building). a) Time-frequency 
representation obtained by the reassigned smoothed-pseudo Wigner-Ville distribution (rsPWV, chapter 
1). Two segments are observed in the recovery: segment 1, between fmin (minimum value of fundamental 
frequency) and f95 (fundamental frequency estimated at 95% of the earthquake energy) and segment 2, 
from f95 to f99app (i.e. apparent final fundamental frequency, at 99.9% of the earthquake energy). The 
first vertical line (from left to right) corresponds to the time of the first arrival wave (i.e. fiapp). The other 
vertical dashed lines correspond to the limits of segments 1 and 2, between fmin and f95, and f95 and f99app. 
The solid red line is the Savitsky–Golay smoothing function applied to the maximum energy values 
(scale min–max at the right). b) Time history of acceleration corresponding to the rsPWV distribution 
shown in (a). c) Cumulative energy given by the Arias intensity (Ia) distribution, with reported 
characteristic values of energy and the position of the duration of strongest motion (DSM). The first 
vertical dashed line (from left to right) corresponds to the time of the 5% of the Ia. 
 

2.4. Variation of the resonance frequency 

By computing the time-frequency distribution for each strong motion, we are able to monitor 

the variations of frequency with time (i.e. over years), and to correlate them with EDPs such as 

PTA or Δ. Figure 2.5 shows the evolution of the minimum value of fundamental frequency 
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(fmin) in both directions of the ANX building, recorded over 20 years of measurements, 

assuming that fmin is related to the instantaneous variation of the stiffness for equivalent input 

loading. Between 1998 and ~2005 the frequency decreases progressively in both directions of 

the building. The fundamental frequency values shifted from 1.85Hz (+/- 0.04Hz) to 1.39Hz 

(+/- 0.06Hz) in the direction X-270, representing a mean drop of approximately 25%. In Y-180 

the drop is about 16.5%, i.e. from 1.63Hz (+/- 0.08Hz) to 1.36Hz (+/- 0.06Hz). Note that the 

drop of frequency was more prominent in the X-270 direction. During this long-term seismic 

sequence, the frequency decrease for equivalent loading reflects the immediate post-built co-

seismic and slow softening of the structure resulting from the increasing number of cracks 

opening and closing during each earthquake: the building was built in 1998, therefore the 

appearance of new cracks was very susceptible to loading during this period. In the same 

manner as for the following years, the dispersion of the frequency value for a given date is 

governed by the loading value, the smallest frequency values corresponding to the strongest 

PTA (i.e. colorscale). In October 2004, a sharp decrease of frequency is observed, coincident 

with the Mw. 6.9 Niigata-Chūetsu earthquake, followed by a rapid recovery up to a somewhat 

flat span between 2005 and 2011, with frequency equal to 1.33Hz in both directions, +/- 0.06Hz 

in Y-180 and +/- 0.14Hz in X-270: the system reached a state of equilibrium (~8 years after its 

construction), softer than in the previous years, reflecting a period during which the number of 

cracks remained stable. Frequency thus remains stable for a given level of shaking. Next, a 

sharp decrease in frequency is observed in 2011 (up to ~0.78Hz), during the Mw 9.0 Tohoku 

earthquake. This earthquake caused further softening because of the creation of new and wider 

permanent cracks, as reported by occupants (T.K. Kashima, personal comm., 2015) and post-

earthquake observations (Kashima, 2014), and leading to a new state of the structural elements. 

Thus, a slight tendency to recover is observed after this earthquake, which may be linked to 

slow dynamic effects. Despite a partial recovery immediately after the 2011 earthquake, seven 

years after the event the fundamental frequency did not reach the value measured prior to the 

earthquake. In 2018, the fundamental frequency of ANX building was stable around 1.06Hz 

(+/- 0.08Hz) and 1.04Hz (+/- 0.07Hz) in the Y-180 and X-270 directions, respectively, which 

represents a 35% and 43% drop relative to the initial elastic frequencies.  
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Figure 2.5 Variation of the minimum value of the fundamental frequency fmin, in the ANX building 
during the period 1998-2018, obtained for each earthquake in the a) Y-180 direction b) X-270 direction. 
The color bar represents the peak acceleration at the top of the building, PTA (note the log scale). The 
vertical dashed lines represent the limits of the periods discussed in the text: 1998~2005, 2005-
March2011, March-September 2011, After October 2011. The white symbols correspond to the average 
computed by bins of 20 consecutive events. Error bars represent one standard deviation of frequency 
values.  
 

The long-term recovery of the ANX building after the Tohoku earthquake is revealed when the 

main event and some of its aftershocks caused significant transient changes in the elastic 

properties of the building. This long-term recovery occurs over approximately six months (i.e. 

shaded area in Fig. 2.5). Previous studies have concluded that elastic properties are determined 

by the bond system of the material (i.e. Guyer and Johnson, 1999, 2009; Van Den Abeele et al., 

2000b; Ostrovsky and Johnson, 2001). Such a system is composed of asperities and cracks in 

the interfaces between rigid particles, given that they are heterogeneous in shape and size. As 

a result, the material shows nonlinear elastic behavior. This response manifests itself in a variety 

of ways, including resonant frequency shifts at low levels of strain and slow dynamics, as well 

as other effects (Guyer and Johnson, 1999; Ostrovsky and Johnson, 2001). Slow dynamic 

effects appear in nonlinear elastic materials after the excitation (Guyer and Johnson, 1999), as 

observed at short- and long-term earthquake monitoring (i.e. Fig. 2.4 and Fig. 2.5, respectively). 

Although this behavior has not been studied in structures in any detail, it may be related to the 

presence of weaknesses and/or heterogeneities (e.g. cracks, dislocations, etc.) and to the 

structural health of the buildings, in the same manner as in rocks and soils. The following 

chapter (Chapter 3) is dedicated to the analysis of slow dynamics in buildings.  
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2.5. Discussion of the origin of the nonlinearities 

The long-term variation of the response of the ANX building, including the long-term recovery 

process after the Tohoku earthquake, is shown in Fig. 2.5. In this figure, we considered the 

fundamental frequency computed at the top of the building, that is, representing the soil-

structure system. In this case, the origin of the variation is governed either by the response of 

the structure or the response of the soil, or both the building and soil system together, that is, 

influencing the soil-structure interaction. Several authors have shown the nonlinear response of 

the soil under strong shaking by directly measuring the change of the seismic ground motion 

(i.e. Field et al., 1997; Johnson et al., 2009) or the reduction of the site’s resonance frequency 

(Wu et al., 2009a; Bonilla et al., 2011) or shear wave velocity (Chandra et al., 2015, 2016), 

characterized by a medium-to-long term recovery process of the elastic properties of the soil 

(Wu et al., 2009a). In Japan, after the Tohoku earthquake, whereas Bonilla et al. (2011) 

observed very long recovery of the central frequency of the site corresponding to the response 

of the uppermost soil layer at the accelerometric station, Brenguier et al. (2014) reported long 

recovery of the pre-Tohoku wave velocity of the crust at low frequency. In both cases, the 

authors associated the recovery rate with the presence of heterogeneities in the soil layer and 

the fractured state of the crust, respectively. 

 

In the case of the ANX building, we compared the resonance frequency of the soil-structure 

system (Fig. 2.5) with the response of the equivalent fixed-base structure and the site response 

(Fig. 2.6). First, the value of the fixed-base frequency (f1) can be obtained by deconvolution 

between the recordings from the top and bottom, thus removing the soil-structure interaction 

(Snieder and Safak 2006, Todorovska 2009; Michel et al., 2010). In our case, deconvolution 

was obtained using the water-level regularization technique (Clayton and Wiggins, 1976). 

Knowing the input and output signals recorded at the bottom and top of the structure, 

respectively, the transfer function H(ω) corresponding to the fixed-base structure is computed 

as follows: 

 H(ω) = �(ω)max	 ¢�(ω), k ¤|�(ω)|, �(ω)|�(ω)|¥¦§0¨
																																																																																											(2.1) 

 

where O and I are the output and input signals, respectively, and k is the water level coefficient 

(k=0.10 in our case). We choose k=0.1 because we found in Guéguen et al. (2016) and Michel 

and Guéguen (2018) this is the smallest value of the k parameter that gives stable deconvolved 
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wave in buildings. The resonance frequency of the structure is then obtained by picking the 

value of the first peak of the transfer function.  

 

In the same manner, the shear wave velocity Vs of the uppermost layer characterizes the site 

response. As applied by several authors (Mehta et al., 2007; Nakata and Snieder, 2012; Chandra 

et al., 2015, 2016), Vs is obtained by taking the time delay of the impulse wave obtained 

between two sensors throughout the depth of the borehole using seismic interferometry by 

deconvolution. This consists in computing the inverse Fourier transform of H(ω) (Eq. 2.1). This 

solution was successfully applied to vertical arrays in order to analyze the nonlinear response 

of the soil under strong shaking (Chandra et al., 2015, 2016). Herein, only the first 14m deep 

layer, between sensors A01 and A14 (Fig. 2.1), was analyzed, considering only the superficial 

nonlinear effect and topmost soil-structure interaction. 

 

Figure 2.6 shows the response of the structure system considering the pair of stations 8FE and 

BFE in the X and Y directions, and the site response since 1998 until 2014, given that the 

borehole data were available until that year. First, we observe a clear effect of the soil-structure 

interaction that softens the soil-structure system response (Fig. 2.5). This interaction is the more 

marked because the ground is flexible. In our case, shear-wave velocity (Vs) is 188m/s (+/- 

3m/s). The frequency variation of the structure (Fig. 2.6a and 2.6b) has the same pattern as the 

variation of the soil-structure system, confirming that the degradation observed between 1998 

and ~2005 and between 2005 and 2011 is indeed of structural origin, reflecting the degradation 

of the structure health during this long seismic sequence. Over the same periods, the velocities 

Vs are almost stable, with slight fluctuation around the mean value (Fig. 2.6c). After Tohoku, 

there is a comparable variation in the response of the structure and the soil-structure system, 

characterized by slow recovery after Tohoku until an asymptotic value lower than that of the 

pre-Tohoku period. This residual frequency variation is a proxy of the degree of damage to the 

structure. In the soil, variation of Vs is also observed, representing the degradation of the shear 

modulus during the strongest soil strain, characteristic of the nonlinear behavior of the soil. 

However, this variation is around 5%, well below that the one observed in the structure. In the 

same way, the characteristic time of recovery for Vs is visibly shorter than that of the resonance 

frequencies f1 and fmin. Again, this observation confirms the structural origin of the slow 

dynamics observed after Tohoku, in relation to the level of damage (or the degree of fracturing) 

of the structural elements.  
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Figure 2.6 Variation of the structural frequency f1 (fixed-base) of the ANX building obtained after 
deconvolution considering the sensor 8FE a) in the direction Y-180 and b) in the direction X-270. c) 
Variation of the shear-wave velocity (Vs) obtained by seismic interferometry by deconvolution for bins 
of 20 frequency values using the borehole sensors A01 and A14 (see Fig. 2.1). The colorbar represents 
the strain proxy computed as the relative displacement between two sensors (see text). Error bars 
represent one standard deviation of frequency values. The right column shows a zoom-in of each plot at 
the left, centered over the Tohoku earthquake’s sequence (indicated in shaded areas).   
 

One common way to represent the damage level in buildings is to consider the structural drift 

(or structural strain) as an EDP. Several seismic codes and technical manuals (i.e. Federal 

Emergency Management Agency [FEMA], 1999; Eurocode 8) provide threshold values for 

interstory drift, corresponding to the yield and ultimate deformation, equivalent to certain levels 

of damage. For the ANX building typology, the average value of drift defining slight damage 

is about 3x10-3 (FEMA, 1999). However, Figure 2.7 shows that nonlinear elastic behavior starts 

at very low levels of deformation, around 10-5, already reported by Guéguen et al. (2016) for 

buildings of different design. Table 2.1 provides the mean, standard deviation, and coefficient 

of variation (COV) of the frequencies over the four periods and corresponding to strain values 

ranging between 10-6 and 5x10-6. In figure 2.7, several observations can be made: 

1. Over the period 1998~2005, the distribution of frequency f1 (i.e. the fixed-base 

structure) for a given deformation is very dispersed. This reflects the period of severe 

degradation already mentioned, during which the structure is damaged in the same way 

as a conditioning process. For example, for a deformation in the range [10-6, 5x10-6], 

the mean (µ) frequency is around 2.21Hz with a standard deviation (σ) of 0.20Hz (COV 

= σ/µ=8.9%), with a relatively uniform distribution of values. After 2005, the data are 
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less scattered. For the same range of deformation, the mean frequency is around 1.99Hz 

with a sigma of 0.11Hz (COV = 5.6%), but the distribution is normal. After Tohoku, 

this dispersion is reduced even more, with µ=1.39Hz; σ=0.09Hz with a COV of 6.6%, 

following a normal-like distribution. Finally, it is observed that the dispersion of the 

data increases again for the period following the post-Tohoku reparations (µ=1.48Hz; 

σ=0.12Hz; COV=7.9%). These periods show that the more the structure is damaged, 

the more stable its response to strain over time. This can be explained by a gradual 

damaging mechanism, in which the number of cracks increases, and the energy required 

to reduce the stiffness (i.e. to open the cracks) is less important: after the structural 

elements have been cracked, the same number of cracks acts for a given deformation. 

The effects of the level of damage on the variations of nonlinear behavior have been 

previously reported by Van Den Abeele et al. (2000b) confirming our observations. 

Obviously, after Tohoku, this degradation is more important, but the dispersion of the 

data is reduced.  

2. The soil-structure system exhibits more or less similar behavior to the fixed-base 

structure, confirming the predominance of the response of the structure in the response 

of the observed system, and minimizing in this case the effect of the soil for levels of 

deformation below 10-5. Moreover, Fig. 2.7c shows that the soil behaves in a linear 

manner up to this deformation value. Beyond about 10-5, the soil degrades, giving a 

nonlinear curvature to the strain-Vs data. It is also found that the soil recovers its elastic 

property (Vs) after the Tohoku earthquake sequence. 

3. Finally, it can be seen that, beyond 10-5, there is a difference between figures 2.7a and 

2.7b, that is, between the response of the structure and the soil-structure system. An 

inclination of the curve is visible for fmin, indicating that around the deformation value 

10-5, non-linearity in the soil contributes to the frequency reduction of the soil-structure 

system. Although this contribution is less than that of the structure, it is not negligible 

and reflects the non-linearity of the soil-structure interaction under strong solicitation. 

 



 47 

 

Figure 2.7 Strain proxy versus the variation of the resonance frequency of a) the fixed-base structure, 
f1, in the Y-direction, b) the soil-structure system, fmin. The distribution of the frequencies for the four 
periods are given (before 2005, 2005-Mar.2011, Mar.2011-Sept.2011, and Oct.2011-2014) 
corresponding to strain values ranging between 10-6 and 5x10-6 (corresponding to the vertical dashed 
lines). c) Strain proxy versus the variation of the shear-wave velocity (Vs) in the GL0m-GL14m 
uppermost soil layer (GL: ground level). The colorscale represents the date (years).  
 

Table 2.1. Mean values (µ), Standard Deviation (σ) and Coefficient of Variation (COV= σ/µ) of fmin 
and f1 in the Y direction corresponding to strain values ranging between 10-6 and 5x10-6. 

 
 f1 fmin 

 
µ 

(Hz) 

s  

(Hz) 

COV 

(%) 

µ 

(Hz) 

s  

(Hz) 

COV 

(%) 

1998-2005 2.21 0.20 8.9 1.50 0.11 7.3 

2005-2011 1.99 0.11 5.6 1.34 0.04 2.8 

Mar-Oct 2011 1.39 0.09 6.6 1.13 0.08 6.8 

Oct 2011-2014 1.48 0.12 7.9 1.14 0.08 7.4 

 

2.6. Observations in another building: the case of the THU building 

The THU building is located in Tohoku, Japan. It is a 9-story, steel-reinforced concrete 

structure, irregular in the vertical direction (i.e. setback at the third floor, Fig. 2.8). It serves as 

a faculty department of the University of Tohoku. The structure was built in 1969 and 

significantly repaired and retrofitted in 2000-2001 (Celebi et al., 2012). Since the retrofit, the 

building faced several significant earthquakes (i.e. the Mw 8.0 Tokachi Oki in 2003, the Mw 
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7.2 Miyagi in 2005, the Mw 6.9 Iwate event in 2008, and the Mw.9.0 Tohoku event in 2011) 

causing considerably high accelerations and drift values (Fig. 2.9). The great earthquake in 

2011 occurred 177 km away, triggering a PTA equal to 908.24cm/s2 and a maximum drift of 

1.06x10-2, which is close the threshold defined for severe damage in this building typology (i.e. 

1.17 x10-2, according to FEMA, 1999; EC8). Significant variations of the fundamental period 

of the structure were observed after the 2011 event, together with numerous damages reported 

by Kashima et al., 2012 and Celebi et al., 2012 during post-seismic observations. This included 

four columns heavily crushed and severe cracking in shear walls. The loading history of the 

THU building and its dynamic behavior has been analyzed by Motosaka et al., 2004; Motosaka 

and Mitsuji, 2012 and Kashima et al., 2012. The high excitations faced by this structure are 

evident in Fig. 2.9c and Fig. 2.10. The THU shows double PTAs, as well as drift values that are 

one order of magnitude higher than those in the ANX building. The plan and section views of 

the THU building are shown in figure 2.8, indicating the pair of sensors used in this study, 

located at the first (i.e. 01F) and the top floor (i.e. 09F). The geographical location of the 

building is shown in Fig. 2.9a, the magnitude-distance distribution of the events analyzed is 

shown in Fig. 2.9b, and the PBA-drift relationship is displayed in Fig. 2.9c.  

 

 

Figure 2.8 Picture, plan and section views of the THU building. The triangles represent the 2 
horizontal components of the accelerometric sensors used in this study, (01F = first floor; 09F = 9th 
Floor). Figure simplified from Kashima (2014). 

 

We used 317 earthquakes recorded from 2003 to 2012 to monitor the frequency variations as a 

function of time and EDPs (Fig. 2.10). Sharp frequency drops and slow dynamics are pretty 

well observed during the aftershock’s sequences following strong earthquakes, notably in 2005, 

2008 and 2011 (i.e. dashed lines in Fig. 2.10). As well as the THU, all the buildings included 

in the database introduced in the chapter 1, show evidence of nonlinear elasticity, proving that 

this response is manifested independently on building typology, loading amplitude, soil and 

environmental conditions. The recovery of slow dynamics is observed from small to very strong 

excitations, from seconds to years, confirming the universality and multiscale feature of this 
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behavior, already observed by several previous studies (i.e. Johnson and Sutin, 2005; Brengier 

et al., 2008; Guyer and Johnson, 2009; Averbakh et al., 2009; Guéguen et al., 2016). 

 

 

Figure 2.9 a) Epicenter location of the earthquakes used in this chapter and position of the THU 
building. The star indicates the epicenter of the Tohoku Mw 9.0 earthquake. b) Magnitude (JMA) versus 
the epicentral distance of the earthquakes with respect to the THU building. c) Peak value of acceleration 
at the bottom of the THU building, PBA, versus maximum structural deformation Δmax, computed for 
the building during each earthquake (using the 01F and the 09F sensors).  
 

 
Figure 2.10 Variation of the minimum value of the fundamental frequency, fmin, of the THU building 
during the period 2003-2012, obtained for each earthquake in one of the horizontal directions of the 
structure. The color bar represents the peak acceleration at the top of the building, PTA (note the log 
scale). The vertical dashed lines represent the time of occurrence of strong earthquakes. Notably 
dynamics are observe following these significant events.  
 

2.7. Conclusions 

This chapter presents an analysis of low-to-high amplitude earthquake records of 1630 events 

recorded in the ANX building in Japan over a period of about 20 years (1998–2018). The 

earthquake recordings were analyzed by applying a time-frequency distribution based on 

Wigner-Ville function to estimate the variation with time of the building’s resonance frequency. 

The system frequency (soil-building) was estimated as the minimum frequency of the 

distribution, and the fixed-base building response was estimated by deconvolution between the 

top and bottom, and the nearby site response by seismic interferometry between depths of 0m 

and 14m. The main goals of this chapter were (1) to confirm the presence of nonlinear elasticity 
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in real buildings (2) to improve our current knowledge of the variability of system and fixed-

base frequency during earthquakes associated with damage, and (3) to contribute to the 

usefulness of the resonance frequency-based methods for structural health monitoring after 

strong earthquakes.  

 

The ANX building shows the clear signature of a nonlinear elastic response, in the manner of 

what is observed in laboratory experiments and in the Earth’s crust. The long- and short-term 

variations of the fundamental frequency of the soil-structure system are observed even for very 

low levels of strain. Moreover, a slow dynamic phenomenon is also present in the ANX 

building, characterized by the recovery of the fundamental frequency to previous values at the 

end of loading. Slow dynamics are observed during the Tohoku aftershock sequence, during 

which the building is conditioned by successive loadings. In previous works, authors proposed 

that changes in the resonance frequency measured using ambient vibration immediately after 

earthquakes could be used as an effective and easy way to indicate damage in buildings. In the 

case of the ANX building after the Tohoku earthquake, the soil-structure system frequency 

recovered from ~0.8Hz to ~1.05Hz, ultimately reducing the level of damage characterized by 

the frequency drop alone. In a real-time health monitoring system, recovery must be integrated 

in the decision-making phase. It is also important to note that the nonlinear response observed 

in the structure system is mainly controlled by the structural elements, that is, with a slight but 

nonnegligible contribution of the nonlinear soil response. In the total system response, the soil’s 

contribution to the strain-frequency relationships is visible for the largest strain value.   

 

Based on previous studies, we also note that such a frequency-based decision applied to 

buildings would have resulted in the wrong decisions for the ANX building. For example, 

Dunand et al. (2004) and Vidal et al. (2014) have shown that slightly damaged buildings are 

characterized by a frequency drop of less than 30%, corresponding to buildings classified green 

by post-emergency visual screening. Trifunac et al. (2010) also concluded that a resonance 

frequency drop of more than 30% may not be systematically associated with structural damage. 

In the ANX building, during the first two periods, system frequencies show aprox. 20% of 

reduction, without damage being reported. However, the equivalent bond system is cracked 

during this period, corresponding to a constant damage process, which is more evident in the 

X-270 direction of the building. Moreover, seven years after the Mw 9.0 Tohoku earthquake, 

the fundamental frequency seems to be stable around 1.05Hz in both horizontal directions, that 

is, a permanent frequency drop of about 65% and 57%, respectively, since the construction of 

the structure. Despite this high value, the building is operative and still occupied. 
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We conclude that analyzing weak-to-strong earthquake recordings in real scale buildings can 

provide key information about the seismic response of structures. Nonlinear elastic response is 

a process that must be better understood to improve our knowledge of the dynamics of civil 

engineering structures. The only way the earthquake engineering and engineering seismology 

community can improve seismic response predictions for structures is using real data from 

actual structures experiencing earthquakes. Such information is also essential for the 

development and calibration of realistic and effective models or empirical models, useful for 

predicting the response of real-scale buildings as well as for calibrating the decision-tree tools 

associated with structural health monitoring. Most structural health monitoring algorithms are 

based on detecting changes relative to initial conditions, and their efficiency is highly dependent 

on the knowledge we have of the variation of observable values with respect to the health 

variation. These algorithms can be improved by including nonlinear elasticity or by integrating 

a full nonlinear modal identification, integrating higher modes in the process. Additional works 

should also include the use of vertical arrays in buildings (i.e., considering sensors at different 

levels) to localize the maximal deformation and to isolate different sections in the building by 

deconvolution between sensors, as well as to determine the maximal strain–stress relationships, 

a key information for structural health monitoring application.  
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3  
3. SLOW DYNAMICS (RECOVERY) USED AS A PROXY FOR SEISMIC 

STRUCTURAL HEALTH MONITORING 

 
 

In this chapter we adapt relaxation models developed in laboratory to the recovery of 

fundamental frequency in buildings after earthquakes. Slow dynamics recovery is studied 

during short-term and long-term frequency variations, as well as during conditioning cycles 

caused by aftershocks sequences. Relaxation parameters computed from the models are 

monitored over time, and their behavior before and after damaging earthquakes is analyzed to 

make the link with structural damage. The content of sections 3.1 to 3.5 is published in 

Structural Health Monitoring. The section 3.6 is under review in Engineering Research 

Express. 

 

Astorga A., Guéguen P., Rivière J., Kashima T., and Johnson P.A. (2019). Recovery of the 
resonance frequency of buildings following strong seismic deformation as a proxy for structural 
health. Structural Health Monitoring, 1–16, DOI: 10.1177/1475921718820770 
 
Astorga A. and Guéguen, P. (2019). Seismic structural health from drop and recovery of 
resonance frequencies in buildings. Engineering Research Express. Under review. 
 

 

Abstract 

Elastic properties of civil engineering structures change when subjected to a dynamic excitation 

like earthquakes. The modal frequencies show a rapid decrease followed by a relaxation, or 

slow recovery, that is dependent on the level of damage. In this chapter, we analyze the slow 

recovery process applying relaxation models to fit real earthquake data recorded in a Japanese 

building (ANX) that shows variant structural state over 20 years. Despite the differences in 

conditions, the different scales and the complexity of a real-scale problem, the models originally 

developed for laboratory experiments are well adapted to real building data. The relaxation 

parameters (i.e. frequency variation, recovery slope, characteristic times and their amplitudes, 

and range of relaxation times, proxies of elasticity) are able to characterize the structural state, 

given their clear connection to the degree of fracturing and mechanical damage to the building. 
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The recovery process following strong seismic deformation, could, therefore, be a suitable 

proxy to monitor structural health. 

 

Keywords: Slow dynamics, earthquakes, nonlinear elasticity, recovery, resonance frequency, 

cracks, structural health monitoring. 

 

3.1. Introduction 

Granular consolidated materials such as rock and concrete display unusual nonlinear behavior 

when subjected to dynamic loadings. For instance, a transient drop in elastic modulus - assessed 

through changes in resonance frequency or wavespeed - can be observed even at very low 

(dynamic) strain, order 10-6. After the loading, the modulus recovers to its original or new 

equilibrium state at rates that can last from a few seconds to several days, many months, and 

years (i.e. Guyer and Johnson, 2009; Wu et al., 2009a, 2009b). This recovery effect, or slow 

dynamics (i.e. TenCate and Shankland, 1996) is a phenomenon associated with slow relaxation 

of the elastic properties once the dynamic disturbance terminates. This nonlinear elastic 

response is considered a universal behavior, given that slow dynamics effects have been 

observed in a large variety of rocks and geomaterials, and in scales ranging from laboratory 

tests (i.e. Johnson and Rasalofosaon, 1996; TenCate et al., 2000; Ostrovsky and Johnson, 2001; 

Johnson and Sutin, 2005; Guyer and Johnson, 2009; Shokouhi et al., 2017a) to seismological 

observations at the surface and crust of the Earth (Rubinstein and Beroza, 2004; Peng and Ben-

Zion, 2006; Brenguier et al., 2008; Wu et al., 2009a, 2009b; Johnson et al., 2009; Renaud et al., 

2014) where the recovery process can be observed for years. It is also independent of the 

material or method used (i.e. Shokouhi et al., 2017a).  

 

Analogously, atypical nonlinear response was also observed in civil engineering structures. 

Guéguen et al., (2016) observed a rapid decrease in resonance frequency of the UCLA Factor 

building (California) under seismic and environmental loadings, followed by a slow recovery 

to the initial elastic properties. Astorga et al., (2018) analyzed nonlinear elasticity in the Annex 

(ANX) building (Japan) throughout variations of its fundamental frequency during a long 

sequence of earthquakes. They reported recovery effects at short and long-term monitoring and 

found that the recovery rate is linked to the structural health. Although the underlying physical 

mechanisms of the slow dynamics are not fully understood, previous results suggest a single 

origin based on internal strains related to the material damage (i.e. TenCate et al., 2000). What 

Guyer and Johnson (1999) first called the bond system (i.e. structure of defects, inter-grain 

contacts, dislocations, cracks at different scales, etc.) is believed to play a fundamental role in 
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the recovery effect (i.e. Ostrovsky and Johnson, 2001; Baisch and Bokelmann, 2001; Brenguier 

et al., 2008; Tremblay et al., 2010; Korobov et al., 2013; Guéguen et al., 2016; Astorga et al., 

2018).  

 

Logarithmic-time dependence of the recovery was observed in several laboratory studies (i.e. 

TenCate et al., 2000; Vakhnenko et al., 2004; Tremblay et al., 2010). This behavior was also 

observed in the relaxation of fractured fault zone materials after earthquakes (Wu et al., 2009a, 

2009b; Rubinstein and Beroza, 2004; Peng and Ben-Zion, 2006). Shokouhi et al., 2017a 

describe the recovery of slow dynamics with a relaxation spectrum that quantifies different 

relaxation dependencies occurring during the recovery process, meaning that at early time, the 

recovery is not logarithmic. Snieder et al., (2017) proposed a relaxation model that predicts 

non-logarithmic behavior at early and late times, which allows us to estimate the initial and the 

end times of the process, with a log-linear tendency. Ostrovsky et al., (2019) suggested another 

exponential model to represent the relaxation process, capturing relaxation mechanisms from 

the very beginning of the recovery.  

 

In this chapter, we apply the relaxation models to real earthquake data collected in a Japanese 

building over a 20-year period. Apart from testing the models with in situ data, we compare the 

relaxation parameters and the level of loading and structural state, intending to find the evidence 

for a nexus between the extension of the bond system and the relaxation process after 

earthquakes that could be used to infer the structural health of buildings. In the following, we 

first describe the applied models. The recovery of the slow dynamics is analyzed throughout 

the evolution of the fundamental frequency with time, that is, a proxy of the elastic properties. 

Relaxation parameters are then studied as a function of engineering demand parameters (i.e. 

peak top acceleration -PTA- and structural drift, ∆), and results are discussed in connection to 

structural damage. In the section 3.6 we study slow dynamics effects during sequences of 

earthquakes, as well as during conditioning cycles, in the long-term monitoring of two 

buildings: the ANX and the THU, comparing different levels of damage. Finally, we present 

some conclusions. 

 
3.2. Methodology 

The methodology followed to analyze slow dynamics is described in the chapter 2 (section 2.3 

‘Data processing’). In short, the time-frequency distribution was applied to each earthquake 

recording, and the recovery of fundamental frequency fmin, was analyzed -as a function of time- 

from the end of the strongest motion (after the 95% of the earthquake energy, i.e. ‘Segment 2’ 
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in Fig. 2.4). Relaxation models were adapted to this segment, under the hypothesis that this 

portion is not governed by on-going loading effects but rather is related to the state of the 

structure.  

 

3.3. Relaxation models 

There is not currently a model able to fully describe slow dynamic effects. This phenomenon 

deserves special attention because the physical origin remains unknown, and it generally comes 

together with hysteresis and discrete memory (Guyer et al., 1999; Guyer and Johnson, 2009; 

Lebedev and Ostrovsky, 2014), which add more complexity to the modeling and interpretation. 

Slow dynamics effects can be present for several orders of magnitude in time, and therefore, 

several authors have described the recovery of elastic properties with a log-linear function of 

the form y=b log(x)+c (TenCate, 2000). This function describes most part of the recovery, 

including the main range of mechanisms acting in the process. However, the log-linear model 

is based purely on observations, with no physical explanation. Besides, this model does not 

converge at the earliest and latest relaxation times, preventing us from obtaining important 

information regarding the beginning and the final portion of the recovery. 

 

3.3.1. Relaxation function 

(Snieder et al., 2017) consider that the macroscopic relaxation of materials is a combination of 

different relaxation mechanisms that take place on different temporal and spatial scales. They 

proposed a relaxation function to describe this multi-scale phenomenon, assuming that the total 

relaxation is a superposition of decaying exponentials. The function depends on two 

parameters, the minimum and the maximum relaxation times (i.e. tmin and tmax, respectively) 

between which the relaxation mechanisms are distributed and display log-time behavior (i.e. 

linear slope in log-time). The authors define the relaxation function, R(t), as a perturbation to a 

physical observable O(t) of a system:  

 �(�) = �e\1 + ��(�)^																																																																																																																																			(3.1)	
with O0 the equilibrium value of O, and S a scale factor. The observable might be, for example, 

the seismic velocity, the material density, the elastic modulus (such as the fundamental 

frequency, in this study), etc. The total relaxation is given by the following superposition of 

relaxation processes:  

�(�) = 1 1�K«¬
K«®¯ �9c K° 	��																																																																																																																																(3.2)	
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The expression (3.2) must be scaled with (3.1) to describe time-dependent material properties. 

The weight factor 1/t is explained by the Arrhenius’ law: assuming a relaxation process with 

activation energy E (i.e. the minimum energy required to start a chemical reaction), the 

corresponding relaxation time is given by:  

� = �	���	A ±²³´D																																																																																																																																																(3.3)	
where A is a constant, T is the absolute temperature and kB is the Boltzmann constant (Snieder 

et al., 2017). Suppose the activation energy has a density of states N(E) meaning that the number 

of activation mechanisms between E and E+dE is equal to N(E)dE. The density of states P(t) 

for the relaxation times satisfies P(t) = N(E)dE/dt. Using the expression (3.3) dt/dE = 

(A/kBT)exp(E/kBT) = t/kBT, hence:  

�(�) = �¶�� 	�(�)																																																																																																																																											(3.4)	
N(E) is constant when the distribution of the activation energy is uniform between a minimum 

Emin and a maximum Emax, and according to expression (3.4) the density of states for a relaxation 

process with relaxation time, t, is for a fixed temperature, T, proportional to 1/t (Snieder et al., 

2017). Following the expression (3.3), the minimum and maximum relaxation times are related 

to the minimum and maximum activation energies, by: 

�¦�¸ = �	���	A±«®¯²³´ D					,					�¦§0 = �	���	A±«¬²³´ D																																																																																						(3.5)		
Thus, tmin indicates the time at which the relaxation process begins, controlled by the relaxation 

mechanisms on the smallest spatial scale that require less energy. On the other hand, tmax is 

associated to the time at which the relaxation stops (i.e. when an equilibrium between external 

and internal stresses is reached; beyond this time no relaxation mechanism contributes). tmax 

depends on the perturbation that triggers the relaxation and ambient conditions (Snieder et al., 

2017). Consequently, analyzing the dependence of tmax as a function of these factors might be 

potentially useful to diagnose healing mechanisms.  

 

The relaxation function can be obtained by numerically evaluating the integral of expression 

(3.2). The minimum relaxation time tmin can be estimated from a relaxation curve, given that 

the transition to the logarithmic dependence (i.e. beginning of relaxation) occurs at t ≈ tmin. 

However, previous laboratory experiments (Lobkis and Weaver, 2009) have noted that the log-

time recovery can start at very early times, to the point that in some cases it is not possible to 

obtain reliable values of tmin (i.e., a much greater time resolution would be needed). On the 
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other hand, the maximum relaxation time tmax can be inferred by estimating the point where the 

curve flattens off. But again, the final transition to a non log-time behavior often occurs after 

several minutes or hours (TenCate, 2011), and might not be captured by non-continuous 

monitored systems. 

 

To test the relaxation function (Eq. 3.2) Snieder et al. (2017) presented a model of pillars 

describing the closing of a fracture. Although this model does not satisfy the Arrhenius' law, it 

follows the function pretty well, so that the relaxation function might be applicable to different 

models. Similarly, no thermally activated processes are included in the present study. However, 

Guéguen et al., (2019) showed that the relaxation function (Eq. 3.2) describes building data 

reasonably well too.   

 

Figure 3.1 shows an example of the relaxation function applied to the data (i.e. time-frequency 

variation in the segment 2 of Fig. 2.4, chapter 2) of one earthquake recorded at the top of the 

ANX building. Values of tmin and tmax are 1.70s and 144.6s respectively, representing the 

beginning and end of the relaxation process for this example. At intermediate times (i.e. 

between tmin and tmax) the relaxation function follows a log-time tendency, where the estimated 

slope of recovery p = 0.03, as shown in Fig. 3.1b. This slope was computed by fitting a first-

degree polynomial in the data between tmin and tmax. Y-axis in Fig. 3.1 represents the frequency 

recovery normalized with respect to the final apparent value, ffapp. X-axis corresponds to time, 

with a logarithmic scale.  

 

 
Figure 3.1 Relaxation function following one earthquake registered in the ANX building and 
corresponding to the segment 2 in Fig. 3.4. The solid line is the fit of relaxation. The estimated minimum 
and maximum relaxation times are indicated with vertical dashed lines (τmin = 1.70s and τmax = 144.6s). 
b) Log-linear fitting of the data between τmin and τmax, with slope p=0.03 and Df=0.07. Y-axis is the 
fundamental frequency normalized to the final value (ffapp). Note the logarithmic scale on the X-axis. 
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Note that it is challenging in Fig. 3.1 to precisely determine when the curve flattens off at late 

times and therefore estimate tmax. This is again due to the use of triggered windows that do not 

allow us to monitor the behavior of the relaxation continuously in time and prevent us from 

determining tmax unequivocally in some cases. 

 

Previous results suggest that the slope of the log-time segment actually changes under different 

circumstances that can be related to the type of material, environmental conditions, level of 

loading, or damage (TenCate et al., 2000; Ostrovsky and Johnson, 2001; Johnson and Sutin, 

2005; Shokouhi et al., 2017a; Astorga et al., 2018; Guéguen et al., 2019). In addition to p, tmin 

and tmax, the maximum transitory variation of fundamental frequency, Df, was computed with 

respect to the final apparent frequency, ffapp. It has been observed that the variation of elastic 

parameters is strongly linked to the loading amplitude (Shokouhi et al., 2017a). Likewise, we 

notice a solid correlation in our data between Df and PTA and ∆Max values (Fig. 3.2). To 

remove the effects of loading on the variation of frequency, we normalized Df to the maximum 

drift, ΔMax. In this way, the computation of p is not conditioned to loading amplitudes. 

 

 
Figure 3.2 Correlation between the fundamental frequency variation Df, and maximum values drift 
∆Max, and acceleration, PTA. 
 

3.3.2. Relaxation time spectrum 

Shokouhi, et al., (2017a) introduced the concept of relaxation time spectrum to quantify the 

recovery process in consolidated granular systems, measuring speed. The authors assumed the 

recovery to be represented as a sum of discrete exponential decays each having an amplitude 

An and time constant tn. In this way, complementary to the model of Snieder et al., (2017), the 

relaxation time spectrum characterizes the recovery process over several orders of magnitude 

in time. It is given by: 
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�(�) = � �¸�9cK¯ ,			¦×�
¸�e �¸ ≥ 0																																																																																																																									(3.6)	

 
where t is measured from t0 (t0 is the time corresponding to the end of the external strain, i.e.  

the time corresponding to f95). N is the number of exponentials used to fit the function (i.e. 

N=10 in this study). The time constants tn are assigned a priori and the amplitudes An are 

determined by minimizing the least squares objective function: 

 � = 1 �∆�(�)�e − �(�)�5c«¬
cy ��																																																																																																																							(3.7)	

where 
∆¾(c)¾y = (�(�) − �e)/�e is the relative shift of wavespeed (equivalent to frequency 

changes in our study), with c0 the wavespeed before the beginning of loading, and c(t) is the 

wavespeed at time t. tn is chosen such that there are m logarithmically spaced time constants in 

each decade10, as follows: 

�¸ = Δ��¸ ,			� = 10 Á«,			� = 0,… ,�	 × 	�																																																																																																(3.8)																																																																																			
 

The result given by Eq. 3.6 is a spectrum of values A (i.e. set of values A0, A1, A2, …, An). 

Shokouhi, et al., (2017a) found the relaxation time spectrum to be independent of the amplitude 

of loading and of the environmental conditions. Hence, the relaxation spectrum can be 

considered as the signature of the slow dynamics recovery process. Even when the 

understanding of the connection between the shape of the relaxation spectra and the internal 

characteristics of the material is missing, this approach has the potential to unravel the 

underlying physical mechanisms of the slow dynamics (Shokouhi, et al., 2017a).  

 

The main scheme to obtain the relaxation time spectrum is shown in Fig. 3.3 for one earthquake 

recorded in 2015 at the top of the ANX building. The behavior of the normalized fundamental 

frequency (Df/ffapp) as a function of time is shown in Fig. 3.3a. The set of exponential decays 

that compose the total relaxation spectrum is shown in Fig. 3.3b and their corresponding 

amplitudes Ai are displayed in Fig. 3.3c, composing the relaxation time spectrum. The fitting 

of all the exponential decays is shown Fig. 3.3a. It is noticeable that mechanisms having 

relaxation times between t~2s and t~100s are present in this example, where the maximum 

amplitude, Amax, corresponds to relaxation times around 13s (i.e. green dataset in Fig. 3.3c).  
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Figure 3.3 General scheme used to obtain the relaxation time spectrum. Example for an earthquake 
occurring in 2015 and recorded at the top of the ANX building. a) Normalized fundamental frequency 
(Df/ffapp) as a function of time during the recovery segment, after the strongest loading is finished. Df=fi-
ffapp; where fi is the value of fundamental frequency at time ti during the recovery. The circles represent 
the earthquake data evenly spaced in log-time, and the solid thick line is the fit corresponding to the sum 
of exponential decays (equation 3.6). b) Exponential decay terms that compose the fit shown in (a). c) 
Amplitudes Ai of the different exponential decays observed in (b). These amplitudes compose the 
relaxation spectrum. Maximum amplitude Amax, characteristic time τc, and bandwidth bw are also 
represented in this example. 
 

In this study we extract the following three parameters from the relaxation time spectrum:  

• Amax corresponds to the maximum amplitude observed in the relaxation spectrum. 

• The characteristic time, τc corresponds to the centroid, in the time axis, of the spectrum. 

It was determined using	�¾ = ∑Æ®×K®		∑ Æ® , where ti and Ai are the relaxation times and their 

corresponding amplitudes, respectively, for the different exponentials used in the fitting 

(Fig. 3.3c). 

• The bandwidth, bw, assesses the range of dominant relaxation times, as commonly used 

in signal processing (in the frequency domain typically), to estimate the damping ratio 

and quality factor of structures for instance (Clough and Penzien, 1993). Here the 

bandwidth is defined using 1 √2⁄  of the maximum amplitude (Fig. 3.3c). 

 

Once applied the relaxation models to fit our data, we are able to obtain the following relaxation 

parameters, listed herein for summary: 

• τmin and τmax: beginning and end of the relaxation, respectively, they represent energy-

related parameters linked to smallest and largest scale mechanisms (i.e. smallest and 

largest cracks, respectively). They are obtained by iterative process using the equation 

3.2. 
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• p: recovery slope. It is related to the rapidity with which the particles in the material 

rearrange until reaching an equilibrium state. It is estimated using a first-degree 

polynomial between τmin and τmax. 

• τc: characteristic time. Typical relaxation time related to the typical size of crack 

manifested for an earthquake. 

• Amax: maximum amplitude. It corresponds to the extent of cracks with a certain size. 

• bw: bandwidth. It corresponds to the extension of the bond system / cracks-size variety. 

• Ratio τmax / τmin can be interpreted as the development of new type/size of cracks, i.e. 

representing the cracks-size variety. 

 

3.4. Evolution of relaxation parameters over time 

Long-term monitoring of the fundamental frequency in both directions of the ANX building is 

shown in chapter 2, Fig. 2.5. For that building, Astorga et al., (2018) have defined four time 

periods according to the behavior of the fundamental frequency in time: 1998–2005, 2005 to 

March 2011, March 2011-September 2011, and after October 2011. From now on, referred to 

as P1, P2, P3, and P4, respectively. We reproduce the figure in Fig. 3.4, showing the average ± 

standard deviation values per period. Additionally, table 3.1 lists several great earthquakes 

recorded in the building, which have contributed to the observed response.   

 

 

Figure 3.4 Long-term variation of the minimum value of the fundamental frequency in the ANX 
building a) Y-180 direction b) X-270 direction. The color bar represents the peak acceleration at the top 
of the building (note the log scale). Error bars indicate the average (white markers) and standard 
deviation values (vertical black lines) computed by bins of 20 consecutive events. Shaded areas 
indicated as P1, P2, P3 and P4 refer to the structural periods observed in Astorga et al., (2018) according 
to the behavior of the frequency variation. Mean and standard deviation values per period are indicated 
in the text boxes at the right of each plot.  
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Table 3.1 Strong earthquakes recorded in the ANX building. ∆Max: maximal total structural drift; PTA: 
Peak Top Acceleration. Both horizontal directions X-270 and Y-180 are reported. 

 

 

Astorga et al., (2018) explained the response of the structure along these periods and concluded 

that the origin of such a behavior is mostly related to the evolution of the bond system, that is, 

extension of cracks causing structural softening, as evidenced by permanent changes in the 

elastic properties. The response of the ANX building during the periods P1, P2, P3 and P4, can 

be summarized as follows: 

- During P1 there was slow structural softening due to the progressive increase of number 

of cracks during each seismic event. The drop of frequency was more prominent in the 

X-270 direction, suggesting a preferential distribution of cracks along elements in this 

direction. At the end of P1 a sharp decrease of frequency was observed, followed by a 

rapid recovery up to the stable period P2 (i.e. mean frequency is constant and similar in 

both directions). This sharp decrease is coincident with the Niigata-Chūetsu earthquake 

that occurred in October 2004 (Table 3.1), which confirms the correlation between the 

co-seismic variation of resonance frequency and the amount of cracks in structural 

elements. Similar behavior was observed after the great Tohoku earthquake in March 

2011, that is, period P3, where the recovery took longer to reach the stable period P4 

because of the long conditioning sequence produced by aftershocks. Seven years after 

the Tohoku event, the fundamental frequencies did not reach the pre-seismic value. The 

residual frequency variation indicates a permanent change in the elastic properties and 

suggests permanent structural damage has occurred. 

 

Data dispersion represented by standard deviation in periods P2 and P4 are smaller than for P1 

and P3, respectively. Astorga et al., (2018) found that the more the structure is damaged, the 

more stable its response to loading over time, characterized by a smaller dispersion (Fig. 3.4). 

This corresponds to a gradual damaging mechanism in which the number of cracks increases 

(which reduces the stiffness) and the energy required to open new cracks lessens.  

 

Earthquake Date Magnitude PTA (cm/s
2
) ΔMax (cm/cm) 

(Mw) X-270 Y-180 X-270 Y-180 

Niigata-Chūetsu  23-Oct-2004 6.9 79.30 67.75 3.01x10
-4

 2.11x10
-4

 

Miyagi  16-Aug-2005 7.2 112.55 74.59 4.48x10
-4

 2.78x10
-4

 

Igate-Miyagi  14-Jun-2008 6.9 94.73 90.20 4.03x10
-4

 3.64x10
-4

 

Izu Islands  09-Aug-2009 6.6 64.09 32.73 2.57x10
-4

 1.10x10
-4

 

Tohoku  11-Mar-2011 9.1 505.18 596.84 0.0027 0.0028 
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A correlation between the relaxation parameters and the structural state is observed: the mean 

tendency of each parameter changes from one period to the other. Results for τmin, τmax, p, τc, 

bw and Amax indicate a sudden increase from P1 to P2 in both directions (Fig. 3.5 and table 3.2). 

Significant variations are also observed from P2 to P3 and from P3 to P4 (except for τmin). The 

mean minimum relaxation time τmin is 5.6s during the first period in the Y-180 direction. At the 

beginning of 2005 (i.e. the transition from P1 to P2), the value shifts to 9.9s and does not show 

significant variation until the end of P3. During P4 the mean value of τmin increases to 11.9s. 

This increase in τmin represents a delay in the beginning of the relaxation process. Results 

indicate that the more cracked the structure, the longer it takes for the relaxation to start. The 

variations of τmin from P1 to P2 and from P3 to P4 (Fig. 3.5a) are undoubtedly related to the 

transition from unstable periods of constant softening (i.e. P1 and P3) to stable periods (i.e. P2 

and P4) where the system is cracked due to the expansion of the bond system during the period 

immediately before. Same tendency is observed in the X-270 direction, but with larger mean 

values of τmin for all the periods. This is also consistent with the stronger degradation in the X-

270 direction with respect to Y-180 observed since the beginning of the measurements in 1998 

(Fig. 3.4).  

 

 
 

Figure 3.5 Evolution of the different relaxation parameters as a function of time for the Y-180 (circles) 
and X-270 (squares) directions of the ANX building. a) Minimum relaxation time τmin b) Maximum 
relaxation time τmax c) Ratio τmax / τmin d) Log-time slope p of the interval τmin - τmax e) Characteristic 
relaxation time τc f) bandwidth bw and g) Maximum spectral amplitude Amax. Each dot represents the 
averaged value of 20 consecutive events. Vertical dashed lines correspond to the occurrence of great 
earthquakes listed in Tab. 3.1. Shaded areas divide the structural periods observed in Fig. 3.4 (i.e. P1, 
P2, P3 and P4). 
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Values of τmax are likely linked to the maximum size of cracks open during an earthquake 

(Guéguen et al., 2019), inasmuch as it represents the relaxation mechanisms operating at the 

largest scales. The constant increase of the mean value of τmax from P1 to P2 and from P2 to P3 

(Fig. 3.5b) indicates the emergence of increasingly larger cracks and/or increasing crack 

density. The decrease of the mean τmax from P3 to P4 might be related to some retrofitting 

carried out in the building after the 2011 Tohoku earthquake (Kashima, 2014). The mean 

behavior of the maximum relaxation time τmax is analogous for both directions of the building, 

and once again the direction X-270 shows greater values, signifying larger cracks in this 

direction.  

 

Table 3.2 Mean values of the relaxation parameters for each structural period and for both directions of 
the building. Graphic representation of these values is shown in Fig. 3.5.  

 

 
Since τmin and τmax represent the initial and final relaxation times, respectively, the ratio between 

these values might be directly linked to the emergence of new relaxation mechanisms operating 

at different relaxation times. This ratio could then be interpreted as the development of new 

type/size of cracks. Values of τmax/τmin are very dispersed (Fig. 3.5 and 3.6): on one hand, there 

are earthquakes for which τmin and τmax are very different, that is, related to the creation of new 

size of cracks. On the other hand, there are earthquakes that did not create new types of cracks, 

and therefore τmax/τmin = 1. Guéguen et al., (2019) evaluated the recovery of the fundamental 

frequency of a building in Ecuador during the Mw 7.8 earthquake that occurred in April 2016. 

Results showed that, during the recovery after the mainshock, the value of τmax/τmin > 1, 

suggesting the expansion of the bond system with new size of cracks. However, τmax/τmin was 

equal to 1 during the relaxation process (when considering a foreshock and an aftershock with 

moderate shaking), implying that new sizes of cracks were created only during the mainshock.  

 

We observe ratios τmax/τmin = 1 or τmax/τmin > 1 over the periods P1, P2, P3 and P4, with no 

apparent relationship with loading parameters (Fig. 3.6) or structural states (Fig. 3.5). 

 τmin  (s) τmax (s) τmax / τmin  p (%) τc (s) bw (s) Amax (%) 

  Y-180 X-270 Y-180 X-270 Y-180 X-270 Y-180 X-270 Y-180 X-270 Y-180 X-270 Y-180 X-270 

P1 5.6 8.2 13.1 17.3 12.8 9.2 1.1 1.2 9.9 12.6 12.5 15.0 3.3 4.6 

P2 9.9 17.0 29.2 38.4 12.9 5.4 1.8 1.8 17.2 24.7 23.5 28.4 4.2 6.6 

P3 9.9 17.6 56.7 69.7 15.1 16.1 1.9 2.5 16.5 31.1 21.9 37.0 5.8 6.2 

P4 11.9 19.7 34.8 62.8 9.8 14.0 3.1 2.3 19.4 31.6 20.5 34.1 5.9 5.6 
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Nevertheless, in Fig. 3.6 we show the sequence of events between 2005 and 2010 and results 

indicate that a series of earthquakes with τmax/τmin =1 occurs after one or a few consecutive 

events with τmax/τmin > 1. This may be equivalent to that observed by Guéguen et al., (2019). In 

Fig. 3.6 the color scale indicates the maximum drift, ∆Max. For τmax/τmin > 1, the size of the 

markers is related to the number of consecutive earthquakes, where τmax/τmin > 1 (i.e. bigger 

markers correspond to a greater amount of successive earthquakes generating new types of 

cracks). For example, in August-September 2005, we observe three consecutive earthquakes 

with τmax/τmin > 1 and mean ∆Max = 10-4 (yellow dot in the dashed rectangle, Fig. 3.6). Thus, 

new sizes of cracks were created during these events. These are followed by several 

earthquakes, where no new sizes of cracks emerged, τmax/τmin = 1. However, we observe that 

earthquakes with big ∆Max might not produce new types of cracks (i.e. yellow dots with 

τmax/τmin = 1, Fig. 3.6), and events with low ∆Max could open new types of cracks (i.e. blue 

dots with τmax/τmin > 1, Fig. 3.6). Hence, there is no obvious relationship between the creation 

of new sizes of cracks and the maximum drift, ∆Max. Much more effort is consequently needed 

to explain the fact that some earthquakes create new type of cracks and some others do not. 

However, we observe a decrease of the ratio τmax/τmin with time (Fig. 3.6), which characterizes 

the tendency toward uniformity of the crack features, generating fewer new cracks when 

successive earthquakes occur. 

 
We should note that the value of τmax/τmin is sensitive to the segment selected for analyzing slow 

dynamics. We choose the segment after 95% of the earthquake energy (chapter 2), assuming 

that we can capture residual cracks that might represent the structural state. If the recovery is 

analyzed from a different initial point, that is, before the end of the strongest motion, we might 

observe different values of τmax/τmin, but they would not be representative of the structural state 

because the structure is still under strong excitation.  

 
Figure 3.6 Ratio τmax/τmin for the events recorded between 2005 and 2010 in the Y-180 direction of the 
ANX building. For τmax/τmin = 1 (note the log-scale on the Y-axis) each dot represents one event. For 
τmax/τmin > 1 the size of the markers is related to the number of consecutive events where τmax/τmin > 1 
(shown in the inset legend). The color scale represents the maximum drift. The dashed rectangle encloses 
three consecutive earthquakes creating new types of cracks, followed by some events where no new 
types of cracks appeared in the last portion of the recovery.     
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TenCate et al., (2000) reported different recovery slopes for different materials, including intact 

and damaged concrete. The authors observed an increase of the recovery slope for damaged 

concrete with respect to intact concrete, and they interpreted this increase by the fact that the 

rate of recovery in time is related to the rapidity with which the particles in the material 

rearrange until reaching an equilibrium state, that corresponds to the end of the recovery. Thus, 

materials whose bond system is more ‘damaged’ might be characterized by higher slopes 

because of the open spaces between the solid particles to be filled in the rearrangement carried 

out during the relaxation. We observe a slight but constant increase in the recovery slope with 

time (Fig. 3.5d), which is consistent with the building becoming progressively damaged over 

the years. The evolution of τc, bw and Amax is more or less analogous inasmuch as they show 

clear variations in each period (Fig. 3.5e-g).  

 

A clearer picture of the evolution of these parameters with respect to the structural state is 

shown in Fig. 3.7 and 3.8, for the Y-180 and the X-270 directions, respectively. In these figures 

the mean relaxation spectrum is only computed for the stable periods P2 and P4, that is, before 

and after the 2011 Tohoku earthquake. In these figures, the data were grouped in five increasing 

ranges of drift amplitudes (i.e. ∆1=1x10-6-5x10-6, ∆2=5x10-6-1x10-5, ∆3= 1x10-5-5x10-5, ∆4= 

5x10-5-1x10-4, ∆5= 1x10-4-5x10-4), in order to separate loading amplitude effects from structural 

state. Before Tohoku (period P2) the variation of frequency Df and log-time recovery slopes 

increase with strain amplitude (Fig. 3.7a top). Therefore, the corresponding amplitudes Amax of 

the relaxation spectra also increase with the strain level (Fig. 3.7a bottom). Analogous results 

are observed in laboratory experiments when analyzing the recovery of sandstone at different 

strain amplitudes (Shokouhi et al., 2017a). Besides, Shokouhi et al., (2017a) obtained more or 

less equivalent spectrum shapes at different strain amplitudes. In our case, a smooth transition 

of the characteristic relaxation time τc to higher values is observed as the drift increases (Fig. 

3.7 bottom). However, maximum strain amplitudes in laboratory are in the order of 10-5, which 

would be comparable to our first two ranges of drift (i.e. yellow and green curves), where the 

shapes of spectra are rather similar.  

 

For the same ranges of drift, there is an evident increase of the frequency drop after the Tohoku 

earthquake, i.e. in P4, with respect to P2 (Fig. 3.7b top). The slope values also increase after 

the earthquake, which is coherent with the aforementioned results on the relationship between 

the recovery slope and the state of the bond system. Characteristic relaxation times τc also shift 

to higher values after Tohoku for all drift categories. This indicates that the typical size of cracks 



 67 

activated during P4 is larger than the characteristic size of cracks opened during P2 for 

equivalent loading strains (Fig. 3.7b bottom).  

 

 

Figure 3.7 (Top) Recovery of the fundamental frequency with time for the Y-180 direction of the 
ANX building and different strain amplitudes, during a) period P2, before the Tohoku earthquake and 
b) period P4, after the Tohoku earthquake. Curves represent the mean frequency recovery Df, 
normalized to the final frequency ffapp. Slopes corresponding to the time-logarithmic segment are 
represented in the insets. (Bottom) Mean relaxation spectra for different strain amplitudes during (left) 
P2 and (right) P4. Relaxation spectra were obtained from the mean exponential fit shown in the top 
plots. Different colors correspond to five drift ranges (∆1=1x10-6-5x10-6, ∆2=5x10-6-1x10-5, ∆3= 1x10-5-
5x10-5, ∆4= 5x10-5-1x10-4, ∆5= 1x10-4-5x10-4). Mean values of τc and bw per period and per strain level 
are indicated in the legend. Note that time (X-axis) is displayed in log-scale. 
 

Not only the size of the typical crack enlarged in P4, but also the number of cracks generated 

with respect to P2, especially for lower strain earthquakes (∆Max < 5x10-5). This is revealed by 

the higher values of maximum amplitude Amax observed in Fig. 3.7b (bottom) for the green, 

yellow and black spectra. In addition, the bandwidth may be a proxy of the different types/sizes 

of cracks created under certain level of loading. After the Tohoku earthquake an increase of the 

bandwidth values occurred, being more evident at higher strains (Fig. 3.7b bottom). This is 

related to the susceptibility of the structure to create a wider range of crack sizes at a given 

loading value, in comparison to those opened during P2. This bandwidth value finally 

characterizes the changes in the bond system, or in other words, the structural health.  

 

In X-270 direction (Fig. 3.8), no significant variation between P2 and P4 is observed: frequency 

drops and slope values are approximately equivalent (Fig. 3.8 top). The spectra shapes at 

different strain amplitudes are similar and range of relaxation times bw, maximum amplitudes 

Amax, and characteristic times τc are also rather equivalent (Fig. 3.8 bottom), specially for P4. 

The data dispersion is also very similar between P2 and P4 but also for the different range of 

strain values. This behavior might be linked to the fact that the structure was already 
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significantly cracked along the X-270 direction prior to the 2011 event, as a result of the largest 

variation of frequency observed during P1 in Fig. 3.4.  

 

 
Figure 3.8 Similar to figure 3.7 but for the X-270 direction of the building. 
 
Several post-earthquake observations confirm the relation between the evolution of the 

relaxation parameters and the pattern of cracks in the ANX building. For example, Kashima, 

(2014) reported damage in the building after the Tohoku earthquake in 2011. Visual post-

earthquake structural surveys detected damage around the expansion joints, splits in the 

plasterboard of partitioning walls and several cracks in the concrete walls. 

 

3.5. Relaxation parameters and structural damage  

The long-term monitoring of the ANX building (Figure 3.4) shows clear variations of the 

fundamental frequency in both horizontal directions, with different trends in four periods, as 

already defined in the chapter 2. We also observe an increase of softening (i.e. a decrease of the 

frequency due to a decrease in the modulus) for increasing values of PTA. The origin of the 

observed variations in the elastic properties is mainly due to transient and permanent changes 

of the structural stiffness, which is controlled by the bond system (i.e. Guyer and Johnson, 

1999), which in this case is the system of cracks and other heterogeneities creating weakness 

in the medium. The structural state evolution reported for the ANX building manifests itself in 

the slow dynamic recovery process following earthquakes. Different parameters describing 

these relaxation effects show distinctive behaviors that are concomitant with the structural state: 

- τmin and τmax (energy-related parameters) values increase with structural softening (i.e. 

Fig. 3.5a and 3.5b). A stiff medium (i.e. ANX at the beginning of the measurements) is very 

sensitive to energy: opening and closing of cracks is a fast process manifesting at any loading 

amplitude. As the system becomes softer due to increased mechanical damage, the energy 
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required to activate cracks is less important. Hence, a cracked medium takes longer to react and 

to activate the relaxation process; once this process begins it also takes longer for the energy to 

be totally released. This explains the delay in the beginning of the relaxation (i.e. the increase 

of τmin) and the elongation of the maximum relaxation time (i.e. the increase of τmax) with the 

increase of cracking (i.e. from P1 to P2 in figures 3.5a and 3.5b). Mean values of τmin and τmax 

also show a punctual rise coincident with the occurrence of large earthquakes within the stable 

structural period P2 (i.e. Fig. 3.5a and 3.5b), which is related to a significant transitory decrease 

of stiffness during these events. Snieder et al., (2017) determined that loading is one parameter 

controlling τmax. 

- The bandwidth bw and the maximum amplitude Amax of the relaxation spectrum model 

are directly connected to the extension of the bond system. Whereas the former reflects the 

variety in crack sizes, the latter is an indicator of the number of cracks of the same type/size. 

The increase of cracking in the ANX building due to the Tohoku earthquake and subsequent 

aftershocks is evident in Fig. 3.7 (bottom), where a wider range of crack types is expected even 

at low-strain amplitudes, and the number of smaller cracks considerably increased in 

comparison to the period preceding the 2011 event. The strong shaking of this great earthquake 

opened new structural cracks and enlarged pre-existing ones, which in turn reduced 

fundamental frequencies (and therefore stiffness) permanently (Fig. 3.4). Analogous 

conclusions were drawn by Guéguen et al., (2019) using lab experiments and real data in 

buildings; as well as laboratory experiments showing the effects of progressively increasing 

damage by Van Den Abeele et al., (2000a); or by Rubinstein and Beroza, (2004) when 

analyzing seismic velocity reductions in rock after strong motions. 

- Initial softening observed in the building (Fig. 3.4) seems to have affected mostly the X-

270 direction. Although the reasons for this have not been analyzed, it might be related to a 

preferential distribution of heterogeneities along this direction due to differences in the 

structural design, connections, cracking, and so on. The X-270 direction is softer than the Y-

180 and this is also manifested in the recovery process by the behavior of the relaxation 

parameters, that is, a similar response for Df, bandwidth, maximum amplitude, before and after 

Tohoku was observed in Fig. 3.8.  

- Just as bandwidth bw, the ratio τmax/τmin is related to the extension of the bond system 

with respect to the crack sizes. Stable periods (i.e. P2 and P4) show lower mean values of 

τmax/τmin with respect to the previous period P1 and P3, respectively, suggesting that new types 

of cracks were more prone to emerge during constant-softening periods (Tab. 3.2). This result 

is coherent with the observation made in by Astorga et al., (2018), who concluded that new 
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cracks were created during P1 and P3. Moreover, and similarly to the results reported by 

Guéguen et al., (2019) it is observed that some earthquakes are able to create new sizes/types 

of cracks, while some others are not (i.e. Fig. 3.6). This might be due to differences in loading 

conditions. However, no clear correlation was found between the maximum strain (∆Max) and 

the events originating new types of cracks. We observed that the occurrence of one or few 

events creating new types of cracks is followed by several consecutive events where no new 

types of cracks emerge. Note that the latter case does not imply that the bond system is not 

expanded. For example, the creation of new cracks with the same size of the existent ones is 

manifested by the increase of Amax, which is clearly observed in Fig. 3.7 (bottom) after the 

Tohoku earthquake. More analyses are needed to determine the possible link between intensity 

measurements and/or engineering demand parameters and the creation of new sizes/types of 

cracks.  

 

3.6. The multi-scale feature of frequency recovery in buildings 

Recent studies have analyzed non-linear elastic responses of buildings during earthquakes (i.e. 

Astorga et al., 2018, 2019), with short-term (seconds) to long-term (months) transitory 

variations of their resonance frequencies seen. This behavior has been related to the elastic 

features of the buildings and the co-seismic opening of pre-existing cracks, which can cause 

transient material softening at different time scales (Fig. 3.9). This is shown by the rapid co-

seismic decrease in their frequency that is followed by their immediate slow recovery (Fig. 

3.9a). Without earthquake damage, the initial properties will be fully recovered. This reflects 

the coalescence of the particles within the damaged material over time, into an equilibrated 

arrangement (Ostrovsky and Johnson, 2001; Guyer and Johnson, 2009), which results in the 

closing of cracks. During this process, many thermodynamic and mechanical factors control 

the number of contacts within the cracks over time, and consequently, the duration of the 

recovery (Guyer and Johnson, 2009, Snieder et al., 2017a). 

 
Over months after a large earthquake (Fig. 3.9c), we can observe slow recovery over a long 

time scale (i.e., of the order of several months, to a few years), in the manner of long-term 

relaxation of the crustal properties of the Earth after large earthquakes (Brenguier et al., 2008 

and 2014). Strong shakings can open cracks, which might gradually close due to frictional 

contact between the particles in the damaged zones. Equivalent shaking caused by later smaller 

earthquakes might contribute to the growth of these contacts, to increase the pressure and 

friction between the grains, and consequently to favour the recovery process. The recovery of 

the elastic properties, however, can also be affected by conditioning effects (Johnson and Sutin, 
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2005; Johnson and Jia, 2005). This is observed in Figure 3.9b, where the slow dynamics were 

accompanied by hysteresis and discrete memory during the aftershock sequence of the 2011 

Mw 9.1 Tohoku earthquake. The origin of these effects is in the bond system (Ostrovsky and 

Johnson, 2001; Johnson and Sutin, 2005; Guyer and Johnson, 2009), and particularly in the 

spatial arrangements of stress chains (Gist, 1994; Peters et al., 2005; Daniels et al., 2008; Gao 

et al., 2019), which represent groups of multi-size contacts that relay the strongest stresses. 

Structural cracking generates stress-chain rearrangements that represent the mechanism for 

energy dissipation during each event. The energy dissipation depends on the excitation 

amplitude: small events generally correspond to variations of local stress chains, whereas larger 

events can cause changes at a global scale, which results in a new complex anisotropic network 

of cracks that dominates the backbone recovery (i.e. the outer loop) shown in Figure 3.9b. 

Internal recovery cycles (i.e. hysteresis) are due to local stress changes that are generated by 

the strongest aftershocks, without any changes to the general response of the system, and thus 

with maintenance of the backbone (i.e. the discrete memory). In Figure 3.9b, the backbone, 

therefore, describes the recovery of the structural state, which is controlled by the maximum 

co-seismic strain state of the main shock.  

 
Figure 3.9 Different time scales of the slow dynamics observed for buildings. a) The drop and 
recovery of the resonance frequency (bottom panel) during a single earthquake (top panel). Red line, 
the co-seismic value of the resonance frequency extracted from the time–frequency distribution 
diagram. b) Hysteretic recovery during a sequence of aftershocks of the Tohoku earthquake (bottom 
panel). Each symbol indicates the co-seismic frequency computed during an earthquake, where the stars 
correspond to significant aftershocks. Solid blue line, the backbone recovery. The maximum 
acceleration at the top of the building (PTA) for the aftershock sequence is also shown (top panel). c) 
Long-term frequency recovery (bottom panel) during randomly spaced earthquakes (top panel). The 
event of Aug/2005 was a large-amplitude earthquake (~330 cm/s2), whereas the events shown from 
Oct/2005 to July/2007 were of the same order of lower amplitude (i.e. the PTAs did not exceed 10% of 
the large-event PTA). 
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3.6.1.  Backbone recovery curve and hysteresis during aftershocks   

Figure 3.10 shows the co-seismic fundamental frequencies of two Japanese buildings of similar 

typology (i.e. ANX and THU, described in chapter 2) between August 2005 and September 

2012 (Fig. 3.10a). We observe slow dynamics over time following three significant earthquakes 

(i.e. 2005 Mw 7.2 Miyagi; 2008 Mw 6.9 Iwate; 2011 Mw 9.0 Tohoku; Fig. 3.10, R1, R2, R3, 

respectively). We analyzed the time scales of the recoveries of the backbones for the weakest 

events, which corresponded to the weakest loading, to remove conditioning effects. Assuming 

a time–logarithmic function (TenCate et al., 2010) (Fig. 3.10c), we observe that the recovery 

slopes increased with the loading amplitude and the damage state, as also seen previously in 

several laboratory-tested materials (Ostrovsky and Johnson, 2001; Johnson and Sutin, 2005; 

TenCate et al., 2010). The THU building was exposed to significantly higher levels of 

maximum acceleration at the top of the building, PTA and showed recovery slopes that were 

an order of magnitude larger than for the ANX building before 2011 (i.e. R1, R2). On the other 

hand, the recovery slope after the Tohoku earthquake (i.e. R3) was around 5-fold steeper for 

the THU building, which was severely damaged during this event (Okawa et al., 2013; see 

chapter 2). Although the log–time adjustment does not have any physical basis, we assume that 

the rate of recovery is linked in some way to the rate of coalescence within the cracked zones, 

so that an equilibrium state can be reached. Here, densely cracked media would show steep 

recovery slopes because there are more voids to be filled after strong excitation. 

 

Figure 3.10 Long-term recovery of the fundamental frequency of two Japanese buildings (ANX, THU). 
a) Co-seismic frequency computed over the years, showing slow dynamics after important earthquakes 
in 2005, 2008 and 2011. b) Zoom-in on the recovery after the 2011 event, showing the conditioning 
cycles (i.e. R3a, R3b and R3c). a), b) Each symbol corresponds to a single earthquake, and the colorscale 
is related to the maximum acceleration at the top of the building (PTA). The large symbols were used 
to monitor the backbone curve. c) Log-linear recovery of the normalized frequency variation (∆f/ff = (f-
ff)/ff , where ff = maximum final frequency), which indicates the slopes computed from the log-linear 
function applied to the periods shown in a) and b).  
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To explore the conditioning effects on the recovery slope, the log–linear model was applied to 

the internal recovery cycles created during the aftershock sequence of the Tohoku earthquake 

(i.e. Fig. 3.10b, R3a, R3b, and eventually R3c). The recovery slope decreased progressively as 

the conditioning effects were lost: from 0.069 to 0.057 for ANX, and from 0.196 to 0.128 for 

THU (Fig. 3.10c). This suggests a gradual closing mechanism for the cracks that were activated 

by the contribution of the local stress-chain adjustments to the total recovery. Furthermore, for 

the ANX building (which was slightly damaged during the 2011 event, see chapter 2) the 

recovery slopes due to the conditioning cycles were steeper than the backbone slope, whereas 

the opposite was seen for the THU building. This reflects the sensitivity of the structural 

material to the opening/ closing processes of temporary cracks while the structure is still 

recovering from the main shock. In a densely damaged medium, much more energy would be 

necessary to perturbate the bond system and generate new stress states that can change the 

global response, which will be limited, however, by the ultimate collapse of the building.  

 

Our results demonstrate that both loading amplitude and structural state control the structural 

response. However, in the presence of a densely cracked material (i.e. the THU building), 

loading effects are less important and the structural response mostly depends on the structural 

state.  

 

3.6.2.  Relaxation models applied to long-term structural recovery   

Three theoretical models (Fig. 3.11a-c) were used to study the recovery processes shown in 

Figure 3.10. These models (Snieder et al., 2017; Shokouhi et al., 2017a; Ostrovsky et al., 2019) 

are based on physical concepts and were developed based on laboratory experiments carried 

out on the recovery of broken contacts in granular materials. The models proposed by Snieder 

et al., (2017) and Shokouhi et al., (2017a) are presented in Section 3.3. Ostrovsky et al., (2019) 

analyzed the relaxation of elastic properties of geomaterials throughout the shift of wavespeed, 

∆c/c, following a dynamic excitation. Analogous to Snieder et al., (2017), the authors proposed 

a long-term relaxation model based on the hypothesis that the recovery is defined by two main 

parameters: temperature and activation energy. Therefore, the rate of the recovery can be 

described by an Arrhenius-type equation similar to the Eq. 3.5. Moreover, the authors consider 

the macroscopic elastic modulus of the medium (i.e. Young modulus) as � = �e(1 − �) +��� 	, where E0 is the initial unperturbed elastic modulus, and Ed represents the elastic modulus 

of the fraction of soft contacts (i.e. φ) in the bond system. Given that Ed ≪ E0, the contribution 

of φEd is neglected and the decrease in modulus can be represented as �� = �e − � = ��e.  
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The return to an equilibrium state depends on a force, necessary to overcome a potential barrier. 

This force is proportional to Es and to the characteristic contact volume between particles, V. 

After several substitutions (see Ostrovsky et al., 2019 for details) the Arrhenius-type equation 

is written as:  

 

�� = Λ ln ¤−��eΛ � + �±ÊyË ¥ 																																																																																																																											(3.9) 
 

with Λ = Ì³´Q ;  and A and KB similar to Eq. 3.3 

 

This implies that the metastable contacts return to equilibrium in a finite time interval τ that 

depends on the loading parameter, Λ. For Es (t = τ) = 0, the authors estimate ∆c/c during 

recovery, as follows:   

 ∆¾� = Λ2�e ln Í�� + �9Î±ÊyË Î ¤1 − ��¥Ï 																																																																																																 												(3.10) 
 

We can simplify the Eq. 3.10 as follows:  

 ∆�� = �	���[10¦ + �9Ò(1 − 10¦)]																																																																																																										(3.11) 
 

where � = 5.ÓË5±Ô ;     � = Î±ÊË Î;      and � = logAcKD 

 
The authors tested the model in different examples of laboratory data and field observations, 

observing that the characteristic size of broken contacts responsible for slow dynamics is in the 

order of 10-9 m, and predicts that their number increases with impact amplitude. To describe 

variations of elastic properties we used frequency variations ∆f/f rather than ∆c/c. In our data, 

parameters a and G were obtained by nonlinear regression of Eq. 3.11, assuming the constant 

Λ is related to loading amplitude, and E0 and Es are proxies of the pre-seismic and co-seismic 

elastic modulus (i.e. frequency), respectively. In this section, we use the long-time relaxation 

model by Ostrovsky et al., 2019 to describe recovery effects during aftershock sequences and 

long-term frequency variations.  

 

First, we computed the a and G parameters, as proxies for the elasticity before and during long-

term recovery processes, respectively, shown in Figure 3.11a. The parameter a, which is 



 75 

inversely proportional to the pre-seismic elastic modulus, increased sharply during the post-

Tohoku recovery. Parameter G, which is directly proportional to the co-seismic elasticity, 

decreased. This confirms the increase in the softening in both of these buildings. Secondly, the 

ratio τmax/τmin computed from the relaxation function in Figure 3.11b (Snieder et al., 2017) 

increased from ~6 to ~23 in the ANX building, and from ~9 to ~18 for THU. This ratio denotes 

the different time-scale mechanisms that act in the time–logarithmic segment of the recovery, 

and characterizes the diversity of the crack sizes (section 3.4). From this we can infer that after 

the 2011 event the variety of the cracks in the ANX and THU structures was quadrupled and 

doubled, respectively. Additionally, the gradual reduction in τmax/τmin during the re-loading 

cycles confirms the progressive crack-closing process during the aftershocks inferred from the 

recovery slopes. In addition, after the Tohoku earthquake we observe clear changes in the 

maximum frequency variation (i.e., ∆f/f) for both models, which increased from ~3% to ~12% 

for ANX and from ~13% to ~33% for THU (Fig. 3.11a, b), which is consistent with the modulus 

softening and then the global change in the structural states. 

 

 

Figure 3.11 Relaxation models adapted to the frequency recovery of buildings for the different periods 
defined in figure 3.10. a) Normalized frequency variation over recovery time according to the model 

proposed by Ostrovsky et al., (2019). Here, a and G are proxies for elasticity. � = log AcKD. b) 

Normalized frequency variation over the recovery time according to the relaxation function of Snieder 
et al., (2017). Here, τmax/τmin is the ratio between the final and initial relaxation times computed from the 
model. c) Relaxation spectra proposed by Shokouhi et al., (2017a), indicating the bandwidth defined 
using the 1/√2 of the maximum spectrum amplitude.  
 

A complete signature of the recovery process is given by the relaxation spectrum (Shokouhi et 

al., 2017a) shown in Figure 3.11c. We detect mechanisms over five orders of magnitude in 
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time, from t ~0.1 to ~1200 seconds; i.e., extreme values that are not revealed by the previous 

models. The spectrum bandwidth represents the range of the dominant relaxation times, and as 

the ratio τmax/τmin, this serves as a hint of the diversity of the crack sizes that are closed over the 

time of the recovery. These data suggest that a large variety of crack sizes was activated 

following the 2008 event (i.e., R2). The post-Tohoku spectrum does not indicate new types of 

cracks; nevertheless, the maximum spectrum amplitude is ~3.5-fold that observed in the periods 

before Tohoku. This implies that the crack density increased around 3.5-fold after 2011 for both 

of these structures. It can also be noted that the spectra of the THU building are approximately 

3-fold those of the ANX building, showing the different levels of damage between the buildings 

even before 2011. At the same time, conditioning effects might have been significant in the 

recovery process for the ANX building, which activated mechanisms with relaxation times in 

the order of 101-102 seconds. In contrast, during the recovery of the THU structure, the 

conditioning cycles just contributed to the activation of inner small mechanisms, as shown by 

the narrow left-shifted spectra R3a,b,c (Fig. 3.11c). Thus, theoretical models applied to 

earthquake data from real buildings fit the long-term recovery of the fundamental frequency 

after earthquakes. These data indicate that non-linear elastic processes within the structural 

bond system explain the transitory and permanent variations of structural dynamic responses to 

seismic events. In particular, the relaxation parameters reveal the internal material changes that 

are related to cracking and stiffness degradation; i.e., in relation to the structural health and 

safety of a building.  

 

3.7. Conclusions 

The main goals of this study were (1) to corroborate the manifestation of nonlinear elastic 

signatures at the building’s scale, especially the slow dynamics behavior, (2) to test existent 

slow dynamics relaxation models developed at the laboratory scale to real earthquake data and 

real buildings and (3) to investigate the behavior of several relaxation parameters with respect 

to different loading amplitudes and structural states.  

 

Astorga et al., (2018) detected clear signatures of nonlinear elastic behavior in the ANX 

building, similar to what is seen in laboratory and seismological scales. Fundamental frequency 

fluctuations at short (inter-events) and long term (intra-events) show evident both transitory 

and permanent variations of stiffness, controlled primarily by the bond system (i.e. cracks and 

other heterogeneities). The creation and growth of cracks along with the resultant constant 

frequency decrease entail significant energy expended in damaging the material, causing 

rearrangement of the internal structure, and resulting in variations of detectable physical 
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properties. Two periods of relatively stable dynamic response, where permanent frequency 

variations are detected in the ANX building are observed (1) between 2005 and March 2011, 

that is, after a constant softening occurred during the first 7 years of the structure and (2) 

between October 2011 and May 2018, that is, after the Tohoku earthquake in March 2011 and 

its immediate aftershocks. These permanent stiffness variations suggest an extension of the 

cracks system and are therefore linked to damage. 

 
We focused our study in the recovery process, a time-dependent relaxation mechanism in which 

the fundamental frequency shifts back to higher values after the loading is finished. We observe 

such elastic response at any given loading amplitude. Even after very strong earthquakes, the 

fundamental frequency recovers: that is, during the earthquake of 23 October 2004 (Table 3.1), 

the frequency dropped significantly. However, the recovery was practically immediate (Figure 

3.4). After the Mw 9 Tohoku earthquake in 2011, the frequency recovery is observed during 

approximately 6 months, although in this case, it is only partial. Seven years after this great 

event, the fundamental frequency seems to be stable in a value that represents around the 60% 

of the initial elastic frequencies obtained in 1998. Despite of that, the building is still operative, 

and no damage is apparently seen.  

 
Parameters linked to the slow dynamics recovery also show evidence of the variable structural 

response. The level of heterogeneity in the material controls the behavior of relaxation times, 

recovery rates, and relaxation mechanisms amplitudes. This is manifested by clear variations 

of these parameters between periods (Figures 3.5, 3.7, 3.8, 3.11, and Table 3.2). Some of the 

relaxation parameters also seem to be sensitive to loading: that is, within a stable response 

period (P2), spikes in parameters τmin, τmax, and Amax are more or less coincident with the 

occurrence of large events (Figure 3.5). Moreover, variations of frequency Df, characteristic 

relaxation times and proxies of the extension of the bond system (i.e. bandwidth and Amax) are 

well correlated to the strain amplitude (Figure 3.7). This dependence is consistent with 

laboratory observations that indicate that the nonlinear response is proportional to the level of 

dynamic strain (Shokouhi et al., 2017a; Guyer et al., 1999; Ostrovsky et al., 2000).  

 
Laboratory experiments are performed under controlled conditions and strain amplitudes that 

do not damage the material. In practice, real buildings facing real earthquakes represent a much 

more complex problem. Multiple uncertainties coming from several sources (i.e. loading, 

environment, soil, instrumentation, material, connections, construction process, etc.), the 

possible mix of modal responses and the interaction between manifold elements, are all factors 

that make the structural response complex and unique. Despite all that, the relaxation models 
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proposed by Snieder et al., 2017; Shokouhi et al., 2017a, and Ostrovsky et al., 2019, originally 

developed for laboratory experiments, are well adapted to the building data. Our results are 

analogous to observations of nonlinear elastic behavior at small (i.e. laboratory) and large (i.e. 

Earth's crust) scales; and they are satisfactory as a first attempt to apply the models to real data 

at intermediate-scale (i.e. buildings). 

 
By applying seismic interferometry to borehole accelerometric data located right next to the 

building, Astorga et al., (2018) concluded that the contribution of the soil (i.e. soil-structure 

interaction) on the variation of the total response (i.e. soil-structure system) is less important in 

comparison to the contribution of the response of the structure itself. That study together with 

the results of this study allows us to confirm the structural origin of the slow dynamics, clearly 

seen in Figures 3.7, 3.8, 3.10 and 3.11, in relation to the degree of fracturing of the structural 

elements. A careful analysis of the slow dynamics recovery might allow us to understand the 

emergent unrevealed behavior related to cracks growth, friction, contact rates, healing, and so 

on. Understanding nonlinear elastic behavior might be helpful to improve our knowledge in 

dynamic response, allowing us to develop and calibrate models that are fundamental for 

predicting real structural behavior. 

 
By analogy with relaxation studies in granular materials, we infer that under proper loading 

conditions, micro-to-nanoscale heterogeneities such as cracks, might coalesce until causing 

macroscopic alterations of the structural properties. Here, nonlinear elastic processes within the 

bond system might explain transitory and permanent variations of structural dynamic response 

to seismic events; where thermodynamical and mechanical factors might contribute to the 

internal organization of particles that allows for the closing of cracks. This, however, is an 

ongoing research that require a lot of effort to try to unveil the physics behind the slow dynamics 

effects.  

 
The procedure followed to obtain the results presented in this chapter could be an easy way to 

detect changes in the structural response (i.e. damage). For example, the comparison of the 

structural response in terms of relaxation parameters before and after a specific event, for a 

same level of deformation, can provide us with important information about the extension and 

density of heterogeneities, i.e. cracks. The automatized computation of relaxation parameters 

applied to continuous and real-time instrumented buildings, would allow us to detect permanent 

variations in the response (increase of bandwidth, Amax, variations of a or G, etc. for equivalent 

loading), which is fundamental for making prompt and accurate decisions about structural 

health.  
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4  
4. NONLINEAR ELASTIC RESPONSE TO MONITOR STRUCTURAL 

DAMAGE IN BUILDINGS OF DIFFERENT TYPOLOGIES  

 
 
This chapter describes similarities between different building typologies, providing important 

hints for structural health and earthquake engineering. The general tendencies of frequency 

variations and the behavior of relaxation parameters are analyzed as a function of time and 

loading features, and the structural response variabilities are given according to building 

material and structural state. We analyze the influence of loading rates on buildings with 

different levels of damage, showing the parameters that have the most influence on the 

structure’s response during loading and recovery.    

 
 

4.1. Introduction 

Damage is understood as any change in the material of a system that negatively affects its 

current or future performance (i.e. Farrar and Worden, 2006). This can include changes to the 

boundary conditions, connectivity between system elements, variations in geometry or in the 

internal configuration of the material. Damage does not necessarily mean a complete loss of 

system operability or structural capacity, but rather a loss of its optimal and original design. To 

identify and characterize damage, it is necessary to compare two different conditions, for 

example, before and after an extreme event.   

 
All damage begins at the scale of the material, usually as a small defect or an anomaly of 

variable degree. Under proper loading conditions, these micro heterogeneities might coalesce 

until macroscopic alterations are caused on the scale of the system. Moreover, damage can 

accumulate gradually over long time periods (i.e. aging effects, cycling loadings, etc.) or can 

result from unexpected extreme events, such as earthquakes (i.e. Farrar and Worden, 2007). 

Structural health monitoring methods are deployed to detect damage, either based on the 

continuous assessment of information on system performance in the case of long-term 

monitoring, or on the rapid provision of reliable information on system capacity in the case of 
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extreme events. In civil engineering structures, a structural health monitoring strategy consists 

in tracking variations in dynamic features related to structural capacity, such as stiffness or 

dissipation coefficients. The choice of the feature used for structural health monitoring is 

therefore crucial to detect, localize and quantify damage.        

 

Structural damage generally causes variations in the resonance frequencies. However, 

frequency changes alone do not automatically imply damage, given that frequency changes also 

occur due to environmental and operating conditions (i.e. traffic, wind, temperature, etc.). 

Frequency variations due to this type of natural wandering are actually expected to be much 

smaller than those caused by damaging events. For example, in buildings, frequency 

fluctuations of about 0.5% - 2% are generally associated with ambient conditions (i.e. Clinton 

et al. 2006; Hua et al. 2007; Nayeri et al. 2008; Xia et al., 2011; Mikael et al. 2013; Guéguen 

and Tiganescu, 2018). Conversely, frequency changes due to structural damage in buildings 

can reach values of between 20% and 50%, characterizing different damage levels without 

systematically compromising structural safety (i.e. Dunand et al. 2004; Calvi et al. 2006; 

Todorovska et al., 2006; Trifunac et al., 2010; Vidal et al., 2014; Astorga et al., 2018). Structural 

damage caused by earthquakes produces permanent frequency changes related to a loss of 

stiffness (i.e. Clinton et al. 2006; Dunand et al. 2006; Celebi et al. 2016; Astorga et al., 2018; 

Di Sarno and Amiri, 2019); this is usually linked to the disconnection of structural and 

nonstructural elements, joint deformation, variations in the friction/border conditions between 

elements, and the opening of cracks. The recovery process observed after earthquakes is 

therefore the (partial or total) restoration of these effects, mostly due to the activation of 

relaxation processes on the scale of the material (Chapter 3).    

 

Moreover, co-seismic variations of fundamental frequencies in buildings are also related to 

loading features. Astorga et al., (2018, 2019) observed the maximum frequency drop as being 

proportional to structural drift and peak accelerations. Guéguen et al., (2016) observed the 

dependency of the frequency variation on deformation, starting at very slight deformations (i.e. 

around 10-7) related to nonlinear elastic behavior. Similar behavior is observed on Japanese data 

in our database (Fig. 4.1). This figure shows two different earthquakes (i.e. one small 

earthquake in 2009 and the 2011 Tohoku event) recorded in 36 buildings and the frequency 

variations are displayed as a function of structural drift. Nonlinearity starts at drift values 

between 10-7 and 10-6, i.e. 3 orders of magnitude lower than the yield strain value given for 

typical buildings (around ~10-3). Furthermore, a given drift value does not imply the same 

frequency variation. Considering the same buildings for both earthquakes, a between-building 
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variability of the response can be observed, providing the same distribution of residue for both 

earthquakes with respect to the adjusted linear functions. Between-event variability is also 

observed, as illustrated by the function shifts between the smallest and the largest earthquakes. 

Both kinds of variability (between-event and between-building) suggest that (1) building 

response is not governed only by loading amplitude, and (2) building response is not governed 

only by structural typology. Considering structural drift as a strain proxy of the structures and 

resonance frequency as a proxy of their elastic properties, the observed behavior differs from 

the conventional representation of nonlinear models, and is more similar to the typical nonlinear 

elasticity model, as demonstrated by laboratory tests and building monitoring (i.e. Johnson and 

Jia, 2005; Guéguen et al., 2016). 

 

 

Figure 4.1 a) Variation of the normalized frequency (∆f/f = (f-fi)/fi) as a function of drift computed 
for 36 buildings with different characteristics, during two earthquakes with dissimilar amplitudes and 
maximum strains. Each marker represents the average of 20 data bins. Dashed lines correspond to the 
mean response, given by the 2-term exponential function of the form a*exp(b*x)+c*exp(d*x) b) 
Histograms of the errors between the observed response and the fitting curve.  
 

In this chapter, we consider the results from 36 Japanese buildings of different typologies, 

monitored for approximately 17 years. First, we show the variation of fundamental frequency 

over time for reinforced concrete, steel, and mixed steel-reinforced concrete buildings under 

weak to strong seismic loadings. Next, we study the evolution of relaxation parameters after 

damaging earthquakes, showing the variability between building typologies. Finally, we 

evaluate the effects of loading and loading rate on the nonlinear elastic response of buildings 

during loading and recovery cycles. We conclude on the main factors controlling frequency 

variations and the importance of monitoring nonlinear elastic processes to detect structural 

damage. 
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4.2. Frequency variations over time 

In Chapter 2, we showed fundamental frequency variations over time for two buildings of 

similar typology: buildings ANX and THU. We observed that the variations are well correlated 

with loading amplitudes and structural degradation, and that they are notably modified after the 

largest earthquakes. Figure 4.2 shows the frequency variations of long-term monitored 

buildings grouped by structural material. A total of 9,343 earthquake recordings from the tops 

of 36 Japanese buildings were analyzed. The data correspond to: 

- 3,076 recordings in 14 reinforced concrete structures (i.e. RC), typically with 1 to 4 floors,  

- 4,313 recordings in 14 steel-reinforced concrete structures (i.e. SRC), typically with 4 to 

9 floors, and 

- 1,954 recordings in 8 steel buildings (i.e. S), characterized by high-rise structures (≥ 10 

floors). 

The number of earthquakes recorded varies in each building, but each of the selected structures 

shows long-term fundamental frequency variations during 1998 and 2014, and all of the 

selected buildings recorded the great (Mw 9) Tohoku earthquake (March, 2011) and some of 

its aftershocks. Several buildings also recorded other significant damaging earthquakes (i.e. 

Nigata-Chetsu in 2004, Miyagi in 2005 and Iwate in 2008). For each recording, the frequency 

variation is computed according to the procedure explained in Chapter 1, corresponding to the 

soil-structure system.  

 

Fig. 4.2 shows the frequency variations for the whole dataset, given as the difference between 

the co-seismic fmin and the pre-seismic fi fundamental frequency values, normalized with 

respect to fi. The color curves (i.e. blue, red and black) correspond to the smoothed functions 

(Savitzky-Golay, 3rd order) of the mean frequency variations according to building material (i.e. 

SRC, S and RC, respectively), with shaded areas representing one standard deviation. The total 

response, µ ± σ (i.e. MeanALL), is computed using all the buildings, and represented by yellow 

markers. MeanALL is computed considering different weights for each typology, according to 

the amount of data contributing to the overall analysis (0.46 for SRC, 0.33 for RC and 0.21 for 

S). Mean and standard deviation values are given Table 4.1.  
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Figure 4.2 Fundamental frequency variations over time for Japanese buildings of different typologies: 
RC (black), SRC (blue) and Steel (red). The main curves correspond to the mean response per typology 
computed for each 10 time bins, and smoothed with a 3rd order Savitzky-Golay filter. The shaded areas 
represent inter-typology variability (i.e. one standard deviation). The mean response ± standard 
deviation of all typologies is represented in yellow. a) Frequency variations between 1998 and 2014, 
with the arrows on the X-axis indicating the occurrence of known damaging earthquakes. b) Zoom on 
the frequency variations after the Tohoku earthquake in 2011.   
 

Regardless of building typology, the tendency of the fundamental frequency variations over 

time shows surprisingly similarities to that observed in the ANX building (Chapters 2 and 3). 

The same three periods are distinguished in the frequency variations, notably marked by the 

occurrence of major earthquakes: before 2005, between 2005 and 2011, and after 2011. A 

systematic decrease in frequency is observed for the most serious earthquakes, followed by 

recovery during conditioning (i.e. loading) in the aftershock sequence.  

 

Before 2005, frequency shift corresponds to an average reduction of 9.3±6.5% for S buildings, 

13.8±8.8% for SRC, and 15.0±9.5% for RC buildings, respectively. For the Nigata-Chetsu 

earthquake in October 2004, a frequency shift is observed followed by recovery, which lasts 

until the Miyagi event in August 2005, causing a new frequency decrease and posterior 

recovery. In 2008, the same tendency is observed with the occurrence of the Iwate earthquake. 

The average frequency variations over this period (i.e. 2005-2011) are 9.6±6.4%, 17.8±8.9%, 

and 15.3±9.6% for the S, SRC and RC structures, respectively. With the occurrence of the 

Tohoku event in 2011 and its aftershock sequence, variations increased sharply for all building 

typologies, especially for SRC structures. From 2011 to 2014, average reductions were 

13.9±5.5%, 28.7±12.3% and 19.3±8.8% for S, SRC and RC buildings, respectively (Table 4.1).  
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Table 4.1 Mean and standard deviation values associated with Fig. 4.2 
 

 
Before 2005  2005-2011 After 2011 

SRC 0.138 ± 0.088 0.178 ± 0.089 0.287 ± 0.123 

RC 0.150 ± 0.095 0.153 ± 0.096 0.193 ± 0.088 

S 0.093 ± 0.065 0.096 ± 0.064 0.139 ± 0.055 

meanALL 0.132 + 0.031 0.158 ± 0.041 0.222 + 0.063 

 
Before 2005, RC structures show the largest frequency decrease as a consequence of the energy-

dissipation mechanisms of cracking in concrete material (Chapters 2 and 3). The 

opening/closing of preexisting cracks leads to a co-seismic softening of the medium, and the 

cumulative effect over time induces a progressive softening of the system because some of the 

cracks remain open after excitation. After 2005, the mean frequency variation for all structures 

changes slightly (Tab. 4.1) after the 2004 Nigata-Chetsu event. This relatively strong 

earthquake suddenly increased the degree of cracking, particularly in RC and SRC buildings, 

thus making the formation of new cracks in these buildings without significant earthquakes less 

likely during the 2005-2011 period before the major Tohoku earthquake in 2011.  

 
The most significant frequency drop after major earthquakes and their aftershocks is recorded 

in SRC buildings. This might be explained by the interaction between steel and reinforce-

concrete structural elements, representing an important source of variability in overall structural 

behavior, particularly under strong shaking.  

 
Steel structures have the smallest frequency variations during the whole period analyzed. In 

Chapters 2 and 3, we showed a direct correlation between frequency variations and the presence 

of heterogeneities. Nonlinear elastic signatures have been observed in metallic materials under 

laboratory tests (i.e. Johnson and Sutin, 2005; and Granato et al., 1956) proposed a model to 

describe nonlinear response based on dislocations in metals. In steel buildings, cracks can 

appear under certain conditions (i.e. fatigue, extreme temperatures or stress corrosion). In an 

earthquake situation, we assume that the frequency variations are related to joint deformations 

and other heterogeneities or discontinuities, caused, for instance, in the connections between 

structural and non-structural elements, which therefore have a greater effect on the frequency 

variations in RC and SRC structures.  

 
Fig. 4.2 gives MeanALL values with deviation. The values per period are 13.2±3.1%, 

15.8±4.1% and 22.2±6.3%, before 2005, between 2005-2011, and after 2011, respectively. In 

Fig. 4.2 and Table 4.1, the meanALL values are predominantly influenced by RC and SRC 

structures, i.e. heterogenous materials control the mean frequency variations of the whole 

dataset.  
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The variability associated with each building-specific response is confirmed over the period 

2005-2011 (Fig. 4.2), as a result of the variability of damage experienced by each building. The 

responses of RC and Steel structures show smaller standard deviations after the largest 

earthquake in 2011 (i.e. σ = 0.088 and σ = 0.055, respectively) than SRC buildings (i.e. σ = 

0.123). The higher variability among SRC structures after the Tohoku earthquake is probably 

due to hybrid contribution of steel and RC behavior to the global response of a specific SRC 

building.  

 

The variability between countries is also studied and shown in Fig. 4.3. This figure displays the 

histograms of frequency variations (i.e. ∆f=fmin-fi) for buildings of the same typology (i.e. RC 

and S) located in Japan and US from our NDE1.0 database (Chapter 1). First, we observe a 

higher ∆f in RC structures than in Steel structures located in the same country. US buildings 

show a mean frequency variation of 0.445±0.285 Hz and 0.272±0.157 Hz for US-RC and US-

S buildings respectively: in the US, the coseismic frequency of RC structures decreases an 

average 1.6 times more than in S buildings. In Japan, ∆f is higher for RC than for S buildings 

(i.e. 0.345±0.227 Hz and 0.059±0.062 Hz, respectively, representing a ∆f almost 6 times greater 

for RC than for S). This comparison confirms the universality of the governance of 

heterogeneous materials over the nonlinear elastic response of structures, whatever the country. 

RC structures also show greater dispersion compared with Steel buildings in the same country, 

revealing high variability in the degree of cracking between RC structures. 

 

 
Figure 4.3 Histograms of the fundamental frequency variations (∆f = fmin – fi) in Japanese and US 
buildings with a) Reinforced Concrete, RC and b) Steel, S structures. Mean and standard deviation 
values are indicated in the legend.  
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In Fig. 4.3b, the difference in frequency variations between S structures is related to several 

reasons: the number of buildings considered (only 8 Japanese buildings compared with 48 

buildings in US), the range of loading values experienced by US and Japanese buildings, and 

the higher intra-typology variability for US buildings. Some authors have also observed the 

effects on resonance frequency of weather conditions, such as temperature variations (i.e. 

Clinton et al., 2006; Nayeri et al., 2008; Xia et al., 2011; Mikael et al., 2013; Guéguen and 

Tiganescu, 2018) or strong winds and heavy rain (i.e. Clinton et al., 2006; Herak and Herak, 

2009). Without additional information on the weather conditions, we cannot reach a valid 

conclusion, but these variations must be of a lesser order of magnitude compared with those 

produced by earthquakes.  

 

4.3. Evolution of relaxation parameters    

In Figure 4.2 the fundamental frequency recovers over several months after the largest 

earthquakes, regardless of the structural material, and shows hysteresis and discrete memory 

signatures as already seen in the ANX and THU buildings (i.e. Chapter 3). The relaxation 

models (i.e. Snieder et al., 2017; Shokouhi et al., 2017a and the log-linear function according 

to TenCate and Shankland, 1996) are applied to the earthquake data of the Japanese RC, SRC 

and S buildings, following a procedure similar to that described in Chapter 3 for the ANX 

building. The relaxation parameters (i.e. τmin, τmax, p, Amax, τc and bw) are computed for each 

event and averaged by building typology. Fig. 4.4 shows the evolution of relaxation parameters 

over time. The mean response ± standard deviation for all the buildings is also computed and 

represented by the yellow diamonds in Fig. 4.4 (i.e. meanALL). Generally, the relaxation 

parameters values increase over time, with a major shift occurring after the large damaging 

earthquakes (October 2004 and March 2011, denoted by vertical dashed lines). These 

significant earthquakes define time periods characterized by notable variations in the structural 

response, as seen in the behavior of the fundamental frequencies (i.e. Fig. 4.2). The mean values 

of the relaxation parameters are shown in Table 4.2. The increase in relaxation parameters over 

time is particularly noticeable for τmin, τmax, τc and bw in Fig. 4.4 and Table 4.2, suggesting: 

- A general softening in all building typologies due to increasing heterogeneities (i.e. 

cracks in RC and SRC structures, joint deformations in Steel buildings, changes in 

friction conditions and connections between elements, etc.). The increase of τmin values 

indicates delays to the start of the recovery process, associated with the closing of the 

smallest cracks, which might occur in damaged materials that are less sensitive to 

changes of state.    
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- Longer relaxation processes and later relaxation mechanisms. τmax and τc values are 

related to the final and typical relaxation times, respectively. The increments of τmax and 

τc are associated with the increase in size of maximum and typical cracks, respectively. 

This might explain the results observed in granular materials, such as RC and SRC. In 

Steel buildings, however, the increase in τmax indicates a longer relaxation process, 

related to the time that the building takes to return to a state of equilibrium after the 

earthquake. As structural flexibility increases, the final recovery time (i.e. τmax) might 

also increase. In turn, if the recovery process is longer, the characteristic relaxation time 

(i.e. τc) is most likely to increase, since the whole relaxation would be expected to be 

determined by longer mechanisms.  

- Increment in the variety of heterogeneities. Bandwidth values, bw, are directly related 

to the duration of the entire relaxation process. In RC and SRC structures, the increase 

of bw over time can be translated by a greater variety of crack sizes. In Steel buildings, 

bw values are higher than in RC and SRC, indicating longer relaxation processes, as 

also inferred from the behavior of τmax. However, the main relaxation mechanisms in 

this typology are not linked to cracking, but to joint activation. Therefore, this suggests 

that the recovery associated with joints and connections takes longer than the process 

of closing cracks. Moreover, the increase of bw in S buildings over the different time 

periods (i.e. from <2005 to 2005-2011 and then to >2011) might indicate the transition 

from the elastic domain to the ductile domain, with a longer time required to recover 

initial shape.   

 

Considering the slope p and the maximum spectrum amplitude Amax, the observations of 

Chapter 3 are confirmed: the rate of recovery tends to increase with damage, and Amax can be a 

relevant proxy of crack density. However, the relaxation parameters must be considered 

together to provide a better idea of the cracking phenomena. For example, although bw 

increases in RC buildings over the time periods (i.e. from (log) 1.355 to 1.443 and then to 1.632, 

Table 4.2), reflecting a greater variety of crack size, the mean values of p and Amax are more or 

less stable from one period to other (i.e. around 3-4%). This suggests equivalent crack density 

over time. On the other hand, SRC buildings show an increase in the variety of cracks after 

2005 (i.e. bw increases from (log) 1.270 to 1.645) but a smaller number (i.e. Amax decreases 

from 3.2% to 2.4%). After the Tohoku event in 2011, not only the variety but also the number 

of cracks increases (i.e. bw changes from (log) 1.645 to 1.735 and Amax from 2.4% to 4.7%). 

These observations are reflected in the recovery rate, p, which progressively increases from 
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2.0% to 3.7% and then to 4.1%, during the <2005, 2005-2011 and >2011 periods, respectively 

(i.e. Table 4.2). 

 

 
 
Figure 4.4 Evolution of the different relaxation parameters as a function of time for Japanese SRC 
(triangles), RC (squares), and S (circles) buildings. a) Minimum relaxation time τmin b) Maximum 
relaxation time τmax c) Log-time slope p d) Characteristic relaxation time τc e) Bandwidth bw and f) 
Maximum spectral amplitude Amax. Each marker represents the averaged value of 10 consecutive events. 
The yellow diamonds correspond to the mean response, MeanALL, considering all typologies, and the 
vertical black lines are one standard deviation from MeanALL. The two vertical dashed lines correspond 
to the major earthquakes (i.e. the 2004 Nigata-Chetsu and the 2011 Tohoku events), which caused 
significant variations in the relaxation parameters. The error (ϵ) for each building typology with respect 
to the mean response MeanALL, is shown at the bottom of each plot. The error is computed as: ϵ = 
(Xtypology – XmeanALL) / σmeanALL ; where Xtypology denotes each relaxation parameter (i.e. τmin, τmax, p…) for 
SRC, RC and S, respectively; XmeanALL is the mean value of the relaxation parameter considering all the 
buildings as a single group; and σmeanALL is the corresponding standard deviation.  
 

Finally, granular materials show, on average, higher values of p and Amax for equivalent time 

periods, confirming that the slow dynamic processes are controlled by the heterogeneities. This 

is also confirmed by the error (ϵ) plots shown at the bottom of each plot in (Fig. 4.4). The errors 

ϵ for RC and SRC buildings mostly fall within 2σ throughout the time period. Errors for Steel 

structures are larger, and some points fall outside the 2σ threshold, notably after 2011, reaching 

maximum errors of approximately 5σ. From this, we infer that: 1) mean recovery in buildings 
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is mainly governed by heterogeneous materials such as RC and SRC, 2) as the level of damage 

increases (i.e. after significant earthquakes), the mean response of “homogeneous” materials 

(i.e. Steel) is not as well described by the mean response MeanALL. This proves the relationship 

between the recovery of elastic processes and the degree of fracturing in granular materials, as 

seen in laboratory and seismological observations (i.e. TenCate et al., 2000; Ostrovsky and 

Johnson, 2001; Johnson and Sutin, 2005; Brenguier et al., 2008; Wu et al., 2009a and 2009b; 

Johnson et al., 2009). 

 

Table 4.2 Mean and standard deviation values of the relaxation parameters for the periods before 2005, 
between 2005 and 2011, and after 2011 (defined by the occurrence of the 2004 Nigata-Chetsu and the 
2011 Tohoku events, respectively) and for each building typology (i.e. SCR, RC and S). A graphic 
representation of these values is shown in Fig. 4.4. 
 

  Before 2005 2005-2011 After 2011 
  µ ± σ  µ ± σ µ ± σ 

log τmin 

RC 0.508 ± 0.179 0.623 ± 0.159 0.762 ± 0.190 

SRC 0.581 ± 0.178 0.919 ± 0.158 0.924 ± 0.153 

S 0.663 ± 0.140 0.855 ± 0.182 1.076 ± 0.135 

log τmax 

RC 0.981 ± 0.127 1.179 ± 0.175 1.314 ± 0.130 

SRC 0.924 ± 0.141 1.315 ± 0.158 1.443 ± 0.145 

S 1.198 ± 0.034 1.305 ± 0.091 1.525 ± 0.071 

p 

RC 0.033 ± 0.016 0.031 ± 0.010 0.035 ± 0.011 

SRC 0.020 ± 0.008 0.037 ± 0.013 0.041 ± 0.014 

S 0.018 ± 0.003 0.019 ± 0.011 0.023 ± 0.009 

log τc 

RC 0.903 ± 0.126 1.014 ± 0.127 1.136 ± 0.116 

SRC 0.809 ± 0.133 1.138 ± 0.124 1.251 ± 0.106 

S 0.941 ± 0.157 1.171 ± 0.127 1.352 ± 0.105 

log bw 

RC 1.355 ± 0.117 1.443 ± 0.105 1.632 ± 0.116 

SRC 1.270 ± 0.140 1.645 ± 0.136 1.735 ± 0.109 

S 1.366 ± 0.137 1.586 ± 0.095 1.807 ± 0.121 

Amax 

RC 0.045 ± 0.015 0.041 ± 0.014 0.042 ± 0.012 

SRC 0.032 ± 0.011 0.024 ± 0.010 0.047 ± 0.014 

S 0.021 ± 0.007 0.022 ± 0.007 0.025 ± 0.007 

 

In Fig. 4.4, some relaxation parameters such as p and Amax, are highly dependent on the material, 

whereas others, like τmin and τc, are material-dependent but to a lesser extent. Values of τmax, 

however, do not seem to be controlled by the building typology (i.e. the mean response of each 

material falls within 2σ of the meanALL response). This is consistent with the findings of 

Snieder et al., 2017, which state that τmax is mainly controlled by the loading amplitude.  
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The maximum frequency variation shows to be related to loading and structural material, 

showing also a clear link between material and damage. In Figure 4.5, the model of Ostrovsky 

et al., (2019) is applied to fit our building data. This gives the mean frequency variations before 

and after the Tohoku earthquake, for each building typology and according to the level of 

structural deformation (i.e. proxy of loading, in this case). Two groups of data are displayed in 

Fig. 4.5 corresponding to structural drifts, ∆2 ranging from 5x10-6 to 1x10-5, and ∆5 from 1x10-

4 to 5x10-4. The mean (µ) and standard deviation (σ) values are shown in Table 4.3. For all 

typologies, the mean frequency variation and its variability increase as loading increases (i.e. 

from ∆2 to ∆5) and damage increases (i.e. from before to after Tohoku), corresponding to the 

observations in Chapter 3. RC is the typology with the highest values of µ and σ (Table 4.3). 

For example, after Tohoku and for ∆5, the variations are 12.357±7.076, 10.518±3.722 and 

5.426±1.119 for RC, SRC and S, respectively. Frequency degradations in RC structures are 

approximately twice those of S buildings. This proves the sensitivity of fundamental frequency 

fluctuations to the presence of heterogeneities in the material, confirming the conclusions of 

Fig. 4.2.  

 

 

Figure 4.5 Recovery of the fundamental frequency over time for RC, SRC and S buildings and 
different strain amplitudes a) before the Tohoku earthquake and b) after the Tohoku earthquake. The 
solid curves represent the mean frequency recovery, ∆f, normalized to the final frequency, ffapp, (see 
Chapter 3). The colors correspond to two drift ranges (∆2= 5x10-6 - 1x10-5 and ∆5= 1x10-4 - 5x10-4).  
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Table 4.3 Mean and standard deviation of fundamental frequency variations of the curves shown 
in Fig. 4.5 for each period, material and strain level. 
 

 
 

Before 2011 After 2011 

 
 

µ ± σ    µ ± σ    

 RC 7.155 ± 2.928 9.380 ± 3.667 

∆2 SRC 4.620 ± 1.774 6.313 ± 2.970 

 S 3.389 ± 0.324 4.468 ± 1.443 

 RC 9.691 ± 2.832 12.357 ± 7.076 

∆5 SRC 9.889 ± 2.526 10.518 ± 3.722 

 S 5.105 ± 1.316 5.426 ± 1.119 

 

Todorovska et al., (2006) and Guéguen et al. (2016) attribute the recovery of the system 

frequency in buildings to changes in the soil or in the soil-structure boundary. In Chapter 2, we 

showed that soil effects cannot be ignored, particularly after major earthquakes causing high 

strain values in the uppermost soil layers. However, the slow dynamics observed in the ANX 

building were mainly controlled by its structural state. In order to develop this analysis, the 

relaxation spectrum (i.e. Shokouhi et al., 2017a) applied to one building of each typology (i.e. 

SRC, RC and S) is shown Fig 4.6 in order to analyze the frequency recovery after the Tohoku 

earthquake. The buildings were built during the same period (i.e. 1994, 1995 and 1998), they 

are located in the same area (i.e. around Tokyo) with foundations in soil with Vs30 falling within 

the 220-300m/s range.   

 

Clear distinctions are observed between the slow dynamics of the 3 buildings, with stronger 

evidence of relaxation effects in the RC building. The RC building (i.e. black curve) shows the 

maximum frequency variation ∆f/f, reaching 5% degradation. The S building (i.e. red curve) 

shows the smallest ∆f/f (i.e. 0.8%) and the SRC structure (i.e. blue curve) exhibits an 

intermediate response, with a maximum frequency variation of 1.8%. The recovery slope is 

also clearly steeper for the RC structure. The RC spectrum shows a value of Amax that is 3.3 

and 7.2 times higher than the values for the SRC and S buildings, respectively. The spectrum 

bandwidth is smaller in the RC building and larger in the S sample. This suggests that the RC 

building presents a smaller variety of cracks, with a smaller typical size (i.e. smaller τc, 

spectrum shifted to the left) but a much larger number of cracks than the other two structures. 

The SRC building shows a response more similar to the S building, but with larger characteristic 

cracks (i.e. larger τc, spectrum shifted to the right). Because the site conditions are the same, 

the effects of the soil on the system recovery should be equivalent for all three buildings. These 

results therefore confirm the conclusions drawn from the ANX building in Chapter 2 on the 
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predominance of structural response on total recovery. These results also support the 

observations from Figures 4.2-4.5 and Tables 4.1-4.3 on the stronger influence of structural 

heterogeneities on frequency variations and slow dynamics.  

 

 

Figure 4.6 (Top) Normalized fundamental frequency variation, ∆f/f, as a function of relaxation time 
during recovery after the Tohoku earthquake in 3 buildings: RC (black dashed curve), SRC (blue dotted-
dashed curve) and S (red solid curve). (Bottom) Relaxation spectra for the 3 analyzed buildings, which 
are located in the same area, founded on similar soil and built during the same period.  
 

In this study we relate frequency variations to loading amplitude, building typology, and 

structural state. The relationship with loading features, however, is still not totally clear. The 

behavior observed in the frequency variation as a function of structural drift (Fig. 4.1) cannot 

be explained by either loading amplitude or building typology. In the next section, we will 

evaluate the influence of loading rate on the structural response, presenting two case studies: 

the ANX building and the THU building.  

 

4.4. Influence of loading and loading rate   

In field observations, velocity reductions and recovery rates due to earthquake-related processes 

are proportional to the degree of excitation (i.e. Richter el al., 2014; Gassenmeier et al., 2016; 

Rubinstein et al., 2007). Similarly, in rocks and granular media, modulus softening and 

successive recovery appear to be dependent on both effective pressure and wave duration 

(TenCate and Shankland, 1996; Johnson and Jia, 2005; Johnson and Sutin, 2005). Moreover, 

Johnson and Jia, (2005) detected a strain threshold below which the material behaves in a linear 

elastic manner. This threshold increases progressively with pressure, to approximately 10-6. The 

resonance frequency is therefore dependent on strain for strain values above this threshold. 

However, Guéguen et al., (2016) noticed significant nonlinear elastic behavior in the 
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dependency of the frequency variation on deformations in buildings under weak and strong 

excitation, starting at values as low as <10-5.  

 

4.4.1. Case 1: the ANX building 

Figure 4.7 shows the transient change in normalized frequency of the ANX building as a 

function of structural deformation, computed each 0.04s time step, during earthquakes 

occurring during the structurally stable period before the Tohoku event. (i.e. P2 in Fig. 3.4). 

The events are classified according to the maximum strain triggered in the building, ∆max, as a 

parameter consistent with loading amplitude (Fig. 3.2 and Chapter 1). Five ranges of ∆max were 

considered, varying from 1x10-6 to 5x10-4 (similar to the strain ranges defined in Chapter 3). 

The relationship between frequency reduction and deformation starts at very low values, around 

1x10-8 for the smallest events, and at 1x10-6 in cases of stronger excitation (Fig. 4.7). This is 

analogous to the observations from Fig. 4.1 and those made by Johnson and Jia, (2005) and 

Guéguen et al., (2016), and represents a typical signature of nonlinear elasticity, as observed in 

several materials (i.e. Guyer and Johnson, 1999; Ostrovsky and Johnson, 2001; Guyer and 

Johnson, 2009 and references therein). Moreover, for the same deformation, the modulus 

softening diminishes progressively as loading increases, indicating that the structural response 

is not governed by strain amplitude.  

 

 

Figure 4.7 The change in normalized frequency, ∆f/f = (f-fi)/fi, of the ANX building with respect to 
structural deformation, and drift, computed every 0.04s, within the time-histories of earthquakes 
occurring during the stable period between 2006 and March 2011. fi represents the pre-seismic 
fundamental frequency. Five ranges of loading amplitude are considered, i.e. ∆max. 
 

It is known that most structural materials used in civil engineering are highly sensitive to the 

process of loading. Properties such as strength, stiffness and ductility might be strain rate 

dependent (Bischoff and Perry, 1991; Houqun et al., 2016). The strain rate effect is a basic 

property in the dynamic response of heterogeneous materials, such as concrete. For example, 
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stiffness can be enhanced at high loading rates in the compressive behavior of concrete. 

Bischoff and Perry (1991) explained this enhancement by the decrease in internal 

microcracking, for a given level of stress, as strain rate increases. Furthermore, Johnson and Jia 

(2005) noted that, for equivalent strain amplitudes, the dynamically-induced reduction in elastic 

modulus was less pronounced than in resonance experiments, concluding that conditioning 

effects also control modulus softening; this is also seen in diverse systems, including damaged 

materials (TenCate and Shankland, 1996; Johnson and Sutin, 2005). Moreover, previous studies 

of concrete structures under earthquakes (Houqun et al., 2016) have indicated that the maximum 

strain rate observed in these cases ranges from 10-3 s-1 to 10-2 s-1. The authors determined that 

the mechanisms controlling strain rate effects are mainly related to thermally-activated 

mechanisms and energy dissipation. Similar conclusions were made by Bischoff and Perry 

(1991) and Qi et al., (2009), who observed that the low-rates region is controlled by thermal-

activated mechanisms. As strain rate increases, there is a transition between the mechanisms 

governing the material response: dissipation mechanisms emerge and gradually become 

dominant, as well as inertial effects. Crack density increases, and rate sensitivity is a result of 

the combined effects of ongoing energy dissipation and new thermally-activated mechanisms. 

In heterogenous materials, such as concrete, there might be a critical strain rate above which 

internal microcracks start to open/close progressively, controlling the overall response of the 

system.      

 

Figures 4.8a and 4.8b show the effects of strain rate on the frequency variation analyzed during 

fast loading (i.e. co-seismic transient frequency drop) and recovery (i.e. after loading), 

respectively. Different strain amplitudes (i.e. ∆max in Fig. 4.7) are considered. Earthquakes 

occurring during stable periods (i.e. P2 and P4 in Chapter 3) are considered, grouped and 

averaged. Several comments can be made about Figure 4.8:  

- The pattern of frequency variations with strain rate during loading is different to that 

during recovery regimes. Frequency reductions during the loading phase seem to be 

dependent on strain rate. Regardless of loading amplitude, frequency reductions are 

observed at values around 10-7s-1 (Fig. 4.8a-Left), which represent the activation point 

of nonlinearities related to the presence of cracks (i.e. Houqun et al., 2016; Bischoff and 

Perry, 1991; Qi et al., 2009). Above 10-7s-1, as strain rate increases, the fundamental 

frequency decreases, following the same slope for different loading amplitudes (i.e. 

parallel slopes in the ∆f/f versus strain rate relationship). This result suggests that the 

transition to nonlinear response at a strain rate of 10-7s-1 implies the progressive 
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activation of internal microcracks, causing constant frequency reductions at any loading 

amplitude. 

 
- The activation strain rate value 10-7s-1 does not change after the Tohoku earthquake (Fig. 

4.8a-Right). Internal microcracking is activated for the same strain rate. However, the 

∆f/f loading amplitude slopes decrease after Tohoku, reaching smaller frequency 

reductions than before 2011 for the same strain rate. This effect is more obvious with 

stronger excitation and higher strain rates, implying that structural response is governed 

by secondary order factors rather than loading. For example, the distribution of crack 

size controls stiffness and the response is more dependent on structural state. As crack 

density increases, the energy necessary to activate new cracks (and therefore reduce 

frequency) increases, as illustrated by the slighter slope after Tohoku (Fig. 4.8a-Right). 

After 2011 the maximum frequency reduction seems to decrease, and this value is not 

clearly correlated with loading amplitude.  

 

- During the frequency recovery period before the Tohoku earthquake (Fig. 4.8b-Left), 

frequency variations with strain rate are quasi parallel for different loading amplitudes. 

This indicates gradual frequency recovery as conditioning effects decrease. For 

example, taking the stronger excitation levels (i.e. red or yellow curves in Fig. 4.8b-

Left) and starting from a strain rate of 10-4s-1, the normalized frequency variation is 

around 0.10; at this strain rate, the structure is still under the effects of conditioning. As 

the excitation passes, strain rate decreases, as does the frequency variation. At 10-5s-1, 

∆f/f is around 0.02, and at 5x10-6s-1 ∆f/f is 0, denoting the end of recovery (i.e. relative 

to the final apparent value, ff of the earthquake recording). The same result is observed 

for all loading amplitudes, with recovery starting at lower strain rates, corresponding to 

the strength of the event. Recovery rates thus increase as the amplitude of excitation 

increases, as also observed in laboratory experiments on granular materials (i.e. 

Ostrovsky and Johnson 2001; Shokouhi et al., 2017a). At strain rates in the order of 10-

7s-1, corresponding to noise rate levels, recovery is complete for any excitation 

amplitude. This value matches the threshold that activates microcracking during loading 

(i.e. Fig. 4.8a). 
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Figure 4.8 The change in normalized frequency, ∆f/f, of the ANX building with respect to strain rate 
during a) loading and b) recovery phases. Strain rate is computed as (∆i+1-∆i)/ts, with ts = 0.04s and 
∆=structural drift. (Left) Structural response before the Tohoku earthquake (considering events from the 
stable period between 2006 and March 2011). (Right) Structural response after the Tohoku earthquake 
(considering events from the stable period in 2012). fi represents the pre-seismic fundamental frequency 
and ff corresponds to the final apparent fundamental frequency observed in the earthquake recordings. 
The colors represent different loading amplitude ranges, in terms of maximum strain, ∆max, indicated in 
the last plot. For b), the plots must be read from right to left, because we are in the recovery phase and 
loading effects are passing. 
 

- Effects of the 2011 Mw 9.1 earthquake are also evident in frequency recovery as a 

function of strain rates (Fig. 4.8b-Right). Firstly, behavior is less dependent on loading 

amplitude (i.e. equal behavior for different amplitude ranges, for example, the red and 

green curves). Secondly, the shape of the ∆f/f versus strain rate curves has changed, 

except for the smallest loadings (i.e. black curve) and shows two regimes: at the 

beginning of the recovery period (i.e. highest strain rates), the ∆f/f variation is very fast 

with no strain rate variation. Then, the frequency recoveries as strain rate decreases, 

until the structure is no longer conditioned by shaking and therefore ∆f/f becomes 0 at 

around 10-7s-1.  

 

4.4.2. Case 2: the THU building 

Elastic property variations in granular materials after dynamic excitation depend on loading 

and structural state (i.e. Van Den Abeele et al., 2000b; Ostrovsky and Johnson, 2001; Guyer 

and Johnson, 2009). Figures 4.7 and 4.8 show the effects of loading and loading rate on the 

reduction and recovery of fundamental frequency in the ANX building. However, Figure 4.8 
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also shows that structural response changes after damaging earthquakes, causing frequency 

variations less sensitive to loading features and more linked to the current state of cracking 

within the structural material. These observations correspond to the ANX building, which was 

considered as being slightly damaged by the 2011 Tohoku event (Kashima, 2014). The effects 

of greater damage are observed in Figure 4.9, which shows frequency variations as a function 

of strain rate during loading and recovery (similar to Fig. 4.8) for the THU building.  

 

The lowest range of loading amplitude (i.e. ∆max) in Figure 4.9 is equivalent to the ∆3max of 

Figure 4.8, denoting the high excitation levels experienced by the THU building over its 

lifespan. This is also shown by the lowest strain rate computed, around 10-7 s-1. Frequency 

variations start to become dependent on strain rate at ~10-5 s-1 (i.e. vertical dashed lines in Figure 

4.9a) for any loading amplitude, confirming the existence of a threshold that determines the 

transition between linear and nonlinear behavior. However, the level of cracking in the THU 

building causes frequency variations to appear at a higher strain rate value 10-5 s-1, compared 

with 10-7 s-1), confirming that more energy is required to change the current state of a material 

that is already cracked. 

 

The building response during loading changed after 2011, showing faster frequency reductions 

which might be linked to the substantial increase in the density of existing cracks. The energy 

required to propagate an existing crack is much less than the energy required to open a new 

crack. Therefore, the strain rate (i.e. energy) necessary to cause certain frequency reductions 

after 2011 decreases compared with that needed to cause the same frequency reduction before 

2011. This implies that the already cracked structure (i.e. before 2011) suffered a significant 

increase in existing cracks, because of its high susceptibility to crack propagation at lower 

energy levels. This explains the steeper gradient of the slopes in Figure 4.9a-Right.  

 
In the recovery phase figure 4.9b., high frequency recovery rates are observed, reaching ∆f/f = 

0 at strain rates between 10-5 s-1 and 10-4 s-1. Steep recovery slopes are observed in damaged 

materials (i.e. TenCate et al., 2000; Ostrovsky and Johnson, 2001; Chapter 3 and Table 4.2) 

because there are more cracks, and internal particles move quickly to fill them (See Chapter 3).     
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Figure 4.9 Similar to Figure 4.8 but for the damaged building, THU. 

 

4.5. Conclusions 

In this chapter, earthquake data recorded in several buildings were analyzed with the main 

objective of determining the parameters controlling nonlinear elastic processes, such as 

frequency drops and slow dynamics. Long-term monitored buildings of different typologies 

were studied, showing evidence of nonlinear elasticity similar to specific cases, such as the 

ANX and THU buildings, presented in previous chapters. Extending the behavior observed to 

buildings with different characteristics is an important step that might constitute the basis for a 

general method to estimate overall structural health, based on the monitoring of nonlinear 

elasticity and recovery effects after earthquakes.  

 

The fundamental frequency of a structure varies proportionally to the square root of its stiffness. 

Detecting frequency changes might therefore represent stiffness changes, which is fundamental 

to the monitoring of structural degradation and damage. Damage assessment is usually based 

on visual inspections; however, civil infrastructures suffer from modifications of their internal 

properties that are not visible, but that can accumulate to the point of causing macroscopic 

changes and compromising the safety of the structure. One of the advantages of examining 

nonlinear elasticity is that we can infer internal degradation due to aging or external forces, 

which enables structural response variations to be tracked and damage to be detected at an early 

stage. Fundamental frequency, however, is just a global indicator of damage; it cannot detect 
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stiffness changes if the damage is localized. A complementary study is therefore necessary to 

include the analysis of higher modal frequencies.  

 

Our results show a general tendency of frequency variations and relaxation parameters over 

time that is independent of building typology. However, the intensity with which nonlinear 

elastic processes are demonstrated is clearly dependent on the structural material as well as on 

the structural state. The parameters of frequency drops and slow dynamics are much more 

pronounced in granular, heterogeneous materials, such as RC or SCR. Steel buildings also show 

nonlinear elastic signatures, but to a lesser extent, and the mechanisms governing the response 

might be more related to heterogeneities in border conditions or joint deformations.  

 

Response variability is also associated with building typology and structural state. Steel 

structures show an almost uniform response, with little inter-building and inter-event variation. 

Conversely, RC and SRC structures show higher inter-building variability, due to different 

levels of cracking and the contribution of responses from different structural -and nonstructural- 

elements. Variations in environmental conditions can also modify system response (Clinton et 

al., 2006; Todorovska and Al Rjoub, 2006). The characteristics of our data do not enable 

quantitative correlation between weather conditions and frequency variations. However, 

ambient effects are assumed to be small (i.e. around 1%) and compensatory during long-term 

monitoring. The degree of frequency variation observed is directly linked with the occurrence 

of strong motions. Soil effects are also known to contribute to system frequency variation, but 

in our case, we determined that the superstructure-response controls all the observed behavior.  

 

Furthermore, we observed that frequency variations are also dependent on loading features (i.e. 

strain amplitude, strain rate):  

- Softening (i.e. a decrease of frequency due to a decrease in the modulus) increases as 

loading values increase (Fig. 4.7). The observed variations in the elastic properties are 

mainly due to transient and permanent changes in structural stiffness, which is 

controlled by the bond system; in this case, it is the system of cracks and other 

heterogeneities that creates weaknesses in the medium. The structural state changes 

reported for different building typologies (Fig. 4.2) are apparent in the slow dynamic 

recovery process following earthquakes (Fig. 4.2-right) and the relaxation parameters 

over time (Fig. 4.4).  

- As the density of heterogeneities (i.e. damage) increases, the structural response is less 

dependent on loading features and more governed by the level of heterogeneities 
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(Section 4.4). The structural response becomes more complex and more difficult to 

predict using loading parameters, which is typical in nonlinear behavior. 

- Structural response seems to be more sensitive to strain rates than to strain amplitudes. 

Strain amplitudes determine the maximum frequency variation ∆f, whereas strain rates 

control the behavior of frequency variations during loading and recovery periods 

(Section 4.4). 

- Variations of frequency with strain rates show different behavior for loading and 

recovery periods: during loading, a threshold defines nonlinear behavior, i.e. the 

activation of heterogeneities such as cracks. During recovery, frequency variations 

decrease as conditioning effects decrease, and higher excitation amplitudes show higher 

recovery rates.  

- The threshold defining strain rate dependence during loading is around 10-7 s-1 in 

slightly cracked media. This threshold increases to 10-5 s-1 in densely cracked materials, 

indicating the higher level of energy needed to cause structural response variations in 

damaged media. 

 

In this study we observe a strong correlation between nonlinear elastic processes and structural 

damage. Analyzing the recovery of frequency drops and slow dynamics after earthquakes is 

therefore a potential means of monitoring structural health for several reasons. Firstly, because 

studies suggest that different building typologies behave in the same manner under certain 

degrees of variability. Secondly, because nonlinear elastic processes are produced at different 

levels of loading, starting at very small strain levels, and can be observed by short- and long-

term monitoring. Thirdly, because the slow dynamics and relaxation parameters, which are 

relatively easy to compute, can describe internal properties linked to structural damage. 

Comprehensive new models to analyze structural response and monitor structural degradation 

should include: frequency variations over time, slow dynamic relaxation parameters, and 

loading features such as strain rate.    
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General Conclusions  

 
 
In this study we characterized the building response by analyzing nonlinear elastic processes 

during earthquakes. Previous studies have revealed the presence of these processes in buildings, 

but to our knowledge, this is the first time that they are analyzed in more detail, notably the 

slow dynamics recovery following seismic excitations. The physical origin of these processes 

was discussed presenting direct analogies with laboratory observations. The main concerns 

were to determine if it is possible to find clear relationships between nonlinear elastic signatures 

and structural state, and to reveal the parameters governing the observed structural response.  

 

We first compiled real earthquake data recorded in buildings to create a new database including 

computed parameters that describe ground motion intensity and building response. This 

database will soon be available to the public in the form of a flat-file, providing invaluable 

information for the earthquake engineering community. Real earthquake data collected in 

buildings allow for the validation and calibration of existing models, and help the understanding 

of the physics controlling the structural behavior. Reduction of epistemic uncertainties is also 

possible with the development of data-driven damage prediction equations. The database might 

be also useful to determine efficiency and sufficiency of ground motion parameters in the 

prediction of structural response, besides other numerous applications with high potential use 

in performance-based earthquake engineering.  

 

The database includes the ANX building, with 1630 events recorded in 20 years of 

measurements. We analyzed this building to confirm the presence of nonlinear elasticity at 

short- and long-term structural monitoring. The ANX building shows clear signatures of 

nonlinear elastic response, in the same manner as observed in laboratory experiments and in 

the Earth’s crust. Variations of the fundamental frequency of the soil-structure system are 

observed even for very low levels of strain, and slow dynamics recovery is observed for ~6 

months during the Mw 9.0 Tohoku aftershock sequence. We concluded that nonlinear elastic 

response in the ANX building is mostly controlled by nonlinearities in the superstructure, 

created due to the presence of cracks during earthquakes. The contribution of the nonlinear soil-

response is non-negligible, particularly for higher strains (>10-5). An interesting observation is 

that, despite a permanent frequency reduction of ~60% after the Tohoku earthquake with 

respect to the initial elastic frequency, the building is still operative, contradicting some 

frequency-based decision criteria that would have catalogued the building as inoperative. This 
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evidences the complexity of nonlinear structural response, as well as the need for further data-

driven analyzes to calibrate and improve decision-making methods for structural health 

monitoring after strong earthquakes.  

 

The frequency recovery observed in buildings after earthquakes was analyzed by adapting 

models developed in laboratory to describe relaxation of granular materials. Despite the 

differences of scales, loading conditions and complexity levels, the relaxation models are able 

to characterize frequency recovery in buildings, showing clear connections with the degree of 

fracturing of the structural elements. The level of heterogeneities in the material controls the 

behavior of relaxation parameters, which are also sensitive to loading. We observed a good 

correlation with strain amplitudes, confirming that nonlinear response is proportional to the 

level of dynamic strain, as also seen in laboratory. We similarly observed that some relaxation 

parameters can serve as good proxies of the extension of the bond system (i.e. increase in the 

number of cracks, or extension of the cracks variety). On the other hand, the multiscale feature 

of slow dynamics was proved in buildings: recovery processes are observed within- and 

between earthquakes, showing relaxation processes lasting from seconds to years. Hysteresis 

and discrete memory effects during the recovery are also comparable to those observed in 

laboratory, confirming the universality of this phenomenon. By analogy with relaxation 

experiments, we infer that nonlinear elastic processes within the bond system might explain 

transitory and permanent variations of structural response to seismic events, where 

thermodynamical and mechanical factors might contribute to the internal organization of 

particles that allows for the closing of cracks, manifested as frequency recoveries.  

 

The extension of the observed nonlinear elastic behavior to different typology buildings might 

constitute the fundamental basis for a general method to estimate global structural health, based 

on the monitoring of frequency shifts and recovery effects after earthquakes. Our results show 

that there is a general tendency of frequency variations and relaxation parameters that is 

independent on the building typology. However, variabilities in the nonlinear elastic processes 

are material-dependent. These processes are manifested with greater intensity in granular 

materials such as reinforced concrete, and mixed structures like steel-reinforced concrete 

buildings. Nonlinear elastic observations in steel structures are less forceful, and they might be 

linked to joints deformations or heterogeneities in boundary conditions. On the other hand, we 

observed that the behavior of fundamental frequency variations is dependent on strain-rates, 

which seem to control loading and recovery phases. During loading, there is a threshold value 

of strain-rate defining the nonlinear behavior, i.e. the activation of heterogeneities. This 
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threshold is around 10-7 s-1 in slightly-cracked media and around 10-5 s-1 in densely-cracked 

materials, evidencing the increase of energy needed to cause variations in the structural 

response of damaged media. During recovery, damaged materials and strongest earthquakes 

show faster recovery rates, supporting the conclusions from the behavior of the relaxation slope. 

We clearly see that, as damage increases, the structural response becomes more complex and 

less sensitive to loading parameters. This is typical of nonlinear behavior. We believe that the 

analysis of nonlinear elastic response in buildings, notably slow dynamics, might become a 

simple and powerful means to monitor structural health.  

 
Perspectives 

A lot of effort and further research are still necessary to fully understand the nonlinear elastic 

structural response, and to unveil the physical processes responsible for that. However, our 

results indicate that nonlinear elasticity and slow dynamics in buildings have a great potential 

as a proxy for structural damage. Nonlinear elastic behavior has revealed that fundamental 

frequencies are not static over time, on the contrary, they change along the life-span of a 

building. Structural models, therefore, must be updated according to the current structural state, 

to guarantee the correct structural performance during the next earthquake. In figure C1, we 

show the maximum structural fundamental period (i.e. coseismic fundamental frequency) of 

the ANX building as a function of maximum structural drift.  

 

 
Figure C1. Fundamental period as a function of structural drift for the direction Y of the ANX building. 
 

It is evident that the relationship between the two parameters has changed accordingly the time-

periods observed in the building (chapters 2 and 3). The difference in the behavior, especially 

noted from P2 to P3 (i.e. after the Tohoku event) indicates that the building does not respond 
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in the same manner for equivalent loadings. We practically are in presence of a different 

structure. Novel models should therefore consider the possibility of structural degradation by 

including frequency variations over time. 

 

A powerful contribution to the research would be the incorporation of machine learning for the 

prediction of structural responses based on the observed nonlinear elastic processes. We created 

a simple basic model to predict the observed frequency variations in the ANX building over 

time, shown in figure C2. The model was trained with all the Japanese data (except those of the 

ANX building) using magnitude, epicentral distance and pre-seismic fundamental frequency as 

predictor variables.  

 

 

Figure C2. Real observed (red curve) versus predicted (gray curve) variations of coseismic fundamental 
frequency in the direction Y of the ANX building. Dotted lines correspond to the confidence interval of 
the model (± 1σ). 
 

Another example is displayed in figure C3, where the coseismic fundamental frequency of 

reinforced concrete US buildings is predicted as a function of magnitude, epicentral distance, 

pre-seismic frequency and structural material, using a model trained with all the Japanese data 

and all US building typologies, excluding reinforced concrete. Figures C2 and C3 represent just 

some preliminary examples of the potential uses of machine learning to analyze and forecast 

nonlinear elastic responses in buildings facing earthquakes. The understanding of these 

processes in buildings will help us to improve our knowledge of the dynamics of civil 

engineering structures; and machine learning techniques might represent a useful tool for 

automatized early damage detection and prediction of structural responses. 
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Figure C3. True versus predicted values of coseismic frequency fmin as a function of a) magnitude Mw, 
b) epicentral distance R, c) structural material, and d) pre-seismic fundamental frequency, fi. The 
predicted versus true fmin values is shown in e), and the histogram of the model errors is shown in f). 
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Appendix 

 
  

Table A1. Variability (i.e. standard deviation, σ) associated to the correlation between drift ratio and 
different ground motion intensity measures (indicated in the first column). Variability is given by the 
mean residual of the functional form log ∆ = a + b log IM + ε. Smallest σ per building class is indicated 
in bold, and the number of data considered per category is indicated between parenthesis.  

 US-data   Japan-data 

 All RC Steel Masonry Wood   All RC SRC Steel 

 (684) (224) (302) (134) (24)   (7438) (1422) (4924) (1092) 

PGA 0.518 0.523 0.522 0.486 0.299  0.518 0.487 0.369 0.579 

PGV 0.437 0.407 0.406 0.469 0.323  0.346 0.453 0.324 0.330 

PGD 0.426 0.409 0.394 0.442 0.364  0.367 0.445 0.331 0.184 

Ia 0.440 0.426 0.421 0.447 0.322  0.359 0.452 0.227 0.379 

DP 0.469 0.446 0.439 0.483 0.349  0.357 0.443 0.295 0.258 

CAV 0.420 0.402 0.389 0.439 0.338  0.352 0.444 0.289 0.294 

Sa1 0.497 0.520 0.494 0.486 0.304  0.371 0.439 0.300 0.202 

Sv1 0.448 0.430 0.414 0.478 0.312  0.304 0.451 0.254 0.237 

Sd1 0.470 0.397 0.417 0.490 0.323  0.322 0.457 0.274 0.158 

Sa2 0.512 0.526 0.520 0.497 0.316  0.352 0.441 0.259 0.150 

Sv2 0.441 0.421 0.403 0.484 0.308  0.302 0.421 0.250 0.206 

Sd2 0.472 0.390 0.422 0.497 0.317  0.306 0.437 0.264 0.143 

Avg_Sa 0.503 0.522 0.506 0.491 0.303  0.352 0.427 0.261 0.169 

Avg_Sv 0.442 0.423 0.404 0.483 0.307  0.293 0.426 0.240 0.215 

Avg_Sd 0.471 0.391 0.421 0.496 0.319  0.301 0.435 0.255 0.139 

DSa2 0.551 0.541 0.543 0.533 0.469  0.628 0.478 0.675 0.581 

 
 

Table A2. Variability (i.e. standard deviation, σ) associated to the correlation fmin and ordinary ground 
motion intensity measures (indicated in the first column). Variability is given by the mean residual of 
the functional form log(�ØÙÚÛ) = a + b log(IM) + ε. Smallest σ per building class is indicated in bold, 
and the number of data considered per category is indicated between parenthesis.  

 US-data  Japan-data 
 All RC Steel Masonry Wood  All RC SRC Steel 
 (684) (224) (302) (134) (24)  (7438) (1422) (4924) (1092) 

PGA 0.379 0.284 0.423 0.304 0.158  0.212 0.222 0.086 0.048 
PGV 0.356 0.274 0.378 0.277 0.151  0.212 0.221 0.085 0.045 
PGD 0.327 0.253 0.318 0.269 0.163  0.211 0.221 0.085 0.045 

Ia 0.369 0.278 0.400 0.293 0.152  0.212 0.221 0.083 0.045 
DP 0.333 0.268 0.337 0.262 0.144  0.212 0.222 0.083 0.045 
CAV 0.353 0.266 0.361 0.291 0.157  0.212 0.221 0.082 0.045 

DSa2 0.351 0.259 0.371 0.297 0.192  0.214 0.222 0.090 0.046 
 
 
 
 
 


