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Abstract

The development of vibration control methods adapted to light structures is a scientific and
technological challenge over past decades due to increasingly stringent economic and ecological
standards. The classical passive solutions for vibration damping usually rely on adding mass
into structures, therefore conflicting with the lightweight issues.

Meanwhile, recent promising studies in audible acoustics have focused on broadband wave
absorption at low frequencies by means of subwavelength perfect absorbers. Their design requires
the fulfilment of two conditions: (i) increasing the density of states at low frequencies by using
local resonators, and (ii) matching the impedance with the background medium by controlling
the ratio between the inherent losses of the resonator and the leakage of energy due to the
aperture of the resonator to the propagating medium. Particularly, the impedance matching
corresponds to the situation in which the amount of inherent losses in the resonator equals the
amount of energy leakage, and is known as the critical coupling condition. Such absorbers have
proven effective for the total absorption of the energy of an incident wave by audible acoustic
metamaterials, and a generalisation of the method to elastodynamics fields could be of great
interest to comply with the conflicting requirements for the vibration control of light structures.

This thesis aims at adapting the problem of perfect absorption for flexural waves in 1D and
2D systems with local resonators by using the critical coupling condition. First, 1D systems with
simple geometries are studied to prove the efficiency of the method for flexural waves. This first
preliminary study aims at opening up new avenues to the design of simple resonators for efficient
flexural wave absorption, showing also the limits of absorption induced by the geometry used in
the study. The 1D systems are then complexified by considering the study of the critical cou-
pling of 1D Acoustic Black Holes resonators. This motivated its interpretation via the concept
of critical coupling in order to provide the key features to future optimisation procedures of
such a type of termination. Then, the 1D perfect absorbers are extended to 2D, extending the
formalism of the critical coupling condition to 2D systems. The perfect absorption of the first
axisymmetric mode of a circular resonator embedded in an infinite thin plate is firstly analysed.
The multiple scattering of 2D systems is analysed to consider configurations close to practical
applications. To that end, an infinite array of penetrable and dissipative circular scatterers, em-
bedded in an infinite or semi-infinite 2D thin plate, i.e. a metaplate, is considered. Through this
thesis, analytical models, full wave numerical simulations and experiments are used to validate
the physical behavior of the presented systems, showing good agreement between them.

Keywords: Passive wave control, Flexural waves, Metamaterial, Locally resonant structure,
Perfect absorption, Critical coupling, Acoustic Black Hole.
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Résumé

Le développement de méthodes de contrôle des vibrations à basse fréquence adaptées aux
structures légères est un défi scientifique et technologique des dernières décennies en raison des
contraintes économiques et écologiques de plus en plus strictes. Les solutions passives classiques
pour l’amortissement des vibrations reposent généralement sur l’ajout de masse dans les struc-
tures, ce qui va à l’encontre des problèmes d’allègements.

Parallèlement, de récentes études prometteuses dans le domaine de l’acoustique audible se
sont concentrées sur l’absorption large bande des ondes à basse fréquence au moyen d’absorbeurs
parfaits sub-longueurs d’onde. Leur conception nécessite de remplir deux conditions générales :
(i) augmenter la densité d’état à basse fréquence en utilisant des résonateurs locaux, et (ii) adap-
ter l’impédance au milieu de propagation en contrôlant le rapport entre les pertes inhérentes du
résonateur et les fuites d’énergie dues à l’ouverture du résonateur vers le milieu de propagation.
En particulier, l’adaptation d’impédance correspond à la situation dans laquelle la quantité de
perte inhérente dans le résonateur est égale à celle des fuites d’énergie, et est connue sous le nom
de condition de couplage critique. Ces absorbeurs ont prouvé leur efficacité pour l’absorption
totale de l’énergie d’une onde incidente par des métamatériaux en acoustique audible, et une
généralisation de la méthode pour le domaine élastodynamique pourrait être d’un grand intérêt
pour répondre aux exigences contradictoires du contrôle des vibrations des structures légères à
basse fréquence.

Cette thèse vise à adapter le problème d’absorption parfaite des ondes de flexion dans des
systèmes 1D et 2D avec des résonateurs locaux en utilisant la condition de couplage critique. Les
systèmes étudiés sont complexifiés progressivement pour comprendre pas à pas les principaux
mécanismes physiques de l’absorption parfaite de l’énergie des ondes de flexion. Les systèmes 1D
à géométries simples sont d’abord étudiés pour prouver l’efficacité de la méthode pour les ondes
de flexion. Cette première étude préliminaire vise à ouvrir de nouvelles voies à la conception de
résonateurs simples pour une absorption efficace des ondes de flexion, et montre également les
limites d’absorption induites par la géométrie utilisée dans ce type d’étude. Les systèmes 1D sont
ensuite complexifiés en considérant l’étude du couplage critique de Trou Noir Acoustique (TNA)
1D. Ceci a motivé l’interprétation de l’effet TNA à l’aide du concept de couplage critique afin de
présenter des outils clés à de futures procédures d’optimisation pour ce type de terminaisons. Le
formalisme de condition de couplage critique est ensuite étendu aux systèmes 2D. L’absorption
parfaite du premier mode axisymétrique d’un résonateur circulaire inséré dans une plaque mince
infinie est d’abord analysée. La diffusion multiple des systèmes 2D est analysée pour considérer
des configurations plus réalistes, proches d’une application industrielle. Pour cela, une infinité
de diffuseurs circulaires pénétrables insérés dans une plaque mince 2D infinie ou semi-infinie,
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appelée métaplaque, est alors considérée. A travers cette thèse, des modèles analytiques, des
simulations numériques et des expériences, montrant un bon accord entre eux, sont présentés
afin de valider le comportement physique des systèmes présentés.

Mots clés: Contrôle passif d’onde, Absorption parfaite, Onde de flexion, Couplage critique,
Métamatériau, Trou Noir Acoustique, Structure localement résonante.
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Chapter 1

Introduction

1.1 Challenges of vibration control for light structures

Weight reduction of structures is an important concern in the engineering domain. The eu-
ropean transport industry is one example through its more stringent carbon emission standards,
imposed by the European Union’s objective to further reduce CO2 emissions through vehicle
technology. These measures have obliged manufacturers to change their way of designing ve-
hicles. The fuel consumption of a vehicle, and so its CO2 emissions, is directly related to its
mass: a heavy vehicle would need to consume more fuel to overcome forces resisting vehicle
motion during a driving cycle than a lighter one. However, the lightening of the structure may
be accompanied by an increase of vibration amplitude, which may be a source of structural da-
mage as well as noise radiation. This structural damage usually corresponds to fatigue failures
which are due to stresses coming from the dynamic loads of vibration on the structure. The
loads do not necessarily need to stress the components above their yield point to cause damages,
however a high number of cycles of vibration is sufficient to cause a mechanical failure. Noise
radiation may be an even more significant problem as it may create undesirable effects on people
and their hearing [1, 45]. This issue is therefore also a health concern: noise radiation may lead
to a variety of effects including annoyance, reduced cognitive performance, sleep disturbance
and hearing loss of those who are exposed to it [45]. The mitigation of the vibration amplitude
to avoid all these inconveniences is nevertheless difficult to reconcile with the problematic of
weight reduction, showing that the development of vibration control methods adapted to light
structures is a crucial issue.

1.2 Overview of common methods for vibration control

The usual ways to control vibrations rely on active, semi-active or passive methods [151].
The physical mechanisms used in each of them are various and clearly different, but they can
be grouped into few categories:

— changing the stiffness or mass of the structure in order to shift its resonance frequencies
out of the range of the source frequency,

— reducing the vibration amplitude of the structure at its resonance frequencies,
— Adding secondary sources to mitigate the primary one by using destructive interferences.

13



Introduction

This section aims at introducing the various damping methods. In particular, active and semi-
active damping methods are briefly described below since this dissertation focuses only on passive
damping methods. The description of the systems in this section is done according to three
frequency ranges from the vibration point of view: the low, medium and high frequency ranges.
Such frequencies ranges in vibration are not easy to define. However, a delimitation between each
range can be made for any complex system by looking at the behaviour of its transfer function
[136]. The low frequency range is characterised by a distinct resonant behaviour of the system
with sharp and well defined resonance peaks in its transfer function. In the intermediary range,
also called medium frequency range, the transfer function is sligthly smoothed and local groups
of resonance peaks are observed due to the increase of the modal overlap. In the high frequency
range, a smooth behaviour of the transfer function is commonly noticed and the diffuse field
assumptions are reached. These ranges can also be delimited using the Modal Overlap Factor
(MOF), which is defined as the ratio between the modal bandwidth at half amplitude ∆-3dB and
the average modal spacing between two consecutive modes ∆fn:

MOF =
∆-3dB

∆fn
. (1.1)

The frequency ranges in vibrations may therefore be delimited as follows [54]:

— MOF < 30%: the low-frequency range in which the structure admits a resonant behaviour,
— 30% < MOF < 100%: the mid-frequency range in which the modal overlap is higher,
— 100% < MOF: the high-frequency range in which diffuse field assumptions are reached.

1.2.1 Active and semi-active control methods

Active damping methods are implemented by bonding piezoelectric transducers to a flexible
structure using strong adhesive materials. These transducers can be used as actuators, sensors,
or both. The transducers, when used as actuators strain when exposed to a voltage, and inver-
sely produce a voltage when strained as sensors. A typical active damping method consists of
applying a voltage to the actuator to minimise the unwanted vibration of the structure [9, 149].
The voltage is controlled by a sensor which is most of the time identical to the actuator and
collocated on the structure to measure its vibration. The method has been developed for beams
[60] and thin plates [58] and applications on reduced noise radiation [111] or vehicles have been
proposed [56, 150], among others.

The semi-active damping methods, also known as piezoelectric shunt-damping, use piezoe-
lectric transducers which are shunted by a passive electric circuit that dissipates mechanical
energy of the structure. The difference between active and semi-active methods is that no ac-
tive control of the voltage is performed in semi-active method. The pioneering work of Hagood
and Von Flotow [87] showed that a single shunted piezo-electric patch simply made of a single
resistance (resistive circuit shunting) or a serie RL circuit (resonant circuit shunting) can be
used to dissipate the mechanical energy of a structure at one given frequency. Numerous works
have then presented analysis of the efficiency of such systems for wave cancellation at a given
frequency [46, 49], and methods of optimisation [13, 142] have been proposed. The extension
over broader frequency bands has also been developed by complexifying the shunting circuits
[14, 15, 194], and has been applied to beam [12], thin plate [34] and plate [29] systems.
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2. Overview of common methods for vibration control

The main interest of active and semi-active damping methods relies on the possibility to
tune the parameters according to the frequency. However, their implementation requires a large
number of active elements inducing substantial design costs and sometimes maintenance issues,
which restricts their industrial implementation.

1.2.2 Passive damping methods

a) Intrinsic damping

As a structure vibrates, forces appear in the material, resulting in losses by heat dissipation
and therefore to vibration damping. This dissipation can be characterised for a given material
by a loss factor η. More precisely, η expresses the delay between stress and strain. Hence, the
Hooke’s law at the time t and in the formalism e−iωt reads as:

E =
σ0

ǫ0eiη
= E0e

−iη, η > 0,

where E is the complex Young’s modulus describing the damping properties of the material,
σ0 the force applied to the material, ǫ0 its related strain, and the ratio σ0 over ǫ0 corresponds
to the storage modulus or the lossless Young’s modulus E0 which describres the stiffness of
the material. This complex Young’s modulus is also used in another form which is obtained by
applying the Taylor expansion of e−iη and by assuming low damping, such that:

E = E0(1 − iη),

where the real part of E represents the elastic effect and the imaginary part represents the
dissipation. The damping representation by means of a complex Young’s modulus has been first
introduced by Myklestad [131] and is now widely used to characterise and quantify damping
properties of materials. A way to effectively reduce the vibration amplitude of a structure by
using its intrinsic properties would consist in choosing materials with a high damping factor η.
Unfortunately, most of materials having a high damping factor have also a weak storage modulus
and vice-versa. Materials with good intrinsic damping properties are therefore soft, which limits
their industrial implementation where materials with a good mechanical strength are sought.
This relation between E0 and η can be depicted in the form of an Ashby diagram as shown in
Fig. 1.1. Such a type of diagram is a scatter plot of materials according to two or more properties
[7], and is useful to compare the ratio between different properties for the materials selection in
mechanical design. The materials located at the top-left of the diagram in Fig. 1.1 correspond to
soft material with high loss factor ranging from polymeric foams to elastomers whereas materials
located at the bottom-right correspond to stiff material with low loss factor such as ceramics
and alloys.

b) Viscoelastic materials

Another way to take advantage of the intrinsic damping property of materials is to apply
add-on type damping, which consists of gluing a viscoelastic material with a high loss factor on
one side of the structure (Fig. 1.2). The bending of the structure produces extensional strains
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Figure 1.1 – Ashby diagram of the loss factor against the storage modulus [7]

in the viscoelastic layer in directions parallel to the structure surface, leading to energy storage
and/or dissipation of vibration energy. This strategy ensures a good mechanical strength of the
system by using a bearing structure, while introducing damping by means of the viscoelastic
material. These viscoelastic materials are mainly polymeric materials, ranging from natural or
synthetic rubber, through various adhesives to industrial plastics [102]. This damping mecha-
nism has been first modeled by Oberst in the case of a simply supported beam layered by a
viscoelastic material [135]. This model provides modal parameters of the first flexural modes
of the composite system as well as its equivalent material and geometrical characteristics. This
has been thereafter generalised by the Ross-Kerwin-Ungar (RKU) model for two layered and
three layered models [154, 178].The development of measurement methods of the dynamic pro-
perties of damping materials have then emerged from the pioneering model of Oberst and RKU
[173, 193]. These methods are not only limited to the characterisation of viscoelastic material
for vibration applications, but are also used for porous materials in acoustic applications [95].
Various applications using RKU and Oberst models have been proposed such as the design
of omnidirectional broadband insulating devices [40] and of Acoustic Black Holes [106] or the
study of tyre/road interaction noise [139], to cite a few. More advanced methods have also been
presented for measuring the dynamic properties of composite materials, including Virtual Field
Methods [147] or Inverse Methods [186], as well as methods for characterising the vibrational
behaviour of layered structure, such as higher-order theories [86, 152, 191] or dynamic stiffness
approaches in Wave Finite Element method [38, 37], to name a few.
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2. Overview of common methods for vibration control

Figure 1.2 – Plate with attached viscoelastic layer. (Add-on type damping) [179]

Figure 1.3 – Diagram of a stand-off layer damping system. [151]

Viscoelastic materials are mainly chosen in vibration control engineering. Commercial air-
craft applications, for instance, use stand-off damping layers to provide damping treatment in
fuselages. Such a type of treatment is a variation of the add-on type method and consists in
spacing the damping layer with the structure in order to increase the shear deformation in the
viscoelastic layer and, as a consequence, the damping capacity of the treatment (see Fig 1.3).
Another example is that of automotive companies which use laminate material [203], which
consists of bonding two pieces of metal together with a viscoelastic adhesive. This damping me-
thod differs from classic add-on treatments, since it consists of replacing the original panel with
a new damping one. Figure 1.4 depicts the simulation of the vibration response of a car dash
panel by using Finite Element Method for two materials: laminate and steel. The damping effect
of the laminate material is characterised by a smooth vibration response, and clearly contrasts
with the resonant behaviour of the steel panel.

The use of viscoelastic material in industrial applications has proven effective. However, it
requires an addition of material most of the time, and as a consequence, mass to the structure,
which is inconvenient on both an environmental and economic level.

c) Damping systems with graded properties

Materials with a graded impedance. Another approach to damp the vibration of struc-
tures is the use of systems with graded properties. This has been treated first in the work of
Vemula et al. [181], in which they proposed to gradually change the impedance at the edges of
a beam system along the propagation direction of flexural waves as shown in the left figure of
Fig. 1.5. To do this, several beams with different materials are combined together leading to
a decrease in impedance at the interfaces as the wave propagates toward the free end of the
system. A large attenuation of the wave reflections at the edges of the structure is therefore
obtained (see the right figure of Fig.1.5). The attenuation efficiency is directly linked to the type
of impedance variation at the end of the beam. This attenuation is achieved over a wide band
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Figure 1.4 – FEM prediction of the vibration response of a car dash panel using laminate
material (solid line) and steel (dashed line). [126]

Figure 1.5 – Diagram of a graded impedance interface at the edge of a steel bar [181] (left).
Reflected energy by four configurations of graded edges of a steel bar: (· · · ·) steel bar; (- - - -)
steel bar, Al; (– – – –) steel bar, Al, Lucite; (——) steel bar, Al, Lucite, Composite. (right)

of frequencies and is more efficient for higher frequencies. However, it is accompanied by a large
amplitude of the propagating waves, since the amplitude increases as the impedance decreases
due to the conservation of the energy flux carried by the wave. The results have been obser-
ved experimentally and explained by means of an analytical model with a S-matrix formulation
based on Mindlin and Kirchhoff theory for flexural waves. The method has thereafter been ex-
tended to longitudinal waves by Chen et al. [35] where the impedance mismatch is controlled
by means of shape memory alloy (SMA) inserts, which are smart materials that change pro-
perties when heated. Other applications have also been proposed, such as wave cloaking [68]
or non-destructive evaluation techniques [115]. In particular, Liew et al. studied in Ref. [115]
the suppression of reflections at the boundaries of a beam waveguide by using Metal-Polymer
Functionally Graded Materials (FGM). FGM is a two-component composite whose composition
varies from one component to the other in a continuous manner, as shown in Fig 1.6).
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2. Overview of common methods for vibration control

Figure 1.6 – Picture of the Aluminium-Polycarbonate FGM used in Ref. [115] where light areas
are aluminium while dark areas are polycarbonate.

Acoustic Black Holes. Using Euler-Bernoulli or thin beam theory, the bending wave
impedance of a beam is expressed as EIk2, where E is the Young’s modulus, I the second
moment of area and k the wavenumber. Another way to obtain a system with graded impedance
than gradually changing the material is to modify k which is also dependent on the thickness
of the system. Thus, the impedance of the beam can be graded if the thickness is continously
changed. From this statement, Mironov proposed to take advantage of the beam properties by
continuously decreasing the thickness toward the beam edge along the propagation direction of
flexural waves [127] (see Fig.1.5). This thickness decrease follows a power-law and vanishes at
the extremity of the beam. In the case where the varying thickness profile is expressed along the
x-axis as h(x) = ǫxn, the wavenumber k of the beam can be written as

k = ǫ−1/2 4

√

12ρ
Eω2

x−n/2, (1.2)

where ω is the circular frequency and ρ the mass density. The local phase velocity cφ and group
velocity cγ therefore read as:

cφ =
ω

k
=

√
ǫ 4

√

Eω2

12ρ
xn/2, (1.3)

cγ =
∂ω

∂k
=

√
nǫ 4

√

Eω2

3ρ
x(n−1)/2. (1.4)

By tending x towards zero, or equivalently by tending h towards zero, cφ and cγ tend also
towards zero. As a result, the flexural wave slows down by propagating along the termination
due to the decrease of thickness until reaching a zero phase cφ and group cγ velocities at its
extremity. The wave is therefore trapped at the extremity of the beam and is not reflected back.
This slowdown is accompanied by a large amplitude of the propagating waves due to the conser-
vation of the energy flux. The amplitude at the beam extremity may therefore become infinite
in the conservative case due to its zero thickness, creating a singular point at the extremity.
This wave trapping system is the so called Acoustic Black Hole (ABH). Such an ideal system is
compact and lightweight since its does not require additional mass to provide absorption, but
it needs a continuous decrease of the thickness until zero. The main limit of such a system in
practice is that the thickness profile must be truncated. This leads to a non-null thickness at its
tip and therefore to a significant reflection of the flexural waves. Krylov proposed the addition
of a thin layer of viscoelastic material along the ABH profile to make up for the truncation
[107, 106]. The combination of the power-law shaped wedge and the effect of a thin absorbing
layer reduces significantly the wave reflection coefficient as compared to an uncovered ABH as
shown in Fig. 1.8. He also showed the influence of the position of the truncation at the edge on
the reflection coefficient. A longer ABH provides better absorbing performances than a shorter
one for a given thickness power-law. These studies led to other devices in which the ABH effect
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Figure 1.7 – Plate with a power-law tapered edge. x1 and h1 correspond to the coordinate of
the ABH edge and its thickness in the practical case respectively. x0 is the coordinate of the
ABH edge in the ideal case where the thickness is null in this case [127].

Figure 1.8 – Frequency dependence of the reflection coefficient |R1| for a beam with an ABH
termination covered by a 700 µm absorbing film (solid curve) and 10 µm absorbing film (dash-
dotted curve); with an ABH without absorbing film (dashed curve); and for a uniform beam
with 700 mm absorbing film (dotted curve). [79]

and the presence of losses damping are combined such as spiral ABHs [112] which provide as
good damping efficiency as classical ABHs with the same thickness profile while meeting the
constraint of space limitation, compound ABHs which produce more effective ABH effect while
ensuring better structural rigidity [207], and ABH resonant beam dampers which use the ABH as
dynamic vibration absorbers [208]. The reflection coefficient of 1D ABH has been widely studied
through various methods, including plane wave model [79], multimodal approaches [53], finite
difference [54], finite element methods [159] and wavelet decomposition [171], among others.
Other strategies have also been employed to enhance the ABH performance, such as the use
of extended platforms to facilitate practical implementations of the ABH [11, 170], the use of
constrained damping layers [51] or the use of beam non-linearities [55].

Krylov extended later on the operating principle of the ABH to axi-symmetric circular fea-
tures which consist of circular pits with power-law varying thickness [105] (see Fig. 1.9). These
systems can slow down and trap flexural waves similarly to 1D ABHs with omni-directional ab-
sorbing properties. However, the 2D thickness profile of the ABH must be truncated in practice
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2. Overview of common methods for vibration control

Figure 1.9 – Diagram of a typical 2D circular ABH with a radially dependent thickness profile
h(r) and a central plateau. (adapted from [41])

similarly to the 1D ABH. Two cases can therefore be considered and have been firstly studied
by Aklouche et al. [3]: having a hole at the center of the practical ABH due to the truncation,
or filling the hole with a plateau of thickness equal to the residual thickness of the truncation.
The efficiency of 2D ABHs as flexural vibration dampers has been experimentally highlighted
for the first time as part of the thesis of Cuenca [47] and published in [21, 77, 79], thereafter. The
focusing or trapping effect of 2D ABHs have been experimentally and numerically highlighted
by Yan et al. in the ideal case, with a residual thickness and with a central plateau [201, 202].
They showed that the weaker efficiency of an ABH with a central plateau is due to the fact that
only a portion of the incident wave is focused in the ABH in this case. Aklouche et al. studied
the scattering properties of an ABH whose thickness follows a second order power-law in an
infinite plate [4]. The results exhibited a cut-on wavenumber below which the trapping effect
of the ABH is inefficient, showing the limits of such damping devices at low frequency. Other
kinds of applications using the 2D ABH system such as insulating [40] and lensing [41, 210] de-
vices have been also proposed. Studies introducing multiple ABHs embedded in periodic lattice
configurations have also been carried out. These lattices form platonic crystals and give rise to
unusual wave propagation properties such as double refraction [209] or lensing [210], to cite a
few. The concept of platonic crystals and their properties are developed later in this chapter.

The main damping effect of such 1D and 2D systems appears in the mid-frequency and high-
frequency range, as shown in Fig. 1.8. As a consequence the damping effect at low frequencies
is weak and the ABH is not useful for a plethora of technological applications in which the low
frequencies are the main source to be damped.

d) Tuned vibration absorbers

The use of Tuned Vibration Absorber (TVA) is also relevant to damp vibration. This de-
vice was invented by Frahm in 1911 [76] and consists in adding a reaction mass and a resilient
element on the treated structure. In tonal applications, they are generally tuned to interefere
with the structural vibration at the disturbance frequency. This leads to an alteration of the
frequency response of the primary system and introduces another resonance in the composite
system due to the additional degree of freedom provided by the TVA. Their design focuses
on having a precise tuning of the mass and the damping to the disturbance frequency and on
controlling the damping to an appropriate level in order to have reasonable displacement am-
plitude of the TVA mass. The damping effect of such a system may be broadband when the
structure is lightly damped. TVA can be designed using the impedance coupling method [66]
that uses the impedance of the TVA. This method avoids heavy computations of the complete
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Figure 1.10 – Tuned Vibration Absorber attached to the end of a cantilever beam excited
by a sinusoidally varying force at its free end [167] (left) and transmissibility across the beam
according to dimensionless angular frequencies with (solid line) and without TVA (dashed line)
[167] (right). An additional resonance provided by the TVA can be noticed below the first
resonance frequency.

system since only the attachment point between the TVA and the background medium is com-
puted. The simplest design of a TVA is a mass-spring oscillator with viscous damping on the
structure to be treated or a mass with a viscoelastic spring system as shown in Fig. 1.5. Several
design variations have been nonetheless proposed over the years such as a pendulum-type ab-
sorber [6] to control vibration of an inverted pendulum type structure, multi-degree of freedom
TVA which showed an improvement in the response of the conventional TVA by the introduction
of a significant trough in the frequency response function [168] and broadband performances [22].

TVA can also be used in the case of infinite media rather than finite structures [23]. The de-
vice is sometimes called Tuned Vibration Neutraliser (TVN) and aims to suppress propagating
waves in the system rather than influence its resonant behaviour. It is then a scattering problem
instead of a modal problem. The tuning of the resonance frequency of an undamped TVN has
been analysed [23], showing that complete suppression of the flexural wave transmission can be
achieved but a wave absorption of 50% can only be obtained with this kind of device [62].

TVA and TVN are very effective at reducing vibrations of industrial mechanical structures
with relatively low cost. However, the damping effect of such systems at low frequency requires
a large addition of mass, which leads again to the same problematics as mentioned above.

1.3 Control of the flexural wave propagation using periodic struc-

tures

The common methods described in the previous section lead to heavy and bulky solutions, or
in the case of ABHs, to solution limited to the high frequency range. A new class of innovative
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3. Control of the flexural wave propagation using periodic structures

materials based on a periodic modulation of their properties has meanwhile emerged. These
present promising results which may offer solutions to ecologic, health and economic issues in
vibration control. This section aims at presenting an overview of periodic systems for controlling
flexural waves. Two types of material regime are distinguished here: the diffraction regime due
to the periodic modulation of the material properties and the metamaterial regime due to the
introduction of local resonances in the material.

1.3.1 Diffraction regime : from photonic to platonic crystals

Brillouin observed in the mid 1950’s that the propagation of any type of wave motion through
a periodically modulated material is governed by a dispersion relation in which the wave vector
is a periodic function of the frequency, producing band structures [25]. This observation paved
the way to the design of photonic crystals in electromagnetic field. The pioneering work of Ya-
blonovitch [200] and John [100] in the late 1980’s showed that such periodic systems present
bandgaps or stop bands, which correspond to frequency ranges in which wave propagation is
forbidden. These works have been inspired by the quantum mechanical band theory in which
the existence of energy bands and forbidden band have been highlighted. Unlike the energy
bands, the forbidden band or forbidden bandgaps correspond to particular energy ranges in a
solid in which the electrons cannot propagate. The analogies between the electromagnetic equa-
tions and those in acoustics and for elastic waves led to the emergence of phononic crystals a
few years later presenting bandgaps for acoustic and elastic waves [109, 161]. The terminology
phonon defines a quantum of vibrational energy in an elastic medium. It is used in the context
of vibrations in crystal lattices in analogy to the notion of a photon in electromagnetics [94].
Such acoustic periodic systems can provide sound attenuation in the frequency ranges of the
bandgaps and applications in sonic barriers for the human audible frequency range have been
proposed by exploiting this property [82, 108, 110, 156], among others [57].

More recently, the properties of flexural waves in periodically-constrained thin elastic plates
have been studied and bandgaps for flexural waves have been observed [65, 124]. These band-
gaps can decrease the vibrational response of the plate over certain frequency ranges similarly
to those of phononic crystals. McPhedran et al. proposed the name of platonic crystals [124] for
this type of structured system. In addition to these platonic crystals, periodic arrays of holes
in plates [130, 184], periodically undulated plates [176] or inclusions of different materials [162]
have been proposed. The study has also been applied to beam systems [176, 190] and to Lamb
waves in plates [32, 99]. Several methodologies for band structure calculations of platonic crys-
tals have been investigated such as multiple scattering [130], Finite Element [88], Super Cell
[180] or Plane Wave Expansion (PWE) method [176].

For all fields of physics, the bandgaps of periodic structures are due to Bragg interferences,
which are destructive ones encountered at particular frequency ranges. The frequency range and
the bandwidth of the gaps depend on the periodicity length scale a, which has to be comparable
to the propagation wavelength λ. Thus, bandgaps at low frequencies require large and bulky
structures which is inconvenient for industrial applications. This scale dependency can however
be overcome by the use of locally resonant (LR) metamaterials on the sub-wavelength scale
(λ >> a).
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1.3.2 Metamaterial regime

A metamaterial is broadly and briefly defined as an artificial media with unusual properties.
This definition is generally used since it captures the spirit of the subject. However, there is no
consensus on the meaning of the words unusual and artificial and there is no definition that is
universally accepted by everyone. Is a property defined as unusual by one person also unusual
for another? Does metamaterial always concern artificial media? Anyway, there is consensus
that the concept of metamaterial was first introduced in electromagnetics by Veselago in the
late 1960’s [182]. The refractive index value of a material had always been considered positive
up to his work. Veselago hypothesised that the refractive index may also be negative if both the
electric permittivity and the magnetic permeability of a material are negative. Materials with
such properties are called left-handed material in reference to Fleming’s left-hand rule in elec-
tromagnetism and can exhibit negative refractive index. Pendry et al. [145] proposed 30 years
later left-handed materials by introducing local resonances in a periodic array. These resonances
are introduced by means of split-ring metallic cylinders put in a square array. By doing so, a
negative effective permeability was observed in a bandgap around the resonance frequency of the
cylinder. This resonance frequency is far below the first Bragg frequency of the array, meaning
that wave propagation in periodic media can be mitigated for wavelengths λ much longer than
the lattice size a ( λ >> a) by using local resonances. This was validated experimentally by
Smith et al. [164, 165] later on. These works were then extended for the control of elastic and
acoustic wave propagation.

Liu et al. [119] proposed a locally resonant (LR) sonic crystal in which the local resonances
are introduced by rubber coated lead spheres. These spheres were embedded in an epoxy matrix
and negative effective dynamic mass density was obtained for wavelengths that are two orders
of magnitude larger than the lattice size a. The negative effective mass density produces expo-
nential attenuation of the incoming wave amplitude through the sample, generating therefore
bandgaps at the resonance frequency of the local resonators. The local resonances can also give
rise to other original phenomena such as invisibility cloaks [33].

New classes of metamaterials that are not based on resonant properties have also emerged
thanks to manufacturing progresses such as auxetic metamaterials [129] with negative Poisson’s
ratio that contract in transverse directions under uniaxial compressive loads, pentamode me-
tamaterials [103] with near-zero modulus that behave like fluids despite the fact that they are
solids, and origami inspired metamaterials [117], to cite a few.

The potential of LR materials to mitigate wave propagation at low frequency has aroused in-
terest in the vibro-acoustic community to design devices for noise and vibration control. A wide
number of periodic systems have been designed in order to observe bandgaps in LR thin plates.
Local resonances in plates can be introduced by means of inclusions or by adding resonators on
top of plate host structures. The 2D periodic arrangements of inclusions such as rubber discs [92],
rubber-coated steel disc inclusions [104] or hemmed discs inclusions [195] have been investigated.
Xiao et al. [197] and Claeys et al. [39] have analysed theoretically the potential of LR panels
to obtain low-frequency vibrational bandgaps by using idealised mass-spring resonators onto a
thin plate. Practicable resonators in LR plates have also been proposed beside the theoretical
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4. Acoustic subwavelength perfect absorption

Figure 1.11 – LR plate with a 2D periodic array of silicon stub resonators proposed in [137] (left)
and the corresponding averaged displacement field along the diagonal direction of the crystal. A
significant attenuation of the transmitted wave field is observed at a particular frequency range,
implying the presence of a BG at this frequency range. (right).

analyses with idealised mass-spring resonators. Wu et al. [183] proposed a LR plate consisting
of a 2D periodic array of cylindrical aluminum stubbed resonators on a thin aluminum plate
host structure to obtain flexural wave bandgaps. Oudich et al. [137] proposed silicone rubber
stub resonators instead of aluminum ones (see Fig. 1.11). An attenuation at lower frequencies
has therefore been obtained thanks to the less stiff property of silicone rubber compared to
aluminum. Assouar et al. [8] also added masses on top of the rubber stubs in order to broaden
and shift the LR bandgap at lower frequency. Various LR plates have been proposed such as 2D
periodic array of beam-like resonators attached to a thin plate [196] as shown in Fig. 1.12. The
same investigations have also been applied to LR beams with idealised mass-spring and other
kinds of resonators [39, 118, 198].

A huge variety of original phenomena has also been observed in metamaterial plates similarly
to acoustic metamaterial such as negative refraction [166], flexural wave focusing [71] or confi-
nement [69], cloaking [70], lensing [30, 71] or waveguiding using periodically graded structured
plates [31], among others.

For all fields, the bandgaps generated by locally resonant materials do not require periodicity,
but arise from the addition of local sub-wavelength resonators to a hosting medium. Such mate-
rials can be small, lightweight and can operate in the low frequency regime. They are therefore
of great interest since they can answer to both the current industrial problematic of damping
vibration at low frequency and the problem of vibration control adapted to light structures.

1.4 Acoustic subwavelength perfect absorption

Recent studies in audible acoustics have focused on wave absorption at low frequencies
by means of subwavelength locally resonant materials. In particular, the design of broadband
subwavelength perfect absorbers, whose dimensions are much smaller than the wavelength of
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Figure 1.12 – LR plate with a 2D periodic array of beam-like resonators proposed in [196] (left)
and out-of-plane vibration transmittance from a point in the middle of the crystal to another one
at the edge (right). The results shows an attenuation of the wave field and implies the presence
of a BG.

the frequency to be attenuated, have recently been proposed [84, 96, 98, 125, 153]. Such devices
can totally absorb the energy of an incident wave and require solving the two complex problems:
(i) increasing the density of states at low frequencies and (ii) matching the impedance with the
background medium. On the one hand, the use of local resonators is a successful approach for
increasing the density of states at low frequencies with reduced dimensions, as it has been shown
in the field of metamaterials [42, 61, 67, 119, 140, 163, 174, 187]. On the other hand, the local
resonators of such metamaterials are open and lossy ones. The field inside the local resonator
can interact with an external wave field in the background medium through the interface that
connects the resonator to the medium. This connection can be seen as an aperture through
which wave energy can leak out from one system to another (see left figure of Fig. 1.13). The
resonator is therefore considered as open to the background medium due to its energy leakage
to the medium. Inherent losses can also be added inside the resonator by introducing an internal
energy dissipation source. The impedance matching of such metamaterials can be controlled by
the ratio between the inherent losses of the resonator and the leakage of energy [17]. Particularly,
the impedance matching corresponds to the situation in which the amount of inherent losses
in the resonator equals the amount of energy leakage, and is known as the critical coupling
condition [205]. This situation occurs at the resonance frequency of the resonator and leads to
a perfect absorption of the wave energy by the resonator at this specific frequency (see right
figure of Fig. 1.13). This phenomenon has also been widely used to design perfect absorbers in
different fields of physics [28, 199] other than acoustics.

1.5 Motivations and objectives of the work

The solutions proposed by the usual passive damping methods do not necessarily answer
both the problematic of damping vibration at low frequency and the problem of vibration control
adapted to light structures. These methods either respond to one of these two problematics, but
neglect the other. For example, they can provide a satisfactory solution to face the problematic
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Figure 1.13 – (left) Diagram of the acoustic perfect absorber proposed in [153] made of a
Helmholtz resonator loaded to a waveguide filled with air. The inherent losses in the resonator
are controlled with a porous material of thickness lp. The neck of the resonator of width Sn

plays the role here of the aperture between the resonator and the waveguide. (right) Evaluation
of the absorption coefficient by the Helmholtz resonator of three different configurations with
different amount of losses. The solid line corresponds to the critical coupling situation in which
the incident wave is totally absorbed by the resonator at its resonance frequency.

of damping vibration at low frequency, but imply heavy and/or bulky solutions. Conversely,
these methods can comply to the lightweight constraint by taking advantage of the inherent
properties of the structure, but cannot achieve good performances at low frequency. This consti-
tutes therefore a motivation for this work. The objective being to understand, analyse and design
1D and 2D passive damping lightweight systems which can attenuate flexural vibrations at low
frequencies, and more particularly at wavelengths much smaller than the characteristic length
of the damping system.

1.5.1 Subwavelength absorber for flexural waves

Particular interest has been accorded to the design of subwavelength perfect absorbers. Such
absorbers have proven their efficiency for the total absorption of the energy of an incident wave
in audible acoustic metamaterials, and a generalisation of the method in elastodynamics field
could be of great interest owing to the constraints previously mentioned. Hence, this work aims
first of all at adapting the problem of perfect absorption for flexural waves in 1D elastic beams
with local resonators by using the critical coupling condition. The design of systems with simple
geometry are analysed to that purpose. They are composed of a main beam and an open re-
sonator simply consisting of a reduction of the thickness of the main beam. The resonator is
considered as open here since the field inside the resonator can interact with the one of the main
beam through the aperture between both systems. A thin viscoelastic coating is also attached
to it. The composite resonators present therefore both energy leakage due to the aperture of the
resonator to the main beam which can be controlled by changing the thickness of the beams, and
inherent losses due to the viscoelastic damping which is controlled by changing the properties of
the viscoelastic coating. The resonators are chosen first as an integral part of the main beam in
order to facilitate its implementation for the experimental validation of the method. Particularly,
the absorption of energy is analysed by means of the Transfer Matrix Method (TMM) for the
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two scattering problems: the reflection and the transmission of flexural waves. An experimental
validation is also performed. This first preliminary study aims to open up new avenues to the
design of simple resonators for efficient flexural wave absorption by means of the critical cou-
pling condition, showing also the limits of absorption induced by the geometry used in the study.

The problem is then complexified by extending the method in the 2D case. To that end, an
infinite array of penetrable circular scatterers embedded in an infinite or semi-infinite 2D thin
plate is considered thereafter. This system constitutes a 2D metaplate in which the penetrable
scatterers compose its resonant block. A 2D preliminary study is presented in which the perfect
absorption of the first axisymmetric mode of a circular resonator embedded in an infinite thin
plate is analysed. The resonator consists of a circular reduction of the thickness of the infinite
plate, and a thin viscoelastic coating is attached to the resonator similarly to the the 1D case.
This composite scatterer presents therefore leakage and inherent losses which can be controlled
similarly to the resonators presented in the 1D case. This analysis is done through the balance
between the energy leakage and the inherent losses in the resonator for the particular case of
a concentric incident wave propagating towards the centre of the resonator. The composite is
studied by means of a semi-analytical model based on the scattering method and is compared
with numerical results using FEM methods. The optimised 2D resonator is therefore embedded
in the form of an infinite array in a plate and two scattering problems are then studied by
using the multiple scattering method: the reflection problem in a semi-infinite plate and the
transmission problem in an infinite plate. This analysis aims at showing the adaptability of the
method for the case of 2D problems and at getting closer to a practical application.

1.5.2 Adapting the Acoustic Black Hole for perfect absorption of flexural

waves

The combination of the ABH effect and the presence of losses provides a good damping
performance while reducing the weight of the initial structure. However, the efficiency of ABH
devices is weak in low frequencies, thus limiting their application. Despite this drawback, the
ABH effect remains of great interest in designing damping system by removing part of the sys-
tem matter. This has acted as motivation to improve the absorbing efficiency of the ABH by
using the critical coupling condition. The combination of the ABH effect at high frequencies with
the perfect absorption obtained with the critical coupling condition at low frequencies would
allow for a broadband absorber without adding mass in the system. To that end, a system
composed of a main beam terminated by an open resonator which corresponds to an ABH of
finite length is analysed. A thin viscoelastic coating is also attached to the resonator creating a
composite material. The vibration response of the composite ABH is studied by discretising it
with constant thickness piecewise elements. The composite presents resonances, energy leakage
and inherent losses in the same way as the simple resonator described in the previous section. All
these properties fulfill the conditions to design a subwavelength perfect absorber as mentioned
in the previous section without altering the initial ABH effect since this effect originates only
from the geometry of the system.

A new physical insight of the ABH efficiency emerged through the study of the critical
coupling of a 1D ABH. The ABH effect may be interpreted as a consequence of the critical
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coupling at one resonance frequency of the ABH and of the broadband quasi-perfect absorption
at higher frequencies, thanks to the specific geometry of the resonator. This has motivated this
work to interprete the Acoustic Black Hole effect based on the concept of critical coupling in
order to provide the key to future optimisation procedures of such a type of terminations. Two
strategies to optimise the absorption efficiency of an ABH termination at low frequency are
proposed in this work, both consisting in applying the critical coupling condition. The first
consists in tuning the losses introduced by the viscoelastic layer by shaping its thickness profile
in order to achieve the critical coupling condition at several resonances of the ABH. The second
strategy is based on the addition of a mass at the extremity of the ABH which decreases the first
resonance frequency of the ABH. The critical coupling is then applied at this specific frequency
to obtain a low frequency absorption by the termination. The approach of mass addition on a
ABH has already been investigated by Aklouche et al. [3]. The study presented in this thesis
gives new perspectives of this approach by using the concept of critical coupling.

1.5.3 Layout of the thesis

This thesis is organised in the form of 5 chapters, the complexity of each of which is gradually
increased to understand step by step the main physical mechanisms of the perfect absorption of
flexural wave energy. The content of the chapters are as follows.

Chapter 5 presents a survey of usual methods for vibration damping, paying attention to
passive damping methods. A description of the methods to control the propagation of flexural
waves using periodic materials has been made afterwards. Finally the objectives, motivations,
and a brief overview of the work have been given.

Chapter 2 is devoted to the problem of perfect absorption of flexural waves in 1D elastic
beams with simple local resonators by using the critical coupling condition for the two scattering
problems: the reflection and the transmission of flexural waves. The design of an experimental
prototype and the measurement of its reflection and absorption coefficients in the reflection
problem are also presented, and are compared with a numerical model using Finite Element
Method (FEM). This chapter refers to the article [114] published in New Journal of Physics and
presented in Appendix.

Chapter 3 focuses on the link between the complex nature of the trapped modes within a
1D ABH and its reflection coefficient troughs, in terms of depth and frequency width. More
specifically, the purpose of Chapter 3 is to analyse first the absorbing efficiency of the ABH
by using the critical coupling condition. Two strategies to optimise the absorption efficiency of
an ABH termination at low frequency are then proposed in this work, both consisting in ap-
plying the critical coupling condition. All the analytical results are validated with a FEM model.

Chapter 4 concerns the design of the resonant blocks of a metaplate by using the critical
coupling condition. A preliminary study is presented in which the perfect absorption of the first
axisymmetric mode of a circular resonator embedded in an infinite thin plate is analysed. The
scattering of a resonator, consisting in a circular reduction of the thickness of the infinite plate
on which a thin viscoelastic coating is attached, is studied. The problem is then complexified by
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studying the scattering of a penetrable scatterer with radially varying thickness. The analysis is
done by means of the multiple scattering method for multilayered systems.

Chapter 5 concerns the scattering of flexural waves by an infinite critically coupled array of
circular inclusions embedded in a thin plate. This system composes a metaplate and the analysis
of the absorbing efficency of this array is made for two configurations. The first configuration
corresponds to a 2D transmission problem in which the array is embedded in an infinite thin
plate, wheras the second corresponds to a 2D reflexion problem in which the scattered field by
the array interacts with a simply supported plane boundary in a semi-infinite thin plate. The
scattered field by the array is studied by means of the multiple scattering theory and by using
a FEM model.

Chapter 6 gives the concluding remarks as well as perspectives for future works.
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Chapter 2

Flexural wave absorption by open

lossy resonators for the reflection

and transmission problems

2.1 Introduction

The design of broadband subwavelength perfect absorbers has recently proven its efficiency
in audible acoustics [84, 96, 98, 125, 153]. Such devices have dimensions that are much smaller
than the wavelength of the frequency to be attenuated and can totally absorb the energy of
an incident wave provided that the critical coupling condition between the absorber and the
background medium is fulfilled (see Section 1.4). The critical coupling condition is relevant for
applications in vibrations owing to the increasing need for damping materials at low frequencies
in several branches of industry [61]. Current passive solutions in this field are mainly based on
the use of viscoelastic coatings [172]. Another solution yields in TVAs [50, 24, 63] that is used
to control flexural waves in beams. The tuning of the resonance frequency of an undamped TVA
has been analysed [24], showing that complete suppression of the flexural wave transmission can
be achieved. In most cases, TVAs have been used to minimise the transmission of a propagating
wave [24], resulting in practice in heavy treatments at low frequencies. Less attention has been
paid to the case of maximising the absorption in order to reduce simultaneously both the reflected
and transmitted waves.

The purpose of this chapter is to study the problem of perfect absorption of flexural waves in
1D elastic beams with local resonators by using the critical coupling condition. Particularly, the
absorption of energy is analysed through the balance between the energy leakage and the inherent
losses in the resonators for the two scattering problems: the reflection and the transmission of
flexural waves. The presented problem is related to the control of flexural waves in a beam using
a passive TVA but with a physical insight that allows the interpretation of the limits of the
flexural wave absorption based on both the critical coupling condition and the symmetry of
the excited resonances in the resonator. The analysed systems are composed of a main beam
and an open resonator simply consisting in a thickness reduction of the main beam. A thin
viscoelastic coating is attached to it, leading to a composite material whose loss may be tuned.
This composite material is modeled with the Ross-Kerwin-Ungar (RKU) method for beams
[154] and is embedded in the main beam. By tuning the losses, it is possible to analyse the
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different limits in both scattering problems. In practice, this type of resonator results in simpler
geometries than that of the TVA which consists of complicated combinations of mass spring
systems simulating a point translational impedance.

The composite is studied by means of an analytical model based on the transfer matrix
method. The analytical results, in accordance with the the experimental results, show the limits
of the maximal values for the flexural wave absorption and their physical interpretations in both
the reflection and transmission problems. The interpretations are based on the eigenvalues of
the S-matrix for the propagating waves, represented in the complex frequency plane [153]. An
experimental prototype is designed and measured for the reflection problem. The experimental
results prove the perfect absorption of flexural waves and validate the analytical predictions.

The chapter is organised as follows. The study presents first a general scattering problem in
Section 2.2 in order to show the relevance of the eigenvalues and eigenvectors of the scattering
matrix to identify the situations of perfect absorption in the system. In Section 3.2, the theoreti-
cal model used to analyse the 1D scattering problems of flexural wave is presented. The physical
analysis of the absorption coefficient in the complex frequency plane are presented in Section 2.4.
This analysis is based on an analytical model and the concept of critical coupling to obtain a
perfect absorption of flexural waves. The experimental set-up used to validate the model for the
reflection problem is then presented in Section 2.5 as well as the experimental methodology and
results. Finally, Section 2.6 summarises the main results and gives the concluding remarks.

2.2 Scattering problem for 1D configurations

The absorbing devices proposed in this chapter are studied by analysing their scattering
properties. Scattering problems differ from usual modal analyses, since it deals with the scat-
tering properties (reflection, transmission and absorption) of waves in the system instead of
studying its resonant behaviour. The absorbers studied in this work are therefore embedded
in an infinite or semi-infinite medium according to the studied scattering problem, in order to
maximise the absorption of incident propagating waves. These media can be seen as waveguides
in the same way as in acoustics. This Section aims at presenting the two scattering problems in
1D in order to show the relevance of the eigenvalues and eigenvectors of the scattering matrix
to identify the situations of perfect absorption in the systems. The analysis of the problem is
achieved in the far-field (x → ±∞), i.e. with propagative waves that are related to the carried
energy. The reflection and transmission coefficients of the scattering matrix are therefore scalar
in this Section. Two cases are presented. A general scattering problem is first treated with three
types of scatterers: a mirror symmetric scatterer which corresponds to the one studied later in
this chapter, a point symmetric scatterer and a mirror asymmetric scatterer. The specific case of
the reflection problem is then presented. The analysis of the scattering problems is based on [125].

Consider an one-dimensional and reciprocal scattering process. The relation between the
amplitudes of the incoming (a, d), and outcoming (b, c) waves, on both sides of the scatterer Σ,
as shown in Fig. 2.1(a), is given by

(

c

b

)

= S(f)

(

a

d

)

=

(

T R+

R− T

)(

a

d

)

, (2.1)

32



2. Scattering problem for 1D configurations

Σ

x = 0

x

ce
ikx

de
−ikx

ae
ikx

be
−ikx

x >> λx << −λ

Σ

x = 0

x

(T + R)eikx

+e
−ikx

+e
ikx

(T + R)e−ikx

x >> λx << −λ Σ

x = 0

x

−(T − R)eikx

+e
−ikx

−e
ikx

(T − R)e−ikx

x >> λx << −λ

(b)

(a)

(c)

Figure 2.1 – (a) Diagram of the scattering process. (b) Symmetric and (c) antisymmetric
uncoupled sub-problems for the case of a mirror-symmetric scatterer Σ. The time convention is
e−iωt. (adapted from [125])

where S(f) is the scattering matrix (S-matrix) of the propagative waves, f is the incident wave
frequency, T is the complex transmission coefficient, R− and R+ are the complex reflection
coefficients for left (−) and right (+) incidence, respectively. In this chapter, the time depen-
dence convention of the harmonic regime is e−iωt. The eigenvalues of the S-matrix ψ1,2 and the
eigenvectors v1,2 of the system are expressed respectively as:

ψ1,2 = T ± [R−R+]1/2, (2.2)

and

v1 =

(

R+

−
√
R+R−

)

, v2 =

(√
R+R−

R+

)

. (2.3)

A zero eigenvalue of the S-matrix corresponds to the case in which the incident waves can be
completely absorbed (b = c = 0). This case is called coherent perfect absorption (CPA) [36] and
happens when T = ±

√
R−R+ and the incident waves a, d correspond to the relevant eigenvector.

For an one-sided incident wave, the absorption coefficient is defined as:

α± = 1 − |R±|2 − |T |2. (2.4)

2.2.1 Mirror symmetric scatterer

The scatterer Σ is considered as mirror symmetric. The reflection coefficients at both ports
of Σ are equal in this case such that:

R+ = R− = R. (2.5)

The scattering problem can be reduced to two uncoupled sub-problems by choosing incident
waves that are symmetric (see Fig. 2.1(b)) or antisymmetric (see Fig. 2.1(c)). The total reflection
coefficients of both problems are therefore respectively:

Rs = T +R, Ra = T −R. (2.6)
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In particular, the reflection and transmission coefficients of the initial problem in Fig. 2.1(a)
can be expressed in terms of Rs and Ra as R = (Rs + Ra)/2, and T = (Rs − Ra)/2, while the
eigenvalues of the S-matrix can be written as ψ1 = Rs and ψ2 = −Ra. For an one-sided incident
wave, the absorption coefficient defined in Eq. (2.4) can be written as:

α =
αs + αa

2
, (2.7)

where αs = 1 − |Rs|2 and αa = 1 − |Ra|2. The total absorption of an incident wave at a given
frequency fmax by the scatterer (i.e. α(fmax) = 1) can therefore be achieved provided that the
reflection coefficient of both sub-problems equals zero at fmax. This has been achieved in Ref.
[148] for a mirror symmetric photonic crystal slab covered by a graphene layer and in Ref. [125]
for an acoustic mirror symmetric scatterer composed of 2 helmholtz resonators.

2.2.2 Point symmetric scatterer

Σ is now considered as a point scatterer. The length of Σ is therefore reduced to one point at
x = 0. This case is relevant to the study of absorption by TVA since such devices are attached
to the background medium at only one point. Imposing the continuity of the wave-field at this
point [125] yields 1 +R = T and consequently to Ra = −1 according to Eq. (2.6). In this case,
the scatterer Σ is transparent to antisymmetric incident waves since αa = 0. The absorption
coefficient is then expressed as:

α =
αs

2
. (2.8)

As a consequence, the absorption of the scatterer for an one-sided incident wave at a given
frequency fmax may not exceed 0.5. In the case where α(fmax) = 0.5, αs(fmax) = 1 which gives
Rs(fmax) = ψ1(fmax) = 0, and R(fmax) = −T (fmax) = 1/2. This case corresponds therefore
to the CPA of the two-incident waves problem for symmetric and in phase incoming waves at
fmax, i.e., v2(fmax)/v1(fmax) = 1 [188].

2.2.3 Mirror asymmetric scatterer

Σ can be asymmetric in the most general case, such that:

R+ 6= R−. (2.9)

This problem corresponds to the one presented in Fig. 2.1(a) whose the corresponding eigenva-
lues and eigenvectors are given in Eqs. (2.2) and (2.3) respectively. Therefore, Two absorption
coefficients are defined in this case according to the direction where the incident wave is coming
from and their expression is given in Eq. (2.4). The eigenvalues of the scattering matrix equal
zero when T = ±

√
R+R−. Thus, T = 0 and the system presents Unidirectional Perfect One-

side Absorption (UNPOA) provided that one of the reflection coefficients reaches zero. From
the analysis of the eigenvectors, the direction from which perfect absorption is obtained will
correspond to the case of an eigenvector equal to (0, 0)T , where T is the transpose sign.
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(b)(a)

Figure 2.2 – Diagrams of the 1D configurations analysed for the reflection and transmission
problems for flexural waves. (a) Configuration for the reflection problem. (b) Configuration for
the transmission problem.

2.2.4 Complex frequency plane

When the eigenvalues are evaluated in the complex frequency plane [153], poles and zeros can
be identified. The pole frequencies correspond to the resonances of the resonator while the zero
frequencies correspond to the perfect absorption configuration. Since the systems analysed in this
work are invariant under time-reversal symmetry, the scattering matrix, as defined in Eq. (2.1),
presents unitary property [128, 133] in the lossless case (i.e., without dissipative losses):

S∗S = I. (2.10)

The complex frequencies of the eigenvalue poles of the propagative S-matrix are complex
conjugates of its zeros. Poles and zeros appear therefore symmetric with respect to the real
frequency axis in the lossless case.

2.3 Theoretical model for flexural waves

Two scattering problems are now presented in order to study the absorption of flexural
waves by open lossy resonators in 1D systems. The first one is the reflection problem where the
absorption by a resonator made of a thinner composite beam located at the termination of a
semi-infinite beam is studied (see Fig. 2.2(a)). The second one is the transmission problem where
the absorption of the same resonator located between two semi-infinite beams is considered
(see Fig. 2.2(b)). Both resonators correspond to mirror symmetric scatterers as described in
the previous section. The governing equations used in the model are first introduced in this
section. The two scattering problems are then presented. The analytical results shown for the
two problems have been tested by numerical simulations, but not shown in this chapter for
clarity of the figures. The analytical results are validated experimentally in Section 2.5 later on.

2.3.1 Flexural wave propagation in uniform thin beams

Consider a thin uniform beam whose neutral axis is denoted by the x-axis under Euler-
Bernoulli assumptions. According to the Euler–Bernoulli or thin beam theory, the cross-section
of the beam, initially orthogonal to its mean axis, remains planar and orthogonal to it, implying
therefore that shear strains are neglected. Assuming Euler-Bernoulli conditions, the flexural
displacement W (x, t) = w(x)e−iωt, where ω is the angular frequency, satisfies [113]:

D
∂4W (x, t)

∂x4
+m

∂2W (x, t)
∂t2

= 0, (2.11)
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where D = EI is the flexural rigidity, E the Young modulus, I the second moment of area and
m the linear mass. The solution of Eq. (2.11) can be written in the frequency domain as:

[

∂2

∂x2
+ k2

] [

∂2

∂x2
+ (−ik)2

]

w(x) = 0, (2.12)

where k is the wavenumber and k4 =
mω2

D
. Note that the wavenumber k is real and positive in

the lossless case and complex when damping is accounted for. The solution of Eq. (2.12) can be
separated in two parts such that:

w(x) = w1(x) + w2(x),

where w1(x) and w2(x) are solutions of the following equations respectively:

[

∂2

∂x2
+ k2

]

w1(x) = 0, (2.13)

[

∂2

∂x2
+ (−ik)2

]

w2(x) = 0. (2.14)

The first equation corresponds to the Helmholtz equation governing the propagating flexural
waves, while the second equation is the modified Helmholtz equation governing the evanescent
waves which are near field waves, the amplitude of which decreases exponentially with distance.
The solution of Eq. (2.11) is therefore the sum of the solutions of Eqs. (2.13) and (2.14) that
being the sum of four flexural waves:

w(x) = a+eikx + a+
Ne

−kx + a−e−ikx + a−
Ne

kx. (2.15)

The complex amplitudes of the propagative and evanescent waves are a and aN respectively,
and the signs + and − denote the outgoing and ingoing waves respectively. The wave amplitude
is expressed in the vector form by convenience:

a+ =

[

a+

a+
N

]

, a− =

[

a−

a−
N

]

. (2.16)

The relation between wave amplitudes along a beam with a constant thickness are then described
by

a+(x0 + x) = f a+(x0) and a−(x0 + x) = f−1a−(x0), (2.17)

where the diagonal transfer matrix f is given by

f =

[

eikx 0
0 e−kx

]

. (2.18)

2.3.2 Reflection coefficient in a pure reflection problem

Consider an incident plane wave in the configuration described by Fig. 2.2(a), where the
system is terminated by a free termination at one end. The displacement w at any point for
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x < 0 reads as
w(x < 0) = a+ + a− = a+ + Rr · a+, (2.19)

where Rr denotes the reflection matrix of the resonant termination of the beam at x = 0. The
incident wave is transmitted into the resonant termination and reflected at its end, therefore
the matrix Rr can be evaluated, using the displacement continuity at the interface and at the
boundary as [121]:

Rr = a−a+−1 = r12 + t12

(

(frf f)−1 − r21

)−1
t21, (2.20)

where rij and tij represent the reflection and transmission matrices from section (i) to section (j)
of the beam (see Fig. 2.2a). Considering continuity and equilibrium respectively at the section
change, these matrices are given by

tij =
4
∆

[

(1 + β)(1 + γ) (−1 − iβ)(1 − γ)
(−1 + iβ)(1 − γ) (1 + β)(1 + γ)

]

, (2.21)

rij =
2
∆

[

−2(β2 − 1)γ + iβ(1 − γ)2 (1 − i)β(1 − γ2)
(1 + i)β(1 − γ2) −2(β2 − 1)γ − iβ(1 − γ)2

]

, (2.22)

where β =
kj

ki
and γ =

Djk
2
j

Dik2
i

correspond to the ratios of wavenumbers and bending wave im-

pedances, and ∆ = (1 + β)2(1 + γ)2 − (1 + β2)(1 − γ)2. The reflection matrix rf of the free
termination is given by

rf =

[

i (1 − i)
(1 + i) −i

]

. (2.23)

Rr is thus a 2×2 matrix where the diagonal components correspond to the reflection coefficients
of the propagative and evanescent waves respectively. It is recalled that the study focuses on
the reflection of waves in the far-field (x → −∞), i.e., on the propagative waves that carry the
energy. Only Rr(1, 1) and Rr(2, 1) contribute to the reflected field in the abscence of evanescent
incident wave. Moreover, RN(2, 1) vanishes in the far-field (x → −∞), as it corresponds to
the converted waves from propagative to evanescent waves during the reflexion process. The
first term of the reflection matrix Rr(1, 1) = Rr is therefore only considered. The absorption
coefficient αR of propagating waves in the reflection problem can then be written as:

αr = 1 − |Rr|2, x → −∞. (2.24)

Note that Rr is simply equal to 1 for any purely real frequency in the lossless case, i.e. without
dissipation, as the energy conservation is fulfilled.

2.3.3 Reflection and transmission coefficients in a 1D symmetric and reci-

procal transmission problem

The transmission problem of the structure shown in Fig. 2.2(b) is described in this section,
considering b− = 0. Due to the symmetry of the resonator and assuming propagation in the linear
regime, the problem is considered as symmetric and reciprocal. The reflection and transmission
matrices Rt and Tt at x = 0 and x = L are used to define the displacements on each side of
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the resonator, such as:
w(x < 0) = a+ + a− = a+ + Rt · a+, (2.25)

w(x > L) = b+ = Tt · a+. (2.26)

Using the displacement continuity at x = 0 and x = L in a similar way as in the previous section,
Rt and Tt are written as:

Rt = r12 + t12

(

(fr23f)−1 − r21

)−1
t21, (2.27)

Tt = a−a+−1 = t23(I − (fr21f)r23)−1ft12. (2.28)

Therefore the absorption coefficient of the transmission problem is defined as:

αt = 1 − |Tt|2 − |Rt|2, x → ±∞ (2.29)

where Rt = Rt(1, 1) when x → −∞ and Tt = Tt(1, 1) when x → +∞.

2.3.4 Viscoelastic losses in the resonator: the RKU model for beams

The inherent losses of the resonator are introduced by a thin absorbing layer of thickness
hl as shown in Figs 2.2(a) and 2.2(b) and are considered frequency independent. The complex
Young Modulus of the absorbing layer is El(1 − iηl), where ηl is its loss factor. Using the RKU
model for beams [154], this region is modeled as a single composite layer with a given effective
bending stiffness Dc written as:

Dc = E2I2

[

(1 − iη2) + ech
3
c(1 − iηl) +

3 + (1 + hc)2echc[1 − η2ηl − i(η2 + ηl)]
1 + echc(1 − iηl)

]

, (2.30)

where the indices 2 and l stand for the parameters of the thin beam and of the absorbing layer
respectively, ec = El/E2 and hc = hl/h2. The wave number kc of the composite material can

then be written as k4
c =

ρchω
2

Dc
, where h = hl + h2 and ρch = ρ2h2 + ρlhl.

2.4 Limits of absorption for the reflection and transmission pro-

blems

This section describes the limits of absorption for flexural waves in the reflection and trans-
mission problem by using open, lossy and symmetric resonators. It provides tools to design
absorbers with a maximal absorption in both problems. For this purpose, the eigenvalues of the
scattering matrix of the propagative waves are represented in the complex frequency plane as in
Ref. [153].The information given by this representation will be exploited to interpret the perfect
absorption in terms of the critical coupling condition. In particular, the concept of the zeros
and poles of the reflection coefficient in the complex frequency plane is introduced through the
analysis of the reflection problems. The material and geometric parameters used in the following
sections are described in Tab. 2.1.
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Geometric parameters Material parameters
Main beam h1 = 5 mm ρ = 2811 kg.m−3

b = 2 cm E = 71.4 GPa
η = 0
ν = 0.3

Resonator beam h2 = 0.217 mm ρ2 = 2811 kg.m−3

b2 = 2 cm E2 = 71.4 GPa
L = 1.6 cm η2 = 0

ν2 = 0.3

Coating layer hl = 1.5 mm El = 6.86 × 10−3 GPa
bl = 2 cm ρl = 93.3 kg.m−3

Ll = 1.6 cm ηl

νl = 0.3

Table 2.1 – Geometric and material parameters of the studied systems. The value of ηl depends
on the experimental set-up used, see the main text for the values used. b, b2 and bl correspond
to the width of the system.

2.4.1 Reflection problem

a) Lossless case.

In the reflection problem, where no wave is transmitted, the reflection coefficient Rr repre-
sents the scattering of the system. Thus, Rr corresponds directly to both the S-matrix and its
associated eigenvalue (ψ = Rr). Its zeros correspond to the cases in which the incident wave is
totally absorbed. In the lossless case, |Rr| = 1 for any purely real frequency and the pole-zero
pairs appear at complex conjugate frequencies. Fig. 2.3(a) depicts log10(|Rr|) in the complex
frequency plane. The main beam, the resonator beam and the coating layer have the geometric
and material parameters given in Tab. 2.1. Note that the Young moduli are purely real in the
lossless case (η = η2 = ηl = 0). As shown in Section 2.2.4, the poles and zeros appear in pairs
and are symmetric with respect to the real frequency axis. Moreover the value of |Rr| along
the real frequency axis is equal to 1 since no energy is lost in the system and the incoming
wave is completely reflected back. It is also worth noting that the imaginary part of the pole
in the lossless case represents the amount of energy leakage by the resonator through the main
beam [153]. With the time dependence convention used in this chapter, the wave amplitude at
the resonance frequency decays as e−Im(ωpole)t. Thus the decay time τleak can be related with

the quality factor due to the leakage as Qleak =
Re(ωpole)τleak

2
=

Re(ωpole)
2Im(ωpole)

, where the leakage

rate can be defined as Γleak = 1/τleak = Im(ωpole). The imaginary part of the poles and zeros
increases when the real part of the frequency increases, meaning that more energy leaks out
through the resonator at high frequencies.

b) Lossy case.

For the sake of clarity, this section only focuses on the first pole-zero pair of the system
previously described. The discussion can nevertheless be extended to any pole-zero pair of the
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Figure 2.3 – Analysis of the scattering in the reflection problem. (a) Representation of
log10(|Rr|) in the complex frequency plane for the lossless case. (b)-(d) log10(|Rr|) in the complex
frequency plane in the lossy case for configurations with ηl = 0.02, 0.15 and 0.4 respectively.
The case when the critical coupling condition is fulfilled (ηl = 0.15) is represented in (c). (e)
Trade-off of the absorption at the first resonance frequency of the resonator as the inherent loss
ηl is increased in the system. The points along the absorption curve represent the values of the
absorption for the configurations represented in Figs (b)-(d). Red continuous (Black dashed) line
represents the absorption (reflection) coefficient as a function of etal at 673 Hz, corresponding
to the first resonance frequency of the termination.

system in the complex frequency plane. Losses are now introduced into the system by adding
an imaginary part to the Young modulus of the damping material such that it can be written as
El(1−iηl). As a consequence, the symmetry between the poles and zeros with respect to the real
frequency axis is broken since the property of Eq. (2.10) is no more satisfied in the lossy case.
Figures 2.3b-2.3d depict log10(|Rr|) in the complex frequency plane around the first resonance
frequency for three different increasing values of ηl. Figure 2.3(b) represents the case for which
the losses are small (ηl = 0.02). In this case, the pole-zero pair is quasi-symmetric with respect to
the real frequency axis. As the losses in the damping layer increase (ηl = 0.15 in Fig. 2.3(c) and
ηl = 0.4 in Fig. 2.3(d), the zero moves to the real frequency axis. In particular, the zero of the
reflection coefficient is exactly located on the real frequency axis in Fig. 2.3(c). In this situation,
the amount of inherent losses in the resonator equals the amount of energy leakage. This situation
is known as the critical coupling condition [205] and implies the impedance matching, leading
to a perfect absorption.

The value of the absorption coefficient of the first resonant peak as a function of ηl is depicted
in Fig. 2.3(e). The position of the zero in the complex frequency plane is directly related to the
value of the flexural wave absorption. When the zero approaches the real frequency axis, the
value of the absorption is close to one, being equal to 1 when the zero is exactly located in the
real frequency axis. It should be noted that the perfect absorption cannot occur once the zero
has crossed the real frequency axis. This property might appear counterintuitive since it means
that adding a large amount of losses in the system might lead to a deterioration of the absorbing
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Figure 2.4 – Representation of the perfect absorption for the reflection problem. (a), (b) show
the representation of the log10(|Rr|) for the lossless and lossy configurations respectively. (c)
Red continuous and black dashed lines show the analytical absorption and reflection coefficients
for the critical coupled configuration respectively.

properties of the structure.

c) Design of perfect absorbers for flexural wave in the reflection problem.

A theoretical design for the perfect absorption of flexural waves is shown in this section
based on the configuration represented in the Fig. 2.2(b) and the parameters given in Tab. 2.1.
Considering that there is no inherent losses in the main beam and the resonator beam (η =
η2 = 0), the loss factor of the coating layer has to be ηl = 0.15 to obtain a perfect absorption
at the first resonance frequency of the system. Figures 2.4(a)-2.4(b) depict log10(|Rr|) for the
lossless and lossy configurations in the complex frequency plane respectively. Figure 2.4b shows
particularly the first pole-zero pair of the system in the perfect absorption configuration where
the critical coupling condition is fulfilled, showing the zero exactly located on the real frequency
axis. Figure 2.4c shows the corresponding absorption (red continuous line) and reflection (black
dashed line) coefficients according to real frequencies for the critical coupled configuration. These
coefficients are calculated with the analytical model described in previous sections. The incident
wave is totally absorbed at the first resonance frequency of the composite beam.

2.4.2 Transmission problem

For the transmission problem, the S-matrix is defined in Eq. (2.1) and has two eigenvalues
ψ1,2. The scatterer being mirror symmetric, the problem can be reduced to two uncoupled
sub-problems: a symmetric problem where ψs = Tt + Rt and an anti-symmetric, where ψa =
Tt −Rt. ψs corresponds to the eigenvalue of the symmetric problem while ψa corresponds to the
eigenvalue of the anti-symmetric problem. The absorption coefficient can also be expressed as
α = (αs +αa)/2 where αs = 1− | ψs |2 and αa = 1− | ψa |2. Similarly to the reflection problem,
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Figure 2.5 – Representation of the eigenvalues of the S-matrix for a transmission problem in
the lossless and lossy case. (a) and (b) Lossless case for log10(|ψs|) and log10(|ψa|) in the complex
frequency plane. (c) and (d) Lossy case for log10(|ψs|) and log10(|ψa|) in the complex frequency
plane. (e) Trade-off of the transmission (blue dotted line), reflection (black dashed line) and
absorption (red continuous line) for the maximum absorption of the first mode as the loss factor
of the coating layer increases. (f) Red continuous, black dashed and blue dotted lines represent
the absorption, reflection and transmission coefficients respectively for the half critically coupled
configuration.

poles and zeros of ψs and ψa can be identified in the complex frequency plane. The following
sections focuses on the first resonant mode of the beam resonator, the displacement distribution
of which is symmetric. The interpretation of the results can nevertheless be applied to the higher
order modes with anti-symmetric distributions of the displacement field. It is worth noting that
the displacement distribution of the resonant modes changes from symmetric to anti-symmetric
as the mode increases due to the geometry of the resonators [97].

a) Lossless case.

Figures 2.5(a) and 2.5(b) show the variation of log10(|ψs|) and log10(|ψa|) evaluated respec-
tively in the complex frequency plane in the lossless case for the first resonant mode. The main
beam, the resonator beam and the coating layer of the studied system have still the material
and geometric parameters of Tab. 2.1, where η = η2 = ηl = 0 in the lossless case. The symmetric
and anti-symmetric problems exhibit pole-zero pairs similarly to the reflection problem in the
lossless case. These pairs are also symmetrically positioned with respect to the real frequency
axis. The absence of dissipation is shown along the real frequency axis where |Tt ± Rt| = 1 for
any real frequency. This section focuses only on the first resonant mode which has a symme-
tric distribution of the displacement field. Therefore, only the symmetric problem presents a
pole-zero pair at the corresponding resonance frequency, while the anti-symmetric one does not.
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b) Lossy case.

Unlike the reflection problem, the condition for perfect absorption is stronger in the trans-
mission one and needs to place the zeros of both ψs and ψa at the same frequency in the real
frequency axis. Once this condition is fulfilled, a+ and b− correspond to the relevant eigenvector
and the system satisfies the Coherent Perfect Absorption (CPA) condition [36, 187, 125]. Losses
are introduced in the system in the same way as for the reflection problem, i.e., by increasing the
loss factor ηl of the material of the damping layer. Once the losses are introduced, the position
of the pole-zero pair of the symmetric eigenvalue in the complex frequency plane shifts towards
the upper half space while the anti-symmetric problem remains unchanged without pole-zero
pairs, as shown in Figs 2.5(c) and 2.5(d). Therefore, only the zero of the symmetric problem
can be placed on the real frequency axis, i.e., only half of the problem can be critically coupled.
Figure 2.5(e) shows the dependence of the reflection, transmission and absorption coefficients
on the inherent losses in the resonator for the first mode. The maximum absorption obtained is
0.5 since only the symmetric problem is critically coupled (α = (αs +αa)/2 ≃ (1 + 0)/2 ≃ 1/2).

c) Design of maximal absorbers for flexural waves in the transmission problem.

Based on the results discussed previously, a configuration with maximal absorption for flexu-
ral waves in the transmission problem is designed with the parameters given in Tab. 2.1. As for
the reflection problem, no inherent losses are considered in the main beam and the resonator
beam (η = η2 = 0). The loss factor of the coating layer is ηl = 0.185. The reflection, transmis-
sion and absorption for this configuration is analysed in Fig. 2.5(f), showing that the maximum
absorption is 0.5 at the resonance frequency of the beam. This result is in accordance with the
ones previously obtained [63, 187, 125], even if the resonator is not a point translational impe-
dance. The absorption is limited to 0.5 since only one kind of geometry of resonant mode can be
excited. The problem is therefore half critically coupled. To obtain a higher absorption, other
strategies based on breaking the symmetry of the resonator [98] or on the use of degenerate
resonators are needed [204]. In these cases, both eigenvalues present poles and zeros located at
the same real frequencies. It would then be possible to fully critically couple the problem and
so obtain a perfect absorption (i.e. α = 1) at the appropriate frequency.

2.5 Experimental results

This section presents the experimental results of the reflection coefficient [78, 52] for an
aluminum beam system with the configuration described in Section 2.4.1c).

2.5.1 Experimental set-up

The beam is held vertically in order to avoid static deformation due to gravity. The extremity
at which the reflection coefficient is estimated is oriented towards the ground (see Fig. 2.6(a)).
The used coating layer have been experimentally characterised showing an ηl = 0.15, which is
the value for which perfect absorption can be observed. A photograph of the resonator with
the coating layer is shown in Fig. 2.6(b). The measurements are performed along the beam at
21 points equidistant of 5 mm and located on its neutral axis in order to avoid the torsional
component. The measurement points are also located sufficiently far from the source and the
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extremity of the beam to consider far-field assumption and neglect the contribution of evanescent
waves. In this case, far-field assumption is fulfilled at a distance lf from both the source and the
resonator for which the evanescent wave loses 90 % of its initial magnitude. The low frequency
limit of the measurements is then estimated using the relation: e−klf = 0.1. The shaker excites
the beam with a sweep sine. The displacement field versus frequency is obtained from the
measurements of the vibrometer at each measure point.

2.5.2 Experimental estimation of the reflection coefficient

Consider the flexural displacement W (xi, ω) measured at the point xi(i ∈ [0, 20]) for a given
angular frequency ω as

W (xi, ω) = A(ω)eikxi +B(ω)e−ikxi . (2.31)

The set of W (xi, ω) for each measurement point can be written in a matrix format [52] such as
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(

A(ω)
B(ω)

)

, (2.32)

The amplitudes A(ω) and B(ω) can then be derived from Eq. (2.32) which forms an overdeter-
mined system. From these amplitudes, the reflection coefficient of the propagative waves can be
deduced for any ω as:

Rr(ω) =
A(ω)
B(ω)

. (2.33)

2.5.3 Experimental evidence of perfect absorption for flexural waves

Experimental results obtained with the experimental set-up are depicted in Fig. 2.6(c). A
drop of reflection is noticed at the first resonant frequency of the termination with a minimum
value of |Rr|2 = 0.02 at 667 Hz for the experiment and |Rr|2 = 0 at 673 Hz for the analytical
result. The gap between the analytical and experimental resonant frequency is 0.9%. This fre-
quency shift between the model and the experiment is mainly due to the geometric uncertainty
in the resonator thickness, induced by the machining process. This geometrical uncertainty in-
duces also an estimation uncertainty of the energy leakage of the resonator. The absorption is
then experimentally limited to αr = 0.98. Snapshots of the displacement response of the experi-
mental system are presented in Figs 2.7 and 2.8 for two different frequencies, being f = 667Hz
and f = 800Hz. A standing wave can be seen in the whole system in Fig. 2.7 since no perfect
absorption is provided by the resonator at this specific frequency at one end of the system and
a free condition is imposed at the other end. A progressive wave propagating towards the re-
sonator corresponding to the incident wave can be seen in Fig. 2.8. The incident wave is then
absorbed by the resonator, avoiding therefore the standing wave. Evidence of perfect absorption
for flexural waves by means of critical coupling is shown experimentally here.
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Figure 2.6 – (a) Diagram of the experimental set-up. (b) Photograph of the resonator. (c) Black
crosses and red open circles show respectively |Rr|2 and αr for the critical coupled configuration
measured with the experimental set-up. Black dashed and red continuous lines show |Rr|2 and
αr calculated with the analytical model.

Figure 2.7 – Snapshot of the displacement response of the beam system measured with the
experimental set-up at 800Hz. The critically coupled resonator is located on the left-hand of the
beam system.
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Figure 2.8 – Snapshots of the displacement response of the beam system measured with the
experimental set-up at 667Hz. The critically coupled resonator is located on the left-hand of the
beam system.

2.6 Conclusions

Absorption of propagative flexural waves by means of simple beam structures is analysed
in this chapter. The main mechanisms are interpreted in terms of both the critical coupling
condition and the symmetries of the resonances for both the reflection and the transmission
problems. The positions of the zeros of the eigenvalues of the scattering matrix in the complex
frequency plane give informations on the possibility to obtain the perfect absorption. The perfect
absorption condition is fulfilled when these zeros are placed on the real frequency axis, meaning
that the inherent losses are completely compensating the energy leakage of the system. In the
reflection problem, the physical conditions of the problem lead to perfect absorption at low
frequencies. In this case a single symmetry for the resonance is excited and perfect absorption
can be obtained when the inherent losses of the system balance the energy leakage of the system.
In the transmission problem, the requirement to obtain perfect absorption is stronger than for the
case in reflection as two kinds of symmetry of the resonances are required to be critically coupled
simultaneously. In the case presented in this chapter, or in the general case of point translational
impedances, dealing only with one type of symmetry for the resonant modes [63] limits the
absorption to 0.5. Two strategies are therefore needed to obtain the perfect absorption in the
transmission case: (i) breaking the symmetry of the resonator in order to treat the full problem
with a single type of symmetry of the resonance mode [98]; (ii) using degenerate resonators with
two types of symmetries at the same frequency being critically coupled [204]. The resonator
used in this study has been chosen as an integral part of the main beam for experimental set-up
reasons. However, the presented approach can be applied to any class of 1D resonant-system
provided that the resonators are local, open and lossy ones. These properties of the resonator are
the essential points to achieve the perfect absorption at low frequency by solving the following
problems: increasing the modal density at low frequencies and matching the impedance with the
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background medium. The case studied in this chapter performs perfect absorption for a given
resonance frequency of the resonator. Its efficiency is therefore tonal. The next step of the work
is to design a perfect absorber with a broadband efficiency. To that purpose, the geometry of
the resonator is complexified by putting an ABH at the termination of a system.
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Chapter 3

Interpretations of the ABH effect by

using the complex frequency plane

3.1 Introduction

The representation of the eigenvalues of the scattering matrix in the complex frequency
plane has been exploited to interpret and design perfect absorbers of flexural waves in Chapter 2
and in [114]. In the case of a locally resonant termination, such as an ABH termination, the
reflection coefficient represents the scattering matrix which is scalar in this kind of problem. As
a consequence, the reflection coefficient is the eigenvalue of the problem. Moreover, it has been
shown that the reflection coefficient presents pairs of zeros and poles in the complex frequency
plane [153, 114]. These zeros and poles are complex conjugates one with respect to the other in
the lossless case, thus being symmetric with respect to the real frequency plane. In the ideal case
of an ABH in which the thickness is zero, the reflection coefficient should present a continuous
number of poles and zeros that coalesce at the real frequency axis. However, this situation is
not realistic since the thickness, despite its small value, is nonetheless always finite. In this case,
infinite discrete symmetric pairs of poles and zeros appear in the complex frequency plane. At
this stage, it is worth noting that the imaginary part of the pole represents the energy leakage
between the ABH tip and the main beam as this kind of termination can be interpreted as an
open resonator [114].

The damping efficiency of these open resonators can be improved by making use of the
inherent losses of the system. In doing so, by taping a layer of viscoelastic material along the
thickness profile for instance, the zero and poles can be tuned in the frequency plane. Thus,
as shown previously [153, 114], as the losses increase the pairs of zero/pole move along the
imaginary frequency axis in the same direction, locating the zeros closer to the real frequency
axis. In particular, perfect absorption of the incident wave can be achieved when the zero is
located on the real frequency axis, or physically speaking when the energy leakage is perfectly
compensated by the added losses, corresponding therefore to the critical coupling condition [205].
Concurrently, it has been shown that the damping efficiency of a practical ABH, also called ABH
effect, can be significantly improved by adding a thin layer of viscoelastic material along the ABH
profile [106, 107]. The reflection coefficient of such a system has been studied both experimentally
[52] and numerically by using various methods detailed in Section 1.2.2c). In general, the ABH
effect is characterised by drops of the reflection coefficient at specific frequencies corresponding
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to modes of the tapered zone [54]. However, it has not been shown in detail how the losses have
to be managed to obtain the perfect absorption of flexural waves.

This chapter focuses on this link between the complex nature of the trapped modes within
a 1D ABH and its reflection coefficient drops, in terms of depth and frequency width. More
specifically, the purpose of the chapter is to analyse first the absorbing efficiency of the ABH by
using the critical coupling condition. The absorption of the ABH termination can be controlled
by tuning the losses introduced via the added viscoelastic coating and the geometry of the ABH.
Two strategies to optimise the absorption efficiency of an ABH termination at low frequency are
then proposed in this chapter, both consisting in applying the critical coupling condition. The
first consists in tuning the losses introduced by the viscoelastic layer by shaping its thickness
profile in order to achieve the critical coupling condition at several resonances of the ABH. The
second strategy is based on the addition of a mass at the extremity of the ABH which decreases
the first resonance frequency of the ABH. The critical coupling is then applied at this specific
frequency to obtain a low frequency absorption by the termination.

The analysed system is composed of a main beam terminated by an open resonator which
corresponds to an ABH of finite length. The ABH termination is discretised by constant thickness
piecewise elements. A thin viscoelastic coating is also attached to the ABH creating a composite
material. This composite material is modeled with the Ross-Kerwin-Ungar (RKU) method in the
same way as in Chapter 2. The vibration response of the composite ABH is studied by means of
the Transfer Matrix Method (TMM) [121]. In particular, the eigenvalue of the scattering matrix
S, for the propagating waves are analysed in the complex frequency plane [153, 114], providing
insightful interpretation on the absorption efficiency of the ABH. All the analytical results are
validated against full wave numerical simulations by Finite Element Models, which have been
implemented using 2D models of solid mechanics in COMSOL Multiphysics software.

The chapter is organised as follows. In Section 3.2, the theoretical model used to analyse the
reflection of flexural wave by a profiled termination is presented for a 1D reflection problem. In
Section 3.3, the physical interpretations of the ABH effect of a truncated ABH with a coating
layer by using the complex frequency plane in the lossless and lossy cases are presented. Section
3.4 proposes two strategies to optimise the absorption efficiency of an ABH termination at low
frequency. The first consists in tuning the losses introduced by the added coating layer in order
to apply the critical coupling condition. The second strategy consists in adding a mass at the
end of the ABH in order to introduce a degree of freedom in the low frequency regime, where the
ABH is not efficient. Finally, Section 3.5 summarises the main results and gives the concluding
remarks.

3.2 Theoretical model for the reflection of flexural waves by a

profiled termination

This section describes the theoretical model used to study the absorption of flexural waves
by a 1D open, lossy, and profiled termination. The model is based on the TMM as proposed by
Mace [121] and previously used in Chapter 2 to interpret the perfect absorption of flexural waves
of a termination composed of a thin beam of uniform thickness. This method is applied here
to calculate the reflection coefficient of finite beam terminations described by N − 1 piecewise
constant property profiles, as depicted in Fig. 3.1.
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Figure 3.1 – (a) Diagrams of the 1D reflection problem for flexural waves with an ABH
termination. (b) Spatial discretisation of the thickness profil of the ABH termination.

3.2.1 Reflection problem

Consider a time harmonic (e−iωt) incident plane wave that impinges the ABH termination
from the left (see Fig. 3.1(a)). The ABH is discretised into N − 1 beams of identical length ∆x,
but of height hj , bending stiffness Dj = EIj where Ij = bh3

j/12 denotes the second moment of

area, b being the beam width, and wavenumbers (kj)4 =
ρjhjω

2

Dj
, j = 0, ..., N (see Fig. 3.1(b)).

The material of the main beam and the uncoated ABH termination is identical, with E its
Young’s modulus and ρ its density. The losses are accounted for via a loss factor η, the Young’s
modulus thus being E = E(1−iη). The possible variations of the loss factor against the frequency
are ignored in this study, and η is assumed to be constant. This assumption is reasonable in
the case of the aluminium beam studied in this chapter. The continuity and equilibrium of the
displacement, slope, bending moment and shear force are considered at the interfaces between
each consecutive beam. Assuming the Euler-Bernoulli conditions, the flexural displacement w

in the main beam, i.e., for x > Lt, reads as

w = a+ + a− = (I + RN) · a+, (3.1)

where a are the complex amplitude vectors of the propagative and evanescent waves, the signs
+ and − denote the ingoing and outgoing waves respectively, RN is the reflection matrix at
x = Lt, i.e. at the interface between the main beam and the ABH termination, and I is the
identity matrix.

The expression of RN is a combination of reflection and transmission matrices at the inter-
faces of all the discrete beams that form the termination. It is obtained iteratively starting from
the reflection matrix of the free termination R0 = rfree given by

rfree =

[

−i (1 − i)
(1 + i) −i

]

. (3.2)
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The iterative scheme takes the following form [121]

Rj = rj−1, j + tj−1, j((fj−1Rj−1fj−1)−1 − rj, j−1)−1tj, j−1, for j = 1 to N, (3.3)

where ri,j and ti,j are the reflection and transmission matrices from section i to section j respec-
tively. Considering the continuity and equilibrium of the displacement, slope, bending moment
and shear force, these matrices are given by

tij =
4

∆ij

[

(1 + βij)(1 + γij) (−1 − iβij)(1 − γij)
(−1 + iβij)(1 − γij) (1 + βij)(1 + γij)

]

, (3.4)

rij =
2

∆ij

[

−2(β2
ij − 1)γij + iβij(1 − γij)2 (1 − i)βij(1 − γ2

ij)
(1 + i)βij(1 − γ2

ij) −2(β2
ij − 1)γij − iβij(1 − γij)2

]

, (3.5)

where βij =
kj

ki
and γij =

Djk
2
j

Dik2
i

correspond to the ratios of wavenumbers and bending wave

impedances, and ∆ij = (1 + βij)2(1 + γij)2 − (1 + β2
ij)(1 − γij)2. The diagonal transfer matrix in

the uniform beams fj is expressed as

fj =

[

eikjx 0
0 e−kjx

]

. (3.6)

RN is thus a 2 × 2 matrix where the upper diagonal component corresponds to the reflection
coefficient of the propagative wave. The study focuses on the term RN ⇔ RN(1, 1) that is the
only one related to the carried energy. It is recalled that only RN(1, 1) and RN(2, 1) contribute
to the reflected field in the abscence of evanescent incident wave. Moreover, RN(2, 1) vanishes in
the far-field (x → −∞), as it corresponds to the converted waves from propagative to evanescent
waves during the reflexion process. As the configuration presented in this chapter corresponds
to a reflection problem, no wave is transmitted by the termination. In this case, the scattering
matrix collapses to a scalar which is the reflection coefficient. Therefore, the reflection coefficient
RN represents the scattering of the system and corresponds directly to both the scattering
matrix of the termination and its associated eigenvalue. The absorption coefficient αR can thus
be written as:

αr = 1 − |RN |2, x → −∞. (3.7)

3.2.2 Introducing viscoelastic losses in the system: the RKU model

A thin viscoelastic layer of identical material, and constant thickness piecewise hl
j is now

added all along the termination length as shown in Fig. 3.1. Each discretised element of the
viscoelastic layer coincides with those of the ABH. The losses are assumed to be frequency
independent and characterised by a Young’s Modulus El(1 − iηl), where ηl is the loss factor of
the viscoelastic material. Using the RKU model [154], the effective bending stiffness Dc

j of the
j-th discretised composite beam of the coated tapered area is written as [79]:

Dc
j = EIj

[

(1 − iη) + ech̃
3
c(1 − iηl) +

3 + (1 + h̃c)2echc[1 − ηηl − i(η + ηl)]
1 + ech̃c(1 − jηl)

]

, (3.8)

52



3. Analysis of RN in the complex frequency plane to interpret the ABH effect

where the indices j and l stand for the parameters of the uncoated j-th beam of the termination
and the absorbing layer respectively, ec = El/E and h̃c = hl

j/hj . In addition, the wave number

kc
j of the j-th composite beam satisfies (kc

j)4 =
ρc

jh
c
jω

2

Dc
j

, where hc
j = hl

j +hj is the total composite

height and ρc
j = (ρjhj + ρlhl)/hc

j is the density.

3.3 Analysis of RN in the complex frequency plane to interpret

the ABH effect

The absorption of flexural waves by a discretised 1D ABH termination coated by a viscoelastic
layer is now analysed in the reflection problem. In this section, the thickness hl

j of the viscoelastic
layer is considered constant such that hl

j = hl, for j = 0, ..., N − 1 . The eigenvalue of the
scattering matrix of the propagative wave reduces to RN in the current case and is analysed in
the complex frequency plane [114, 153]. The material properties and geometric parameters are
also given in Tab. 3.1.

Geometric parameters Material parameters
hN = 5 mm ρ = 2700 kg.m−3

Main beam b = 2 cm E = 70 GPa
η = 0

h0 = 0.1125 mm ρj

b = 2 cm Dj

Acoustic Black Hole Lt = 20 cm
L0 = 3 cm
N = 201

hl = 0.7 mm El = 0.5 GPa
Coating layer ρl = 950 kg.m−3

ηl

Table 3.1 – Geometric and material parameters of the studied systems. The value of the loss
factor ηl depends on the experimental set-up used. The parameter b corresponds to the width
of the system.

3.3.1 Analysis of lossless ABH terminations with different thickness profiles

Four configurations of termination with different thickness profiles of the uncoated ABH are
analysed in this section. The four thickness profiles differ from one another by their power-law
χ such that each profile equation reads as :

h(x) = hN

(

x

Lt

)χ

,∀x > L0. (3.9)

The analysed orders are linear (χ = 1), quadratic (χ = 2), cubic (χ = 3) and quartic (χ = 4)
respectively and are depicted in Fig. 3.2(d). The reflection problem is analysed first for each
configuration in the lossless case. In this case, no dissipation is considered and Young moduli are
pure real (η = ηl = 0). log10(|RN |) of the different thickness profiles are depicted in Fig. 3.2(a)-
(d). For each profile order, the poles and zeros are symmetric by pair with respect to the real
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Figure 3.2 – (a)-(d) Representation of log10(|RN |) in the complex frequency plane for different
thickness profiles of ABH in the lossless case (linear, quadratic, cubic and quartic thickness
profiles, respectively). (e) Thickness profiles of the ABH studied in (a)-(d).

frequency axis in the lossless case, i.e. the complex frequencies associated to one pair of pole
and zero are complex conjugates one from the other. This symmetric distribution comes from
the time invariance symmetry of the scattering matrix [153]. The pole frequencies correspond
to the resonances of the ABH termination while the zero frequencies correspond to destructive
interference phenomena. The value of |RN | along the real frequency axis is equal to 1 as expected
since no energy is lost in the system and the incoming wave is completely reflected back (see
Fig. 3.2(d)). Since the ABH terminations are open resonators, the imaginary part of the poles
in the lossless case represents the amount of energy leaked by the resonator through the main
beam as previously shown in Chapter 2 and in [153]. The quality factor of the resonances can
be given by Q = Re(ωp)

2Im(ωp) where ωp is the complex frequency of the pole.

By observing the general trend of the discrete distribution of poles and zeros, it is possible
to note that the imaginary part of the poles (and zeros) increases (decreases) when the real
part of the frequency increases, meaning that more energy leaks out through the resonator when
the frequency increases. As a consequence, the quality factor of the resonances also decreases
as the frequency increases. Two different trends can also be observed according the thickness
profiles. On the one hand, the density of poles increases with the order of the profile as shown in
Figs. 3.2(a)-(d). On the other hand, the poles/zeros are closer to the real frequency axis as the
order of the profile increases, meaning that the modes are more trapped in the termination and
that the energy leakage is lower for higher profile orders. As a consequence, the quality factor
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3. Analysis of RN in the complex frequency plane to interpret the ABH effect

Q of the modes increases with the order of the profile, leading to narrower poles and thus zeros.

The previous analysis corresponds to the lossless case. The next stage is to introduce losses
in order to shift the zeros to the real frequency axis and design efficient absorbing devices.
This situation corresponds to the critical coupling condition at which the introduced losses
compensate the energy leakage of the system. Perfect absorption can therefore be observed in
that case. In order to do this, a compromise between the density of poles and the quality factor
must first be made in order to choose the proper profile. If a low (high) profile order is chosen,
the density of poles will be low (high) and the quality factor will be low (high), requiring a big
(low) amount of losses to produce a rippled reflection spectrum with broad (narrow) reflection
drops. The quadratic profile is chosen here, with χ = 2 which shows a reasonable density of
poles with a leakage that can be compensated by realistic materials.

3.3.2 Lossy case

Losses are now introduced into the system by adding an imaginary part to the Young’s
modulus of the damping material of the viscoelastic coating such that it reads as El(1 − iηl).
Losses in the uncoated termination and the main beam are neglected (η = 0). In doing so, the
symmetry between the poles and zeros with respect to the real frequency axis is broken [153].
Figures. 3.3(b)-(c) depict log10(|RN |) in the complex frequency plane for two different values of
ηl, which have to be compared to the lossless case depicted in Fig. 3.3(a) (ηl = 0). As the losses
induced by the damping layer increase (ηl = 2 in Fig. 3.3(b) and ηl = 4 in Fig. 3.3(c)), the zeros
move to the real frequency axis. Drops of |R|2 appear therefore in Fig. 3.3(d) associated to the
resonance frequencies of the ABH termination. The closer to the real frequency axis the zero
in the complex frequency plane, the greater the drop of |R|2 with respect to the real frequency
with two distinct situations: either the zeros are located in the opposite half space of the poles
and there is a lack of loss, or the zeros are located in the same half space as the poles and there
is an excess of loss. When the amount of losses exactly compensates the leakage of the system,
the corresponding zero of the reflection coefficient is located on the real frequency axis, e.g. at
Re(f)=3108 Hz in Fig. 3.3(b). This situation corresponds to the critical coupling condition [205]
and implies the impedance matching between the main beam and the resonator, leading to a
perfect absorption of the incident wave at this specific real frequency (see Fig. 3.3d). A good
agreement between the analytical and numerical results can also be observed in Fig. 2.4(d),
therefore validating the analytical model presented in the previous sections.

An overlapping of the zeros on the real frequency axis is observed in Fig. 3.3(b) above the
frequency for which the coupling condition is satisfied (3108 Hz). This is due to the geometry
of the resonator that leads to low quality factor resonances. The overlapping of the wide zeros
results in a broadband quasi-perfect absorption and |RN |2 ≃ 0 in this frequency range (see
Fig. 3.3(d)). This result is one interpretation of the ABH effect at high frequency and is the
main contribution of this work. The damping effect of a truncated ABH is the consequence of
the critical coupling at one resonance frequency of the ABH and the broadband quasi-perfect
absorption at higher frequencies. The critical coupling, and as a consequence the ABH effect
of truncated ABH, can be obtained for any power law of thickness profiles, providing that
the impedance matching between the main beam and the ABH is achieved by compensating
the energy leakage with additional dissipative losses from the viscoelastic layer. However, it is
difficult to compensate the leakage with realistic materials for profiles with χ < 2 due to the
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Figure 3.3 – (a)-(c) Representation of log10(|RN |) in the complex frequency plane for different
values of loss factor of the beam η and the viscous layer ηl. (d) Blue continuous, red dash-dotted
and black dotted lines show the analytical reflection coefficient according to the real frequency
for the configuration of (a),(b) and (c) respectively. Black and red circles show the numerical
validations of configuration (b) and (c) respectively. (e) Zoom of the analytical curves of (d).

fact that poles and zeros are far from the real frequency axis in the complex frequency plane,
as pointed out by Fig. 3.2(a). In practice, the critical coupling is therefore difficult to attain
for such a profile type. For practical application, one interesting goal is to design a system that
is critically coupled at the lowest resonance frequency as possible. However, this may require
a huge amount of losses, therefore increasing the mass of the system, possibly destroying the
higher frequency efficiency. Other strategies should therefore be developed.

3.4 Enhancement of the absorption of an ABH termination

This section proposes methods to enhance the absorption performance of an ABH termi-
nation. These methods are based on the use of the complex frequency plane, and can also be
applied to any geometry of termination. Two methods are presented. The first one is based on
the spatial distribution of the losses introduced by the coating layer by gradually changing its
thickness, i.e. hl

j is also varying with hj , j = 0, ..., N − 1. The second one consists in slightly
modifying the geometry of the ABH, by adding a mass at the termination end. In this case,
the critical coupling at the first zero of the termination may be obtained, leading to a perfect
absorption at low frequency.
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Figure 3.4 – Thickness profile of the ABH termination (grey) and the coating layer (black).

3.4.1 Tuning the losses introduced by the coating layer

An enhancement of the absorption properties of an ABH is proposed through tuning the
distribution of losses along the ABH termination. Except for the thickness of the coating layer,
the geometric and material parameters of the ABH and the coating layer remain the same in
this study as in the previous sections (see Tab. 3.1). The thickness profile of the coating layer is
shaped so that the losses introduced in the system efficiently compensate the leakage for each
resonance of the termination, producing a broadband absorption. The progressive variation of
losses is based on a similar phenomenon to graded materials [181]. The incoming wave reduces
its speed progressively as it propagates through the ABH. The thickness of the coating layer
(and thus the amount of losses) is tapered in such a way that the losses are higher where the
wave travels faster. The thickness profile of the coating layer therefore decreases as well as the
one of the beam as depicted in Fig. 3.4 and it is defined as:

hl(x) = 1.36 × h0

(

x

Lt

)2

,∀x > L0. (3.10)

Figures. 3.5(a)-(b) show the reflection coefficient of the ABH and the coating layer described
in Fig. 3.4 in the complex frequency plane in the lossless (η = 0, ηl = 0) and lossy (η = 0,
ηl = 2) cases respectively. As the losses are introduced, the set of zeros are all aligned on the
real frequency axis. The critical coupling is therefore performed for each resonance frequency in
the analysed frequency band, leading to a total absorption of flexural waves at these particular
frequencies. In order to compare, Fig. 3.5(c)-(d) depict the reflection coefficient of the ABH with
a coating layer of constant thickness hl = 4.7 mm in the complex frequency plane in the lossless
(η = 0, ηl = 0) and the lossy cases (η = 0, ηl = 2) respectively. Both configurations are designed
in such a way that they provide the same absorption performance at the first resonance frequency
f0 = 185.2 Hz of the termination in the lossy case. It is worth noting that the quality factor
and the density of poles depend on the profile of the coating layer: the uniform coating layer
provides a smaller density of poles and smaller quality factors than the profiled one. However
larger zeros in the complex frequency plane are present for the uniform profile (see Fig. 3.5(d)).

Contrary to the profiled case, the control of the position of a given zero in the uniform
case cannot be achieved independently from the others. This is due to the fact that the losses
introduced in the model are frequency independent, and that the thickness of the coating layer
and ηl are constant in this case (see Figs. 3.5(c)-(d)). As a result, the distribution of zeros for
Re(f)> f0 is not perfectly aligned on the real frequency axis in the presence of a coating layer
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Figure 3.5 – (a)-(b) Representation of log10(|RN |) of the ABH with the profiled coating layer
in the complex frequency plane for the lossless (η = 0, ηl = 0) and lossy (η = 0, ηl = 2) case
respectively. (c)-(d) Representation of log10(|RN |) of the ABH with a coating layer of constant
thickness (hl = 4.7 mm) in the complex frequency plane for the lossless (η = 0, ηl = 0) and lossy
(η = 0, ηl = 2) case respectively. (e) Blue dash-dotted line and black circles show the reflection
coefficient of the ABH with a profiled coating layer according to the real frequencies. Red line
shows the analytical reflection coefficient of the ABH with a coating layer of constant thickness
(hl = 4.7 mm). (f) Zoom of the analytical curves of (e).

of constant thickness (see the position of the fourth zero in Fig. 3.5(d)). This result highlights
the relevance of using profiled coatings to control the position of the zeros independently from
the others, and so to produce a cascade of perfect absorption peaks. The reflection coefficients
of these two types of ABH terminations are shown in Fig. 3.5(e). The profiled case shows
several drops of |RN |2 corresponding to perfect absorptions. However, the uniform profile has
wider peaks due to the lower quality factor of the poles of |RN |2. The analytical results of the
ABH with the profiled coating layer in Fig. 3.5(e) (blue dash-dotted line) are compared with
numerical results (red line). The analytical results of the ABH with the profiled coating layer
in Fig. 3.5(e) (blue dash-dotted line) are compared with numerical results (red line). A good
agreement between both results is noticed.

3.4.2 ABH termination with an added mass

Another parametric analysis based on the complex frequency plane is proposed to improve
the absorbing performance of the ABH at low frequencies. The study is carried out by modifying
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Figure 3.6 – Diagram of the spatial discretisation of the ABH with an added mass.

the geometry of the ABH. In particular, a mass is added at the termination end with a varying
thickness. The thickness hm of the mass varies from 0.2 mm to 5 mm. The termination+beam
system is still discretised by N = 201 beams and the mass consists of increasing the thickness
of the 11 first beams of the termination (see Fig. 3.6). The geometric and material parameters
of the ABH and the coating layer remain the same as in the previous section and are described
in Tab. 3.1. The lossy case is considered here and η = 0 and ηl = 2.

Figure. 3.7(a) depicts the reflection coefficient around its first zero in the complex frequency
plane for an ABH configuration without added mass. The path of the zero in the complex
frequency plane is also depicted according to the increase of the mass thickness in Fig. 3.7(b).
As the mass thickness increases, the added mass effect in the termination increases too and the
real frequency of the zero decreases. Moreover, the zero moves to the real frequency axis as the
mass thickness increases. This is due to a localisation of the mode in the termination, leading
to a decrease in leakage and thus a decrease in the absolute value of the imaginary frequency of
the zero. In particular, the zero of the reflection coefficient is located on the real frequency axis
starting from hm = hN/2. The critical coupling is therefore obtained and a perfect absorption
of the incident wave is observed at Re(f) = 80 Hz and Re(f) = 61.5 Hz for hm = hN/2 and
hm = hN respectively (see Fig. 3.7(c)). The analytical results of Fig. 3.7(c) (black dotted, red
dashed and blue line) are validated with numerical results (black, red and blue circles), since
a good agreement is observed between both models. It is worth noting that the addition of
mass does not deteriorate the absorbing properties of the ABH at high frequencies as seen in
Fig. 3.7(d). These results highlight the possibility to improve the absorption efficiency of an 1D
termination by modifying its geometry and by analysing the position of the zeros of its reflection
coefficient in the complex frequency plane.

3.5 Conclusions

Absorption of propagative flexural waves by means of an 1D ABH termination is analysed in
this chapter in the case of a reflection problem. The ABH effect is interpreted through the use
of the complex frequency plane. The positions of the zeros of the eigenvalues of the scattering
matrix in the complex frequency plane provide information on the absorption properties of
the ABH. The ABH effect may be interpreted as a consequence of the critical coupling at
one resonance frequency of the ABH and of the broadband quasi-perfect absorption at higher
frequencies, thanks to the specific geometry of the resonator. This point is the main conclusion of
the chapter since it provides a physical explanation of the ABH efficiency. The understanding of
this mechanism provides the key to future optimisation procedures of such types of termination.
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Figure 3.7 – (a) Representation of log10(|RN |) for the ABH in the complex frequency plane
around its first zero. (b) Representation of log10(|RN |) in the complex frequency plane around
its first zero in the case with an added mass of thickness hm = hl. White dashed line corresponds
to the path of the zero when the thickness of the mass is increased. Blue, red and black circles
give the positions of the zero for the configurations ABH (hm = ht), hm = h0/2 and hm = h0

respectively. (c) Blue continuous, red dashed and black dotted lines show the analytical reflection
coefficient around the first real resonance frequency for the configurations shown with circles of
same color in (b). Blue, red and black circles show the numerical validations. (d) Blue continuous,
red dashed and black dotted lines show the analytical reflection coefficient according to the real
frequency for the configurations shown with circles of same color in (b).

Two methods are proposed to improve the absorption of a 1D ABH. The first consists in tuning
the losses introduced in the system by shaping the thickness profile of the coating layer. In doing
so it is possible to control the losses introduced in the resonator according to the real frequency.
The second method relies on the addition of a mass at the end of the ABH. The configuration
of perfect absorption at the first resonance frequency of the resonator can be obtained and
controlled according to the added mass by controlling the position of the corresponding zero in
the complex frequency plane.
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Chapter 4

Design of the 2D resonant building

block by using the critical coupling

condition

4.1 Introduction

The critical coupling condition has been presented in the case of 1D beam systems, and has
been used to show the perfect absorption of flexural waves in the reflection problem in Chapters 2
and 3. These scattering problems are characterised by a scattering matrix and its eigenvalues,
and the position of the zeros of the scattering matrix eigenvalues in the complex frequency plane
gives informations on the possibility to obtain the critical coupling condition. It has been shown
in previous chapters that the critical coupling condition is fulfilled when a zero is placed on the
real frequency axis, meaning that the inherent losses of the system are completely compensating
its energy leakage, producing therefore a perfect absorption peak at this specific frequency in
the reflection problem. Following this procedure, a perfect absorber at one given frequency in
a reflection problem has been designed in Chapter 2 by means of a simple beam termination
on top of which a coating layer has been attached. Then, a 1D broadband absorber has been
obtained in Chapter 3 by using an ABH termination and by combining the concept of critical
coupling with the ABH effect.

The next step of the study is to extend the perfect absorption of flexural waves in 2D systems.
Flexural waves propagating in a thin plate are therefore considered instead of a beam, and the
resonant inclusion consists of a penetrable circular scatterer embedded in an infinite or semi-
infinite thin plate. This penetrable scatterer presents leakage and adding a coating layer on it,
as done for 1D resonators in previous chapters, allows the control of its inherent losses. A direct
extension of the critical coupling condition in 2D can therefore be performed for the particular
case of a concentric incident wave propagating towards the centre of the scatter.

The purpose of this chapter is to study the problem of perfect absorption of flexural waves
in 2D thin plates with a local resonator by using the critical coupling condition. Particularly,
the energy absorption of the first axisymmetric mode of a circular resonator is analysed through
the balance between the energy leakage and the inherent losses of the resonator for the case
of a concentric incident wave propagating towards the centre of the resonator. The presented
problem is related to the problem of perfect absorption of flexural waves in 1D elastic beams
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treated in Chapter 2. The analysed systems are composed of an infinite thin plate and an open
resonator consisting in a circular reduction of the thickness of the plate. A thin viscoelastic
coating is attached to the resonator in order to introduce losses, leading to a composite material
whose losses may be tuned. This composite material is modeled with the Ross-Kerwin-Ungar
(RKU) model for plates [154] and is embedded in the hosting plate. By tuning the losses in the
same way as in Chapter 2, it is possible to analyse the scattering problem in 2D and design
a 2D perfect absorber for a concentric incident wave. The composite is studied by means of a
semi-analytical model based on the scattering method, and the interpretations are based on the
eigenvalue of the S-matrix for the propagating waves, which is directly the reflection coefficient in
this case, represented in the complex frequency plane [153]. A numerical model based on Finite
Element formalism is also implemented and validates the analytical predictions. The results
obtained in this chapter will be used to design a periodic array of penetrable circular scatterers
embedded in an infinite or semi-infinite 2D thin plate. This system constitutes a metaplate
whose resonant building block is composed of the penetrable and dissipative scatterers. This
problem will be detailed in Chapter 5. The geometry of the resonator then becomes more complex
by considering an axysimmetric profiled inclusion using the multilayer scattering approach. It
consists of discretising the thickness profile of the resonator into a finite number of layers, and
allows to compute the scattering coefficients as well as the propagative and evanescent field
amplitudes at each layer. The study is applied in the case of a 2D ABH resonator and shows
the efficiency of the method for more complex axisymmetric inclusion.

The chapter is organised as follows. In order to introduce the notations, the study first
summarises the governing polar equations and their solutions for the flexural wave propagation
in a uniform thin plate in Section 4.2. In Section 4.3, the scattering problem of an concentric
incident wave propagating towards the centre of a composite scatterer is treated. The extension
of the critical coupling condition for a 2D problem for the n = 0 axisymmetric mode of the
scatterer is then applied in Section 4.4. The multilayer scattering problem of flexural waves by
a 2D profiled scatterer is presented in Section 4.5. This allows to embed any kind of scatterer
with radially varying properties in the hosting plate and shows the adaptibility of the method
for more complex systems. This model is based on the multilayer scattering model [27]. Finally,
Section 4.7 summarises the main results and gives the concluding remarks of the chapter.

4.2 Flexural wave propagation in a uniform thin plate in polar

coordinate

This section first aims at introducing the flexural motion equations of thin plates accor-
ding to the Kirchhoff-Love assumptions. These assumptions possess analogue limitations as the
Euler-Bernoulli model in beam theory. However, it is sufficient to cover most of the situations
encountered in engineering and are good first approximations to describe the phenomena of
flexural wave propagation in thin plates. All these equations can be found in [81, 175, 113],
among others. This section summarises them and defines notations for the main purpose of this
chapter.
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Figure 4.1 – Kinematic of the thin plate deformation (from [81]).

4.2.1 Equation for flexural waves in a uniform thin plate

A thin uniform plate according to the Kirchhoff-Love theory is now considered. The assump-
tions given by this theory are the following [81]:

1. The thickness h of the plate is small compared to its other dimensions and the plate
possesses a mean plane.

2. Only the transverse displacement w is considered.

3. The stresses in the transverse directions are neglected.

4. The cross-sections, initially orthogonal to the mean plane, remain plane and orthogonal
(see Fig. 4.1), implying that transverse shear strains are neglected.

5. The displacements u and v represented in Fig. (4.1) in the mean plane result from two
effects:
— an initial uniform displacement field over the thickness which results from a loading

of the plate in its plane;
— the rotation of the cross-section.

The differential equation of motion for the transverse displacement W (r, θ, t) of a plate in
the polar coordinate system (O, r, θ) is given by

D∆2W (r, θ, t) + ρh
∂2W (r, θ, t)

∂t2
= q, (4.1)

where D = Eh3

12(1−ν2)
is the flexural rigidity, ρ the mass density, h the plate thickness and q the

external forces applied to the plate. In absence of external forces, Eq (4.1) can be expressed in
the harmonic domain with the time convention W (r, θ, t) = w(r, θ)e−iωt as:

∆2w(r, θ) − ρhω2

D
w(r, θ) = 0,

⇔ (∇2∇2 − k4)w(r, θ) = [∇2 + k2][∇2 − k2]w(r, θ) = 0, (4.2)
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where k4 = ρhω2

D is the wave number. The solution of Eq. (4.2) can be split in two parts:

w(r, θ) = wπ(r, θ) + wǫ(r, θ),

where wπ(r, θ) and wǫ(r, θ) are solutions of the following equations, respectively:

[∇2 + k2]wπ(r, θ) = 0, (4.3)

[∇2 − k2]wǫ(r, θ) = 0. (4.4)

The first equation corresponds to the Helmholtz equation in which wπ(r, θ) refers to the propa-
gative waves, while the second equation is the modified Helmholtz equation where wǫ(r, θ) refers
to the evanescent waves.

4.2.2 General solution of the flexural motion equation in cylindrical coordi-

nates

a) Expression of wπ

Equation (4.3) is now considered to compute wπ(r, θ). A variable separation is applied first,
such that:

wπ(r, θ) = R(r)Θ(θ). (4.5)

By reinjecting Eq. (4.5) into Eq. (4.3) one can obtain:

(

∂2R

∂r2
+

1
r

∂R

∂r

)

Θ +
R

r2

∂Θ
∂θ

+ k2RΘ = 0. (4.6)

Equation. (4.6) can therefore be separated into two equations, a first one according to the radial
function R and a second according to the angular function Θ:



















∂2Θ
∂θ2

+ α2Θ = 0,

∂2R

∂r2
+

1
r

∂R

∂r
+

(

k2 − α2

r2

)

R = 0.
(4.7)

The general solution of the equation satisfied by Θ takes the form of exponential functions
e±iαθ. However, any point M in the plate having the polar coordinates (r, θ) coincides with the
point having the polar coordinates (r, θ + 2nπ) where n ∈ Z. Since the wavefield is uniquely
defined at each point of the plate, the solution Θ is 2π-periodic, which implies that α = n ∈ Z.
Furthermore, the differential equation satisfied by R with α = n ∈ Z is called the Bessel equation
of integer order n ∈ Z. Any solution of this equation can be written as the linear combination
of two independent particular solutions called the Bessel functions of the first and second kind.
The expressions of Θ and R can therefore be expressed as:

{

Θn(θ) = C1ne
inθ,

Rn(r) = C2nJn(kr) + C3nYn(kr),
(4.8)
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Figure 4.2 – Variation of In(x) and Kn(x) for several orders.

where Jn and Yn are the Bessel functions of the first and second kind, respectively. By reinjecting
both expressions of Eq. (4.8) into Eq. (4.5), the general solution wπ is given by:

wπ(r, θ) = [AJ,nJn(kr) +AY,nYn(kr)] einθ. (4.9)

The amplitudes AJ,n and AY,n are determined according to the boundary conditions of the
studied system. The Bessel functions Jn(kr) and Yn(kr) can be seen as standing decaying waves.
This can be proven by writing their asymptotic limits as kr → ∞:

Jn(kr) →
√

2
πkr

cos(kr − φn) and Yn(kr) →
√

2
πkr

sin(kr − φn), (4.10)

where φn = nπ
2 + π

4 . In the same way as the complex exponential functions are formed from
sine and cosine functions, the Hankel functions of first and second kind H(1)

n (kr) and H(2)
n (kr)

can be expressed as function of Jn(kr) and Yn(kr), such that: H(1)
n (kr) = Jn(kr) + iYn(kr) and

H(2)
n (kr) = Jn(kr) − iYn(kr). As linear combinations of Bessel functions, the Hankel functions

also satisfy the Bessel equation, Eq. (4.7), such that:

wπ(r, θ) =
[

AH(1),nH(1)
n (kr) +AH(2),nH(2)

n (kr)
]

einθ. (4.11)

H(1)
n (kr) and H(2)

n (kr) can be seen as outgoing and ingoing propagating waves respectively ac-
cording to the time convention e−iωt. This can also be proven by writing their asymptotic limits
as kr → ∞:

H(1)
n (kr) →

√

2
πkr

eikr−φn and H(2)
n (kr) →

√

2
πkr

e−ikr−φn . (4.12)

These functions will be of importance later in this chapter for the computation of the 2D
reflection coefficient, since it requires a decomposition of the fields into ingoing and outgoing
waves.
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Figure 4.3 – Diagram of the 2D scattering problem with a concentric incident wave propagating
towards the centre of the resonator.

b) Expression of wǫ

The steps to express wǫ are similar to those for wπ except that a modified Bessel equation
is obtained for the radial part. The solution is therefore expressed as a linear combination of
modified Bessel functions of first and second kind In(x) = i−nJn(ix) and Kn(x) = πin+1

2 In(ix):

wǫ(r, θ) = [AI,nIn(kr) +AK,nKn(kr)] einθ, (4.13)

Again, the amplitudes AI,n and AK,n are determined according to the boundary conditions of the
studied system, and the computation procedure is equivalent to that of propagative amplitudes.
Here, the modified Bessel functions describe the evanescent field in the plate as the shapes of
the functions are similar to pure real exponential functions (see Fig.4.2).

4.3 Scattering of a uniform circular inclusion in a thin plate

A 2D scattering problem in an infinite thin plate is now presented in order to study the
absorption of flexural waves by a 2D open inclusion. This inclusion is also both uniform and
circular. This problem has already been treated by Pao and Mow [141] in the case of an incident
plane wave. The results for the limiting cases of a rigid inclusion and a cavity have been given by
Norris and Vemula [134] and are summarised in Appendix B. This section concerns the particular
scattering case of an concentric incident wave propagating towards the centre of a composite
scatterer S of radius a (see Figs. 4.3 and 4.4). It aims at introducing the analytical equations
and their solutions used in the model to design a 2D perfect absorber. The plate properties are
denoted by the index 1 and the uncoated scatterer properties by the index 0. The expressions
of the displacement fields in the system are expressed with the polar coordinate system (O, r, θ)
whose origin is aligned with the centre of the scatterer (see Fig. 4.3 and 4.4). The RKU model
for a plate is first introduced in this section to model the composite material properties of the
resonator. The governing equations of the problem and their solutions are then introduced. The
boundary conditions are finally presented in order to compute the amplitude of the fields.
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3. Scattering of a uniform circular inclusion in a thin plate
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Figure 4.4 – Side view of the scattering problem.

4.3.1 Viscoelastic losses in the resonator: the RKU model for plates

The inherent losses of the resonator are introduced by a thin absorbing layer of thickness
hl and are considered frequency independent. The complex Young’s Modulus of the absorbing
layer is El(1 − iηl) according to the chosen time convention, where ηl is its loss factor. Using the
RKU model for a plate [154] , this region is modeled as a single composite layer with a given
effective wave number kp

0 written as:

kp
0 =

(

12ω2ρ0(1 − ν2
0)

E0h2
0

[

1 + ρp
rh

p
r

(1 − iη0) + 1 − iηl)h
p
rE

p
rαp

]

)1/4

, (4.14)

where the indices 0 and l stand for the parameters of the uncoated resonator and of the absorbing
layer respectively, ρp

r = ρl

ρ0
, hp

r = hl

h0
, Ep

r = El

E0
and αp = 3 + 6hr + 4h2

r . The flexural bending
stiffness Dp

0 can then be written as

Dp
0 =

h3
0

12(1 − ν2
0)
E0 [(1 + hrErα) − j (η0 + νlhrErα)] . (4.15)

The mass density of the composite material corresponds to the mean value of the mass density
of the resonator and the absorbing layer, such that:

ρp
0 =

ρ0h0 + ρlhl

hp
0

, (4.16)

where hp
0 = h0 + hl, and the Poisson coefficient of the composite is the same as the uncoated

resonator’s:
νp

0 = ν0. (4.17)
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4.3.2 Governing equations and their solutions

The flexural displacement field in the plate w(r, θ) and in the composite scatterer wp
0(r, θ)

are governed by the following equations respectively:
{

(∇2∇2 − k4
1)w(r, θ) = 0, ∀r > a,

(∇2∇2 − (kp
0)4)wp

0(r, θ) = 0, ∀r < a.
(4.18)

where k4
1 = ρ1h1ω2

D1
, and (kp

0)4 is defined in Section 4.3.1. The displacement field w(r, θ) in the
plate can be defined as the sum of the incident field winc(r, θ) and the scattered field w1(r, θ) by
using the superposition principle, such that:

w(r, θ) = winc(r, θ) + w1(r, θ). (4.19)

The incident field corresponds to a concentric wave of unitary amplitude which converges towards
the centre of the scatterer. Therefore, its expression is given by a Hankel function of the second
kind at the order n = 0 according to Eq. (4.12) and the time convention used in this chapter:

winc(r) = Ainc
H,0H(2)

0 (k1r), (4.20)

where Ainc
H,0 = 1. The general expression of w1 and wp

0 is given by making the sum of Eq. (4.9)
and Eq. 4.13 at the order n = 0. However, the scattered field at r > a must be represented by
outgoing waves and must satisfy the Sommerfeld radiation condition. This condition is fulfilled
by H0(k1r) and K0(k1r), as shown in Section 4.2.2a), and the scattered field w1 in the plate is
expressed as:

w1 = AH,0H(1)
0 (k1r) +AK,0K0(k1r), r > a. (4.21)

Furthermore, H0(kr) and K0(kr) are singular as r → 0. The displacement field wp
0 in the com-

posite scatterer is then composed of a sum of a Bessel function and a modified Bessel function
of first kind at the order n = 0, such that:

wp
0 = AJ,0J0(kp

0r) +AI,0I0(kp
0r), r < a. (4.22)

It is reminded that these expressions correspond to the case of a concentric incident wave pro-
pagating towards the centre of a composite scatterer (n = 0) and are a particular case of Norris
and Vemula’s work [134]. The generalisation of the expressions in the case of an incident plane
wave is summarised in Appendix B.

4.3.3 Boundary conditions

Now that the displacement fields have been expressed according to the polar coordinate sys-
tem (O, r, θ), the boundary condition at the interface between the scatterer and the surrounding
plate at r = a can be applied to compute the scattering coefficients AH,0, AK,0, AJ,0 and AI,0

from the incident amplitude Ainc
H,0. Four boundary conditions at r = a are distinguished accor-

ding to the Khirchhoff theory, and by ignoring the discontinuities of the mean planes between
the inclusion and the surrounding plate:

— displacement continuity
w = wp

0, (4.23)
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3. Scattering of a uniform circular inclusion in a thin plate

— displacement normal derivative continuity

∂w

∂r
=
∂wp

0

∂r
, (4.24)

— bending moment continuity
M (w) = Mp

0 (wp
0) , (4.25)

— (Kirchhoff) shear force continuity

V (w) = V p
0 (wp

0) , (4.26)

with [175]

Mi(wi) = −Di
∂2wi

∂r2
−Diνi

(

1
r

∂wi

∂r
+

1
r2

∂2wi

∂θ2

)

, (4.27)

and

Vi(wi) = −Di
∂

∂r
∇2wi −Di(1 − νi)

1
r2

∂2

∂θ2

(

∂wi

∂r
− wi

r

)

, (4.28)

where the index i can take the values 1 or p
0, which denote the plate and the composite scatterer,

respectively. Applying these continuity conditions leads to the equation system [134]:

A0.x0 = B0, (4.29)

with

A0 =













H(1)
0 (ε1) K0(ε1) −J0(εp

0) −I0(εp
0)

H(1)
0

′
(ε1) K0

′(ε1) −κJ0
′(εp

0) −κI0
′(εp

0)
S1

H0
S1

K0
−DSp

J0
−DSp

I0

T 1
H0

T 1
K0

−DT p
J0

−DT p
I0













,

x0 =













AH,0

AK,0

AJ,0

AI,0













, B0 = −

















H(2)
0 (ε1)

H(2)
0

′
(ε1)

S1

H
(2)
0

T 1

H
(2)
0

















,

κ = kp
0

k1
, ε1 = k1a, εp

0 = kp
0a = κε1 and D = Dp

0
D1

.

Sp
Xn

=
[

n2(1 − ν0) ∓ εp
0

2
]

Xn(εp
0) − (1 − ν0)εp

0X
′
n(εp

0), (4.30)

S1
Xn

=
[

n2(1 − ν1) ∓ ε2
1

]

Xn(ε1) − (1 − ν1)ε1X
′
n(ε1), (4.31)

T p
Xn

= n2(1 − ν0)Xn(εp
0) −

[

n2(1 − ν0) ± (εp
0)2
]

X ′
n(εp

0), (4.32)

T 1
Xn

= n2(1 − ν1)Xn(ε1) −
[

n2(1 − ν1) ± (ε1)2
]

X ′
n(ε1), (4.33)

Here, prime denotes ∂
∂r . The upper sign in Eqs. (4.30)-(4.33) is taken when Xn = Jn or H(1)

n
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Geometric parameters Material parameters
Host plate h1 = 5 mm ρ1 = 2800 kg.m−3

E1 = 70 GPa
η1 = 0
ν1 = 0.3

Inclusion h0 = 0.84 mm ρ0 = 2800 kg.m−3

a = 10 cm E0 = 70 GPa
ν0 = 0.3
η0 = 0

Coating layer hl = 0.7 mm El = 0.5 GPa
ρl = 950 kg.m−3

νl = 0.3
ηl

Table 4.1 – Geometric and material parameters of the studied systems. The value of ηl depends
on the experimental set-up used, see main text for the values used.

while the lower sign is taken when Xn = In or Kn. The solution of the equation system (4.29)
gives the scattering coefficients AH,0, AK,0, AJ,0 and AI,0 for n = 0. This system is still valid for
any order n ∈ Z provided that the order is replaced for every Bessel and Hankel function.

4.4 Extension of the critical coupling condition in a 2D problem

for the n = 0 axisymmetric mode

This section describes the extension of the critical coupling condition in a 2D problem for
the n = 0 axisymmetric mode of a uniform circular scatterer. It provides tools to design absor-
bers with a maximal absorption when the incident wave is concentric and defined by a Hankel
function of the second kind at the order n = 0. For this purpose, the reflection coefficient of
the propagative waves (r → ∞), which is the only reflection coefficient related to the carried
energy, is first defined for the specific case of an incident wave propagating towards the centre of
the scatterer. The incident wave is therefore described by a Hankel function of the second kind:
winc = H(2)

n (k1r). The reflection coefficient is then represented in the complex frequency plane.
The information given by this representation will be exploited to interpret the perfect absorption
in terms of the critical coupling condition, as introduced in Chapter 2. The concept of the zeros
and poles of the reflection coefficient in the complex frequency plane is once again shown in this
section through the analysis of the reflection problem. The open resonator is represented by a
circular reduction of the thickness of the plate, the material and geometric parameters of which
are described in Tab. 4.1.

4.4.1 Reflection coefficient in 2D scattering problems

The reflection coefficient describes how much an incident wave is reflected by a discontinuity.
It is closely related to the transmission coefficient which corresponds to the amount of energy
that is transmitted through the discontinuity. These coefficients can be easily defined for a 1D
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axisymmetric mode

reflection problem by doing the ratio between the reflected or transmitted wave amplitude over
the incident wave amplitude. Note that the incident wave interacts entirely with the discon-
tinuity and the amount of its energy that is not reflected is transmitted or absorbed by the
discontinuity. These coefficients can be computed for 2D systems in which the discontinuity is
a plane separating two media. In this case, the reflection coefficient corresponds to the amount
of energy that is coming back to the medium where it comes from. However, the definition of
the 2D reflection coefficient is not straightforward when the discontinuity separates a circular
medium from an infinite medium, since one part of the incident wave may not interact with the
circular medium and remain undisturbed. The term scattered wave instead of reflected wave is
therefore used. The scattering-cross section Qsc is generally used to evaluate the energy deviated
or scattered by the scatterer. This quantity is defined as the ratio between the total energy flux
of the scattered field and the flux per unit length of the incident field [134] and is given by:

Qsc =
1
2

∫ 2π

0
| f(θ) |2 dθ, (4.34)

where f(θ) is the far-field (r → ∞) magnitude of the scattered field.

In the particular scattering problem of an incident wave propagating towards the centre of
a circular scatterer given by the expression of Eq. (4.20), the incident wave interacts completely
with the scatterer and its energy is either reflected or transmitted through the edge of the
scatterer. The scattered field corresponds therefore to a reflected field and the scattering-cross
section is equivalent to a 2D reflection coefficent. In this case, the reflected field represents the
field that diverges from the centre of the scatterer. The reflection coefficient of the propagative
waves τ0 is then the ratio between the amplitude of the wave diverging from the scatterer centre
over the amplitude of the wave converging towards the scatterer centre, such that:

τ0 =
AH,0

Ainc
H,0

. (4.35)

It is worth noting that even if the incident wave can be transmitted through the scatterer edge,
this problem corresponds to a reflection problem and τ0 represents the scattering of the system
since no wave is transmitted by the resonator itself.

4.4.2 Analysis of τ0 in the complex frequency plane for the lossless case

As mentioned in the previous section, the reflection coefficient τ0 represents the scattering
of the system in the reflection problem since no wave is transmitted by the resonator. Thus, τ0

corresponds directly to both the S-matrix and its associated eigenvalue, and its zeros correspond
to the cases in which the incident wave is totally absorbed (see Section 2.2). In the lossless case,
|τ0| = 1 for any purely real frequency and the pole-zero pairs appear at complex conjugate
frequencies. Figure 4.5 depicts log10(|τ0|) in the complex frequency plane for the lossless case.
The plate, the resonator and the coating layer have the geometric and material parameters given
in Tab. 2.1. Note again that the Young’s moduli are purely real in the lossless case (η0 = η1 = ηl =
0). Similarly to the case of a 1D beam resonator studied in Section 2.4.1a), the poles and zeros
appear in pairs and are symmetric with respect to the real frequency axis. The imaginary part
of the pole in the lossless case represents the amount of energy leakage by the resonator through
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Figure 4.5 – Representation of log10(|τ0|) in the complex frequency plane for the lossless case.
The real frequency of each pole corresponds only to the resonance frequency of the axisymmetric
modes of the resonator since the incident wave imposes axisymmetric displacements at its edge.

the surrounding plate [153]. Moreover, the incident wave imposes axisymmetric displacements
at the edge of the resonator. The only modes that are excited are therefore the ones with an
axisymmetric modeshape. As a result, the real frequency of each pole in Fig 4.5 corresponds
only to the resonance frequency of one axisymmetric modes of the resonator.

a) Perfect absorption of 2D flexural waves for the n = 0 axisymmetric mode of a

uniform circular resonator

A theoretical design for the perfect absorption of flexural waves is shown in this section based
on the configuration represented in Fig. 4.3 and the parameters given in Tab. 4.1. Considering
that there are no inherent losses in the resonator and the surrounding plate (η0 = η1 = 0),
the loss factor of the coating layer has to be ηl = 2 to obtain a perfect absorption at the first
resonance frequency corresponding to the first axisymmetric mode (n = 0) of the resonator. This
value has been found by increasing progressively the losses until attaining the perfect absorption
as the zero reaches the real frequency axis.

Figures 4.6(a)-4.6(b) depict log10(|τ0|) for the lossless and lossy configurations in the complex
frequency plane, respectively. In particular, Fig. 4.6(b) shows the first pole-zero pair of the system
in the perfect absorption configuration where the critical coupling condition is fulfilled, showing
the zero exactly located on the real frequency axis. This particular configuration corresponds to
the situation where the amount of inherent losses in the resonator equals the amount of energy
leakage (see Section 2.4.1 for more details). Figure 4.6(c) shows the corresponding reflection (red
dashed line) and absorption (black continuous line) coefficients and the scattering-cross section
(blue dotted line) according to real frequencies for the critical coupled configuration. α ≈ 1
and |τ0| ≈ 0 at the first resonance frequency of the composite inclusion (at Re(f) = 184.9 Hz),
meaning that the incident wave is totally absorbed at this specific frequency. The analytical
reflection coefficient |τ0| is also compared in Fig. 4.6(c) with numerical results (magenta crossed
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axisymmetric mode

Figure 4.6 – Representation of the perfect absorption for the reflection problem. (a), (b) show
the representation of the log10(|τ0|) for the lossless and lossy configurations respectively. (c)
Black continuous and red dashed lines show the analytical reflection and absorption coefficients
for the critical coupled configuration respectively. Blue dotted line corresponds to the scattering
cross-section and the magenta crossed line corresponds to the reflection coefficient obtained using
a FEM model.

Figure 4.7 – Displacement response (in m) of the circular resonator embedded at the centre of
a circular plate for the critically coupled configuration (Re(f) = 184.9 Hz, ηl = 2), using a 2D
axisymmetric model of solid mechanics in COMSOL software. The concentric incident wave is
simulated by imposing a load at the edge of the circular plate.
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Figure 4.8 – Representation of Qsc in the lossless (continuous black line) and lossy (red dashed
line, ηl = 2) cases for an incident wave defined by a Bessel function of the first kind at the order
n = 0. The parameters of the inclusion are given in Tab. 4.1. The lossy case corresponds to the
critically coupled configuration of the inclusion when the incident wave is described by a Hankel
function of the second kind H(2)

n (x).

line) obtained with a FEM model. The FEM model has been implemented by using a 2D
axisymmetric model of solid mechanics in COMSOL software. The geometry of the model is
composed of a circular plate at the centre of which is placed the inclusion. The concentric incident
wave is simulated by imposing a load at the edge of the circular plate. A good agreement of
both results can be noticed, which validates the analytic model. The scattering-cross section
(blue dotted line) in Fig. 4.6(c) also has a zero value at the first resonance frequency of the
inclusion. This result highlights that it is as relevant to use Qsc as τ0 to study the absorption
of the inclusion in the particular case of an incident wave converging towards the centre of the
inclusion and described by a Hankel function of the second kind H(2)

n (x).

b) Remarks on the scattering-cross section

The previous section highlights that it is as relevant to use Qsc as τ0 to study the absorption
of the inclusion in the particular case of an incident wave converging towards the centre of the
inclusion and described by a Hankel function of the second kind H(2)

n (x). However, most of the
scattering problems are studied with an incident plane wave defined as a linear combination of
Bessel functions of the first kind Jn(x). In this case, the study of absorption by using Qsc has
to be taken with precaution due to the properties of the Bessel function of the first kind. To
illustrate this point, the same scattering problem as presented in Fig. 4.3 is studied again except
that a Bessel function of the first kind at the order n = 0 is considered instead of a Hankel
function of the second kind : winc = J0(k1r).

The parameters of the scatterer remain the same as before and are given in Tab. 4.1. The-
refore, the scatterer should still totally absorb all the wave which converges toward its centre at
Re(f) ≈ 184.9 Hz, as shown in Fig. 4.6c. Figure 4.8 depicts Qsc in the lossless (continuous black
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5. Multilayer scattering of flexural waves by a 2D profiled scatterer

line) and lossy (red dashed line, ηl = 2) case. The lossy case corresponds to the critically coupled
configuration of the inclusion when the incident wave is described by a Hankel function of the
second kind H(2)

n (x). A maximum of Qsc in the lossy case instead of a minimum is observed at
the first resonance frequency of the scatterer in Fig. 4.8. The maximum of absorption can no
longer be observed as a minimum of Qsc. This result is due to the properties of the incident
wave J0(k1r), which can be expressed as a linear combination of a Hankel function of the first
kind and a Hankel function of the second kind, such that:

J0(k1r) =
1
2

(

H(1)
0 (k1r) + H(2)

0 (k1r)
)

. (4.36)

This means that J0(k1r) is composed of a converging and a diverging component according to
Eqs.(4.12). In this case, the definitions of τ0 and Qsc given in Section 4.4.1, are not equivalent
anymore since the incident wave contains a diverging component. A reflection coefficient for
the propagative wave can nonetheless be computed in this case by separating the diverging and
the converging component of the incident field of (4.36). Considering again an incident wave of
unitary amplitude winc = J0(k1r), the total converging field wconv in the plate corresponds to
one part of the incident wave and can be written as:

wconv =
1
2

H(1)
0 (k1r). (4.37)

The diverging field wdiv in the plate which corresponds to the scattered field and the other part
of the incident wave, is expressed as:

wdiv =
(

1
2

+AH,0

)

H(2)
0 (k1r). (4.38)

The reflection coefficient τ ′
0 takes therefore the form:

τ ′
0 = 2AH,0 + 1. (4.39)

This observation can be extended to any order n ∈ Z of Bessel function and to the case of an
incident plane wave. These results highlight that Qsc cannot be related to the absorption of a
scatterer for a general scattering problem with an incident plane wave.

4.5 Multilayer scattering of flexural waves by a 2D profiled scat-

terer

Now, the problem becomes more complex by studying the scattering of a penetrable scatterer
S with a radially varying thickness profile and coated by a viscoelastic layer. The scatterer is
perfectly bonded to the plate along the boundary rN . The model used for that purpose is the
multi-layer scattering method, where the continuous variation of the parameters of the system
uncoated scatterer+infinite plate has been discretised in a finite number N of homogeneous
axisymmetric layers [27]. The layers are numbered, such that the surrounding plate corresponds
to j = N and the core layer corresponds to j = 0. This method consists of a semi-analytical
approach that provides the scattering coefficients of each layer. The uncoated layers are dis-
tributed into concentric rings of identical length δr, but of radially varying height hj , bending
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Figure 4.9 – Diagram of the 2D scattering problem with a concentric incident wave propagating
towards the centre of a resonator with radially varying thickness.

stiffness Dj =
Eh3

j

12(1−ν2
j

)
, and wavenumber k2

j = ω

√

ρhj

Dj
, j = 0, ..., N as shown in Fig. 4.9. The

materials of the plate and the uncoated scatterer are identical, with E the Young’s modulus and
ρ its density. The losses are accounted for via a loss factor η, the Young’s modulus thus being
E = E(1 − iη). A concentric incident wave winc propagating in layer N toward the centre of
the scatterer is considered. It is defined by a Hankel function of the second kind at the order
n = 0 as written in Eq. (4.20). The scatterer thickness varies between r0 < r < rN by following
a quadratic law, leading to an ABH thickness profile defined as:

h(rj) = hN

(

r

rN

)2

,∀r < rN . (4.40)

A plateau of constant thickness h0 is therefore considered for all r < r0 (see Fig. 4.9).

4.5.1 The RKU model for the multi-layered resonator

The inherent losses of the multi-layered resonator are introduced by a thin absorbing layer
of thickness hl and are considered frequency independent similarly to previous sections. The
complex Young’s Modulus of the absorbing layer is still expressed as El(1− iηl). Using the RKU
model [154] for a plate, each coated layer j is modeled as a single composite layer with a given
effective wave number kp

j written as:

kp
j =

(

12ω2ρj(1 − ν2
j )

Ejh2
j

[

1 + ρp
j,rh

p
j,r

(1 − iηj) + 1 − iηl)h
p
j,rE

p
j,rα

p

])1/4

, (4.41)

where the indices j and l stand for the parameters of the uncoated j-th layer and of the absorbing
layer respectively, ρp

j,r = ρl

ρj
, hp

j,r = hl

hj
, Ep

j,r = El

Ej
and αp = 3 + 6hr + 4h2

r . The flexural bending
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5. Multilayer scattering of flexural waves by a 2D profiled scatterer

stiffness Dp
1 can then be written as:

Dp
j =

h3
j

12(1 − ν2
j )
Ej [(1 + hj,rEj,rα) − j (ηj + νlhj,rEj,rα)] . (4.42)

The mass density of the composite material is expressed as:

ρp
j =

ρjhj + ρlhl

hp
j

, (4.43)

where hp
j = hj + hl, and the Poisson coefficient of the composite is supposed to be the same as

the uncoated resonator’s:
νp

j = νj . (4.44)

4.5.2 Governing equations

A polar coordinate system aligned with the centre of the inclusion is now considered. The
equation of flexural motion in the scatterer+plate system is still modeled by using the Kirchoff-
Love approximation [81]. Assuming time harmonic behaviour (e−iωt) and no external forces, the
equation of the flexural displacement wp

j at each coated ring can be written along the z-axis as:

[

∇2∇2 − (kp
j )4
]

wp
j (r, θ) = 0. (4.45)

The flexural field wp
j of the j-th coated layer is described as the sum of the field wp

j
− transmitted

by the (j + 1)-th layer with the field wp
j

+ scattered by the (j − 1)-th layer:

wp
j = wp

j
− + wp

j
+ = A

(j)
J,0J0(kp

j r) +A
(j)
I,0 I0(kp

j r) +A
(j)
H,0H(1)

0 (kp
j r) +A

(j)
K,0K0(kp

j r). (4.46)

The notation − describes a converging propagation of the fields towards the centre of S and +

denotes a diverging propagation. However, this definition is not valid for the layer 0 due to the
singularity of Hn(z) and Kn(z) when z = 0. The field of the layer 0 has then to be described as:

w0 = A
(0)
J,0J0(k0r) +A

(0)
I,0 I0(k0r). (4.47)

The field of layer N , corresponding to the surrounding plate, is given by the sum of the incident
field winc with the field w+

N scattered by the first layer of the scatterer:

wN = winc + w+
N = Ainc

H,0H(2)
0 (kNr) +A

(N)
H,0 H(1)

0 (kNr) +A
(N)
K,0 K0(kNr). (4.48)

For the sake of clarity, the amplitudes A(j)
J,0 and A(j)

I,0 are now gathered in a vector W−
0,j =





A
(j)
J,0

A
(j)
I,0



,

and the amplitudes A(j)
H,0 and A

(j)
K,0 in W+

0,j =





A
(j)
H,0

A
(j)
K,0



.
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4.5.3 Scattering matrix

The scattering problem of a scatterer with radially varying properties cannot be studied by
extending the problem of a uniform scatterer as shown in Section 4.4 due to the presence of
ingoing and outgoing waves at each layer. A multilayer scattering approach is therefore adop-
ted to characterise this problem. This approach gives the relation between the converging and
diverging amplitudes at each interface between two consecutive layers j and j + 1, such that:

(

W−
0,j

W+
0,j+1

)

=

(

T−
0,j+1 R−

0,j+1

R+
0,j+1 T+

0,j+1

)(

W−
0,j+1

W+
0,j

)

= Sj+1

(

W−
0,j+1

W+
0,j

)

, (4.49)

where Sj + 1 is the scattering matrix of interface j + 1, T−
0,j+1 and T+

0,j+1 are respectively the
converging and diverging transmission coefficients at interface j + 1, and R−

0,j+1 and R+
0,j+1 the

converging and diverging reflection coefficients. As the scattering problem implies propagative
and evanescent waves, the scattering matrix involves coefficients of size 2 × 2. The coefficients
are computed using the continuity conditions at each interface [40]. The steps to compute the
scattering coefficients as well as the propagative and evanescent field amplitudes at each layer
of the scatterer are detailed in Appendix C according to [27]. The reflection coefficient of the
propagative waves at each layer j may be defined as the ratio of the amplitude of the converging
propagative wave in the j-th layer Aj

J,0 over the amplitude of the propagative scattered wave in

the j-th layer A(j)
H,0, such that:

τ j
0 =

Aj
J,0

A
(j)
H,0

. (4.50)

The difference between τ j
0 and the propagative term of R+

0,j is that the latter characterises the
reflection of propagative and evanescent waves at a given interface j regardless of the other in-
terfaces, while τ j

0 characterises the reflection of the propagative waves in the system composed of
j layers. The global reflection coefficient τN

0 of the ABH for the propagative waves is determined
by making the ratio of the incident wave amplitude Ainc

H,0 over the amplitude of the propagative

scattered wave in the plate A(N)
H,0 and can be written as:

τN
0 =

A
(inc)
H,0

A
(N)
H,0

. (4.51)

4.6 Perfect absorption of 2D flexural waves for the n = 0 axi-

symmetric mode of a 2D ABH

A theoretical design for the perfect absorption of flexural waves is shown in this section based
on the configuration represented in Fig. 4.10 and the parameters given in Tab. 4.2. Considering
that there are no inherent losses in the uncoated resonator and the surrounding plate (η = 0),
the loss factor of the coating layer has to be ηl = 0.35 to obtain a perfect absorption at the first
resonance frequency corresponding to the axisymmetric mode (n = 0) of the ABH. This value
has been found, similarly to the case of a uniform circular resonator, by increasing progressively
the losses until attaining the perfect absorption as the zero reaches the real frequency axis.

Figures 4.10(a)-4.10(b) depict log10(|τN
0 |) for the lossless and lossy configurations in the com-
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6. Perfect absorption of 2D flexural waves for the n = 0 axisymmetric mode of a
2D ABH

Geometric parameters Material parameters
Host plate hN = 5 mm ρ = 2800 kg.m−3

E = 70 GPa
η = 0
ν = 0.3

Acoustic Black Hole h0 = 0.2 mm ρj

r0 = 2 cm Dj

rN = 10 cm
N = 151

Coating layer hl = 0.7 mm El = 0.5 GPa
ρl = 950 kg.m−3

ηl

νl = 0.3

Table 4.2 – Geometric and material parameters of the multi-layer scattering problem. The
value of ηl depends on the experimental set-up used, see main text for the values used.

Figure 4.10 – Representation of the perfect absorption for the reflection problem. (a), (b) show
the representation of the log10(|τN

0 |) for the lossless and lossy configurations respectively. (c)
Black continuous and red dashed lines show the analytical reflection and absorption coefficients
for the critical coupled configuration respectively. Blue dotted line corresponds to the scattering
cross-section and the magenta crossed line to the reflection coefficient obtained using a FEM
model.
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Design of the 2D resonant building block by using the critical coupling condition

Figure 4.11 – Displacement response of the ABH (in m) embedded at the centre of a circular
plate for the critically coupled configuration (Re(f) = 580 Hz, ηl = 0.45), using a 2D axisymme-
tric model of solid mechanics in COMSOL software. The concentric incident wave is simulated
by imposing a load at the edge of the circular plate.

plex frequency plane respectively. Similarly to Fig. 4.6(b), Fig. 4.10(b) shows the first pole-zero
pair of the system in the perfect absorption configuration where the critical coupling condition
is fulfilled, showing the zero exactly located on the real frequency axis. Therefore, the amount of
inherent losses in the resonator equals the amount of energy leakage in this situation (see Sec-
tion 2.4.1 for more details). Figure 4.10(c) shows the corresponding reflection (red dashed line)
and absorption (black continuous line) coefficients and the scattering-cross section (blue dotted
line) according to real frequencies for the critical coupled configuration. αN

0 ≈ 1 and |τN
0 | ≈ 0

at the first resonance frequency of the composite inclusion (at Re(f) ≈ 580 Hz), meaning that
the incident wave is totally absorbed at this specific frequency see (Fig.4.11) . The analytic
reflection coefficient |τN

0 | is also compared in Fig. 4.10c with numerical results (magenta crossed
line) obtained with a FEM model. The configuration of the FEM model is the same as for the
Section a) except that an ABH is placed at the centre of the circular plate. Again, a good agree-
ment of both results can be noticed, which validates the analytical model. The scattering-cross
section (blue dotted line) in Fig. 4.10c also has a zero value at the first resonance frequency
of the inclusion, showing also the perfect absorption at this frequency. These results show the
adaptability of the method for any radially inhomogeneous structure.

4.7 Conclusions

The extension of the critical coupling condition in a 2D problem for the n = 0 axisymmetric
mode of a 2D penetrable scatterer is analysed in this chapter. A first scattering problem of a
uniform circular inclusion with a concentric incident wave propagating towards the centre of
the resonator is presented. Similarly to the 1D problem presented in Chapter 2, the position
in the complex frequency plane of the zeros of the eigenvalues of the scattering matrix of the
penetrable scatterer provides information on the possibility to obtain the perfect absorption.
The perfect absorption condition is fulfilled when these zeros are placed on the real frequency
axis, meaning that the inherent losses are completely compensating the energy leakage of the
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7. Conclusions

system. The results also highlight that the scattering-cross section Qsc cannot be related to the
absorption of a scatterer for a general scattering problem with an incident plane wave due to
the properties of the Bessel functions that describe the incident wave. The adaptability of the
method for more complex geometries is shown by studying the scattering problem of an ABH,
and is validated by means of FEM models. Again, the presented approach can be applied to
any class of 2D resonant-systems provided that the resonators are local, open and lossy. The
problems presented in this chapter are the preliminary steps to the extension of the problem of
perfect absorption of flexural waves in 2D metaplates in which inclusions or complex scatterers,
such as ABHs, are embedded. The metaplates consist of an array of penetrable circular scatterers
embedded in an infinite or semi-infinite 2D thin plate. The penetrable scatterers that compose
the resonant building block of the metaplate are designed using the method presented in this
chapter in order to maximise their absorption properties.
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Chapter 5

Scattering of flexural waves by a

critically coupled array of 2D

resonators

The resonant block of the metaplate was previously designed in Chapter 4 making use of the
critical coupling conditions by solving the scattering of a concentric incident wave by a circular
resonator embedded in an infinite plate. In order to get closer to practical problems encountered
in mechanical engineering, these resonant blocks are now periodically arranged to form an array
to design the metaplate. If several resonators, or more generally obstacles, are considered, the
field scattered from one obstacle will induce further scattered fields from all the other obstacles,
which will induce further scattered fields from all the other obstacles, and so on [122]. All these
recursive interactions of fields with two or more obstacles constitute what is called Multiple
scattering, and a variety of mathematical techniques for solving such a problem exist: the main
techniques involve separation of variables, integral equations and T -matrices [122]. Note that
the difference between multiple scattering and single scattering relies not only on the number
of obstacles that are in the system, but also on whether or not the interactions between the
scattered field by each obstacles is accounted for. The single scattering can be considered when
the spacing between the several obstacles is large compared to their size and the wavelength of
the incident wave. In this case, the total scattered field is just the sum of the fields scattered by
the individual [obstacles], each of which is acted on by the [incident] field in isolation from the
other [obstacles] [19].

The multiple scattering theory has been widely used in various fields of wave physics, from
electromagnetisms, to water waves, acoustics and elastodynamics [122]. The studied obstacles
can be randomly [143] or periodically distributed. In this latter, a crystal or an array is formed.
They can also be rigid as well as penetrable, involving elastic [123], porous [85] or poroelastic
[5, 189] materials. Such systems with penetrable obstacles thus become locally resonant, present
original properties, and are part of the metamaterial class as presented in Section 1.3.

This chapter focuses on the scattering of flexural waves by an infinite critically coupled array
of circular inclusions embedded in a thin plate. More specifically, the purpose of the chapter is
to analyse the absorbing efficiency of this array in two configurations. The first configuration

83



Scattering of flexural waves by a critically coupled array of 2D resonators

... ...

dx
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Figure 5.1 – Sketch of the 2D scattering problem by an infinite array of circular inclusions.

corresponds to a 2D transmission problem in which the array is embedded in an infinite thin
plate, whereas the second corresponds to a 2D reflection problem in which the scattered field
by the array interacts with a simply supported plane boundary in a semi-infinite thin plate.
The excitation takes the form of an incident plane wave which is normal to the axis of the
array. The resonators consist of circular reductions of the thickness of the plate on which a
thin viscoelastic coating is attached. The resonator geometry and constitutive materials remain
the same as those of the resonators designed in Chapter 4. The scattered field by the array is
studied by means of the multiple scattering theory. In particular, the reflection, transmission
and absorption coefficients of the array are analysed for the propagating waves and are validated
using a 3D semi-periodic FEM model of solid mechanics in COMSOL software.

This chapter is organised as follows. In Section 5.1, the scattering of an infinite array of
circular inclusions is presented for the 2D transmission and reflection problem. Section 5.2 pre-
sents and discuss the critically coupled transmission and reflection problems. Finally, Section
5.3 summarises the main results and gives the concluding remarks.

5.1 Scattering by an infinite row of circular inclusions.

This section aims at presenting the semi-analytical model used to study the scattering pro-
perties of an infinite array of circular inclusions coated by a viscoeslastic layer embedded in a
thin plate. The formalism consided in [157] is adapted here for flexural waves. A semi-infinite
unit cell Ω0

c of width dx is considered in a plate of constant thickness h, flexural rigidity D, and
mass density ρ. This unit cell is attached to a global Cartesian coordinate system (O, ex, ey)
and a polar coordinate system (O, er, eθ) (see Fig.5.1). The position vector according to these
coordinate systems is written as x = xex + yey = rer + θeθ. A circular inclusion of radius a,
thickness h0 and denoted by Ω0 is placed in the unit cell Ω0

c . The centre of Ω0 is located at the
point x0 of coordinates x0 = x0ex +y0ey = dx/2ex +y0ey. A polar coordinate system (O0, e0

r , e
0
θ)

is also attached to the centre of the inclusion. The inclusion is coated by a viscoeslastic layer of
constant thickness hl. This composite region is modeled by means of the RKU model introduced
in Section 4.3.1. The infinite array consists of the dx-periodic repetition of the unit cell Ω0

c along
the direction ex. The j-th repetition of the unit cell is denoted Ωj

c where j ∈ Z, and is included in
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1. Scattering by an infinite row of circular inclusions.

the cartesian domain x ∈ [0 + jdx; dx + jdx] and y = y0. A polar coordinate system (Oj , ej
r, e

j
θ) is

attached to the centre of each circular inclusion Ωj of coordinates xj = xjex+yjey = rjer +θjeθ.
The position vector according to the coordinate systems attached to each inclusion Ωj is written
as rj = rjej

r + θjej
θ.

5.1.1 The incident wave winc

The incident field winc is considered as a propagative plane wave of unitary amplitude and
frequency f propagating along the direction −ey (i.e. θinc = −π/2) in all this chapter. The
propagation of the incident wave is therefore normal to the array, and can be written using the
time convention e−iωt as:

winc(x) = eik.x = e−iky, (5.1)

where k = −key is the wavevector and k =
(

ρhω2

D

)1/4
the wavenumber. The position vector x

can furthermore be expressed as x = xj + rj where rj = rj cos θjex + rj sin θjey. As a result,
Eq. (5.1) becomes:

winc(x) = eikxje−ikrj sin θj

= eikxjeikrj cos(θj+ π
2

), (5.2)

where eikxj plays the role of a complex amplitude which depends on the position xj of the centre
of the inclusion Ωj in the global Cartesian coordinate system. The term eikrj cos(θj+ π

2
) can be

expand upon Bessel functions using the Jacobi-Anger expansion [2], such that:

eikrj cos(θj+ π
2

) =
∑

n∈Z

(−1)nJn(krj)einθj

. (5.3)

The substitution of Eq. (5.3) in Eq. (5.1) leads to the following expansion of the incident field
upon the Bessel functions in the polar coordinate system (Oj , ej

r, e
j
θ) attached to the inclusion

Ωj :
winc(rj) =

∑

n∈Z

Ainc,j
J,n Jn(krj)einθj

(5.4)

with
Ainc,j

J,n = eikxj
∑

n∈Z

(−1)n. (5.5)

The generalisation of these expressions to the case of an incident wave with an arbitrary incident
angle is given in Appendix B.0.1 .

5.1.2 Quasi-periodicity

The displacement field in the system is governed by the biharmonic equation of motion given
in Eq.(4.2), and is written as the sum of the incident wave winc and the scattered field wsc by
the array. The latter is the sum of the scattered fields wj

sc by each inclusion Ωj , thus the total
displacement field reads as:

w = winc + wsc = winc(x) +
∑

j∈Z

wj
sc(r

j). (5.6)

Each scattered field wj
sc is first expanded upon outgoing propagating and evanescent waves in its

own cylindrical coordinate system using Hankel functions of the first kind and Bessel functions
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of the second kind:

wj
sc(r

j) =
∑

n∈Z

[

Aj
H,nH(1)

n (krj) +Aj
K,nKn(krj)

]

einθj

, (5.7)

where Aj
H,n and Aj

K,n are the propagative and evanescent scattering coefficients of Ωj , respecti-
vely. The number of scattering coefficients to determine can be reduced in this case by exploiting
both the quasi-periodicity of the array along ex and the normal plane incidence feature of the ex-
citation, i.e., k = −key. Both conditions involve that the scattered coefficients of each inclusion
are equal due to the Floquet-Bloch condition:

Aj
H,n = AH,n and Aj

K,n = AK,n j ∈ Z. (5.8)

Note that this relation is no more valid when the angle of the incident plane wave is arbitrary
and that a phase-shift has to be accounted for via the Floquet-Bloch condition. As a consequence
of Eq (5.8), it is sufficient to determine the scattering coefficients of one inclusion Ωj to solve
the problem.

5.1.3 Lattice sum

The scattering coefficients of the inclusion Ω0 are now determined. The total scattered dis-
placement field wsc takes therefore the following form:

wsc(rj) =
∑

j∈Z

∑

n∈Z

[

A0
H,nH(1)

n (krj) +A0
K,nKn(krj)

]

einθj

. (5.9)

The Graf’s addition theorem is then used to express the scattered fields by each inclusion Ωj ,
with j ∈ Z

∗, in the local polar coordinate system (O0, e0
r , e

0
θ) attached to Ω0 (see Appendix D.1

for more details on the Graf’s addition theorem):

wsc(r0) =
∑

n∈Z

[

A0
H,nH(1)

n (kr0) +A0
K,nKn(kr0)

]

einθ0

+
∑

n∈Z

∑

q∈Z

[

A0
H,qS

H
n−qJn(kr0)einθ0

+A0
K,qS

K
n−qIn(kr0)

]

einθ0
, with r0 < dx − a ∩ Ω0

c ,

(5.10)
and SH

n−q and SK
n−q are written as:

SH
n−q =

∑

j>0

H(1)
n−q(kjd)

(

1 + (−1)n−q) , (5.11)

SK
n−q =

∑

j>0

Kn−q(kjd) ((−1)n + (−1)q) . (5.12)

In particular, Eq. (5.11) is known as Lattice sum or Schlömilch serie. Such a serie arises naturally
in scattering problems where the scatterer is an infinite periodic structure and accounts for the
contribution of the fields scattered by Ωj , where j ∈ Z

∗, to the near-field close to Ω0 [116]. The
form of the serie as written in Eq. (5.11) is unsuitable for numerical computation due to its very
slow convergence. However, it can be transformed into another expression which is amenable
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1. Scattering by an infinite row of circular inclusions.

for computation [116, 177](see Appendix D.2 for more details on the transformation of SH
n−q).

Note that this slow convergence concerns only SH
n−q and not SK

n−q, since Kn(x) is exponentially
decaying with the increasing argument x. Using the appropriate expression of Schlömilch serie,
the total displacement field in the polar coordinate system (O0, e0

r , e
0
θ) takes the following form

in the vicinity of Ω0 (r0 < dx − a ∩ Ω0
c) :

w(r0) =
∑

n∈Z

[

A0
H,nH(1)

n (kr0) +A0
K,nKn(kr0) +

(

Ainc,0
J,n + A0

H,n

)

Jn(kr0) + A0
K,nIn(kr0)

]

einθ0
,

(5.13)
where

A0
H,n =

∑

q∈Z

A0
H,qS

H
n−q and A0

K,n =
∑

q∈Z

A0
K,qS

K
n−q. (5.14)

5.1.4 Boundary conditions and scattering coefficients

The scattering coefficients of Ω0 are determined by means of the boundary conditions at the
interface Γ0 between the scatterer and the surrounding plate (see Fig. 5.1). Equation (5.13) is
similar to the expression of the displacement field in the case of the scattering by an isolated
inclusion. The procedure to apply the boundary conditions at Γ0 is therefore exactly the same
as presented in Section 4.3.3. Hence, applying the boundary conditions at Γ0 for a given order
n of Bessel function leads to the following equation system:

A0
n.x

0
n = B0

n.a
0
n, (5.15)

with

A0
n =













H(1)
n (ε) Kn(ε) −Jn(εp

0) −In(εp
0)

H(1)
n

′
(ε) Kn

′(ε) −κ0J0
′(εp

0) −κ0I0
′(εp

0)
SHn Sp

Kn
−D0Sp

Jn
−D0Sp

In

THn T p
Kn

−D0T p
Jn

−D0T p
In













,

x0
n =













A0
H,n

A0
K,n

A0
J,n

A0
I,n













, B0
n = −













Jn(ε) In(ε)
Jn

′(ε) In
′(ε)

SJn SIn

TJn TIn













, a0
n =

(

Ainc,0
J,n + A0

H,n

A0
K,n

)

,

where κ0 = kp
0/k, ε = ka, εp

0 = kp
0a = κ0ε and D0 = Dp

0/D and

Si
Xn

=
[

n2(1 − νi) ∓ ε2
i

]

Xn(εi) − (1 − νi)εiX
′
n(εi), (5.16)

T i
Xn

= n2(1 − νi)Xn(εi) −
[

n2(1 − νi) ± ε2
i

]

X ′
n(εi), (5.17)

where the indice i is either equal to p or is null. The upper sign in Eqs.(5.16) and Eq. (5.17)
is taken when Xn = Jn or H(1)

n while the lower sign is taken when Xn = In or Kn. In the case
where the scattered field is expanded upon N orders of Hankel functions and modified Bessel
functions of the second kind (n ∈ [−N ;N ], N ∈ Z), the scattering coefficients are determined
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from Eq. (5.15) by solving the following system:



































































































A0
H

−N
− T−N

11

∑

q∈Z

A0
Hq
SH

−N−q − T−N
12

∑

q∈Z

A0
Kq
SK

−N−q = T−N
11 Ainc,0

J,−N

A0
K

−N
− T−N

21

∑

q∈Z

A0
Hq
SH

−N−q − T−N
22

∑

q∈Z

A0
Kq
SK

−N−q = T−N
21 Ainc,0

J,−N

...
A0

H0
− T 0

11

∑

q∈Z

A0
Hq
SH

0−q − T 0
12

∑

q∈Z

A0
Kq
SK

0−q = T 0
11A

inc,0
J,0

A0
K0

− T 0
21

∑

q∈Z

A0
Hq
SH

0−q − T 0
22

∑

q∈Z

A0
Kq
SK

0−q = T 0
21A

inc,0
J,0

...
A0

HN
− TN

11

∑

q∈Z

A0
Hq
SH

N−q − TN
12

∑

q∈Z

A0
Kq
SK

N−q = TN
11A

inc,0
J,N

A0
KN

− TN
21

∑

q∈Z

A0
Hq
SH

N−q − TN
22

∑

q∈Z

A0
Kq
SK

N−q = TN
21A

inc,0
J,N

, (5.18)

where

Tn =













Tn
11 Tn

12

Tn
21 Tn

22

Tn
31 Tn

32

Tn
41 Tn

42













=
(

A0
n

)−1
· B0

n. (5.19)

The sums are truncated in practice to n ∈ [−N ;N ] by using the following numerical recipe [10]:

N = floor(4.05(ka)1/3 + ka) + 10, (5.20)

to ensure their convergence. Note that this truncation concerns only the Hankel functions of the
first kind and the Bessel functions of the second kind in the scattered field, and that the lattice
sum which runs over the spatial repetition of the unit cell is evaluated independently of this
truncation.

5.1.5 Reflection and transmission coefficients

a) General expressions

The reflection and transmission coefficients of the array are now computed. These coefficients
provide the global behaviour of the inclusion array submitted to an incident field in the Cartesian
coordinate system. To derive these coefficients, the system composed of the infinite plate and
the array is divided into 3 domains (see Fig. 5.2):

— Ωc corresponds to the array of dx-periodic repetitions of Ω0
c ,

— Ω+ corresponds to the upper half-space, i.e., above the array, where the incident wave
initially propagates and is reflected from the array,

— Ω− corresponds to the lower half-space, i.e., below the array, where the transmitted waves
propagate away from the array.

The displacement fields w+ in Ω+ and w− in Ω− are then expanded upon plane waves. However,
due to the dx-periodicity of the array, only the discret set of wavevectors kµ

xex ± kµ
y ex and

γµ
x ex ± γµ

y ex is admissible [18, 74], where the Bloch wavevector reduces to kµ
x = γµ

x = 2πµ
dx

because the incident wave is normal to the array, kµ
y =

√

k2 − kµ
x

2 and γµ
y =

√

(ik)2 − γµ
x

2 where
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Figure 5.2 – Sketch of the scattering coefficients, reflection coefficients and transmission coef-
ficients in the scattering problem.

µ ∈ Z. Therefore, the expansion of the displacement fields upon Bloch waves are:

w+(x) =
∑

µ∈Z

δµ0e
ikµ

x x−ikµ
y (y−(y0+a)) +Rp

µe
ikµ

x x+ikµ
y (y−(y0+a)) +Re

µe
iγµ

x x+iγµ
y (y−(y0+a)), (x, y) ∈ Ω+

(5.21a)

w−(x) =
∑

µ∈Z

T p
µe

ikµ
x x−ikµ

y y−(y0−a)) + T e
µe

iγµ
x x−iγµ

y (y−(y0−a)). (x, y) ∈ Ω−

(5.21b)

Rp
µ, Re

µ, T p
µ and T e

µ are the complex amplitudes of the propagative and evanescent outgoing
plane waves radiated from the array in Ω±. The relation between the Bloch waves amplitudes
Rp

µ, Re
µ, T p

µ and T e
µ and the scattering coefficients A0

Hn
and A0

Kn
determined from Eq. (5.18)

is derived by means of the Green-Kirchhoff Integral Theorem, which is detailed in [157]. After
derivations, the Bloch wave amplitudes take the form:

Rp
µ =

∑

n∈Z

A0
Hn
Kp+

µn e
−ikµ

x x0+ikµ
y a, (5.22a)

Re
µ =

∑

n∈Z

A0
Kn
Ke+

µn e
−iγµ

x x0+iγµ
y a, (5.22b)

T p
µ = δµ0e

ikµ
x x−ikµ

y (y−(y0+a)) +
∑

n∈Z

A0
Hn
Kp−

µn e
−ikµ

x x0+ikµ
y y0 , (5.22c)

T e
µ =

∑

n∈Z

A0
Kn
Ke−

µn e
−iγµ

x x0+iγµ
y y0 , (5.22d)

with

Kp±
µn =

2(−i)n

dxk
µ
y
ei±nθµ , (5.23a)

Ke±
µn =

iπ

dxγ
µ
y
ei±nαµ , (5.23b)

where keiθµ = kµ
x + ikµ

y and γeiαµ = γµ
x + iγµ

y . Due to the unitary amplitude of the incident wave,
the global reflection, transmission and absorption coefficient of the lattice can be expressed as
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Figure 5.3 – Sketch of the scattering problem with a simply supported plane.

[85]:

|RT |2 =
∑

µ∈Z

Re
(

kµ
y

)

k0
y

∣

∣

∣Rp
µ

∣

∣

∣

2
, (5.24)

|TT |2 =
∑

µ∈Z

Re
(

kµ
y

)

k0
y

∣

∣

∣T p
µ

∣

∣

∣

2
, (5.25)

αT = 1 − |RT |2 − |TT |2. (5.26)

b) Interaction of the array with a plane boundary

The interaction of the array with a plane boundary Γp parallel to the array and located
at y = 0 is now studied (see Fig. 5.3). This study is possible thanks to the expansion of the
scattered field wsc upon Bloch waves expressed in Eqs. (5.21a) and (5.21b). A simply supported
condition is chosen here to avoid the conversion of wave types from propagative to evanescent
and vice-versa [48], and so make the calculation easier. The incident wave remains the same as
the previous study and is still expressed by Eq. (5.1). The half-space Ω+ is now only considered.
The displacement field w+ in Ω+ keeps the same form as in Eq. (5.21a). However, the expression
of the reflection coefficients differs from that of Eq. (5.22a) and 5.22b due to the presence of the
plane boundary. The displacement field inside the unit cell Ω0

c takes the form:

w0
c (x) =

∑

µ∈Z

fp+
µ eikµ

x x+ikµ
y y + fp−

µ eikµ
x x−ikµ

y y + fe+
µ eiγµ

x x+iγµ
y y + fe−

µ eiγµ
x x−iγµ

y y

+
∑

n∈Z

A0
Hn
Kp±

µn e
−ikµ

x x0±ikµ
y aeikµ

x x+±ikµ
y (y−(y0+a))

+A0
Kn
Ke±

µn e
−iγµ

x x0∓iγµ
y aeiγµ

x x±iγµ
y (y−(y0+a)),

(5.27)

where the upper signs are taken when y > y0 + a and the lower signs when 0 < y < y0 − a. fp+
µ

and fp−
µ account for the amplitudes of the ingoing and outgoing propagative Bloch waves in Ω0

c ,
respectively, whereas fe+

µ and fe−
µ correspond to the amplitudes of the ingoing and outgoing

evanescent Bloch waves in Ω0
c , respectively. The scattering coefficients in w+ as well as the waves

amplitudes of w0
c are determined by means of the boundary conditions at Γd, Γp, and Γ0. The
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1. Scattering by an infinite row of circular inclusions.

boundary conditions at Γp and the continuity conditions at Γd implies:



















∫ dx

0
w0

ce
−ikν

xxdx =
∫ dx

0
w+e−ikν

xxdx

∫ dx

0

∂w0
c

∂y
e−ikν

xxdx =
∫ dx

0

∂w+

∂y
e−ikν

xxdx

, y ∈ Γd, (5.28)

and


















∫ dx

0
w0

ce
−ikν

xxdx = 0
∫ dx

0

∂2w0
c

∂y2
e−ikν

xxdx = 0
, y ∈ Γp. (5.29)

Applying the boundary conditions at Γd, Γp and making use of the orthogonality relation
∫ dx

0
eikµ

x xe−ikν
xxdx = 2πdxδνµ , the amplitudes fp+

µ , fp−
µ , fe+

µ and fe−
µ , and the propagative

and evanescent reflection coefficients Rp
µ and Re

µ can be expressed as:

fp+
µ = −δq0e

ikµ
y (y0+a) −

∑

n∈Z

A0
Hn
Kp−

µn e
−ikµ

x x0+ikµ
y y0 , (5.30a)

fp−
µ = δµ0e

ikµ
y (y0+a), (5.30b)

fe+
µ = −

∑

n∈Z

A0
Kn
Ke−

µn e
−iγµ

x x0+iγµ
y y0 , (5.30c)

fe−
µ = 0, (5.30d)

Rp
µ = −δµ0e

i2kµ
y (y0+a) +

∑

n∈Z

A0
Hn
eikµ

y (y0+a)(Kp+
µn e

−ikµ
x x0−ikµ

y y0 −Kp−
µn e

−ikµ
x x0+ikµ

y y0), (5.30e)

Re
µ =

∑

n∈Z

A0
Kn
eiγµ

y (y0+a)(Ke+
µn e

−iγµ
x x0−iγµ

y y0 −Ke−
µn e

−ikµ
x x0+iγµ

y y0). (5.30f)

fp−
µ and fe−

µ accounts therefore for the incident wave amplitudes in Ω0
c , whereas fp+

µ and fe+
µ

accounts for the reflection at Γp of the incident wave and the scattered field by Ω0. The scattering
coefficients AHn and AKn of Ω0 are again determined by means of the boundary conditions at Γ0.
However, it requires beforehand to expand the exponential terms of w0

c upon Bessel functions
in the coordinate system (O0, e0

r , e
0
θ) by using the Jacobi-Anger expansion, such that:

fp+
µ eikµ

x x+ikµ
y y =

∑

n∈Z

F p+
µn Jn(kr0)einθ0

, (5.31a)

fe+
µ eiγµ

x x+iγµ
y y =

∑

n∈Z

F e+
µn In(kr0)einθ0

. (5.31b)

with

F p+
µn =



−δµ0e
ikµ

y (y0+a) −
∑

m∈Z

A0
Hm
Kp−

µme
−ikµ

x x0+ikµ
y y0



 ine−inθµeikµ
x x0+ikµ

y y0 , (5.32a)

F e+
µn = −

∑

m∈Z

A0
Km
Ke−

µme
−iγµ

x x0+iγµ
y y0(−1)ne−inαµeiγµ

x x0+iγµ
y y0 . (5.32b)
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Hence, applying the boundary condition at Γ0 for a given order n of Bessel function leads to the
following equation system:

A0
n.x

0
n = B0

n.a
0r
n , (5.33)

with a0r
n =

(

Ainc,0
J,n + A0

H,n +
∑

µ∈Z

F p+
µn ; A0

K,n +
∑

µ∈Z

F e+
µn

)T

and where T is the transpose sign. If

the scattered field is expanded upon N orders of Hankel functions and modified Bessel functions
of the second kind, the scattering coefficients are determined from Eq. (5.33) by solving the
following system:











































































































































































A0
H

−N
− T−N

11 SH
−N − T−N

12 SK
−N = T−N

11



Ainc,0
J,−N −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)i−NeiNθµeikµ
x x0+ikµ

y y0





A0
K

−N
− T−N

21 SH
−N − T−N

22 SK
−N = T−N

21



Ainc,0
J,−N −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)i−NeiNθµeikµ
x x0+ikµ

y y0





...

A0
H0

− T 0
11SH

0 − T 0
12SK

0 = T 0
11



Ainc,0
J,0 −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)eikµ
x x0+ikµ

y y0





A0
K0

− T 0
21SH

0 − T 0
22SK

0 = T 0
21



Ainc,0
J,0 −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)eikµ
x x0+ikµ

y y0





...

A0
HN

− TN
11SH

N − TN
12SK

N = TN
11



Ainc,0
J,N −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)iNe−iNθµeikµ
x x0+ikµ

y y0





A0
KN

− TN
21SH

N − TN
22SK

N = TN
21



Ainc,0
J,N −

∑

µ∈Z

δµ0e
ikµ

y (y0+a)iNe−iNθµeikµ
x x0+ikµ

y y0





,

(5.34)
with

SH
n =

∑

q∈Z

A0
Hq



SH
n−q −

∑

µ∈Z

ei2kµ
y y0Kp−

µq i
ne−inθµ



 , (5.35a)

SK
n =

∑

q∈Z

A0
Kq



SK
n−q −

∑

µ∈Z

ei2γµ
y y0Ke−

µq (−1)ne−inθ0



 . (5.35b)

The reflection and absorption coefficient of the lattice can then be expressed as:

|RR|2 =
∑

µ∈Z

Re
(

kµ
y

)

k0
y

∣

∣

∣Rp
µ

∣

∣

∣

2
, (5.36)

αR = 1 − |RR|2. (5.37)
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5.2 Scattering by an infinite array of circular resonators

The following two scattering problems are now considered: the first one is named the trans-
mission problem and involves both the reflection and transmission coefficients and the second
one is named the reflection problem by backed infinite array of circular resonators and only
involves reflection. Both problems are depicted in Figs. 5.2 and 5.3, respectively. The resonators
in both problems consist of homogeneous circular reductions of the plate thickness on top of
which a coating layer is placed, similarly to the resonators studied in Section 4.4. The geometry
and material parameters of the composite resonators are the same as those in Section 4.4 whose
values are detailed in Table 4.1. These resonators are critically coupled at their first axisymme-
tric mode when excited by a converging wave. They also totally absorb this concentric incident
wave, when isolated, at the corresponding eigenfrequency: Re(f0) = 184.9Hz (see Chapter 4 for
more details). The study focuses only on the reflection and transmission of waves in the far-field,
(y → ±∞), that is to say, on the propagative waves that carry the energy. The expansion of the
displacement fields upon Bloch waves is truncated such that µ ∈ [−20 : 20].

5.2.1 Transmission problem

The same configuration as in Fig. 5.2 is considered for the transmission problem with dx = 24
cm. Therefore, the expansion of the scattered field upon the scattering coefficients A0

H,n and
A0

K,n is truncated at N = 15 orders (n ∈ [−15 : 15]) by applying Eq. (5.20). The propagative
reflection coefficients |RT |2, the transmission coefficient |TT |2 and the absorption coefficient
αT = 1 − |RT |2 − |TT |2 are evaluated around the frequency Re(f0) = 184.9 Hz by using the
multiple scattering model presented above. The lattice sums SH

n−q and SK
n−q are also expanded

upon 2000 terms.
Figure 5.4 depicts |RT |2, |TT |2 and αT = 1−|RT |2−|TT |2 using the multiple scattering model

and a FEM model. The FEM model is implemented by using a 3D model of solid mechanics in
COMSOL software. The geometry of the model is composed of one unit cell of the infinite array
of circular inclusions. The periodicity along ex is simulated using Floquet conditions, whereas
the infinite length along ey with Perfectly Matched Layers (PML) (see Fig. 5.5). The incident
plane wave is simulated by imposing a load at an edge parallel to the axis of the array.

The absorption coefficient αT reaches 0.5 at most at Re(f) = 196Hz in Fig. 5.4. This fre-
quency corresponds approximately to the resonance frequency of the first axi-symmetric mode
of the composite resonators. These results are similar to those obtained in the 1D transmission
problem presented in Section 2.4.2c). This absorption limit of 0.5 is, once again, due to the fact
that a single symmetric mode is excited here and that the system is thus half critically coupled
(see Chapter 2.2). The solutions to increase the absorption are the same as those presented
in Section 2.4.2c) which are: breaking the symmetry of the resonator[98] or using degenerate
resonators[204]. A good agreement between the analytical and numerical results highlights the
adaptibility of the critical coupling method applied to flexural waves for the 2D transmission
problem.

5.2.2 Reflection problem

The configuration of Fig. 5.3 is now considered for the reflection problem. The width of the
unit cell is dx = 24 cm, y0 = 12 cm and the expansion of the scattered field is still truncated such
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Figure 5.4 – Representation of |RT |2,|TT |2 and αT around the first eigenfrequency of the cri-
tically coupled resonators. Black dashed, blue dotted and red solid lines show the analytical
transmission, reflection and absorption coefficients |RT |2,|TT |2 and αT respectively, whereas
black triangle, blue circles and red crossed lines correspond to the transmission, reflection and
absorption coefficients computed by means of a FEM model.

Figure 5.5 – 3D FEM model of the unit cell of the infinite array of inclusions used in COMSOL
software to numerically compute |RT |2, |TT |2 and αT . The periodicity along ex is simulated
using Floquet conditions and the infinite length along ey with Perfectly Matched Layers (PML).
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Figure 5.6 – Representation of |RR|2 and αR around the first eigenfrequency of the critically
coupled resonators placed in unit cells of width dx = 24 cm and y0 = 12 cm. Black and red solid
lines show the analytical reflection and absorption coefficients |RR|2 and αR respectively, whereas
black and red crossed lines correspond to the reflection and absorption coefficients computed by
means of a FEM model respectively.

that n ∈ [−15 : 15]. The propagative reflection coefficient |RR|2 and the absorption coefficient αR

are evaluated around the frequency Re(f0) = 184.9Hz by using the multiple scattering model
with a plane simple supported boundary presented above and by using a FEM model whose
configuration is depicted in Fig. 5.7. Note that the simply supported condition is simulated in
the FEM model by imposing a displacement equal to 0 along ez at the corresponding face.

Figure 5.6 depicts |RR|2 and αR around the first eigenfrequency of the resonators. The perfect
absorption is still not reached in this case since αR equals 0.92 at most at Re(f) = 196Hz.
This may be explained by the interaction between the boundary and the resonator which alter
the resonant behaviour of the latter, and more particularly its inherent losses. The resonator
positions are therefore slightly moved along ey axis in order to increase their absorbing efficiency.
Figure 5.8 depicts |RR|2 and αR of the resonator array located at x0 = 12 cm and y0 = 16.3 cm in
unit cells of width dx = 24 cm. An enhancement of the absorption is therefore noticed (αR = 0.98
at Re(f) = 196 Hz). The frequency of the maximum of absorption is slightly modified due to
the coupling between the resonator and the boundary. These results highlight the adaptibility
of the critical coupling method applied to flexural waves for 2D reflection problem.

5.3 Conclusions

The absorption of a propagative flexural plane waves by an infinite array of circular resonators
in 2D thin plates is analysed in this chapter. The absorbing efficiency of this system is analysed
by means of the reflection, transmission and absorption coefficients using the multiple scattering
method for both the reflection and the transmission problems. In the transmission problem,
the physical conditions imply only one type of symmetry of the resonant modes, and limit the
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Figure 5.7 – 3D FEM model of the unit cell of the infinite array of inclusions used in COMSOL
software to numerically compute |RR|2 and αR. The periodicity along ex is simulated using
Floquet conditions and the semi-infinite length along ey with Perfectly Matched Layers (PML).
The simply supported condition is simulated by imposing a displacement equal to 0 along ez at
the corresponding face.
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Figure 5.8 – Representation of |RR|2 and αR around the first eigenfrequency of the critically
coupled resonators centred in unit cells of width dx = 24 cm and y0 = 16.3 cm. Black and red
solid lines show the analytical reflection and absorption coefficients |RR|2 and αR respectively,
whereas black and red crossed lines correspond to the reflection and absorption coefficients
computed by means of a FEM model respectively.
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absorption of the array to 0.5. The strategies to obtain a perfect absorption in the 2D case would
be the same as in the 1D case (see Chapter 2): (i) breaking the symmetry of the resonator in
order to treat the full problem with a single type of symmetry of the resonance mode [98]; (ii)
using degenerate resonators with two types of symmetries at the same frequency [204]. In the
reflection problem, perfect absorption is possible. To that purpose, the distance between the
resonators and the boundary has to be slightly increased to reduce their coupling. The results of
this chapter highlight the adaptibility of the critical coupling method applied to flexural waves
for 2D problems. The resonators used in this chapter, the type of incident wave and the boundary
conditions have been chosen as simple as possible to show the adaptability of the method for
2D problem and give the key feature for future designs of 2D subwavelength perfect absorbers
for flexural waves. Further studies could be considered by analysing the absorption of the array
submitted to several incidence angles and to other boundary conditions than simple supported.
More complex axi-symmetric geometries, such as pits of power law profile as ABHs, could also
be used by means of the method presented in Section 4.5. The absorbing mechanisms presented
in this chapter may also be combined with other mechanisms, such as bandgaps obtained by
periodically arranging the resonators along ex and ey.
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Chapter 6

Conclusions and perspectives

The main objective of this thesis was to understand, analyse and design 1D and 2D passive
damping lightweight systems which can mitigate flexural waves at low frequencies, and more
particularly with systems whose characteristic dimensions are much smaller than the wavelength
of the incident wave. Particular interest has been accorded to the design of subwavelength perfect
absorbers which have proven their efficiency in audible acoustic metamaterials, and the problem
of subwavelength perfect absorption adapted for flexural waves has been investigated. The thesis
has been constructed following a bottom-up approach based on the understanding of the critical
coupling condition, which gives the rules for designing subwavelength perfect absorbers, and the
extension of this particular condition to the case of flexural waves.

Among other damping systems, this thesis has paid attention to the Acoustic Black Holes
(ABH). Such systems consist in continuously decreasing the thickness of the plate or beam
by following a power-law, and provide good wave control and absorption at high frequencies.
The thesis has investigated the combination of the ABH effect at high frequencies with the
subwavelength perfect absorption mechanisms obtained at low frequencies.

The main contributions presented in this dissertation are summarised below as well as pers-
pectives for future works.

6.1 Conclusions

6.1.1 Subwavelength absorbers for flexural waves

The absorption of propagative flexural waves by means of simple composite beam structures
has firstly been discussed in Chapter 2. The mechanisms of energy absorption have been inter-
preted in terms of both the critical coupling conditions and the symmetries of the resonances
for both the reflection and the transmission problems. In particular, the complex frequencies of
the zeros of the scattering matrix eigenvalues in the complex frequency plane has proven to be
a relevant tool for determining the possibility of achieving perfect absorption. The condition of
perfect absorption is fulfilled when these zeros are placed on the real frequency axis, meaning
that the inherent losses are completely compensating the energy leakage of the system. This
condition is also called the critical coupling condition. The perfect absorption has been obtained
for the reflection problem since it only involves a single symmetry of the resonances. In the
transmission problem, the requirement to obtain perfect absorption is stronger as two kinds of
symmetries of the resonances are required to be critically coupled simultaneously. In the case
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presented in Chapter 2, dealing only with one type of symmetry for the resonant modes limits
the absorption to 0.5. All the analytical results in Chapter 2 have been validated numerically
using FEM models and an experimental validation of the reflection problem have also been
performed. The presented approach can be applied to any class of 1D resonant-system provided
that the resonators are local, open and lossy ones. These properties of the resonator are the
essential points to achieve the perfect absorption at low frequency in addition to solving the fol-
lowing problems: increasing the modal density at low frequencies and matching the impedance
with the background medium. These results pave the way to the design of simple resonators for
efficient flexural wave absorption by means of the critical coupling condition, showing also the
limits of absorption induced by the geometry used. More complex 1D geometries have also been
considered in Chapter 3 by using 1D composite ABHs, showing the adaptability of the method.

The extension of the critical coupling conditions in a 2D problem for the n = 0 axisymmetric
mode of a 2D penetrable scatterer has been analysed in Chapter 4. A first scattering problem
of an uniform circular inclusion with a concentric incident wave propagating towards the centre
of the resonator has been presented, and the perfect absorption has been performed by fulfilling
the critical coupling condition similarly to a 1D system. The results have also highlighted that
the scattering-cross section Qsc cannot be related to the absorption of a scatterer for a general
scattering problem with an incident plane wave due to the properties of the Bessel functions that
describe the incident wave. The adaptability of the method for more complex geometries has
then been shown by studying the scattering problem of an ABH using a multilayer scattering
model, and has been validated by means of a FEM model. The presented approach can, once
again, be adapted to any class of 2D resonant-systems provided that the resonators are local,
open and lossy.

The 2D uniform circular resonator designed in Chapter 4 has been embedded in the form
of an infinite array in a plate, also called metaplate, and two scattering problems have been
studied by using the multiple scattering method: the reflection problem in a semi-infinite plate
and the transmission problem in an infinite plate. In the transmission problem, the physical
conditions have, once again, implied only one type of symmetry of the resonant modes. The
absorption of the array is therefore limited to 0.5 as for the 1D cases treated in Chapter 2. In
the reflection problem, perfect absorption is possible at low frequencies. To that purpose, the
distance between the resonators and the boundary have been slightly increased due to their
coupling. These results highlight the adaptibility of the critical coupling method applied to
flexural waves for 2D problems and give the key feature for future design of 2D subwavelength
perfect absorbers for flexural waves.

6.1.2 Interpretation of the ABH effect by using the complex frequency plane

A new physical insight of the ABH efficiency has emerged through the study of the critical
coupling of a 1D ABH. The ABH effect has been interpreted through the use of the complex
frequency plane in Chapter 3. The geometry of the ABH leads to low quality factor resonances
and, as a consequence, to wide zeros of its scattering matrix eigenvalues in the complex frequency
plane. The ABH effect may therefore be interpreted as a consequence of the critical coupling at
one resonance frequency of the ABH and of the broadband quasi-perfect absorption at higher
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frequencies, thanks to the specific geometry of the resonator. This point is the main contribution
of the dissertation on the ABH effect, and sheds new light on how to interpret the ABH effect
in beams. The understanding of this mechanism provides a guidance tool for the design and the
optimisation of ABH terminations. Two methods have been proposed to improve the absorption
of 1D ABHs using the concept of critical coupling. The first consisted in tuning the losses
introduced in the system by shaping the thickness profile of the coating layer. In doing so it is
possible to control the losses introduced in the resonator according to the real frequency. The
second method relies on the addition of a mass at the end of the ABH and was based on the work
of Aklouche et al. [3]. The configuration of perfect absorption at the first resonance frequency of
the resonator can be obtained and tuned according to the added mass by controlling the position
of the corresponding zero in the complex frequency plane.

6.2 Perspectives

Type of inherent losses. The problem of subwavelength perfect absorption adapted for
flexural waves has been treated in this dissertation. One key point to obtain perfect absorption is
to completely compensate the energy leakage of the system with its inherent losses. The inherent
losses of the resonators have been controlled in this thesis by placing a layer of viscoelastic mate-
rial on them. The use of such materials may be labourious from the experimental point of view to
controle precisely the amount of losses introduced into the system, since their properties depend
on the temperature and on the way they are glued on the structure. Moreover, the modification
of the losses in the system implies to change the viscoelastic material which can also be arduous.
The investigation for other methods to control more effectively the inherent losses of the resona-
tors is therefore of great interest. The use of Shape Memory Polymers (SMP), whose properties
are tuned by temperature control, would be relevant for instance. The damping properties of
such materials are strongly temperature dependent. In particular, SMP soften and become more
dissipative when the increasing temperature reaches the glass transition temperature of the ma-
terial. This particular temperature is localised in the transition state where the material changes
from a glassy state to a rubbery state. The application of SMP in the case of a 1D reflection
problem by an ABH termination has already been done in the work of Ouisse et al. [138]. Their
work has shown the possibility to improve the acoustic black hole effect through the control of
the SMP loss factor by varying the temperature. It would be interesting to combine these types
of material with the concept of perfect absorption treated in this dissertation for future designs
of subwavelength perfect absorbers for flexural waves. Another kind of system that could be
used is semi-active systems made of piezoelectric transducers whose damping properties can be
tuned according to the frequency. This strategy is investigated by Guillaume Raybaud in the
framework of its PhD thesis in the Acoustic Laboratory of Le Mans University with the Project
ANR eTNAA -17-CE08-0035-01 (2017-2021) at the time of writing this dissertation.

Perfect absorption for the transmission problem. The absorption in the transmission
problems treated in this thesis is limited to 0.5 since the physical conditions implied only one
type of symmetry of the resonant modes and lead to a half critically coupled problem. Several
strategies based on breaking the symmetry of the resonator [98] or on the use of degenerate
resonators [204] have been proposed in acoustics and have proven effective. In these cases,
both eigenvalues of the scattering matrix present poles and zeros located at the same real
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frequencies. It would then be possible to fully critically couple the problem and so obtain a
perfect absorption at the appropriate frequency. Such strategies could be adapted in the case of
flexural waves in future works to obtain the perfect absorption for the transmission problem. A
simple way to break the symmetry of the resonator in the case of beam structures is to consider
a resonator made of two beams with different thicknesses, for instance. Perfect absorption from
degenerated resonators can be obtained when the interaction of their transmission response leads
to destructive interferences, while their impedance matching to the propagating medium implies
no back scattering.

Multiple scattering problem. This thesis has dealt with scattering problem of flexural
waves by a critically coupled array of 2D resonators. The angle of the incident wave and the
boundary conditions have been chosen as simple as possible (an incident wave normal to the axis
of the array and a simply supported condition have been considered) to show the adaptability
of the method of perfect absorption for 2D problem. Further studies could be considered by
analysing the absorption of the array submitted to several incidence angles and to other boun-
dary conditions than simple supported. More complex axi-symmetric geometries, such as ABHs,
could also be used by means of the multi-layer scattering method presented in Section 4.5. The
absorbing mechanisms presented in Chapter 5 may also be combined with other mechanisms,
such as bandgaps obtained by periodically arranging the resonators along ex and ey. Finally,
the interaction between the boundary and the resonators has not been further investigated due
to a lack of time. Further investigations on the influence of this interaction on the resonator
properties could also be interesting for future design of metaplate.
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Abstract

The limits offlexural wave absorption by open lossy resonators are analytically and numerically

reported in this work for both the reflection and transmission problems. An experimental validation

for the reflection problem is presented. The reflection and transmission offlexural waves in 1D

resonant thin beams are analyzed bymeans of the transfermatrixmethod. The hypotheses, onwhich

the analyticalmodel relies, are validated by experimental results. The open lossy resonator, consisting

of afinite length beam thinner than themain beam, presents both energy leakage due to the aperture

of the resonators to themain beamand inherent losses due to the viscoelastic damping.Wave

absorption is found to be limited by the balance between the energy leakage and the inherent losses of

the open lossy resonator. The perfect compensation of these two elements is known as the critical

coupling condition and can be easily tuned by the geometry of the resonator. On the one hand, the

scattering in the reflection problem is represented by the reflection coefficient. A single symmetry of

the resonance is used to obtain the critical coupling condition. Therefore the perfect absorption can be

obtained in this case. On the other hand, the transmission problem is represented by two eigenvalues

of the scatteringmatrix, representing the symmetric and anti-symmetric parts of the full scattering

problem. In the geometry analyzed in this work, only one kind of symmetry can be critically coupled,

and therefore, themaximal absorption in the transmission problem is limited to 0.5. The results

shown in this work pave theway to the design of resonators for efficient flexural wave absorption.

1. Introduction

Recent studies in audible acoustics have focused onwave absorption at low frequencies bymeans of

subwavelength locally resonantmaterials. In particular, the design of broadband subwavelength perfect

absorbers, whose dimensions aremuch smaller than thewavelength of the frequency to be attenuated, has

recently been proposed [1–5]. Such devices can totally absorb the energy of an incident wave and require solving

the twofold but often contradictory problem: (i) increasing the density of states at low frequencies and (ii)

matching the impedancewith the backgroundmedium.On the one hand, the use of local resonators is a

successful approach for increasing the density of states at low frequencies with reduced dimensions, as it has

been shown in thefield ofmetamaterials [6–13]. On the other hand, the local resonators of suchmetamaterials

are open and lossy ones, implying energy leakage and inherent losses. In these systems the impedancematching

can be controlled by the ratio between the inherent losses of the resonator and the leakage of energy [14].

Particularly, the perfect compensation of the leakage by the losses is known as the critical coupling condition

[15] and has beenwidely used to design perfect absorbers in different fields of physics [16, 17] other than

acoustics.
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The critical coupling condition is also relevant for applications in vibrations owing to the increasing need for

dampingmaterials at low frequencies in several branches of industry [10]. Current passive solutions in thisfield

aremainly based on the use of viscoelastic coatings [18]. Another solution yields in the tuned vibration absorber

(TVA) [19–21] that is used to control flexural waves in beams. The tuning of the resonance frequency of an

undampedTVAhas been analyzed [20], showing that complete suppression of the flexural wave transmission

can be achieved. Inmost cases, TVAhave been used tominimize the transmission of a propagating wave [20],

resulting in practice in heavy treatments at low frequencies. Less attention has been paid to the case of

maximizing the absorption in order to reduce simultaneously both the reflected and transmitted waves.

The purpose of this work is to study the problemof perfect absorption offlexural waves in 1D elastic beams

with local resonators by using the critical coupling condition. Particularly, the absorption of energy is analyzed

through the balance between the energy leakage and the inherent losses in the resonators for the two scattering

problems: the reflection and the transmission offlexural waves. The presented problem is related to the control

offlexural waves in a beamusing a passive TVAbutwith a physical insight that allows the interpretation of the

limits of theflexural wave absorption based on both the critical coupling conditions and the symmetry of the

excited resonances in the resonator. The analyzed systems are composed of amain beam and an open resonator

simply consisting in a reduction of the thickness of themain beam. A thin viscoelastic coating is attached to it,

leading to a compositematerial whose lossmay be tuned. This compositematerial ismodeledwith the Ross–

Kerwin–Ungar (RKU)method [22] and is embedded in themain beam. By tuning the losses, it is possible to

analyze the different limits in both scattering problems. In practice, this type of resonator results in simpler

geometries than that of the TVAwhich consists of complicated combinations ofmass spring systems simulating

a point translational impedance.

The composite is studied bymeans of an analyticalmodel based on the transfermatrixmethod. The

analytical results, in accordance with the the experimental results, show the limits of themaximal values for the

flexural wave absorption and their physical interpretations in both the reflection and transmission problems.

The interpretations are based on the eigenvalues of the S-matrix for the propagatingwaves, represented in the

complex frequency plane [1]. An experimental prototype is designed andmeasured for the reflection problem.

The experimental results prove the perfect absorption offlexural waves and validate the analytical predictions.

Thework is organized as follows. In section 2, the theoreticalmodel used to analyze the 1D scattering

problems offlexural wave is presented. The physical analysis of the absorption coefficient in the complex

frequency plane are presented in section 3. This analysis is based on an analyticalmodel and the concept of

critical coupling to obtain a perfect absorption offlexural waves. The experimental set-up used to validate the

model for the reflection problem is then presented in section 4 aswell as the experimentalmethodology and

results. Finally, section 5 summarizes themain results and gives the concluding remarks.

2. Theoreticalmodels

This section describes the theoreticalmodel used to study the absorption offlexural waves by open lossy

resonators in 1D systems, following the approach ofMace [23]. The governing equations used in themodel are

first introduced. Two scattering problems are then presented. Thefirst one is the reflection problemwhere the

absorption by a resonatormade of a thinner composite beam located at the termination of a semi-infinite beam

is studied (figure 1(a)). The second one is the transmission problemwhere the absorption of the same resonator

located between two semi-infinite beams is considered (figure 1(b)). The analytical results shown for the two

problems have been tested by numerical simulations, but not shown in the article for clarity of the figures, later

on the analytical results are validated experimentally in the section 4.

2.1. Flexural wave propagation in uniformbeams

Consider a thin uniformbeamwhose neutral axis is denoted by the x-axis. Assuming Euler-Bernoulli

conditions, theflexural displacementw(x, t) satisfies [24]:

Figure 1.Diagrams of the 1D configurations analyzed for the reflection and transmission problems for flexural waves. (a)
Configuration for the reflection problem. (b)Configuration for the transmission problem.
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whereD=EI is theflexural rigidity, E the Youngmodulus, I the secondmoment of area andm the linearmass.

Assuming time harmonic solution of the form eiωt, whereω is the angular frequency, the solution of equation (1)

can bewritten in the frequency domain as the sumof four flexural waves:
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N
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kxi i= + + ++ - + - - -( ) ( )

The complex amplitudes of the propagative and evanescent waves are a and aN respectively, and the signs
+ and−

denote the outgoing and ingoingwaves respectively. The evanescent component is a nearfield component, the

amplitude of which decreases exponentially with distance. Theflexural wavenumber k is given by k
m

D
4
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which is real and positive in the lossless case and complexwhen damping is accounted for. Thewave amplitude is

expressed in the vector formby convenience:
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The relation betweenwave amplitudes along a beamwith a constant thickness are then described by
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2.2. Reflection coefficient in a pure reflection problem

Consider an incident planewave in the configuration described by the figure 1(a), where the system is

terminated by a free termination at one end. The displacementw at any point for x<0 reads as

xw a a a R a0 , 6r< = + = ++ - + +( ) · ( )

whereRr denotes the reflectionmatrix of the resonant termination of the beam at x=0. The incident wave is
transmitted into the resonant termination and reflected at its end, therefore thematrixRr can be evaluated, using

the displacement continuity at the interface and at the boundaries as [23]:

R a a r t fr f r t , 7r 12 12 f 21 21
1 1 1= = + -- +- - -(( ) ) ( )

where rij and tij represent the reflection and transmissionmatrices from sections (i)–(j) of the beam (see

figure 1(a)). Considering continuity and equilibrium respectively at the section change, thesematrices are given

by
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Rr is thus a 2×2matrix where the diagonal components correspond to the reflection coefficients of the

propagative and evanescent waves respectively. The study focuses on the reflection of waves in the far-field

(x -¥ ), i.e. on the propagative waves that carry the energy. Thefirst termof the reflectionmatrix

Rr(1,1)≡Rr is therefore only considered since R R R1, 2 , 2, 1 , 2, 2 0r r r( ) ( ) ( ) when x -¥. The absorption

coefficientαR of propagating waves in the reflection problem can then bewritten as:

R x1 , . 11r r
2a = - -¥∣ ∣ ( )

In the lossless case, i.e. without dissipation,Rr is simply equal to 1 for any purely real frequency as the energy

conservation is fulfilled.

2.3. Reflection and transmission coefficients in a 1D symmetric and reciprocal transmission problem

The transmission problemof the structure shown infigure 1(b) is described in this section, considering b−=0.
Due to the symmetry of the resonator and assuming propagation in the linear regime, the problem is considered

as symmetric and reciprocal. The reflection and transmissionmatricesRt andTt at x=0 and x=L are used to

3
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define the displacements on each side of the resonator such as:

xw a a a R a0 , 12t< = + = ++ - + +( ) · ( )

x Lw b T a . 13t> = =+ +( ) · ( )

Using the displacement continuity at x=0 and x=L in a similar way as in the previous section,Rt andTt are

written as

R r t fr f r t , 14t 12 23 21 2112
1 1= + -- -(( ) ) ( )

T a a t I fr f r ft . 15t 23 21 23 12
1 1= = -- +- -( ( ) ) ( )

Therefore the absorption coefficient of the transmission problem is defined as

T R x1 , 16t t t
2 2a = - - ¥∣ ∣ ∣ ∣ ( )

whereRt=Rt(1,1)when x -¥ andTt=Tt(1,1)when x +¥.

2.4. Viscoelastic losses in the resonator: theRKUmodel

The inherent losses of the resonator are introduced by a thin absorbing layer of thickness hl as shown in

figures 1(a), (b) and are considered frequency independent. The complex YoungModulus of the absorbing layer

isEl(1+iηl), where ηl is its loss factor. Using the RKUmodel [22], this region ismodeled as a single composite

layer with a given effective bending stiffnessDcwritten as:
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where the indices 2 and l stand for the parameters of the thin beamand of the absorbing layer respectively,

ec=El/E2 and hc=hl/h2. Thewave number kc of the compositematerial can then bewritten as kc
h

D

4 c

c

2

= r w
,

where h=hl+h2 and ρch=ρ2h2+ρlhl.

3. Limits of absorption for the reflection and transmission problems

This section describes the limits of absorption forflexural waves in the reflection and transmission problemby

using open, lossy and symmetric resonators. It provides tools to design absorbers with amaximal absorption in

both problems. For this purpose, the eigenvalues of the scatteringmatrix of the propagative waves are

represented in the complex frequency plane as in [1]. Thematerial and geometric parameters used in the

following sections are described in table 1.

3.1. Properties of the S-matrix

Consider a two-port, 1D, symmetric and reciprocal scattering process for the systems described infigure 1(b) in

the casewhere x ¥. The relation between the amplitudes a+ and b−of the incomingwaves and a−and b+

of the outgoingwaveswhen x ¥ is given by

Table 1.Geometric andmaterial parameters of the studied systems. The
value of ηldepends on the experimental set-up used, seemain text for the
used values retrieved from experiments.

Geometric

parameters Material parameters

Main beam h1=5 mm ρ=2811 kg m−3

b=2cm E=71.4 GPa

η=0

ν=0.3

Resonator

beam

h2=0.217 mm ρ2=2811 kg m
−3

b2=2 cm E2=71.4 GPa

L=1.6 cm η2=0

ν2=0.3

Coating layer hl=1.5 mm El=6.86×10
−3 GPa

bl=2 cm ρl=93.3 kg m
−3

Ll=1.6 cm ηl

νl=0.3
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where S is the scatteringmatrix or the S-matrix of the propagative waves. The complex eigenvalues of the S-

matrix areψ1,2 = Tt ± Rt. An eigenvalue of the S-matrix equal to zero implies that the incident wave is

completely absorbed (a−=b+= 0). This happenswhenTt=±Rt and the incident waves [a
+, b−] correspond

to the relevant eigenvector.When the eigenvalues are evaluated in the complex frequency plane [1], poles and

zeros can be identified. The pole frequencies correspond to the resonances of the resonator (zeros of the

denominator of the eigenvalues)while the zero frequencies (zeros of the numerator of the eigenvalues)

correspond to the perfect absorption configuration. In the case of a reflection problem, the eigenvalues are

reduced to the reflection coefficient.

Since the systems analyzed in this work are invariant under time-reversal symmetry, the scatteringmatrix, as

defined in equation (18), presents unitary property [25] in the lossless case (i.e. without dissipative losses):

S S I. 19* = ( )

The complex frequencies of the eigenvalue poles of the propagative S-matrix are complex conjugates of its

zeros. Poles and zeros appear therefore symmetric with respect to the real frequency axis in the lossless case.

3.2. Reflection problem

3.2.1. Lossless case

In the reflection problem,where nowave is transmitted, the reflection coefficientRr represents the scattering of

the system. Thus,Rr corresponds directly to both the S-matrix and its associated eigenvalue (ψ=Rr). Its zeros

correspond to the cases inwhich the incident wave is totally absorbed. In the lossless case, R 1r =∣ ∣ for any purely

real frequency and the pole-zero pairs appear at complex conjugate frequencies. Figure 2(a) depicts Rlog r10(∣ ∣) in
the complex frequency plane. Themain beam, the resonator beam and the coating layer have the geometric and

material parameters given in table 1.Note that the Youngmoduli are purely real in the lossless case

(η=η2=ηl=0). As shown in section 3.1, the poles and zeros appear in pairs and are symmetric with respect

to the real frequency axis.Moreover the value of Rr∣ ∣along the real frequency axis is equal to 1. It is alsoworth

noting that the imaginary part of the pole in the lossless case represents the amount of energy leakage by the

resonator through themain beam [1].With the time dependence convention used in this work, thewave
amplitude at the resonance frequency decays as e tIm polew- ( ) . Thus the decay time τleak can be relatedwith the

quality factor due to the leakage as Q leak
Re

2

Re

2Im

pole leak pole

pole
= =

w t w

w

( ) ( )

( )
, where the leakage rate can be defined as

Γleak=1/τleak=Im(ωpole). The imaginary part of the poles and zeros increases when the real part of the

frequency increases,meaning thatmore energy leaks out through the resonator at high frequencies.

Figure 2.Analysis of the scattering in the reflection problem. (a)Representation of Rlog r10(∣ ∣) in the complex frequency plane for the
lossless case. (b)–(d) Rlog r10(∣ ∣) in the complex frequency plane in the lossy case for configurationswith ηl=0.02, 0.15 and 0.4
respectively. The casewhen the critical coupling condition is fulfilled (ηl=0.15) is represented in (c). (e)Trade-off of the absorption
at the first resonance frequency of the resonator as the inherent loss ηl is increased in the system. The points along the absorption curve
represent the values of the absorption for the configurations represented infigures (b)–(d). Red continuous (Black dashed) line
represents the absorption (reflection) coefficient as a function of etal at 673 Hz, corresponding to thefirst resonance frequency of the
termination.
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3.2.2. Lossy case

For the sake of clarity, this section only focuses on the first pole-zero pair of the systempreviously described. The

discussion can nevertheless be extended to any pole-zero pair of the system in the complex frequency plane.

Losses are now introduced into the systemby adding an imaginary part to the Youngmodulus of the damping

material such that it can bewritten asEl(1+iηl).

As a consequence, the symmetry between the poles and zeroswith respect to the real frequency axis is

broken, since the property of equation (19) is nomore satisfied in the lossy case. Figures 2(b)–(d) depict

Rlog r10(∣ ∣) in the complex frequency plane around the first resonance frequency for three different increasing

values of ηl. Figure 2(b) represents the case forwhich the losses are small (ηl=0.02). In this case, the pole-zero

pair is quasi-symmetric with respect to the real frequency axis. As the losses in the damping layer increase

(ηl=0.15 infigure 2(c) and ηl=0.4 infigure 2(d)), the zeromoves to the real frequency axis. In particular, the

zero of the reflection coefficient is exactly located on the real frequency axis infigure 2(c). In this situation, the

amount of inherent losses in the resonator equals the amount of energy leakage. This situation is known as the

critical coupling condition [15] and implies the impedancematching, leading to a perfect absorption.

The value of the absorption coefficient of the first resonant peak as a function of ηl is depicted infigure 2(e).

The position of the zero in the complex frequency plane is directly related to the value of the flexural wave

absorption.When the zero approaches the real frequency axis, the value of the absorption is close to one, being

equal to 1when the zero is exactly located in the real frequency axis. It should be noted that the perfect

absorption cannot occur once the zero has crossed the real frequency axis. This propertymight appear

counterintuitive since itmeans that adding a large amount of losses in the systemmight lead to a deterioration of

the absorbing properties of the structure.

3.2.3. Design of perfect absorbers for flexural wave in the reflection problem

A theoretical design for the perfect absorption offlexural waves is shown in this section based on the

configuration represented in the figure 1(b) and the parameters given in table 1. Considering that there is no

inherent losses in themain beam and the resonator beam (η=η2=0), the loss factor of the coating layer has to

be ηl=0.15 to obtain a perfect absorption at the first resonance frequency of the system.

Figures 3(a), (b) depict Rlog r10(∣ ∣) for the lossless and lossy configurations in the complex frequency plane

respectively. Figure 3(b) shows particularly thefirst pole-zero pair of the system in the perfect absorption

configurationwhere the critical coupling condition is fulfilled, showing the zero exactly located on the real

frequency axis. Figure 3(c) shows the corresponding absorption (red continuous line) and reflection (black

dashed line) coefficients according to real frequencies for the critical coupled configuration. These coefficients

are calculatedwith the analyticalmodel described in previous sections. The incident wave is totally absorbed at

thefirst resonance frequency of the composite beam.

Figure 3.Representation of the perfect absorption for the reflection problem. (a), (b) Show the representation of the Rlog r10(∣ ∣) for the
lossless and lossy configurations respectively. (c)Red continuous and black dashed lines show the analytical absorption and reflection
coefficients for the critical coupled configuration respectively.
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3.3. Transmission problem

For the transmission problem, the S-matrix is defined in equation (18) and has two eigenvaluesψ1,2. The

scatterer beingmirror symmetric, the problem can be reduced to two uncoupled sub-problems: a symmetric

problemwhereψs=Tt+Rt and an anti-symmetric, whereψa=Tt−Rt.

ψs corresponds to the reflection coefficient of the symmetric problemwhileψa corresponds to the reflection

coefficient of the anti-symmetric problem. The absorption coefficient can also be expressed asα=(αs+αa)/2

where 1s s
2a y= - ∣ ∣ and 1a a

2a y= - ∣ ∣ . Similarly to the reflection problem, poles and zeros ofψs andψa can

be identified in the complex frequency plane. The following sections focuses on the first resonantmode of the

beam resonator, the displacement distribution of which is symmetric. The interpretation of the results can

nevertheless be applied to the higher ordermodes with anti-symmetric distributions of the displacement field. It

is worth noting that the displacement distribution of the resonantmodes changes from symmetric to anti-

symmetric as themode increases due to the geometry of the resonators [26].

3.3.1. Lossless case

Figures 4(a) and (b) show the variation of log s10 y(∣ ∣) and log a10 y(∣ ∣) evaluated respectively in the complex
frequency plane in the lossless case for thefirst resonantmode. Themain beam, the resonator beam and the

coating layer of the studied systemhave still thematerial and geometric parameters of table 1, where

η=η2=etal=0 in the lossless case. The symmetric and anti-symmetric problems exhibit pole-zero pairs

similarly to the reflection problem in the lossless case. These pairs are also symmetrically positionedwith respect

to the real frequency axis. The absence of dissipation is shown along the real frequency axis where T R 1t t =∣ ∣

for any real frequency. This section focuses only on the first resonantmodewhich has a symmetric distribution

of the displacementfield. Therefore, only the symmetric problempresents a pole-zero pair at the corresponding

resonance frequency, while the anti-symmetric one does not.

3.3.2. Lossy case

Unlike the reflection problem, the condition for perfect absorption is stronger in the transmission one andneeds

to place the zeros of bothψs andψa at the same frequency in the real frequency axis. Once this condition is

fulfilled, a+ and b−correspond to the relevant eigenvector and the system satisfies the coherent perfect

absorption condition [2, 9, 27].

Losses are introduced in the system in the sameway as for the reflection problem, i.e. by increasing the loss

factor ηl of thematerial of the damping layer. Once the losses are introduced, the position of the pole-zero pair of

the symmetric eigenvalue in the complex frequency plane shifts towards the upper half spacewhile the anti-

symmetric problem remains unchangedwithout pole-zero pairs, as shown infigures 4(c) and (d). Therefore,

only the zero of the symmetric problem can be placed on the real frequency axis, i.e. only half of the problem can

be critically coupled. Figure 4(e) shows the dependence of the reflection, transmission and absorption coefficient

Figure 4.Representation of the eigenvalues of the S-matrix for a transmission problem in the lossless and lossy case. (a) and (b)
Lossless case for log s10 y(∣ ∣) and log a10 y(∣ ∣) in the complex frequency plane. (c) and (d) Lossy case for log s10 y(∣ ∣) and log a10 y(∣ ∣) in the
complex frequency plane. (e)Trade-off of the transmission (blue dotted line), reflection (black dashed line) and absorption (red
continuous line) for themaximumabsorption of thefirstmode as the loss factor of the coating layer increases. (f)Red continuous,
black dashed and blue dotted lines represent the absorption, reflection and transmission coefficients respectively for the half critically
coupled configuration.
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on the inherent losses in the resonator for the firstmode. Themaximumabsorption obtained is 0.5 since only

the symmetric problem is critically coupled (α=(αs+αa)/2; (1+0)/2=1/2).

3.3.3. Design ofmaximal absorbers for flexural wave in the transmission problem

Based on the results discussed previously, a configurationwithmaximal absorption forflexural waves in the

transmission problem is designedwith the parameters given in table 1. As for the reflection problem, no inherent

losses are considered in themain beam and the resonator beam (η=η2=0). The loss factor of the coating layer

is ηl=2.21. The reflection, transmission and absorption for this configuration is analyzed infigure 4(f),

showing that themaximumabsorption is 0.5 at the resonance frequency of the beam. This result is in accordance

with the ones previously obtained [2, 9, 21], even if the resonator is not a point translational impedance. The

absorption is limited to 0.5 since only one kind of geometry of resonantmode can be excited. The problem is

therefore half critically coupled. To obtain a higher absorption, other strategies based on breaking the symmetry

of the resonator [5] or on the use of degenerate resonators are needed [28]. In these cases, both eigenvalues

present poles and zeros located at the same real frequencies. It would then be possible to fully critically couple the

problem and so obtain a perfect absorption (i.e.α=1) at the appropriate frequency.

4. Experimental results

This section presents the experimental results of the reflection coefficient [29, 30] for an aluminumbeam system

with the configuration described in section 3.2.3.

4.1. Experimental set-up

The beam is held vertically in order to avoid static deformation due to gravity. The extremity at which the

reflection coefficient is estimated is oriented towards the ground (seefigure 5(a)). The used coating layer have

been experimentally characterized showing an ηl=0.15, which is the value forwhich perfect absorption can be

observed. A photograph of the resonator with the coating layer is shown infigure 5(b). Themeasurements are

performed along the beamat 21 points equidistant of 5mmand located on its neutral axis in order to avoid the

torsional component. Themeasurement points are also located sufficiently far from the source and the

Figure 5. (a)Diagramof the experimental set-up. (b)Photograph of the resonator. (c)Black crosses and red open circles show
respectively Rr

2∣ ∣ andαr for the critical coupled configurationmeasuredwith the experimental set-up. Black dashed and red
continuous lines show Rr

2∣ ∣ andαr calculatedwith the analyticalmodel.
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extremity of the beam to consider far-field assumption and neglect the contribution of evanescent waves. In this

case, far-field assumption is fulfilled at a distance lf fromboth the source and the resonator forwhich the

evanescent wave loses 90%of its initialmagnitude. The low frequency limit of themeasurements is then
estimated using e 0.1klf = . The shaker excites the beamwith a sweep sine. The displacement field versus

frequency is obtained from themeasurements of the vibrometer at eachmeasure point.

4.2. Experimental estimation of the reflection coefficient

Consider theflexural displacementW(xi,ω)measured at the point x i 0, 20i Î( [ ]) for a given angular frequency

ω as

W x A B, e e . 20i
kx kxi ii iw w w= +-( ) ( ) ( ) ( )

The set ofW(xi,ω) for eachmeasurement point can bewritten in amatrix format [30] such as

W x

W x

W x

W x

A

B

,

,

,

,

e e

e e

e e

e e

. 21

kx kx

kx kx

kx kx
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0

1

2

20

i i

i i

i i
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0 0

1 1

2 2

20 20

w
w
w

w

w
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=
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-

-
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⎜
⎜
⎜
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⎠
⎟
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

The amplitudesA(ω) andB(ω) can then be derived from equation (21)which forms an overdetermined system.

From these amplitudes, the reflection coefficient of the propagative waves can be deduced for anyω as:

R
A

B
. 22r w

w
w

=( )
( )

( )
( )

4.3. Experimental evidence of perfect absorption forflexural waves

Experimental results obtainedwith the experimental set-up are depicted infigure 5(c). A drop of reflection is

noticed at thefirst resonant frequency of the terminationwith aminimumvalue of R 0.02r
2 =∣ ∣ at 667 Hz for

the experiment and R 0r
2 =∣ ∣ at 673 Hz for the analytical result. The gap between the analytical and

experimental resonant frequency is 0.9%. This frequency shift between themodel and the experiment ismainly

due to the geometric uncertainty in the resonator thickness, induced by themachining process. This geometrical

uncertainty induces also an estimation uncertainty of the energy leakage of the resonator. The absorption is then

experimentally limited toαr=0.98. Evidence of perfect absorption forflexural waves bymeans of critical

coupling is shown experimentally here.

Three experimental scans of thewhole beam at 500, 670 and 800 Hz have beenmeasured3. At 500 or 800 Hz

the reflection coefficient is very close to one. The standingwaves in themain beamare visible at these

frequencies. At 670 Hz, the termination absorbs totally the incident waves. There is therefore no standingwaves

and thewaves are propagating in themain beam.

5. Conclusions

Absorption of propagative flexural waves bymeans of simple beam structures is analyzed in this work. Themain

mechanisms are interpreted in terms of both the critical coupling conditions and the symmetries of the

resonances for both the reflection and the transmission problems. The positions of the zeros of the eigenvalues

of the scatteringmatrix in the complex frequency plane give informations on the possibility to obtain the perfect

absorption. The perfect absorption condition is fulfilledwhen these zeros are placed on the real frequency axis,

meaning that the inherent losses are completely compensating the energy leakage of the system. In the reflection

problem, the physical conditions of the problem lead to perfect absorption at low frequencies. In this case a

single symmetry for the resonance is excited and perfect absorption can be obtainedwhen the inherent losses of

the systembalance the energy leakage of the system. In the transmission problem, the requirement to obtain

perfect absorption is stronger than for the case in reflection as two kinds of symmetries of the resonances are

required to be critically coupled simultaneously. In the case presented in this work, or in the general case of point

translational impedances, dealing onlywith one type of symmetry for the resonantmodes [21] limits the

absorption to 0.5. Therefore for the perfect absorption in the transmission case, two strategies are needed: (i)

breaking the symmetry of the resonator in order to treat the full problemwith a single type of symmetry of the

resonancemode [5]; (ii) using degenerate resonators with two types of symmetries at the same frequency being

critically coupled [28]. The resonator used in this study has been chosen as an integral part of themain beam for

3
See supplementarymaterial is available online at stacks.iop.org/NJP/21/053003/mmedia: videos 500 Hz.avi, 670 Hz.avi and 800 Hz.avi
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experimental set-up reasons. However, the presented approach can be applied to any class of 1D resonant-

systemprovided that the resonators are local, open and lossy ones. These properties of the resonator are the

essential points to achieve the perfect absorption at low frequency by solving the following problems: increasing

the density of states at low frequencies andmatching the impedancewith the backgroundmedium.
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Appendix B

Scattering of an uniform circular

inclusion in a thin plate

Chapter 4 deals with the particular scattering problem of a concentric incident wave conver-
ging towards the centre of a circular scatterer. This appendix summarise a more general scatte-
ring problem with an incident plane wave scattered by a cavity according to the work of Norris
and Vemula [134]. The scattered field of an incident plane wave winc by an isolated circular scat-
terer S of radius a is considered. The material properties of the scatterer are assumed randomly
different from the surrounding plate. The scatterer properties are denoted by the subscript 0 and
the plate properties by the subscript 1. The expressions of the displacements field in the system
are expressed with the polar coordinate system (O, r, θ) whose the origin is aligned with the
centre of the scatterer. The flexural displacement field in the plate w(r, θ) and in the scatterer
w0(r, θ) are governed by the following equations respectively:

{

(∇2∇2 − k4
1)w(r, θ) = 0,

(∇2∇2 − k4
0)w0(r, θ) = 0,

(B.1)

where k4
0 = ρh0ω2

D0
and k4

1 = ρ1h0ω2

D1
. The displacement field w(r, θ) in the plate is defined as the

sum of an incident field winc(r, θ) and a scattered field w0(r, θ) such that:

w(r, θ) = winc(r, θ) + w1(r, θ). (B.2)

B.0.1 Expression of the incident propagative plane wave

The incident wave winc is considered as a propagative plane wave with unitary amplitude
and wave vector k1. Assuming that a cartesian coordinate system is aligned with the centre of
the scatterer, the position vector reads as

x = xex + yey. (B.3)

winc can then be written as:
winc(x) = eik·x, (B.4)

with k = k1xex+k1yey. To satisfy the first equation of B.1, the relation k2
1x+k2

1y = k2
1 must hold.

The wavenumber components can therefore be written in the form k1x = k1 cos(θinc) and k1x =
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Scattering of an uniform circular inclusion in a thin plate

k1 sin(θinc), where the angle θinc characterises the direction of propagation of the incident wave,
while the position vector reads in the polar coordinate system as x = r cos(θ)ex + r sin(θ)ey,.
As a result, Eq.B.4 becomes from Eq.B.3 :

winc(r, θ) = eik1r{cos(θ) cos(θinc)+sin(θ) sin(θinc)} = eik1r cos(θ−θinc). (B.5)

This expression can be expand upon Bessel functions using the Jacobi-Anger expansion [2] such
that:

winc(r, θ) =
+∞
∑

n=−∞

Ainc
J,nJn(k1r)einθ , r > a, (B.6)

where Ainc
J,n = ine−inθinc is the incident amplitude.

B.0.2 Expression of w0 and w1

The general expressions of w0 is given by summing Eq.4.9 and Eq. 4.13. However, as Hn(k0r)
and Kn(k0r) are singular as r → 0, the displacement field w0 in the scatterer S is only composed
of a linear combination of Bessel functions and modified Bessel functions of first kind such that:

w0 =
+∞
∑

n=−∞

[AJ,nJn(k0r) +AI,nIn(k0r)] einθ , r < a. (B.7)

Hn(k1r) and Kn(k1r) represents the outgoing waves in the system when r > a and satisfy the
Sommerfeld radiation condition as shown in Section 4.2.2. The scattered field w1 in the plate is
therefore expressed as:

w1 =
+∞
∑

n=−∞

[AH,nHn(k1r) +AK,nKn(k1r)] einθ , r > a. (B.8)

B.0.3 Boundary conditions

Now that the displacement fields have been expressed according to the polar coordinate sys-
tem (O, r, θ), the boundary condition at the interface between the scatterer and the surrounding
plate ( at r = a) can be applied to compute the scattering coefficients AH,n, AK,n, AJ,n and
AI,n from the incident amplitude Ainc

J,n. Four boundary conditions at r = a are distinguished
according to Khirchhoff theory:

— displacement continuity
w(a, θ) = w0(a, θ), (B.9)

— displacement normal derivative continuity

∂w(a, θ),
∂r

=
∂w0(a, θ),

∂r
, (B.10)

— bending moment continuity

M (w(a, θ)) = M0 (w1(a, θ)) , (B.11)
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— the (Kirchhoff) shear force continuity

V (w(a, θ)) = V0 (w1(a, θ)) , (B.12)

with [175]

Mi(w) = −Di
∂2w

∂r2
−Diνi

(

1
r

∂w

∂r
+

1
r2

∂2w

∂θ2

)

, (B.13)

and

Vi(w) = −Di
∂

∂r
∇2w −Di(1 − νi)

1
r2

∂2

∂θ2

(

∂w

∂r
− w

r

)

, (B.14)

where the subscripts i = 0, 1 denotes the scatterer and the plate respectively. Applying these
continuity conditions leads to the system of equations[134]:

An.xn = Bn.an (B.15)

where

An =













Hn(ε1) Kn(ε1) −Jn(ε0) −In(ε0)
H’n(ε1) K’n(ε1) −κJ’n(ε0) −κI’n(ε0)
S1

Hn
S1

Kn
−DS0

Jn
−DS0

In

T 1
Hn

T 1
Kn

−DT 0
Jn

−DT 0
In













xn =













AH,n

AK,n

AJ,n

AI,n













, Bn = −













Jn(ε1) In(ε1)
J’n(ε1) I’n(ε1)
S1

Jn
S1

In

T 1
Jn

T 1
In













, an =

(

Ainc
J,n

0

)

,

κ = k0
k1

, ε1 = k1a, ε0 = k0a = κε1 et D = D1
D0

.

Si
Xn

=
[

n2(1 − νi) ∓ ε2
i

]

Xn(εi) − (1 − νi)εiX
′
n(εi), (B.16)

T i
Xn

= n2(1 − νi)Xn(εi) −
[

n2(1 − νi) ± ε2
i

]

X ′
n(εi), (B.17)

The upper sign in Eq. (B.16) and Eq. (B.17) is taken when Xn = Jn or Hn while the lower sign
is taken when Xn = In or Kn. The solution of the equation system (B.15) gives the scattering
coefficients AH,n, AK,n, AJ,n and AI,n for a given function order n. In the case where the solution
is a linear combination of N order, the system has to be solved N times for each function order.
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Appendix C

Computation of the scattering

coefficients and the scattering field

finside a 2D scatterer with varying

properties

Section 4.5 deals with the particular scattering problem of a concentric incident wave conver-
ging towards the centre of a circular scatterer with radially varying thickness.This appendix aims
to show the computation steps to obtain the scattering coefficients as well as the propagative
and evanescent field amplitudes of a more general problem where the structure is radially ho-
mogeneous, that is, its parameters depend only on the radial coordinate. The problem is also
generalized to any Bessel function order n ∈ Z. The model used to that purpose is the multilayer
scattering method, where the continuous variation of the parameters has been discretized in a
number N of homogeneous cylindrically symmetric layers [27]. The layers are numbered such
that the surrounding plate corresponds to j = N and the core layer corresponds to j = 0.

C.1 Expression of the scattered amplitudes inside the scatterer

according to the scattering coefficients.

The flexural amplitudes W−
n,j et W+

n,j at layer j can be related to the incident wave from
the recurrence relation of Eq. (4.49), such that:

W−
n,j−1 = T−

n,j.W
−
n,j − R−

n,j.W
+
n,j−1 (C.1)

W+
n,j = R+

n,j.W
−
n,j + T+

n,j.W
+
n,j−1 (C.2)

Defining the elastic ’impedance’ matrix Znj as the term which link the diverging field with the
converging field in the same layer (W+

n,j = Zn,j.W
−
n,j) and replacing this term in Eqs. (C.1) and

( C.2), one can obtain:

W−
n,j−1 =

(

Id − R−
n,j.Zn,j−1

)−1
T−

n,j.W
−
n,j (C.3)
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scatterer with varying properties

W−
n,j−1 =

(

T+
n,j..Zn,j−1

)−1
.
(

Zn,j − R+
n,j

)

.W−
n,j. (C.4)

These two relations give a recursive relation between W−
n,j−1 and W−

n,j and a second between
Zn,j and Zn,j−1 such that:

Zn,j = R+
n,j + T+

n,j.Zn,j−1.Xn,j−1, (C.5)

Xn,j−1 =
(

Id − R−
n,c.Zn,j−1

)−1
.T−

n,j, (C.6)

where W−
n,j−1 = Xn,j−1.W

−
n,j. Assuming that all the scattering coefficients are known, the first

iteration to compute all the Zn,j and Xn,j might be done between layer 1 and layer 0. Layer à0
is described by a combination of Bessel and modified Bessel function of the first kind. Therefore,
it is possible to write from Eqs.(C.1 ) and (C.2):

Xn,0 = T−
n,1

Zn,0 = R+
n,1

As a result, it might be possible to express the amplitude of all the converging and diverging
fields as a function of the incident field outside the scatterer and its scattering coefficients, in
the same way as transfer functions.

C.1.1 Computation of the scattering coefficients inside the scatterer

The scattering coefficients are obtained applying the continuity conditions between each
interface. These conditions are the same as presented in Section B.0.3 and have to satisfy two
types of incidence: converging incidence and diverging incidence. The first case leads to the
computation of a diverging reflection and a converging transmission, and the second one to a
converging reflection and a diverging transmission.

Converging incident wave: Applying the continuity conditions at the interface between the
layers j − 1 and j at r = rj−1 with a converging incident wave leads to the following equation
system :

An,jxn,j = Bn,jan,j, (C.7)

where

An,j =













Hn(εj) Kn(εj) −Jn(εj−1) −In(εj−1)
H’n(εj) K’n(εj) −κnJ’n(εj−1) −κlI’n(εj−1)
Sj

Hn
Sj

Kn
−DjS

j−1
Jn

−DjS
l+1
In

T j
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T j
Kn

−DjT
l+1
Jn

−DjT
l+1
In
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xn,j =















A
(j)
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(j)
K,n

A
(j−1)
J,n

A
(j−1)
I,n















, Bn,j = −













Jn(εj) In(εj)
J’n(εj) I’n(εj)
Sj

Jn
Sj

In

T j
Jn

T j
In













, an,j =





A
(j)
J,n

A
(j)
I,n



 ,
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1. Expression of the scattered amplitudes inside the scatterer according to the
scattering coefficients.

with κj = kj−1

kj
, εj = kjrj−1, εj−1 = kl+1rj−1 et Dj = Dj−1

Dj
. Note that the expression of an,j is

not valid when j = N in the case where the incident wave in the plate is defined with a Hankel

function of the second kind. In this case, an,N =

(

A
(N)
H,0

0

)

. Writing xn,j =

(

W+
n,j

W−
n,j−1

)

,an,j =
(

W+
n,j

)

, we get:

(C.7) ⇒
(

W+
n,j

W−
n,j−1

)

=

(

R+
n,j

T−
n,j

)

(

W−
n,j

)

(C.8)

These coefficients are directly computed from the material properties of the system and from
Bessel, Hankel and modified Bessel functions. This means that the coefficients are totally inde-
pendant of the field in the system.

Diverging incident wave: Applying the continuity conditions at the interface between the
j-th and j− 1-th layers at r = rj−1 with a diverging incident wave leads to the following system
of equations :

A′
n,jx

′
n,j = B′

n,ja
′
n,j, (C.9)

where

A′
n,j =













Jn(εj−1) In(εj−1) −Hn(εj) −Kn(εj)
J’n(εj−1) I’n(εj−1) −κ1jH’n(εj) −κ1jK’n(εj)
Sj−1
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In
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j
Kn

T j−1
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T j−1
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j
Hn

−Dj−1T
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Kn













x′
n,j =















A
(j−1)
H,n

A
(j−1)
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A
(j)
J,n

A
(j)
I,n















, B′
n,j = −













Hn(εj−1) Kn(εj−1)
H’n(εj−1) K’n(εj−1)
Sj−1
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Sj−1

Kn

T j−1
Hn

T j−1
Kn













, a′
n,j =





A
(j−1)
J,n

A
(j−1)
I,n



 ,

with κ1j = kj−1

kj
, εj = kjRj−1, εj−1 = kj−1Rj−1 and Dj = Dj−1

Dj
. As for (C.8), we can get from

(C.9):

(

W−
n,j−1

W+
n,j

)

=

(

R−
n,j

T+
n,j

)

.
(

W+
n,j

)

(C.10)

This system has no physical meaning when it is solved for layer 0, since the scattered field
and the incident field are both described by a linear combination of Bessel and modified Bessel
functions. Furthermore, It is useless to compute the coefficient of layer 0 because they are not
used to compute Xn et Zn.
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Appendix D

Mathematical tools for multiple

scattering

Chapter 5 deals with multiple scattering problems with an infinite row of circular critically
coupled resonators. This appendix aims to detail the mathematical tools used to study this
problem.

D.1 Graf’s addition theorem

The Graf’s addition theorem is used in Chapter 5 to express all the fields scattered by each
inclusion Ωj , with j ∈ Z

∗, according to the local polar coordinate system (O0, e0
r , e

0
θ) attached to

Ω0. This theorem is a particular case of the Neumann’s addition theorem and allows to apply the
coordinate change of Bessel, Hankel and modified Bessel functions from one coordinate system to
another at a given order. Let’s consider two polar coordinate systems (O1, r1, θ1) and (O2, r2, θ2)
whose origins are spaced at a distance b and angle βas shown in Fig. D.1.

The Graf’s addition theorem of Jn,In from the coordinate system (O1, r1, θ1) to (O2, r2, θ2)

Figure D.1 – Configuration of the two polar coordinate systems.
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Mathematical tools for multiple scattering

takes the following form:

Sn(kr1)einθ1 =
+∞
∑

m=−∞

Sn−m(kb)ei(n−m)βSm(kr2)eimθ2 , (D.1)

where S = J or I. The expressions for the Hankel function Hn and modified Bessel function of
the second kind Kn require to distinguish two cases according to whether the wave is convergent
or divergent from the origin of the reference coordinate system

Hn(kr1)einθ1 =
+∞
∑

m=−∞

Hn−m(kb)ei(n−m)βJm(kr2)eimθ2 , r2 < b, (D.2)

Hn(kr1)einθ1 =
+∞
∑

m=−∞

Jn−m(kb)ei(n−m)βHm(kr2)eimθ2 , r2 > b, (D.3)

Kn(kr1)einθ1 =
+∞
∑

m=−∞

(−1)mKn−m(kb)ei(n−m)βIm(kr2)eimθ2 , r2 < b, (D.4)

Kn(kr1)einθ1 =
+∞
∑

m=−∞

(−1)n−mIn−m(kb)ei(n−m)βKm(kr2)einθ2 , r2 > b. (D.5)

D.2 Transformation of the Schlömilch series

The Schlömilch series arises naturally in scattering problems where the scatterer is an in-
finite periodic structure. They account for the contribution of the fields scattered by all the
repetitions of the inclusion to the near-field close to this inclusion. The form of the serie as
written in Eq. 5.11 is unsuitable for numerical computation due to its very slow convergence.
However, Linton and Twersky showed than it can be transformed into a new expression which is
amenable to computation [116, 177]. This sections aims to summarise the transformations of the
Schlömilch series that are used to treat the scattering problems of Chapter. 5. The Schlömilch
serie encountered in Chapter. 5 concerns the Hankel function and takes the form:

SH
n−q =

∑

j>0

H(1)
n−q(kjd)

(

1 + (−1)n−q) . (D.6)

As H(1)
q−n(kjd) = (−1)n−qH(1)

n−q(kjd), SH
n−q = SH

q−n. Furthermore, the transformation of this serie
takes several forms whether the order |n − q| is even, odd or 0 (see Ref. [116, 177] for more
details on these conditions). If n− q = 0:

SH
0 = −1 − 2i

pi

(

C + ln

(

kd

4π

))

+
2

kd sin Φ0
+
∑

m∈Z

′
(

2
kd sin Φ0

+
i

π|m|

)

, (D.7)

where Φm = arcos
(

cos θinc + 2mπ
kd

)

and C is the Euler constant.
If |n− q| is even,

SH
n−q = 2 − (−1)N

∑

m∈Z

ei(n−q)sign(m)Φm

kd sin Φm
+ 2iλN , (D.8)
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2. Transformation of the Schlömilch series

where N = (n− q)/2, sign(m) is the signe of m with the convention sign(0) = +1 and

λN =
1

2π

N
∑

m=0

(−1)m22m(N +m− 1)!
(2m)!(N −m)!

(

2π
kd

)2m

B2m(0), (D.9)

with Bm the Bernoulli polynomial.
If |n− q| is odd,

SH
n−q = 2 − (−1)M i

∑

m∈Z

ei(2M−1)sign(m)Φm

kd sin Φm
+ 2λM , (D.10)

where M = (n− q + 1)/2 and

λM =
1
π

M−1
∑

m=0

(−1)m22m(M +m− 1)!
(2m+ 1)!(M −m− 1)!

(

2π
kd

)2m+1

B2m+1(0). (D.11)

127





References

[1] Science for environment policy: Noise abatement approaches. https://ec.europa.eu/

environment/integration/research/newsalert/pdf/noise_abatement_approaches_

FB17_en.pdf. Accessed: 2019-09-20.

[2] M. Abramowitz. Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables, nbs. Applied Math. Series, 55:232, 1964.

[3] O. Aklouche. Réduction des niveaux vibratoires d’un panneau au moyen de trous noirs
acoustiques structurés en réseau périodique: conception d’une méta-plaque. PhD thesis,
Université du Maine, 2017.

[4] O. Aklouche, A. Pelat, S. Maugeais, and F. Gautier. Scattering of flexural waves by a
pit of quadratic profile inserted in an infinite thin plate. Journal of Sound and Vibration,
375:38–52, 2016.

[5] A. Alevizaki, R. Sainidou, P. Rembert, B. Morvan, and N. Stefanou. Phononic crystals of
poroelastic spheres. Physical Review B, 94(17):174306, 2016.

[6] N.D. Anh, H. Matsuhisa, L.D. Viet, and M. Yasuda. Vibration control of an inverted
pendulum type structure by passive mass–spring-pendulum dynamic vibration absorber.
Journal of Sound and Vibration, 307(1-2):187–201, 2007.

[7] M.F. Ashby. Acoustic metamaterials and phononic crystals. Butterworth Heinemann,
2004.

[8] M. Badreddine Assouar, M. Senesi, M. Oudich, M. Ruzzene, and Z. Hou. Broadband
plate-type acoustic metamaterial for low-frequency sound attenuation. Applied Physics
Letters, 101(17):173505, 2012.

[9] T. Bailey and J.E. Hubbard. Distributed piezoelectric-polymer active vibration control of
a cantilever beam. Journal of Guidance, Control, and Dynamics, 8(5):605–611, 1985.

[10] P.W. Barber and S.C. Hill. Light scattering by particles: computational methods, volume 2.
World scientific, 1990.

[11] J.J. Bayod. Experimental study of vibration damping in a modified elastic wedge of
power-law profile. Journal of Vibration and Acoustics, 133(6):061003, 2011.

[12] B.S. Beck, K.A. Cunefare, M. Ruzzene, and M. Collet. Experimental analysis of a cantilever
beam with a shunted piezoelectric periodic array. Journal of Intelligent Material Systems
and Structures, 22(11):1177–1187, 2011.

[13] J. Becker, O. Fein, M. Maess, and L. Gaul. Finite element-based analysis of shunted
piezoelectric structures for vibration damping. Computers & structures, 84(31-32):2340–
2350, 2006.

129

https://ec.europa.eu/environment/integration/research/newsalert/pdf/noise_abatement_approaches_FB17_en.pdf
https://ec.europa.eu/environment/integration/research/newsalert/pdf/noise_abatement_approaches_FB17_en.pdf
https://ec.europa.eu/environment/integration/research/newsalert/pdf/noise_abatement_approaches_FB17_en.pdf


REFERENCES

[14] S. Behrens, S.O.R. Moheimani, and A.J. Fleming. Multiple mode current flowing passive
piezoelectric shunt controller. Journal of sound and vibration, 266(5):929–942, 2003.

[15] M. Berardengo, S. Manzoni, and A.M. Conti. Multi-mode passive piezoelectric shunt
damping by means of matrix inequalities. Journal of Sound and Vibration, 405:287–305,
2017.

[16] J.L. Black, C.C. Mei, and M.C.G. Bray. Radiation and scattering of water waves by rigid
bodies. Journal of Fluid Mechanics, 46(1):151–164, 1971.

[17] K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori. Colloquium: Unusual
resonators: Plasmonics, metamaterials, and random media. Rev. Mod. Phys., 80(4):1201,
2008.

[18] F. Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für
physik, 52(7-8):555–600, 1929.

[19] C.F. Bohren and D.R. Huffman. Absorption and scattering of light by small particles. John
Wiley & Sons, 2008.

[20] E.P. Bowyer and V.V. Krylov. Damping of flexural vibrations in turbofan blades using
the acoustic black hole effect. Applied Acoustics, 76:359–365, 2014.

[21] E.P. Bowyer, D.J. O’Boy, V.V. Krylov, and F. Gautier. Experimental investigation of
damping flexural vibrations in plates containing tapered indentations of power-law profile.
Applied Acoustics, 74(4):553–560, 2013.

[22] M.J. Brennan. Characteristics of a wideband vibration neutralizer. Noise Control Engi-
neering Journal, 45(5):201–207, 1997.

[23] M.J. Brennan. Control of flexural waves on a beam using a tunable vibration neutraliser.
Journal of Sound and Vibration, 222(3):389–407, 1999.

[24] M.J. Brennan. Control of flexural waves on a beam using a tunable vibration neutraliser.
Jour. Sound Vib., 222(3):389–407, 1999.

[25] L. Brillouin. Wave propagation in periodic structures: electric filters and crystal lattices.
Courier Corporation, 2003.

[26] L.W. Cai and S.A. Hambric. Multiple scattering of flexural waves on thin plates. Journal
of Vibration and Acoustics, 138(1):011009, 2016.

[27] L.W. Cai and J. Sánchez-Dehesa. Acoustical scattering by radially stratified scatterers.
The Journal of the Acoustical Society of America, 124(5):2715–2726, 2008.

[28] M. Cai, O. Painter, and K.J. Vahala. Observation of critical coupling in a fiber taper to
a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85(1):74, 2000.

[29] F. Casadei, B.S. Beck, K.A. Cunefare, and M. Ruzzene. Vibration control of plates through
hybrid configurations of periodic piezoelectric shunts. Journal of Intelligent Material Sys-
tems and Structures, 23(10):1169–1177, 2012.

[30] G.J. Chaplain and R.V. Craster. Flat lensing by graded line meta-arrays. Physical Review
B, 99(22):220102, 2019.

[31] G.J. Chaplain, M.P. Makwana, and R.V. Craster. Rayleigh–bloch, topological edge and
interface waves for structured elastic plates. Wave Motion, 86:162–174, 2019.

130



REFERENCES

[32] C. Charles, B. Bonello, and F. Ganot. Propagation of guided elastic waves in 2d phononic
crystals. Ultrasonics, 44:e1209–e1213, 2006.

[33] H. Chen and C.T. Chan. Acoustic cloaking in three dimensions using acoustic metamate-
rials. Applied physics letters, 91(18):183518, 2007.

[34] S. Chen, G. Wang, J. Wen, and X. Wen. Wave propagation and attenuation in plates with
periodic arrays of shunted piezo-patches. Journal of Sound and Vibration, 332(6):1520–
1532, 2013.

[35] T. Chen, M. Ruzzene, and A. Baz. Control of wave propagation in composite rods
using shape memory inserts: theory and experiments. Journal of Vibration and control,
6(7):1065–1081, 2000.

[36] Y.D. Chong, L. Ge, H. Cao, and A.D. Stone. Coherent perfect absorbers: time-reversed
lasers. Physical review letters, 105(5):053901, 2010.

[37] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille. Efficient prediction of the
response of layered shells by a dynamic stiffness approach. Composite Structures, 97:401–
404, 2013.

[38] D. Chronopoulos, B. Troclet, O. Bareille, and M. Ichchou. Modeling the response of
composite panels by a dynamic stiffness approach. Composite Structures, 96:111–120,
2013.

[39] C.C. Claeys, K. Vergote, P. Sas, and W. Desmet. On the potential of tuned resonators
to obtain low-frequency vibrational stop bands in periodic panels. Journal of Sound and
Vibration, 332(6):1418–1436, 2013.

[40] A. Climente, D. Torrent, and J. Sánchez-Dehesa. Omnidirectional broadband insulating
device for flexural waves in thin plates. Journal of Applied Physics, 114(21):214903, 2013.

[41] A. Climente, D. Torrent, and J. Sánchez-Dehesa. Gradient index lenses for flexural waves
based on thickness variations. Applied Physics Letters, 105(6):064101, 2014.

[42] A. Colombi, V. Ageeva, R.J. Smith, A. Clare, R. Patel, M. Clark, D. Colquitt, P. Roux,
S. Guenneau, and R.V. Craster. Enhanced sensing and conversion of ultrasonic rayleigh
waves by elastic metasurfaces. Sci. Rep., 7(6750), 2017.

[43] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93.
Springer Science & Business Media, 2012.

[44] L. Cremer and M. Heckl. Structure-borne sound: structural vibrations and sound radiation
at audio frequencies. Springer Science & Business Media, 2013.

[45] M.J. Crocker. General introduction to noise and vibration effects on people and hearing
conservation. Handbook of Noise and Vibration Control, pages 301–307, 2007.

[46] C. J Cross and S. Fleeter. Shunted piezoelectrics for passive control of turbomachine
blading flow-induced vibrations. Smart materials and Structures, 11(2):239, 2002.

[47] J. Cuenca. Wave models for the flexural vibrations of thin plates-Model of the vibrations
of polygonal plates by the image source method-Vibration damping using the acoustic black
hole effect. PhD thesis, 2009.

[48] J. Cuenca, F. Gautier, and L. Simon. Harmonic green’s functions for flexural waves in
semi-infinite plates with arbitrary boundary conditions and high-frequency approximation
for convex polygonal plates. Journal of Sound and Vibration, 331(6):1426–1440, 2012.

131



REFERENCES

[49] F. dell’Isola, C. Maurini, and M. Porfiri. Passive damping of beam vibrations through
distributed electric networks and piezoelectric transducers: prototype design and experi-
mental validation. Smart Materials and Structures, 13(2):299, 2004.

[50] J.P. Den Hartog. Mechanical vibrations. Courier Corporation, 1985.

[51] J. Deng, L. Zheng, P. Zeng, Y. Zuo, and O. Guasch. Passive constrained viscoelastic layers
to improve the efficiency of truncated acoustic black holes in beams. Mechanical Systems
and Signal Processing, 118:461–476, 2019.

[52] V. Denis, F. Gautier, A. Pelat, and J. Poittevin. Measurement and modelling of the
reflection coefficient of an acoustic black hole termination. J. Sound Vib., 349:67–79, 2015.

[53] V. Denis, A. Pelat, and F. Gautier. Scattering effects induced by imperfections on an
acoustic black hole placed at a structural waveguide termination. Journal of Sound and
Vibration, 362:56–71, 2016.

[54] V. Denis, A. Pelat, F. Gautier, and B. Elie. Modal overlap factor of a beam with an acoustic
black hole termination. Journal of Sound and Vibration, 333(12):2475–2488, 2014.

[55] V. Denis, A. Pelat, C. Touzé, and F. Gautier. Improvement of the acoustic black hole
effect by using energy transfer due to geometric nonlinearity. International Journal of
Non-Linear Mechanics, 94:134–145, 2017.

[56] J. Der Hagopian, L. Gaudiller, and B. Maillard. Hierarchial control of hydraulic ac-
tive suspensions of a fast all-terrain military vehicle. Journal of Sound and Vibration,
222(5):723–752, 1999.

[57] P.A. Deymier. Acoustic metamaterials and phononic crystals, volume 173. Springer Science
& Business Media, 2013.

[58] E.K. Dimitriadis, C.R. Fuller, and C.A. Rogers. Piezoelectric actuators for distributed
vibration excitation of thin plates. Journal of Vibration and Acoustics, 113(1):100–107,
1991.

[59] P.A.M. Dirac. The lorentz transformation and absolute time. Physica, 19(1—12):888–896,
1953.

[60] J.J. Dosch, D.J. Inman, and E. Garcia. A self-sensing piezoelectric actuator for collocated
control. Journal of Intelligent material systems and Structures, 3(1):166–185, 1992.

[61] Y. Duan, J. Luo, G. Wang, Z.H. Hang, B. Hou, J. Li, P. Sheng, and Y. Lai. Theoretical
requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-
films. Sci. Rep., 5(12139), 2015.

[62] H.M. El-Khatib, B.R. Mace, and M.J. Brennan. Suppression of bending waves in a beam
using a tuned vibration absorber. Journal of Sound and Vibration, 288(4-5):1157–1175,
2005.

[63] H.M. El-Khatib, B.R. Mace, and M.J. Brennan. Suppression of bending waves in a beam
using a tuned vibration absorber. J. Sound Vib., 288(4):1157–1175, 2005.

[64] S.l. Elliott and M.E. Johnson. Radiation modes and the active control of sound power. J.
Acoust. Soc. Am., 94(4):2194–2204, 1993.

[65] D.V. Evans and R. Porter. Penetration of flexural waves through a periodically constrained
thin elastic plate in vacuo and floating on water. Journal of Engineering Mathematics,
58(1-4):317–337, 2007.

132



REFERENCES

[66] D.J. Ewins. Modal testing: theory and practice, volume 15. Research studies press Letch-
worth, 1984.

[67] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang. Ultrasonic
metamaterials with negative modulus. Nat. Mater., 5(6):452, 2006.

[68] M. Farhat, S. Guenneau, and S. Enoch. Ultrabroadband elastic cloaking in thin plates.
Physical review letters, 103(2):024301, 2009.

[69] M. Farhat, S. Guenneau, and S. Enoch. High directivity and confinement of flexural waves
through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5):54003,
2010.

[70] M. Farhat, S. Guenneau, S. Enoch, and A.B. Movchan. Cloaking bending waves propaga-
ting in thin elastic plates. Physical Review B, 79(3):033102, 2009.

[71] M. Farhat, S. Guenneau, S. Enoch, A.B. Movchan, and G.G. Petursson. Focussing ben-
ding waves via negative refraction in perforated thin plates. Applied Physics Letters,
96(8):081909, 2010.

[72] P. A. Feurtado and S. C. Conlon. Investigation of boundary-taper reflection for acoustic
black hole design. J. Noise Cont. Eng., 63(5):460, 2015.

[73] R.P Feynman and F.L. Vernon Jr. The theory of a general quantum system interacting
with a linear dissipative system. Annals of Physics, 24:118–173, 1963.

[74] G. Floquet. Sur les équations différentielles linéaires à coefficients périodiques. In Annales
scientifiques de l’École normale supérieure, volume 12, pages 47–88, 1883.

[75] S. Foucaud, G. Michon, Y. Gourinat, A. Pelat, and F. Gautier. Artificial cochlea and
acoustic black hole travelling waves observation: Model and experimental results. Journal
of Sound and Vibration, 333(15):3428–3439, 2014.

[76] H. Frahm. Device for damping vibrations of bodies., April 18 1911. US Patent 989,958.

[77] F. Gautier, J. Cuenca, V.V. Krylov, and L. Simon. Experimental investigation of the
acoustic black hole effect for vibration damping in elliptical plates. Journal of the Acous-
tical Society of America, 123(5):3318, 2008.

[78] F. Gautier, M.H. Moulet, and J.C. Pascal. Reflection, transmission and coupling of longi-
tudinal and flexural waves at beam junctions. part i: measurement methods. Acta Acust.
United Ac., 92(6):982–997, 2006.

[79] V.B. Georgiev, J. Cuenca, F. Gautier, L. Simon, and V.V. Krylov. Damping of structural
vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of
sound and vibration, 330(11):2497–2508, 2011.

[80] M. Geradin and D. Rixen. Théorie des vibrations, applicationa la dynamique des structures
2e édition, 1996.

[81] M. Géradin and D.J. Rixen. Mechanical vibrations: theory and application to structural
dynamics. John Wiley & Sons, 2014.

[82] C. Goffaux, F. Maseri, J.O. Vasseur, B. Djafari-Rouhani, and Ph. Lambin. Measurements
and calculations of the sound attenuation by a phononic band gap structure suitable for
an insulating partition application. Applied physics letters, 83(2):281–283, 2003.

[83] J.P. Groby, W. Huang, A. Lardeau, and Y. Aurégan. The use of slow waves to design
simple sound absorbing materials. J. Appl. Phys., 117(12):124903, 2015.

133



REFERENCES

[84] J.P. Groby, R. Pommier, and Y. Aurégan. Use of slow sound to design perfect and broad-
band passive sound absorbing materials. J. Acoust. Soc. Am., 139(4):1660–1671, 2016.

[85] J.P. Groby, A. Wirgin, and E. Ogam. Acoustic response of a periodic distribution of
macroscopic inclusions within a rigid frame porous plate. Waves in Random and Complex
Media, 18(3):409–433, 2008.

[86] J.L. Guyader and C. Lesueur. Acoustic transmission through orthotropic multilayered
plates, part i: Plate vibration modes. Journal of Sound and Vibration, 58(1):51–68, 1978.

[87] N.W. Hagood and A. von Flotow. Damping of structural vibrations with piezoelectric
materials and passive electrical networks. Journal of Sound and Vibration, 146(2):243–
268, 1991.

[88] S. Halkjær, O. Sigmund, and J.S. Jensen. Maximizing band gaps in plate structures.
Structural and Multidisciplinary Optimization, 32(4):263–275, 2006.

[89] S.G. Haslinger, N.V. Movchan, A.B. Movchan, and R.C. McPhedran. Transmission, trap-
ping and filtering of waves in periodically constrained elastic plates. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2137):76–93, 2011.

[90] O. Heaviside. Electromagnetic theory, volume 3. Cosimo, Inc., 2008.

[91] K.M. Ho, C.T. Chan, and C.M. Soukoulis. Existence of a photonic gap in periodic dielectric
structures. Physical Review Letters, 65(25):3152, 1990.

[92] J.C. Hsu and T.-T. Wu. Lamb waves in binary locally resonant phononic plates with
two-dimensional lattices. Applied physics letters, 90(20):201904, 2007.

[93] W. Huang, H. Zhang, D.J. Inman, J. Qiu, C. ES Cesnik, and H. Ji. Low reflection effect
by 3d printed functionally graded acoustic black holes. Journal of Sound and Vibration,
450:96–108, 2019.

[94] M.I. Hussein, M.J. Leamy, and M. Ruzzene. Dynamics of phononic materials and struc-
tures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews,
66(4):040802, 2014.

[95] L. Jaouen, A. Renault, and M. Deverge. Elastic and damping characterizations of acous-
tical porous materials: Available experimental methods and applications to a melamine
foam. Applied acoustics, 69(12):1129–1140, 2008.

[96] N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, and J.P. Groby. Ultra-thin me-
tamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett.,
109(12):121902, 2016.

[97] N. Jiménez, V. Romero-García, V. Pagneux, and J.-P. Groby. Quasiperfect absorption by
subwavelength acoustic panels in transmission using accumulation of resonances due to
slow sound. Phys. Rev. B, 95:014205, 2017.

[98] N. Jiménez, V. Romero-García, V. Pagneux, and J.P. Groby. Rainbow-trapping absor-
bers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for
transmission problems. Sci. Rep., 7(1):13595, 2017.

[99] C. Jiu-Jiu, Q. Bo, and C. Jian-Chun. Complete band gaps for lamb waves in cubic thin
plates with periodically placed inclusions. Chinese Physics Letters, 22(7):1706, 2005.

[100] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phy-
sical review letters, 58(23):2486, 1987.

134



REFERENCES

[101] M.E. Johnson and S.J. Elliott. Active control of sound radiation using volume velocity
cancellation. J. Acoust. Soc. Am., 98(4):2174–2186, 1995.

[102] D. I.G. Jones. Handbook of viscoelastic vibration damping. John Wiley & Sons, 2001.

[103] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, and M. Wegener. On the practicability of
pentamode mechanical metamaterials. Applied Physics Letters, 100(19):191901, 2012.

[104] A.O. Krushynska, V.G. Kouznetsova, and M.G.D. Geers. Towards optimal design of locally
resonant acoustic metamaterials. Journal of the Mechanics and Physics of Solids, 71:179–
196, 2014.

[105] V.V. Krylov. Propagation of plate bending waves in the vicinity of one-and two-
dimensional acoustic ‘black holes’. 2007.

[106] V.V. Krylov and F.J.B.S. Tilman. Acoustic ‘black holes’ for flexural waves as effective
vibration dampers. Journal of Sound and Vibration, 274(3-5):605–619, 2004.

[107] V.V. Krylov and R.E.T.B. Winward. Experimental investigation of the acoustic black hole
effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2):43–49,
2007.

[108] M.S. Kushwaha. Stop-bands for periodic metallic rods: Sculptures that can filter the noise.
Applied Physics Letters, 70(24):3218–3220, 1997.

[109] M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. Acoustic band struc-
ture of periodic elastic composites. Physical review letters, 71(13):2022, 1993.

[110] C. Lagarrigue, J.P. Groby, and V. Tournat. Sustainable sonic crystal made of resonating
bamboo rods. The Journal of the Acoustical Society of America, 133(1):247–254, 2013.

[111] J.C. Lee and J.C. Chen. Active control of sound radiation from rectangular plates using
multiple piezoelectric actuators. Applied Acoustics, 57(4):327–343, 1999.

[112] J.Y. Lee and W. Jeon. Vibration damping using a spiral acoustic black hole. The Journal
of the Acoustical Society of America, 141(3):1437–1445, 2017.

[113] A. W. Leissa. Tabulated numerical results of theories of plate vibration. NASA, Washing-
ton, DC, United States., 1969.

[114] J. Leng, F. Gautier, A. Pelat, R. Picó, J.P. Groby, and V. Romero-Garcia. Limits of
flexural wave absorption by open lossy resonators: reflection and transmission problems.
New Journal of Physics, 21(5):053003, 2019.

[115] C.K. Liew, M. Veidt, D.T. Chavara, A.J. Ruys, C. Young, and M. McCreery. Metal-
polymer functionally graded materials for removing guided wave reflections at beam end
boundaries. In Proceedings of the 5th Australasian Congress on Applied Mechanics, page
539. Engineers Australia, 2007.

[116] C.M. Linton. Schlömilch series that arise in diffraction theory and their efficient compu-
tation. Journal of Physics A: Mathematical and General, 39(13):3325, 2006.

[117] B. Liu, J.L. Silverberg, A.A. Evans, C.D. Santangelo, R.J. Lang, T.C. Hull, and I. Cohen.
Topological kinematics of origami metamaterials. Nature Physics, 14(8):811, 2018.

[118] L. Liu and M.I. Hussein. Wave motion in periodic flexural beams and characterization of
the transition between bragg scattering and local resonance. Journal of Applied Mechanics,
79(1):011003, 2012.

135



REFERENCES

[119] X. Liu, Z.and Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, Ch. T. Chan, and P. Sheng. Locally
resonant sonic materials. science, 289(5485):1734–1736, 2000.

[120] C.J. Luke and P.A. Martin. Fluid–solid interaction: acoustic scattering by a smooth elastic
obstacle. SIAM Journal on Applied Mathematics, 55(4):904–922, 1995.

[121] B.R. Mace. Wave reflection and transmission in beams. J. Sound Vib., 97(2):237–246,
1984.

[122] P.A. Martin. Multiple scattering: interaction of time-harmonic waves with N obstacles.
Number 107. Cambridge University Press, 2006.

[123] R.C. McPhedran and A.B. Movchan. The rayleigh multipole method for linear elasticity.
Journal of the Mechanics and Physics of Solids, 42(5):711–727, 1994.

[124] R.C. McPhedran, A.B. Movchan, and N.V. Movchan. Platonic crystals: Bloch bands,
neutrality and defects. Mechanics of materials, 41(4):356–363, 2009.

[125] A. Merkel, G. Theocharis, O. Richoux, V. Romero-García, and V. Pagneux. Control of
acoustic absorption in one-dimensional scattering by resonant scatterers. App. Phys. Lett.,
107(24):244102, 2015.

[126] Lezza A. Mignery. Designing automotive dash panels with laminated metal. SAE tran-
sactions, pages 3349–3353, 1999.

[127] M.A. Mironov. Propagation of a flexural wave in a plate whose thickness decreases
smoothly to zero in a finite interval. Soviet Physics Acoustics-USSR, 34(3):318–319, 1988.

[128] M.H. Moulet. Les jonctions en mécanique vibratoire: représentation par matrice de diffu-
sion et caractérisation expérimentale pour des poutres assemblées. PhD thesis, Université
du Maine, 2003.

[129] D. Mousanezhad, S. Babaee, H. Ebrahimi, R. Ghosh, A.S. Hamouda, K. Bertoldi, and
A. Vaziri. Hierarchical honeycomb auxetic metamaterials. Scientific reports, 5:18306,
2015.

[130] A.B. Movchan, N.V. Movchan, and R.C. McPhedran. Bloch–floquet bending waves in
perforated thin plates. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 463(2086):2505–2518, 2007.

[131] N.O. Myklestad. The concept of complex damping. Journal of Applied Mechanics-
Transactions of the ASME, 19(3):284–286, 1952.

[132] Ahid D. Nashif, David I. G. Jones, and John P. Henderson. Vibration Damping,. New
York : Wiley, 1985.

[133] A.N. Norris. Reflection and transmission of structural waves at an interface between
doubly curved shells. Acta Acust. United Ac., 84(6):1066–1076, 1998.

[134] A.N. Norris and C. Vemula. Scattering of flexural waves on thin plates. Journal of sound
and vibration, 181(1):115–125, 1995.

[135] H. Oberst and K. Frankenfeld. Über die dämpfung der biegeschwingungen dünner bleche
durch fest haftende beläge. Acta Acustica united with Acustica, 2(6):181–194, 1952.

[136] R. Ohayon and C. Soize. Méthodes numériques avancées en vibroacoustique basses et
moyennes fréquences. Revue Européenne des éléments finis, 8(5-6):607–637, 1999.

136



REFERENCES

[137] M. Oudich, M. Senesi, M.B. Assouar, M. Ruzenne, J.H. Sun, B. Vincent, Z. Hou, and
T.T. Wu. Experimental evidence of locally resonant sonic band gap in two-dimensional
phononic stubbed plates. Physical Review B, 84(16):165136, 2011.

[138] M. Ouisse, D. Renault, P. Butaud, and E. Sadoulet-Reboul. Damping control for impro-
vement of acoustic black hole effect. Journal of Sound and Vibration, 454:63–72, 2019.

[139] D.J. O’Boy and A.P. Dowling. Tyre/road interaction noise—numerical noise prediction of
a patterned tyre on a rough road surface. Journal of Sound and Vibration, 323(1-2):270–
291, 2009.

[140] R.J. Pal and M. Ruzzene. Edge waves in plates with resonators: an elastic analogue of
quantum valley hall effect. New J. Phys., 19(025001), 2017.

[141] Y.H. Pao and C.C. Mow. Diffraction of elastic waves and dynamic stress concentrations.
crane, russak & company. Inc., New York, pages 601–612, 1973.

[142] J. Park and D.L. Palumbo. A new approach to identify optimal properties of shunting
elements for maximum damping of structural vibration using piezoelectric patches. 2004.

[143] W.J. Parnell and P.A. Martin. Multiple scattering of flexural waves by random configu-
rations of inclusions in thin plates. Wave Motion, 48(2):161–175, 2011.

[144] J.B. Pendry. Negative refraction makes a perfect lens. Physical review letters, 85(18):3966,
2000.

[145] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart. Magnetism from conduc-
tors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and
techniques, 47(11):2075–2084, 1999.

[146] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cam-
bridge philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955.

[147] F. Pierron, G. Vert, R. Burguete, S. Avril, R. Rotinat, and M.R. Wisnom. Identification of
the orthotropic elastic stiffnesses of composites with the virtual fields method: sensitivity
study and experimental validation. Strain, 43(3):250–259, 2007.

[148] J.R. Piper, V. Liu, and S. Fan. Total absorption by degenerate critical coupling. Applied
Physics Letters, 104(25):251110, 2014.

[149] A. Preumont. Vibration control of active structures, volume 2. Springer, 1997.

[150] A. Preumont, A. François, P. De Man, N. Loix, and K. Henrioulle. Distributed sensors
with piezoelectric films in design of spatial filters for structural control. Journal of Sound
and Vibration, 282(3-5):701–712, 2005.

[151] M.D. Rao. Recent applications of viscoelastic damping for noise control in automobiles
and commercial airplanes. Journal of Sound and Vibration, 262(3):457–474, 2003.

[152] J.N. Reddy. A simple higher-order theory for laminated composite plates. Journal of
applied mechanics, 51(4):745–752, 1984.

[153] V. Romero-García, G. Theocharis, O. Richoux, and V. Pagneux. Use of complex fre-
quency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am.,
139(6):3395–3403, 2016.

[154] D. Ross, E.L. Ungar, and E.M. Kerwin. Damping of plate flexural vibrations by means of
viscoelastic laminae. Structural damping, pages 49–87, 1960.

137



REFERENCES

[155] J.E. Ruzicka. Structural damping. pages 49–57, 1960.

[156] J.V. Sanchez-Perez, C. Rubio, R. Martinez-Sala, R.l Sanchez-Grandia, and V. Go-
mez. Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters,
81(27):5240–5242, 2002.

[157] L. Schwan and J.-P. Groby. Fundamentals and Applications of Acoustic Metamaterials:
From Seismic to Radio Frequency, volume 1, chapter Introduction to Multiple Scattering
Theory, pages 143–182. John Wiley & Sons, New Jersey, 2019.

[158] L. Schwan, O. Umnova, C. Boutin, and J.P. Groby. Nonlocal boundary conditions for
corrugated acoustic metasurface with strong near-field interactions. Journal of Applied
Physics, 123(9):091712, 2018.

[159] M.R. Shepherd, P.A. Feurtado, and S.C. Conlon. Multi-objective optimization of acous-
tic black hole vibration absorbers. The Journal of the Acoustical Society of America,
140(3):EL227–EL230, 2016.

[160] M. Sigalas and E.N. Economou. Band structure of elastic waves in two dimensional sys-
tems. Solid state communications, 86(3):141–143, 1993.

[161] M.M. Sigalas and E.N. Economou. Elastic and acoustic wave band structure. Journal of
Sound Vibration, 158:377–382, 1992.

[162] M.M. Sigalas and E.N. Economou. Elastic waves in plates with periodically placed inclu-
sions. Journal of Applied Physics, 75(6):2845–2850, 1994.

[163] E.A. Skelton, R.V. Craster, A. Colombi, and D.J. Colquitt. The multi-physics metawedge:
graded arrays on fluid-loaded elastic plates and the mechanical analogues of rainbow trap-
ping and mode conversion. New J. Phys., 20(053017), 2018.

[164] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz. Composite me-
dium with simultaneously negative permeability and permittivity. Physical review letters,
84(18):4184, 2000.

[165] D.R. Smith, D.C. Vier, N. Kroll, and S. Schultz. Direct calculation of permeability and
permittivity for a left-handed metamaterial. Applied Physics Letters, 77(14):2246–2248,
2000.

[166] M.J.A. Smith, R.C. McPhedran, C.G. Poulton, and M.H. Meylan. Negative refraction
and dispersion phenomena in platonic clusters. Waves in Random and Complex Media,
22(4):435–458, 2012.

[167] J.C. Snowdon. Vibration of cantilever beams to which dynamic absorbers are attached.
The Journal of the Acoustical Society of America, 39(5A):878–886, 1966.

[168] J.C. Snowdon. Dynamic vibration absorbers that have increased effectiveness. Journal of
Engineering for Industry, 96(3):940–945, 1974.

[169] J.Q. Sun, M.R. Jolly, and M.A. Norris. Passive, adaptive and active tuned vibration
absorbers – a survey. J. Mech. Design, 117(B):234–242, 1995.

[170] L. Tang and L. Cheng. Enhanced acoustic black hole effect in beams with a modified
thickness profile and extended platform. Journal of Sound and Vibration, 391:116–126,
2017.

138



REFERENCES

[171] L. Tang, L. Cheng, H. Ji, and J. Qiu. Characterization of acoustic black hole effect using
a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model. Journal
of Sound and Vibration, 374:172–184, 2016.

[172] T.L. Teng and N.K. Hu. Analysis of damping characteristics for viscoelastic laminated
beams. Comput. Method Appl. M., 190(29-30):3881–3892, 2001.

[173] American Society For Testing and Materials. Standard test method for measuring vibration-
damping properties of materials. ASTM International, 2010.

[174] G. Theocharis, O. Richoux, V. Romero-García, A. Merkel, and V. Tournat. Limits of slow
sound propagation and transparency in lossy, locally resonant periodic structures. New J.
Phys., 16(9):093017, 2014.

[175] S.P. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. McGraw-hill,
1959.

[176] G. Trainiti, J.J. Rimoli, and M. Ruzzene. Wave propagation in periodically undulated
beams and plates. International Journal of Solids and Structures, 75:260–276, 2015.

[177] V. Twersky. Elementary function representations of schlömilch series. Archive for Rational
Mechanics and Analysis, 8(1):323–332, 1961.

[178] E.E. Ungar. Loss factors of viscoelastically damped beam structures. The Journal of the
Acoustical Society of America, 34(8):1082–1089, 1962.

[179] E.E. Ungar and Edward M. Kerwin Jr. Plate damping due to thickness deformations in
attached viscoelastic layers. The Journal of the Acoustical Society of America, 36(2):386–
392, 1964.

[180] J.O. Vasseur, P.A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A.C. Hladky-Hennion.
Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates.
Physical Review B, 77(8):085415, 2008.

[181] C. Vemula, A.N. Norris, and G.D. Cody. Attenuation of waves in plates and bars using
a graded impedance interface at edges. Journal of Sound and Vibration, 196(1):107–127,
1996.

[182] V.G. Veselago. The electrodynamics of substances with simultaneously negative values of
ǫ and µ. Physics-Uspekhi, 10(4):509–514, 1968.

[183] T.T. W., Z.-G. Huang, T.C. Tsai, and T.C. Wu. Evidence of complete band gap and
resonances in a plate with periodic stubbed surface. Applied Physics Letters, 93(11):111902,
2008.

[184] Y.F. Wang, Y.S. Wang, and X.X. Su. Large bandgaps of two-dimensional phononic crystals
with cross-like holes. Journal of Applied Physics, 110(11):113520, 2011.

[185] Z. Wang and A.N. Norris. Waves in cylindrical shells with circumferential submembers: a
matrix approach. Journal of Sound and Vibration, 181(3):463, 1995.

[186] T. Wassereau, F. Ablitzer, C. Pézerat, and J.L. Guyader. Experimental identification of
flexural and shear complex moduli by inverting the timoshenko beam problem. Journal
of Sound and Vibration, 399:86–103, 2017.

[187] P. Wei, C. Croënne, S. Tak Chu, and J. Li. Symmetrical and anti-symmetrical coherent
perfect absorption for acoustic waves. Appl. Phys. Lett., 104(12):121902, 2014.

139



REFERENCES

[188] P. Wei, C. Croënne, Sai T.C., and Jensen Li. Symmetrical and anti-symmetrical coherent
perfect absorption for acoustic waves. Applied Physics Letters, 104(12):121902, 2014.

[189] T. Weisser, J.P. Groby, O. Dazel, F. Gaultier, E. Deckers, S. Futatsugi, and L. Monteiro.
Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions
by a multiple scattering approach. The Journal of the Acoustical Society of America,
139(2):617–629, 2016.

[190] J. Wen, G. Wang, D. Yu, H. Zhao, and Y. Liu. Theoretical and experimental investigation
of flexural wave propagation in straight beams with periodic structures: Application to a
vibration isolation structure. Journal of Applied Physics, 97(11):114907, 2005.

[191] J.M. Whitney and C.T. Sun. A higher order theory for extensional motion of laminated
composites. Journal of Sound and Vibration, 30(1):85–97, 1973.

[192] M.L. Williams, R.F. Landel, and J.D. Ferry. The temperature dependence of relaxation
mechanisms in amorphous polymers and other glass-forming liquids. Journal of the Ame-
rican Chemical society, 77(14):3701–3707, 1955.

[193] J.L. Wojtowicki, L. Jaouen, and R. Panneton. New approach for the measurement of
damping properties of materials using the oberst beam. Review of scientific instruments,
75(8):2569–2574, 2004.

[194] S.Y. Wu. Method for multiple mode piezoelectric shunting with single pzt transducer for
vibration control. Journal of intelligent material systems and structures, 9(12):991–998,
1998.

[195] W. Xiao, G.W. Zeng, and Y.S. Cheng. Flexural vibration band gaps in a thin plate
containing a periodic array of hemmed discs. Applied Acoustics, 69(3):255–261, 2008.

[196] Y. Xiao, J. Wen, L. Huang, and X. Wen. Analysis and experimental realization of locally
resonant phononic plates carrying a periodic array of beam-like resonators. Journal of
Physics D: Applied Physics, 47(4):045307, 2013.

[197] Y. Xiao, J. Wen, and X. Wen. Flexural wave band gaps in locally resonant thin plates
with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics,
45(19):195401, 2012.

[198] Y. Xiao, J. Wen, and X. Yu, D.and Wen. Flexural wave propagation in beams with perio-
dically attached vibration absorbers: band-gap behavior and band formation mechanisms.
Journal of Sound and Vibration, 332(4):867–893, 2013.

[199] Y. Xu, Y. Li, R.K. Lee, and A. Yariv. Scattering-theory analysis of waveguide-resonator
coupling. Phys. Rev. E, 62(5):7389, 2000.

[200] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics.
Physical review letters, 58(20):2059, 1987.

[201] S. Yan, A.M. Lomonosov, and Z. Shen. Numerical and experimental study of lamb
wave propagation in a two-dimensional acoustic black hole. Journal of Applied Physics,
119(21):214902, 2016.

[202] S.L. Yan, A.M. Lomonosov, and Z.H. Shen. Evaluation of an acoustic black hole’s structu-
ral characteristics using laser-generated lamb waves. Laser Physics Letters, 13(2):025003,
2016.

140



REFERENCES

[203] B. Yang, S. W. Nunez, T.E. Welch, and J.R. Schwaegler. Laminate dash ford taurus noise
and vibration performance. Technical report, SAE Technical Paper, 2001.

[204] M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, and P. Sheng. Subwavelength total acoustic
absorption with degenerate resonators. Appl. Phys. Lett., 107(10):104104, 2015.

[205] A. Yariv. Universal relations for coupling of optical power between microresonators and
dielectric waveguides. Electron. Lett., 36(4):321–322, 2000.

[206] L. Zhao and F. Semperlotti. Embedded acoustic black holes for semi-passive broadband
vibration attenuation in thin-walled structures. Journal of Sound and Vibration, 388:42–
52, 2017.

[207] L. Zhou, T.and Tang, H. Ji, J. Qiu, and L. Cheng. Dynamic and static properties of
double-layered compound acoustic black hole structures. International Journal of Applied
Mechanics, 9(05):1750074, 2017.

[208] T. Zhou and L. Cheng. A resonant beam damper tailored with acoustic black hole features
for broadband vibration reduction. Journal of Sound and Vibration, 430:174–184, 2018.

[209] H. Zhu and F. Semperlotti. Improving the performance of structure-embedded acoustic
lenses via gradient-index local inhomogeneities. International Journal of Smart and Nano
Materials, 6(1):1–13, 2015.

[210] H. Zhu and F. Semperlotti. Two-dimensional structure-embedded acoustic lenses based
on periodic acoustic black holes. Journal of Applied Physics, 122(6):065104, 2017.

141



 

	

	

	

Titre	:	Contrôle	des	ondes	de	flexion	au	moyen	d’absorbeurs	parfaits	sub-longueur	d’onde	:	application	au	Trou	

Noir	Acoustique	

Mots-clés	:	contrôle	passif	d’onde,	onde	de	flexion,	métamatériau,	structure	localement	résonante,	absorption	

parfaite,	couplage	critique,	trou	noir	acoustique		

Résumé	:	Le	 contrôle	des	 vibrations	 à	basse	 fréquence	 adapté	 aux	 structures	 légères	 est	un	défi	 scientifique	 et	

technologique	en	raison	de	contraintes	économiques	et	écologiques	de	plus	en	plus	strictes.	De	récentes	études	en	

acoustique	 ont	 portées	 sur	 l’absorption	 totale	 d’ondes	 basses	 fréquences	 à	 l’aide	 d’absorbeurs	 parfaits	 sub-

longueurs	 d’onde.	 Ces	 métamatériaux	 sont	 obtenus	 en	 exploitant	 la	 condition	 de	 couplage	 critique.	 Une	

généralisation	de	cette	méthode	pour	 le	domaine	élastodynamique	serait	d’un	grand	 intérêt	pour	répondre	aux	

exigences	du	contrôle	des	vibrations	de	structures	légères	à	basse	fréquence.	

Cette	thèse	vise	à	adapter	le	problème	d’absorption	parfaite	des	ondes	de	flexion	dans	des	systèmes	1D	et	2D	avec	

des	résonateurs	locaux	en	utilisant	la	condition	de	couplage	critique.	Une	étude	préliminaire	sur	des	systèmes	1D	à	

géométries	simples	sont	d’abord	proposée.	Celle-ci	propose	une	méthode	de	conception	de	résonateurs	simples	

pour	une	absorption	efficace	des	ondes	de	flexion.	Une	complexification	du	système	1D	est	ensuite	considérée	avec	

l’étude	du	couplage	critique	de	Trou	Noir	Acoustique	(TNA)	1D.	Ceci	a	motivé	l’interprétation	de	l’effet	TNA	à	l’aide	

du	concept	de	couplage	critique	afin	de	présenter	des	outils	clés	à	de	futures	procédures	d’optimisation	pour	ce	type	

de	terminaisons.	La	condition	de	couplage	critique	est	ensuite	étendue	aux	systèmes	2D.	L’absorption	parfaite	par	

le	premier	mode	axisymétrique	d’un	résonateur	circulaire	 inséré	dans	une	plaque	mince	 infinie	est	analysée.	La	

diffusion	multiple	par	une	ligne	de	résonateurs	circulaires	insérés	dans	une	plaque	mince	2D	infinie	ou	semi-infinie,	

appelée	métaplaque,	est	aussi	considérée	dans	l’optique	de	se	rapprocher	d’une	application	industrielle.	A	travers	

cette	thèse,	des	modèles	analytiques,	des	simulations	numériques	et	des	expériences	sont	présentés	pour	valider	le	

comportement	physique	des	systèmes	présentés.		

	
Title:	Controlling	flexural	waves	using	subwavelength	perfect	absorbers:	application	to	Acoustic	Black	Holes	

Keywords:	Passive	wave	control,	flexural	waves,	metamaterials,	locally	resonant	structures,	perfect	absorption,	
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Abstract:	 The	 vibration	 control	 adapted	 to	 light	 structures	 is	 a	 scientific	 and	 technological	 challenge	 due	 to	

increasingly	 stringent	 economic	 and	 ecological	 standards.	 Meanwhile,	 recent	 studies	 in	 audible	 acoustics	 have	

focused	on	broadband	wave	 absorption	 at	 low	 frequencies	by	means	of	 subwavelength	perfect	absorbers.	 Such	

metamaterials	can	totally	absorb	the	energy	of	an	incident	wave.	The	generalisation	of	this	method	for	applications	

in	elastodynamics	could	be	of	great	interest	for	the	vibration	control	of	light	structures.		

This	 thesis	aims	at	adapting	the	perfect	absorption	problem	for	 flexural	waves	in	1D	and	2D	systems	with	local	

resonators	using	the	critical	coupling	condition.	A	study	of	1D	systems	with	simple	geometries	is	first	proposed.	This	

provides	methods	to	design	simple	resonators	for	an	effective	absorption	of	flexural	waves.	The	1D	systems	then	

become	more	complex	by	studying	the	critical	coupling	of	1D	Acoustic	Black	Holes	(ABH).	The	ABH	effect	is	then	

interpreted	using	the	concept	of	critical	coupling,	and	key	features	for	future	optimisation	procedures	of	ABHs	are	

presented.	 The	 critical	 coupling	 condition	 is	 then	 extended	 to	 2D	 systems.	 The	 perfect	 absorption	 by	 the	 first	

axisymmetric	mode	of	a	circular	resonator	inserted	in	a	thin	plate	is	analysed.	Multiple	scattering	by	an	array	of	

circular	resonators	inserted	in	an	infinite	or	semi-infinite	2D	thin	plate,	called	metaplate,	is	also	considered	to	get	

close	to	practical	applications.	Through	this	thesis,	analytical	models,	numerical	simulations	and	experiments	are	

shown	to	validate	the	physical	behaviour	of	the	systems	presented.	
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