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Résumé: Parmi la mise à l’échelé, la portabil-
ité, la distribution du charge de travail, et autres
raisons, les applications vont bénéficier la plate-
forme du stockage des données qui present le
code le plus efficace. Cela, cependant, n’est pas
trivial. Chaque plateforme aboutie aux accom-
plissements diversifiés and, par conséquent, elle
requiert le rôle d’une application pour achever
plusieurs chemins de codage. L’implémentation
des tels chemins n’est pas évidente. Elle re-
quiert une grand effort, des hautes compé-
tences de programmation et suivant elle con-
tient un fort risque des erreurs. Les problèmes
se présentent quand les applications doivent de
supporter plusieurs stockages des données en
parallèle. Dans cette dissertation, on introduit
le terme "storage containers" comme une évo-
lution naturelle du stockage des donées. Les
"storage containers" sont des application inter-
médiaires de gestion des données qui sépare
la logique d’I/O de la logique d’affaires et la
logique de computations d’une application. Dans
cette thèse, nous introduisons le terme « ré-
cipients de stockage » comme la prochaine
logique dans l’évolution du stockage. Il s’agit
d’un logiciel intermédiaire de gestion des don-
nées qui sépare la logique d’I/O de la logique
métier et de calcul d’une application. Autrement
dit, ils séparent les changements apportés au
code des applications par les utilisateurs scien-
tifiques des changements apportés aux actions
d’I/O par les développeurs ou les administra-
teurs. Contrairement aux systèmes « à usage
général » existants, dont l’objectif est d’effectuer
« décemment » pour le plus grand nombre pos-
sible d’applications, les systèmes « application-
tailored » conservent la connaissance et ne fonc-
tionnent de façon optimale que pour une seule

application. Une telle conception aide à re-
porter les décisions d’I/O jusqu’à la phase de dé-
ploiement, qui est la clé de la Transférabilité ;
de la sécurité de l’autorité la moins élevée ; de
la fédération des fournisseurs de stockage non-
collaboratif; de l’échelle d’application de deux-
ième ordre indépendante au stockage de don-
nées ; et la distribution de données des règles
avec des critères comme la résilience, le ren-
dement, l’efficacité du stockage et le coût. Le
fait qu’un tel logiciel intermédiaire soit « per-
sonnalisé » à l’application, signifie également
que chaque application doit mettre en œuvre sa
"saveur". Pour ce faire, nous introduisons un
SDK, appelé Tromos, pour les développeurs, afin
de synthétiser des systèmes de stockage dis-
tribués personnalisés sans programmation des
systèmes. Tout ce qu’il faut aux développeurs
est de modéliser l’environnement souhaité dans
un fichier de définition. Le SDK va gérer le reste
du processus. Il est distribué avec une large
gamme de plugins intégrés pour le traitement des
I/O, le traitement des requêtes, les algorithmes
de sélection, les méthodes de reconstruction de
données, le traitement de cohérence, et la vi-
sualisation. Pour faire une analogie, "storage
containers" découplent la gestion des données
de la plateforme de stockage physique de la
même manière que les containers Docker décou-
plent l’environnement d’application des serveurs
physiques. En guise de démonstration de fais-
abilité, nous utilisons Tromos pour prototyper des
environnements de stockage personnalisés que
nous comparons à Gluster, un système à us-
age général appartenant à RedHat. Les résultats
ont montré que les environnements auto-produits
surpassent Gluster simplement en enlevant toute
fonctionnalité inutile de la ligne de stockage.
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Abstract:
Modern applications tend to diverge both in the
I/O profile and storage requirements. Match-
ing a scientific or commercial application with
a general-purpose system will most likely yield
suboptimal performance. Even in the presence
of “purpose-specific” systems, applications with
multiple classes of workloads are still in need
to disseminate the workload to the right system.
This strategy, however, is not trivial as differ-
ent platforms aim at diversified goals and there-
fore require the application to incorporate multi-
ple codepaths. Implementing such codepaths is
non-trivial, requires a lot of effort and program-
ming skills, and is error-prone. The hurdles are
getting worse when applications need to lever-
age multiple data-stores in parallel. In this disser-
tation, we introduce “storage containers" as the
next logical in the storage evolution. A “storage
container" is virtual infrastructure that decouples
the application from the underlying data-stores in
the same way Docker decouples the application
runtime from the physical servers. In other words,
it is middleware that separate changes made to

application codes by science users from changes
made to I/O actions by developers or administra-
tors.
To facilitate the development and deployment of
a “storage container" we introduce a framework
called Tromos. Through its lens, all that it takes
for an application architect to spin-up a custom
storage solution is to model the target environ-
ment into a definition file and let the framework
handles the rest. Tromos comes with a repos-
itory of plugins which the architect can choose
as to optimize the container for the application at
hand. Available options include data transforma-
tions, data placement policies, data reconstruc-
tion methods, namespace management, and on-
demand consistency handling.
As a proof-of-concept we use Tromos to proto-
type customized storage environments which we
compare against Gluster; a “general-purpose”
system owned by RedHat. The results showed
that the auto-produced environments outperform
the more mature Gluster by merely removing the
unnecessary overhead of unused features.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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Chapter 1

Introduction

In this Chapter we present the evolution of the various persistent storage interfaces that are
broadly available nowadays. During this historical recursion, we are introducing the reader to
the purposes these interfaces were trying to fulfill, how they were designed according to the
technology of the time, and how those decisions affect today’s applications.

1.1 Block Devices

In the dawn of computing, the dominant media for secondary storage were tape drives and
hard disk drives. Both are rotating devices that use electromagnetic heads to store and retrieve
data from surfaces coated with magnetic material. Alternatively referred to as external memory,
secondary memory, and auxiliary storage, a secondary storage device is a non-volatile device
about two orders of magnitude cheaper than the primary storage.

Device controllers use the idea of logical block addressing (LBA) to abstract the direct ad-
dressing of hardware geometry (e.g., platters, cylinders, and tracks) into evenly-sized blocks of
raw data. The physical block size -usually 512 bytes- corresponds to a disk sector, which is the
smallest unit of data that the disk controller can read or write in a single operation. During an
I/O operation, the physical media is continuously rotating. However, the rate at which data are
written or read to the drive is not deterministic; it depends on the rate at which data is supplied
or demanded by its host. If the host rate is higher than the device rate, the device will become a
bottleneck and can potentially start rejecting data. If the host rate is lower than the device rate,
the device will spin, wasting energy and blocking others clients from using it. The “hardware”
solution to cope with this difference is to physically slow-down or speed-up the drive according to
the host rate. The elevator algorithm (also SCAN) is a disk scheduling algorithm that reorders re-
quests in such a manner to minimize the motion of the disk’s arm and head; thus making access
faster and more efficient. Bear in mind that for non-rotating disks like Solid-State Drives (SSD)
and the newer non-volatile memories (NVM) the location of the data does not affect performance.

Typically, block devices read and/or write in full blocks; if a write operation does not fill up
a full block, the user needs to read the remaining portion from the current contents of the file,

2



CHAPTER 1. INTRODUCTION 3

merge them, compute the updated block and, finally, pushing back to the device the updated
block. UNIX kernel uses logical blocks, or clusters of physical blocks, to transfer data from and to
devices. The logical block size is set to the page size of the system by default - 4k bytes. A page
is the smallest unit of data for memory management in a virtual memory operating system that
represents a fixed-length contiguous block of virtual memory, described by a single entry. Logical
block size imposes a time-space tradeoff. Much of the delay in a rotational disk is due to the time
it takes to correctly position the read/write heads above the disk platters. Larger blocks pack
more data in a contiguous space and yield higher sequential throughput than several smaller
transfers. Oppositely, smaller blocks allow for more I/O operations per second (IOPS).

With the term “physical volume” we refer collectively to a physical drive, or a hardly provi-
sioned portion of it called partition. A logical volume is a “virtual” storage device which can
span multiple physical volumes (e.g., Redundant Array of Independent Disks). Thereby, logical
volumes are composable by “block layers“, with each layer performing data transformations in a
non-disruptive way to the upper layers. “Block devices” oppose to “character devices” that handle
data as streams of bytes (e.g., video or audio devices).

Storage Area Network A storage area network (SAN) is a dedicated high-speed network of
interconnected storage servers presents as shared pools of devices. In general, SAN combines
storage servers in master/slave high-availability configurations where the slave needs to be ready
to take over the master. Clients request access to the devices by sending out SCSI commands
to the SAN. Fibre Channel (FC) SANs have the reputation of being an expensive and local
network that yield low-latency and high throughput. iSCSI addresses cost and locality issues
by encapsulating SCSI commands into IP packets that do not require an FC connection. SAN
has been successfully running mission-critical applications like Oracle, SAP, Microsoft Exchange,
and Microsoft SharePoint. SAN usually do not scale over 64 or 128 nodes.

1.2 Filesystems

Logical block addressing was undoubtedly an advancement over geometry addressing. Block
devices, however, suffered from lack of organization. They were simply receiving commands to
store that block, or load the other block, with no understanding of the content. It was up to the
programmers to ask the right block. Filesystems emerged as mean to organize data into files
and file hierarchies. In principle, a filesystem deals with two distinct aspects i) how to present the
organizational structure to the end-user 2) how to map logical files into physical devices. It does
so by using structures residing both in-memory and on-disk.

The superblock structure provides the operating system with high-level information for mount-
ing the filesystem, e.g., the total number of blocks, free blocks, root index node. Filesystems use
inodes (short for index node) to maintain metadata information about files, directories, or sym-
bolic links. File-level and directory-level system calls map directly to inodes, e.g., open(), read(),
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write(), flush() for files, create(), lookup(), link(), mkdir() for directories. Inodes that represents
files also maintain a table pointing to the written blocks and a virtual address space of fixed-
sized pages. A page is the memory-equivalent of a block on a block device. Dentries track the
relationship of one entry to other entries in the file system as well as physical data (such as the
file name). A file system has one root dentry without a parent, whereas all other dentries have
parents, and some have children. Dentries are in-memory structures constructed by on-disk
inodes.

File Handler As users create or expand files, the kernel allocates disk space in full logical blocks
or segments of logical blocks called fragments (e.g., 4KB block; 1KB fragment). When files need
extra disk space, the kernel first allocates full blocks, and then it allocates one or more fragments
of the block for the data. For every opened file, the operating system maintains a handler for
keeping the state of a file. They act as middlemen for translating memory pages to the storage
blocks. When a process modifies a page (an offset in the file), the handler marks the page as
dirty. Dirty means that the data exist in the page cache but is not persisted on the storage device
yet. That gives time to the operating system to aggregate data into contiguous blocks so to
reduce fragmentation of disk space that results from unused holes in blocks.

1.2.1 VFS

Institute of Electrical and Electronics Engineers (IEEE ) specified in the 1980s Portable Operating
System Interface (POSIX) application programming interfaces (API) for applications to interop-
erable across System V and BSD Unix operating systems. Virtual file system switch (VFS) is
a POSIX kernel abstraction for mounting several types of file systems into the same tree struc-
ture while retaining a uniform way for users to navigate file system hierarchies. It encompasses
most of the system calls programmers are familiar with, e.g., open(), close(), read(), write(), and
lseek(). VFS applies generic filesystem actions and vectors requests to the correct filesystem
for further processing. Filesystems may store data on local devices, remote devices, or even in
“virtual” processes in userspace (Figure 1.1).

Generic Block Layer

VFS access block devices through Generic Block Layer (GBL) abstraction. It is oblivious to the
specific device implementation. GBL abstracts physical devices (e.g., HDDs, SSDs) or “virtual”
devices run as userspace process (e.g., Network Block Device in Linux). Figure 1.2 presents
how GBL connects with VFS and the block device drivers.
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In Userspace

Filesystems that reside on kernel run with supervisor privileges and can crash the entire ma-
chine if they experience an error. Some programs user their custom VFS implementation (e.g.,
GnomeVFS for Gnome desktop) to avoid the kernel burdens. Especially in High-Performance
computing (HPC) environment is it common to implement userspace filesystems as preloaded
libraries. The drawback is that such filesystem is not accessible by third-party processes; a pro-
cess cannot do “ls” inside a GnomeVFS tree. FUSE is a kernel protocol that bridges VFS with
userspace filesystems. That separation makes it much more sensible to write filesystems with
lots of external dependencies.

Over the network

A clustered file system is a file system which is shared by being simultaneously mounted on
multiple servers. Clustered file systems can provide features like location-independent address-
ing and redundancy which improve reliability or reduce the complexity of the other parts of the
cluster. VFS layer hides the network communication from client programs on clustered nodes.
Clients can access the filesystem like any other local filesystem.

Shared-disk is a type of clustered filesystem that allows multiple clients to gain disk-level on
NAS. It employs fencing mechanisms for concurrency control that allows the nodes to fail without
unintended data loss and without affecting the access of other nodes. The most prominent
filesystems of this type include Oracle Cluster File System (OCFS), IBM General Parallel File
System (GPFS), StorNext from Quantum, Veritas from Symantec, and VMFS from VMware/EMC
Corporation.

Distributed file systems do not share block-level access to the same storage but use a file-
level protocol. Network File System (NFS) protocol, the de facto distributed file system in Linux,
builds on the Open Network Computing Remote Procedure Call (ONC RPC) system. A Remote
Procedure Call (RPC) is a protocol that one program can use to request a service from a program
located in another computer on a network.

1.2.2 POSIX limitations

Like most of the designs in the bronze era of computing, POSIX conceived to favor preciseness
and correctness. It relies on stateful handlers and strong event ordering. Unfortunately, POSIX
design does not reflect today’s requirements for concurrency, scalability, and real-time. Precise-
ness and correctness are not that much of an issue any longer; No one would trade extra latency
waiting for a Google search to load all the possible results before data become accessible. Next,
we present an extensive, but not exhaustive, list of facts that render POSIX programming obso-
lete for today’s standards.
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Figure 1.1 – The Linux I/O stack: Different layers provide a single, virtual interface to the respective layers
above, thus hiding the complexity and peculiarities of their subordinate world (Source [20])

Deprecated API

POSIX was designed for single hosts, with a single CPU core, for storing data to rotating devices.
Parallel processes at that time were not physical but “scheduled”. Operating systems realized
pseudo-parallelism by occasionally switching CPU execution from one task to another. That
required stateful tasks (or handlers) so to resume later back to the point they were switched
(e.g., write offset). Most developers have already encountered seek() function at least once. Its
original purpose was to position the magnetic head before a data transfer. Systems with stateful
handlers may scale to hundreds, or even thousands, of processes trying to perform I/O, but
cannot scale to millions or billions of them. Further, most of the modern data are "units" that do
not require much random I/O (e.g., images, music, videos).

Another characteristic of rotating devices is that they can serve only one task at a time; they
are single-channeled. Hence, all I/O requests going through the kernel which was deciding
how and when to flush data to devices. Given that at the time the bottleneck was on the I/O
from kernel to devices, the overhead to perform a system call and copying data user space to
kernel space was negligible. None of them is no longer valid. Modern storage devices such
as NAND flash-based solid state drives (SSDs) and non-volatile memories (NVM) exhibit high-
throughput, low-latency on random I/O and a high degree of parallelism. Along with memory-
access technologies such as zero-copy and RDMA, have moved the bottleneck from the devices
to the I/O path itself. Hence, prolonged and obscure I/O stack, with a single point of congestion
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Figure 1.2 – Architecture of Linux Kernel I/O stack (Source [85])

(e.g., VFS) and without support for newcomer technologies are not good candidates for today’s
versatile storage environment.

POSIX organizes files as directories in a single namespace. For the filesystem implementa-
tion, it means that i) coordination is needed even for files under different directories since they
belong to the same namespace. ii) it must enforce a mechanism for access control on top of
the namespace. Access control is not a synonym to isolation and usually enforces unnecessary
overheads for use in HPC computing. For example, the MPI-IO standard does not expose the
file hierarchy or permissions to the end user. Therefore, applications leveraging these libraries
do neither need nor expect these features. It is also common for many application to keep orga-
nization externally (e.g., on a database) and use filesystems only to dump data content.
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Strong Semantics

POSIX mandate changes to a shared file to become immediately visible to all the processes;
enforces strong consistency semantics. For example, a write() will block application execution
until the system can guarantee that any other read() call will see the latest written data. For a
host with a single CPU core, it is “easy” to guarantee immediate visibility since all processes were
running on the same core. That, however, is not possible on today’s multicore architectures as
processes may run on different cores. Synchronization requires communication and the speed
of light bounds communication. Thereby, fine-grained locks are impractical. Coarser locks are
needed, which increase the locked region, which hinders potential parallelization gains.

According to Amdahl’s law, the performance gains from parallel task execution are limited
proportionally the sequentially executed parts. The formula 1.1 gives the expected theoretical
speedup in latency of the execution of a task at the fixed workload of a system whose resources
are improved. That metrics gives the “scalability factor”. If loose 5% of a processor power every
time a CPU is added to the system, then the “scalability factor” is 0.95. A scalability factor of 0.9
means that only 90% of the resource will be usable.

speedup = (s+ p)/s+ p/N (1.1)

Local I/O stack

There can be multiple intermediate processing layers between applications and storage devices.
Such layer may recursively flush until the request goes to the device, or buffer the data and
immediately acknowledge the I/O completion. Data residing in the buffer migrate to next layers in
a background (asynchronous) task, either explicitly to the user (by calling sync()), or periodically
by the system. As long as requests traverse the same I/O stack, it is easy for the system to serve
next read() directly from the buffered or cached data. No need to go to the devices.

The first associated risk is that in case of a crash the data are gone. POSIX partially “protects‘
filesystem structure by first modifying the metadata, and then the data. Even if the payload gets
corrupted, the filesystem structure will remain consistent. If the file shrinks, the unmodified data
will still exist on the disk but without being accessible from the filesystem. If the file grows,
subsequent requests will see the correct metadata but corrupted data. (Note 1: yet another
example of POSIX over-engineered API. Note 2: Journalling is not an integral part of POSIX but
uses its calls).

The second pitfall is that modern storage requirements go far beyond the capabilities of a sin-
gle node. Instead, many nodes across a network contribute their resources to form a distributed
system. Hence, clients on difference nodes traverse different I/O stacks. The solution is to apply
coarse grain locks using Distributed Locking Mechanisms (DLM), which against enforces high
synchronization overheads.
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Figure 1.3 – Amdahl’s law: the speed up for an application is reversely proportional to its sequentially
executed code

1.3 Object-based Storage

Files in Filesystems are logical mappings pointing to physical data location. They include little
to no contextual knowledge (metadata) as to what these data are. Object storage architectures
organize data determined by the user to be logically related to self-described units. Objects carry
information across layers as an indivisible unit that encapsulates raw data, user-expandable
metadata, system-handling attributes, and a globally unique identifier. When an object passes
through a layer in the I/O stack, the layer determines how to handle the object based on the
values in the attributes that it understands. All other attributes pass along unmodified. Hence,
the system handles objects marked for efficient distribution and parallel access different from
objects marked as temporary.

The unique identifier algorithmically encodes the physical location of the object. In the case
of consistent hashing [62], storage nodes are assigned a range of keys within a hash space,
covering the entire range with no holes or overlaps. Object identifiers are keys in that space. The
node that serves the closest range of keys to the object identifier is the one that holds the object.
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Figure 1.4 – Organizational differences among filesystems, block devices, and object storage (source [24])

Such a method eliminates the need to ask a lookup and traverse long hierarchical structures.
Content-addressable storage (CAS) [123] is a way to store an object based on the content, not
on the given name. When CAS systems store a datum, they hash the content and generate a
unique identifier for it. Since identifiers derive from the content, any change to a data element will
necessarily change its content address. Hence, its usage is common for high-speed storage and
retrieval of fixed content, such as documents stored for compliance with government regulations.

Objects are immutable that do not provide the ability to edit just one part of the payload. In
object-based storage, modifying a file means that users have to upload a new revision of the
entire file. That can significantly impact performance if modifications are frequent. high-activity
IO operations such as caching, database operations, or log files, should not use object-based
mechanisms. Block storage mechanisms are better suited to these activities. Being of fixed-
sized and relatively small, they can be accessed, modified, and stored individually, thus enabling
efficient random I/O access.

For object-based systems, objects are keys in a flat namespace with no hierarchy or relations
between them. Even though objects are not stored “together” on the same physical medium,
application developers can still retain the relationship between them. Plus, the object storage
model allows users to search through the metadata a great deal faster than compared to the
block-based approach. A good use case to exemplify that is big data analytics: When deal-
ing with increasingly large number of files, the object storage method of indexing the data and
location (the metadata), and thus fixes the main problem connected with big data, which is scal-
ability. Objects are a better fit for static and metadata-rich content such as medical imaging, data
backups and archival images, and multimedia files (videos, pictures, or music).

Although object-storage became the flagship for Cloud Storage, its origin predates by at least
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Figure 1.5 – Three approach for namespace management: hierarchical, flat (none), application-specific

a decade. In 1994 a workgroup initiated by Carnegie Mellon, and continued by SNIA, standard-
ized a set of ANSI T10 SCSI commands for Object storage devices (OSD) [105]; an intelligent
evolution of disk drives that handle and store objects instead of just placing data on tracks and
sectors. OSD defines four different types of objects:

• The root object – The OSD itself

• User objects – Created by SCSI commands from the application or client

• Collection objects – A group of user objects, such as all .mp3 objects or all objects belonging
to a project

• Partition objects – Containers for user objects and collections that share common security
and space management characteristics, such as quotas and keys

The most known of such devices is Kinetic [108] from Seagate. The idea was that the drives
did not use traditional block-based storage protocols like SAS and SATA, but instead stored
objects written and retrieved over Ethernet. Effectively, each drive is a key-value store that
manages its content.

1.4 Data stores

A data store is dedicated management software for storing data structures onto the storage
media on behalf of the applications. three factors commonly drive their design
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Figure 1.6 – Object types

• leverage infrastructure technologies concerning new storage media (e.g, non-volatile mem-
ories), advanced node interconnection (e.g., RDMA), host-scoped optimization (e.g., accel-
erators, zero-copy)

• provide specialized data-management (e.g., concurrency, replication, performance, encryp-
tion, storage-efficiency)

• provide domain-specific interfaces for accessing data (e.g., relations for structured data,
key-value pairs for unstructured data, matrices for numerical data)

Because object-based storage architectures can scale out by merely adding nodes, many
data-stores have adopted objects for their backend, as a solution to the increasing problems
data growth and parallel access.

1.4.1 Cluster

A cluster is a group of tightly coupled and almost identical machines, connected by fast-link
local area network, that collectively comprises a single powerful machine. To do so, it needs to
orchestrate all nodes to work together and provide consistency of things such as caches and
memory.

A parallel file system (PFS) is a type of clustered file system that distributes file data across
multiple storage servers in order to provide concurrent access by multiple tasks of a parallel ap-
plication. PFS use bulk object-based storage to store file data, file metadata, directory metadata,
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directory entries, or symbolic links. Typically, they separate data servers from metadata servers,
with the latter being involved only at the beginning of the operation to retrieve the file layout. The
layout for each file defines the set of objects that will be used to hold the file’s data. Data may
be written to the objects in a round-robin manner (stripping) in order to avoid the bottleneck of a
single server, or replicate to multiple servers for resiliency against crashes.

Typical examples include OrangeFS [94], Lustre [19]. Caring about concurrency and scalabil-
ity these systems may feature relaxed semantics compared to POSIX. For example, pNFS [38]
adheres to close-to-open consistency model that departs POSIX semantics for atomic write()s
that become immediately visible to all clients.

1.4.2 Grid

A grid is an alliance of loosely coupled machines with possibly very different hardware configu-
rations which work together to solve a given problem/crunch data. The fundamental difference
between a grid and a cluster is that nodes in a grid are relatively independent and geographically
distributed problems are solved in a divide and conquer fashion.

1.4.3 Cloud

Cloud storage is a model of computer data storage in which the digital data is stored in logical
pools, owned and managed by the hosting vendor. Cloud vendors are responsible for keeping
the data available and accessible, and the physical environment protected and running. Users
lease storage capacity from vendors to store user, organization, or application data.

The difference between a cloud and a grid summarizes to [9]:

• Resource distribution: Cloud computing is a centralized model whereas grid computing is a
decentralized model where the computation could occur over many administrative domains.

• Ownership: A grid is a collection of computers which is owned by multiple parties in multiple
locations and connected so that users can share the combined power of resources.

Below we present a short of Cloud storage vendors that provide worldwide access to the
objects through REST application programming interface (API) or client libraries.

• Amazon S3: Amazon S3 stores data as objects within resources called “buckets”. AWS
S3 offers features like 99.999999999 durability, cross-region replication, event notifications,
versioning, encryption, and flexible storage options (redundant and standard).

• Azure Blob Storage: For users with large amounts of unstructured data to store in the
cloud, Blob storage offers a cost-effective and scalable solution. Every blob is organized
into a container with up to a 500 TB storage account capacity limit.
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• Google cloud storage: Cloud Storage allows users to store data in Google’s cloud. Google
Cloud Storage supports individual objects that are terabytes in size. It also supports a large
number of buckets per account. Google Cloud Storage provides strong read-after-write
consistency for all upload and delete operations.

Below we present a short list of block-based Cloud storage. Block devices are typically ac-
cessible only from collocated cloud services (e.g., CLI).

• AWS Elastic Block Storage (EBS): Amazon EBS provides raw storage – just like a hard
disk – which users can attach to your ec2 instances. Once attached, users create a file
system and get immediate access to the storage. Users can create EBS General Pur-
pose (SSD) and Provisioned IOPS (SSD) volumes up to 16 TB in size, and slower, legacy
magnetic volumes.

• Rackspace Cloud Block Storage: Rackspace provides raw storage devices capable of
delivering super-fast 10GbE internal connections.

• Azure Premium Storage: Premium Storage delivers high-performance, low-latency disk
support for I/O intensive workloads running on Azure Virtual Machines. Volumes allow up
to 32 TB of storage.

• Google Persistent Disks: Compute Engine Persistent Disks provide network-attached
block storage, much like high speed and highly reliable SAN, for Compute Engine instances.
Users can remove a disk from one server and attach it to another server, or attach one
volume to multiple nodes in read-only mode. Two types of block storage are available:
Standard Persistent Disk and Solid-State Persistent Disks.

The best type of storage is application-specific as it has to balance the requirements for per-
formance, resiliency, scalability, cost, consistency, and other factors. For example, object storage
performs optimally for large data that follow write-once-read-many patterns; block storage per-
forms optimally for small data that are frequently modified. Files are organizational abstractions
atop objects, blocks, or records.

1.5 Designing scalable data-stores

Vendors protect user data against failures by storing multiple copies of the objects across their
realm, which may span multiple data-centers. One way to achieve replication is by strongly-
consistent operations. The clients must block waiting for the system to write all the replicas
successfully. Strong consistency is a requirement for “real-time” systems where a read request
must return the most updated version of the data. The tradeoff for the provided “correctness’ is
limited scalability and reduced availability as a result of hardware failures.

Vendors may postpone transfers across-data centers until a justified amount of data balance
the transfer cost. That means for the client that must block for an arbitrarily long time. In practice,
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the preferred solution for scalable systems is eventual consistency. The downside to eventual
consistency is that there is no guarantee that a read request returns the most recent version of
the data; different clients may see a different version.

Below we present the theoretical background to understand the above statements.

1.5.1 CAP theorem

Eric Brewer made the conjecture that there are three essential system requirements necessary
for the successful design, implementation, and deployment of applications in distributed comput-
ing systems.

• Consistency. The client perceives that a set of operations has occurred all at once, i.e.,
data moves from one correct state to another correct state, with no possibility that readers
could view different values

• Availability. The system remains operational 100% of the time, and every operation must
terminate in an intended response. The key word here is every. Every node (on either side
of a network partition) must be able to respond in a reasonable amount of time.

• Network Partition, or brain split. The system still needs to work even when some nodes in
the system are unable to communicate with other nodes in the system.

An intuitive interpretation of the Conjecture is the following: in a distributed system, if some
servers cannot access each other, either the distributed system will be unable to process some
requests (lack of availability), or it will not behave like a single server (lack of consistency).

The typical "2 of 3" perception of CAP is misleading on several fronts [21]. First, because par-
titions are rare, there is little reason to forfeit C or A when the system is not partitioned. Second,
the choice between C and A can occur many times within the same system at very fine granu-
larity; not only can subsystems make different choices, but the choice can change according to
the operation or even the specific data or user involved. In other words, all three properties are
more continuous than binary. Availability is continuous from 0 to 100 percent, but there are also
many levels of consistency, and even partitions have nuances, including disagreement within
the system about whether a partition exists. The availability of any system is the product of the
availability of the components required for operation.

The last part of that statement is the most important since components that may be used by
the system, but are not involved in the operation, do not reduce the perceived system availability.
For example, when systems designers shard (partition) data it is highly likely that each shard can
ensure complete consistency and availability during a partition.

1.5.2 BASE model

The BASE is an optimistic consistency model that accepts the data store state to be in flux. It
favors immediate response than immediately consistent state or accuracy on the data reply. The
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Figure 1.7 – CAP Theorem is a concept that a distributed storage system can only have 2 of the 3:
Consistency, Availability and Partition Tolerance.

acronym stands for

• Basic Availability: The system will appear to work most of the time, and there will be a
response to any request. The response could still be ‘failure’ to obtain the requested data,
or the data may be in an inconsistent or changing state.

• Soft-state: Stores do not have to be write-consistent, nor do different replicas have to
be mutually consistent all the time. Data consistency is the developer’s problem, and the
data-store should not enforce it.

• Eventual consistent: It defines that if no update takes a very long time, all replicas even-
tually become consistent.

The BASE design encourages crafting operations in such a way that in the face of a network
partition only a minor percent of the user gets affected. Independent and self-consistent opera-
tions can still make forward progress. There is no magic involved, but this does lead to higher
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perceived availability of the system. In other cases where users cannot reach the service at all,
there is no choice between C and A except when part of the service runs on the client. This ex-
ception, commonly known as a disconnected operation or offline mode, is becoming increasingly
important. Some HTML5 features-in particular, on-client persistent storage-make disconnected
operation easier going forward. The designer forfeits A in a way that users do not see. The users
know that the client has scheduled the changes and will apply them to the data-store at a later
time.
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Application-tailored storage

Analysts are expecting that by 2025 the global datasphere will grow to 163 zettabytes, an in-
crease of more than 1000% from the 16.1 ZB of data of 2016. That puts pressure not only to
hardware manufacturers for device capacity and performance but also to data-stores for handling
this Big Data growth. The demand for performance, scalability, and workload diversity of modern
applications [7,28,86,129] has led to the development of a broad spectrum of storage platforms.
Nowadays the storage inventory is highly diversified with parallel filesystems for concurrent ac-
cess [19,94], scalable object storage for capacity and scalability [5,23,130] and databases opti-
mized for use in memory [26,35], hard-disks [36,39], or non-volatile memories [46,57,73–75].

These data-centric platforms assume that data is the primary and permanent asset, and
applications come and go. In the data-centric architecture, the data model precedes the imple-
mentation of any given application and will be around and valid long after it is gone. Many people
may think this is what happens now or what should happen. However, that is very rarely the case.
Businesses want functionality, and they purchase or build application systems. Scientists wish
to simulate physical phenomena, which may be computationally intensive or I/O intense. Each
application system has its data model and inextricably tied code with it. Thereby, it is challenging
to change the data model of an implemented application system, as there may be millions of
lines of code dependent on the existing model. Such claims led the database community to step
away from relational databases to NoSQL databases. A NoSQL database lets a developer build
an application without having to define the schema first unlike relational databases which require
to specify the schema before adding any data to the system. No predefined schema makes
NoSQL databases more natural to update as the data and requirements change.

The first golden standard on applications is portability; the property of changing the system
that stores the data without changes in the application source code. The characterization "gen-
eral purpose" can be quite misleading as it refers to the system being agnostic to the application
built upon it, as well as to the type of workloads the system can serve.

Many of the problems a data-store tries to solve are antagonistic. For example, strict ordering
involves high synchronization overheads that compromise concurrency and scalability. Large
files favor sequential access with high throughput whereas small files favor random seeking with

18
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low latency. The conventions and the model upon which a system relies impose certain limita-
tions on the type of workload the system performs optimally for; no system can perform equally
for every workload. Therefore, it is the duty of the developer, or application administrator, to
choose the best-fit system for the application. Factors such as provided abstractions (e.g., struc-
tured or unstructured data), functionality (e.g., consistency model, capabilities), and application
workload (e.g., transfer size, random or sequential I/O), can affect that decision. That decision
only reflects the state for a particular point in time, without guarantees that the "best-fit" match
will hold over a long period. For example, workloads may change as the application evolves, the
system performance may degrade over time, or cost-related policies may necessitate a vendor
change. Portability is essential to avoid being locked-in to a particular vendor.

Even with portability ensured, the application is still susceptible to bottlenecks and outages
inflicted by the use of a single system, regardless of the system. So, that leads us to the second
golden standard, interoperability. It refers to the ability to leverage more than one platforms in
parallel. Doing so unlocks complex operational strategies that would not be feasible otherwise:
capability-aware workload distribution for cost reduction or quality of service reasons [103, 109,
133], application scalability independent to a particular platform, and circumvention of provider
policies such as size quotas or local governmental laws regarding data content or encryption.
Also, dispersing data to multiple locations shields the system against offline attacks, since no
single vendor contains the full dataset. The cost for such strategies is the requirement of an
adequate mechanism to orchestrate the multi-platform data distribution.

A potential way to implement this mechanism is to use existing overlay data-stores such as
Ceph [130] and Glusterfs [100], on a per-application basis. Up to a point, such functionality is na-
tively provided by existing data-stores as dedicated namespace and storage pools. As happens
with any of the existing systems, when the application invokes an I/O request to the system, the
developer completely loses control of the data. How the system will respond to the request is
hardcoded into the source code and cannot change without deep and meticulous intervention.
An alternative would be to implement all the necessary I/O mechanisms within the application.
Such an arrangement must at least perform parallel I/O across diverse platforms, error handling,
data reconstruction, and support concurrent I/O requests arriving from the application. Build-
ing this mechanism is a rather complicated task that requires expertise on I/O handling and
parallel programming. Inevitably that makes applications much more cumbersome and, more
importantly, every new application must reimplement the same mechanism. This dissertation
introduces “application-tailored storage systems’, “storage containers’, as a distributed storage
middleware with programmable behavior. The middleware separates I/O logic from the rest of the
application logic, thereby separating changes made to application codes by science users from
changes made to I/O actions by developers or administrators. Such design helps to defer I/O
decisions until the deployment phase, which is the key for portability, workload tuning, and data
post-processing transparently to the application. I/O logic design is external to the application,
thus allows cleaner code while the developers remain in control. For the middleware develop-
ment, we introduce Tromos SDK (Software Development Kit): a set of highly compartmentalized
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modules that provide the building blocks for building customized distributed storage systems.
Using its domain-specific language, developers can model and deploy systems with customized
distribution logic, consistency, selection algorithms, data layout. Hence, building customized
storage environments for the application is only a matter of choosing the appropriate schema.
Figure 2.1 illustrate the concept of Storage containers.

Figure 2.1 – Storage containers are middleware environments with data management tailored to the re-
quirements of the application at hand. From the application architect’s perspective, storage containers
make possible to separate the I/O management from the rest of the application. From the perspective of
the infrastructure’s administrator, storage containers provide the mean to integrate I/O optimizations and
improve resource utilization, without the need to intervene into the application’s source code.

2.1 Application-tailored storage system

In this dissertation, we introduce Application-tailored storage (ATS) as client-side middleware for
persistent storage that decouples application I/O logic from functionality logic. It allows develop-
ers to apply their I/O related policies without intervention in the source code. Being distributed,
it can cluster clients to form a virtual storage infrastructure for a group of related applications. It
is not meant to replace existing general purpose data-stores, but provide a data management
layer that insulates application and allows it to scale independently. In the conventional notion,
storage is the asset where applications come and go. Thereby, it is justified to apply one-size-
fit-them-all policies to all the applications. ATS leans toward “application is the asset and can
use any combination of existing storage systems”. When the application terminates, so does the
ATS. It allows developers to customize namespace management, consistency level, workload
distribution, crash resiliency, and many others, on a per-application basis. Bellow, we present a
list of use cases where ATS can be a valuable asset.
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2.1.1 Portability

Claiming application portability across platforms entails predictable behavior across all the plat-
form choices. Two distinct aspects often conflated are the API and the protocol. The API is a
shared boundary across which two or more separate components exchange information. The
protocol is a contract between components that define what is and is not guaranteed to happen
on an API call. It defines the rules, syntax, semantics, synchronization of communication and
possible error recovery methods. It does not define though how to realize them, i.e., implementa-
tion details. Along these lines, API is about portability on the source-code level whereas protocol
is about portability on the binary-level.

Due to high synchronization overheads, filesystems in High-Performance Computing (HPC)
tend to replace the strong Portable Operating System Interface (POSIX) semantics, with more
relaxed semantics that favor scalability and concurrency. They are still accessible though through
the same POSIX API. Thereby, two filesystems that expose the same API do not necessarily
implement the same semantics [51].

The same holds for multi-cloud libraries [58, 65, 117]. They unify Cloud Storage provides on
the API level, but not on the semantics. For API, unification means integration of the lowest com-
mon denominator of all vendor-specific API, i.e., the calls that are supported by all platforms. For
protocol, unification means integration to the stricter of all vendor-specific protocols. From an ap-
plication perspective, providing semantics stronger than those requested impose unnecessary
synchronization overheads. Otherwise, semantics weaker than the requested can jeopardize
application correctness [50, 51, 96, 110, 119, 126]. Evidently, the most appropriate "reference"
protocol for an application depends on the application itself, and therefore general purpose sys-
tems, or libraries, cannot provide it, if they want to remain generic.

2.1.2 Federated Storage Toolkit

Architecturally, ATS is a federated collection of independent resources governed by a shared
management system that handles data processing, distribution, and persistence [30,79]. Loosely
coupled resources that act unilaterally, while being centrally managed, enable networks of virtu-
ally limitless capacities, eliminate disruptive outages, and circumvent bottlenecks and quotas.

Data-store for temporal data

Many HPC batch jobs do not require the strong consistency guarantees enforces by POSIX.
Developers in that domain are turning to non-POSIX IO solutions because their applications
are well-understood (e.g., distinct read/write phases, synchronization only needed during certain
phases) and because these applications wreak havoc on file systems designed for general-
purpose workloads (e.g., checkpoint-restart). For example, BatchFS [136] and DeltaFS [137],
two filesystems optimal for batch-jobs, perform more client-side processing and merge updates
when the job finishes. In computer architecture, Scratchpad memory (SPM) is a high-speed
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internal memory used for temporary storage of calculations, data, and other work in progress.
It is similar to the L1 cache in that it is the next closest memory to the ALU after the processor
registers, with explicit instructions to move data to and from main memory.

Bringing the above together, ATS makes a convenient tool for creating Scratchpad persistent
storage using the local storage of compute nodes. Doing so, nodes that run batch jobs can use
this temporary storage instead of having to communicate with the parallel filesystem (e.g., Lustre,
GPFS). Using ATS, nodes that need to store temporal data can also use the storage capacity of
their neighbors, instead of being limited to the host boundaries. To this end, ATS can also help
to improve performance. For example, when a node completes a calculation, it can store data to
the node that is most likely to request them shortly. Thereby, it takes only one transfer over the
network compared to storing to parallel filesystems, which would take one write and one read.

Tiered Storage Management

What will likely characterize Exascale -computing systems capable of a quintillion calculations
per second- is three to four orders of magnitude increase in concurrency from current standards,
a substantially larger storage capacity, and a deepening of the storage hierarchy [56]. At the
same time, technology advents in memory, storage devices, and network introduce new chal-
lenges and opportunities in tiered storage management.

The current practice of independent optimization on each layer of the system I/O software
stack will not scale to the new levels of concurrency, storage hierarchy, and capacity. ATS off-
set a comprehensive solution for managing multiple storage tiers in a distributed setting. That
contradicts past works which were handling storage tiers in pairs, with the upper tier acting as
a staging area for the lower tier. Tromos SDK exposes static (e.g., tier, device type, capabili-
ties, location) and runtime (e.g., load, access pattern) information onto higher layers for making
intelligent data placement decisions. The merits of heterogeneous tier management have been
previously demonstrated both for performance in cluster deployment and capacity provision on
single-host deployment.

OctopusFS [61] automates data management across nodes and tiers in order to improve
throughput and cluster utilization. It includes a variety of pluggable policies for automating data
placement, retrieval, and caching across the storage tiers and cluster nodes. The policies employ
multi-objective optimization techniques for making intelligent data management decisions based
on the requirements of fault tolerance, data and load balancing, and throughput maximization.

HetFS [63] demonstrates tiered storage management on a single host. It is an extension to
ZFS filesystem which provides an intelligent mechanism that balances the benefits and draw-
backs of each tier according to preprogrammed filters. For HetFS, a tier is a physical medium
with distinct characteristics. For example, hard disk drives (HDDs) or magnetic tapes have large
capacity, high sequential throughput, but induce high latency; solid-state drives (SSDs) favor
the degree of parallelism and random operations, but have limited write cycles; and non-volatile
memories (NVMs) outperform NAND-based SSDs but are expensive the introduce a full new set
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of idiosyncrasies.

2.1.3 Second-order management

A commonly conflated term is “scalability”. Vendors colloquially use it to refer to the expansion
ability of their infrastructure, not to the resources themselves, i.e., provide more resources, not
faster. Thereby, if one can realize an application out of these building blocks, then all it takes
to make it scalable is keeping functionality within the performance boundaries of the resource.
Boundaries can exist in various aspects, such as throttling on data transfer (i.e., requests per
second) or quotas (i.e., fixed capacity). Applications can either comply with those limits and
scale no further or do their custom second-order scaling and scale beyond the boundaries of a
single resource.

For example, cloud bursting is an application deployment model in which an application runs
on a fixed pool of on-premise resources and, during peak-load, it spans onto additional cloud
resources. The advantage of such a hybrid cloud deployment is that an organization only pays
for extra compute resources when they are needed. It is a way to optimize resource usage (i.e.,
save on costs) and still provide access to capacity when needed.

ATS heavily relies on a microservice architectural pattern, components that are far less state
dependent upon one another than monolithic applications of the past. That makes it feasible
not only to add more resources and scale up the application but use resources from different
vendors. With criteria governed by functionality, cost-effectiveness, or flexibility demands, devel-
opers can choose the best cloud offering and seamlessly integrate it to the application.

Multi Cloud Usage

A common concern when organizations decide to go to the cloud is the risk associated with
dependency on one external firm, such as Amazon, Google or Microsoft. Avoiding vendor lock-
in while balancing the feature benefits of multiple platforms has been the name of the game from
that perch for more than 30 years. In response, it makes sense to minimize the perceived risks by
using more than one cloud provider. That provides an additional option in case the relationship
with one provider becomes untenable for some reason, either that be financial, or technical such
as service failures or outages. The multi-cloud strategy can be an enabler for mitigating vendor
lock-in risks as mean to minimize their dependence on any one provider and ensure they are
not locked into a single contract, lest they miss out on some new development from a competing
Cloud provider. It allows applications to meet specific workload or application requirements by
selectively consuming unique capability or services from several platforms, without any means
of connection or orchestration between them. ATS standardizes as much as possible a single
management and monitoring tool for cloud interoperability, offloading applications from having to
deal with different management portals and processes.
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Provider-independent security

When data cross the boundaries of a data-store, applications immediately lose control of it and
delegate data integrity and security to the vendor. Bugs, misconfigurations, or operator error
can accidentally expose, or even corrupt, data. Criminals routinely gain unauthorized access to
corporate servers. Even more insidious is the fact that the employees themselves sometimes
violate customer privacy out of carelessness, avarice, or mere curiosity.

Content-addressable storage (CAS) may prohibit modifications to content but still allows read
access to the content, i.e., ensures security but not privacy. Encryption may discourage unau-
thorized access but cannot prohibit it. Data are still accessible if attackers pay effort on the
decryption. The proposed solution to render data immune to off-line attacks is to encrypt, split,
and disperse data over multiple providers; thus no single entity has the full content. That also
improves performance since data are in-parallel retrievable. The only way to gain access to the
content is to own the logical file descriptor, pointing to chunks and including the encryptions keys.

Moreover, one can encrypt chunks with different keys so that even on key leaking, only partial
reconstruction is possible. That, however, induces certain availability constraints - if any of the
providers go down, full data become unavailable. The solution is to apply erasure-coding after
encryption; an encoding method which transforms data into K+P streams, out of which only K
(any K) suffice to reconstruct the original data. Tahoe-lafs [131] has been doing for almost a
decade for filesystems, and data-stores like StorJ, Sia, Maidsafe, and Filecoin have been trying
lately to combine Blockchain and Cloud storage potentials.

2.2 SDK for distributed storage systems

The challenge of constructing application-tailored storage middleware is that every application
must build its custom environment, meaning that every application must "reinvent the wheel" with
subsequent costs in time, money, and resources. To address that developmental challenge we
introduce Tromos Software Development Kit (SDK); a collection of I/O process components and
meshing languages, used as building blocks for the construction of distributed middleware. It
better identifies as a community-driven suite where team members can push, fetch, edit, review,
and version, I/O related components [49]. Tromos advocates separation of concerns, separation
of the data path from the control path, and modularity. The principle idea behind Tromos is to
realize distributed middleware as a composition of basic components, without systems program-
ming. For this reason, the composition is distinguished in three viewpoints:

• Component view: Built-in plugins for a wide range of data processing and request han-
dling. The components are narrow-scoped, down to the level of the algorithm. The focus on
this view is to provide a versatile bench so to support various algorithms implementations.
For example, provide cross-layer information to device selection component so to make in-
telligent decisions, or provide the necessary context for the component to store and load its
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state.

• Driver view: Focuses on how to use components as building blocks for higher-level el-
ements. We achieve it by using declarative language that represents those elements as
stacks or graphs of pipelined components.

• Service View Synthesis frameworks for composing the abstract Driver definitions into run-
ning instances. That provides far greater flexibility for abstraction than API abstraction as
it allows easy extensibility and customization without the need to develop or change the
underlying implementation code.

Tromos architectural pattern models and directly manages the data, logic, rules, and structure
of the system, independently of the user-visible interface. The goal is to enable developers and
administrators to create customized storage environments optimized to the underlying infrastruc-
ture and the application requirements, without changes in the application.

To address that, Tromos provides an infrastructure configuration language, called Manifest,
used to design, document, and describe the target storage environment as a code. Configuration
files created with Manifest constructively specify distributed storage middleware as compositions
of building blocks, as Docker [81] does for containers. Such codified documentation simplifies
many aspects of storage provision, configuration, analysis, and reasoning about performance
and correctness issues that otherwise would demand deep intervention and scavenge on mul-
tiple subsystems. Centralizing the model in the Manifest makes it easier to reason about the
system behavior and find “bugs” in the same way one can reason about an application behavior
by looking into its source code. In particular, it promotes a high-level, functional style of program-
ming that improves communication with domain experts, which is one of the hardest problems in
software development and research.

Tromos Deployer treats Manifest files as executable code for which it generates an execution
plan describing what it will do to reach the described target environment. Administrators can pre-
view and validate the changes before they are applied, in order to mitigate undesired side-effects.
The validation phase draws clean lines between deployment and testing. Errors in automation
scripts will have just the same impact as errors made during manual deploys. Every time the
Deployer applies a model, it generates and configures the same idempotent and reproducible
target environment without user involvement [48,99].

In-vitro experiments Inherent composability and reproducibility properties of systems designed
in Tromos SDK are desired not only in business but in academia as well [59]. A common prac-
tice for researchers that want to validate a new algorithm is to integrate the new algorithm into
existing platforms and measure the outcome over the unmodified version. Although theoretically
correct, this approach is impractical. On the one hand, researchers must spend a significant
amount of time browsing through the source code to find where to place the modifications. On
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the other hand, intervention in a hardly coupled pipeline can cause side-effects (e.g., race con-
ditions) making it difficult to reason whether performance fluctuations are due to the new algo-
rithm or side-effects. Tromos modular design enables researchers to integrate their algorithms
as plugins without requiring in-depth knowledge of the internal system functionality. The same
also helps to evaluate algorithm performance, objectively and free of side-effects. To this end,
potential Tromos usage extends from strict software-defined storage to an in-vitro emulator for
stressing components, both in isolation and in a pipeline, to guarantee a predictable behavior
when deployed.

2.2.1 Components

Conventional storage systems are “monolithic” black boxes that do not share any code, despite
sharing similar functionality. In Tromos we identify and compartmentalize into modules the most
common tasks found in the majority of storage systems. Among others, we identify components
for external data-stores and databases (e.g., filesystems, object storage, key-value), resource
selection, data processing, data distribution, distributed synchronization and consistency, data
reconstruction, and data layout. Modules aim to be loosely coupled, virtually cause no side-
effects, and have minimal inter-module dependencies.

Tromos advocates small and reusable modules that are easy to test, validate, and reason
about their behavior, both in isolation and in interaction with others. That is without saying that
module integration can happen unconditionally. Based on our experience it is imperative to val-
idate modules in various topologies (meshes) as certain behaviors appear only under specific
conditions (e.g., when a stack includes more than two modules). Tromos follows programming
conventions that make modules available both as libraries and as plugins. Plugins make it pos-
sible to create custom pipelines for I/O processing dynamically. It also exploits Golang [29]
capabilities to provide dry runs for unit testing and profiling.

Services The Services are synthesis frameworks that jointly provide primitives for building dis-
tributed storage systems. The objects of those Services are independent, and potentially geo-
graphically distributed processing units. Device services are about portability and storage pro-
vision, Datapath about parallelization and in-transit processing, and Coordinators about names-
pace management and distributed synchronization. The principle idea behind Services is to
provide generic primitives whose semantics are not hardcoded, but governed by auto-produced
drivers. Provided domain specific languages define Drivers as compositions of pipelined com-
ponents. By controlling the pipeline structure, or mesh, developers can describe customized
drivers and adjust Service behavior according to the application needs.

Devices Devices are about storage provision and portability across a broad set of underlying
data-stores. They aim to bring the benefits of Active Storage to cloud-world. Devices could,
for instance, run compression and aggregation functions, throttling, deduplication, and optimize



CHAPTER 2. APPLICATION-TAILORED STORAGE 27

data layout to minimize the bandwidth consumption. Resource language defines a Device as
an asynchronous stack of processing modules categorized into Connectors, Translators, and
Proxies. Connectors unify data-stores on the API level; Translators are processing layers that
unify data-stores on protocol level and optimize I/O concerning data-store capabilities; the latter
makes a Device accessible to clients through the network.

I/O Processors Processors are about in-transit I/O processing of application output. They aim
to decouple the application business or computation logic from the I/O logic. TrIO (Transparent
Regulated I/O) language defines a Processor as a graph of processing modules. Automated
execution of the model then leads to less low-level concerns and burden for the developers. It
automates, for example, module bridging, parallel execution, synchronization, and many others
that require knowledge in parallel and distributed programming. Modules may apply inline trans-
formations to the stream (e.g., compression, filtering, indexing) or create complex structures
with branches and multiplexers (e.g., strip, mirror). That allows a single client to transfer data to
multiple Devices concurrently. Processors can form a composite processing network for moving
filtering logic from computation nodes to I/O nodes, closer to the data.

Coordinator Service Coordinators are about namespace management, metadata management,
and distributed synchronization. Using the Coordinators, concurrently running clients can access
the same data without jeopardizing correctness. Keyzone language defines a Coordinator as a
synchronous stack of processing modules. From an abstract point of view, the language is very
similar to the Resource language used in Devices. It also categorizes modules into Connec-
tors, Translators, and Proxies. The Connectors implement ledger functionality on top of external
databases. A ledger is a shared log that durably persists intentions and updates of top-level op-
erations. Consistency, or an agreed global ordering, becomes simply the order of events in the
log. Translators controls how requests access the ledger. By controlling the Translators, devel-
opers can enforce the adjust Coordinator to the correctness requirements of the application. For
example, a sequencer in the stack will block incoming requests as long as the previous request
is active, while on its absence the requests will be running in parallel.

2.2.2 Virtual Storage Infrastructure

Middleware built upon Services can scale by adding more instances of the appropriate Service
type. Tromos uses a thin layer acting as persistent storage interfaces, to separate user-visible
interface from low-level data-management, written in Service API, i.e., to separate I/O handling
logic from the application computation or business logic. Storage aspects such as request con-
currency, sessions, in-transit processing, placement decisions, data distribution, data layout, and
reconstruction, are externally programmable in a language called Manifest. With that, develop-
ers can tailor the middleware according to the application needs by describing the desired target
environment as a composition of custom data-management routines. The Manifest identifies
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three grids; the messaging, the data, and the processing grid. Its grid run independently and in
principle include all the necessary information for the client-side middleware on how to handle
the available services.



Chapter 3

Programmable Devices

In this Chapter, we introduce a framework for building virtual object storage Devices atop diverse
storage platforms. The framework distinguishes the data plane from the control plane. Using
the provided declarative language the developers can model the device properties as a stack of
basic components. The framework automates the synthesis and produces a running instance of
the target Device.

3.1 Objectives

In order to transfer data to and from a data store, the applications must incorporate into their
source code the API calls. That means the application must also know the constraints, seman-
tics, synchronization of communication, and the request/reply syntax. That becomes even more
complicated as the application must also implement the data-management logic. In our design,
the Devices become the intermediary for running out-of-band data-management functions. Us-
ing composable drivers, the developers can customize the Device semantics according to the
application requirements, without the direct input or any management from the application. Ex-
isting drivers paralellize access, merge requests, and throttle requests, before forwarding data to
external data-stores. Next, we present a few of the challenges Devices are trying to address.

3.1.1 Portability

POSIX standard dominated filesystems for many decades. It defined a programming model to
ensure application portability across different implementations of POSIX-compliant filesystems.
However, there is no such notion in the newly born and emerging Cloud Storage world. Vendors
like Amazon S3, Microsoft Azure, Google Cloud Storage are all trying to promote their solutions
and APIs. Subsequently, if applications incorporate vendor-specific API, they bound to that ven-
dor. To avoid vendor-lock, Multi-cloud connectors such as libcloud [65] for Python, jclouds [58]
for Java, and Stow [117] for Golang provide a unified API with the "lowest common denomi-
nator" [95, 112] of features available in all platforms. Under the hood, connectors translate the
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unified API calls to the vendor-specific calls. The drawback is they hide vendor-specific capabil-
ities from applications. Examples include asynchronous operations, notifications, configuration
management, monitoring, and policies. The pitfall is that even a unified API is not a guaran-
tee that the underlying storage system will exhibit identical behaviors. Many of the problems a
data-store try to solve are antagonistic. For example, strict ordering involves high synchroniza-
tion overheads that compromise concurrency and scalability. Large files favor sequential access
with high throughput whereas small files favor random seek with low latency. A potential so-
lution would be for applications to integrate codepaths for every support vendor but that would
complicate the development and maintenance effort significantly.

Device framework follow a holistic approach taking the whole storage stack into account and
enable developers to drive the integration effort at a “higher denominator” driver. Such drivers
retain access to all the robust features and rich sets of services the cloud offers and at the
same time provide an integrated mean for applications to access diverge storage platforms, i.g.,
achieve portability.

3.1.2 Differentiated Content access

Many in critical areas of science and technology are becoming more and more data intensive.
These applications transfer large amounts of data from storage nodes to compute nodes for pro-
cessing, which is costly and bandwidth consuming. The data movement often dominates the
applications’ runtime. Device framework holds a promise for high performance I/O for these ap-
plications by moving appropriate I/O logic from compute nodes to storage nodes. Devices allow
to run arbitrary code on them and provide differentiated content access over a shared platform.
Overly simplified, Devices is a virtualization layer isolate and provide distinct characteristics to
the collection on the platform (e.g., directories, buckets, or set of keys). Let us draw an example
with a shared platform with directories A and B. A write-intensive application will use device A to
aggregate requests before flushing them to directory A. In contrast, a read-intensive application
will use device B with prefetch and caching capabilities to alleviate platform from continuous read
requests.

Device framework can map collections on shared platform onto higher-level virtual object
devices in the same manner device mapper [101] maps physical block devices onto higher-
level virtual block devices. Its kernel-based nature though makes it inadequate for use in cloud-
storage and high-throughput physical devices such as non-volatile memories. In contrast, Device
framework does not suffer from these deficits as it resides entirely in user-space. It can further
leverage zero-copy technologies to avoid double copies and transitions from userspace to kernel
space, that hinders performance seeking applications.
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3.2 Device Driver Synthesis

A Device driver is a stack of pipelined handlers. They are fundamental components that apply
policies to incoming requests and pass them down to the next layer the stack. They are agnostic
to the request payload and do not apply any transformation on it — policies at this level care
about how to write data to the lower layers, not about the content. Handlers can forward, divide,
or merge incoming I/O requests before calling the lower handler.

For a Device we take for granted three things

i will be hit by concurrent requests that belong on different entities (e.g., different file han-
dlers)

ii will be hit by concurrent requests that belong on the same higher level entity (e.g., a file
handler)

iii there will be multiple handlers in the Stack.

Starting parallel operations on non-thread safe drivers can result to race conditions. One so-
lution to guarantee correctness is to deal with complex (and usually inefficient) locking schemes.
The other solution is to create a new driver instance inside each thread. Based on that, we built
the Device API around organizational constructs termed channels and streams. From the client
perspective, a channel is a dedicated driver instance to which it transfers data in streams. From
the Device perspective, a channel is as a sequence of operations (handlers) that execute in
issue-order and terminate to a private collection on the backend (e.g., a directory for filesystems,
a bucket for object storage, or a prefix for key-value databases). A stream is a variable-length
sequence of bytes that terminate on a data holder within the collection (e.g., files, objects, keys).

Code: 3.1 presents a skeleton of a Device handler. In order for a handler to participate in
the stack it must include a public “device.Stack” field. The framework used that field to place the
handler as a layer in the stack. The NewChannel method is about creating an isolated channel
within the handler. We explain more details about channel functionality in the next Section.

3.2.1 Modeling Language

The Resource is a YAML-compatible language for composing drivers for Devices. It consists
of a unique Device identifier, functional information such credentials and paths, and a stack of
asynchronous handlers (Code 3.2). Handlers, or stack layers, are called by parents and in turn
call children. Some layers are “final” in the sense that terminates requests instead of passing
them on, so they do not have children. For example, /device/proxy/client forwards requests
to another node through the network, /device/connector/POSIX invokes filesystem operations.
Others are “initial” and inject requests into the system from elsewhere, so they do not have
parents. For example, device/proxy/server injects requests from the network. Intermediate layers
have one parent and one child.
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1 type Layer struct {
2 // Used by synthesis service to pipeline the handler
3 device.Stack
4 // Channel tracking
5 channels []device.Channel
6 // Some internal device information
7 dinfo struct{}
8 }
9

10 func (l *Layer) NewChannel(name string) (device.Channel) {
11 // Create a cross-layer channel
12 c := &Channel{
13 // Link local with remote channel
14 callback: l.Stack.NewChannel(),
15 // Initialize a metadata lookup on the channel
16 future: []device.Stream{}{},
17 }
18 // Return channel to caller, but keep track of it
19 l.channels = append(l.channels, c)
20 return c
21 }

Listing 3.1 – Device Handler skeleton. All handlers must export the device.Stack variable. The framework
use this field place the handler into the pipeline. NewChannel() is one of the methods a handler must
implement in order to be stackable and compliant with the Device API. It must be noted that channels are
created synchronously, layer by layer

Figure 3.1 depicts the synthesis process. According to their position in the stack, we differen-
tiate the handlers to the following categories

Connectors

Connectors are the lowermost handlers in the stack. Their purpose is to communicate with
different provider APIs over transport protocols including system calls, library calls, REST API
calls, or other network protocols (e.g., iscsi). In order to track and verify the upload progress,
they annotate transferred blocks with an MD5 hash. If a transfer has failed, they can resend
blocks are required. Available connectors include:

• Filesystem a syscall-based connector for accessing locally mounted filesystems.

• Consul a REST-based connector for accessing Consul [47] distributed key/value store.

• Googledrive a REST-based driver for accessing Googledrive object storage. To cope with
the eventual consistency, we use polling at regular intervals to guarantee the success of
data transfer. We acknowledge the request only when data become visible. Due to the
policing inefficiencies, we plan to reimplement the connector using provided notifications.
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• Stow a multi-cloud connector written in Go [117] that allows access to Amazon S3 and
Microsoft Azure Blob Storage.

Translators

Albeit most of the work performed in the Connectors is not CPU intensive, it is I/O bound. To
compensate the waiting it is desirable to perform more operations in parallel (e.g., multi-part
upload for bandwidth utilization), improve I/O efficiency (e.g., data aggregation for throughput),
and minimize communication (e.g., data rearrangement for fragmentation). Problems like this are
usually solved on a higher level using threads or async libraries such as Twisted [34], Tornado
or gevent.

In our approach, we address the above within the scope of the Device by using Translators.
They are processing layers located just above the Connectors, whose purpose range from pro-
viding thread-safe access to the connector, until making the driver compatible with the platform
limitations [4, 42]. In general, the Connectors are meant to unify platforms on the API-level and
the Translators are meant to unify platforms on the protocol level. Available connectors include:

• Throttler regulates data traffic using the token-bucket method [60, 106]. Platforms that
impose limitations on the number of incoming requests per second will start rejecting re-
quests after a certain limit. We use throttlers to comply with these limitations and avoid
erratic behavior, as perceived by clients.

• Chunker disaggregates incoming request to multiple outgoing requests. We use chunker
to circumvent constraints as to the maximum supported file size on the platform. More
specifically, it breaks input data to multiple chunks sized up to the maximum supported
size. Another usage is to upload multiple chunks in parallel so to decrease upload time,
even for platforms that do not natively support such functionality.

• Burst buffer aggregates incoming requests into a single outgoing request. We use a burst
buffer to and temporarily store the data of requests in order to insulate the persistent storage
from bursty workloads [14], characterized by the massive amount of small I/O operations.
Another usage of this operation is to improve bandwidth utilization when transferring data
to a Cloud provider, by batching multiple requests into a single message.

• Prefetcher speculatively fetches and caches data. Applications that exhibit spatial locality
are likely to ask for adjacent blocks of data shortly. We use prefetcher to bring data in
advance into the host memory, so that future Read() does not have to sustain queueing
and transfer overhead.

Proxy Proxies render Devices accessible through the network. Clients only use Proxies to
negotiate an out-of-band connection for the actual data transfer. That is to avoid encapsula-
tion, fragmentation, and other overheads associated with structured data transfer. Currently, the
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available Proxy relies on Remote Procedure Call (RPC); a protocol that one program can use
to request a service from a program located in another computer on a network without having
to understand the network’s details. We base the implementation on an open-source universal
RPC framework called gRPC [41] and flatbuffers [40] for serialization. In Linux, port 0 is used to
let the kernel dynamically assign a new port to the request, thus enabling greater flexibility than
hardcoding the ports. For the data transfer available transport protocols: TCP, UDT, and KCP.
Complying with IANA guidelines, if more than one Devices exist per host, their proxies must start
port 49152 onwards. For example: if there are five Devices, the respective ports will be from
49152 to 49156 open. These ports are where the RPC server is listening for requests, not the
ports that data transfer will take place.

Capabilities Capabilities are key-value pairs used as labels for the supported functions of the
driver. They can annotate physical properties of the underlying platform (e.g., HDD-based, SSD-
based), hints for the optimal workloads of the platform (e.g., small writes for key-value databases,
sequential for filesystems), geographical or cluster-wise location of the node running the Device,
or any other functional hint. Tromos use these labels in the Device selection process in order to
provide tiered storage management with quality of service guarantees. For example, placement
policies may aim at sequential throughput and favor Devices atop HDDs or random access and
favor Devices atop SSDs.

Figure 3.1 – Synthesis Service for Device drivers. It piggybacks components from the repository into
an asynchronous stack. The Connectors unify underlying the data-stores on the API-level. Translators
handle data-request and unify data-stores on the level of semantics. Proxies make the Device available
through the network.
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1 # Device identifier
2 "dr3":
3 # Device Characteristics (used for Device selection)
4 Capabilities: [ "default", "scannable", "HDD" ]
5 # Data-store client
6 Connector:
7 plugin: "filesystem"
8 path: "/scratch/vol33"
9 # Request-processing layers

10 Translators:
11 # Numberical-ordered stack
12 "0":
13 plugin: "throttler"
14 rate: 120M
15 capacity: 1B
16 regulate: channel
17 "1":
18 plugin: "burstbuffer"
19 blocksize: 1M
20 # Make device accessible through the network
21 Proxy:
22 plugin: "grpc"
23 service: "10.200.0.5:7773"

Listing 3.2 – Composition of customized Device driver in the Resource language. The exposed capabil-
ities are used as hints in the resource selection process. The translators are stacked according to their
numerical order.

3.3 Device Runtime

Devices adopt a two-phase I/O strategy [70, 80] that separate the data transfer phase, between
a client and the Device, from the I/O phase between the Device and the backend storage. The
runtime entities and the interaction are depicted in Figure 3.2.

3.3.1 Channels

Before start transferring data to and from the Device, the clients must establish an end-to-end
channel with it. The channel creation is synchronous. Every layer that receives the creation
request initializes a local channel and forwards the request down the stack. The process con-
tinues until the request reaches the Connector. When this happens, the Connectors creates a
new collection on the backend and replies the request with the collection identifier. Any potential
conflicts with existing collections occur at this step, thus removing time-consuming checks from
the critical I/O path. The reply propagates the stack upwards, with every layer linking its local
channel to the channel of its lower. Once the reply reaches the client, a cross-layer channel is
established, identified by the collection identifier.
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Figure 3.2 – Outline of the Device runtime

Channels are bind with cancellation contexts so to terminate at any time. The context is a
structure which carries deadlines, cancelation signals and other request-scoped values across
API boundaries and between processes [29]. The contexts are triggered explicitly (e.g., abort a
handler-level operation) or implicitly (e.g., timeout). When this happens, the channel gracefully
terminates its streams and removes the written object from the backend.

Grouping

In case of crash or abort, we must remove the partially written to reclaim the storage space.
Crash handling mechanisms such as Journalling or distribution transactions maintain a persisted
log of intentions and affected location so to recover the crash. Tracking every single stream
requires those logs to be continuously updated. For journalling that translates to multiple I/O
to the disk, and for the distributed transactions multiple round-trips over the network. Exploiting
the fact that a channel direct all of its streams into the same collection, it suffices to know the
collection identifier.

Synchronization barrier

The convention is that error handling goes to the level of the channel, not to the level of the
individual stream. As a result, the state of the streams can be in flux until the channel closes.
For example, even if one stream is successful, the channel will remove the persisted data if
another stream in channel fails to persist. That is known as Release consistency model.

A possible analogy is that of a revision control system. The channels are like branches,
streams like commits to the local branch, and channel closing is like pushing the local branch to
a remote server. It is only after the commit that other clients can access the data.
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3.3.2 Streams

Transferring data in block operations (e.g., write(), read(), put(), get()) is a burden because Linux
applies limitations on maximum payload of a single operation. For synchronous threads, the
consumer must continuously loop until EOF. For asynchronous threads, it is possible for the data
of another thread to interleave the loop and cause buffer corruption. Streaming pipes provide
an encapsulation that crosses the various layers with zero-copy capabilities, i.e., avoid copying
data from one layer to another, if not necessary. Streams gracefully close on End Of File (EOF).
As stream we denote an explicit data transfer from a client to the Device (Figure 3.3). That is to
differentiate them from self-induced streams created by the layers in the stack. We refer to the
latter as “sub-streams”. Albeit the state can be in flux as long as the channel remains open, the
stream metadata must appear in the correct issue-order. Central to the device API is the concept
of a deferred, or future. It is a holder for metadata whose value is still unknown because I/O
phase to the platform has not been completed yet [67]. Futures can be passed around just like
regular objects that will block when asked for their value. Every handler embeds a lookup table
for matching the (incoming) parent to the (outgoing) children requests. When a caller submits
a request, the callee immediately replies with a future that points to an index within a metadata
lookup. The assigned index is incremental and represents the invocation order of the parent
request. It can be regarded as a “token” for the caller to later retrieve the (sub)stream metadata
from that lookup. Futures permit the caller to progress with its other tasks, without stopping
to wait for the data transfer to complete. Figure 3.4 presents the skeleton of a request-diving
handler and how it uses the futures.

1 type Channel struct {
2 // Linked channel on the lower handler
3 callback device.WriteChannel
4 // Metadata lookup for asynchronous streams
5 future []device.Stream
6 }
7

8 func (ch *Channel) NewStream(src *io.PipeReader) int {
9 // Forward the incoming request to the next layer

10 return ch.callback.NewStream(src),
11 }

Listing 3.3 – Request forwarding (1 parent, 1 children). The handler does not take any action, it simply
forwards the parent request to the next layer. Every handler maintains on its local channel a lookup table
for keeping track of the outgoing streams. For every new stream, the channel returns a token for it to
the caller. Because the stream are asynchronous, their metadata are not consistent until the channel
is closed. When it closes, the callers can use the token to retrieve the stream metadata. This is done
synchronously, layer by layer. Also see Figures 3.4 and 3.5
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1 func (ch *Channel) NewStream(src *io.PipeReader) int {
2 pr0, pw0 := io.Pipe()
3 pr1, pw1 := io.Pipe()
4

5 // Use lookup size as incremental identifier
6 token := len(ch.future)
7

8 // Initialize remote streams
9 // Keep writing edge, forward reading edge

10 s0 := &device.Stream{
11 Index: ch.callback.NewStream(pr0),
12 Parent: token,
13 }
14 s1 := &device.Stream{
15 Index: ch.callback.NewStream(pr1),
16 Parent: token,
17 }}
18

19 // Track the children streams
20 ch.future = append(ch.future, s0, s1)
21

22 // initialize a new thread for pushing data
23 // to writing edges of the pipes
24 go func(){ /* Some data transfer or process logic */}
25

26 // Data transfer continues on the backend
27 return token
28 // On Metadata() merge children with parent metadata
29 }

Listing 3.4 – Snippet of dividing a stream into two sub-streams (1 parent, N children). For every parent
stream the handler returns a token. When the channel closes, the caller can call Metadata() method and
retrieve the stream metadata using the given token
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1 func (ch *Channel) NewStream(src *io.PipeReader) int {
2 // Not shown - Initialize local buffer and pipes
3 // Store source data to a local buffer
4 n, _ := io.ReadAtLeast(src, ch.buffer[ch.boffset:],
5 len(ch.buffer[ch.boffset:])))
6

7 // Use lookup size as incremental identifier
8 token := len(ch.future)
9

10 // Track the children streams
11 ch.future = append(ch.future, device.Stream{
12 ID: token,
13 Parent: commonStream.Index(),
14 }}
15

16 return token
17 // On channel closing, flush the buffer
18 // On Metadata() populate temporary metadata
19 // with the metadata of persisted blob
20 }

Listing 3.5 – Snippet of merging streams into a super-stream (N parents, 1 grandparent). For every parent
stream the handler returns a token. For every parent stream the handler returns a token. The super-
stream gets persisted when the channel closes. Then, the client call Metadata() method and retrieve the
stream metadata using the given token

3.3.3 I/O Phase

Connectors are dummy. They start transferring data to the platform as soon as they receive a
request from the upper layers. Because that can happen at any time during the lifetime of a chan-
nel, we use the Channel closing as a synchronization barrier. Channels close synchronously in
a top-down manner with each layer flushing and closing the lower layer. The metadata of all the
previous operations become available when the closing request reach the connector. Because
of the cascade effect -layers that create sub-streams- there is no simple relation between the
logical client operations and the chunks written in the backend. To illustrate it with an example, a
caller submits a parent request to a Chunker handler which then splits it to multiple sub-requests.
Albeit Chunker would typically return more than one replies, one for every sub-request, the caller
expects only one reply -for the parent request. Thereby metadata must be reconstructed layer by
layer, with each layer merging the children metadata with the parent metadata. For the merge,
the caller uses its embedded parent-to-children lookup and the metadata table returned by the
callee.

Items An Item structure represent the metadata of a stream operation; it contains all the nec-
essary information to reconstruct the data of a stream. Its format is "collection::[]object::[]offset",
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where the [] symbol denote a list. The collection represents the group to which the channel was
writing its data. The objects represent information about contiguous chunks written on the per-
sisted storage in a single Connector operation. In case that chunks are not separate elements
on the backend, but part of a larger blob the offset shows the chunk location within that blob.
In this case, we use the term “grandparent” stream to denote the aggregation of multiple parent
streams into a single stream (Figure 3.5). The SDK provides helper functions to translate the flat
structure of children metadata (e.g., a vector of children metadata) to Items -append children to
the chain of the parent Item.

Conventionally, storage systems return unique identifiers for addressing written data. Later,
clients can use that identifier to retrieve the written content. When this happens, the system uses
the identifier to find the address location - either algorithmically or with a lookup. Architecturally,
such translation mechanism is not part of the Device but of the metadata lookup service. Device
only return Items serialized in JSON packets. Alternatively stated, the Items are logical files
pointing to data spread across various Cloud storage providers. Figure 3.3 presents an overview
of the process, from channel creation until item retrieval.
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Figure 3.3 – Illustration of the writing process. First, the clients must open a channel to the Device. Within
that channel, the client can start multiple asynchronous streams. For every stream, the channel returns a
future(token) pointing to a lookup. When the channel closes the client can use the token to retrieve from
the lookup the metadata of the stream
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Device API Return Value Comment

Upstream(Name) (Channel, error) New upstream channel
Put(Channel, io.Reader) (Future, error) New write stream

Close(Channel) (error) Flush, close channel
Metadata([]Future) map[Future]Item Return items

Downstream(Name, Item) (Channel, error) Create channel
Get(Channel, io.Writer) (Future, error) New read stream

Scan() ([]string, []Item, error) Index external data-store contents

Structure Fields

Channel (Collection, Mode, Context) Isolated view of the driver
Stream (Index, Parent, Mode) Asynchronous Data transfer

Item (Off, Size, ID, Chain []Item) Metadata for the data transfer

Table 3.1 – Stackable API implemented by the translators and the connector. Remove(), Info() and other
calls are emitted for abbreviation.

3.4 Summary

In this Chapter we present a framework for composing Drivers for active storage Devices. The
Resource is a declarative language that abstracts Drivers as a stack (pipeline) of basic handlers.
That makes it easier to understand and reason about, less buggy, easier extendable compared
to hardcoded drivers. Drivers can normalize data-stores, tune I/O handling to the expected
workload, and harness performance benefits by moving functionality closer to the data.

The Device API is built around the concept of Channels and Streams. The Channels are
cross-layer constructs that appear to clients as different and isolated instances of the Driver.
Clients can use channels to avoid dealing with complex locking. The Streams are asynchronous
channel operations for transferring sequences of bytes with arbitrary length. Every Stream is
associated with an Item; a token (future) to represent the results of asynchronous Streams.
When the channel closes, the Item is populated with all the necessary information to reconstruct
the original data.

3.4.1 Related Work

The device mapper is a long-living Linux kernel framework that maps physical block devices onto
higher-level virtual block devices. It forms the foundation of the logical volume manager (LVM),
software RAIDs and dm-crypt disk encryption, and offers additional features such as file system
snapshots. Linux storage devices are modular and stackable. That promotes flexibility and
allows independent development efforts, but leads to a vast number of possible configurations.
That requires the user to manage the stack because there is not enough commonality to enable
effective automation. Over time, various tools emerged claiming easier setup and management
without requiring expert-level storage administration knowledge. Such tools range from local
management to cloud management.
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In the past ten years, volume-managing filesystems (VMFs) such as ZFS and Btrfs have come
into vogue and gained users, after being previously available only on other UNIX-based operating
systems. These incorporate what would be handled by multiple tools under traditional Linux into
a single tool. Redundancy, thin provisioning, volume management, and filesystems become
features within a single comprehensive, consistent configuration system. Where a traditional
Linux storage stack exposes the layers of block devices to the user to manage, VMFs hide
everything in a pool.

Stratis [98] is a local storage solution that lets multiple logical filesystems share a pool of
storage allocated from one or more block devices. Instead of an entirely in-kernel approach like
ZFS or Btrfs, Stratis uses a hybrid user/kernel approach that builds upon existing block capa-
bilities like device-mapper, existing filesystem capabilities like XFS, and a userspace daemon
for monitoring and control. The goal of Stratis is to provide the conceptual simplicity of volume-
managing filesystems and surpass them in areas such as monitoring and notification, automatic
reconfiguration, and integration with higher-level storage management frameworks.

ARIA [112] is a tool developer can use to deploy and orchestrate a single application on
multiple infrastructures. Is built on three pillars that are needed to manage the entire stack and
lifecycle of an application while circumventing the need for a single abstraction layer. ARIA is the
closest to our framework, but there is a subtle difference that makes them completely different
projects. ARIA is lifecycle management tool relying on offline operations. Devices focus on
in-transit data management, delegating offline operations to higher layers.



Chapter 4

Programmable I/O Processors

In this Chapter, we introduce a framework for building I/O Processors for in-transit processing
and data distribution. The framework distinguishes the data plane from the control plane. Using
the provided declarative language the developers can model the desired I/O path as a directed
acyclic graph of processing modules. The framework automates the synthesis and produces a
running instance of the target Processor.

4.1 Objectives

An I/O Processor is an intermediate that allows the injection and the execution of data processing
routines without the burden of systems programming. A key different between I/O Processors
and Devices is that the former operates on data-level (e.g., transformations, routing, stripping)
whereas the latter on request-level (e.g., aggregation, chunking). Next, we present a few of the
challenges Processor are trying to address.

4.1.1 In-transit processing

It is rare for application data to persist in the same format as derived from the computation. Typ-
ically, data-stores apply certain transformations such as compression, deduplication, or encryp-
tion before persisting data on physical media. Although such functionality saves the application
developers from mixing I/O processing logic with computation logic, it locks the application to
data-stores that support these features.

Interposing the application and the storage Devices, I/O Processors make it possible to apply
post-processing routines to application output, transparently to the application. Suitable tasks
include those that reduce data without loss of scientific validity (e.g., compression, deduplica-
tion), improve information content (e.g., add simulation timestamps), generate metadata (e.g.,
indexing), or perform lightweight analysis for visualization dashboards.

43
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4.1.2 Data Distribution

For a client to transfer data from and to a Device is a rather straight-forward process. Where it
gets significantly more complicated is when a client needs to leverage more than one Devices
simultaneously. Reasons include performance, resiliency, or privacy.

One way to achieve data distribution to multiple independent Devices, or platforms, is to incor-
porate such a mechanism into the source code of the client application. Unfortunately, parallel
programming is notoriously difficult and comes with a boilerplate code for thread execution, bridg-
ing (e.g., buffering), and synchronization for thread safety. Frameworks and languages such as
MPI-IO library [51] or Chapel [114] can address some of the above, but have a steep learning
curve and therefore are not suitable for our purposes. Moreover, every new application must
reimplement the same codepaths.

In our proposal, all that it takes from the developer is to describe the desired I/O logic in a
graph-based language and the I/O Processor handles the rest.

4.1.3 Bidirectional streams

In the literature one can find a vast amount of stream processing engines for such as Flink [25]
and Spark [134] BigData, or GNURadio [16] for signal processing. Similarly, graph-based pro-
gramming dominate domains such as distributed computation [37, 71], parallel task schedul-
ing [28,134], and machine learning [1].

In general, all of the above exhibit the same property: data flow in one directional. The flow
for I/O usage though is bi-directional since it does not suffice to only process data on write, must
data must be unambiguously reconstructed to their original form on reading. To this end, I/O
Processors reverse the concept of "a single streaming network to serve multiple events" towards
"every event owns its streaming network".

4.2 Driver Synthesis

Our framework, called Transparent Regulated I/O (TrIO), aims at designing Processor drivers
as directed acyclic graphs of processing components [90]. Presenting this type of driver as a
graph, instead of a stack, makes it more natural to express various distribution schemes. One
can imagine the difficulties of expressing as a stack the statement “mirror data in two streams,
encrypt the first, and compress the second”. With a graph, the topology seems as natural as the
statement itself. The outline of a Processor driver is depicted in Figure 4.1. It consist of graph
definitions for upstream and downstream flows, and wrappers that pipeline the graph outputs
with Devices or other Processors for further processing. The latter makes it possible to federate
Processors that reside on different nodes into a Composite Network, and move I/O processing
logic from computational nodes to filtering nodes, closer to the data. That comes in handy for
computational nodes with exhausted memory or running memory-intensive applications. It is
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also useful for nodes equipped with expensive hardware that cannot waste for simple filtering
tasks.

Figure 4.1 – Synthesis Service for Processor drivers. The driver abstracts the processing path as a di-
rected acyclic graph the outputs of which can be forwarded to Devices or to other Processors for further
processing. The developer models the driver as a graph of processing components, as shown in List-
ing 4.4

TrIO adheres to a visual programming paradigm called flow-based programming (FBP) [88].
The paradigm, invented by J. Paul Morrison in the early 1970s for banking applications, relies on
bounded buffers, named ports, information packets with defined lifetimes, and separate definition
of connections. FBP views an application not as a single sequential process with a discrete
start and finish points in time, but as a network of asynchronous “black box” processes. In this
view, the focus is on the application data and the applied transformations to produce the desired
output.

The major characteristics of Flow-based programming paradigm are [91] :

• Unified approach in software development from domain analysis to coding. Start with di-
agrams and data flows and continue the structural breakdown until the processing algo-
rithms. Essentially it maps hardware engineering practices on software development

• Concurrency comes by design, not by purpose. Graph nodes run in parallel and share state
by communication. FBP applications run in less elapsed time than conventional programs,
and make optimal use of all the processors on a machine, with no special programming
required to achieve this.

Known appliances of FBP programming include Data analysis and ETL (e.g., Pentaho Kettle,
Pypes), Multimedia broadcasting (e.g., Kamaelia), Simulations (LabVIEW is flow-based), Net-
working (AMQP is a similar approach). The scheduler is a piece of software responsible for
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interpreting the abstract graph into an object running in memory. The basis of our scheduler is
GoFlow [124] implementation of FBP, adapted for I/O purposes in a distributed setup.

4.2.1 Processing kernels

Kernels are fundamental event-driven processing components. They communicate using fixed-
capacity connections that convey structured data chunks, called “Information Packets” (IP). Con-
nections are attached to a kernel through a port; an agreed name between the kernel and the
graph definition. The separate definition of connection minimizes kernel interdependence and
skips the need to integrate a routing table within the kernel scope. Kernel “multiplex” incoming re-
quests, passing each parent request on to one (processor/compress), some (processor/stripe),
or all (processor/mirror) of the output ports. In case that multiple outputs connect to a single input,
the packets arrive in FIFO order. An output port can connect only to one input port; otherwise,
the behavior is undetermined.

All the kernels must include three public fields named “Ingress”, “Egress”, and “Runtime”. The
first is the input ports, the second the output ports, and the third a context that we will explain
later (Figure 4.1). Given those fields, the scheduler automates the kernel integration (e.g., fixing
pointers) without further involvement from the developer. Both input and output ports can be
scalar or array-type (e.g., for stripping). The number of ports per kernel is not limited, but it is
recommended to keep them a few, otherwise, kernel’s cohesion and logical consistency suffers.

1 type Kernel struct {
2 Runtime process.Environment
3 Ingress <-chan process.Packet
4 Egress chan <- process.Packet
5 }

Listing 4.1 – All handlers must include these three fields. The scheduler use them to add the kernel into
the pipeline

Event handlers When an Information Packet arrives at one of the input ports, the scheduler
spawns a new thread to handle it. The called method is the one named after the port identifier.
Because asynchronous threads can lead to race conditions and unexpected program behavior if
two threads try to modify the kernel state, Processors have a built-in mechanism to make state
modification thread-safe. On presence, the scheduler will invoke StateLock() method before
calling an event handler and StateUnlock() after event handler returns. The scheduler can also
handle the uncontrollable flow of incoming requests that can cause a “fork bomb”, i.e., reach the
maximum entries in the process table or exhausted RAM. It includes a Thread pool mechanism
that provides a Pool of workers in which every process runs a specific number of workers which
compete for input and process it concurrently.



CHAPTER 4. PROGRAMMABLE I/O PROCESSORS 47

Data exchange Devising a proper data exchange schema proved to be more challenging than
expected. The operating systems impose certain limitations on the maximum size of a conveyed
Information Packet (IP). That renders it impossible to transfer a large sequence of bytes at once.
Dividing the content into multiple IPs will cause the kernel to spawn new handlers for each
received IP. Implementing complex multiplexing mechanisms within the kernel makes it more
difficult to reason about the state and take snapshots.

Our solution leverage Golang’s [29] pipes [72] that provide streaming methods to buffers.
Instead of moving data around, we move reading and writing edges of the pipe. At any point
in time, a buffer is “owned” by a single kernel. What happens with the pipes is that a kernel
“leases” the buffer to next kernel for reading or writing. When one of the edges close the pipe,
the termination signal propagates to the other edge and acts accordingly. For example, if a
previous kernel closes the pipe, the successive kernel becomes aware that no data will follow
and can gracefully terminate. Conclusively, channels connect kernels, information packets cause
kernels to spawn handlers, and handlers exchange data via pipes or streams.

Bidirection The I/O process is bidirectional. The direction from clients to the storage called
upstream, and the direction from storage to clients called downstream. For the client to interpret
the data correctly, the downstream must inverse the transformations occurred in the upstream.
If the kernels participating in the upstream are stateful, then their state on the upstream is also
needed to reconstruct the original data. TrIO provides an environmental variable for kernels to
store and load their state, in a key-value manner.

On upstream a kernel K creates a pipe and forwards the reading edge to the next kernel N.
Kernel K start pushing the process results to the writing edge of the pipe. Kernel N can retrieve
the results by the reading edge of the pipe. When kernel K has pushed all the data, closes the
pipe and stores the number of pushed data to the database. The pipeline gracefully closes top-
bottom, starting from the application. On downstream, kernel K load the state and allocated a
buffer equal to the number of written data. It then creates a pipe and forwards the writing edge of
kernel N for populating the buffer with data. The pipeline gracefully terminates bottom-up starting
from the Devices.

Codes 4.2 and 4.3 exemplify how kernels can use pipes and the environmental variable, for
upstream and downstream, respectively.

Available Kernels

• Encryption: is the process of encoding a message or information in such a way that only
authorized parties can access it and those who are not authorized cannot. We base
our implementation on Advanced Encryption Standard (AES) [27]. AES is a symmetric-key
algorithm, meaning the same key is used for both encrypting and decrypting the data. The
Output Feedback (OFB) mode makes a block cipher into a synchronous stream cipher. It
generates keystream blocks, which are then XORed with the plaintext blocks to get the
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1 // Upstream
2 func (k *Kernel) OnIngress(packet process.Packet) {
3 pr, pw := io.Pipe()
4

5 defer pr.Close()
6

7 k.Egress <- process.Packet {
8 Reader: pr,
9 }

10

11 /* Transformations go here. For the demo we copy */
12

13 n, err := io.Copy(pw, packet.Reader)
14 if err != nil {
15 k.Runtime.Abort(err)
16 }else {
17 k.Runtime.Store("written", n)
18 }
19 }

Listing 4.2 – Illustration of upstream pipelining. The kernel is passing down to its outputs the reading edge
of a local pipe. In this example, we copy directly to input to output. In more advanced scenarios the kernel
would keep a local buffer with the encoded data. On success, the kernel record its state in a provided
key-value map

ciphertext. Just as with other stream ciphers, flipping a bit in the ciphertext produces a
flipped bit in the plaintext at the same location. Each operation on output feedback block
cipher depends on all previous ones, and so encryption is sequential.

• Compression: reduces the data size by determining if a sequence of bits that define any
particular piece of data can reduce to a smaller sequence. Zstandard [32] is a fast lossless
compression algorithm introduced by Facebook, targeting at real-time compression. Zstd
can also offer stronger compression ratios at the cost of compression speed. The tradeoff
between speed and compression is configurable by small increments. The smaller the
amount of data to compress, the more difficult it is to compress.

• Deduplication: refers to a specialized data compression technique that eliminates dupli-
cate blocks of repeating data before being written to a storage device [83]. Unlike simple
encoding schemes, like Base-64, where every three contiguous input bytes corresponds,
in order, to 4 contiguous output bytes, in compression the input relates to the output
in a sophisticated way. The implications are as follows i) users cannot merely take com-
pressed data and decompress an arbitrary portion of it, such as “decompress the last 500
bytes of this file”. They need to read the entire compressed file from the beginning or at
least start from some well-known point in the stream. ii) Modification of the uncompressed
input may have arbitrarily large impacts on the compressed output. For example, changing
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1 // Downstream
2 func (k *Kernel) OnIngress(packet process.Packet)
3 pr, pw := io.Pipe()
4

5 defer in.Close()
6

7 k.Out <- process.Packet{
8 Writer: pw,
9 Info: struct{}{},

10 }
11

12 n, err := k.Runtime.Load("written")
13 if err != nil {
14 u.Runtime.Abort(err)
15 }
16

17 /* Transformations go here. For the demo we copy */
18

19 rb, err := io.CopyN(packet.Writer, pr, n)
20 switch {
21 case err != nil:
22 k.Runtime.Abort(err)
23 case rb != n:
24 k.Runtime.Abort(errors.Corrupted(n, rb))
25 }
26 }

Listing 4.3 – Illustration of downstream pipelining. The kernel is passing down to its outputs the writing
edge of a local pipe. Before doing anything else, it first loads the state. In this example, we copy directly.
In more advanced scenarios the kernel would keep a local buffer with the decoded data

a single-byte in the input may change every subsequent byte in the output. Deduplication
works in a way that random access into a file segment is still possible albeit the file
is in compressed form, e.g., by having an index such that the location of any byte can be
located. The tradeoff for this convenience is that deduplication only works with large blocks,
or the cost of tracking each block becomes prohibitive. Although deduplication was initially
developers as a way to improve storage efficiency for backups, with the advent of flash stor-
age, it became a way to reduce the amount of data written to the writes so to reduce driver
wearing.

• Mirroring: is the real-time replication of data onto separate physical location so to ensure
continuous availability. Replicating data over long distant location allows to failover and use
a standby copy of the data, hence enabling fault-tolerance - continuous availability with
minimal user interruption. Replication also helps with load-balancing and performance.
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Clients can fetch in parallel chunks from mirrored data in order to minimize overall opera-
tion time. For geographically dispersed locations clients can choose to fetch data from the
replica closer to their proximity, thus achieving lower latency and higher throughput.
Due to real-time data copying, the information stored from the original location is always
an exact copy of the data from the production device. Hence, there are no induced consis-
tency issues derive from version skewing between the replicas as occur in most eventually
consistent systems.

• Stripping: is the technique of segmenting logically sequential data, such as a file, so that
consecutive segments are stored on different physical storage devices. Striping allows the
minor data access throughput of each storage devices to be cumulatively multiplied by the
number of storage devices employed. It increases the total data throughput by spreading
segments across multiple devices, in parallel. Apart from parallelization and bottleneck
mitigation, disbanding incoming data also a useful method for balancing I/O load across
an array of devices. One method of striping is done by interleaving sequential segments
on storage devices in a round-robin fashion from the beginning of the data sequence. This
works well for streaming data, but subsequent random accesses will require knowledge of
which device contains the data. If the data is stored such that the physical address of each
data segment is assigned a 1-to-1 mapping to a particular device, the device to access
each segment requested can be calculated from the address without knowing the offset of
the data within the full sequence. Because different segments of data are kept on different
storage devices, the failure of one device causes the corruption of the full data sequence.
In effect, the failure rate of the array of storage devices is equal to the sum of the failure rate
of each storage device.

zasw4

• Erasure Coding: overcomes data availability and safety disadvantages of stripping by en-
riching the original content with redundancy data and spread it across devices. A subset
of this data is enough to regenerate the original data, even if parts of the original con-
tent have been lost. The most established erasure-coding algorithm invented by Reed and
Solomon [102]. Reed-Solomon algorithm, as it is widely known, takes a message, breaks
it into n pieces, adds k “parity” pieces, and then reconstruct the original from n of the (n+k)
pieces. Erasure coding allows setting arbitrary ratios of original data and coding data. With
a ratio of m parts of original data to n parts of coding data, the code can tolerate the loss of
any n parts and regenerate the original m parts. For example code of m:n = 8:3 enriches
every eight parts of data with three parts of coding data and spreads the data across 11
(8 + 3) disks. This encoding can then tolerate the loss of any three disks and generates a
redundancy blow-up of just (m + n)/n = (8 + 3)/8 = 1.375. Compare this with three-way
quorum replication, which can tolerate the loss of only 1 or 2 disks and has a blow-
up of a factor of 3. Erasure coding performs best in cases of sequential data writes as it
computes the coding parts on the fly and writes them along. If written in random order, write
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performance for data degrades severely. The kernel needs to read all data of the coding
group first, recompute the coding parts, and then write out the modified original data along
with the coding data. That amplifies any random write by m – 1 read and m writes. As
erasure coding stores the original data as-is, reading erasure coded data behaves just like
reading replicated data. Thereby, erasure coding is suggested as a mean for redundancy
for sequentially written data. For everything else use replication [128].

• Windows are specialized kernels that communicate with external systems. Contrary to the
previous kernels whose inputs and outputs reside entirely within the Processor, windows
interact with other systems. Use cases include the augmentation of the in-transit bytestream
with data from external sources (e.g., simulation timestamps [18]) and the export of data
summaries for real-time visualization (e.g., like tensorboard [43]).

4.2.2 Graph

The vertices in a Graph represent the components, and the edges represent their connection.
Graphs supports multi-level hierarchies with components being either kernels or nested graphs.
The Network is an in-memory instance of a top-level graph. To realize the abstract Graph into
a running instance, the scheduler allocates an empty Network that populate with components
and connections, at runtime, as it walks the graph. Thanks to data coupled components -the
loosest form of coupling- the scheduler can turn off and on components without affecting the rest
of the Network. Another way to perceive the process is as “compiling” the graph. Because the
allocation and compilation are relatively expensive operations, when a Network closes we do not
destruct it. We reset its state and place it into a Network pool. Future requests can retrieve only
of the existing instances instead of compiling a new one.

The following directive adds a new component to the Network

network.Add(new(ComponentType), "processName", new(Environment))

The first argument is the actual process object. The second is a string name which will be
used to reference the process within the Network. The reference names do not have any particu-
lar meaning other than identifying components within the graph. Graph developer is responsible
for ensuring the uniqueness of assigned identifiers, or the expected behavior is undetermined.
The third argument is optional and is used to provide the component with a key-value map for
state keeping.

The following directive links two components in the Network

network.Connect("senderProc", "receiverProc")

The first argument is the reference name of the sending kernel and the second argument the
reference name of the receiving kernel. A thing to notice is that there is no explicit definition as
to which input and output ports to connect. That drifts from the actual FBP definition. The first



CHAPTER 4. PROGRAMMABLE I/O PROCESSORS 52

reason is for simplicity; the scheduler automatically resolves the port index in a first-come-first-
served order. The second reason is to avoid loops (feed output back to input) and cycles (feed
output back to the input through a proxy) that can lead to livelock situations.

Figure 4.2 – The Processor runtime consumes a TrIO graph and produces the respective network (graph
instance). It case of Macro-graphs, the runtime also provides a lightweight key-value map for saving
the evaluted expressions. This is needed so that the downstream can reverse the upstream graph and
correctly interpret the written data

Macros Programming in graphs is not a panacea as it involves predetermined and hard-coded
paths. That translates to a large collection of graphs to maintain. For example, for a replication
scenario with a mirroring component, the administrators must maintain a different graph for every
different number of replicas – different topology, different graph.

To mitigate the reusability issue, we employ Macro Conditions. As the scheduler walks the
graph it evaluates the conditions and decides which branch to follow, or how many outputs to
add to a kernel. The conditions can be user-defined (e.g., number of replicas) or system-defined
(e.g., CPU-load). By deferring the path selection and taking into account the system state,
the scheduler can reroute I/O for load balancing, perform adaptive optimization such as avoid
previously failed paths [125] or dynamically switch I/O processing kernels. Code 4.4 shows a
snippet of a graph augmented with Macros for disabling compression if the CPU-load exceeds
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80%. Our technique reminisces just in time compilation (JIT) [11] used in interpreted language
to improve the application performance at runtime. The tradeoff for this dynamism is the need to
recompile a new Network for every new request. Further, the downstream graph must know the
selected paths on the upstream so to interpret the data correctly, i.e., it should know if data were
written in the compressed form and decide whether to include a decompression component or
not.

Overall, static Graphs perform generally faster because compiled-once-run-many-times. It
is also possible to perform certain optimization (e.g., block size) since all the components are
known a prior. Oppositely, dynamic Graphs are more flexible, more powerful, but require compi-
lation for every request.

1 func (d *Driver) NewUpstream() base.Upstream {
2 // Allocate a basic process network
3 upstream := base.NewUpstream()
4

5 upstream.Add(dedup.Uplink{}, "dedup")
6 upstream.Add(forwarder.Uplink{}, "holder")
7 upstream.Add(strip.Uplink{Stripe:d.slen}), "strip"
8

9 upstream.MapInPort("In", "dedup", "In", nil)
10 upstream.Connect("dedup", "holder")
11

12 if d.Runtime.CPULoad < 80 {
13 upstream.Record("cpu", d.Runtime.CPULoad)
14 upstream.Connect("holder", "compress")
15 upstream.Connect("compress", "strip")
16 } else {
17 upstream.Connect("holder", "strip")
18 }
19 upstream.MapOutPort("strip", nil)
20 upstream.MapOutPort("strip", nil)
21

22 return upstream
23 }

Listing 4.4 – Composition of customized Processor driver (as graph) in the TrIO language. For brevity, we
only include the graph definition for the upstream. The Macro evaluation allows to switch on and off the
compression according to the system load. The upstream persistently record the conditional variable so
that downstream graph can reconstruct the path and interpret the data correctly

Downstream is not Upstream Previously we argued that a downstream graph must inverse the
process occurred in the upstream graph in order to correctly interpret the data. The subtle point
is that inversion does not necessarily imply symmetrical graphs. For example, an upstream graph



CHAPTER 4. PROGRAMMABLE I/O PROCESSORS 54

with a mirroring kernel can be represented on the downstream by (i) a graph with a decision-mak-
ing kernel for reading from one replica or another (ii) a graph with a kernel that simultaneously
reads both replicas (iii) a graph that completely neglects the second replica (e.g., when it is
archived). Hence, two graphs that logically inverse one another may differ both in kernels and
topology.

A related challenge we had to face in order to support bidirectionality was the topology of
the graph. The downstream graph is flipped compared to the upstream. The Device that was
the destination on upstream is the data source for downstream. An inversion is relatively simple
for a topology with serial pipelines, but it becomes significantly more complicated if the topology
involves branches or multiplexers (e.g., for stripping). Our solution was to invert the data transfer
logic instead of inverting the whole graph. To do the “trick”, we employ the concepts of pipes and
key-value maps as mentioned previously.

4.3 Driver Runtime

The Network as described so far is a stream-processing engine. In order to start processing
data, someone must feed data to the engine input. Similarly, someone must consume its out-
put. Aiming at reusability and simplicity, we deliberately kept the data ingestion and digestion
mechanisms separate to the Network.

4.3.1 Network Ports

In contrast to the ports of components which are physical structures with public fields, the Net-
work ports are virtual mappings for streaming data from external processes to the Network. They
are also a boundary that hides the internal Network structure from the outer world.

Network input ports are declared in the Graph using the method

network.MapInPort("processName", func([]string), func(<-chan error) error)

The first argument is the reference name of the component used similarly to Connection
directive. The second argument is a callback function for resolving compatibility linking. One of
the problems of existing storage APIs is that they do not explicitly advertise supported features
within the system. They may be publicly available in human-readable documentation, but the
lack of machine-to-machine information makes it impossible to automatically resolve whether
the system implements a certain functionality or not. For this reasons, network input ports are
annotated so to detect “compatibility” with the other edge, whether that be another Graph or a
Device. Typically, systems resolve compatibility in a top-bottom manner. The upper edge (e.g.,
client) resolves whether a lower edge (e.g., server) qualifies to the requirements and decides to
connect or not. In our bottom-up approach, the upper edge sends a list to the lower edge, and
the lower edge replies whether it meets the requirements or not. The upper edge is the output
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network port and the lower edge the input network port of a successive graph or a Device. The
third argument is a callback for deciding the returned error code of the Network based on the
outcome of the output ports. For the majority of distribution schemes, all the outputs must be
written successfully before declaring the top-level operation as successful, but it not also always
the case. For example, in "at least" replications schemes the operation is successful when K out
of N outputs (k <= N) written successfully. In such schemes, the operation can continue even
in the presence of a limited number of errors, reducing the overhead of going into the recovery
process. Further, it allows to acknowledge an operation faster and still be confident about the
resiliency guarantees. The client-side equivalent is SetInPort().

Network output ports are declared in the Graph using the method

network.MapOutPort("processName", new(Context), ...requirements)

The first argument is the reference name of the component used similarly to Connection di-
rective. The second argument is a Context type, which carries deadlines, cancellation signals,
and other request-scoped values across API boundaries and between processes. It is necessary
for ports connected with other entities over the network. On communication lose, the operation
will indefinitely block until communication recovery. Contexts trigger an error code after a time-
out and TrIO, which appear to the rest of the system as if the operation had failed. TrIO is
responsible for conveying the error code to the input port for the final error code decision, as
previously described. The third argument denotes the requirements for connecting to another
entity. The tradeoff for the relaxed security is the ability to pass hints to the other edge. Hints can
be advisory in order to avoid implementing the same functionality twice on different layers (e.g.,
deduplication), or mandatory and denote a functional requirement that cannot be missing with-
out jeopardizing application correctness (e.g., encryption). Hints are also useful in the Device
selection process. The client-side equivalent is SetOutPort().

4.3.2 Federated Network Discovery

In order for Tromos to support atomic operation it is necessary to resolve the number of af-
fected Devices deterministically. For Processors whose outputs are linked directly to Devices
it is straightforward. Affected devices are those connected to the Network ports. It not trivial
though when Processor combine to form a Federated Composite Network. That is because
Processors can link in variable and dynamic ways and there is no global graph to describe the
structure of the Composite Network. For example, a client sends its data to the input of Network
A, whose outputs connect to the inputs of Networks B and C. A client may ask Network A for its
outputs, but will it has no information about the Devices. The problem is similar to a client asking
a DNS server for a name. If the server has no record information, either it will ask an affiliated
server and act as a recursive middleman, or directly reply with the affiliated server and let the
client do the next iteration.
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To resolve the affected Devices, we augment Processors with a discovery and resource reser-
vation protocol (RSVP) [135]. Using that protocol, clients can establish end-to-end channels with
Devices regardless of the number, the location, and the graph structure of intermediate Proces-
sors.

RSVP protocol states that:

i. when a Processor receives an RSVP request it instantiates the abstract graph to a Network
object and broadcasts the RSVP to all the output ports of the Network

ii. the “leaf” Processors whose outputs do not link to other Processors or Devices, acknowl-
edges the request and propagate backward an RSVP reply with its identifier

iii. Once “root” Processor whose inputs do not connect to other Processor, receives RSVP
replies from all its outputs, it establishes the channel

iv. subsequent I/O requests traverse through the established channel as distinct streams.

Service API Comment

Load(Plugin) (Processor, error) Load a datapath plugin
Processor.Discover() error Discover the composite datapath

Processor.NewUpstream() (Upstream, error) Spawn a new upstream network thread
Processor.NewDownstream() (Downstream, error) Spawn a new downstream network thread

Graph Developer API Comment

Up.Add(new(component), new(pname)) error Add a new component to the network
Up.Connect(pname, pname) error Link components

Up.Record(new(key), new(value)) error Store state in a key-value map
Up.MapInPort(pname) error Bind input port to an internal component

Up.MapOutPort(pname) error Bind internal component to output port

Application API Comment

Up.SetInPort(new(channel)) error Bind top-level channel to network port
Up.SetOutPort(new(channel)) error Bind top-level channel to network port

Up.SetRuntime(env Environment) error Environment for storing the state
Up.Init() error Start running the network

Up.Wait() error Wait until the network terminates

Table 4.1 – A simplified version of the Processor API. For convenience to the reader, we omit some
arguments.

4.4 Summary

In this Chapter we present a framework for composing Drivers for I/O Processors. The TrIO is a
declarative language that abstracts Drivers as a graph of basic processing elements called ker-
nels. Graphs may also contain Macros conditions that can manipulate the final graph structure
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at runtime. The arguments for the macro evaluation can be user-defined or system-defined. The
scheduler is an engine for building a process Network according to the graph definition. The
Network is a graph instance running in memory, whose outputs whose outputs can link to other
Processors or Devices.

When linking a Processor to another Processor, it creates a conceptual Composite Network
with dynamic and unknown topology. In order to resolve the topology of that Composite Network
we employ a discovery and reservation protocol called RSVP. That makes it possible to create
end-to-end channels between clients and Devices, regardless of the number of intermediate
Processor and whether they run on the same or on different hosts.

4.4.1 Related Work

In data centers, the IO path to storage is long and complicated. An IO request from an applica-
tion to distributed storage traverses not only the network but also several software stages with
diverse functionality with opaque interfaces between them. Stages include caches, hypervisors,
IO schedulers, file systems, and device drivers. This set of ordered stages is known as the
storage or IO stack. That makes it hard to enforce end-to-end policies that dictate a storage IO
flow’s performance (e.g., guarantee a tenant’s IO bandwidth) and routing (e.g., route an untrusted
VM’s traffic through a sanitization middlebox). These policies require IO differentiation along the
flow path and global visibility at the control plane. Software-Defined Network (SDN) [82, 87]
and Software-Defined Storage (SDS) are centralized services for policy-based provisioning and
hardware-independent management. By decoupling the control plane from the data plane, SDN
allows for packet-processing routines to be injected into the switching infrastructure and create
an overlay network without the limitations of traditional networks. Similarly for SDS:

The seminal study IOFlow [121] proposed an architecture that uses a logically centralized
control plane to enable high-level flow policies. IOFlow adds a queuing abstraction at data-plane
stages and exposes this to the controller. The controller can then translate policies into queuing
rules at individual stages. While packet routing is fundamental to networks, no notion of IO
routing exists on the storage stack. The path of an IO to an endpoint is predetermined and hard-
coded. That forces IO with different needs (e.g., requiring different caching or replica selection)
to flow through a one-size-fits-all IO stack structure, resulting in an ossified IO stack. Although
IOFlow also made a case for request routing it only explored the concept for bypassing stages
along the path and did not consider the full IO routing spectrum where the path and endpoint can
also change. sRoute [116] proposed a full routing abstraction for the storage stack, built upon
IOFlow and borrowing two specific primitives: classification and rate limiting based on IO headers
for quiescing. A key strength of such architecture is that it works with unmodified applications
and VMs.

Data Service [2, 3] presented some higher level I/O abstractions for carrying out data pro-
cessing such as transformation, reduction and scheduled storage for asynchronous flushing of
data to the disk via the file system. It manages output data from ‘source to sink’: where/when
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it is captured, transported towards storage, and filtered or manipulated by service functions to
improve its information content. That results in runtime flexibility not only in which services to
employ, but also in selecting nodes for data staging and how they use I/O resources. In principle,
that services directly leverage EVpath [31]; an event transport middleware layer designed to al-
low for the smooth implementation of overlay networks, with active data processing, routing, and
management at all points in the overlay.

Multipath I/O [125] is the ability to provide increased performance and fault tolerant access
to a device by addressing it through more than one path. For storage devices, Linux has seen
several solutions that were of two types: high-level approaches that live above the I/O scheduler
(BIO mappers), and low-level subsystem specific approaches. Each type of implementation has
its advantage because of the position in the storage stack in which it has been implemented. The
authors focus on a solution that attempts to reap the benefits of each type of solution by moving
the kernel’s current multipath layer below the I/O scheduler and above the hardware-specific
subsystem.



Chapter 5

Programmable Coordinators

In this Chapter, we introduce a framework for building Coordinators for namespace management,
metadata management, and distributed synchronization. The framework distinguishes the data
plane from the control plane. Using the provided declarative language the developers can model
the device properties as a stack of basic components. The framework automates the synthesis
and produces a running instance of the target Coordinator.

5.1 Objectives

In the previous Chapters we saw Devices for unifying various storage platforms and I/O Proces-
sors for in-transit processing. The combination of the two consist an end-to-end datapath that
span from client application to the devices. To this end, the datapath is about a client send-
ing data to Devices. The Coordinators are about synchronizing multiple clients sending data
to Devices. Using composable drivers, the Developers can customize Coordinator semantics
according to the application requirements, without the direct input or any management from the
application. Existing drivers serialize access to the log, monitor requests in real time, and aug-
ment upper layers with access-pattern information. Next, we present a few of the challenges
Coordinators are trying to address.

5.1.1 Metadata Catalog

Coordinators provide a key-value database for cataloging and discovery of logical files. Logical
files do not contain data. A logical file is a view or representation of one or more physical files.
Because Coordinators leverage existing databases to durably persist the catalog they face, and
address, similar challenges to Devices. Every database is trying to address a different problem
with every problem family asking for a different combination of data structures and hardware.
They may use Btrees for storage efficiency and high sequential throughput on hard disks (e.g.,
PostgreSQL); Btree+ for read-intensive workloads as they minimize I/O amplification and favor

59
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range iteration (e.g., LMDB, BoltDB [17]); or LSM for high insert volume as it leverages random-
access of SSDs [57,73]. They may also integrate optimizations for network-access [74], or trade
off correctness (e.g., ACID) for concurrency (e.g., MVCC). Thereby, no database can perform
optimally to all workloads. The best-fit selection depends on the application characteristics and
the available hardware on the host.

5.1.2 Distributed Synchronization

A multi-storage solution involves multiple data-stores with potentially different semantics. Even
in the rare case that these data-stores individually support transactions it does not suffice to
guarantee the correctness of a top-level operation. A data-store transaction guarantees ACID
properties during transfer and persistence time on the particular data-store. It does not concern
about the overall operation status. In contrast, a multi-storage transaction encapsulates full-stack
information such as data-store level operations, interposing I/O processing, top-level access
information (e.g., offset in the logical file), and so on.

Coordinators provide a set of distributed synchronization primitives that allows developers to
focus on core application logic without worrying about the distributed nature of the application.
Depending on the physical problem an application tries to solve, it may opt for strict ordering and
up-to-date information or stale information in favor of concurrency and scalability. Typically, appli-
cations either delegate the consistency semantics to the general purpose or use the primitives of
generic distributed synchronization engines. The pitfall in the first approach is that provided se-
mantics may not precisely match the application requirements. For example, metadata intensive
workloads are likely to bottleneck at the filesystem control plane due to namespace synchroniza-
tion that comes with lock contention on directories, transaction serialization, and RPC overheads.

In contrast, the second approach gives the flexibility to use selectively API calls that best meet
the desired behavior. For example, users should call “sync” API to synchronize and read up-to-
date values or “async” API to read immediately stale values. Coordinator framework provides
a single API set for which an externally composed driver govern the semantics. Thereby, an
application can switch from strong consistency to relaxed consistency without changes into the
source code. The only, optional, call that must be hardcoded on the client-side is about acquiring
access pattern information. More specifically, clients can ask Coordinators about the trends of
a key (e.g., access frequency, most frequent client) in order to make intelligent data placement
decisions. Such flexibility though comes with the cost of an additional request over the network
which is not always needed.

5.2 Driver Synthesis

A Coordinator driver is a stack of pipelined synchronous handlers. As synchronous we refer to
the property that a handler does not reply to its caller until the lower handlers have replied first.
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That is to ensure that once an operation is acknowledged, it has been indeed executed and not
just queued. As a result, neither asynchronous stacks, as in Device drivers, nor graphs, as in
Processor drivers, can adequately provide the above functionality. We design the Coordinator
API around the abstraction of a shared log that can be accessed concurrently by multiple clients
over the network. An agreed global ordering reduces to the ordering of events in the log [12,104].
Based on the above, deciding the consistency level becomes a manner to choose whether to
include a sequencer on the driver. Code: 5.1 presents a skeleton of a sequencer handler that
serializes access to the lower layers.

1 type Sequencer struct {
2 // Used by synthesis service to pipeline the handler
3 coordinator.Stack
4 // Some internal structures
5 writes cmap.ConcurrentMap
6 }
7

8 func (s *Sequencer) CreateOrReset(key string) error {
9 // Step 0: pre-process (lock the key)

10 once := utils.Once()
11 s.writes.Upsert(key, make(chan struct{}),
12 addSignal(once))
13

14 // Step 1: forward request to the next layer
15 err := s.Stackable.CreateOrReset(key)
16

17 // Step 2: Post process
18 s.writes.RemoveCb(key, closeSignal(once))
19

20 // Step 4: Return atomic operation status
21 return nil
22 }

Listing 5.1 – Coordinator Handler Definition. All handlers must include a public coordinator.Stack field.
The synthesis software uses it to pipeline the handler. The other important feature is that handlers are
synchronous; they do not reply until the lower handlers have replied first

5.2.1 Modeling Language

The Keyzone is a YAML-compatible language for composing drivers for Coordinators. It con-
sists of a unique identifier that denotes the range of keys for which the specific Coordinator is
responsible for, functional information such credentials and paths, and a stack of synchronous
handlers (Code 5.2). Handlers, or stack layers, are called by parents and in turn call children.
Some layers are “final” as they terminate requests instead of passing them on, so they do not
have children. For example, coordinator/proxy/client forwards requests to another node through
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the network, coordinator/connector/boltdb invokes database operations. Others are “initial” and
inject requests into the system from elsewhere, so they do not have parents. For example coor-
dinator/proxy/server injects requests from the network. Intermediate layers have one parent and
one child. Layers must implement the same interface in order to be stackable, but this does not
mean that all layers are interchangeable. Depending on their position in the stack we differentiate
handlers to the following categories:

According to their position in the stack, we differentiate handlers to the following categories.
Figure 5.1 depicts the synthesis process and Figure 5.2 presents a snippet of a Coordinator
definition.

Connector

Connectors are the lowermost layers in the stack. They are “bookkeepers” running on top of
third-party databases. Keys in the books are tuples of ledgers that store intention records for
uncommitted transactions and update records for committed transactions [6, 104]. On commit,
the connector updates the entries on the two ledgers atomically. As ledgers we refer to shared
logs meant to store system information such as transactions and metadata, not user-data. As
the authors of Corfu [12] state:

If we can construct a (suitably performant) linearizable shared log, then this primitive
can be used as a key building block to solve some hard distributed systems problems:
an agreed upon global ordering becomes simply the order of events in the log.

Inspired by that, Connectors speculatively execute transactions by appending them to the shared
log and then use the log order to decide commit/abort status. Available connectors include:

• BoltDB: An embedded key/value database optimized for read operations [17]. It performs
optimally for workloads with demands on scanning and key iteration.

• Badger: An embedded key/value database optimized for use in SSDs [57]. It performs
optimally for write-intensive workloads.

Translators

The Translators are layers handlers that control access to the shared log. They can decide
whether to forward, block, or immediately reject a request. They can also access the request
payload but cannot modify it, e.g., to visualize content. The Translators are volatile and their
state resides entirely in memory. In order to guarantee correctness in case of a crash, they do
not acknowledge requests before all the lower layers have acknowledged it first. Recursively, that
ensures that a request is persisted (in the ledger) before the Coordinator replies to the client. In
case of a crash, the impact to the system will be the same as if the network ceased the request.
Available translators include:
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• Visualizer: plotting real-time request information (e.g., heatmaps for afffected segments)

• Monitor: exposes access-pattern information to the Device selector, such as frequency per
key/segment or most-asking node, in order to improve data placement decision

• Sequencer: serializes request for strict ordering

• Virtual synchrony: broadcasting events to other Orchestrator [15] for fault tolerance

Proxy Proxies render Coordinators accessible through the network. Because of the synchronous
operation, Translators that keep locks can cause some serious burdens. For example, a se-
quencer will block all future client requests indefinitely, until the previous operation completes.
As will explain in the next Section, our proxy design relies on full-duplex communication and
heartbeat mechanism, between the clients and the Coordinator. For the proxy implementation,
we used the High-Performance Remote Object Service Engine (Hprose) [53] framework and
Websocket [33].

Figure 5.1 – Synthesis Service for Coordinator drivers. It piggybacks components from the repository into
a synchronous stack. The Connectors implement shared logs on top of external databases, for recording
transactions and metadata. Translators coordinate how the client access to the log, thus controlling the
desired consistency level. Proxies make the Coordinator available to the clients through the network.

5.3 Driver Runtime

A transaction is a logical unit that is independently executed for data retrieval or updates. In
order to achieve atomic completion of a distributed transaction, researches introduced a tech-
nique known as two-phase commit (2PC); an atomic commitment protocol that ensures that a
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1 # Key range for which the Coordinator is responsible
2 "A-K":
3 # Database client
4 Connector:
5 plugin: "boltdb"
6 # Request-processing layers
7 Translators:
8 "0":
9 plugin: "sequencer"

10 blockw2r: true
11 "1":
12 plugin: "visualizer"
13 output : "/tmp/requests_KeyRange"
14 # Make Coordinator accessible through the network
15 Proxy:
16 plugin: "hprose"
17 uri: "10.200.0.2:8880"

Listing 5.2 – Composition of customized Coordinator driver in the Keyzone language. The identifiers
represent the range of keys for which this coordinator is responsible. The translators are stacked according
to their numerical order.

transaction commit is implementing in the situation where a commit operation must break into
two separate parts [107].

Next, we discuss two types of provided transactions. The Update and the View. The first
is about allowing a client to write some changes of a top-level entity (e.g., logical file), and the
second is about reconstructing the data of a top-level entity, on reading. In both cases, the client
must open the corresponding type of transaction from the Coordinator and transfer data to, or
from the Devices. The Coordinator does not participate in the data transfer.

5.3.1 Update Transaction

The Coordinators are meant to perform access control of logical files when multiple clients wants
to access them. To do so, when a client wants to write() to a logical file it must contact the Coor-
dinator and ask to open an Update transaction. If successful, the client store data to collections
on the Devices, named after the Transaction Identifier (TID). Figure 5.2 illustrates the process.

• Commit-request phase: the client asks the Coordinator to precommit information about the
collections on the affected Devices, for the forthcoming operation. If commit is possible,
Coordinator records the request to the intention ledger (Figure 5.3). Otherwise it directly
rejects the request.

• Commit phase: at the end of data transfer, the client sends to the Coordinator a request
with the metadata, asking to persist it (Figure 5.3). On commit(), the Coordinator appends
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the metadata as a record in update log and atomically removes the record from the inten-
tion ledger. On abort() the Coordinator moves the entry from the intention log to a global
garbage collection log. In case of a crash between the two phases, higher layers can query
the ledger for the incomplete transaction, extract the affected Devices, and remove the
partially written data.

5.3.2 Ordering

Two-phase commit only promises that a transaction is atomic. Outside the transaction, the per-
ceived behavior by the clients depends on how locking works in the database. Aiming for high
concurrency and versatility, the lower handlers in the driver stack (Connectors) implement multi-
version concurrency control (MVCC) [13, 22]. MVCC allows view transactions to read the last
committed values while update transactions are writing new data. The data of an update trans-
action is not visible to any other transaction until the transaction commits.

Because the update log contains the modification history of a logical file the insertion order is
of utmost significance; a wrong order will cause the end-user to see corrupted data. Since most
of the databases do not natively support append operations, we exploit the fact that they order
keys in a byte-sorted manner. Every new record gets a monotonic and sequential key so that the
returned records will appear in the correct insertion order.

Coordinators also support file leasing for exclusive write access. For leased files, only calls
that include the current TID can modify the entity. Nevertheless, it depends on the sequencer, or
other similar translators, whether concurrent requests for the same key will reach the connector
or will block waiting for the previous request to finish.

5.3.3 Leases over locks

Coordinators operations are synchronous; they acknowledge a request only after the request
is complete. Because Coordinators do not share state, there is no easy way for the clients to
know if the system has queued the request or if the network ceased it. Resending the request
after a timeout would potentially solve the problem, but it would also require significantly more
complicated layers to avoid duplicates and achieve "at most once" guarantees. If the client for
which the Coordinator holds the lock, crashes, the overall progress will block forever. To avoid
such deadlock, we employ leases instead of locks. They are locks with cancellation context and
are revocable either explicitly (e.g., success or graceful abort) or implicitly (e.g., timeout).

5.3.4 Heartbeat

For leases to work, there must a way to update them when a transfer takes longer than the
leasing period. One way to do that is for the client to ask the Coordinator to update the lease
explicitly. That, however, requires additional coding on the client and knowledge as to time
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intervals. An alternative way is for the Coordinator to maintain a permanent connection with the
client for the duration of the transaction. As long as the connection remains alive the Coordinator
automatically renews the lease. If it senses a broken connection, it does not update and let the
lease expire.

The same mechanism is also useful for simple locks; the heartbeat removes the lock imme-
diately when it senses a broken connection. There is, however, a corner case. It works only for
in-memory locks on a single host. If locks are persisted or held on another host (e.g., distributed
transactions), then it takes more sophisticated protocols to decide the action after a crash. In
general, the default action for locks is to recover since clients expect the operation to terminate
gracefully. If they receive no reply the behavior is undetermined. Oppositely, the default action
for leases is to cancel the request and proceed with the next.

We implement the above mechanism using Websockets [33]. It is a network protocol that
enables interaction between a web client and a web server with lower overheads, facilitating
real-time data transfer from and to the server. By providing full-duplex communication channels
over a single TCP connection, it allows messages to be passed back and forth while keeping the
connection open. It also standardizes a way for the server to send content to the client without
being first requested by the client. At any point after the handshake, either the client or the server
can choose to send a ping to the other party. When the ping is received, the recipient must send
back a pong as soon as possible.

1 func (s *Sequencer) BeginWrite(key string, tid string,
2 payload []byte) error {
3 // Semaphore like - add tid to the locks for a key
4 s.writes.Lock(key, tid)
5

6 // Step 1: forward begin request to the next layer
7 err := s.Stackable.BeginWrite(key, tid, payload)
8 if err != nil {
9 s.writes.Unlock(key, tid)

10 return err
11 }
12

13 // Step 2: the client can start I/O to devices
14 return nil
15 }

Listing 5.3 – Commit-request phase of the two-phase commit protocol. A client sends a request to pre-
commit information about the affected devices (payload) of a transaction (TID). The receiving handler
does its pre-processing and invokes the lower handler. Recursively, the request reaches the connector
which adds the request as a record to intention ledger
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1 func (s *Sequencer) EndWrite(key string, tid string,
2 payload []byte) error {
3 // Step 3: forward begin request to the next layer
4 err := s.Stackable.EditEnd(key, tid, payload)
5 if err != nil {
6 return err
7 }
8

9 // Step 4: post-process (unlock the key)
10 s.writes.Unlock(key, tid)
11

12 // Step 5: Atomic transaction complete
13 return nil
14 }

Listing 5.4 – Commit phase of the two-phase commit protocol. A a client sends a request to commit the
metadata (payload) of the transaction (TID). The receiving handles invoke the lower handler before taking
any action. Recursively the request reaches the connection which atomically removes the TID from the
intention ledger and adds a new TID record to the update ledger. Once the operation is successful, the
handlers can proceed with the post-processing.

5.3.5 View Transactions

Essentially, every Update transaction comprise a new version of the logical file. Doing so, en-
able developers to access particular changes in the logical file as to how they access particular
versions on a revision control system (Table 5.1).

When a client wants to read() a segment of the logical file, it must contact the Coordinator
and ask to open a View transaction. In turn, it returns a copy of the non-masked records of
the update ledger (see next paragraph). In order to exclude these “ versions” from the garbage
collection process while the client is still reading we assign them a lease. We regard this type of
View transactions as “protected”. Being “protected” does not mean being “locked”. Everybody,
apart from the garbage collection, can still access the records. Coordinators also support an
“unprotected” View operation. It returns the records in a single step without any leasing, and
without needing the client to explicit close the transaction. The risk is that the garbage collector or
any other system-induced may hit and compromise the data. Its useful for informative purposes,
such as calculating the file size.

5.3.6 Update Record Masking

A notable difference between files and objects is that objects are immutable (write-once-read-
many) whereas files are mutable (write-many-read-many). The last written data for an object
is what will return on the next read(). Files are quite different. A client may open a file, write
to an offset, and close it; then open it again, write to another offset, and close it. Thereby,
reconstructing file data may involve multiple records. The exact reconstruction process will be
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Figure 5.2 – Operation of the synchronous stack of the Coordinators. When a client starts a transaction
the intentions (affected devices) are persistently stored in the intention log. The coordinator does not
interfere in the critical I/O (data)path, which is between the client and the devices. When the client closes
a transaction, the Coordinator persistently stores the transaction metadata to the update log - and remove
the record from the intention log, atomically. The demonstrate sequencer has a queue depth equal to
1. If there is a pending request, the queue rejects the rest. Because the stack is synchronous (backend
must confirm the operation before a handler replies), the client with the queued request may wait for an
arbitrarily long time (we support leases and heartbeats).

discussed in Chapter 6.
The problem is that a client does not how many records there are, and the Coordinator does

not know the exact nature of the logical entity; so does not how many records to return. Returning
everything would be a solution, but it would increase the communication overhead and would put
more effort on the client to resolve which records to use. Such an approach is also prone to failure
in a highly concurrent environment with many read()s, write()s, delete()s. To better understand it
let us draw an example. A client has started a read transaction for a file and is reading some data.
In the meantime, another client removes the file. One solution is to implement strict locking, but
that would kill the performance. The other is to queue the remove request until the commit of the
read transaction - and block the client for an arbitrarily long time. An alternative, asynchronous,
solution is to flip a flip and mark the file as removed. Such a solution has corner cases like,
for example, what happens if a client removes a file, but in the meantime, another client starts
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Keyzone API Return Comments

Info(name string) (Info, error) Return key information
Create(Key, Reset) error Create a new or rim an existing log
Set(Key, Landmark) error Log-appended presentation instruction

BeginUpdate(Key, TID, Payload) error Append targets on intention ledger
EndUpdate(Key, TID, Payload) error Append version on update ledger

BeginView(Key, Filter) ([]Version, error) Return versions for data reconstruction
EndView([]Version) error Remove versions locking (free to gc)

Table 5.1 – Coordinator API. Every key describes a logical file as a tuple of an intention log and update log.
In order to start writing a logical file, the clients must acquire an Update Transaction. Essentially, every
Update transaction comprise a new version of the logical file; as a version on revision control systems.
BeginView() traverses backward the update log until it finds a landmark. The landmark is an instruction
as to how to reply

writing that file.
Our proposed solution is what we call “landmarks”. They are special entries in the log used as

instructions for the ledger as to how to reply to incoming requests. When a client asks for a read
transaction for a key, the ledger iterates backward the update log and fill entries to the message.
If it stumbles onto a landmark, the landmark dictates how to reply. Currently available landmarks
are IgnorePrevious and Disappear. The former dictates the ledger to reply immediately without
further iterating the log — records located after the landmark become candidates for garbage
collection. The Disappear keyword make the key disappear. If met, the textitCoordinator will as if
there is no entry for the key. However, data remain intact and are not garbage collected. If need
the users can remove the landmark, and the data will become again available, e.g., to undo a
remove operation.

Log Trimming Depending on the access pattern of the application, the version log can grow and
impose delays on the requests. To avoid such case, a background process on the Orchestrator
periodically scans the log and move out-of-date versions to a global garbage collection log.
Obsolete versions are those preceded by a landmark and do not participate in an active read
transaction.

5.4 Summary

In this Chapter we present a framework for composing Coordinators for namespace manage-
ment, metadata management, and distributed synchronization. The Keyzone is a declarative
language that abstracts Drivers as a stack (pipeline) of basic handlers. We provide handlers
for various databases, for controlling the consistency-level, to visualize control requests, and
monitors to inform upper layers about the access pattern of a logical file.

The Coordinator API is build around the concept of a shared logs for recording modification
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on a logical file. An agreed upon global ordering becomes simply the order of events in the log.
The upper layers in the stack control access to the log, thereby controlling the consistency level.

5.4.1 Related Work

Metadata Catalog Service (MCS) [115] provide a mechanism for storing and accessing various
types of metadata and allows users to query for data items based on desired attributes. Book-
Keeper [8] is a replicated service to log streams of records reliably. In BookKeeper, servers are
"bookies", log streams are "ledgers", and each unit of a log (aka record) is a "ledger entry". Per-
haps the most advertised ledgers are those based on Blockchain [118] technology; a growing
list of records, called blocks, which are linked using cryptography. Each block contains a crypto-
graphic hash of the previous block, a timestamp, and transaction data. By design, a Blockchain
is resistant to modification of the data. It is "an open, distributed ledger that can record trans-
actions between two parties efficiently, verifiable, and permanently". Essentially, any application
that requires appendable storage can replace their implementations with a ledger, that addition-
ally has the advantage of scaling throughput with the number of servers. BookKeeper client
writes metadata about the ledger to ZooKeeper [54]; a centralized service for maintaining config-
uration information, naming, providing distributed synchronization, and providing group services.
It provides a broad set of API calls with variable semantics so that users can decide the balance
between availability and consistency.

Malacology [111] introduced a novel way for exposing internal services and abstractions of
Ceph as building blocks for third-party applications. That is for third-party applications to ben-
efit from years of code-hardening and performance optimization efforts that were necessary for
users to entrust their data to the storage system. The authors used existing internal abstrac-
tions to compose two new higher-level services: a load balancer for file system metadata and
a high-performance distributed shared-log. Cudele [110], from the same authors, stepped on
those abstractions to present a framework and API that lets administrators specify their consis-
tency/durability requirements and dynamically assign them to subtrees in the same namespace.
Doing so allows administrators to optimize subtrees over time and space for different workloads,
on a per-application basis.



Chapter 6

Virtual Storage Infrastructure

Conventional data-store assume that data is the primary and permanent asset, and applications
come and go. In this data-centric architecture, the data model precedes the implementation of
any given application and will be around and valid long after it is gone. Taking that as granted,
justifies applying one-size-fit-them-all policies to all the applications. Many people may think this
is what happens now or what should happen. However, that is very rarely the case. Businesses
want functionality, and they purchase or build application systems. Scientists wish to simulate
physical phenomena, which may be computationally intensive or I/O intense. Each applica-
tion system has its data model and inextricably tied code with it. In this Chapter, we introduce
a framework for constructing application-tailored storage (ATS); a middleware that separates
data-management logic from the business and computation logic of an application. Alternatively
stated, it separates changes made to application codes by science users from changes made
to I/O actions by developers or administrators. Defer data-management decisions until the de-
ployment phase, which is the key for portability; least authority security; storage federation over
non-collaborative storage vendors; second-order scaling independently to the data-stores; and
policy-based data distribution with criteria such as resiliency, performance, storage efficiency,
and cost. ATS is not meant to replace existing general purpose data-stores but provide a data
management layer that insulates the application from the physical storage infrastructure; it leans
toward "application is the asset and can use any combination of existing storage systems". When
the application terminates, so does the ATS.

6.1 Synthesis

The middleware is a client-side library intended to be the foundation for other layers to run upon,
with no dependence on any technologies specified above or below it. For example, it should not
matter whether Devices feature burst buffers or not, neither on to how many Devices the data
are sent.

Its design is adherent to the Lightweight File System’s [92] philosophy; it is stateless and
uses the primitives of remote Services for naming , in-transit processing and data distribution,

71
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and data-persistence. On the lowest level, it federates underlying Microservices into higher-
level grids, or meshes, that uses to build a decentralized virtual storage infrastructure. For the
management of those grids, the library provides plugin interfaces so that developers can inject
their custom data-management routines. Management aspects such as request concurrency,
sessions, in-transit processing, placement decisions, data distribution, data layout, and recon-
struction, are defined in a configuration file called Manifest.

The library also provides a set of user-friend persistent storage interfaces for developers to ef-
fortlessly integrate Tromos into their applications, without the need to learn yer another low-level
API. However, integrating a library into an application resources intervention into the application’s
source code. For the cases where modifications are not possible (e.g., legacy applications or
binaries), Tromos provides various gateways. For example, using the fuse gateway the admin-
istrators can mount the storage container as a normal filesystem. Hence, the application binary
can seamleslly access the virtual storage infrastructure. Figure 6.1 depics the design of the
middleware.

Residing entirely in userspace, it can leverage technologies such as RDMA, zero-copy, vec-
tored I/O and non-volatile memories which have minimized access node-to-storage and node-
to-node transfer times [80, 84, 111, 122]. More importantly, it can leverage existing userspace
libraries and take advantage of cloud storage, which would be prohibitive in a kernel-based im-
plementation.

Figure 6.1 – Tromos client-side middleware provides access to the underlying virtual infrastructure. Ap-
plication can use directly the library, or use the gateways for system level integration (e.g, use the fuse
gateway to mount a storage container as a normal filesystem).
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6.1.1 Manifest

The Manifest is a declarative language for describing the target virtual storage infrastructure in a
definition file. By separating the management data logic from the application computation or busi-
ness logic of the application, the application architects are able to tailor the storage environment
to the requirements of the application at hand. For example, create a balanced namespace by
injecting a Distributed Hash Table (DHT) plugin, or use prefix-based plugin to direct the request
to a particular Coordinator with the desired Quality of Service (QoS) characteristics.

In the Manifest we identity three grid sections the information of which use the runtime to
decide how and to which services to invoke. Each of those grids is individually scalable by
bringing up and down Service instances. High scalability derives from the fact that there is
little or no dependency on a centralized Services, therefore essentially removing this limiting
bottleneck from the scalability equation. For example, Scalability on the data path is feasible
by sharding data to Devices. Scalability on the control path is feasible by partitioning keys to
Coordinators.

• Messaging grid: realizes a scalable global namespace by partitioning key range to dis-
tributed Coordinator instances. A unique feature is that the ability for differentiated key
access. For example, keys prefixed with "unsafe_" string will get forwarded to a Coordina-
tor that allows for high concurrency. Otherwise, requests go to serializable Coordinators.
Manifest language makes trivial to describe such ad-hoc schemes, and Tromos Deployer
automatically realize them without any intervention from the developer.

• Data grid: realizes tiered management of available Devices. Given a set of diverse and
heterogeneous Devices, the data placement policies can adjust to reduce I/O completion
time, maximize throughput, or data and load balancing for efficient Device utilization, i.e.,
align placement objective to the application requirements.

• Processing grid: realizes composite Datapath that span across multiple nodes. Such
feature makes it possible to move data filtering logic from computational nodes to staging
nodes closer to the data-store. Previously discussed gains such as portability, storage
federation, and cross-platform scalability derive from this mechanism. For example, data
may get transformed, routed to cloud providers, split across on-premise and cloud storage,
and many other scenarios, without any changes into the application source code.

6.1.2 Composite Namespace

Clustering is crucial for Coordinators. A Coordinator cluster is a decentralized distributed sys-
tem that provides a lookup service for (key, value) pairs. Spreading keys across a network
of Coordinators circumvent single-node bottleneck, improve system resiliency against failures,
increases the number of accomplished requests per second, and minimize queue latency per
request. Sharing a common information source enables any participating node to retrieve the
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value associated with a given key efficiently. Tromos realizes a scalable global namespace using
Coordinator primitives.

A unique feature is that the ability for differentiated key access by partitioning namespace
to Coordinator distinct characteristics. The idea relies on i) clients must contact a Coordinator
and acquire a transaction before starting I/O ii) Coordinators are deterministically selected in
a shortest-prefix manner iii) how the Coordinator will handle the request depend on pluggable
stack drivers. For example, keys prefixed with "unsafe_" string will get forwarded to a non-
serializable Coordinator that allows for high concurrency. Otherwise, requests go to serializable
Coordinators. Manifest language makes trivial to describe such ad-hoc schemes, and Tromos
Deployer automatically realize them without any intervention from the developer.

6.1.3 Device Management

Depending on the Processor driver, a client operation may involve more than one Device, e.g.,
stripping, mirroring, or erasure coding. Selecting the same Device twice within a single operation
will lead to nondeterministic data interleaving and the user will retrieve corrupted data. A potential
solution would involve a device manager that maintains a lookup with allocated devices per
transaction, but that would make a single point of congestion. It would also put a constraint
on the supported metrics. For example, under the circumstances, the plugins may augment
the selection process with custom metrics like bandwidth and round-trip time, from the client to
Devices. To this end, a centralized Device selection approach would not be viable since link-
related information changes from client to client.

Instead, we propose a distributed Device manager. In Tromos approach the client-side en-
gine also embeds a minimal Device management to arbitrate Device assignment. When clients
initiate a new Datapath they include in the RSVP request a callback URI to the local device man-
ager. When the Datapath leaves receive the RSVP they use the URI to contact the manager to
claim a Device. Claims are uniquely identified using the RSVP identifier and the leaf identifier.
Once a leaf acquires a device, it reports to the input port of the graph. When all the leaves have
reported the root input port removes the lock from the device manager. The Device channels
guarantee isolation between transactions so that two different transactions can safely write si-
multaneously to the same device. On the functional level at least, because in practice there will
be interference. Future work is to include an SCSI reservation on the Devices to circumvent
transaction interference.

6.1.4 Device Selection Strategies

Modern applications exhibit a variety of I/O patterns such batches that care for raw sequential
throughput and interactive queries that care for lower-latency and random access. Continuous
improvements in memory, storage, and network devices, both on-premise and in-cloud, introduce
new challenges and opportunities in tiered storage management. Depending on the application
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nature the data placement objective may aim to reduce I/O completion time, maximize through-
put, or balance load and data across nodes, or any combination of the above [61]. Unfortunately,
different objectives require a different set of metrics. For example, when the objective is the
throughput, appropriate metrics include the type of storage device or the network bandwidth;
when the objective is low latency, appropriate metrics include the current load on the storage
and the network; and when the objective is load balancing the metric is the remaining capacity
on the device.

Tromos abstracts the Device selection process in a well-defined interface so that storage ad-
ministrators can integrate custom placement policies as plugins [127]. Researchers may also
benefit from that abstraction as it makes it possible to experiment with novel placement algo-
rithms without intervening into the system code. In order to support intelligent placement de-
cisions, Tromos provides the plugins with a broad set of cross-layer information acquired both
statically and at runtime that include both static and runtime information.

• Application-oriented hints (e.g., placement prefixes)

• Model hints (e.g., average filesize, maximum accepted delay)

• Advisory and mandatory hints from the Processors (e.g., compression, encryption)

• Access patterns from the coordinators (e.g., access frequency per host/global).

Below we present a list of supported Device selection policies.

Round Robin The purest form of algorithmic load balancing policies. It bases on circular it-
eration of the available resources. Albeit it does not account the properties or the load of the
resources, its straight-forward implementation makes it ideal for choosing one out of many simi-
lar resources.

By Capability This policy consume Device information found in the Manifest. More specifically,
Device annotation may describe the physical backend (e.g., HDDs, SSDs), quality of service
(e.g., encryption, compression), or any other information such as geographical region. Tromos
automatically process and index capability annotations. We reserve some keywords for special
purposes. For example, DISABLED excludes a Device from the selection process, either for
maintenance or due to failures. When the developers or external provisioning tools edit the
Manifest, the Deployer propagate changes to the peers. That is to ensure consistency between
the Manifest and the system state.

By access pattern This policy consumes runtime information found in the Coordinators. Clients
can ask Coordinators about the trends of a key (e.g., access frequency, most frequent client) in
order to make intelligent data placement decisions. Such flexibility though comes with the cost
of an additional request over the network which is not always needed.



CHAPTER 6. VIRTUAL STORAGE INFRASTRUCTURE 76

6.2 Deployer

The framework Deployer treats the definition files as executable code for which it generates an
execution plan describing what it will do to reach the described virtual storage infrastructure
environment. Every time it executes a definition file it generates the same idempotent and
reproducible target environment. Briefly, the deployment consists of three phases. In the first
phase, it uses ssh to login to the remote peers and clones the central Tromos git repository
that contains configurations, plugins, and graphs. In the second phase, it parses the Manifest
to resolve the components for that host and retrieve dependencies using tools like yum and go
deps. In the third phase, it composes the driver and bootstrap the service daemons.

6.2.1 Versatile topologies

ATS is not only about customized data-management, but also about the ability to setup virtual
infrastructure in order to leverage the physical infrastructure to its full extent. Supported setups
include:

Grid A grid is an alliance of loosely coupled machines with possibly very different hardware
configurations which work together to solve a given problem/crunch data. The fundamental
difference between a grid and a cluster is that in a grid each node is relatively independent and
geographically distributed of others; problems are solved in a divide and conquer fashion. In
a grid setup, there are decentralized islands of Devices, Processors, and Coordinators which
remote clients can leverage.

I/O Forwarding In a tree data structure, the branches represent identical “thin” low-bandwidth
link. In a “fat” tree, branches nearer the top of the hierarchy represent “fat” links with higher
bandwidth than branches further down the hierarchy. For data-staging, we employ an inverse
fat tree, with “thin” links between the compute nodes and staging or filtering nodes, and “fat”
links from those I/O forwarding nodes to the storage. In such a setup, clients directly transfer
their data to staging nodes that instances of Processors and Devices. The former removes
the filtering process from the computational node and the second aggregates data and control
access to parallel filesystems.

Peer-to-peer Peer-to-peer architectures partitions tasks or workloads among peers. Those
peers connect directly, dynamically and non-hierarchically to as many other nodes as possible
and cooperate to efficiently route data from/to clients. In such a setup, every host run dedicated
instances of Devices, Processors, and Coordinators.
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6.3 Storage API

The third, are high-level persistent storage interfaces that separate the user-visible interfaces
from the virtual infrastructure [70]. Practically, they hide the raw API of the virtual infrastructure
behind more user-friendly APIs such as files, object, or user-level libraries such as MPI-IO [120].
The need to support those interfaces drove the design of transactional primitives from Coordina-
tors, reservation protocol from Processors, along with channels and collections from Devices.

6.3.1 Atomic Writers

Tromos wraps top-level operations into atomic Multi-resource transactions [89]. They are nested
transactions that consist of a globally visible parent transaction acquired from the Coordinator
and children sub-transactions local to the client. In general, a parent transaction associated with
a collection on the Device and sub-transactions to data-transfer on that collection. For a parent
transaction to commit, all the children sub-transaction must have committed first. If one fails, the
whole transaction must fail and roll-back collectively. Changes written with a transaction become
visible to other clients on after the transaction commit. Whether other transactions are running in
parallel or not, depends on the Coordinator. Nevertheless, collection on the Devices guarantee
isolation between concurrently running transactions. Replacing data inline, even if the underlying
platform supports it, is not a viable solution since rollback would require significant state-keeping
and maintain of previously written data on the memory of the host until the high-level transaction
completes.

A handler is an in-memory structure that encapsulates end-to-end channels with the Devices
and a managed transaction from the Coordinator. The latter also provides a key-value structure
for storing the channel metadata and Processor state. A more detailed description of the handler
functionality protocol, depicted in Figure 6.3, is as follows:

(i) The runtime initiates a new write handler with a unique transaction identifier number (TID)
from a random number in 128 bit space [93].

(ii) The handler sends an RSVP request to the Processor to discover the Datapath

(iii) The leafs of the Datapath claim Devices from the Device Manager, using the TID and the
leaf identifier.

(iv) The leaf replies back to the handler with the assigned Device identifier

(v) The handler claims a (parent) transaction from the Coordinator, including in the message
the TID, the leaf identifiers and the identifiers of the assigned devices.

(vi) The handler creates channels to the selected Devices, named after the TID and assign
Datapath leaves to those channels
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(vii) Following I/O request write to streams on the end-to-end channel formed by the client,
Processor and Devices

(viii) On closing, the handler triggers the Processor to flush the channel. Each stream represents
an inner transaction, or delta.

(ix) When all inner transactions have committed, the handler commits the parent transaction
back to the Coordinator

(x) The Coordinator appends the transaction to the update log

There are a few things to notice on the protocol. Handlers rely on a layered architecture that
decouples metadata management from I/O operations, allowing clients to access in parallel ac-
cess the file contents, and alleviate Coordinator from getting hammered by control messages.
Such close-to-open semantics removes a critical bottleneck from the system and allows much
higher performance without switching between throughput and metadata work. The parent trans-
action (update record) , represents an opened handler and inner transactions (deltas) represent
writing operations within the handler (Table 6.1).

Second, it is the handler that decides the transaction identifier so to achieve coherent nam-
ing on the data plane (collections on devices) and control plane (transactions on coordinators).
Third, handlers are oblivious to exact drivers running on the services which makes it possible
to support various consistency, concurrency, and distribution models to apply without affecting
the rest of the system. Next, we present a set of handlers that related I/O operations to channel
operations differently, trading batch jobs for streaming and immediate consistency.

Append Handlers An append handlers drives all the I/O requests to the collection through the
same Processor stream. The handler does not support update or delete operations given that
a stream is a first-in-first-out (FIFO) structure optimized for append-only operations. There are
no constraints as to the request length, but the handler must serialize request access to the
stream to avoid interleaving data non deterministically. The primary usage of this “N requests,
one stream, one delta” scheme is to transfer data across layers singularly. For example, due to
the internal blocking functionality of the FUSE gateway (will be explained later), it translates user-
level operations to multiple system-level operations of 128K bytes. From the handler perspective,
these are independent operations and handle them as such. Append-only handler makes sure
that data will be written in a contiguous chunk on the Device, thus making this handler ideal for
usage in object storage.

Record Handlers

An alternative approach to the fixed-size block filesystems are the record-oriented filesystems;
a class of filesystems that store files as a collection of records. Programs read and write full
records, rather than bytes or arbitrary byte ranges, and can seek to a record boundary but
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Figure 6.2 – Tromos Architecture: client-side engine use service primitives to build a virtual storage in-
frastructure, as described in the Manifest. The embeddable engine creates end-to-end I/O paths between
the application and the Tromos Devices. For convenience, Tromos has built-in support for Transaction API
and filesystem API. These APIs are used as primitives to build gateways

not within records. A record handler assigns incoming I/O request onto different streams, and
thereby to different deltas. Their purpose is to solve the seekability deficit of append-only han-
dlers. Each record is assigned a unique identifier that clients can later use to retrieve its content.
Albeit there is no constraint of the record length, a fixed-length would render it ideal for usage
as a virtual page; a fixed-length contiguous block of data, described by a single entry in the
record table. When the handler receives a new write request, it spawns a new Processor and a
new sub-transaction for holding request attributes and metadata. Streams terminate on chunks
on the Devices, named after the record ID. On channel closing, the handler merges metadata
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Figure 6.3 – Atomic multi-resource transaction protocol. The middleware creates end-to-end channels
from clients to Devices, through Processors. Every different I/O request in the middleware cause the
channel to spawn a new stream

to the respective sub-transaction, identified by the record ID. Such “N requests, N streams, 1
transaction” allows for random and parallel I/O, since records are indexed using the record ID.

Update Record Type Comment

TID string Transaction ID
GraphID string Used Graph

Sinks map[string]string Port-To-Device Map
DeltaList []Delta Metadata of write operations

Delta Record Type Comment

Logical format.Segment Affected segment of logical file
Items map[string]Item Operation metadata
State map[string]interface Processor State

Table 6.1 – Handler information (Update record for the handler, deltas for every write request in the han-
dler)
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6.3.2 Readers

What clients usually perceives as a file is a logical file and not a physical file as perceived by
the backend storage. A logical file is a view or representation of one or more physical files.
For example, MPI-IO [120] based HPC applications split data to multiple chunks in order to
circumvent the strong semantics of the parallel filesystem (e.g., Lustre [19], OrangeFS [94]). In
Tromos deltas represent a unique write operation occurred to the logical files. Thereby, a logical
file is a collection of deltas consolidated in a particular way. The consolidation method may
change depending on the purpose and the semantics. For example, the objects in object storage
are immutable. That means that a delta represents the original object content. Oppositely, files in
the filesystem are mutable. Clients may open, write, write, close, open, write, close, or any other
possible combinations. Thereby, we need to consolidate multiple deltas in order to represent the
actual file content. Tromos abstracts the data reconstruction process as a plugin that exposes to
the developers a list of deltas and a linear address space to place them. More specifically, the
undertaken steps when the runtime opens a read handler for a key are:

(i) the handler initiates a read transaction to the Coordinator and retrieves the update records
(snapshot isolation [22])

(ii) the handler flattens records to a list of deltas

(iii) the plugin filters the non-overlapping deltas using augmented trees [132] and places out-
come in a linear address space that represents a contiguous memory space.

(iv) the handler allocates the represented contiguous memory and the trigger Processors to
asynchronously fetch the data of filtered delta. (data-sieving [120]

Although the data will serve subsequent read requests for the handler in memory, the initial
data reconstruction imposes a non-negligible overhead. To mitigate that overhead the Runtime
provide Correctable [45] methods for speculative access to the partially filled memory buffer, i.e.,
preview data while they are still loading on the background.

6.4 Gateways

For applications to leverage Tromos they must embed the middleware engine into the source
code. That may not always be possible due to binary-only applications, legacy code, or risks
of jeopardizing a solid application. The last component of the framework are the gateways —
standalone processes built on top of the above interfaces and make it possible to integrate the
middleware on the system-level. For demonstration, we implemented a Fuse gateway on top of
the SDK, in less than 400 lines of Golang code. It is stateless and translates POSIX operations
to the respective calls of Tromos interfaces. Using that, the clients can mount and access the
middleware like any other file system, without any modification into their source code. Other



CHAPTER 6. VIRTUAL STORAGE INFRASTRUCTURE 82

gateways that are still under development include a driver for an FTP server, a web service
for clients to select the Manifest to use, and a gateway for indexing data from external storage
systems into the middleware; essentially importing data without copying them.

6.4.1 Relevant work

Software-defined storage (SDS) is a marketing term for computer data storage software for
policy-based provisioning and management of data storage independent of the underlying hard-
ware. In this umbrella term fall multiple different types of flow-processing and data-management
tools. For example, DAOS [69] is a data-management layer running atop Lustre parallel filesys-
tems. Its goal is to efficiently handle the physical infrastructure in a manner that improves uti-
lization and quality of services. Clarrise [55] is a data-management engine that improves GPFS
utilization by collecting information from all the layers participating in the I/O stack. Similarly,
IOStack [44] is an engine that allows the injection and execution of code for in-transit processing
before data get persisted in Swift object storage. The term SDS allows for self-managed data
stores such as GlusterFS [100] and Ceph [130].

OpenSDS [66] introduced a cross-platform management tool for providing per-application
policies for background tasks, such as scrubbing, replication, lifecycle, tiering and migration.
Also, iRODS [97] is serving an increasingly important role in data management; it enables data
discovery using a metadata catalog that describes every file, every directory, and every storage
resource. In general, both tools focus on offline data processing while our proposition is primarily
for use at transfer time.

Perhaps the most relevant work is Maxta [78]. It introduced a hyper-converged infrastructure
for users to define storage attributes independently for each application.
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(a) Tromos console

(b) Every step gives hints as to what arguments are expects

(c) Users can mount the customized data-store as any other filesystem.

Figure 6.4 – Tromos terminal



Chapter 7

Evaluation

In this Chapter, we evaluate and investigate the capabilities of Tromos SDK. To do so we define
two main objectives. The first, qualitative, objective is to prove that Tromos is a versatile SDK
that makes possible to implement at least the same functionality as to an existing system, without
systems programming. The second is to provide quantitative performance measurements and
provide insights about its pros and cons as compared to available storage solutions. More specif-
ically, our goal is to show that by selecting proper components, the application can experience
greater performance over running on top of a general-purpose storage system. Putting it sim-
ply, if the application does not require strong semantics, do apply such policy. If the application
requires strong semantics, add them as a plugin, and so do for any other storage aspect.

Instead of merely laying commented results, in the next sections we discuss the required
adjustments so to move from one experimental setting to another. In many cases, we do not
directly present the final setting, but we go through the intermediate settings and discuss why
they fail. The purpose to provide a guide-through for the reader to comprehend how individual
Tromos components can affect the overall system’s behavior.

7.1 Methodology, Tools And Setup

In order to investigate Tromos programmability we set compare it against RedHatś Gluster [100].
It is a scalable network filesystem suitable for data-intensive tasks such as cloud storage and
media streaming. The reason for picking Gluster as the control platform is due to its native sup-
port for various volume types, which among others include throughput, resiliency, scalability, and
storage efficiency. Although comparison with other systems would potentially be more sensible
for certain scenarios, either they lack the programmability tenets of Gluster or would render the
comparison less objective. For example, Lustre is a well-established general-purpose HPC stor-
age used for parallel access. However, given that its implementation is kernel-based it would not
be objective to compare it Tromos which is written entirely in userspace. Perhaps Ceph could be
used instead of or along with Gluster since they are similar systems, but Gluster was preferred
due to its programmability merits.

84
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For the performance comparison, we evaluate Tromos and Gluster against a variety of work-
loads (synchronous, asynchronous), access-patterns (sequential, random), and operations (write,
read). To produce all the potential combinations of workloads, access-patterns and operations
we use fio [10] stress tester. More specifically, for the synchronous workloads we use the pro-
vided “sync”engine and for asynchronous the “libaio” engine. The former issues IO requests one
after another, waiting for the first to complete before starting the next one. The latter enables
threads to overlap I/O operations with other processing, by providing an interface for submitting
one or more I/O requests in one system call without waiting for completion. We use it to show the
implicit effect one request can have to its following, e.g., due to caching. For every combination
we take into account three factors; the number of concurrently opened files, the iodepth, and the
transfer size. The iodepth defines the number of parallel IO operations the application can issue
to the OS against a file. For example, a sequential job with iodepth=2 will submit two sequential
IO requests at a time.

For scalability comparison we evaluate Tromos and Gluster against parallel workloads pro-
duced by IOR (Interleaved or Random). It is a commonly used file system benchmarking ap-
plication particularly well-suited for evaluating the performance of parallel file systems. Fio is a
single-host stress tester and as such it cannot yield scalability insights. In this set of experiments,
instead of using as factors the opened files and the files, we use the number of parallel tasks
and various workload classes that represent real HPC application.

The allocated storage cluster for the experiments consists of 10 KVM-based virtual machines
with each machine equipped with 4 CPU cores, 16 GB of RAM, CentOS 7.2.1511, Golang 1.9,
and GlusterFS 3.7.8. Additionally, every machine had mounted four block devices of 20GB,
formatted with XFS, that served as the backend for the Tromos devices and GlusterFS bricks.
GlusterFS was accessible to fio via Fuse 2.9.2-6 and TromosFS via Golang Fuse. To wipe
out any interference from other tenants in the virtual infrastructure all the experiments were
conducted three times, on different dates. Due to relatively small variance among the acquired
values (less than 8%) we present the average value of the three measurements.

7.1.1 Architectures

In Gluster, a volume is a logical collection of bricks where each brick is an export directory on
a storage server in a trusted network. Each volume implements a unique way of managing the
bricks, so to provide different functionalities on the higher level. In Tromos terminology, the bricks
are Devices and the volumes are Processors. The primary difference between the two systems
is that bricks and volumes are “hardcoded” in Gluster whereas the behavior of Devices and
Processors in Tromos customizable. Figure 7.1 illustrates the process of creating a customized
storage system. Tromos deployer uses the Manifest documentation of the target environment
(left) to automatically produce and deploy the running environment to the proper host (right).

Gluster relies on extended attributes on the backend files to keep track of the operations. In
general, its transactional model adheres to the following steps
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i locks the logical file

ii set a dirty xattr* on the file on the backend

iii write to the file on the backend

iv clear the dirty xattr* and set pending xattrs* for failed writes.

v unlock the logical file

The dependence on attributes proved to be a limitation when fabricating the experiments. The
initial goal was to run the brick over directories on a parallel filesystem. Gluster, however, was not
able to use the filesystem attributes, so we had to present the files of the parallel filesystem as
block devices to the virtual machines, and then format them as xfs filesystems. The directories
of that filesystem comprise the Gluster bricks. In general, for the same functionality Tromos use
the Coordinator and not assume as to the capabilities or properties of the backend, so it could
seamlessly run atop the parallel filesystem directly. Aiming at an objective comparison, whenever
possible, we define Tromos values to the default values of Gluster (e.g., block size, transfer size,
parity blocks).

A notable difference between the two systems is the way they use consistent hashing [62] to
implement a Distributed Hash Table (DHT). Gluster combines key management with data man-
agement, and therefore DHT participates in the data distribution logic. Each subvolume (brick)
is assigned a range within a 32-bit hash space, covering the entire range with no holes or over-
laps. When users open() a file, GlusterFS run a hash function that converts the file-name into
a number. That function is about routing, not splitting or copying. Exactly one brick will have an
assigned range including the file’s hash value, and so the file “should” be on that brick. In this al-
gorithmic approach, the physical location where clients should write data is predetermined. That
aids on reading as clients can directly retrieve the content. Its drawback is that can potentially
lead to “hot spot” and data imbalances, with some nodes serving significantly more data than
others. Tromos, on the other hand, separates the key management from the data management.
Targeting on intelligent data placement, clients in Tromos ask a decentralized device manager
for the Device to write their data. The policy for device selection is pluggable. In our setup, the
device manager chooses the next device in a round-robin manner so to ensure that all devices
are equally loaded. Depending on the running state and conditions the Device may change from
call to call.

Hence, the physical locations are not deterministic requiring the clients to query the respec-
tive Coordinators to get the metadata. In order to avoid congestion on Coordinators Tromos
gives the possibility to distribute keys across multiple Coordinators. Thereby, the namespace
is a composition of multiple Coordinators. The key partition policy is pluggable so that various
topologies can be supported. To be compliant with Gluster, in our experiments we use consistent
hashing to decide the Coordinator responsible for the key. This is however only a mere case.
Other available policies include longest-prefix. That allows filenames with a specific prefix (e.g.,
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small) to be served by a different coordinator than filenames prefixed with “large”. Given that
Coordinators are independent, heterogeneous, and potentially geographically distributed, such
an approach makes it possible to assign different priorities to different filenames.

Figure 7.1 – [Storage-As-Code] Storage-As-Code: The developers model the target environment and
Tromos automatically deploys it

7.1.2 Volumes

Below, we present a set of volumes for which we explain what it does, why we chose it, how
GlusterFS implements them, how we realized them using Tromos SDK.

Distributed

Files in this volume are distributed across various bricks. This type of volume is used when the
requirement is to scale storage and the redundancy is either not important or is provided by other
hardware and software layers. So file1 may be stored only in brick1 or brick2 but not on both.
The purpose for such a storage volume is to easily and cheaply scale the volume size. However,
this also means that a brick failure will lead to complete loss of data and one must rely on the
underlying hardware for data loss protection. The evaluation objective of this volume is to stress
the differences on the control path, and more specifically the difference between algorithmically
finding the data location versus the lookup query.
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Striped Volume

Striped volumes are composed of equally sized stripes of data written across bricks in the vol-
ume. Such a volume divides a large file into smaller chunks (equal to the number of bricks in
the volume) and stores each chunk in a brick. Consider a large file being stored in a brick which
is frequently accessed by many clients at the same time. This will cause too much load on a
single brick and would reduce the performance. With striped volumes, the load is distributed so
that files can be fetched faster. For best results, striped volumes should be used only in high
concurrency environments accessing huge files. The evaluation objective of this volume is to
see the datapath behavior with lightweight CPU processing. Because the stripes are dependent
and interleaved, a read operation must spend some time reconstructing the data. In Tromos we
implement the equivalent of striped volume as a graph with a striping kernel. The number of
outputs that correspond to stripes is given as a user argument to a graph macro.

Replicated Volume

Replicated volumes maintain exact copies of the data across on all the bricks in the volume.
The number of replicas in the volume can be decided by the client while creating the volume.
So we need to have at least two bricks to create a volume with two replicas or a minimum of
three bricks to create a volume of 3 replicas. One significant advantage of such a volume is that
data are still accessible even if one of the bricks fail. Such a volume is used in environments
where high-availability and high-reliability are critical. The evaluation objective of this volume is
to see the datapath behavior for memory intensive operations. It is intensive because it must
locally buffer the incoming data before forwarding them to the replicas. In Tromos we implement
the equivalent of replicated volume as a graph with a mirroring kernel. The user can define the
number of outputs, that correspond to replicas, as an argument to a runtime macro in the graph.

Dispersed Volume

Dispersed volumes provide space-efficient protection against disk or server failures. It stores an
encoded fragment of the original file to each brick in a way that only a subset of the fragments
is needed to recover the original file. The administrator configures the number of bricks that can
be missing without losing access to data on volume creation time. The evaluation objective of
this volume is to see the datapath behavior with heavy CPU processing. Erasure coding also
has the nice property that the upstream is computationally intensive whereas the downstream
is computational free. That is, on writing it must compute the parity streams, which are only
needed if an error occurs. Otherwise, the downstream of a dispersed volume is similar to that of
a striped volume. In Tromos we implement the equivalent of dispersed volume as a graph with a
Reed-Solomon kernel. For consistency we adhere to the default schema (8,2) used in Gluster,
i.e., up to two devices can fail without compromising data integrity.
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7.2 Synchronous Workload

In this first set of experiments, we evaluate the two systems against a write-once-read-many
access pattern. More specifically, such a pattern involves large files written synchronously and
sequentially. The most common applications of this category include media applications and
archival application. In the context of cloud computing, a platform that exhibits the above prop-
erties is used as the backend for object-storage.

Code 7.1 shows the description of a streaming setting in which all application requests, as
received by the fuse gateway, are driven through a single pipeline. Grids contain various Coor-
dinator and Device services. The namespace plugin mandates the key partition to Coordinators
whereas device selector plugins mandate how to distributed data to the devices. Hence, it is eas-
ily expandable to include an arbitrary number of coordinators and devices. On this experiment
and given that metadata traffic is relatively low, we employ a single Coordinator running on the
client host whereas devices are located on remote hosts acting as storage nodes. The reason is
to demonstrate that services may run either locally or remotely.
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1 Gateway:
2 plugin: fuse
3 writer: streamer
4 mountpoint: /tmp/test
5

6 Middleware:
7 layout: "file"
8 namespace: "consistent_hashing"
9 deviceSelector: "round_robin"

10

11 ProcessingGrid:
12 "default":
13 plugin: "direct"
14

15 MessasingGrid:
16 "H-range":
17 Connector: "boltdb"
18 path: "/scratch/db/db0"
19 "L-range":
20 Connector: "boltdb"
21 path: "/scratch/db/db1"
22 DataGrid:
23 "n1d1":
24 Proxy:
25 plugin: "grpc"
26 uri: "10.200.0.1:7000"
27 Connector:
28 plugin: "filesystem"
29 path: "/scratch/vol01"
30 "n2d1":
31 Proxy:
32 plugin: "grpc"
33 uri: "10.200.0.2:7000"
34 Connector:
35 plugin: "filesystem"
36 path: "/scratch/vol01"
37 ...............

Listing 7.1 – Skeleton of a Manifest description for a customized virtual storage infrastructure. The setting
can be easily adjusted to distributed, stripped, replicated and dispersed volumes by changing the I/O
processor arguments

7.2.1 Distributed volume

Figure 7.2 shows the measurements for read and write operations against a distributed volume.
The first gained insight of this measurement is that Fuse enforces an aggregated hard limit
of 450 MB/s, both in cases for Gluster and Gluster. The reason behind this limitation is that
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Fuse involves an additional data transfer (copy) between the userspace implementation and
the kernel. More specifically, the application sends its data to Fuse, which moves the data to
the kernel, which pushes data back to the userspace implementation of Gluster and Tromos. In
turn, the implementations issue another call to the kernel to write the data either to the underlying
filesystem or to transfer them through the network. The second insight is that Tromos significantly
outperforms Gluster on reading. The reason for that is the internal behavior of the streamer
writer. As previously said, on write(), the streamer forwards all the application requests (for a
handler) to devices through a single pipeline. Equivalently for read(), the streamer brings the
whole data from the devices into memory - handles data as objects. Despite the initial transfer
cost, it seems that the cost is amortized over time as the in-memory data directly serve future
reads.
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Figure 7.2 – Synchronous sequential I/O over distributed volume



CHAPTER 7. EVALUATION 92

7.2.2 Stripped volume

In order to support stripping, all that it takes for Tromos is to apply the changes of Code 7.2 to
the skeleton of Code 7.1. Figure 7.3 shows the measurements for reading and writing operations
against a distributed volume. There are two notable facts on these plots. The first is that after
a certain point Gluster was causing a deadlock to the application. That was a reproducible
behavior regardless of the workload type. A potential explanation may align with the comments
of [68]

... One may have noticed already that so far we assumed a single location for storing
data, e.g., local disk or remote node. The reason is that POSIX semantics were de-
signed in such a way. POSIX compliance can be violated when stripping data across
multiple server nodes. Imagine a scenario where a file’s contents are ‘AA’ and the first
byte is stored on server0 and the second on server1. Now one process overwrites with
‘BB’ and another overwrites with ‘CC’ while a third does a read. This is a race. Even
on a local system this is a race but read() should return only one of three possible val-
ues: ‘AA’, ‘BB’, or ‘CC.’ In a distributed system, it is easy to imagine how this POSIX
compliance can be violated and a read() might incorrectly return something like ‘AB’
or ‘CA’ or ‘BC.’ ...

The second fact is that for read, Gluster scales better than Tromos as the iodepth (the number
of parallel threads) increase. That is an inherent deficit of any engine that is based on streaming.
Given that a stream is an append-only structure, one request must block a previous request is
writing on the stream. However, as the figure indicates, the number of concurrently opened files
can amortize the serialization deficit.

1 ...............
2 ProcessingGrid:
3 "default":
4 plugin: "stripped"
5 stripes: 4
6 ...............

Listing 7.2 – Integration of Stripping processor, with 4 stripes
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7.2.3 Replicated volume

In order to support stripping, all that it takes for Tromos is to apply the changes of Code 7.3 to
the skeleton of Code 7.1. Figure 7.4 shows the measurements for reading and write operations
against a replicated volume. The results are quite interesting both in write() and read(). More
specifically, in the case of a write operation(), the throughput of Gluster drops by a factor of 2.5
as compared to throughput of Distributed volume. That factor almost coincides with the number
of replicas: three. At the same time, Tromos throughput remains relatively stable. That derives
from the fact that Tromos datapath is highly concurrent and lockless. It is only bounded by the
CPU-power and the available network bandwidth. Given that CPU-consumption is kept low and
the bandwidth is much higher than the data-production rate, Tromos can keep multiple replicas
without compromising the performance.

For read(), the throughput is the exactly same as in a Distributed volume, both for Gluster and
Tromos. The reason is both Tromos and Gluster read data from a single replica - regardless of
the number of replicas. A potential improvement would be to fetch different chunks from different
replicas so to improve the reading rate.

1 ...............
2 ProcessingGrid:
3 "default":
4 plugin: "mirror"
5 stripes: 4
6 ...............

Listing 7.3 – Integration of Mirroring processor, with 3 replicated locations
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Figure 7.4 – Synchronous sequential I/O over replicated volume



CHAPTER 7. EVALUATION 96

7.2.4 Dispersed volume

In order to support stripping, all that it takes for Tromos is to apply the changes of Code 7.4 to
the skeleton of Code 7.1. Figure 7.5 shows the measurements for reading and writing operations
against a dispersed volume. The reason for the significantly low performance as compared to
the previous volumes is that dispersed volumes are based on erasure-coding. Like any other
redundancy coding, it is heavyweight, and therefore the I/O operations are CPU-bound.

1 ...............
2 ProcessingGrid:
3 "default":
4 plugin: "erasurecoding"
5 datablocks: 8
6 parityblocks: 3
7 ...............

Listing 7.4 – Integration of Erasure-coding processor, with 8 data blocks and 3 blocks for parity
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Figure 7.5 – Synchronous sequential I/O over dispersed volume
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7.3 Asynchronous Workload

In this set of experiments, we evaluate the two systems against a write-many read-many access
pattern. Such a pattern involves random and asynchronous I/O operations and mostly appears
on data-management applications (e.g., databases). In the context of cloud computing, platforms
that provide the backend for virtual machines and containers also exhibit the above pattern. In
order to support this pattern, we had to apply certain modifications to Tromos. In this section, we
present the encountered problems and our solutions.

To our surprise, when we tried the previous model against an asynchronous workload, we
encountered the error of Figure 7.6. A more in-depth investigation showed that the error was
perfectly reasonable. The streaming writer is append-only and therefore does not support ran-
dom offsets. To counteract this limitation, we introduce another type of writer called delta writer.
Compared to the streaming writer that handles all the application-requests as a single stream,
the delta writer initiates a new stream of every incoming request. To integrate this new type of
writer, we had to slightly modify the original skeleton with the changes of Code 7.5.

Figure 7.6 – Streaming writers are append-only: they do not support random I/O

1 Gateway:
2 plugin: fuse
3 writer: delta
4 mountpoint: /tmp/test
5 .........

Listing 7.5 – Integration of delta writer to support asynchronous and random I/O

Another strange behavior we encountered while trying to verify the written content was that
every few iterations fio was returning an error about not finding the written file. A more in-depth
investigation showed that on asynchronous setting the data verify operation was starting before
the write operation was complete. As files had not been written at that time, verify was failing.
To counteract, we employed a sequencer translator into the Coordinator to serialize the top-level
requests. This translator exposes two parameters: blockw2r and blockw2w. The first blocks
read operations while a write operation is running, and the second blocks a write operation while
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another write operation is running. By selecting the proper combination, storage developers can
adjust the desired consistency level. We integrated the translator into the storage line using the
modifications of Code 7.6.

1 MessasingGrid:
2 "H-range":
3 Translator:
4 "0":
5 plugin: "sequencer"
6 blockw2r: true
7 blockw2w: false
8 Connector: "boltdb"
9 path: "/scratch/db/db0"

10 "L-range":
11 Translator:
12 "0":
13 plugin: "sequencer"
14 blockw2r: true
15 blockw2w: false
16 Connector: "boltdb"
17 path: "/scratch/db/db1"
18 Gateway:
19 plugin: fuse
20 writer: delta
21 mountpoint: /tmp/test
22 .........

Listing 7.6 – Integration of Sequencing translator to Coordinators. blockw2r and blockw2w are arguments
to control the desired consistency level
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7.3.1 Access-pattern Visualization

Motivated by the consistency issued as described above, we also implement a translator for vi-
sualizing at real-time the incoming requests. Such translator makes it easier to reason about
system’s behavior. It also helps to eradicate hard-to-spot bugs related to concurrency and con-
sistency issues. We integrated the translate into the storage line by applying the modifications of
Code 7.7.

1 MessasingGrid:
2 "H-range":
3 Translator:
4 "0":
5 plugin: "sequencer"
6 blockw2r: true
7 blockw2w: false
8 "1":
9 plugin: "visualizer"

10 path: "/tmp/tromos-h-visual"
11 Connector: "boltdb"
12 path: "/scratch/db/db0"
13 "L-range":
14 Translator:
15 "0":
16 plugin: "sequencer"
17 blockw2r: true
18 blockw2w: false
19 "1":
20 plugin: "visualizer"
21 path: "/tmp/tromos-h-visual"
22 Connector: "boltdb"
23 path: "/scratch/db/db1"
24 Gateway:
25 plugin: fuse
26 writer: delta
27 mountpoint: /tmp/test
28 .........

Listing 7.7 – Integration of Visualization translator to Coordinators

Figures 7.7 depicts the footprints of various workloads as seen by the Coordinator. On the top,
from left to right, are the footprints of an append operation and a random write operations. On a
first glance, the random write foot may seen peculiar since all writes begin and end at the same
time. That is because the semantics of a delta writer as close-to-open. When a client opens a
file handler is initiates a transaction with the Coordinator. When the client closes the file handler,
it commits the transaction back to the Coordinator. In the meantime, the client can write directly
to the Devices without the Coordinator participating in the operation. Thereby, the Coordinator is
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only aware of the handler open and close times. A fine-grained solution would potentially involve
timestamps on the write operations, but that would require a wall-clock between clients and
Coordinators. Such a clock though would induce great synchronization overheads and therefore
is omitted. The lower right plot shows the footprint of a file that is partially overwritten. The lower
left plot shows the footprint of 4 repetitive experiments with 256 MB sequential transfers on 10
files.

Figure 7.8 is especially interesting, it depicts the footprint of random writes with synchronous
data verification. Using the scheme of Figure 7.7, what happens is that when the visualizer
receives a request is record the time and forwards it to the sequencer. When the sequencer
replies, the translator records the return time. A line represents the start time and the end time
of the request. If the sequencer blocks the request the end time from the start will significantly
drift from each other. If it does not, the request will appear as a Dirac signal (almost vertical
and instantaneous). The left graph represents the case of the visualizer located on top of the
sequencer in the stack. In such case, the behavior aligns with the one explained above. When
the visualizer is laying below the sequencer, it produces the right graph. Since there is no block-
ing layer between the visualizer and the connector, the visualizer senses the request handling
as instantaneous. That is without compromising application correctness as sequencing indeed
exists on the stack, but on a higher level than the visualizer and thereby it does not capture it.
The above gives us a fundamental insight about Tromos usage; translator order does matter.
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Figure 7.7 – Workload depictions. (top-left) append operations in a loop (top-right) write operations at
random offsets (bottom-left) 4 repetitive experiments (bottom-left) 4 overwrites of the same file
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Figure 7.8 – Depiction of write-verify transaction. Left) The visualizer is located on top of the sequencer
in the stack. Right) The visualizer is located below the sequencer in the stack

7.3.2 Burst Buffer

Counter-intuitively, the new writer was yielding significantly lower performance than the expected.
Just a few MB/s. Further investigation revealed that the source of that erratic behavior was
that fuse was breaking application requests into system requests. More specifically, fuse was
invoking to Tromos as many requests as the number of blocks affected by the application-request.
From the Tromos perspective, these system-requests are independent and it was handling them
as such. Thereby, it was creating multiple small files on the backend, with size equal to the block
size of fuse (Figure 7.9). Subsequently it was yielding significantly reduced performance and
high IOPS on the backend, and low bandwidth utilization.

Figure 7.9 – Bottleneck in the Fuse gateway. The gateway breaks application requests to system requests
equal to the fuse block size (128K). That triggers Tromos to create multiple small files on the backend

To counteract that deficit we implemented a burst-buffer translator for the devices. Its purpose
is to aggregate small-sized requests into contiguous memory and collectively flush them when
the channel closes (or when the memory buffer is full, whichever comes first). That allows to have
only one physical file (binary large object) created on the backend, instead of multiple small-sized
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physical files. In principle, the blob represents all the data written within an opened file handler,
and write operations within that handlers are represented by logical files, at different offsets within
the blob. Combined with Coordinators that include Sequencer translators, TromosFS exhibits
behavior similar to a blob storage system with support for randomly seekable blobs with built-in
transactions [76, 77, 109]. By applying the modifications presented in Code 7.8 we were able to
run the asynchronous workload on Tromos.

1 ...............
2 DataGrid:
3 "n1d1":
4 Proxy:
5 plugin: "grpc"
6 uri: "10.200.0.1:7000"
7 Translators:
8 "0":
9 plugin: "burstBuffer"

10 blockSize: 10M
11 Connector:
12 plugin: "filesystem"
13 path: "/scratch/vol01"
14 ...............

Listing 7.8 – Integration of Burst buffer translator to Devices

7.3.3 Distributed Volume

Figure 7.10 shows the measurements for asynchronous read and write operations against a
distributed volume. Notably, the write performance remains the same as with the synchronous
workload. Compared to the streaming writer which enforces serialization of the application-
requests, the delta writer handles every request independently and therefore allows for a higher
degree of parallelization. Given that, we were expecting higher performance. However, perfor-
mance improvement was not possible as requests were serialized on the burst buffer translator.
A primary principle of Tromos is to make no assumptions as to the in-transit processing of data.
The rest of the system should be oblivious to the I/O processor and the components it contains.
As a result, there is no generic way to associate top-level input (as received by fuse gateway)
to the output (as stored on the backend). Although it may be feasible for specific components
(e.g., strip, mirror) or possible for others (e.g., block-based encryption), it cannot be generalized
for all the possible components. Taking compression as reference, the relation between input to
output depends on the data itself. Depending on the data entropy, the output may be more, less,
or equal to the original input. It must be made clear that we do not refer to the data format, but
the data size. Thereby, the only way to avoid overlaps and collision on the contiguous buffer of
the burst buffer, the only way go is to impose serialization.

A second notable fact is that on read(), Gluster exhibits greater parallelism than Tromos as the
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iopedth (or concurrently flying requests) increase. That, however, does not seem to be affected
by the number of concurrently opened files. Investigation showed that the fuse implementation
used for Tromos was serializing the operations occurred within an opened file handler. Different
handlers could evolve separately.
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Figure 7.10 – Asynchronous random I/O over distributed volume
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7.3.4 Stripped volule

Figure 7.10 shows the measurements for asynchronous read and write operations against a
distributed volume. As one can see, Gluster failed to complete any operation, regardless of the
number of concurrently opened files and the iodepth. Although we gave the potentials reasons
of this erratic behavior on the previous section, we include the figure here for completeness.
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Figure 7.11 – Asynchronous random I/O over stripped volume
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7.3.5 Replicated volume

Figure 7.10 shows the measurements for asynchronous read and write operations against a
replicated volume. Combing the previous insights from the distributed volumes and synchronous
stripped volume, we infer that the high degree of parallelism and the use of multiple devices can
easily amortize the serialization overheads by the individual device.
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Figure 7.12 – Asynchronous random I/O over replicated volume
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7.3.6 Dispersed volume

Dispersed I/O with regard to the number of concurrently opened files and iodepth for each file.
Although CPU-bounded, dispersed volume seems to behave similarly to replicated volume. Es-
pecially the bottom-right figure shows that Gluster can scale better for a single process with
multiple threads
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Figure 7.13 – Asynchronous random I/O over dispersed volume

7.4 Parallel Workload on scratchpad-storage

The second test of experiments is about scalability and parallel workloads. Although fio has
helped to gain significant insights as to the Tromos behavior, its usage is limited to a single node.
For this set of experiments, we used IOR (Interleaved or Random). It is a Parallel filesystem I/O



CHAPTER 7. EVALUATION 109

benchmark typically used to measure I/O performance on HPC environments [113].
Although the metric is still the throughput, as with fio experiments, the factors are different.

Instead of using the number of files and iodepth, on this experiment we use workload class and
parallel processes. In order to align our evaluation with typical workloads in an HPC environ-
ment, we take as reference the classes described in [64]. Nevertheless, since our evaluation
testbed consists of fewer nodes than the ones described, we had to scale the workload to the
size of our cluster, but still, retain the distinct characteristics of each class. Further, IOR will
be run in a loop, doubling the number of processes per client node with every iteration from
SEQto− >MAXPROCS. If SEQ=1 and MAXPROCS=8, then the iterations will be 1, 2, 4, 8
processes per node.

7.4.1 Scratchpad on computation nodes

A common issue of HPC application is that they produce multiple temporal files. Whether that be
intermediate files or checkpoint files, they are transient data that will no longer be needed once
the application has complete the computation. To avoid these temporary files “pollutting” and
primary data-store of a data-center (e.g., lustre), this experiment is meant to illustrate the feasi-
bility of joining the local storage of multiple computation-nodes into a distributed and customized
scratchpad storage.

For this experiment, we used 5 hosts acting simultaneously as storage nodes and computa-
tional nodes. For every host, the MAXPROCS was set to 4 -equal to the number of CPU cores
per machine-. Hence, in total, we evaluated parallel application spanning up to 20 parallel CPU
cores. For sequential operation the results are shown in Figure 7.14 while for random operations
the results are shown in Figure 7.15. Notably, Tromos can scale better than Gluster as the num-
ber of parallel processes increase. The reason is that it is adjusted to many of the unnecessary
overheads imposed by a strongly POSIX-compliant filesystem like Gluster. However, Tromos
significantly lacks behind Gluster on read. The difference is so great that could not be attributed
to anything else rather than local caching. That was reasonable since computational nodes were
also the storage nodes, and therefore is to highly like for data to be local on some nodes. In
order to verify this theory we conducted the next set of experiments.
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Figure 7.14 – Parallel sequential workload, with the storage nodes being the same than the computation
nodes
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Figure 7.15 – Parallel random workload, with the storage nodes being the same than the computation
nodes



CHAPTER 7. EVALUATION 112

7.4.2 Scratchpad on storage nodes

This experiment is to its greater extend the same as before, with the only difference that we
separate the computation nodes from the nodes storage. The reason is to make the comparison
between the two systems more objective. The results are shown in Figure 7.16 for sequential
workload and 7.17 for random workload. Interestingly, Tromos performance remained stable
while Gluster dropped by half. Investigation showed that the reason was the way Gluster and
Tromos handles writing on local resources. When the destination is a locally attached disk, Glus-
ter performs the write directly to that disk using the system calls. Tromos lack this optimization
and all the operations go through the RPC mechanism. In turn, that means that all the operation
must go through the network stack and sustain any imposed overhead. It is in our future plans to
include a similar mechanism to differentiate the way Tromos access local Devices from remote
Devices.
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Figure 7.16 – Parallel sequential workload, with the storage nodes being different than the computation
nodes
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Figure 7.17 – Parallel random workload, with the storage nodes being different than the computation
nodes
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Streamer

The difference between this setting and the previous is the use of streaming writer instead of
delta writer. As Figure 7.18 shows, streamer can yield significantly better results by trading
throughput for random-access. That, however, does not necessarily pose a strict limitation since
most of the HPC workloads tend to be small and sequential [52].
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Figure 7.18 – Usage of streaming instead of delta writer for parallel sequential workload. Separated
computational and storage nodes.
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Conclusion

In this dissertation, we introduced “application-tailored” storage systems as the next logical in
the storage evolution. Conventional “general-purpose” storage systems provide applications
with capacity, performance, and data protection, but cannot provide data-management specific
to the individual application. Oppositely, “domain-specific” systems can provide applications
with domain-specific data-management, but cannot adjust to dynamically changing applications
without the direct intervention of the administrator. “Programmable storage” are extensions to
general-purpose systems that allow applications to communicate at runtime their requirements
and I/O hints, without any human intervention. They cannot handle, however, applications whose
requirements go beyond the scope of a single data-store. Our proposal, “application-tailored”
storage, is a data-management middleware that is a peer with the application (intimate knowl-
edge), and leverage arbitrary number of third-party data-stores to persistently store the data.
The middleware separates the application logic from the I/O logic, hence separating changes
made to application codes by science users from changes made to I/O actions by developers or
administrators. Such design helps to defer I/O decisions until the deployment phase, which is
the key for portability; storage federation over non-collaborative storage vendors; second-order
scaling independently to the data-stores; and policy-based data distribution with criteria such
as resiliency, performance, storage efficiency, security, and cost. That, however, requires the
developers to design and implement a new middleware, customized to the specific application.

Building that middleware is non-trivial, requires a lot of effort and programming skills, and is
error-prone. To this end, we proposed Tromos; a framework for assembling “lego” components
into customized storage systems, and tooling to build, test and deploy artifacts for these assem-
blies. Tromos provides a repository of pluggable components for developers to define policies
regarding storage aspects (e.g., atomic transactions, consistency level, resource abstraction,
resource management) and data management (e.g., in-transit processing, placement). A pro-
vided declarative language allows the developers to model their target storage environment as
compositions of those components, without asking for any systems programming. The frame-
work fabricates, deploy, and handle that environment, transparently to the application. To make

116
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an analogy, if the middleware is the storage-equivalent of a container, Tromos is the storage-
equivalent of Docker. Architecturally, Tromos lays on four main pillars i) declarative languages
and pluggable components for composing service drivers ii) services for abstracting the exter-
nal data-stores, the data transformation and distribution, and the consistency and the metadata
handling iii) client-side middleware for building virtual storage infrastructures using the primitives
of the services iv) client-side libraries and gateway for abstracting the low-level API into an API
friendlier to developers.

As a proof-of-concept, we used our framework to fabricated various data-management mid-
dleware that we compared against Gluster; a “general purpose” distributed filesystem owned
by Redhat.We experimented with a broad set of various application workloads (synchronous,
asynchronous, parallel, sequential, random) and backend functionality (distribution, replication,
stripping, erasure-coding). These experiments gave us insights about the capabilities and limita-
tions of Tromos, but most importantly, they proved that Tromos makes possible to implement at
least the same functionality as to an existing system, without systems programming. They also
proved that application that runs on top customized middleware, with carefully included com-
ponents, can experience greater performance than running on top of general-purpose storage
systems. Hence, although Tromos is a young project, it could supersede Gluster in performance
by removing any unnecessary functionalities from the storage-line. In general, the principle be-
hind “application-tailored storage” is: if specific functionality is needed, add it as pluggable policy.
If it is not needed, omit it to avoid the overhead.

8.1 Future Direction

Perhaps the most intriguing usage of Tromos is as a toolkit intended for engineers, researchers
and enthusiasts looking to modify, hack, fix, experiment, invent and build distributed storage sys-
tems. Not for those seeking for a commercially supported “black-box” system, but for those who
want to work and learn with open source code. In other words, to be an in-vitro emulator for
research in distributed systems. With Tromos, researchers will be able to easily experiment with
new algorithms on a running system without the burdens and waste of timing of browsing into
the source to find where to place to their modifications. Adding a new placement should be as
easy as building a plugin. Such an approach would further advocate more objective comparison
(plugins minimize side effects) and would promote system reproducibility and behavior reason-
ing. Although similar tools such as Docker and Terraform pre-exist, they are focused on the
application-level and the infrastructure-level, respectively. To the best of the author knowledge,
Tromos is the first tool that simplifies the development of complex storage environments into an
intuitive language.
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