
HAL Id: tel-02443231
https://theses.hal.science/tel-02443231

Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code optimization based on source to source
transformations using profile guided metrics

Youenn Lebras

To cite this version:
Youenn Lebras. Code optimization based on source to source transformations using profile guided
metrics. Automatic Control Engineering. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLV037�. �tel-02443231�

https://theses.hal.science/tel-02443231
https://hal.archives-ouvertes.fr

s

N
N

T
:2

01
9S

A
C

LV
03

7

Code optimization based on source
to source transformations using

profile guided metrics
Thèse de doctorat de l’Université Paris-Saclay

préparée à l’Université de Versailles-Saint-Quentin-en-Yvelines

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat: "Programmation : modèles, algorithmes, langages,
architecture"

Thèse présentée et soutenue à Versailles, le 3 Juillet 2019, par

YOUENN LEBRAS

Composition du Jury :

Anthony Scemama
IR CNRS, HdR, Université de Toulouse Rapporteur
Angelo Steffenel)
McF HdR, Université de Reims Champagne-Ardenne Rapporteur
Michel Masella
CEA DRF, HdR, Saclay Examinateur
Denis Barthou
PR. Université de Bordeaux Président
Sophie Robert
McF, Université d’Orleans Examinateur
William Jalby
PR, Univesité de Versailles Saint-Quentin Directeur de thèse
Andres S. Charif-Rubial
PhD., PeXL Co-encadrant
Romain Dolbeau
PhD ATOS BULL Invité

iii

Declaration of Authorship
I, Youenn LEBRAS, declare that this thesis titled, “Code optimization based on source to
source transformations using profile guided metrics” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed: Youenn LEBRAS

Date: 07/03/2019

v

UVSQ

Abstract
Paris-Saclay

UVSQ - Li-Parad

PhD. Student in Computer Science

Code optimization based on source to source transformations using profile guided metrics

by Youenn Lebras

Modern high performance processor architectures tackle performance issues by heavily relying
on increased vector lengths and advanced memory hierarchies to deliver high performance.
Manual optimization of production HPC codes became a difficult task when having to man-
age multiple architecture dependent transformations. Developers usually trust compilers to
automatically address these performance issues, but they deploy static performance models
and heuristics which, must remain conservative or even fail in the worst case. Compiler
optimization choices can be refines by using feedback data from dynamic profiling. But,
it does not always consider some metrics and is rarely aggressive enough regarding metric
data collection. On the other hand, performance analysis tools are pretty good at detecting
specific performance issues, but only return observations on the quality and on the execution
of the code. Our goal is to develop a framework will allow to perform of source code trans-
formations based on performance analysis tools metrics. This framework will be integrated
into the MAQAO tool suite. We present an FDO tool with a set of source-to-source transfor-
mations guided by metrics coming from the various MAQAO tools and open to user advices.
This framework can also be used to simplify the development by automatically perform-
ing some simple, but time-consuming and error-prone transformations (e.g. loop/function
specialization).

HTTP://WWW.UNIVERSITY.COM
http://department.university.com
http://www.liparad.uvsq.fr/laboratoire-li-parad--377636.kjsp

vii

Acknowledgements
Avant toute chose, je voudrais remercier M. William Jalby, pour m’avoir acceuilli au sein du
laboratoire et pour m’avoir suivi, orienté et soutenu durant cette thèse. Je voudrais aussi
remercier Andrès S. Charif-Rubial pour son encadrement.

Je suis reconnaissant envers mes rapporteurs, Anthony Scemama et Angelo Steffenel pour
avoir eu la patience de lire ce manuscrit et m’avoir fait des retours pour l’améliorer et sur
mes travaux.

Mes années de thèses n’ont pas été de tout repos, mais grâce aux membres de ce labo-
ratoire, elles m’ont paru plus facile à vivre. C’est pourquoi j’adresse un grand merci chacun
d’entre eux, pour m’avoir aidé et soutenu que ce soit au travail ou en dehors via les team
building au Montbauront et autres occasions. Cédric, pour avoir le courage d’agréger nos
MPR pas toujours palpitant chaque mois, pour les soirées graphes avant les reviews et pour
les tournées payées. Emmanuel, pour ces longues discussions durant nos trajets pour Teratec.
Hugo, mon coéquipier breton de l’équipe, pour nos discussions au montbauront. Jasper, pour
tes médecines douces et techniques de relaxation. Mathieu, pour avoir eu la patience (oui, la
patience) de m’avoir eu en voisin de bureau et de m’aider à régler de nombreux problèmes
d’interface chaise-clavier (que ce soit avec maqao ou pas) ainsi que pour tes citations toujours
très inspirées et ton humour noir. A tous, un grand merci !

Je remercie bien évidemment tous les autres membres du laboratoire avec qui j’ai passé
moins de temps, mais avec qui j’ai tout autant apprécié travailler/discuter/etc. Kevin, notre
stagiaire qui un jour écrira son rapport ; Pablo pour m’avoir aidé dans de nombreuses dé-
marches et avec qui j’ai apprécié travailler et donner des cours ; Yohan, doctorant et com-
pagnon de galère de thèse (adum et formations), Nathalie et sylvain sans qui mon parcours
n’aurait peut-être pas été le même, Clément, Marie, Sebastien, pour les différentes discus-
sions et moments qui ont fait que ces années de thèse sont passées si vite.

Evidemment, merci à mes parents et ma soeur, pour leur soutien et pour leur patience
lorsqu’ils tentaient de comprendre quel était exactement mon sujet de thèse et en quoi con-
sistait mes travaux.

Un merci plus personnel et tout particulier à Chloé qui m’a soutenue autant (et aussi
longtemps) que possible durant cette thèse et ce malgré ce qu’elle vivait. J’espère t’avoir
autant soutenu et rendu le bonheur que tu as pu m’apporter. Pour tout ça, je lui dédicace
cette thèse.

viii

Un autre remerciement personnel, à mes amis qui sont là pour moi depuis de nombreuses
années, Romain et MP, Julien, Jaunathan, Gaetan et Pierre (surtout pour les bières après le
travail), Xavier, Jeremy, Zac, Anthony, Cassandre, etc. Il me faudrait encore quelques pages
pour citer tout le monde donc je m’arrête là, mais vous pouvez toujours mettre votre nom
dans la partie laissée en blanc qui suit.
Merci, !

And finally, after all these thanks, I would like to thank you random citizen! Yes you,
who gonna read this thesis (or at least a brief part). Thank you for thinking that there is
something interesting in this manuscript.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Background 1
1.1 Evolution of HPC Processor Architectures 1

1.1.1 Uni-core Design Details . 2
1.1.2 Memory Technology . 5

1.2 With Great Evolution Comes Great Difficulties 8
1.2.1 Vectorization Evolution . 8
1.2.2 Memory Organization . 10

1.3 Compilers . 12
1.3.1 Introduction . 12
1.3.2 Limitations . 13

1.4 Performance Analysis Tools . 14
1.4.1 Static Analysis . 14
1.4.2 Dynamic Analysis . 16

Using Sampling . 16
Using Tracing . 18

1.4.3 Global view using both . 19
1.5 Optimization Tools & Techniques . 21

1.5.1 Compiler Optimization Techniques 21
1.5.2 Flag Research . 22
1.5.3 Profile Guided Optimization (PGO) 22
1.5.4 Libraries . 23
1.5.5 Directives . 24
1.5.6 Domain Specific Language . 24
1.5.7 Source-to-Source . 25
1.5.8 Auto-tuning . 26

x

1.6 Conclusion . 26

2 ASSIST 29
2.1 Background . 29

2.1.1 Specifications / Context . 29
2.1.2 Existing Tools for Source-to-Source Transformation 30

Cetus . 30
Par4All & PIPS . 31
OpenC++ . 31
DMS Software Re-engineering Toolkit 31
LLVM (Clang & Flang) . 32
Scout . 32
Orio . 32
ROSE . 32
Summary . 33

2.1.3 MAQAO . 34
2.2 Design & Implementation . 36

2.2.1 Overview . 36
2.2.2 ASSIST Principle . 38
2.2.3 Integration Into MAQAO . 38
2.2.4 Interaction With The User . 39

2.3 Explicit Supported Transformations . 39
2.3.1 Unroll . 40
2.3.2 Full Unroll . 40
2.3.3 Tile . 41
2.3.4 Strip Mine . 42
2.3.5 Interchange . 42
2.3.6 Loop Count Transformation (LCT) 43
2.3.7 Short Vector Transformation (SVT) 44
2.3.8 Prefetcher . 46
2.3.9 Constant Propagation . 47
2.3.10 Local Dead Code Elimination . 47
2.3.11 Specialization . 48

Loop . 48
Function . 49

2.4 Assessing Transformation Verification . 51
How It Works . 51
Compared Metrics . 52

xi

Use Case Example . 54
Limitations . 54

2.5 Conclusion . 55

3 What Triggers Transformations and How 57
3.1 Introduction . 57
3.2 Collected Data and Triggered Transformations 57

3.2.1 Compilers PGOs . 57
3.2.2 AutoFDO . 59

3.3 ASSIST Transformations to Trigger . 60
3.3.1 Loop count . 61
3.3.2 Unroll & fullunroll . 61
3.3.3 Interchange . 62
3.3.4 Tile & strip mine . 62
3.3.5 Prefetcher . 62
3.3.6 Specialization . 63
3.3.7 Short vectorization . 65

3.4 Conclusion . 66

4 Experiment 69
4.1 Application Pool . 70
4.2 Impact of Value Profiling . 71
4.3 Impact of Specialization . 73

4.3.1 Specialization Only . 75
4.3.2 Combined With SVT . 76
4.3.3 Combined With Tiling . 84

4.4 Impact of Prefetchers . 86
4.4.1 With Mini QMCPAK . 86
4.4.2 With AVBP . 90
4.4.3 With Yales2 . 90

4.5 Impact of Intrinsic Prefetcher Function . 92
4.5.1 With Numerical Recipes . 92
4.5.2 With QMCPACK . 94

4.6 Impact of other common transformations . 95
4.6.1 With QMCPACK . 95

4.7 Conclusion . 97

xii

5 Issues & Limitations 99
5.1 Conclusion . 103

6 Conclusion 105
6.1 Contributions . 105
6.2 Perspectives . 106

A Appendix: ASSIST 111
A.1 ASSIST Help . 111
A.2 ASSIST Comparator Configuration file . 113
A.3 Metrics Used for the Comparator . 114
A.4 Installation Requirements . 115
A.5 How to Use ASSIST . 116

A.5.1 With an Annotated Source File . 116
A.5.2 With Profilers Results . 116
A.5.3 Transformation Script . 116

A.6 Transformation Script . 117
A.7 ASSIST API . 118
A.8 Example of OneView Report Generated for ASSIST 118
A.9 Caveats & Limitations . 119

A.9.1 Preprocessor . 119
A.9.2 Languages . 119

B Appendix: Codes 121
B.1 Prefetcher . 121
B.2 Intel Optimization Directives/Pragmas . 123

C Appendix: Additional results 125
C.1 Prefetchers . 125

Bibliography 129

xiii

List of Figures

1.1 DDR1 allows to transfer data on both, the rising and falling edges of the clock
signal. Source https://en.wikipedia.org/wiki/Double_data_rate 7

1.2 Sub-part of a cut through a graphics card that uses High Bandwidth Memory.
Grey dots represent: PCI express / Electrical current / Display connectors.
Source: https://en.wikipedia.org/wiki/High_Bandwidth_Memory 7

1.3 Difference of execution between a sequential addition and a vector operation
of addition with vectors of 4 elements. Source : https://www.slideshare.
net/IntelSoftware/the-next-leap-in-javascript-performance 9

1.4 The two possible Intel Optane use cases. Source : Intel(R)-Optane(TM)-
Technology-Workshop-Analyst-and-Press-Slides-322.pdf 12

2.1 Summary of existing tools performing source-to-source. 34
2.2 Process of a profiling with MAQAO overview. 35
2.3 Overview of tool usage. The user decides what static and dynamic analyses

have to be performed. Transformation script is a Lua script where the user
specifies transformations to be applied, avoiding to directly modify source
code. Alternatively the user can let ASSIST directly use profile to perform
transformations. 37

2.4 Example of comparison before and after transformations using ABINIT with
the test case Ti-256. 53

3.1 AutoFDO call graph to detect hot paths throught function calls. 60
3.2 Polaris - Metrics global metric before applied the SVT 65
3.3 Polaris - Metrics global and of the two hotspots loops before to apply the SVT. 66
3.4 Polaris - Global metrics after the SVT has been applied. 67
3.5 Polaris - Global metrics and specific metrics of the two hotspots loops after

the SVT has been applied. 67

https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://www.slideshare.net/IntelSoftware/the-next-leap-in-javascript-performance
https://www.slideshare.net/IntelSoftware/the-next-leap-in-javascript-performance
https://s21.q4cdn.com/600692695/files/doc_presentations/2017/Intel(R)-Optane(TM)-Technology-Workshop-Analyst-and-Press-Slides-322.pdf
https://s21.q4cdn.com/600692695/files/doc_presentations/2017/Intel(R)-Optane(TM)-Technology-Workshop-Analyst-and-Press-Slides-322.pdf

xiv

4.1 Histograms: impact (speedup) of ASSIST LCT, IPGO and combination of
both compared with the original version for the same number of threads of
two datasets Yales2 (Higher is better). Error bars represent original version
divided by minimum speedup and original version divided maximum speedup.
Plots: Percentage of execution time spent in MPI. 72

4.2 Cumulated speedup versus number of loops processed by ASSIST, sorted by
their coverage, on Yales2 using the 3D CYLINDER test case and AVBP using
the NASA test case. 74

4.3 Convolution Neural Network - Speedup of GoogleNet_V1 layers after special-
ization, compared to the original version. 75

4.4 Speedups by function before and after applying transformations with ASSIST
(SVT, function/loop specialization, LCT) and IGO compared with the original
version (higher is better) on AVBP using the SIMPLE test case (sequential
version). 77

4.5 Histograms: Speedups of ASSIST SVT (i.e. short vectorization+function/loop
specialization), ASSIST LCT, IPGO and ASSIST LCT+IPGO compared with
the original version for the same number of threads (Higher is better) on AVBP
using NASA, TPF and SIMPLE test cases. Error bars represent original
version divided by minimum speedup and original version divided maximum
speedup on AVBP. Plots: Percentage of execution time spent in MPI. 79

4.6 The loop nest of the function "gather_o_cpy". 81
4.7 Original version: Execution time details for the function "gather_o_cpy" and

all the variants of its loop. 81
4.8 Function Specialization version: Execution time details for the function "gather_o_cpy"

and its loops. 82
4.9 Loop Specialization version: Execution time details for the function "gather_o_cpy"

and its loops. 83
4.10 ABINIT - Example of function specialization coupled with loop tiling, per-

formed with ASSIST, for the use case Ti-256. Boxes highlight the tiling trans-
formation of the innermost loop. 85

4.11 ABINIT - Ti-256 - Speedups of IPGO, ASSIST LCT, specialized with ASSIST,
specialized and tiled with ASSIST compared to the original version 86

4.12 Mini QMCPACK - <-n 20 -g "4 2 2"> - Speedup by function for all configura-
tions. All speedups are compared to the configuration 0 (all prefetchers ON).
The graph is divided into two parts. 88

4.13 Mini QMCPACK - <-n 20 -g "4 2 2"> - Speedup by loop for all configurations.
All speedups are compared to the configuration 0 (all prefetchers ON). The
graph is divided into two parts. 89

xv

4.14 AVBP - SIMPLE: Speedup by function for each prefetcher configuration. All
speedups are compared to the configuration 0 (all prefetchers ON). The graph
is divided into two parts. 91

4.15 Yales2- 3D_Cylinder: Speedup by function for each prefetcher combination.
All speedups are compared to the configuration 0 (all prefetchers ON). The
graph is divided into two parts. 93

4.16 Yales2 - 3D_Cylinder: Speedup by prefetcher combination compared to all
prefetchers enabled for one, two and four processes. 94

A.1 Example from POLARIS of Oneview internal report for ASSIST, with on one
side global metrics and on the other, the "oneview_report" with all metrics
by loops . 120

C.1 Oneview view of functions managed. 126
C.2 Speedup by function for each prefetcher behavior. 127

xvii

List of Tables

1.1 Release year, range of number of cores and range of frequencies with and
without Turbo Boost for each micro-architecture. Source www.wikipedia.
org (only server information has been selected), https://en.wikipedia.org/
wiki/Transistor_count. 2

1.2 Number of transistors per processor and their area with normalization per 1
core. Source https://en.wikipedia.org/wiki/Transistor_count. 2

1.3 Evolution of key parameters on recent architectures. Specialized ports gather:
AES encryption, vector permutation, SADBW, PCLMUL, jump and branch,
branch. Source: www.anandtech.com & www.agner.org/optimize/. 4

1.4 Double Data Rate key parameters. "Gigatransfers per second refer to the num-
ber of operations transferring data that occur in each second". Cycle Time
represent time between two clock cycles in nanoseconde. Source: https:
//en.wikipedia.org/wiki/DDR_SDRAM, https://www.memoireonline.com/
01/12/5117/m_volution-sur-la-memoire-vive7.html, https://en.wikipedia.
org/wiki/Double_data_rate& https://www.transcend-info.com/Support/
FAQ-296 . 6

1.5 Evolution of Intel Vector instruction set. 9
1.6 Memory hierarchy key parameters L3 latencies fluctuates depending of the

number of cores, the more L3 slices, the more latency goes up. Cache TLB are
presented as follow: "page size : # entries, associativity" Source: https://www.anandtech.com
and https://en.wikichip.org. 11

2.1 The four types of hardware prefetchers for data prefetching. Source : https://software.intel.com
. 46

4.1 Number of loops processed by ASSIST LCT for each application and test case. 71
4.2 CQA & VPROF metrics of loops of the hotspot functions of AVBP, with the

SIMPLE dataset, before applying the SVT. 78
4.3 Execution time and speedups of ASSIST SVT (i.e. generic short vectorization)

compared with the original version on Polaris using the "test_1.0.5.18" test
case. 83

www.wikipedia.org
www.wikipedia.org
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
www.anandtech.com
www.agner.org/optimize/
https://en.wikipedia.org/wiki/DDR_SDRAM
https://en.wikipedia.org/wiki/DDR_SDRAM
https://www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.html
https://www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.html
https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/Double_data_rate
https://www.transcend-info.com/Support/FAQ-296
https://www.transcend-info.com/Support/FAQ-296
https://www.anandtech.com/show/6355/intels-haswell-architecture/9
https://en.wikichip.org/w/images/0/07/intel-ref-248966-031.pdf
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

xviii

4.4 The different prefetcher configurations, according to Intel: https://software.intel.com.
0=prefetcher ON, 1=prefetcher OFF. 87

4.5 NR - Number of cycle for the target loop. Prefetch 64, 128, 256, 512 and 1024
indicates the distance of the data to prefetch. 95

4.6 QMCPACK - Number of cycles for the target loop. Prefetch 64, 128, 256, 512
and 1024 indicates the distance of the data to prefetch. 95

4.7 Time in second of multiple versions of QMCPACK. Files have been used as
identifier because they contain multiple loops that have been optimized at the
same time. Orig: Original version; FU: Full unroll version; DIV: FU + Divison
replaced by multiplications; SIGNBIT: DIV = use signbit function to replace
an if statement; SIMD: SIGNBIT + use of the directive "simd" above signbit
loop. 96

B.1 Non-exhaustive list of optimization directives and pragmas available with
the Intel Compiler. Sources : https://software.intel.com/en-us/node/
524560#EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE, https://software.intel.
com/en-us/fortran-compiler-developer-guide-and-reference-compiler-directives
. 124

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/node/524560#EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE
https://software.intel.com/en-us/node/524560#EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-compiler-directives
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-compiler-directives

xix

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
AVX Advanced Vector Extensions
DDR Double Data Rate
FDO Feedback Data Optimization
GCC GNU Compiler Collection
GPL General Public License
GWP Google-Wide Profiler
HBM High Bandwidth Memory
HPC High Pperformance Computation
IR Intermediate Representation
LCT Loop Count Transformation
LGPL Lesser General Public License
LLVM Low Level Virtual Machine
MAQAO Modular Assembly Quality Analyzer and Optimizer
MSR Model Specific Register
PGO Profile Guided Optimization
RAT Register Aalias Table
ROB Re-Ordering Buffer
SIMD Single Instruction on Mmultiple Data
SSE Streaming SIMD Extensions
SVT Short Vectorization Transformation

xxi

À Chloé.

1

Chapter 1

Background

1.1 Evolution of HPC Processor Architectures

This section presents the evolution of High Performance Computing (HPC) processors ar-
chitecture. To follow this evolution we focus on four micro-architectures of the HPC leader,
Intel. In 2007 Intel adopted the "tick-tock" model where a new micro-architecture ("tock") is
followed by a die shrink ("tick") and, sometimes, new instructions or features are introduced.

For consistency and stability, this survey only focuses on new micro-architectures des-
ignated during the "tock" cycles. First, we present Nehalem, an Intel micro-architecture
released in 2008 and successor of the Intel Core 2.

Nehalem-based processors use a 45nm engraving process and allow hyper-threading. This
micro-architecture comes with an L2 cache smaller than its predecessors but it embeds a very
large L3 cache shared among all cores. The Nehalem "tick" is named Westmere and precedes
the Sandy Bridge micro-architecture.

Sandy Bridge, was released in 2011 as the "second-generation core" and was considered
as the successor of Nehalem. Sandy Bridge uses a 32nm process and offers a new set of vector
instructions (AVX) while retaining most of Nehalem core features. The Sandy Bridge "tick"
is named Ivy Bridge and is a 22nm die shrink of the original. The successor of Sandy Bridge
is named Haswell.

The Haswell micro-architecture was released in 2013 as the "fourth-generation core",
it uses a 22nm process and was specifically designed for power optimization. This micro-
architecture was deployed in a wide range of low-power processors for ultrabook computers
and saw an upgrade in the vector instruction set (AVX2). Intel also increased the number
of some registers and enlarged multiple memory buffer sizes. The "tick" of this micro-
architecture is labeled Broadwell and is made using a 14nm process.

Finally, Skylake will be the last micro-architecture we present. It was released in 2015
as the "sixth-generation core" and uses the same 14nm manufacturing process as Broadwell.
With Skylake, Intel gave up the "tick-tock" model and offered several alternative versions

2 Chapter 1. Background

System Year # Cores Frequency Turbo Lithography
(Ghz) (Ghz) Process (nm)

Nehalem 2008 1 - 8 1.86 - 2.53 1.86 - 3.33 45
Sandy Bridge 2011 2 - 8 1.8 - 3.5 1.8 - 4.0 32

haswell 2013 2 - 18 1.9 - 4.0 2.7 - 4.4 22
Skylake 2015 4 - 56 2.0 - 3.6 2.3 - 3.8 14

Table 1.1: Release year, range of number of cores and range of frequencies with
and without Turbo Boost for each micro-architecture. Source www.wikipedia.
org (only server information has been selected), https://en.wikipedia.org/

wiki/Transistor_count.

Processor # Year Transistor Area L3 size Transistor Area L3 size
count (mm2) (MiB)

Name Cores Count (mm2) (MiB) Normalized Normalized Normalized
Xeon Nehalem-EX 8 2010 2.3× 109 684 18 - 24 0.288× 109 85.5 2.25 - 3

Core i7 Sandy Bridge-E 6 2011 2.27× 109 434 12 - 15 0.378× 109 72.33 2 - 2.25
Core i7 Haswell-E 8 2014 2.6× 109 355 15 - 20 0.325× 109 44.5 1.9 - 2.5
Core i7 Skylake K 4 2015 1.75× 109 122 6 - 15 0.437× 109 30.5 1.5 - 3.75

Table 1.2: Number of transistors per processor and their area with normaliza-
tion per 1 core. Source https://en.wikipedia.org/wiki/Transistor_count.

instead: Kaby Lake, Coffee Lake, Cannon Lake and Cascade Lake. Skylake introduces
larger vector registers and a new set of vector instructions (AVX512), a deeper out-of-order
buffer, more execution units, more load/store bandwidth as well as improvements to Hyper-
Threading technology.

The Intel Xeon Phi (MIC: KNF, KNC, KNL) family of processors will not be covered in
this work because of its demonstrated low performance, complex requirements and its lack
of a developer friendly environment.

1.1.1 Uni-core Design Details
Over the last decade, CPU architectures evolved dramatically in terms of performance; from
the Pentium family to the last generation of Intel chips (Skylake-X), it is obvious that the

www.wikipedia.org
www.wikipedia.org
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count

1.1. Evolution of HPC Processor Architectures 3

performance model of the market shifted from high frequency single core processors to multi-
tasking high-core-count (or Manycore) parallel architectures. This allowed CPU manufactur-
ers to lower the power consumption (at the cost of latency sometimes) and increase memory
bandwidth and instruction throughput. This shift of performance model introduced addi-
tional optimization challenges related to parallelism (task and data), compilation and code
generation. In such environment, the optimization process is key to maintain a reasonable
performance level on modern micro-processor architectures [35]. Jalby et al.[52] presented
the progress of performance correlated to the Intel architecture evolution for the last twenty
years; and especially how the top 500 most powerful systems struggle to reach peak computa-
tional performance on real world applications even with a continuous increase in flops. This
evolution brings to light new optimization issues and challenges (i.e. managing larger vector
lengths, automatic vectorization, ...) beyond previously encountered performance limiting
factors (i.e. pipeline stages, memory hierarchy, ...).

Table 1.1 and 1.2 show the evolution of the technology using the core count, the frequency
and the lithography process as performance markers for the presented micro-architectures.
CPU performance is not only centered around core count and frequency but can also be
affected by the memory hierarchy (cache levels, number of memory channels, ...) and its
ability to process instructions and data in fewer cycles, or manipulate more data at once
(vectorization). The last two axes are of utmost importance for a micro-architecture to de-
liver considerable performance. Table 1.3 shows Intel’s endeavors to deal with both these
axes with micro-architectural upgrades.

"Out-of-Order" execution is an important improvement in micro-architectures design.
Basically, on "in-order" processors, if one or more operands are unavailable during the cur-
rent clock cycle, the processor stalls until they become available. The Out-of-Order process
avoids this stall by processing instructions based on their readiness rather than order; each
instruction with a ready operand is added into a buffer and dispatched to free units; instruc-
tion 2 can be executed before instruction 1 has been completed if all operands to perform
instruction 2 are completed. Once the execution finishes, the processor ensures that all in-
structions are qualified "in-order" to preserve the correct program semantic. This process
has been used in microprocessors since 1990; the concept does not change but the size of all
buffers or registers has significantly increased, as we can see in table 1.3. The "Out-of-Order"
buffer has practically doubled in size from Nehalem to Skylake. The same evolution applies
to Stores, Loads and the scheduler entries. The largest increase was for the number of in-
structions decoding queue which triples with Skylake. The number of execution ports has not
increased a lot but ports are now allowed to perform more different kinds of operations; from
Haswell, Intel added specialized ports which allow Fused-Multiply-Add (FMA) instructions,
Advanced Encryption Standard, Carry-Less Multiplication, ... to be performed.

4 Chapter 1. Background

Nehalem Sandy Bridge Haswell Skylake
Out-of-Order buffer 128 168 192 224

ROB entries 128 168 192 224
In-flight Stores 32 36 42 56
In-flight Loads 48 64 72 72

Scheduler Entries 36 54 60 97
Integer Register File 0 144 168 168
FP Register File 0 144 168 168
Line fill buffer 10 entries 10 entries 10 entries 10 entries

Instruction Decode Queue 28/thread 28/thread 56/thread 64/thread
Execution Ports 6 6 8 8

ALU Ports 3 3 4 4
Read Ports 1 2 2 3
Write Ports 1 1 2 2

Address Calculation 1 2 3 3
FMA Ports 0 0 2 3

Specialized Port 0 0 3 4

Table 1.3: Evolution of key parameters on recent architectures.
Specialized ports gather: AES encryption, vector permutation, SADBW,
PCLMUL, jump and branch, branch. Source: www.anandtech.com & www.

agner.org/optimize/.

www.anandtech.com
www.agner.org/optimize/
www.agner.org/optimize/

1.1. Evolution of HPC Processor Architectures 5

An FMA is a floating-point multiply-add operation performed in one step."That is, where
an unfused multiply-add would compute the product b ∗ c, round it to N significant bits, add
the result to a, and round back to N significant bits, a fused multiply-add would compute
the entire expression a + b ∗ c to its full precision before rounding the final result down to
N significant bits"1. The set of FMA instructions allow faster and more accurate special-
ized operations and are closely related to vector instruction sets described in the next section.

Modern high-performance processor architectures heavily rely on increased vector lengths
and advanced memory hierarchies to deliver high-performance. This stresses the importance
of data access optimization and efficient usage of the underlying available vector capabilities
detailed in section 1.2.1 and 1.2.2.

1.1.2 Memory Technology

Until recently, the memory was divided into two large families: first, persistent memory (e.g.
Hardrive, flash drive); and second, volatile memory (i.e. DRAM, SRAM). For a myriad of
reasons, memory technology hasn’t evolved as fast and as much as CPU technology. But, the
computer bus and interfaces have seen massive improvement in bandwidth and transfer speed
over the years. In 2000, the first Double Data Rate (DDR) memory based on the synchronous
dynamic random-access memory (SDRAM or DDR1), was released. This technology has
better bandwidth transfer rates; the interface allows to transfer data on both the rising and
the falling edges of the clock signal and thus doubles the transfer rate. Figure 1.1 presents
the evolution of key parameters of the different DDR.

Memory Bus and Interfaces The main factor behind this evolution is bus and interfaces
improvement, as we can see on table 1.4 and 1.6. The first DDR was clocked at 100Mhz with
an IO bus clock between 100 and 200 Mhz. The DDR2 bus came up even faster and allowed
to operate external data twice as fast as its predecessor. All other key parameters have also
been improved and even doubled. Prefetcher buffer width moved from 2 bits in DDR1 to
4 bits in DDR2; both the I/O bus clock and the memory clock frequencies were increased
to provide a better transfer rate. Compared to DDR2, DDR3 reduces power consumption
by 40% by using a lower voltage, 1.5 volts against 1.8 for DDR2 and 2.5 for DDR1. DDR3
introduced features allowing to control the refresh rate according to the Automatic Self Re-
fresh and the Self-Refresh Temperature variation. DDR4, which is supported by Skylake, has
a reduced operating voltage of 1.2 volts with an increased transfer rate of 3.2 GT/s. Only

1Source: https://en.wikipedia.org/wiki/Multiply-accumulate_operation

https://en.wikipedia.org/wiki/Multiply-accumulate_operation

6 Chapter 1. Background

DDR1 DDR2 DDR3 DDR4

Year 2000 2003 2007 2014

Memory 100 200 200 400

clock (Mhz)

I/O bus 100 - 200 200 - 533 400 - 1067 800 - 1600

clock (Mhz)

Transfer rate 0.2 0.8 1.6 3.2

(Gigatransfers/s)

Cycle time 5 - 6 1.8 - 5 1.5 - 0.6 1.2 - 0.4

(ns)

Prefetcher 2 bits 4 bits 8 bits 8 bits

buffer width

Energy 2.5 1.8 1.5 1.2

consumption (Volts)

Table 1.4: Double Data Rate key parameters. "Gigatransfers per second
refer to the number of operations transferring data that occur in each
second". Cycle Time represent time between two clock cycles in nanosec-
onde. Source: https://en.wikipedia.org/wiki/DDR_SDRAM, https://
www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.
html, https://en.wikipedia.org/wiki/Double_data_rate & https:

//www.transcend-info.com/Support/FAQ-296

https://en.wikipedia.org/wiki/DDR_SDRAM
https://www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.html
https://www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.html
https://www.memoireonline.com/01/12/5117/m_volution-sur-la-memoire-vive7.html
https://en.wikipedia.org/wiki/Double_data_rate
https://www.transcend-info.com/Support/FAQ-296
https://www.transcend-info.com/Support/FAQ-296

1.1. Evolution of HPC Processor Architectures 7

Figure 1.1: DDR1 allows to transfer data on both, the rising and falling edges
of the clock signal. Source https://en.wikipedia.org/wiki/Double_data_

rate

Figure 1.2: Sub-part of a cut through a graphics card that uses High Bandwidth
Memory. Grey dots represent: PCI express / Electrical current / Display con-
nectors. Source: https://en.wikipedia.org/wiki/High_Bandwidth_Memory

the prefetcher buffer width remained unchanged from DDR3. DDR4 introduces features to
improve the stability of data transmission and memory signal integrity. DDR5, planned for
2020, is intended to reduce power consumption while doubling the capacity of the current
DDR4.

Other technologies have also been developed; for example, High Bandwidth Memory
(HBM), mainly used in GPUs, is designed to stack silicon dies and get a 3D structure for
DRAM (2011), as well as a high-performance RAM interface for a 3D-stacked DRAM (2013).
Figure 1.2 presents a use of the HBM in a GPU. The HBM memory bus is wider than DRAM
bus (i.e. DDR4), it can support up to 4GB per package and has two 128-bits channels per die,
for an HBM stack of four DRAM dies, for example. The second generation of HBM, released
in 2016, allows up to 8 GB per stack and is able to reach 256 GB/s memory bandwidth per
package. A third generation is planned for 2020, and even a fourth between 2022 and 2024,
with the objective of reaching the Exascale mark.

https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/High_Bandwidth_Memory

8 Chapter 1. Background

Even with improvements to the memory, on Skylake mainly, it remains a complex com-
ponent with many strong dependencies between caches. Intel has recently introduced the
Optane technology, a new class of configurable memory that can function in both, persistent
and volatile modes. This adds a new level of complexity above the already complex hierarchy.
Intel Optane memory is a smart memory technology that accelerates responsiveness2 and is
named 3D XPoint due to its functioning system; the bit storage is based on a change of bulk
resistance, in conjunction with a stackable cross-grided data access array to further boost
density3. With its new 3D structure with perpendicular wires connecting submicroscopic
columns, individual memory cells can be addressed by selecting its top and bottom wire3.

1.2 With Great Evolution Comes Great Difficulties

Modern high-performance processor architectures tackle performance issues by heavily rely-
ing on increased vector lengths and advanced memory hierarchies in order to deliver high-
performance. This stresses the importance of data access optimization and efficient usage of
the underlying hardware.

1.2.1 Vectorization Evolution

Vector instructions consists of applying the same operation on packed data. Specialized in-
structions are used for performing vector operations, referred to as SIMD (Single Instruction
Multiple Data). Data is loaded in a vector register, and SIMD instructions are used before
storing the results in a vector register. In figure 1.3, the scalar operation performs four addi-
tions serially, while the SIMD instruction performs only one addition on the four elements.

On Intel microprocessors, the SIMD set of instructions has evolved from what Intel la-
beled MMX, (extensions to the x86 architecture added in 1996 with Pentium) to AVX-512
(Advanced Vector Extensions), which expands the vector length to 512-bit. AVX-512 was
first supported by Intel’s Knights Landing processor.

Lately, vectorization has reemerged as a key element for performance. The continuous
increase in vector length creates more opportunities to boost the performance of HPC ap-
plications. Vectorization is key in the optimization process allowing high-performance and

2Source: https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-memory.html

3Source: https://www.anandtech.com/

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.anandtech.com/show/13083/intel-and-micron-update-3d-xpoint-roadmap-combined-effort-2nd-gen-3rd-gen-separate

1.2. With Great Evolution Comes Great Difficulties 9

Figure 1.3: Difference of execution between a sequential addi-
tion and a vector operation of addition with vectors of 4 ele-
ments. Source : https://www.slideshare.net/IntelSoftware/

the-next-leap-in-javascript-performance

Name Vector size Architecture

MMX 64b Pentium 2 (1997)

SSE 128b Pentium 3 (1999)

SSE2 128b Pentium 4 (2000)

SSE3 128b Pentium 4 (2004)

SSSE3 128b Merom (2006)

SSE4.1 128b Penryn (2007)

SSE4.2 128b Nehalem (2008)

AVX 256b Sandy Bridge (2011)

AVX2 256b Haswell (2013)

AVX512 512b XeonPhi (2013) & Skylake-X (2017)

Table 1.5: Evolution of Intel Vector instruction set.

https://www.slideshare.net/IntelSoftware/the-next-leap-in-javascript-performance
https://www.slideshare.net/IntelSoftware/the-next-leap-in-javascript-performance

10 Chapter 1. Background

tipping the balance between memory accesses and computation.

However, the advantages are not obvious given that the task of vectorizing and choos-
ing the most appropriate/efficient instructions is left to compilers. Moreover, there’s great
difficulty in determining whether a loop will be more efficient in sequential or in vectorized
form. The compiler uses a static cost model to guide its choice but, without knowledge of
loops bounds, it cannot make an optimal choice every time. On Intel architectures, vector
instructions are very sensitive to memory alignment and thus exhibit different performances
depending on whether allocated memory is aligned to a power of two (or cache line) boundary
or not. Although aligned accesses are more efficient, in most cases, it is extremely difficult
to generate SIMD code for aligned accesses.

1.2.2 Memory Organization

Memory hierarchy has evolved slowly during the last decade, even after the introduction of
the memory wall [121] problem. Table 1.6 presents the evolution of different caches, the
translation lookaside buffer (TLB) and latency from Nehalem to latest Skylakes. The low
latency values in table 1.6 are explained by the fact that the last level cache is sliced into mul-
tiple L3 connected caches. This configuration affects latency but improves the bandwidth.
This table shows that the cache and TLB have not evolved much before Skylake which comes
with upgraded L2 and L3 caches. With the previous generations of Intel microprocessors,
each core had an inclusive private L1 and L2 caches and the last level cache was also inclusive
and covered all cores through a bi-directional interconnect. With Skylake-XTM, the L3 cache
(last level cache) becomes non-inclusive.

Figure 1.4 presents the two possible use cases of the new Intel Optane technology, which
can be used either as a second storage or cache space like an SSD drive, or as extended
memory where it will be complementary to the RAM. As shown on figure 1.4 it can be used
as complements to the RAM rather than as a complete replacement of it, thus creating a
biggest memory pool and a new level in the hierarchy.

Caches Hierarchy As mentioned previously, cache hierarchies have seen little advance-
ments and the improvement of Skylake with larger buffers and increased capacity is not an
evolution. However, the new hard drive technology is a revolution in the domain of memory
and the Intel Optane technology brings a new approach and is complementary to both RAM
and disk level I/O. This technology is too recent and hasn’t shown its potential on current
HPC workloads. Also, it is unclear what kind of challenges the HPC developers will have to
face when this technology becomes more available. What must be kept in mind is that this

1.2. With Great Evolution Comes Great Difficulties 11

Nehalem Sandy Bridge Haswell Skylake
Cache line size 64-bytes 64-bytes 64-bytes 64-bytes

L1 Instruction Cache 32K, 4-way 32K, 8-way 32K, 8-way 32K, 8-way
L1 Data Cache 32K, 8-way 32K, 8-way 32K, 8-way 32K, 8-way
L2 Unified Cache 256K, 8-way 256K, 8-way 256K, 8-way 1M, 16-way
L3 Data Cache 8M, 8M, 8M, 2M/core,

16-way 12-way 12-16 way 11-16 way
L1 Instruction 4K(page): 4K(page): 4K(page): 4K(page):

TLB 128(entries),4-way 128(entries),4-way 128(entries),4-way 128(entries),
2/4M(page): 7/thread 2/4M: 8/thread 2/4M: 8/thread 4-way

4K(page): 4K(page): 4K(page) 4K(page):
L1 Data 64(entries), 4-way 64(entries), 4-way 64(entries), 4-way 64(entries),
TLB 2/4M(page): 2/4M(page): 2/4M(page): 4-way

32(entries), 4-way 32(entries), 4-way 32(entries), 4-way
1G(page): 1G(page): 1G(page):
fractured 4(entries),4-way 4(entries),4-way

L2 Unified 4K(page): 4K(page): 4K+2M(page)shared: 4K(page):
TLB 512(entries), 512(entries), 1024(entries), 1536(entries),

4-way 4-way 8-way 12-way
L1 Latency 4 cycles 4-5 cycles 4-5 cycles 4-5 cycles
L2 Latency 10 cycles 11 cycles 12 cycles 12 cycles
L3 Latency depend # of cores 30 cycles 34-65 cycles 34-45 cycles

Line fill buffer 10 entries 10 entries 10 entries 10 entries

Table 1.6: Memory hierarchy key parameters
L3 latencies fluctuates depending of the number of cores, the more L3 slices,

the more latency goes up. Cache TLB are presented as follow:
"page size : # entries, associativity"

Source: https://www.anandtech.com and https://en.wikichip.org.

https://www.anandtech.com/show/6355/intels-haswell-architecture/9
https://en.wikichip.org/w/images/0/07/intel-ref-248966-031.pdf

12 Chapter 1. Background

Figure 1.4: The two possible Intel Optane use cases. Source : Intel(R)-
Optane(TM)-Technology-Workshop-Analyst-and-Press-Slides-322.pdf

technological breakthrough shows that memory can - indeed - be improved and that it will
be a key element in the future when dealing with optimization.

Currently, most memory issues are related to data accesses and alignment, whereas most
optimizations focus on how to better manage computation or parallelism, communications
and synchronization. With new technologies such as Intel Optane and advancements in bus
and other memory interfaces, the paradigm will certainly shift to current memory problems.
The future of the evolution will be at the DRAM level with the possibility of the disappearance
of hard drives and even SSDs.

1.3 Compilers

1.3.1 Introduction

Compilers are the starting point for developers to start optimizing an application. A com-
piler processes statements written in a human-readable language and turns them into ma-
chine language or "code" that a microprocessor chip executes. This process consists of three
main steps. First, the frontend, during which the compiler checks the grammar and syntax
of the code. Next, the code is transformed into an Abstract Syntax Tree (AST) with an
Intermediate Representation (IR) where it applies major optimizations. Finally, the IR is

https://s21.q4cdn.com/600692695/files/doc_presentations/2017/Intel(R)-Optane(TM)-Technology-Workshop-Analyst-and-Press-Slides-322.pdf
https://s21.q4cdn.com/600692695/files/doc_presentations/2017/Intel(R)-Optane(TM)-Technology-Workshop-Analyst-and-Press-Slides-322.pdf

1.3. Compilers 13

transformed into assembly code for a target micro-architecture. During the optimization pro-
cess, every part of the code is statically analyzed and tries to apply as many optimizations
as possible. Compilers have a plethora of available optimizations such as loop optimizations
(i.e. unroll, split, interchange), vectorization, data-flow optimization (constant propagation,
sub-expression elimination, induction variable recognition, and elimination) and code-block
reordering. Compilers deploy the latest optimization techniques that offer many benefits
to embedded systems developers. With challenging real-time performance goals, cost con-
straints, developers increasingly rely on the compiler’s intimate knowledge of a processor
instruction set and performance patterns to produce optimal code.

To help choose which optimizations to apply, static performance models and heuristics are
used to avoid degrading the performances. In addition, compilers provide multiple ways to
add information to help making choices. For example, developers can give hints about what
to expect from some part of their codes by using directives. These hints can be information
about the expected trip count for a loop, whether a loop can be vectorized, or even force the
vectorization, enable/disable unrolling.

Compilers also provide different flags to trigger optimizations, adding debug information
in the binary or control flow. Flags have to be specified during the compilation pass, and
can be applied on a unique file or a whole project to maximize their impact. Some compil-
ers also have an integrated Feedback Data Optimization (FDO) tool to help them in their
optimization choices, i.e. Profile Guided Optimization (PGO). PGO is a dynamic analysis
of a program that runs a dataset to extract specific information and applies other transfor-
mations. The three steps of PGO consist of producing an instrumented binary, generating
profiling data by running the instrumented binary, and using the collected data to produce
a new optimized binary.

However, even with all available optimization possibilities, compilers suffer from limita-
tions where every compiler decision is not obviously optimal. In Chapter 4, we will discuss
compiler issues and expected improvements. Usually, due to the cost in time of the research,
flag optimizations are applied after the developer has performed source optimizations.

1.3.2 Limitations
Most of the time, developers trust compilers to automatically address performance issues
but, sometimes, due to the static performance cost model and heuristics, compilers remain
conservative when applying certain optimizations, or fail in the worst case. These static

14 Chapter 1. Background

analyses and strict performance cost models are the main limitation behind compiler opt-
mization failures. Even though developers can provide hints to the compiler using directives,
their number is limited and they are compiler dependent. Also, some compiler directives can
be hazardous. For example, if a loop is forcefully vectorized, the resulting code can be very
slow or worst, and can introduce bugs. The same can be said for flags. Limited in number
and scope. In addition, flags are applied on a whole file or project and cannot be applied
on a specific part of the code. Another limitation of flags is that they do not always allow
performance gain so they have to be used partially and tested carefully. Even if they can be
combined, the number of flag combinations which can be applied can increase very quickly.
Assuming K compiler flags available, properly setting a string of N flags leads to exploring
KN combinations [52]. Research about flag combination is expensive because the code must
be executed several times to obtain the most optimal combination. The use of the PGO
to overcome the issue of the static analysis is limited. PGO lacks information on what is
done and in the current implementation, the amount of information gathered at runtime is
limited. Moreover, the available transformations space is still fairly small. Both of these
limitations have a strong negative impact on the efficiency of the applied transformations.
Another limitation is that mapping may miss opportunities for performance enhancements
in exchange for correctness or portability.

1.4 Performance Analysis Tools

In the HPC industry, optimization is the key to reach peak application performance. Tools,
such as profilers and analyzers can be extremely helpful in locating performance bottlenecks
and can also help application developers optimize their programs and clear up these perfor-
mance issues. This section presents different profilers and analyzers which can be classified
into two types: static and dynamic.

1.4.1 Static Analysis
Static analysis is a method which consists of examining a code without executing it. Static
analysis allows an understanding of the code structure and can predict some issues using
metrics. The principal advantage of this method is that without executing the program it
provides the first estimation of different issues of the code, as well as a code quality control.

IACA (Intel Architecture Code Analyzer) [48] is a static analysis tool made by Intel to
statically analyze the scheduling of instructions when executed by modern Intel processors.
On the one hand, it allows performing static analysis of kernel throughput and latency under

1.4. Performance Analysis Tools 15

the ideal front-end, Out-of-Order engine and memory hierarchy conditions. On the other
hand, it identifies the binding of the kernel instructions to the processor ports and the kernel
critical path4. IACA enables a first-order estimate of relative kernel performance on different
micro-architectures, but does not provide absolute performance numbers.

Kerncraft [45] is a tool which analyzes loop kernels using the Execution Cache Memory
model, the Roofline model and actual benchmarks. It investigates the data reuse and cache
requirements by static code analysis5. When combined with Intel IACA, kerncraft can give
an overview of both in-core and memory bottlenecks and performance models can be applied
on that data.

llvm-mca [16] is a performance analysis tool that uses information available in LLVM
to statically measure the performance of machine code in a specific CPU. Performance is
measured in terms of throughput as well as processor resource consumption6. It starts by
parsing an assembly code, executing a module to simulate the execution of a machine and
analyzing the output to generate performance reports. For example, in its report, llvm-mca
estimates the Instructions Per Cycle (IPC), as well as hardware resource pressure or provides a
timeline view which shows each instruction state transitions through an instruction pipeline.
The main goal of this tool is to predict the performance. It also helps with diagnosing
potential performance issues. The analysis and reporting were inspired by the IACA tool
from Intel.

MIRA [53] is a static analyzer using Rose to perform its analysis of binaries and their
associated source code. MIRA generates one AST from the source code and one from the
compiled binary code, then tries to match them and uses information retrieved from these
trees to improve the accuracy of the generated model. Their analysis focuses on loops and
uses the polyhedral model to formalize loops in their general model.

CQA [23] (Code Quality Analyzer) is a static analysis module of MAQAO [12] that aims
at tackling core level issues by modeling the processor pipeline, performing a simulation
of the relevant stages of the hot-spots in a program, and providing numerous metrics that
characterize these hot-spots behavior. CQA gathers multiple metrics such as an estimation
of data dependencies, vectorization ratio as well as the cycle cost - from the evaluation of

4Source: https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
5Source: https://github.com/RRZE-HPC/kerncraft
6Source: https://llvm.org/docs/CommandGuide/llvm-mca.html

https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://github.com/RRZE-HPC/kerncraft
https://llvm.org/docs/CommandGuide/llvm-mca.html

16 Chapter 1. Background

the cost of a group of instructions to know the execution latency and throughput of every
instruction variant on a target architecture, execution units and decoding time of instructions.

UFS [85] (Uop Flow Simulation) is an approach combining static analysis and cycle-
accurate simulation to very quickly estimate a loop execution time while accounting for
out-of-order limitations in modern CPUs. UFS allows to model the impact of varying latency:
this can be done uniformly on loads and stores or individually. This allows to understand
the potential performance gain of: better blocking (blocking for L2 instead of L3), better
prefetching (add extra prefetch instructions on targeted loads), using on-die DRAM versus
external DRAM (cf. KNL).7 In addition, it can correlate code with buffer usage and provide
a detailed insight on this buffer usage. UFS allows to characterize the latency impact on loop
performance with massive parameter explorations.

1.4.2 Dynamic Analysis

In contrast to static analysis which only requires source code and/or binary, dynamic analysis
needs to execute the program to gather information. The objective is to find what happened
during the execution of a program rather than by repeatedly examining the code offline.
The dynamic analysis can be split into sampling and tracing and each has advantages and
drawbacks. Both are made to reveal performance issues and to identify which parts of a
program the process of improvement will be the most time consuming. Efforts will be focused
on investigating and improving them. Sampling is statistical profiling, when the program is
repeatedly interrupted as it runs, with a fixed interval between interruptions. The purpose of
each interruption is to take a sample. This is done by visiting each running thread, and then
examining the stack to discover which functions are running8. On the other hand, tracing
uses an event logged in the program. This log has to be detailed enough to report execution
of function calls, returns, and other statements. Tracing may require the program to be
instrumented by inserting instrumentation directly in the source code or dynamically into
the machine code.

Using Sampling

Sampling is a statistical profiling process or technique that takes samples. This method does
not require any modification of the binary and can use hardware counters to get information
about what happens during the execution of the program. Sampling is often sufficient to

7Source: https://dyninst.github.io/scalable_tools_workshop/petascale2017/assets/slides/
SWT2017_WJA_data_latency_access_V9.pdf

8Source: https://www.jwhitham.org/2016/02/profiling-versus-tracing.html

https://dyninst.github.io/scalable_tools_workshop/petascale2017/assets/slides/SWT2017_WJA_data_latency_access_V9.pdf
https://dyninst.github.io/scalable_tools_workshop/petascale2017/assets/slides/SWT2017_WJA_data_latency_access_V9.pdf
https://www.jwhitham.org/2016/02/profiling-versus-tracing.html

1.4. Performance Analysis Tools 17

pinpoint load imbalance due to problem decomposition and/or identify the origin of excessive
communication time9. It is fastest, cheaper than tracing and can be useful as the first step
to categorize some issues and to localize performance problems but it can lack accuracy.

Scalasca [39] is a software tool that supports the performance optimization of parallel pro-
grams by measuring and analyzing their runtime behavior. The analysis identifies potential
performance bottlenecks, in particular, those concerning communication and synchroniza-
tion, and offers guidance in exploring their causes10. Scalasca focuses its profiling on parallel
issues, such as communications and synchronization inefficiency but nothing on computation
issues. The Scalasca analysis can be visualized in other tools, such as cube [29], Paraver [66]
or Vampir [112].

VTune [4] is a commercial application for software performance analysis of Intel architec-
tures. It provides various kinds of code profiling including stack sampling, thread profiling,
and hardware event sampling. The profiler result consists of details such as time spent in
each subroutine which can be drilled down to the instruction level. The time taken by the
instructions are indicative of any stalls in the pipeline during instruction execution. The tool
can also be used to analyze thread and storage performance11.

PerfExpert 4.0 [89, 20] is a tool that diagnoses performance bottleneck at the function and
loop level for any core/socket/node level. It is able to perform source transformation based on
specific patterns on identified bottlenecks. PerfExpert also provides an analysis report with
hints on how to remove bottlenecks if optimization cannot be done automatically using their
source transformation. The report gives an overview of multiple elements of the program.
For example, it gives details on the data accesses (hits and misses of all cache levels) and
instruction accesses by counting the LPCI arising from accesses to memory: memory accesses
for variables, floating point instruction by counting the LPCI from executing floating point
instructions, gflops peak. The number of transformations are pattern based and limited to
loop interchange, tiling and fission. Moreover, PerfExpert uses HPCToolkit for the analysis
and the Rose compiler, for source-to-source, to perform transformations12.

9Source: http://ipm-hpc.sourceforge.net/profilingvstracing.html
10Source http://www.scalasca.org/
11Source: https://en.wikipedia.org/wiki/VTune
12https://github.com/TACC/perfexpert/blob/master/doc/user_manual/pdf/user_manual.pdf

http://ipm-hpc.sourceforge.net/profilingvstracing.html
http://www.scalasca.org/
https://en.wikipedia.org/wiki/VTune
https://github.com/TACC/perfexpert/blob/master/doc/user_manual/pdf/user_manual.pdf

18 Chapter 1. Background

MAQAO LProf (Lightweight Profiler) is a MAQAO module for the purposes of quickly
profiling an application at runtime by characterizing the loops and/or the functions. It is
used as an entry point of the MAQAO tool-chain as it allows to quickly target the most
relevant part of the code. In order to perform its profiling, LProf uses sampling. It stops
the processor at regular intervals and captures the current value of the instruction pointer
and some of elements that are useful to complete the characterization (i.e stack state). This
profiling technique is almost non intrusive and offers a good accuracy, while keeping the
overhead very low. The sampling method relies on the Linux perf event open syscall which
sets up the Performance Monitoring Unit (PMU) and on Ptrace to track threads and/or
processes and configure the PMU for each of them. LProf can provide as many classifications
as hardware counter events available on the target processor.

Using Tracing

In contrast to sampling, the trace is a log of events within the program allowing it to be more
accurate than sampling. Tracing requires program instrumentation where probes are inserted
either in the source code or in the binary. The amount of data in the trace increases with the
runtime. As such in order to bind the memory usage by the tracing one must periodically
write the data out to a disk or a network. Tracing is useful for detailed examination of timing
issues occurring within a code.

Score-P [55] is an instrumentation framework, that allows users to insert instrumentation
probes into their codes to collect data (e.g. times, communications, hardware counters,
etc.). It is a system which instruments and analyzes codes for numerous other external tools
and provides a number of components that interact with each other, such as like an online
interface, cube and supports external tools, such as TAU, Scalasca, Vampir.

Callgrind [21] is a profiling tool which uses runtime instrumentation via the Valgrind
framework for its cache simulation and call-graph generation. This way even shared libraries
and dynamically opened plugins can be profiled13. Callgrind generates files and performance
results can be visualized with KCachegrind. It uses the processor emulation of Valgrind to
run the executable and catches all memory accesses for the trace. The user program does not
need to be recompiled; it can use shared libraries and plugins, and the profile measuring does
not influence the trace results. The trace includes the number of instruction/data memory
accesses and 1st/2nd level cache misses. It relates them to source lines and functions of the
run program.

13Source: http://kcachegrind.sourceforge.net/html/Home.html

http://kcachegrind.sourceforge.net/html/Home.html

1.4. Performance Analysis Tools 19

MAQAO VProf [47] (Value Profiler) is also a MAQAOmodule which is able to find various
characteristics of a given subset of loops and/or functions. It uses the patching capabilities
of MAQAO to instrument target functions and loops. Using MAQAO core analysis and to
the intermediate representation of the instructions, assembly code can be injected at any
location in the binary (including between loops iterations) without altering the program
original task, and thus obtain a functional program that can run any additional profiling
code. VProf includes multiple probes and instrumentation algorithms which allow numerous
measurement types. If requested, these probes can operate with thread local storage (TLS)
variables and work in a multi-threaded environment. The VProf-driven instrumentation is
able to provide, among other metrics, the number of cycles spent in a given iteration of
a loop, the parameters of a function, the number of iterations of a loop or the number of
instances of a function.

MAQAO DECAN [57, 15, 58] (DECremental ANalysis) is a module slightly different
from the other tools. It runs a differential analysis (extension of the decremental analysis) on
loops or basic blocks, to obtain a concise idea of the nature of the application bottleneck(s), its
potential future bottlenecks, and the potential gain if those bottlenecks are cleared. DECAN
uses the patcher to create multiple versions of the profiled piece of code and measures the
cost of every variant. Each version removes or modifies a certain class of instructions (except
those involved in the control flow); among all variants, one is the DL1 (Data in L1) variant
which modifies all memory accesses to force their data to be in the L1 cache.

Once the measures are done, DECAN performs a differential analysis by comparing the
cost of each variant with the cost of the original code. This results in invaluable information
such as saturation ratios which represent how many memory accesses or floating operations
are limiting the performance, and give a deep insight into the potential gain once the appli-
cation is optimized.

1.4.3 Global view using both
In this section, we consider tools that combines both, static and dynamic analysis to provide
a more accurate view of the performance of a program.

HPCToolkit [3] is an integrated suite of tools for measurement and analysis of program
performance. By using statistical sampling of timers and hardware performance counters, it
collects accurate measurements of a program work, resource consumption, and inefficiency
and attributes them to the full calling context in which they occur14. HPCToolkit provides

14Source: http://hpctoolkit.org/

http://hpctoolkit.org/

20 Chapter 1. Background

a sequence of analysis which consists of : 1) measuring execution costs (hardware consump-
tion cost); 2) analyzing source code structure; 3) attributing measured costs to source code
structure combining the dynamic profile with the source code analysis to attribute measured
costs incurred during the execution of the program to meaningful source code constructs. It
also provides a visualizer to see attributed costs in source code or timeline views.

Tau [103] (Tuning and Analysis Utilities) is a software capable of gathering performance
information through instrumentation of functions, methods, basic blocks, and statements as
well as event-based sampling15. TAU provides tools that support sophisticated views of a
program structure. Currently, the code analysis systems have been used to analyze C++
source to automatically generate TAU profiling instrumentation. It also provides Paraprof, a
graphical interface to visualize all results in an aggregate and per node/context/thread form.
The user can quickly identify sources of performance bottlenecks in the application using
this graphical interface. In addition, event traces can be used by other visualizers such as
Vampir, Paraver or JumpShot.

Intel APS (Application Performance Snapshot) [9, 119] is the Intel toolbox that gathers
in one view: Intel Trace Analyzer and Collector, Intel MPI Tuner, Intel VTune and Intel
Advisor, to take a quick look at the program performance issues at multi levels: Cluster
with MPI imbalance and bounds and thus see detailed rank-to-rank communications; Node,
to see CPU/Memory bound and thread scalability issues, disk IO, memory access, etc; and
finally Core, with the analysis of the vector efficiency (i.e. FMA, FPU). The goals of APS is
to identify optimization areas with detailed reports while having a low overhead and a high
scalability all in a global and simple view which gathers all details issues and bottlenecks.

MAQAO ONE-View ONE-View is a MAQAO module that drives the execution of other
MAQAO modules (LPROF, VPROF, CQA and DECAN) in order to produce synthetic
reports. Static and dynamic analysis are used according to the analysis description. Exper-
iments are configured using a file or some command line parameters. Produced reports can
be formatted as HTML web pages, XLSX spreadsheets or simple text and gather all metrics
of executed modules. ONE-View defined several built-in reports:

• one - The fastest report. It combines LPROF profiling with CQA static analysis. It
needs only one run of the application.

• two - It contains all data from "one" with some metrics produced by VPROF and
DECAN. It needs four or five runs of the application according to the configuration.

15Source: https://www.cs.uoregon.edu/research/tau/home.php

https://www.cs.uoregon.edu/research/tau/home.php

1.5. Optimization Tools & Techniques 21

• three - It contains all reports from "two" with a lot of DECAN metrics. It needs about
twenty runs of the application and is the longest report.

In addition, users can define their own reports by filling in a report description file to filter
which module to execute and metrics to compute.

1.5 Optimization Tools & Techniques

All optimization techniques are different. For example, specific directives can transform a
sequential code into a parallel one (i.e. OpenMP). Another technique consists in finding the
best compiler flags combination or provide a domain specific language which facilitates the
writing of complex operation. The remainder of this section presents different optimization
tools and techniques aiming at providing assistance to optimize developers codes.

1.5.1 Compiler Optimization Techniques

Compilers provide a wide range of optimization techniques, which are listed below.

• Data-flow analysis: gathers information about the possible set of values calculated at
various points in a computer program. A program control flow graph (CFG) is used to
determine those parts of a program to which a particular value assigned to a variable
might propagate16.

• Partial evaluation, dead code elimination and common sub-expression elimination, to
reduce code size (i.e. "a*1" reduce to "a").

• Inline expansion: replaces a function call site with the body of the called function.
Inlining will improve speed at very minor cost of space, but excess inlining will hurt
speed, due to inlined code consuming too much of the instruction cache, and also cost
significant space17.

16Source: https://en.wikipedia.org/wiki/Data-flow_analysis
17Source: https://en.wikipedia.org/wiki/Inline_expansion

https://en.wikipedia.org/wiki/Data-flow_analysis
https://en.wikipedia.org/wiki/Inline_expansion

22 Chapter 1. Background

• Instruction scheduling: improves instruction-level parallelism by avoiding pipeline stalls
by rearranging the order of instructions, and avoiding illegal or semantically ambigu-
ous operations (typically involving subtle instruction pipeline timing issues or non-
interlocked resources). The pipeline stalls can be caused by structural hazards (proces-
sor resource limit), data hazards (output of one instruction needed by another instruc-
tion) and control hazards (branching)18.

• Common loop optimizations include interchange, splitting, unrolling, etc.

• Automatic parallelization by converting sequential code into multi-threaded or vector-
ized code in order to utilize multiple processors simultaneously19.

• strength reduction: expensive operations are replaced with equivalent but less expen-
sive operations20 (i.e. replacing a multiplication by an addition with a loop, or an
exponentiation by a multiplication with a loop).

This non-exhaustive list presents most common optimization techniques in most compilers
and automatically applied during the compilation process. Other optimizations and compi-
lation passes can be triggered or configured by the user with flags.

1.5.2 Flag Research

Compiler flags allow to easily obtain good performance gain [91] and can be combined for
even better gain. Many researches have been done on the different techniques to obtain
the best combination flags [60, 92, 90]. Flags (including PGO) can help to obtain good
performance for example, over the full SPECFP2006 database, flags provides an average 5%
gain of performance and reach a peak at 60%, but the research of the right combination of
flags if very expensive [52]. Tens of flags exists which perform different kinds of operations,
like adding control flow protection, adding debugging information. Some of them are even
predefined combination of flags, for example, -O2 and -O3 are respectively a combination
of 45 and 60 other flags. PGO flag is a specific flag which allows overcoming the static
limitation; it requires to execute the program on a representative dataset and is expensive.

1.5.3 Profile Guided Optimization (PGO)

A typical PGO process encompasses three steps:
18Source: https://en.wikipedia.org/wiki/Instruction_scheduling
19Source: https://en.wikipedia.org/wiki/Automatic_parallelization
20Source: https://en.wikipedia.org/wiki/Strength_reduction

https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/Automatic_parallelization
https://en.wikipedia.org/wiki/Strength_reduction

1.5. Optimization Tools & Techniques 23

• Producing an instrumented binary using a special compiler flag or multiple flags;

• Executing the resulting binary in order to obtain a profile (feedback data);

• Using the obtained feedback data during the compilation process to produce a new
version supposed to be more efficient.

The last step enables some specific optimizations and can also modify the behavior of
other optimizations. For example, for Intel compiler PGO, among other optimizations, it
allows the following:

• Use feedback data on function entry counts. Function grouping is done to put hot/cold
functions adjacent to one another;

• Profile value of indirect and virtual function calls in order to specialize the indirect
function call for a common target;

• An intermediate language annotated with the edge frequencies and block counts. They
are then used to guide a lot of the optimization decisions made by other passes of the
compiler, such as the in-liner and partial in-liner, the basic block layout, the conversion
from switch tables to if statements, loop transformations like unrolling, etc.

PGOs overcome the static limitation but is a black box where the user cannot add any
information and does not really know what is done after the process. In addition, the research
space as the associate transformation is limited.

1.5.4 Libraries

Specialized libraries allow achieving good performances to perform specific operations because
generally, they parameterize the algorithm implementations based on hardware characteri-
zation to generate multiple code variants from automated code transformations and data
size selection. Two well-known examples are ATLAS [100] and PHiPAC [17], two self-tuning
solver libraries for the basic linear algebra subroutine (BLAS [33]). Similarly, the Optimized
Sparse Kernel Interface (OSKI) library, which is a collection of low-level C primitives that
provide automatically tuned computational kernels on sparse matrices. It targets sparse
BLAS and its indirect, irregular memory access and low computational intensity. Another
well-known library is FFTW [36] which is autotuned to perform the fast Fourier transform

24 Chapter 1. Background

algorithm. SPIRAL [97] solves linear digital signals, it is generated and tuned for specific
problem case and target architecture. Each high-performance library only provides a small
number of functions to solve a specific problem, without letting the user interact during
the process. Libraries are tuned for target architecture so they have to be installed on all
computer where the program will be run.

1.5.5 Directives
Directives are annotations in source code intended for a compiler or a tool that will perform
an operation according to that directive. It is the lightest and simplest method for developers,
they just have to insert a line of code to trigger a transformation. As such, the application
source code is kept portable and the original version can be built using a traditional compiler.
Probably the best known one using this technique is OpenMP [79] which transforms block
of sequential code into parallel one. HMPP [31] and OpenACC [77] also aim at transforming
sequential code into parallel one only using directives. They are compatible with OpenMP
and MPI but also designed to handle hardware accelerators such as GPUs. Compilers al-
ready provide directives, however, existing one cannot always satisfy users’ requirements. In
some cases, customizing the compiler directives for application-specific code transformations
is required in order to achieve a high-performance as well as high-performance portability by
using different performance optimizations for individual systems. Xiao et al. [122] propose a
mechanism that allows programmers to customize existing compiler directives. Orio [46] is an
autotuning framework performing source-to-source transformations; the tool automatically
tuning the performance of codes written in different source and target languages, including
transformations from a number of simple languages (e.g., a restricted subset of C) to C,
Fortran, CUDA, and OpenCL targets. The tool generates many tuned versions of the same
operation using different optimization parameters and performs an empirical search for se-
lecting the best variants among all multiple optimized code. Directives are simple to use but
are limited in their transformation space and are compiler/tool dependent even if we find an
equivalent of most popular directives in each compiler.

1.5.6 Domain Specific Language

Domain Specific Languages (DSLs) are computer languages specialized to a particular appli-
cation domain to solve particular problems in a particular domain and is not intended to be
able to solve problems outside it (although that may be technically possible). Plenty of Do-
main Specific Languages are available for performing source-to-source transformations, such
as DMS [114], XLanguage [32], rascal [54],Stratego [69], TXL [27], SmaCC [19], Locus [107]

1.5. Optimization Tools & Techniques 25

or POET [123]. These tools allow the user to define their own source program analysis and
modifications of source code via a new language especially designed for that. Some DSLs
are also designed to write operations that can be complex in another language more easily,
like CIL [75] which transforms CIL program to C ANSI, Microsoft C or GNU C. Among
these DSLs, some are designed to implement parallel transformations: Paraformance [88],
PPCG [113], etc. DSLs are more powerful than directives because developers can exactly
express what they want. However, it is dangerous to assume they will be willing to invest
time and resources to write their own transformations, even if the interface is based on a
well-known language such as Fortran.

1.5.7 Source-to-Source

Source-to-source transformation is another level of optimization. Generating source code is
the more portable way to optimize a code, in addition, the output code can be built with any
compiler. A lot of existing tools allow to perform source-to-source transformation, most of
them focus on optimizing loops using the polyhedral model. The polyhedral method treats
each loop iteration within nested loops as lattice points inside mathematical objects called
the polyhedral. It performs affine transformations or more general non-affine transformations
such as tiling on the polytopes, and then converts the transformed polytopes into equiva-
lent, but optimized, loop nests through polyhedral scanning. The polyhedral model allows
to achieve good performance on loops that can be handled and is especially used for the
parallelism, but it can be applied on a small set of loops. PoCC [73] is an example of source-
to-source compiler embedding multiple tools based on the polyhedral model, such as the
"Legal transformation Space explorator" (letSee) [94]. For iterative compilation using affine
multidimensional schedules; PLuTo [18] is an automatic parallelizer and locality optimizer
for multi-cores, used for powerful optimization with tiling and parallelism in the polyhedral
model; and the Chunky Loop Generator (CLoog) [13] is used to generate syntactic code from
the polyhedral representation. Other tools and frameworks that do not use the polyhedral
model are specialized for one type of transformation. For example, the "Tile Loop generator"
(TLoG) [5] focuses on generating a tiled version of a loop, or Scout [59] which transforms a
simple C or C++ loop into a vectorized one using SIMD instruction via a graphical interface.
All are not as specific, the other tools are more oriented towards parallelism, whether for GPU
or CPU [106, 44, 37, 50]. Usually, for source-to-source transformation users have to develop
they own transformations or trigger these transformations themselves on the statement they
want to transform. However, tools exist that do not require any assistance from users. These
tools are auto-tuning tools. The goal of these tools is to test several transformations on a
statement, keep the best and start again somewhere else.

26 Chapter 1. Background

1.5.8 Auto-tuning
Auto-tuning is an optimization method which aims at improving performances of a program
based on an automated procedure, using the empirical method or a model-driven perfor-
mance optimization, while maximizing productivity without sacrificing portability. Basically,
auto-tuning creates multiple variants of a code and analyses which one delivers the best per-
formance. Auto-tuning tools differ on how they generate their versions and which metrics
they use to choose the best version. Autotune tools work on changing compilers setting like
modifying flags as described in section1.5.2, using alternative algorithms or applying code
transformations. Due to performance space that can potentially be large and complex, tools
have to limit their research procedure to partial evaluation only. Active Harmony [1] illus-
trates what auto-tuning tools can do. It applies search strategies within a space of possible
combinations to support application-level tuning by simultaneously evaluating user-defined
tunable parameters. Multiple transformations are tested (i.e. loop unrolling, blocking and
scheduling). Most of auto-tuning tools use FDO techniques to collect information and drive
their choices. For example, CHiLL [24, 108], Aestimo [83] or AutoFDO [43, 25] use FDO
techniques to refine their code generation strategy during empirical iterations.

1.6 Conclusion

In this chapter we showed how the increasing complexity of the micro-architectures and some
key parameters (e.g. increased vector lengths and advanced memory hierarchy) are heavily
relied to performance issues.
Even compilers are not able to provide an optimal code each time, despite all available opti-
mization possibilities. They suffer from limitations related to their static analysis, heuristics
and a strict performance cost model. Moreover, even if compilers can be guided by user
directives and flags; these ones are limited in number and can be ignored. Compilers can
also help with a dynamic analysis using their PGO mode. It lacks information on what is
done and in the current implementation, the amount of information gathered at runtime is
limited. Moreover, the available transformations space is still fairly small.

Developers must turn to performance analysis tools to optimize their codes. However,
even if these tools are pretty good at identifying specific issues, none of these tools automat-
ically optimize the application. They only provide information on the application and what
happened during the execution of a program; in the best case they can return hints about
how to improve the code. However, most of the time it requires the need of an expert to
understand all of the data and correctly optimize the code.

1.6. Conclusion 27

Numerous tools and techniques exist to improve a code from using directives/flags to drive
compiler choices to rewrite the code using a DSL to adapt the language to the need, but the
source-to-source remains a good balance between expressiveness, optimization possibilities
and time spent to optimize the code. This allows to no longer be dependent on the compiler
without rewrite the whole project into a new language while providing good results.

29

Chapter 2

ASSIST

This chapter presents the characteristics of ASSIST (Automatic Source-to-Source assISTant).
It is a semi automatic source-to-source framework to optimize source codes using performance
evaluation tools which can also be fully or partially guided by the user. This framework aims
at optimizing industrial source codes, focusing on loops and functions. Transformations
can be triggered by the user who previously inserted directives in the code, or according to
the results of performance evaluation tools (e.g. MAQAO modules). The originality of the
approach lies in the combination of both source-to-source transformations using annotations
and FDO approaches. More precisely feedback data drive source-to-source transformations to
achieve both productivity and performance. In this chapter we also present the state-of-the
art of existing tools able to perform source-to-source transformation and the specific tool we
chose as a foundation for ASSIST according to the constraints specific to our problematic.

2.1 Background

2.1.1 Specifications / Context

The previous chapter presented the evolution of computer architectures that quickly evolved
during the last decade. This evolution introduced new difficulties which prevent to use the
whole capacities of HPC computers. Due to these evolution and difficulties, it becomes
harder to manually optimize and maintain codes. Performance evaluation tools emerged to
help developers to overcome these problems, but most of them require either to be an expert,
or at least to get the help of an expert, to understand all metrics and exactly know how to
optimize a code.

30 Chapter 2. ASSIST

We want to propose a new framework to help developers to both optimize their codes
according to the requirements of a targeted architecture as well as keep these codes main-
tainable, by using the results from evaluation tools. This new framework must be a semi-
automatic source-to-source framework. It must be able to provide transformations of an
input source code according to the metrics issued by the evaluating tools and following the
directives inserted by the developer in this code.

Nowadays, there are several compilers which can manage source-to-source transformations
and there are also frameworks using compiler frontend to produce these transformations. Our
purpose is to search for the compiler that will best answer the following constraints :

• No intermediate representation : the compiler has to generate an AST and to allow its
manipulation before any optimization is performed. Moreover, we want an output code
that remains at source level and not in a compiler-specific intermediate representation
(IR).

• Input Languages : We give priority to scientific applications (HPC field), hence selecting
C, C++ and Fortran languages.

• Framework license : It has to be free but not GPL (General Public License) or at least
LGPL(Lesser General Public License) to be integrated into MAQAO.

2.1.2 Existing Tools for Source-to-Source Transformation

There are many available compiler infrastructures and specialized source-to-source frame-
works, but only very few can satisfy our requirements. Most of these tools only perform a
very restrictive set of transformations or only on a subset of a language. In this section, we
present and compare a non-exhaustive list of the main compilers or tools allowing to perform
source-to-source. Our presentation is limited to the main tools that could be used as a basis
for ASSIST.

Cetus

Cetus [30] is a compiler specialized in source-to-source transformations. It supports C ANSI
and has a fairly complete and documented API (Application Programming Interface) oriented
to generate parallel codes. Its license is under the OSI (Open Source Initiative). Cetus cannot
be chosen due to its usage of a single language (C ANSI) which limits the number of industrial
applications; a second limitation is that it would be complicated to integrate it into MAQAO
due to its Java implementation.

2.1. Background 31

Par4All & PIPS

Par4All [6] is an automatic source-to-source program transformations for GPU-like. It is
based on PIPS [50], a compiler allowing to transform a sequential code into a parallel one
with OpenMP, Cuda or OpenCL, by transforming a sequential loop into a parallel section. It
handles C and Fortran and is under MIT License, a license of free software and open source,
no copyleft. Par4All and PIPS only allow to transform programs into parallel programs, the
number of functions available is limited and it simply performs automatic transformations
without letting the user operate. Furthermore C++ is not handled.

OpenC++

OpenC++ [78] is an open-source (BSD license) C++ frontend and refactoring library. It
enables the development of C++ language tools, extensions, domain specific compiler opti-
mizations and runtime meta-object protocols. It is maintained by a group of volunteers but
has not been updated since 2004. OpenC++ was implemented to assist other programs to
easily analyze C++ codes or to perform source-to-source transformations. The programmer
who wants to use OpenC++ writes a meta-program in which specifies how to translate or
analyze a C++ program; this plug-in is then compiled by the OpenC++ compiler and linked
to it as a plug-in.

It was designed to enable the users to develop those tools without being concerned by
tedious parts of the development such as the parser and the type system. As described, it
only handles C++ and is dependant of the OpenC++ compiler.

DMS Software Re-engineering Toolkit

Developed by "Semantic Designs", DMS (Design Maintenance System) [114] is a commer-
cial compiler. It can be used to construct analyzers that generate reports or to find and
fix coding, using previously mentioned analyzer outputs to locate issues and choose/apply
transformations to resolve them. DMS is a compiler which has : a parser for different lan-
guages (Java, Cobol, C, Fortran, Ada, etc.); a set of semantic analyzers (including a variety of
pattern matching engines); a set of compiler data structure modification engines (including
source-to-source program transformation engine) and final output formatting components
(converting compiler data structures back to valid source code rather than binary code).

The developer can apply source-to-source pattern transformations or write procedural
transformations, and then regenerate compilable source text corresponding to the trans-
formed program. DMS software is a reference in the domain of source-to-source transfor-
mation because it can translate many languages into others, or optimize a source code by

32 Chapter 2. ASSIST

applying multiple transformations. Due to its commercial environment we cannot base AS-
SIST on DMS.

LLVM (Clang & Flang)

Clang and Flang are two compiler frontends for C family and Fortran language. They use
LLVM (Low level Virtual Machine) as their middle and back end. They are designed to offer
a complete replacement to the GNU compiler Collection. Their source codes are available
under the University of Illinois/ NCSA License. LLVM [67, 115] has an entire API to perform
AST analyze and manipulation but even if theoretically possible with the existing rewrite
system, it is not intended to provide a real source-to-source system.

Scout

Scout [59] is a configurable source-to-source transformation tool designed to automatically
vectorize C source code. Scout tries to cover a wide range of loop constructs and is capable
of targeting various modern SIMD architectures. It provides the means to vectorize loops
using SIMD intrinsic instructions sets like SSE or AVX at source level. To vectorize a loop
with intrinsics, it only requires to insert a simple directive above the intended loop and Scout
replaces the current loop body by a vectorized one.

Scout only has a C frontend and a function to perform vectorization transformation.
Moreover, it is not designed to be integrated into an other framework.

Orio

Orio [46] is a Python framework, under the MIT license, for the transformation and the
automatic performance tuning of codes written in different source and target languages,
including transformations from a number of simple languages (e.g., a restricted subset of C)
to C, Fortran, CUDA, and OpenCL targets. The tool generates many tuned versions of the
same operation using different optimization parameters, and performs an empirical search
for selecting the best optimized code variants.

ROSE

ROSE [99] is a compiler specialized into source-to-source transformations. It processes C,
C++ and Fortran among other languages. It provides a wide API to analyze and modify
AST and a whole rewriting system to generate code after modification. Moreover, ROSE is
under BSD (Berkeley Software Distribution) license.

2.1. Background 33

ROSE is the only compiler corresponding to all our constraints and able to easily per-
form real source-to-source through a large API. That is why we chose ROSE as the base for
ASSIST. ROSE is an open source compiler infrastructure to build source-to-source program
transformation and analysis tools. It is developed at the Lawrence Livermore National Labo-
ratory (LLNL). The goal is to provide the required support to easily build tools that operate
on source code (analyzing or optimizing). ROSE is a library that makes it easy to build a
wide range of tools from optimizing source-to-source compilers to special purpose analysis
tools. ROSE supports: Fortran (66,77/95/2003), C89, C99, C++, OpenMP applications.
ROSE uses Open Fortran Parser (OFP) to parse Fortran codes and Edison Design Group
(EDG) to parse C/C++ codes. These frontends produce a ROSE intermediate representa-
tion that is converted into an AST by ROSE. ROSE provides a large API to analyze and
transform the AST, making it the ideal tool for our use.

ROSE uses and develops SAGE III originally known as SAGE++, developed at the uni-
versity of Indiana before the ROSE team took over the API. This API is the core of the AST
with each class representing each node.

As previously described, ROSE can handle C and C++ codes with the EDG frontend,
but it is a black box that cannot be modified, so any problem encountered with C or C++
codes cannot be solved by modifying the way the frontend parses the file and no rules can
be added. Contrary to the Fortran parser (Open Fortran Parser (OFP)) this frontend can
parse Fortran from 77 to 2003 and is open source. We had to modify it to better manage
comments and directives which were not natively handled.

Even if ROSE can handle C, C++ and Fortran and seems robust at first sight on these
languages, it was particularly suffering of a bad management of Fortran. We had to fix some
part of the ROSE code to better handle some Fortran aspects required by our industrial
applications. Among all these changes, we had to modify the generated output (e.g. missing
space, indentation, keywords not handled, missing element in "include" list, revert list, etc);
we also had to upgrade the management of comments and directives and add the management
of missing keywords.

Summary

Table in figure 2.1 presents a summary of previous existing tools and their abilities to manage
our constraints. We can see that ROSE is the only one which respects all these constraints
and seems robust enough to handle HPC language and thus serve as a basis for ASSIST.
In addition, it is an open source framework allowing us to modify what could hamper us to

34 Chapter 2. ASSIST

Figure 2.1: Summary of existing tools performing source-to-source.

manage certain industrial applications. All the others are either commercial or do not handle
the three required languages or are only designed to focus on polyhedral loops.

2.1.3 MAQAO
Figure 2.2 presents a general view on MAQAO[12, 109, 111] architecture. Three main blocks
can be identified, namely: Modules, APIs and MAQAO core. At the top of MAQAO, we
have modules. Among these modules, there are analyzers and profilers which return their
analysis to users in the form of HTML report or raw data. All modules used by ASSIST
have been presented in Section 1.4. These modules are performance analysis software which
exploit the data structures and APIs offered by the lower parts of MAQAO. The APIs allow
to manipulate an intermediate representation of loops, functions and basic blocks, defined

2.1. Background 35

Figure 2.2: Process of a profiling with MAQAO overview.

36 Chapter 2. ASSIST

at the core level. The core level allows to disassemble a binary into instructions that will be
sent for analysis before to be built as IR. The following analysis are performed to construct
the IR:

• The control flow analysis: it takes the instruction stream returned by MADRAS and,
by following the branch instructions, constructs the control flow graph (CFG) for each
function.

• The loop detection analysis: it gets the CFG as an entry and performs a transversal
depth-first search within it to construct the loop hierarchy.

• The advanced static analysis: it consists of several static analyses with the aim of
polishing the CFG and Call Graph (CG), such as indirect branches resolution, static
single assignment (SSA) and groups detection. Several useful data structures result
from this module. These include: the CFG, the Loop Hierarchy Graph (LHG) and the
CG. A rich API is also exposed for the extension modules to exploit these structures.

After IR is constructed, modules use APIs to manipulate loops, functions and basic blocks
and thus apply the different analysis before returning a report or computed metrics either to
the users or to ASSIST with the chosen output.

2.2 Design & Implementation

2.2.1 Overview

ASSIST is an open source FDO tool and a framework based on the ROSE compiler infras-
tructure and integrated into the MAQAO tool-set. Among existing analysis tools, MAQAO
has been chosen because it offers multiple modules allowing to analyze both statically and
dynamically HPC codes. It provides a plethora of metrics to guide our optimizations with
tools such as: CQA which can statically analyze a code and, among other metrics, has the
vectorization ratio of a loop; VProf which can provide the number of iterations of a loop; or
DECAN which analyses and modifies the code to test if it is profitable to fit data in L1, for
example. Figure 2.3 presents an overview of the steps involved in the tool operation. The
following section will provide more details on transformations and examples illustrating this
process.

The user is at the center of the process, he can drive each step. ASSIST provides users
with a simple yet flexible interface that offers multiple alternative approaches to transform
a source code:

2.2. Design & Implementation 37

Figure 2.3: Overview of tool usage. The user decides what static and dynamic
analyses have to be performed. Transformation script is a Lua script where the
user specifies transformations to be applied, avoiding to directly modify source
code. Alternatively the user can let ASSIST directly use profile to perform

transformations.

• The first one makes use of directives that the user can add above a loop or a function
to trigger a transformation. For example, the directive !DIR$ MAQAO UNROLL=4
above a loop triggers the unroll (factor of 4) of the loop, if applicable and by running
the following command: "maqao s2s -option="apply-directives" -src=<source file>"
the transformed code can still be compiled and even reviewed by the programmer if
necessary.

• With the second approach, ASSIST transformations can also be guided by giving in-
formation through a Lua script instead of annotating the source file with directives. A
detailed template is available in appendix A.6.

• With the third, when feedback data from MAQAO are available, it is also possible to
leverage optimization opportunities. ASSIST is able to use MAQAO API to search for
information about loops and files into a source file or binary and read MAQAO tools
results to apply transformations.

Available analyses are based on MAQAO CQA (code quality), VPROF (value profiling)
and DECAN (binary modification and comparator). The user has to select MAQAO mod-
ules and metrics that will automatically trigger ASSIST transformations. Feedback data can

38 Chapter 2. ASSIST

be mixed with user’s directives to guide transformations. During the modification process
the source code is parsed and transformed into an abstract syntax tree (AST) that ASSIST
will transform accordingly to user’s directives and/or MAQAO results. As a semi-automatic
framework, ASSIST can interact with the user during the AST modifications, asking him
information on potential issues with the transformation. The user can then share his knowl-
edge and decide whether or not to apply this transformation. At the end of the process, the
modified AST is parsed to generate a modified source file as output. We decide to implement
a semi-automatic tool because the automatic approach is limited by its cost and by some
issues of transformation legality. Our system first alerts the user with an estimate of the costs
induced by the exploration of the potential of a given transformation. He can then decide to
select only a few transformations. Then our system also let the user force a transformation
because he knows that the transformation is legal.

2.2.2 ASSIST Principle

As all MAQAO modules, ASSIST has a Lua wrapper to handle all input information that a
user can give : input source file, output name, MAQAO results, and the features he wants
to use. In addition, the processing of some of the information management is done at this
level : the creation of a "rmod" file which corresponds to the header of Fortran module
required by ROSE, the management of MAQAO results and information, etc. Then all
information are sent to another part of ASSIST, written in C++. This part takes care of
applying transformations on the AST nodes based on information from the Lua part. At
first, it will browse all statements and create a sub-tree of functions and loops. Then it
will try to match all these information and find loops and functions to transform, including
those with directives above them. Finally, it will apply transformations, update information
in the sub-tree and mark the statement to not apply another transformation that would be
incompatible with the first one. In the end, it uses ROSE back-end and its rewriting system
to create the new output. We disabled the part of the ROSE back-end which compiles the
new output with GCC-4.4 because it does not obviously works with industrial applications
which require a more recent version of GCC or another compiler (i.e. ICC).

2.2.3 Integration Into MAQAO
ASSIST is a MAQAO module. That means that it has access to MAQAO core (binary and
analysis layers) and can also communicate with other MAQAO tools through an internal
API. MAQAO tools deal with binary function and loop objects. Since ASSIST manipulates
source code, it must perform a mapping between real source lines and those provided by
the compiler through debug information. That way, ASSIST can establish a link between

2.3. Explicit Supported Transformations 39

source and binary functions/loops. In order to make loops match between source and binary,
ASSIST starts by gathering information from MAQAO that will give the first and the last
loops lines to be managed according to debug information provided by the compiler, which
can be more or less accurate. Then ASSIST create a sub-tree only composed of loops of the
file with all their information: what kind of loop (e.g. "for", "while", "do", etc.); line start
and end of the loop; a pointer on the loop; if we are already making match with a binary
loop; and if they are other loops inside the body of the loop. Then ASSIST browses this
sub-tree trying to match lines start and stop of binary and source, first at the precise line
then, if the loop has not been found, by looking around with up to three lines before and after
where it should have been found. A delta of three lines is well balanced because it decreases
the number of missing loops without increases the number wrong match between binary and
source loops. If binary information have not matched with source code a warning is raised at
the end of the process. The current implementation of ASSIST uses four MAQAO modules:
LPROF for profiling (hotspots); CQA for code quality metrics (i.e. vectorization efficiency);
VPROF for function and loop value profiling; and DECAN to check if it is interesting to block
a loop. For this last part, DECAN generates and measures special loop variants where all
operands are accessed from L1. In this paper only features used by ASSIST are mentioned.

2.2.4 Interaction With The User

The automatic approach is limited by its cost and by some issues of transformation legality.
Also, users often know their code better than what we can detect with any tools. To overcome
this limitation, as we can see on figure 2.3, we decide to let our system open to users and
to add interactions with them by providing: first, an estimate of the costs induced in the
exploration of the potential of a given transformation. Which means that users have to
choose which are the most adapted profilers and metrics in terms of costs and of analysis
performed. For example if a user knows that any of its loop can be, or has to be tiled, he
will disable the DECAN profiling which only triggers the tiling transformation. Then, after
analysis, ASSIST can present the user with the different possible transformations according
to the previously returned metrics. Then, the user has to select which transformations to
perform. Moreover, our system also lets the user force a transformation when he knows that
the transformation is legal.

2.3 Explicit Supported Transformations

In this section, all transformations that ASSIST explicitly performs are described; all these
transformations are well known. They are shortly detailed below, from common ones like

40 Chapter 2. ASSIST

loop unrolling to less common ones like loop and function specialization, to set a common
dictionary. Moreover, the specialization transformations have been specifically designed to be
combined with other available onces. Most of these transformations can be done by inserting
directives to the compiler. The main drawback in using directives is that the compiler can
ignore them.

2.3.1 Unroll
The unrolling transformation duplicates N times the loop body and adapts the iterator with
the right value at the right iteration at each copy. The goal of loop unrolling is to increase
a program speed by reducing or eliminating instructions that control the loop and by facili-
tating vectorization.
The directive for this transformation is: !DIR$ MAQAO UNROLL=value.
Example below illustrates the unroll transformation applied on the inner loop in the nest :

do j = 1, x
!DIR$ MAQAO UNROLL=4
do i = 1, N, 1
A[j] = b[i] + c[j]

end do
end do

(a) Before the unroll transformation

do j = 1, x
do i =1, N-3, 4
A[j] = b[i] + c[j]
A[j] = b[i+1] + c[j]
A[j] = b[i+2] + c[j]
A[j] = b[i+3] + c[j]

end do
end do

(b) After the unroll transformation

2.3.2 Full Unroll

The transformation of full unrolling is similar to the unroll but the loop is replaced by the
unrolled body. It goes further than casual unrolling by removing all instructions that control
the loop.
The directive for this transformation is: !DIR$ MAQAO FULLUNROLL[=N]. An unroll
factor can be defined if bounds have not been fixed.
The example below illustrates the full unroll applied on the inner loop of the nest, the loop
is removed and replaced by its unrolled body :

2.3. Explicit Supported Transformations 41

do j = 1, x
!DIR$ MAQAO FULLUNROLL
do i = 1, 7
A[j] = b[i] + c[j]

end do
end do

(a) Before the full unroll transformation

do j = 1, x
A[j] = b[1] + c[j]
A[j] = b[2] + c[j]
A[j] = b[3] + c[j]
A[j] = b[4] + c[j]
A[j] = b[5] + c[j]
A[j] = b[6] + c[j]
A[j] = b[7] + c[j]

end do

(b) After the full unroll transformation

2.3.3 Tile

Tiling (or Blocking) consists in dividing an iteration space into tiles and in transforming the
loop nest to iterate over them. Loop tiling in a multi-level loop nest is done to change the
spacial and temporal locality of data in the arrays, improving data reuse for some computa-
tion patterns. It can also be used to statically fix the size of the inner most loop and help the
compiler to do a better optimizing job. With Fortran, we use the standard function “MIN”
as shown in the example.
The directive for this transformation is: !DIR$ MAQAO TILE=N, when n is the value of
the tile.
The example below illustrates the tile transformation of a whole loop nest :

!DIR$ MAQAO TILE=8
do x = 1, N, 1
do y = 1, M, 1
<loop body>

end do
end do

(a) Before tile transformation

do lt_var_x = 1, N, 8
do x = lt_var_x, min(N,lt_var_x+7), 1
do lt_var_y = 1, M, 8
do y = lt_var_y, min(M,lt_var_y+7), 1
<loop body>

end do
end do

end do
end do

(b) After tiling transformation

42 Chapter 2. ASSIST

2.3.4 Strip Mine
A variant of the tiling is the strip mining. It is a method to adjust the granularity of an
operation. The strip mining transforms a singly nested loop (the inner) into a doubly nested
one.
The directive for this transformation is: !DIR$ MAQAO TILE_INNER=N, when n is the
value of the strip. The example below illustrates the strip mine transformation of a whole
loop nest :

!DIR$ MAQAO TILE_INNER=8
do t = 1, N, 1
do k = 1, M, 1
<loop body>

end do
end do

(a) Before Strip Mine

lt_bound_M = (M /8)*8
do lt_var_k = 1, lt_boutnd_M, 8
do t = 1, N, 1
do y = lt_var_k, lt_var_k+7, 1
<loop body>

end do
end do

end do
if (lt_bound_M < M) then
do t = 1, N, 1
do y = lt_bound_M+1, M, 1
<loop body>

end do
end do

end if

(b) After Strip Mine

2.3.5 Interchange
Loop interchange permutes two loops. These loops can be consecutive or not, but they must
not have any statement between them. Loop interchange is a code transformation which can
induce a change in the spacial and temporal locality of memory elements by moving arrays
column-major to raw-major or the opposite.
The directive for this transformation is: !DIR$ MAQAO INTERCHANGE[N,M], where N
and M are the depth of loops to permute, 1 corresponding to the loop where the directive is
attached.
The example below illustrates the interchange transformation of a whole loop nest :

2.3. Explicit Supported Transformations 43

!DIR$ MAQAO INTERCHANGE
do t = 1, N, 1
do k = 1, M, 1
<loop body>

end do
end do

(a) Before interchange transformation

do k = 1, M, 1
do t = 1, N, 1
<loop body>

end do
end do

(b) After interchange transformation

2.3.6 Loop Count Transformation (LCT)

Knowing the low bounds and more precisely the loop iteration counts enables to perform very
efficient specialization based on that information. This can be exploited in many different
ways including through compiler directives. Intel compilers offer the ability to specify a loop
count (min, max, avg) directive, and can then make that information available to its opti-
mization passes. By default the compiler will generally generate multiple variants (i.e. scalar,
SSE, AVX, etc.) of the same source loop at binary-level. However, it will generate much
fewer variants and will adapt its optimizations by considering loop count data. Helping the
compiler in this way throughout the whole application can provide a significant performance
gain (see section 4). This information is obtained with VPROF which returns the minimum,
maximum and average number of iterations of a loop, then ASSIST uses this information
either for specialization or for LCT.
The example below illustrates the loop count transformation applied on a single loop :

for (int i=0 ; i < x; i++) {
..

}

(a) Before Loop Count Transforma-
tion

#pragma loop_count min=100,max=100,avg=100
for (i = 0; i < x; i++) {

...
}

(b) After Loop Count Transformation

In the example, we detect that the loop only performs one hundred iterations; the loop
count directive is inserted above the loop to indicate to the Intel compiler that it must adapt
its choice according to that information. Generally, for a small number of iterations, it
disables vectorization and unrolls the loop without peel/tails loops.

44 Chapter 2. ASSIST

2.3.7 Short Vector Transformation (SVT)
We noticed that even when loop bounds were hard-coded the compiler would not vectorize
that loop properly. We have been able to detect such cases using MAQAO CQA which
analyses loops and computes vectorization efficiency metrics. For such cases, we developed a
specific transformation (SVT) performing the following steps: force the compiler to vector-
ize the loop using the SIMD directive, prevent peeling code from being generated using the
vector unaligned directive, and adapt the number of iterations to the vector length.
The directive for this transformation is: !DIR$ MAQAO SHORTVEC[=val], where "val" can
be AVX2 (by default) or SSE.
The example below illustrates this transformation on a single loop :

double *a, *b;
...
#pragma MAQAO SHORTVEC=AVX2
for (int i=0 ; i < 7; i++) {

a[i] += b[i]
}

(a) Before short vector optimization

double *a, *b;
...
#pragma simd
#pragma vector unaligned
for (i = 0; i < 4; i++) {

a[i] += b[i]
}
#pragma simd
#pragma vector unaligned
for (i = 4; i < 6; i++) {

a[i] += b[i]
}
a[6] += b[6]

(b) After short vector optimization

If the bounds are not known, a generic version can be used. It will create multiple versions
of the SVT depending of the rest of the modulo of N.
The directive for this transformation is: !DIR$ MAQAO GENSHORTVEC[%N], where N
is a small number (4 by default) which will be part of the modulo test. N must be small
because it adds a lot of tests that can cost more than the gain obtained.
Example below illustrates the generic short vector optimization applied on a single loop :

2.3. Explicit Supported Transformations 45

double *a, *b;
...
#pragma MAQAO GENSHORTVEC%4
for (int i=0 ; i < N; i++) {

a[i] += b[i]
}

(a) Before generic short vector
optimization

double *a, *b;
...
if ((N%4) == 0) {
#pragma simd
#pragma vector unaligned
for (i = 0; i < N; i++) {
a[i] += b[i]

}
} else {
if ((N%4) == 1) {
#pragma simd
#pragma vector unaligned
for (i = 0; i < N-1; i++) {
a[i] += b[i]

}
a[N-1] += b[N-1]

} else {
if ((N%4) == 2) {
...

} else {
if ((N%4) == 3) {
...

} else {
for (int i=0 ; i < N; i++) {
a[i] += b[i]

}
}

}
}

}

(b) After generic short vector
optimization

46 Chapter 2. ASSIST

Prefetcher Description
L2 hardware prefetcher Fetches additional lines of code

or data into the L2 cache
L2 adjacent cache line Fetches the cache line

prefetcher that comprises a cache
line pair (128 bytes)

DCU prefetcher Fetches the next cache
line into L1-D cache

DCU IP prefetcher Uses sequential load history (based on
Instruction Pointer of previous loads)

to determine whether to prefetch additional lines

Table 2.1: The four types of hardware prefetchers for data prefetching. Source
: https://software.intel.com

2.3.8 Prefetcher

By modifying the Model Specific Register (MSR), we can modify the prefetchers behavior.
This register is available on every core controls but only available on the following micro-
architecture: Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, and Broadwell. The
impact of modifying prefetcher has already been discussed several times, for example, Lee
[62] proposes a scheme for prefetching and also tries to determine if modifying prefetcher has
an impact on PGO; Porterfield [93] evaluates several cache-line hardware prefetching schemes;
Liaou et al. [64] proposed to improve modify prefetchers configuration. Most of researches
on prefetchers have been done at application level to evaluate which prefetcher allows perfor-
mance gains but too few have been undertaken at function level. However, prefetchers can
be more or less efficient according to different loops parameters such as: iteration step, type
of loop (i.e. computation loop, gather/scatter loop, ...), etc.

There are four types of hardware prefetchers for data prefetching, two associated with
L1-data cache (DCU) and two associated with L2 cache (see table 2.1). These four hardware
prefetchers can be controlled by calling the code in Appendix B.1 which will set the MSR
to a value between 0 and 16 to enable/disable prefetchers. For this transformation, ASSIST
inserts function calls at the beginning of functions to modify the prefetchers behavior for
the whole function. The called function only takes an integer which represents one of the
sixteen possible values as an input. However, we do not know how to choose the right value;

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

2.3. Explicit Supported Transformations 47

a possible way is to test every sixteen values and keep the best for each function but it is a
long iterative process. This transformation has never been tested on real world application,
only on NR.
Like other transformations, it is possible to trigger it using the following directive: !DIR$
MAQAO PREFETCH=<val>, where "val" is an hexadecimal number which represents the
combination of prefetchers that have to be enabled or disabled. 0 means that all prefetchers
are enabled.

2.3.9 Constant Propagation

Constant propagation is the process of substituting the values of known constants in expres-
sions at compilation time. This transformation is used during the specialization transforma-
tion to set a variable to a specific value. Constant propagation can also cause conditional
branches to be reduced to one or more unconditional statements, to determine the only pos-
sible outcome. This happens when the conditional expression is evaluated as true or false at
compilation time.

2.3.10 Local Dead Code Elimination

Since we can apply multiple transformations, it might be necessary to clean up the trans-
formed code in order to eliminate useless chunks generated by specialization (i.e. for example,
conditionals). The local dead code elimination is a transformation that can be applied on
any basic block. All statements of the sub-AST of the basic block are browsed to check all
conditional branches. If a loop is detected with only one iteration, the loop is replaced by its
body and the iteration variable replaced by its value in the whole body. ASSIST also checks
the ”if” statements, by checking if the conditional expression is always true or false to replace
the whole ”if” statement by its ”then” or by its ”else”. To check if a conditional expression is
always true or false, the expression is statically evaluated. If it is composed of two integers,
we compare them with the corresponding operator. If it implies a variable, ASSIST tries to
trace it back, through previous assignment statements involving this variable; the aim is to
check if it ends up as a constant and if this assignment is not the result of an ”if” condition
or a loop. If all of the conditions are true, the variable will be considered as the right value
and the test continues.

48 Chapter 2. ASSIST

2.3.11 Specialization
Specialization is the process of creating particular versions of the same code by explicitly
considering specific values of one or more variables. Specialization can be a very efficient
transformation making it easy to trigger other transformations (e.g. a loop will be optimized
differently depending on a high or low iteration count). Specialization is not obviously an end
in itself, but can be a means to make optimizations applicable. It is used, when possible, to
simplify in some way a portion of code based on the knowledge of one or multiple values and
of their occurrences. As a consequence, the main drawback of specialization is that it can
worsen performance if not used sparingly. To perform either loop or function value profiling,
we rely on MAQAO VPROF. Our specialization transformations can be categorized into two
classes: loop specialization and function specialization.

Loop

The loop specialization will duplicate the loop, propagate constants, apply the local dead
code elimination on the specialized version and add an "if" statement to verify the value
of specialized variables. The original loop is kept and used when the condition is wrong.
The efficiency of the specialization has already been demonstrated several times [8, 74, 26].
Usually, specialization is mostly used to trigger other transformations for a particular value.
The directive for this transformation is: !DIR$ MAQAO SPECIALIZATION (var [=|<|>|{N,M}]
val [, ...]), where "var" is the name of the variable to specialize, an operand "=" to fix the
value, "<" and ">" to indicate that the variable will never be over or under a value and
"{N,M}" to indicate that "var" will still be between "N" and "M"; multiple variables can be
defined.
The example below illustrates the specialization transformation of a single loop :

2.3. Explicit Supported Transformations 49

!DIR$ MAQAO SPECIALIZE(N=4)
do i = 1, N
a[j] = b[i] + c[j]

end do

(a) Before the loop specialization
transformation

if (N .eq. 4) then
do i = 1, 4
a[j] = b[i] + c[j]

end do
else
do i = 1, N
a[j] = b[i] + c[j]

end do
end if

(b) After the loop specialization transforma-
tion

Function

In the case of function specialization we will usually want to target specific value com-
binations. A new specialized function is created and the proper conditional statement is
generated. To simplify the specialized code, an in-house version of the previously presented
local dead code elimination pass is applied. It is possible to apply as many specialization
directives as condition combinations. The current implementation specialization is limited to
only integer variables. The three main issues of an efficient specialization is to know which
variables are interesting to specialize, what are their values and how to minimize the number
of variables to specialize. This allows to to be as generic as possible, while having the best
results.

Like loop specialization, the directive is: "!DIR$ MAQAO SPECIALIZATION (var [=|<|>|
={N,M}] val [, ...])", where "var" is the name of the variable to specialize, an operand "="
to fix the value, "<" and ">" to indicate that the variable will never be over or under a value
and "{N,M}" to indicate that "var" will still be between "N" and "M"; multiple variables
can be defined.
The next example illustrates the specialization transformation of a function.

50 Chapter 2. ASSIST

#pragma MAQAO SPECIALIZATION(N=4, c={1,10}
void foo (int *a, int *b, int N, int c) {
if (c == 0) {

for (int i=0; i < N; i++) {
a[i] = 0;

}
} else if (c <= 10) {

for (int i = 0; i < N; i++) {
a[i] += b[i];

}
} else if (c > 10) {

for (int i = 0; i < N; i++) {
a[i] -= b[i];

}
}

}

(a) Before the function specialization
transformation including constant propa-
gation and local dead code elimination

void foo (int *a, int *b, int N, int c) {
if ((N==4) && (c >= 1) && (c <=10)) {

return foo_Ne4_cb1_10(a,b,c);
} else {
if (c == 0) {
for (int i=0; i < N; i++) {

a[i] = 0;
}

} else if (c <= 10) {
for (int i = 0; i < N; i++) {

a[i] += b[i];
}

} else if (c > 10) {
for (int i = 0; i < N; i++) {

a[i] -= b[i];
}

}
}

}
...
void foo_Ne4_c1_10 (int *a, int *b, int c) {
for (int i = 0; i < 4; i++) {

a[i] += b[i];
}

}

(b) After the function specialization
transformation including constant propa-
gation and local dead code elimination

2.4. Assessing Transformation Verification 51

2.4 Assessing Transformation Verification

"Between what I think, what I want to say, what I think I say, what I say, what you want
to hear, what you hear, what you think you understand, what you want to understand,
what you really understand, there are nine possibilities to not understand each other but

let’s try anyway"
(B. Werber, The Encyclopedia of Absolute and Relative Knowledge).

This citation refers to the communication between humans, but it is the same between
our transformations and the compiler. Between what we think could be done, what we can
do, what the compiler understands and what it does with it, there are multiple chances that
our optimizations have no effect or worse degrade performances. We saw how to combine
analyzers and profilers to trigger ASSIST transformations but the process can be done the
other way around to verify the legality of these transformation afterwards. We minimize this
issue using the knowledge gathered in MAQAO over times. This allows us to know what
transformation can be applied to increase performance speedup. But we want a way to pre-
vent the possibility that our transformations could degrade performances. This problematic
has been part of an internship performed by Claire Baskevicth under my supervision. The
goal was to add a new automated part in ASSIST to gather information and metrics collected
by different MAQAO modules, in order to have a screenshot before transformations. Then we
have to execute ASSIST with the gathered metrics to apply transformations; finally, we have
to execute again some MAQAO modules on one hand to have the information whether or
not we degrade performances and on the other hand, to know if the issue is still remaining or
if new issues have appeared for which we can apply a new transformation to gain even more
in performances. This allows us to have an iterative optimizer where the user can interact
and know what exactly is done at each step.

How It Works

Step 1
It starts by loading the configuration file (see Appendix A.2 for more information about

configuration file), before to set up the environment. The source code root directory is
renamed to have a current version (N) of source code and the next version (N+1) after ASSIST
transformations. Names of those directories have this syntax : <src_dir_name>_Vn, where
n is the version number. For the first run, the original version starts at 0. Then, the program
executes ONEVIEW on the Nth version. If an error occurs during this phase, the N+1
version directory will not be created.

52 Chapter 2. ASSIST

Step 2
During this phase, information about loops, such as source file name, id, start and end

lines, provided by the analysis, are stored in a table. Then labels are added in the Nth
version of source code to later recognize loops that will be compared. Subsequently, ASSIST
performs transformations on the Nth version of the source code using a file generated by the
ONEVIEW analysis. Transformed files are stored in the N+1 directory. Finally, files are
compiled again and ONEVIEW is executed again on this N+1 version.

Step 3
Finally, information about loops from the N+1 version (CQA, DECAN and VPROF met-

rics) are used to fill in the structure and only loops selected in phase 2 are kept. Metrics
before and after transformations are compared and printed. If a loop is not detected after
the second ONEVIEW execution, then an error message is printed and only metrics of the
loop before transformations are presented.

Compared Metrics

Multiple metrics are used to compare loops between two executions and are separated into
two mains parts. First, the ONEVIEW global metrics gather information on the whole ap-
plication, see Appendix A.3 for more information about each metric.

The second part of metrics comes from other MAQAO modules and especially from the
static analyzer CQA. We try to gather all important metrics to help the user at most, but
the CQA qualities are also its weakness. Due to its static aspect, CQA considers that all
data fit in L1 and iteration loops are infinite. So some of the metrics can be misleading,
we will see in the following "Use Case Example" section, that after specializing and tiling a
loop, CQA indicates that on almost all metrics, the transformation degrades performances,
only the flops per cycle is better.
CQA compared metrics principally concern static information about specific loops such as
vectorization ratio, and floating operation per cycle, etc, see Appendix A.3 for more infor-
mation.

A static analysis allows not to execute the program again but the user can decide to
execute dynamic profilers to have more information. If VPROF is executed, we compare the
number of iterations, minimum, maximum and average of loops. If DECAN is executed, we
compare the minimum, maximum and mean ratio of L1 on Original.

2.4. Assessing Transformation Verification 53

Figure 2.4: Example of comparison before and after transformations using
ABINIT with the test case Ti-256.

54 Chapter 2. ASSIST

Use Case Example

Figure 2.4 presents an example of comparison before and after the specialization and the
tiling of the test case Ti-256 from ABinit. In this example we can see that our transforma-
tions allow to gain 1,34 seconds, however, almost all CQA metrics say that transformations
degrade the generated code except the metric flops per cycle which passed from 2.46 floating
point operation per cycle to 3.76. This example perfectly highlights CQA weaknesses, all
metrics are not useful for any transformation. This implies that we have to know what to
look for each transformation. It remains a static analysis so it cannot be perfectly accurate
about the fact that the tile transformation can gain or not, however, some metrics are good
clues to guide us without executing the whole program.

Limitations

As we just saw, trying to compare a code before and after transformation can have some
limitation. It can be caused by a missing loop after a transformation, by full unrolling for
example; here after the loop will not be found during the last step of the process and no
comparison can be made. It will be impossible to know if the transformation had a positive
impact or not. ONEVIEW only analyses loops, and moreover innermost ones, so if a loop
disappeared after transformations then the second execution of ONEVIEW will not find it.
A solution was found, however, there are some disadvantage making it impossible to setup for
the moment. The idea is to detect, after transformations, if a loop is full unrolled. If it is the
case, the loop just above in the loop nest is taken. However, comparing two different loops
will give biased results. The solution should be to execute again the first run of ONEVIEW
and select the loop above of the unrolled one. Nevertheless, two problems occur : the first
one is that ONEVIEW only analyses inner loops and the second is that the time of execution
will increase considerably. ONEVIEW based its analysis on debug information given by the
compiler and can lack of accuracy (loop line start/stop); if the accuracy exceeds more or less
three lines, the loop will not be found.

The second limitation is that to really know if a transformation obtained a performance
gain, we need to execute it. The static analysis can only give hints but it will never be as
accurate as the dynamic analysis and it is impossible to quantify the gain after transforma-
tion without testing it.

2.5. Conclusion 55

2.5 Conclusion

In this chapter we introduce ASSIST, a semi-automatic tool which can perform source-to-
source transformations guided by performance analysis metrics and open to user advices.
ASSIST is based on the Rose compiler and has been integrated into the MAQAO tool suite.
It is an FDO tool that use MAQAO performance analysis tools to drive a set a well-known
transformation. Analysis gather static and dynamic analysis tools such as CQA, VPROF and
DECAN to produce quality low-level measurements and insights. CQA gives a first view of
the quality of the code in term of vectorization. VPROF provides the number of iteration of
each loop. DECAN pinpoints precisely the instruction responsible for a performance anomaly.
How transformations are triggered using metrics from these tools is detailed in chapter 3 and
results obtained with this method are presented in chapter 4. ASSIST also provides with an
assessing transformation verification system that tries to determine if a transformation has
been counterproductive. This method has its flaws and it is up to the user to check if the
transformation must be kept.

57

Chapter 3

What Triggers Transformations and How

3.1 Introduction

In this chapter, we highlight what triggers transformations and how. As a reference, we
present two well-known and widely used FDO tools, Intel compiler PGO and AutoFDO.
They have been developed for many years and offer good performance gains while having
two different approaches. We compare them with our tool.

FDO tools follow the same process but they have multiple ways to perform each step,
especially during the optimization. First, transformations can be explicitly applied in the
source code. The main drawback of this solution is that we cannot be sure that the compiler
will not add any optimization or will understand what is expecting to be done. Second,
directives can be inserted in the source code to drive compiler optimization choices. Most
of Intel directives to perform optimization are listed in Appendix B.2. Directives are limited
in number and often related to only one compiler. But even this compiler can ignore them.
A last possibility is to communicate with the compiler using a plug-in or an interface. This
solution is compiler dependent and does not guarantee that the compiler will not modify the
code afterward.

3.2 Collected Data and Triggered Transformations

3.2.1 Compilers PGOs
The PGO has been implemented in the three best known compilers, LLVM, GNU and Intel.
It shows that this optimization method has the potential to significantly improve perfor-
mances. Among these compilers PGOs, the Intel one is the most advanced. We have too few
information about the GNU PGO and it does not seem to be a priority for GNU develop-
pers. The LLVM PGO is too recent and even if a lot of efforts have been done, more are still

58 Chapter 3. What Triggers Transformations and How

required to reach the level of Intel.

Intel PGO is already included in the Intel Compiler, it uses all resources provided by the
compiler and overwrites the static cost model by the dynamic analysis to drive the trans-
formations. One of the main drawback is that the instrumentation step must be reiterated
each time the source code is modified. Another one is that it is a full blackbox. It is really
difficult to know what the PGO sends to the compiler and what the compiler performs after
receiving these data. According to Intel [82], their compiler PGO can perform multiple trans-
formations, such as: re-ordering code layout to reduce instruction-cache problems, shrinking
code size, and reducing branch mispredictions. For the re-ordering code layout, for example,
the Intel PGO analyzes the control flow and sorts the paths by hot and cold blocks before
grouping them together. This is an example of hot/cold path management by the PGO.

Example:
...
for (int i = 0; i < 1000; i++)

for (int j = 0; j < 10; i++)
foo (j);

...

foo(int x) {
if(x < 10)

hot();
else

cold();
}

During the analysis step, the Intel PGO has detected that the function "foo" is widely
called with a value smaller than ten. The whole function is considered as a hot block when
the parameter "x" is smaller than ten and cold for other cases. According to these results,
the compiler separates the blocks into two groups, respectively hot and cold.

The triggered transformations, thanks to the PGO profiling, provide the following bene-
fits: the spill code location is optimized using the profile information to modify the register
allocations; by identifying targets, PGO can improve the branch prediction of indirect func-
tion calls; it disables the vectorization of any loop that only executes a small number of
iterations.

3.2. Collected Data and Triggered Transformations 59

All FDO tools try to minimize the overhead implied by the profiling step. This min-
imization forces them to limit the quantity of data collected. Intel tries to overcome this
limitation in the last version of their PGO. According to [116], the Intel PGO version 18 col-
lects the hardware-based event sampling data, thus avoiding instrumentation which caused
the overhead and an extra need of memory. With this feature the Intel compiler will be able
to collect more data and perform more efficient transformations.

According to GCC optimization and instrumentation options [81, 80], the GNU Compiler
PGO profiles arcs frequency and expression values. However, due to a lack of information
about the GNU PGO, we do not know how it really works, if arcs frequency and expressions
values are the only two things collected, and finally, what kind of transformations are really
performed after the profiling.

According to LLVM [95], LLVM PGO can perform, among others transformations: block
layout, spill placement, inlining heuristics, hot/cold partitioning, etc. Most of these trans-
formations have already been included in the Intel PGO (i.e. hot/cold partitioning, etc).
Moreover, part of Google compiler developers have stopped to work on LLVM PGO and
they are now developing AutoFDO described in the next section.

3.2.2 AutoFDO

AutoFDO is a framework which collects feedback from production workload and applies it at
compilation time. It samples hardware performance counters and uses data to create profiles
(described in the next paragraph). Then, these profiles are used to compile the next release
of the program. During this release, the compiler uses the profiles to annotate the compiler
IR. Thus, these feedback will drive compiler optimizations. Generated profiles can be used
with LLVM (version 3.5 and after) and a clone of GCC 4.8 (available on their website). This
GCC clone has been modified by Google to support AutoFDO. To summarize, AutoFDO
can be used as an alternative to traditional compiler PGOs profilers.

AutoFDO uses sampling to profile applications with less than 1% overhead while achieving
85% of the gains of traditional FDO. The binary profile has two maps. The first one is a
map connecting binary instructions addresses to their frequency. The second one is a map
connecting branches to their frequency. Both can be obtained using the CPU performance
monitoring unit (PMU). The binary profile is then converted into a source profile with more
accurate information about the location and allows to extend these information. For example,
it can extend the frequency data collected for a statement to all other statements from the

60 Chapter 3. What Triggers Transformations and How

Figure 3.1: AutoFDO call graph to detect hot paths throught function calls.

same basic block. Finally, the source profile is used to annotate the IR. When the IR is
annotated, it not only marks the edge frequency, but it also adds the context. For example,
AutoFDO can say that a function "baz" is called 500 times by "bar" but it also precises
that "bar" mainly calls "baz" when called by the function "foo". The edge of frequency
is hot when "foo" call "bar" which call "baz". With this analysis, "baz" will be inlined
through "bar" into "foo" but not into other functions. Figure 3.1 represents this example.
AutoFDO forwards information to compilers (GCC or LLVM) which then has to perform
the optimizations according to these data. For LLVM, AutoFDO annotates the IR and thus
triggers the PGO transformations as if the PGO itself had profiled the program. For the
GNU compiler, AutoFDO has to use the "gcov" format [38] to provide its information and
trigger GNU PGO transformations as if the GNU PGO itself had profiled the program.

3.3 ASSIST Transformations to Trigger

Most optimization tools are data driven. They have a lot of data and then, they search the
right transformation to apply according to these data. On the opposite, ASSIST is trans-
formation driven. It means that we have several transformations available in ASSIST and
we want to find out what information could trigger them. This section presents how we
can trigger ASSIST transformations, described in section 2.3, using MAQAO performance
analysis tools.

3.3. ASSIST Transformations to Trigger 61

3.3.1 Loop count
The loop count transformation is a little bit different from the other transformations. It does
not modify directly the source code but inserts directives that will drive compiler choices
by giving him hints about loops trip count. Each directive has three parameters represent-
ing the minimum, maximum and average expected numbers of iterations. We trigger this
transformation when any other transformation has been performed and if the loop trip count
information is available. This information is obtained by using the MAQAO value profiler,
VProf. It profiles each loop and records among other things, their minimum, maximum and
average numbers of iterations.

The loop count transformation is an example of what we can obtain by using compiler
directives. As said at the beginning of this chapter, there are multiple other directives to
perform different optimizations. These directives are presented in Appendix B.2. Currently,
even if ASSIST only handles the loop count directive nowadays, it could also manage the
other directives in the future. Moreover, some of ASSIST transformations could be per-
formed by using these directives. Among these directives, some could be easily triggered
using MAQAO modules metrics. The directive "FMA / NOFMA" could be triggered when
CQA detects that FMA instructions are not optimally used. ASSIST could disable the com-
piler unrolling using the directive "NOUNROLL" when CQA highlights unrolling and/or
peels/tails issues. Vectorization of loops could be forced by inserting "SIMD" or "VEC-
TOR" directives. These directives could be triggered when CQA detects a bad vectorization.
And "NOVECTOR" could be used on loops fully vectorized while having too few iterations
to have optimal performance. "PREFETCH / NOPREFETCH" has nothing to do with our
prefetch transformation. The directive aims at giving the compiler a hint to prefetch data
from memory. The directive could be inserted when DECAN shows there would be a poten-
tial speedup if data were in L1 cache. But the speedup would not ne sufficient to trigger the
tiling transformation.

3.3.2 Unroll & fullunroll

The unroll transformation as well as the fullunroll one allow to help the compiler to vectorize
a loop. CQA can analyze whether a loop has already been unrolled or not and determine
its unroll factor. If the loop has not been unrolled, CQA can compute the potential gain of
a possible unroll. However, the biggest challenge in this transformation is the difficulty to
know the right unroll factor. For this, we currently have no other solutions that to provide
multiple versions of the code with different unroll factors: 2, 4, 8, 16 and 32. Then, we still
have to choose the most efficient version.

62 Chapter 3. What Triggers Transformations and How

3.3.3 Interchange
The interchange transformation allows improving arrays accesses. Currently, we do not have
any metric that could trigger this transformation. A potential way to do so would be, for
example, to check how many are not stride-one arrays in a loop nest. We could detect that
either at source-level or at assembly-level. Indeed, we could first, check arrays accesses and
loops iterators. Then, we could compare how many stride-one accesses are currently done
and how many will be, if we interchange the loops order. It is easy to verify on simple cases
but it can become harder on a complex loop nest; we can also miss information if the loop
to handle is in a inlined function.

3.3.4 Tile & strip mine

The tile and the strip mine transformations allow to improve the data locality. These trans-
formations not only require to know how many cache misses are done in a loop but also the
cost of a cache miss and where data are before the loop starts. One variant of the MAQAO
module DECAN is named DL1. It simulates that all data access are made from L1 cache. It
then compares both executions to know the performance gain potential for a specific dataset
and thus, determine the performance improvement, had the data be in L1 cache. Tiling and
strip mining are interesting transformations in term of performance gain. However, even if
we know when to trigger these transformations thanks to the DL1 metric, a metric is missing
to determine the tile size. Another point is when DECAN detects a good potential speedup
for a loop containing multiple arrays. In that case, it could be interesting to verify if the
speedup comes from one of the arrays and if it can be restructured to improve performance
speedup.

3.3.5 Prefetcher
As reminder of the section 2.3, the activity prefetcher aims at being controlled. There are
four prefetchers which can be separately turned on or off. The main difficulty is to find the
right combination. There is no existing metrics that can drive us to choose which behavior
to apply and when. The current solution is to generate sixteen versions of the code for each
possible behavior, analyze which behavior has the best results for each function and then,
modify the prefetcher behavior of each function with the best version. This transformation
could only be applied on functions with a high coverage ratio. For functions with a small
coverage, changing the prefetcher behavior will not have a sufficient impact. The main draw-
back is that we must test all behavior combinations to determine which one allows to obtain
the best results on which functions. Modify prefetchers behavior at function level can also

3.3. ASSIST Transformations to Trigger 63

cause possible side effects on rest of the code.

When the prefetcher transformation is applied, the prefetchers configuration is modified
at function-level. ASSIST inserts a call at the beginning of a target function. The code
performed by the inserted call is detailed at Appendix B.1. This code is provided by MSR-
Tools [72]. It is an open-source project with Intel as major contributor. The code allows to
read and write MSR from/to any CPU or all CPUs by modifying a value in a file located at
"/dev/cpu/<#cpu>/msr", where "<#cpu>" refers to a cpu id.

A drawback appeared when the MSR is modified on the fly at function level. The exe-
cution time is multiplied by ten and several system calls have been added representing more
than 80% of this time. This drawback can come from memory accesses. The MSRs have to
be modified at the same time on all CPUs and it is a locked memory address, so all accesses
are concurent and most of the time is spent in function like "_spin_lock", "sysret_check",
"generic_exec_single", etc. More results are available in chapter 4. These results show the
impact of turning on or off the prefetchers on multiple real-world applications at function
level. However, for these results, the prefetcher behavior has been changed before to execute
each application. Second drawback is that the register to modify prefetchers behavior is only
available on Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, and Broadwell. On
more recent architectures, the register is not available, it seems it is doomed to disappear.

3.3.6 Specialization

The specialization is a wide world with a plethora of possible applications. Ours only are a
sub part of what is existing. It allows us to simplify the control flow (by removing branches),
to set the number of iterations of a loop. It even allows to trigger another transformation
(i.e. Short Vectorization). To trigger our specializations, we use the MAQAO value profiler,
VProf. If we want to specialize a loop we can use the trip count data, like in the case of the
loop count transformation. Or, ASSIST can also detect which variables could be interesting
to specialize and ask to profile these variables with VProf. The next example presents one
case of specialization of particular variables.

Example of Automatic Specialization

One of the most representative example of combining profilers and a well-known trans-
formation is our automatic specialization. In this case we use VPROF, a MAQAO module
which performs value profiling, to detect most used values of variables detected as interest-
ing to specialize. The main goal here is to address issues of an efficient specialization while

64 Chapter 3. What Triggers Transformations and How

having the best results. We implemented an automatic specialization that combines static
and dynamic analysis. Our approach is composed of three steps:

1. The static analysis: ASSIST looks for variables to specialize browsing the AST. This
step presents two distinct cases:

• either ASSIST focuses on functions (calls to the VPROF library are inserted at
the beginning of functions to analyze their integer parameters),

• or ASSIST focuses on the loop nests (trying to evaluate what variables are inter-
esting to specialize). In this case, ASSIST starts by looking inside the innermost
loop searching for variables used for the loop bounds, and these variables are added
into a list. Then, backtrack search is performed in the loop nest to check if one
variable of the list has not been previously computed. For an "if" statement, we
also want to know if its "then" or "else" path is unused for a set of variables and
values in order to remove these paths or the whole statement if it only contains
an unused "then" path. To get these information, a call to the VPROF library is
inserted at the beginning of each path which records the number of times a path
is taken. We also add all variables contained into the "if" condition to the list
and continue backwards in the loop nest. If a variable from the list is computed,
then it is removed from the list, and all variables on the right hand side of the
assignment are added to the list.To minimize our problem, only innermost loops
are profiled. When the loop nest is browsed and the list of variables to special-
ize is completed, a call to VPROF library is added before the loop nest for each
variable to profile. A unique label is generated and added above the loop to store
information concerning which variables to specialize and their location.

In the end of this first step, ASSIST creates two source files. The first one instrumented
with calls to the VPROF library, and the second one instrumented with labels.

2. Instrumented files are compiled and the code is executed; then all data are collected in
a file as a Lua table which will be provided to ASSIST in the third step.

3. Specialization is triggered on labeled files using results from the value profiling. To
trigger the specialization, the distribution of the values of a variable must be inhomo-
geneous with a more widely used value.

3.3. ASSIST Transformations to Trigger 65

Figure 3.2: Polaris - Metrics global metric before applied the SVT

3.3.7 Short vectorization

The short vectorization transformation allows to improve vectorization of a loop. This trans-
formation is currently the only one which requires multiple metrics in addition of the user
approval. To trigger the SVT, two metrics are requires. The first one is the loop trip count
from VProf, to check that the loop only performs a few number of iterations. The second
one is the vectorization ratio metric from CQA; it allows us to know if the loop has not been
correctly vectorized. This transformation is very touchy and in addition of these metrics,
the user have to be questioned about the legitimacy of the transformation. The next chap-
ter presents the results obtained with the short vectorization transformation on a scientific
application named POLARIS. The following example presents how we triggered the SVT as
well as each step of the process that led us to these results.

Example of Short Vectorization Transformation

Figure 3.2, presents MAQAO global metrics obtained on Polaris on the original version.
The flow complexity1 is set to 1.01 and "Fully vectorize" 2 metric indicates that the appli-
cation can obtain a speedup up to x1.22. These metrics also indicate that the vectorization
bottleneck does not concern floating-points operations; the bottleneck must concern loads and
stores. Figure 3.3 confirms this hypothesis, because as user, we know that the two hottest

1The Flow Complexity metric represents the average number of paths in loops for whole the application.
2The "Fully vectorize" metric indicates the potential speedup if the whole application was fully vectorized.

66 Chapter 3. What Triggers Transformations and How

Figure 3.3: Polaris - Metrics global and of the two hotspots loops before to
apply the SVT.

loops, which each have 0% vectorization, are gather and scatter. Hence, the potential gain
is low if floating-point operations have been fully vectorized. Moreover, the metrics of both
loops, indicate that the number of iterations remains constant at sixty. The OneView report
generated especially for ASSIST with the raw data is presented in Appendix A.8. These two
loops gather all the conditions and we know that the SVT is legitimate on that kind of loop.
We decide to apply the transformation. Due to the sixty iterations we applied the generic
version with a 4 modulo.

Figure 3.4 presents the global metrics obtained after applying the SVT. Compared to
figure 3.2 we have the following improvements. The application ran 3 seconds faster, the
flow complexity has been improved to 1.00 and the vectorization potential speedup if the
whole application had been vectorized decreased to x1.15. Moreover, figure 3.5 shows the
improvement of the loops with vectorization ratio up to 100% for both and an execution time
which dropped to 2.25 and 1.69 seconds against 3.11 and 2.56 seconds before transformation.

3.4 Conclusion

In conclusion, ASSIST has a set of transformations that can be triggered in different ways.
First, the user can insert directives in his code source. When ASSIST analyze the code and
find a specific directive it will apply the corresponding transformations without looking for
if it is profitable or not. The second method is to use a transformation script. To avoid
to add directives in the code, the user can provide a script with all information. Like the
directives, all transformations can be trigger in this way and ASSIST will not check the
potential gain of transformations. The script contains the same information as the directive

3.4. Conclusion 67

Figure 3.4: Polaris - Global metrics after the SVT has been applied.

Figure 3.5: Polaris - Global metrics and specific metrics of the two hotspots
loops after the SVT has been applied.

68 Chapter 3. What Triggers Transformations and How

plus the file and lines of the statement to transform. The last way to trigger transformation
is to use ASSIST as an FDO using MAQAO performance analysis tools metrics. Currently,
only few transformations can be triggered using MAQAO metrics. First, the SVT which uses
a combination of CQA vectorization ratio and VPROF min, max and average number of
iteration of a loop. Second, the Tiling which uses the DECAN DL1 variant that estimate the
gain if all data fit in L1. Third, the LCT which only uses the VPROF min, max and average
number of iteration of a loop. Finally, the specialization can be also automatically trigger
using a static analysis performed by ASSIST. This analyze tries to estimate which variable
must be specialized. In the next chapter we will observe the impact of these transformations.

69

Chapter 4

Experiment

In this chapter the results of ASSIST are presented and compared with Intel compiler PGO
mode denoted (IPGO) in the sequel. Intel compilers are neither open source nor free, but
they provide the best performance in our tests (compared with GCC and LLVM). The second
main reason behind this choice of PGO comparison lies in the lack of availability for FDO
tools for regular users. As a reminder, for IPGO, the use of profiling data enables some
specific optimizations but can also modify the behavior of other optimizations such as:

1. using feedback data on function entry counts. Function grouping is done to put hot/cold
functions adjacent to one another;

2. value profiling of an indirect and virtual function calls. It is done to specialize indirect
function call for a common target;

3. annotating the intermediate language with edge frequencies and block counts. They
are then used to guide a lot of the optimization decisions made by other passes of the
compiler, such as: the in-liner and partial in-liner, the basic block layout, the conversion
from switch tables to "if" statements, loop transformations like unrolling, etc.

Our goal is not to "mimic" IPGO, but rather to present a complementary approach which
goes beyond the observed limitations. All the measurements presented below have been gath-
ered on an Intel(R) Skylake SP based machine (Intel Xeon Platinum 8170 CPU@2,10GHz)
with Intel compiler version 17.0.4. Multiple executions (exactly 31) were performed to reach
statistical stability and avoid outliers in data measurement.

In this chapter, the results of experimental transformations offered by ASSIST are pre-
sented. They are based on feed back data and user insight. This study is application centered,
we have looked for an approach to get a good performance gain at minimal cost; starting
from the specific needs of each application based on what MAQAO profilers return, we can
trigger the right transformation that will answer these needs, thus limiting the search space

70 Chapter 4. Experiment

and avoiding to blindly test different useless transformations. In this chapter, a speedup is
considered as a faster execution of the application.

4.1 Application Pool

Multiple fully industrial class applications were used to test our approach:

YALES2 [28] (version 0.5.0) is a numerical simulator of turbulent reactive flows using
the Large Eddy Simulation method. It is a finite volume code for unstructured meshes
with an innovative 4th order spatial scheme for the discretization of convective and diffusive
terms. It is based on the low-Mach number approximations of the Navier-Stokes equations
which solves an elliptic Poisson equation at each iteration. The MPI version uses sub-
domain decomposition with adjustable domain size allowing efficient cache usage. ASSIST
has been tested on two of their datasets named "3D_Cylinder", a pure CFD computation,
and "1D_COFFE", a combustion computation. The application is written in Fortran 2003
and approximately contains 276 000 lines of code.

AVBP [11] (version D7.0.1) is a parallel CFD code developed by CERFACS. It solves
the three-dimensional compressible Navier Stokes equations on unstructured multi-element
grids. It uses third space and time Taylor Galerkin numerical schemes. The code has been
ported and tested in up to 200K cores with an 85% strong scaling efficiency (BG/Q) for a
200M element case (1000 elements per MPI rank). Cache coloring uses the reverse Cuthill-
Mckee method. ASSIST has been tested on three representative datasets namely: SIMPLE
(helicopter chamber demonstrator combustion simulation), NASA (NACA blade simulation)
and TPF (large flow simulation). The application is written in Fortran 95 and approximately
contains 275 000 lines of code.

ABINIT [2] (version 7.10.5) is a package allowing users to find the total energy charge
density and the electronic structure of these systems made of electrons and nuclei (molecules
and periodic solids) within Density Functional Theory (DFT) using pseudo-potentials (or
PAW atomic data) and a planewave basis. The application approximately contains 807 000
lines of Fortran 90.

POLARIS (MD) (version 1.0.5.18) is the only code that can be used to perform microscopic
simulations of high precision (especially for the treatment of interatomic interactions) for
molecular systems of several millions atoms with "speed" of the order of one nanosecond a
day. On this last point ("speed"), many improvements are still possible to consider "speed"

4.2. Impact of Value Profiling 71

AVBP AVBP AVBP Yales2 Yales2

NASA TPF SIMPLE 3D Cylinder 1D COFFEE

Number of loops 149 173 158 162 122

Table 4.1: Number of loops processed by ASSIST LCT for each application
and test case.

of several nanoseconds per day. Finally, its hybrid parallelization scheme (OPENMP / MPI)
makes it particularly well suited to the new generation of "many-core" systems.

Convolutional Neural Network (CNN) is a state-of-art DNN for image recognition. New
CNN workloads emerged and are pushing the limits of today’s hardware. One of the expensive
kernels is a small convolution in such specific sizes that calculations in the frequency space
are not the most efficient method when compared with direct convolutions. Training CNNs
requires an enormous amount of time, making their optimization very critical. The CNN code
refers to the one used in [70] and the layers used are the GoogleNet_V1. The convolution
technique consists in executing all CNN layers one after the other with different sizes of filter
(1x1, 3x3 and 5x5). This codelet is written in C and contains 450 lines of codes.

Mini QMCPACK is a simplified but computationally accurate implementation of the real
space quantum Monte Carlo algorithms implemented in the full production QMCPACK [98]
application. Mini QMCPACK and QMCPACK are available on github1 2

4.2 Impact of Value Profiling

Our first FDO optimization uses loop trip counts information obtained by value profiling
using MAQAO VPROF. When loops exhibit a complex control flow due to multi-versioning,
the knowledge of the trip count can help the compiler simplify the decision tree.

Figure 4.1 presents the speedups obtained with LCT or IPGO and the combination of
both for each application/dataset. For these applications, the combination of LCT and IPGO
reaches a speed up of 14% for a sequential YALES2 run with the 3D Cylinder dataset. To

1Mini QMCPACK: https://github.com/QMCPACK/miniqmc
2QMCPACK: https://github.com/QMCPACK/qmcpack

https://github.com/QMCPACK/miniqmc
https://github.com/QMCPACK/qmcpack

72 Chapter 4. Experiment

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

YALES2 - 3D CYLINDER

ASSIST LCT

IPGO

ASSIST LCT + IPGO
ORIG

ASSIST LCT

IPGO
ASSIST LCT + IPGO

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 1.24

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

YALES2 - 1D COFFEE

Speedup

ASSIST LCT

IPGO

ASSIST LCT + IPGO

MPI %
ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

Figure 4.1: Histograms: impact (speedup) of ASSIST LCT, IPGO and com-
bination of both compared with the original version for the same number of
threads of two datasets Yales2 (Higher is better). Error bars represent original
version divided by minimum speedup and original version divided maximum

speedup. Plots: Percentage of execution time spent in MPI.

4.3. Impact of Specialization 73

ensure that the optimization is still efficient in parallel, these figures present the impact
of LCT, of IPGO and of these two combined compared to original versions with the same
number of processes. In most cases, the speedup decreases when the number of processes
increases. This is due to the communications which proportionally increase (see MPI time
plots) at the same time and take most of the execution time. On the contrary, for Yales2
with 1D COFFEE dataset, we observe speedup increase with the number of processes. This
is due to an Intel compiler optimization on an Intel library function that performs a copy
of a string used for all communications. Moreover, the higher the number of communica-
tions, the more often this function is called. Providing the trip count of the loop containing
this function to the compiler, allows it to perform advanced optimization. This explains the
speedup obtained by increasing the number of processes.

After applying ASSIST LCT, we used our verification system based on CQA to statically
verify that the compiler did not generate a worse performing code. The verification system
is not fully implemented, so we decided to only apply it on hot loops and confirm that the
transformation does not downgrade performances. The strength of this transformation comes
from the number of loops processed by ASSIST; as shown on figure 4.2, the first twenty loops
provide more than fifty percent of the total speedup gain but 130 loops are necessary to reach
a maximum speedup for Yales2. For AVBP, it only requires 15 loops to reach half of the total
speedup and 90 loops for the maximum. We can observe some performance degradation on
a few loops but in general these degradations are limited to 0.01 second and can be due to
the approximation. Number of loops processed for each test case and application is defined
in table 4.1.

This study shows that providing the compiler with a loop trip count feedback (minimum,
average and maximum values) results in significant performance gains. When compared with
IPGO, performance gains are lower but it should be kept in mind that IPGO and LCT
ASSIST are using different optimizations. The most important point is that both can be
combined and that their combination leads to higher gains.

4.3 Impact of Specialization

While optimizing applications, we notice that we often resort to function or loop specialization
before applying other transformations. The following examples show how specialization alone,
or coupled with other transformations, can provide significant performance gain.

74 Chapter 4. Experiment

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 20 40 60 80 100 120 140 160 180S
p
e
e
d
u
p
 (

h
ig

h
e
r
 i
s
 b

e
t
t
e
r
)

Number of loops

YALES2 - CYLINDER

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 20 40 60 80 100 120 140S
p
e
e
d
u
p
 (

h
ig

h
e
r
 i
s
 b

e
t
t
e
r
)

Number of loops

AVBP - NASA

Figure 4.2: Cumulated speedup versus number of loops processed by ASSIST,
sorted by their coverage, on Yales2 using the 3D CYLINDER test case and

AVBP using the NASA test case.

4.3. Impact of Specialization 75

4.3.1 Specialization Only
In this example, our target loop nest is composed of seven nested loops and ASSIST is used
in two steps: first, as an automatic tool, using the automatic specialization to detect vari-
ables that can be automatically specialized. In this case, ASSIST finds that by specializing
variables for certain values, it is possible to set bounds of the two innermost loops within the
nest. It is also possible to remove the "if" statements that are in these two loops; then, as
users, we know that two variables - which are computed inside the loop nest - only have three
possible values for most layers. These are calculated within the loop nest which prevents the
previous automatic specialization. After both specializations the loop nest has increased from
30 lines to 922 lines to handle all cases of specializations, this transformation can hardly be
done manually without making mistakes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

L
a
y
e
r2

L
a
y
e
r3

L
a
y
e
r5

L
a
y
e
r6

L
a
y
e
r8

L
a
y
e
r1

0

L
a
y
e
r1

1

L
a
y
e
r1

3

L
a
y
e
r1

4

L
a
y
e
r1

5

L
a
y
e
r1

7

L
a
y
e
r2

1

L
a
y
e
r2

3

L
a
y
e
r2

8

L
a
y
e
r3

0

L
a
y
e
r3

3

L
a
y
e
r3

4

L
a
y
e
r3

5

L
a
y
e
r3

7

L
a
y
e
r4

1

L
a
y
e
r4

5

L
a
y
e
r4

7
S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST specialization

Figure 4.3: Convolution Neural Network - Speedup of GoogleNet_V1 layers
after specialization, compared to the original version.

76 Chapter 4. Experiment

Figure 4.3 presents the speedups after specializations compared with the original version.
Specializations offer a gain between 1.4x and 5.4x on all tested layers by creating multiple
less complex versions of the loop nest that the compiler can more easily optimize. The layers
used in this case are those with a (1x1) and (3x3) filters. IPGO does not appear on this
figure because it does not gain any performance.

4.3.2 Combined With SVT
With AVBP

In this example, MAQAO indicates that, in the ten most time-consuming functions, there
are loops presenting a poor vectorization efficiency and a low trip count for the three datasets:
NASA, TPF and SIMPLE. We use ASSIST to couple both specializations and SVT on these
functions. We first apply loop and function specializations separately, then we apply short
vectorization on the most efficient version. Figure 4.4 only presents results on the dataset
SIMPLE because compared to speedup obtained with IPGO and ASSIST LCT, it is the most
relevant.

Figure 4.5 compares the speedup ratios of each version (LCT, IPGO, LCT + IPGO and
SVT). For the TPF dataset, SVT allows to gain as much as the combination of LCT and
IPGO. But for the NASA dataset, the best results of LCT+IPGO only allows to reach half
of the speedup obtained with SVT for one MPI thread. It is more blatant with the SIMPLE
dataset, the speedup of LCT and IPGO does not reach more than 2% individually and 4%
when combined, contrary to ASSIST SVT which reaches a 12% speedup for the SIMPLE
dataset. When the compiler fails to vectorize a loop properly, SVT is very effective given
that it explicitly exposes a simpler loop structure with no peel or tail loops to the compiler.

There are two mains reasons why the compiler does not vectorize: first, the dependence
analysis reveals dependencies preventing vectorization, and second, the cost model used by
the compiler produces estimates indicating that a vectorization is not beneficial. For other
cases, the compiler performed an outer vectorization on loops with a small number of iter-
ations, CQA detects a bad "vectorization efficiency" on these loops. CQA offers multiple
vectorization metrics such as vectorization-ratio or a vector-efficiency ratio on loads, stores,
etc. allowing to assess the performance level obtained. In our case, we use these metrics to
provide ASSIST with quality estimates of the vectorization carried out by the compiler. We
can then decide whether or not to perform a good vectorization in order to finally trigger the
transformation. The short vectorization transformations force the compiler to vectorize small
loops with a small number of iterations; the compiler also fully unrolls these loops. After

4.3. Impact of Specialization 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

laxw
e

m
ass-product

central-nv

central

balance-cor

gather-o-cpy

scatter-o-sub

scatter-add

scatter-o-add

grad-4obj

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST LCT

IPGO
ASSIST function specialization only

ASSIST Loop specialization only

ASSIST SVT on best specialization

Figure 4.4: Speedups by function before and after applying transformations
with ASSIST (SVT, function/loop specialization, LCT) and IGO compared
with the original version (higher is better) on AVBP using the SIMPLE test

case (sequential version).

78 Chapter 4. Experiment

loop # ite. # ite. # ite. Potential Coverage

id min max avg speedup

loop 2690 4 4 4 6.40 0.61

loop 2587 5 5 5 2.00 0.97

loop 2308 3 3 3 8.00 0.33

loop 2551 5 5 5 8.00 0.37

loop 2723 5 5 5 2.00 0.35

loop 16182 4 4 4 4.00 11.25

loop 13641 4 4 4 4.00 1.52

loop 13752 4 4 4 2.67 3.46

loop 13692 4 4 4 4.00 2.98

loop 13902 3 3 3 6.67 2.51

Table 4.2: CQA & VPROF metrics of loops of the hotspot functions of AVBP,
with the SIMPLE dataset, before applying the SVT.

4.3. Impact of Specialization 79

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

AVBP - TPF

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 1.24

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

AVBP - NASA

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

Speedup MPI %

AVBP - SIMPLE

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

Figure 4.5: Histograms: Speedups of ASSIST SVT (i.e. short vec-
torization+function/loop specialization), ASSIST LCT, IPGO and ASSIST
LCT+IPGO compared with the original version for the same number of threads
(Higher is better) on AVBP using NASA, TPF and SIMPLE test cases. Error
bars represent original version divided by minimum speedup and original ver-
sion divided maximum speedup on AVBP. Plots: Percentage of execution time

spent in MPI.

80 Chapter 4. Experiment

transformations, we use our verification system with CQA to validate the transformations.
Indeed, before transformations, CQA only detects 33% of vectorization and after, CQA re-
ports the loop as fully vectorized.

To apply SVT, loop bounds have to be known. To set these bounds, we specialize func-
tions on one side, and loops on the other; we then apply the SVT on the best specialization
for each function. Figure 4.4 presents the speedups obtained at each step to show their indi-
vidual impact, we add ASSIST LCT and IPGO for comparison. We observe that SVT can
raise up to 2.6x while the loop and function specialization only achieves, at best, a speedup of
1.5x. Performing only loop or function specialization may be counterproductive in some cases
because of the induced complexity of the control flow, if no further induced optimizations
are possible. Table 4.2 presents metrics from CQA and VPROF of loops before applying the
SVT; these metrics did motivate our choice to use SVT. For all of these loops, the number
of iterations is smaller than five and with a good potential speedup if fully vectorized.

To understand why the function specialization degrades performances of the function
"gather_o_cpy", we analyze and compare the next three versions: the original version and
the versions of both specializations. First, the original loop nest is presented on figure 4.6 and
the results on the figure 4.7. They show the original loop nest and the execution information
collected by MAQAO on that loop nest. As we can see, the compiler has created several
versions of this loop nest. Each loop of the figure 4.7 represent a different version of the
same loop nest (which start at line "219" to "223"). The sum of the execution time of all of
these versions is 7.1 seconds out of the 36.48 seconds of the execution of the function. For
example, the loop 13955 corresponds to a version where the loop nest has been unrolled 72
times with the loop 13944 as peel/tail.

Now, we compare both specialization versions. On one side, figure 4.8 shows the results
for the function specialization version. All versions of the function are detailed with their
coverage, execution time by function and associated loop nests. On the other side, figure 4.9
shows the results for the loop specialization version. All loops versions are in the same
function. To easily compare them, we numbered each loop nest. Each number correspond to
the same specialized version. There was no number in figure 4.7 because all loops correspond
to the same source loop.

We can observe one main reason for this performance degradation. The compiler differ-
ently managed the two versions. For the function specialization version, most of loops exist
in multiple versions while on the loop specialization version, loops exist in only one version.
This is the main reason why function specialization is slower. The difference between the
two versions without loops is close of five seconds. By duplicating the loop, the compiler
can see that is multiple versions of the same loop; while when the function is duplicated, the

4.3. Impact of Specialization 81

218 . . .
219 DO n=1, ne l
220 DO no = 1 , nvert
221 !DIR$ SIMD
222 DO k= −nproduct+1, 0
223 zobj (no ∗ nproduct + k , n) = z (i e l o b (no , n) ∗ nproduct + k)
224 END DO
225 END DO
226 END DO
227 . . .

Figure 4.6: The loop nest of the function "gather_o_cpy".

Figure 4.7: Original version: Execution time details for the function
"gather_o_cpy" and all the variants of its loop.

82 Chapter 4. Experiment

Figure 4.8: Function Specialization version: Execution time details for the
function "gather_o_cpy" and its loops.

compiler can miss the fact that is the same loop in the specialized version.
Such cases can be detected by subtracting the time of the targeted loop to the time of

the function containing this loop. It will help to decide which one of both loop and function
specializations to perform and thus avoiding such performance slowdowns. However, subtract
the execution time of the loop to the one of the function only work if we want to only specialize
this loop and the specialization has no impact on the rest of the function.

With Polaris

Polaris has the same problem as AVBP with two most time-consuming scatter/gather
loops with poor vectorization efficiencies. Their number of iterations is higher than usual
(around 60 for both) so we use the ASSIST generic SVT with a modulo of four. Table 4.3
presents the results of these two loops when using the dataset "test_1.0.5.18". These two

4.3. Impact of Specialization 83

Figure 4.9: Loop Specialization version: Execution time details for the function
"gather_o_cpy" and its loops.

loops represent 10% of the coverage of the whole application. ASSIST has been used on only
these two loops for two reasons. First, 70% of the application time is passed in a function
which computes each point of the matrix without using a loop and where we can not perform
any transformation. Second, other loops are array line fortran representations; compilers
refuse any loop-directive above this kind of loop, so we cannot apply the LCT on Polaris.

SVT has not been applied on Yales2 because CQA indicated that vectorization would
lead to the use of scatter/gather instructions which are costly and make vectorization not
beneficial. The level of indirection is high, due to irregular geometric access and the main

Execution Time Execution Time Speedup Coverage
Before After (higher is better)

Transformation (sec) Transformation (sec)
Polaris 73.32 70.26 1.04

loop 6909 4.27 3.14 1.36 5.72%
loop 6911 3.64 2.36 1.54 4.98%

Table 4.3: Execution time and speedups of ASSIST SVT (i.e. generic
short vectorization) compared with the original version on Polaris using the

"test_1.0.5.18" test case.

84 Chapter 4. Experiment

bottleneck is the address computation.

4.3.3 Combined With Tiling
In this example, ASSIST is used as a semi-automatic tool and is fully driven by the user. At
first, a full profiling of the code is performed followed by a value profiling on one of the main
hotspots of the application. Three input parameters were found to be of importance.

First, the function can be called with two different types of input data, either real-valued
data or complex-valued data. A given test case will almost exclusively use one or the other.
As those data are expressed as an array with one or two elements in a part of the code,
specialization of this value simplifies address computations and vector accesses by making
the stride a compile-time constant rather than a dynamic value.

Second, multiple variants of the algorithm are implemented in the function. Which exact
variant is used, depends on two integer parameters. Again, a given test case is usually heav-
ily biased towards a small subset of possible cases. The specialization of one case allows to
remove multiple conditionals. For a given case, different branches appears in the loop nests.
This removal of conditionals exposes the true dynamic chaining of the loop nest directly to
the compiler with no intervening control-flow break.

Once specialized with ASSIST, the function becomes much simpler to study. A study
using MAQAO DECAN previously indicated that data access was very costly and that tiling
would be very beneficial. More precisely, a large array is updated in its entirety inside a loop;
a bad pattern for cache usage. Loop tiling makes it possible to update the array by block,
and to only scan and update the array once. While this work would not be particularly
difficult to do by hand, more than two dozen variants of the loop nest with similar properties
appear in the original function. As the transformed loop adds an extra loop to the nest, this
complicates indexes and requires a remainder loop. It is much easier and much more reliable
to automate the transformation process.

Part (a) of figure 4.10 shows the directives on an extract of the function. Three specialized
variants are produced for the common use cases in our reference test Ti-256, by the first three
lines of the figure. The critical loop nest is subsequently tiled, but only in the specialized
version, by the directive immediately above the loop nest. Part (b) shows extracts from
the output of ASSIST. The specialized variants are called whenever the parameters are
appropriate.

Every condition previously dynamically encountered is now collapsed into that one test.
The original function figure 4.10 also shows the new loop nest with the loop tiling transfor-
mation applied. Only height elements (a friendly value for a vectorizer) are computed in the

4.3. Impact of Specialization 85

!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt=3,cplex=2)
!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt<3,cplex=2)
!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt>3,cplex=2)
subroutine opernlb_ylm(choice,cplex,paw_opt,...)
...
if(choice==1) then
!DIR$ MAQAO IF_SPE_choicee1_TILE_INNER=8
do ilmn=1, nlmn
do k=1, npw
z(k)=z(k)+ffnl(K,1,ilmn)*cplx(gxf(1,ilmn) &

,gxf(2,ilmn),kind=dp)
end do

end do
end if
...

end subroutine

(a) Before specialization + tiling

SUBROUTINE opernlb_ylm(...)
IF ((choice.EQ.1).AND.(paw_opt.EQ.3)AND(cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
RETURN

END IF
IF ((choice.EQ.1).AND.(paw_opt.LT.3)AND(cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
RETURN

END IF
IF ((choice.EQ.1).AND.(paw_opt.GT.3)AND(cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
RETURN

END IF
...

END SUBROUTINE
...
SUBROUTINE opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
...
lt_bound_npw = (npw / 8) * 8
DO lv_var_k = 1, lt_bound_npw, 8

DO ilmn = 1, ilmn
DO k = lt_var_k, lt_var_k + (8-1)
z(k)=z(k)+ffnl(K,1,ilmn)*cplx(gxf(1,ilmn) &

,gxf(2,ilmn),kind=dp)
END DO

END DO
END DO
...

END SUBROUTINE
SUBROUTINE opernlb_ylm_ASSIST_choicee1_paw_opti3_cplexe2(...)
...

END SUBROUTINE
SUBROUTINE opernlb_ylm_ASSIST_choicee1_paw_opts3_cplexe2(...)
...

END SUBROUTINE

(b) After specialization + tiling

Figure 4.10: ABINIT - Example of function specialization coupled with loop
tiling, performed with ASSIST, for the use case Ti-256. Boxes highlight the

tiling transformation of the innermost loop.

86 Chapter 4. Experiment

Figure 4.11: ABINIT - Ti-256 - Speedups of IPGO, ASSIST LCT, special-
ized with ASSIST, specialized and tiled with ASSIST compared to the original

version

innermost loop versus the entire array previously. An outer loop has been added which scans
the entire array by block of size height. In practice, the innermost loop is removed by the
compiler which fully unrolls and vectorizes it.

Speedup results are shown in figure 4.11. We added IPGO to show the potential of
our approach. Specialization offers a small gain but the dominant issue is still the time
spent in the critical loop nest. Adding tiling offers a large gain of almost 1.8x in total by
significantly reducing the memory bandwidth of the critical loop nest. Despite the complexity
of the original function, the same transformations could be easily applied to other cases using
ASSIST.

4.4 Impact of Prefetchers

Prefetchers setting has an important impact on performance. The default setting of all
prefecthers on is not necessarily the best one. In this section, we analyze the impact of
different prefetcher configurations on three applications with three different behaviors.

4.4.1 With Mini QMCPAK
The first application used is Mini QMCPACK. Specific runs have been made to test various
prefetcher configurations, presented on table 4.4. All prefetchers ON are encoded as 0 and all

4.4. Impact of Prefetchers 87

Activated Config Config Config Config Config Config Config Config
prefetchers 0 1 2 3 4 5 6 7

L2 hardware prefetcher 0 1 0 1 0 1 0 1
L2 adjacent cache line prefetcher 0 0 1 1 0 0 1 1

DCU prefetcher 0 0 0 0 1 1 1 1
DCU IP prefetcher 0 0 0 0 0 0 0 0

Activated Config Config Config Config Config Config Config Config
prefetchers 8 9 a b c d e f

L2 hardware prefetcher 0 1 0 1 0 1 0 1
L2 adjacent cache line prefetcher 0 0 1 1 0 0 1 1

DCU prefetcher 0 0 0 0 1 1 1 1
DCU IP prefetcher 1 1 1 1 1 1 1 1

Table 4.4: The different prefetcher configurations, according to Intel:
https://software.intel.com.

0=prefetcher ON, 1=prefetcher OFF.

prefetchers OFF are encoded as f. As reminder of section 2.3.8, there are 4 prefetchers. Each
of them can be turned ON or OFF, making a total of 16 different prefetcher configurations
available. For each prefetcher configuration a full run including profiling at the function and
loop level, was performed. We compared the impact on performance at three levels: full
application, function and loops.

With this experimentation we want to analyze the impact of prefetchers on the Mini QM-
CPACK application using different datasets. All executions have been done on an Haswell-E.
The application takes as input : "-n <I> -g <X Y Z>", where "<I> represents the number of
iterations and "<X Y Z>" the size of the problem. The tests cases used for our experiments
are : "-n 320 -g "2 1 1" ", "-n 160 -g "2 2 2" ", "-n 40 -g "2 2 2" ", "-n 20 -g "4 2 2" ".
Figure 4.12 represents the speedup by function for all configurations for the eleven hottest
functions of the application. Figure 4.13 represents the speedup by loop for all configurations
for the eleven hottest functions of the application. During the different runs, we noticed in-
stabilities (between 2 to 10%) for all configurations, but it was interesting to see that trends
were preserved.

Figures 4.12 and 4.13 show is that each time the "L2 hardware prefetcher" is disabled,
performances are degraded. Another observation is that other prefetchers have less impact on
the application. Even if at loop or function level, modifying prefetcher configuration allows
to obtain good speedups; the configuration with all prefetchers enabled stays the one that

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

88 Chapter 4. Experiment

Figure 4.12: Mini QMCPACK - <-n 20 -g "4 2 2"> - Speedup by function
for all configurations. All speedups are compared to the configuration 0 (all

prefetchers ON). The graph is divided into two parts.

4.4. Impact of Prefetchers 89

Figure 4.13: Mini QMCPACK - <-n 20 -g "4 2 2"> - Speedup by loop for all
configurations. All speedups are compared to the configuration 0 (all prefetch-

ers ON). The graph is divided into two parts.

90 Chapter 4. Experiment

allow to obtain best performances on the whole application. However, if our aim would not
be reducing execution time but reducing energy consumption, the configuration "e" would
be the best choice because we disabled three of the four prefetchers while reaching 98% of
the best combination configuration. Since we do not have metrics on energy consumption,
we will not dwell on that part in this chapter.

Our first tests of using ASSIST to locally modifying prefetchers configuration by adding
calls at function level according to the best configuration were not conclusive. By calling the
code in Appendix B.1, which only writes the value corresponding to the desired configuration
in a specific register for each CPU, the operating system added guards that add a slowdown
to the execution. This slowdown can multiply the execution time from three to ten times.
The same effect has been observed even on small codes and benchmarks such as Numerical
Recipes (NR) and no alternatives were found. A last remark is that trends are similar at
function and loop levels. This can be explained by the fact that most of the time, functions
are composed of one loop or loop nest which represents the most part of the execution of the
function. Subsequently, we only present results obtained at function level.

4.4.2 With AVBP

The second application used is AVBP. Figure 4.14 presents the speedup of each version of
the MSR compared to all prefetchers enabled of hottest functions (functions with at least
1% coverage). As we can see, most of the time, having all prefetchers enabled is more of-
ten efficient at application level, except for the configuration 4 and 6 where we have a little
speedup at application level. With some combinations, enabling only a few prefetchers allows
to obtain closed performances gain but each times that "L2 hardware prefetcher" is disabled
performances dropped significantly. At function level we observe that we could obtain good
results by modifying prefetchers configuration at function level. They are several function
where different configuration allow to obtain better speedup that the configuration 0. In
some cases, speedups up to x1.20.

4.4.3 With Yales2

The last application used is Yales2. Previous results on AVBP and Mini QMCPACK have
showed that when executed in sequential, the best prefetchers combination for best perfor-
mance is often when all prefetchers are enabled. We also saw that by disabling some of
prefetchers could save energy while still being competitive in term of performance.

4.4. Impact of Prefetchers 91

Figure 4.14: AVBP - SIMPLE: Speedup by function for each prefetcher con-
figuration. All speedups are compared to the configuration 0 (all prefetchers

ON). The graph is divided into two parts.

92 Chapter 4. Experiment

Figure 4.15 presents the speedup of each version of the MSR compared to all prefetchers
enable of hottest functions (functions with at least 1% coverage). As for others applications,
at application level, having all enable prefetchers is the most efficient combination and each
time the "L2 hardware prefetcher" is disabled performances drops. However, with some com-
binations, enabling only few prefetchers allows to obtain closed performances gain and even
better at function level, where we obtain speedups up to x1.40. But, even at function level,
each times that "L2 hardware prefetcher" is disabled performances drop significantly.

We now analyze the impact of the different prefetchers setting on a parallel application,
Yales2. Results for Mini QMCPACK in parallel were not presented because they are less
interesting. Figure 4.16 presents speedups of the Yales2 dataset "3D Cylinder", with different
prefetcher settings, for one, two and four MPI processes. All settings are compared to the
configuration 0. As we can see on figure 4.16, all prefetchers on is the best configuration
when the application is executed in sequential. However, the more the number of processes
increases, the more the trend changes. With four processes the trend is inverted and the
performance is improved. Parallelism adds a new perspective about the prefetcher settings.
For applications that have to be executed with multiple processes, it is interesting to profile
which configuration can bring performance. Nevertheless, all settings have to be profiled
because it is impossible to predict performances according to one or another configuration.

4.5 Impact of Intrinsic Prefetcher Function

Prefetchers can also be controlled more precisely by adding an intrinsic prefetcher function
call3 in the source code. This function is used to indicate to fetch a line of data from memory
that contains the byte specified with the source operand to a location in the cache hierarchy
specified by a locality hint. The hints indicates if its is a temporal data, a temporal data
with respect to second level cache misses, or a non-temporal data.

4.5.1 With Numerical Recipes
We first try this optimization on the well-known benchmarks Numerical Recipes (NR) [96].
We worked on three benchmarks, "s319", "s1244" and "matadd". When the intrinsic function
was inserted in the code source, the compiler modified its optimization choices and disabled
all optimization performed before that the call was added. Vectorization and unroll were
disable. This is one of the main issue when optimizations are done at source level, the

3Intrinsic function : https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=
_mm_prefetch

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_prefetch
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_prefetch

4.5. Impact of Intrinsic Prefetcher Function 93

Figure 4.15: Yales2- 3D_Cylinder: Speedup by function for each prefetcher
combination. All speedups are compared to the configuration 0 (all prefetchers

ON). The graph is divided into two parts.

94 Chapter 4. Experiment

Figure 4.16: Yales2 - 3D_Cylinder: Speedup by prefetcher combination com-
pared to all prefetchers enabled for one, two and four processes.

compiler can modify its optimization choices and it harms to our predictions. We forced the
vectorization using the directive "simd" and unrolled the loop at source level but the compiler
rewound the loop and still not vectorized. To verify if our optimization worth it anyway, we
apply the optimization at binary level to keep previous compiler optimization in addition of
the prefetch. The prefetch function has been only added for stored data. Table 4.5 shows
that by prefetching store data with different distances allows an important improvement.
From 12% speedup for s1244 to 45% for s319.

4.5.2 With QMCPACK

Same observations have been done with QMCPACK, the compiler disables all previous opti-
mizations when intrinsic prefetcher function is added at source level. As for NR, the function
has been added at binary level. Table 4.6 shows results on different loops of the application.
We can see that the behavior may differ from a loop to another one. Fetching a data allows
to obtain performance gains (loop 19042) as it can degrade (loop 19064). Sometimes it can

4.6. Impact of other common transformations 95

NR ORIG prefetch prefetch 64 prefetch 128 prefetch 256 prefetch 512 prefetch 1024
s319 172936 112116 112248 112268 112172 117300 111832
s1244 131296 103236 102684 105352 104128 106724 103644
matadd 341436 278708 278388 281464 278040 274956 274228

Table 4.5: NR - Number of cycle for the target loop. Prefetch 64, 128, 256, 512
and 1024 indicates the distance of the data to prefetch.

have both depending of the distance prefetched (loop 30871).

Loop id ORIG prefetch prefetch 64 prefetch 128 prefetch 256 prefetch 512 prefetch 1024
30954 5212 4892 5032 5012 5008 5040 5024
30944 1840 1220 1220 1220 1224 1220 1220
30871 490 500 456 484 500 492 488
19064 5672 5756 6188 5896 6816 6032 6348
19042 2726 1640 1520 1592 1648 1672 1628

Table 4.6: QMCPACK - Number of cycles for the target loop. Prefetch 64,
128, 256, 512 and 1024 indicates the distance of the data to prefetch.

For this transformation, the compiler remains our main limitation by refusing to apply
optimizations as soon as the loop contains a function call, even if it is an intrinsic function.
The second limitation is how to detect when to trigger this transformation. Prefetching data
improves performance when the cache line is not in L1 and have to be loaded for not waiting
when we need it. DECAN can inform us for these cases with the "REF" variant. This variant
adds a load before stores data and compares the number of cycles for both versions. A last
issue is for the distance to choose. Currently, we do not have metric to decide which distance
choose, we have to test them all to know which one is the most efficient.

4.6 Impact of other common transformations

4.6.1 With QMCPACK

QMCPACK is a good example of when compiler failed to optimize and what is remained to
do in term of transformations with ASSIST. With this example, we observe that the compiler
tends to refuse to vectorize some loops. It prefers optimizes according to a pattern that we

96 Chapter 4. Experiment

Orig FU DIV SIGNBIT SIMD
Total 143.18 138.74 127.22 129.8 127.76
ParticleBConds3DSoa.h 10.52 7.5 7.7 8.22 7.94
bspline_create.c 51.24 50.86 40.92 40.96 40.1
BsplineFunctor.h 1.4 1.32 1.46 2.5 1.4

Table 4.7: Time in second of multiple versions of QMCPACK. Files have been
used as identifier because they contain multiple loops that have been optimized
at the same time. Orig: Original version; FU: Full unroll version; DIV: FU +
Divison replaced by multiplications; SIGNBIT: DIV = use signbit function to
replace an if statement; SIMD: SIGNBIT + use of the directive "simd" above

signbit loop.

must recognize without using vector instructions. Due to the lack of C++ management of
Rose which considers template statements as string nodes we could not apply our optimiza-
tions with ASSIST. However, we tried to resolve manually the issues which where pointed to
by MAQAO. At first, we worked on two categories: 1) All of the loops with bad vectoriza-
tion ratio. 2) The loops with high flow complexity. Table 4.7 presents results obtained with
different optimizations. All optimizations have been applied iteratively. The first loop we
work on is an interesting case because it was a loop where inside there was an innermost loop
with 7 iterations. This innermost loop was flagged with a directive to perform full unroll. In
fact the compiler generated a very complex code with a lot of branching (more 128 paths,
making static analysis difficult). We simply hand unrolled the loop which gave an overall
decent performance gain around 2.5% execution of the whole application. This optimized
version is called "FU". The second loop is in "bspline_create.c". It has three divisions using
the same denominator. These divisions have been replaced by, one division of the inverse and
three multiplications of the results of the division. This version is called "FU_DIV". For the
"FU_DIV_SIGNBIT" verson, we use the "signbit" function to replace an if statement as
follows. The "signbit"4 function determines if the given floating point number in argument
is negative and returns 1 if it is else 0.

4std::signbit : https://en.cppreference.com/w/cpp/numeric/math/signbit

https://en.cppreference.com/w/cpp/numeric/math/signbit

4.7. Conclusion 97

1 #pragma vecto r always
2 f o r (i n t j a t = 0 ; j a t < iL imi t ; j a t++) {
3 real_type r = dis tArray [j a t] ;
4 i f (r < cuto f f_rad iu s)
5 distArrayCompressed [iCount++] = dis tArray [j a t] ;
6 }
7

(a) Before "signbit" transformation
1 #pragma simd
2 f o r (i n t j a t = 0 ; j a t < iL imi t ; j a t++)
3 {
4 real_type r = dis tArray [j a t] ;
5 i n t s i g nb i t = std : : s i g n b i t (r − cuto f f_rad iu s) ;
6 distArrayCompressed [iCount] = r ∗ s i g nb i t ;
7 iCount+=s i g nb i t ;
8 }
9

(b) After "signbit" transformation

By applying this transformation, there are most instructions executed at each iteration
but they can be vectorized. Therefore, the more the number of iterations, the more the code
will be efficient. However, even if the code can be vectorized with this new implementation;
the Intel compiler only vectorize the loop at 20%, even with the "#pragma vector always".
We had to add the "#pragma simd" directive instead to be more aggressive and force him
to vectorize this loop. The loop where the "signbit" transformation was applied has not
enough iterations in this dataset to be efficient, but when vectorized we do not degraded
performances. This last transformation is very complex to automate it, but it is interesting
to present this solution to improve vectorization when compiler cannot perform it.

4.7 Conclusion

In this chapter, we have shown the efficiency of our approach: how and when already well-
known transformations allow to gain on real-world HPC applications by using either static
and dynamic feedback data, or user’s guidance. No new techniques are developed, but
new combination of transformations have shown worthwhile and it remains non-exploited
promising analyzes and profiles. Moreover, our approach allows to remain portable across
compilers and architectures. This was done using a combination of different performance
analysis tools. A static analysis with CQA is used to give a first view of the quality of
the code in term of vectorization. Then, a dynamic analysis is done with a profiling of: the

98 Chapter 4. Experiment

hotspots with Lprof, the number of iterations of loops with Vprof and the root cause of certain
bottlenecks, such as data location, with DECAN. Better execution times are achieved on real-
life HPC applications, with a speedup of up to x2.6 at loop level and x1.24 at application level.
This study shows that the compiler, even with its PGO mode, cannot produce an optimal
code for all cases. We also show that profiling more information is useful to detect precisely
the bottleneck and thus apply the adequate transformation. However, our methodology has
limitations which are detailed in the next chapter.

99

Chapter 5

Issues & Limitations

Our approach involved several elements during the process and we saw in previous chapters
in what way each element is an asset to obtain performance gain. However, despite their
strength, each element has flaws and can be a possible source of error. In this chapter, we list
and discuss the different issues and limitations that may occur at each step of the process.
Each limitation is divided into two types, on the one side, the weak limitations and on the
other side, the strong limitations. Strong limitations represent all issues or limitations where
presenting no ways to overcome the limits. Weak limitations are the others.

Analysis step:
This is the first step of the process. During this step, profilers and analyzers are executed

to examine the program in all its aspects. All the MAQAO modules use debug information
added by the compiler to locate what they analyze. Debug information contain, among other
points, the start/end lines of each statement and the file and function where they are located.
However, even when we explicitly ask to the compiler to add them with the "-g" option (for
most of compiler), these are not necessarily very precise. For example, source lines depend
on several parameters: for a loop, the indicated start line may be either the line where a
variable used in the loop header was first seen, or most frequently, any of the one to three
lines around. This also applies to the end line. This limitation is a weak one, because even if
we cannot do anything to improve what the compiler returns, in general, we manage to find
most of the elements within the few lines around.

Another weak limitation concerns the number of analysis performed; we only execute
what is useful to trigger our transformations, but executing more profilers would allow to
trigger more transformations, even if the analysis phase could become longer. The main issue
is to find which transformation to associate to which profiler or metric. Even if the analysis
phase becomes longer, the user can choose not to execute this or that profiler. Some users
are ready to wait longer if it can add an additional speedup. This limitation is mainly due
to what we can obtain from our analysis.

100 Chapter 5. Issues & Limitations

Transformation step:
The first limitation during this step is the Rose compiler. Even if it is the best framework

to perform source-to-source transformations, as discussed in section 2.1.2, whether at input
or at output, the Rose Compiler has a lot of lacks and limitations. Some of them are listed in
the manual [71] or in the tutorial [110], but most have never been mentioned in the literature.
Due to its lacks, Rose represents our main limitation in terms of the number of applications
on which we can work and on the quality of produced outputs. As explained in section 2.1.2,
Rose uses two frontends; the first one is the EDG frontend, a black box in which it is impos-
sible to change anything. Moreover, we would have to pay a license to get a better version.
The second frontend is the Open Fortran Parser, this one is free and can be modified. We
have already proceeded to some changes. It is both a weak and strong limitation. Even if
it remains a lot of work to correctly manage all input languages, Fortran is the only one
for which we can handle its features and the missing elements. We cannot do anything to
improve the C/C++ frontend. Moreover, some C++ statements and keywords handled by
Rose are not fully managed. For example, the template statements such as functions, class,
etc. are just nodes only containing a string of the whole statement. Each sub-element of
these statements are not existing in the AST. Recently, researchers of the Lawrence Liver-
more National Laboratory (LLNL) started to work on the Rose git to improve how Fortran
is handled. However, it only concerns the frontend and the inputs management and it seems
unfinished yet. The rewriting system also needs to be improved. Keywords are missing,
some lists are written in a bad order, comments and directives are not set at the right place,
sometimes after the statement, instead of before. All this can change the whole program
behavior if we do not pay attention and let it be compiled, etc.

Performing source code transformation has advantages, but forces us to be compiler de-
pendent because it requires to re-compile source files after transformations. We are never
sure of what the compiler will do with our transformations, it can decide not to follow what
we have in mind and may decide to perform any other optimization instead. For example, we
cannot be sure that after specialization, the compiler will optimize as we planned. Figure 4.4
in section 4.3 perfectly illustrates this example. In that case, the function specialization was
less efficient than the loop specialization version. However, we would have thought that the
compiler would optimize both in the same way. Operating at source level forces us to orien-
tate the compiler as best as we can, we make our transformation as explicit as possible in the
hope that the compiler will not try to modify it by performing an unexpected optimization
afterwards. Most of the time, compilers act as we would expect and everything goes well, so
it is a weak limitation.

Another limitation linked to the compiler dependency concerns transformations using di-
rectives (i.e. Loop Count Transformation). This kind of transformations adds a directive

Chapter 5. Issues & Limitations 101

above a statement to guide the compiler behavior. However, these transformations are com-
piler specific; all compilers define their own directives and for non standard directives, each
compiler defines or names them differently. LCT is the perfect example, because the Intel
compiler is the only one to provide this directive, other compilers will just ignore the direc-
tive. This time, it is a strong limitation because, when we use this kind of transformation
the user is forced to use a specific compiler.

It can be hard to predict performance for some transformations. For example, to have
the best results by modifying prefetcher behavior, each combination of prefetchers must be
tested, that means executing sixteen times the whole program. This is a weak limitation
because we just have to execute the program sixteen times to know which version to use
at which moment of the program. It could be improved by testing the sixteen possibilities
during the first iterations of the loops and keeping the best one at the seventeenth iteration.
It requires a lot of specializations and we do not know yet if the performances would be
enough to cover the loss in branches. When the prefetcher intrinsic call is added in the code,
we saw that the compiler modify its own behavior and do not apply previous optimization
such as the loop unroll. Due to his unpredictable behavioral change, this transformation
must be applied at the binary level. This is a strong limitation because we cannot perform
it at source level.

About the specialization, we have a weak limitation; we currently apply the loop special-
ization above the loop, but when that loop is in a loop nest, it sometimes could be better to
apply the specialization at the top. This option is not as easy as it looks because in some
loop nests, the bound of the innermost loop can change according to previous statements in
the nest. Moreover, it is not always more efficient to apply the specialization upper in the
nest.

When analyzers and profilers detect at least two possible transformations, we currently
do not know which choice to make and how to advise the user without just giving him all
the collected information with the raw data from profilers and analyzers.

The situation becomes worse if we detect a case where our analyzer knows what to do
but it misses the right transformation. Currently, a whole API has been developed with
already implemented transformations but some common and complex transformations are
still missing. For example, one complex missing transformation is the array-of-structure to
structure-of-array and vice versa. CQA can propose this transformation as a hint to users
but we can not do anything right now with ASSIST. This is a strong limitation due to the
complex missing transformations.

On the contrary, we have several transformations without any metrics. Currently, the
unroll, full unroll, loop interchange, etc, are not associated to any metric to trigger them. It
is a weak limitation, it only requires to add the good metric with the right profiler/analyzer.

102 Chapter 5. Issues & Limitations

All our transformations are based on analysis of the program executing a unique dataset.
We cannot be sure that our transformations remain efficient for other datasets; it is a weak
limitation because, in a first time, we could execute the different datasets and couple all
information gathered to only perform the ones which have a positive impact for all the
datasets. A beginning of work has already been done on this subject but not tested enough
to present any results. We add the possibility to perform the LCT based on information
collected from different datasets. The Intel compiler authorizes to insert the same directive
multiple times above a same statement. The only advice is not to insert the same directive
twice, so duplicates are removed to avoid this case. We have noticed that if we add two loop
count directives above a loop, one with a small number of iterations and the other with a high
number of iterations, the compiler does not take care of any of the two directives and we fail
to guide the compiler. If a directive is already inserted, we can check if the new one is very
different, to adapt or replace the previous one. Because, if the loop of the other dataset has
a small coverage compared to the one we currently handle, it could be better to take care of
the most important. It is a weak limitation because most of the work has already been done
and it only requires times to finish and implement it correctly for the different cases as well
as test it on real-world applications. This feature could be adapted to all transformations
once we will have succeeded to gather and couple all information concerning all the metrics
from multiple reports.

A last limitation about transformations is that we cannot be sure that it will be efficient
before we execute it. We propose transformations, but we do not know their legality. As said
previously, compilers can perform optimizations that were not expected and even if the com-
piler does what we want, it is possible that the transformation degrades performances due
to unexpected side effect or just to a misprediction of the outcome. It is a strong limitation
because we cannot predict and control the whole process.

We chose a semi-automatic model because we estimated that the fully automatic one
was not a realistic model for real-world applications. However, it still has a default; on one
hand, we provide a framework that performs automatic transformation to avoid the users to
make errors when performing the changes manually; and on the other hand, we get the user
involved in the process. Letting the user interfere in the process can be a good idea. He knows
what happens in his code and if a transformation is legitimate or not. If not, he will want to
try all transformations, especially the vectorization, but this last one can be a double-edged
sword. When it is well placed, it can significantly increase performance gains, but if misused,
performance will be greatly degraded. Letting the user choose his transformations can be
tricky. In the end, it is a weak limitation because it is up to the user to be parsimonious in
his choices of transformation.

5.1. Conclusion 103

Verification step:
Our last step of the process is the assessing transformation verification. It remains a

prototype and remains the most unstable part of ASSIST. Limitations have already been
listed in section 2.4, we just make a quick reminder. The main limitation of this verification
system is to compare loops before and after transformations. Some transformations can make
a loop disappear, the full unroll transformation for example, or can duplicate the loop, the
SVT or specialization. It becomes then hard to completely compare different elements.

Our second limitation is that we stop at this point. The user have to be questioned
whether he considers the transformed version as better than the previous one. We decided
to involve the user at each step of the process. That makes our method stronger and safer
in performance gains. It also slows down the process.

5.1 Conclusion

In conclusion, our approach allows to obtain good performance results, but involved several
elements during the process. From the accuracy of the analysis to the verification of the
impact of our transformations; each step has limitations of which we are dependent and
which can be a source of error. Most of them have a weak impact and can be improved, but
some are strongest such as the lacks of the Rose compiler frontend on which we are based.

105

Chapter 6

Conclusion

In this last chapter, we conclude this dissertation by first, listing the contributions of this
thesis and then, discussing the different research perspectives and future works.

6.1 Contributions

This thesis presents an approach allowing to apply code transformations at source level
being guided by both static and dynamic profiler analysis tools. This approach has been
implemented through the ASSIST framework. ASSIST is a new open source semi-automatic
source-to-source manipulation with code transformations based on static and dynamic feed-
back and on users knowledge. It aims at providing assistance with respect to productivity
and performance efficiency.

• Our first contribution is a novel study of how and when, well known transformations al-
low to gain performance on real-world HPC applications. We have shown that by using
well-known and standard transformations coupled with tools metrics and user’s knowl-
edge, it is possible to obtain good performance gain. Our novel FDO source-to-source
approach, includes transformations from loop unrolling to loop/function specialization
and short vectorization transformation. It is a technique that efficiently helps the com-
piler to fully exploit vectorization on loops, especially those with a low trip count.

• It is a novel semi-automatic and user controllable method with a system open to user
advices. At different steps of the process, ASSIST can let the user apply his expertise to
guide transformations by choosing between different optimizations according to profilers
results; if the user finds that all proposed optimizations will not be efficient, he also may
refuse to perform them. This system allows all kind of users to use ASSIST. From the
non expert developer who can let ASSIST be guided by profiler and analyzer metrics,
to the expert who can add his knowledge to guide ASSIST.

106 Chapter 6. Conclusion

• This FDO tool can use both dynamic and static analysis information to guide code
optimization while other existing tools only use static or dynamic feedback and never
let users intervene in the optimization process.

• It offers a verification system using a static analyzer to check that proposed the trans-
formations do not have a negative impact on performances by comparing two executions
of the program, before and after transformations.

• Our last contribution is a more flexible alternative to the compilers PGO / FDO modes.
Existing compilers PGO modes search through a limited space and only perform dy-
namic analysis. Our method explores a larger search space in term of performance
analysis and can be more expensive due to the large amount of gathered performance
metrics but it is more efficient. Last but not least we show that our approach can be
combined to PGO.

6.2 Perspectives

In this section we discuss the possible perspectives and future works.
One of our first limitations is from Rose. Even if it is the best framework to perform

source-to-source transformations, there is a lack at the frontend level that needs to be im-
proved to be able to manage more codes and in particular C++ codes.

A first extension will be to increase the accuracy of analyzers by sharing source code
information to other MAQAO modules. We previously saw that compiler debug information
can be more or less accurate and depends of a lot of parameters. To be able to return source
information to other MAQAO modules could help them improving comprehension of the
code, to better understand what really happens and what the compiler has done and thus
to return a better analysis. We first think of CQA which can return more accurate hints on
how to overcome bottlenecks.

Several transformations can be implemented as extensions. Some of them have already
been a base for future features. For example, the transformation of prefetcher behavior
modification is already implemented but not sufficiently tested, and especially on real-world
applications. We show that modifying prefetchers behavior can have an impact at fine grain
(function level) depending on what is done at this level. It requires more research about how
to detect a case which needs specific prefetcher behavior and how to chose the right prefetcher
behavior without testing them all. It would take a long time to categorize functions and loops
to know when and which prefetcher to apply. Ideas expressed in [104] and [93] could be
starting points for that work but it should be applied at least at function level. As we saw in

6.2. Perspectives 107

section 4.4, choosing the right combination of prefetchers allows to keep performances closed
to the best configuration but it could also reduce energy consumption.

Another already implemented transformation, which can be used as a base is the special-
ization transformation. This transformation has many possibilities of evolution. Currently,
it only concerns integers, but it could be interesting to extend it to floats, while paying at-
tention to float precision when making comparisons. In scientific computation, a number of
constants are floats with only a few digits. Specialization could allow to help the compiler on
these parts of the code. Moreover, our dead code elimination could be improved by removing
more parts of the code. For example, when we specialize, we only remove the code in the
specialized function or loop and do not change the original statements. However, we could
look at these paths that are ignored in the original version, because they can only be taken
in the specialized version. Thus we could simplify the control flow in both versions. Another
possibility is, when a function is specialized, to replace all the calls to the original function
by the specialized one when we are in the right case. Concerning the control flow, it could
be interesting to have a dynamic profiler to detect which paths are always taken in the code,
especially on a complex control flow that compilers have difficulties to manage. Thereby, we
could create specialized versions to simplify each of them and help compilers do a better job.
Another use case of specialization is to improve energy consumption. We could orientate this
transformation with the aim of reducing the energy consumption. A first part of this idea has
been developed in [26]. A last possible idea for an extension of specialization, is to perform
pattern matching. In scientific codes we often find same pattern, especially with simulation
codes for scientific purpose. Knowing that, we have shown that our transformations work on
that kind of code, we could study what transformation always gains performance on what
kind of pattern and why in some cases it never succeeds. Then we could apply pattern
matching to trigger transformation without profiler and analyzer.

We saw in the previous chapter 5 that some transformations are hard to implement like
the array-of-structures to structure-of-array and vice versa, or more simply by reversing two
or more array dimensions. Depending of programming language, array dimensions are read
differently. For example, in C, a two dimensions array (i.e. array[i][j]) is read line by column;
in Fortran it is the opposite. By reversing array dimensions, it could help the compiler to
better vectorize these multiple dimensions arrays.

Another transformation of code structure could be for Fortran code. In Fortran it is
possible to work an array, or a sub part of an array with the following writing: a(:) = b(:)+ 1.
This means that each element of b is affected to a +1. The compiler does not consider that
as a loop but transforms it into a loop at binary level. This false loop prevents to apply any
transformation. Even the compiler forbids directives above this kind of statement because it
is not considered as loop.

Memory alignment is also an issue which can be improved [49]. Several researches and

108 Chapter 6. Conclusion

works have been done on how to detect and improve memory alignment [61, 87]. Data
alignment can make a big difference in performance. It allows the processor to efficiently
fetch data from the memory. To improve data alignment, we could work on data structure
and padding. Usually compilers align data structures allowing to read an object using 4
bytes. Therefore, memory addresses have to be divisible by 4. Moreover, in most of HPC
languages, the address of a structure is the same as the address of its first member. By miss-
positioning declarations in a structure, we can easily waste a lot of space 1. In a same way,
pad arrays allows to align data on 4-bytes and thus allow to use large and efficient chunks for
the entire array. The "memcpy" implementations in gcc is a good example. During the copy
of a structure of 0x43 bytes, we may find an implementation that copies one byte leaving
0x42 bytes. Then it copies 0x40 bytes using large efficient chunks. Finally, the last 0x2-bytes
are handled as two individual bytes or as a 16 bit transfer. "Alignment and target come into
play if source and destination addresses are on the same alignment say 0x1003 and 0x2003,
then we could do the one byte, then 0x40 in big chunks then 0x2, but if one is 0x1002 and
the other 0x1003, then it gets really slow." 2

All transformations available in ASSIST are only sequential transformations. We can more
orientate our transformation through the parallelization by inserting OpenMP or OpenCl
directives or by transforming C/C++ codes into Cuda codes like CAPS with HMPP [31] for
example. Another way to orient our transformation through parallelism is to transform loops
using the polyhedral system to be more efficient once executed in parallel. Numerous works
have already been done on the subject but polyhedral and automatic parallelization remains
a hard problematic that is still being studied.

Before implementing the previous complex transformations, it could be useful to have
currently missing common transformations such as: 1) Loop splitting, which splits a loop
into multiple parts; the main problem with this transformation is that it is not always trivial
to know where to split a loop. 2) Padding, with arrays and then on loop working on that
array; it will allow the compiler to improve vectorization by using aligned vectors for example.
3) Loop fusion, which gathers two loops or more; the main difficulty is to find at least two
loops with same bounds which can be gathered. The second difficulty is that this case can
not be detected with the currently used analyzer. The analysis has to be done at source
level. These are some examples but a few more exist in the literature which have already
been discussed.

Currently, most transformations have been thought to fix issues from a unique dataset.
However, it could be interesting to gather information from several datasets and compare
all information to apply a transformation that could be a little bit less efficient on one

1http://www.catb.org/esr/structure-packing/#_structure_alignment_and_padding
2https://softwareengineering.stackexchange.com/questions/328775/how-important-is-memory-

alignment-does-it-still-matter

6.2. Perspectives 109

dataset but more efficient on more use cases. This could be more interesting than another
transformation that could be very efficient on one use case but degrading performance for
others. A beginning of these works have already been done for LCT. ASSIST can use several
Oneview files and will apply the LCT without duplicating on all loops. The compiler allows
multiple directives above a loop but it is only advisable not to put twice the same. The main
problem is that the LCT is only efficient if directive bounds are not scattered, or if they are
two not too different directives. For example, it will not help the compiler to indicate that
the loop only performs three iterations for a dataset but thousands for another one. It will
not optimize as it should be and can even be counter productive.

All profiler metrics are associated with one transformation. VPROF trip count is asso-
ciated with LCT, DECAN DL1 to tiling, etc. However, we could go one step further by
increasing the number of elements and by coupling them to increase the accuracy of analysis
and propose a more adapted transformation and not wait for an iterative step to perform
multiple transformations. For example, we could couple VPROF trip count and CQA vec-
torization efficiency to perform the short vectorization transformation in one step.

In addition to couple information, we should start by associating more metrics to trig-
gered transformations. MAQAO has multiple non used modules and metrics. Increasing the
number of analysis which can trigger transformation allowing to go further with finer grain
analysis to more precisely guide transformation and thus be sure that what is produced is
more efficient. For example, there is a tool in MAQAO that allows to simulate the processor
and the memory of different architectures. We could use it to know if unrolling or tiling
a loop could be efficient. Another example should be to use UFS, a module comparable
to CQA but more accurate, to guide our transformation and help to check before and af-
ter that we do not degrade performances. Obviously all these profilers and analyzers have
a cost but the user remains the only decision maker to trigger what kind of analysis he wants.

A last possible extension should be to offer to the users an iterative compilation where
ASSIST would use the transformation verification system developed in section 2.4 to know
if the next step is correct or if it requires to change transformations to be applied. The
user must keep a way to intervene during the process but he will not have to recompile new
source files. Also if ASSIST detects that transformations degrade performances, it will test
the other transformations before returning the version to the user. Most parts of the work
have been done with the verification system but it stops after one iteration and returns the
report to the user without any analysis by ASSIST. Currently, the user has to cancel a branch
of transformations detected as non performant and test other transformations.

111

Appendix A

Appendix: ASSIST

A.1 ASSIST Help

As seen in the previous section our tool can get multiple options. In this section, we will
describe all available options in ASSIST, they can also be found in the help section of the
module.

-src=<path/to/file>[,<file2>,...] The input source file(s) to transform; if they are multiple
files, they must be separated by a coma.

-oneview=<path/to/oneview/file> A Lua file generated by ONEVIEW for ASSIST.

-I=<path/to/includes>[,<other/path>,...] Add all directories to be included,
multiple directories must be separated by a coma,
no space. This option is recursive and include all
sub-directories.

-E=<path/to/exclude/files>[,<other/path>,...]Write all files to be excluded want to
analyze and transform; separate them by a
coma, no space.

-generate-descriptor Generate a transformation script template.

-config=<path/to/file> To use the transformation script.

-replace=[<new name>] The new output name and location. If not filled,
the file will be moved at the current location

112 Appendix A. Appendix: ASSIST

with the same name as the input file.

-generateAllRMOD=<path/to/dir> Extract all modules of Fortran files in a directory and
sub directories and create rmod files which represent
the header of each module (if exists) under the name:
<module_name>.rmod

-removeAllRMOD=<path/to/dir> Remove all rmod files in a directory and sub directories.

-f2008 Comment all Fortran2008 features framed between
#ifdef F2008 ... #endif macro in the code. Used to
handle fortran codes where f08 featutres have not to
be modified.

-handle_macro For a better management of C/C++ macro. Rose can
forget to restore all macro. This option add a pass to
check after transformations that all macro are well restored.

-option=<options> Available options are:
"apply-directives" Search all MAQAO directives in files and apply

corresponding transformation.
"vprofcalltrans" Add a call to the vprof lib at the beginning of each

function on all integer parameter. Use for
auto-specialization.

"generatePDF" Generate a PDF file with all AST nodes with the
ROSE representation.

"generateDOT" Generate a .dot file which can be transformed into a
graph with Graviz.

Metrics Comparator
–create-auto-config Create a configuration file template named auto-config.lua,

used for the semi-auto feature.

–semi-auto=<path/to/configfile> [<options>] Execute the semi-automatic feature using
a specific configuration file. Additional options can
be added :

–max-loop=<number> The nth first hottest loops to compare
–output=<path/to/file> Comparative table is written in a file instead of printed on the

A.2. ASSIST Comparator Configuration file 113

standard output
–xp-dir=<path/to/xpdir> Move or rename the experiment directory. By default the

name is : "maqao_s2s_ov_results_<root_dir_name>"
–let-tags Do not remove labels in source code after the analyze.
–options="apply-directives" Apply only directives in source code instead of use

MAQAO metrics.

–clean-auto=<path/to/dir_Vx> Clean all created intermediate sources directories.
–clean-after[=<N>] Clean all versions of source code above N.

By default, only the last version is cleaned.
–ov-compare –ovdir1=<ov1> –ovdir2=<ov2> [options] Compare two OneView directories.

Available options are :
–max-loop=<number> Set the maximum of loop compared.
–loop-time-min=<number> Set the minimum coverage of loop to compare in percent.

By default, set at 1.5%.
–output=<path_to_file> The comparative table is written in a file instead of the

standard output.

A.2 ASSIST Comparator Configuration file

The configuration file is used to indicate what to automatically modify and where are in-
formation needed. To create a template the following command can be used : $maqao s2s
–create-auto-config. A configuration template is then create named "auto-config.lua" by
default. Each field has a description inside the configuration file.

• Makefile : The path to the Makefile

• Makefile_options : If the Makefile requires specific options.

• src : path to source files root.

• loop_time_min : Set the minimum coverage of loop to compare in percent. By default,
set at 1.5%.

• Bin_oneview_path : If the user want to use a different maqao binary.

• report : Indicate the level of report that ONEVIEW have to use. By default it have
three level named : "one", "two" or "three", but personalized report can be added. If
the field is not filled, the report "two" is taken.

114 Appendix A. Appendix: ASSIST

• Oneview_config_file : The path to ONEVIEW configuration file containing experi-
ment parameters. The OneView file can be generated using the following command :
"$maqao oneview –create-config".

A.3 Metrics Used for the Comparator

the ONEVIEW global metrics :

• the total time of the program execution in seconds;

• the flow complexity with the average number of paths in the loops;

• the array access efficiency;

• the speedup "if clean", if all instructions performing addresses computations and scalar
integer computations have been deleted;

• the number of loops to optimize to get 80% of the speedup;

• the speedup "if floating points are vectorized", an optimistic speedup if all floating
point instructions are vectorized;

• the number of loops needed to get 80% if floating points are vectorized;

• the speedup "if fully vectorized", an optimistic speedup if all instructions are vectorized;

• the number of loops needed to get 80% if fully vectorized;

• the speedup "if data are in the L1 Cache", an optimistic speedup if all instructions fits
in the L1 cache;

• the number of loops needed to get 80% if data are in the L1 Cache;

• compilation options used.

CQA compared metrics are :

• Bottlenecks : Table of detected bottlenecks.

• Unroll confidence level : Confidence level about unroll information.

A.4. Installation Requirements 115

• Cycles L1 "if clean" : Loop throughput (number of cycles per iteration) if all data are
in L1 and scalar integer instructions removed.

• Cycles L1 "if fully vectorized" : Loop throughput (number of cycles per iteration) if
all data are in L1 and fully vectorized.

• "Vector-efficiency ratio all" : Vector efficiency ratio (average proportion of used vector
length) of instructions processing FP or integer elements.

• "Vectorization ratio all" : Vectorization ratio (proportion of vectorizable instructions
that was vectorized) of instructions processing FP or integer elements.

• "FP op per cycle L1" : FLOPs per cycle if all data are in L1.

• "Speedup if clean" : speedup of instructions if clean (Cycles L1 / Cycles L1 if clean).

• "Speedup if fully vectorized" : speedup of instructions if fully vectorized (Cycles L1 /
Cycles L1 if fully vectorized).

A.4 Installation Requirements

Before to use ASSIST, some requirements are needed. The list below shows the required
packages and libraries.

• Openjdk-6-jdk: version 6 or higher (not tested with older versions). Then you have to
add the path to the libjvm.so in your LD_LIBRARY_PATH.

• ROSE libraries, available at git.maqao.org:S2S/LIBS.git

• Boost Libraries, available at git.maqao.org:S2S/LIBS.git

ASSIST can be downloaded from the git, as well as the required libraries and a pre-compiled
binary :

• binary (containing MAQAO, ASSIST and all libraries) :
git clone git@git.maqao.org:S2S/RELEASE.git .

• Sources : git clone git@git.maqao.org:S2S/S2S.git .

• Libraries required : git clone git@git.maqao.org:S2S/LIBS.git

116 Appendix A. Appendix: ASSIST

A.5 How to Use ASSIST

This section presents how to use ASSIST, by giving examples and a description of different
existing commands; all the commands can be found ins appendix A.1.

A.5.1 With an Annotated Source File
One common way to use ASSIST is to provide a (or multiple) source file(s) annotated by the
user with specific directives to guide ASSIST in its transformations. In this case the user
assumes transformations that will be performed (if possible). The following command will
look for directives in the source file(s) and apply corresponding transformations.

maqao s2s -option=”apply-directives” -src=<path/to/file>[,<path/to/file2>,...]

In this case, the user wants to apply all transformations according to custom directives
contained in a source file. If the file to analyze requires files to be included, the option “-I”
takes a list of paths separated by a coma as followed. This option is recursive and also in-
cludes all sub-folders.

maqao s2s -option=”apply-directives” -src=<path to file> -I=<path to includes>

A.5.2 With Profilers Results

If a user does not know what to do to optimize his code he can use metrics and analysis pro-
vided by MAQAO performance evaluation tools. These tools include VPROF, a value profiler,
CQA, a code quality analyzer, DECAN, a binary modificator and comparator. These tools
are managed by ONEVIEW, another MAQAO module which can execute MAQAO modules
automatically and can generate a file with all metrics specifically arranged for ASSIST. If in
the list of files one cannot be parsed, it can be excluded by using the “-E” option and not
block the process.

maqao s2s -oneview=<assist.lua> -E=<filetoexclude>

A.5.3 Transformation Script
The transformation script is a Lua file with all information about loops and function that
have to be modified. It allows not to add directives in the source code but still guides to

A.6. Transformation Script 117

apply transformations. A template of this file can be generated as follows:

maqao s2s -generate-descriptor

To fill this file, you should look first the documentation about it. After completing all
fields, you can run the following command to apply transformations:

maqao s2s -config=<path to the descriptor file>

The transformation Script will be developed in a following section.

A.6 Transformation Script

ASSIST can take as input a file which contains all information to transform a specific file;
the next example is a generated template and it is composed as follow:

File=”<path/to/the/src/file>”
Arch= {
All = {
Loops = {
{line = <line>, transformation = {“<trans>”}},
{line = <line>, transformation = {“<othertrans>”}},
{label = ”<label>”, transformation = {“<trans>”}}

}
Functions = {
{line = <line>, transformation={“<trans1>”,”<trans2>”,...}},
...

}
}
x86 = {
...

}
}

118 Appendix A. Appendix: ASSIST

The script starts by the field File which is the path to the file or at least the path from
where you execute ASSIST to the file. The field "Arch" contains all architecture you want
to handle. The user can name all "arch" field with the name he wants, he just has to call
with the option -arch=<archName> to apply the transformation contained in the field of his
defined "arch". By default, transformation contained in "All" will be apply.

In all architectures we can find two fields: “Loops” and “Functions”, which respectively
represent all loops and functions in the file. They are defined by their first line or a label
above the statement, and transformations to apply on it. The label must be defined as a
directive (!DIR$ or #pragma according to the language used) and looks like: !DIR$ MAQAO
<label>; <label> must exactly correspond to the label in the configuration file, no sub-string
or regular expression are allowed. If they are multiple transformations to apply, they must be
separated by a coma. Transformations will be applied in the order, from last to first. <trans>
represents the transformation to apply, available values are the same as for directives.

A.7 ASSIST API

ASSIST has been developed as a wrapper of Rose with a complete API to manipulate ob-
jects like loops and functions. This API is flexible; it contains all transformations already
implemented and allows to add new ones to existing structures, while leaving the possibility
of using the Rose API.

A.8 Example of OneView Report Generated for ASSIST

Figure A.1 presents an example of file generated by Oneview for ASSIST. It contains raw
data from the others MAQAO modules about the execution of the program. This example
comes from POLARIS.

OneView is global module of MAQAO. It is used to execute and gather data and metrics
from all MAQAO modules previously presented. A report can be generated for ASSIST
to give all information gathered by different modules executed for a specific binary. Figure
A.1 presents an example of this report. This report contains two main tables; the first one:
"oneview_global_metrics" contains information on the whole application with a global view:
the execution time of the dataset, options used to compile the program and other metrics
from CQA. The second table: "oneview_report" contains, for each entry, information and
metrics by loop. On one side, locations information, with the source file and first/last lines

A.9. Caveats & Limitations 119

of the loop; and on the other side, metrics from performance analysis tools, with the min-
imum, maximum and average number of iterations, the vectorization ratio, and minimum,
maximum and average ratio of the original version of the loop compared to its equivalence if
data fits in L1 cache.

By using these metrics for each loop we can determine which transformation is most likely
to bring performance gain and if a doubt persists or if several choices seem to us legitimate, we
ask the user if our choice seems correct to him or if he wants to make another transformation
or even none.

A.9 Caveats & Limitations

Even if we improved some of ROSE limitations, Rose still being a research project and
ASSIST being a prototype, there is still room for improvements.

A.9.1 Preprocessor

First, we will talk about preprocessors directives. We must differentiate two cases: the first
one is for preprocessor statement in Fortran; they will not be taken in charge. The Fortran
frontend in Rose is a not well-tested frontend and it is not intended to taken into account
type C directives. In this case, the file has to be preprocessed before transformation. The
second case is for C/C++; Rose was designed as a compiler so it needs to know if the body of
a “#ifdef” statement will be used (or not). If we analyze the body of the “#ifdef” statement
we will not analyze the “#else” part (and vice versa). We worked to restore all the elements
of each part of the directive in the output file, but the user will be able to modify only one
part at a time.

A.9.2 Languages
The Rose frontend is the OpenFortranParser, a Java parser for Fortran. We modified many
things in Rose to better handle Fortran statements, but we did not add the management
of all keywords and new statements available in Fortran2008 due to the amount of work
that would be involved. The file to transform has to be included between Fortran77 and
Fortran2003. We have the same kind of problem in C++, Rose handle C++ up to C++03.

120 Appendix A. Appendix: ASSIST

oneview_global_metrics = {
total_time_s = 74,
compilation_options = "binary: -Xhost or -xCORE-<> is missing.",
flow_complexity = 1.01,
array_efficieny = 64.05,
speedup_if_clean = 1.00,
nb_loop_80_if_clean = 1,
speedup_if_fp_vect = 1.02,
nb_loop_80_if_fp_vect = 1,
speedup_if_fully_vect = 1.22,
nb_loop_80_if_fully_vect = 10,

}

oneview_report = {
{
loop_id = 6916,
lineStart = 16,
lineStop = 18,
file = "mom7.f90",
ite_min = 60, ite_max = 60, ite_avg = 60,
vecRatio = 12.5,
dl1_ratio_min = 1.2, dl1_ratio_max = 1.8, dl1_ratio_avg = 1.6,

},
{
loop_id = 6147,
lineStart = 867,
lineStop = 871,
file = "fmm-dipole.f90",
ite_min = 15, ite_max = 15, ite_avg = 15,
vecRatio = 50,
dl1_ratio_min = 0.4, dl1_ratio_max = 2.2, dl1_ratio_avg = 0.8,

},
. . .

}

Figure A.1: Example from POLARIS of Oneview internal report for ASSIST,
with on one side global metrics and on the other, the "oneview_report" with

all metrics by loops

121

Appendix B

Appendix: Codes

B.1 Prefetcher

The following code is used to modify the Model Specific Register (MSR) behavior. By calling
the function "prefetch" with an hexadecimal number between 0 and f the function modify
the corresponding register to the right value. It requires to be in sudo mode to modify the
register.

#include <errno.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <getopt.h>
#include <inttypes.h>
#include <sys/types.h>
#include <dirent.h>
#include <ctype.h>

/* filter out ".", "..", "microcode" in /dev/cpu */
int dir_filter(const struct dirent *dirp) {

if (isdigit(dirp->d_name[0])) {
return 1;

} else {
return 0;

}
}

122 Appendix B. Appendix: Codes

void wrmsr_on_cpu (uint32_t reg, int cpu, int valcnt, char *regvals[]) {
uint64_t data;
int fd;
char msr_file_name[64];

sprintf(msr_file_name, "/dev/cpu/%d/msr", cpu);
fd = open(msr_file_name, O_WRONLY);
if (fd < 0) {

if (errno == ENXIO) {
fprintf(stderr, "wrmsr: No CPU %d\n", cpu);
exit(2);

} else if (errno == EIO) {
fprintf(stderr, "wrmsr: CPU %d doesn’t support MSRs\n", cpu);
exit(3);

} else {
printf("error wrmsr: open");
perror("wrmsr: open");
exit(127);

}
}
while (valcnt--) {

data = strtoull(*regvals++, NULL, 0);
if (pwrite(fd, &data, sizeof data, reg) != sizeof data) {

if (errno == EIO) {
fprintf(stderr,

"wrmsr: CPU %d cannot set MSR "
"0x%08"PRIx32" to 0x%016"PRIx64"\n",
cpu, reg, data);

exit(4);
} else {

perror("wrmsr: pwrite");
exit(127);

}
}

}
close(fd);
return;

}

B.2. Intel Optimization Directives/Pragmas 123

void wrmsr_on_all_cpus(uint32_t reg, int valcnt, char *regvals[]) {
struct dirent **namelist;
int dir_entries;

dir_entries = scandir("/dev/cpu", &namelist, dir_filter, 0);
while (dir_entries--) {

wrmsr_on_cpu(reg, atoi(namelist[dir_entries]->d_name),
valcnt, regvals);

free(namelist[dir_entries]);
}
free(namelist);

}

void prefetch_(char *s) {
wrmsr_on_all_cpus(420, 1, &s);

}

B.2 Intel Optimization Directives/Pragmas

The Intel compiler provides a wide range of directives and pragmas , especially to give hints
to the compiler and drive its optimization choices. Table B.1 presents some of these available
directives and pragmas with the Intel Compiler. Currently, only the "loop count" is handled
by ASSIST but we could add others if we find how to trigger them.

124 Appendix B. Appendix: Codes

Directive \ Pragma Definition

ASSUME Provides heuristic information to the compiler optimizer.

BLOCK_LOOP & Enables or disables loop blocking for the immediately following

NOBLOCK_LOOP nested DO loops.

Enables (or disables) the compiler to allow generation of fused

FMA & NOFMA multiply-add (FMA) instructions, also known as floating-point

contractions.

INLINE, FORCEINLINE, Tells the compiler to perform the specified inlining

NOINLINE on routines within statements or DO loops.

IVDEP Assists the compiler’s dependence analysis of iterative DO loops.

LOOP COUNT Specifies the typical trip count for a DO loop; this assists the optimizer.

NOFUSION Prevents a loop from fusing with adjacent loops.

OPTIMIZE & NOOPTIMIZE Enables or disables optimizations for the program unit.

PREFETCH & Enables or disables hint to the compiler

NOPREFETCH to prefetch data from memory.

SIMD Requires and controls SIMD vectorization of loops.

UNROLL Tells the compiler’s optimizer how many times to unroll

& NOUNROLL a DO loop or disables the unrolling of a DO loop.

UNROLL_AND_JAM Enables or disables loop unrolling and jamming.

& NOUNROLL_AND_JAM

VECTOR & NOVECTOR Overrides default heuristics for vectorization of DO loops.

Table B.1: Non-exhaustive list of optimization direc-
tives and pragmas available with the Intel Compiler.
Sources : https://software.intel.com/en-us/node/524560#
EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE, https://software.intel.com/
en-us/fortran-compiler-developer-guide-and-reference-compiler-directives

https://software.intel.com/en-us/node/524560#EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE
https://software.intel.com/en-us/node/524560#EE255A8D-F0AC-4022-A6C0-DA92E6BFC8CE
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-compiler-directives
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-compiler-directives

125

Appendix C

Appendix: Additional results

C.1 Prefetchers

The section 3.2 in Chapter 3 presents how transformations are triggered. This section presents
experimental results obtained on Yales2 with the test case 3D_Cylinder. The figure C.2 is an
array of speedups of the thirteen hottest functions for each prefetcher behavior compared to
the version where all prefetchers are disabled. Figure 4.15 presents these data. Green boxes
represent positives speedups, greys represent equivalent speedup and red ones represent the
negatives ones.

126 Appendix C. Appendix: Additional results

Figure C.1: Oneview view of functions managed.

C.1. Prefetchers 127

Figure C.2: Speedup by function for each prefetcher behavior.

129

Bibliography

[1] J. K. Hollingsworth A. Tiwari. “End-to-end Auto-tuning with Active Harmony”. In:
Performance Tuning of Scientific Applications. Chapman and Hall/CRC Computa-
tional Science Series, 2010.

[2] ABINIT. https://www.abinit.org/.

[3] L. Adhianto et al. “HPCTOOLKIT: tools for performance analysis of optimized par-
allel programs”. In: vol. 22. 6, pp. 685–701. doi: 10.1002/cpe.1553. eprint: https:
/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / cpe . 1553. url: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1553.

[4] Advisor. https://software.intel.com/en-us/intel-advisor-xe.

[5] Kim et al. “Multi-level tiling M for the price of one”. In: ACM/IEEE conference on
Supercomputing. ACM, 2007, p. 51.

[6] Mehdi AMINI. “Source-to-Source Automatic Program Transformations for GPU-like
Hardware Accelerators”. In: PhD Thesis. Paris, France, 2012.

[7] AnandTech. https://www.anandtech.com/.

[8] L. Andersien. “Program Analysis and Specialization for the C Programming Lan-
guage”. In: Ph.D thesis. University of Copenhagen: DIKU, 1994.

[9] APS. https://www.alcf.anl.gov/files/velesko_vtune_may.pdf.

[10] ATLAS. http://math-atlas.sourceforge.net/.

[11] AVBP. http://www.cerfacs.fr/avbp7x/.

[12] D. Barthou et al. “Performance Tuning of x86 OpenMP Codes with MAQAO”. In:
Parallel Tools Workshop. Desden, Germany, 2009, pp. 95–113.

[13] Cedric Bastoul. “Code generation in the polyhedral model is easier than you think”.
In: International Conference on Parallel Architectures and Compilation Techniques.
IEEE Computer Society, 2004, pp. 7–16.

http://dx.doi.org/10.1002/cpe.1553
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1553
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1553
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1553
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1553

130 BIBLIOGRAPHY

[14] Z. Bendifallah et al. “PAMDA: Performance Assessment Using MAQAO Toolset and
Differential Analysis”. In: Tools for High Performance Computing 2013: Proceedings
of the 7th International Workshop on Parallel Tools for High Performance Computing.
Springer International Publishing, 2014, pp. 107–127.

[15] Zakaria Bendifallah. “Generalization of the decremental performance analysis to dif-
ferential analysis”. Theses. Université de Versailles-Saint Quentin en Yvelines, Sept.
2015. url: https://tel.archives-ouvertes.fr/tel-01293039.

[16] A. D. Biagios. [llvm-dev] [RFC] llvm-mca: a static performance analysis tool. url:
{https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html}.

[17] J. Bilmes et al. “Optimizing matrix multiply using PHiPAC: a portable, high-performance,
ANSI C coding methodology”. In: ACM International Conference on Supercomputing.
ACm, 2014, pp. 253–260.

[18] U. Bondhugula et al. “A practical automatic polyhedral parallelizer and locality opti-
mizer”. In: ACM SIGPLAN Notices. ACM, 2008, pp. 101–113.

[19] J. Brant and D. Roberts. “The SmaCC Transformation Engine”. In: OOPSLA ’09.
Orlando, Florda, USA, 2009.

[20] Martin Burtscher et al. “PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications”. In: Nov. 2010, pp. 1–11. doi: 10.1109/SC.2010.41.

[21] callgrind. http://kcachegrind.github.io/html/Home.html.

[22] A. S. Charif-Rubial et al. “MIL: A language to build program analysis tools through
static binary instrumentation”. In: 20th Annual International Conference on High
Performance Computing. 2013, pp. 206–215.

[23] A.S. Charif-Rubial et al. “CQA: A code quality analyzer tool at binary level”. In:
HiPC. IEEE Computer Society, 2014, pp. 1–10.

[24] C. Chen, J. Chame, and M. Hall. “CHiLL: A Framework for Composing High-Level
Loop Transformations”. In: 2008.

[25] D. Chen, X. David Li, and T. Moseley. “AutoFDO: Automatic Feedback-directed
Optimization for Warehouse-scale Applications”. In: Proceedings of the 2016 Interna-
tional Symposium on Code Generation and Optimization. CGO ’16. New York, NY,
USA: ACM, 2016. isbn: 978-1-4503-3778-6.

[26] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. “Automatic Source Code
Specialization for Energy Reduction”. In: Proceedings of the 2001 International Sym-
posium on Low Power Electronics and Design. ISLPED ’01. Huntington Beach, Cali-
fornia, USA: ACM, 2001, pp. 80–83. isbn: 1-58113-371-5.

https://tel.archives-ouvertes.fr/tel-01293039
{https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html}
http://dx.doi.org/10.1109/SC.2010.41

BIBLIOGRAPHY 131

[27] James R. Cordy. “Source Transformation, Analysis and Generation in TXL”. In:
Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based ProgramManipulation. PEPM ’06. New York, NY, USA: ACM, 2006,
pp. 1–11.

[28] Coria. http://www.coria-cfd.fr/index.php/YALES2.

[29] cube. http://www.scalasca.org/software/cube-3.x/.

[30] Dave and al. “Cetus: A source-to-source compiler infrastructure for Multicores”. In:
Computer. 2009, pp. 36–42.

[31] R. Dolbeau, S. Bihan, and F. Bodin. “HMPP: A hybrid multi-core parallel program-
ming environment”. In: Workshop on general purpose processing on graphics process-
ing units (GPGPU 2007). Vol. 28. 2007.

[32] S. Donadio and al. “A Language for the Compact Representation of Multiple Pro-
gram Versions”. In: International Workshop on Languages and Compilers for Parallel
Computing. springer, 2005, 136–151.

[33] J. J. Dongarra et al. “a set of level 3 basic linear algebra subprograms”. In: ACM
Transactions on Mathematical Software. ACM, 1990, pp. 1–17.

[34] Agner Fog. https://www.agner.org/.

[35] Agner Fog. https://www.agner.org/optimize/microarchitecture.pdf.

[36] M. Frigo and S.G. Johnson. “FFTW: An adaptive software architecture for the FFT”.
In: Processings of the ICASSP Conference. Nowhere: void, 1998, p. 1381.

[37] J. Labarta G. Ozen E. Ayduade. “MACC: Mercurium ACCeletator Model”. In: In-
ternational Workshop on OpenMP. Universitat Politecnica de Catalunya, Barcelona,
Spain: springer, 2014.

[38] gcov. https://en.wikipedia.org/wiki/Gcov.

[39] Markus Geimer et al. “The SCALASCA Performance Toolset Architecture”. In: In-
ternational Workshop on Scalable Tools for High-End Computing (STHEC), Kos,
Greece. 2008, pp. 51–65.

[40] S. Girbal and al. “Semi-Automatic Composition of Loop Transformations for Deep
Parallelism and Memory Hierarchies”. In: International Journal of Parallel Program-
ming. International Journal of Parallel Programming, 2006, pp. 261–317.

[41] GNU. http://www.gnu.org.

[42] X. Gonze and al. “ABINIT: First-principles approach to material and nanosystem
properties”. In: Computer Physics Communications. Elsevier, 2009, pp. 2582–2615.

132 BIBLIOGRAPHY

[43] Google. https://github.com/google/autofdo.

[44] M. W. Hall and al. “Maximizing Multiprocessor Performance with the SUIF Compiler”.
In: IEEE Computer, 1996.

[45] Julian Hammer et al. “Kerncraft: A Tool for Analytic Performance Modeling of Loop
Kernels”. In: vol. abs/1702.04653. 2017. arXiv: 1702.04653. url: http://arxiv.org/
abs/1702.04653.

[46] A. Hartono, B. Norris, and P. Sadayappan. “Annotation-based empirical performance
tuning using Orio”. In: 2009 IEEE International Symposium on Parallel Distributed
Processing. 2009, pp. 1–11.

[47] S. Henry, H. Bollore, and E. Oseret. “Towards the Generalization of Value Profiling for
High-Performance Application Optimization”. In: http://www.hsyl20.fr/home/files/
papers/shenry_2015_vprof.pdf.

[48] IACA. https://software.intel.com/en-us/inproceedingss/intel-architecture-code-analyzer.

[49] Jonathan Rentzsch (IBM). https://www.ibm.com/developerworks/library/pa-dalign/.

[50] Irigoin and al. “Interprocedural Analyses for Programming Environments”. In: Work-
shop on Environments and Tools For Parallel Scientific Computing. Saint-Hilaire du
Touvier, France, 1992.

[51] O. Rüthing J. Knoop and B. Steffen. “Partial dead code elimination”. In: Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation. New York, NY, USA: ACM Press., 1994, 147–158.

[52] W. Jalby et al. “The Long and Winding Road Toward Efficient High-Performance
Computing”. In: vol. 106. 11. 2018, pp. 1985–2003. doi: 10 . 1109 / JPROC . 2018 .
2851190.

[53] B. Norris K. Meng. “Mira: A Framework for Static Performance Analysis”. In: Cluster
Computing (CLUSTER). Honolulu, HI, USA: IEEE, 20017, pp. 103–113. isbn: 978-1-
5386-2326-8.

[54] P. Klint, T. van der Storm, and J. Vinju. “RASCAL A Domain Specific Language for
Source Code Analysis ad Manipulation”. In: IEEE International Working Conference
on Source Code Analysis and Manipulation. IEEE, 2009, pp. 168–177.

[55] Andreas et al. Knüpfer. “Score-P: A Joint Performance Measurement Run-Time In-
frastructure for Periscope,Scalasca, TAU, and Vampir”. In: Tools for High Performance
Computing 2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91.

[56] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: vol. abs/1801.01203.
2018. arXiv: 1801.01203. url: http://arxiv.org/abs/1801.01203.

http://arxiv.org/abs/1702.04653
http://arxiv.org/abs/1702.04653
http://arxiv.org/abs/1702.04653
http://dx.doi.org/10.1109/JPROC.2018.2851190
http://dx.doi.org/10.1109/JPROC.2018.2851190
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203

BIBLIOGRAPHY 133

[57] S. Koliaï et al. “Quantifying Performance Bottleneck Cost Through Differential Anal-
ysis”. In: Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing. ICS ’13. Eugene, Oregon, USA: ACM, 2013, pp. 263–
272. isbn: 978-1-4503-2130-3.

[58] Souad Koliaï. “Static and dynamic approach for performance evaluation of scientific
codes”. Theses. Université de Versailles-Saint Quentin en Yvelines, 2011.

[59] O. Krzikalla and al. “Scout: A Source-to-Source Transformator for SIMD-Optimizations”.
In: Euro-Par. Springer, 2012, pp. 137–145.

[60] L.. et al. “Automatic configuration of GCC using irace”. In: Artificial Evolution. 2017,
pp. 202–216.

[61] S. Larsen, E. Witchel, and S. Amarasinghe. “Techniques for Increasing and Detecting
Memory Alignment”. In: 2001.

[62] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. “When Prefetching Works, When It
Doesn’t, and Why”. In: vol. 9. Mar. 2012, pp. 1–29. doi: 10.1145/2133382.2133384.

[63] Jean Baptiste Lereste and Andres S. Charif-Rubial. https://www.maqao.org/release/
MAQAO.Tutorial.LProf.v1.pdf.

[64] S. Liao et al. “Machine learning-based prefetch optimization for data center applica-
tions”. In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. 2009, pp. 1–10.

[65] Moritz Lipp et al. “Meltdown”. In: vol. abs/1801.01207. 2018. arXiv: 1801.01207. url:
http://arxiv.org/abs/1801.01207.

[66] G. Llort et al. “On the usefulness of object tracking techniques in performance anal-
ysis”. In: SC ’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 2013, pp. 1–11. doi: 10.1145/2503210.
2503267.

[67] LLVM. https://llvm.org/.

[68] P Lu et al. “PIT: A Framework for Effectively Composing High-Level Loop Trans-
formations”. In: Computing and Informatics. Open Journal Systems, 2012, pp. 943–
963.

[69] R. vermaas M. Bravenboer K. T. Kalleberg and E. Visser. “Stratego/XT 0.17. A lan-
guage and toolset for program transformation”. In: Science of Computer Programming.
Elsevier, 2008.

[70] A. Mandal and al. “Using Dynamic Compilation to Achieve Ninja Performance for
CNN Training on Many-Core Processors”. In: Europar. IEEE, 2018.

http://dx.doi.org/10.1145/2133382.2133384
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://dx.doi.org/10.1145/2503210.2503267
http://dx.doi.org/10.1145/2503210.2503267

134 BIBLIOGRAPHY

[71] Rose user manual. http://www.rosecompiler.org/ROSE_UserManual/ROSE-0.9.7.161-
UserManual.pdf.

[72] MSR-Tools. https://01.org/msr-tools.

[73] Harm et al. Munk. “ACOTES Project: Advanced Compiler Technologies for Embedded
Streaming”. In: vol. 39. 3. June 2011, pp. 397–450.

[74] R. Muth, S. Watterson, and S. Debray. “Code Specialization based on Value Profiles”.
In: International Static Analysis Symposium. Springer, 2000, pp. 340–359.

[75] G. C. Necula et al. “CIL: Intermediate language and tools for analysis and trans-
formation of C programs”. In: International Conference on Compiler Construction.
University of California, Berkeley, USA: Springer, 2002, pp. 213–228.

[76] Diego Novillo. “SamplePGO: The Power of Profile Guided Optimizations Without
the Usability Burden”. In: Proceedings of the 2014 LLVM Compiler Infrastructure
in HPC. LLVM-HPC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 22–28. isbn:
978-1-4799-7023-0.

[77] OpenACC. https://www.openacc.org/.

[78] OpenC++. http://opencxx.sourceforge.net/.

[79] OpenMP. https://www.openmp.org/.

[80] GCC Instrumentation Options. https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-
Options.html#Instrumentation-Options.

[81] GCC Optimizations Options. https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-
Options.html#Optimize-Options.

[82] PGO Overview. https://software.intel.com/en-us/node/522721.

[83] J.N. Amaral P. Berube. “Aestimo: a feedback-directed optimization evaluation tool”.
In: Austin, TX, USA, USA: IEEE, 2006. isbn: 1-4244-0186-0.

[84] Marek Palkowski and Wlodzimierz Bielecki. “TRACO Parallelizing Compiler”. In: Soft
Computing in Computer and Information Science. Ed. by Antoni Wiliński, Imed El
Fray, and Jerzy Pejaś. Springer International Publishing, 2015, pp. 409–421.

[85] Vincent Palomares. “Combining static and dynamic approaches to model loop perfor-
mance in HPC”. In: 2015.

[86] Maksim Panchenko et al. “BOLT: A Practical Binary Optimizer for Data Centers and
Beyond”. In: vol. abs/1807.06735. 2018. arXiv: 1807.06735. url: http://arxiv.org/
abs/1807.06735.

http://arxiv.org/abs/1807.06735
http://arxiv.org/abs/1807.06735
http://arxiv.org/abs/1807.06735

BIBLIOGRAPHY 135

[87] P. Ranjan Panda et al. “A data alignment technique for improving cache performance”.
In: Proceedings International Conference on Computer Design VLSI in Computers and
Processors. 1997, pp. 587–592.

[88] Paraformance. http://paraformance.weebly.com/.

[89] PerfExpert. https://www.tacc.utexas.edu/research-development/tacc-projects/perfexpert.

[90] D. Plotnikov et al. “An Automatic tool for tuning compiler optimizations”. In: Ninth
International Conference on Computer Science and Information Technologies Revised
Selected Papers. 2013, pp. 1–7.

[91] Dmitry Plotnikov et al. “Automatic Tuning of Compiler Optimizations and Analysis
of their Impact”. In: vol. 18. 2013 International Conference on Computational Science.
2013, pp. 1312 –1321.

[92] Mihail Popov et al. “Piecewise Holistic Autotuning of Parallel Programs with CERE”.
In: vol. 29. 15. Wiley, 2017, e4190. url: https://hal-uvsq.archives-ouvertes.fr/
hal-01542912.

[93] Allan Porterfield. “Software Methods for Improvement of Cache Performance on Su-
percomputer Applications”. PhD thesis. 1989.

[94] L.-N. Pouchet et al. “Iterative Optimization in the Polyhedral Model: Part II, Multi-
dimensional Time”. In: ACM SIGPLAN Notices. ACM, 2008, pp. 90–100.

[95] LLVM PGO presentation. https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf.

[96] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Comput-
ing. 3rd ed. New York, NY, USA: Cambridge University Press, 2007. isbn: 0521880688,
9780521880688.

[97] M. Puschel and al. “SPIRAL: Code generation for DSP transforms”. In: Proceedings
of the IEEE. IEEE, 2005, pp. 216–231.

[98] QMCPack. https://www.qmcpack.org/.

[99] Quinlan and al. “ROSE: Compiler Support for Object-Oriented Framework”. In: Par-
allel Processing Letters. Lawrence Livermore National Laboratory, Livermore, CA,
USA: World Scientific, 2000, pp. 215–226.

[100] A. Petitet R. Clint Whaley and J. J. Dongarra. “Automated empirical optimizations
of software and the ATLAS project”. In: Parallel Computing. Elsevier Science, 2000,
pp. 3–35.

[101] Gang Ren et al. “Google-Wide Profiling: A Continuous Profiling Infrastructure for
Data Centers”. In: 2010, pp. 65–79. url: http://www.computer.org/portal/web/
csdl/doi/10.1109/MM.2010.68.

https://hal-uvsq.archives-ouvertes.fr/hal-01542912
https://hal-uvsq.archives-ouvertes.fr/hal-01542912
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68

136 BIBLIOGRAPHY

[102] T. Schonfeld and M. Rudgyard. “Steady and Unsteady Flow SimulationsUsing the
Hybrid Flow Solver AVBP”. In: AIAA Journal. AIAA ARC, 1999, pp. 1378–1385.

[103] Sameer S. Shende and Allen D. Malony. “The Tau Parallel Performance System”.
In: vol. 20. 2. Thousand Oaks, CA, USA: Sage Publications, Inc., 2006, pp. 287–
311. doi: 10 . 1177 / 1094342006064482. url: http : / / dx . doi . org / 10 . 1177 /
1094342006064482.

[104] S. Srinath et al. “Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers”. In: IEEE 13th International Sympo-
sium on High Performance Computer Architecture. 2007, pp. 63–74. doi: 10.1109/
HPCA.2007.346185.

[105] Reiji Suda, Hiroyuki Takizawa, and Shoichi Hirasawa. “Xevtgen: Fortran code trans-
former generator for high performance scientific codes”. In: International Journal of
Networking and Computing. 2016, pp. 263–289.

[106] W.J. Tan and al. “A Code Generation Framework for Targeting Optimized Library
Calls for Multiple Platforms”. In: IEEE Transactions on parallel and distributed sys-
tems. University of Singapore, China, 2014, vol 26, No 7.

[107] Thiago S. F. X. Teixeira et al. “Locus: A System and a Language for Program Opti-
mization”. In: Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization. CGO 2019. Washington, DC, USA: IEEE Press, 2019,
pp. 217–228.

[108] A. Tiwari and al. “A Scalable Auto-tuning Framework for Compiler Optimization”.
In: Parallel and Distributed Processing. IEEE, 2009, pp. 1–12.

[109] MAQAO toolsuite. http://www.maqao.org.

[110] Rose tutorial. http://rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf.

[111] Cédric Valensi. “A generic approach to the definition of low-level components for
multi-architecture binary analysis”. Thesis. Université de Versailles-Saint Quentin en
Yvelines, 2014.

[112] vampir. https://vampir.eu/.

[113] S. Verdoolaege and al. “Polyhedral Parallel Code Generation for CUDA”. In: ACM
Trans. Architec. Code Optim. ACM, 2013.

[114] Chris Lattner et Vikram Adve. “DMS/spl reg: program transformations for practical
scalable software evolution”. In: Software Engineering, ICSE 2004. Proceedings. 26th
International Conference on. IEEE, 2004, pp. 625–634.

http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1109/HPCA.2007.346185
http://dx.doi.org/10.1109/HPCA.2007.346185

BIBLIOGRAPHY 137

[115] Chris Lattner et Vikram Adve. “LLVM A compilation framework for lifelong program
Analysis and Transformation”. In: Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization. IEEE,
2004.

[116] VTune. https://software.intel.com/en-us/inproceedingss/intel-compiler-new-feature-hardware-
based-pgo.

[117] R. Vuduc, J. W Demmel, and K. A Yelick. “OSKI: A library of automatically tuned
sparse matrix kernels”. In: Journal of Physics: Conference Series. IOP Publishing,
2005, p. 521.

[118] Warp3d. http://www.warp3d.net/.

[119] APS website. https://software.intel.com/sites/products/snapshots/application-snapshot/.

[120] Chengyong Wu et al. “An Overview of the Open Research Compiler”. In: Languages
and Compilers for High Performance Computing: 17th International Workshop, LCPC
2004, West Lafayette, IN, USA, September 22-24, 2004, Revised Selected Papers. Ed.
by Rudolf Eigenmann, Zhiyuan Li, and Samuel P. Midkiff. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 17–31.

[121] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications of the
Obvious”. In: vol. 23. 1. ACM, 1995, pp. 20–24. doi: 10.1145/216585.216588. url:
http://doi.acm.org/10.1145/216585.216588.

[122] X. Xiao et al. “An Approach to Customization of Compiler Directives for Application-
Specific Code Transformations”. In: 2014 IEEE 8th International Symposium on Em-
bedded Multicore/Manycore SoCs. 2014, pp. 99–106.

[123] Qing Yi. “POET: A Scripting Language For Applying Parameterized Source-to-source
Program Transformations”. In: Software Practice And Experience. University of Texas
at San Antonio, USA: John Wiley and Sons., 2012, pp. 675–706.

http://dx.doi.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588

Titre: Optimisation de code basée sur des transformations source-à-source guidées par
des métriques issues de profilages

Mots clés: Optimisation de code, transformations de code, source-à-source, autotuning,
pgo, analyse de code

Résumé: Les processeurs modernes traitent
les problèmes de performances en s’appuyant
fortement sur une taille de vecteur croissantes
et des hiérarchies de mémoire avancées pour
offrir de bonnes performances. L’optimisation
de code est donc devenue une tâche difficile.
Les développeurs font généralement confiance
aux compilateurs pour résoudre automatique-
ment ces problèmes de performances. Cepen-
dant, les compilateurs utilisent des modèles
de performances statiques et des heuristiques
qui les obligent à rester prudents. D’un autre
coté, on a des outils d’analyse de performance
qui sont très efficaces pour détecter des prob-
lèmes spécifiques, mais ils ne renvoient que

des observations sur la qualité et l’exécution
du code. Le but est de développer d’un outil
permettant de réaliser des transformations de
code source basées sur des métriques d’outils
d’analyse de performances. Cet outil sera inté-
gré à la suite d’outils MAQAO. Nous présen-
tons des transformations source-à-source au-
tomatique, guidées par les métriques proven-
nant des différents outils de MAQAO et en
restant ouvert aux conseils de l’utilisateur. Cet
outil peut aussi servir à simplifier le développe-
ment, en permettant d’effectuer des transfor-
mations simples, mais chronophage et sources
d’erreurs (e.g. spécialisation de boucle/fonc-
tion).

Title: Code optimization based on source-to-source transformations using profile guided
metrics

Keywords: Code optimization, source-to-source, code transformations, autotuning, pgo,
code analyze

Abstract: Modern high performance proces-
sor architectures tackle performance issues by
heavily relying on increased vector lengths and
advanced memory hierarchies to deliver high
performance. Manual optimization is became
a difficult task. Developers usually trust com-
pilers to automatically address these perfor-
mance issues, but they deploy static perfor-
mance models and heuristics that force them
to remain conservative. On the other hand,
performance analysis tools are pretty good
at detecting specific performance issues, but
only return observations on the quality and

on the execution of the code. Our goal is
to develop a framework allowing to perform
of source code transformations based on per-
formance analysis tools metrics. This frame-
work will be integrated into the MAQAO tool
suite. We present an FDO tool with a set
of source-to-source transformations guided by
metrics coming from the various MAQAO tools
and open to user advices. This framework
can also be used to simplify the development
by automatically performing some simple, but
time-consuming and error-prone transforma-
tions (e.g. loop/function specialization).

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Declaration of Authorship
	Abstract
	Acknowledgements
	Background
	Evolution of HPC Processor Architectures
	Uni-core Design Details
	Memory Technology

	With Great Evolution Comes Great Difficulties
	Vectorization Evolution
	Memory Organization

	Compilers
	Introduction
	Limitations

	Performance Analysis Tools
	Static Analysis
	Dynamic Analysis
	Using Sampling
	Using Tracing

	Global view using both

	Optimization Tools & Techniques
	Compiler Optimization Techniques
	Flag Research
	Profile Guided Optimization (PGO)
	Libraries
	Directives
	Domain Specific Language
	Source-to-Source
	Auto-tuning

	Conclusion

	ASSIST
	Background
	Specifications / Context
	Existing Tools for Source-to-Source Transformation
	Cetus
	Par4All & PIPS
	OpenC++
	DMS Software Re-engineering Toolkit
	LLVM (Clang & Flang)
	Scout
	Orio
	ROSE
	Summary

	MAQAO

	Design & Implementation
	Overview
	ASSIST Principle
	Integration Into MAQAO
	Interaction With The User

	Explicit Supported Transformations
	Unroll
	Full Unroll
	Tile
	Strip Mine
	Interchange
	Loop Count Transformation (LCT)
	Short Vector Transformation (SVT)
	Prefetcher
	Constant Propagation
	Local Dead Code Elimination
	Specialization
	Loop
	Function

	Assessing Transformation Verification
	How It Works
	Compared Metrics
	Use Case Example
	Limitations

	Conclusion

	What Triggers Transformations and How
	Introduction
	Collected Data and Triggered Transformations
	Compilers PGOs
	AutoFDO

	ASSIST Transformations to Trigger
	Loop count
	Unroll & fullunroll
	Interchange
	Tile & strip mine
	Prefetcher
	Specialization
	Short vectorization

	Conclusion

	Experiment
	Application Pool
	Impact of Value Profiling
	Impact of Specialization
	Specialization Only
	Combined With SVT
	Combined With Tiling

	Impact of Prefetchers
	With Mini QMCPAK
	With AVBP
	With Yales2

	Impact of Intrinsic Prefetcher Function
	With Numerical Recipes
	With QMCPACK

	Impact of other common transformations
	With QMCPACK

	Conclusion

	Issues & Limitations
	Conclusion

	Conclusion
	Contributions
	Perspectives

	Appendix: ASSIST
	ASSIST Help
	ASSIST Comparator Configuration file
	Metrics Used for the Comparator
	Installation Requirements
	How to Use ASSIST
	With an Annotated Source File
	With Profilers Results
	Transformation Script

	Transformation Script
	ASSIST API
	Example of OneView Report Generated for ASSIST
	Caveats & Limitations
	Preprocessor
	Languages

	Appendix: Codes
	Prefetcher
	Intel Optimization Directives/Pragmas

	Appendix: Additional results
	Prefetchers

	Bibliography

