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PREFACE

Abstract

The focus of this PhD thesis is to design an optimal Energy Management System
(EMS) for a Hybrid Electric Vehicle (HEV) following traffic constraints. In the current
state of the art, EMS are typically divided between real-time designs relying on local
optimization methods, and global optimization that is only suitable for off-line use due
to computational constraints. The starting point of the thesis is that in terms of energy
consumption, the stochastic aspect of the traffic conditions can be accurately modelled
thanks to (speed,acceleration) probability distributions. In order to reduce the data size
of the model, we use clustering techniques based on the Wasserstein distance, the corre-
sponding barycenters being computed by either a Sinkhorn or Stochastic Alternate Gra-
dient method. Thanks to this stochastic traffic model, an off-line optimization can be per-
formed to determine the optimal control (electric motor torque) that minimizes the fuel
consumption of the HEV over a certain road segment. Then, a bi-level algorithm takes
advantage of this information to optimize the consumption over a whole travel, the upper
level optimization being deterministic and therefore fast enough for real-time implemen-
tation. We illustrate the relevance of the traffic model and the bi-level optimization, using
both traffic data generated by a simulator, as well as some actual traffic data recorded
near Lyon (France). Finally, we investigate the extension of the bi-level algorithm to the
eco-routing problem, using an augmented graph to track the state of charge information
over the road network.

Résumé

Cette thèse aborde la conception d’un Système de Gestion Énergétique (EMS), prenant
en compte les contraintes de trafic, pour un véhicule hybride électrique. Actuellement, les
EMS sont habituellement classés en deux catégories: ceux proposant une architecture en
temps réel cherchant un optimum local, et ceux qui recherchent un optimum global, plus
coûteux en temps de calcul et donc plus approprié à un usage hors ligne. Cette thèse re-
pose sur le fait que la consommation énergétique peut être modélisée précisément à l’aide
de distributions de probabilité sur la vitesse et l’accélération. Dans le but de réduire la
taille des données, une classification est proposée, basée sur la distance de Wasserstein,
les barycentres des classes pouvant être calculés grâce aux itérations de Sinkhorn ou la
méthode du Gradient Stochastique Alterné. Cette modélisation du trafic permet à une op-
timisation hors ligne de déterminer le contrôle optimal (le couple du moteur électrique)
qui minimise la consommation de carburant du véhicule hybride sur un segment routier.
Un algorithme bi-niveau tire avantage de cette information afin d’optimiser la consom-
mation sur l’ensemble du trajet. Le niveau supérieur d’optimisation étant déterministe, il
est suffisamment rapide pour une implémentation en temps réel. La pertinence du modèle
de trafic et de la méthode bi-niveau est illustrée à l’aide de données trafic générées par
un simulateur, mais aussi grâce à des données réelles collectées près de Lyon (France).
Enfin, une extension de la méthode bi-niveau au problème d’éco-routage est présentée,
utilisant un graphe augmenté pour déterminer l’état de charge lors du chemin optimal.
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Dissertation Outline

Dissertation Outline

1. Introduction

The introduction presents the context that motivated the thesis, and recalls the state of
the art in Energy Management Systems for Hybrid Electric Vehicles.

2. A stochastic data-based traffic model

A new approach to estimate the energy consumption of a vehicle based on traffic con-
ditions is proposed, reducing traffic data to (speed,acceleration) probability distributions.
The reduction is done over a subdivision of the road network into small segments induced
by the network topography. In order to reduce data occupancy, clustering techniques are
applied, allowing different times of the day to be grouped together in a single class of
traffic conditions. Two methods (average and memoryless sampling) are proposed to es-
timate the energy consumption of a vehicle based on this traffic model. The relevance of
both methods is investigated using data generated by a traffic simulator, with a sensitiv-
ity analysis with respect to different parameters such as speed/acceleration discretization,
timeframe length and number of clusters. Finally, a real-life scenario using floating car
data is studied as well, in order to check the applicability and robustness of the proposed
method.

3. An Optimal local policy using traffic prediction

In this chapter, a way to obtain optimal policies that minimize the fuel consumption
while taking into account the traffic conditions is presented. A key point is that we assume
the speed and acceleration of the vehicle to follow the probability distributions of the
traffic stochastic model. Working at the ‘micro’ scale of individual road segments, we
present a Stochastic Dynamic Programming formulation to compute the optimal electric
torque, for given initial and final states of charge. Solving off-line a collection of these
‘micro’ problems provides a cost map of the consumption depending on the entry and
exit state of charge, for all road segments and associated traffic conditions. The value
functions can be used to recover the corresponding optimal control (electric torque) in a
feedback form as well.

4. An Optimal State of charge trajectory on a travel with traffic con-
ditions

Here, we formulate the optimization problem at the upper (‘macro’) level for the
whole travel. The main idea is to compute an optimal sequence of target state of charge
at the end of all successive road segments. Using the knowledge database described in
chapter 3 (cost maps), the problem results in resolving by Dynamic Programming. This
’macro’ optimization framework provides both the state of charge trajectory and optimal
policy along the travel, and is fast enough for on-line implementation. The approach is
validated by numerical simulations based on actual traffic data.

Stochastic optimal control of a hybrid electric vehicle under traffic constraints ix
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5. Application to the optimal routing problem under traffic conditions
An extension of the bi-level formulation to the eco-routing problem is proposed. Us-

ing the knowledge of traffic conditions over the entire road network, we search both the
optimal path and state of charge trajectory. This problem results in finding the shortest
path on a weighted graph whose nodes are (position, state of charge) pairs for the vehicle,
the edge cost being evaluated thanks to the cost maps from the ’micro’ optimizations.
The classical A∗ algorithm is used to solve the problem, with a heuristic based on a lower
bound of the energy needed to complete the travel. The eco-routing method is validated
by numerical simulations and compared to the fastest path on a synthetic road network.

6. Conclusions
The main results of the thesis are recalled here, and several perspectives are presented.

Appendix A. A Stochastic gradient method for Wasserstein barycen-
ters of distributions

This appendix presents a method to compute barycenters of probability distributions,
in the sense of the distance of Wasserstein, related to optimal transport. We introduce
an algorithm based on stochastic gradient, that solves an entropic regularization of the
barycenter problem. We prove the convergence rate and complexity of the algorithm, and
compare it to the classical Sinkhorn iterations method.

x
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Résumé de la Thèse

Les contributions exposées dans cette thèse sont doubles :

• Un modèle stochastique de trafic, utilisant une classification des distributions de
probabilités de (vitesse,accélération), capable d’estimer de façon efficace la distri-
bution de consommation énergétique des véhicules sur un segment routier, avec une
occupation mémoire réduite.

• Un EMS bi-niveau intégrant l’aléa dû aux conditions de trafic, calculant en temps
réel la trajectoire optimale de la charge de la batterie et du couple électrique.

Dans la suite, les contributions et les résultats de chaque chapitre sont présentés.

Chapitre 2 - Un modèle stochastique de trafic

Une nouvelle approche, pour estimer la consommation énergétique du trafic, est pro-
posée. Elle repose sur l’agrégation des données trafic en distributions de probabilité (vi-
tesse/accélération), voir Fig.1. Une telle agrégation peut être faite sur chaque segment
composant le réseau routier.
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Figure 1 – Exemple de distribution de trafic

Dans le but de réduire la taille des données générées, des techniques de classification
ont été utilisées afin d’obtenir des classes de conditions de trafic représentatives. La dis-
tance utilisée, lors de la classification, est la distance de Wasserstein, basée sur la théorie
du transport optimal :

W1(µ, ν) = min
π∈Π(µ,ν)

d · π (0.0.0.1)

Stochastic optimal control of a hybrid electric vehicle under traffic constraints xiii
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où Π(µ, ν) est l’ensemble des plans de transports de µ à ν, i.e. l’ensemble des matrices
positives π de taille (|NV| × |NA|)2 avec comme marginales π>1 = µ et π1 = ν. Les
barycentres, obtenus grâce à cette distance, gardent les aspects géométriques des distribu-
tions initiales de probabilités . Différentes heures de la journée possédant des conditions
de trafic similaires sont ainsi groupées dans la même classe, voir Fig.2.
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Figure 2 – Illustration des classes de trafic obtenues avec leurs données brutes.

Différents modèles de consommation énergétique, basés sur ces distributions, sont
proposés afin d’estimer la consommation des véhicules sur le réseau routier.

Le premier modèle moyenne la puissance selon la distribution du trafic µ̄ :

P̄ (µ̄) =
∑
V×A

µ̄t(v, a)P (v, a) (0.0.0.2)

La puissance moyenne est ensuite intégrée sur l’intervalle de temps [ti, tf ] passé par le
véhicule sur le segment :

CAvg =

∫ tf

ti

P̄ (µ̄t)dt (0.0.0.3)

La seconde méthode repose sur l’idée que les véhicules doivent suivre le trafic, dans
un sens statistique. La méthode génère donc une suite de (vitesse/accélération) qui est
intégrée pour obtenir la consommation. Cette suite est tirée à partir de la distribution de
trafic µ̄ .

Afin de valider les méthodes, un simulateur de trafic a été utilisé pour générer des
données et comparer les consommations énergétiques estimées à celles mesurées. Une
analyse approfondie de la sensibilité des méthodes par rapport au paramètres (i.e. nombre
de classes, taille des supports des distributions, etc.) a été menée dans le cadre des ces
données simulées, voir Fig.3. Pour finir, un scénario réel est analysé afin d’évaluer l’ap-
plicabilité et la robustesse de la méthode.

Les résultats montrent que la classification permet de réduire la taille des données
(jusqu’à 99%) tout gardant suffisamment d’information pour estimer la distribution des
consommations énergétiques.

xiv
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Figure 3 – Erreurs dues à la classification.

Chapitre 3 - Une stratégie optimale locale grâce à la prédiction du trafic

Une méthode pour obtenir une stratégie optimale malgré les aléas du trafic est présen-
tée. L’hypothèse principale est que la vitesse et l’accélération du véhicule (V,A) suivent
la distribution de trafic selon un modèle i.i.d.. De telles distributions ont été obtenues dans
le chapitre 2.

Le trafic est ainsi pris en compte afin d’obtenir le couple optimal du moteur électrique
Tm satisfaisant la demande de charge du véhicule. Le contrôle minimisant la consomma-
tion de carburant C du moteur thermique selon une cible finale d’état de charge de la
batterie SoCf et la carte de consommation électrique du moteur thermique Pm. La discré-
tisation de ce problème de contrôle stochastique optimal sur un segment de longueur Ls
peut être écrite comme suit :

min
Tm

E

 kf∑
k=0

hkC(Vk,Ak, T km, ) + P (SoCf , SoC
kf )

 (0.0.0.4)

s.c ∀k, SoCk+1 = SoCk +
hk

Cmax
Pm(Vk,Ak, T km) (0.0.0.5)

Dk+1 = Dk + hkVk (0.0.0.6)

T km ∈ [Tmin, Tmax] (0.0.0.7)

SoCk ∈ [0, 1] (0.0.0.8)

hk := min(h0, (Ls −Dk)/Vk) (0.0.0.9)

kf := 1 + max{k,Dk + h0Vk < Ls} (0.0.0.10)
SoC0 = SoC0; D0 = 0. (0.0.0.11)

Résoudre ce problème pour l’ensemble des états de charge initiaux possibles permet
d’obtenir l’espérance de consommation selon l’état de charge final ainsi qu’une stratégie
optimale capable de la réaliser, voir Fig.4.
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Figure 4 – Couple optimal du moteur électrique dans le cas d’une circulation fluide.

Les erreurs dues à la discrétisation du problème et à la résolution numérique ont été
étudiées.

Les simulations numériques sur des données réelles, collectées sur l’autoroute A7
située près de Lyon, ont été comparées à une approche déterministe. Celle-ci donne le
minimum de consommation atteignable pour un véhicule si son profil de vitesse est connu.
Les résultats indiquent que la méthode proposée dans ce chapitre parvient à traiter l’aléa
dû aux conditions de circulation avec une surconsommation raisonnable, avec un écart
d’environ 5% à la borne théorique, voir Fig.5.
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Figure 5 – Comparaison entre la méthode déterministe et la méthode stochastique

Chapitre 4 - Une trajectoire optimale d’état de batterie sur un trajet avec prévision
de trafic

En raison du coût numérique de la programmation dynamique stochastique, il est pos-
sible de résoudre celle-ci sur de petits segments routiers, mais des longueurs de trajets
plus grandes empêchent son implémentation en temps réel. Afin d’obtenir en temps réel
des stratégies optimales adaptées aux trajets, une méthode bi-niveau, basée sur une dé-
composition spatiale, est proposée.
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La méthode du chapitre 3 calcule le couple optimal du moteur électrique sur un seg-
ment s connaissant les conditions de trafic, représentées par une distribution de probabilité
µs. Cette programmation dynamique peut être effectuée hors ligne sur les classes de trafic
obtenues au chapitre 2. Grâce à la résolution hors de ces problèmes, des cartes de coût C
dépendant de l’état de charge initial et final peuvent être calculées et archivées, voir Fig.6.
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Figure 6 – Exemple de carte de coût.

Ces cartes de coût permettent de prédire le coût moyen d’un segment en fonction de
l’état de charge au début et à la fin du segment. Par conséquent, un nouveau problème qui
calcule une référence pour l’état de charge SoCr à atteindre à la fin de chaque segment,
en fonction de ces cartes de coût, est défini ainsi :

min
SoCr

S−1∑
s=0

C(SoCr
s , SoC

r
s+1, µs) (0.0.0.12)

s.t. ∀s, SoCr
s ∈ [0, 1] (0.0.0.13)

SoCr
0 = SoCintial (0.0.0.14)

SoCr
S = SoCfinal (0.0.0.15)

Le principal avantage de cette méthode bi-niveau est que l’incertitude du comporte-
ment du trafic a déjà été traitée grâce aux optimisations stochastiques proposées dans le
chapitre 3. Ainsi, le nouveau problème peut être résolu grâce à une programmation dyna-
mique déterministe et peut donc être calculé en ligne. La trajectoire de l’état de charge est
obtenue tout au long du parcours ainsi que la stratégie optimale sur chaque segment.

Des simulations numériques ont été effectuées afin de comparer la consommation ob-
tenue avec une borne inférieure théorique, calculée grâce à la programmation dynamique
déterministe sur les profils de vitesse. Les résultats montrent que la méthode bi-niveau
introduit une surconsommation (∼ 15%) et satisfait bien la contrainte d’état de charge
final, tout en maintenant un temps de simulation inférieur à 10 secondes.

Stochastic optimal control of a hybrid electric vehicle under traffic constraints xvii
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Figure 7 – Comparaison entre la méthode déterministe et la méthode bi-niveau. Condi-
tions SoC0 = 0.25, SoCf = 0.24.

Chapitre 5 - Application au problème de routage optimal sous contrainte de trafic

Sur les réseaux routiers, plusieurs chemins sont possibles pour arriver à la destination
souhaitée. Les conditions de circulation sur ces chemins peuvent varier considérablement,
par exemple en raison de limitations de vitesse ou d’embouteillages. Afin de minimiser
la consommation globale, nous proposons d’utiliser les méthodes développées dans les
chapitres précédents pour trouver le chemin de consommation optimale, en fonction de la
consommation et des conditions de circulation, dans le réseau routier.

Ce dernier est modélisé sous forme de graphe, où chaque intersection correspond à
un nœud. Ce graphe est étendu dans chaque nœud avec l’état de charge possible, afin de
calculer à la fois le chemin optimal et la trajectoire optimale de l’état de charge. L’en-
semble de tous les chemins possibles entre l’origine S et la destination D est noté ΓSD.
Le problème du plus court chemin s’écrit alors comme suit :

minimize
γ∈ΓSD

∑
i∈γ

νNiNi+1
(SoCr

i+1, SoC
r
i ) (0.0.0.16)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1] (0.0.0.17)

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi] (0.0.0.18)

L’erreur due à la discrétisation de l’état de charge est analysée. Un algorithme clas-
sique A∗ est utilisé pour résoudre le problème. Les simulations numériques ont montré
que la consommation d’un tel chemin est réduite par rapport au chemin le plus rapide et
que les contraintes SoCf sont relativement satisfaites.

Annexe A - Méthode du gradient stochastique pour les barycentres de Wasserstein

Dans cette annexe, un nouvel algorithme est présenté, basé sur des méthodes de gra-
dient stochastique pour calculer la distribution de probabilités du barycentre de Wasser-
tein. La distance de Wasserstein, basée sur le transport optimal, compare deux distribu-
tions. En désignant µ le barycentre des distributions νk, le plan de transport π est calculé
comme suit :
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minπ,µ
∑K

k=1 c
k · πk; π ≥ 0;

(πk)>1 = µ, πk1 = νk, k = 1, . . . , K,
(0.0.0.19)

Des méthodes rapides de calcul de ces barycentres sont nécessaires lors du traitement
de grandes quantités de données. Grâce à une double régularisation entropique du pro-
blème et en utilisant la forme semi-duale du problème régularisé par l’entropie inverse,
nous obtenons un problème qui peut être résolu grâce à un algorithme de la classe du
gradient stochastique :

max
u

∑
j

hj(u) (0.0.0.20)

avec :

hj(u) = −ε1

∑
k

νkj (log(
1

νkj

∑
i∈X0

ξkije
−uki
ε1 ) + 1)−

ε2

∑
k ν

k
j

K
(
∑
i∈X0

e

∑K
r=1 uri
ε2 ) (0.0.0.21)

La complexité temporelle et spatiale de l’algorithme a été comparée aux itérations
Sinkhorn pour les barycentres introduites en 2015 , voir [8].
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1. INTRODUCTION

1.1 Global context

Nowadays, the world faces great changes and issues. This thesis tries to provide
solutions to some of these issues thanks to the technological evolution of the world. The
improvement of the technology made possible the creation of intelligent vehicles and their
hybridization to reduce the environmental impact due to individual cars greenhouse gas
emission. This section recalls the issues and how the current technological evolutions can
help to find new solutions.

1.1.1 Environmental issues
Since the beginning of the 70s, the number of cars has more than tripled, see Fig.1.1.

This leads to an increased fuel consumption and therefore an increased atmospheric pol-
lution, which is one of the primary cause of early mortality according to WHO, see [3].

Figure 1.1 – Historical and projected worldwide number of vehicles Source:[83]

The International Energy Agency ([46]) also estimates that the current trends in en-
ergy use and supply are unsustainable economically, environmentally and socially. With-
out decisive actions, energy-related emissions of carbon dioxide (CO2 ) will more than
double by 2050, and increased oil demand raises concerns over the security of supplies.
The IEA also estimated that over 50% of oil used around the world is for transporta-
tion, and three-quarters of the energy used in the transportation sector is consumed on the
roads. Therefore, it seems crucial that governments around the world tackle the problem
of vehicle fuel economy.
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In the EU case, CO2 emission targets have been set for the newly registered vehicles.
These targets are defined as a percentage reduction from the 2021 levels and impose a
reduction of 15% by 2025 and 37.5% by 2030 [33].

1.1.2 Hybridization
In order to reach the fleet-wide emission targets, the automotive industry tries to de-

velop vehicles using alternate sources of energy. This approach allows to reduce the
consumption of vehicles, and therefore the oil dependence and the environmental issue.
Since the beginning of the 21st century, there has been a strong development of electric
(EV) and hybrid electric vehicles (HEV). Such vehicles use, totally or partially, electricity
for propulsion. HEV in particulare are well suited for the trade-off between reduction of
fuel consumption and operating range. Indeed, the use of the electric motor allows to
target the most efficient operating points of the internal combustion engine.

Sales of such vehicles are now non negligeable and tend to increase, see Fig.1.2.
Market share projections seem to agree to this tendency, predicting that purely electric
vehicles (EVs) will reach at least 8% of all vehicle sales by 2025, while hybrid electric
vehicles (HEVs) will rise to 23% of market share [41, 27]. Therefore, optimizing the fuel
consumption of these vehicles will become an increasingly important matter.

Figure 1.2 – Sales of HEV on the US market Source: U.S. Department of Energy

1.1.3 Connected world
Since the beginning of the 50s, electronics devices have become more and more

present in modern societies, and cars do not escape to this tendancy. This leads to a
fundamental change in vehicle control systems, namely the advent of Intelligent Trans-
portation Systems. Individual networked micro-controllers can represent up to 20% of
the total cost of a typical vehicle in the early 2000s [77], and automotive electronics are
present at each level in a modern vehicle [50]. The vehicles are not the only part of trans-
port ecosystem that have become smart and connected. The road network also becomes
smarter with intelligent traffic lights and traffic sensors on roads.
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In the 2000s, these intelligent systems interact in local networks thanks to the evo-
lution of the communication networks, the information can be shared with all the users
of the road networks. This increased ability allows for more sophisticated applications
to be implemented, relying on model-based control and artificial intelligence. Intelligent
Transportation Systems will enable various users to be better informed and make safer,
more coordinated [28, 21], and “smarter” use of transportation networks.

1.1.4 Thesis positioning
This thesis has for purpose to tackle these environmental issues by combining these

two new technological solutions, hybridization and Intelligent Transport System. The
main goal is to find a way to use the new information available thanks to the ITS to
improve the consumption of the hybrid electrical vehicle.

1.2 Hybrid Electrical Vehicles’ Architecture

In the end of the 20th century, different attempts have been done to design hybrid ve-
hicles. And in the beginning of the 21st century, the hybrid electric vehicle has conquered
its own place in the automotive market, essentially due to the rise of the oil price and bind-
ing emission targets. Car manufacturers have developed different ways to use the electric
energy in addition to the internal combustion engine. The main principles and concepts
used by the HEVs are presented below.

1.2.1 Hybrid Configurations
Usually, the HEVs are classified in four main types according to [15]:

• Series Hybrid: The electric engine alone drives the vehicle. It can be supplied by
the IC engine or battery.

• Parallel Hybrid: The IC engine and the electric one drive the vehicle together
simultaneously or separately.

• Combined Hybrid: Such vehicles have the ability to operate as series or parallel
hybridization.

• Complex Hybrid: As reflected by its name, this system involves a complex con-
figuration which cannot be classified into the above three kinds. It will not be
described here.

Series Hybrid

In a series HEVs, the IC engine works as an auxiliary power unit and thus extend
the range of a purely electric vehicle, see Fig.1.3. This configuration has the advantage
that the IC engine is not related to the mechanical requirement of the vehicle and so can
be used at a point where efficiency and emissions are optimal. Furthermore the absence
of mechanical link between the vehicle and the IC engine decreases the loss due to the
gears or clutch. The regenerative braking is still possible by using the electric motor as
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1.2. Hybrid Electrical Vehicles’ Architecture

a generator. However, such configuration requires one IC engine, one electric generator
and one electric motor. Such additional weight can cancel the previous benefits.

Figure 1.3 – Series hybrid configuration where ICE = IC engine, EG = electric generator,
BT = battery, PB = Power link, EM = electric motor, GB = gear box, V = vehicle. Bold
lines means mechanical link, solid lines means electric link.

Parallel Hybrid

In a parallel HEV, the engine IC works at the same time as the electric motor. This
allows the vehicle to choose the part of each energy used to propel the car, see Fig.1.4.
The electric motor can propel the car alone or in combination with the IC engine, thanks
to that the working point of the IC engine can be adjusted to optimize the efficiency and
emissions. Using the electric motor as an electric generator, we can use regenerative
breaking, and thanks to the torque coupler it is possible to use the IC engine to charge the
battery. The main disadvantage is the presence of mechanical links which create losses of
energy because of the frictions.

Figure 1.4 – Parallel hybrid configuration. Same nomenclature as Fig. 1.3. (TC = torque
coupler)

Combined Hybrid

The combined HEV is a combination between the series type and the parallel type,
see Fig.1.5. A HEV of this type contains, as a series HEV, an electric generator and
an electric motor. But, as for a parallel HEV, there is also a torque coupler between
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the electric generator, the electric motor and the internal combustion engine. Even if
combined vehicles have the disadvantages of the two previous combinations, they acquire
flexibility by splitting the power between the two motors and because the power provided
by the IC engine is decoupled, it can be used at optimal operating point.

Figure 1.5 – Combined hybrid configuration. Same nomenclature as Fig. 1.3 and Fig. 1.4.
(PSD = Power Split Device)

These three types of HEV work in a same way and they have the same possibilities,
the main difference remains at the point where the combination between the power de-
livered by the ICE engine and the power delivered by the battery is done. For sake of
simplification, in the following parts we will take the example of the parallel hybrid to
explain our claims.

1.2.2 Operating modes of HEVs
A hybrid car is propelled by two engines, using two different sources of power. In this

thesis, the car has a fuel engine and an electric one. Hybrid vehicles are complex due to
the dispatch of the load between the two engines. This dispatch creates various operating
modes with respect to the proportion of load attributed to each engine. We denote u the
proportion of energy from/to the electric motor over the total power at the torque coupler.
There are five operating modes depending of the value of u:

• Hybrid mode: the ICE provides only a portion of the power needed, the electric
motor provides the rest, Fig.1.6a (0 < u < 1).

• Regenerative braking mode: the speed of the vehicle decreases, and the electric
motor acts as a generator, recharging the battery, Fig.1.6b (u = −1).

• Recharging mode: here the engine provides more power than needed to move the
vehicle, the electric motor once again acts as generator, Fig.1.6c (u < 0).

• Electric mode: the motor provides all the power itself, Fig.1.6d (u = 1). The
internal combustion engine is turned off, and no fuel is consumed.

• ICE mode: the engine provides all the power itself, Fig.1.6e (u = 0). The electric
motor is turned off, and the battery state of charge remains constant.
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(a) Hybrid mode, 0 < u < 1 (b) Regenerative braking mode, u = −1

(c) Recharging mode, u < 0 (d) Electric mode, u = 1

(e) ICE mode, u = 0

Figure 1.6 – Operating modes

1.3 Energy Management Systems for Hybrid Electric Ve-
hicle

Using two engines gives the possibility to control the origin of the power. Either elec-
tric power or combustion power. Thanks to this control, it is possible to optimize the
consumption of the Hybrid vehicle. The energy management system (EMS) determines
the split between the internal combustion engine (ICE) and the electric motor.In our case
we are interested in improving the fuel economy. Several energy management systems
have been developed for HEV, see [63] for a detailed review. Fig.1.7 shows the related
classification of the strategies based on the adopted approach. In the following section,
the main approach families are presented.

1.3.1 Rule-based EMS

The first class of energy management systems is the one based on rules, determined
thanks to heuristic and mathematical models. They use preset rules to determine the power
balance at real time, using various information from the vehicle’s sensors. The decision
rules can either be deterministic (binary logic), or use fuzzy logic (notion of partial truth).
These fuzzy logic based energy management have shown good results since the early 00’s
[80], and are now even able to determine gear shifting [86]. The main disadvantages of
these methods are that they are based only on the instantaneous outputs and that their
results are not guaranteed to be optimal. Indeed, theses rules are determined by the car
manufacturer based on standard speed profile that are not always representative of the
reality.
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Figure 1.7 – Classification of the control strategies, source: [73]

1.3.2 Optimization-based EMS
The optimization-based strategies are based on optimization theory, more precisely

optimal control theory. Their goal is to minimize an objective function, usually in our
framework consumption or emissions. They are split in two main classes, the ones trying
to compute in real time a local solution, and the others computing a global solution,
usually off-line.

Real-time optimization

The real-time strategies aim to obtain a split of the power between the ICE and the
motor which is feasible at each time and also to minimize the cost function. This class of
strategy has been widely developed during the last years due to relatively easy implemen-
tation. The main strategies developed are:

• Equivalent Consumption Minimization (ECM):
In 2002, Panagelli et al. [72] proposed the concept of equivalent fuel consumption
for energy management system. The ECM is developed by calculating the total fuel
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consumption as the fuel used by the ICE and also an equivalent fuel consumption
for the electric motor. Thanks to this method, the electric power and the combustion
power are unified. Adaptive method [69] based on this ECM has been developed,
that refreshes the equivalent factor while taking into account driving conditions.
The equivalent consumption is computed in real-time, as a function of the current
output of the system. The method allows to work without any information over
the future driving conditions. In [75], a comparison between ECMS and rule-based
strategies is proposed, and shows that ECMS strategies outperform.

• Model Predictive Control (MPC):
MPC is based on an online system parameters update combined with optimal con-
trol tools. This allows to predict the future speeds and therefore optimize the con-
sumption by taking them in account. The optimization is done over a finite time
horizon and the solution is then implemented in the current time slot only. The
method is repeated for each time slot. An extended review of MPC-based energy
management systems is proposed in [45].

• Pontryagin’s maximum principle (PMP): In a deterministic framework, so-called
indirect method, based on PMP, can also be implemented in order to find the optimal
control, see [52, 51, 91].

Global optimization

The strategies developed to find a global optimal solution are essentially based on the
concept of Dynamic Programming (DP). This method solves the problem by breaking it
into easier subproblems, thanks to the Bellman’s optimality principle.

Deterministic Dynamic Programming (DDP) has been widely used in order to obtain
theoretical lower bound for the consumption on specific speed profile, and a rule-based
EMS relying on the obtained optimal policy obtained has been proposed in [60]. The
main drawback of such methods is the curse of dimensionality, i.e. the computational
cost typically increases exponentially with the number of states (and control) variables.
Then this method seems limited to small systems and can be very difficult to use in real
time, although some works propose dimension reduction techniques for the state space or
alternatly on the control space, see [76].

In order to manage uncertainty of the future speeds, stochastic formulations have been
proposed and solved thanks to stochastic DP (SDP) [14, 87]. Unfortunately, this further
increases the computational cost of the method.

1.4 Thesis contributions
The main results of the thesis are that an optimal control taking into account the

stochastic aspect of traffic can be obtain off-line, and the optimal control reused in or-
der to reach a global optimum in real-time.

The contributions of the thesis are twofold:

• A stochastic traffic model, based on clustered (speed/acceleration) probability dis-
tributions, able to efficiently estimate the energy consumption distribution of vehi-
cles on a road segment, with a reduced data occupancy.
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• A bi-level EMS taking in account the stochastic traffic conditions, to compute on-
line the optimal state of charge and torque trajectories.

In the following, the contributions of each chapter are presented.

Chapter 2 - A stochastic data-based traffic model

A new approach to estimate traffic energy consumption via (speed,acceleration) prob-
ability distributions is proposed. For each segment s, we record the (speed,acceleration)
of all the vehicles passing through the segment during all the time-frames ti,s. Thanks to
these measures, empirical (speed,acceleration) probability distributions can be obtained
on each segment composing the road network.

In order to reduce data occupancy, clustering techniques are used to obtain mean-
ingful classes of traffic conditions. The distance used in the clustering algorithm is the
1-Wasserstein distance, based on optimal transport:

W1(µ, ν) = min
π∈Π(µ,ν)

d · π (1.4.0.1)

where Π(µ, ν) is the set of transportation plans from µ to ν, i.e. the set of nonnegative
matrices π of size (|NV| × |NA|)2 with marginals π>1 = µ and π1 = ν. The barycenters,
obtained thanks to this distance, keep the geometrical aspects of the initial probability
distributions. Different times of the day with similar speed patterns and traffic behaviour
are thus grouped together in a single cluster, Fig.1.8.
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Figure 1.8 – Illustrative example of clusters with their initial aggregated data.
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Different energy consumption models based on the aggregated data are proposed to
estimate the energy consumption of the vehicles in the road network.

The first model consider the expectation of the power P (v, a) according to the proba-
bilities induced by the law of the barycenter µ̄ of the traffic cluster :

P̄ (µ̄) =
∑
V×A

µ̄t(v, a)P (v, a) (1.4.0.2)

This average power is integrated over the time interval [ti, tf ] spent by the vehicle on the
segment, thus

CAvg =

∫ tf

ti

P̄ (µ̄t)dt (1.4.0.3)

The second method is based on the idea that the vehicle follows the traffic, in a statis-
tical sense. Therefore the method generates a sequence of (speed,acceleration) based on
the traffic distribution µ̄ that is integrated in order to obtain the consumption.

For validation purposes, a traffic simulator is used to generate the data and compare
the estimated energy consumption to the measured one. A thorough sensitivity analysis
with respect to the parameters of the proposed method (i.e. number of clusters, size of the
distributions support, etc.) is also conducted in simulation. Finally, a real-life scenario
using floating car data is analysed to evaluate the applicability and the robustness of the
proposed method.

The results show that clustering techniques allow to reduce data occupancy while
retaining most of the useful information in order to estimate the energy consumption
distribution.

Chapter 3 - An Optimal local policy using traffic prediction

A method to obtain an optimal policy that takes into account the traffic behaviour is
presented.

Our basic assumption is that the speed and acceleration of the vehicle (V,A) are a
piecewise i.i.d. process following the successive traffic distributions. Such distributions
have been obtained in chapter 2. Therefore, the traffic behaviour is taken into account
to obtain an optimal motor torque Tm adapted to the load. This control minimizes the
fuel consumption C of the engine according to a target final state of charge SoCf and the
power map Pm of the motor. Finally a discrete stochastic optimal problem can be written
on a segment of length Ls :
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min
Tm

E

 kf∑
k=0

hkC(Vk,Ak, T km, ) + P (SoCf , SoC
kf )

 (1.4.0.4)

s.c ∀k, SoCk+1 = SoCk +
hk

Cmax
Pm(Vk,Ak, T km) (1.4.0.5)

Dk+1 = Dk + hkVk (1.4.0.6)

T km ∈ [Tmin, Tmax] (1.4.0.7)

SoCk ∈ [0, 1] (1.4.0.8)

hk := min(h0, (Ls −Dk)/Vk) (1.4.0.9)

kf := 1 + max{k,Dk + h0Vk < Ls} (1.4.0.10)
SoC0 = SoC0; D0 = 0. (1.4.0.11)

Solving this problem for all possible initial states of charge, thanks to stochastic dy-
namic programming, will give us an expected consumption according to the final state of
charge and the optimal policy in order to realize it, see Fig.1.9.
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Figure 1.9 – Optimal motor torque Tm(v, a) obtained for a fluid traffic.

The error due to the discretization as well as the computation have been studied.
Numerical comparisons on real data collected on the A7 french highway with the

deterministic optimization have been done. The deterministic optimization gives the min-
imum consumption reachable for a vehicle knowing its speed profile. The results indicate
that the stochastic method proposed in this chapter handles the traffic conditions with a
reasonable overconsumption, almost 5% of the deterministic consumption.

Chapter 4 - An Optimal State of charge trajectory on a travel with predicted traffic

Due to the computational cost of the stochastic dynamic programming, it is possible to
solve it on small road segments, but increased lengths and therefore travel times prevent
real-time implementation. In order to obtain on-line optimal policies adapted to the travel,
a bi-level method, based on segment decomposition, is proposed.
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The method of chapter 3 computes the optimal motor torque on a road segment s
knowing the traffic conditions, represented by a probability distribution µs. The stochastic
dynamic programming can be done off-line on predefined traffic conditions, the clusters
computed in chapter 2. By solving these problems off-line, cost maps C depending on the
initial and the final state of charge are defined and stored, see Fig 1.10.
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Figure 1.10 – Illustrative cost maps

These cost maps are used to predict the mean cost of segment according to the state
of charge at the beginning and the end of the segment. Therefore, a new problem that
computes the reference state of charge trajectory SoCr to be reached at the end of each
segment, based on these cost maps, write as follows:

min
SoCr

S−1∑
s=0

C(SoCr
s , SoC

r
s+1, µs) (1.4.0.12)

s.t. ∀s, SoCr
s ∈ [0, 1] (1.4.0.13)

SoCr
0 = SoCintial (1.4.0.14)

SoCr
S = SoCfinal (1.4.0.15)

The main advantage of this bi-level method is that the uncertainty of the traffic be-
haviour has been already treated thanks to stochastic based optimizations. Thus the new
problem can be solved thanks to a Deterministic Dynamic Programming, and therefore
can be computed on-line. The state of charge trajectory is obtained along the whole jour-
ney as well as the optimal policy on each segment.

Numerical simulations have been done in order to compare the consumption obtained
with a theoretical lower bound, computed thanks to deterministic dynamic programming
on speed profiles. The results show that the bi-level method induces an overconsump-
tion (∼ 15%), and satisfy well the final state of charge constraint, while maintaining a
simulation time smaller than 10 seconds.
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Chapter 5 - Application to the optimal routing problem under traffic conditions

On road networks, multiple paths are possible to arrive to the wanted destination. Traf-
fic conditions on these paths can vary significantly due for instance to speed limitations or
traffic jams. In order to minimize the global consumption, we propose to use the methods
developed in the previous chapters to find the optimal consumption path, according to
consumption and traffic conditions, in the road network.

This one is modelled as a graph, where each road intersections correspond to a node.
This graph is extended in each node with the possible state of charge, in order to compute
both the optimal path and the optimal state of charge trajectory. The set of all possible
paths between the origin S and the destination D is denoted ΓSD. The shortest path
problem is read as follows:

minimize
γ∈ΓSD

∑
i∈γ

νNiNi+1
(SoCr

i+1, SoC
r
i ) (1.4.0.16)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1] (1.4.0.17)

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi] (1.4.0.18)

We have established that the discretization error (for the value function) is of the order
of the discretization step. Classical A∗ algorithm is performed to solve it.

Numerical simulations have shown that the consumption of such eco-path is reduced
compared to the fastest one and the SoCf constraints are relatively satisfied.

Appendix A - A Stochastic gradient method for Wasserstein barycenters of distribu-
tions

In this appendix, a new algorithm is presented, based on stochastic gradient methods
to compute Wassertein barycenter of probabilities distribution. The fast computation of
such barycenter is useful for instance to perform clustering. The Wasserstein distance,
based on the optimal transport, compare two distributions. Denoting µ the barycenter of
the distribution νk and c the associated cost matrix, the transportation plan π is computed
as follows:

minπ,µ
∑K

k=1 c · πk; π ≥ 0;

(πk)>1 = µ, πk1 = νk, k = 1, . . . , K,
(1.4.0.19)

Fast methods to compute these barycenters are required when handling large amounts of
data. Thanks to a double entropic regularization of the barycenter problem and using the
semi dual form, with u the Lagrange multiplier, of the regularized problem with reverse
entropy, we obtain a problem that can be solved thanks to an algorithm of the stochastic
gradient class:

max
u

∑
j

hj(u) (1.4.0.20)

with :

hj(u) = −ε1

∑
k

νkj (log(
1

νkj

∑
i∈X0

e
−cij
ε1 e

−uki
ε1 ) + 1)−

ε2

∑
k ν

k
j

K
(
∑
i∈X0

e

∑K
r=1 uri
ε2 ) (1.4.0.21)

The time and spatial complexity of the stochastic gradient has been compared to the
Sinkhorn iterations for barycenters introduced in 2015 [8].
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CHAPTER 2

A stochastic data-based traffic model

This chapter has been published in IEEE Transactions on Intelligent Transportation
Systems in 2019 [56].
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2. A STOCHASTIC DATA-BASED TRAFFIC MODEL

2.1 Introduction

In 2015, according to data from the European Environment Agency, road transporta-
tion contributed to 21% of total EU-28 greenhouse gas emissions. In order to meet the
long-term emissions reduction target, emissions from transportation need to fall by more
than two thirds by 2050 [33]. These emissions are essentially a function of the vehicle
propulsion technology and the driving style [34].

Estimating energy consumption of the vehicles is a great challenge in the objective
of improving global transportation efficiency, since this information is used in energy
management, eco-routing, eco-driving, traffic management, ... Traffic congestion has
a major impact on the driving behavior, and thus plays a key role in the level of fuel
consumption [90].

Therefore, accurate predictions of vehicles energy consumption must take traffic con-
ditions into account. To perform this objective, faithful modeling of traffic behavior is of
primary importance. Energy-oriented modeling approaches can be divided in two main
categories.
On the one hand, several mathematical traffic models are available nowadays, see for in-
stance [88]. Such models typically depict the reality either from a macroscopic point of
view, based on the road vehicular density [59], or from a microscopic perspective, based
on the description of the instantaneous behavior of each vehicle [74]. Both approaches
have limitations in providing an accurate energy consumption estimation. Macroscopic
models typically provide average traffic speeds to compute energy consumption [94], thus
neglecting the impact of speed fluctuations due to congestion. Higher precision of the en-
ergy consumption estimation could only be obtained at the expense of a denser discretiza-
tion of the road network, therefore compromising scalability. Microscopic models could
achieve precise energy consumption estimation, but they require a significant calibration
and validation effort. Also, the computational burden and the amount of collected data
grows rapidly with the size of the network, therefore these models are more suitable for
off-line use.
On the other hand, data-based models rely on collected traffic information to estimate
traffic behavior and energy consumption. Instantaneous models are able to precisely esti-
mate energy consumption by using large amounts of data, generally the measured driving
profile of each vehicle. To tackle this drawback, aggregated models use the average value
of the measured speed profiles to compute energy consumption, but they suffer from the
same accuracy problems previously discussed for the macroscopic traffic models. Fur-
thermore, the data sparsity and availability is an issue [42]. Other approaches try to solve
the problem of the data sparsity by simply classifying road segments by category (e.g.
urban, arterial, freeway, etc.), in order to associate each category with a typical energy
use. This type of models may lead to inaccuracy in energy consumption estimation, as
road segments belonging to the same category may show very different traffic patterns
[31].

In this work, a new way to represent traffic behavior on large road networks is pro-
posed. The objective of this model is to accurately depict the effect of traffic conditions
on the vehicles energy consumption in each road segment. The key idea is to use a statis-
tical approach based on vehicle speed and acceleration data, measured from real vehicles.
In particular, the entire observation time during which speed and acceleration data are
collected is subdivided into time-frames. During each time-frame a (v, a) distribution is
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generated, and such a distribution is then used as an input for an energy consumption
model to estimate the traffic energy consumption on the analyzed road segment during
the specific time-frame. Therefore, each road segment is defined by its own collection of
(v, a) distributions.

The proposed model also includes the possibility of reducing the dimension of the
traffic data and increasing scalability, by applying clustering techniques to the probability
distributions of each road segment. For instance, the different distributions representing
traffic in one road segment over different hours of the day may be aggregated in clusters
modeling only significant traffic conditions (e.g. peak, off-peak, etc.).

The chapter is organized as follows. The clustering technique and the proposed energy
consumption model are presented in Section 2.2. The traffic data collection and the model
validation procedure are discussed in Section 2.3. Using traffic data from the simulator
SUMO, Section 2.4 illustrates the method first on a single road segment, then for a larger
set of segments. Finally, section 2.5 presents an application of the method to actual traffic
data, as well as a comparison to a more basic approach, using only mean speeds.

2.2 Proposed Method

2.2.1 Road segments
In the following, the road network is assumed to be subdivided into a collection of

segments. A segment is a portion of road with homogeneous topographic characteristics.
Segments are typically delimited by network elements such as traffic lights, crossroads, or
roundabouts. With a traffic simulator such as SUMO we can retrieve the segments from
the simulator model, see 2.4.1. When working on actual traffic data, segments can be
obtained from Geographic Information Systems (GIS) data (e.g. OpenStreetMap, HERE
Maps, etc.). Segments length typically range between a few meters and a few hundreds
meters. In the following we denote S the set of road segments, of size NS .

2.2.2 Probability distribution for (speed,acceleration)
The consumption of an engine depends on its operating point, which can be deter-

mined by the speed and acceleration of the vehicle. The key point in our method is to
assume that an accurate (with respect to energy consumption) description of the traffic
can be derived from the probability distributions of measured speeds v and accelerations
a for each road segment. Note that these distributions do not retain the temporality of the
speed profiles.
We set NT the number of time-frames for each segment1. We denote the family of time-
frames (ti,s)(1...Nt)×(1...NS), and their length (∆Ti,s)(1...Nt)×(1...NS). For each segment s, we
record the (speed,acceleration) of all the vehicles passing through the segment during all
the time-frames ti,s.

In the following, we work with discrete distributions in the (v, a) space. We denote V
and A the sets of feasible speed and acceleration. To simplify, these sets are taken iden-
tical for all segments and time-frames, thus all (speed,acceleration) discrete probability

1For the sake of simplicity, we assume the same number of time-frames for all the segments
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distributions have the same support in V × A. We denote NV and NA the discretization
size of V and A. Recalling that NS and NT are the number of road segments and time-
frames, we obtain a total of NSNT discrete distributions of support size NVNA. Fig.5.2
shows an example of such a distribution.
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Figure 2.1 – Example of (speed,acceleration) distribution.

2.2.3 K-means clustering with strong patterns
For each segment s and time-frame ti,s we have a probability distribution µi,s. When

considering large road networks with several thousands of segments, the data size grows
rapidly to several gigabytes. A natural idea is to reduce the information through cluster-
ing techniques applied to these distributions. Then, for each cluster j, we can take its
barycenter µ̄j as representative of the traffic conditions for all the segment/time-frame
pairs (s, ti,s) that belong to this cluster. This way, we only have to store the distributions
corresponding to the barycenters of the clusters.

Since the elements to be clustered are probability distributions, we use the 1-Was-
serstein distance ([89, 26]). This distance based on optimal transport theory tends to
preserve the geometrical aspects (shapes) of the distributions. We recall the definition of
the Wasserstein distance:

W1(µ, ν) = min
π∈Π(µ,ν)

d · π (2.2.3.1)

where Π(µ, ν) is the set of transportation plans from µ to ν, i.e. the set of nonnegative
matrices π of size (|NV| × |NA|)2 with marginals π>1 = µ and π1 = ν. As speed and
acceleration have comparable magnitude orders when expressed in SI units, we simply
define the displacement cost d by the Euclidean norm between the origin and destination
points.

The notion of barycenter for distributions has been extended to the Wasserstein dis-
tance in [1], where the barycenter is defined as the distribution that minimizes the sum of
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the squared Wasserstein distances to all distributions of the set. For the practical aspects
we follow [8] in which the barycenter minimizes the sum of Wε distances, with Wε an en-
tropic regularization of the Wasserstein distance, computed by a Sinkhorn-type algorithm.
Due to the possible large dimension of the speed and acceleration grid, another algorithm
SAG has been explored to handle high dimensional distributions. This algorithm is pre-
sented in Annexe A.

We use the K-means algorithm [62] to compute the clusters, and note k the (fixed)
number of clusters. To reduce the sensitivity of the K-means algorithm to the initial
guess, we use the strong patterns method [58]. Strong patterns are subsets whose elements
always end up in the same cluster regardless of the K-means starting point. In practice,
we run a first batch of K-means with random initializations to identify the strong patterns,
and then perform a final K-means which is initialized by taking one element in each of
the k largest strong patterns. The principle of the K-means is recalled in Algorithm 1.

Algorithm 1: K-means algorithm
Input : Distributions to be clustered µ1 · · ·µI
Output: Clusters barycenters µ̄1 · · · µ̄k
Initialization
for j ∈ {1, . . . , k} do

µ̄j ← choose randomly in µ1 · · ·µI
Iterate until convergence
Initialize barycenter backups ˆ̄µj ← 0
while ∃j ∈ {1, . . . , k}, µ̄j <> ˆ̄µj do

Backup all barycenters ˆ̄µj ← µ̄j,∀j ∈ {1, . . . , k}
for each distribution µi do

Find the closest barycenter µ̄c
Label µi as part of cluster c

Update all cluster barycenters µ̄j,∀{j ∈ 1 . . . k}

2.2.4 Computing energy consumption

The energy consumption computed is the energy at the wheel, neglecting the losses
due to the powertrain. The instantaneous power at the wheel is denoted as a general func-
tion P (v, a), which can be for instance of the form presented in (2.3.1.1). The ultimate
objective of the proposed method is to estimate energy consumption by using only the in-
formation extracted from the (v, a) probability distributions µ. More accurately, we seek
to obtain the energy consumption from the barycenter µ̄ of the cluster containing µ. In
the following we introduce two methods to compute the consumption of a generic vehicle
passing through a segment. These will be referred to as “Average Consumption Method”
and “Memoryless Sampling Method”.
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Average Consumption method

The first idea is to use the average power P̄ (in the probabilistic sense)

P̄ (µ̄t) =
∑
V×A

µ̄t(v, a)P (v, a) (2.2.4.1)

where µ̄t is the barycenter of the cluster containing the current segment at time t. The
barycenter may indeed change if t crosses different time-frames while the vehicle is on
the segment. This average power is integrated over the time interval [ti, tf ] spent by the
vehicle on the segment, thus

CAvg =

∫ tf

ti

P̄ (µ̄t)dt (2.2.4.2)

Note that knowledge of the time interval is required in this method, in addition to the
(speed,acceleration) distributions. Indeed, using here the average time would give identi-
cal consumption for every vehicle. Therefore, we need some more statistically significant
time information in order to capture the deviation of the consumption distribution. A re-
sulting drawback of this method is that a faster vehicle has a shorter travel time and thus
a lower energy consumption, which may seem unrealistic.

Memoryless Sampling method

In the second method the energy consumption is still obtained by integrating the in-
stantaneous power, but we do not use the average power. Instead, we implement the idea
that the vehicle must follow the traffic at every time, in a statistical sense. More precisely,
its speed and acceleration should follow the probability distribution of the barycenter µ̄
of the cluster for the current pair (s, t). Another difference is that the integration is per-
formed over the segment length Ls instead of travel time.

So the Memoryless Sampling method generates a sequence of (vn, an), independent
samples according to the probability distribution µ̄. Setting a time step δt, we use this
sequence to integrate both the traveled distance and the instantaneous power. We assume
δt = 1s, in order to have the same order of magnitude as the reaction time of a driver.
We stop the generation of (vn, an) when the vehicle reaches the end of the segment 2.
Since the distance will be covered in a finite time, we obtain the finite set of samples
(vn, an)n=1,...,nf

and the consumption writes as

CMSM =

nf∑
n=1

P (vn, an)δt (2.2.4.3)

2.3 Validation Approach

2.3.1 Power and Reference energy consumption
In order to assess the accuracy of our two methods (Average and Memoryless Sam-

pling), both based on the statistical representation of traffic, we introduce a “reference”

2which happens with probability 1 since vehicles never stop indefinitely.
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energy consumption for the sake of comparison. First we choose a simple equation for
the instantaneous power P (v, a), neglecting all road slope effects:

P (v, a) = (ma+ α2v
2 + α1v + α0)v (2.3.1.1)

where m is the vehicle mass and α0, α1, α2 define a vehicle-dependent polynomial ap-
proximation of the road-load force. We use the numerical values m = 1400kg, α0 =
185.4, α1 = 0, α2 = 0.3, corresponding to a passenger vehicle [22]. We would like to
point out that energy consumption models are a wide topic, and we refer interested readers
for instance to [44]. In our case we essentially want to compare the consumptions from
raw traffic data and statistically processed data, so the key point is to use the same power
expression for all consumption formulas. In all the following, these energy consumptions
C are computed by integrating 3 the instantaneous power P along the (speed,acceleration)
profiles, without taking into account any regenerative braking, namely

C =

∫ tf

ti

max(0, P (v(t), a(t)))dt (2.3.1.2)

In order to compare the different methods, we compute the distribution of the energy
consumptions for a given (segment,timeframe):
- the Reference energy distribution CRef is obtained by plugging into (2.3.1.1) the recorded
speed and acceleration (v(t), a(t)) of all vehicles passing through the segment during the
timeframe, according to the traffic simulator.
- for the Average and Memoryless Sampling methods, we recall that the consumption dis-
tributions CAvg, CMSM are obtained using the speed/acceleration probability laws µ̄ from
the barycenters, see (2.2.4.2) and (2.2.4.3).

2.3.2 Indicators
Since our aim is to compare distributions of energy consumptions, we study several

indicators.

• Mean and Standard deviation errors are classical indicators. We compute these
relative errors as follows, with Cmethod denoting either the Average consumption or
the Memoryless Sampling consumption:

εmean(s) =
Cmethod(s)−Cref (s)

Cref (s)

εσ(s) =
σCmethod

(s)−σCref
(s)

σCref
(s)

• Kullback-Leibler divergence [54], also called ’relative entropy’, is a particular case
of ϕ-divergence. KL divergence can be used to measure distances between two
probability distributions P and Q, however it is not a metric (no triangular inequal-
ity or symmetry). Another drawback is that it cannot be computed for instance
when the probability of the model q is 0 while the probability of the reference p is
not.

KL(P |Q) =
∑
i

pi log(
pi
qi

) (2.3.2.1)

3in practice integration is done by the Euler scheme.
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Instead, we use the Jensen-Shannon divergence, which is a symmetrized version
of KL divergence, sometimes referred to as ’total divergence to the average’ [20].
Note that the square root of the JS divergence is a metric called JS distance [30, 71].
Fig.2.2 illustrates the JS divergence on a Gaussian with noised parameters.

JS(P |Q) =
1

2
KL(P |M) +

1

2
KL(Q|M) (2.3.2.2)

with
M =

1

2
P +

1

2
Q (2.3.2.3)

Here, we have P = Cmethod and Q = CRef .
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Figure 2.2 – Jensen-Shannon divergence for a noised Gaussian distribution with base
parameters µ = σ = 1.

2.4 Results with simulated traffic data

2.4.1 Traffic Data from simulation
We illustrate our approach with data obtained from the traffic simulator SUMO [53].

The simulation runs the scenario LUST [16], which models a 24h traffic in the city of
Luxembourg. The time step is set to one second, i.e. 1 Hz sampling frequency for the
variables of the vehicles. For the road segments we take the subdivision from the scenario,
consisting of roughly 24000 elements. We aggregate contiguous road lanes together to
obtain more data per segment, and end up with 18322 segments. The length of these road
segments is shown on Fig. 2.3.

From the simulation raw data (5.7GB), we extract the segment, speed, and acceleration
of each vehicle in the network at all time steps. We aggregate the records for a fixed time-
frame length ∆ts,i (in practice we use a constant frame length ∆t for all segments). This
is done both to gather sufficient data on the segments, and to decrease the number of
traffic distributions for the clustering phase. For instance a time-frame of 1h will give
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Figure 2.3 – An illustration of cumulative distribution of the length of road segments in
city of Luxembourg as implemented in LUST for SUMO.

24 distributions per segment, while 10 min gives 144 distributions per segment. In the
following all codes are written in Python/NumPy and run on a standard desktop computer.

2.4.2 Numerical results on one segment
To begin with, we compare the different consumptions on a single road segment. The

objects compared are therefore the consumptions distributions of all the vehicles that
went through the segment during each time-frame. Results are shown as the cumulative
distribution function of the consumptions for all time-frames.

We analyze in particular the influence of the (v, a) discretization, the clustering, and
the choice of time-frame duration. Unless specified otherwise, the distributions are shown
for a discretization NV = NA = 10, a time-frame ∆t = 10min, taking the full set of dis-
tributions without clustering.

Influence of the (speed,acceleration) discretization

First, Fig.2.4 shows the consumption distribution for both the Average method and
Memoryless Sampling method. We test the discretizations NV = NA = 10, 20 and 30
and compare to the reference consumption. We see that for the Memoryless Sampling
method: i) the general shape of the distribution is similar to the reference and ii) finer
(v, a) discretizations give distributions closer to the reference. On the other hand, for the
Average method: i) we observe some linearization of the consumption and ii) the effect
of discretization is much less significant.

Influence of the time-frame

Next we study the effect of the length of the time-frame ∆t, which is the time interval
over which we aggregate the vehicles data. Longer time-frames may cause some over-
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Figure 2.4 – Cumulated consumption distribution for one segment - effect of (v, a) dis-
cretization and clustering. Reference consumption (blue line) is recomputed along each
vehicle speed/acceleration profile. The two graphs show the consumptions estimated by
the memoryless sample and the average consumption methods. We compare several set-
tings for the speed/acceleration discretization, as well as the number of clusters.

averaging and loss of specific traffic information. On the other hand, shorter time-frames
may lead to insufficient vehicle data (for statistical relevance), and also increase the num-
ber of (v, a) distributions to handle. Fig. 2.5 shows the energy consumptions obtained
for time-frames of 5s, 1min and 10min. On this segment, for both the Average and the
Memoryless Sampling methods, the influence of the time-frame duration seems rather
small.

Figure 2.5 – Cumulated consumption distribution for one segment - effect of the time-
frame duration.
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Influence of the clustering

To conclude this first batch of results, we examine the information loss due to the
clustering stage. The consumptions obtained using only the barycenters (green and cyan
curves in Fig.2.4) are almost identical to the ones obtained without the clustering stage.
This indicates that the data reduction performed by the clustering comes with a negligible
loss of information.

2.4.3 Numerical results on 500 segments
Now, we consider the entire road network of the city of Luxembourg, as implemented

in LUST, with' 18000 road segments. In order to study the influence of the different pa-
rameters while keeping reasonable computational times, we pick a test set of 500 random
segments, for which we perform the clustering and compute the energy consumption with
the Average and Memoryless methods. For each segment, we use the indicators defined in
2.3.2 to compare the computed energy consumptions to the Reference consumption. We
discuss the relevance of the models based on the distributions of these indicators on the
set of segments. More precisely, we investigate the influence of the discretization of speed
and acceleration, and the number of clusters. Unless specified otherwise, the simulations
use a speed and acceleration discretizations of 20 steps, a time-frame of 10 minutes, with
2 clusters.

Influence of speed discretization

The speed discretization has a direct influence over the barycenters computed by the
K-means, since it changes the support of the distribution obtained. We expect a finer
discretization to give computed consumptions (Average and Memoryless Sampling meth-
ods) closer to the Reference ones. The obvious drawbacks are an increased cost of the
barycenter computation and size of the distributions. We test NV = 5, 10, 20 steps for the
discretization, the speed interval being [0, 20] in m/s.

• Relative mean and standard deviation errors
We begin with the distribution over the 500 test segments of the mean and standard error
(both relative). Fig. 2.6a and 2.6b (upper graphs) show the errors between the Refer-
ence energy consumption and the Memoryless Sampling method. The mean and standard
error both appear to be reasonably well centered around 0. We also observe that finer
discretizations of the speed clearly improve the standard error, possibly due to a better
reconstruction of the travel times. On the other hand the mean error is shifted towards
positive values, and is indeed smaller for 10 steps than 20.

Fig.2.6a and Fig.2.6b (lower graphs) compare the Average method consumptions to
the Reference. Here the mean error is almost always negative, and the standard error is
also negative for 80% of the segments. This strong unbalance towards the negative in-
dicates that the Average method tends to underestimate the consumption. Increasing the
speed discretization reduces the mean error, but does not really improve the standard er-
ror. A possible explanation is the fact that the travel time for each vehicle is taken from
the simulation, thus the speed discretization has no effect on it.
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(a) Cumulated distribution of relative Mean error.
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(b) Cumulated distribution of relative Standard deviation error.
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(c) Cumulated distribution of Jensen-Shannon divergence.

Figure 2.6 – Speed discretization.

• Jensen-Shannon Divergence
Fig.2.6c shows the distribution over the 500 segments of the Jensen-Shannon divergence.
Upper graph is for the Memoryless Sampling versus Reference, and lower graph is for
Average method versus Reference. We observe that the JS divergence is much smaller
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overall for the Memoryless Sampling than the Average method, with distributions more
concentrated towards zero. For both methods, increasing the speed discretizations from 5
to 10 steps improves the JS divergence, while 20 steps yield very little additional gain.

Influence of acceleration discretization

Now we study the discretization of the acceleration. As for the speed, this parameter
influences the support of the (v, a) distributions, and therefore the K-means clustering.
We want to know if finer discretizations of a give more accurate energy consumptions for
the Average and Memoryless Sampling methods. We test NA = 5, 10, 20 steps for the
discretization, the acceleration interval being [−4.5, 4.5] in ms−2.

• Relative mean and standard deviation errors
Fig.2.7a shows the mean error distribution for the two methods, with different discretiza-
tions of a. We observe that for both the Memoryless and Average methods, going from
5 to 10 steps gives a significant improvement, while 20 steps is similar to 10. With a
sufficient discretization, the mean error is extremely good for the Average method. The
Memoryless method, on the other hand, tends to slightly overestimate the consumption.

Fig.2.7b shows the standard error distributions. As observed for the speed discretiza-
tion, error for the Memoryless is well balanced while Average method has mostly negative
standard errors. Finer discretizations of a seem to give no improvement for the standard
error. This may be due to the fact that acceleration has no influence on the travel time for
either method, unlike speed which is used to reconstruct the travel times in the Memory-
less method.

• Jensen-Shannon Divergence
Fig. 2.7c shows the distribution of the Jensen-Shannon divergence when varying the dis-
cretization of a. Like in the speed discretization study, we observe that the JS divergence
is much smaller overall for the Memoryless Sampling method. Once again, for both meth-
ods increasing from 5 to 10 steps improves the indicator, while 20 steps give no additional
benefit.

Influence of the number of clusters

Our traffic model uses clustering techniques to reduce the size of the traffic data, while
retaining the useful information. One would expect some kind of trade-off, where using
a larger number of clusters would keep more information at the expense of data size.

For this particular segment, simulations with k = 2, 3, 4 clusters give almost iden-
tical consumption distributions. Note that these simulations were run for a time-frame
∆t = 1h, due to the increased computational cost for 3 and 4 clusters. It remains to be
seen whether a smaller time-frame would benefit more from a higher number of clusters.
Also, the ideal number of clusters is most likely segment-dependent. Experiments with
real data in Sec. 2.5 give more insight into the impact of the number of clusters.
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Figure 2.7 – Acceleration discretization.

Summary and performance analysis

Generally speaking, increasing the speed, acceleration, time discretization and the
number of clusters will improve the accuracy of the whole approach. However, this comes
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at a cost, and some parameters have more impact than others. The detailed influence of
the method parameters is as follows:
- speed/acceleration discretization: greater NV improves the Memoryless method indica-
tors except mean error, and the Average method except std error. Greater NA improves all
indicators except std error for Average method.
- time-frame ∆t: seems to bring little improvement to both methods with this data set.
- number of clusters k: for this data set, seems to have little effect overall as well.

The drawbacks of each of these parameters are:
- finer speed/acceleration discretizations come at the cost of increased data occupancy
(before and after clustering) and higher CPU time for the clustering.
- smaller time-frames increase data occupancy before clustering, clustering CPU time,
and the risk of not having enough data on the segments for the distributions to be mean-
ingful.
- a larger number of clusters leads to a higher data occupancy after clustering, and clus-
tering CPU time.

Overall, the validation indicates that the Memoryless method has an acceptable mean
error and a good std error, while the Average method has a very good mean error but a
bad std error. The JS divergence is harder to interpret but is lower for the Memoryless
method (with half of the distribution below 0.025) than the Average method (half of the
distribution below 0.125).

At the core, we are interested in making use of the statistical information from the
traffic distributions. In this respect, the Average method appears too limited, with a bad
std error regardless of the parameters choice. Therefore, in the following sections we will
focus on the Memoryless method.

For the 1-day simulation on the whole city of Luxembourg, the raw data corresponding
to the 18322 segments take up to 5.7GB. Table 2.1 indicates the data size before (’HIST’)
and after (’BARY’) clustering, as well as the CPU time for the clustering, for a 10% sub-
set of the 18322 segments. For the whole dataset, with a discretization NV = NA = 10
and a time-frame ∆t = 10min the histograms for the (speed,acceleration) distributions
are computed in less than 15min and amount to 1.2GB. Setting k = 4, the clustering step
takes 19h and the distributions for the barycenters occupy 59MB. Taking the histograms
already reduces data occupancy by 79%, and clustering pushes it to 99% in total. More
generally, the data reduction done by the histograms is related to the speed/acceleration
discretization, while the clustering further reduces data size according to the ratio k/∆t.
Memory usage during the computations was about 100MB and posed no difficulties. It
should be noted that the clustering is an offline step that only has to be done once. Also,
it is independent for all segments and may benefit heavily from parallelization.

In the end, we observe that the range of parameters that give a reasonable trade-off
between accuracy, data size and computation times is rather small, which limits the inter-
est of trying sophisticated techniques to deduce some ’optimal’ settings. The number of
clusters k is discussed again in 2.5. As for the NV , NA discretization, possible improve-
ments could be for instance the kind of adaptive exploration described in [93], provided
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NV |A ∆t k HIST BARY CPU
5 10 min 4 49 MB 1.5 MB 25min
10 10 min 4 127 MB 5.6 MB 1.9h
15 10 min 4 256 MB 13 MB 7.9h
10 5 h 4 7 MB 5.6 MB 9min
10 1 h 4 30 MB 5.6 MB 30min
10 10 min 4 127 MB 5.6 MB 1.9h
10 1 min 4 661 MB 5.6 MB 7.5h
10 10 min 2 127 MB 2.8 MB 55min
10 10 min 3 127 MB 4.2 MB 1.4h
10 10 min 4 127 MB 5.6 MB 1.9h
10 10 min 10 127 MB 14 MB 4.8h

Table 2.1 – Influence of parameters on CPU time and data size (HISTograms before clus-
tering and BARYcenters after). Dataset is 10% of the total 18322 segments of the Lux-
embourg scenario, with raw size about 480MB.

the overall cost of the exploration does not outweight the cost of simply taking a sufficient
fixed discretization.

2.5 Results using real data
Thanks to floating car data collected by the smartphone application Geco air [40], we

were able to test our method on a real-life scenario. We focused on a portion of the A7
highway near Lyon, France, which is known to be regularly used by commuters. For
our analysis, the traffic data collected during the working days of the last two years were
aggregated as they were recorded over one day, reasonably assuming that the data share
similar traffic patterns. The speed measurements were then divided into 10-minutes time-
frames. The Memoryless method is applied to the 1632 collected speed profiles. The
discretization of the (v, a) space is limited at a 10 × 10 grid to reduce the computation
time. One of the main goal of our method is to represent traffic with a small number of
(v, a) distributions, thus we choose to explore the traffic representation with a number of
clusters between 1 and 10. As we did with the data from SUMO, we will compare the
consumption distribution of the Memoryless method CMSM to the reference consump-
tions CRef .

2.5.1 Clustering impact
The choice of the number of clusters k is related to a trade-off between data size,

computational time and accuracy of the consumption estimate. A small number of clusters
will reduce the data occupancy and CPU time, with the risk of a coarser consumption
estimate. A larger k will give consumptions closer to the unclustered raw data, at the cost
of increased data size and CPU time. Fig. 2.8 shows the mean and standard deviation
errors between the consumption distributions CRef and CMSM , for a number of clusters
k ∈ 1, · · · , 10, as well as the unclustered case (dashed line). We see that the mean error
is below 5%, and further decreases below 2% for k = 2, 3, 4 clusters, while larger k have
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larger errors. Concerning the standard deviation, it is below 0.4 and appears globally
decreasing with k. The few quirks in the curve may be due to some lingering sensitivity
of the barycenter computation to the initialization. In the following, we set k = 4 clusters
since this value gives a good trade-off. The discussion in 2.5.3 shows the link between the
clusters and the traffic conditions, and sheds some light on why a small number of clusters
seems optimal, since typical traffic conditions likely encompass only a limited number of
situations (fluid, jammed, etc).
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Figure 2.8 – Memoryless sampling method. Relative mean error and standard deviation
for different numbers of clusters k. Errors for the unclustered data and the mean speed
method are indicated as well. The value k = 4 seems to be a good choice in terms of
errors and computational cost.

2.5.2 Mean speed method
Furthermore, we decide to compare our statistical model based on (v, a) distributions,

to a simpler approach using only mean speeds, available from tools such as HERE or
Google Maps. Noting v̄s,t the mean speed for a given pair (segment,timeframe), we com-
pute a basic estimate of the energy consumption CAV GS with a constant speed and null
acceleration

CAV GS =
P (v̄s,t, 0)L

v̄s,t
. (2.5.2.1)

Taking our set of (v, a) profiles from section 2.5, we recompute the mean speed infor-
mation. We show on Fig. 2.9 the probability distributions for the reference consumption,
memoryless method and mean speed method. We observe that the memoryless results
are closer to the reference, with relative errors (εmean = 4.6%, εσ = 24.4%) better than
(εmean = 22.7%, εσ = 43.6%) for the mean speed method.
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2.5.3 Analysis of the 4-cluster case
In the following we focus on the 4-cluster case that seems to offer a good trade-off

between model size and accuracy. On Fig. 2.11 we plot the subset of speed profiles
belonging to each of the 4 clusters. We observe that these speed profiles do appear rather
similar in each cluster. Clusters 1 to 3 correspond to relatively smooth traffic conditions,
with little speed variations, 2 being the fastest, followed by 1 then 3. Cluster 4, on the
other hand, obviously corresponds to a traffic jam situation, with large variations in speed
and frequent drops to null speeds.

Fig. 2.10 represents the same 4 subsets of profiles for each cluster in the (v, a) space.
This representation confirms that the (v, a) distributions are quite distinct for each clus-
ter. The level sets on each graph correspond to the distribution of the barycenter of the
cluster, and we observe that the barycenters coincide rather well with the profile subsets.
Furthermore, we can interpret the clusters in terms of traffic conditions, as summarized
on Tab. 2.2.

Cluster Mean Speed Speed Spread Acceleration Interpretation
1 Medium Important Small Normal
2 High Low Small Fluid
3 Low Low Small Dense
4 Very low High Well spread Traffic jam

Table 2.2 – Traffic Interpretation

In order to see whether the traffic interpretation is coherent with reality, the clusters
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Figure 2.10 – Real distributions compared to their cluster.
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Figure 2.11 – Speed profiles associated with the clusters.

associated with each time-frame were plotted in Fig. 2.12, in which the grey portions
correspond to the time-frames with not enough data for the analysis. We can observe
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that the cluster 3, corresponding to a dense traffic, appears in the morning between 7am
and 9:30am. The cluster 4, traffic jam, is present essentially between 4:30pm and 8pm.
Cluster 1, normal traffic conditions, during the day and cluster 2, fluid conditions, during
the night. Overall, this traffic pattern seems very consistent with reality, exhibiting two
peak hours in the morning and evening, typical of commuting behavior.

12AM  3AM  6AM  9AM 12PM  3PM  6PM  9PM 12AM

Figure 2.12 – Traffic clusters according to the time of day.

2.5.4 Summary
The analysis conducted on real data confirms that representing traffic by means of

(v, a) distributions is effective not only to estimate the energy consumption distributions
in different portions of the road network but also to identify different traffic conditions.
Also, clustering proves to be an effective method to reduce data occupancy.

The cluster stage fits its role, allowing us to keep a reasonable data size while retaining
most of the useful information from the original set of (v, a) profiles.

2.6 Conclusions

In this chapter, we have presented a new approach to use traffic data to predict the
energy consumption of vehicles. The key point is to consider the (v, a) data in a statistical
sense without the temporal aspect, coupled with a decomposition of the road network into
a collection of small segments, based on topological aspects.

Numerical experiments carried out with traffic data generated by the traffic simulator
SUMO indicate that our approach is able to reconstruct the distribution of the energy
consumption over a set of vehicles. We introduce two methods to compute the energy
consumption, called Average and Memoryless Sampling methods. The Memoryless Sam-
pling method gives a more accurate estimate of the distribution of energy consumptions,
according to indicators such as std error and Jensen-Shannon divergence.

We also investigate the influence of several parameters such as the (v, a) discretiza-
tion, length of time-frame for data aggregation, and number of clusters for the data reduc-
tion.

The analysis on real data shows that the Memoryless Sampling method performs better
than a more basic approach based on mean speed only. Another interesting point is that
the clusters are consistent with the traffic conditions.

Possible future works include a second level of clustering, creating clusters of road
segments with close traffic conditions, and variants of the Memoryless Sampling method
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that would retain some temporality (e.g. Markov). Another direction could be to inves-
tigate the possible coupling of the presented model with approaches in flow management
such as the SS-CTM in [48], since both use a spatial decomposition and account for
stochastic aspects of the traffic.
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CHAPTER 3

An Optimal local policy using traffic
prediction

An article [55], based on this chapter and chapter 4, has been submitted to IEEE
Transactions on Control Systems and Technology in 2019.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Modelling vehicles and traffic conditions . . . . . . . . . . . . . 71

3.2.1 Hybrid vehicle model . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Probabilistic structure for traffic conditions . . . . . . . . . . . . 73

3.3 Optimal Control Problem under traffic conditions . . . . . . . . . 75
3.3.1 State of Charge specifications . . . . . . . . . . . . . . . . . . . 75
3.3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . 81
3.4.1 Value Function according to the traffic state µ . . . . . . . . . . . 81
3.4.2 Optimal policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Speed trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.4 Estimation of the overconsumption . . . . . . . . . . . . . . . . 87

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Stochastic optimal control of a hybrid electric vehicle under traffic constraints 69



3. AN OPTIMAL LOCAL POLICY USING TRAFFIC PREDICTION

3.1 Introduction

Increased efficiency of HEVs derives from the on-board energy management system
(EMS) which optimizes at each time instant the power split ratio between the two propul-
sion systems. A detailed review of the existing power management control algorithms for
HEVs is offered by [63]. However, most of the current EMS strategies are somewhat con-
servative and sub-optimal due to their lack of prediction capabilities of the actual driving
conditions of the vehicle. In fact, driving behavior and traffic conditions have a major im-
pact on the traction power demand and consequently on the EMS. Several recent studies
attempt to precisely establish such a relationship between driving conditions and energy
consumption for different types of vehicle powertrains [24, 36].

The advent of connectivity and the availability of large amounts of driving data is
favoring the transition towards predictive EMS strategies, which can further improve en-
ergy efficiency of HEVs by more effectively taking into account road traffic externalities
[65]. Such predictive strategies need to have an estimate of the required power for traction
along the vehicle trajectory, based on information about traffic conditions, road signaliza-
tion and road grade. Data-based driving behavior and traffic models are typically based
on historical information about traffic conditions on the different portions of a road net-
work. Speed and acceleration probability distributions and their statistical properties are
generally used to represent driving behavior [12, 61] and to establish speed predictors.
Those predictors either combine deterministic and stochastic approaches [10, 92], or are
fully based on stochastic processes such as Markov chains [85, 49, 67], or are determined
through independent and identically distributed (i.i.d.) sequences [56]. These probability
distributions are often obtained from standard driving cycles [68, 92] or real driving data
[47, 49, 39, 56]. Their ability in reproducing real driving conditions strongly affects the
performance of predictive EMS.

Since stochastic processes are considered as an effective way of predicting driving
behavior, the research on EMS for HEVs has put much effort in designing predictive
and stochastic optimization strategies. Such strategies can be essentially grouped into
offline and online optimization methods. The offline methods such as the Stochastic Dy-
namic Programming (SDP) are mostly used as a benchmark for the online methods, but
seldom used in practical implementations due to the high computational cost [14]. The
online methods, such as the stochastic Model Predictive Control (MPC), in turn, offer
more practical computation times without significantly compromising accuracy and per-
formance. Stochastic MPC methods offer a favorable framework for the online prediction
of the driving behavior on a future receding horizon and are employed for the design of
EMS for HEVs [45]. However, accuracy and optimality of the MPC methods strongly de-
pend on the accuracy of the driving behavior model, namely the probability distribution
generating the stochastic process, as well as the size of the prediction horizon, typically
chosen in a trade-off between performance and computational burden.

In an effort to reduce the impact of the prediction and optimization horizon on the
EMS performance, bi-level optimization strategies seem promising in improving perfor-
mance from a global perspective thanks to their hierarchical structure [81]. The intuition
behind this type of optimization strategy for the EMS of HEVs is that in the system
there are slowly changing variables, such as the battery state of charge (SoC), and rapidly
changing variables, such as torque and regime. Hierarchical MPC has been applied to the
EMS problem for HEVs [84, 38] and proved compatible with real-time implementation.
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Figure 3.1 – Bi-level EMS proposed

However, hierarchical MPC still solves an online optimization problem thus requiring
modeling simplifications and limited prediction horizon.

In this thesis, the proposed EMS strategy aims to combine the advantages of the in-
finite horizon optimization of the SDP and the real-time capability of the MPC. An il-
lustrative scheme of the proposed approach is given in Fig.3.1. This chapter focus on
the Torque-Split Optimization. The second part of the proposed EMS, the SoC Profile
Optimization, is treated in chapter 4.

3.2 Modelling vehicles and traffic conditions

3.2.1 Hybrid vehicle model

Automobile companies have presented different architectures for hybrid electric ve-
hicles. HEVs can be classified in four main types (Serial, Parallel, Combined, Complex)
[15]. In the following we focus on HEVs with parallel design, where both the thermal
engine and the electric motor can power the vehicle1, see Fig.3.2. This type of design can
use the engine in order to recharge the battery, at the cost of an increased fuel consump-
tion. This option allows for optimization of the global consumption if some information
is available on traffic conditions along the travel.

Neglecting the slope effect and knowing the speed v and the acceleration a, the torque
Tw and the rotation speed ωw of the wheel at each time t can be computed using the
following formula (3.2.1.1):

Tw(v(t), a(t)) = (ma(t) + α2v
2(t) + α1v(t) + α0)rw (3.2.1.1a)

ωw(v(t), a(t)) =
60v(t)

2πrw
(3.2.1.1b)

1Notice that the proposed strategy could be applied to every HEV architecture.
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Figure 3.2 – Parallel hybrid configuration where ICE = internal combustion engine, BT =
battery, PB = Power link, EM = electric motor, TC = torque coupler, V = vehicle. Bold
lines indicate mechanical links, solid lines indicate electrical links.

with m the vehicle mass, rw the wheel radius, and α0, α1, α2 coefficients of a quadratic
approximation of the road-load force.

Then the torque required at the primary shaft Tprim and the rotation speeds of the
engine ωe and motor ωm follow (3.2.1.2):

Tprim(v(t), a(t)) = max

(
Tw(v(t), a(t))

ParatioPaeffGi
RG

i
Eff

, Tmin

)
(3.2.1.2a)

ωe(v(t), a(t)) = ωw(v(t), a(t))ParatioG
i
RG

i
Eff (3.2.1.2b)

ωm(v(t), a(t)) = ωw(v(t), a(t))ParatioG
i
RG

i
EffR (3.2.1.2c)

with Gi
R, G

i
Eff the gear ratio and efficiency, and Paratio, Paeff the characteristics of the

powertrain. Finally, R is the reduction ratio between the electric motor and the engine.
Neglecting losses due to the mechanical links, the torque of the engine and motor are

linked through equation (3.2.1.3):

Tprim(v(t), a(t)) = Te(t) + Tm(t)R (3.2.1.3)

The consumption of the engine is modeled by a map Ĉ(ωe, Te) obtained through ex-
perimental characterization, see Fig. 3.3. This map uses as inputs the torque request
Te and the rotation speed ωe for the engine. Thanks to (3.2.1.1,3.2.1.2,3.2.1.3), we can
express the consumption as a function of the electric motor torque Tm rather than Te:

C(v(t), a(t), Tm(t)) = Ĉ(ωe(v(t), a(t)), (3.2.1.4)
Tprim(v(t), a(t))− Tm(t)R).

This reformulation allows us to take the motor torque Tm as the control of our system.
Similarly to the engine map, we also have a motor map that gives the electrical power P̂m
required by the motor:

Pm(v(t), a(t), Tm(t)) := P̂m(ωm(v(t), a(t)), Tm(t)) (3.2.1.5)

This power can be positive or negative, corresponding to a discharge (resp. charge) of the
battery. We note Cmax the maximum capacity of the battery and SoC(t) ∈ [0, 1] its state
of charge at time t. The dynamics of the state of charge can be written as follows:

˙SoC(t) =
1

Cmax
Pm(v(t), a(t), Tm(t)) (3.2.1.6)
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Figure 3.3 – Efficiency map of the engine

3.2.2 Probabilistic structure for traffic conditions
This section will introduce a formal framework for the representation of the traffic

conditions using a stochastic framework. The results of the previous chapter indicate
that taking the speed and the accelerations as drawn i.i.d. according to a probability
distribution µ inherited from the past speeds and accelerations gives good approximation
of the energy spent by the vehicle on a road segment.

The scenario space

Let h > 0 be the time step, T > 0 a horizon greater than the supremum of the exit
time with probability 1. N := T/h will be the number of time steps, and {tk := kh, k =
0 . . . N} the grid of time. A scenario ω is a function of time k → (vk, ak) corresponding
to the speed and acceleration of our vehicle, assumed constant over the time interval and
with (vk, ak) having values in a finite subset G := V × A → R2. Therefore a scenario ω
represents a possible speed profile where ωk = (vk, ak) represents respectively the mean
speed and the mean acceleration of the vehicle over time interval (tk, tk+1).

We define the set of random events Ω as the set of scenarios. We assume the existence
of a probability law P over Ω. As explained in e.g. [1, Ch. 7], this endows the event set
with a Markov chain structure, whose transition probabilities, for (V,A) and (V ′, A′) in
G, are defined as

pk(V,A, V ′, A′) := P
[
(vk+1, ak+1) = (V ′, A′)|(vk, ak) = (V,A)

]
(3.2.2.1)

and can be computed as follow :

pk(V,A, V ′, A′) :=
P
[
(vk+1, ak+1) = (V ′, A′) and (vk, ak) = (V,A)

]
P [(vk, ak) = (V,A)]

(3.2.2.2)
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Conversely, given probability transitions (such that the sum of probability transitions
starting from a given node is equal to 1), the probability of a scenario is just the product of
the corresponding sequence of probability transitions. In the memoryless probability tran-
sition model, the events (vk+1, ak+1) = (V ′, A′) and (vk, ak) = (V,A) are independent,
therefore

pk(V,A, V ′, A′) := P
[
(vk+1, ak+1) = (V ′, A′)

]
(3.2.2.3)

We denote by Fk the associated filtration, which is the algebra generated by functions
of (ω0, ..., ωk).

Distance Process

A scenario defines a possible speed profile, as said in the previous section. Further-
more this speed profile describes the vehicle trajectory over the given road segment. Here
t ∈ R+ denotes the time. The trajectories always start at time t0 = 0, the time index kt is
defined such that t ∈ [tkt , tkt+1]], i.e. kt ≤ t/h ≤ kt+1. Therefore the discrete trajectories
of the speed and the acceleration are :

V (t) := vkt ;A(t) := akt (3.2.2.4)

The distance covered by the vehicle at time t, denoted D(t), is the solution of

Ḋ(t) = V (t);D(0) = 0 (3.2.2.5)

The exit time tf (ω) corresponds to the earliest time for which the vehicle reaches the
end of the road segment, namely

tf (ω) = Min{t|D(t) ≥ L} (3.2.2.6)

where L is the length of the segment. We recall the definition of a stopping time : a
mapping τ : Ω → {0, ..., N} is a stopping time, if the event {τ = k} belongs to Fk, for
all k. The exit time tf is a stopping time. Since the speed is random, the time spent on the
road segment during the last time step is not equal to h but is proportional to the distance
remaining to cover in order to complete the road segment.

Therefore the time spent by the vehicle on the segment, denoted hk(ω) has value h if
k < ktf and tf (ω)− ktf (ω)h = L−Dk

vk
for k = ktf (ω). Thus hk(ω) = min

(
h, L−D

k

vk

)
.

Expected Consumption

As said in the previous section 3.2.1, the consumption is a function of the speed V ,
the acceleration A and the motor torque Tm. The decisions Tm(ω) are adapted to Fkt . We
recall that a random variable depending on time (i.e., a collection of functions y(t, ω) for
ω ∈ Ω) is adapted if, for all t, y(t, .) depends only on realizations of ω up to time index
kt. In this context, the speed and acceleration at each time are given by ω. Therefore the
decision Tm is chosen knowing the realisations of (V,A) until time kt included. This clas-
sical framework, when the decision is chosen after the realization of the random variable
is called Hazard Decision framework.
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For a given scenario ω and decision Tm(ω), we define the associated cost

c(ω, Tm(ω)) :=

kf (ω)∑
k=0

hk(ω)C(vk, ak, T km(ωk), ) (3.2.2.7)

The corresponding expectation over the whole set of random events Ω can be written
as

C(Tm) = EP [c(ω, Tm(ω)] =
∑
ω∈Ω

P(ω)c(ω, Tm(ω)) (3.2.2.8)

Finally, to a given decision map Tm can be associated a SoC process governed by

˙SoC(t) =
1

Cmax
Pm(vkt , akt , Tm(vkt , akt));SoC(0) = SoCinit (3.2.2.9)

3.3 Optimal Control Problem under traffic conditions
Using the model presented in the previous sections, we are able to formulate an opti-

mal control problem that will minimize the expected consumption under predicted traffic
conditions. An analysis in term of error is also proposed.

3.3.1 State of Charge specifications

State of charge constraint

In order to avoid the trivial solution of a systematic maximal discharge, a constraint on
the final state of charge SoCf is added. This constraint can be an equality or an inequality.
Equality constraints tend to be computationally tricky to handle in a stochastic framework,
thus the inequality constraint is chosen in order to facilitate the numerical solving. It will
ensure that the vehicle does not expend more than some allocated ∆SoC, namely

SoC(tf (ω)) ≥ SoCf := SoC(0) + ∆SoC (3.3.1.1)

Another constraint on the SoC needs to be considered, since the battery can never be
below 0% or above 100%. This gives the running state constraint :

SoC(t) ∈ [0, 1] (3.3.1.2)

Note that if the running state constraint is removed, the value for the problem depends
only on ∆SoC, since the state of charge does not enter in the dynamics.

Feasibility of the final state of charge

Due to the physical limits of the motor and the engine, for each point of (V,A) in the
grid G, there exists a possible maximal increase c1 (resp. maximal decrease c2) of the
SoC. Then for the scenario w, a total variation ∆SoC(ω) is not admissible if

∆SoC(ω) /∈
ktf∑
k=0

[c2(ωk), c1(ωk)] (3.3.1.3)
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In practice, the maximal discharge c2 is not likely to be a concern due to the final
constraint on the SoC being an inequality. On the other hand, the maximal charge c1

will make the problem infeasible as soon as there exists an infeasible scenario. In order
to avoid this, we replace the final constraint on the SoC by a penalization term denoted
P (SoCf , SoCtf ) .

Monotonicity of the value functions

Intuitively, we expect that the value functions appearing in the problem satisfy the
following ‘monotonicity property’: they are nonincreasing w.r.t. SoC0 and nondecreasing
w.r.t. SoCf . We need the following hypotheses:

1. The consumption function C is a continuous and nonincreasing function of the
torque Tm

2. The power function Pm is a continuous and nonincreasing function of the torque
Tm

3. The final cost P is nonincreasing w.r.t. SoC0 and nondecreasing w.r.t. SoCf .

Theorem 1. The value functions of the problem satisfy the above monotonicity property.

Proof. The monotonicity w.r.t. SoCf is a direct consequence of hypothesis 3). We next
establish the monotonicity w.r.t. SoC0. Consider a feasible policy T km with associated
state SoCk (with k indicating the distance step). These are random variables, depending
on the realization of speed and acceleration. Consider now the perturbed problem with
perturbed initial state of charge SoC ′0 = SoC0 + ε, with ε ≥ 0 and SoC ′0 ≤ 1. We con-
sider a perturbed trajectory (T̂ km, ŜoC

k) such that for all k, ŜoCk is the smallest possible
majorant of SoCk. This obtained by forward induction: we choose the control T k−1

m as
the largest feasible one such that ŜoCk ≥ SoCk. By hypothesis 2) and Equation 5.2.2.9,
the variations of state of charge of the perturbed trajectory are not greater than the original
ones. Therefore thanks to hypothesis 1), we have a non greater consumption at each step
k. By hypothesis 3), the final cost for the perturbed trajectory is not greater as the original
one. The conclusion follows.

In the following numerical section 3.4, we choose

P (SoCf , SoCtf ) = λ|SoCf − SoCtf | (3.3.1.4)

The choice of λ will be discussed in the following.

Heuristic cost

The value of the value function depends on λ, with the pitfall that setting a large value
of λ will ensure the final SoC constraint but also strongly degrade the objective value.
Therefore a heuristic to choose the suitable value of λ is proposed. The idea is to convert
the missing final SoC into a corresponding amount of fuel. The mechanical energy that
can be obtained for a litre of fuel is directly linked to the efficiency of the engine. As this
efficiency dependent directly on the charging point, then the distribution µ can be used to
compute an approximate marginal mean cost of the state of charge. Taking this mean cost
as λ gives a meaningful order for the penalization, with respect of the consumption of the
vehicle.
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3.3.2 Problem statement
In order to model the uncertainty due to the traffic behaviour, the transition proba-

bility pk is set as ∀k, pk(V,A, V ′, A′) = µ(V ′, A′). We recall from chapter 2 that µ is a
distribution representing traffic conditions.

So our problem P can be written as :

min
Tm

EP
[
c(ω, Tm(t, ω)) + P (SoCf , SoCtf )

]
(3.3.2.1)

s.c ∀t, ˙SoC(t) =
1

Cmax
Pm(ωkt , Tm(ωkt)) (3.3.2.2)

Ḋ(t) = V (t) (3.3.2.3)
SoC(0) = SoCinit, D(0) = 0 (3.3.2.4)

s.c ∀t, Tm(t) ∈ [Tmin, Tmax] (3.3.2.5)
SoC(t) ∈ [0, 1] (3.3.2.6)
tf = min{t|D(t) = L} (3.3.2.7)

Alternatively we can reformulate the above problem in a purely discrete time setting,
dropping indexes s for the state variables:

min
Tm

E

 kf∑
k=0

hkC(Vk,Ak, T km, ) + P (SoCf , SoC
kf )

 (3.3.2.8)

s.c ∀k, SoCk+1 = SoCk +
hk

Cmax
Pm(Vk,Ak, T km) (3.3.2.9)

Dk+1 = Dk + hkVk (3.3.2.10)

T km ∈ [Tmin, Tmax] (3.3.2.11)

SoCk ∈ [0, 1] (3.3.2.12)

hk := min(h0, (Ls −Dk)/Vk) (3.3.2.13)

kf := 1 + max{k,Dk + h0Vk < Ls} (3.3.2.14)
SoC0 = SoC0; D0 = 0. (3.3.2.15)

Dynamic programming for the stochastic problem

A dynamic programming principle in discrete time is as follows. Clearly the value of
the problem does not depend on time, so we look for U(D,SoC) : [0, Ls] × [0, 1] → R,
value of the same problem one but starting with state (D,SoC). We have an exit time
problem since the process stops when D = Ls.

For lighter notations, write x := (D,SoC), and

x+ := (D + h(D,V)V, SoC +
h(D,V)

Cmax
Pm(V,A, Tm)), (3.3.2.16)

where h(D, v) := min(h0, (Ls −D)/v)s. Then

U(x) = E
(

min
Tm∈T (SoC,D,V,A)

[h(D,V)C(V,A, Tm) + U(x+)]

)
(3.3.2.17)
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where the expectation is over (V,A) with law µ, with exit cost

U(Ls, SoC) = Ps(SoC, SoCf ). (3.3.2.18)

Stochastic Dynamic programming

For the practical computations, the state space for (D,SoC) is discretize with steps
hD := L/ND and hSoC := 1/NSoC , where ND and NSoC are positive integers. The value
function Uh = Uh(x) is defined at gridpoints x := (kDhD, kSoChSoC) with 0 ≤ kD ≤
ND, 0 ≤ kSoC ≤ NSoC and extended to [0, L]× [0, 1] by the usual multidimensional linear
interpolation formula, see e.g. [35, Ch.3], denoted by Ũh. By G (resp. G−) we denote
the set of gridpoints (resp. of gridpoints with D < Ls). We consider the ‘approximate’
dynamic programming principle

Uh(D,SoC) = E min
Tm∈T (SoC,D,V,A)

[
h(D,V)C(V,A, Tm) + Ũh(x+)

]
(3.3.2.19)

for all x = (D,SoC) ∈ G−, with exit cost as in (3.3.2.18). Then a classical Stochastic
Dynamic Programming algorithm 2 can compute the value function over the whole state
grid, taking T large enough.

Algorithm 2: SDP algorithm in Hazard Decision framework
for t:T-1→ 0 do

for x ∈ G do
Ut(x) = 0;
for v, a) ∈ supp(µ) do

u =∞;
for Tm ∈ T (SoC,D,V,A) do

u = min(u, h(D, v)C(v, a, Tm) + Ut+1(x+));
Ut(x) = Ut(x) + u;

Note that solving the problem 3.3.2.8 for a prescribed final condition SoCf actually
provides the cost map ν(SoC0, SoCf ) for all SoC0 points on the SoC grid.

Error due to state variables discretization

Since the velocities are non negative and have a positive expectation, the above for-
mula implicitly expresses Uh(D,SoC) as function of Uh(D′, ·) for D′ ∈ [D + hD, Ls].
So, (3.3.2.19) can be solved by backward induction over distances. For Dk := khD and
(Dk, SoC) in G−, set

Uk(SoC) := U(Dk, SoC); Uh
k (SoC) := Uh(Dk, SoC); (3.3.2.20)

The corresponding value error is Wk(SoC) := Uh
k (SoC)− Uk(SoC). Set

Ûk(SoC,V,A, Tm) := Ũ(Dk + h(Dk,V)V, (3.3.2.21)

SoC +
h(Dk,V)

Cmax
Pm(V(t),A(t), Tm(t)) (3.3.2.22)

with a similar definition for Ûh
k , and set Ŵk := Ûh

k − Ûk. From the above dynamic
programming principles (3.3.2.17) and (3.3.2.19) we deduce that

‖Ŵk‖∞ ≤ E sup
SoC,Tm

{|Ŵk(SoC,V,A, Tm)|}. (3.3.2.23)
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In the above supremum we take as always the expectation over (V,A) in the support of
ρs, and the supremum over those SoC ∈ [0, 1] such that (Dk, SoC) ∈ G−, and over
Tm ∈ T (SoC,D,V,A).

Let the supremum be attained at (SoC, T̄m), which are functions of (V,A). Denote
by (ᾱi, x̄i) the coefficients and gridpoints of the corresponding linear interpolation (also
function of (V,A) but we skip these arguments). Then

‖Ŵk‖∞ ≤ E (|∆1(V,A)|+ |∆2(V,A)|) , (3.3.2.24)

with
∆1(V,A) :=

∑
i

ᾱi(U
h(x̄i)− U(x̄i)); (3.3.2.25)

∆2(V,A) :=
∑
i

ᾱi(U(x̄i)− U(x̄+)). (3.3.2.26)

We can interpret ∆1 as a combination of previous errors at grid points, and ∆2 as an
interpolation error for U at x+. Let eI(hD, hSoC) denote a majorant of the interpolation
error |∆2|, so that we have

|∆2| ≤ eI(hD, hSoC). (3.3.2.27)

In the case when no interpolation in D is necessary, we denote the corresponding inter-
polation error by e′I(hSoC). We now estimate |∆1|. Setting I (resp. J) for elements of
gridpoints with distance index equal to (resp. greater than) k we get

∆1 :=
∑
i∈I

ᾱi(U
h(xi)− U(xi)) +

∑
i∈J

ᾱi(U
h(xi)− U(xi)) (3.3.2.28)

so that setting β := E
∑

i∈I ᾱi:

|∆1| ≤ β‖Wk‖∞ + (1− β) max
k′>k
‖Wk′‖∞. (3.3.2.29)

Observe that β represents the probability of having zero speed, and therefore is a given
constant in [0, 1).

Theorem 2. The following error estimate holds: for all (D,SoC) ∈ G, we have that

‖Uh
k − Uk‖∞ ≤

LseI(hD, hSoC)

(1− β)hD
. (3.3.2.30)

If in addition, whenever v belongs to the marginal (in speed) of ρs:

hv is a multiple of hD, (3.3.2.31)

then

‖Uh
k − Uk‖∞ ≤

Lse
′
I(hSoC)

(1− β)hD
. (3.3.2.32)

Proof. It follows from the previous discussion that

‖Wk‖∞ ≤ eI(hD, hSoC) + β‖Wk‖∞ + (1− β) max
k′>k
‖Wk′‖∞. (3.3.2.33)

Equivalently

‖Wk‖∞ ≤ max
k′>k
‖Wk′‖∞ +

eI(hD, hSoC)

1− β
. (3.3.2.34)

Since there are Ls/hD steps, (3.3.2.30) follows. Finally, if (3.3.2.31) holds, we deduce
from (3.3.2.30) that (3.3.2.32) holds.
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Remark 3. If U is Lipschitz w.r.t. SoC with constant LSoC , then e′I(hSoC) ≤ LSoChSoC .
The resulting error estimate is then of order hSoC/hD, which is similar to the standard
error estimates in the case of a fixed horizon (where the ‘exit variable’ is replaced by
time), see e.g. the appendix by Falcone in [5].

Additional error due to computation

Instead of the approximate dynamic programming (3.3.2.19), at each step of the back-
ward induction over distance, what we actually solve approximately is the problem

U t
k(SoC) = E min

Tm∈T (SoC,D,V,A)

[
h(Dk,V)C(V,A, Tm) + Ũ c(x+)

]
(3.3.2.35)

for all x = (Dk, SoC) ∈ G−, with exit cost as in (3.3.2.18); here we have replaced the
discrete value Uh in the l.h.s. with the ‘target value’ denoted by U t, and the ‘future values’
Ũh(x+) with the ‘computed values’ (at gridpoints) denoted by Ũ c(x+); but note that while
the computed values are given (at grid points) for distances greater than Dk = hDk, their
values at distance Dk correspond to U t

k. For k ∈ {0, . . . , ND}, denote the corresponding
error term estimate by ek, so that

ek ≥ max
k′≥k
‖U c

k′ − Uk′‖∞. (3.3.2.36)

We may assume ek to be non-increasing, with zero value for k = ND. By arguments
similar to those of the previous section we obtain that for (Dk, SoC) ∈ G−:

‖U t
k − Uk‖∞ ≤ eI + ek+1. (3.3.2.37)

Therefore, by the triangle inequality

‖U c
k − Uk‖∞ ≤ ‖U c

k − U t
k‖∞ + eI + ek+1. (3.3.2.38)

Next, we choose to solve (3.3.2.35) by value iterations, i.e., as the limit of the sequence
U i
k(SoC), for i ∈ N, defined by

U i
k(SoC) := E min

Tm∈T (SoC,D,V,A)

[
h(Dk,V)C(V,A, Tm) + Ũ i

k(x+)
]
. (3.3.2.39)

The infimum is of course for each grid value of SoC, and again the tilde corresponds to the
interpolation operator. The contraction factor of the corresponding fixed-point operator is
easily seen to be at most β. We initialize U0

k with U c
k+1. It follows that

‖U i
k − U t

k‖∞ ≤ βi‖U c
k+1 − U t

k‖∞. (3.3.2.40)

So, if we perform ik iterations at step k we get with (3.3.2.38) that

‖U c
k − Uk‖∞ ≤ eI + ek+1 + βik‖U c

k+1 − U t
k‖∞. (3.3.2.41)

While β may be computed, U t
k is unknown so that explicit estimates can be derived only

in specific examples. Nevertheless the above inequality suggests that, in the absence of
additional information, it may be wise to take ik independent on k.
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3.4 Numerical simulations
In this section, we present the results obtained after solving the problem 3.3.2.8. Nu-

merical simulation have been conducted on a passenger vehicle from [22], for which the
value of the parameters are presented in Table. 3.1. The traffic model was derived from
actual traffic data obtained thanks to GecoAir on a specific segment of the A7 near Lyon,
see Fig 3.4. First, we discuss the influence of the traffic state on the Value Function, and
therefore the expected consumption on the segment. Then we focus on specific speed
trajectory in order to observe the optimal policy compute with our model. Finally, a com-
parison with a deterministic optimization is presented.

m rw α0 α1 α2

1190kg 0.31725m 113.5 0.774 0.4212

i 1 2 3 4 5
GRi 3.416 1.809 1.281 0.975 0.767
Gi
Eff 1 1 1 1 1

Paratio Paeff R
59/13 0.95 3.3077

Table 3.1 – Parameters used in simulations

Figure 3.4 – Segment used for simulation

3.4.1 Value Function according to the traffic state µ
Thanks to the method proposed in [56], we have been able to determine a classifica-

tion of traffic state.For k=4 clusters, the speed profiles contained in each are show on the
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Figure 3.5 – Value Function obtained from cluster 1 on segment 9 which corresponds to
a fluid traffic.
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Figure 3.6 – Value Function obtained from cluster 2 on segment 9 which corresponds to
a traffic jam.

left graph of Fig [3.5-3.8], while on the central graph the mean distribution of the cor-
responding cluster is shown. We can observe that cluster 1 contains essentially profiles
with high speed thus the drivers are not constrained by each other, we deduce that cluster
1 represent a fluid traffic. On the opposite cluster 2 shows a large proportion of low speed
profiles and even stops, indicating a traffic jam. Cluster 3 has a lower speed than cluster
1 but its mean speed is close to the speed limit (here 90km/h). Considering to the topo-
logical characteristics of the segment (2x2 ways), this could correspond to a large number
of vehicle on the segment where drivers need to be careful about the others, and so slow
down. The fourth cluster shows two peaks of speed around 50 km/h and 90 km/h, this can
be explained by the fact that cluster 4 contains the time frame that are at junction between
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Figure 3.7 – Value Function obtained from cluster 3 on segment 9 which corresponds to
a slightly slowed traffic.

100
80

0

1

2

20
60

3

V
al

ue

4

5

Distance (%)

40

SoC (%)
20

25

30

0 0.5 1 1.5

0 50 100 150 200

Distance (m)

0

20

40

60

80

100

120

140

S
pe

ed
 (

km
/h

)

0 50 100

Speed (km/h)

-4

-3

-2

-1

0

1

2

3

A
cc

el
er

at
io

n 
(m

/s
²)

0.05 0.1 0.15 0.2

Figure 3.8 – Value Function obtained from cluster 4 on segment 9 which corresponds to
an intermediate traffic state.

off peaks hours and peaks ones.
The Value Functions obtained for the different traffic state by solving the problem

3.3.2.8 with a final state of charge of 25% is shown on the right graph of Fig [3.5-3.8].
The shape of the value functions is quite similar, with some disctinctive features. First
we observe a linear increase above a certain initial SoC. This behaviour is due to the final
SoC penalization and this point is the minimal SoC which can satisfy the constraint. A
first interesting point is the fact that this point depends on the traffic state. Indeed in high
energy demanding traffic such as cluster 1, this point is very close or even above of our
final SoC. On the opposite,traffic that allows regenerative braking leads to a point lower
than the final SoC.
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Fig [3.5-3.8] also shows that above a second value of the initial SoC, the expected
consumption is stable. This point is the limit where it becomes possible to reach the final
constraint while using only the electric motor.

To summarize, the value functions can be divided in three main regions according to
the traffic conditions and initial SoC:

• The higher values using only the thermal engine

• The lower values using only the electric motor

• Between them, the hybrid driving

3.4.2 Optimal policy
In this section, the optimal policy obtained are shown for the same segment than the

previous section, with a SoCf equals to 25 %. We propose to compare the optimal control
according to traffic with an initial SoC equal to 21 % , 23 % ,25 % and 27 %. This
comparison is performed on cluster 1 and cluster 3, ans we interpret the controls in terms
of operating mode the hybrid vehicle, i.e. the general functionnment of the power train.
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Figure 3.9 – Optimal Policy (electric torque Tm) obtained from cluster 1 on segment 9
which corresponds to a fluid traffic.

Cluster 1, shown on Fig. 3.9, corresponds to high speeds that require high energy. We
observe that the electric motor is only used when it is mandatory in order to realize the
demand of power when the state of charge is below 25%, and we use the ICE to recharge
the battery. These modes are resumed on Fig. 3.10, the vehicle is in hybrid mode when
the power asked is high (orange parts), or uses the ICE for medium power (red parts).
When the power asked is low, the ICE is pushed in order to recharge the battery (black
parts). The behaviour changes when the initial state of charge is greater than the final state
of charge: for the 27% case the electric motor is always used and the engine is only used
when it is mandatory. Fig. 3.10 shows that for low energy points the vehicle works only
with the electric motor, and for greater energy the engine is used in order to complete the
power asked.
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Figure 3.10 – Hybrid vehicle mode obtained from cluster 1 on segment 9 which corre-
sponds to a fluid traffic.
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Figure 3.11 – Optimal Policy (electric torque Tm) obtained from cluster 3 on segment 9
which corresponds to a slightly slowed traffic.

Cluster 3 seems to show the same general behaviour with respect to the initial state of
charge, except that since we are more likely to use regenerative braking, the electric mode
appears for a lower SoC than cluster 1. This is shown on 3.12, where on the 25% case,
the electric power part is significantly larger for cluster 3 than cluster 1. for a important
part of the graph

On Fig. 3.13, the vehicle modes corresponding to the optimization with an isoSoc
constraint are plotted for each cluster. We can observe that the electric motor is used
when the cluster allows for regenerative braking, otherwise the engine is used in order to
respect the constraint.
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Figure 3.12 – Hybrid vehicle mode obtained from cluster 3 on segment 9 which corre-
sponds to a slightly slowed traffic.
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Figure 3.13 – Hybrid vehicle mode obtained from each cluster on segment 9 for a isoSoc
constraint.

3.4.3 Speed trajectory

In this section, we observe the control obtained thanks to the predicted traffic and the
control obtained if the exact speed was known. On the illustrative example shown on
Fig 3.14, we observe that the control obtained thanks to the traffic prediction does not
match the deterministic control. It seems that the control strategy from the stochastic
optimization is more optimistic at the start and uses the battery more, hoping for future
regenerative braking. This leads to a small overcomsuption at the end to meet the required
final SoC. However, the consumptions of both methods are close, with a gap of less than
5%.

On Fig. 3.15, for a SoC constraint allowing q 4% discharge, the controls are quite
close, with almost identical state of charge and consumption trajectory profile.
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Figure 3.14 – A real speed profile from cluster 2 on segment 10 for a isosoc constraint
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Figure 3.15 – A real speed profile from cluster 2 on segment 10 when depleting the battery
of 4%

3.4.4 Estimation of the overconsumption

In this section, the consumption resulting from the stochastic optimal control is com-
pared to the deterministic method. We recall that the deterministic problem gives the
minimum consumption reachable with the vehicle knowing all the information.This com-
parison will therefore give an idea of the overconsumption introduced by the stochastic
aspect of the traffic conditions.

On Fig.3.16, the consumption obtained thanks to the traffic distributions is relatively
similar to the deterministic one, with a slight overconsumption. We can observe the slight
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overconsumption of our methods. The mean of both methods have been plotted on the
figure, and the relative mean error is close to 5%. This indicates that the stochastic method
handles the traffic conditions with a reasonable overconsumption.
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Figure 3.16 – Estimation of distributions of the consumption on the left, Distribution of
the ∆SoC on the right for segment 9 for an isosoc constraint

On Fig.3.16, the distributions of the ∆SoC realized by the two methods are shown.
We observe that the isosoc constraint is well satisfied by both methods. Indeed computing
the mean ∆SoC of both methods give us an mean below 0.05%. The 5th centile and the
95th centile have been computed, see Table 3.2, and have values close to −0.5 and 0.5
that correspond approximately to one second of maximum recharging or discharging.

∆SoC median 5-centile 25-centile 75-centile 95-centile
Deterministic 0.0103 -0.5090 -0.0976 0.1234 0.5060
Stochastic 0.0445 -0.4033 -0.0967 0.1272 0.6600

Table 3.2 – SDP vs DDP. Distribution of actual ∆SoC for the iso-SoC case.

3.5 Conclusion
In this chapter, we have proposed a new stochastic method to minimize the consump-

tion of hybrid electric vehicles under known traffic conditions. We have discussed the
dependence of the value function with respect to the traffic conditions and battery SoC
constraints. The optimal policies resulting have been studied on several speed profiles
extracted from actual traffic data. A comparison with the optimal policy from a determin-
istic optimization with full knowledge of the speed profile has also been presented. The
overall consumption from the stochastic method is close to the lower bound given by the
deterministic method.

We point out that this stochastic method, using only statistical traffic representation,
can be run off-line in order to obtain the optimal policies corresponding to these traffic
conditions and SoC constraints. These policies can then be stored and used in an on-line
optimization over a whole travel, as we will discuss in the next chapters.
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CHAPTER 4

An Optimal State of charge trajectory
on a travel with traffic conditions

An article [55], based on this chapter and chapter 3, has been submitted to IEEE
Transactions on Control Systems and Technology in 2019.
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4. AN OPTIMAL STATE OF CHARGE TRAJECTORY ON A TRAVEL WITH TRAFFIC CONDITIONS

This chapter presents the second part of the EMS proposed in chapter 3, the SoC Pro-
file Optimization, which determines the optimal SoC profile that minimizes the consump-
tion on a specific travel. As explained in section 3.1, stochastic dynamic programming
methods tends to be unsuitable for real-time implementation due to their high computa-
tional cost. Therefore the bi-level method uses the results of the Torque-Split Optimiza-
tion in order to solve a deterministic dynamic problem, which is fast enough for on-line
use.

4.1 Segment Decomposition
We introduce the notion of travel, a travel l is defined by a sequence of contiguous road

segments s ∈ S of length Ls, which are portions of road with homogeneous topographical
characteristics. We call predicted travel when for each segment s of travel l a traffic
prediction µs, probability law on (V,A) space, has been proposed. We denote µl the
traffic law along the travel:

µl(d) =
∑
s∈S

µs1∑
i<s Li<d≤

∑
i≤s Li

(4.1.0.1)

4.1.1 Scenarios Decomposition
As seen in the previous chapter, each possible speed profile, i.e. speed according

time, can be represented by a scenario ω where ωk = (vk; ak) represents respectively the
mean speed and the mean acceleration of the vehicle over time interval (tk; tk+1). Given
a certain speed profile of the vehicle along the travel, we extend the notion of scenario.

The road segments are continuous, thus it is possible to decompose the travel scenario
ω into multiple segment scenario as :

ω = (ω1, ..., ωS) (4.1.1.1)

where ωs is the scenario on the segment s , and belongs to Ωs the set of possible scenarios
on segment s. We define Ω :=

∏
s∈[0,S]

Ωs. For a given scenario ω, we note Tm(ω) the associ-

ated decision policy (in the hazard decision framework, the optimal motor torque depends
on the operating point), and define the associated cost thanks to the decomposition of the
scenario:

c(ω, Tm(ω)) :=
∑
s∈S

c(ωs, Tm(ωs)) (4.1.1.2)

Assuming that there exists a probability law on the scenario space Ω, it can be en-
dowed with a Markov chain structure. Each segments scenario space is assuming having
a probability law, therefore the transition probabilities between the segment subscenarios
are noted :

pk(ω, ω′) := P [ωs+1 = ω′|ωs = ω] (4.1.1.3)

and are computed according to:

pk(ω, ω′) :=
P [ωs+1 = ω′ and ωs = ω]

P [ωs = ω]
(4.1.1.4)
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Conversely, given probability transitions (such that the sum of probability transitions
starting from a given node is equal to 1), the probability of a scenario is the product of the
corresponding sequence of probability transitions. In the adopted memoryless probability
transition model, the events ωs+1 = ω′ and ωs = ω are independent, therefore

pk(ω, ω′) := P [ωs+1 = ω′] (4.1.1.5)

The corresponding cost expectation over the whole set of random events Ω is rewritten
as

C(Tm) =
∑
s∈S

∑
ωs∈Ωs

P(ωs)c(ωs, Tm(ωs)) (4.1.1.6)

4.1.2 Exit times
The entry time tis of the vehicle on a segment s is function of the past events contained

in the scenario ω. Therefore {tis}s is adapted random variables which represents the entry
times on segments.

For each segment, the time intervals (tis, tis+1) can be reparametrized to (0, tfs :=
tis+1 − tis).

Since the traffic conditions are memoryless, the duration tfs is independent of tis.
Therefore a local time can be used on each segment s.

4.2 Bi-level decomposition

4.2.1 Global minimal expected consumption problem
Consider the problem of minimizing the total engine consumption over a given pre-

dicted travel l. Denote by LF the total length of the travel l , and by tF the corresponding
final time, which is a random time in view of the previous model of the traffic.The con-
sumption is a random variable as well. The state variables are the state of charge SoC
and distance D, and the control is the motor torque Tm, assumed constant over each time
interval (tk, tk+1). So, the problem of global minimal expected consumption reads as
(GP):

min
Tm

E
[∫ tF

t=0

C(V(t),A(t), Tm(t))dt+ PF (SoC(tF ))

]
(4.2.1.1)

s.t ∀t, ˙SoC(t) =
1

Cmax
Pm(V(t),A(t), Tm(t)) (4.2.1.2)

Ḋ(t) = V(t) (4.2.1.3)
tF = min{t,D(t) > LF} (4.2.1.4)
SoC(0) = SoC0, D(0) = 0 (4.2.1.5)

s.t ∀t, Tm(t) ∈ [Tmin, Tmax] (4.2.1.6)
SoC(t) ∈ [0, 1] (4.2.1.7)

In this Hazard-Decision framework, the control variable depends on the present value
of the random variables for speed and acceleration (V(t),A(t)). Finally, the final cost
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PF : R → R expresses the preference for given final SoC values, typically in order
to avoid solutions that would systematically discharge the battery. PF should be non
increasing and we assume it to be continuous.

In the sequel we assume that whatever is the initial state of charge SoC0 ∈ [0, 1], there
exists a sequence of control variables such that the state of charge remains in [0, 1]. In
particular the set below of ‘one step’ feasible controls

T (SoC,D,V,A) := {Tm ∈ [Tmin, Tmax];SoC +
h(D,V)

Cmax
Pm(V,A, Tm) ∈ [0, 1]}

(4.2.1.8)

is nonempty, for all SoC ∈ [0, 1] and (V,A) in the support of the traffic distribution µs.

4.2.2 Bi-level formulation

The above global problem (GP) can be solved by dynamic programming techniques.
However, this is not adapted to a real-time setting where the traffic could be perturbed on
a particular segment by, say, an accident.

For t ∈ (t0; tF ), kt denotes the index of the interval such that t ∈ (tkt ; tkt+1). Sim-
ilarly, st denotes the segment at time t. Lets rewrite the problem (GP) according to the
segment decomposition introduce in section 4.1 as :

min
Tm

∑
s∈S

∑
ωs∈Ωs

P(ωs)c(ωs, Tm(ωs)) + PF (SoC(tF )) (4.2.2.1)

s.c ∀t, ˙SoC(t) =
1

Cmax
Pm(ωkt , Tm(ωkt)) (4.2.2.2)

Ḋ(t) = V (t) (4.2.2.3)
SoC(0) = SoCinit, D(0) = 0 (4.2.2.4)

s.c ∀t, Tm(t) ∈ [Tmin, Tmax] (4.2.2.5)
SoC(t) ∈ [0, 1] (4.2.2.6)

We now present a bi-level formulation of this problem, introducing a new decision
variable SoCr

s that will allow us to set a reference SoC to be reached at the end of road
segment s.

The information structure for the bi-level problem is as follows: the variable Tm is
decomposed in variable T sm which are original the torque over the segment s. These new
variables are adapted to the filtration Fks induced by the subscenario ωs. By definition, the
variable SoCr is adapted to the filtration Gs which is the algebra generated by functions
of (SoC(ti0), ..., SoC(tis)).
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4.2. Bi-level decomposition

min
SoCr

∑
s∈S

E
[
min
T s
m

E [c(ωs, Tm(ωs))| Fks ] + PF (SoC(tF ))|Gs
]

(4.2.2.7)

s.c ∀t, ˙SoC(t) =
1

Cmax
Pm(ωkt , T stm (ωkt)) (4.2.2.8)

Ḋ(t) = V (t) (4.2.2.9)
SoC(tis+1) = SoCr

s (4.2.2.10)
SoC(0) = SoCinit, D(0) = 0 (4.2.2.11)

s.c ∀t, Tm(t) ∈ [Tmin, Tmax] (4.2.2.12)
SoC(t) ∈ [0, 1] (4.2.2.13)

Equality constraints, such as 4.2.2.10, are difficult to handle in stochastic optimization
due to various scenario that can be infeasible. Therefore the constraints relaxed thanks
to a penalization P , that express the preference for the reference SoC. Lets us state the
resulting problem (P) :

min
SoCr

∑
s∈S

E
[
min
T s
m

E
[
c(ωs, Tm(ωs)) + P (SoCr

s , SoC(tis+1))|Fks
]
|Gs
]

(4.2.2.14)

s.c ∀t, ˙SoC(t) =
1

Cmax
Pm(ωkt , T stm (ωkt)) (4.2.2.15)

Ḋ(t) = V (t) (4.2.2.16)
SoC(0) = SoCinit, D(0) = 0 (4.2.2.17)

s.c ∀t, Tm(t) ∈ [Tmin, Tmax] (4.2.2.18)
SoC(t) ∈ [0, 1] (4.2.2.19)

Note that the problem (P) actually encompasses two optimization problem. At the
lower problem, the so-called ’micro’ problem determines the optimal control on a specific
segment s, for a given target SoCr

s . At the upper level, the ’macro’ problem computes the
reference SoC trajectory for the travel along the sequence of road segments. We now
detail these two problems.

4.2.3 The Micro Problem : An Expected Consumption Model
In the chosen framework of Hazard Decision, the optimal torque distribution depends

of the actual speed and acceleration of the vehicle. Therefore the traffic conditions in-
fluence the consumption of fuel in a hybrid electrical vehicle. In the previous chapter 2
and 3, it was shown how to use probability distributions to model the traffic conditions
and compute the optimal torque. In addition to the torque, the optimization also yields
a value function that corresponds to the expected mean consumption plus a penalization
term taking into account the final state of charge.

In the bi-level formulation, the above problem corresponds to the ’micro’ optimiza-
tion. Indeed, solving the ’micro’ problem for different values of the final state of charge
will build a map of expected consumption function C as function of the initial and final
state of charge of the battery and traffic conditions.

Stochastic optimal control of a hybrid electric vehicle under traffic constraints 93



4. AN OPTIMAL STATE OF CHARGE TRAJECTORY ON A TRAVEL WITH TRAFFIC CONDITIONS

C(SoCi, SoCf , µs) = min
Tm

Eµs
[
c(ω, Tm(ω)) + P (SoCf, SoCtf )

]
(4.2.3.1)

s.c ∀t, ˙SoC(t) =
1

Cmax
Pm(ωkt , Tm(t, ωkt)) (4.2.3.2)

Ḋ(t) = V (t) (4.2.3.3)
SoC(0) = SoCi, D(0) = 0 (4.2.3.4)

s.c ∀t, Tm(t) ∈ [Tmin, Tmax] (4.2.3.5)
SoC(t) ∈ [0, 1] (4.2.3.6)

All these ’micro’ optimizations can be perfomed once for all off-line and stored for
future use. Furthermore, the computation can be parrallelized according to the traffic
conditions µ, and the final state of charge constraint SoCf .

Remark on computation of the micro problem

Note in Fig.4.1 , that the hierarchy between the four cost maps is consistent with the
traffic conditions for the clusters (see also Fig. 3.5,3.6,3.7,3.8): cluster 1 has the higher
speed and relies more heavily on the engine, hence it has a higher cost overall; cluster 2
has the lowest speed and also the lowest cost; clusters 3 and 4 correspond to intermediate
traffic conditions.

Remark: the cost maps appear symmetric w.r.t the diagonal, which is not surprising:
since the actual value of the SoC does not appear in the equations of the micro problem,
these problems are invariant by translation on (SoC0, SoCf ). This can of course be used
to significantly reduce the computational cost of obtaining these maps. The exception
is when the constraint SoC ∈ [0, 1] becomes active, therefore all micro problems with
boundary conditions close to 0 or 1 have to be solved explicitly.

4.2.4 Macro problem

Problem statement

Assuming that the cost map C is already computed from the micro problems, we in-
troduce the following ’macro’ problem, a variant of the problem P , in which the decision
is the deterministic trajectory of reference SoCr at the end of each road segment:

min
SoCr

S−1∑
s=0

C(SoCr
s , SoC

r
s+1, µs) (4.2.4.1)

s.t. ∀s, SoCr
s ∈ [0, 1] (4.2.4.2)

SoCr
0 = SoCintial (4.2.4.3)

SoCr
S = SoCfinal (4.2.4.4)

This ”macro’ problem will perform the optimization of the state of charge trajectory along
a complete travel, using the expected consumption function computed off-line.

Note that the problem is deterministic since the conditions of traffic are assumed to be
time-independent.
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Figure 4.1 – Illustrative cost map vs for a family of micro problems.

Dynamic Principle

We now formulate the Dynamic Programming Principle in order to solve the macro
problem. The value function denoted Umacro, and satisfies the following equation:

Umacro(s, SoC) = inf
SoCr

(C(SoC, SoCr, µs) + Umacro(s+ 1, SoCr)) (4.2.4.5)

Umacro(S, ·) = P (·) (4.2.4.6)

Dynamic Programming Algorithm

We recall here the classical algorithm to compute the value function.

Algorithm 3: DDP Algorithm
s = S
for s > 0 do

for SoC ∈ Xs do
Umacro(s, SoC) =∞;
for SoCr ∈ Us do

Umacro(s, SoC)) = min(Umacro(s, SoC)),minSoCr(C(SoC, SoCr, µs)
+Umacro(s+ 1, SoCr)));

s = s− 1;
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Control of the vehicle

As presented above, the variables SoCr
s are targets to reach at the end of the segments.

The control obtained by the penalized micro problem tries to reach this target, but due to
the penalization, the target is not reached exactly. In order to simulate the behaviour
of a vehicle using the bi-level optimization, we propose in Alg.4 an open-loop control
algorithm.

Algorithm 4: Open Loop Simulation Algorithm
SoCr Selection from ’macro’ value function
SoCr

0 = SoCinit
while s < S do

s = s+ 1; SoCr
s = argminSoCr

s
(C(SoCr

s−1, SoC
r
s , µs) + Ũmacro(s+ 1, SoCr

s ));

Torque Selection from ’micro’ value function
SoC0 = SoCinit;
k = 0;
while s < S do

Dk = 0;
while Dk < Ls do

T km = argminTm(c(SoCk, Dk, Tm, ω
k)+Ṽs,∆SoCs,µ(f(SoCk, Dk, Tm, ω

k)));
(SoCk+1, Dk+1) = f(SoCk, Dk, T km, ω

k);
k = k + 1;

s = s+ 1;

If the micro simulation is fast enough, the closed-loop variant in Alg.5 may be used
instead. The difference with the open-loop algorithm is that the SoCr

s is updating with
the actual final SoC from the ’micro’ optimization.

Algorithm 5: Closed Loop Simulation Algorithm
SoCr Selection from ’macro’ value function
SoC0 = SoCinit;
k = 0;
while s < S do

Dk = 0;
s = s+ 1;
SoCr

s = argminSoCr
s
(C(SoCk, SoCr

s , µs) + Ũmacro(s+ 1, SoCr
s ));

Torque Selection from ’micro’ value function
while Dk < Ls do

T km = argminTm(c(SoCk, Dk, Tm, ω
k)+Ṽs,∆SoCs,µ(f(SoCk, Dk, Tm, ω

k)));
(SoCk+1, Dk+1) = f(SoCk, Dk, T km, ω

k);
k = k + 1;
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4.3 Numerical results

Simulations have been run with the vehicle proposed in section 3.2.1 on a portion
of the highway A7 near Lyon. The travel, see Fig. 4.2, is composed by 26 different
segments. The method proposed in chapter 2 has been used on data collected thanks

Figure 4.2 – Travel on A7 used in simulations.

to GecoAir. Then the functions C(·, ·, µs) have been computed thanks to the method
proposed in chapter 3 on a SoC discrete grid with a step of 1%.

Optimal policy for macro problem

We show in Fig. 4.3 a sample optimal trajectory for the macro problem, for which we
also recomputed the sequence of micro problems along the travel. Top graph displays a
real speed profile recorded thanks to ‘Geco air’. Middle graph shows the optimal policy
for the macro problem (i.e SoCr), as well as the actual SoC corresponding to the se-
quence of micro problems. Bottom graph indicates the engine and motor torques of the
vehicle recovered thanks to the value function of the micro problems. Finally, we also
optimize the whole travel using DDP, taking the speed profile from the micro problems.
The corresponding SoC trajectory is also shown on the middle graph.

For this simulation we set the conditions SoC0 = 0.25, SoCf = 0.24. We observe
that both the macro and DDP solutions satisfy the final SoC correctly, although the SoC
trajectories are different. The consumption is 0.2363 for bi-level and 0.1991 for DDP. The
over-consumption of 18% for the bi-level method seems reasonable against the determin-
istic solution with full knowledge of the speed profile. The SoC trajectory from the micro
problems initially diverges a bit from the macro target, but catches up later.

As with the micro problems, we now compare the bi-level method with the determin-
istic solution over a thousand known speed profiles. The distributions of the consumption
and ∆SoC := SoC(tf ) − SoC(t0) are shown on Fig. 4.4. The average consumption

Stochastic optimal control of a hybrid electric vehicle under traffic constraints 97



4. AN OPTIMAL STATE OF CHARGE TRAJECTORY ON A TRAVEL WITH TRAFFIC CONDITIONS

0 50 100 150

Time (s)

20

25

30

S
oC

(%
)

Simulation Micro
Target Macro
Deterministic Solution

0 50 100 150

Time (s)

60

80

100

S
p
ee
d
(k
m
/h

)

0 50 100 150

Time (s)

-100

0

100

200

T
or
q
u
e
(N

m
)

Engine

Motor

Primary

Figure 4.3 – Macro problem: optimal policy. Bi-level optimization vs DDP. Conditions
SoC0 = 0.25, SoCf = 0.24.

obtained by the bi-level method is 6.58L/100km, and the deterministic optimization ob-
tained an average consumption of 5.70L/100km. The average consumption is 15% higher
for the stochastic bi-level approach, which seems reasonable considering the relatively
large step size used for the discretization of SoCr. Also, the bi-level ∆SoC is centered
around −1%, as expected, even if less strongly than for the deterministic approach, see
Table 4.1.

Overall, the bi-level method seems to give satisfying results compared to a method
with full traffic information.
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∆SoC median 5-centile 25-centile 75-centile 95-centile
Deterministic -0.9726 -1.7242 -0.9899 -0.9442 -0.2915
Bi-Level -1.0339 -6.3671 -1.3986 -0.7537 0.1881

Table 4.1 – Macro problem: Bi-Level vs DDP. Distribution of actual ∆SoC for depleting
1% of the battery.
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Figure 4.4 – Macro problem: Consumption distribution over 939 speed profiles. Bi-level
optimization vs DDP. Conditions SoC0 = 0.25, SoCf = 0.24.

CPU times

The simulation times are recapped in Table 4.2. For the off-line micro level, one SDP
problem gives the cost map for all possible initial SoCs, so we only need to solve the
family of problems for all possible final SoCs. Furthermore, all the micro problems are
independent. On the other hand, the CPU time for the macro problem is quite small, as
required for an on-line implementation. The key element for this fast macro problem is
the handling of the stochastic traffic conditions at the micro level, leaving only a simple
deterministic optimization at the macro level. For comparison purposes, we also include
the time to optimize a full travel using DDP with complete traffic information, as well as
an estimate of the cost for solving the same problem with stochastic traffic conditions.

CPU time
Micro level (SDP, 1 segment, 1 SoCf ) ∼ 1h
Macro level (DDP, deterministic SoC) ∼ 10s
Reference: DDP over the whole travel ∼ 2h
Estimation of the SDP over the travel (∼ 200h)

Table 4.2 – CPU times. Estimation with a 10 × 10 speed/acceleration discretization due
to the linear complexity of SDP.

4.4 Conclusion
In this chapter, we have presented a bi-level method for the energy management of a

hybrid vehicle. More precisely, the aim is to minimize the fuel consumption of the ther-
mal engine over a fixed travel, assuming that the vehicle follows the (stochastic) traffic
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conditions of the road. We consider a subdivision of the road network into small seg-
ments, for which typical traffic conditions are modeled as probability distributions in the
(speed,acceleration) plane. The key point in order to obtain a method fast enough for on-
line use is that the stochastic traffic conditions are completely handled at the micro level,
leaving only a simple deterministic optimization at the macro level. This optimization
relies on an energy cost map over all road segments, for all initial and final SoC condi-
tions. We compute these costs at the micro level by solving offline a family of stochastic
optimization problems under traffic constraints, see chapter 3.

Numerical simulations carried out using actual traffic data from a highway portion
near Lyon (France) indicate that the bi-level approach performs in a satisfying manner,
with a limited over-consumption compared to a deterministic solution using fully known
traffic information.

In the next chapter 5, this bi-level method is extended to the eco-routing problem, by
adding the path decision to the variable.
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CHAPTER 5

Application to the optimal routing
problem under traffic conditions

An article [57], based on this chapter, has been submitted to the 21st IFAC World
Congress.
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5. APPLICATION TO THE OPTIMAL ROUTING PROBLEM UNDER TRAFFIC CONDITIONS

5.1 Introduction

Road networks usually allow several paths to reach a destination from a given starting
position. While path has traditionnally been choosen to minimize travel time, methods to
minimize the fuel consumption have received increased attention in the recent years. This
new criterion gives rise to the so-called eco-routing problem. The fuel savings between
the optimized through eco-routing and the path naturally chosen by the drivers can be
important, up to 25% [2, 32]. Besides, distance minimal paths have been shown to differ
from the eco-routing path, especially in congested traffic [6]. This indicates that eco-
routing planning needs to take into account the traffic conditions.

Most methods propose to solve the eco-routing planning based on shortest path algo-
rithms, using weighted graphs to represent the road network with edge costs correspond-
ing to the consumption, see [23]. Dijkstra algorithm [25] or A∗ algorithm [43] can be
used when edge costs are positive, or Ford-Bellman algorithm [7] when edge costs can
be negative. In order to determine these edge costs, an estimator is needed. Consump-
tion estimators, that take traffic conditions into account, are usually divided in two main
categories: macroscopic models based on closed algebraic forms [59], and microscopic
models based on differential equations [74]. We refer to section 2.1 for a more extended
description of traffic models.

In the case of HEVs, the vehicle can use the electric motor to reduce the fuel consump-
tion or recover energy thanks to regenerative braking. Therefore if costs are expressed in
terms of energy, negative costs can appear. However, path-searching algorithms for neg-
ative costs tends to have a high computational cost. Thus it appears more efficient to
express costs in terms of fuel consumption, which requires knowledge of the torque pol-
icy of the vehicle. We adapt the bi-level approach introduced in chapters 3 and 4, in order
to compute an optimal path adapted to the optimal torque policy of the vehicle following
the traffic conditions.

5.2 Modeling the issue

5.2.1 A road graph with traffic conditions

A road graph

The consumption of a vehicle is influenced by the road profile, namely the allowed
speed, the slope, and other parameters such as weather conditions. It seems natural to
choose a road network model that includes the time independent parameters. A classical
way is to use a graph where roads are the edges and intersections the nodes. The charac-
teristics of the road portions are therefore the attributes of the edges. Figure 5.1 represents
the road network of Paris.
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Figure 5.1 – Road Network of Paris

As previously mentioned, traffic conditions have a large influence on the consumption
of the vehicles. Therefore it is desirable to include the traffic information in the attributes
of the edges. Such a traffic model was introduced in chapter 2 and is recalled in the
following.

Probabilistic Traffic Model

We recall that we consider a decomposition into small segments based on topographic
aspects. For a given vehicle, we denote by ts its entry time on the segment s and define
the related time grid ts,k := ts + kh0, for k ∈ N and the time step h0, which is set
in simulations at h0 = 1s, consistent with the typical reaction time of the combination
driver/vehicle. We assume that the speed and acceleration of the vehicle are random
variables (V(t),A(t)) that are i.i.d constant over each grid interval (ts,k, ts,k+1). The
corresponding traffic distribution µs on segment s has finite support supp(µs) included
in R+ × R, see Fig.5.2.

The assumption that the traffic distributions do not depend on time is an important sim-
plification, allowing to reduce considerably the burden of computations (since otherwise
we would need an additional state variable representing the time, and handle distribution
changes at times other than entry times, etc).

The central assumption, that the vehicle speed and acceleration coincide with the ran-
dom variables (V(t),A(t)), can be interpreted as the vehicle ’following the traffic’. In
[56] we showed how to construct such a statistical traffic model and how to derive estima-
tions for the energy consumption of a given car. In particular, the data size can be reduced
by clustering techniques applied to the traffic distributions. Even with a small number of
clusters an accurate prediction of the energy consumed is obtained.

5.2.2 A weighted state graph for hybrid electrical vehicle

The state graph

In the case of ICE vehicles, the optimal path, i.e. the successive positions of the
vehicle on the road graph, is sufficient to define the optimal strategy. In the case of a hy-
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Figure 5.2 – Distribution

brid vehicle, the energy stored in the battery can be used to reduce the fuel consumption,
adding a supplementary state, the state of charge (SoC) of the battery. Therefore the opti-
mal consumption policy consists in the successive vehicle positions and states of charge
of the battery.

Using the lexicographic product between graphs, see Fig.5.3, we define the ‘state
graph’, denoted Γ, whose nodes have a form (N,SoC) with N a node of the road graph
and SoC in a non empty discrete set of state of charge values. Therefore an edge between
(N1,SoC1) and (N2,SoC2) exists only if there is an edge between N1 and N2.

Figure 5.3 – Explicative Schema of lexicographic product

Finding the optimal path on the ‘state graph’ provides an approximation of the solution
of the eco-routing problem for HEV. The degrees of freedom given by the electric motor
of the HEV can be used to optimize the consumption, for instance if it can be better to
spend more fuel on an edge to recharge the battery.
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Cost of an edge

Since the consumption of the vehicle depends on the road and the traffic conditions,
each edge has a specific expected cost. In order to obtain the edge cost between two nodes
(N,SoC) and (N ′, SoC ′), i.e. the expected consumption on the road segment sNN ′ , the
method proposed in [55] is used.

We recall the formulation of the ‘micro’ problem defined in chapter 3 for the road
segment corresponding to the edge of the graph. The resulting problem (PsNN′

micro) is

min
Tm

E
[∫ tf

t=0

C(V(t),A(t), Tm(t))dt+ PsNN′
(SoCsNN′

(tf ), SoC
′)

]
(5.2.2.1)

s.t ∀t, ˙SoCsNN′
(t) =

1

Cmax
Pm(V(t),A(t), Tm(t)) (5.2.2.2)

ḊsNN′
(t) = V(t) (5.2.2.3)

Tm(t) ∈ [Tmin, Tmax] (5.2.2.4)
SoCsNN′

(t) ∈ [0, 1] (5.2.2.5)
SoCsNN′

(0) = SoC, DsNN′
(0) = 0 (5.2.2.6)

tf = min{t,DsNN′
(t) > LsNN′

} (5.2.2.7)

Alternatively we can reformulate the above problem in a purely discrete time setting,
dropping indexes s for the state variables:

min
Tm

E

 kf∑
k=0

hkC(Vk,Ak, T km, ) + PsNN′
(SoCkf , SoC ′)

 (5.2.2.8)

s.t ∀k, SoCk+1 = SoCk +
hk

Cmax
Pm(Vk,Ak, T km) (5.2.2.9)

Dk+1 = Dk + hkVk (5.2.2.10)

T km ∈ [Tmin, Tmax] (5.2.2.11)

SoCk ∈ [0, 1] (5.2.2.12)

hk := min(h0, (LsNN′
−Dk)/Vk) (5.2.2.13)

kf := 1 + max{k,Dk + h0Vk < LsNN′
} (5.2.2.14)

SoC0 = SoC; D0 = 0. (5.2.2.15)

The expected consumption, denoted νsNN′
(SoC, SoC ′), on a road segment sNN ′ with

known traffic conditions is the value of the discrete version of problem (PsNN′
micro).

5.2.3 Optimal path for HEV under traffic conditions
It is now possible to formulate an eco-routing problem for HEVs as finding the optimal

path on the ‘state graph’ Γ between a start node S and a destination node D. We denote
by ΓSD the set of paths between S and D in the ‘state graph’. The same idea as in chapter
4 is used: this optimal path problem consists in finding a target state of charge trajectory
SoCr. We introduce ai (bi) the maximum charge (respectively discharge) to reduce the
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search space, with ai = 1 and bi = 1, corresponding to the original problem. The choice
of ai (bi) can be guided by the vehicle and segment characteristics. In the sequel, we
assume:

ai > 0, bi > 0 (5.2.3.1)

minimize
γ∈ΓSD

∑
i∈γ

νNiNi+1
(SoCr

i , SoC
r
i+1) (5.2.3.2)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1] (5.2.3.3)

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi] (5.2.3.4)

5.3 Error analysis

As the SoC is discretized, it is useful to analyse the error between the discrete problem
(Ph) and the continuous one (P ). In order to analyze it, let be γ a path on the road network,
and consider the consumption minimization problem on path γ. We note the continuous
problem (P γ), and the discrete problem (P γ

h ). We define the criterion:

F γ(SoCr) :=
∑
i∈γ

νNiNi+1
(SoCr

i , SoC
r
i+1) (5.3.0.1)

minimize
SoCr

F γ(SoCr)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1]

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi]
(P γ)

minimize
SoCr

F γ(SoCr)

s.t ∀i ∈ γ, SoCr
i ∈ {0, h, ..., 1}

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi]
(P γ

h )

Denote the value of (P γ
h ) by V γ

h , and the value of (P γ) by V γ . Let the eco-routing
problem (P ) be

min
γ

(V γ) (P )

and its discrete approximation (Ph) be

min
γ

(V γ
h ). (Ph)

Theorem 4. Discretization Error

Let the criterion F γ be Lipschitz continuous with constant L and let S∗ be a solution
of (P γ). Then there exists Sh feasible for (P γ

h ), such that |Sh − S∗| = O(h) and

F γ(S∗) ≤ F γ(Sh) ≤ F γ(S∗) +O(h). (5.3.0.2)
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Proof. Let S∗ a admissible solution for (P γ). Let Ŝ = (1− ε)S∗.
Then Ŝ ∈ [0, 1] and also Ŝi+1 − Ŝi ∈ [−(1− ε)ai, (1− ε)bi].
Define the discretized grid H = {0, h, ..., 1}, and a projector Πh over H such that

Πh(x) ∈ argmin
h∈H

(|x− h|) (5.3.0.3)

Let Ŝh := Πh(Ŝ). Then Ŝh ∈ {0, h, ..., 1} and

Ŝi+1 − Ŝi ∈ [−(1− ε)ai − h, (1− ε)bi + h]. (5.3.0.4)

Therefore Ŝh is feasible for problem (P γ
h ) if and if only:

h− εbi ≤ 0 (5.3.0.5)

εai − h ≥ 0 (5.3.0.6)

Thanks to assumption (5.2.3.1), we can take :

ε =
h

min(mini(ai),mini(bi))
(5.3.0.7)

Therefore, ε = O(h). An admissible solution of (P γ
h ) is at O(h) distance of an admissible

solution of (P γ). Since the objective function F γ is Lipschitz continuous, the conclusion
follows.

Corollary 5. Under hypothesis of theorem 4, we have that

val(P ) ≤ val(Ph) ≤ val(P ) +O(h) (5.3.0.8)

5.4 Find the shortest path

In the problem (5.2.3.2), all edge costs are non negative since the vehicle consumes
fuel and cannot produce it.

5.4.1 Dijkstra algorithm

A common algorithm to find the shortest path between two points in a directed graph
where all the edges have positive weights, is the Dijkstra algorithm [17]. The principle of
the Dijkstra algorithm is to separate the nodes in two categories, already explored nodes
and those unvisited, while exploring the graph from the source until you find the destina-
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tion. The algorithm can be described as Alg.6 where4 is the symmetric difference.

Algorithm 6: Dijkstra Algorithm
Explored_Nodes={}
Unvisited_Nodes={source}
while Unvisited_Nodes is not empty do

u= argmin
u∈Unvisited_Nodes

value(u)

if u is destination then
We return path[u]

else
Explored_Nodes = Explored_Nodes ∪ {u}
Unvisited_Nodes = Unvisited_Nodes4 {u}
forall v neighbour of u do

New_Value= value(u) + cost(u,v)
if New_Value < value(v) then

value(v)=New_Value
path[v]=path[u] ∪ {u}

if v /∈ Unvisited_Nodes then
Unvisited_Nodes = Unvisited_Nodes ∪ {v}

No Path exists

5.4.2 The A* algorithm

The A* algorithm is a heuristic algorithm used to determine the optimal routing on
a weighted graph described the first time in [43]. To determine the optimal routing in
a graph, the A* algorithm uses the principle of the Dijkstra algorithm, but thanks to a
heuristic distance h, decreases the number of nodes explored.

By choosing the node with the minimum expected distance each time, we avoid ex-
ploring nodes having an expected distance greater than the optimal routing.

The A* algorithm is shown in Alg.7.

The optimality of A* algorithm

The A* algorithm uses a heuristic to limit the number of explored node. We recall the
results of [70] that it is possible to insure that the response given by the algorithm A∗ is
the optimal path under some assumptions over the heuristic distance .

Definition 1. Admissibility

A heuristic h is admissible if it never overestimates the real cost to reach the goal. In
other terms,

∀v ∈ Γ, h(v) ≤ h∗(v) (5.4.2.1)

where h∗(v) is the minimum cost between v and the goal node.

Theorem 6. If the heuristic h is admissible then the A* algorithm stops and finds an
optimal path between the source s and the destination d, if it exists.
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Algorithm 7: A* Algorithm
Explored_Nodes={}
Unvisited_Nodes={source}
while Unvisited_Nodes is not empty do

u= argmin
u∈Unvisited_Nodes

estimated_value(u)

if u is destination then
We return path[u]

else
Explored_Nodes = Explored_Nodes ∪ {u}
Unvisited_Nodes = Unvisited_Nodes4 {u}
forall v neighbour of u do

New_Value= value(u) + cost(u,v)
if New_Value < value(v) then

value(v)=New_Value
estimated_value(v)=value(v)+heuristic(v)
path[v]=path[u] ∪ {u}

if v /∈ Unvisited_Nodes then
Unvisited_Nodes = Unvisited_Nodes ∪ {v}

No Path exists

Complexity of the A* algorithm

In the case of long travel, the road network is a graph with a large number of edges
and nodes. Therefore the complexity of the A* algorithm needs to be discussed. We recall
the worst case complexity [64] .

In the worst case scenario, the destination node is explored after all the other nodes on
the graph, and after that all the edges have been explored too. If n is the number of nodes
and m the number of edges, the complexity is O(n ∗ operations+m ∗ operations). The
only operations which is not in O(1) is the minimization over the nodes, that can be made
in O(log(n)). Then the complexity is O(n ∗ log(n) + m) and we have that m ≤ n2. So
the complexity of the A* algorithm in the worst case possible is O(n2).

However, the number of nodes of the state graph depends on the discretization of the
SoCr as well as the number of edges. The number of nodes of the state graph is the
product of the number of intersections n in the road network and the number of SoC
divisions created. The number of edges of the state becomes m/h2. Then the complexity
of the A* algorithm according to the problem is O(n/h log(n/h) +m/h2.

5.4.3 Choice of the heuristic
We propose here an admissible heuristic for the case of the hybrid vehicle eco-routing.

We define hc an estimate of the consumption to reach the physical destination

hc := ηmα0L (5.4.3.1)

with L is the travel length, ηm be the maximum efficiency of the ICE to convert fuel to
mechanical energy, α0 defined in section 3.2.1, and m the mass of the vehicle.
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Similarly, we define hSoC an estimate of the consumption to reach the desired state of
charge

hSoC := ηeCmax(SoCf − SoCcurrent) (5.4.3.2)

with ηe the maximum efficiency of the ICE to convert fuel to battery charge.
Finally, we must take into account the possibility of regenerative braking that can

recover the kinetic energy of vehicle. Therefore, we define hkinetic

hkinetic :=
ηcm

2
vmax (5.4.3.3)

with ηc a conversion factor of the kinetic energy into fuel according to the ICE and vmax
the maximum speed. Since we want to reach a specific destination with a final state of
charge, the heuristic is taken as the sum of these estimates. Additionally, we take into
account that the fuel cannot be produced by the vehicle, giving the final expression:

h := max(0, hc + hSoC + hkinetic) (5.4.3.4)

5.5 Numerical simulations

We now present numerical simulations for the eco-routing method. We study a simple
road network comprised of a small ring with congested traffic with a mean speed of 40
km/h, enclosed in a larger ring with fluid traffic with a mean speed of 100 km/h. This can
be considered as a very simplified model of a typical road network of ring roads network
around a city. For the sake of simplicity, each segment of the presented network has the
same topological aspect. In particular, we are interested in comparing the solution from
the eco-routing, called ‘eco-path’ in the following, with the fastest path. We first study a
specific travel with a fixed origin and destination, and then give some more general results
on all possible travels on the network.

5.5.1 Study of a single travel

Figure 5.4 – Eco-path (left) and Fastest Path (right) - (SoCi = 30%, SoCf = 25%)
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5.5. Numerical simulations

We show on Fig.5.4 the eco-path (green, left graph) and fastest path (orange, right
graph) for a given travel with conditions (SoCi = 30%, SoCf = 25%). Keep in mind
that the considered vehicle has a low capacity battery, see Cmax in Table 3.1, allowing
for relatively significant SoC changes even on small road segments. The SoC values at
the end of each road segment are indicated on the nodes, while the value from the micro
problems are displayed along each edge. In this particular example, the fastest path takes
the 4 fast segments on the outer ring, while the eco-path uses the slower inner segments
to reduce the consumption, with 7 segments in total.

Path Value Cons. (L) SoCf (%) Time (s) Dist. (km)
Eco 0.41 0.012 21 163 2.14

Fastest 2.66 0.038 4 44 1.22

Table 5.1 – Comparison of Eco and Fastest Path - (SoCi = 30%, SoCf = 25%).

Table 5.1 summarizes for both paths the sum of values of the micro problems, con-
sumption, final SoC, time and distance for a SoCf = 25% constraints. The time is based
on the average speed of each segment. The consumption and final SoC are recomputed by
taking the average of 1000 resimulated travels using the local optimal policies determined
by the eco-path, with i.i.d. sampling according to the traffic conditions for the (v, a) val-
ues. For this sample travel the eco-path consumption is one third of the fastest path, for a
double distance and four times longer time. Note that the difference in terms of value is
greater than the difference in consumption, which indicates that the eco-path has a better
chance of following the reference SoC trajectory, since the value function of the micro
problems is the sum of the consumption and penalty for the final SoC constraint at the
end of the segment. This also shows in the final SoC value, with the eco-path being much
closer to the prescribed SoCf = 25%, reaching 21% while the fastest path ends up at only
4%.

Figure 5.5 – Eco-path (left) and Fastest Path (right) - (SoCi = 30%, SoCf = 20%)

Fig. 5.5 and Table 5.2 show the same results for a final constraint SoCf = 20%.
The consumption is still one third of the one of the fastest path, but now with a more
moderate increase in travel distance and time. Also notice that the final SoC constraint
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Path Value Cons. (L) SoCf (%) Time (s) Dist. (km)
Eco 0.28 0.013 19.7 106 1.53

Fastest 1.46 0.036 4 44 1.22

Table 5.2 – Comparison of Eco and Fastest Path - (SoCi = 30%, SoCf = 20%).

is well satisfied in this case by the eco-path, reducing the gap between the resimulated
consumption and the value of the eco-routing problem. All in all, we observe a classical
trade-off, with the eco-routing having a lower consumption and better management of the
state of charge, at the expense of choosing longer and slower paths.
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Figure 5.6 – Simulated and reference SoC trajectories. Markers show the mean and verti-
cal bars show ±σ of the simulated trajectories.

Now, we study the SoC a bit more in detail, with Fig.5.6 showing the evolution of the
state of charge along the travel. Orange line is the reference SoC from the eco-routing
solution, while blue line is the average (with standard deviation indicators) of the 1000
resimulations, with the first 100 resimulations also plotted in grey lines. We see that
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5.5. Numerical simulations

for the condition ∆SoC = −10% (left), the reference SoC is very well matched by the
set of resimulations, which means that the control decisions from the micro problems
are able to satisfy the individual final SoC constraints at the end of each segment. In
this case the penalty terms are typically close to zero, and the value function is close to
the consumption. For the stricter condition ∆SoC = −5% (right), we see that the micro
solutions begin to have difficulties to reach the required SoC, which leads to penalty terms
in the value function (as seen in Table 5.1 and Table 5.2) and a growing gap between
the reference SoC from the eco-path and the actual SoC trajectory from the resimulated
travels.

We look a bit more into the influence of the final SoC condition, by solving the pre-
vious test case for ∆SoC ranging from −10% to +5%. We compare in particular the
final SoC and consumption for the eco-path and the resimulated trajectories. Fig.5.7
shows the final SoC (eco-path reference and resimulations average with std indicators).
The reference final SoC basically corresponds to the ∆SoC constraint (we recall that
SoCi = 30%). As for the resimulated SoC, we see that for easier constraints such as 10%
discharge, it coincides well with the reference, as already seen above in Fig.5.6. When
the final SoC condition tightens, we see an increasing gap between the two curves, due
to the fact that some of the micro solutions selected for the eco-path do not satisfy their
prescribed SoCs. A way to reduce these gaps could be to use a smaller discretization for
the initial and final SoC of the micro problems, enabling the routing algorithm to choose
reference SoCs closer to the maximum feasible ∆SoC on the segments. Note also that
for sufficiently long travels with more opportunities for recharging the battery, the gap
may be compensated along the way, see the simulations for the ‘macro’ optimization in
chapter 4.
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Figure 5.7 – Reference and resimulated SoCf

On Fig. 5.8 we display the resimulated consumption for the eco and fastest paths.
We observe a clear advantage of the eco-paths overall, with a consumption between one
quarter and one third of the fastest path. The consumption for the fastest path tends to
increase with respect to the ∆SoC, since the harder final SoC constraint required an
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5. APPLICATION TO THE OPTIMAL ROUTING PROBLEM UNDER TRAFFIC CONDITIONS

additional use of the engine. On the other hand, the consumption of the eco-path appears
non increasing, which is probably explained by the fact that the eco-path maintains a
low consumption at the expense of an increasing violation of the final SoC constraints,
see Fig. 5.7. This is related to the fact that the micro problems manage the reference
SoC constraints thanks to the penalization term, which allows some trade-off between the
consumption and the reference SoC constraints.
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Figure 5.8 – Eco-path and Fastest path Consumption

5.5.2 Study of all possible travels

While we previously focused on a single travel, we now perform some simulations
while taking into account all possible travels on the road graph. According to the symme-
try of the road network, we end up with a set of 54 travels which we solve for varying final
SoC conditions. Fig.5.9 shows the average time and distance ratio between the eco-path
and the fastest path (i.e. the average of the ratios for each individual travel).

For harder final SoC constraints, we notice a large difference between the two paths,
with the eco-path being (on average) up to 7 times slower and 4 times longer than the
fastest path. This behaviour comes from the eco-path traveling repeatedly along segments
that allow for recharging the battery, in order to meet the final constraint of a 5% charge.
Note that this type of path seems to includes cycle in the ‘physical’ road graph, but not
cycles in the weighted graph augmented with the SoC values.

When the final SoC constraints are easier, the average time and distance of the eco-
path and fastest path tend to be closer. Indeed, allowing an increased discharge of the
battery will reduce the consumption of the fastest path, up to the point that it actually
becomes identical to the eco-path.
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Figure 5.9 – Time and Distance Ratio

5.6 Conclusion
Simulations on a simple road network indicate that the eco-routing method computes

optimal paths with a consumption significantly lower than the fastest path solutions. This
reduced consumption comes with an expected trade-off in terms of travel distance and
time, and considering an upper bound for time and/or distance would be a natural exten-
sion of the method, in order to obtain solutions that can fit the expectations of the drivers.
We also observe that the accuracy of the reference SoC trajectory computed by the eco-
routing tends to decrease for stricter final SoC conditions. Increasing the weight of the
penalty term for the final SoC constraint would also improve this accuracy, however at the
expense of a higher consumption overall. Another direction for improvement would be
to use a finer SoC discretization for the initial and final conditions of the micro problems,
as the error analysis has shown that the values of the discretized problem approximate the
one of the original problem up to the order of the discretization step size.
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6. CONCLUSIONS AND PERSPECTIVES

In this chapter, the main results obtained through this thesis are recalled. Extensions
and perspectives are finally presented in the last section.

6.1 Conclusions
As a first step, a stochastic data-based model of traffic has been presented. Tak-

ing into account a division of the road networks into segments, this model reduces the
speed/acceleration data recorded from the vehicles on each segment. This approach has
shown its ability to estimate the distribution of the energy used by the vehicles on the road
segment. This statistical approach, using probability distributions, is able to significantly
reduce large amounts of traffic data. Using clustering techniques, based on optimal trans-
port theory, we can reach compression factor up to 99% while retaining most relevant
information. These traffic distributions can be computed off-line and stored in databases.
Numerical experiments, with simulated traffic data, have shown that the method can be
used on large networks in reasonable time, the city of Luxembourg in few hours. Besides,
experiments on real traffic data have shown that the obtained clusters are efficient for iden-
tifying different traffic conditions. The study on the influence of discretization seems to
indicate there is an expected trade-off between the support size of the speed/acceleration
distribution and the accuracy of the estimated energy distributions.

Using this stochastic model of traffic, we have been able to optimize, given initial
and final SoC, the energy consumption of HEVs on a road segment under traffic condi-
tions. A stochastic optimization problem has been introduced and solved using Stochastic
Dynamic Programming algorithm. The solution, compared to a theoretical lower bound
obtained for specific speed profiles by Deterministic Dynamic Programming algorithm,
shows that the consumption is at less than 5% from the lower bound. The optimal poli-
cies can be interpreted in terms of operating modes and show that the vehicle adapts the
torque of the engine according both to the desired final state of charge and traffic condi-
tions. Using previously computed and stored traffic distributions, it is possible to solve
these problems off-line for all road segments and store the resulting cost maps and opti-
mal policies. This information can be used on-board of the vehicle, for example through
a rule-based energy management system.

The stochastic problem is usually too costly to be solved on-line on the whole travel.
Therefore we introduced a bi-level formulation. Such a formulation enables us to han-
dle the stochastic aspects of the traffic at the lower level, using the previously mentioned
stochastic optimization approach. On the other hand, the upper level can then be formu-
lated as a deterministic optimization problem and solved thanks to Deterministic Dynamic
Programming algorithm. This bi-level method has shown its capacity to determine a ref-
erence state of charge trajectory on a whole travel, with computational time reasonable for
on-line purposes. This computational time of the upper level does not depend on the size
of the support of the traffic distributions, allowing to use finer discretizations to improve
accuracy of the energy cost maps. Numerical simulations indicate an average overcon-
sumption, around 15%, compared to the theoretical lower bound with perfect speed profile
prediction.

Finer speed and acceleration discretizations increase the support size for the traffic
distributions, leading to a more expensive clustering step (performed off-line) . As an
alternative to the usual Sinkhorn iterations, we adapted a stochastic gradient algorithm
to the Wasserstein barycenter problem. Thanks to the entropic regularizations and the
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semi-dual formulation, we obtained an approximate barycenter problem with an objective
function that has an additive structure. This algorithm has an increased space occupancy,
but a reduced time complexity with a linear convergence rate. Using such an algorithm
can reduce the computational time of clustering on fine speed/acceleration discrete grids.

6.2 Perspectives
We have proposed a memoryless method that does not keep track of the temporal

dependency of the speed profile. Even if this assumption gives good results in terms of
consumption estimation, it generates unrealistic speed profiles, typically discontinuous.
It may be possible to improve the estimated consumption with a Markovian approach
that keeps the time dependency between the speed and acceleration. The main difficulty
of such a modelisation will be in the clustering part that needs to preserve the dynamic
aspects of the aggregated data.

Another possible improvement of the method is the determination of the optimal num-
ber of clusters needed to represent the traffic conditions on the road segment. Approaches
such as the silhouette method may help to determine the optimal number of clusters.

A current limitation is that recorded data are not linked to the speed and acceleration
characteristics of vehicles. It may be interesting to aggregate the data according to the
type of vehicle (light vehicles, trucks, buses, etc.), in order to improve the consumption
estimation.

Recovering the vehicles data may be difficult to implement over the entire road net-
work, and lack of information may appear on some parts of it. Meta-clustering, i.e. per-
forming a second layer of clustering on the road segments with respect to their clustered
traffic conditions, may solve the sparsity of the data. Indeed, such clustering may high-
light the link between the topological characteristic of the road segments (slope, curve,
type of intersection, etc.) and typical traffic conditions.

The assumption that the vehicle follows the traffic, i.e. the speed and the acceleration
are i.i.d with respect to the traffic distribution, does not allow the driver to choose his
speed. In the case of autonomous vehicles, relaxing the traffic assumption and adding the
speed to the decision variables may be considered in future works. Such an approach may
merge EMS, eco-driving, and eco-routing.

In our work, time stationary traffic conditions have been considered, which seems
rather unrealistic for long travels. Adding the time as an additional state variable is likely
to be too costly due to the curse of dimensionality. Besides, in the case of stochastic
transitions on traffic distributions then the deterministic ‘macro’ level can be transformed
into a stochastic problem.

More generally, additional constraints on the vehicle can be considered. For example,
recent works on the ageing of batteries have shown that from an economical point of
view, the fuel saving generated thanks to the hybridization, can be outweighed by the
premature ageing of the battery [29]. Adding an ageing constraint or cost in the ’micro’
problem could help to solve this issue.
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A. A STOCHASTIC GRADIENT METHOD FOR WASSERSTEIN BARYCENTERS OF DISTRIBUTIONS

A.1 Introduction

Let µ and ν be probability measures over discrete sets I and J , and cij , for i ∈ I and
j ∈ J , represent the transportation cost from i to j. An optimal transport plan π from mu
over ν is defined as a solution of the ’Monge-Kantorovich’ linear programming problem
[66],

W (µ, ν) = min
π∈Π(µ,ν)

d · π (A.1.0.1)

Here the set of transportation plans Π(µ, ν) is defined as the set of nonnegative matrices
of size |I| × |J with marginals π>1 = µ and π1 = ν. Since the feasible set is nonempty
and bounded, by the linear programming theory, the set of solutions is nonempty and the
optimal value is the same as the one of the dual problem.

Solving this problem by linear programming algorithms may be expensive for large
scale problems (the basis matrix has size |I| + |J |). So the standard practice is based on
entropic regularization and Sinkhorn iterations based on iterative Bregmann projections,
see [8]. The regularized problem may also be solved by the Stochastic Average Gradient
approach [4].

In some cases of transportation costs based on the Euclidean distance of points xi and
yj , elements of the same Euclidean space, we obtain the so-called Wasserstein distance.
Minimizing the convex combination of distances to given distributions, an extension of
the notion of barycenters, called Wasserstein barycenter, has been obtained [1] in the case
of p = 2.

From a practical point of view, the computation of Wasserstein barycenters is compu-
tationally expensive. To decrease the complexity of the computation of the Wasserstein
distance, some methods based on 1-D projection have been proposed, such that the sliced
method [78] or the Radon transform [9]. Another direction is to discretize the state space
and use linear programming techniques, dualization and descent gradient algorithm [19]
or quasi-Newton methods [13]. In this article, we propose a stochastic gradient algorithm
for the computation of Wasserstein barycenters in the discrete case. This method retains
the same rate of convergence as the Sinkhorn iterations with a smaller complexity.

A.2 Barycenter type Optimal Transportation

A.2.1 Framework

Let K be a positive integer, and X0 to XK be discrete sets, with Xk of size nk. For
k = 1 toK, Xk is endowed with a probability νk, and the transportation cost from i ∈ X0

to j ∈ Xk is denoted by ckij; so, ck is a n0 × Ik matrix. We say that π = (πk)1...K , with
πk matrix of same size as ck, is a transport plan if it is a probability law over X0 × Xk,
with marginals νk, for k = 1 to K, and the same marginal over X0 for k = 1 to K. We
may assume that all components of the νk are positive (otherwise we could reformulate
the problem by eliminating zero components). The associated cost is

c · π =
K∑
k=1

ck · πk (A.2.1.1)
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A.2. Barycenter type Optimal Transportation

The minimal cost transportation plan (where the marginal over X0, denoted by µ, is to be
minimized) is therefore solution of the problem

minπ,µ c · π; π ≥ 0;

(πk)>1 = µ, πk1 = νk, k = 1, . . . , K,
(P)

Here 1 denotes the vector of ones (with dimension coherent with the matrix/vector prod-
ucts).

A.2.2 Penalized formulations

For the moment a regularization function is just a l.s.c. convex proper functions over
R. Such a regularization function e is equal to its bi-conjugate; that is, it can be repre-
sented as

e(s) = sup
t
st− e∗(t), (A.2.2.1)

where e∗ : R → R̄ is the Fenchel conjugate defined by

e∗(t) := sup
s
st− e(s). (A.2.2.2)

We keep as much as possible the framework with general penalties, but later we will
specialize in the case of the reverse entropy, with domain R+. whose expression and
Fenchel conjugate are

ϕ(s) = s(log s− 1); ϕ∗(t) := et. (A.2.2.3)

We choose to regularize both π and µ with some regularization functions e1 and e2: and
set

E1(π) :=
K∑
k=1

∑
i∈X0

∑
j∈Xk

e1(πkij); E2(µ) :=
∑
i∈X0

e2(µi). (A.2.2.4)

We choose e1 with domain either R+ or (0,∞), differentiable over (0,∞); therefore it
can be interpreted as a way to ensure the non negativity of π.

Then the regularized transportation problem is, given regularization parameters ε1 ≥
0 and ε2 ≥ 0:

min
π,µ

c · π + ε1E(π) + ε2E(µ);

πk1 = µ; (πk)>1 = νk, k = 1, . . . , K.
(Pε)

In agreement with the convention in convex analysis, we interpret a zero penalization
term as the limiting one when the penalty parameter goes to zero, that is, for e1, as the
indicatrix of R+ (so that the non negativity constraint is always valid). The Lagrangian
of Pε is

Lε(π, µ, u, v) := c · π + ε1E(π) + ε2E(µ)

+
K∑
k=1

(
uk · ((πk)>1− µ) + vk · (πk1− νk)

) (Lε)
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Here (uk){1,...,K} ∈ RI and (vk){1,...,K} ∈ RJ are the Lagrange multipliers associated with
the linear constraints of Pε. Equivalently

Lε(π, µ, u, v) :=
K∑
k=1

∑
i∈X0

∑
j∈Xk

(
ε1e1(πkij) + πkij(c

k
ij + uki + vkj )

)
+
∑
i∈X0

(
ε2e2(µi)− µi

K∑
k=1

uki

)
− v · ν.

(A.2.2.5)

Keep in mind the definition (A.2.2.1) of the Fenchel conjugate, implying that for κ > 0:

(κe)∗(s) = κ(sup
t

((κ−1s)t− e(t)) = κe∗(κ−1s). (A.2.2.6)

We see that the dual problem, i.e. the one of maximizing w.r.t. the Lagrange multipliers
the infimum of Lε(π, µ, u, v) w.r.t. the primal variables (π, µ), is

max
u,v
−v · ν− ε1

K∑
k=1

∑
i∈X0

∑
j∈Xk

e∗1
(
−ε−1

1 (ckij + uki + vkj )
)
− ε2

∑
i∈X0

e∗2

(
1

ε2

K∑
k=1

uki

)
(Dε)

Remark 7. Since the non negativity of π implies the one of µ, we may as well decide not
to penalize the nonnegativity of the latter, which amounts to take for e2 the null function.
Then e∗2 is the indicatrix of 0, so that the expression of the dual problem is

max
u,v
−v · ν − ε1

K∑
k=1

∑
i∈X0

∑
j∈Xk

e∗1
(
−ε−1

1 (ckij + uki + vkj )
)

; −
K∑
k=1

uk = 0. (A.2.2.7)

A.3 Semi-dual problem

Let us denote the above dual cost by D(u, v), defined in A.2.2.7. We define the semi-
dual cost as

d(u) := sup
v
D(u, v) (A.3.0.1)

and by semi-dual problem the problem

max
u

d(u). (A.3.0.2)

Clearly the dual and semi-dual problem have the same value. We next assume that

e1 = ϕ (A.3.0.3)

where the reverse entropy ϕ was defined in (A.2.2.3). Then e∗1 is the exponential function.
This allows to get an explicit expression of the semi-dual cost. Indeed we maximize a
concave function of v. Setting ξkij := e−c

k
ij/ε1 , we see that the maximum is attained w.r.t.

vkj iff ∑
i∈X0

ξkije
−uki −vkj

ε1 = νkj . (A.3.0.4)
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Remember that νkj > 0, so that the above equation has a unique solution

vkj = ε1 log(
1

νkj

∑
i∈X0

ξkije
−uki
ε1 ). (A.3.0.5)

We obtain the expression of the semi-dual problem:

max
u
−ε1

K∑
k=1

∑
j∈Xk

νkj (log(
1

νkj

∑
i∈X0

ξkije
−uki
ε1 ) + 1)− ε2

∑
i∈X0

e∗2

(
1

ε2

K∑
k=1

uki

)
. (A.3.0.6)

In particular when e2 = ϕ we obtain

max
u
−ε1

K∑
k=1

∑
j∈Xk

νkj (log(
1

νkj

∑
i∈X0

ξkije
−uki
ε1 ) + 1)− ε2

∑
i∈X0

e

∑K
r=1 uri
ε2 (A.3.0.7)

Since the νk are probability distributions we may rewrite the problem in the form

max
u

K∑
k=1

∑
j∈Xk

hjk(u)νkj (Sε1,ε2)

where

hjk(u) = −ε1 log(
1

νkj

∑
i∈X0

ξkije
−uki /ε1)− ε1 −

ε2

K

∑
i∈X0

e

∑K
r=1 uri
ε2 (A.3.0.8)

The expression of the gradient of hjk is

∀p ∈ [1, K], ∇upi
hjk(u) = −e

∑K
r=1 uri
ε2

K
+ δk,p

ξkije
−uki /ε1∑

l∈X0 ξklje
−ukl /ε1

(A.3.0.9)

Other way keeping the sum over K inside the functions, we obtain :

max
u

∑
j

hj(u) (Sε1,ε2)

with :

hj(u) = −ε1

∑
k

νkj (log(
1

νkj

∑
i∈X0

ξkije
−uki
ε1 ) + 1)−

ε2

∑
k ν

k
j

K
(
∑
i∈X0

e

∑K
r=1 uri
ε2 ) (A.3.0.10)

We can compute the gradient of h :

∀k ∈ [1, K],∇uki
hj(u) = − 1

K

K∑
k=1

νkj e

∑K
r=1 uri
ε2 +

νkj ξ
k
ije
−uki

ε1∑
l ξ
k
lje
−

uk
l

ε1

(A.3.0.11)
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A.4 Algorithms

In the following section, we consider algorithms computing, for K measures of prob-
ability νk with support of size I , their barycenter µ having a support of size J . For the
sake of simplification, the data of the problem (νk, µ, ξk, ε1, ε2) are not listed in the inputs
of the algorithms.

A.4.1 SAG

Algorithm 8: SAG for Discrete OT
Input : ρ ∈ R+∗,η ∈ R+∗

Output: u ∈ RK×I

Initialization
u← 0K×I , d← 0K×I , ∀j ∈ {1, .., J}, gj ← 0K×I ;
while ‖∇h‖ ≤ η do

Draw j ∈ {1, 2, ..., J} uniformly.
d← d− gj
gj ← ∇h(xj,u) % see Algorithm 2
d← d + gj
u← u + ρd

Algorithm 9: Gradient Computation
Input : j ∈ {1, . . . , J}, u ∈ RK×I

Output:∇h(xj, u)
Initialization
ν̄ ←

∑
r∈{1,...,K} ν

r
j

ū←
∑

r∈{1,...,K} u
r

for k = 1, . . . , K do

D ←
∑

l∈{1,...,I} ξ
k
lje
−ukl

ε1

for i = 1, . . . , I do

∇uki
h(xj, u)← − ν̄e

ūi
ε2

K
+

νkj ξ
k
ije
−

uki
ε1

D

The complexity of the SAG for each iteration is O(KI). Indeed at each step, the
algorithm computes the gradient of a specific hj . We can see from algorithm 9 that each
component of the gradient needs only 2K + 2KI operations as the two sum, ū, D can
be compute in a first time. So we need at most O(KI) operations to complete a step. In
terms of memory, we store J matrices of sizeKI for the gradient, so the space complexity
is O(KIJ)
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A.4.2 Sinkhorn

We introduce the notation ξ = e
− c

ε1 ∈ RI×J by analogy with ξk = e
− ck

ε1 . And the two
operators �,÷ component-wise multiplication and division.

Algorithm 10: Sinkhorn for Discrete OT
Output: µ
Initialization
for k ∈ 1, ..., K do

xk ← 1J
yk ← νk ÷ (ξ>1I)

for n = 1, 2, ..., N do
µ←

∏
k∈{1,...,K} (xk � (ξyk))

λk

for k ∈ 1, ..., K do
xk ← µ÷ (ξdiag(yk)1I)
yk ← νk ÷ (ξ>diag(xk)1J)

µ←
∏

k∈{1,...,K} (xk � (ξyk))
λk

We can see that at each step we have a computation of µ and a loop over K. The
computation of µ is O(KIJ). The key loop updates xk and yk for a complexity of
O(KI2J + KIJ2) 1. So we have a complexity of the Sinkhorn algorithm bounded by
O(N4) where N = max(K, I, J). In terms of space, we store K vectors xk of size
J , K vectors yk of size I , and a matrix of size IJ . So we have a space complexity in
O(KI +KJ + IJ).

Algorithm SAG Sinkhorn
Time complexity per iteration O(KI) ≤ O(N2) O(KI2J +KIJ2) ≤ O(N4)
Space complexity O(KIJ) ≤ O(N3) O(KI +KJ + IJ) ≤ O(N2)

Table A.1 – Complexity of Algorithms

A.5 Convergence Rate

A.5.1 SAG algorithm
In [79], the following results over the convergence rate of SAG have been proved. Let

assumed (i) that each functions h(xj, ·) is differentiable and each gradient ∇h(xj, ·) is
Lipschitz continuous with constantL. And (ii) that the functionF (·) =

∑
j∈{1,...,J} h(xj, ·)

is strongly convex with constant β 2. A consequence of (ii) is the existence of a unique
optimum u∗. The following results holds.

Proposition 8. With constant step size of ρ = 1
2JL

, the SAG iterations satisfy for n > 1 :

E[‖uk − u∗‖2] ≤ (1− β

8LJ
)n[3‖u0 − u∗‖2 + 9

σ2

4L2
]

1Assuming that the complexity of a product of a matrix (m× n) by a matrix of size (n× p) is O(nmp)
2Meaning that x 7→ g(x)− β

2 ‖x‖
2 is convex
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with σ2 =
∑

j∈{1,...,J} ‖∇h(xj, u
∗)‖2.

This gives a convergence rate of O(J/K) and the linear convergence holds for any
ρ ≤ 1

2JL
.

A.5.2 The Sinkhorn Algorithm
The Sinkhorn algorithm [82] is originally a matrix scaling method based on alterna-

tive scaling of rows and columns in order to obtain a doubly stochastic matrix, or more
generally, a nonnegative matrix with given marginals. Convergence rates are known [37].
The rate can be estimated as follows. If a is the positive matrix to be scaled, set

θ(a) := max
i,j,k,`

log
aikaj`
ai`ajk

; κ(a) :
e

1
2
θ(a) − 1

e
1
2
θ(a) + 1

(A.5.2.1)

then the rate is γ := κ(a)2, for some special metric.
It appears that iterative Bregman projections for solving a optimal transport problem

coincide with the Sinkhorn algorithm for scaling a related matrix, see [18].
It was shown in [8] that Bregman projections naturally apply to the barycenter prob-

lem, the essential steps being based in scaling steps similar to those in the Sinkhorn al-
gorithm. Since the Bregman projections are over affine sets, the sequence of iterates
converges, see[11], but the convergence rate is unknown.
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Résumé : Cette thèse aborde la conception d'un Système de Gestion Énergétique (EMS), prenant
en compte les contraintes de tra�c, pour un véhicule hybride électrique. Actuellement, les EMS sont
habituellement classés en deux catégories : ceux proposant une architecture en temps réel cherchant un
optimum local, et ceux qui recherchent un optimum global, plus coûteux en temps de calcul et donc plus
approprié à un usage hors ligne. Cette thèse repose sur le fait que la consommation énergétique peut être
modélisée précisément à l'aide de distributions de probabilité sur la vitesse et l'accélération. Dans le but
de réduire la taille des données, une classi�cation est proposée, basée sur la distance de Wasserstein, les
barycentres des classes pouvant être calculés grâce aux itérations de Sinkhorn ou la méthode du Gradient
Stochastique Alterné. Cette modélisation du tra�c permet à une optimisation hors ligne de déterminer
le contrôle optimal (le couple du moteur électrique) qui minimise la consommation de carburant du
véhicule hybride sur un segment routier. Un algorithme bi-niveau tire avantage de cette information
a�n d'optimiser la consommation sur l'ensemble du trajet. Le niveau supérieur d'optimisation étant
déterministe, il est su�samment rapide pour une implémentation en temps réel. La pertinence du
modèle de tra�c et de la méthode bi-niveau est illustrée à l'aide de données tra�c générées par un
simulateur, mais aussi grâce à des données réelles collectées prés de Lyon (France). En�n, une extension
de la méthode bi-niveau au problème d'éco-routage est présentée, utilisant un graphe augmenté pour
déterminer l'état de charge lors du chemin optimal.
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Abstract : The focus of this PhD thesis is to design an optimal Energy Management System (EMS)
for a Hybrid Electric Vehicle (HEV) following tra�c constraints. In the current state of the art, EMS
are typically divided between real-time designs relying on local optimization methods, and global op-
timization that is only suitable for o�-line use due to computational constraints. The starting point of
the thesis is that in terms of energy consumption, the stochastic aspect of the tra�c conditions can be
accurately modelled thanks to (speed,acceleration) probability distributions. In order to reduce the data
size of the model, we use clustering techniques based on the Wasserstein distance, the corresponding
barycenters being computed by either a Sinkhorn or Stochastic Alternate Gradient method. Thanks
to this stochastic tra�c model, an o�-line optimization can be performed to determine the optimal
control (electric motor torque) that minimizes the fuel consumption of the HEV over a certain road
segment. Then, a bi-level algorithm takes advantage of this information to optimize the consumption
over a whole travel, the upper level optimization being deterministic and therefore fast enough for
real-time implementation. We illustrate the relevance of the tra�c model and the bi-level optimization,
using both tra�c data generated by a simulator, as well as some actual tra�c data recorded near Lyon
(France). Finally, we investigate the extension of the bi-level algorithm to the eco-routing problem,
using an augmented graph to track the state of charge information over the road network.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Preface
	Abstract
	Résumé
	Dissertation Outline
	List of Publications

	Résumé de la Thèse
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Global context
	Environmental issues
	Hybridization
	Connected world
	Thesis positioning

	Hybrid Electrical Vehicles' Architecture
	Hybrid Configurations
	Operating modes of HEVs

	Energy Management Systems for Hybrid Electric Vehicle
	Rule-based EMS
	Optimization-based EMS

	Thesis contributions

	A stochastic data-based traffic model
	Introduction
	Proposed Method
	Road segments
	Probability distribution for (speed,acceleration)
	K-means clustering with strong patterns
	Computing energy consumption

	Validation Approach
	Power and Reference energy consumption
	Indicators

	Results with simulated traffic data
	Traffic Data from simulation
	Numerical results on one segment
	Numerical results on 500 segments

	Results using real data
	Clustering impact
	Mean speed method
	Analysis of the 4-cluster case
	Summary

	Conclusions

	An Optimal local policy using traffic prediction
	Introduction
	Modelling vehicles and traffic conditions
	Hybrid vehicle model
	Probabilistic structure for traffic conditions

	Optimal Control Problem under traffic conditions 
	State of Charge specifications
	Problem statement

	Numerical simulations
	Value Function according to the traffic state 
	Optimal policy
	Speed trajectory
	Estimation of the overconsumption

	Conclusion

	An Optimal State of charge trajectory on a travel with traffic conditions
	Segment Decomposition
	Scenarios Decomposition
	Exit times

	Bi-level decomposition
	Global minimal expected consumption problem
	Bi-level formulation
	The Micro Problem : An Expected Consumption Model
	Macro problem

	Numerical results
	Conclusion

	Application to the optimal routing problem under traffic conditions
	Introduction
	Modeling the issue
	A road graph with traffic conditions
	A weighted state graph for hybrid electrical vehicle
	Optimal path for HEV under traffic conditions

	Error analysis
	Find the shortest path
	Dijkstra algorithm
	The A* algorithm
	Choice of the heuristic

	Numerical simulations
	Study of a single travel
	Study of all possible travels

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	A Stochastic gradient method for Wasserstein barycenters of distributions
	Introduction
	Barycenter type Optimal Transportation
	Framework
	Penalized formulations

	Semi-dual problem
	Algorithms
	SAG
	Sinkhorn

	Convergence Rate
	SAG algorithm
	The Sinkhorn Algorithm


	Bibliography

