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1.1 Introduction

Rails are submitted to Rolling Contact Fatigue (RCF) due to the repeated passages of train wheels. RCF cracks

initiate on the rail surface, in the rail-wheel contact area, and propagate inside the rail. Due to the risks of rail

failure, and potential accidents, such cracks are heavily monitored by SNCF. The associated maintenance policy is

based on a damage tolerance approach.

In order to improve the understanding of the mechanisms responsible for the propagation of such cracks, and to

optimize the maintenance rules, SNCF has developed a numerical tool to compute the local loading undergone by

such cracks and their evolution [Trollé, 2014, Mai et al., 2017]. However, the modeling of the crack path and growth

rate from the computed loading was simplified and not sufficiently predictive to simulate the crack propagation.

Those cracks undergo multiaxial loadings, including tension, compression and shear in variable proportions along

the crack front and in time. Moreover, many factors may impact the loading amplitudes, such as the type of train

and its dynamical behavior, the rail and wheel profiles, the track curvature, the rail stiffness, the meteorological

conditions... making this a complex problem, as explained in the next sections.

Due to confidentiality reasons, some data have been removed from the manuscript.
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1.2 Rails geometry, manufacturing and replacement

Three parts can be distinguished in a rail, as shown on figure 1.1.a. The top part, which is in contact with the

wheel and from which Rolling Contact Fatigue (RCF) cracks initiate, is called the rail Head. It is linked to the foot

through the web.

Figure 1.1: Rail nomenclature (a). Rail-wheel contact areas (b).

Those rails are made of low alloy steel, with various compositions and microstructures, depending on their usage

and their manufacturing process. Pearlitic microstructures are the most commonly used, and the corresponding

grades are denoted as RXXX (for example R260), with XXX the Brinell hardness, which ranges from 200 to 370.

In the case of heat treated rails, the suffix HT is added (for example R350HT ). Harder rails have better tensile

mechanical properties, but are not necessary better regarding RCF problems, as the wear induced by the passages

of trains, which removes small defects, is less pronounced. Other microstructures can also be used, such as B360

steel, which is Bainitic.

Several profiles can be used, noted in European standard as xxEy (60E1), where xx is the linear mass (for

example 60 kg/m), and y a number used to differentiate rails with different shapes but similar linear mass. The

higher the linear mass, the higher the bending stiffness, and the lower the bending stresses.

Rails are manufactured by a hot rolling process, following several steps, and then cooled down in ambient air,

which induces some bending, due to a non uniform cooling (fig. 1.2.a). In order to correct this bending, the rails are

straightened using a straightening machine (fig. 1.2.b) which induces some C-shaped residual stresses, as detailed

later-on. The length of such rails can vary from a few meters to 108 m.

Figure 1.2: Manufacturing process: cooling (a) [SeverStal and Lucchini, 2009] and straightening (b)
[C. Betegón Biempica et al., 2009].
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Those rails pieces are then welded in the factory or on the field, using either alumino-thermic welding or flash

welding. This induces microstructural changes in the Heat Affected Zone, but this is out of the scope of this study,

which focuses only on plain rails. The on-field weldings are performed at a temperature T ≈ 20 ◦C. This is hot

enough to avoid rail buckling due to a longitudinal compressive thermal stress when the operating temperature is

higher, but not too hot, in order to limit the longitudinal tensile thermal stress when the operating temperature is

lower, which is detrimental for the fatigue life (more details in section 1.3).

Rails are clipped on sleepers, which are usually laid on ballast, as shown in figure 1.3.a. The ballast consists of

calibrated stones used -non exhaustively- to: hold the sleepers, distribute the load on the soil to avoid compaction,

dissipate vibrations, drain water. Ballast and sleepers behave as springs regularly spaced under the rail in numerical

simulations, as showed on 1.3.b. This stiffness has a large influence on the bending displacement of the rail, and

thus on the stresses and crack growth rates.

Figure 1.3: Track nomenclature (a). Equivalent Mechanical model (b).

Various types of trains (different masses and dynamic behavior) may circulate on the tracks, at various speeds.

The wheel shape is described on figure 1.1.b. The tread is always in contact with the rail, while the flange is

theoretically in contact with the rail only when in curves (due to the centrifugal force applied on the train).

Along with the various train loadings, rails may operate in very different external conditions: various tempera-

tures, rain conditions, lubrication conditions, presence of salt or sand... More details on the induced loadings will

be given in section 1.3.

If a rail portion is damaged (presence of cracks, excessive wear, excessive loss of material due to oxidation...),

it can be replaced: the corresponding portion is cut (from a few meters to several hundreds of meters long), and

an new portion is welded. At some point, the whole track is replaced, which can occur after only 5 years up to 80

years (on lines without passenger traffic), depending on the various parameters. Rails can usually sustain a few 500

MT of trains, meaning more than one million trains before being replaced.
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1.3 Loadings

1.3.1 Train load

As explained earlier, the rail-wheel contact can occur on the rail running surface, but also on the gauge face

of the external rail in curves, as shown on figure 1.4. This contact is often ideally modeled using Hertz’s theory,

where the contact stresses depends on the curvature of the two contacting surfaces. This contact area may vary: it

is initially small, but it increases as plastic deformations and wear are generated at the rail surface.

The load per wheel axle can reach up to 23 tons, and is about 16 ∼ 17 tons for a TGV high speed train (the

motor coach is usually heavier than the passenger coach). Such a TGV train has 10 cars, with 13 bogies, meaning

that each train passage induces 26 loading cycles. In order to account for the variability in the type of trains, SNCF

records the cumulative mega tons of passed trains.

Figure 1.4: Contact area computed using VOCOLIN [Dang Van et al., 2009].

The contact load varies with the mass per wheel, but also with the track curvature, train type and train speed

(train dynamic). Some defects in the rails can also induce additional dynamic forces, which can increase the vertical

load by up to 60 % at 140 km/h [Zhao, 2012]. Defects in the wheel can also induce dynamic forces, as in Jonzac

[BEATT, 2017], where a flattened wheel broke 13 cracks open.

1.3.2 Thermal stresses

As explained above, the rails are welded at a given temperature, and expand or contract depending on the

outside temperature:

ǫ
th

= C ∗ σ
th

+ α ∗ ∆T ∗ I (1.1)

Since the rail length is fixed (ǫth longitudinal = 0), longitudinal stresses will be induced, so that the rail will be

under tension when the outside temperature is colder than the welding temperature, and under compression when

it is warmer:

σth longitudinal = −E ∗ α ∗ ∆T (1.2)
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1.3.3 Residual stresses

As explained above, C-shaped residual stresses exist in rails due to the manufacturing process [Rodesch, 2013],

following a distribution illustrated on figure 1.5. The repeated passage of train wheels induce high stresses in the

contact area, leading to superficial compressive residual stresses (≈ 5 mm deep, see figure 1.5).

Figure 1.5: Evolution of the longitudinal residual stresses. Data from [Rodesch, 2013].

Due to those residual stresses, a crack on the top of the rail (but deeper than 5 mm) will remain open after the

passage of a train.

1.3.4 Fluids

Fluids can be present on the track, such as water, or grease, which is used in curved sections to lower the

wear induced by wheel sliding (the two contact areas, tread and flange, have different speeds, and sliding is thus

unavoidable). Such fluids were shown to promote crack initiation [Kaneta and Murakami, 1987]. It is however

unclear if they have an influence on the propagation of a long crack (more than 10 mm). The effects of fluids will

be discussed in the following chapter.
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1.4 Types of RCF cracks

Several type of RCF cracks can be observed on the field, outside of the heat affected zone near welded ends:

• Squats-type defects, which initiate from the running surface, and propagate quasi horizontally over a few mm

to several cm before bifurcating at 70◦ relative to the horizontal axis, which can lead to a rail failure (figures

1.6.a & b).

• Head checks, which initiate from the gauge corner (in curves), propagate in the rail section and can lead to a

rail failure (figure 1.6.c).

• Shelling, which is a network of cracks on the rail surface. It generally induces a loss of material but remains

superficial (figure 1.6.d).

Figure 1.6: Main RCF defects (from [UIC, 2002], except fig. b.): Squat (a), Squat from Hatfield [ORR, 2006] (b),
Head Check (c), Shelling (d).

This study will focus on Squat-type cracks, as it is the most frequent defect (especially in straight lines, where

R260 rail steel is mostly used), responsible for more than 50% of the rail replacements.
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1.5 Rails maintenance means and policy

Despite the monitoring and the maintenance repairs and replacements, a few hundreds of rail failures occurs

each year in the French national network [BEATT, 2016] (see figure 1.7), among which a non negligible proportion

of RCF defects.

Figure 1.7: Evolution of the number of rail failure [BEATT, 2016] from every cause (not only RCF).

In most cases, rail failures are detected before any major incident occur. In some other cases, light material

damage can occur, as in Carbonne in 2013 [BEATT, 2016], where a train went over 120 cm of missing rail due to

a multiple fracture. Derailment did not occur thanks to the spacing between two wheels of a bogie (≈ 2 m) being

larger than 120 cm: three wheels were always on the rails.

In Saint flour, rail failure (not RCF) occurred on a welding in a curve and lead to a derailment without any

casualties [BEATT, 2006].

The worst recent incident in Europe due to RCF occurred in Hatfield, UK, where multiple fracture led to 35 m

of missing rails, a train derailment and 4 casualties [ORR, 2006].

Those cracks can be "naturally" removed by the wear induced by the rail-wheel contact. This supposes that the

wear rate is sufficiently high relative to the crack growth rate.

When "natural" wear is not sufficient, rail grinding can be performed using specific grinding trains. This grinding

aims at recovering the correct rail profile and remove small cracks. It can be performed over a depth of up to 0.5 mm.

The type of rail steel can also be chosen to limit certain defects. Indeed, some steels are more resistant to RCF

than other depending on the configuration: harder steels (R350HT ) perform better in curves (where Head-Checks

appears), while regular railway steels (R260) perform better in straight lines (where Squats appear) [Innotrack,

2009]. New types of steels, such as bainitic steel, could be less prone to RCF cracking. They are currently tested

by several railway infrastructure managers.

However, if those solutions can reduce the number of RCF cracks, none of them can totally avoid that RCF

crack will propagate up to failure.
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In order to avoid rail failure, a damage tolerance approach is used. Rails are inspected periodically using non

destructive means, such as eddy currents or ultrasonic detection (as illustrated on figure 1.8).

Figure 1.8: Ultrasonic testing of a rail: a cart containing the transmitter and receptor is pushed manually over the
track.

The inspection intervals have to be sufficiently frequent, so that a crack that was not detected during the previous

inspection does not propagate up to failure before the next one. Since the detection means have a resolution of a

few mm, it means that any crack smaller than a few mm should not be able to propagate up to failure in a given

time.

To adjust the frequency of those inspection intervals, a way to predict the crack growth rate and path is thus

needed.

1.6 Predicting RCF crack growth rate

Every crack detected on SNCF’s network has been monitored and recorded into a database, called "DEFRAIL",

for more than 20 years. From this database, it is possible to derive the average crack growth rate of a Squat

depending on various parameters. The average crack growth rate of 10 mm deep Squats in TGV lines (obtained

from 324 on-field measured values) is given in table 1.1.

Table 1.1: On-field measured crack growth rate of 10 mm deep Squats in TGV lines.

Average (m/cycle) 1st decile (m/cycle) 9th decile (m/cycle)

confidential confidential confidential

These data can be used for the damage tolerance approach. However, they do not give a physical understanding

of the ongoing phenomena, which is key to find new solutions to control RCF defects. Moreover, the data are not

sufficient to get a clear idea of the influence of every parameter, for example the temperature, which is known to
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be important (most of the rail failures occur during winter). Finally, in the case of a change of some parameters

(train masses, rail composition...), those data would be almost unusable.

In order to get a better understanding of RCF crack initiation and propagation, SNCF developed a multi-scale

computations scheme, as illustrated on figure 1.9.

Figure 1.9: Multi-scale computation scheme [Trollé, 2014].

Multi-body simulations are performed at the train-track scale (using for example VOCOLIN software, from

IFSTTAR) to compute the rail-wheel contact stresses (using Hertz & Kalker’s theory [Kalker, 1979]). Using those

stresses as an input, elastic-plastic computations are performed to find the stabilized cyclic state [Maouche et al.,

1997] and evaluate the risk of crack initiation according to Dang Van’s fatigue criterion [Dang Van, 1973]. More

details on the numerical modeling are given in [Nguyen-Tajan and unfschilling, 2011].

Using the rail-wheel contact stresses, computations representing a wheel passing over a crack can also be per-

formed in Cast3M [cas, 2019] FEM software. Those computations couple two very different scales: the rail, which

is a few meters long, and the crack, which is a few mm long. The behavior of the crack is non linear, as friction and

contact occur between the crack faces. In order to solve the problem in a reasonable time, an XFEM model taking

into account the contact and friction between the crack faces was developed. The problem is solved iteratively using

the LATIN method [Ladevèze, 1999] with a weak coupling between the structure and the contact/friction interface

[Trollé, 2014].

From those computations, the evolution of all three stress intensity factors during one wheel passage can be

derived. Some preliminary numerical results were obtained and presented in [Mai et al., 2017]. However, SNCF

still lacks a physical model to predict more accurately the crack growth rate and direction which takes into account

all the complexity of the loads, and is identified with an exhaustive set of material tests. This is the object of this

work.
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1.7 Summary

Rails are submitted to Rolling Contact Fatigue (RCF) due to the repeated passages of train wheels,

coupled with other phenomena (residual stresses, thermal stresses...).

Several types of RCF defects can be induced, among which the Squat, which initiates at the top of

the rail and propagates almost horizontally, before bifurcating towards a nearly vertical direction

and growing up to failure. This study will mostly focus on this defect, as it is the mostly observed

one, responsible for 50% of the rail replacements.

Such RCF defects need to be avoided for obvious safety reasons. In order to do so, a damage

tolerance approach is applied, which requires the ability to predict the crack growth rate. A multi-

scale computation scheme with XFEM computations was developed for this purpose, but a physical

model to predict the crack path and growth rate is still needed, which is the object of this work.

R260 rail steel (pearlitic microstructure) will be studied, as it is the most commonly used in straight

lines, where Squats occur.
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2.1 Squat-type cracks - Early stage

The repeated passage of train wheels induces high cumulated shear plastic strains at the top of the rail, below the

running surface, by a ratcheting phenomenon. For R260 rail steel, such strains lead to microstructural evolutions

at the very top of the rail (few tenth of µm), from pearlite to martensite due to carbon migration from cementite

towards ferrite. This layer, called the White Etching Layer (WEL), is stiffer (≈ 240 GPa versus ≈ 200 GPa) and

harder than the base metal, which might cause crack initiation in the WEL, or at the interface between the two

layers, as proposed by Simon [Simon, 2014].

Below the WEL, the microstructure is still pearlitic, but the pearlite lamellae are reoriented along the shearing

direction, and the grains are refined within a depth of a few mm (3 mm, as measured by Dylewski et al. [Dylewski

et al., 2017] in R260), as shown on figures 2.1. In this layer, the crack propagates along the lamellae, at ≈ 20◦

relative to the rail axis.

Below a depth of a few mm (4 mm in [Dylewski et al., 2017]), the microstructure remains unchanged, and the

crack bifurcates at ≈ 70◦ relative to the rail axis (fig. 2.1). It then continues to growth in this plane, up to rail

failure at a depth of ≈ 25 to 50 mm.

Figure 2.1: Schematic view of the gradient of microstructure at various positions relative to the running surface
(a), along with EBSD (Electron Back Scattered Diffraction) images (b & c), from [Dylewski et al., 2017].
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A model to predict the crack path and growth rate in this anisotropic layer was proposed by Larijani et al.

[Larijani et al., 2014], using an anisotropic propagation threshold, as shown on figure 2.2. The larger this threshold

in a given direction β, the "harder" the propagation in this direction. The non-propagation threshold surface evolves

with the depth, until it becomes isotropic (circle in figure 2.2). Depending on the degree of anisotropy, Larijani et

al. obtained very different crack paths, as illustrated in figure 2.3: some cracks are going down, as Squats do, and

others are going up, which corresponds to flaking. Although the model allows interesting parametric studies, it is

only 2D and no quantitative comparisons of its predictions with on-field observations was provided

Figure 2.2: Evolution of the non-propagation threshold surface with the depth in the rail [Larijani et al., 2014].

Figure 2.3: Predicted crack paths for different degrees of anisotropy [Larijani et al., 2014].

The shape of a Squat estimated by Simon et al. [Simon et al., 2013], using a succession of millings and measure-

ments on the running surface, is represented on figure 2.4. The yellow surface corresponds to the quasi-horizontal
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propagation in the highly plastified layer, while the green area corresponds to the bifurcation at ≈ 70◦ relative to

the rail axis. Several branches initiate from this main crack, at various angle, as shown by Jessop et al. [Jessop

et al., 2016] using X-ray tomography (see figure 2.5). Such branches may shield the main crack tip and reduce its

growth rate.

Figure 2.4: 3D Reconstruction of a Squat from [Simon et al., 2013]: isometric (a) and lateral (b) view.

Figure 2.5: Sections of a Squat, at various positions transverse to the rolling direction [Jessop et al., 2016].

The wear induced by the wheel passage tends to remove such cracks, so that RCF and wear compete. Several

attempts were made to model such competition, for example by Donzella et al. [Donzella et al., 2005]. However, the

high anisotropy in the initiation area makes such modeling a challenge, as the evaluation of the crack propagation

rate (which must be compared to the wear rate) is difficult. The effect of wear on the propagation of long Squats

(already bifurcated) will be neglected in this study.

In the following, only Squats deeper than the plastified layer and already bifurcated will be considered. Indeed,

for a damage tolerant approach, only cracks deeper than the detection threshold are relevant, which corresponds

more or less to the depth of the plastified layer. Moreover, Squats really become dangerous once bifurcated towards

the quasi vertical direction.
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In order to study the fatigue-induced propagation of such long cracks in an isotropic, elastic material, Linear

Elastic Fracture Mechanics (LEFM) is relevant, and its basic concepts will be presented next.

2.2 Linear Elastic Fracture Mechanics

2.2.1 Crack-tip stress field for a linear elastic medium

The presence of a crack in an elastic medium (as illustrated by fig 2.6) leads to singular stresses at the crack

front. To account for such fields, the concept of stress intensity factors was proposed by Irwin. For a crack in

a 2D plate (plane stress or plane strain) in an isotropic material, the crack tip stress field can be written (using

Westergaard or Williams solutions) as:

Figure 2.6: Schematic of a crack.

σ =
KI√
2πr

∗ F I(θ) +
KII√
2πr

∗ F II(θ) +
KIII√

2πr
∗ F III(θ) +O(1) (2.1)

With KI , KII , KIII the mode I, II, III Stress Intensity Factors (SIFs) respectively, and F i some known functions,

independent of the geometry. Close to the crack tip, in what is called the K-dominance zone, the stress field can

be described solely by those SIFs. Each of those SIF corresponds to a different crack kinematics, as described on

figure 2.7: mode I correspond to crack opening, mode II to in-plane shear and mode III to out-of-plane shear. This

effect of each mode on the crack kinematics can be seen on the equation of the relative displacement jump between

the crack faces (each SIFs induces a displacement along only one coordinate axis):

U(r, π) − U(r,−π) = [U ](r) =
2(1 + ν)

E

√

r

2π
∗ ((κ+ 1)KIe2 + (κ+ 1)KIIe1 + 4KIIIe3) (2.2)

with κ = 3−ν
1+ν in plane stress or κ = 3 − 4ν in plane strain, E the Young’s modulus and ν the Poisson’s ratio.

If crack propagation is supposed to be driven by the stresses and strains infinitely close to the crack-tip, the

higher order terms in σ (equ. 2.1) become negligible, and propagation can be described solely by the knowledge of

the three SIFs (as the Paris law and other models detailed later-on supposed). For example, the crack growth rate
da
dN can be predicted as:

da

dN
= f(KI ,KII ,KIII) (2.3)
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Figure 2.7: Displacements induced by the three modes.

However, if the crack propagation is supposed to be driven by the stresses and strains at a given distance to the

crack-tip (or if the material is not elastic, as detailed later-on), higher order terms (O(1) in equ. 2.1) might also

play a role:

da

dN
= f(KI ,KII ,KIII ,higher order terms) (2.4)

Those are called the non-singular stresses (as they do not go to infinity close to the tip). The most studied is

the T -stress, that is along the e1 direction, so that the stress fields writes:

σ =
Ki√
2πr

∗ F i(θ) + T e1 ⊗ e1 +O(1 − e1 ⊗ e1) +O(r1/2e1 ⊗ e1) (2.5)

Other non singular stresses can exist: compression/tension along e3 (σ33), compression along e2 (closed crack,

σ22 < 0) and shear along any plane when friction stresses exist along the crack.

The energy release rate and critical energy release rate are defined, respectively, as:

G =
Wext

∆A
− ∆Ustrain

∆A
(2.6)

Gc = 2 ∗ γ (2.7)

Where A is the crack surface, γ a term linked to the energy dissipated in the decohesion mechanism, Wext

the external work and Ustrain the strain energy. Unstable crack growth occurs when the energy released by the

structure due to crack growth is equal to the energy required to propagate the crack:

G = Gc (2.8)

For a straight, frictionless crack, Irwin has shown that G is related to the stress intensity factors by:

G = J =
1
E′

(K2
I +K2

II) +
1 − ν

E
K2

III (2.9)

with E′ = E in plane stress and E′ = E/(1 − ν) in plane strain. In fatigue, the amplitude ∆G = maxcycle G−
mincycle G is sometimes used.
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2.2.2 Crack-path under monotonic loading

Figure 2.8: Principle of the MTS and max k∗
I criterion in 2D (a) and 3D (b).

The crack path under a monotonic loading can be predicted using LEFM-based criteria. Erdogan & Sih [Erdogan

and Sih, 1963] proposed the Maximum Tangential Stress (MTS) criterion to predict the crack path: a crack

propagates in the direction where the tangential stress ahead of the crack tip is maximum (see figure 2.8). In

mixed-mode I & II, this writes:

∂σθθ

∂θ
= 0 and

∂2σθθ

∂θ2
< 0 (2.10)

and using equation 2.1:

θ = 2arctan





1
4





KI

KII
− sgn(KII)

√

(

KI

KII

)2

+ 8







 (2.11)

While for mode III:

φ = 2arctan

(

2KIII

KI(1 − 2ν)

)

(2.12)

This criterion predicts a tilt at −70.5◦ in pure mode II, and a twist at 45◦ in pure mode III.

The crack can also be supposed to propagate in the direction which maximizes KI on an infinitesimal branch

ahead of the crack tip, noted k∗
I (see figure 2.8):

max
θ

k∗
I (θ,KI ,KII ,KIII) (2.13)

Where k∗
I (θ,KI ,KII) can be obtained using Amestoy’s abacus [Amestoy et al., 1979]. In pure mode II, this

criterion predicts a bifurcation at −77.3◦, not so far from the −70.5◦ predicted by the MTS criterion.

Similarly, the crack can be supposed to propagate in the direction for which k∗
II (KII on an infinitesimal branch

ahead of the crack tip) vanishes:

θ | k∗
II(θ,KI ,KII ,KIII) = 0 (2.14)

Another criterion can be derived using the energy release rate G:

max
θ

G∗(θ,KI ,KII ,KIII) (2.15)

which predicts bifurcation at 76.6◦ in pure mode II.
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2.2.3 Crack tip plasticity

The previous formulae were obtained for elastic materials. However, metallic materials exhibit an elastic-plastic

behavior and thus plastic deformation near the crack tip, where the stress level is high, forming the crack-tip plastic

zone.

The shape of this plastic zone under plane stress/strain conditions is given on figure 2.9 using Von Mises criterion.

In mode I, its extent ahead of the crack tip can be estimated roughly as:

rI
p =

1
2π

(

KI

σY

)2

in plane stress (2.16)

rI
p =

1
2π

(

KI

σY

)2

(1 − ν)2 in plane strain (2.17)

And in mode II or III:

rII
p =

3
2π

(

KII

σY

)2

in plane stress or plane strain (2.18)

rIII
p =

1
π

(

KIII

σY

)2

in plane stress or plane strain (2.19)

Figure 2.9: Shape of the monotonic plastic zone, under plane stress (in the bulk) or plane strain (on the surface)
in mode I (A&B), mode II (B) and mode III (B). ν = 0.29

These formulae do not take into account the plasticity-induced stress redistribution, and FEM computations are

required to evaluate the real size and shape of the plastic zone. If σ∞ approaches σY , the plastic zone is much larger

than what is predicted by this formula and restrictions on its size, compared to the crack size and all structural

dimensions, have to be fulfilled for LEFM to be valid ([Lemaitre et al., 2009]). In this study, these conditions were

always satisfied, except when otherwise mentioned.
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Furthermore, these formulae estimate the size of the plastic zone after a monotonic loading on a structure in

a virgin state (in terms of plastification). However, when several cycles are applied, residual stresses appear, the

material adapts, leading to a reduction of the zone that undergoes cyclic plasticity (called cyclic plastic zone) rela-

tive to the monotonic plastic zone (see figure 2.10). The size and shape of this cyclic plastic zone depends on the

amount and type of cyclic hardening: Isotropic or Kinematic.

Figure 2.10: Shape of the monotonic and cyclic plastic zones, under plane strain conditions, in mode I, from [Paul
and Tarafder, 2013].
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2.2.4 3D effects in LEFM

The concept of SIFs, with the 1/
√
r singularity, is valid for points of the crack front located in the bulk of

the structure. However, Bazant and Estenssoro [Bazant and Estenssoro, 1979] showed that at corner points, the

singularity is not necessarily 1/
√
r, but varies with the crack emergence angle (and the Poisson’s ratio, ν).

In order to keep the 1/
√
r singularity, this angle has to be > 90◦, and a rising function of ν in mode I, while

in mode II & III, it has to be a decreasing function of ν and < 90◦, as illustrated on figure 2.11. For a sample

precracked in mode I and then loaded in cyclic mode II & III from [Doquet et al., 2010a], the emergence angle was

> 90◦ during the mode I part of the experiment, and < 90◦ during the mode II & III part. It means that the crack

front shape near the surface progressively adjusted until the 1/
√
r singularity was recovered.

Figure 2.11: A) Evolution of the emergence angle leading to λ = 0.5 in mode I and mode II & III with the Poisson’s
ratio from [Bazant and Estenssoro, 1979]. B) Fracture surface after mode I precracking followed by mode II & III
experiment from [Doquet et al., 2010a].

However, in mixed mode experiments, where mode I and mode II & III exist within each cycle, the emergence

angle cannot allow a 1/
√
r singularity for each mode. LEFM is thus unable to describe crack propagation at corner

points under combined opening and shear modes, as the SIFs do not represent the stresses and strains ahead of the

crack tip for at least one of the modes.

Near those free surfaces, a mode II loading induces some mode III, due to the presence of a singular, skew

symmetric stress parallel to the crack and to Poisson’s effect, as explained on figure 2.12. Such a coupling between

both shear modes is retrieved when the evolution of the SIFs along the front of a through crack is computed using

the Finite Element method.

Figure 2.12: Mode II and Poisson’s effect inducing expansion/contraction along z, leading to mode III.
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Now that the basic concepts of LEFM have been introduced, it is possible to use it to analyze the mechanical

loading on Squat-type cracks in relation with the external forces and thermal conditions.

2.3 Loading on Squat-type cracks

The time evolution of the SIFs during the passage of a train wheel over a Squat-type crack, as illustrated on

figure 2.13, was evaluated by Bogdanski et al. and Mai et al. [Bogdanski et al., 1998, Mai et al., 2017]. Those

studies showed that surface cracks are loaded in non proportional mixed mode I+II+III in variable proportions

along their front, as illustrated on figure 2.14.

Figure 2.13: 3D rail model with one semi-elliptical Squat-type crack on the rail surface (figure taken & modified
from [Mai et al., 2017])

Those SIFs evolutions were obtained from simulations using SNCF’s computation scheme [Trollé, 2014, Mai

et al., 2017], taking into account the manufacturing residual stresses, thermal stresses, rail bending and a frictionless

crack. When the wheel is far away from the crack, the crack is opened due to thermal and residual stresses. As the

wheel gets closer to the crack, the rail bends downwards, which closes and compresses the crack, which is sheared

alternatively as the wheel passes.

At the deepest point of the crack (90◦ in the reference frame of 2.13), loading is nearly a sequence of mode I

and mode II, as showed on figure 2.15, while at 30◦, mode III is also present (fig. 2.14), and mode II is reduced:

here, loading is a sequence of mode I and both shear modes. The amplitude ∆KI is strongly dependent on the

thermal stresses, as discussed later in chapter 4, and, if no fluid trapping and pressurization is considered, the crack

is closed and under compression during the shearing stage of the loading cycle. This compression leads to friction

between the crack faces, and thus a reduction of the shear mode singularities.

Those singularities vary with the parameters mentioned in 1.3, at very different frequencies: the temperature

changes at a 24h period, while the train mass or train dynamic forces may vary between each train or even between

each bogie. As discussed later, crack path and growth rate prediction under non-proportional mixed-mode loading

with compression phases is a challenge in itself, which leads us to neglect the aspects of variable amplitude loading

in the rest of the study.
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Figure 2.14: Evolution of the SIFs on two points at 30◦ and 90◦ on the crack front (see on fig. 2.13) versus the load
position. TGV motor load (8.5 kN). 30 MPa longitudinal thermal stresses, corresponding to a 5◦ temperature.
No friction between the crack faces. Residual stresses taken into account.

Figure 2.15: Loading path in KI −KII space at the deepest point of the crack front (90◦, see on fig. 2.13). TGV
motor load (8.5 T ). 30 MPa longitudinal thermal stresses, corresponding to a 5◦ temperature. No friction between
the crack faces. Residual stresses taken into account.
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Some authors suggested that fluids may play a role in the initiation and propagation of Squats. It has been

shown experimentally [Kaneta and Murakami, 1987] that it favours the initiation and propagation of relatively

short cracks (up to a few mm), due to penetration of the fluid inside the crack leading to: lubrication of the crack

increasing the shear modes singularities, and fluid pressurization or entrapment, inducing an opening of the crack,

as illustrated on fig. 2.16. Such phenomena have been modeled by many authors, such as [Kaneta and Murakami,

1987, Fletcher and Beynon, 1999, Bogdanski and Lewicki, 2008, Ancellotti et al., 2017]. However, few experiments

have been performed for a Squat-type crack deeper than 5 mm, for which fluid penetration down to the crack tip

might be difficult. Fletcher [Fletcher et al., 2007] had trains circulate over rails containing cracks and covered with

a marking fluid. The cracks were broken open after several load cycles, and it appeared that the marking fluid did

not penetrate down to the crack tip (but remained at 1-2 mm behind it). This contradicts the idea of crack tip

opening due to fluid pressurization or entrapment. It is however still possible that such fluid lubricates the crack

faces a few mm behind the tip, leading to an increase in the effective shear SIFs.

In the rest of the study, the effects of fluid pressurization or entrapment will thus be neglected.

Figure 2.16: Illustration of the effects of entrapped water from [Fletcher et al., 2007].

The sequential loading undergone by Squat-type cracks includes a quasi pure mode I cycle, and one of the aims

of this study is to determine if this loading alone might explain the crack growth in rails. Basic notions about mode

I fatigue crack growth will thus be provided in the following paragraph.
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2.4 Mode I fatigue crack growth

Fatigue cracks loaded in pure mode I exhibit a coplanar growth (at least at macro-scale), and their growth rate

is usually predicted using:

∆Knominal
I = max

cycle
(KI) − min

cycle
(KI ; 0) (2.20)

Figure 2.17: Typical mode I crack growth kinetics.

Where "nominal" means that ∆KI is the theoretical one, obtained without accounting for closure effects, as

discussed below. The values below zero are discarded, as the crack is closed and the singularity no longer exists

(but there is a non singular compressive stress).

The crack growth rate evolves as described on figure 2.17, within three regimes. Region I corresponds to the

near-threshold regime, where the crack growth is intermittent and very dependent on the microstructure, with rates

of ≈ 10−10 m/cycle. Below KT hreshold
I , crack growth is hardly detectable. In region II, the crack growth rate can

be predicted using Paris empirical law [Paris and Erdogan, 1963]:

da

dN
= C(∆Knominal

I )m (2.21)

Where C and m are constants depending on the material but also the environment and other parameters, such

as the load ratio:

R =
Fmin

Fmax
(2.22)

With F the applied load.

Region III corresponds to the fast growth regime, where KI approaches KIC , the limit at which unstable fracture

occurs. More sophisticated versions of the mode I crack growth kinetics exist to account for the other two regimes,

such as Foreman’s equation, where the driving force ∆Knominal
I is modified, but the principle (that is: power law

involving ∆KI) remains similar to Paris law.

The dependence of mode I fatigue crack growth on the load ratio R can partly be explained by a premature

contact between the crack faces while the applied load is still positive. Indeed, the effective amplitude of ∆KI ,

called ∆Keff
I , is reduced due to closure effects, as illustrated on figure 2.18, to:

∆Keff
I = max

cycle
(KI) − min

cycle
(KI ;Kcl) (2.23)
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Figure 2.18: Illustration of the sources of closure effects, from [Suresh and Ritchie, 1982].

With Kcl the value below which the crack is closed at its tip. Some authors [Sehitoglu, 1985] differentiate the

opening Kop and closing load Kcl, which we will assume to be equal for the rest of the study.

Compressive residual stresses ahead of the crack tip at unloading, as well as the residual stretch left behind as

the crack propagates (the so-called "plastic wake"), lead to plasticity-induced closure. This effect can be modeled

approximately using Newman’s model [Newman, 1981] or more consistently using FEM elastic-plastic computations

with node releasing, as performed by Pommier [Pommier et al., 1997] and de Matos & Nowell [de Matos and Nowell,

2007]. In particular, the type of material hardening (kinematic or isotropic), at similar yield stress and ultimate

tensile stress, has a large influence on the amount of plasticity-induced closure [Pommier and Bompard, 2000].

At similar ∆Knom
I , the crack growth rate can be lower for thin structures (plane stress conditions) than for thick

structures (plane strain conditions), as discussed by de Matos & Nowell [de Matos and Nowell, 2009] or Branco et

al. [Branco et al., 2008]. The plastic zone is larger under plane stress conditions than under plane strain (see figure

2.9), which leads to lower plasticity induced closure in the latter case (see fig. 2.19 A.&B.). For thick structures,

this results in a slightly convex crack front shape (crack tunneling, see fig. 2.19 C.), as the crack growth rate is

higher in the bulk than on the side surfaces (until the front becomes iso-∆Keff
I ). The corner singularities effect

discussed earlier (section 2.2.4) has little influence on plasticity induced closure on side surfaces, as shown by de

Matos & Nowell [de Matos and Nowell, 2008], but will directly influence the crack emerging angle (see figure 2.11).

The formation of an oxide layer on the crack faces (often assisted by plasticity induced closure) leads to oxide-

induced closure, as illustrated on figure 2.20 from Suresh et al. [Suresh et al., 1981]. Suresh performed mode I fatigue

experiments on steel at R = 0.05 and R = 0.75, in moist air and dry helium. At R = 0.05 the non-propagation

threshold is higher in air than in helium, due to the formation of a few 0.1 µm thick oxide layer on the crack faces,

leading to premature contact upon unloading. At R = 0.75, KI, min > Kcl, so that not closure effects occur and

the crack growth kinetics and thresholds in both environments are similar.

Finally, the roughness of the crack, coupled with small permanent sliding displacements induced by shear-mode

plasticity, induces a mismatch between the crack face asperities, which leads to their premature contact upon un-

loading and friction-induced locking. This roughness induced-closure explains some effects of the grains size on

crack propagation. Gray [Gray et al., 1983] performed mode I fatigue experiments on a pearlitic rail steel, which

was submitted to various heat treatments in order to change the grain size. At R = 0.7, the kinetic data for fine

and coarse grains are superimposed (see figure 2.21), since no closure occurs, while at R = 0.1, the crack growth

rate is lower for the coarse grained material, due to an increased crack face roughness and consequently an increased

roughness-induced closure.
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Figure 2.19: (A) Evolution of the opening load along the crack front for various specimen thicknesses, from [Branco
et al., 2008]. (B) Illustration of the evolution of closure. (C) Crack front shape during a fatigue mode I experiment.

Figure 2.20: Effect of the environment and load ratio on the near-threshold fatigue crack growth from [Suresh et al.,
1981].
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Figure 2.21: Effect of the grains size and load ratio on the near-threshold fatigue crack growth in a pearlitic steel,
from [Gray et al., 1983].

Overloads (that is: cycles at higher amplitude than the current ones) temporarily increase the crack growth

rate during the corresponding cycle, but slow down the propagation during subsequent cycles at normal (lower)

amplitude, as observed by Topper & Yu [Topper and Yu, 1985]. Depending on the occurrence frequency of the

overloads, it may increase of decrease the mean crack growth rate (if the higher growth rate during the overload

cycle compensates the slower growth rate during the following cycles at normal amplitude). This question will

however not be investigated in the present work.

As mentioned earlier, when a crack is closed, the stress singularity vanishes (although plastic blunting of the

crack tip can keep it open), but a non-singular compressive stress is present. Some experiments at negative load

ratios (crack under compression during a part of the cycle) have been reported [Carlson and Kardomateas, 1994] to

yield higher growth rates than experiments at zero or positive load ratios, suggesting that the compressive part of

the cycle may contribute to crack growth. This increase in growth rate can be explained by a decrease of plasticity-

induced closure, which may even lead to a negative Kcl. The possibility of a saturation of this effect when the R

ratio becomes more and more negative is yet unclear.
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The load ratio R is often used to compare such data, but the peak compressive stress is probably a more relevant

parameter, as suggested by [Zhang et al., 2007]. Indeed, as shown by [Pommier et al., 1997] and illustrated on

figure 2.22, at a similar load ratio (R = −1), Kcl (or Kop) can be very different, depending on σcompression. The

higher the compression, the lower Kcl, which seems to be linked to kinematic hardening. Note that Newman’s

model is unable to predict the experimental data, as it does not allow crack closure for a negative load, while FEM

computations with node releasing do.

Figure 2.22: Effect of various loading amplitudes on the opening load Kop (which we assume to be equal to Kcl)
from [Pommier et al., 1997].

Other authors, such as Pokorny, Vojtek et al. [Pokorný et al., 2017, Vojtek et al., 2019] reported a decrease

of the crack growth rate at negative load ratios due to an increased oxidation of crack faces, and consequently an

increased oxide-induced crack closure (OICC) in railway axle steel. Similar effects were observed by Maierhofer et

al. [Maierhofer et al., 2018] on 25CrMo4 steel. In this last study, oxide debris were found to be able to leave the

crack near the side surfaces, thus reducing OICC. The overall influence of this local reduction of OICC near the

side surfaces decreases as the specimen thickness rises, and it can be suppressed by applying an adhesive over the

side surfaces to prevent the release of oxide debris

Mode I is responsible for crack propagation in most of the industrial problems. However, the sequential loading

undergone by Squat-type cracks includes, aside from a mode I cycle, a quasi proportional mixed-mode II + III

cycle.
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2.5 Proportional mixed-mode and shear modes

For proportional cyclic mixed-mode loadings, the criteria proposed in section 2.2.2 for monotonic loading can

be generalized to fatigue, using either peak values (for example, the MTS criterion becomes: maxθ(maxt σθθ)) or

ranges (for example, the MTSR criterion becomes: maxθ ∆σθθ), which is equivalent in terms of predictions, as long

as the loading remains proportional (but may strongly diverge otherwise). Many studies showed that such criteria,

coupled with Paris law, were able to predict crack growth for most proportional mixed-mode loadings.

In particular, in pure reversed mode II or pure reversed mode III, cracks have been reported to often tilt at

± ≈ 70◦, or twist at ±45◦ (forming a "factory roof" pattern, see fig. 2.23.a) respectively. These direction corre-

sponds approximatively to those where the tangential stress ahead of the crack tip is maximum: the crack changes

direction to be loaded in local mode I.

However, while the bifurcation criteria established for monotonic loading exclude the possibility of continued

coplanar growth as soon as some mode mixity is present, several studies have shown that in some cases, (especially for

zero or negative stress triaxiality ratios, and large ∆KII & ∆KIII) macroscopic shear-mode propagation is possible

in fatigue. In this case, the crack grows in a direction of maximum shear stress, instead of maximum tangential

stress. The following section provides a short review on mode II and mode III fatigue crack growth (which bear

many similarities), and introduces a fatigue-specific bifurcation criterion that can predict their occurrence.

2.5.1 Mode III

The possibility of a long coplanar crack growth in mode III, that the previous criteria cannot predict, has been

reported by various authors, such as Tschegg [Tschegg, 1983b] or Brown et al. [Brown et al., 1985]. For a sufficiently

high ∆KIII , a transverse circumferential crack in a notched bar loaded in reversed torsion (which induces a mode

III loading) grew coplanar instead of bifurcating to form a "factory-roof" pattern (see figure 2.23).

Figure 2.23: Factory roof type fracture surface (low ∆KIII) (a) and coplanar (high ∆KIII) (b) crack growth during
a mode III experiment from [Tschegg, 1983b]. Loading direction indicated by the red arrow.

Such change in the crack path could be explained by the fact that the growth rate for a coplanar crack in mode

III is lower than for mode I growth along a twisted facet at low ∆K, as shown on figure 2.24. However, at higher

∆K, the opening and shear mode growth kinetics intersect, and for high ∆KIII , coplanar mode III crack growth

provides a higher growth rate than mode I. The crack grows in the direction and mode which maximize its growth

rate: the maximum growth rate (MCGR) criterion initially proposed by Hourlier and Pineau assuming only mode

I [Hourlier and Pineau, 1982] was thus generalized to take into account the possibility of both tension-driven and

shear-driven mechanisms.

33



Figure 2.24: Comparison of fatigue crack growth rates in mode I and III as a function of ∆KI and ∆Keff
III in 4340

steel, from [Tschegg, 1983b].

As for mode I, the effective amplitude of the shear loading ∆Keff
III is reduced, due to friction between the rough

crack faces. Tschegg [Tschegg, 1983a] performed experiments at constant ∆Knom
III , and observed that the deeper

the crack, the smaller its growth rate (see figure 2.25 for KI = 0). This effect was explained by a decrease of ∆Keff
III

due to the increase of the contact surfaces and thus of the energy dissipated by their friction. By comparing kinetic

data at a given crack length to data at zero crack length, for which ∆Keff
III = ∆Knom

III , they estimated ∆Keff
III for

every crack length. The obtained load ratio, defined as:

UIII =
∆Keff

III

∆Knom
III

(2.24)

decreased from 1 to 0.15 during crack growth, meaning that the effect of friction was not negligible. Brown et

al. [Brown et al., 1985] and Tschegg & Stanzl [Tschegg and Stanzl, 1988] performed mode III experiments, with

small compressive or tensile static axial loads to open the crack. The second led to higher growth rates due to a

reduction of friction and an increase of ∆Keff
III , while the former reduced the crack growth rate, as illustrated on

figure 2.25.

From a limited number of experiments, it was concluded that contrary to mode I, mode III crack growth kinetics

does not depend on the R ratio.

Pokluda & Pippan [Pokluda and Pippan, 2008] and Vojtek et al. [Vojtek et al., 2016a] who thoroughly inves-

tigated cyclic mode III, but in the near-threshold regime only, suggested that because it is associated with the

coplanar emission of screw dislocations from the crack front, which does not create any new surface ahead of it,

mode III is intrinsically unable to make a crack propagate. The growth of cracks loaded in cyclic mode III would

rather be due to a local mode II component resulting from the in-plane tortuousity of the crack front. They provided

convincing argument to support this idea for very low ∆KIII , which however might not hold in the high ∆KIII

range investigated by Tschegg [Tschegg, 1983b] or Brown et al [Brown et al., 1985], where many other dislocation

sources might be activated and profuse damage induced ahead of the front.
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Figure 2.25: Crack growth rate versus crack length for cyclic mode III experiments, with or without a compressive
or tensile static axial load (KI > 0: tension), from [Tschegg and Stanzl, 1988].

2.5.2 Mode II

As for mode III, long coplanar growth was observed under mode II loading: above a certain ∆KII , shear-driven

coplanar crack growth becomes faster than mode I crack growth and is thus preferred (see for example [Smith and

Smith, 1988] or [Pinna and Doquet, 1999]), as illustrated on figure 2.26. Like mode III, mode II crack growth

kinetics was not found to depend on the R ratio.

Figure 2.26: Intersection of mode I and mode II kinetics for ferritic–pearlitic steel, from [Doquet and Bertolino,
2008a].

Again, friction reduces ∆Keff
II , and several direct or indirect measurements were made. Smith & Smith [Smith

and Smith, 1988] estimated UII , defined as:

UII =
∆Keff

II

∆Knom
II

(2.25)
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They deduced UII from the stiffness change detected on the load-sliding displacement loop (measured with a

special extensometer straddling the crack), indicating a transition from locked to unlocked crack and vice-versa.

Direct measurements of ∆Keff
II were also made by comparing the relative displacement jump obtained from surface

replicas to the theoretical one from 2.2, as illustrated on figure 2.27 (a).

Figure 2.27: (a) comparison of measured in-plane sliding displacement jumps with LEFM predictions, from
[Bertolino and Doquet, 2009], (b) in situ SEM (Scanning Electron Microscope) image of a crack under mode
II loading from [Pinna and Doquet, 1999], 5 µm grid pitch..

Gross et al. [Gross et al., 1995] used a similar post-treatment on displacement fields obtained from electro-optic

holographic interferometry, as shown on figure 2.28. Under pure mode II loading, they observed non zero ∆KI (due

to dilatancy: sliding leads to asperities climbing, and thus to an opening, as illustrated on figure 2.29), and ∆KIII

(due to Poisson’s effect, as mentioned in 2.2.4).

Figure 2.28: Displacements maps along the three directions, obtained by electro-optic holographic interferometry,
for ∆Knom

II ≈ 5.6 MPa
√
m, from [Gross et al., 1995].
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Several analytical models to account for friction and dilatancy effects in a rough crack (see figure 2.29) loaded

in mode II or III were proposed by Gross and Mendelsohn [Gross and Mendelsohn, 1988, Gross and Mendelsohn,

1989], as well as by Tong, Yates et Brown [Tong et al., 1995a], Yu et al and others. In all those models, rigid

asperities were considered, while experiments show clear evidence of plasticity and wear of the asperities.

Figure 2.29: Schematic of idealized asperity profile under shear from [Gross and Mendelsohn, 1989]: friction and
dilatancy effects.

In addition, the aforementioned experimental and modelling works did not take into account the influence of

crack tip plasticity, which might artificially increase the estimated ∆Keff
II as it increases the displacements relative

to the LEFM ones. Smith et al for example reported some values of UII larger than 1.

Bertolino and Doquet [Bertolino and Doquet, 2009] measured the relative crack face displacement jump under

mode II loading using SEM in situ measurements with gold microgrids, as illustrated on 2.27 (b). An inverse

approach, based on the comparison of the experimental displacement jump to that of elastic-plastic FEM compu-

tations with friction was used to determine the friction stress and ∆Keff
II . Such method allows to decorrelate the

two non linearities (friction and crack-tip plasticity).

2.5.3 Mixed-mode II & III

Only a few studies focused on mixed-mode II & III loading ([Pokluda et al., 2008, Vojtek et al., 2013, Pokluda

et al., 2014, Vojtek et al., 2015b, Vojtek et al., 2015a, Vojtek et al., 2016b, Hellier et al., 1987, Merati et al.,

2012, Doquet et al., 2010a]), which will be investigated and discussed more thoroughly in chapter 5.

As for pure mode II or mode III, shear-driven coplanar crack growth over long distances was observed for

sufficiently high shear loads in maraging steel and Ti64 alloy, by Doquet et al. [Doquet et al., 2010a]. The crack

growth rate could not be described only by ∆Keff
II or ∆Keff

III , but by a combination of the two:

∆Keff
shear =

√

∆Keff
II

2
+ β∆Keff

III

2
(2.26)

where β is a fitted parameter. ∆Keff
shear is proportional to the square root of the energy release rate ∆G (for

plane strain conditions) if β = 1
1−ν . In this case, both modes contribute equally to crack growth. β was found to

be equal to 1.2 for maraging steel and 0.9 for Ti-6Al-4V.

However, Squat-type cracks undergo non-proportional mixed-mode, which induces several difficulties compared

to proportional mixed-mode.
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2.6 Non proportional mixed modes

2.6.1 Generalization of classical approaches

During non-proportional mixed-mode loadings, as it is the case in rails (see figure 2.15), classical LEFM bifurca-

tion criteria cannot be used in their original form, as the direction of the maximum tangential stress or maximum k∗
I

keep varying during a cycle. Such bifurcations criteria can be extended, using either the absolute angular maximum

of the peak value of the quantity of interest, for example for the MTS criterion:

max
θ

max
t
σθθ (2.27)

or the angular maximum of the range of the quantity of interest, for example for the MTSR criterion (Maximum

Tangential Stress Range):

max
θ

∆σ+
θθ = max

θ
(max

t
σθθ − max(0, min

t
σθθ)) (2.28)

While under proportional loading, the two options are equivalent, their predictions under non-proportional

loading can be drastically different. For example, according to the former version, a crack submitted to cyclic

mode I plus static mode II should bifurcate, while according to the latter, it should continue its coplanar growth,

since a static loading does not modify a range. Note that in either case, the crack cannot recover pure mode I

loading, and that more generally, pure opening or pure shear loading do not exist whatever the crack path, under

non-proportional loading.

Another approach, proposed by Highsmith [Highsmith and Woodruff, 2009], mixes a range and a maximum:

max
θ

∆kI = max
θ

[

(∆kI)w(max
t
kI)1−w

]

(2.29)

where kI is an approximation of k∗
I , and w a fitting parameter. This approach gave satisfying crack path pre-

dictions for various loading paths, but with a specific w for each path: such LEFM approach is not sufficient to

predict the crack path for any non-proportional mixed-mode loading.

The crack growth rate is often correlated to the range of the three SIFs by a Paris-like equation:

da

dN
= C(∆Keq)m = C(aI(∆KI)mI + aII(∆KII)mII + aIII(∆KIII)mIII )m (2.30)

Tanaka [Tanaka, 1974] proposed in particular:

∆Keq = (∆KI)4 + 8(∆KII)4 + 8/(1 − ν)(∆KIII)4)1/4 (2.31)

Researchers often assume that the equivalent ∆K can be used in conjunction with the C and m parameters

determined for pure mode I, which is questionable, because, as explained above, the opening and shear-mode crack

growth kinetics generally have different exponents and different sensitivity to the R ratio.

The crack growth rate might also be predicted using a simple sum of the crack growth rates due to each mode:

da

dN
= CI(∆KI)mI + CII(∆KII)mII + CIII(∆KIII)mIII (2.32)

Note that all those driving forces -which should be computed using effective SIFs, corrected for both closure

and friction effects- depend only on their range, ignoring the influence of their time evolution (or the shape of the

loading path), which, as detailed later-on, may be an error, due to crack tip plasticity couplings.

38



2.6.2 Couplings due to crack tip plasticity

Doquet and Pommier [Doquet and Pommier, 2004] performed sequential mixed-mode I+II (a mode I cycle

followed by a mode II cycle) experiments on ferritic-pearlitic steel. The crack growth rate for this sequential

loading was found to be larger than the simple sum of the the crack growth rate due to mode I and mode II alone:

da/dN > da/dN(∆KI) + da/dN(∆KII). This effect was explained by synergistic effects between the two modes,

due to crack-tip plasticity couplings, as illustrated on figure 2.30 for a material with kinematic hardening.

Figure 2.30: Schematic of plastic flow during the mode II (a) or mode I (b) part of a sequential mixed mode I+II
test, from [Doquet and Pommier, 2004].

After the mode I part of the cycle, compressive residual stresses are left at the crack tip, so that, during the

mode II part of the cycle, the plastic flow will occur earlier and in a different direction than in pure mode II. After

the mode II part of the cycle, residual shear stresses are left, leading again to a change of the intensity and direction

of the plastic flow during the mode I part of the cycle. Consequently, the plastic opening displacement at the crack

tip ρI , which could be a potential crack driving-force, is lower for pure mode I than for sequential mixed-mode I+II

(see figure 2.31).

Figure 2.31: Evolution of the plastic opening displacement behind the crack tip ρI versus KI for for pure mode I
and sequential mixed-mode I+II, from [Doquet and Pommier, 2004].

These effects of crack tip plasticity couplings can also have an effect on the crack growth direction, as suggested

by Dahlin & Olsson [Dahlin and Olsson, 2003], who proposed the MTSP criterion (a version of the MTS crite-

rion taking into account crack-tip plasticity, detailed later in section 2.6.3), and showed (using the experimental

data from [Plank and Kuhn, 1999]) that it was more suited than the MTS as it accounts for the stress redistri-

bution due to crack tip-plasticity (see fig. 2.34 below), including the coupling between shear and tensile plastic flows.
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Those couplings due to crack-tip plasticity could explain the loading path dependency of the crack growth rate

observed by Fremy et al. [Fremy et al., 2014b]. Mixed-mode experiments were performed on 316L stainless steel

with various loadings paths with the same ∆K, and with RI > 0.3 in order to avoid contact and friction between

the crack faces. Classical crack growth models involving ∆K (meaning: whatever combination of the range of

the SIFs) would predict an identical growth rate for those loadings paths. However, different growth rates were

obtained, as shown on figure 2.32, with differences of a factor up to 2.46.

Figure 2.32: Evolutions of the crack lengths with the number of cycles for various loading path with the same ∆K
2.32.

These different loading paths induce different evolutions of the plastic blunting ρ̇ (computed by FEM) [Fremy

et al., 2014a], as shown on figure 2.33. The various loading paths are correctly sorted in terms of crack growth rate

if ρ̇ is supposed to be the crack driving force.

Figure 2.33: Evolutions of the plastic flow computed by FEM for various loading paths with the same ∆K [Fremy
et al., 2014a].

2.6.3 Approaches accounting for crack tip-plasticity

In order to account for the stress redistributions and the couplings induced by crack tip-plasticity, Dahlin and

Olsson [Dahlin and Olsson, 2003] proposed to use the MTS or MTSR criteria, not on LEFM fields, but on field

computed using elastic plastic FEM computations. In this case, the criteria are denoted as MTSp or MTSRp
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(p for plasticity). Those criteria were found to be more successful than their LEFM equivalents when applied to

non-proportional mixed-mode loadings, as they account for the stress redistribution and couplings due to crack tip

plasticity. An example is given on figure 2.34 for sequential mode I+II loading, where bifurcation is predicted by

the elastic version of the criteria, while coplanar growth is predicted by their elastic-plastic version. However, these

criteria can only be used to predict the crack path, but no the growth rate.

Figure 2.34: Angular evolution of the tangential peak stress and range of the tangential stress, (a) with or (b)
without elastic-plastic behavior. Sequential mode I+II loading, from [Dahlin and Olsson, 2003].

Pommier & Hamam [Pommier and Hamam, 2007, Hamam et al., 2007b] proposed to use the crack tip plastic

blunting ρI (see figure 2.35) as a crack driving force for mode I loading, which allowed to account for variable

amplitude effects. Decreuse et al. [Decreuse et al., 2009], and Fremy et al. [Fremy et al., 2014a] then extended the

approach to non-proportional mixed-mode, using the following equation (see figure 2.35):

Figure 2.35: Schematics of the process of creation of new cracked area by crack tip plasticity, and illustration of ρ̇
from [Fremy et al., 2014a].

ȧ ∗ n∗ = α ∗ (t ∧ ρ̇) (2.33)

In order to evaluate ρ̇, which is a 3 components vector with each component related to a loading mode, the
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crack tip velocity field (time derivative of the displacement field) estimated from elastic-plastic FEM computations

is divided into an elastic and a plastic part, which are proportional to the K̇i and ρ̇ respectively. As discussed

earlier, this approach accounts for the influence of the shape of the loading path on the crack growth rate when it

is nearly coplanar. However, it cannot be considered as a bifurcation criterion, since it predicts no crack growth at

all for pure mode III (t ∧ ρ̇III = 0), as well as for fully reversed mode II (RII = −1): t ∧ ρ̇II changes sign with the

load, so that
∫

cycle
t ∧ ρ̇II = 0.

Doquet & Bertolino [Doquet and Bertolino, 2008b] proposed a local approach, based on the idea that fatigue

damage ahead of the crack tip is responsible for crack propagation, and that two damage mechanisms are competing,

one accounting for shear mode and the other for tensile mode. Two damage parameters are thus used. The first

one, proposed by Smith, Watson and Topper accounts for tension-driven damage:

βT ension = βSW T = ∆ǫn ∗ σn,max (2.34)

The second one is a shear-driven damage function that can be either Findley’s or Fatemi & Socie’s damage

function:

βF ind = ∆τ + kF I ∗ σn,max (2.35)

βF S = ∆γmax(1 + kF S
σn,max

σy
) (2.36)

βShear = βF S or βF ind (2.37)

where kF I and kF S are dimensionless parameters.

Those two damage functions are evaluated after elastic-plastic FE simulations, and averaged over a small segment

of length ∆L in every possible direction (characterized by a tilt angle θ and a twist angle φ) ahead of each node

of the crack front (see fig. 2.36). The corresponding potential fatigue lives, Nf, tension and Nf, shear, are deduced,

using the equations fitted from low-cycle fatigue data, as explained in [Doquet and Bertolino, 2008b]. The minimum

of those two values, Nf = min(Nf, tension, Nf, shear), as well as the associated direction are then extracted. The

potential local crack propagation rate for each mechanism is evaluated as:

Figure 2.36: Evaluation of the damage functions in every possible direction over a length ∆L.

da

dN
≈ ∆L
Nf

(2.38)
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In accordance with the MCGR criterion, the crack is assumed to propagate according to the mechanism which

maximizes its growth rate, which gives both the propagation direction and the crack growth rate. This approach

was able to predict the transition from tensile branching to shear driven coplanar under cyclic mode II, due to an

intersection of the mode I and mode II kinetics, as shown on figure 2.37. It also gave reasonable predictions of the

crack growth for mixed mode II & III loading [Doquet et al., 2010a].

Figure 2.37: Potential crack growth rate for shear-driven coplanar growth or tensile branching under mode II
loading, predicted using the local approach, from [Doquet et al., 2009].

All those approaches require elastic-plastic FEM computations, which are not yet compatible with the XFEM

method, which does not incorporate cyclic plasticity (but just monotonic plasticity, using the HRR field). Further-

more, crack-tip plasticity is not the only source of couplings between shear and opening modes.

2.6.4 Couplings through closure effects, friction, asperities interlocking and wear

Coupling between opening and shear modes also exists due to crack face contact and friction. It is clear that

a tension applied while shearing (KI > 0) will reduce the friction and asperities interlocking, while a compression

will enhance friction due to coulomb’s law, thus changing Keff
II . Conversely, the shear modes also have an influence

on closure effects in mode I, or induce some dilatancy KI .

Hourlier and Pineau [Hourlier and Pineau, 1982] superimposed static torsion (mode III) and cyclic tension (mode

I) on cylindrical specimens with a circumferential notch and observed a reduction of the mode I crack growth rate,

as well as an increase in the threshold ∆Kth
I , due to an increase of the asperity induced closure (mode III promoting

crack twisting locally as well as a permanent shift of the asperities on each crack face), while an increased crack

growth rate could have been expected from the crack-tip plasticity couplings. A similar effect was observed for a

static mode II superimposed on cyclic mode I [Stanzl et al., 1989] and modeled by Doquet et al. [Doquet et al.,

2009, Doquet et al., 2010b] using FE simulations on a rough crack (see figure 2.38.a) with Coulomb’s friction. Such

FEM model with rough crack allows to predict qualitatively the friction and dilatancy effects for cyclic mode II

(fig. 2.38.b), as well as the early crack closure (and reduced ∆Keff
I ) induced by the superimposition of a static

KII to cyclic mode I (fig. 2.38.c).
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Figure 2.38: (a) mesh used for FEM computations with rough crack from [Doquet et al., 2009]. (b) Effective
and nominal loading paths for a cyclic mode II loading, obtained from (a). (c) time evolution of Keff

I for the
superimposition of a static KII to cyclic mode I, from [Doquet et al., 2010b] using (a).

A single shear mode overload can even reduce the mode I crack growth rate over a few mm, after which the

crack recovers its initial growth rate (see figure 2.39), as shown by Dahlin & Olsson [Dahlin and Olsson, 2004].

This effect is explained by a permanent relative sliding displacement of the crack faces due to shear-mode plastic

deformations. As the crack propagates, its influence will fade away.

Figure 2.39: Evolution of the crack growth rate during a cyclic mode I experiment, after a mode II overload (2.39).
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Jägg & Scholtes [Jägg and Scholtes, 2005] performed sequential experiments, and measured the residual stresses

using X-ray diffraction. It appears that mode II does not induce compressive residual stresses, and that plasticity-

induced crack closure is thus only induced by mode I. Sander and Richard [Sander and Richard, 2005] came to the

same conclusions using node releasing FEM computations with Lemaitre and Chaboche’s plasticity model. With

the same type of approach, Doquet et al [Doquet et al., 2010b] even showed that a static mode II actually reduces

plasticity-induced closure in mode I, which explains the acceleration of short cracks growth reported by Tschegg et

al in presence of a static mode II.

Very few authors studied non-proportional loading with a compression phase while shearing, as it is the case in

rails. Tarantino et al. [Tarantino et al., 2011, Tarantino, 2011] studied short crack growth (< 1 mm) under out-of-

phase cyclic compression + mode III in bearing steel. The experiments were performed on cylinders with a transverse

micro notch, precracked in mode I at R = −2, and then loaded under combined cyclic tension/compression and

torsion. The effective stress intensity factors were estimated using an analytical model derived from [Tong et al.,

1995b], taking into account the real crack roughness obtained by SEM images processing.

Under 90◦ out-of-phase mode III + strong compression, with RI = −∞ and RIII = −1, coplanar cracks started

to grow below the pure mode III threshold, and long stable coplanar growth was always observed, as shown on

figure 2.40. This enhancement of shear driven-coplanar growth by compression was associated with severe rubbing

of the crack faces, and with creation of wear debris coming out of the crack and leading to a residual "crack opening"

(actually a loss of matter): paradoxically, the out-of-phase compression reduced friction and increased ∆Keff
III by

keeping the crack open.

Figure 2.40: Crack growth rate as a function of ∆Knom
III for pure mode III and 90◦ out-of-phase mode III +

compression (noted "OOP"), with various notch sizes. "Continuous growth" means stable coplanar growth.

Similar results were obtained by Tarantino in [Tarantino, 2011] on railway steel, and by Beretta [Beretta et al.,

2010] on SAE5135 gear steel. However, the residual opening due to wear was less pronounced in railway steel (close

to R260) than in bearing steel.
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2.7 Conclusions and structure of the manuscript

This study will focus on the propagation of Squats-type cracks below the layer that is repeatedly

plastified and transformed by train passages. In this area, LEFM can be applied, and the loading

is nearly a sequence of opening and shear modes, with a compression while shearing and various

proportions of mode II and mode III along the crack front. Due to couplings between the three

modes induced by crack-tip plasticity as well as contact, friction and wear between the crack faces,

and a lack of widely accepted approach to deal with such a problem, the prediction of crack path

and growth rate under such non-proportional mixed-mode loading is a challenge in itself. This

leads us to neglect the effects of variable amplitude loading and water trapping/pressurization in

the rest of the study. The manuscript is divided as follows:

First, the microstructure and mechanical properties or R260 rail steel will be presented. Then,

some procedures common to the various crack growth experiments will be introduced.

Second, mode I fatigue crack growth in rail steel will be investigated, at various load ratios in

order to get kinetic data, and study the influence of a compression. The possibility that mode I

alone explains crack growth in rails will be discussed.

Third, mixed-mode II & III experiments will be presented, in order to asses the possibility of

shear-driven coplanar crack growth in rails, and get kinetic data for various proportions of mode

II and III.

Fourth, the results of non-proportional mixed-mode I+II experiments, with various loading paths,

mode mixities, and compression phases will be discussed. Several approaches for crack growth

prediction will be tested and compared to the experimental results. In all the aforementioned

experiments, near-tip displacements will be measured and analyzed in order to measure the

effective SIFs and estimate the effects of contact and friction between the crack faces.

Finally, an approach to predict the crack growth in rails will be proposed, and validated using

non-proportional mixed-mode I + II & III experiments.
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Chapter 3

Material characterization & procedures
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3.1 Material

This section contains the material characterization along with the presentation of the observation means and

testing machines. A large part of the work presented in this Material section was done during a 5 month master

internship prior to the thesis.

3.1.1 Samples

The material for microstructural characterization, as well as all the samples used in the experiments were

extracted from the head of 8 new rail 1-meter sections made of R260 low alloy rail steel, as shown in figure 3.1

and detailed in appendix A. Since the study focuses on crack propagation in the rail head, and the manufacturing

process (rolling) might induce differences in microstructure and residual stresses in the rail section, it is preferable to

extract the samples in this zone. The composition and tensile properties are given in tables 3.1 and 3.2 respectively.

Spectrometry analysis (EDS in the SEM) gives a composition consistent with the nominal one.

Table 3.1: Mass % composition

C Si Mn P S

0.72 0.32 1.08 0.015 0.022

Table 3.2: Tensile properties

Rp0,2 (MPa) Rm (MPa) A%

480 880 10

The loading direction might have an influence, since anisotropy between planes orthogonal to or containing the

rolling direction can be induced by the rolling process. The samples for crack growth tests were thus machined so

that the crack is always in a plane orthogonal to the rolling direction, as is it almost the case in rails.

6 Types of samples were manufactured, with a total of 72 samples, distributed as follow: 15 samples for tensile

fatigue tests, 16 samples for shear & tensile fatigue tests, 8 samples for mode I crack growth tests, 18 samples for

mixed mode II&III crack growth tests, 20 samples for non-proportional mixed mode I+II crack growth tests and 5

samples for in situ mixed mode I+II crack growth tests in a SEM.

3.1.2 Microstructure

Samples were extracted and cut in several directions, mechanically polished up to 1 µm with diamond paste and

then ion-polished. Neither chemical etching, with various solutions, nor electropolishing gave satisfying results.

The R260 rail steel is a pearlitic steel (with a bit of proeutectoid ferrite at graind boundaries): lamellar structure,

with ferrite and cementite, as shown figure 3.2. The inter-lamellar spacing is 50 to 80 nm, with lamellae length of a

few microns and a pearlite colonies size of a few tens of microns. No flagrant anisotropy, neither in the grain shape

nor in the lamellae orientation can be seen with SEM observations.

However, it contains manganese sulfide inclusions (MnS, confirmed by spectrometry analysis), with a ≈ 5 µm

diameter and a ≈ 100 µm length, elongated in the rolling direction, as shown on figure 3.3). This shape is likely

due to the rolling process.

48



Figure 3.1: Cylinders extracted from the rail head and machined into 6 different samples. The number corresponds
to the number of machined samples.

Figure 3.2: SEM observations of the lamellar structure in the plane orthogonal to the rolling direction RD (left),
and in a plane containing the rolling direction (right). The red arrows point towards manganese sulfide inclusions.

EBSD analysis of nine images of 310 ∗ 270 µm2 (stitched image of 930 ∗ 810 µm2) with a 260 nm step shows a

slight anisotropy (see figures 3.4 and 3.5). The texture index is 2.45.
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Figure 3.3: MnS inclusions in the transversal direction (left) and longitudinal direction (right)

Figure 3.4: Pole figures on a 930 ∗ 810 µm2 zone, with normalized scale, in the longitudinal direction.

Figure 3.5: Orientations (Euler angles, IPF-X) obtained on a 930 ∗ 810 µm2 zone normal to the rolling direction.
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3.1.3 Monotonic tensile tests

A monotonic tensile test was performed in a 100 kN MTS hydraulic axial testing machine. The tests was

displacement controlled, with an initial strain rate of 5 ∗ 10−4 m/m ∗ s−1. The ultimate elongation was measured

at A = 10 % and the ultimate tensile strength at Rm = 790 MPa, a bit lower than the 880 MPa theoretical value

given table 3.2.

3.1.4 Cyclic tensile tests

In order to get the material constitutive equations along with a tension-driven fatigue damage model for the

local approach [Doquet and Bertolino, 2008b], cyclic tensile tests were performed at various strain ranges and ratios,

using the sample described on figure 3.6 and the aforementioned testing machine. Those samples had a diameter of

7 mm over a length of 15 mm, and a Ra of 0.2 µm in their central section. The experiments were strain controlled,

using an extensometer, as shown on the left image of figure 3.6, all with the same plastic strain rate (≈ 0.15 %/s).

Fracture was defined as a 5 % drop of the peak tensile stress. The test conditions and results of the 9 experiments

are presented in table 3.3. At similar imposed strain range ∆ǫ/2, increasing R = ǫmax/ǫmin decreases the number

of cycles to failure. Since the material does not always exhibit a steady-state, but rather a slight continuous cyclic

strain softening (see figure 3.7), the stresses reporter in the table were measured at mid-life.

Figure 3.6: Cyclic tensile test specimens: drawing and experimental setup.

The low cycle fatigue life could be predicted using Manson-Coffin’s law (left graph of figure 3.8):

Nf = a ∗ ∆ǫmplastic (3.1)

Or slightly better using Smith, Watson & Topper’s model [Smith et al., 1970], with a threshold to account for the

possibility of infinite life (and non propagation in the local approach) (right graph of figure 3.8):

βSW T = ∆ǫn ∗ σn,max (3.2)

Nf = a ∗ (βSW T − βT hreshold)m (3.3)
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Table 3.3: Test conditions and results of the cyclic tensile tests. Stresses measured at mid-life. R = ǫmax/ǫmin

N◦ ∆ǫ/2 (%) R Nf (cycles) ∆ǫp/cycle (%) σmax (MPa) σmin (MPa)

4 0.25 -1 confidential 0.28 360 -365

2 0.4 -1 confidential 0.69 445 -466

5 0.55 -1 confidential 1.2 497 -503

1 0.7 -1 confidential 1.70 537 -559

3 1 -1 confidential 2.75 619 -637

6 0.25 -0.5 confidential 0.26 369 -371

7 0.4 0 confidential 0.71 444 -450

8 0.25 0 confidential 0.24 396 -369

9 0.25 0.5 confidential 0.29 409 -300

Figure 3.7: Evolution of the axial stress range during the experiments.

Figure 3.8: LCF life prediction: Manson-Coffin’s law (Left), and Smith, Watson & Topper’s model (right).
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An initiation site for this tensile fatigue mechanism, along with some striations can be seen on figure 3.9.

Figure 3.9: Initiation site and striations on sample N◦ 5

3.1.5 Cyclic shear tests, with or without a tensile static load

The previous experiments gave a tension-driven low cycle fatigue damage model for the local approach [Doquet

and Bertolino, 2008b]. In order to get a shear-driven damage model, fully reversed torsional cyclic tests, at imposed

torque and constant axial stress (σzz = 0, 90 or 150MPa) were performed on a hydraulic triaxial testing machine,

allowing tension/compression, torque and internal oil pressure (±100 kN , ±600 Nm, 1500 bar). The tubular sam-

ples, described on the left image of figure 3.10, were equipped with biaxial strain gages (see right image of figure

3.10). As for the cyclic tensile tests, the plastic strain rate was kept at ≈ 0.15 %/s. The strains could only be

measured at the beginning, until the strain gages got unstuck from the sample, which fortunately generally occured

after more or less steady-state stress-strain loop were recorded.

In the elastic domain, the shear strain and stress vary linearly with the radius:

σrθ = σrθ(re) ∗ r

re
(3.4)

With re and ri the outer and inner radius respectively. The shear stress on the outer surface writes as:

σrθ(re) =
C ∗ 4 ∗ re

2 ∗ π ∗ (r4
e − r4

i )
(3.5)

If the gradient is neglected, this stress writes as:

σrθ(re) =
C ∗ 3

2 ∗ π ∗ (r3
e − r3

i )
(3.6)

Which gives a 6% difference. In the case of an elastic behaviour, this gradient has to be taken into account.

However, FEM elastic-plastic computations with the constitutive equations described later on shows that the shear

stress tends to become uniform as the material is plastified. Each of the hypothesis were thus considered depending

on the torque amplitude.
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Figure 3.10: Cyclic shear test specimens: drawing and experimental setup.

The test conditions, resulting number of cycles to failure and fracture mechanism are presented in table 3.4.

The tensile and longitudinal crack initiation directions should be equally probable for an isotropic material when

the axial stress is equal to zero. However, in the R260 steel, crack initiations were always longitudinal, that is:

parallel to the rail axis. This is probably due to the elongated MnS inclusions, whose elongated shape helps crack to

initiate, as shown by the in situ experiments in the SEM (see appendix E). It is however possible to get a transversal

initiation from a certain level of tensile stress, whose value seems to increase with the shear stress amplitude (90

MPa if ∆τ = 502 MPa, 150 MPa if ∆τ = 628 MPa).

The crack initiates in a maximum shear direction, and then sometimes bifurcates at ±45 ◦, in a principal di-

rection, as shown in figure 3.11. The higher the shear / normal stress, the longer the longitudinal / transversal

crack. The preferential transversal initiation direction when a static tensile stress is applied is due to the resulting

reduction in friction, which only exists in the transversal direction, while the axial directions only undergoes a

positive T stress (non singular).

Figure 3.11: Various crack paths, from left to right: long transversal growth, short transversal growth, short
longitudinal growth and long longitudinal growth.
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Table 3.4: Test conditions and results of the cyclic shear tests. Strains measured at mid-life. L means longitudinal
initiation and T transversal initiation.

N◦ Tensile
stress
(Mpa)

Torque(Nm) τ max
(MPa)

τ mean
(MPa)

Nf (Cy-
cles)

∆γ (%) Initial Ori-
entation of
the main

crack

2 0 ± 52 ± 251 ± 237 confidential 0.86 L

4 0 ± 56 ± 270 ± 255 confidential 1.38 L

3 0 ± 60 ± 290 ± 274 confidential 1.85 L

6 0 ± 62 ± 299 ± 283 confidential 1.71 L

5 0 ± 65 ± 314 ± 296 confidential 2.25 L

1 0 ± 70 ± 338 ± 319 confidential 2.51 L

12 0 ± 85 ± 410 388 confidential 5.14 L

13 0 ± 95 ± 458 433 confidential 7.69 L

10 90 ± 52 ± 251 ± 237 confidential 1.21 T

7 90 ± 65 ± 314 ± 296 confidential 2.28 L

9 150 ± 52 ± 251 ± 237 confidential 1.26 T

8 150 ± 65 ± 314 ± 296 confidential 1.88 T

11 250 ± 52 ± 251 ± 237 confidential 1.23 T
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In previous studies, [Doquet and Bertolino, 2008b, Doquet et al., 2009, Doquet et al., 2010a], Fatemi and Socie’s

damage function -homogeneous to a strain- was used, to account for shear-driven damage:

βF S = ∆γmax(1 + kF S
σn,max

σy
) (3.7)

where σn,max denotes the peak opening stress over a cycle on the facet which undergoes the maximum shear

strain range, ∆γ, and kF S is a dimensionless coefficient.

Alternatively, Findley’s damage function -which has the dimension of a stress- could also be used:

βF ind = ∆τ + kF I ∗ σn,max (3.8)

where kF I is a dimensionless parameter.

However, in the present study, a shear-driven damage function equal to the product of the two previous ones,

-and which thus has the dimension of an energy, like the tension-driven damage function- was preferred:

βShear = βF ind ∗ βF S (3.9)

The number of cycles to failure could then be predicted as:

Nf = ashear ∗ (βshear − βshear,threshold)mshear (3.10)

The resulting curve is plotted figure 3.12.

Figure 3.12: LCF life prediction for shear loading: Fatemi & Socie * Findley’s damage function.

The fracture surfaces of 3 samples are presented here, as typical examples of the various fracture mechanisms:

extended longitudinal crack growth, short longitudinal growth and transversal growth. In spite of the highly worn

surfaces, the following elements can be noticed:

• Sample N◦3 (figures 3.13 and 3.14): ∆τ = 580 MPa, σnn = 0 MPa, longitudinal growth, presence of MnS

inclusions in the growth direction (a). Some marks of a transversally initiated crack (b) and marks of an

aborted bifurcation (c).

• Sample N◦7 (right image figure 3.14) : ∆τ = 628 MPa, σnn = 90 MPa longitudinal growth, close to a

transversal growth. Presence of transversal micro cracks (d): hesitation between the two directions.

• Sample N◦8 (figure 3.15): ∆τ = 628 MPa, σnn = 150 MPa, transversal growth, some longitudinal micro

cracks (e). Presence of detached inclusions in the longitudinal direction (f).

56



Figure 3.13: Crack initiation on an inclusion and branching on sample N◦3, ∆τ = 580MPa and σn = 0. RD
(rolling direction) is parallel to the specimen axis.

Figure 3.14: Left: broken inclusion in sample N◦3, ∆τ = 580MPaand σn = 0. Right: transversal crack in sample
N◦7, ∆τ = 628Pa and σn = 90MPa.

Figure 3.15: Left: longitudinal crack in sample N◦8, ∆τ = 628Pa and σn = 150MPa. Right: detached inclusion
in sample N◦8, ∆τ = 628Pa and σn = 150MPa.
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3.1.6 Constitutive equations

The stress-strain curves recorded during strain-controlled push-pull and cyclic torsion tests fed a Levenberg-

Marquardt algorithm in order to fit constitutive equations using isotropic and one or two kinematic hardening

variables, according to Lemaitre and Chaboche’s model [Lemaitre and Chaboche, 1994], assuming that the behaviour

is isotropic and can be described by Von Mises flow criterion:

f = J2(σ −X1 −X2) −R (3.11)

dXi = Ci ∗ (
2
3

∗Ai ∗ dǫp −Xi ∗ dp) (3.12)

R = R0 + (RM −R0) ∗ (1 − e−b∗p) (3.13)

dǫp = dλ ∗ ∂f
∂σ

(3.14)

where f is the yield function, X1 and X2 are the kinematic hardening variables , R the isotropic hardening

variable, p the accumulated plastic strain, λ the plastic multiplier, and C1, C2, A1, A2, R0, RM , and b are material

coefficients.

The material shows nearly no isotropic hardening, and one kinematic variable is enough to get a relatively good

prediction of the behavior for small loads, and a good prediction for high loads, and as shown on figures 3.16, 3.17,

3.18 and 3.19.

Figure 3.16: Experimental and fitted curve for a push-pull cyclic test, R = 0 and ∆ǫ = 0.5. No data for confiden-
tiality reasons.
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Figure 3.17: Experimental and fitted curve for a push-pull cyclic test, R = 0 and ∆ǫ = 2. No data for confidentiality
reasons.

Figure 3.18: Experimental and fitted curve for a push-pull cyclic test, R = 0 and ∆ǫ = 0.8. No data for confiden-
tiality reasons.

Figure 3.19: Experimental and fitted curve for a torsion cyclic test, R = −1 and ∆τ = 820MPa. No data for
confidentiality reasons.
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3.2 Procedures common to all fatigue crack growth tests

This section aims at giving general insights on how the crack tip was located and how the effective Stress

Intensity Factors were determined from DIC fields in presence of contact stresses and plasticity. A part of this work

has been published in [Bonniot et al., 2019]. The specific procedures for each type of experiments will be detailed

in their corresponding section.

3.2.1 Introduction

As explained in section 2.3, rolling contact fatigue cracks in rails undergo non-proportional mixed-mode loading

with compression phases [Bogdanski et al., 1998, Mai et al., 2017]. The mode I loading with various R ratios

encountered at different points of the crack front or at different temperatures was reproduced in this work using

SENT specimens described in chapter 4. In the (KII - KIII) space, the loading path computed on squat cracks is

almost proportional, and was reproduced using asymmetric four point bending tests on a bar detailed in chapter 5.

Finally, in the (KI - KII) space, the computed loading paths is approximately sequential, with a static compression

during the mode II cycle. Such loading paths were experimentally reproduced using transversally precracked thin

tubes loaded in tension-compression and torsion, as detailed in chapter 6.

In each of those experiments, non-linearities were present, and DIC was used to monitor the crack growth and

estimate the effective SIFs.

The principle of using an experimentally-determined displacement field to evaluate the SIFs was proposed by

Barker et al. [Barker et al., 1985] in 1985, with a displacement field computed from the stress field obtained by

photo-elasticity. The experimental displacement field was projected over a theoretical displacement field (obtained

from Westergaard’s equations), and the crack tip position was supposed to be known. The SIFs were computed

from the resulting coefficients. A similar approach was then used by Abanto-Bueno & Lambros [Abanto-Bueno and

Lambros, 2002] on a displacement field obtained by DIC, and has been used widely since then.

This approach based on a projection on William’s series expansion (or another analytical displacement field,

such as Westergaard’s solutions) was used in [Barker et al., 1985, Abanto-Bueno and Lambros, 2002, Yates et al.,

2010, Tong et al., 2018] with a crack tip position supposed to be known.

Others used this method to evaluate both the crack tip position and the SIFs, by seeking the position of the

crack tip which minimizes the error between the DIC field and its projection on the theoretical field. Roux &

Hild [Roux and Hild, 2006] used this principle, without giving further details on the method. Yoneyama et al.

[Yoneyama et al., 2007] tried to optimize simultaneously the value of the SIFs and the crack tip position using

a Newton-Raphson method, which as Zanganeh et al. [Zanganeh et al., 2013] pointed out, is very sensitive to

the initial guess of the crack tip position. Zanganeh et al. [Zanganeh et al., 2013] used numerically generated or

experimentally obtained displacement fields to perform a comparative study on various methods: two Newton-type

methods, a simplex method, a genetic algorithm and a Pattern Search method. This last method was found to be

satisfying, both in terms of accuracy and computational cost. Harilal et al. [Harilal et al., 2015] tried every possible

position of the crack tip on a square grid, which has the advantage of avoiding convergence towards a local minima,

but is not very efficient in terms of computational cost, especially since the grid pitch has to be small to get a

precise estimation. Vormwald et al. [Vormwald et al., 2018] tried a similar approach, but with grids of varying size:

a first estimation of the crack tip position is found using a coarse grid, then the process is repeated on a refined

grid around the previously estimated crack tip. This process can be repeated as many times as necessary to get an

accurate estimate of the crack tip position.

Some authors used a projection on a theoretical field, but with a different way to locate the crack tip, such
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as Lopez-Crespo et al. [Lopez-Crespo et al., 2008, Lopez-Crespo et al., 2009] who applied a Sobel line detection

algorithm to the DIC displacement field to locate the crack tip. Hamam et al. [Hamam et al., 2007a] as well

as Mathieu et al. [Mathieu et al., 2012] added supersingular terms (terms of negative order) to William’s series

expansion. It was then possible to locate the crack tip by seeking the position where the −1 order term was equal

to zero.

Other methods, not involving a projection over a theoretical field, were used by some authors. Réthoré et al.

[Réthoré et al., 2005, Réthoré et al., 2007] used an interaction integral to evaluate the SIFs, but such method

supposes stress-free crack faces. Roux et al. [Roux and Hild, 2006, Hamam et al., 2007a, Mathieu et al., 2012]

used an integrated approach, where shape functions corresponding to a theoretical displacement field for an elastic

cracked body were used in the image correlation process.

In all the aforementioned methods, only the displacements measured outside the crack tip plastic zone and the

plastic wake were taken into account in the analysis, but crack tip plasticity was not taken into account in the

analytical displacement fields used to determine the SIFs, except in [Hamam et al., 2007a, Mathieu et al., 2012] in

a very simplified way.

Hos et al. [Hos et al., 2016] used the relative opening displacement measured between two points on each side

of the crack (COD) and estimated crack closure using the stifness change method on the displacement jump - force

loop. Vormwald et al. [Vormwald et al., 2018] used the same displacement jump measurements to get a direct

estimate of the SIFs, knowing the analytical relationship between those two values. The same type of approach was

used by Smith & Smith [Smith and Smith, 1988] using an extensometer to measure the crack sliding displacement,

and by Wong et al. [Wong et al., 1996, Wong et al., 2000b] using surface replicas to measure the displacement

jump. By contrast, Bertolino & Doquet [Bertolino and Doquet, 2009] compared the measured sliding displacement

profiles to those issued from elastic-plastic simulations, with or without a uniform friction stress along the crack face.

Decreuse et al. [Decreuse et al., 2012] proposed a different approach, where the plasticity-free mode I and mode

II displacement fields are not analytical, but obtained from DIC by correlating an image taken at maximum load

and an image taken after a small, fully elastic unloading. A second displacement field, containing the influence of

crack tip plasticity, can also be built by correlating images obtained during a monotonic loading and subtracting

the elastic part obtained previously. The four fields (two for each mode) are then used in the same way as the

analytical displacement fields in the previous projective approaches.

Bertolino & Doquet [Bertolino and Doquet, 2009], Doquet et al. [Doquet et al., 2010a] & Bonniot et al. [Bonniot

et al., 2018] compared the measured in-plane or out-of-plane crack face relative sliding displacement profiles to those

issued from elastic-plastic FEM computations run with various loading ranges, to find the loading range which gives

the best fit of experimental data. The effective ∆KII or ∆KIII were deduced from the corresponding loading range.

The experimental conditions of all those papers are summarized in table 3.5.

From this literature survey, it appears that except in [Hos et al., 2016, Vormwald et al., 2018], DIC analysis of

fatigue crack growth was always applied for zero or positive mode I R ratios. For negative R ratios, it would be

tempting to correlate the images captured at peak load and zero load, ignoring the compressive part of the cycle.

However, crack closure sometimes occurs in compression and part of the compressive stage of the cycle sometimes

contributes to crack growth [Pommier et al., 1997], so that a strategy for the post-treatment of DIC fields is needed

in presence of a compressive stage. Furthermore, in mixed-mode, normal compression enhances contact and friction

stresses along the crack and no theoretical expression of the displacement field is available in that case.
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Table 3.5: Test conditions found in the literature. COD stands for the measurement of the displacement jump
between two points. DJ stands for the measurement of the displacement jump between two lines. If the displacement
field are not obtained from DIC, the method is given in parenthesis. I/II means proportional mixed mode and
I + II non-proportional mixed mode.

Authors Material Mode RI Method for SIF
measurement

Crack-tip
plasticity

modelling?

[Abanto-Bueno and
Lambros, 2002]

polyethylene I (0, not
fatigue)

Analytical full field no

[Réthoré et al., 2005] maraging steel I/II 0 interaction integral no

[Réthoré et al., 2007] SiC I (0, not
fatigue)

interaction integral no

[Roux and Hild,
2006]

SiC I (0, not
fatigue)

DIC integrated no

[Roux and Hild,
2006]

SiC I (0, not
fatigue)

Analytical full field no

[Yoneyama et al.,
2007]

PMMA I/II (0, not
fatigue)

Analytical full field no

[Hamam et al.,
2007a]

Steel I 0 Analytical full field simplified

[Hamam et al.,
2007a]

Steel I 0 DIC integrated no

[Lopez-Crespo et al.,
2008, Lopez-Crespo

et al., 2009]

7010 Al I/II 0 Analytical full field no

[Yates et al., 2010] 7010 Al I >0.15 Analytical full field no

[Mathieu et al.,
2012]

Ti35 I 0.1 Analytical full field simplified

[Zanganeh et al.,
2013]

Al (2 types) I/II 0.1 Analytical full field no

[Harilal et al., 2015] 2014-T6 Al I/II >0 Analytical full field no

[Lachambre et al.,
2015]

Iron I 0.14 Analytical full field no

[Hos et al., 2016] S235 I+II -1 COD no

[Vormwald et al.,
2018]

S235 I+II -1 COD no

[Vormwald et al.,
2018]

S235 I+II -1 Analytical full field no

[Tong et al., 2018] 316L I 0,1 Analytical full field no

[Decreuse et al.,
2012]

S355 I+II >0 DIC basis yes

[Bertolino and
Doquet, 2009]

M250 & Ta6V II / DJ (SEM insitu) simplified

[Doquet et al.,
2010a]

M250 & Ta6V II/III / DJ (replicas) yes

[Bonniot et al., 2018] R260 II/III / DJ yes

[Wong et al.,
1996, Wong et al.,

2000b]

Rail steel I+II 0 COD (replicas) no
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3.2.2 Methodology

Several approaches were tested to evaluate the influence of non linearities on crack tip localization and esti-

mation of the effective SIFs. For that purpose, displacement fields issued from finite element computations with

contact/friction and/or elastic-plastic behavior, for which the exact crack-tip location and the effective SIFs are

known were used. Those SIFs were computed using the relative crack face displacement jump, which allows a

correct evaluation of the SIFs in the presence of contact and friction between the crack faces, contrary to classical

J-integral methods. In the following, those effective SIFs will be referred to as ∆KF EM . If plasticity is modeled in

the computation, the SIFs are evaluated on a similar computation (loading & compression/friction), but with an

elastic behavior.

Figure 3.20: FEM mesh and boundary conditions. Plate size: 10 ∗ 10 mm2, crack length: 2a = 4 mm. Element
size at the tip: 25 µm.

The mesh and boundary conditions are represented on figure 3.20. The crack length is 2a = 4 mm, and plane

stress is assumed. The FEM-obtained displacement fields are projected on a square grid with a 20 µm pitch, similar

to the grid used for DIC.

For mode I, the load ratio RI was either zero or negative, depending on the computations, but the displacement

fields were always extracted at maximum and minimum loads, and their difference was used to compute ∆KF EM
I .

Fully reversed mode II was simulated with or without a superimposed static normal compression. Again, the

displacement fields were extracted at maximum and minimum shear loads and their difference was used to compute

∆KF EM
II .

Using Von Mises criterion and Irwin’s approach for perfectly plastic materials, the extensions of the cyclic plastic

zone ahead of the crack tip in plane stress for mode I and mode II are approximately:

rp,I =
1

2π

(

∆KI

2σY

)2

(3.15)

rp,II =
3

2π

(

∆KII

2σY

)2

(3.16)
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In order to allow a transposition of the results to other materials, the approximate size of the cyclic crack tip

plastic zone, according to equations 3.15 and 3.16 will be specified for each mode I or mode II case analysed. But

note that when real experimental mixed-mode displacement fields are analysed, due to friction stresses that reduce

∆Keff
II , the effective size of the mode II plastic zone is not known a priori, and is often actually significantly smaller

than predicted, inserting the nominal ∆KII in eq. 3.16 [Vojtek et al., 2019].

Elastic frictionless computations were performed under mode I or mode II loading. Various elastic-plastic

computations were performed using constitutive equations for R260 rail steel [Bonniot et al., 2018], to study the

influence of crack-tip plasticity. In that case, two cycles were simulated, which was enough to get a stabilized

cycle since the hardening is mostly kinematic. Elastic computations were performed under mode I or mode II with

compression and friction (µ = 0.5) in order to study the influence of contact stresses.

Other cases, combining both non linearities or both modes were investigated. For sequential and 90◦ out-of-

phase mixed-mode loading (both with RI = 0 and RII = −1), the displacement fields extracted at maximum and

minimum tensile load and shear load were used to determine ∆KF EM
I and ∆KF EM

II , respectively.

3.2.3 Compared approaches

Three approaches were evaluated: the first one is based on a projection of the displacement field over William’s

expansion, which is the most commonly used approach, the second one is based on a fit of the relative displacement

between two rows of virtual extensometers, above and below the crack, for which an improvement is proposed to

take into account contact stresses and crack tip plasticity, and the third one is based on a coupling between FEM

computations and DIC.

3.2.4 William’s expansion

This approach is based on the search for the crack tip position minimizing the error between the DIC field

and its projection over William’s expansion, which is the most common method. The algorithm used to locate the

crack-tip is a pattern search algorithm [Zanganeh et al., 2013], with an initial guess chosen after testing all the

positions on a coarse grid. This approach gives both the crack tip position, and an estimation of the effective SIFs.

The algorithm and its parameters are described in Appendix B. The results for various loading cases are given

in tables 3.6 & 3.7.

In the elastic frictionless cases (LEFM hypothesis), the crack tip position and SIFs are predicted accurately for

both modes.

In mode I, when crack-tip plasticity is present, the crack length is slightly overestimated and ∆Keff
I as well, but

the error, which rises with the applied loading range remains small: 3.6% for ∆KF EM
I = 30 MPa

√
m (KF EM

I /σY =

0.063
√
m). Adding a compression phase leads to an underestimation of the crack length, and an overestimation of

∆Keff
I , because the displacement field for a closed crack under compression is not described by William’s expansion.

Another solution could be to capture several images during one cycle and correlate them with the image at

maximum force, allowing to plot ∆KI measured with William’s expansion versus the applied load, as in [Tong

et al., 2018], and then seek for the change of slope (as in the force-displacement method). But this last method

requires the capture of a lot of images and the post-treatment will be longer.
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Table 3.6: Results obtained using William’s expansion with PS algorithm in mode I. e stands for elastic behavior
and e− p for elastic-plastic behavior. Cyclic plastic zone rp computed using eq. 3.15.

Material
behavior

∆KF EM
I

(MPa
√
m)

rp (µm) Compressive stress Error on crack tip
location (µm)

estimated
∆KI

(MPa
√
m)

e 10 / 0 0 10.1

e-p 10 17 0 7 10.1

e-p 20 69 0 33 20.3

e-p 30 155 0 74 31.1

e-p 30 + small
unloading

155 0 -7 /

e 10 / -50 -41 11.7

e 10 / -100 -74 13.2

e 10 / -150 -96 14.7

e 10 / -150 Pre-determined tip 13.8

Table 3.7: Results obtained using William’s expansion with PS algorithm in mode II. e stands for elastic behavior,
e− p for elastic-plastic behavior and e− f for elastic with friction. Cyclic plastic zone rp computed using eq. 3.16.

Material
behavior

∆KF EM
II rp (µm) Compressive stress Error on crack tip

location (µm)
estimated

∆KII

(MPa
√
m)

e 10 / 0 -4 10.0

e-p 10 52 0 48 10.2

e-p 20 207 0 215 21.4

e-p 30 466 0 541 38.3

e-p 30 466 0 Pre-determined tip 48.0

e+f 6 / -50 -78 7.8

e+f 1.9 / -100 -278 5.3

e+f 2 / -100 Pre-determined tip 5.0

For mode II, adding crack-tip plasticity leads to an overestimation of the crack length by up to 0.5 mm as well

as an overestimation of ∆Keff
II up to 28 %, due to the elongated shape of the mode II plastic zone ahead of the tip

(see figure 2.9 in section 2.2.3). In mode II, the cyclic plastic zone is three times longer than in mode I for the same

value of ∆K (see eq. 3.15 & 3.16), which explains the stronger effect of mode II crack tip plasticity on the crack tip

localization and SIFs evaluation. Adding compression and friction leads to an underestimation of the crack length,

and an overestimation of ∆Keff
II , like for mode I.

From this first analysis, it appears that such an approach cannot be used to simultaneously locate the crack tip

and determine the effective SIFs in the cases of high mode II loadings and high compression or friction between

the crack faces. It can however be used to locate the crack tip in mode I if applied between two well chosen images:

at maximum load, and after a small (elastic) unloading, as suggested by Decreuse et al. [Decreuse et al., 2012].

By doing so, the effects of crack-tip plasticity and contact forces between the crack faces (since the crack is always
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opened) can be avoided, as shown in table 3.6.

The same approach but with a fixed crack tip (which can be determined using the aforementioned technique)

was evaluated, but the same problems persisted: overestimation of ∆Keff
I in the presence of compression, and

overestimation of ∆Keff
II in the presence of high friction or high ∆Keff

II .

An attempt was made to change the size of the area close to the crack tip which is excluded from the analysis

(see Appendix B) in order to avoid the plastic zone. This was done by changing the inner radius Rint and outer

radius Rext of the considered area (Appendix B, figure B.2). The results are given in table 3.8 for an elastic-plastic

frictionless mode II computation with ∆KF EM
II = 20 MPa

√
m. Increasing the inner or outer radius does no prevent

an overestimation of the crack length nor an overestimation of the effective SIFs.

Table 3.8: Influence of the size of the excluded area (of radius Rint) around the crack tip for ∆KF EM
II = 20 MPa

√
m

with elastic-plastic behavior. rp = 0.25 mm computed using eq. 3.16

Rint Rext Error on crack tip estimated

(mm) location (µm) ∆KII (MPa
√
m)

0.2 0.6 204 21.65

0.2 1.2 215 21.44

0.2 2 215 21.42

0.8 1.8 219 21.38

William’s series expansion with additional terms

In order to try to capture the effects of friction and contact between the crack faces, an attempt was made to

add the corresponding terms to William’s series expansion and to perform the projection on this combined field.

In this case, the theoretical field writes as:

U theoretical = UW illiam′s + U contact + Ufriction (3.17)

With:

U contact =
σyy,contact

E
∗ (y ∗ uy − ν ∗ x ∗ ux) (3.18)

which is the displacement field in an uncracked plate submitted to an axial load σyy,contact, and

Ufriction =
σxy,friction

2 ∗G ∗ (x ∗ uy + y ∗ ux) (3.19)

which is the displacement field in an uncracked plate submitted to a shear load σxy,friction. y corresponds to

the vertical axis and x to the horizontal axis. The rest of the algorithm remains as described in Appendix B.

In mode I, the effects of crack tip plasticity remains: KI and the crack length are a bit overestimated, as shown

in table 3.9. However, the SIFs, crack tip position and contact stresses are correctly estimated in the case of an

elastic behavior with compression phase, while the crack length is underestimated and the SIFs overestimated when

using William’s series expansion alone.

In mode II, the crack length and SIFs are still overestimated when plasticity is modeled, and the algorithm

converged towards absurd values for ∆KF EM
II = 30 MPa

√
m, as shown in table 3.10. In elastic cases with contact
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Table 3.9: Results obtained using William’s series expansion + additional terms with PS algorithm in mode I. e
stands for elastic behavior and e− p for elastic-plastic behavior.

Material
behavior

∆KF EM
I

(MPa
√
m)

Compressive stress
(MPa)

Error on crack tip
location (µm)

estimated
∆KI

(MPa
√
m)

Estimated
contact

stress (Mpa)

e 10 0 0 10.1 -1

e-p 10 0 7 10.1 -1

e-p 20 0 37 20.0 -7

e-p 30 0 78 30.8 -9

e 10 -50 0 10.0 -51

e 10 -100 0 10.0 -101

e 10 -150 0 10.0 -151

e-p 10 -100 26 10.2 -98

Table 3.10: Results obtained using William’s expansion + additional terms with PS algorithm in mode II. e stands
for elastic behavior, e− p for elastic-plastic behavior and e− f for elastic with friction.

Material
behavior

∆KF EM
II

(MPa
√
m)

Compressive stress
(MPa)

Error on crack tip
location (µm)

estimated
∆KII

(MPa
√
m)

Estimated
frictionnal

stress (Mpa)

e 10 0 0 10.0 -2

e-p 10 0 48 10.2 -1

e-p 20 0 222 21.1 -9

e-p 30 0 2867 -3.4 -664

e+f 6 -50 0 5.9 -51

e+f 1.9 -100 0 1.9 -100

e-p+f 1.9 -100 0 1.9 -100

& friction, the SIFs, crack tip position and frictional stresses are correctly estimated. Due to the strong influence

of mode II crack tip plasticity, this method is not suitable for this type of loading.

3.2.5 Relative displacement jump

The second approach supposes that the crack tip position is known (for example thanks to the aforementioned

elastic unloading approach). Here, only the amplitude of the relative displacement jump profile between two rows

of virtual extensometers located above and below the crack (see figure 3.21) is used. The distance between the

crack face and the extensometers lines is chosen as δ = 0.2 mm (slightly larger than a DIC subset which is 0.15

mm) in order to avoid DIC subsets overlapping with the crack, which makes the correlation wrong.

The opening or sliding displacement jump profile behind the crack tip can fitted with:

[[Ui]] = ai

√
r + bi , i = x, y (3.20)
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Figure 3.21: Lines above and below the crack between which the displacement jump is measured.

Where the offset bi accounts for the fact that the displacements are not measured exactly along the crack faces,

but at a distance δ. The effective SIFs can be deduced as:

∆KI = ay
E

√
2π

8
, ∆KII = ax

E
√

2π
8

(3.21)

In order to capture the influence of crack tip plasticity, it is possible to use a displacement jump profile obtained

by elastic-plastic frictionless FEM computations and to apply an inverse method, as done in [Bertolino and Doquet,

2009, Doquet et al., 2010a, Bonniot et al., 2018]. Such computations are run at various loading ranges (each one

corresponding to a certain ∆K), and by finding the loading range for which the computed displacement profile fits

best the measured one, one can estimate ∆Keffective:

[[Uy]] = [[UP lastic
y ]](∆KI) (3.22)

[[Ux]] = [[UP lastic
x ]](∆KII) (3.23)

This method however supposes that friction does not change the shape of the displacement jump profile, but only

reduces its intensity, which may not be correct. The previous displacement jump can be improved by a constant

term, which will account for the friction effects. If the crack is locked, the cracked plate will behave as a crack-free

plate, and the displacement jump between the two lines will be constant:

[[Uy]] = [[UP lastic
y ]](∆KI) +BI (3.24)

[[Ux]] = [[UP lastic
x ]](∆KII) +BII (3.25)

By finding the combination of [[UP lastic]] and B which gives the best fit, one is able to estimate ∆Keffective in

the same way as before.

The results of those three approaches are given in tables 3.11 & 3.12 .

When using eq. 3.20, the effective SIFs are alway underestimated, which is due to the fact that the lines between

which the relative displacement is measured are too far away from the crack to use such form, as explained below.

The inverse method taking into account crack tip plasticity (eq. 3.22-3.23) gives good estimations in the elastic

plastic cases, but overestimates the SIFs when contact stresses are added. Eq. 3.24-3.25 taking into account both

crack tip plasticity and contact stresses give good estimations in every cases.
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Table 3.11: Results obtained using the displacement jump approaches in mode I. e stands for elastic behavior and
e− p for elastic-plastic behavior.

Material
behavior

∆KF EM

(MPa
√
m)

Compressive
stress

Estimated ∆KI (MPa
√
m)

Analytical
displacement

jump

Elastic plastic Elastic plastic
+ offset

e 10.0 0 7.5 / /

e-p 30.0 0 20.9 30.0 30.0

e 10.0 -150 7.5 / /

e-p 10.0 -100 7.2 10.8 10.2

Table 3.12: Results obtained using the displacement jump approaches in mode II. e stands for elastic behavior,
e− p for elastic-plastic behavior, e− f for elastic with friction and e− p+ f for elastic-plastic with friction.

Material
behavior

∆KF EM

(MPa
√
m)

Compressive
stress

Estimated ∆KII (MPa
√
m)

Analytical
displacement

jump

Elastic plastic Elastic plastic
+ offset

e 10.0 0 6.3 / /

e-p 30.0 0 15.1 30.0 30.0

e+f 6.0 -50 3.8 / /

e-p+f 1.9 -100 1.2 3.5 1.9

The fact that the offset in eq. 3.24-3.25 improves the results in cases with friction/contact is due to the

displacement induced by the stresses transmitted through the crack faces. The higher the distance between the two

rows of extensometers (2δ), the higher these displacements, and the more necessary this offset is, as illustrated by

table 3.13. Note that this offset also depends on the level of compression (or friction).

Table 3.13: Influence of the distance δ on the estimated SIF in mode I with 100 MPa compression and elastic-plastic
behavior using no offset (eq. 3.22-3.23).

δ (mm) 0 0.05 0.1 0.2 0.5

estimated 10 10.4 10.6 10.8 11.7

∆KI (MPa
√
m)

Those approaches using the relative crack face displacement suppose that the crack tip position is known. For a

0.1 mm error on the crack tip position (either vertical or horizontal), the error on the estimated SIFs stays below 5%.

The approach giving the best results in pure mode I and mode II cases (eq. 3.24-3.25) was applied to non-

proportional loading cases. In the case of a sequential loading path (table 3.14), the SIFs are evaluated accurately

for ∆KI&II = 20 MPa
√
m, and are still acceptable at ∆KI&II = 30 MPa

√
m (less than 10% error), even though

the FEM-computed displacement jump profiles were obtained for pure mode I and pure mode II.

In the case of a 90◦ out-of-phase loading path with RI = 0 and RII = −1 (table 3.15), the results are acceptable
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at ∆KI&II = 20
√
m (less than 10% error), but not at ∆KI&II = 30 MPa

√
m. In this case, the values of ∆KI&II

are overestimated, and a high ∆KII = 15.6 MPa
√
m is measured (instead of ∆KII = 0) by correlation of the

images taken at maximum/minimum tensile stress. This is due to the fact that the FEM-computed displacement

jump are obtained for pure mode I or pure mode II, instead of the real loading path, for which the couplings between

tensile and shear plastic flows at the crack tip [Doquet and Pommier, 2004] are not negligible at 0.2 mm from the

crack tip for high loadings. For a material with kinematic hardening, a mode I loading applied before a mode II

loading will translate the elastic domain along the tensile stress axis in the tensile-shear stress plane, so that the

edge of the elastic domain will be reached faster and the plastic flow direction will be changed during the mode

II loading, as illustrated on figure 3.22. In the same way, the presence of the mode II load changes the crack tip

plasticity during the mode I part of the cycle.

Table 3.14: Results with eq. 3.24-3.25 for sequential loadings with RI = 0 and RII = −1.

∆KF EM
I&II part of Estimated Estimated

(MPa
√
m) the cycle ∆KI (MPa

√
m) ∆KII (MPa

√
m)

20
mode I 20 0.5

mode II 0.1 20.3

30
mode I 33 1.5

mode II 1.2 30.4

Table 3.15: Results with eq. 3.24-3.25 for 90◦ out-of-phase loadings with RI = 0 and RII = −1.

∆KF EM
I&II correlated Estimated Estimated

(MPa
√
m) images ∆KI MPa

√
m ∆KII MPa

√
m

20

tensile min/max 20 2.2

shear min/max 0.4 20.1

30

tensile min/max 32.7 15.6

shear min/max 6.1 30.1

Figure 3.22: Coupling between shear and tensile plastic flows at the crack tip during a sequential experiment. Image
from [Doquet and Pommier, 2004].
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3.2.6 DIC-FEM coupling

The previous approach provides an estimate of the effective SIFs, but no information on the friction and contact

forces along the crack faces.

An approach, coupling FEM computations and DIC is proposed in order to estimate both the effective SIFs

and the distribution of the contact and friction stresses along the crack faces. The crack tip and path have to be

determined beforehand using another approach.

Nawfal Bouhout, a student from Ecole des Ponts, helped with the development of this method during a 6 month

internship.

Figure 3.23: Principle of the DIC-FEM coupling.

The displacement is extracted on a closed contour (containing the crack) on the DIC field, as shown in figure

3.23, and linearly interpolated (without any noise filtering) and imposed on the nodes along the contour of the FEM

model, similarly to what is done in [Hosdez et al., 2019] or [Lin et al., 2019] (no interpolation in the later). The

displacement field obtained by solving the FEM problem is then compared with the DIC field. If contact stresses

are present between the crack faces in the experiment, and if the FEM model does not consider the possibility of

friction and contact between the crack faces, those two displacement will be equal close to the contour (where the

displacement is imposed), but will be different close to the crack, as shown by figure 3.24 a.

Figure 3.24: Quadratic error on total displacement without (a) and with (b) friction model with elastic modeling.
DIC displacement field obtained experimentally for mode II loading with compression.

Contact and friction stresses along the crack faces are added in the FEM model, and their values are optimized

in order to reduce the error between the DIC field and the FEM computed field, giving the results shown on figure
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3.24 b. This idea is quite similar to the approach that Réthoré et al. [Réthoré, 2010] [Réthoré et al., 2013] used in

order to obtain several material parameters by performing a single tensile test with DIC on a plate with a hole, or

to the approach used by Blaysat et al. [Blaysat et al., 2015] to identify the cohesive traction profile for interface

debonding.

Those contact/friction forces are modeled as piecewise affine. The values on each regularly-spaced points (spacing

of 1 mm) are optimized in order to minimize the quadratic error between the DIC field and the FEM field on an

area excluding points that are too close to the crack faces (where the DIC field is wrong), as in figure 3.23. The

problem can be written as:

{σl} = ArgMin

(
√

∫ ∫

(U
DIC

− U
F EM

(σl))2

)

(3.26)

Where σl is the contact and friction stresses profile along the crack faces. The material behavior can be elastic,

or elastic plastic. In the elastic case, the principle of superposition can be used, and the FEM field can be written

as:

U
F EM

(σl, BCDIC) = U
F EM

(σl = 0, BCDIC) +
∑

i

σl,i ∗ U
F EM

(σl,i = 1, σl,j 6=i = 0, BCDIC = 0) (3.27)

Where σl,i is the contact/friction stress at point i of the piecewise affine contact stresses profile, and BCDIC

denote the DIC-obtained Dirichlet boundary conditions. The solution of eq. 3.26 is then:

{σl} = [[B]T [B]]−1[B]T
(

U
DIC

− U
F EM

(σl = 0, BCDIC)
)

(3.28)

With:

[B] = [U
F EM

(σl,i = 1, σl,j 6=i = 0, BCDIC = 0)] (3.29)

This method has been applied on displacements fields obtained from elastic-plastic computations, and the results

are given in tables 3.16 & 3.17 column ’Elastic’. In mode I, this method gives an acceptable estimation of ∆Keffective
I

for every loading. In mode II, ∆Keffective
II is estimated accurately below 10 MPa

√
m and overestimated above

this amplitude. A few computed contact/friction stresses profiles are plotted on figure 3.25. These profiles are

well estimated in mode I & mode II below 10 MPa
√
m, but not above, due to the fact that the algorithm tries to

compensate the influence of crack tip plasticity by changing the contact stress profile.

Table 3.16: Results obtained using the DIC-FEM approaches in mode I. All displacement fields are obtained from
elastic plastic computations.

∆KF EM
I

(MPa
√
m)

Compressive stress
(MPa)

Estimated ∆KI (MPa
√
m)

Elastic Plastic Dirichlet Plastic Neumann

10 0 10.1 9.9 9.8

10 100 10.5 10.3 10.3

30 0 33.2 31.4 26.6

In order to avoid this artefact, the same problem (eq 3.26) is iteratively solved with an elastic-plastic behaviour.

Since the superposition principle cannot be used any more, the problem is solved using a Levenberg Marquardt’s

algorithm. The damping parameter is increased by a factor 5 / decreased by a factor 2 if the current step gives a
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Table 3.17: Results obtained using DIC-FEM approaches in mode II. All displacement fields are obtained from
elastic plastic computations.

∆KF EM
II

(MPa
√
m)

Compressive stress
(MPa)

Estimated ∆KII (MPa
√
m)

Elastic Plastic Dirichlet Plastic Neumann

10 0 10.8 10.2 9.8

20 0 27.1 21.9 17.7

30 0 61.6 39.3 23.2

1.9 100 1.9 1.8 1.8

lower / higher residual than the previous.

Once the contact/friction stresses along the crack faces σl are known, the effective SIFs can be estimated with

an elastic computation, using the relative opening and sliding displacement profiles (SIF procedure in CAST3M

FE code). In this elastic computation, the boundary conditions on the outside contour can be either Dirichlet

(extracted from DIC) or Neumann (stresses extracted from the elastic-plastic computations). Results are given in

tables 3.16 & 3.17, columns ’Plastic Dirichlet’ and ’Plastic Neumann’.

In mode I, ∆Keffective
I is estimated accurately. In mode II, ∆Keffective

II is estimated accurately below 20

MPa
√
m. Above this amplitude, it is overestimated when Dirichlet BC are used for the SIFs computation, while

it is underestimated when Neumann’s BC are used. This error is due to the fact that the crack-tip plastic zone is

so elongated ahead of the crack tip that it extend beyond the model’s contour.

Figure 3.25: Estimated profile of the contact/friction stresses along the crack faces, for the hole-free model shown
on figure 3.20. (a): Mode I ∆KF EM

I = 10 MPa
√
m, 100 MPa compression. (b) Mode I, ∆KF EM

I = 30 MPa
√
m,

no compression. (c): Mode II ∆KF EM
II = 1.9 MPa

√
m, 100 MPa friction. (d): Mode II ∆KF EM

II = 20 MPa
√
m,

no friction.
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Taking into account the elastic-plastic behaviour improves the contact/friction stress profile estimation compared

to the elastic resolution, as seen on figure 3.25. Even for ∆Keffective
II = 20 MPa

√
m, the error on the estimated

frictional stress is below 7 MPa.

This contact/friction stress profile is quite sensitive to noise. Adding a white Gaussian noise with a Signal to

Noise Ratio of 100 (SNR = ΣU2
signal/ΣU

2
noise) leads to a standard deviation of 16.8 MPa, with a maximum error of

37 MPa, as shown in table 3.18 for a discretization of contact stresses σl every 1 mm. A window average, similar to

that induced by DIC (150 µm subset size) has no effects on the computed stress profile (less than 1 MPa difference

with raw FEM field). This limited effect might be due to the large exclusion area (200 µm), outside of which the

displacement gradient and thus the effect of the window average is lower. A finer discretization of contact stresses

(every 0.5 mm, and thus an increase of the number of variables) increased the errors on the computed stresses. A

compromise has thus to be found between resolution and noise sensitivity.

Table 3.18: Influence of noise (SNR = signal to noise ratio), window average of 150 µm (WA) and discretization of
the piecewise affine function σl on the results of the 4 computations proposed in figure 3.25.

Noise / Window
average

Discretization
of σl (mm)

Max error on σl

(MPa)
Standard

deviation on σl

(MPa)

Max error on
∆Keff

(MPa
√
m)

Standard
deviation on

∆Keff

(MPa
√
m)

None 1 6.7 4.3 1.9 1.2

SNR 100 1 36.8 16.8 3.1 1.6

WA 1 7.3 4.5 1.9 1.2

None 0.5 14.9 5.9 2.0 1.2

SNR 100 0.5 54.9 22.7 3.6 1.9

WA 0.5 14.7 6.0 2.0 1.2

In the case of sequential and 90◦ out-of-phase loadings, the same type of problem as with the previous approach

occurs: when the couplings between shear and tensile plastic flows at the crack tip becomes non negligible, some

mode I is measured between images where only mode II should be present (and vice versa).
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3.2.7 Application on experimental displacement fields

The previous approaches were applied on experimental data in order to estimate their robustness. A transversally

precracked R260 rail steel tube was submitted to mode I cycles with a fixed maximum load of 10 kN (133 MPa)

and various minimum loads, ranging from −5 kN to 8 kN . Images were captured periodically during those cycles.

Fully reversed mode II cycles with various amplitudes and various superimposed static tensile or compressive

axial load were also run, with periodic image capture. Between two consecutive shear load amplitudes, the crack

was opened by applying a 10 kN tensile load in order to eliminate any residual friction/asperities interlocking.

The crack tip was located using the projective approach with William’s expansion between the images at 0 and

10 kN . The effective SIFs were then estimated using a fixed crack tip with a projection over William’s expansion,

the fit of the displacement jump profile with eq 3.24-3.25 and the DIC-FEM approach with elastic-plastic behavior

and SIFs computed using Dirichlet boundary conditions.

∆Keffective
I was estimated using those three approaches on DIC fields obtained between an image at maximum

tensile force (10 kN) and images at lower forces. The results are given on figure 3.26. When the minimum tensile

stress is larger than 27 MPa (R > 0.2), the three approaches gives the same results. Under this value, the crack

closes and both the DIC-FEM and Displacement jump profile approaches gives the same ∆Keffective
I , which remains

constant as the crack goes into compression. As predicted from the tests on FEM computed fields, the ∆Keffective
I

estimated using the projection over William’s expansion increases when the crack is closed and under compression,

and is thus overestimated. The same type of phenomena can be seen in figure 6.d. of [Vormwald et al., 2018] on a

projective approach and a COD approach.

Figure 3.26: Estimated ∆KI in pure mode I, at fixed σmax (133 MPa) for various σmin.

∆Keffective
II was estimated using those three approaches on DIC fields obtained between images captured at

maximum/minimum shear loads, for various loading ranges with a 66 MPa static compression. The results are

given in figure 3.27. The DIC-FEM and displacement jump profile approaches give the same ∆Keffective
II , while

the projection over William’s expansion gives a higher estimation of ∆Keffective
II : as expected from the tests on

FEM computed fields, this approach overestimates ∆Keffective
II in the presence of high friction between the crack

faces. ∆Keffective
II was below 15 MPa

√
m and the influence of crack tip plasticity on this last approach was thus

negligible.

∆Keffective
II was estimated using those three approaches on DIC fields obtained between images captured at

maximum/minimum shear loads, at various crack lengths with a 53 MPa static tension so that the crack was

opened and frictionless. The results are given in figure 3.28. When the crack is short, the three approaches give the
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Figure 3.27: Estimated ∆KII for various shear stress ranges and −5 kN (−66 MPa) static compression.

same ∆Keffective
II (≈ 15 MPa

√
m). As the crack propagates, the SIFs increases and the projection over William’s

expansion gives a higher ∆Keffective
II than the other two approaches (which takes into account crack-tip plasticity),

as predicted from the tests on FEM computed fields.

Figure 3.28: Estimated ∆KII for various crack length at fixed ∆τ = 115 MPa with a 4 kN (53 MPa) static
tension.

The DIC-FEM coupling method with elastic-plastic computations was used to obtain the friction and contact

stresses profiles along the crack faces (see figures 3.29 a&b). As expected, for mode II loading (figure 3.29.a), a static

compression enhances crack face friction, which rises with the distance to the crack tip. The stress concentration

due to the central hole does not seem to explain this tendency, because it drops much faster than the computed

friction stress. Note that friction is still present without any far-field compression, and even when a slight opening

stress is present (KI = 3.3 MPa
√
m), which is either due to crack face roughness or an artifact due to noise.

For mode I loading at negative R ratio (figure 3.29.b), the computed contact stresses are higher than the minimal

far-field stress, and even for R = 0, contact stresses are still present, which is either due to closure effects or an

artifact due to noise. The second interpretation seems more plausible, since slightly positive "contact stresses",

which have no physical meaning, are obtained for a 27 MPa minimal tensile load (R = 0.2).
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Figure 3.29: Estimated friction stress profile at fixed ∆τ = 115 MPa with various static tensile or compressive
loads (a). Estimated contact stress profile in mode I at fixed σmax (133 MPa) for various σmin (b)
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3.3 Conclusions on procedures common to all fatigue crack growth

tests

The widely used method of projecting the DIC field over William’s expansion, coupled with a grid search and a

Pattern Search algorithm allows an accurate estimation of the crack tip position and effective SIFs when crack

tip plasticity is limited and when no contact stresses are present along the crack faces. For high loading ranges,

especially in mode II, the crack length is overestimated due to the elongated plastic zone ahead of the crack

tip, while high contact stresses between the crack faces lead to an underestimation of the crack length. Both

effects leads to an overestimation of the effective SIFs, even if the datapoints located in the plastic zone are

excluded. This method can nonetheless still be used to locate the crack tip in mode I by applying it to images

captured at maximum load and after a small elastic unloading.

An inverse analysis of the measured relative displacement jump profile compared to the profile obtained from

an elastic-plastic computation plus an offset gives a better estimation of the effective SIFs when non linearities

are present. It captures the effect of crack-tip plasticity as well as the effect of contact stresses between the

crack faces for pure mode I, pure mode II and sequential loadings, which William’s expansion cannot do. For

90◦ out-of-phase mixed-mode loading, it can be used until the coupling between shear and tensile plastic flows

at the crack tip becomes non negligible.

An approach coupling DIC and FEM computations is proposed to evaluate the effective SIFs and the contact

stresses along the crack faces. Although giving accurate results in terms of effective SIFs on FE-generated

displacement fields, and providing estimates of the profile of contact and friction stresses along the crack faces,

this method is much more sensitive to noise and time consuming (≈ 5 hours) than the aforementioned inverse

approach (a few seconds).

Overall, the second approach provides the best compromise between accuracy and efficiency, at least until the

FEM-DIC method has been improved to reduce its noise sensitivity.

From those results, the following methods will be used for the different experiments:

• Mode I with compression: William’s series expansion + additional terms to locate the crack and to

estimate the effective SIFs.

• Mixed mode II & III: direct localization of the crack tip on the images (since crack tip plasticity or

friction is always present, it is not possible to get any images in LEFM conditions to use with William’s

series expansion), and SIFs estimation using the relative displacement jump from elastic-plastic FEM

computations.

• Non-proportional mixed-mode I+II: localization of the crack tip using William’s series expansion between

well chosen images, and SIFs estimation using the relative displacement jump from elastic plastic FEM

computations.
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Chapter 4

Mode I experiments at various load

ratios
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4.1 Introduction

Squat-type crack undergo non-proportional mixed-mode loading, however, we can wonder if the mode I con-

tribution alone can explain its growth. Even if it is not the case, mode I data would be useful to compare with

non-proportional mixed-mode data and assess eventual synergistic effects.

4.1.1 Bibliography

Various effects influencing mode I fatigue crack growth were already discussed in chapter 2, and this part will

focus on mode I fatigue crack growth experiments performed on rail steel. Such experiments were performed by

many authors, such as [Gray et al., 1983, Kim and C.S., 2002, Maya-Johnson et al., 2015, Christodoulou et al.,

2016], and their experimental conditions are reported in table 4.1.

Table 4.1: Some mode I FCG experiments on rail steels.

Article Material Rp0,2

(MPa)
Rm

(MPa)
CGR range
(m/cycle)

R Comments

[Gray et al.,
1983]

AISI 1080 411 -
643

842 -
1024

1.E−10 - few 1.E−6 0.1 - 0.7 Various heat treat-
ment

[Kim and C.S.,
2002]

/ 481 887 1.E−8 - 1.E−6 0.1 - 0.5

[Tabatabaei,
2014]

R260 597 940 1.E−8 - 1.E−7 0.1 Various extraction
areas

[Tabatabaei,
2014]

R350HT 740 1278 1.E−8 - 1.E−7 0.1 Various extraction
areas

[Maya-Johnson
et al., 2015]

R260 731 951 1.E−10 - 1.E−6 0.1 Various extraction
directions

[Maya-Johnson
et al., 2015]

R370HT 767 1373 1.E−10 - 1.E−6 0.1 Various extraction
directions

[Christodoulou
et al., 2016]

900A 533 924 1.E−8 - few 1.E−7 0.1 - 0.5

British steel R260 480 880 few 1.E−8 0.5

In all these studies, samples were extracted from a new rail, and it appears that the extraction area (Head, Web,

Foot) has an influence on the fatigue crack growth kinetics [Tabatabaei, 2014], as well as the extraction direction

for R260 steel [Maya-Johnson et al., 2015], while this effect was not seen for R370HT . Since this study focuses

on rolling contact fatigue cracks, which develop in the head, it will only focus on this area, and the effects of the

extraction direction will be neglected. Heat treatment also affects FCGR, as it changes the grain sizes and thus

RICC: the larger the grains, the slower the growth [Gray et al., 1983]. Again, these effects will not be studied as

this work focuses on R260.

Within these studies, two were performed on R260 steel [Tabatabaei, 2014, Maya-Johnson et al., 2015]. However,

their tensile properties, reported in table 4.1, are quite different from those of the R260 steel of the present study

(Rp0,2 = 480 MPa, σUT S = 880 MPa), and different fatigue crack growth properties can thus be expected.

The only data available on a similar material are those from British steel, which were obtained by following the

NF − 13674 − 1 norm, in a very small range of SIFs, and at R = 0.5.

All those studies were performed at a positive load ratio, which might not be very representative of the mode I

loading experienced by RCF cracks in rails.
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4.1.2 Mode I loading on Squat-type cracks

The mode I part of the loading is due to:

• The passage of the wheel (the secondary bending tends to open the crack, while the primary bending and

hertz contact stress field tend to closes it).

• The thermal stresses (uniform along the section).

• The residual stresses inherited from the manufacturing process, which follow a "C" shaped evolution: the

crack is under decreasing residual tension as it grows downwards.

• Entrapped and pressurized water (which is neglected here).

The maximum and minimum values of KI were computed at the deepest point of a semi-elliptical squat crack

inclined by 70◦ relative to the rail axis, loaded with a TGV train at 320 km/h in a straight line, at various operating

temperatures. Without thermal stresses nor residual stresses, ∆KI = Kmax
I − max(Kmin

I ; 0) < 2 MPa
√
m. The

crack is almost always closed and under compression, as showed on figure 4.1.

Figure 4.1: Evolution of Kmax
I and Kmin

I at the deepest point of a Squat-type crack, as a function of the crack
depth, without residual nor thermal stresses.
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When residual stresses are added, using the profile specified in section 1.3.3, Kmax
I and Kmin

I at the deepest

point are shifted upwards, as showed on figure 4.2. In this case, ∆KI reaches 5.9 MPa
√
m for a 10 mm deep crack.

Since those residual stresses have a "C" shape and thus decrease when going down in the rail head, the upward shift

in KI decreases as the crack grows downwards, until it goes to zero (the depth where the residual stresses goes

through zero is around ≈ 25 mm). As the crack is elliptical, all its front is not at the same depth, and points which

are on the side will not experience the same residual stresses as those on the deepest point. As a consequence, a

gradient in ∆KI and in R ratio is present along the crack front (see figure 4.3 for a 10 mm deep crack).

Figure 4.2: Evolution of Kmax
I and Kmin

I at the deepest point of a Squat-type crack, as a function of the crack
depth, with residual stresses and no thermal stresses.

Figure 4.3: Evolution of Kmax
I and Kmin

I along the front of a 10 mm deep Squat-type crack, with residual stresses
and no thermal stresses.
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Contrary to the "C" shaped residual stresses, thermal stresses induce a uniform axial stress in the rail section,

and thus a shift in KI that will increase with the crack size (≈∝
√
depth). Kmax

I and Kmin
I at the deepest point

are reported on figure 4.4 for various operating temperatures. For a 20 ◦C reference temperature, a temperature

of 5 ◦C induces 30 MPa tension, while a temperature of −5 ◦C will induces 50 MPa tension (see section 1.3.2),

thus shifting Kmax
I and Kmin

I upwards. For a crack depth from 5 to 25 mm and temperatures from 20 ◦C to

−5 ◦C, ∆KI varies from 1 to almost 13 MPa
√
m and R from -24 to -0.5 at the deepest point. By making the

approximation K = σ
√
π ∗ a, compression at the deepest point can reach ≈ 200 MPa for a 5 mm deep crack, and

is under ≈ 100 MPa for cracks deeper than 10 mm.

Figure 4.4: Evolution of Kmax
I and Kmin

I at the deepest point of a Squat-type crack, as a function of the crack
depth, with residual stresses and for various operating temperature (20 ◦C corresponding to the reference state)

This compression can have several effects, as discussed in chapter 2: it can lead to the formation of an oxide

layer on the crack faces, leading to closure effects and reducing the crack growth rate, or accelerate the crack growth

due to a reduction of RICC and a contribution of the part of the compressive stage during which the crack remains

open.

Within the aforementioned studies on rail steel, no data for negative load ratios were found. Moreover, the

existing data were obtained on steels with different properties (although their denomination is the same), or in very

restricted SIFs ranges, which justifies to perform mode I experiments again.
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4.2 Experimental and numerical procedures

4.2.1 Experimental setup

SENT specimens, with a 2.5 mm deep notch at mid height to initiate a crack, were extracted from the head of

a new rail, as detailed in figure 4.5. X-ray diffraction measurements were performed on the side of a broken sample

at the SNCF railway testing agency (Agence d’essais ferroviaires) on a 2 mm diameter area, over a depth of 5 ∼ 10

µm. The studied area was electro-chemically etched after each measurement, in order to evaluate the evolution

of residual stresses with depth. Those measurements showed axial residual stresses of −420 ± 25 MPa on the

surface, decreasing to −117 ± 25 MPa at a 50 µm depth and −20 ± 15 MPa at a 200 µm depth. Those residual

stresses are certainly due to the milling process, and were not removed by annealing before the experiments as the

thickness of the affected area (few hundred of µm) was small relative to the specimens thickness (7 mm). They can

be responsible for some crack tunneling.

Figure 4.5: SENT specimen for mode I fatigue crack growth experiments.

The experimental setup is described on figure 4.6. The specimen is mounted in a MTS ±100 kN uniaxial

hydraulic testing machine, and cycled at 10 to 20 Hz. An extensometer is used to perform macroscopic closure

measurement. The crack length is monitored using the DC potential-drop method, as well as direct observations on

one of the specimens side surfaces with a QUESTAR traveling microscope (the specimens are polished up to 1 µm

diamond paste in order to allow precise crack length measurements on the surface). The other side is covered with

a speckle painting, consisting of a white layer, covered with a black spray-paint-induced speckle (15 to 320 µm).

This speckle painting is used to perform DIC measurements, from which the SIFs are obtained using the approach

detailed in 4.2.3.

The crack is initiated from the notch after 100 000 to 200 000 cycles at ∆σ = 133 MPa and R = 0, and

propagated over 1 mm at this loading (∆KI reaches 10 MPa
√
m). It is then propagated at a decreasing load until

it stops propagating (less than 10 µm propagation after 100 000 cycles, meaning 10−10 m/cycle)). History effects

due to the plastic zone of the previous larger loading step are avoided by allowing the crack to grow well beyond

84



Figure 4.6: Experimental setup for mode I fatigue crack growth experiments.

that zone at each step.

Once the non-propagation threshold is obtained, the crack is propagated again at increasing load, up to σmax <

140 MPa and ∆σ < 140 MPa. For each loading range, three loading blocks are applied, and the crack growth rate

at this range is obtained by fitting a straight line on the three data points (thus reducing noise).

4.2.2 Nominal SIFs evaluation

The nominal SIFs for SENT specimens are given by Tada [Tada et al., 1973]:

KI = σ
√
π ∗ a ∗ F (a/b) = σ

√
πa ∗

√

2b
πa

tan
πa

2b
∗ 0.752 + 2.02(a/b) + 0.37(1 − sin πa

2b )3

cos πa
2b

(4.1)

With a the crack length, and b the specimen width (30 mm in our case). This formula is valid for any crack

length if the applied stress is uniform (no bending moment).

Another formula is proposed by Gross [Gross et al., 1964] (which is used in AFNOR A03 − 404):

KI = σ
√
π ∗ a ∗ F (a/b) = σ

√
πa ∗ (1.122 − 0.231(a/b) + 10.55(a/b)2 − 21.71(a/b)3 + 30.382(a/b)4) (4.2)

Which is valid for a/b < 0.6 (0.5% precision is this case).

However, for high a/b, the sample will tend to bend due to the asymmetry induced by the crack (see figure

4.7.a). Since the clamping pieces have a non-negligible stiffness, this will induce a bending moment, and thus a

non-uniform axial stress, and the aforementioned formula will not be valid anymore.
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Figure 4.7: Influence of the setup bending stiffness (a). FEM computation with identical tensile force, but with a
uniform tensile stress (b), and with a uniform vertical displacement (c).

Indeed, as shown on figure 4.7.b & c, two FEM computations (plane strain) performed with the same models

and applied force, but with a uniform stress (no setup bending stiffness) or a uniform displacement (no rotation

allowed, infinite bending stiffness) yield very different SIFs: KI = 134 MPa
√
m & KI = 33.8 MPa

√
m respectively

(128.9 MPa
√
m using Tada’s formulae).

During the experiments, KI up to 174 MPa
√
m were obtained using Tada’s formulae (for a = 24 mm), while

KIC is supposed to be ≈ confidential data MPa
√
m, meaning that this bending problem is likely present in our

case. One way to solve this problem could be to model the whole setup (sample + clamping device) using FEM, and

build an abacus specific to these experiments. Such FEM model would be complex to create due to the complicated

specimen and setup geometry, and might not be accurate due to the presence of screwed parts which might move

during the loading.

In order to build this abacus specific to our experiments, the SIFs obtained from DIC using the projection over

William’s expansion between well chosen images were used (see 3.2.3). Images were recorded at Fmax and α ∗Fmax

during two experiments, and then correlated and analyzed in order to get Knom
I /F as:

Knom
I /F =

∆KDIC
I (F, α ∗ F )
(1 − α) ∗ F (4.3)

α was set to 0.5 in order to avoid closure effects and minimize crack tip plasticity (so as to remain within the

LEFM framework). A higher value was not chosen, in order to have sufficiently large displacements between the
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two images so that the result is not too sensitive to the DIC noise.

The obtained evolution of Knom
I (a) for F = 1 kN is plotted on figure 4.8, along with KI obtained from Tada’s

formula and from FEM computations as described in figure 4.7 b & c.

Figure 4.8: Influence of the setup bending stiffness (a). FEM computation with identical tensile force, but with a
uniform tensile stress (b), and with a uniform vertical displacement (c).

Tada’s formula and the FEM computation with uniform stress are almost superimposed, and overestimate Knom
I

for cracks longer than ≈ 10 mm (by a factor of almost 2 for a = 20 mm). Conversely, the FEM computation with

uniform displacement underestimates Knom
I , even for a crack length of 5 mm (factor of 0.8). This is consistent with

the fact that the setup is neither infinitely rigid in rotation, nor infinitely soft, but in between.

For the rest of the study, Knom
I will be estimated as:

Knom
I = F ∗ Polynomial(a) (4.4)

Using the order 6 polynomial determined on figure 4.8 from DIC on two experiments. The length a corresponds

to the length measured on the side surface with the QUESTAR optical microscope.

4.2.3 Effective SIFs estimation

∆Keff
I was estimated on the specimen side covered by the speckle painting using the relative crack face opening

displacement on two 2 mm-long lines, spaced by ±250 µm above and below the crack tip:

[Uy] = ∆Keff
I ∗

√
r ∗ 8

E ∗
√

2π
+ ρI (4.5)

The crack tip position was optimized to get the best fit.

An attempt was made to use the projection over William’s expansion + additional terms 3.2.4, which was

unsuccessful due to some aberrant values, and was thus abandoned.

87



For the cases with high load ratios (R = 0.6), the effective SIFs were also estimated using the projection over

William’s expansion (see appendix B). The results are given on figure 4.9. The error between the projection over

William’s expansion and the relative COD lines remains below 6 %. Those results are much better than those

obtained with the same method in 3.2.3 as the considered length is much longer here.

Figure 4.9: ∆Keff
I estimated using two methods during an experiment with R = 0.6.

Those effective SIFs estimated from DIC correspond to surface measurement (plane stress conditions), and might

be different from those in the bulk of the specimen (plane strain conditions, fewer plasticity induced closure than

under plane stress conditions), as shown by de Matos & Nowell [de Matos and Nowell, 2009]. An attempt was

made to estimate a global ∆Keff
I (including the bulk) by using the change of slope on the force-displacement loop

obtained from extensometer measurements. However, it did not prove to be reliable, as crack closure starting from

the notch was observed in one experiment (see figure 4.10). In this case, closure would be detected, while the crack

is not fully closed yet near the tip, thus leading to an underestimation of ∆Keff
I . Such a strong effect was not seen

in other experiments (even with identical load ratio), and could be due to an overload/underload: the data from

the corresponding experiment were discarded.

Figure 4.10: Crack closing from the notch: ǫyy obtained by DIC between images taken at F = −5 kN and 0 kN
during experiment N◦4.
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4.3 Results

Seven experiments were performed, at various load ratios: R = 0.6, 0.3, 0, -0.5, -1 and -2. For R = −2,

σcompression = −95 MPa, which is close to the maximum compression experienced by a squat type crack deeper

than 10 mm at 20 ◦C (the compression is lower for lower temperatures and longer cracks). Two experiments were

performed at R = 0, one experiment at R = −0.5 was discarded (see above), and one experiment was performed

using two different load ratios: R = 0 and R = −0.5.

4.3.1 Crack growth rates versus nominal SIFs

The evolution of da/dN is plotted on figures 4.11 & 4.12 as a function of:

∆Knom
I = Kmax

I − max(Kmin
I ; 0) (4.6)

∆Ktotal
I = Kmax

I −Kmin
I (4.7)

Figure 4.11: Crack growth rate versus ∆Knom
I for various load ratios.

The datapoints on the da/dN - ∆Knom
I curve are contained within an envelope of a factor 14.8 in growth rate,

around the curve da/dN = confidential data with R2 = 0.928, when removing the experiment at R = −0.5 for

which the crack was highly asymmetric (2 mm difference between the two side surfaces after precracking). The

effect of the load ratio is quite limited, and tends to fade away as ∆Knom
I increases: da/dN is ≈ 6.3 time lower

for R = −2 than for R = 0.3 at ∆Knom
I = confidential data MPa

√
m, but only ≈ 1.8 times slower at ∆Knom

I =

confidential data MPa
√
m.

Surprisingly, crack growth is slower at negative load ratio, while compression is usually acknowledged to acceler-

ate it. Such effect was also observed by Pokorný et al. [Pokorný et al., 2017] on railway axle steel, and was explained

by the formation of and oxide layer due to repeated contact under compression, leading to increased oxide-induced

crack closure: the higher the compression, the thicker the oxide layer and the higher the closure effects. The thresh-

old, which decreases as R increases, is ≈ confidential data MPa
√
m at R = −2, and ≈ confidential data MPa

√
m

at R = 0.
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The datapoints do not correlate with ∆Ktotal
I , as can be observed on figure 4.13: the negative part of KI should

not be added as a driving force. The datapoints at R = 0.3 and R = 0.6 are superimposed, suggesting that closure

disappears above R = 0.3.

Figure 4.12: Crack growth rate versus ∆Ktot
I for various load ratios.

Adding an empirical threshold K0 accounting for crack closure, in the form of:

∆Knom, 0
I = Kmax

I − max(Kmin
I ;K0) (4.8)

with K0 = confidential data MPa
√
m can improve the results. All the datapoints (except one point at a low crack

growth rate) are within an envelope of a factor 5.8 in growth rate, with R2 = 0.974, when removing the experiment

at R = −0.5 for which the crack was highly asymmetric (2 mm difference between the two side surfaces after

precracking), as shown on figure 4.13.

Figure 4.13: Crack growth rate versus ∆Knom, 0
I = Kmax

I − max(Kmin
I ;K0) for various load ratios.
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4.3.2 Fracture surface analysis

The fracture surfaces of samples tested at various R ratios, from R = 0.6 to R = −2, are reported on figures

4.14 to 4.22.

In each case, the final crack front is convex, which is typical of crack tunneling. Such tunneling is generally

attributed to plasticity-induced closure [Branco and Antunes, 2003], which is more pronounced near the free surfaces

than at mid-thickness. However, there is no clear evidence of an influence of the load ratio on the crack front shape:

the crack front is more curved at R = 0 than at R = −2 and R = 0.6. Some samples had a very long crack (25

mm), close to the specimen width (30 mm), which might have an influence the shape of the crack-tip plastic zone

and thus plasticity-induced closure. Tunneling might also partly be due to the compressive residual stresses that

exist near the surfaces.

The microstructure (pearlite lamellae) can clearly be seen on the fracture surface for all the experiments, as

illustrated on figure 4.15. Those lamellae are in random orientations (between different colonies), and should not

be confused with striations, which are quite difficult to observe due to the microstructure. Striations could however

be found in some areas, as shown on figure 4.16.

Whatever the load ratio, cleavage fracture areas (as on figure 4.14) can be found here and there, often close to

the final crack front (and thus for KI, max close to KIC). A positive load ratio does not seem to favor such cleavage:

there is more cleavage areas at R = −1 (fig. 4.20) than at R = 0.6 (fig. 4.14), but less at R = −2 (fig. 4.22). More

experiments would be necessary to draw a clear tendency. Such cleavage areas were also found in [Gray et al., 1983]

during mode I experiments on rail steel, and a formation mechanism was proposed by Park and Bernstein [Park

and Bernstein, 1979]. Those cleavage cracks propagate along {100} ferrite planes, and appear if a sufficiently large

number of neighbouring pearlite colonies share a common {100} plane, leading to a sufficiently large "weak" area.

Anyway, such cleavage areas are responsible for a local rise in crack roughness and thus of a potential, transient

deceleration due to roughness-induced crack closure.

While for R = 0.6 and R = 0.3, no evidence of contact between the crack faces can be found, some mated areas

appear at R = 0 (see figure 4.19) and below. This is consistent with the da/dN - ∆Knom
I curves, which suggest

an absence of closure for R ≥ 0.3. At negative load ratio (figures 4.20 & 4.22), the mated areas are wider (figure

4.19 at R = 0 versus figure 4.21 at R = −1) and more frequent. Oxidized areas, in brown, can clearly be seen on

the fracture surface (figure 4.22) of the sample tested at R = −2. The surface is more mated and oxidized near the

crack stating point, which witnessed more cycles.
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Figure 4.14: Fracture surface of a specimen tested at R = 0.6 captured with an optical microscope, and a cleavage
area captured with SEM.
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Figure 4.15: Fracture surface of a specimen tested at R = 0.6 captured with a SEM, at ∆KI = 6.2 MPa
√
m.
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Figure 4.16: Striations on a specimen tested at R = 0.6 captured with a SEM, at ∆KI = 20 MPa
√
m.

Figure 4.17: Fracture surface of a specimen tested at R = 0.3 captured with an optical microscope.
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Figure 4.18: Fracture surface of a specimen tested at R = 0 captured with an optical microscope.

Figure 4.19: Mated fracture surface on a specimen tested at R = 0, captured with a SEM.
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Figure 4.20: Fracture surface of a specimen tested at R = −1 captured with an optical microscope.

Figure 4.21: Highly mated and oxidized fracture surface on a specimen tested at R = −1, captured with a SEM.
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Figure 4.22: Fracture surface of a specimen tested at R = −2 captured with an optical microscope. Oxidation can
be seen from this scale.

4.3.3 Effective load ratio

The evolution of the UI ratio, defined as:

UI =
∆Keff

I

∆Knom
I

(4.9)

,where ∆Keff
I is issued from DIC, is plotted on figure 4.23. No data are available at low ∆K for R = 0, as

the first experiment at R = 0 was not equipped for DIC (which is used to compute UI), and the second one was

performed starting at a higher loading range (without seeking the non propagation threshold).

Figure 4.23: Evolution of UI with ∆Knom
I at various R ratios.

For R = 0.6 and R = 0.3, UI ≈ 1, whatever ∆Knom
I , meaning that there are no closure effects, as suggested

also by the da/dN - ∆Knom
I curves. The ≈ 0.1 lower UI for R = 0.6 than for R = 0.3, and the fact that UI is

sometimes larger than 1 for R = 0.3 can be due to more or less tunneling crack fronts (730 µm difference in crack

length between the mid-thickness and the side surfaces for R = 0.3, versus 260 µm at R = 0.6), this leading to

underestimated ∆Knom
I and overestimated UI at R = 0.3.

At R = 0, in the range of ∆KI for which data are available, UI is stable at ≈ 0.9.
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At R = −1, and R = −2, UI ≪ 1 at low ∆Knom
I , and this ratio tends to increase with ∆Knom

I , up to UI ≈ 0.85.

This means that the crack tip does not remain open during the compressive part of the cycle, in opposition to what

was reported by some authors (see chapter 2). However, the ratio σcompression/Rp0.2 is below 0.2 here, while it was

over 0.5 in most of the studies for which this occurred (or for which compression increased the growth rate).

This lower UI ratio is consistent with the fractographic observations, showing highly oxidized surfaces at R = −2

(fig. 4.22), which will lead to oxide-induced closure effects. UI is initially lower for R = −2 than R = −1, for which

oxidation is less present. As mentioned above, such closure effects were also observed by Suresh et al. [Suresh

et al., 1981], and the influence of compression was studied more thoroughly by Pokorný et al. on railway axle steel

[Pokorný et al., 2017, Vojtek et al., 2019]: the lower the load ratio and the crack growth rate, the thicker the oxide

layer and the higher the induced crack closure.

This evolution of UI is also consistent with da/dN - ∆Knom
I curves, which are initially shifted downwards for

R = −1 & R = −2 compared to R ≥ 0.3, but tends to get closer as ∆Knom
I increases.

The mean value of Kclosure
I = ∆Knom

I −∆Keff
I at the beginning of the experiments at R ≤ 0 is Kclosure, mean

I =

confidential data MPa
√
m, which is close to the empirical K0 = confidential data MPa

√
m. This K0 tends to

account for crack closure, and thus improves the da/dN predictions.

As shown on figure 4.22, the surface is more oxidized near the crack initiation site, where the crack growth rate

was smaller and which witnessed more contact cycles. This is consistent with the observations made by Suresh et

al. [Suresh et al., 1981]: the lower ∆KI and thus the lower the crack growth rate, the higher the number of cycles,

and the thicker the oxide layer. By contrast, when ∆KI and da/dN are high, the oxide layer does not have time

to grow sufficiently to have an influence on crack growth.

The oxidation on figure 4.22 seems more present in the center of the specimen, which can be explained by the

fact that oxide debris can leave the crack near side surfaces, as shown by Maierhofer et al. [Maierhofer et al.,

2018]. They observed that the evacuation of oxide debris led to a reduction of OICC. This effect of OICC reduction

decreased as the specimen thickness increased, and it could be removed by applying a patch over the side surfaces

in order to keep the oxide debris inside the crack.

These oxide debris will most likely remain trapped inside Squat-type cracks (thus leading to OICC), since those

cracks grow downward, have a dimension of several centimeters, a complex crack path, and a crack mouth located

at the very top of the rail.

4.3.4 Crack growth rates versus effective SIFs

The crack growth rate correlate well with ∆Keff
I , as shown on figure 4.24 (again, the experiment at R = −0.5

is excluded, as the crack front was asymmetric). All the datapoints are within an envelope of a factor 5.6 in growth

rate, around the mean curve da/dN = confidential data with R2 = 0.964. Considering the accuracy of the ∆Keff
I

estimated by DIC, along with the dispersion within the material (factor 2.2 scatter obtained by British Steel on 5

experiments at R = 0.5, fig. 4.25), this scatter is low and the measured ∆Keff
I can be considered as representative

of the crack driving force. No increase in growth rate is observed at high ∆KI and high R ratio, meaning that

having KI close to KIC does not accelerate the crack growth in a significant way.
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Figure 4.24: Crack growth rate versus ∆Keff
I for various load ratios.

The C and m coefficients of Paris equation and the corresponding envelope and R2 are given in table 4.2 for

various driving forces. Both ∆Keff
I and ∆Knom, 0

I (with K0 = confidential data MPa
√
m) give good results, and

the second one can be used straightforward in FEM computations.

Table 4.2: Coefficients of various driving forces fitted to the data.

Driving force C (m/cycle) m R2 Enveloppe

∆Knom
I confidential confidential 0.928 14.4

∆Keff
I confidential confidential 0.964 5.6

∆Knom, 0
I = Kmax

I − max(Kmin
I ;K0) confidential confidential 0.974 5.8
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4.3.5 Comparison with other studies and on-field measured values

The best fit of da/dN - ∆Knom
I obtained over all the data, as well as the datapoints for R = 0.6 alone are

reported on figure 4.25, along with data of other studies on R260. The best fit over all the data is quite close to the

results of [Tabatabaei, 2014], obtained at R = 0.1 for a R260 steel with different tensile properties. This fit over

all the data is below the data obtained by British Steel at R = 0.5 (which is due to closure effects), while the data

from the experiment at R = 0.6 are closer. The results presented in this study are consistent with those of British

Steel (who provided the rails used to manufacture the test samples).

Figure 4.25: Crack growth rate versus ∆Keff
I for various load ratios.

Using ∆Knom, 0
I , the predicted crack growth rates at the deepest point of a 10 mm deep semi-elliptical Squat-

type crack in a straight line, loaded with a TGV train would be confidential data m/cycle at a −5◦C temperature,

confidential data m/cycle at 5◦C and confidential data at a 20◦C. However, the mean crack growth rate obtained

from 324 on-field measured values is confidential data m/cycle (at the deepest point of a 10 mm deep Squat-type

crack in a TGV line). The mean monthly temperatures in France distributes as described in table 4.3, leading to

a predicted mean crack growth rate (over a year) of confidential data m/cycle. Considering the factor 5.8 scatter

band, the predicted mean crack growth rate ranges from confidential data m/cycle to confidential data m/cycle,

which is still below the confidential data m/cycle obtained from field data. If water trapping and pressurization is

not considered, mode I alone cannot explain the crack growth in rails, as the predicted growth rates are too slow

compared to the on-field measured values.

Table 4.3: Mean monthly temperatures in France (2014-2018) and predicted crack growth rate.

Jan. Fev. March April May June July Aug. Sept. Oct. Nov. Dec.

Mean
temp.
(◦C)

6.4 6.4 9.2 12.4 15.6 19.9 21.9 21.2 18.1 14.1 9.8 7

Predicted
da/dn
(m/cycle)

confidential data
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4.4 Modelling

The capacity of the local approach introduced in chapter 2 to predict the mode I crack growth rate was investi-

gated. Mode I coplanar crack growth is assumed to be controlled by tension-driven fatigue damage, and described

by the Smith-Watson-Topper (SWT ) damage function [Smith et al., 1970]:

βSW T = ∆ǫn ∗ σn,max (4.10)

In the previous chapter, a relation between the fatigue life and the SWT parameter was deduced from push-pull

experiments with various R ratios:

Nf = aSW T ∗ (βSW T − βSW T,threshold)mSW T (4.11)

The idea is to perform an elastic-plastic computation of the stress and strain evolutions ahead of a crack during

a mode I cycle and then to estimate the crack growth rate form the fatigue life Nf of a coplanar segment of length

∆L over which βSW T is averaged (in this study, ∆L was chosen as 40 µm):

da

dN
=

∆L
Nf

(4.12)

With aSW T , mSW T and βSW T,threshold obtained from LCF (see chapter 3.1) experiments.

The crack growth rate using this approach were estimated from 2D plane stress, or plane strain computations, as

well as 3D FEM computations, with a 10 mm long crack. Three load cycles were simulated (the material behavior

exhibits mostly kinematic hardening, so that the stress/strain loops stabilize in few cycles), and the stresses and

strains during the last cycle were extracted. Several ∆KI were simulated, at R = 0. The estimated crack growth

rates are plotted on figure 4.26, and compared to the mean value of the da/dN - ∆Keff
I data.

Figure 4.26: Crack growth rate estimated from the local approach versus ∆KI for various hypothesis. Comparison
with experimental data.

101



Whatever the hypothesis (2D plane stress/strain, 3D), the local approach underestimates the crack growth rate

by a factor ≈ 4 in the confidential data range when using the coefficients of the damage function obtained from

LCF experiments. However the slope is correctly predicted.

The underestimation of the crack growth rate might partly be due to the fact that the damage undergone by

the segment of length ∆L before it touches the crack tip is not taken into account. Strictly speaking, a damage

cumulation taking into account the progressive rise in stress and strain amplitudes when the crack approaches the

segment should be performed. But this is beyond the scope of the present study, where a more pragmatic approach

was adopted.

Another reason for such underestimation could be the different stress triaxiality between LCF experiments

(σh/σV M = 1/3) and ahead of the crack tip (σh/σV M = 0.75 in plane stress, 2.5 in plane stress) during fatigue

crack propagation.

This underestimation of the crack growth rate could also mean that at low da/dN (few 10−9 m/cycles), the

crack driving mechanisms is not damage, contrary to LCF.

In order to improve the prediction of fatigue crack growth rates, the aSW T , mSW T and βSW T,threshold coefficients

were adjusted in order to fit the da/dN - ∆Keff
I curve (see figure 4.27), so that the approach could be used later

to analyze the crack paths during mixed-mode experiments.

Figure 4.27: Crack growth rate estimated from the local approach with optimized coefficients versus ∆KI for various
hypothesis. Comparison with experimental data.
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4.5 Conclusion

The mode I fatigue crack growth kinetics in R260 steel at R = 0.6 , 0.3, 0, -0.5, -1 and -2 load ratio

were obtained. The crack length was estimated using an optical microscope, while Digital Image

Correlation was used to estimate both ∆Keff
I and ∆Knom

I since the analytical expressions of

∆Knom, SENT specimens
I available in the literature do not account for the varying bending stiffness

of the setup, which reduces ∆Knom
I for long cracks. Those experiments led to the following results:

• A negative load ratio (with σmin/Rp02 < 0.2) reduces the crack growth rate, especially at

low ∆KI , due to oxide induced closure. The lower the load ratio, the higher this effect. In

Squat-type cracks, the oxide particles will remain trapped, which will certainly increase the

amount of OICC [Maierhofer et al., 2018].

• Above R ≥ 0.3, closure effects vanish.

• The measured crack growth rates correlate well with ∆Keff
I or ∆Knom, 0

I = Kmax
I −

max(Kmin
I ;K0) (with K0 = confidential data MPa

√
m), which can be estimated directly in

FEM computations.

• Mode I loading alone cannot explain crack growth in rails, as the crack growth rates predicted

for a realistic ∆KI range (neglecting water trapping/pressurization effect) are too small

compared to the on-field measured values.

• The local approach using coefficients obtained from LCF experiments of a tension-driven

damage model directly obtained from uniaxial LCF experiments correctly predicts the Paris

exponent but underestimates the crack growth rate. This might be due to the absence of

consideration of the damage cumulation at rising amplitude as the crack approaches and to

the high triaxiality ahead of the crack tip. It is however possible to reproduce the mode I

crack growth kinetics using modified coefficients in the damage model.
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Chapter 5

Proportional mixed-mode II/III

experiments
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5.1 Introduction

Squat-type crack growth in rails could not be explained by mode I alone, as the crack growth rates measured

for representative ∆KI were too small compared to the on-field measured values. However, those cracks are not

loaded under pure mode I but under non proportional mixed mode I+II+III in variable proportions along their

front [Bogdanski et al., 1998, Mai et al., 2017], which might be the reason for this discrepancy.

As detailed in section 2.3 for Squat-type crack deeper than 5 mm, the amplitude of shear mode loadings (II &

III), taking into account crack face friction using Coulomb’s law, can be several times higher than that of mode I.

However, while usual bifurcation criteria predict crack tilting at ≈ 70◦ for mode II and twisting at 45◦ for mode

III [Erdogan and Sih, 1963], squat-type cracks do not bifurcate, but continue to grow along a highly sheared plane

until failure. At a given point along their front, KII and KIII exhibit more or less proportional time evolutions, but

their proportions vary along the crack front. A necessary step in the experimental study of crack propagation in

rails is thereby to perform proportional mixed mode II/III experiments in order to get kinetic data and thresholds

for coplanar growth in shear modes or bifurcation, as predicted by usual criteria [Erdogan and Sih, 1963]. This

work was published in [Bonniot et al., 2018].

Only a few studies focus on this type of loading (mixed-mode II & III). Pokluda, Vojtek et al. [Pokluda et al.,

2008, Vojtek et al., 2013, Pokluda et al., 2014, Vojtek et al., 2015b, Vojtek et al., 2015a, Vojtek et al., 2016b] used

cylindrical specimens with a circumferential notch (or two circumferential notches) on which a cyclic transverse

shear force was applied. This device provides different mode mixity ratios KII/KIII along the crack front, which

allows comparisons of crack growth mechanisms and thresholds in mode II and mode III from one experiment. After

the tests, the sample is broken in mode I, and the extent of shear-mode crack growth can be measured by SEM,

but crack growth cannot be monitored during the experiment, and friction effects cannot be evaluated because

crack face sliding displacement profiles cannot be measured. In [Pokluda et al., 2008, Vojtek et al., 2013, Pokluda

et al., 2014, Vojtek et al., 2015b, Vojtek et al., 2015a, Vojtek et al., 2016b], crack face friction was prevented -but

only for the early stage of crack growth- by compressive precracking, which induced some residual crack opening,

and the studies focused on the thresholds, and near-threshold propagation mechanisms. Austenitic stainless steel,

ARMCO iron, α-titanium, nickel and nobium were studied. For each of those materials, the measured mode II

threshold was smaller than the mode III threshold (by a factor 1.7 for stainless steel, ARMCO iron, α-titanium and

nickel [Pokluda et al., 2014]), and the crack growth rate was larger for mode II than for mode III. Near-threshold

kinetic data were obtained for ARMCO iron and plotted versus a ∆Kequivalent [Vojtek et al., 2015b]. It appeared

again that mode III was less efficient than mode II for crack growth. For nobium and titanium, cracks subjected to

near-threshold mode III grew by local mode II, which explained the slower crack growth and higher threshold for

mode III [Vojtek et al., 2016a].

Fremy, Pommier et al. [Fremy et al., 2014b] combined mode I, II and III on cruciform specimens made of 316L

stainless steel, and loaded both in-plane and out-of-plane. They mostly focused on crack growth kinetics, depending

on the loading path. Crack face friction was prevented by a positive KI . Their experimental device allows a direct

monitoring of crack growth, but a triaxial testing machine is needed, and the control of mode III, applied through

a point contact on the surface of the specimen, is a challenge.

Hellier et al. [Hellier et al., 1987, Hellier et al., 1991, Hellier et al., 2011, Merati et al., 2012] developed an

asymmetric four point bending device, and used beams, with a waisted central part and a straight central notch.

By rotating the sample around its axis, one changes the orientation of the notch relative to the vertical shear force,

hence changing the proportions of mode II and mode III. After the test, the specimens are broken in mode I in order

to measure the extent of shear mode crack growth by SEM. In [Hellier et al., 1991], Hellier et al. performed tests on

a rail steel (Australian standard 1085, slightly softer than R260: Rp0,2 = 370 − 440 MPa, σUT S = 770 − 880 MPa

versus σY = 480 MPa, σUT S = 880 MPa, A = 10% for R260). No pre-cracking was performed, and the gradient
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in mode mixity along the crack front was ignored. The reported thresholds were ∆KIIth = 15 ± 1.1MPa
√
m and

∆KIIIth = 18.8 ± 2.0MPa
√
m. Again, the threshold for mode II was smaller than that for mode III. No coplanar

growth was observed, but the cracks propagated at ≈ 70◦ relative to the notch in mode II, and exhibited a factory

roof pattern at ±45◦ in mode III, as predicted by the maximum tangential stress criterion [Erdogan and Sih, 1963].

Doquet et al. [Doquet et al., 2010a] performed mixed-mode II + III crack growth experiments on maraging

steel and Ti-6Al-4V, using the same device as Hellier et al. 3D FEM computations [Doquet et al., 2010a] showed

that for any position of the sample on the test rig, the mode mixity actually varies significantly along the crack

front, which has to be taken into account in the analysis of experimental data. Crack growth was monitored on

both side surfaces, and crack face sliding displacement profiles were measured, so as to evaluate the effective SIFs,

allowance made for friction effects. Kinetic data were obtained for maraging steel and Ti-6Al-4V, and plotted versus

a ∆Kequivalent. It appeared that for both materials, mode III was less efficient than mode II for "stage III" coplanar

shear mode crack growth.

In the present study, the same asymmetric 4 point bending device was used. Section 5.2 will introduce the

experimental and numerical procedures, section 5.3 will summarize the results, and section 5.4 will show that the

crack path and the extent of coplanar shear mode crack growth can actually be predicted by the local application,

ahead of the crack front, of critical plane fatigue damage models, previously identified from biaxial fatigue tests, as

detailed in appendix.

5.2 Experimental setup and numerical procedure

The experimental setup consists of a waisted bar with a central section of 10∗10 mm2 submitted to asymmetric

bending (Fig. 5.1). This bar has a notch and a precrack in the middle of its length, where there is no bending

moment, and thus no mode I, but a shear force, which induces shear modes on the crack. The sample can be rotated

Figure 5.1: Asymmetric four point bending device.

around an horizontal axis by an angle α (Fig. 5.1), which changes the orientation of the crack front relative to the

applied shearing force, thereby changing the mode mixity ratio KII/KIII .

FEM computations with various crack front shapes were performed, using the same boundary conditions as in

[Doquet et al., 2010a], in order to get the SIFs profiles along the crack front for different values of α. The sample

was modeled using hexahedron elements of size 0.3 ∗ 0.3 ∗ 0.1 mm3 near the crack front, and the crack plane was

modeled using XFEM representation with quadrilateral elements of size 0.1 ∗ 0.01 mm2. SIFs were obtained using

G − Theta method [Destuynder et al., 1983]. The SIFs distributions along the crack front were fitted with a 6th

order polynomial, omitting the corner nodes, where the SIFs were extrapolated from the polynomial to avoid corner

points singularities [Bazant and Estenssoro, 1979]. Examples for a straight crack front are presented on figure 5.2.

Although mode II dominates for α = 0◦ and mode III dominates for α = 90◦, the other mode is still present and

exhibits a skew symmetric distribution. Each test thus provides kinetic data for several mode mixities, depending
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on the position along the crack front.

Figure 5.2: Stress intensity factors distribution for (a) α = 0◦ and (b) α = 90◦.

The specimens were pre-cracked at a constant ∆KI = 16MPa
√
m and vacuum annealed for 4h at 450◦C in

order to remove -as far as possible- the pre-cracking residual stresses, without changing the microstructure. Then,

a small number of shear mode cycles (from 50 to 2000, depending on the loading range) were applied, at a constant

loading range, with a load ratio R = −1 and a frequency of 2 cycles per minute. Table 5.1 summarizes the test

conditions. The tests were periodically interrupted in order to cast replicas of the crack along the side surfaces.

After bifurcation or coplanar growth over a few hundreds of micrometers, the specimens were broken either by mode

I cyclic loading, or using liquid nitrogen-induced brittle impact fracture. In cases when SEM observations of the

fracture surfaces revealed some coplanar shear-mode crack growth, the positions and shapes of the initial, slightly

tunneling precracking front, and final, rather concave, shear mode crack fronts were determined (Fig. 5.3).

Since the monitoring of crack length evolutions on side surfaces did not reveal significant acceleration or decel-

eration during the limited number of applied shear-mode cycles (denoted by N), a reasonable approximation of the

local crack growth rate, at a given depth z is deduced from the increment of crack length ∆a(z) at the corresponding

depth (Fig. 5.3) at the end of the test.
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da

dN
(a, z) ≈ ∆a(z)

∆N
(5.1)

Roughness measurements were performed on a few fracture surfaces, in two orthogonal directions, parallel or

normal to the mean crack growth direction, using a mechanical profilometer Mitutoyo Surftest SJ-210.

Figure 5.3: Initial and final shear mode crack fronts determined using SEM

In order to get Paris-like kinetic equations, it is necessary to determine the effective SIFs for each test, and each

position along the crack front. Asperities interlocking and friction reduce the amplitude of crack face sliding dis-

placements and the effective shear mode singularities at the crack front. The existence of such effects was confirmed

here by the presence of wear debris on the fracture surfaces.

The determination of effective singularities relies on an inverse analysis of the crack opening and sliding displace-

ment measured on the side surfaces, as detailed below. However, due to the position of the sample in the testing

machine when the angle α is not equal to zero, the direct capture of images of both side surfaces is not feasible.

Instead, plastic replicas are cast at maximum and minimum load, in order to get the sliding displacement range,

but also at zero load, in order to measure the opening displacement range induced by the dilatancy effect. Due to

crack face roughness, sliding of the crack leads to some opening, hence inducing two mode I sub-cycles inside one

fully-reversed shear mode cycle [Doquet et al., 2009], as illustrated on figure 5.4. To analyze it, the images captured

at maximum and minimum load have to be correlated with that captured at zero load.
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Figure 5.4: Nominal and effective path for a rough crack loaded in reversed mode II [Doquet et al., 2009].

DIC is used to measure the in-plane opening and sliding displacements. Since the painted speckle pattern

generally used for DIC is incompatible with replicas, sand blasting (with sand particles diameters from 1 to 50µm)

is used instead, in order to induce a topographic contrast on both side surfaces. A dense distribution of few

micrometers wide craters form a pattern visible with an AFM or a digital optical microscope on the positive

replicas cast from the plastic replicas. Two rows of virtual extensometers located 50 µm above and below the

crack (Fig. 5.5) are used to measure the in-plane opening and sliding displacement jump profiles along the crack.

The dilatancy ∆KI is deduced from the slope of a plot (Fig. 5.6) of opening displacement range [uy](r) versus

square-root distance to the crack tip,
√
r, using the relation given by Linear Elastic Fracture Mechanics for plane

stress:

[uy](r) =
8∆KI√

2πE

√
r (5.2)

Figure 5.5: In-plane sliding displacement obtained by DIC (VIC2D). ZOI = 35 ∗ 35 pixels, 1pixel = 1 µm
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Figure 5.6: In-plane opening displacement versus
√
r. α = 90◦, ±38 kN loading range

The out-of-plane sliding displacement profiles along the crack are measured on the positive replicas, using an

AFM (fig. 5.7 a) for displacement ranges under 10 µm. For greater displacement ranges, a topographic reconstruc-

tion is performed using a digital optical microscope (fig. 5.7 b). Again, two rows of virtual extensometers ±50 µm

above and below the crack are used to measure the out-of-plane displacement jump profile.

Figure 5.7: Out-of-plane sliding displacement obtained using an AFM (a), and topographic reconstruction with a
digital optical microscope (b).

The effective fraction of the loading range is defined as:

Ui = ∆Keffective
i /∆Knominal

i , i = II, III (5.3)

This effective loading range is determined by comparing the experimental in-plane (mode II) and out-of-plane

(mode III) sliding displacement jump profiles to those computed using an elastic-plastic behavior, as detailed in

chapter 3.2.5. Indeed, an elastic frictionless computation would neglect both the effects of crack tip plasticity,

which increases the displacement jumps, and the effect of friction, which reduces it, and would not allow to separate

those two effects. In order to measure the influence of friction, elastic-plastic frictionless computations are run with

various loading ranges to find the loading range which gives the best fit of the experimental sliding displacement.

The effective fraction of the loading range is then computed as:
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Ui =
∆F effective

i

∆F applied
=

∆Keffective
i

∆Knominal
i

, i = II, III (5.4)

Within each test, the effective fraction of the loading range is found to be almost equal for both modes (UII ≈
UIII with less than 15% difference) and on both side surfaces (Uside1 ≈ Uside2 with less than 10% difference). A

mean U is thus computed for each test, and applied along the whole crack front, in order to get the effective SIFs

from the nominal ones issued from FEM elastic, frictionless computations.

∆Keff
i (z) = Umean∆Knom

i (z) , i = II, III (5.5)

For the computation of nominal SIFs, the slightly tunneling pre-crack front shape, as well as the concave final

shear-mode crack front shape measured on the fracture surface were taken into account in the F.E. mesh.

5.3 Experimental results

5.3.1 Crack paths

Table 5.1 indicates the test results in terms of crack path. For α = 90◦, almost immediate crack kinking/twisting

was observed along the whole crack front for the smallest loading range. For intermediate loading ranges, coplanar

shear mode crack growth was observed only near the side surfaces, over a few hundreds of micrometers, while for

high loading ranges, for which small-scale yielding conditions were however still fulfilled, coplanar shear mode crack

growth was observed, along the whole crack front, over distances larger than 2 mm. For α = 0◦, short coplanar

growth was always observed, followed by bifurcation.

Table 5.1: Test conditions and results

α (◦) load (kN) Number of
cycles N

Distance of coplanar
growth (surface 1)

(µm)

Distance of coplanar
growth (surface 2)

(µm)

Distance of coplanar
growth (mid

thickness) (µm)

90 ± 22 700 200 ? 0
90 ± 28 1000 580 700 340
90 ± 34 700 1200 1000 700
90 ± 38 180 2800 2700 2000
0 ± 30 2000 220 290 ?
0 ± 35 500 500 250 85
0 ± 39 600 350 300 190
0 ± 42 120 405 485 135
0 ± 45 300 330 400 ?
0 ± 47 50 335 320 170
0 ± 50 90 420 110 200

During coplanar shear mode crack growth, branches orthogonal to the main crack line were observed on the

replicas of the side surfaces, as illustrated on figure 5.8. Such secondary cracks leave traces more or less normal to

the local crack growth direction on the fracture surfaces (Fig. 5.9a), and were also observed after mode II crack

growth in austenitic steel by Pokluda et al (Fig. 7-10 in [Pokluda et al., 2008]) who attributed their nucleation to

cyclic bending stresses on crack face asperities.

In mode II, a skew-symmetric singular stress parallel to the crack exists along the crack faces, so that after

their nucleation, such orthogonal branches are loaded in cyclic mode I. The replicas cast at maximum (Fig. 5.8a),
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zero (Fig. 5.8b) and minimum load (Fig. 5.8c) clearly show that the orthogonal branch behind the main crack tip

undergoes cyclic opening/closure. Such a phenomenon was first underlined by Kfouri [Kfouri, 1999] and analyzed

in detail by Doquet & Frelat [Doquet and Frelat, 2001]. In the latter study, the shielding effect of such branches on

the main crack tip singularity was assessed, depending on their length and position behind the tip. For a fast prop-

agating shear-mode crack, such a branch was predicted to grow in mode I at a decreasing rate, and to be left behind

by the main crack, until it finally gets arrested, while for slower growth of the main crack in mode II, such a branch

was predicted to develop faster than the main crack that stopped growing. These two cases can actually be observed

on figure 5.8. In addition to the aborted orthogonal branch left behind the tip, a branch formed at an angle of 90◦

at the current tip above and below the main crack plane, and grew over approximately 100 µm, before kinking at 70◦.

Branches were also formed in a plane normal to the crack front containing the local crack growth direction, as

revealed by X-ray computed tomographic images (Fig. 5.10). The secondary cracks visible on the fracture surface

in figure 5.9b and nearly parallel to the local crack growth direction correspond to the same kind of branch. Such

secondary cracks were also observed after mode III crack growth in austenitic steel by Pokluda et al (Fig 11-15 in

[Pokluda et al., 2008]), who attributed their formation to cyclic bending stresses on crack face asperities, or to the

occasional presence of second phase particles. The position of the branches at the bottom of asperities on figure

5.10 tends to support the first explanation, even though in rail steel, the presence of elongated manganese sulfide

inclusions normal to the crack growth plane might also play a role in the initiation of such branch cracks. But

whatever their nucleation mechanism, these branches might grow either due to the cyclic shear stress induced by

the mode III component: σxz = KIII/
√

2πr, or due to the cyclic opening stress associated with mode II, in plane

strain: σzz =

νKII/
√

2πr. Such branches probably also shield the main crack and may promote its bifurcation, although this

deserves further analysis through 3D numerical simulation.
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Figure 5.8: Replicas casted at maximum, zero and minimum load on a crack with branches, α = 0◦.
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Figure 5.9: Secondary cracks on the fracture surfaces: a) nearly normal to the local crack growth direction where
mode II dominates and b) nearly parallel to the local crack growth direction where mode III dominates.

Figure 5.10: Branches in a plane normal to the crack front, α = 90◦. Tomographic image, resolution 5µm3. The
crack growth direction is normal to the image plane.
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5.3.2 Effective singularities

In plane strain, the energy release rate G is related to KI , KII and KIII by:

G =
1 + ν

E
[(1 − ν)(KI

2 +KII
2) +KIII

2] (5.6)

In the following, the contribution of shear-modes to the energy release rate ∆Kshear is defined as:

∆Kshear =

√

∆KII
2 +

1
1 − ν

∆KIII
2 (5.7)

As mentioned above, the reversed sliding of rough crack face during one shear-mode cycle induces two mode I

sub-cycles, which do not always have similar amplitudes (Fig. 5.4). The maximum amplitude of those two sub-cycles

is denoted below as "dilatancy ∆KI". The measured dilatancy ∆KI divided by ∆Keff
shear are plotted on figure 5.11a

as a function of the effective ∆Keff
shear. No systematic evolution appears, and the dilatancy ∆KI lies between 22

and 31% of ∆Keff
shear for α = 90◦ (predominant mode III) and between 8 and 27% for α = 0◦ (predominant mode

II). The induced opening seems larger for predominant mode III. This is consistent with higher average roughness

index Ra measured along series of lines parallel to the front (< Ra >= 8.8 µm) than in the normal direction

(< Ra >= 5.9 µm). Higher asperities in the direction parallel to the front thus induce more crack opening when

mode III dominates.

Figure 5.11: Evolution of ∆KI/∆K
eff
shear versus ∆Keff

shear (a) and U versus ∆Knom
shear (b).
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The effective fraction of the loading range, U , is plotted versus the nominal ∆Kshear on figure 5.11b. It lies

between 0.3 and 0.9, which is comparable to the values measured on maraging steel and Ti-6Al-4V in [Doquet et al.,

2010a] and on 65G steel in [Lenkovs’kyi, 2015]. This ratio is larger for α = 0◦ than for α = 90◦, which is consistent

with the results on the dilatancy opening (Fig. 5.11a) and with the higher roughness measured in the direction

parallel to the front. While U does not change much with ∆Kshear for α = 0◦, it increases with ∆Kshear for

α = 90◦, meaning that the influence of friction tends to decrease as the loading range increases. This is consistent

with the predictions of the model developed by Gross and Mendelsohn [Gross and Mendelsohn, 1989].

5.3.3 Shear-mode crack growth kinetics

The measured crack growth rates are plotted on figure 5.12 versus ∆Geff
shear and ∆Geff defined in equ.5.8 and

5.9, respectively.

∆Geff
shear =

1 + ν

E

[

(1 − ν)∆Keff
II

2
+ ∆Keff

III

2
]

(5.8)

∆Geff =
2 ∗ (1 − ν2)

E
∆KI

2 + ∆Geff
shear (5.9)

The dilatancy KI is counted twice in equ.5.9 since there are two mode I sub-cycles within each reversed shear-

mode cycle. Taking the induced opening into account does not increase the correlation coefficient R2 when a power

law is fitted.

Figure 5.12: Crack growth rate as a function of ∆Geffective and ∆Gdilatancy.

The influence of the dilatancy ∆KI on crack growth kinetics was thus neglected in the following. An attempt

to improve data correlation, by introducing an "equivalent" ∆K:

∆Keff
equivalent =

√

∆Keff
II

2
+ β∆Keff

III

2
(5.10)

and searching for the weighting coefficient β corresponding to the highest correlation coefficient was made, as

previously done in [Doquet et al., 2010a] and [Vojtek et al., 2015b]. The best fit for a power law ("Paris" like

equation) was obtained for β ≈ 1.25, with R2 = 0.871 (Fig. 5.13), which is only marginally better than the fit

obtained using ∆Geffective
shear (R2 = 0.867). The latter assumes that mode II and III are equivalent driving forces,

and corresponds to β equal to 1/(1 − ν) ≈ 1.4. The value of β found here suggests that mode III is slightly less
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efficient than mode II for coplanar shear-mode crack growth. The best value of β found here is comparable to those

found in [Doquet et al., 2010a] for Maraging steel (β = 1.2) and in [Vojtek et al., 2015b] for ARMCO iron for near

threshold propagation (β = 1.1).

Figure 5.13: Experimental and predicted crack growth rate as a function of ∆Keff
equivalent, with β = 1.25.

As mentioned previously, using ∆Keff
equ with an optimized β only marginally improves the results over ∆Geffective

shear .

As a consequence,

∆Keff
shear =

√

∆Keff
II

2
+

1
1 − ν

∆Keff
III

2
=

√

E

(1 − ν2)
∆Geff

shear (5.11)

will be preferred as a driving force, due to its energetic meaning. The corresponding curve is given on figure 5.14

and as expected, using ∆Keff
equ gives only marginally better results than ∆Keff

shear (R2 = 0.871 versus R2 = 0.865).

Note that ∆Keff
equ = ∆Keff

shear for β = 1/(1 − ν) = 1.40.

Figure 5.14: Experimental and predicted crack growth rate as a function of ∆Keff
shear and ∆Keff

equivalent, with
β = 1.25.
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5.4 Modelling

5.4.1 Principle of the local approach

The above-mentioned approach based on Linear Elastic Fracture Mechanics and Paris-like equation allows sat-

isfactory predictions of the crack growth rates in proportional mixed mode II & III, but may not be relevant in non

proportional loading, as shown by Fremy and Pommier [Fremy et al., 2014b]. Since crack propagation in railways

involves non-proportional mixed-mode I+II+III, another approach is needed. This approach should not only take

into account the synergistic effects of the three loading modes -related to coupled crack tip plasticity- in terms of

crack growth rate, such as the approach used in [Fremy et al., 2014a], but also account for the potential existence

of two different propagation mechanisms (shear or tension driven), which the latter approach does not do.

A local approach was proposed by Doquet and Bertolino [Doquet and Bertolino, 2008b] in order to determine

the crack growth rates and crack paths and is presented in section 2.6.3. This approach is based on the idea that

fatigue damage ahead of the crack tip is responsible for crack propagation, and that two damage mechanisms are

competing, one accounting for shear mode and the other for tensile mode. Two damage parameters are thus used.

The first one , proposed by Smith, Watson and Topper [Smith et al., 1970], -homogeneous to an energy- accounts

for tension-driven damage:

βSW T = ∆ǫn ∗ σn,max (5.12)

This parameter was used to predict the crack growth rate in mode I, as detailed in chapter 4, and the coefficients

of the power law linking βSW T to Nf were modified to fit the experimental data.

In previous studies, [Doquet and Bertolino, 2008b, Doquet et al., 2009, Doquet et al., 2010a], Fatemi and Socie’s

damage function -homogeneous to a strain- was used, to account for shear-driven damage:

βF S = ∆γmax(1 + kF S
σn,max

σy
) (5.13)

where σn,max denotes the peak opening stress on the facet which undergoes the maximum shear strain range,

∆γ, and kF S is a dimensionless coefficient.

Alternatively, Findley’s damage function -which has the dimension of a stress- could also be used:

βF ind = ∆τ + kF I ∗ σn,max (5.14)

where kF I is a dimensionless parameter.

However, in the present study, a shear-driven damage function equal to the product of the two previous ones,

-and which thus has the dimension of an energy, like the tension-driven damage function- was preferred:

βShear = βF ind ∗ βF S (5.15)

Those two damage functions are evaluated from elastic-plastic FE simulations, and averaged over a small segment

of length ∆L in every possible direction (characterized by a tilt angle φ and a twist angle ψ) ahead of each node

of the crack front. Contrary to the previous study on mixed-mode II+III [Doquet et al., 2010a] no assumption is

thus made here on the crack path. The corresponding fatigue lives, Nf,tension and Nf,shear, are deduced, using

the equations fitted from low-cycle fatigue data, as explained in chapter 3.1. The minimum of those two values,
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Nf = min(Nf,tension, Nf,shear), as well as the associated direction are then extracted. The potential local crack

propagation rate is evaluated as:

da

dN
≈ ∆L
Nf

(5.16)

The crack is thus assumed to propagate according to the mechanism which maximizes its growth rate, which

gives both the propagation direction and the crack growth rate.

This approach was applied on five of the experiments described above, which gave rise to some coplanar crack

growth over the whole crack front. The effective loading range, corresponding to the measured sliding displace-

ments, allowance made for friction effects, was applied in the F.E. computations, but the small mode I sub-cycles

due to dilantancy were not simulated. When coplanar growth was predicted along the whole crack front, two FE

computations were run: one with the initial, slightly tunneling crack front shape inherited from mode I precracking,

and one with the final, slightly concave shear mode crack front measured on the fracture surfaces. The initial and

final predicted crack growth rates were then averaged, and compared to the measured ones, which also correspond

to a mean value over applied shear mode cycles.

The influence of the length ∆L, on the predicted crack growth rates was evaluated. For ∆L = 0.1 mm the

predicted crack growth rates were at most 30% higher than for ∆L = 0.04 mm. The influence of this parameter

is thus relatively limited. A value of ∆L = 0.04 mm, which corresponds to the length of 2 elements ahead of the

crack tip appeared to give the best predictions of the crack growth rates, and was thus adopted.

5.4.2 Predicted crack paths

Simulations were run for α = 0◦ and α = 90◦ with several loading ranges, in order to determine the effective

threshold ∆KII or ∆KIII below which no coplanar shear-mode crack growth is expected at mid-thickness, but

rather crack tilting or twisting, respectively. The predicted threshold for coplanar growth at mid-thickness for

α = 90◦ (mode III) is confidential data MPa
√
m, which is higher than the experimentally determined range confi-

dential data MPa
√
m (Table 5.2). For α = 0◦, the predicted threshold for coplanar growth at mid-thickness (mode

II) is confidential data MPa
√
m, but available experimental data are not sufficient for an accurate determination

of this threshold so that a comparison is not possible.

Table 5.2: Exprimental and computed thresholds

Mode Experimental coplanar shear crack
growth threshold (MPa

√
m)

Computed coplanar shear crack growth
threshold (MPa

√
m)

II confidential confidential
III confidential confidential
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For α = 90◦, no coplanar growth was observed for da/dn below 3∗10−7 m/cycle m/cycle. However, as discussed

in 4.3.5, the mean crack growth rate measured at the deepest point of a 10 mm deep Squat-type crack in a TGV line

(obtained from 324 on-field measured values) is confidential data m/cycle, with 90% of the data below confidential

data m/cycle. The on-field measured crack growth rates are thus smaller by confidential data orders of magnitude

than the smallest rate for coplanar shear-mode crack growth.

Moreover, even when coplanar shear mode crack growth was witnessed, branch cracks formed normal to the main

crack plane and shielded its tip, thereby leading to its bifurcation, except for very high loadings (da/dN ≈ 6 ∗ 10−6

m/cycle). In this case, there are confidential data orders of magnitude difference between the on-field measured

crack growth rates and the rates required to get long coplanar shear-mode crack growth.

Shear modes loadings alone are thus unable to explain crack growth in rails, as the obtained crack path is not

consistent with the one observed in rails.

5.4.3 Predicted crack growth rates

The predicted and measured coplanar crack growth rates profiles along the crack front are compared on fig. 5.15

for 3 tests run at an angle of α = 90◦, and on fig. 5.16 for 2 tests run at an angle α = 0◦. The crack growth rate is

overestimated at the corner points by a factor up to 3.9, while at mid-thickness, the evaluated crack growth rates

are within a factor 2 above or below the measured ones. Given the uncertainties on the local crack growth rates

(the final shear mode crack fronts are sometimes difficult to locate accurately, especially near the side surfaces), as

well as the uncertainties on the effective loading ranges, those predictions can be considered as successful. This is

also illustrated by the comparison of the plot of predicted growth rates versus ∆Kequivalent with the experimental

one, on fig. 5.13.

The local approach allow a prediction of the crack growth rate in mixed-mode II & III at high ∆K using only

LCF data. This was not the case in mode I (see chapter 4.4), where the coefficients linking βSW T to da/dN had to

be modified in order to fit the da/dN − ∆K curve. These better results in shear modes can be due to the fact that

the triaxiality (σh/σV M = 0) ahead of the crack tip was similar to that of torsional LCF experiments, which was

not the case in mode I. It also suggests that coplanar shear mode crack growth at high ∆K is driven by damage.

Figure 5.15: Experimental and computed crack growth rates along the crack front for α = 90◦.

120



Figure 5.16: Experimental and computed crack growth rates along the crack front for α = 0◦.
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5.5 Conclusions

Proportional mixed-mode II & III experiments were performed using an asymmetric four point

bending device. The crack growth was monitored using casted replicas of the surface.

• Mode II & III coplanar fatigue crack growth was observed over distances up to 2.8 mm in

R260 rail steel. For mode III, the effective threshold for coplanar shear-mode growth rather

than bifurcation was confidential data MPa
√
m.

• Even when coplanar shear mode crack growth was witnessed, branch cracks formed normal

to the main crack plane and shielded its tip, thereby leading to its bifurcation, except for

very high loadings (da/dN ≈ 6 ∗ 10−6 m/cycle).

• At crack growth rates similar to those observed in Squat-type cracks in rails (confidential

data m/cycle), bifurcation is expected under mixed-mode II & III, while the cracks in rails

grow coplanar: shear modes alone are thus unable to explain crack growth in rails, as the

obtained crack path is not consistent with the one observed in rails.

• Due to crack faces interlocking and friction, the effective fraction of the loading range U was

between 0.3 and 0.9.

• Sliding of rough crack faces induced two mode I sub-cycles within each reversed shear mode

cycle. The resulting dilatancy ∆KI was between 0.08 and 0.25 ∆Kshear.

• The best fit for a Paris-like equation was found for ∆Keff
equ =

√

∆Keffective
II

2
+ 1.25∆Keffective

III

2

meaning that mode III is slightly less efficient than mode II for coplanar shear mode propa-

gation.

• However, ∆Keff
shear =

√

E ∗ ∆Geff
shear/(1 − ν2) was preferred over ∆Keff

equ as a crack driving

force due to its physical meaning, both giving similar results.

• Reasonable predictions of the shear-mode crack growth rates were obtained using a local

approach. This approach is based on the local application, ahead of each node of the crack

front -after elastic-plastic computations of local stress and strain ranges- of a shear-driven

and a tension driven fatigue damage models. A 3D search for the direction in which failure

of a small segment occurs first, by one mechanism or the other, is then performed to get the

maximum crack growth rate and the associated direction.

• Sand blasting was shown to be a simple and effective surface marking technique for DIC.
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Chapter 6

Non-proportional mixed-mode I + II

experiments
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6.1 Introduction

Mode I alone could not explain the crack growth in rails, as the crack growth rates measured for representative

∆KI were too small compared to the on fields measured values. Neither could mixed mode II & III alone, as the

SIFs needed to get a coplanar growth instead of bifurcation was too high (≈ 0.37 KIC in mode III) compared to

the computed values. The next step was thus to investigate the combination of shear and tensile modes, meaning

non-proportional mixed-mode loading with compression phases, as it is the case in rails (see figure 2.14). Various

open questions in non-proportional mixed-mode (couplings of opening and shear-induced crack tip plasticity, PICC,

RICC, influence of a compression phase, crack front shape...) were already discussed in chapter 2. This section will

focus on non-proportional mixed-mode experiments with a sequential loading and/or performed on rail steel.

Sequential mixed-mode loading has been studied by several teams, mostly on rail steel in order to get a better

understanding of the rolling contact fatigue phenomena occurring in railways (and more specifically Squat-type

defects).

Bold [Bold, 1990] performed experiments on a slightly softer rail steel (σY = 430 MPa, σUT S = 795 MPa,

A = 22.2% versus σY = 480 MPa, σUT S = 880 MPa, A = 10% for R260). Proportional mixed-mode I + II

experiments using an asymmetric 4 points bending device, as well as mode II experiments with a static mode I

using a cruciform specimen in a biaxial testing machine led to crack bifurcation in the direction of maximum opening

stress, after only 0.1 mm coplanar growth. By contrast, during sequential mode I + II experiments, long coplanar

crack growth or bifurcation were obtained, depending on the loading conditions, and the results were successfully

analyzed in terms of maximum growth rate criterion using the nominal strain intensity factors (see appendix 5. of

[Bold, 1990]: using ∆Kstrain = ∆KI/Esecant, with Esecant = σV M/ǫeq, supposedly improves the results for large

scale yielding).

Figure 6.1: Sequential I + II loading with an overlap.

Wong et al. [Wong et al., 1996, Wong et al., 2000b, Wong et al., 2000a] continued this work, and performed

sequential I + II experiments on cruciform specimens with an overlap between the mode I and mode II loadings,

as shown in figure 6.1. Without the overlap, crack branching occurred when ∆Knom
II /∆Knom

I > 2, but this

criterion could not predict crack branching for overlaps different from zero. The effective SIFs were deduced from

the measured crack face opening/sliding displacement using surface replicas or from a change of slope of load-

displacement curves, and used to predict the crack growth rates, using three empirically-defined equivalent ∆K

with a Paris-type equation:

∆Keff
W ong,I = ∆Keff

I ∗ (1 + (
∆Keff

II

∆Keff
I

)w) (6.1)
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∆Keff
W ong,II = ∆Keff

II ∗ (1 + (
∆Keff

I

∆Keff
II

)w) (6.2)

∆Keff
equivalent =

√

(∆Keff
I )2 + ∆Keff

II )2 (6.3)

All three equivalent ∆K gave satisfying results, while ∆Keff
II alone was unsuccessful at predicting the crack

growth rate (see figure 6.2).

Figure 6.2: Crack growth rates from [Wong et al., 2000a], as a function of ∆Keff
II (left) and ∆Keff

equivalent (right).

The stable coplanar growth observed in sequential mixed mode I + II (at RII = −1) for ∆KII/∆KI below a

certain value can be explained in LEFM by extracting the peak value of σθθ(t): maxt(σθθ(t)) = σθθ, max(t) and of

∆τ at an angle θ ahead of the crack tip (see figure 6.3).

Figure 6.3: σθθ(t) and ∆τ at an angle θ ahead of the crack tip.

For ∆KII/∆KI = 1, σθθ, max(t) and ∆τ are both maximum at 0◦, as shown on figure 6.4.a, meaning that both

the tensile driven and shear driven mechanisms tends to propagate the crack in a coplanar direction. However,

when this ratio is over 1.73, σθθ, max(t) is not maximum at 0◦ but at ±70◦, while ∆τ is still maximum at 0◦ (see
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figure 6.4.b, with ∆KII/∆KI = 2): if the crack is tension-driven (MTS criterion), it will bifurcate.

Figure 6.4: Evolution σθθ(t) and ∆τ extracted at an angle θ ahead of the crack tip, for ∆KII/∆KI = 1 (a) and
∆KII/∆KI = 2 (b).

Those results were obtained with an elastic behavior. However, if we consider an elastic-plastic behavior (con-

stitutive equations given in 3.1), and extract σθθ, max(t) (MTSp criterion, [Dahlin and Olsson, 2003]) at 40 µm from

the tip for ∆KII/∆KI = 2, the maximum of σθθ, max(t) is not at ±70◦ anymore, but at 14◦, as shown on figure 6.5.

Crack-tip plasticity tends to reduce the height of the peaks at ±70◦ and should increase the critical ∆KII/∆KI

for bifurcation, which lies around ≈ 2 for R260 steel (and varies with the amount of plasticity, and thus increases

with the loading amplitudes from 1.73 for ∆KII− > 0 to more than 2.1).

Sequential experiments with overlap were also performed by Akama [Akama, 2003] on rail steel, confirming

Wong and Bold’s results. The effective fraction of the opening and shear modes UI and UII , that they deduced

from the relative crack face displacements measured on surface replicas, increased with the overlap, with some

values above 1. This overestimation of the SIFs was certainly due to the effect of crack-tip plasticity that was not

taken into account in their analysis of crack face displacements.

Akama and Kiuchi [Akama and Kiuchi, 2012] then performed sequential mode I + III experiments, with some

overlap on cylindrical specimens with a circumferential notch. Depending on the conditions, coplanar crack growth

or factory roof patterns (that is: bifurcation) were obtained. The crack growth rates could be described by an

equivalent ∆Knom
equivalent =

√

(∆Knom
I )2 + ∆Knom

III )2 or just with ∆Knom
III , as the influence of mode I on the crack

growth rate was found to be low.
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Figure 6.5: Evolution σθθ(t) extracted at an angle θ ahead of the crack tip, for ∆KII/∆KI = 2, with an elastic or
elastic-plastic behavior.

In those studies on railway steel, while the loading path (meaning the degree of overlap) was found to have an

influence on the crack path, it did not have an influence on the crack growth rate (when considering the effective

SIFs), contrary to what was observed on 316L stainless steel by Fremy et al. [Fremy et al., 2014b].

Doquet and Pommier [Doquet and Pommier, 2004] performed sequential mode I + II experiments on a ferritic-

pearlitic steel (for railway applications, σY = 567 MPa, σUT S = 898 MPa) tubes. In situ SEM measurements were

performed periodically to measure the relative crack face displacement and evaluate the effective SIFs. Coplanar

crack growth was obtained for ∆Knom
II > /∆Knom

I between 1 and 4, and the measured crack growth rate were found

to be higher than the simple sum of the mode I and mode II growth rates, meaning that some synergistic effects

occurred. This was explained by FEM elastic-plastic computations, showing that the amplitude of plastic blunting

∆ρI (which can be a driving force) is increased by the mode II cycles (four times higher when ∆KI = 0.75∆KII

than in pure mode I).

The same type of synergetic effect was observed in [Doquet et al., 2009] for sequential loading on a maraging

steel (Rp0,2 = 1720 MPa). Coplanar crack growth was again observed for ∆Knom
II > /∆Knom

I between 1 and 4,

as predicted by a local approach, and since this approach integrates both plastic and damage interactions between

mode I and mode II (through the secondary contribution of the normal stress to shear-driven damage in Fatemi &

Socie’s criterion), it improved the prediction of crack growth rates, as compared to the simple superposition.

However, within these studies, while the influence of an overlap or other loading paths was assessed, the influ-

ence of the compression phase occurring in Squats during the shear-mode cycle was not evaluated. However, it has

been shown by Tarantino, Beretta et al. [Tarantino, 2011, Tarantino et al., 2011, Beretta et al., 2010] that a 90◦

out-of-phase compression can favor shear-driven coplanar growth, reduce friction and increase ∆Keff
III by keeping

the crack open due to wear (which induces a loss of matter and a residual crack opening), as detailed in chapter 2.

Sequential loading path was not considered, and residual crack opening of Squat-type cracks that grow downward

would probably be reduced by trapping of the wear debris driven by gravity towards the bottom of the crack.

Nonetheless, a compression certainly has an influence that might not be fully captured by Coulomb’s friction and

its effect on ∆Keff
II and thus deserves to be investigated.

In the present study, an experimental setup consisting of a transversally precracked thin tube loaded in push-pull
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and torsion was used to obtain non proportional mixed mode I + II loading, with an eventual compression during

the mode II cycle (and some mode III, as discussed by [Vormwald et al., 2018]). A speckle painting was applied on

the outer surface of the specimens to allow DIC measurements of the near-tip displacement field. Section 6.2 will

detail the experimental and associated numerical means while section 6.3 will summarize and analyze the results.
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6.2 Experimental and numerical procedures

6.2.1 Experimental setup

Thin tubes, with a through hole (0.7 mm in diameter) at mid height to initiate a crack were extracted from

the head of a new rail, as detailed in figure 6.6. The samples were polished up to grain P2400 in order to remove

the turning work striations. X-ray diffraction measurements were performed on four samples at the SNCF railway

testing agency (Agence d’essais ferroviaires) on a 2 mm diameter area, over a depth of 5 ∼ 10 µm. Those mea-

surements showed high levels of axial residual stress (≈ −350 MPa) at mid height on the outer surface of the gage

length, with a constant level on the whole perimeter. In order to release as much as possible those residual stresses,

without changing the microstructure, the samples were vacuum-annealed for 4 hours at 450 ◦C. The level of surface

residual stresses dropped to ≈ −80 MPa. As for the mode I samples, those surface residual stresses relaxed during

the experiments (20 ± 20 MPa measured on one broken sample).

Figure 6.6: Sample and clamping device used for mixed mode I + II experiments.

This sample is mounted on the hydraulic triaxial testing machine presented in section 3.1, which allows frequency

up to 1 Hz in non-proportional torsion & tension. For higher frequencies, it is difficult to get the correct loading

paths due to retardation effects in the torque actuator.

A speckle pattern is applied on a 50 ∗ 20 mm2 rectangular area around the crack initiation hole, using first a

uniform white painting layer, followed by an airbrush induced black ink speckle pattern. The white paint is polished
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with P1200 polishing paper in order to make it less glossy. The stains size ranges from 10 to 130 µm. This speckle

painting is used for stereo digital image correlation measurements, using two 2452 ∗ 2052 pixels pike cameras, with

a pair of Tokina ATX-pro (100 mm focal length, aperture set at f/16) lenses. Those are set at approximatively

300 mm from the sample, and with a relative angle of approximatively 25 ◦ between the two cameras, as shown on

figure 6.7. With this setup, the resolution is approximatively 7 µm per pixel. Lighting is provided by an annular

light source.

Images pairs are recorded using the VICSnap software, using either a manual capture, a capture triggered by

signals measured from the machine (torque or axial force), or a capture triggered by a signal sent by the test-driving

software. The VIC3D software is then used to perform the stereo DIC, with a subset size of approximately 150 µm.

Calibration of the setup is made automatically by processing a dozen pairs of images of a target (6 ∗ 5 dots spaced

by 2.5 mm) set at the future place of the sample and moved in various orientations.

Figure 6.7: Experimental setup with the two cameras.

In order to maintain the sample in the testing machine, two rings are screwed on its top and bottom. Those

rings are then attached to the machine using screws in order to lock the sample in translation. The V shaped

specimens ends ensures rotary locking. The bottom and top rings are maintained by 6 and 8 screws respectively,

which are screwed gradually in a star-shaped sequence in order to avoid an asymmetric locking of the sample. Such

asymmetry can result in a bending of the sample, which can locally change the mode I load ratio RI by adding a

constant tensile/compressive force. On some samples, strain gages are placed 3 mm above the center hole, as well

as on the opposite side of the sample in order to check that no bending is induced when tightening the screws. It

appears that without these precautions, a non negligible bending can be induced, with a compressive stress on the

crack up to ≈ 100 MPa (measured), and strain gages are thus necessary for this type of experimental setup.

The sample is first precracked in mode I by initially applying cyclic tension with a maximum tensile stress of 250

MPa (≈ Rp0.2/2) at R = 0 with a frequency of 20 Hz. Images are recorded every few 10000 cycles, and correlated
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with VIC3D in order to measure the strain field and detect the crack initiation. Once the precrack is initiated, it is

propagated at a decreasing ∆KI to a length a > 1.5 mm and ∆KI = 10 MPa
√
m. Once the crack is initiated, DIC

fields are processed using the projection over William’s expansion detailed in 3.2 in order to estimate the precrack

length.

In order to reproduce specific loading paths computed on squat-type cracks (see figure 6.8 below), tilted precracks

(as in figures 6.28 & 6.29) were also obtained along a tilted principal plane, by applying a suitable proportional

combination of axial force and torque. Away from the hole, for plane stress, the first principal stress and the

corresponding principal plane are, in the cylindrical coordinate system of the tube:

σ1 =
1
2

∗ σzz +

√

σ2
zz

4
+ σ2

θz (6.4)

In the direction:

θ =
1
2
tan−1(

2σθz

σzz
) (6.5)

A setup was developed to perform experiments in water as detailed in appendix D. In situ mixed-mode I + II

experiments were also performed in a SEM during a master internship prior to this study. Some results are given

in appendix E.

6.2.2 Applied loading paths

As detailed in section 2.3, the squats-type cracks in rails undergo quasi pseudo sequential loading paths in

(KI −KII) space, with compression phases. The amplitudes of ∆KI ranges from 1 to 14 MPa
√
m, those of ∆KII

ranges from 4 to 35 MPa
√
m and the compression can reach 85 MPa at the deepest point, depending on various

parameters (train load, thermal load, crack length, friction coefficient). For a 10 mm deep semi-elliptical squat

crack, loaded with a TGV train at 320 km/h in a straight line, at various operating temperatures, the loading

ranges are given in table 6.1. Those values are used as references for the experiments, and the computations are

performed with a frictionless crack, since those friction effects will already be present naturally in the experiments

(by making computations with friction, the effects of friction would be counted twice).

Table 6.1: Loading amplitudes for a 10 mm deep squat crack, loaded with a TGV train in a straight line.

Temperature (◦C) ∆KI (MPa
√
m) ∆KII (MPa

√
m) ∆KII

∆KI
σcompr (MPa)

20 6.9 16.4 2.4 -62

5 10.4 16.4 1.6 -42

-5 12.7 16.4 1.3 -30

Most tests were run with pseudo sequential mixed-mode loading paths, close to those computed on squat-type

cracks. As the loading frequency is limited to 1 Hz, and several experiments had to be performed, the crack growth

rates had to be sufficiently large to avoid too long experiments (typically over 1 nm/cycle, which still needs more

than 11 days to get a 1 mm propagation). Several amplitudes and load ratios ∆KII

∆KI
had to be tested, along with an

eventual compression, in order to understand the mechanism driving the crack (tensile, shear, both, other?), and

to cover a loading range representative of the various conditions encountered in squat-type cracks (see table 6.1).

The load ratio for mode II was kept equal to RII = −1, since this parameter is known to have negligible influence

in mode II. Examples are given in figures 6.8 a) & b), and test conditions in table 6.4. The applied loadings never

exceeded σV onMises = 320 MPa (2/3 of Rp02).
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The computed loading paths are almost sequential, but a bit tilted with respect to KI/KII axes. In order to

study this exact loading, pseudo-sequential experiments, tilted in the KI −KII space had to be performed. Instead

of using a complex driving of the machine, leading to very low frequencies (0.2 Hz), the sequential driving of the

machine was kept (at 1 Hz), but with a tilted precrack, as in figures 6.28 & 6.29. An example of the loading path

is given in figure 6.8 d), and test conditions are given table 6.5.

Figure 6.8: Examples of computed and tested loading paths. Computations at the deepest point of a 10 mm deep
squat crack, loaded with a TGV train in a straight line, at various operating temperatures. a) sequential path
applied to exp. 19. b) pseudo sequential path applied to exp. 6. c) 90 ◦ out-of-phase path applied to exp. 13. d)
tilted sequential path applied to exp. 16. Negative values of KI are plotted to account for compression.

To study the influence of the loading path on the crack growth rate and crack path, a few experiments were

also performed with 90 ◦ out-of-phase tension and torsion, including a compression phase and with several ampli-

tudes at RII = −1. Some of those amplitudes were the same as that of pseudo-sequential experiments to allow a

straightforward comparison. Since the loading frequency could only be 0.2 Hz, high loadings were chosen to get

high growth rates and high couplings between shear an tensile plastic flows at the crack tip. An example of the

loading path is given in figure 6.8 c), and test conditions in tables 6.6.

6.2.3 Nominal SIFs evaluation

In order to chose the appropriate axial load and torque evolutions to drive the testing machine and follow the de-

sired loading path in (KI , KII) space, an abacus proposed in [Erdogan and Ratwani, 1972] for a crack in an infinitely

long, thin tube (without a hole) linking the applied load/torque to the nominal SIFs and crack lengths was first used.
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3D computations (see appendix C) were performed in order to verify that the hole could be neglected. For a

1.5 mm long crack, the error between the abacus and the computation is below 3%. The effect of a dissymmetry

in the crack length on the two sides of the hole was also investigated and was found to have little influence.

The SIF values from this abacus are compared to SIFs deduced from DIC fields for which nonlinearities are very

limited (very little plasticity, no contact between the crack faces, since RI = 0.4, and small shear load amplitude)

using William’s expansion on figure 6.9. Both ∆KI and ∆KII diverge more and more as the crack becomes longer:

Erdogan’s abacus, which assumes an infinite tube length is not correct for long cracks in a finite length tube with

rigid attaches.

To get more accurate values, XFEM computations of a finite length cracked tube were performed. The half

specimen height was set to 30 mm, and a uniform σzz was applied at its end. The crack front was modeled as

straight and normal to the inner and outer surfaces with 21 nodes regularly spaced by 50 µm across the thickness.

The SIFs profiles along the front can show some significant gradients for shear modes, depending on the crack length

(SIFs profile along the front are plotted later on, in figure 6.11, for other boundary conditions). This raises the

question of which values of the SIFs to consider to control the experiments? The values at the mid-thickness, on

the outer surface, or the mean values over the crack front? The means values of the SIFs, along with the values

near the outer surface (50 µm from it, since corner points singularities [Bazant and Estenssoro, 1979] were avoided

by discarding the values computed at the surface nodes) were estimated, and plotted on figure 6.9. The estimated

KII on the outer surface is closer to the values measured by DIC, but KI is still very different. Erdogan’s abacus

seems to correspond to means values of the SIFs along the front.

Figure 6.9: Left: Knom
I estimated using DIC, Erdogan’s abacus, and XFEM computations (mean and 50 µm from

the outer surface value on the crack front) for a tensile load, as a fontion of the crack length. Right: Knom
II estimated

using DIC, Erdogan’s abacus, and XFEM computations for a shear load, as a funtion of the crack length.

As for the mode I experiments, this increasing difference in KI is probably due to the effects of bending. When

the crack becomes long, its effect on the structure cannot be neglected any more, and if the experimental setup is

too rigid, the applied σzz will not be uniform. Several XFEM computations were run, with an imposed uniform

displacement instead of uniform σzz. Several height were tested, from a half height of 8 mm (height of the thinner

part of the sample, see figure 6.6) to 75 mm (total height of the sample). The height for which the SIFs are closest

to those issued from DIC was found to be 18 mm. The value of KI , computed at 50 µm from the outer surface

is plotted on the left graph of figure 6.10. This bending phenomena had little influence on KII , but the position

along the crack front did, as shown on figure 6.11. The value of KII computed at 200 µm from the outer surface

fits best that measured with DIC (see right graph of figure 6.10).
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Figure 6.10: Left: Knom
I estimated using DIC, Erdogan’s abacus, and XFEM computations (uniform displacement

of a 18 mm half height tube) for a tensile load, as a fiction of the crack length. Right: Knom
II estimated using DIC,

Erdogan’s abacus, and XFEM computations for a shear load, as a fiction of the crack length.

For short cracks (below 4 mm), the profile of KI & KII along the crack front remains nearly uniform (see figure

6.11). For long cracks, the profile of KI along the crack front remains nearly uniform, while KII varies by up to

200 % from the inner to the outer surface (see figure 6.11 for a 8 mm long crack). The mean value of KIII , is 5

times lower than that of KII for a 2 mm long crack, but becomes nearly as high as KII for an 8 mm long crack.

The evolution of the ratio KIII/KII at mid-thickness is plotted on figure 6.12 as a function of the crack length.

Figure 6.11: SIFs profiles along the crack front for two crack lengths

If the propagation is mostly tension-driven, the crack front will probably adopt and keep an iso effective ∆KI

shape, and should exhibit some tunneling [Branco and Antunes, 2003]. But if it is mostly shear driven, it will most

likely change its shape to get an iso effective ∆KII & ∆KIII profile, and the profile of ∆KI will be non uniform.

Since the evolutions of KIII & KII are influenced by too many parameters (friction, crack front shape) to be

modeled confidently, the XFEM computed curves fitted on DIC measurements of figure 6.10 are used to build an

abacus. This abacus writes as:

KI(a, F,C) = F ∗ (AI
0 +AI

1 ∗ a+AI
2 ∗ a2 +AI

3 ∗ a3) (6.6)

KII(a, F,C) = C ∗ (AII
0 +AII

1 ∗ a+AII
2 ∗ a2 +AII

3 ∗ a3) (6.7)

with the coefficients given in table 6.2.
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Table 6.2: Coefficients for the abacus. a in mm, F in kN and C in Nm.

AI
0 AI

1 AI
2 AI

3 AII
0 AII

1 AII
2 AII

3

/ / / / / / / /

Figure 6.12: Evolution of KIII/KII at mid-thickness

6.2.4 Crack tip localization and effective SIFs estimation

During the experiments, the crack tip is located using the projection over William’s expansion with PS algorithm

as described in 3.2. The displacement amplitude field on which the approach is applied is obtained from images

captured at maximum tensile force and at zero load. This ensures that the contact stresses between the crack faces

are low (only closure induced compression), and will not influence too much the crack tip position estimation, as

explained in 3.2. As previously explained, mode I crack tip plasticity has little influence on the crack tip position

estimation, and a full unloading can be used instead of a small elastic unloading. In sequential mixed-mode, it

is important to correlate the image taken at maximum tensile force with an image taken after unloading and not

before loading in order to release any residual asperities interlocking induced by the previous shear load.

The effective stress intensity factors for in plane modes (I&II) were measured using the projection of the relative

displacement jump measured ±0.2 mm above and below the crack over a field issued from elastic-plastic FEM

computations plus an offset, as explained in 3.2.

As explained in 3.2, the estimated effective SIFs determined using this method can be overestimated for high

amplitude mixed-mode loadings, due to the couplings between mode I and mode II-induced crack tip plasticity. In

order to verify the validity of the measured SIFs regarding those plastic couplings, a few cycles of each experiments

were analyzed, using the following method during some cycles of the experiments:

1. Estimation of the effective loading path KDIC
I (t) −KDIC

II (t) from the DIC displacement fields.

2. Use of this effective loading path to perform elastic-plastic frictionless FEM simulations (detailed in section

6.3.5).

3. Estimation of the loading path KF EM
I (t) − KF EM

II (t)) from the FEM displacement fields (using the same

approach as for 1)).

4. Comparison of KDIC
I (t) −KDIC

II (t) and KF EM
I (t) −KF EM

II (t):

• If those paths are equals, plasticity couplings should be negligible and KDIC(t) = Keff (t).
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• If the FEM path is larger than the DIC estimated path, those couplings are not negligible and KDIC(t) 6=
Keff (t).

Figure 6.13: Effective loading path estimated from DIC displacement fields and from FEM (driven by the SIFs
measured from DIC) displacement fields using the relative displacement jump method as explained in 3.2. (a)
pseudo sequential experiment N◦6, (b) 90◦ out-of-phase experiment N◦13.

Illustrations of this method are given on figure 6.13 for two experiments. For a sequential experiment (N◦6) with

SIF ranges below 10 MPa
√
m, the loading path is well reproduced. However, for a 90◦ out-of-phase experiment

(N◦13), the loading path is shifted, with a Kmax
I overestimated by 18%, which might influence the prediction of

the crack path. However, the prediction of the SIFs ranges is still acceptable, as ∆KI is overestimated by 2%

and ∆KII by 7%: the influence on the crack growth rate prediction which, as shown below, uses the range of the

effective SIFs, is lower. In the rest of the document, we admit that Keff = KDIC and only use the notation Keff .

Experiments for which Keff 6= KDIC are pointed out.

For the (rough) estimation of ∆Keff
III , the out-of-plane displacement jump [UR] was obtained using the stereo

DIC and fitted using equ 6.8, which assumes that the crack front is normal to the outer surface:

[UR] = ∆Keff
III ∗

√
r ∗ 8 ∗ (1 + ν)

E ∗
√

2π
(6.8)

6.2.5 Bending correction

In order to quantify the influence of bending induced by an asymmetric tightening of the screws for the samples

mounted without a strain gage, the ∆Keffective
I at the end of precracking were analyzed and compared to those

obtained during experiment mounted with a strain gage.

The precrack tip position was estimated using the projection over William’s expansion, and the SIFs were

estimated using the relative crack face displacement method.

For each experiment with horizontal precracks, one cycle with similar ∆Keffective
I and for which the crack had

propagated at the same loading range was analyzed, in order to have similar closure effects. The scatter in the

∆Knominal
I - ∆Keffective

I curve plotted in figure 6.14 for experiments with and without a strain gage should be

mostly due to bending. Some scatter is present for the experiments with a strain gage. This might be due to errors

in the crack tip localization or in the effective SIFs estimation (the presence of the hole reduces the length of the

lines along which the relative crack face displacement is analyzed).
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Figure 6.14: ∆Knominal
I - ∆Keffective

I curve during precracking.

A corrective axial load was added to the experiments without a strain gage to shift the corresponding data

points into the scatter-band of tests mounted with a strain gage (figure 6.14). The corrective loads are given in

table 6.3.

Table 6.3: Corrective axial loads.

Experiment N◦ 4 5 6 7 8 9

Corrective load (kN) 2 -2.5 -3 -5 1 -3.5
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6.3 Results and analysis

The amplitudes, number of cycles, and outcome in terms or coplanar propagation (mean value over the two

sides) are described in tables 6.4, 6.5, 6.6 for the various loading types.

Table 6.4: Test conditions and resulting coplanar crack growth for pseudo sequential mixed mode I + II experi-
ments. The loading range during experiments marked with a ∗ were smaller during the first cycles, then increased
to accelerate crack growth. Experiments marked with w were performed in water. The strain gage is used to avoid
bending during screws tightening. The given number of cycles does not include the precracking stage. Values in
parenthesis are corrected of screw tightening induced bending using the results of table 6.3

Exp.
N◦

Max / Min
axial force
(kN)

Torque
(N.m)

Nominal
∆KII

∆KI

Average copla-
nar growth
(mm)

Total N of
cycles at
given load
(at every
load if 6=)

N of cycles
of coplanar
growth

Strain
gage

9a 10 / -5
(6.5/-8.5)

± 110 1.9 (2.9) ≈ 0.1 400 000 400 000 no

9b
∗ 10 / -5

(6.5/-8.5)
± 140 2.4 (3.7) ≈ 0.1 250 000 (1

050 000)
1 050 000 no

9 ∗ 13 / 0
(9.5/-3.5)

± 90 1.2 (1.6) >4.3 240 000 (1
640 000)

1 640 000 no

8 10/0 (11/1) ± 90 1.6 (1.6) >4 75 000 70 000 no

19 10/0 ± 90 1.6 >6 51 000 51 000 yes

18 w 10/0 ± 90 1.6 >6 51 000 51 000 yes

4 7/0 (9/2) ± 110 2.7 (2.7) 1 235 000 180 000 no

7 ∗ 12/5
(7/0)

± 110 2.7 (2.7) 0.6 110 000
(630 000)

600 000 no

5 10/0
(7.5/-2.5)

± 150 2.6 (3.5) 0.4 40 000 15 000 no

6 10/-5 (7/-8) ± 150 2.6 (3.7) 3.8 133 000 128 000 no

11 11/0 ± 160 2.5 0.6 6 000 3 000 yes

10 11/-5 ± 160 2.5 4.5 23 000 20 000 yes

Table 6.5: Test conditions and resulting coplanar crack growth for 90 ◦ out-of-phase mixed mode I + II exper-
iments. The strain gage is used to avoid bending during screws tightening. The given number of cycles does not
include the precracking stage.

Exp.
N◦

Max / Min
axial force
(kN)

Torque
(N.m)

Nominal
∆KII

∆KI

Average copla-
nar growth
(mm)

Total N of
cycles

N of cycles
of coplanar
growth

Strain
gage

12 11/-5 ± 160 2.5 0.4 4000 500 yes

13 11/-5 ± 110 1.7 0.6 23000 2000 yes

14 11/-5 ± 70 1.1 0.3 105000 5000 yes
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Table 6.6: Test conditions and resulting coplanar crack growth for sequential mixed mode I + II experiments on
tilted precracks. The strain gage is used to avoid bending during screws tightening. The given number of cycles
does not include the precracking stage.

Exp.
N◦

Max / Min
axial force
(kN)

Torque
(N.m)

Nominal
∆KII

∆KI

Average copla-
nar growth
(mm)

Total N of
cycles

N of cycles
of coplanar
growth

Strain
gage

16 10/0 45/-145 1.6 0.4 136000 30000 yes

17 10/0 80/-160 2.1 0.3 44500 5000 yes
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6.3.1 Crack paths

Extent of coplanar growth

The crack paths for the various non proportional mixed mode I + II experiments are reported in this section.

Tables 6.4, 6.5, and 6.6 give the extent of coplanar growth before bifurcation for pseudo-sequential loading, 90◦

out-of-phase loading and pseudo-sequential loading on tilted precraks, respectively, while fig 6.15 to 6.29 show the

crack paths on the outer surface of the tubes.

Most of the samples were broken open with the testing machine right after the experiment, and were then

reassembled with more or less success to capture images, resulting in apparently huge crack opening. Some other

samples were broken open after capturing images, using liquid nitrogen induced brittle impact fracture.

For sequential experiments without compression, the crack bifurcated after a short coplanar growth when

∆Knom
II /∆Knom

I > 2, and grew coplanar when this ratio was below 2, as observed by [Wong et al., 1996]. However,

when compression was added while shearing, a long coplanar growth was obtained even though ∆Knom
II /∆Knom

I > 2.

Experiments with the same shear loading ranges, but with or without compression while shearing (tests 5 & 6 and

10 & 11) led to different crack paths: compression substantially extended coplanar growth (3.8 mm for test N◦5

with compression, instead of 0.4 mm for test N◦6 without, 4.5 mm for test N◦10 with compression, instead of 0.6

mm for test N◦11 without). This result will be analyzed below, based on the effective mode-mixity ratios.

Experiment N◦18, which is similar to experiment N◦19, except that it was performed in water, led to similar

crack path and growth rate (see appendix D), meaning that water did not increased the crack growth rate due to

corrosion or entrapped water or a reduction of friction between the crack faces (which would increase ∆Keff
II ).

90 ◦ out-of-phase loadings led to much shorter coplanar growth than sequential ones, for similar loading ranges

(only 0.4 mm for 90◦ out of-phase test N◦12, as compared to 4.5 mm for pseudo sequential test N◦10). The shape

of the nominal loading path has thus a large influence on the crack path, and the ranges of the nominal SIFs are

not sufficient to describe it.

The sequential tests run on tilted cracks -supposed to be more representative of squat-type cracks- led to

bifurcation after a short growth in the precrack direction. This suggests that the computed loading paths might not

perfectly mimic the real ones (inaccurate modeling of residual stresses in the computations?), which induce long

coplanar growth.

Bifurcation

For the pseudo sequential loadings (figures 6.15 to 6.24), when bifurcation occurred, it occurred on both sides

of the hole (except on the left side for experiment N◦6 due to the shielding effect of a 45◦ branch initiated from

the hole). On each side, two symmetric branches were usually formed from the same crack tip position, except for:

• Experiment N◦4 (figure 6.15), on the right handside: a downward branch appeared, in competition with

continued coplanar growth. This coplanar crack bifurcated upward later on.

• Experiment N◦6 (figure 6.17), on the right handside: upward (a) & downward (b) branches appeared, in

competition with continued coplanar growth (c). This coplanar crack bifurcated downwards (d) later on, with

an attempt to branch back towards a coplanar direction (e). It seems that branches (a) & (d) "won" the

kinetic competition, and continued growing while shielding the other branches.

• Experiment N◦7 (figure 6.18), on the left handside: a double bifurcation (a), with the upward branch bi-

furcating back towards a coplanar direction (b). Along this coplanar branch, an aborted branch formed (c),
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followed by a double bifurcation (d).

• Experiment N◦10 (figure 6.21), on the right handside: an upward branch appeared (a), in competition with

continued coplanar growth (b). A downward branch (c) appeared, at 90◦, which then progressively kinked at

≈ 60◦. The coplanar crack (b) bifurcated upward and downward later on, at 90◦. It seems that branches (a)

& (c) "won" the kinetic competition, and continued growing while shielding the other branches. The long 90◦

bottom branch corresponds to liquid nitrogen-induced brittle impact fracture.

These bifurcation occurred during experiments with a high level of compression while shearing (induced either

by the machine axial load, or some bending of the sample due to asymmetric screw tightening). This type of

branching is very similar to those observed by Jessop [Jessop et al., 2016] using X-ray tomography on squat-type

crack taken from the field (see figure 2.5), and to those observed during mixed mode II & III experiments (figures 5.8).

For the 90 ◦ out-of-phase experiments (see figures 6.25 to 6.27), when bifurcation occurred, two symmetric

branches were formed on each side, one being faster than the other. The faster branches on each side had the same

orientation and opened simultaneously.

During sequential experiments on tilted precracks (see figures 6.28, 6.29), the cracks bifurcated approximately

to the horizontal direction (sometimes a bit tilted towards their initial direction), and continued in this direction.

The bifurcation angles, relative to the precrack direction, were measured on the outer surface using an optical

microscope, and are reported in table 6.7. The branches considered for these measurements were of a few hundreds

of micrometers long. Measurements were also made on the inner surface of some samples, and showed similar angles.

These angles will be compared below to those predicted by various bifurcation criteria (section 6.3.5).

Table 6.7: Test conditions and resulting branch angles. Values in parenthesis correspond to smaller, slower branches.

Exp. N◦ loading type Max / Min
axial force
(kN)

Max /
Min torque
(N.m)

Nominal
∆KII

∆KI

Left side
bifurcation
angles (◦)

right side bifur-
cation angles (◦)

4 Sequential 7/0 ± 110 2.7 +59/-63 +57/-60

5 Sequential 10/0 ± 150 2.6 +58/-52 +49/-63

6 Sequential 10/-5 ± 150 2.6 0 +59/-62

7 Sequential* 12/5 ± 110 1.6 +50/-50 45-56

8 Sequential 10/0 ± 90 1.6 0 0

9 Sequential* 13/0 ± 90 1.2 0 0

10 Sequential 11/-5 ± 160 2.5 +60/-35 from +60 to -90

11 Sequential 11/0 ± 160 2.5 +50/-50 +55/-65

19 Sequential 10/0 ± 90 1.6 0 0

18 Sequential w 10/0 ± 90 1.6 0 0

12 90 ◦ out-of-phase 11/-5 ± 16 2.5 -40/(+40) -40/(+40)

13 90 ◦ out-of-phase 11/-5 ± 110 1.7 -50/(+50) -50/(+50)

14 90 ◦ out-of-phase 11/-5 ± 70 1.1 +40/(-40) +40/(-40)

16 Tilted sequential 10/0 45/-145 0.8 12 20

17 Tilted sequential 10/0 80/-160 1.4 20 20
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Figure 6.15: Crack path for pseudo sequential experiment N◦4. F = +7/0 kN , C = ±110 Nm.

Figure 6.16: Crack path for pseudo sequential experiment N◦5. F = +10/0 kN , C = ±150 Nm.

Figure 6.17: Crack path for pseudo sequential experiment N◦6. F = +10/− 5 kN , C = ±150 Nm.
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Figure 6.18: Crack path for pseudo sequential experiment N◦7. F = +12/+ 5 kN , C = ±110 Nm.

Figure 6.19: Crack path for pseudo sequential experiment N◦8. F = +10/0 kN , C = ±90 Nm. Bifurcation due to
a torque overload after a power shutdown.

Figure 6.20: Crack path for pseudo sequential experiment N◦9. F = +13/0 kN , C = ±90 Nm.
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Figure 6.21: Crack path for pseudo sequential experiment N◦10. F = +11/− 5 kN , C = ±160 Nm.

Figure 6.22: Crack path for pseudo sequential experiment N◦11. F = +11/0 kN , C = ±160 Nm.

Figure 6.23: Crack path for pseudo sequential experiment N◦18. F = +10/0 kN , C = ±90 Nm. This experiment
was performed in water
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Figure 6.24: Crack path for pseudo sequential experiment N◦19. F = +10/0 kN , C = ±90 Nm.

Figure 6.25: Crack path for pseudo 90 ◦ out-of-phase experiment N◦12. F = +11/− 5 kN , C = ±160 Nm.

Figure 6.26: Crack path for 90 ◦ out-of-phase experiment N◦13. F = +11/− 5 kN , C = ±110 Nm.
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Figure 6.27: Crack path for 90 ◦ out-of-phase experiment N◦14. F = +11/− 5 kN , C = ±70 Nm.

Figure 6.28: Crack path for sequential experiment N◦16 on a tilted precrack. F = +10/0 kN , C = +45/ − 145
Nm.

Figure 6.29: Crack path for sequential experiment N◦17 on a tilted precrack. F = +10/0 kN , C = +80/ − 160
Nm.
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6.3.2 Effective loading paths

The effective and nominal loading paths during the 2000th cycle of sequential experiments N◦10 & 11, for which

the crack lengths (≈ 1.85 mm), shear loading range (±160 Nm) and peak tensile load (11 kN) were the same,

but Fmin was -5 kN for test N◦10, while it was 0 for test N◦10, are plotted on figure 6.30a. The effective loading

path are still approximately sequential in both cases, with zero or slightly negative KI during compression. The UI

ratio, defied as:

UI = ∆Keff
I /∆Knom

I =
∆Keff

I

Knom
I, max −min(Knom

I (t); 0)
(6.9)

is smaller for N◦11 without compression (UI = 0.75) than for test N◦10 (UI = 0.93), which might be due to the

enhanced asperities-induced closure associated with the higher ∆Keff
II for test N◦11, or due to more pronounced

wear in presence of compression during the mode II cycle (test N◦10) leading to a reduction of asperities-induced clo-

sure. As expected, the dilatancy (asperity induced) ∆Kdilatancy
I is higher without compression (higher ∆Keffective

II ),

but the ratio ∆Kdilatancy
I /∆Keffective

II is similar (8 % for test N◦11 and 7 % for test N◦10), suggesting that the

asperities profile is similar. Those values are slightly smaller than those measured during mixed mode II & III

experiments (8 to 27%) and in situ SEM experiments (≈ 16%). This difference can be due to the different setup

rigidity.

Figure 6.30: Nominal and effective loading paths for sequential experiment N◦10&11 (F = +11/− 5 & +11/0 kN ,
C = ±160 Nm), a) at cycle 2000 for both experiments (similar crack lengths), and b) test N◦10 at cycle 11000.

The UII ratio is much smaller for test N◦10 (UII = 0.16) than for test N◦11 (UII = 0.64), due to compression-

induced friction during the former. In both cases, the mode II load ratio is different from the nominal one

(Reffective
II = −0.86 and −0.52 respectively, while Rnominal

II = −1). This change in the load ratio can be due

to crack tip plasticity or asymmetric wear, with a higher Keff
II in the direction of the first shear load. For those

two tests, the higher ∆Keff
II , the higher the asymmetry. In both cases, at the end of the mode II part of the cycle,

the crack remains locked (at Keff
II = −0.7 & −2 MPa

√
m respectively), and is then released as the crack is opened

during the mode I part of the cycle.

The same graph is plotted at cycle 11 000 of experiment N◦10 on figure 6.30b. The crack length is then a = 2.6

mm. The UI ratio increased slightly relatively to cycle 2000 (from 0.93 to 0.96), while the dilatancy ∆KI decreases

(∆Kdilatancy
I /∆Keffective

II from 7% to 5%), which remains negligible. The biggest change is on the UII ratio, which
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increased from 0.16 to 0.39 due to wear. The asymmetry in KII increased, with a rise of Reffective
II from −0.86 to

−0.63: again, the higher ∆Keff
II , the higher the asymmetry.

For sequential experiment N◦9 (F = +13/0 kN , C = ±90 Nm), the apparent crack (seen by DIC) during the

mode II part of the cycle was smaller than during the mode I part of the cycle, as showed on figure 6.31. It means

that the crack tip remained locked during the mode II part of the cycle, and thus that ∆Keff
II = 0 and the effective

loading was pure mode I. During experiment N◦9a (same sample, different loading) performed at F = 10/− 5 kN

& C = ±110 Nm, ∆Keff
II ≈ 0, ∆Keff

I ≈ confidential data MPa
√
m and da/dn ≈ 2 ∗ 10−10 m/cycle, which is

similar to the ≈ 3 ∗ 10−10 m/cycle obtained at ∆Keff
I ≈ confidential data MPa

√
m during the mode I experiment

at R = −2 (≈ −100 MPa compressive stress in both cases).

Figure 6.31: Sequential experiment N◦9 (F = +13/0 kN , C = ±90 Nm): Smaller apparent crack during the mode
II cycle than during the mode I cycle seen by DIC.

The nominal and effective loading paths during the 5000th (before bifurcation) and 30000th (after bifurcation)

cycles of 90 ◦ out-of-phase experiment N◦14 (F = +11/− 5 kN , C = ±70 Nm) are plotted on figure 6.32. Before

bifurcation, the effective loading path keeps an elliptic shape, with UI = 0.78 in the same order of magnitude as in

sequential experiments, and UII = 0.98, much higher than during the sequential experiments due to the fact that

the crack is opened while shearing. Reffective
II = −1.04, in this case, but it becomes smaller than −1 for higher

shear ranges, as in the aforementioned sequential experiment. After bifurcation, at cycle 30 000, the loading path

is rotated, and ∆Keff
I is increased while ∆Keff

II is reduced.

Figure 6.32: Loading paths for 90 ◦ out-of-phase experiment N◦14 (F = +11/ − 5 kN , C = ±70 Nm), at cycle
5000 (before bifurcation) and 65000 (after bifurcation).

The nominal and effective loading paths during the 45000th cycle of sequential experiment N◦16 on a tilted crack
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(F = +10/0 kN , C = +45/− 145 Nm) before bifurcation, at cycle 30000, and after bifurcation, at various cycles,

are plotted on figure 6.33. Before bifurcation, the effective loading path is still tilted sequential, with UI = 0.64

which is smaller than for the other loading paths, and UII = 0.42. During the first loading segment, the effective

loading path is aligned with the nominal one, while the opening is much smaller during the second segment, for

which Keff
I /Knom

I = 0.26, and Keff
II /Knom

II = 0.8 which is higher than for sequential experiments because the

crack is opened. During the third segment, the crack is closed & under compression, and Keff
II /Knom

II = 0.08,

reduced by friction. Due to those effects, the mode II load ratio is changed from Rnom
II = −3.2 to Reff

II = −0.35

when considering only parts 2&3 of the cycle (Reff
II = −0.8 with part 1).

After bifurcation, the loading paths tends to become closer to a sequential path, but are still a bit tilted, in the

opposite direction, and stay this way until the end of the experiments.

Figure 6.33: Loading paths for sequential experiment N◦16 on a tilted precrack (F = +10/0 kN , C = +45/− 145
Nm) before bifurcation, at cycle 30000 (left), and effective loading paths for various cycles (bifurcation occurred
shortly after cycle 30000) (right).

The evolution of UI as a function of the crack length for the pseudo sequential experiments is plotted on figures

6.34 & 6.35, with and without the bending correction respectively (experiment with a number over 10 included had

a strain gage to avoid asymmetric screw tightening and resulting bending).

The correction clearly reduces the scatter in the data. For the experiments leading to bifurcation after a short

coplanar growth (less than 1 mm), represented in line-made symbols, the UI ratio deceases rapidly as the crack

propagates, until bifurcation. Paradoxically, these tests (N◦4, N◦5, and N◦7) correspond to mode I R ratios of 0,

0 and +0.42, respectively. For the experiments leading to long coplanar growth (3 to 7.5 mm) and ending with a

bifurcation, among which two (tests N◦6 and N◦10) had mode I R ratios of -0.45 or -0.5 combined with a high

shear range, this decrease in UI before bifurcation is not present.

The experiments leading to long coplanar growth have a relatively stable or even slightly increasing UI = 0.8±0.2

with bending correction (0.9 ± 0.1 for experiments with a strain gage), which is in the same order of magnitude as

for mode I experiments on the SENT samples.

Experiments N◦10 and N◦11 have the same SIFs range (and a strain gage), but compression is added while

shearing during the first one, and while both tests have the same initial UI , its evolution is then very different: fast

decrease for experiment N◦11, and stable value for experiment N◦10 (-5 kN compression while shearing). The same

type difference seems to exist between experiments N◦5 (no compression applied) & N◦6 (-5 kN compression), but

no strain gage was used so the results are less reliable. A compression-induced acceleration of crack face asperities
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Figure 6.34: UI as a function of the crack length for sequential experiments. Experiments leading to long coplanar
growth are in full symbols, and the other in line-made symbols.

Figure 6.35: UI as a function of the crack length for sequential experiments without bending correction. Experiments
leading to long coplanar growth are in full symbols, and the other in line-made symbols.

wear might reduce asperities-induced closure effect and its enhancement by mode II loading.

An increase of roughness-induced closure with the shear singularity can be expected. However, UI does not

correlate with the effective mode mixity ratio ∆Keffective
II /∆Keffective

I for the sequential experiments, as shown

on figure 6.36. The results may be different if shear is applied during the mode I part of the cycle.

For the sequential experiments giving rise to a long coplanar growth, and mounted with a strain gage to avoid

bending, ∆Keffective
I can be predicted quite accurately as an affine function of ∆Knom

I , with a slope of confidential

data and a small offset close to confidential data MPa
√
m, as shown on figure 6.37. Those results are similar to

those of pure mode I experiments, meaning that shear not did not induce any major increase roughness-induced

closure during those experiments.
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Figure 6.36: Evolution of UI as a function of ∆Keffective
II /∆Keffective

I for sequential experiments, without bending
correction.

Figure 6.37: Evolution of ∆Keffective
I as a function of ∆Knominal

I for long coplanar sequential experiments with a
strain gage.

Figure 6.38 shows the evolution of the UII ratio as a function of ∆Keff
II for the pseudo sequential experiments.

This ratio rises with ∆Keff
II for all experiments, probably due to wear or because a large sliding displacement of

rough crack surfaces wedges the crack open. UII ranges from 0 to 0.5, which is lower than the ≈ 0.8 values obtained

during mixed mode II & III experiments in predominant mode II, for which the loading ranges were higher (∆Keff
II

from confidential data MPa
√
m). In addition, the roughness of a crack grown in pure mode II & III (for which the

shear stress ahead of the tip peaks at 0◦) might be smaller than that of a crack grown in sequential mode I + II

(because the shear stress ahead of the tip during the mode I cycles peaks at ±70◦). As expected, the datapoints

of experiments N◦6 & N◦10, performed with compression while shearing, are a bit below the others, while those

of experiments N◦4 and N◦11 (short coplanar growth) are a bit above. For experiments N◦19 & N◦10, for which

the cracks grew over 7.2 and 5.5 mm, respectively, the UII values are a bit uncertain due to the difficulties to esti-

mate ∆Knominal
II for a crack longer than 4 mm (see section 6.2.3). At the same ∆Keff

II , a higher UII was expected

for experiments run during a higher number of cycles (and longer coplanar growth), due to wear, but is not observed.
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Figure 6.38: UII as a function of ∆Keffective
II for sequential experiments. Experiments leading to long coplanar

growth are in full symbols, and the others in line-made symbols.

As mentioned above, for pseudo sequential experiments, the UI ratio decreases before bifurcation during short

coplanar growth, while UII increases due to wear. As a consequence, the ratio ∆Keffective
II /∆Keffective

I increases

rapidly, as shown on figure 6.39. When the effective mode-mixity ratio exceeds a value around 2, the crack bifurcates

(as indicated by circles). For long coplanar growths, the ratio increases slowly, until it eventually reaches ≈ 2 and

the crack bifurcates (experiments N◦6 & N◦10). When this ratio stays below 2, the crack remains coplanar.

Experiment N◦11 & N◦10 correspond to the same shear amplitude and peak tensile load, but with compression

while shearing for the later. This compression leads to an initially smaller ∆Keffective
II /∆Keffective

I ratio, which

also rises slower than for experiment N◦11, leading to a longer coplanar growth.

Surprisingly, this ratio is initially smaller for test N◦5 than for test N◦6, although they had the same shear

amplitude and peak tensile load, with compression while shearing during test N◦6. This can be due to a longer

precrack (2.6 mm) for test N◦5 compared to 1.6 mm for test N◦ 6. However, like for tests N◦10 & N◦11, this

ratio increases slower for test N◦6, with compression, than for test N◦5, without, leading again to a longer coplanar

growth.

The evolution of ∆Keff
III /∆K

eff
II for experiments N◦10 and 19 is plotted on figure 6.40 as a function of the

crack length, and compared to the nominal ratio obtained by XFEM computations. As expected, the relative value

of KIII increases with the crack length, but not as much as expected from the XFEM computations (maximum

measured ratio of 0.35 versus 1 predicted). These differences could be due either to a change in the crack front

shape, or to a poor estimation of ∆Keff
III (due to an inaccurate out-of-plane displacement measurement by DIC,

and a simplified method to estimate the mode III singularity). For cracks smaller than 4 mm, this ratio is below 0.2

and the influence of KIII can be neglected (especially in expressions of "equivalent" ∆K involving squared SIFs).
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Figure 6.39: Evolution of ∆Keffective
II /∆Keffective

I as a function of the crack length. Bifurcations are marked by
circles.

Figure 6.40: Evolution of ∆KIII/∆KII as a function of the crack length, mean value along the front computed
by XFEM, value on the outer surface computed by XFEM and value measure on the outer surface by DIC during
experiments 10 and 19.

The evolution of ∆Keffective
II /∆Keffective

I is plotted on figure 6.41 for 90 ◦ out-of-phase and sequential ex-

periments on tilted cracks. In those experiments, bifurcation did not correspond to any particular value of

∆Keffective
II /∆Keffective

I . The mode mixity ratio is not sufficient to predict bifurcation for non-sequential ex-

periments. Still, bifurcation leads to a decrease of this ratio, meaning that bifurcation tends to occur in a direction

increasing the proportion of mode I relative to mode II.
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Figure 6.41: Evolution of ∆Keffective
II /∆Keffective

I as a function of the crack length for 90 ◦ out-of-phase (OOP)
and sequential experiments on tilted precracks. Bifurcations are marked by circles.
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6.3.3 Fracture surface analysis

The fracture surfaces of sequential experiment N◦9, with lowest torque amplitude (F = +13/0 kN , C = ±90

Nm), are shown on figures 6.42,6.43 & 6.44.

Figure 6.42: Fracture surface of sequential experiment N◦9 (F = +13/0 kN , C = ±90 Nm) near the crack initiation
hole. The scale is given by the 1 mm thickness of the samples.

Figure 6.43: Fracture surface of sequential experiment N◦9 (F = +13/0 kN , C = ±90 Nm) at the crack front.
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Figure 6.44: Fracture surface of sequential experiment N◦9 (F = +13/0 kN , C = ±90 Nm) obtained with an
optical microscope.

The surface is not worn at all, in spite of a very high number of cycles (1.64 106) and a bending correction of

-3.5 kN that should induce some compression during the shearing cycles. It actually looks similar to those observed

in pure mode I, which is consistent with the fact that UII was less than 0.1, and ∆Keff
II stayed below 3 MPa

√
m

during the whole experiment (and ∆Keff
I /∆Keff

II < 0.28). The crack front of the 6.3 mm-long crack is straight and

normal to the inner and outer surfaces, this corresponding more or less to an iso KI profile (as shown previously

on figure 6.11). Most of the sequential experiments share a similar crack front shape and orientation.

Figure 6.45: Fracture surface of sequential experiment N◦19 (F = +10/0 kN , C = ±90 Nm) near the crack
initiation hole.

For the same torque amplitude (±90 Nm, 10/0 kN) and in spite of a much smaller number of cycles (51

000) the fracture surface of test 19 for which UII rose from 0.17 to 0.42 and ∆Keff
II up to 28 MPa

√
m during a

long coplanar growth exhibits a gradient in wear (see figures 6.45 & 6.46): substantial near the center hole and

progressively decreasing near the final crack front (the amplitude of the sliding displacements is larger near the

hole ([Uθ] ∝ ∆Keff
II ∗

√
distance to the tip), as well as the number of wear cycles). Clusters of round, oxidized

metal debris are present (see figure 6.47). Their formation in fatigue cracks grown in mode II was analysed in

detail by [Smith and Smith, 1982]. Such debris, when they remain trapped inside the contact (which might become

more frequent when static compression is applied while shearing), form what tribologists call a "third body layer"

which separates the "first bodies" and tends to reduce their friction and to protect them from further wear. If, at
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the contrary, these debris are ejected, wear becomes more severe. In this experiment, the effects of friction and

asperities might be very dependent on the position along the crack.

Figure 6.46: Fracture surface of sequential experiment N◦19 (F = +10/0 kN , C = ±90 Nm) at the crack front.

Figure 6.47: Oxidized metal debris, observed on the fracture surfaces of sequential experiment N◦19 (F = +10/0
kN , C = ±90 Nm).

The crack front is not normal to the inner and outer surfaces, but tilted by 18◦ towards the inner surface. For

such crack front shape, the effective SIFs estimated using DIC and the FEM model supposing a crack front normal

to the inner and outer surfaces might be wrong and should be used with caution in the analysis.
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The evolution of the SIFs along such a front was computed using an XFEM model, and is plotted figure 6.48.

This front inclination tends to make KI slightly less uniform, but is slightly closer to an iso KII & KIII contour,

suggesting that both shear and opening SIFs drive the propagation.

Figure 6.48: Evolution of the SIFs along the front for a straight front normal to the inner an outer surfaces (full
symbols) and a straight front inclined by 18◦ (hollow symbols).

For an intermediate torque amplitude (test N◦4, ±110 Nm, 7/0 kN , 235 000 cycles, UII larger than in most

other cases and rising from 0.3 to 0.5 and ∆Keff
II up to 14 MPa

√
m) the fracture surface is worn over its entire

length and even more rounded debris are observed than in the previous case (fig. 6.49). At some places, these

debris seem to be squeezed and compacted into a friable layer which flakes (fig. 6.50).

Figure 6.49: Rounded debris on the fracture surfaces of test N◦4, ±110 Nm, 7/0 kN .
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Figure 6.50: Squeezed and compacted debris on the fracture surfaces of test N◦4, ±110 Nm, 7/0 kN .

For the highest torque amplitude (test N◦11, ±160 Nm, 11/0 kN , UII rising from 0.45 to 0.5, ∆Keff
II rising up

to 18 MPa
√
m) the fracture surface is surprisingly worn considering the very small number of cycles (6000) with

a tendency to flaking (fig 6.51). The angle at which the crack front intercepts the outer surface is a typical result

of shear-mode corner-point singularity.

Figure 6.51: Highly worn fracture surface of test N◦11, ±160 Nm, 11/0 kN .
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For the same torque amplitude and peak tensile load, but with compression while shearing (sequential experiment

N◦10, F = +11/− 5 kN , C = ±160 Nm, UII from 0.15 to 0.4), wear is even more severe, as shown on figure 6.52,

maybe partly due to an enhancement of asperities progressive flattening by the biaxial ratchetting phenomenon

proposed by Kapoor [Kapoor, 1997].

Figure 6.52: Fracture surface and wear marks of sequential experiment N◦10 (F = +11/− 5 kN , C = ±160 Nm)
obtained with an optical microscope and SEM.

Some debris came out of the crack during the experiment, as shown on figure 6.53 (the same occurred for exp.

N◦6 with compression as well, and in a lesser extent during experiment N◦19, without compression but with a

longer crack growth).

Figure 6.53: Wear debris coming out of the crack during experiment N◦10 (left). DIC pattern after cleaning (right).

Some oxidized areas are present, as shown on the EDS and BSE image figure 6.54. This oxidation is present

with or without compression, as shown on the BSE images figure 6.55 (where the oxidized areas appear darker, as

shown on figure 6.54). EDS analysis shows similar peak oxygen content, but sample N◦11, without compression,

shows a more or less uniform oxidation. By contrast, sample N◦10 exhibits long wear marks on bare metal, where

friction is probably stronger (white areas), and a few zones of clustered debris (darker areas).

The effect of compression can be assessed using Archard’s law:

Vwear = k ∗ P ∗ [u] (6.10)
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Figure 6.54: Oxidized areas on the fracture surface of test N◦10 (F = +11/− 5 kN , C = ±160 Nm). Right image:
BSE.

Figure 6.55: Oxidized areas on the fracture surface of test N◦10 (F = +11/ − 5 kN , C = ±160 Nm) (left) and
N◦11 (±160 Nm, 11/0 kN) (right) with BSE.

With Vwear the volume of debris per unit of surfaces, k a constant, P the normal stress and [u] the relative

displacement of the surfaces: the higher the normal pressure and the relative crack face sliding, the more pronounced

the wear. Since [u] ∝ ∆Keff
II ∗

√
distance to the tip, we have, at a given position:

Vwear ∝ P ∗ ∆Keff
II (6.11)

Assuming a uniform Coulomb friction: ∆Keff
II = FII(a) ∗ (

√
πa) ∗ (∆Tau − Taufriction) = FII(a) ∗ (

√
πa) ∗

(∆Tau− 2µP ):

Vwear ∝ P ∗ (∆tau− 2µP ) (6.12)

∂Vwear

∂P
∝ ∆tau− 4µP (6.13)

From this last equation, it appears that depending on the shear stress range compared to 4µ ∗P , a normal pressure
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can either enhance of hinder crack face wear. If P is too high, it prevents the crack from sliding, thus suppressing

wear. In the opposite, if P is too low (no compression), there is also no wear.

However, the influence of normal pressure is more complex than suggested by this equation, since Arnaud

[Arnaud, 2018] has shown in Ti-6Al-4V that the energetic wear coefficient (parameter relating the worn volume to

the energy dissipated in the contact) actually decreases as the pressure increases. So does the friction coefficient,

because of changes in the tribological conditions (fraction of trapped/ejected debris, reduction of oxygen access,

transition from abrasive to adhesive wear...).

Near the central hole, the wear marks are parallel to the inner and outer surfaces, while near the crack tip

(5.8 mm long crack), those marks are inclined by 25◦ towards the outer surface, while the crack front is normal

this surface (see figure 6.52). This means that the ratio of the out-of-plane over the in-plane relative crack face

displacement is equal to:

[uIII ]
[uII ]

= tan(25) = 0.47 (6.14)

and the effective shear SIFs ratio is equal to:

∆Keff
III

∆Keff
II

=
[uIII ]

[uII ] ∗ (1 + ν)
= 0.36 (6.15)

Which is between the 0.18 ratio measured by DIC and the 0.64 ratio predicted by XFEM computations (mean

value on the whole front) shown on figure 6.40. The DIC measurement method might be inaccurate and underes-

timate ∆Keff
III .

During 90 ◦ out-of-phase experiments, wear was also pronounced, in spite of a small torque amplitude (N◦14,

F = +11/ − 5 kN , C = ±70 Nm), as figure 6.56 suggests: compression was indeed present during part of the

shearing cycle, along with high levels of ∆Keff
II . For a higher shear amplitude (N◦12, F = +11/−5 kN , C = ±160

Nm), round, detached wear debris accumulate near the final crack front, just before bifurcation (6.57).

Figure 6.56: Fracture surface of 90 ◦ out-of-phase experiment N◦14 (F = +11/ − 5 kN , C = ±70 Nm), near the
crack initiation hole.
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Figure 6.57: Wear debris near bifurcation of 90 ◦ out-of-phase experiment N◦14 (F = +11/ − 5 kN , C = ±160
Nm).

The sequential experiment run on tilted precracks produce fracture surfaces that are much less worn, even when

the applied number of cycles (136 000) as well as the shear loading range (∆C = 45/ − 145 vs ±70 Nm) were

higher, like for test N◦16 (10/0 kN) shown on figure 6.58.

Figure 6.58: Fracture surface of tilted sequential experiment N◦16 (F = +10/0 kN , C = +45/ − 145 Nm), near
the crack initiation hole.
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6.3.4 Analysis of crack growth rates

Crack growth rates were obtained by fitting a polynomial of order 1 to 5 to the a(N) curves (the order depending

on the crack growth length), and then deriving it.

The obtained growth rates range from 1.9 ∗ 10−9 to 1.3 ∗ 10−6 m/cycle, which covers the range of the on

field measured values. Paris-like equations (that is: power functions) correlating the measured growth rates with

various combinations of nominal or effective SIFs described below were fitted, and the prefactor, C, exponent, n,

and correlation coefficient, R2, are reported in table 6.8. The width of the envelope containing 90 % or 100 % of

the data points, defined as the ratio between the crack growth rates of the upper envelope over that of the lower

envelope is also indicated (see figure 6.60).

Table 6.8: Coefficients of various kinetic laws fitted to the data.

Driving force m C (m/cycle) R2 Enveloppe 90% Enveloppe 100%

∆Knom
eq confidential confidential 0.41 8.4 17.1

∆Keff
I confidential confidential 0.56 7.2 169.5

∆Keff
shear confidential confidential 0.47 8.8 210.3

∆Keff
eq confidential confidential 0.87 4.4 11.1

∆Keff
W ong,II confidential confidential 0.89 4.0 14.7

The equivalent ∆K is defined as:

∆Keq =
√

(∆KI)2 + (∆Kshear)2 (6.16)

with ∆Kshear as defined for mixed mode II & III experiments:

∆Kshear =

√

(∆KII)2 +
1

1 − ν
(∆KIII)2 (6.17)

The crack growth rate does not correlate well with ∆Knom
eq , nor with ∆Keff

I or ∆Keff
shear alone, as shown in

figure 6.59 and table 6.8. Using these driving forces, the coefficients of correlation are low, and the envelopes are

wide.

The crack growth rates correlates much better with ∆Keff
eq , as shown in figure 6.60 and table 6.8. Such a simple

driving force gives a coefficient of correlation of 0.87, still lower than that of pure mode I experiments (R2 = 0.961),

but not too bad considering the wide variety of loadings & growth rates, as well as the uncertainties on the effective

SIFs. 90% of the data points are contained within a factor 4.4 in growth rate, and 100% within a factor 11.1. The

curve is superimposed with that of mode I experiments, and not too far from that of mode mixed mode II & III

experiments, which has a higher slope (3.25).

A slightly better fit can be obtained using a driving force inspired of that proposed by Wong [Wong et al., 1996]:

∆Keff
W ong,II = ∆Keff

II ∗ (1 + (
∆Keff

I

∆Keff
II

)w) (6.18)

with w = 1.05 (1.3 in [Wong et al., 1996]). The improvement over ∆Keff
eq being negligible (see table 6.8), the

later driving force was kept, due to its energetical meaning.

The evolution of the crack growth rate as a function of ∆Keff
eq is plotted on figure 6.61 with different colors and

symbol depending on the testing conditions and crack path. While the data points of sequential experiments giving
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Figure 6.59: Crack growth rates for all the non-proportional mixed-mode I + II experiments, using three driving
forces: ∆Knom

eq , ∆Keff
I & ∆Keff

shear.

Figure 6.60: Crack growth rates for all the non-proportional mixed-mode I + II experiments as a function of ∆Keff
eq ,

and corresponding 90% upper and lower envelopes. The pure mode I and non-proportional mixed-mode I + II data
are superimposed.

rise to a long coplanar growth are relatively well clustered, those of sequential experiments leading to bifurcation after

a short coplanar growth are more scattered. This is due to the fact that accurate crack growth rate measurements

are difficult to perform during less than 1 mm growth, while ∆Keff
II is however rapidly increasing due to wear, this

leading to horizontal scattering of the data points.

The data of sequential experiments on tilted precracks are superimposed with those on normal precracks, before

and after the bifurcation, which is consistent with the fact that the loading shape is quite similar.

The data from 90 ◦ out-of-phase experiments are a bit scattered before bifurcation, for the same reason as with the

sequential experiments (inaccurate measurement of the rate during short coplanar growth), and more clustered after

bifurcation (longer propagation). The crack growth rate seems to be lower than during the sequential experiments,

for the same loading range, but no firm conclusion can be drawn given the scatter. High effective SIFs might be
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overestimated due to crack-tip plastic flow couplings, as discussed in section 6.2.4, and this overestimation is higher

for 90 ◦ out-of-phase loadings than for sequential ones, which can lead to apparently smaller growth rates.

Experiment N◦9 witnessed different loading ranges: 10/-5 kN & ±110 Nm (9a), then 10/-5 kN & ±140 Nm

(9b) and finally 13/0 kN & ±90 Nm. For the first two loadings, the crack growth rates were small (a few 10−10

m/cycle) and measured only over a ≈ 0.1 mm crack growth (to avoid too long experiments), which is too small

to have reliable results (using DIC with the aforementioned setup) and thus to be included in the previous graphs.

These measured growth rates appear to be within a factor 3 of the ones predicted using ∆Keff
eq .

In [Wong et al., 1996], [Wong et al., 2000b] & [Akama, 2003], the crack growth rates measured in non-proportional

mixed-mode I + II on rail steels seemed to depend only on the effective SIFs range, and not on the loading path,

which is consistent with the present results. By contrast, a difference in growth rate of a factor 2.46 was found

for 316L stainless steel (softer material, which might have more plasticity couplings: σUT S = 610 MPa, σY = 320

MPa, A% = 48) in [Fremy et al., 2014b] between a square and a cross loading path of similar amplitudes. The

experiments presented in this study cannot be as precise as those of [Fremy et al., 2014b], as closure effects and crack

face friction are present here, which adds uncertainties on the estimated effective SIFs, while they were avoided by

Fremy et al. by applying a positive RI . Even if an intrinsic effect of the effective loading path on the crack growth

rate cannot be excluded here, it would be of second order relative to the large influence of the nominal loading path

on the effective one, and thus on the crack growth rate.

Here, the biggest effect of the loading paths does not seem to be intrinsic (that is, on the ∆Keff
eq - da/dN rela-

tion), but extrinsic, that is: on the relation between nominal and effective SIFs (UI and UII ratios). Experiments

N◦10 & 12 with the same nominal ∆K, but with a sequential or 90◦ out-of-phase loading paths have very different

different effective SIFs (factor ≈ 2 on ∆Keq), and thus crack path and growth rates (4.5 mm coplanar growth versus

0.4 mm, and factor 5 on the crack growth rate).

Figure 6.61: Crack growth rates for all the non-proportional mixed-mode I + II experiments as a function of ∆Keff
eq ,

depending on the testing conditions and crack path. Seq. long/short copl: sequential experiments giving rise to
a long/short coplanar growth. Tilted seq. copl/bif: tilted sequential experiments, before/after bifurcation. OOP
coplanar/bifurcated: 90 ◦ out-of-phase experiments before/after bifurcation.

In order to highlight a possible synergetic effect between mode I and mode II loadings during sequential tests,
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the crack growth rates obtained by cumulating the mode I and shear modes contributions are estimated as follow:

da

dN Cumulated
= CI ∗ (∆Keff

I )nI + CII&III ∗ (∆Keff
shear)nII&III (6.19)

Where CI , nI , CII&III , nII&III are the coefficients obtained from the pure mode I and mode II & III experiments

respectively. As the range of ∆Kshear is smaller during mode I + II experiments than during mode II & III

experiments, the Paris-type equation for shear mode is extrapolated here. This cumulated crack growth rate is

plotted in figure 6.62 as a function of the measured crack growth rate, and compared to the crack growth rate

estimated using ∆Keq. On this figure, the closer to the line of slope 1, the better.

In average, the cumulated crack growth rate is not below the measured rate: the simple sum of mode I and shear

modes crack growth rates alone does not systematically underestimate the measured one. This means that there are

no apparent synergistic effects due to shear and tensile plastic flow couplings, in opposition to the observations of

[Doquet and Pommier, 2004] on a ferritic-pearlitic steel, based on a much smaller number of tests. This estimation

of crack growth rate is even surprisingly accurate considering that the coefficients in the Paris-like equations were

taken from pure mode I and mode II & III experiments and not optimized in order to get the best fit. However,

the correlation with measured crack growth rates is not as good as the results obtained with ∆Keq: the points

are gathered in an envelope of a factor 11.1 for ∆Keq, and 12.5 for the cumulated growth rate. The mean relative

square error, defined as:

Error =
1
k

∗ Σk
1

(

2 ∗
da
dN estimated

− da
dN measured

da
dN estimated

+ da
dN measured

)2

(6.20)

is of 0.3 for ∆Keq and 0.41 for the cumulated growth rate.

Figure 6.62: Predicted crack growth rates estimated by cumulating the mode I and shear mode contributions or
using ∆Keq as a function of the measured crack growth rate.

Experiment N◦18, which was similar to experiment N◦19, except that it was performed in water, led to similar
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crack growth rates (see appendix D), meaning that water did not increase the crack growth rate due to corrosion

or a reduction of the friction between the crack faces (which would increase ∆Keff
II ).

6.3.5 Analysis of crack paths

As shown in section 6.3.2, the range of the effective SIFs is no sufficient to predict bifurcation. The complete

effective loading paths from various cycles are thus analyzed here, using various approaches. For each experiments

and each of the two crack tips, 3 cycles are analyzed (when the measurements are available): one during coplanar

growth, one at bifurcation, and one after bifurcation, making a total of 56 analyzed cases (see table 6.9). The

predicted crack growth angles are compared with the measured ones. When double bifurcations at various angles

were obtained, the longest branch was considered. Those 56 cases include 8 cases (14% of the data) for which the

effective SIFs might be inaccurate (as discussed in 6.2.4).

Table 6.9: Test conditions and cycles analyzed for crack path prediction.

Exp.
number

loading type Max /
Min axial
force (kN)

Max
/ Min
torque
(N.m)

Nominal
∆KII

∆KI

Cycle
during
coplanar
growth

Cycle at
bifurca-
tion

Cycle af-
ter bifur-
cation

4 Sequential 7/0 ± 110 2.7 160000 180000 /

5 Sequential 10/0 ± 150 2.6 500 15000 /

6 Sequential 10/-5 ± 150 2.6 70000 128000 /

7 Sequential 12/5 ± 110 1.6 560000 610000 /

8 Sequential 10/0 ± 90 1.6 50000 / /

9 Sequential 13/0 ± 90 1.2 1640000 / /

10 Sequential 11/-5 ± 160 2.5 18000 20500 /

11 Sequential 11/0 ± 160 2.5 500 4000 /

19 Sequential 10/0 ± 90 1.6 50000 / /

12 90 ◦ out-of-phase 11/-5 ± 16 2.5 / 500 2500

13 90 ◦ out-of-phase 11/-5 ± 110 1.7 / 1000 15000

14 90 ◦ out-of-phase 11/-5 ± 70 1.1 500 5000 80000

16 Tilted sequential 10/0 45/-145 0.8 500 20000 120000

17 Tilted sequential 10/0 80/-160 1.4 500 5000 37500

The dilatancy ∆KI during sequential experiments (which was below 8% of ∆Keff
II ) was neglected, as it led to

less than 4◦ difference in crack path prediction and 7% difference in the ∆KII/∆KI value corresponding to the

transition from coplanar to bifurcation using the MTS criterion.

The bifurcation angles were measured over a few hundreds of micrometers, since on shorter distances the paths

were sometimes tortuous and the bifurcation angle non uniform along the crack front, making reliable measurements

impossible (this can be due to effects of the microstructure or to a bifurcation that did not occur simultaneously

along the whole crack front). However, the bifurcation criteria applied in this section are used to predict the angle

of an infinitesimally small branch, and not of a few hundreds of micrometers long one, which might induce some

errors.
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Another source of errors can be the determination of the cycle at which the crack bifurcated. This cycle was

determined using the strain map obtained by DIC (where the branch can be seen if it is long enough) and by seeking

for a change of slope in the da/dN curve (which corresponds to bifurcation), with a precision that is difficult to

estimate.

Considering these various sources or experimental errors, the percentage of successful prediction of crack growth

direction of various criteria are assessed within less than 10, 20 or 30◦ error.

Classical LEFM criteria, namely the maximum tensile stress criterion (MTS), maximum range of the tensile

stress criterion (MTSR), maximum ∆k∗
I (∆k∗

I = max(k∗
I ) − min(k∗

I , 0)), maximum ∆G∗ were tested first. The

results in terms of percentage of successful prediction of crack growth direction are reported in table 6.10 for the

34 cases where the cracks continued to propagate straight ahead (that is: before or after bifurcation, as indicated

in table 6.9) and the 22 cases where bifurcation occurred (table 6.11).

The max energy release rate criterion successfully predicts continued coplanar growth, but is very poor at pre-

dicting bifurcation. Since ∆G ∝ (∆Keq)2, it means that the crack does not grow in the direction maximizing its

growth rate if we assume that ∆Keq is the crack driving force. The MTS criterion is much better than the MTSR

criterion, and slightly better than the max ∆k∗
I criterion, but is still not very good, since the predicted bifurcation

angles (70◦ ) are a bit different from the measured ones (50 − 60◦), and bifurcations are predicted for almost half

of the cases where the crack path actually remained straight.

Table 6.10: Percentage of accurate predictions when continued coplanar crack growth was observed.

6= with measured
angle (◦)

% of good predictions for straight crack growths

max ∆G∗ max ∆k∗
I MTS MTSR

<=10 85 53 53 6

<=20 88 59 59 9

<=30 91 62 62 15

Table 6.11: Percentage of accurate predictions for bifurcations.

6= with measured
angle (◦)

% of good predictions for bifurcations

max ∆G∗ max ∆k∗
I MTS MTSR

<=10 9 9 9 0

<=20 27 36 41 32

<=30 32 82 82 73

In order to improve these predictions, elastic-plastic FEM computations reproducing the effective loading path

and measured crack length, without contact nor friction, were run. For simplification purposes, the cracks were

modeled as coplanar, even when they were not, and the applied loads were set so as to reproduce the effective SIFs

loading path. The obtained time evolution of the stress & strain fields were used to test various approaches, such

as the MTSp, the MTSRp, the maximum of σθθ ∗ ǫθθ, and the local approach (competition between SWT damage

model in the direction of MTSp, and max of F&S ∗ Findley′s damage model) using the same coefficients as for

mode I and mode II & III experiments. Each time, the stresses and strains were analyzed in all possible directions,
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at 40 µm (as for mode II & III experiments) from the crack tip (4 elements ahead), except for the local approach

where the results were averaged on a 40 µm line starting from the crack tip.

The results in terms of percentage of successful prediction of crack growth direction are reported in table 6.12

for cases where the cracks continued to propagate straight ahead (before or after a bifurcation) and in table 6.13

for cases were bifurcation occurred. The local approach gives the best results in case of straight crack growth,

very close to the MTSp, as the tension driven damage mechanism, which was evaluated in the MTSp direction,

was almost always predominant over the shear-driven damage mechanism. The MTSp criterion is slightly better

than its LFEM version (MTS), but the predicted bifurcation angles are still a bit different from those measured

experimentally: 86% good predictions within ±30◦, meaning that bifurcation is indeed predicted to occur at the

correct crack length, but only 14% within ±10◦ due to the fact the predicted bifurcation angle is still ≈ 70◦, while

the measured angles were at 50−60◦. The max of σθθ ∗ǫθθ criterion gives most accurate prediction of the bifurcation

angles within ±10◦, for cases where bifurcation actually occurred. However, it often predicts bifurcation when the

crack remained straight: adding a strain component to the criterion helped getting better bifurcation angles, but

bifurcation is predicted too early.

Table 6.12: Percentage of accurate predictions when continued coplanar crack growth was observed, taking into
account crack tip plasticity.

6= with measured
angle (◦)

% of good predictions for straight crack growths

MTSp MTSRp max σθθ ∗ ǫθθ Local approach

<=10 50 0 32 53

<=20 62 12 41 65

<=30 65 18 53 68

Table 6.13: Percentage of accurate predictions for bifurcations taking into account crack tip plasticity.

6= with measured
angle (◦)

% of good predictions for bifurcations

MTSp MTSRp max σn ∗ ǫn Local approach

<=10 14 5 68 9

<=20 55 45 91 45

<=30 86 73 91 91

In order to improve those predictions for the sequential experiments, the influence of the non singular stresses

was studied. The influence of the T-stress has been thoroughly studied in the literature, but other non singular

stresses exists: that induced by compression/closure effects, and that induced by friction between the crack faces.

The effect of such non-singular stresses was investigated by Frelat & Leblond [Leblond and Frelat, 2000] for an elastic

material under monotonic loading. When compression is applied, the initial kink angle is found to be unchanged,

with a further deviation of the crack from its original bifurcation angle as it propagates (using k∗
II = 0 criterion).

Here, their effect is analyzed for an elastic-plastic behaviour and cyclic loading.

Elastic-plastic computations of a pseudo sequential loading path were performed at the same ∆Keff
I = 8.1

MPa
√
m & ∆Keff

II = 16.1 MPa
√
m for an a = 2 mm long central crack in a plate under plane stress. Various

mode I load ratios (RI = 0 & RII = −1) and various friction coefficients (0 or 0.5, leading to UII = 1 & UII = 0.5)

were studied. For each computation, the angular distribution of the peak value of the tangential stress over time
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was extracted (σθθ, max(t)), and reported on figure 6.63.

Figure 6.63: Evolution of the maximum of the tangential stress σθθ a function of the direction, at 40 µm from the
crack tip for an elastic plastic behavior and pseudo sequential mode I + II loadings at ∆Keff

I = 8.1 MPa
√
m &

∆Keff
II = 16.1 MPa

√
m.

Without compression nor friction, three maxima appears on the curve: at -72◦ (476 MPa) and 73◦ (474 MPa)

due to the reversed mode II cycle, and at 13◦ (491 MPa) due to the mode I cycle. The maximum due to mode I

loading is not exactly at 0◦ (as it would be without mode II loading) due to the coupling between shear and tensile

plastic flows. The static compression while shearing (RI = −1) slightly increases the peak σθθ near 0◦ (by less

than 2 %), and tends to shift it back to 0◦, but reduces the peaks near ±70◦ (by 8 %), making bifurcation even

less probable if it is driven by the hoop stress. This means that the increased length of coplanar growth observed

when compression was added while shearing might not only be due to a reduction of ∆Keffective
II /∆Keffective

I ,

but also to the effect of compression on the stress distribution ahead of the crack tip. When friction is added

(RI = −1, UII = 0.5, µ = 0.5), the height of the peak near 0◦ is reduced by 10 % (compared to RI = 0), which is

due again to the coupling between shear and tensile plastic flows at the crack tip. At the same time, the height of

the peaks near ±70◦ is increased by 5 %, and their angular position are shifted: ±65◦ instead of -72◦ & 73◦. In

fact, the friction stress adds a component to σθθ which is maximal at ±45◦ (depending on the loading direction),

thus shifting the direction of the secondary maxima of hoop stress to a value closer to ±45◦ and increasing its height.

Those non singular stresses were added in the previous elastic-plastic simulations of the effective loading paths

using the UI and UII ratios:

τfriction = (1 − UII) ∗ τapplied (6.21)

σcontact = σcompression + σclosure = σcompression + (UI − 1) ∗ ∆σtension (6.22)

Those stresses are added to the loads applied at the edges of the specimen, and on the crack faces as two opposites

loads, so that the effective SIFs remains unchanged. This method was only applied to sequential experiments, for

whom all the effective SIFs are correctly estimated, and the U ratios are known. The MTS (elastic computations),
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MTSp criteria and local approach were tested again in these conditions, at 40 µm from the crack tip.

The results for the various approaches are reported in table 6.14. Adding crack-face compression and friction

does not improve the predictions of the MTS criterion, as bifurcations are still predicted too early. However, adding

these effects highly improved the predictions of the MTSp criterion and local approach: 87% are now within 20◦

of the measured angle. The few wrong predictions correspond either to very high loading ranges, for which the

material constitutive equations identified from cyclic tests up to 619 MPa at most had to be extrapolated (stresses

up to 1 GPa at 40 µm from the crack tip), or to long cracks (more than 4 mm), for which mode III is present and

was not considered in the approach. Adding dilantacy might slightly improve the results, as it would further reduce

the predicted bifurcation angles, and make it closer to the 50 − 60◦ measured experimentally.

Table 6.14: Percentage of accurate predictions for pseudo sequential experiments (coplanar growth and bifurcation).
Values estimated at 40 µm ahead of the crack tip.

6= with
measured angle
(◦)

% of good predictions for sequential loadings

MTS MTS with non
singular stresses

MTSp MTSp with non
singular stresses

Local approach
with non singu-

lar stresses

<=10 53 57 50 50 47

<=20 63 67 70 87 87

<=30 83 67 90 97 97

Even if the results are improved by taking into account crack tip plasticity, contact, and friction, predictions

within 20◦ is still not good enough for incremental simulations in the industrial context for which errors would

accumulate, and some ingredient seems to be missing: the direction might not be controlled by the maximum

tangential stress, but by a more complex function involving the strain. Another explanation for the errors can be

the formation of multiple branches, shielding each-other.

6.3.6 Estimation of friction and contact stresses

Because of crack roughness and plasticity-induced closure, contact and friction stresses exist between the crack

faces and play an essential role on both crack paths and kinetics, even in the absence of any applied normal com-

pression. However, in industrial simulations of rolling contact fatigue crack growth, smooth cracks are modeled,

and contact/friction stresses exist only if a normal compression is applied and Coulomb’s friction is assumed. To

overcome this limitation, a simple, approximate way to capture these "intrinsic" contact/friction stresses in such

industrial context is proposed in this section, based on their estimated evolutions during the sequential tests

The DIC-FEM coupling method with elastic-plastic computations (presented in 3.2.3) was used to obtain the

friction and contact stresses profiles along the crack faces (see figures 6.64 & 6.65) for mode II loadings with various

superimposed static tensile or compressive axial load (performed during experiment N◦ 19). As expected, for mode

II loading (figure 6.64), a static compression enhances crack face friction, which rises with the distance to the crack

tip. The stress concentration due to the central hole does not seem to explain this tendency, because it drops much

faster than the computed friction stress. Note that friction is still present without any far-field compression, and

even when a slight opening stress is present (KI = 3.3 MPa
√
m), which is probably due to crack face roughness.

As a consequence, the friction stresses (and ∆Keff
II ) cannot be predicted with a Coulomb’s law.
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For mode I loading at negative R ratio (figure 6.65), the computed contact stresses are higher than the minimal

far-field stress, and even for R = 0, contact stresses are still present, which is certainly due to closure effects.

Slightly positive "contact stresses", which have no physical meaning, are obtained for a 27 MPa minimal tensile

load (R = 0.2). The reason for this artefact is yet unclear.

Figure 6.64: Estimated friction stress profile at fixed ∆τ = 115 MPa with various static tensile or compressive
loads.

Figure 6.65: Estimated contact stress profile in mode I at fixed σmax (133 MPa) for various σmin

From those two friction and contact stress profiles, a direct relation between contact and friction stresses could

be expected in the form of a Coulomb’s-like friction law with an additional constant term accounting for crack face

roughness:

τfriction = µ ∗ σcompression + τ roughness for a sliding crack (6.23)

τfriction = τapplied for a locked crack (6.24)

However, under a static compression of −26 MPa, the friction stress profile for mode II loadings at various ∆τ

is not constant, but depends on the amplitude of ∆τ , as shown on figure 6.66: the higher the applied shear stress,

the higher friction stress. In each case, a non zero ∆Keff
II is measured, meaning that the crack is not locked and a

coulomb-like law would predict a constant friction stress.

From those results, the friction stress should be a function of both the compressive stress and applied shear

stress. In addition, several other factors like the worn volume (reduction of roughness), wear mode (adhesive or
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Figure 6.66: Estimated friction stress profile at fixed −26 MPa static compression with various ∆τ .

abrasive, which changes the friction & wear coefficient [Arnaud, 2018]), and the sliding amplitude compared to the

wavelength of the asperities (for asperities climbing, as proposed by [Gross and Mendelsohn, 1988]) should play a

role.

In order to get a simple (simplistic) model to use in the SNCF’s computation scheme (which already account for

Coulomb’s friction), the evolution of the effective SIFs from various experiments was studied. From those effective

SIFs, it is possible to define "equivalent" macroscopic contact and friction stresses:

∆τfriction = (1 − UII) ∗ ∆τapplied (6.25)

σcontact = σcompression + σclosure = σcompression + (UI − 1) ∗ ∆σtension (6.26)

If we suppose that the friction stress is an affine function of both the applied shear stress and the contact stress

(for a non locked crack), we can propose the following empirical formula:

τfriction = (1 − α) ∗ τapplied + µ ∗ σcontact + τ0 (6.27)

With α a coefficient accounting for the reduction due to dilatancy (a part of the shear load is transformed into

mode I, and is thus retrieved from shear modes), µ friction coefficient, and τ0 a threshold accounting for asperities

locking. During a cycle with RII = −1:

∆τfriction = (1 − α) ∗ ∆τapplied + 2 ∗ µ ∗ σcontact + 2 ∗ τ0 (6.28)

Which becomes, by multiplying by FmII(a) = ∆Knom
II /∆τ :

∆Kfriction
II = (1 − α) ∗ ∆Knom

II + 2 ∗ µ ∗ σcontact ∗ FmII + 2 ∗K0
II (6.29)

and:

∆Keff
II = ∆Knom

II − ∆Kfriction
II = α ∗ ∆Knom

II − 2 ∗ µ ∗ σcontact ∗ FmII − 2 ∗K0
II (6.30)

In this equation, α represents the asymptotic value of UII , as illustrated on figure 6.67, which is similar to figure

6.38 obtained from experimental data.
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Figure 6.67: Illustration of UII as a function of ∆Keffective
II predicted using equ. 6.30.

The evolution of ∆Keff
II + 2 ∗ µ ∗ σcontact ∗ FmII is plotted as a function of ∆Knom

II on figure 6.68.a. The best

fit is obtained for µ = 0.3, and gives K0
II = confidential data MPa

√
m & α = confidential data. From this fit, it is

then possible to predict the effective ∆Keff
II (using eq. 6.30), which is plotted on figure 6.68.b. as a function of the

measured one. The predictions are within ±5 MPa
√
m, for ∆Knom

II ranging from 12 to 55 MPa
√
m, UII ratios

from 0 to 0.44 and compressive stresses from 0 to −66 MPa.

Figure 6.68: Influence of ∆Knom
II on ∆Keff

II when removing the effect of the contact stress (a) . Predicted (eq.
6.30) versus measured ∆Keff

II (b). No data for confidentiality reasons.

Better results could certainly be obtained by taking wear into account (change of asperities size, debris, change of

wear mode and friction coefficient...), which will change the values of α, µ and K0
II during the experiment: indeed,

very different fracture surfaces were observed on the considered experiments, going from mode I type fracture

surfaces (exp. N◦ 9), with a high roughness, to highly worn (exp. N◦ 6 & 10) fracture surfaces (see section 6.3.3).

Such wear model should account for the fact that at a given ∆Knom
II , ∆Keff

I has an influence on ∆Keff
II : if

∆KI is high, the crack will grow faster than the asperities are worn, the crack tip will remained locked and ∆Keff
II

will be small. However, if ∆KI is small, the crack will grow slower than the asperities are worn, and ∆Keff
II will

be increased.
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6.4 Conclusions on mixed mode I + II experiments

The crack paths and growth rates during non-proportional mixed-mode I + II tests were analyzed,

based on the effective SIFs issued from stereo-DIC, fractographic observations and elastic-plastic

FE simulations, leading to the following results:

• Plasticity and crack roughness lead to closure effects (UI from 0.76 to 1) while friction

and asperities interlocking reduce the effective shear mode singularity (UII from 0 to 0.52).

Depending on the loading path and amplitude, very different fracture surfaces are observed,

going from mode I-like surfaces to highly worn surfaces.

• The effective SIFs are quite dependent on the shape of the nominal loading paths. For

example, two experiments with the same ∆Knom, but one sequential and the other 90◦ out-

of-phase exhibited a factor 2 between their effective SIFs, a factor 5 on their crack growth

rates and a factor 11 on the extend of coplanar growth. No correct prediction of mixed-mode

fatigue crack growth can thus be made without a correct assessment of closure and friction

effects.

• For pseudo sequential loadings, the effective mode mixity ratio, which controls the crack path,

is often initially well below its nominal value, but rises progressively during coplanar growth,

as crack face asperities get worn. Bifurcation finally occurs when ∆Keff
II /∆Keff

I ' 2 (in

accordance with the MTSp criterion).

• A static compression while shearing reduces ∆Keff
II /∆Keff

I and makes its wear-induced rise

slower. As a result, it increases the extent of coplanar growth, which is thus controlled by

the wear process. Compression might also postpone bifurcation by reducing the the peak

tangential stress at ±70◦.

• For 90◦ out-of-phase loading and sequential loading on a tilted precrack, bifurcation does not

correspond to any specific value of the effective mode-mixity ratio.

• The MTSp and local approach, applied to effective loading paths, allow an accurate prediction

of crack bifurcation, but the predicted kink angle is ≈ 70◦, while it is rather ≈ 50−60◦. Taking

into account the compression and friction non singular stresses improves the predictions.

• In the present study, after corrections of the SIFs for closure and contact/friction effects, no

intrinsic influence of the effective loading path was found, and the effective ranges seemed

sufficient to predict the crack growth rates.

• The crack growth rate can be relatively well predicted by an "effective" ∆Keq =
√

(∆Keff
I )2 + (∆Keff

II )2 + 1
1−ν (∆Keff

III )2.

• Since the simulations run at SNCF consider smooth cracks that do not undergo friction

unless normal compression is applied and Coulomb’s friction implemented, a simple empirical

formula is proposed to capture the existence of "intrinsic" contact/ friction effects on rough

cracks and estimate the effective SIFs. It accounts in an approximate way for the effects of

friction and asperities interlocking/sliding, and could be improved by taking into account the

evolution of the crack faces morphology and wear mode.
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Chapter 7

Proposition of an approach to predict

the crack path and growth rate

Contents

7.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 Crack growth predictions for sequential mixed-mode I + II & III experiments . . . 183

7.2.1 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.2 Numerical simulations of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Conclusions & perspectives for the proposed approach . . . . . . . . . . . . . . . . . . 190

177



In this chapter, an approach to be implemented in SNCF’s computations scheme "PropaFiss3D" in order to

predict the crack path and growth rate of Squat-type cracks will be proposed. Its relevance will be discussed by

comparison of its predictions to the results of sequential mixed-mode experiments I + II & III.

7.1 Proposed approach

In order to be implemented in SNCF’s computations scheme, the proposed approach should not include elastic-

plastic computations, that are not yet compatible with the XFEM method, which does not incorporate cyclic

plasticity. However, friction and contact between the crack faces in presence of a normal compression are already

partly taken into account by a Coulomb’s friction model.

The Following approach is thus proposed:

Closure effects are accounted for using the following equations:

Kclosure
I = (1 − UI) ∗Kmax

I (7.1)

Keff
I (t) = max(Knom

I (t) −Kclosure
I ; 0) (7.2)

where UI is a constant. This coefficient could be determined from the effective SIFs measurements performed

using DIC during mode I or non-proportional mixed-mode I+II experiments. However, those measurements cor-

respond to plane stress conditions (surface measurements), which lead to higher plasticity-induced closure effects

than under plane strain conditions (see section 2.4), as it is the case in Squat-type cracks (in the bulk of rails). UI

should thus be chosen between 1 and the value obtained using DIC.

Such a simplified approach with a constant UI does not account for the observed effects of the R ratio and of

∆KI on UI (which was found to vary between 0.4 and 1 in mode I (Fig. 4.23 of chapter 4) as well as in mixed-mode

I + II (Fig 6.36). Anyway, note that the R ratio (defined as KI min/KI max, where KI min is computed without any

unilateral condition and can thus be negative) varies along the front of a squat-type crack and with the operating

temperature, so that the relevant mode I R ratio is not easy to define. This makes the choice of a constant UI

reasonable in an engineering approach.

In order to estimate the effective shear-mode SIFs, the equations 6.27 and 6.30 of chapter 6 are used:

τfriction = (1 − α) ∗ τapplied + µ ∗ σcontact + τ0 (7.3)

∆Keff
II = ∆Knom

II − ∆Kfriction
II = α ∗ ∆Knom

II − 2 ∗ µ ∗ σcontact ∗ FmII − 2 ∗K0
II (7.4)

Crack face friction comes from two sources:

• A macroscopic source: the extrinsic friction stress (due to the far field compression), modeled by a Coulomb

law, which is already included in PropaFiss. It is represented by the term multiplied by µ in equs. 7.3 & 7.4.

• A microscopic source: the intrinsic friction stress, due to crack face roughness, which is represented by α and

K0
II in equs. 7.3 & 7.4.

From the SIFs corrected for Coulomb’s friction, denoted as Kcoulomb, Keff
II for a sequential mixed-mode I + II
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loading can be estimated as:

∆Keff
II = max(α ∗ ∆KCoulomb

II − 2 ∗Kfriction; 0) (7.5)

With

Kfriction = K0
II + µ ∗Kclosure

I (7.6)

Where µ∗Kclosure
I accounts for the fact that if the crack closes earlier, it will be under compression earlier (thus

leading to Coulomb-type friction).

In order to access Keff
II (t) (and not only ∆Keff

II ), the following equation is proposed:

If |Keff
II (t) − αKCoul

II (t)| < Kfr then K̇eff
II (t) = 0

Else: Keff
II (t) = αKCoul

II (t) − sign(K̇Coul
II (t)) ∗Kfr

(7.7)

If constant α and Kfr are assumed, friction still occurs when the crack is fully opened, as illustrated on figure 7.1

for a cyclic mode II with a static KI , which is incorrect: for path (a), Keff
II (t) should be equal to Knom

II (t).

Figure 7.1: Nominal and effective loading path predicted using eq. 7.7 with constant α and Kfr, for (a) cyclic mode
II with static mode I, and (b) cyclic mode II.

In order to account for the progressive reduction in asperity-induced friction as the crack opens, the evolution

α(Keff
I ) and Kfr(Keff

I ) described on figure 7.2 are proposed, with Kfriction
I = confidential data MPa

√
m, obtained

from cyclic mode II experiments superimposed with various static mode I loadings.

Figure 7.2: Proposed evolution of α(Keff
I ) and Kfr(Keff

I ).

To generalize eq. 7.7 for mode II & III, a discrete time evolution of Keff
II (t), considered as a vector in the KII
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- KIII space is proposed:

Keff (t+ 1) = α(t+ 1)KCoul(t+ 1)

+
α(t+ 1)KCoul(t+ 1) −Keff (t)

‖α(t+ 1)KCoul(t+ 1) −Keff (t)‖
∗min(Kfr(t+ 1); ‖α(t+ 1)KCoul(t+ 1) −Keff (t)‖)

(7.8)

This evolution of Keff (t) is illustrated on figure 7.3. If ‖αKCoul(t+ 1) −Keff (t)‖ < Kfr(t+ 1) (fig. a.), then

Keff = constant (locked crack), and if ‖αKCoul(t+ 1) −Keff (t)‖ > Kfr(t+ 1), Keff evolves.

Figure 7.3: Illustration of the evolution of Keff (t) (SIFs in the KII - KIII space) using eq. 7.8. (a): ‖αKCoul(t+
1) −Keff (t)‖ < Kfr(t+ 1), and (b): ‖αKCoul(t+ 1) −Keff (t)‖ > Kfr(t+ 1)

For non-proportional loadings, such an approach will be dependent on the discretization pitch. It is an engi-

neer approach, which does not account for the differences in crack face roughness parallel or normal to the front

(< Ra >= 8.8 µm versus < Ra >= 5.9 µm respectively, measured during mixed-mode II & III experiments), which

could lead to different α & Kfr for mode II or III. It also neglects the dilatancy effects. A model accounting for

the reduction of friction due to wear should give better results, as it would be able to account for history effects

induced by crack face roughness: friction at time t would be reduced if the previous cycles were performed at

∆Knom
II (t− 1) >> ∆Knom

II (t) instead of at ∆Knom
II (t− 1) = ∆Knom

II (t), thus leading to different ∆Keff
II (t) for the

same ∆Knom
II (t).

Examples of effective paths obtained using this approach (Coulomb’s friction with eqs. 7.2 & 7.8) are given

on figure 7.4. The nominal and experimental effective loading paths are those of figures 6.30 (sequential and

pseudo-sequential loadings) & 6.32 (90◦ out-of-phase loading). As mentioned earlier, the effects of dilatancy are

not accounted for. The proposed approach does not either predict the observed asymmetry of the effective loading

path (Reffective
II > −1, while Rnominal

II = −1), but the predicted shape and size of effective loading paths are in

reasonable agreement with the measured ones.

From the effective loading path, the crack path can be predicted using the Maximum Tangential Stress criterion,

even though this criterion is less accurate than the MTSp criterion, taking into account the non-singular contact

stresses (but no cyclic elastic plastic computations can be performed). This criterion is only implemented for mode

II (using equ. 2.11), and not mode III.

The crack growth rate can be predicted using a Paris-type equation with ∆Keff
eq defined as:

∆Keff
eq =

√

(∆Keff
I )2 + (∆Keff

II )2 +
1

1 − ν
(∆Keff

III )2 (7.9)
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Figure 7.4: Evolution of Knom, Keff measured by DIC, and Keff predicted using the proposed approach in the
KI − KII space, for various experiments: experiment N◦10 (F = +11/ − 5, C = ±160 Nm) at cycle 2000 (a) &
11 000 (b), experiment N◦11 (F = +11/0 kN , C = ±160 Nm) at cycle 2000 (c) and 90 ◦ out-of-phase experiment
N◦14 (F = +11/− 5 kN , C = ±70 Nm) at cycle 5000 (d).

And the C and m coefficients determined in section 6.3.4. This equation does not account for the intrinsic

influence of the shape of the loading path, which was however not highlighted by non-proportional mixed-mode I +

II experiments, and seems to be of second order relative to the large extrinsic influence of the shape of the nominal

path on the effective SIFs (due to contact & friction).

181



Using a explicit approach, crack growth will finally be evaluated as illustrated on figure 7.5.

Figure 7.5: Principle of the crack growth simulations. ∆amax is the maximum crack growth increment (set by the
user) at each step.

The relevance of the proposed approach will first be assessed, based on experimental observations of 3D crack

growth in R260 steel under sequential or pseudo-sequential mode I + II + III loadings made by Xiqing Chang,

student from ENSTA, during a 10 weeks internship. Nawfal Bouhout, a student from Ecole des Ponts, helped with

the development of the numerical simulations during a 6 month internship.
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7.2 Crack growth predictions for sequential mixed-mode I + II & III

experiments

7.2.1 Experimental setup and results

Cylindrical samples, 12 mm in diameter, with a transverse 1.6 mm-deep notch, as illustrated on figure 7.6 were

precracked in mode I (under a maximum tensile load of 17 kN , with R = 0), and then submitted to sequential

tension (R = 0) + reversed torsion or tension-compression and reversed torsion, keeping compression constant while

shearing (pseudo-sequential loading), until fracture. The force induces mode I along the crack, while the torque

induces mostly mode III at the deepest point and mode II on the edges. The loading conditions are indicated in

Table 7.1.

Figure 7.6: Notched sample for sequential mixed-mode I + II & III tests (a), initial notch geometry (b), semi-circular
front after mode I precracking & schematic of the applied shear loading (c).

Table 7.1: Test conditions and resulting crack growth for sequential mixed mode I+ II & III experiments. Nsequ

correspond to the number of applied mixed-mode cycles.

Test N◦ N of pre-
cracking
cycles

Precrack
depth (mm)

Fmax/Fmin
(kN)

Cmax/Cmin
(Nm)

Nsequ Crack path

1 130000 4 17/-7 33/-31 8885 coplanar

2 112000 3 17/0 33/-31 15745 coplanar

3 135000 3.8 17/0 66/-62 9618 bifurcation

The precrack & final crack front can be seen on the fracture surfaces (see figures 7.7 & 7.8). After precracking,

the crack front is approximately semi-circular (figure 7.7 later), while at the end of the mixed-mode experiment,

just before unstable fracture, the front is rather straight (see figure 7.7 later). For that test N◦1, the final front

is somewhat asymmetric probably due to a misalignment of the sample axis and the axis of the rotative actuator.
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The coordinates of points along the precrack front and final crack front were measured on fractographic images and

4th order polynomials were fitted to be used in XFEM simulations, as shown below.

Figure 7.7: Precrack and final crack front of sequential mixed-mode I + II & III test N◦1 (F = 17/ − 7 kN ,
C = 33/− 31 Nm) (a) and test N◦2 (F = 17/0 kN , C = 33/− 31 Nm) (b).

Figure 7.8: Precrack and final crack front of sequential mixed-mode I + II & III testN◦3 (F = 17/0 kN , C = 66/−62
Nm) (a), along with a side surface view of the bifurcation (obtained by SEM observation of a casted replica) (b).

Wear marks were observed on the fracture surfaces. During tests N◦1 & 2 (coplanar growth), wear was more

pronounced on the edges than in the center of the crack (see figure 7.9), which can be explained by the higher shear

SIFs at the edges (see figures 7.11 & 7.12).
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Figure 7.9: Wear at various positions on the crack of test N◦1 (F = 17/− 7 kN , C = 33/− 31 Nm).
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7.2.2 Numerical simulations of the tests

Since the initial notch, precrack, and final crack front shapes are known (see figure 7.7), along with the applied

load, torque and number of cycles, FEM crack-propagation simulations using the aforementioned approach were

run in order to asses its ability to predict crack growth:

• Simulations of precracking (mode I alone), with various values of UI .

• Simulations of crack growth during the sequential experiment (starting from the experimental precrack front),

with various values of α & UI .

The friction coefficient µ and the sliding threshold K0
II were set to the values determined in section 6.3.6 (µ = 0.3,

K0
II = confidential data MPa

√
m). K0

II was not changed, as its influence would be small for a such high shear SIFs

amplitudes.

A 40 mm long elastic cylinder with 12 mm diameter is considered. The imposed boundary conditions are zero

displacement on the bottom, and imposed force & torque at the top of the model (see figure 7.10). The initial crack

front shape is given as an input for the simulation in the form of a 4th order polynomial, along with the loading

range and ∆amax (maximum allowed crack growth increment at each step over the whole front, fixed a 0.2 mm).

The crack propagation is then simulated following the explicit scheme presented previously (see fig. 7.5). The mesh

is given on figure 7.10. The distance between two nodes of the initial crack front is set at ≈ 0.1 mm. At each step,

the SIFs are computed along the whole crack front, except at the nodes located too close to the external surface, in

order to avoid corner point singularities.

Examples of SIFs profiles for an applied force (a) or torque (b) are given on figures 7.11 & 7.12 for the final

precrack front and final crack front respectively. The force induces mode I along the crack, while the torque induces

shear modes, mostly mode III at the centre and mode II on the edges. While Squat-type cracks also experience

sequential mixed-mode I + II & III, in this case mode II is mostly found at the centre and mode III on the edges.

The SIFs are then fitted by a 4th order polynomial to remove spurious oscillations, and used estimate the crack

growth direction and rate on the whole crack front (yellow elements on figure 7.10), exception made of the points

that are too close to the surface (black elements on figure 7.10.a & b), which are extrapolated by supposing that

the crack front is straight near the surface. Nodes can be added on the side surface to keep the correct density (see

figure 7.10.c).
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Figure 7.10: (a) mesh of the sample. (b) mesh of the initial crack (green), and propagation after 1 iteration (yellow
& black). (c) example of crack mesh after 30 iterations. (d) Mesh of the crack after bifurcation.

Figure 7.11: Evolution of the SIFs along the precrack front a) at peak tensile load and b) at maximum torque for
the sequential mixed-mode I + II & III test N◦1, for a 17 kN tensile load, and a 35 Nm torque.
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Figure 7.12: Evolution of the SIFs along the final crack front a) at peak tensile load and b) at maximum torque for
the sequential mixed-mode I + II & III test N◦1, for a 17 kN tensile load, and a 35 Nm torque.

Results of precracking simulations, in terms of number of cycles to retrieve the experimental precrack front,

are reported in table 7.2, along with some examples of computed precrack fronts in figure 7.13. UI = confidential

data leads to a correct estimation of the number of cycles to get the precrack for both tests, while higher values of

UI underestimate it. However, crack initiation from the notch is certainly not immediate (as it is assumed in the

simulation), meaning that higher values of UI could be correct. If crack initiation is assumed to take 30 000 cycles,

UI = confidential data gives the best results.

Whatever the value of UI , the crack front shape is incorrect near side surfaces (overestimated crack depth), which

could be due either to the assumption of uniform UI along the front (instead of a lower value near side surface

to capture a locally stronger plasticity-induced closure, as successfully done by Newmann and Raju [Newman and

Raju, 1981]), or to a non-uniform crack initiation starting from the center of the notch, or to the fact that XFEM

assume a 1/
√
r singularity, which is wrong near side surfaces [Bazant and Estenssoro, 1979].

Table 7.2: Error between the computed and the measured numbers of cycles to get a precrack front corresponding
to that of test N◦1 or N◦2, depending on UI .

UI Error on Ncycles, precrack for test
N◦1 (%)

Error on Ncycles, precrack for test
N◦2 (%)

confidential data 4 0

confidential data -26 -29

confidential data -46 -48

Figure 7.13: Predicted precrack front shape for various UI , versus the experimental one.
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Results of crack propagation simulations under a sequential loading, in terms of crack path and number of cycles

to retrieve the experimental final crack front, are reported in table 7.3. Some examples of computed crack fronts

are reported in figure 7.14. For test N◦1 & 2, coplanar crack growth is predicted for all sets of parameters, which

is consistent with the experimental results. The best results in terms of number of cycles to failure are obtained

for UI confidential data and α between confidential data. However, bifurcation is not predicted for test N◦3 if α =

confidential data, while it is for α = confidential data (as illustrated on figure 7.10.d). The second value should thus

be preferred. This bifurcation is predicted to initiate immediately at 70◦ near the side surfaces, while the crack

remains coplanar in its center, which is consistent with the experiment. At each iteration, a larger part of the front

(from the side surfaces towards the center) is predicted to bifurcate, until the simulation stops due to crack meshing

difficulties. UI = confidential data and α = confidential data also give reasonable predictions in terms of number of

cycles to failure and crack path. It is likely that the presence of the notch, which reduces the contact surface (and

is not accounted for in the simulations), reduces the effects of crack face friction, and thus artificially increases α.

The computed crack fronts, illustrated on figure 7.14, are concave near side surfaces instead of convex. This

could be due to a locally overestimated ∆Kshear (locally stronger friction? corner point singularities, see section

2.2.4?). As expected, the crack concavity is reduced when α decreases (and the relative influence of mode I increases).

Table 7.3: Error between the computed and the measured numbers of cycles for sequential test N◦1 or N◦2, and
prediction of crack bifurcation for test N◦3, depending on UI & α.

UI α Error on Nsequ for
test N◦1 (%)

Error on Nsequ for
test N◦2 (%)

Prediction of bifur-
cation for test N◦3

confidential data confidential data -5 -18 yes

confidential data confidential data 19 16 no

confidential data confidential data 37 16 yes

confidential data confidential data 69 67 no

confidential data confidential data 104 74 yes

confidential data confidential data 144 152 no

Figure 7.14: Predicted crack front shape for various UI & α, versus the experimental one.

From the simulations of precracking and sequential loading, UI =confidential data and α = confidential data

are the best values to predict the crack paths and growth rates. Those value are quite close to those obtained

from effective SIFs measurements during sequential mixed mode I+II (UI = confidential data and α = confidential

data). The difference can partly be explained by the presence of the notch which reduces the contact surface, and

by the thicker specimen (which reduces closure effects, see section 2.4). However, given the uncertainty on the crack

growth rate prediction using ∆Keff
equ (90% of the data within a factor 4 in crack growth, see figure 6.60), most of

the tested combinations of UI & α can be considered as reasonably good.
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7.3 Conclusions & perspectives for the proposed approach

A simplified, engineer approach using only LEFM and the MTS criterion and thus compatible with

SNCF’s numerical tool was proposed to estimate the effective SIFs (taking crack face roughness

into account), and predict the crack path and growth rate.

• The proposed approach allows a reasonable prediction of the effective SIFs for non-

proportional mixed-mode I + II experiments, which a simple Coulomb friction model cannot

do.

• It was applied to sequential mixed-mode I + II & III experiments, with a reasonable agree-

ment in terms of crack path and growth rate. The parameters giving the best predictions

were close to those determined for sequential mixed-mode I + II experiments. However,

the shape of the crack near side surfaces was not entirely satisfying, which could be due to

assumptions of uniform closure effects, or overestimated shear mode SIFs near side surfaces.

• This approach will now be implemented in SNCF’s numerical tool and its prediction for

squat-type cracks will be compared with on-field measured data.

• Crack propagation experiments on rails are currently performed at the Japanese Railway

Technical Research Institute, with a simplified initial crack geometry and a simplified loading.

The results of those experiments will also be compared to the predictions of the proposed

approach.

• The fracture surfaces of Squat-type cracks taken from the field and opened in a three point

bending hydraulic press will be compared to the fracture surfaces obtained during sequential

mixed-mode I + II experiments, in order to qualitatively compare the amount of wear.
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Chapter 8

Conclusion and perspectives
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8.1 Conclusions

Typical loading paths undergone by Squat-type cracks have been estimated using SNCF’s numerical tool

"PropaFiss3D", for various track and temperature conditions, taking manufacturing residual stresses into account.

The computed loading paths were nearly sequential mixed-mode I + II & III, including a compression phase. In

order to investigate crack growth under such loadings, mode I, mixed-mode II & III and non-proportional mixed-

mode I + II experiments were performed under representative loading paths. The goal was to assess the influence

of each mode alone, as well as their combination, on crack growth.

In order to monitor such a large number of fatigue crack propagation experiments (more than 40), Digital Image

Correlation (DIC) was extensively used. A numerical tool was developed to obtain the crack tip position and effective

SIFs under non-proportional mixed-mode loading including compression phases from the measured displacement

fields. Classical methods (that is: projection over William’s expansion series) were shown to overestimate the

effective SIFs and to yield an incorrect crack tip position in such cases. It could nonetheless be used to locate the

crack tip position in mode I, by applying it to image pairs captured at maximum load and after a small elastic

unloading.

In order to estimate the effective SIFs in the presence of substantial crack tip plasticity as well as contact &

friction stresses between the crack faces, an inverse analysis of the measured relative displacement jump profiles,

compared to the profile obtained from an elastic-plastic computation plus an offset, was proposed. Such method

was found to yield satisfying results, as long as the couplings between shear and tensile plastic flows at the crack

tip remained small. An approach coupling DIC and FEM computations was also proposed to evaluate the effective

SIFs and the contact stresses along the crack faces, but was found to be much more time consuming and noise

sensitive than the previous approach, which was thus preferred. Details about experimental procedures are given

in chapter 3.2.

During some of these experiments, sand blasting was shown to be a simple and effective surface marking tech-

nique for DIC on casted replicas (impossible with a speckle painting), allowing in-plane displacement fields to be

obtained, even when the specimen surface cannot be observed directly with a camera. The out-of-plane displace-

ments were obtained from topographic measurement of the replicas, using either an Atomic Force Microscope or a

digital optical microscope (depending on the displacement range).

Mode I experiments (presented in chapter 4) were performed at various load ratios, and the measured crack

growth rates correlated well with ∆Keff
I . The compressive stage of the cycles did not accelerate crack growth, as

it was expected, but slowed it down. This was attributed to the compression-enhanced build up of an oxide layer,

leading to oxide induced closure.

During proportional mixed-mode II & III experiments (presented in chapter 5), long coplanar fatigue crack

growth (instead of bifurcation) was observed for a sufficiently high loading range. The crack growth rates for such

coplanar growth correlated well with ∆Keff
equ =

√

∆Keffective
II

2
+ 1.25∆Keffective

III

2
. However, even when coplanar

shear mode crack growth was witnessed, the crack eventually bifurcated, which was attributed to the shielding

effects of multiple branch cracks more or less normal to the main crack plane.

Eventually, mode I alone was unable to explain the crack growth in rails, as the crack growth rates predicted

for a realistic ∆KI range (neglecting water trapping/pressurization effect) were too small compared to the on-field

measured values. Neither were shear modes alone, as the observed crack path was not consistent with the one

observed in rails at similar crack growth rate. It is most likely the combination of opening and shear modes in a

complex loading path that explains the crack growth in rails.
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Sequential mixed-mode I + II experiments (presented in chapter 6) were thus performed, with or without a

static compression while shearing. During these experiments, the crack bifurcated when ∆Keff
II /∆Keff

I reached

approximately 2. A normal compression while shearing led to substantially longer coplanar growth, as it slowed

down crack face wear (mostly by reducing the sliding range) and the resulting rise of ∆Keff
II /∆Keff

I .

For sequential, "tilted sequential" and 90◦ out-of-phase loadings, the crack growth rates correlated well with

∆Keff
eq =

√

(∆Keff
I )2 + (∆Keff

II )2 + 1
1−ν (∆Keff

III )2. No significant intrinsic influence of the effective loading path

on the crack growth rate was found. For sequential mode I + II, the simple sum of the growth rates for mode I

alone & mode II alone also gave a satisfying estimate of the measured crack growth rates, which tends to rule out

a synergistic effect due to plastic interactions.

The MTS criterion, applied to effective loading paths, underestimated the extent of coplanar growth, while the

MTSp criterion (which takes into account plasticity-induced stress redistribution at the crack tip) provided better

predictions of the crack length at bifurcation, but did not predict truly coplanar growth before (≈ 10◦ angle).

Taking contact and friction stresses into account in the MTSp was found to improve the predictions.

Friction and interlocking between the rough crack faces led to a strong reduction of the effective SIFs during

mixed-mode II & III and non-proportional mixed-mode I + II experiments, even without any normal compression

applied, while Coulomb’s law applied to a smooth crack (the usual approach in industrial computations) does not

predict any friction in such cases. The sliding of such rough crack faces also induced dilatancy effects: two mode I

sub-cycles were observed within each reversed shear mode cycle.

Due to these friction effects, the shape of the nominal loading paths had a large influence on the effective SIFs

during non-proportional mixed-mode experiments. A 90◦ out-of-phase loading path led to twice higher shear-mode

SIFs than a sequential loading path at similar nominal SIFs ranges: in the first case, the crack was opened at

maximum shear stress, while in the later case, the crack was closed while shearing, and underwent friction.

If friction and interlocking effects control the effective SIFs, the later, as well as the normal compression, control

crack face wear, which plays a central role. Indeed, wear reduces the crack face roughness and thus friction between

the crack faces, leading to increased effective shear SIFs. As a result, during sequential mixed-mode I + II tests,

∆Keff
II /∆Keff

I was often initially well below its nominal value, but raised progressively during coplanar growth

due to crack face wear. Wear debris came out of the crack during some experiments. Depending on the loading

path and amplitude, very different fracture surfaces were observed, going from unaltered mode I-like surfaces to

highly worn surfaces. Intermediate cases were also obtained: highly worn surfaces away from the tip, in areas which

underwent many cycles, and unaltered areas close to the tip, where the surfaces were more recently created and the

relative sliding displacements smaller. A normal compression seemed to change the degree of crack faces oxidation

and the proportion of trapped debris, thus certainly modifying both friction and wear rate.

In the end, effective SIFs, crack face roughness & wear are tightly linked. The challenge for structural ap-

plications is thus not just to choose the most appropriate bifurcation criterion and crack growth law, but also to

take crack face roughness and wear into account in order to estimate the correct effective SIFS to use in these models.

In order to predict the effective loading path from the nominal one, a simple, engineering approach was proposed

for SNCF’s numerical scheme (presented in chapter 7). It uses a constant mode I load ratio UI , and relies on the

division of friction into two sources: an extrinsic one (due to the far field compression), and an intrinsic friction

one (due to crack face roughness). It allowed a reasonable prediction of the effective SIFs from non-proportional

mixed-mode I + II experiments, which a simple Coulomb’s friction model could not do.

Coupled with simple LEFM criteria/models, it successfully predicted the crack path and growth rate for sequen-

tial mixed mode I + II & III experiments.
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8.2 Perspectives

The proposed approach remains yet to be implemented in SNCF’s numerical scheme to perform simulations at

the structural scale. This will allow to validate the approach by comparing the crack path and mean crack growth

rate over a year to SNCF’s on field measured values.

This validation at the structural scale will also be performed using crack propagation experiments on rails,

which are currently performed at the Japanese Railway Technical Research Institute, with a simplified initial crack

geometry and a simplified loading.

Finally, the fracture surfaces of Squat-type cracks taken from the field will be compared to the fracture surfaces

obtained during sequential mixed-mode I + II experiments. This will allow a qualitative comparison of the amount

of wear, and thus of the range of the effective shear SIFs.

The proposed approach to estimate the effective SIFs is a simplified engineering approach, and could be improved

by modeling wear in the FEM simulations. This has been done (for crack initiation and propagation) by Llavori et

al. using an Archard’s law [Llavori et al., 2019], or by Cardoso et al. [Cardoso et al., 2019] (for crack initiation) using

the dissipated energy. The influence of a third body layer, which was witnessed during some sequential mixed-mode

I + II experiments, may be non negligible and can also be modeled, as done by Arnaud [Arnaud et al., 2017].

Such wear modelling would not only provide a better estimation of the effective SIFs for a constant amplitude

loading, but also account for wear-induced history effects: after several cycles at high shearing range, cycles at lower

amplitude should give rise to reduced friction, due to the more pronounced wear induced by the previous loading

cycles.

A proper modeling of oxide-induced closure, probably important for squat-type cracks submitted to large com-

pressions and to moisture, would be advisable to improve the effective SIFs estimation. There is currently no

such model available in the literature. This is not surprising, since such a model would have to consider complex,

coupled mechanical, thermal and chemical mechanisms, and to capture the effects of crack width (distance from a

free surface) and orientation (upwards/downwards growth) on the release of oxide debris (as shown by Maierhofer

et al. [Maierhofer et al., 2018]).

Eventually, even if the effective SIFs are more accurately estimated, it may still be advisable to take crack

tip plasticity into account (since it improves crack path predictions), but cyclic plasticity is not compatible with

the XFEM method yet. Even if it was, those computations, coupled with the non-linear Coulomb’s friction and

the large model size would lead to prohibitive computation times. A solution would be to compute the effective

SIFs and possibly non-singular stresses using the XFEM method, and use them as boundary conditions for FEM

elastic-plastic computations at the crack tip scale (a few mm), for every node along the crack front.

From an industrial perspective, the improved SNCF’s computation scheme will help understand crack propa-

gation in rails and optimize maintenance intervals. It should allow to quantify the influence of various operating

conditions, such as the type of train, train speed, wheel and rail geometry, track stiffness, etc. . . thus allowing to

propose optimized conditions.

If the approach is proven successful, experiments could then be performed on other rail grades, such as R200,

in order to help understand their advantages and drawbacks, and select the best grade depending on the operating

conditions.
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Appendix A

Extraction of the samples from new rails

The samples were extracted from the head of 8 new rail 1-meter sections made of R260 low alloy rail steel, as

described in figure A.1.

Figure A.1: Extraction areas.

205



Appendix B

PS algorithm with William’s expansion

The algorithm used to determine the crack tip and effective SIFs using a projection over William’s expansion is

described in figure B.1. At each possible crack tip location, only a part of the DIC field is used, as shown on figure

B.2. Rint is chosen sufficiently large to avoid DIC elements which are overlapping the crack and for which the

correlation is wrong. The algorithm is a mix between the grid search of [Harilal et al., 2015] and the PS algorithm

of [Zanganeh et al., 2013].

Figure B.1: PS algorithm with William’s expansion. Xref represents the current supposed crack tip and Xk the
tested crack tip positions

Noting the horizontal and vertical displacements ux and uy respectively, with G the shear modulus and k =
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Figure B.2: Shape of the zone used in the PS algorithm. Rext = 1.2 mm and Rint = 0.2 mm.

(3 − ν)/(1 + ν) (plane stress hypothesis), William’s expansion writes:
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The rigid body translations tx and ty are contained in the order 0 terms:

tx =
A0

I

2G
(κ+ 1) =

4A0
I

E
(B.3)

ty =
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II
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(κ+ 1) =

4A0
II

E
(B.4)

The stress intensity factors are contained in the order 1 terms:

KI =
√

2πA1
I (B.5)

KII = −
√

2πA1
II (B.6)

The rigiby body rotation Ω and the T-stress T are contained in the order 2 terms:

Ω =
A2

II

2G
(κ+ 1) =

4A2
II

E
(B.7)
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T =
A2

I

2G
(κ+ 1)E = 4A2

I (B.8)

The parameters used in this study are: Rint = 0.2 mm, Rext = 1.2 mm, grid step P1 = 0.1 mm, PS algorithm

steps from P = 0.033 mm to P = 0.0037, order of the William’s expansion terms: from 0 to 7. Using those

parameters, the time to process one DIC field is about 5 to 10 seconds. Each projection over William’s expansion

is extremely fast since it only needs to invert a 16 ∗ 16 matrix and build/multiply some n ∗ n matrix, n being the

number of points in the projection zone.
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Appendix C

Influence of the crack initiation hole and

crack asymmetry in mode I+II

experiments

3D FEM computations (see figure C.1) were performed in order to verify that the hole could be neglected. The

crack front was modeled as straight and radial with 12 nodes, and a uniform σzz was applied at the end of the

specimen.

For a 1.5 mm long crack, the error between the abacus and the computation is below 3%. The effect of a

dissymmetry in the crack length on the two sides of the hole was also investigated and was found to have little

influence: less than 2.5 % error for a 250 % dissymmetry on a 2a = 3.5 mm crack.

Figure C.1: 3D mesh of the sample with the hole, and zoom on the crack tip.

This model was not used for further analysis since KIII is wrongly estimated due to a bug in the CAST3M

software. XFEM computations were then preferred.

209



Appendix D

Non-proportional mixed-mode I+II

experiment in water

A sequential mixed-mode I+II experiment (exp N◦18 in table 6.4) using the samples and testing machine

detailed in section 6.2 was performed in tap water at F = 10/0 kN and C = ±90 Nm, which is similar to exp N◦19

performed in air.

The crack was kept in water by sealing the inside of the sample with silicone, and using a silicone soft envelope,

as shown on figure D.1.a. The envelope is filled with tap water or emptied using a squeeze bottle. In order to track

crack propagation, the silicone envelope can be rolled up (as in figure D.1.b) in order to reveal the DIC pattern.

The presence of water led to paint swelling, making reliable effective SIFs measurements impossible, and crack

tip position estimation difficult (but still possible since it uses a field that is away from the crack lips). The a(N)

evolution is plotted on figure D.2 for experiments with and without water.

Crack propagation kinetics is similar in water and in air, suggesting that neither corrosion-assisted crack growth

nor corrosion products-induced closure, nor crack opening due to entrapped water, nor reduction of friction between

the crack faces occurred (or those effects perfectly counterbalanced each other). The fracture surfaces are similar

in water and in air (worn near the crack initiation hole, rough near the tip), with some oxides in both cases.
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Figure D.1: Setup for experiments in water: during fatigue testing (a) and during image recording (b).

Figure D.2: Estimated crack length during experiments performed at the same loading amplitudes, in water or in
air.
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Appendix E

Non-proportional mixed-mode I+II in

situ experiment in a SEM

Non-proportional mixed-mode I+II in situ SEM experiments were performed in order to have direct measure-

ments of the relative crack face displacement jump. A XL40 SEM, equiped with a tension/compression/torsion

testing machine, allowing ±10 kN axial force and ±50 Nm torque at a ≈ 0.1 Hz frequency, was used [Doquet

et al., 1994]. The samples are cylinders, with a 10.8 mm external diameter and a 0.9 mm thickness, containing

a 0.7 mm hole for crack initiation. Those samples are precracked in a hydraulic testing machine, mechanically

polished down to 1 µm diamond paste, and then covered with gold micro-grids of 5 µm pitch (as shown on figure

E.1) using e-beam lithography, before in situ testing.

Mode II loadings at various amplitudes and with various static axial forces were applied. Images at two opposite

torque values are given on figure E.1, where asperities interlocking can be seen. Those asperities can be plasticized

and cracked (then detached, thus leading to wear), as illustrated on figure E.2.

Figure E.1: Images taken at τ = ±250 MPa and σ = 0. 5 µm grid pitch.

The relative crack face opening and sliding displacements were measured and compared to that obtained from
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Figure E.2: Plasticized and cracked asperities after a torque overload.

elastic-plastic FEM computations, as illustrated on figure E.3. For τ = −172 MPa and σ = 0, an opening displace-

ment jump is observed, although ∆Knom
I = 0, due to dilatancy effects. The measured sliding displacement jump

is much lower than that computed by FEM elastic-plastic computations due to friction and asperities interlocking

between the crack faces.

Figure E.3: Measured displacement jump at τ = −172 MPa and σ = 0.

The measured ∆Keff for various mode II loadings (RII = −1) with static axial forces are given in table E.1.

Without static compression, UII < 0.72 and varies with the shear amplitude. The dilatancy ∆Keff
I is ≈ 0.16∆Keff

II

(since RII = −1, there are two mode I cycle during a fully reversed mode II cycle, andKeff
I ≈ 0.32|Keff

II |). However,

when compression was added, the crack remained locked so that UII = 0 and ∆Keff
I = 0. No measurements were

made at higher torque levels under compression due to a problem with the testing machine.

During these experiments, MnS inclusions, which are elongated along the specimen axis, were found to change

the crack path locally. Ahead of the crack tip, they have an influence on the stress field, as showed on figure E.4,

and may be detached and broken if the stresses are high enough ((a) on figure E.4). As the crack propagates, they

can lead to a zig-zag crack propagation, as illustrated on figure E.5, which increases the roughness. These effects,
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Table E.1: Measured ∆Keff and U ratios for various mode II loadings with static axial forces.

σ (MPa) ∆τ (MPa) ∆Keff
I

(MPa
√
m)

∆Keff
II

(MPa
√
m)

∆Knom
I

(MPa
√
m)

UII ∆Keff
I /∆Keff

II

0 344 1.7 9.7 23.8 0.41 0.17

0 500 4.1 24.8 34.4 0.72 0.16

-240 344 0.0 0.0 23.8 0.00 /

observed on the surface of thin specimens (0.9 mm thick), may not be as influent on a crack in the bulk of the rail.

Figure E.4: Inclusion ahead of the crack tip under mode II loading, ∆Knom
II = 66 MPa

√
m, τ = 360 MPa (not

LEFM conditions).

Figure E.5: Longitudinal crack induced by an inclusions during mode I precracking.
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Résumé de la thèse en Français
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Fissuration par fatigue en mode mixte non proportionnel

des rails de chemins de fer. De l’étude expérimentale à la

mise en œuvre d’un modèle:

Résumé de la thèse en Français

Thomas Bonniot
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1 Contexte

Les rails sont soumis à de la fatigue de roulement suite au passage répété des roues de trains. Ce phénomène

peut engendrer plusieurs types de fissures, tels que les Squats, défauts amorcés en haut de la table de roulement

suite aux fortes déformations plastiques de cisaillement induites par le passage des roues. Ces fissures (Figure 1) se

propagent dans un plan fortement cisaillé, incliné de 20 degrés par rapport à l’axe vertical, pour des profondeurs

bien au-delà de la zone plastifiée.

Figure 1 – Fissure de type Squat.

Afin d’améliorer notre compréhension des phénomènes responsables de la propagation de ces fissures, et d’amé-

liorer les règles de maintenance, SNCF a développé un outil numérique permettant d’estimer l’évolution temporelle

des facteurs d’intensité des contraintes (FIC) le long du front [Trollé, 2014, Mai et al., 2017]. Ces simulations

prennent en compte le contact et le frottement entre les lèvres de la fissure sous la forme d’un modèle de Coulomb.

Cependant, il manque encore un modèle fiable pour prédire le trajet et la vitesse de propagation de la fissure.

L’évolution temporelle des facteurs d’intensités des contraintes (FICs) a été calculée, à l’aide de l’outil numérique

développé à la SNCF, pour une fissure de type squat de 20mm de profondeur inclinée de 20 degrés par rapport à

l’axe vertical. Ces chargements on été utilisés pour piloter des essais en laboratoire. Les contraintes résiduelles ont

été prises en compte, ainsi que diverses conditions de chargement (géométrie de la voie, température extérieure).

L’évolution des FICs dans le plan KI - KII au point le plus profond de la fissure est donnée Figure 2. Les rails étant

soudés à une température de 20◦C, et de longueur fixée, des contraintes thermiques longitudinales sont induites par

les changements de température.

Des valeurs (virtuelles) négatives de KI (obtenues par un autre calcul sans contact) sont tracées Figure 2 pour

représenter le niveau de compression sur la fissure. Les trajets calculés correspondent à peu près à une séquence de

mode I puis mode II & III sous compression, et sont approximés par les trajets séquentiels en pointillés. Pour une

température de 20◦C, il y a peu de mode I et beaucoup de compression lors du cisaillement, ce qui réduit ∆Keff
II ,

tandis que pour une température de -5◦C, l’amplitude du mode I devient presque aussi grande que celle du mode

II, et il y a moins de compression lors du cisaillement.

Il n’existe aucune approche communément acceptée pour prédire la vitesse et le trajet de propagation de fissure

pour ce type de chargement. Cette prédiction est rendue encore plus complexe du fait des couplages entre les trois

modes induits par la plasticité en pointe de fissure, ainsi que par le contact, frottement et usure des lèvres de fissures.

Le problème étant déjà assez complexe, les effets liés à l’amplitude variable du chargement (différents trains,
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Figure 2 – évolution des FICs au fond d’un squat de 20mm de profondeur dans le plan KI - KII pour deux
températures différentes et approximations séquentielles qui en sont faites.

efforts dynamiques dépendants de la vitesse, etc...) ainsi qu’à la pressurisation d’eau dans la fissure seront négligés

pour le reste de l’étude.

Durant cette étude, des outils pour mesurer les FICs effectifs à partir de champs de déplacements obtenus par

corrélation d’images ont été développés, permettant d’estimer l’influence du contact et frottement entre les lèvres

de fissure.

Des essais de fissuration par fatigue en mode I, à différents rapports de charge (y compris négatifs) ont été menés

afin d’obtenir des données cinétiques et étudier l’influence d’une compression. La possibilité que le mode I puisse à

lui seul expliquer la fissuration des rails a été discutée.

Des essais de fissuration par fatigue en mode mixte II & III ont permis d’obtenir des données cinétiques pour

divers taux de mixité KII/KIII , et de discuter la possibilité d’une propagation coplanaire dans les rails due aux

modes de cisaillement seuls.

Des chargements de mode mixte non-proportionnel I + II ont ensuite été étudiés, avec diverses formes de trajet,

divers taux de mixité et la possibilité d’une compression lors du cisaillement. Plusieurs approches ont été testées

afin de prédire le trajet et la vitesse de propagation des fissures.

Enfin, une approche permettant de prédire la fissuration des rails a été proposée, et validée sur des essais de

mode mixte séquentiel I + II & III.

2 Développements expérimentaux

La corrélation d’images a été utilisée durant les essais afin de localiser la pointe de fissure et estimer les FICs

effectifs. Un article [Bonniot et al., 2019] résume ces travaux. La méthode la plus "classique", qui consiste à projeter

le champ expérimental sur la base des séries de William’s [Abanto-Bueno and Lambros, 2002, Roux and Hild,

2006, Yoneyama et al., 2007], a été testée sur des champs issus de simulations éléments finis. Ces simulations,

reproduisant des chargements de mode I ou II, prenaient en compte le comportement elasto-plastique du matériau,

ainsi que du contact et frottement entre les lèvres de la fissure.

Il s’avère que dans le cas d’une zone plastique étendue devant la fissure (ce qui est surtout le cas en mode
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II), cette méthode surestime la longueur de fissure ainsi que les FICs effectifs, tandis que dans le cas d’un fort

frottement/compression entre les lèvres de la fissure, sa longueur est sous-estimée et les FICs effectifs surestimés.

Ainsi, cette méthode n’est pas adaptée à la mesure des FICs effectifs lors d’essais représentatifs du chargement

rencontré dans les rails. Elle permet cependant de localiser la pointe de fissure si elle est appliquée entre une image

à ouverture maximale et une image prise après une petite décharge élastique.

Afin d’obtenir les FICs effectifs, une approche inverse a été proposée : le saut de déplacement relatif entre les

lèvres de fissures est comparé à celui obtenu par des calculs éléments finis plus une constante. Cette méthode per-

met de capturer les effets de la plasticité en pointe de fissure, ainsi que du contact et frottement entre les lèvres

de fissure pour des chargements de mode I ou mode II pur (ce que la méthode "classique" ne permet pas). Pour

des chargements de mode mixe non-proportionnel, elle reste utilisable tant que les couplages entre les écoulements

plastiques de mode I et II restent négligeables.

Enfin, une dernière méthode a été proposée, qui permet d’obtenir le profil des contraintes entre les lèvres de

fissure en plus des FICs effectifs. Cette approches est basée sur un couplage entre DIC et calculs éléments finis :

Sur des calculs élément finis (élastiques ou élasto-plastiques) pilotés aux bords par des conditions aux limites en

déplacement issues de la DIC, on cherche le profil de contraintes entre les lèvres de fissure permettant d’avoir le

champ de déplacement le plus proche du champ de DIC. Il suffit ensuite de calculer les FICs effectifs par un calcul

avec les conditions aux limites issues de la DIC et les efforts entre les lèvres de fissure déterminés précédement.

Cette méthode s’étant révélée beaucoup plus gourmande en temps de calcul et plus sensible au bruit que la

méthode des sauts de déplacements, c’est cette dernière qui a été utilisée dans la suite de l’étude.

3 Essais de mode I

Des essais de fissuration par fatigue en mode I ont été menés à divers rapports de charge sur des éprouvettes de

type SENT. Le dispositif expérimental est décrit figure 3.

Figure 3 – Dispositif expérimental pour les essais de mode I.

L’échantillon est monté dans une presse hydraulique ±100 kN , et sollicité à une fréquence de 10 à 20 Hz. Un
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extensomètre est monté pour mesurer les effets de fermeture. La longueur de fissure est mesurée par différence

de potentiel ou avec un microscope optique QUESTAR sur l’une de faces de l’échantillon (la surface ayant été

préalablement polie). L’autre face est couverte d’un mouchetis en peinture afin d’obtenir le champ de déplacement

proche de la pointe de fissure par DIC, et d’en déduire les FICs effectifs.

Du fait de la rigidité du montage, la contrainte aux bords de l’échantillon n’est pas uniforme, contrairement à

ce que supposent les abaques de calcul de KI [Tada et al., 1973]. Une abaque a donc été reconstruite à partir de

mesures de Knom
I (a) par DIC.

Sept essais ont été réalisés, à rapport de charge R = 0.6, 0.3, -0.5, -1 et -2. L’évolution de la vitesse de propagation

en fonction de ∆Knom
I est tracée figure 4. Tous les points se situent dans une enveloppe d’un facteur 14.8 en vitesse,

avec R2 = 0.928.

Figure 4 – Vitesse de propagation en fonction de ∆Knom
I = Kmax

I −min(Kmin
I ; 0) pour divers rapports de charge.

Contrairement à ce qui était attendu, la phase de compression ralentit la propagation. Cet effet a également été

observé par Pokorný et al. [Pokorný et al., 2017] sur un acier à essieux ferroviaire, et a été attribué à la formation

d’une couche d’oxyde sur les lèvres de fissure, favorisée par la compression, et induisant des effets de fermeture par

oxydation. A rapport de charge positif, aucune trace de contact entre les lèvres de fissure n’est visible sur les faciès

de rupture (fig. 5b&d), tandis qu’à rapport de charge négatif, des zones matées et oxydées apparaissent (fig. 5a&c).

La vitesse est prédite de manière satisfaisante avec ∆Keff
I , comme illustré figure 6 : R2 = 0.964, et tous les

points se situent dans une enveloppe d’un facteur 5.6 en vitesse.

La vitesse de propagation prédite dans une gamme de ∆Knom
I représentative des fissures dans les rails a été

comparée à des mesures obtenues sur plus de 300 fissures présentes en voie. Il apparait que le mode I seul ne peut

expliquer la fissuration des rails, car la vitesse prédite est plus de 5 fois inférieure à celle des fissures présentes dans

les rails.

4 Essais de mode mixte II & III

Le mode I seul ne pouvant expliquer la fissuration des rails, des essais de mode mixte II & III ont été menés

afin de vérifier si le cisaillement seul le pouvait.

Les échantillons sont des barres contenant une entaille en leur centre, servant à amorcer une préfissure par flexion

4 points. Une fois la préfissure obtenue, l’échantillon est sollicité en flexion 4 points dissymétrique, de sorte que son
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Figure 5 – Faciès de rupture : (a) essai à R = −2 et (b) essai à R = 0.3 au microscope optique, (c) essai à R = −1
et (d) R = 0.3 au MEB.

Figure 6 – Vitesse de propagation en fonction de ∆Keff
I pour divers rapports de charge.

centre (avec l’entaille et la fissure) subisse uniquement un effort tranchant (et donc pas de moment fléchissant).

Ainsi, la fissure est sollicitée uniquement en cisaillement. Le montage est illustré figure 7. L’échantillon peut être

tourné autour de son axe afin de faire varier les proportions de mode II & III le long du front.

Une fois l’essai en cisaillement terminé, l’échantillon est rompu par rupture fragile à l’azote, ou par fatigue en

mode I. Ceci permet d’accéder au faciès de rupture, et aux fronts de préfissure / fin d’essai de cisaillement, comme
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Figure 7 – Dispositif expérimental pour les essais de mode mixte II & III.

Figure 8 – Evolution des FICs le long du front.

illustré figure 9. Ceci permet d’accéder à la vitesse moyenne de propagation en tout point du front durant l’essai

∆a(z)/∆N . L’objectif est ensuite de corréler cette vitesse et le trajet de la fissure aux FICs effectifs locaux.

Figure 9 – Fronts finaux et initiaux de l’essai en cisaillement.
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Afin d’estimer les FICs effectifs la méthode des sauts de déplacements proposée dans la partie 2 a été utilisée.

Du fait de la position de l’échantillon dans la machine, ses surfaces latérales ne pouvaient être observées directe-

ment avec une caméra. Des répliques ont donc été prises à charges minimales, nulle et maximale. Un mouchetis

topographique, obtenu par sablage et pouvant se transposer sur les répliques, a été utilisé pour obtenir les champs

de déplacements plans (modes I et II) par DIC. Les champs de déplacements hors plan (mode III) ont été obtenus

par mesure topographique, à l’aide d’un microscope à force atomique ou d’un microscope optique numérique (selon

l’amplitude des débattements).

Du fait du frottement entre les lèvres de fissure, la fraction effective du chargement U = ∆Keff /∆Knom est

réduite, comme illustré figure 10. Cette réduction est plus importante à α = 90◦, c’est à dire pour du mode III

prédominant, ce qui s’explique par une rugosité plus importante parallèlement au front que orthogonalement au

front (Ra = 8.8 µm vs Ra = 5.9 µm). Le glissement des lèvres rugueuses induit une ouverture de la fissure (effet

de dilatance), et donc deux cycles de mode I pour chaque cycle de cisaillement alterné.

Figure 10 – Evolution de U = ∆Keff /∆Knom et ∆Keff
I /∆Keff

shear.

De la propagation coplanaire sur des distances allant jusqu’à 2.8 mm a été observée pour des niveaux de charge-

ments au-delà d’un certain seuil. Cependant, la fissure fini presque toujours par bifurquer (sauf pour des chargements

très importants), ce qui peut s’expliquer par la formation de branches normales à la fissure, induisant des effets

d’écran (et donc réduisant les FICs effectifs). Un exemple de telles branches est donnée figure 11.

Figure 11 – Branche en arrière de la pointe lors d’un essai à α = 0.

La vitesse moyenne de propagation coplanaire a été mesurée, et se corrèle raisonnablement bien avec ∆Keff
equ =
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√

∆Keffective
II

2

+ 1.25∆Keffective
III

2

. Le facteur 1.25 signifie que le mode III est légèrement moins efficace que le

mode III par rapport à ce qu’une approche énergétique prédirait (1.4). ∆Keff
shear =

√

E ∗ ∆Geff
shear/(1 − ν2) fut

cependant préféré comme force motrice, du fait de son sens physique, les prédictions étant proches de celles de

∆Keff
equ (cf figure 12)

Figure 12 – Evolution de la vitesse de propagation coplanaire en fonction de ∆Keff
equ =

√

∆Keffective
II

2

+ 1.25∆Keffective
III

2

et ∆Keff
shear =

√

E ∗ ∆Geff
shear/(1 − ν2).

Au vu de ces essais, il apparait qu’une fissure se propageant à la vitesse des fissures de type Squats dans les

rails, et sollicitée uniquement en cisaillement, bifurquerait. Ainsi, les modes de cisaillement seuls ne permettent pas

d’expliquer la fissuration des rails où les fissures restent coplanaires.

5 Essais de mode mixte non-proportionel I + II

Ni le mode I seul, ni les modes de cisaillement seuls ne peuvent expliquer la fissuration des rails, et il semble

donc que ce soit la combinaison (non proportionnelle) des différents modes qui soit responsable de la propagation

de ces fissures. Ces chargements ont été étudiés par des essais en mode mixte non proportionnels I + II.

Ces essais sont menés sur des tubes d’épaisseur 1 mm et de rayon externe 12.5 mm montés dans une machine de

traction-torsion (deux actionneurs différents). Une préfissure d’environ 3 mm de long (demi-longueur 1.5 mm) est

amorcée par un chargement de traction cyclique. L’échantillon est ensuite sollicité en traction-torsion : la traction

induit du mode I, tandis que la torsion induit du mode II. Le dispositif expérimental est représenté Figure 13. Les

échantillons sont recouverts d’un mouchetis en peinture afin d’effectuer un suivi par stéréo-corrélation d’images. La

taille des subsets obtenus est d’environ 150 microns, avec un step de 20 microns. Les champs de déplacements issus

de la corrélation d’images sont utilisés pour localiser la pointe de fissure et mesurer les FICs effectifs.

La liste des 15 essais réalisés est donnée Tableaux 1, 2, 3. Les chargements appliqués dans le plan KI - KII sont

séquentiels, déphasés de 90 ◦ (forme elliptique) ou bien séquentiels inclinés (obtenus par un pilotage séquentiel des

actionneurs de force et couple mais avec une préfissure inclinée), comme illustré Figure 14.
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Figure 13 – Dispositif expérimental pour les essais en mode mixte non-proportionnel I + II.

Figure 14 – Trajets de chargements testés.

5.1 Essais séquentiels

Dix essais avec un chargement pseudo-séquentiel ont été réalisés avec différents niveaux d’effort de traction,

cisaillement et compression. Le chargement, nombre de cycle appliqué et résultat en terme de nombre de cycles à

rupture et distance de propagation coplanaire sont donnés tableau 1. Lorsqu’il n’y a pas de compression pendant

le cisaillement, la fissure bifurque après une courte propagation coplanaire (comme illustré Figure 15) lorsque

10



∆Knom
II /∆Knom

I > 2, comme observé par [Bold, 1990, Wong et al., 2000, Akama, 2003]. Cependant, lorsqu’une

compression est ajoutée pendant le cycle de cisaillement, la fissure peut se propager de manière coplanaire pour

∆Knom
II /∆Knom

I > 2. Ceci est dû à une augmentation du frottement, et une diminution de ∆Keff
II /∆Keff

I :

la propagation reste coplanaire tant que ∆Keff
II /∆Keff

I / 2. Ce ratio effectif est initialement inférieur au ratio

nominal, mais croît du fait de l’usure des lèvres de fissure, et de la diminution du frottement en résultant. La

Figure 16, représentant l’évolution de ∆Keff
II /∆Keff

I pour différentes conditions, illustre ce phénomène. L’ajout

d’une compression lors du cycle de cisaillement réduit la valeur initiale de ∆Keff
II /∆Keff

I , et ralentit sa croissance,

tendant donc à favoriser une propagation coplanaire plus longue.

Figure 15 – Exemple de trajet de fissure.

Table 1 – Paramètres d’essais et résultats en termes de propagation coplanaire pour les essais pseudo-séquentiels.

Exp.
N◦

effort axial
Max / Min
(kN)

Couple
(N.m)

∆KII

∆KI

nominal
Propagation
coplanaire
(mm)

Ncycles appliqués
à un chargement
donné (total si 6=)

Ncycles de
propagation
coplanaire

Jauge de
déformation

9a 10 / -5 ± 110 1.9 ≈ 0.1 400 000 400 000 non

9b
∗ 10 / -5 ± 140 2.4 ≈ 0.1 250 000 (1 050

000)
1 050 000 non

9 ∗ 13 / 0 ± 90 1.2 >4.3 240 000 (1 640
000)

1 640 000 non

8 10/0 ± 90 1.6 >4 75 000 70 000 non

19 10/0 ± 90 1.6 >6 51 000 51 000 oui

18 w 10/0 ± 90 1.6 >6 51 000 51 000 oui

4 7/0 ± 110 2.7 1 235 000 180 000 non

7 ∗ 12/5 ± 110 2.7 0.6 110 000 (630 000) 600 000 non

5 10/0 ± 150 2.6 0.4 40 000 15 000 non

6 10/-5 ± 150 2.6 3.8 133 000 128 000 non

11 11/0 ± 160 2.5 0.6 6 000 3 000 oui

10 11/-5 ± 160 2.5 4.5 23 000 20 000 oui

5.2 Essais avec chargements déphasés de 90
◦

Trois essais ont été menés avec un chargement déphase de 90◦ (comme illustré Figure 14.c). Tous ont donné lieu

à une bifurcation après une courte propagation coplanaire. Le chargement, nombre de cycle appliqué et résultat en

termes de nombre de cycles à rupture et distance de propagation coplanaire sont donnés tableau 2.

Des essais à F = +11/ − 5 kN et C = ±160 Nm ont été menés avec un chargement séquentiel et hors phase.

Ces deux essais ont donc les mêmes amplitudes de ∆Knom
I et ∆Knom

II , mais avec des trajets dans le plan KI -

KII différents. Néanmoins, les ∆Keff obtenus sont très différents (dans un cas la fissure est comprimée lors du

cisaillement, ce qui réduit ∆Keff
II , alors que dans l’autre la fissure est ouverte lorsque le cisaillement est maximal).

L’essai séquentiel a donné lieu à une propagation coplanaire, tandis que l’essai hors phase a donné lieu à une
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Figure 16 – Evolution de ∆Keff
II /∆Keff

I en fonction de la longueur de fissure lors des essais séquentiels.

bifurcation, avec une vitesse de propagation 10 fois plus grande.

Table 2 – Paramètres d’essais et résultats en termes de propagation coplanaire pour les essais avec un chargement
séquentiel incliné.

Exp.
N◦

effort axial
Max / Min
(kN)

Couple
(N.m)

∆KII

∆KI

nominal
Propagation
coplanaire
(mm)

Ncycles appliqués
à un chargement
donné (total si 6=)

Ncycles de
propagation
coplanaire

Jauge de
déformation

12 11/-5 ± 160 2.5 0.4 4000 500 oui

13 11/-5 ± 110 1.7 0.6 23000 2000 oui

14 11/-5 ± 70 1.1 0.3 105000 5000 oui

Ainsi, la donnée de la seule amplitude des FICs nominaux (∆Knom
I m et ∆Knom

II ) ne suffit pas à prédire le trajet

et la vitesse de propagation. De même, la seule amplitude des FICs effectifs (∆Keff
I et ∆Keff

II ) ne suffit pas à

prédire la bifurcation.

5.3 Essais avec chargement séquentiel incliné

Deux essais ont été menés avec un chargement séquentiel incliné (cf Figure 14.d), plus proche des chargements

calculés. Ce trajet est obtenu par un pilotage séquentiel des actionneurs de couple et force, mais avec une préfissure

inclinée. Le chargement, nombre de cycle appliqué et résultat en termes de nombre de cycles à rupture et distance

de propagation coplanaire sont donnés tableau 3.

Pour les deux essais, la fissure a bifurqué après une courte propagation coplanaire, pour ensuite se remettre à

l’horizontale et revenir à un chargement séquentiel. Ce chargement séquentiel incliné n’est donc vraisemblablement

pas celui vu par les fissures dans les rails (qui ne bifurquent pas), ce qui pourrait être dû à une modélisation trop

simpliste de l’effet des contraintes résiduelles, ou bien à l’hypothèse que la fissure dans le rail est semi-elliptique,

alors que sa forme réelle est plus complexe (cf fig. 1).

5.4 Frottement et usure des lèvres de fissure.

Des exemples de trajets de chargement effectifs sont donnés figure 17. Les effets de fermeture dus à la plasticité

et à la rugosité réduisent le rapport UI (compris entre 0.76 à 1). Lors des essais séquentiels et pseudo-séquentiels,

le frottement et l’enchevêtrement des aspérités le long des lèvres de fissure réduisent la singularité de mode II (UII

12



Table 3 – Paramètres d’essais et résultats en termes de propagation coplanaire pour les essais avec un chargement
déphase de 90◦.

Exp.
N◦

effort axial
Max / Min
(kN)

Couple
(N.m)

∆KII

∆KI

nominal
Propagation
coplanaire
(mm)

Ncycles appliqués
à un chargement
donné (total si 6=)

Ncycles de
propagation
coplanaire

Jauge de
déformation

16 10/0 45/-145 1.6 0.4 136000 30000 oui

17 10/0 80/-160 2.1 0.3 44500 5000 oui

de 0 à 0.52, cf figure 18). Ceci ne peut être expliqué par un frottement de type Coulomb. Comme lors des essais de

mode mixte II & III, de la dilatance est observée (graphe de gauche, figure 17).

Figure 17 – Trajets de chargements pour l’essai séquentiel N◦19 (F = +10/0 kN , C = ±90 Nm), au cycle 45000
(gauche), et l’essai déphasé de 90 ◦ N◦14 (F = +11/ − 5 kN , C = ±70 Nm), au cycle 5000 (avant bifurcation) et
65000 (après bifurcation) (droite).

Figure 18 – Evolution de UII = ∆Keff
II /∆Knom

II lors des essais pseudo-séquentiels.

La rugosité des lèvres de fissure, qui réduit fortement UII , évolue lors des essais du fait de l’usure. Lors de l’essai

N◦ 9, avec un faible niveau de couple (± 90 Nm) la fissure apparente durant le cycle de mode II est plus courte que

durant le cycle de mode I (cf figure 19.a), ce qui signifie que ∆Keff
II = 0. Dans ce cas, les lèvres ne sont pas usées,

et le faciès de rupture est similaire à celui des essais de mode I. Pour l’essai N◦ 6, avec un couple plus important (±
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150 Nm) et malgré la compression, les deux fissures apparentes ont la même longueur : ∆Keff
II 6= 0. Les faces de

la fissure sont fortement usées, avec la présence d’oxydation et de débris. Ces derniers forment un troisième corps,

qui influe sur l’usure et le frottement [Arnaud, 2018].

Figure 19 – (a) : fissure apparente durant les cycles de mode I et II, et faciès de rupture de l’essai N◦ 9 (13 / 0
kN , ± 90 Nm). (b) : fissure apparente durant les cycles de mode I et II, et faciès de rupture de l’essai N◦ 6 (10 /
-5 kN , ± 150 Nm).

5.5 Vitesse de propagation

La vitesse de propagation se corrèle pour tous les essais (avec des chargements et trajets de fissures très dif-

férents !) avec ∆Keff
eq =

√

(∆Keff
I )2 + (∆Keff

II )2 + 1

1−ν
(∆Keff

III )2, comme illustré figure 20. 90% des points sont

inclus dans une enveloppe d’un facteur 4 en vitesse, avec R2 = 0.87. Ainsi, à l’opposé de Fremy et al. [Fremy et al.,

2014], l’effet de la forme du trajet n’est pas observé. Du fait de la dispersion sur la courbe (le contact et frottement

rendent l’estimation de la position de la pointe de fissure et des FICs effectifs difficiles), un tel effet ne peut être

exclu, mais il semble être ici de second ordre par rapport à l’effet de la forme du trajet nominal sur les FICs effectifs

(et donc sur la vitesse de propagation) via le contact et frottement.

Ainsi, il existe un critère simple pour prédire la vitesse de propagation, à condition de connaître les FICs effectifs

(la vitesse ne se corrèle pas avec les FICs nominaux). Ceci nécessite donc d’avoir un moyen d’évaluer précisément

ces FICs effectifs dans les calculs dans le rail, c’est-à-dire d’avoir une meilleure compréhension de l’évolution du

frottement et des effets de fermeture entre les lèvres de la fissure.

5.6 Prédiction du trajet de fissuration

Comme expliqué précédemment, la donnée de la seule amplitude des FICs nominaux ou effectifs ne suffit pas

à prédire le trajet de la fissure. L’approche employée a consisté à mesurer les évolutions temporelles Keff
I (t) et

Keff
II (t) durant un cycle complet, pour différents cycles « remarquables » (avant et après bifurcation) des essais
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Figure 20 – Evolution de la vitesse de propagation pour les essais de mode I, mode mixte II & III et mode mixte

non-proportionnel I + II en fonction de ∆Keff
eq =

√

(∆Keff
I )2 + (∆Keff

II )2 + 1

1−ν
(∆Keff

III )2.

pseudo-séquentiels. Pour chacune de ces évolutions, le trajet prédit par divers critères a été calculé et le pourcentage

de prédictions « correctes » a été reporté dans le Tableau 4.

Table 4 – Pourcentage de trajets prédits avec une précision donnée pour les critères MTS, MTSp et MTSp avec
prise en compte du contact et frottement.

Ecart inférieur à
% de succès

MTS MTSp MTSp avec contact & frottement

15 ◦ 60 53 % 73 %

30 ◦ 83 90 % 97 %

Le critère de la contrainte tangentielle maximale prenant en compte la redistribution des contraintes due à la

plasticité en pointe de fissure (MTSp, [Dahlin and Olsson, 2003]) capte mieux la bifurcation que son équivalent

élastique (MTS). La prise en compte du contact et frottement améliore les prédictions.

En effet, la prise en compte de la plasticité tend a diminuer les maximas de la contrainte tangentielle à ≈ ±70◦

(voir figure 21), ce qui augmente la distance de propagation coplanaire prévue. Cependant, la propagation coplanaire

n’est jamais vraiment prédite, car le maximum à ≈ 0◦ est déplacé vers ≈ 15◦ du fait des contraintes résiduelles

de cisaillement laissées par le cycle de mode II précédent. De plus, la bifurcation, lorsqu’elle a lieu, est toujours

prévue à ≈ ±70◦, tandis qu’elle était comprise entre 40 et 60◦ lors des essais : ces deux effets expliquent les mauvais

résultats de ce critère (MTSp) à moins de 15◦ dans le tableau 4.

Ajouter les contraintes de contact et frottement tend à rapprocher les maximas à ≈ ±70◦ vers ≈ ±45◦ (direction

de contrainte tangentielle maximale si la fissure est bloquée), et rapproche le maxima correspondant à la propagation

coplanaire vers ≈ 0◦, ce qui améliore les prévisions.
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Figure 21 – Evolution du maximum temporel de la contrainte tangentielle devant la pointe, en fonction de l’angle.
Calcul élément fini avec ∆Keff

II /∆Keff
I = 2, RI = −1 et UII = 0.5.

6 Proposition d’une approche pour prédire la propagation des fissures

Le trajet et la vitesse de propagation peuvent être prédits de manière satisfaisante à partir de l’évolution

temporelle des FICs effectifs (par exemple avec une loi de type Paris & ∆Keff
eq , et le critère MTS). Cependant, la

détermination des FICs effectifs à partir des valeurs nominales ne peut être faite avec une simple loi de type Coulomb,

qui ingore l’effet de la rugosité des fissures. Une approche simple a donc été proposée afin d’être implémentée dans la

chaine de calcul SNCF utilisant les éléments finis étendus. Cette approche repose sur l’hypothèse que le frottement

peut se diviser en deux sources : une source extrinsèque (frottement de type Coulomb, lié à la compression lointaine)

et une source intrinsèque (rugosité).

En mode I + II séquentiel, on calcule l’amplitude des FICs effectifs comme :

∆Keff
I = UI ∗ Knom

I (1)

∆Keff
II = α ∗ ∆Kcoulomb

II − 2 ∗ K0

II (2)

Avec UI une constante représentant les effets de fermeture par plasticité, K0
II un seuil en dessous duquel la

fissure est bloquée, et α la valeur asymptotique de UII lorsque ∆Keff
II est élevé. ∆Kcoulomb

II représente la valeur de

∆KII obtenue après prise en compte du frottement de type Coulomb.

Cette approche peut être généralisée à des cas de chargements quelconques en mode mixte non-proportionnel I

+ II + III.

Une validation de l’approche a été effectuée sur les des essais de mode mixte séquentiel et pseudo séquentiels I

+ II & III, avec des résultats satisfaisants.
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7 Conclusions

Des trajets de chargement subis par les fissures de type Squats ont été simulés en utilisant une chaine de calcul

développée par SNCF. Ces trajets sont de mode I + II + III quasi séquentiels, avec une phase de compression lors

du cisaillement.

Un outil de post-traitement de champs de déplacements a été développé afin de suivre des essais représentatifs

du chargement subis par ces fissures.

Ni le mode I seul, ni les modes de cisaillement seuls n’ont permis d’expliquer la fissuration dans les rails.

Des essais de mode mixte non-proportionnels I + II ont été effectués, dont le trajet et la vitesse de propagation

ont pu être prédits avec des critères simples basés sur les FICs effectifs (loi de type Paris & ∆Keff
eq , et le critère

MTS)

Cependant, la détermination de ces FICs effectifs à partir des valeurs nominales s’est révélée complexe. Le

challenge pour les applications industrielles n’est donc pas seulement de trouver le critère de bifurcation et la loi

de propagation les plus adéquates, mais également de prendre en compte le frottement (lié aux aspérités), voire

l’usure, dans les simulations afin d’estimer les FICs effectifs.

Afin d’estimer ces FICs effectifs, une approche simplifiée a été proposée et validée sur des essais de mode I + II

& III séquentiels.

Cette approche reste cependant à valider par rapport au retour d’expérience de SNCF, et des essais menés sur

un rail (à l’échelle 1 : 1).

Une modélisation de l’usure et du troisième corps, comme fait par [Arnaud and Fouvry, 2018], pourrait certaine-

ment améliorer les prédictions des FICs effectifs. La prise en compte des effets de fermeture induits par l’oxydation

pourrait également s’avérer utile.

D’un point de vue industriel, la chaine de calcul finalisée permettra d’optimiser les intervalles de maintenance,

de quantifier l’influence des conditions de circulation (géométrie du rail, raideur de la voie, météo, type de train...)

sur la propagation des fissures et de proposer des conditions optimisées. Si elle s’avère fructueuse, cette approche

pourra également être appliquée à d’autres nuances de rails, afin de déterminer leurs avantages et inconvénients.
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Titre : Fissuration par fatigue en mode mixte non-proportionnel des rails de chemin de fer. De l’étude expérimentale à la

mise en oeuvre d’un modèle.

Mots clés : fatigue de roulement ; fissuration ; mode mixte ; corrélation d’images ; chargement non-proportionnel ; frotte-

ment

Résumé : Les rails de Chemins de fer sont soumis à de

la fatigue de roulement due au passage répété des roues

de train, ce qui induit différents types de fissures, telles que

les Squats. Ces fissures sont soumises à un chargement de

mode mixte non-proportionnel I + II + III, dans des propor-

tions variables le long du front, avec des phases de com-

pression, ce qui rend la prédiction de leur trajet et de leur

vitesse délicate.

La cinétique de fissuration en mode I a été déterminée

dans de l’acier à rail R260, pour des rapports R positifs

et négatifs, ainsi que la cinétique de mode mixte II & III

corrigée des effets de frottement. Les Facteurs d’Intensité

des Contraintes (FICs) effectifs ont été obtenus à partir des

sauts de déplacements dans le plan et hors plan mesurés

en surface, le long de la fissure. De ces lois cinétiques, il

ressort que ni le mode I seul, ni les modes de cisaillement

seuls ne peuvent expliquer la fissuration des rails. C’est

donc la combinaison des trois modes, suivant des trajets

de chargement complexes, qui en est responsable.

Des essais de fissuration par fatigue en mode mixte

non-proportionnel I + II ont ensuite été réalisés, sui-

vant des trajets de chargement représentatifs. La stéréo

corrélation d’images a été utilisée pour obtenir les champs

de déplacements en pointe de fissure. Les méthodes

classiques de mesure des FICs à partir de champs de

déplacements n’étant pas adaptées, du fait des efforts de

contact et frottement entre les lèvres de fissure, de nou-

velles méthodes ont été développées. Les trajets et vitesses

de fissuration ont été étudiés au regard de ces FICs effec-

tifs. Le critère de la contrainte tangentielle maximale n’a pas

permis de prédire le trajet de manière fiable, mais peut être

améliorée par la prise en compte de la plasticité en pointe

de fissure ainsi que des efforts de contact/frottement entre

les lèvres de fissure. Les vitesses de propagation obtenues

se corrélèrent bien avec une combinaison des trois FICs ef-

fectifs dans une loi de type ≪ Paris ≫.

De ces essais, il ressort que du fait de la rugosité de

la fissure, l’enchevêtrement d’aspérités et le frottement

réduisent considérablement les FICs effectifs. Et cela même

en l’absence de compression normale, ce qui ne peut être

modélisé par une simple loi de Coulomb. De plus, l’usure

des lèvres de fissure a aussi une forte influence sur les FICs

effectifs. Le challenge pour les applications structurelles est

donc non seulement de choisir le critère de bifurcation et la

loi cinétique les plus appropriés, mais également de prendre

en compte la rugosité et l’usure des lèvres de fissure, afin

d’estimer correctement les FICs effectifs à utiliser dans ces

modèles.

Pour les applications industrielles, une approche

d’ingénieur, simplifiée, a été proposée afin de prendre en

compte le frottement induit par la rugosité dans l’estima-

tion des trajets de chargements effectifs à partir des trajets

nominaux. Cette approche a été validée sur des essais de

mode mixte séquentiel I + II & III.

Title : Fatigue crack growth under non-proportional mixed-mode loading in rail steel. From experiment to simulation.

Keywords : rolling-contact fatigue ; crack growth ; mixed-mode ; digital image correlation ; non-proportional loading ; friction

Abstract : Rails are submitted to Rolling Contact Fatigue

due to repeated passages of train wheels, which induces

several types of cracks, such as Squat-type cracks. Those

cracks undergo non-proportional mixed-mode I + II + III loa-

ding, including compression phases, in variable proportions

along the crack front, making the prediction of their paths

and growth rates a challenge.

Mode I crack growth kinetics, for positive and negative R ra-

tios, were first determined in R260 steel, as well as friction-

corrected crack growth kinetics for fully-reversed combined

mode II and III. The effective Stress Intensity Factors (SIFs)

were deduced from the measured in-plane and out-of-plane

crack face sliding displacements. From those kinetic laws,

it was deduced that neither pure mode I, nor pure shear

mode loadings can explain the crack growth rates observed

in rails. A combination of those three loading modes, accor-

ding to complex loading paths had thus to be prospected.

Non-proportional mixed-mode I + II fatigue crack growth

tests were then performed, following representative loading

paths. Stereo digital image correlation was used to measure

the near-tip displacement field. Post-treatment methods ge-

nerally used to deduce the effective SIFs from these fields

were inappropriate because of contact and friction stresses

along the crack face. New methods were thus developed.

The crack paths and growth rates were analyzed, using the

effective SIFs. Crack path prediction by the maximum tan-

gential stress criterion was found not to be very reliable, but

substantially improved when crack tip plasticity and the pre-

sence of contact and friction stresses along the crack faces

were taken into account. The measured crack growth rates

correlated well with a combination of the three effective SIFs

in a Paris-type law.

From these experiments, it appears that due to crack face

roughness, asperities interlocking and friction substantially

reduce the effective SIFs, even without any normal com-

pression, which cannot be captured by a simple Coulomb’s

law. Besides, crack faces wear also has a large influence on

the effective SIFs. The challenge for structural applications

is thus not only to choose the most appropriate bifurcation

criterion and crack growth law, but also to take crack face

roughness and wear into account, in order to estimate the

correct effective SIFS to use in these models.

For industrial applications, a simple engineering approach

was proposed to integrate roughness-induced friction in

the estimation of the effective loading path from the nomi-

nal one. This approach was validated on sequential mixed-

mode I + II & III experiments.
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