Modélisation et caractérisation large bande de plaques multicouches anisotropes

Fabien Marchetti

Thèse de doctorat dirigée par Kerem Ege et Quentin Leclère École doctorale MEGA

Contexte

Pourquoi utiliser des structures multicouches?

Propriétés mécaniques intéressantes

Plaque composite renforcée en fibres de carbone

Robustesse, légèreté

Châssis d'une BMW 13

Contexte

Paramètres mécaniques évoluant avec la fréquence ----- Optimisation

10⁴

Problématique et objectifs

Problématique

Modèle FEM \longrightarrow Maillage fin en HF \longrightarrow Temps de calcul important

Remplacer les structures multicouches simples (plaques) par des structures monocouches équivalentes

Quels sont les modèles analytiques de multicouches?

Leurs avantages, inconvénients, limites?

Comment les améliorer?

Comment définir et quantifier l'amortissement structurel?

Classification des modèles de multicouches

Modèles homogènes :

Modèles "par morceaux" :

Modèles "Zig-Zag" :

- Un champ cinématique pour tout le multicouche,
- Nombre de variables indépendant du nombre de couche,
- Temps de calcul : +++ / Précision : +

- Un champ cinématique pour chaque couche,
- Le nombre de variables dépend du nombre de couche,
- Temps de calcul : + / Précision : +++

- Un champ cinématique pour chaque couche,
- Nombre de variables indépendant du nombre de couche,
- Temps de calcul : +++ / Précision : ++

Fabien Marchetti – soutenance de thèse – 16/12/2019

Exemples de modèles

Modèles homogènes :

- Love-Kirchhoff (flexion)
- Hencky-Mindlin (flexion + cisaillement linéaire)

Paramètres équivalents constants en fréquence

Exemples de modèles

Modèle "Zig-Zag" :

Guyader et al. 1978, 2007

- Équivalence à une plaque de Love-Kirchhoff à chaque fréquence
- Paramètres équivalents variants en fréquence

Objectif: Étendre le modèle de Guyader pour les structures anisotropes

Problématique

Quelles sont les techniques de caractérisation par analyse de champs?

Leurs avantages, inconvénients, limites?

Comment les améliorer?

Quels sont leurs comportements face à des données bruités?

Quel est le coût de mise en œuvre?

Techniques d'analyse de champs

Méthodes globales :

DFT	Réponse de la plaque dans le plan (k_x, k_y)	- Résolution limitée 🖨 - Partie réelle uniquement 🖨	
CFT	Réponse de la plaque dans le plan (k_x, k_y)	- Discrétisation précise 🕀 - Partie réelle uniquement 😑	
IWC <i>Berthaut 2004</i>	Corrélation du champ mesuré avec une onde plane	- Discrétisation précise 🕀 - Partie réelle et imaginaire 🚯	
Corrélation de Hankel Roozen 2017	Corrélation du champ mesuré avec un champ de Green	 Prise en compte de l'atténuation de l'onde Requiert la position de la source 	

Fabien Marchetti – soutenance de thèse – 16/12/2019

Techniques d'analyse de champs

Méthodes locales :

RIFF (FAT) Pézerat 2000	- Modélisation sous Love-Kirchhoff - Estimation de l'équation de mouvement par schéma aux différences finies	- Erreur de biais du schéma en HF 😑 - Atténuation du bruit par fenêtrage et filtrage 🕀	
RIC (CFAT) Leclère 2012		 Correction de l'erreur de biais	
VFM Pierron 2012	 Modélisation sous Love-Kirchhoff Principe des travaux virtuels 	- Faible influence du bruit (estimation des dérivées partielles d'ordre 2 uniquement)	

Objectif: Développer la méthode RIC sur des structures anisotropes

Problématique et objectifs

- I. Modèle analytique équivalent de structures multicouches
- II. Adaptation de la méthode RIC pour les plaques anisotropes
- III. Caractérisation large bande d'un sandwich en nids d'abeille

Conclusion et perspectives

Modèle équivalent de structures multicouches anisotropes

Hypothèses :

- Modèle "Zig-Zag".
- Une cinématique de Hencky-Mindlin par couche.
- Description des phénomènes de flexion $\frac{\partial W}{\partial x}$, membrane $\psi_x(x, y)$, et cisaillement $\varphi_x(x, y)$.
- Le déplacement transverse W(x, y) est supposé constant dans l'épaisseur (pas de déformation).

Loi de comportement (Hooke) :

Chaque couche *n* est définie par une loi de comportement orthotrope hors axe :

$$\begin{pmatrix} \sigma_{xx}^{n} \\ \sigma_{yy}^{n} \\ \sigma_{yz}^{n} \\ \sigma_{yz}^{n} \\ \sigma_{xz}^{n} \\ \sigma_{xy}^{n} \end{pmatrix} = \begin{bmatrix} Q_{11}^{n} & Q_{12}^{n} & 0 & 0 & Q_{16}^{n} \\ Q_{12}^{n} & Q_{22}^{n} & 0 & 0 & Q_{26}^{n} \\ 0 & 0 & Q_{44}^{n} & 0 & 0 \\ 0 & 0 & 0 & Q_{55}^{n} & 0 \\ Q_{16}^{n} & Q_{26}^{n} & 0 & 0 & Q_{66}^{n} \end{bmatrix} \begin{pmatrix} \epsilon_{xx}^{n} \\ \epsilon_{yy}^{n} \\ 2\epsilon_{yz}^{n} \\ 2\epsilon_{xz}^{n} \\ 2\epsilon_{xy}^{n} \end{pmatrix}$$

7

Les Q_{ij}^n dépendent des modules de Young et de cisaillement **complexes** ($E_x, E_y, G_{xy}, G_{xz}, G_{yz}$) et des coefficients de Poisson (v_{xy}, v_{yx})

Relations de couplage entre les couches :

Continuité des déplacements et des contraintes aux interfaces entre les couches.

Relation entre les variables cinématiques :

Équation de mouvement :

Fonctionnelle de Hamilton (Woodcock 2008, Loredo 2013):

$$H = \int_{t_0}^{t_1} \iint_{S} e_{\rm c} - e_{\rm d} \, {\rm d}S {\rm d}t$$

- $e_{\rm c}$: densité d'énergie cinétique
- e_d : densité d'énergie de déformation

Principe de moindre action :

$$\left([K] + [M]\frac{\partial^2}{\partial t^2}\right)\{w^1\} = [0]$$

[K] et [M] dépendent des caractéristiques de chaque couche

Solution particulière :

Une onde plane se propageant selon θ :

$$\det([K] - \omega^2[M]) = 0 \longrightarrow$$

 $\{w^1\} = \{A\}e^{j\omega t}e^{-jk\left(x\cos(\theta) + y\sin(\theta)\right)}$

6 racines en $k(f, \theta)$ (5 propagatives et 1 évanescente)

Courbes de dispersion :

17/40

Plaque équivalente de Love-Kirchhoff

Relation de dispersion (anisotrope)

$$\gg k_{\rm f}^4 \left[D_{11}c^4 + D_{22}s^4 + D_{12}c^2s^2 + D_{16}c^3s + D_{26}cs^3 \right] = \rho h \omega^2$$

Identification des D_{ij} par méthode moindres carrés $c = \cos(\theta)$ $s = \sin(\theta)$

Sandwich composite anisotrope :

- Peaux en fibres de carbone (0,4 mm)
- Cœur en bois d'épicéa (7 mm)

Caractérisation de plaques composites

Plaques étudiées :

Trois plaques composites en fibres de carbone : (0°/0°/0°), (0°/90°/90°/0°), (60°/-60°/-60°/60°)

Analyse des mesures : IWC

- Identification des paramètres des couches par minimisation de l'erreur entre les résultats du modèle et de la mesure pour la 1^{ère} plaque,
- Vérification de la cohérence des résultats pour les autres plaques.

Méthodologie de corrélation

$$IWC(k, f, \theta) = \frac{\left|\sum_{p} \sum_{q} w(x_{p}, y_{q}) \varphi_{k, \theta}^{*}\right|}{\sqrt{\sum_{p} \sum_{q} \left|w(x_{p}, y_{q})\right|^{2} \cdot \sum_{p} \sum_{q} \left|\varphi_{k, \theta}\right|^{2}}}$$

avec
$$\varphi_{k,\theta} = e^{j\omega t} e^{-jk(x\cos(\theta) + y\sin(\theta))}$$

- k : nombre d'onde
- *f* : fréquence
- θ : direction de propagation

Exemple pour un couple (f_i, θ_j) :

Caractérisation de plaques composites

<u>Plaque (0°/0°/0°/0°) :</u>

Représentation K-space des estimations d'IWC. Ligne noire: prédiction du modèle

Rigidités de flexion identifiées par IWC (x) et prédites par notre modèle (- -)

$$D_{16} = D_{26} = 0 \longrightarrow$$

Axes d'orthotropie alignés avec les axes du maillage de mesure

Caractérisation de plaques composites

Représentation K-space des estimations d'IWC. Ligne noire: prédiction du modèle.

Rigidités de flexion identifiées par IWC (x) et prédites par notre modèle (- -)

 $D_{16} \neq 0$ $D_{26} \neq 0$ - Axes d'orthotropie différents des axes du maillage de mesure - Couplage entre la flexion et la torsion

Définition de l'amortissement structurel

 $C_g =$

Formulation équivalente :

Love-Kirchhoff: $\eta_{eq} = \frac{Im(D)}{Re(D)} = -\frac{Im(k_{f}^{4})}{Re(k_{f}^{4})}$

Formulation temporelle :

Définition basé sur le taux de décroissance de la réponse impulsionnelle Δt

 $\eta = \frac{\mathrm{Im}(\omega^2)}{\mathrm{Re}(\omega^2)}$

Formulation spatiale :

Définition basé sur **l'atténuation spatiale** d'une onde plane Δx

$$\eta = -2\frac{\mathrm{Im}(k)}{\mathrm{Re}(k)}\frac{C_g}{C_{\phi}}$$

Lyon 1995

Définition de l'amortissement structurel

Validation expérimentale :

Traitement des mesures

Analyse modale

Méthode ESPRIT

Taux de décroissance

Méthode RIC

→ Résultats soumis au JSV

Adaptation de la méthode RIC pour les plaques anisotropes

Schéma aux différences finies

Équation de mouvement :

$$D_{11}\frac{\partial^4 w}{\partial x^4} + D_{22}\frac{\partial^4 w}{\partial y^4} + D_{12}\frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{16}\frac{\partial^4 w}{\partial x^3 \partial y} + D_{26}\frac{\partial^4 w}{\partial x \partial y^3} - \rho h \omega^2 w(x,y) = p(x,y)$$

Estimation de RIFF :

$$D_{11}\delta^{4x} + D_{22}\delta^{4y} + D_{12}\delta^{2x2y} + D_{16}\delta^{3xy} + D_{26}\delta^{x3y} - \rho h\omega^2 w(x,y) = p^{\text{RIFF}}(x,y)$$

Correction de l'erreur de biais

Erreur entre le champ de pression estimé et réel :

Singularité autour du nombre d'onde de flexion $k_{\rm F}$: $\hat{p}(k_{\rm F}, \theta) = 0$ et $\hat{p}^{\rm RIFF}(k_{\rm F}, \theta) \neq 0$

$$E = \frac{\hat{p}^{\text{RIFF}}(k,\theta)}{\hat{p}(k,\theta)}$$

<u>Atténuation de la singularité à l'aide de coefficients correcteurs (RIC) :</u>

$$D_{11}\mu_{11}\delta^{4x} + D_{22}\mu_{22}\delta^{4y} + D_{12}\mu_{12}\delta^{2x2y} + D_{16}\mu_{16}\delta^{3xy} + D_{26}\mu_{26}\delta^{x3y} - \rho h\omega^2 w(x,y) = p^{\text{RIC}}(x,y)$$

Coefficients correcteurs calculés par méthode moindres carrés (répartition uniforme de l'atténuation de la singularité)

Adaptation pour la caractérisation

Appliquer RIC loin de la source : $p^{\text{RIC}}(x, y) \approx 0 \rightarrow \text{Inconnues} : D_{ij}$ Les coefficients correcteurs μ_{ij} dépendent des D_{ij}

Méthode itérative :

Méthode par minimisation :

$$\text{Minimiser } R_{\text{RIC}}(k,\theta) = \left| \frac{\tilde{D}_{11}\hat{\delta}^{4x} + \tilde{D}_{22}\hat{\delta}^{4y} + \tilde{D}_{12}\hat{\delta}^{2x2y} + \tilde{D}_{16}\hat{\delta}^{3xy} + \tilde{D}_{26}\hat{\delta}^{x3y}}{\rho h \omega^2} - 1 \right|$$

 $\hat{\delta}(k, heta)$: schéma aux différences finies dans l'espace des nombres d'onde \widetilde{D}_{ij} : Rigidités identifiées par RIFF

→ Identification du nombre d'onde de flexion $(R_{RIC}(k_f, \theta) = 0)$

Application numérique sur champ non bruité

- Plaque orthotrope hors axe
- Rigidités constantes en fréquence
- Champ simulé par superposition modale

D ₁₁	D ₂₂	D ₁₂	D ₁₆	D ₂₆	
0,67	2,85	5,46	2,1	5,44	N.m

- Convergence rapide de la méthode itérative (10 itérations)
- Approche par minimisation longue (dépend de la discrétisation en k choisie)
- Les résultats dépendent fortement des rigidités identifiées par RIFF (

Application expérimentale

Protocole :

- Excitation : patch piézoélectrique (bruit blanc1 à 10 kHz)
- Mesure : Vibromètre laser 2D

Prost traitement :

- Régularisation du bruit par filtrage et fenêtrage (RIFF)
- Correction (RIC)

Plaque composite (60°/-60°/-60°/60°)

Caractérisation large bande d'un sandwich en nids d'abeille

Description de l'étude

Collaboration : N.B. Roozen (K.U. Leuven), M. Kersemans et J. Segers (UGent)

Structure étudiée :

Nids d'abeille en Nomex

<u>Objectifs :</u>

- Caractériser la structure en utilisant plusieurs technique de caractérisation (RIC, IWC, Corrélation de Hankel)
- Comparer les résultats aux prédictions de modèles analytiques (modèle équivalent, modèle des ondes de Lamb)
- Analyser et comprendre le comportement dynamique de la structure sur une large bande fréquentielle

Protocoles expérimentaux

Protocole A :

- Excitation : cellule piézoélectrique, bruit blanc entre 1 et 50 kHz
- Mesure : Vibromètre laser 3D (déplacement transverse W et membranaire U et V)
- Maillage : 2D

RUNNING CONTRACTOR

Protocole B :

- Excitation : impulsion photoacoustique entre 10 et 300 kHz (pump laser)
- Mesure : 2x Vibromètre laser monopoint
- Maillage: 1D

Étude du mode de flexion

Représentation K-space (IWC) :

Étude du mode de flexion

Raideurs équivalentes :

Analyse des mesures du protocole A :

- a) RIC (correction) + RIFF (régularisation)
- b) IWC (lissage)
- c) Corrélation de Hankel en orthotropie elliptique (*Berthaut 2004*):

$$G_{\infty}(r,\theta) = \frac{j\sqrt[4]{D_{11}D_{22}}}{8\sqrt{\rho h\omega^2}} \left(H_0^{(1)}(\kappa r) - H_0^{(1)}(j\kappa r) \right)$$

avec :

$$\kappa^{4}(\theta) = \rho h \omega^{2} \left(\frac{\cos^{2}(\theta)}{\sqrt{D_{11}}} + \frac{\sin^{2}(\theta)}{\sqrt{D_{22}}} \right)^{2}$$

$$- D_{11} - D_{22} - D_{12} - D_{16} - D_{26}$$

– Modèle multicouche équivalent

35/40

Étude des autres modes

Comparaison au modèle des ondes de Lamb :

Analyse des champs de déplacement membranaire :

f=50 kHz

Modèle multicouche équivalent :

- Membrane longitudinal
- – Cisaillement longitudinal
- Membrane transverse
- Cisaillement transverse

36/40

Conclusion et perspectives

Conclusion

Modélisation :

- La méthodologie de plaque équivalente mince a été adaptée au cas anisotrope (5 rigidités de flexion)
- Validation expérimentale sur plaques composites en fibres de carbone
- Amortissement structurel défini par le nombre d'onde naturel de la structure (aucune hypothèse de modèle)
- La définition équivalente de Love-Kirchhoff surestime le facteur de perte

Caractérisation :

- La méthodologie de RIC a été adaptée pour les plaques anisotropes
- Les méthodes de corrélation permettent d'explorer le contenu en nombre d'onde de la structure mais fournissent des résultats bruités
- La corrélation par fonctions de Hankel reste limitée au cas orthotrope elliptique

Perspectives

Modélisation :

- Equivalence plaque épaisse → Ruzek 2014
- Modélisation de matériaux poreux (couplage)
- Prendre en compte la déformation dans l'épaisseur (mode de respiration / symétriques) → Loredo 2016
- Modélisation des défauts de collage aux interfaces entre les couches

Caractérisation :

- Adapter la méthodologie de RIC sur des modèles de plaques plus complexes (plaques épaisses) → Wassereau 2017 (poutres épaisses)
- Validation expérimentale de RIC anisotrope pour l'identification de l'amortissement
- Appliquer RIC, IWC, ou la corrélation de Hankel sur des structures architecturées (métamatériaux)

Merci de votre attention

fabien.marchetti@insa-lyon.fr