
HAL Id: tel-02445180
https://theses.hal.science/tel-02445180v1

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric semantics for asynchronous computability
Jérémy Ledent

To cite this version:
Jérémy Ledent. Geometric semantics for asynchronous computability. Logic in Computer Science
[cs.LO]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLX099�. �tel-02445180�

https://theses.hal.science/tel-02445180v1
https://hal.archives-ouvertes.fr

Sémantiques Géométriques pour
la Calculabilité Asynchrone

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’École Polytechnique

École doctorale n°580 : Sciences et technologies de l’information et
de la communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 12 décembre 2019, par

 Jérémy Ledent

Composition du Jury :

Pierre Fraigniaud
Directeur de Recherche, IRIF, Université Paris-Diderot Président

Maurice Herlihy
Professeur, Université de Brown Rapporteur

Hans van Ditmarsch
Professeur, LORIA Rapporteur

Bernadette Charron-Bost
Directrice de Recherche, LIX, École Polytechnique Examinatrice

Yoram Moses
Professeur, Technion – Israel Institute of Technology Examinateur

Éric Goubault
Professeur, LIX, École Polytechnique Directeur de thèse

Samuel Mimram
Professeur, LIX, École Polytechnique Co-Directeur de thèse

NNT : 2019SACLX099

Remerciements

Je remercie tout d’abord Sam et Éric, mes deux directeurs de thèse. Vous avez su me guider dans mes

recherches, tout en me laissant la liberté d’explorer mes propres idées. Merci Éric pour ta disponibilité à

toute épreuve, malgré tes responsabilités au sein du laboratoire. Je ne compte plus les e-mails reçus de ta

part le dimanche à 23h. Merci Samuel pour tes conseils de rédaction, et pour nos nombreuses discussions

scientifiques. Tu m’as appris à toujours chercher les adjonctions et à exhiber les propriétés universelles.

Merci à vous deux pour toutes les connaissances que vous avez partagées avec moi.

Je remercie également mes deux rapporteurs, Hans et Maurice. Je suis infiniment reconnaissant pour

votre relecture minutieuse de ce manuscrit. Merci pour la pertinence de vos remarques sur mon travail,

et pour l’intérêt que vous portez à mes recherches. Merci aussi aux autres membres du jury, Bernadette,

Pierre et Yoram, de m’accorder un peu de votre temps et de votre expertise.

Merci tout particulièrement à Sergio Rajsbaum pour notre collaboration fructueuse sur la logique

épistémique. Nos multiples discussions tout au long de ma thèse ont grandement contribué à faire avancer

mon travail. Merci de m’avoir permis de découvrir le Mexique, sa culture et sa cuisine. Merci aussi à

Marijana qui m’a accompagné dans cette aventure mexicaine, et dans l’article qui en a résulté.

Je remercie chaleureusement toutes les autres personnes avec qui j’ai eu la chance de discuter de sujets

scientifiques, lors des diverses rencontres et conférences auxquelles j’ai participées. Je pense notamment

à Uli Fahrenberg, Martin Raussen, Krzysztof Ziemiański, Armando Castañeda, Petr Kuznetsov, et bien

d’autres. Merci également aux professeurs qui m’ont donné le goût de l’informatique théorique, de la

sémantique et de la théorie des catégories : Daniel Hirschkoff, Paul-André Melliès, et tout particulièrement

Emmanuel Haucourt, sans qui je ne me serais sans doute pas tourné vers ce sujet de thèse. Merci aussi à

mes propres élèves, avec qui j’ai découvert mon intérêt pour l’enseignement.

Merci à tous les membres du labo, avec qui j’ai partagé bureaux, pauses café et repas du midi : Adina,

Aurélien, Benjamin, Bibek, Cameron, Emmanuel, François, Franck, Jérémy, Maxime, Nicolas, Patrick,

Pierre-Yves, Robin, Sergio, Simon, Sylvie, Thibaut, Uli. Merci pour vos discussions amicales et votre

bonne humeur. Je vous dois les souvenirs chaleureux de mon passage au LIX. Un grand merci également

aux gestionnaires, Évelyne, Vanessa et Catherine, pour leur travail et leur efficacité.

Merci à tous mes amis de l’ENS Lyon et d’avant. Armaël et Pierre, avec qui j’ai partagé les galères

de la rédaction de thèse ; Antoine, Cyprien, Tito, et les autres réguliers d’IRC ; et mes amis de prépa,

Thomas, Paul, Palama, Térence, Bilou, Gaëtan, Lama, Nicolas, Ioum, Dimitri, Johan, Bastien. Mon

passage à Fermat reste intégralement dans mon cœur.

Merci à ma famille, Maman, Papa, Violaine et Nico, qui ont su respecter mes moments de vacances

3

en n’évoquant qu’avec parcimonie le sujet délicat de l’avancement de ma thèse. Et enfin, merci Marie,

merci d’exister, tout simplement.

C’est avec grand honneur que je te la dédie.

J’aurais été très fier de pouvoir te faire lire cette thèse,

À Martin, avec qui j’ai publié mon tout premier article.

4

Contents

Résumé en Francais 9

Introduction 15

1 Preliminaries 21
1.1 The distributed computing setting . 21

1.1.1 Tasks . 21

1.1.2 Processes, programs and protocols . 22

1.1.3 The (un)importance of crashes . 23

1.1.4 Shared objects . 24

1.2 Combinatorial topology . 24

1.2.1 Simplicial complexes and simplicial maps . 24

1.2.2 Carrier maps . 26

1.2.3 The standard chromatic subdivision . 27

1.2.4 Pseudomanifolds with boundary . 28

1.2.5 Sperner’s lemma . 28

1.2.6 The Index lemma . 29

1.3 Distributed computing through combinatorial topology 32

1.3.1 The task specification . 32

1.3.2 The protocol complex . 34

1.3.3 Definition of solvability . 37

1.4 A case study: solvability of Equality Negation tasks . 37

1.4.1 Solvable cases . 40

1.4.2 Impossibility proof when k is small . 41

1.4.3 Impossibility proof when n− k is odd . 43

1.4.4 Discussion on the number of input values . 47

2 Trace semantics 49
2.1 A first approach . 52

2.1.1 Objects specifications . 52

2.1.2 Tasks . 54

5

2.1.3 Protocols . 55

2.1.4 Protocol Complex . 58

2.1.5 Limits of this approach . 60

2.2 Specifying concurrent objects . 61

2.2.1 Objects vs Tasks . 63

2.2.2 Concurrent specifications . 64

2.2.3 Comparison of linearizability-based techniques 67

2.3 A computational model . 78

2.3.1 Programs and protocols . 78

2.3.2 Semantics of a protocol . 79

2.4 From trace semantics to geometric semantics . 83

2.4.1 Tasks as one-shot objects . 84

2.4.2 Simplicial tasks . 90

2.4.3 The protocol complex . 91

2.4.4 A generalized asynchronous computability theorem 92

2.5 Towards game semantics for fault-tolerant protocols . 95

2.5.1 What is game semantics? . 95

2.5.2 Back to our computational model . 97

2.5.3 A game semantics for fault-tolerant protocols 99

3 Epistemic logic semantics 109
3.1 Preliminaries . 111

3.1.1 Syntax . 111

3.1.2 Kripke semantics . 112

3.1.3 Dynamic Epistemic Logic . 114

3.2 Simplicial complex models for Dynamic Epistemic Logic 116

3.2.1 Simplicial models . 117

3.2.2 Equivalence between simplicial and Kripke models 119

3.2.3 Soundness and completeness . 122

3.2.4 Relaxing the locality condition . 124

3.2.5 A simplicial product update model . 125

3.3 Distributed computing through Dynamic Epistemic Logic 127

3.3.1 Protocols as action models . 128

3.3.2 Tasks as action models . 134

3.3.3 DEL definition of task solvability . 136

3.4 Examples . 137

3.4.1 Consensus . 137

3.4.2 Approximate agreement . 138

3.4.3 2-Set agreement . 140

3.5 Limits of the DEL approach . 141

3.5.1 Bisimulation between simplicial models . 141

3.5.2 The equality negation task . 142

3.6 Extended DEL . 145

6

3.6.1 Unsolvability of equality negation and 2-set-agreement 146

3.6.2 Perspectives of the Extended DEL approach . 149

3.7 Conclusion and future work . 150

4 Towards directed topological semantics 153
4.1 Preliminaries . 156

4.1.1 Higher-dimensional automata . 157

4.1.2 Notions of paths on HDAs . 159

4.2 Relating trace semantics and paths on HDAs . 161

4.2.1 Three simple bijections . 162

4.2.2 Chromatic subdivisions via partial cube chains 167

4.3 Future work and open questions . 171

Conclusion 177

Bibliography 179

7

Résumé en Français

Tout système informatique distribué est sujet à des pannes. Le type de panne le plus courant est celui

des systèmes par passage de message, où des ordinateurs distants doivent communiquer entre eux pour

parvenir à accomplir une tâche en commun. Par exemple, lorsqu’une personne veut faire une transaction

avec un site de vente en ligne, une communication se produit entre l’ordinateur personnel de l’utilisateur,

les serveurs du site internet, et ceux de la banque. Les trois ordinateurs doivent soit accepter d’effectuer la

transaction, soit la refuser (si l’utilisateur a un solde insuffisant sur son compte bancaire, par exemple).

L’important est que les trois machines doivent réussir à se mettre d’accord : il ne faudrait pas que le

compte bancaire de l’utilisateur soit débité alors que le site de vente n’a pas confirmé la transaction. Dans

ce contexte, les canaux de communication que les ordinateurs utilisent pour transmettre des informations

peuvent présenter un comportement peu fiable en raison des limitations physiques du matériel. En

pratique, il peut arriver qu’un message envoyé d’un ordinateur à un autre soit retardé, perdu, ou même

altéré, ce qui entraîne un comportement imprévisible. Même dans une architecture à mémoire partagée,

où plusieurs processeurs se trouvent dans un seul système informatique, différentes sortes de pannes

peuvent se produire. Par exemple, un processus peut subir une panne au cours de son exécution et s’arrêter

subitement (une panne crash) ; ou même présenter un comportement arbitrairement malveillant (on parle

alors de panne Byzantine). Comme ce type de comportement indésirable est inévitable, il doit être pris

en compte lors de la conception de logiciels pour les systèmes distribués. Le domaine des protocoles

tolérants aux pannes s’intéresse à la conception d’algorithmes fonctionnant sur diverses architectures de

calcul distribué, en présence de défaillances. L’objectif d’un protocole tolérant aux pannes est d’aboutir

à un résultat correct, même si certains composants du système tombent en panne. Le calcul distribué

tolérant aux pannes est encore un domaine très actif, en particulier avec l’essor récent de la blockchain qui

repose sur des variantes répétées du consensus, une tâche centrale en informatique distribuée.

Il est notoirement difficile de concevoir des algorithmes pour les systèmes distribués, d’autant plus

en présence de pannes. En fait, dans certains modèles de calcul habituellement considérés, les tâches

importantes deviennent parfois impossibles à résoudre. Le résultat séminal dans ce domaine a été établi

en 1985 par Fischer, Lynch et Paterson [42], qui prouve que la tâche du consensus n’est pas résoluble

dans un système par passage de messages avec au plus un crash potentiel. Plus tard, Biran, Moran et

Zaks [10] ont proposé une caractérisation combinatoire de toutes les tâches concurrentes qui peuvent

être résolues dans ce modèle. Leur critère repose sur un graphe « d’incertitude » des processus, dont la

connexité est l’ingrédient principal de l’impossibilité. Il s’agit là du premier cas d’une caractérisation

topologique (unidimensionnelle) de la résolubilité des tâches. Peu de temps après, il a été découvert que

9

lorsque plus d’un processus peut planter, l’irrésolubilité des tâches est liée à des propriétés topologiques

de plus haute dimension. Dans deux articles de 1993 [14, 112], cette découverte a été motivée par l’étude

d’une tâche appelée k-set agreement, une forme de consensus plus faible où les processus doivent se

mettre d’accord sur au plus k valeurs distinctes. Un troisième article indépendant de Herlihy et Shavit [70]

a donné une caractérisation topologique de toutes les tâches qui sont résolubles dans un cadre asynchrone

et wait-free, c’est-à-dire où l’on suppose qu’un nombre quelconque de processus peut tomber en panne.

Cet article a introduit la notion de complexe de protocole, un complexe simplicial de dimension supérieure

décrivant toutes les exécutions possibles qui pourraient se produire dans un protocole donné. En utilisant

cette notion, ils ont formulé le Théorème de Calculabilité Asynchrone, qui dit que la résolution d’une

tâche concurrente équivaut à l’existence d’une application simpliciale allant du complexe de protocole

dans un complexe de sortie spécifiant la tâche qui nous intéresse. Ainsi, à travers ce théorème, la notion

calculatoire de résolubilité d’une tâche est réduite à une question topologique, qui peut alors être abordée

en utilisant les outils mathématiques usuels tels que la topologie algébrique ou la topologie combinatoire.

Cette caractérisation topologique de la résolubilité des tâches a été établie dans le contexte de processus

asynchrones communiquant à travers des registres de lecture/écriture partagés (ou, de manière équivalente,

des objets immediate-snapshot [15]). Mais la mémoire partagée ne constitue que le premier niveau dans

la hiérarchie wait-free [63], et beaucoup d’autres objets avec des puissances de calcul variables méritent

d’être considérés. Citons par exemple les objets test-and-set et compare-and-swap. Après quelques

années, il est devenu clair que l’approche topologique de Herlihy et Shavit est également très efficace

pour modéliser des processus communiquant par le biais de divers types d’objets partagés : les objets

test-and-set dans [66], le passage de messages synchrone dans [68], les objets set-agreement ainsi que

l’objet renommage dans [44]. Un compte rendu détaillé de ces résultats se trouve dans le récent livre de

Herlihy, Kozlov et Rajsbaum [64]. Dans ce livre, la caractérisation topologique de la résolubilité des tâches

(qui résulte du Théorème de la Calculabilité Asynchrone dans le cas des registres de lecture/écriture)

devient maintenant une définition au lieu d’un théorème.

Complexe d’entrée

Complexe de protocole

Spécification
du protocole

Ψ

0 0

0

1 1

1

Complexe de sortie

Spécification
de la tâche

∆

Décision

∃δ ?

⊆

Fondamentalement, dans ce contexte, un « protocole » est spécifié par une carrier-map allant du complexe

d’entrée vers le complexe de protocole. De même, une « tâche » est spécifiée par une carrier-map allant

10

du complexe d’entrée vers le complexe de sortie. Enfin, on dit qu’un tel protocole résout une tâche, par

définition, lorsqu’il existe une application simpliciale appelée « décision » allant du complexe de protocole

au le complexe de sortie qui est incluse dans la spécification de la tâche. Le point fort de cette définition

abstraite est qu’elle permet de restreindre autant que possible les raisonnements spécifiques au modèle. En

effet, cette approche donne des résultats très généraux, mettant en relation les propriétés topologiques du

complexe de protocoles (telles que k-connectivité, ou le fait d’être une pseudo-variété) avec la résolubilité

de diverses tâches concurrentes. De telles techniques permettent de prouver des résultats d’impossibilité

pour de vastes classes de protocoles en une seule fois, sans avoir à les considérer un à un.

Cette approche de modélisation du comportement des programmes par des objets mathématiques

abstraits est évocatrice de la sémantique dénotationnelle [114] de Scott et Strachey. La sémantique déno-

tationnelle est généralement étudiée dans le contexte de programmes séquentiels, et tout particulièrement

dans l’analyse des langages de programmation fonctionnels. Habituellement, on donne d’abord à un

langage de programmation une sémantique opérationnelle, qui est une description concrète de la façon

dont l’état interne du système évolue pendant l’exécution du programme. En revanche, la sémantique

dénotationnelle est une description statique un programme, en lui associant un objet mathématique ab-

strait. L’exemple le plus simple de sémantique dénotationnelle est le modèle ensembliste, ou bien des

variantes munis de davantage de structure ; mais d’autres modèles tels que la sémantique de jeu [2, 75]

interprètent les programmes comme des stratégies dans un jeu à deux joueurs entre le programme et

son environnement. Le choix d’une interprétation particulière d’un langage de programmation permet

d’abstraire certaines propriétés non-essentielles des programmes, afin de mettre l’accent sur d’autres

aspects qui nous intéressent. Enfin, une notion centrale en sémantique des langages de programmation

est celle de la compositionnalité : un programme est généralement construit de manière modulaire, en

assemblant des blocs de base pour créer un système plus complexe. Une bonne notion de sémantique des

programmes doit être à même de refléter cette structure compositionnelle.

Dans cette thèse, nous adoptons un point de vue sémantique sur l’approche topologique pour les

protocoles tolérants aux pannes. Notre premier objectif sera d’extraire ces constructions géométriques

abstraites à partir d’une sémantique opérationnelle concrète pour la résolubilité des tâches. En effet, dans

certains modèles de calcul, il peut être extrêmement difficile de définir correctement le complexe de

protocole correspondant. Cela est dû au fait que le complexe de protocole décrit simultanément toutes

les exécutions possibles du programme. Ce type de spécification du comportement d’un programme est

rapidement sujet aux erreurs dès que l’on considère des systèmes un peu trop grands. De plus, ce point

de vue n’est pas bien adapté pour analyser la composition de protocoles. Au lieu de décrire la totalité

du protocole en un seul bloc, nous aimerions le décomposer en fonction de la sémantique de chacun

des objets partagés qu’il utilise. Ainsi, la première étape est de définir une notion opérationnelle de

spécification concurrente, définissant le comportement des objets partagés qu’un programme a le droit

d’utiliser. Ensuite, nous devons construire un modèle de calcul à partir de ces spécifications concurrentes.

En faisant cela, nous serons en mesure de donner un sens concret à ce que signifie pour un protocole de

résoudre une tâche. La caractérisation topologique de la résolubilité d’une tâche peut alors être prouvée

formellement à partir de cette sémantique opérationnelle. Cette direction de recherche nous mènera

à prouver une version généralisée du Théorème de la Calculabilité Asynchrone, qui fonctionne pour

n’importe quel objet partagé.

Notre deuxième objectif est de comparer cette sémantique topologique avec d’autres sémantiques pour

11

les programmes concurrents. Une approche très importante pour l’étude des systèmes distribués est celle

de Halpern et Moses [58, 106], qui est basée sur la logique épistémique, une logique modale permettant

de raisonner à propos de la notion de connaissance. Des liens entre l’approche topologique et l’approche

épistémique dans l’étude des protocoles tolérants aux pannes ont été soupçonnés depuis longtemps [112].

Néanmoins, aucun lien entre les deux domaines n’a été établi formellement. Dans cette thèse, nous

montrons une correspondance étroite entre les complexes simpliciaux chromatiques qui sont utilisés

pour étudier la calculabilité asynchrone, et les modèles de Kripke sur lesquels les formules de logique

épistémique sont interprétées. Plus précisément, il y a une équivalence des catégories reliant les deux

structures. Plus surprenant encore, les carrier maps qui modélisent les tâches et les protocoles dans [64]

ont également un pendant dans le domaine de la Logique Épistémique Dynamique (DEL) [27]. DEL a été

utilisée auparavant pour modéliser des systèmes distribués [12, 116], mais, à notre connaissance, elle n’a

jamais été utilisée pour la calculabilité asynchrone. Cette correspondance a des conséquences importantes

à la fois pour les logiciens et pour les informaticiens. Du point de vue de la logique épistémique, cette

correspondance révèle la structure géométrique qui est se cache dans les modèles de Kripke. Inversement,

du point de vue du calcul distribué, le lien avec la Logique Epistémique Dynamique donne un nouveau

type de sémantique pour la calculabilité asynchrone, basée sur la logique. Cela permet de donner un sens

plus concret aux preuves abstraites d’impossibilité, en termes des connaissances que les processus doivent

acquérir pour résoudre une tâche.

Enfin, le troisième objectif de cette thèse sera de comparer la sémantique topologique de Herlihy et

Shavit avec une autre sémantique géométrique pour les programmes concurrents : celle basée sur les

espace dirigés de Fajstrup, Goubault, Raussen et. al [36]. Bien que ces deux sémantiques s’appuient sur

les mêmes outils mathématiques, à savoir la topologie algébrique, elles le font de manière totalement

différente. En effet, alors que le complexe de protocole encode les informations locales recueillies par

les processus à la fin d’une exécution, la sémantique dirigée s’intéresse à l’étude des différents chemins

par lesquels un processus peut évoluer d’un état initial à un état final. L’idée de base est la suivante :

un programme est interprété comme un espace topologique doté d’une notion de direction, modélisant

le passage du temps. Un chemin dans cet espace correspond à une exécution d’un programme, et deux

chemins sont homotopes lorsqu’ils correspondent à des exécutions équivalentes. Les applications de ce

point de vue comprennent, entre autres, la détection des interblocages [37] et la réduction de l’espace

d’états [35]. La sémantique dirigée n’a encore jamais été utilisée pour étudier la calculabilité des tâches

asynchrones. Dans cette thèse, nous ne donnons que des résultats préliminaires mettant en relation ces

deux approches topologiques. A savoir, nous montrons comment diverses notions combinatoires de

chemins dans les Automates de Dimension Supérieure [119, 34] sont liées à la sémantique opérationnelle

basée sur les traces que nous avons développé dans le Chapitre 2 de cette thèse. Cette correspondance

devrait être le point de départ de travaux futurs établissant des liens plus profonds entre la sémantique

dirigée et celle basée sur les complexes de protocoles.

Plan de la thèse

Dans le chapitre 1, nous commençons par rappeler les définitions de la topologie combinatoire, ainsi que

la façon dont elles sont utilisées dans [64] pour modéliser les tâches et les protocoles. Nous concluons le

chapitre par une étude de cas, qui est une nouvelle contribution de cette thèse, en étudiant la résolubilité

d’une tâche appelée négation de l’égalité.

12

Le chapitre 2 présente notre sémantique opérationnelle pour des processus asynchrones communiquant

via des objets partagés. La contribution principale du chapitre est le Théorème de Calcul Asynchrone

Généralisé (Théorème 2.73), qui montre comment la sémantique topologique peut être dérivée de notre

sémantique opérationnelle concrète. En cours de route, nous discutons de diverses notions de spécifications

d’objets concurrents basées sur la linéarisabilité et ses variantes. Enfin, nous présentons quelques travaux

en cours concernant la composition des protocoles, et les liens avec la sémantique des jeux.

Le chapitre 3 est consacré au lien entre les complexes de protocoles et la logique épistémique. Nous

commençons par rappeler les notions habituelles de logique épistémique basées sur les modèles de

Kripke, puis nous prouvons dans le Théorème 3.20 que les complexes simpliciaux chromatiques peuvent

être utilisés de façon équivalente comme modèles de logique épistémique. Nous explorons ensuite les

conséquences de ce théorème, en traduisant les résultats habituels du calcul distribué dans le langage de la

logique épistémique. Enfin, pour exhiber certaines limites à cette approche épistémique, nous étudions à

nouveau la tâche de négation de l’égalité.

Enfin, dans le chapitre 4, nous étudions les liens avec sémantique dirigée. Nous définissons d’abord

une version combinatoire des espaces dirigés, basée sur des ensembles pré-cubiques, et nous rappelons les

différentes notions de chemins sur ces structures que l’on peut trouver dans la littérature. Ensuite, nous

établissons un lien entre les chemins dans les espaces dirigés et les différentes notions de linéarisabilité

que nous avons étudiées au le Chapitre 2.

13

Introduction

Every distributed computing system is subject to failures. The most obvious kind of failure can be found

in the setting of message-passing systems, where distant computers need to communicate with each

other in order to reach some kind of agreement. For instance, when a user wants to make an online

transaction with an e-commerce website, a communication occurs between the user’s personal computer,

the website’s servers and the user’s bank. The three computers should either all agree to perform the

transaction, or all agree to deny it (if the user has insufficient balance on their bank account). In this

context, the communication channels that the computers use to transmit information can exhibit unreliable

behavior due to the physical limitations of the hardware. Because of random perturbations in the physical

transmission medium, a message which is sent from one computer to another might be delayed, lost, or

even altered, resulting in unpredictable behavior. Even in a shared-memory architecture, where several

processing units lie within a single computer systems, similar kinds of failures may occur. For example, a

process may crash in the middle of a computation; it may crash before the computation starts, and not

participate in it; or it may exhibit arbitrarily malicious behavior. Since this kind of unwanted behavior is

inevitable, it must be taken into account when designing software for distributed systems. The field of

fault-tolerant distributed computing is concerned with designing algorithms running on various distributed

computing architectures, in the presence of failures. The goal of a fault-tolerant protocol is to be resilient

to failures: even if some components of the system happen to crash, the remainder of the computing

system should exhibit well-defined behavior. Fault-tolerant distributed computing is still a very active

area, in particular with the recent rise of blockchain technology which is based on continuous variants of

the consensus task.

It is notoriously difficult to design algorithms for distributed systems, even more so in the presence of

failures. In fact, depending on the computational model that we consider, it might even become impossible

to solve some concurrent tasks. The seminal result in this field was established in 1985 by Fischer,

Lynch and Paterson [42], who proves that the consensus task is not solvable in a message-passing system

with at most one potential crash. Later on, Biran, Moran and Zaks [10] came up with a combinatorial

characterization of all the concurrent tasks which can be solved in that model. Their criterion relies on a

graph of “process uncertainties”, whose connectedness is the main ingredient for impossibility. This was

the first instance of a (one-dimensional) topological characterization of task solvability. Soon thereafter,

it was discovered that when more than one process may crash, the unsolvability of tasks is related to

higher-dimensional topological properties. In two 1993 papers [14, 112], this discovery was motivated

by the study of the k-set agreement task, a weaker form of consensus where the processes must agree

15

on at most k different values. A third independent paper by Herlihy and Shavit [70] gave a topological

characterization of all the tasks which are solvable in an asynchronous wait-free setting, that is, with any

number of crashing processes. This paper introduced the notion of protocol complex, a higher-dimensional

simplicial complex describing all the possible executions that might occur in a given protocol. Using this

notion, they formulated the so-called Asynchronous Computability Theorem, which says that solving a

concurrent task amounts to the existence of a simplicial map from the protocol complex to some output

complex specifying the task that we are interested in. Thus, through this theorem, the computational notion

of task solvability is reduced to a topological question, which can be tackled using classic mathematical

tools such as algebraic topology or combinatorial topology.

This topological characterization of task solvability was established in the context of asynchronous

processes communicating through shared read/write registers (or, equivalently, immediate-snapshot

objects [15]). But read/write registers are only the first level in the wait-free hierarchy [63], and many

other objects with varying computational power are worth considering, such as test-and-set or compare-

and-swap. Over the years, it became clear that the protocol complex approach of Herlihy and Shavit is also

very successful to model processes communicating through various kinds of shared objects: test-and-set

objects in [66], synchronous message-passing in [68], set-agreement objects and renaming objects in [44].

A thorough account of such results can be found in the recent book by Herlihy, Kozlov and Rajsbaum [64].

In this book, the topological characterization of task solvability (given by the Asynchronous Computability

Theorem in the case of read/write registers) now becomes a definition instead of a theorem. Basically, in

this context, a “protocol” is formally specified as a carrier-map from the input complex to some protocol

complex. Similarly, a “task” is specified as a carrier map from the input complex to the output complex.

Finally, we say that a protocol solves a task, by definition, when there exists a particular simplicial map

from the protocol complex to the output complex. Their motivation for using such an abstract definition

of protocols and solvability is that they want to “restrict model-specific reasoning as much as possible”.

Indeed, this approach yields very general results, relating topological properties of the protocol complex

(such as k-connectedness, or being a pseudomanifold) to the solvability of various concurrent tasks.

Such techniques allow us to prove impossibility results for wide classes of protocols at once, instead of

considering them one at a time, provided that their protocol complexes have similar topological properties.

Input complex

Protocol complex

Protocol
Specification

Ψ

0 0

0

1 1

1

Output complex

Task
Specification

∆

Decision map

∃δ ?

⊆

16

This approach of modeling program behavior by abstract mathematical objects is evocative of Scott

and Strachey’s denotational semantics [114]. However, to our knowledge, it has never been studied from

that perspective. Denotational semantics are usually studied in the context of sequential programs, and

have been particularly successful at analyzing functional programming languages. Usually, a programming

language is first given an operational semantics, which is a concrete description of how the internal state of

the system evolves while the program is being executed. In contrast, denotational semantics give a static,

high-level description of a program by associating it with an abstract mathematical object. The simplest

kind of denotational semantics interprets programs as set-theoretic functions, usually with additional

structure; but others such as game semantics [2, 75] interpret programs as strategies in a two-player game

between a program and its environment. By interpreting programs as mathematical objects, we lose some

information about them: some computational properties of the programs are abstracted away, in order

to emphasize other aspects of the programs. The goal of denotational semantics is to build adequate

mathematical abstractions that allow us to focus on one particular aspect of the programming language

that we want to study. Finally, a central notion in program semantics is that of compositionality: computer

programs are usually built in a modular way, by assembling basic components to create a complex system.

A good notion of program semantics should be able to reflect this compositional structure.

In this thesis, we propose to take a semantical perspective on the protocol complex approach to

asynchronous computability. Our first goal will be to ground it in a concrete operational semantics

for task solvability. Indeed, for some intricate computational models, it can be extremely difficult to

produce their corresponding protocol complex. Essentially, one has to describe simultaneously in one

huge combinatorial object, all the possible executions of the protocol, and how they are linked together

with respect to the local views of the processes. This kind of specification of a protocol complex is very

error-prone for large systems, and it is not well adapted for composing protocols. Instead, we would like

to derive the protocol complex from the formal semantics of each of the shared objects that it is using. So,

the first step is to define an operational notion of concurrent object specification, defining the behavior of

the shared objects that a protocol is allowed to use. Then, we need to define what it means to compute

using these objects, i.e., build a computational model out of these concurrent specifications. By doing so,

we will be able to give a concrete meaning to what it means for a protocol to solve a task. The topological

characterization of task solvability can then be derived from this operational semantics: what we obtain is

a generalized version of the Asynchronous Computability Theorem, which works for arbitrary objects

instead of read/write registers.

Our second goal is to compare the protocol complex semantics with other semantics for concurrent

programs. One very important approach for studying distributed systems is that of Halpern and Moses [58,

106], which is based on epistemic logic, the modal logic of knowledge. It has been remarked from the

very beginning of the topological approach to task solvability that the protocol complex approach has an

intuitive explanation in terms of the knowledge that the agents need to gain in order to solve a task [112].

But, to the best of our knowledge, no formal link has been established between the two fields. We exhibit

a close correspondence between the chromatic simplicial complexes that are used to study asynchronous

computability, and the Kripke models on which epistemic logic formulas are interpreted; namely, there is

an equivalence of categories relating the two structures. More surprisingly, the carrier maps which model

tasks and protocols in [64] also have a counterpart in the field of Dynamic Epistemic Logic (DEL) [27],

the so-called product-update model construction. This correspondence has important consequences in

17

both fields. From the point of view of epistemic logic, this connection uncovers the higher-dimensional

information which is already present in Kripke models, but which is hidden by the usual graph-based

formalism. The connection between the consensus task, common knowledge and connectedness is well

known to epistemic logicians [29]; but no notion of knowledge has ever been shown to correspond to

higher-dimensional connectedness properties. Well-understood examples from distributed computing,

such as k-set-agreement, are a good starting point to understand the meaning of such topological invariants

in terms of knowledge. Conversely, from a distributed computing perspective, the link with Dynamic

Epistemic Logic gives a new kind of semantics for asynchronous computability, based on logic: one can

now specify a task directly as an epistemic logic formula, expressing the knowledge that the agents should

manage to acquire. Even though DEL has been used before to model distributed systems [12, 116], as far

as we know it has never been used in the context of asynchronous computability.

Finally, the third goal of this thesis will be to compare the protocol complex approach with another

geometric semantics for concurrent programs: the so-called directed space semantics of Fajstrup, Goubault,

Raussen et. al [36]. Although these two semantics rely on the same mathematical tools, namely, algebraic

topology, they do so in quite different ways. Indeed, while the protocol complex encodes the local

information gathered by the processes at the end of an execution, the directed space semantics is concerned

with studying the different paths by which a process can evolve from an initial state to a final state. The

basic idea is the following: a program is interpreted as a topological space equipped with a notion of

direction, modeling the passage of time. A path in this space corresponds to an execution of a program,

and two paths are homotopic when they correspond to equivalent executions. Applications of this point

of view include, among others, deadlock detection [37] and state-space reduction [35]. It has not been

used before to study asynchronous task computability. In this thesis, we only give preliminary results

relating this topological approach with the protocol complex semantics. Namely, we show how various

combinatorial notions of paths in Higher-Dimensional Automata [119, 34] are related to the trace-based

operational semantics that we develop in the first part of this thesis. This correspondence should be the

starting point of future work establishing deeper links between the directed space and protocol complex

semantics.

Plan of the thesis

In Chapter 1, we start by recalling the definitions of combinatorial topology, and how they are used in [64]

to model protocols, tasks, and task solvability. We conclude the chapter with a case study, which is a novel

contribution of this thesis, by studying the wait-free solvability of the so-called equality negation task.

Chapter 2 introduces our operational semantics for asynchronous processes communicating through

shared objects. The main contribution of the chapter is our Generalized Asynchronous Computability

Theorem (Theorem 2.73), which shows that the protocol complex semantics can be derived from our

concrete operational semantics. Along the way, we discuss various notions of specifications for concurrent

objects based on linearizability, and compare them with our definition. Finally, we present some work in

progress concerning the compositionality of protocols, and links with game semantics.

Chapter 3 is dedicated to the link between protocol complexes and epistemic logic. We start by

recalling the usual notions of epistemic logic based on Kripke models, then we prove in Theorem 3.20

that chromatic simplicial complexes can equivalently be used as models for epistemic logic. We then

explore consequences of this theorem, by translating usual results of distributed computing in the language

18

of epistemic logic. We find some limitations of this epistemic logic approach by studying the equality

negation task, and we discuss possible ways to fix these limitations and their relevance.

Finally, in Chapter 4, we study the relationship between protocol complex semantics and directed

space semantics. We first define a combinatorial version of directed spaces, based on pre-cubical sets, and

we recall the various notions of paths on these structures that can be found in the literature. Then, we

show how they are related with the variants of linearizability that we studied in Chapter 2, and we prove

that the standard chromatic subdivision can be recovered as the space of paths in a cube.

Acknowledgement

Some of the pictures which are used in this thesis to illustrate 3-dimensional protocol complexes were

taken from articles of Maurice Herlihy and Sergio Rajsbaum [65, 69], with permission from the second

author, as well as from the book by Herlihy, Kozlov and Rajsbaum [64]. One picture of a triangulated

sphere is a modified version of the one used in the Wikipedia article “Geodesic Polyhedron”1, under the

Creative Commons Attribution-Share Alike 4.0 International license.

1https://commons.wikimedia.org/wiki/File:Geodesic_icosahedral_polyhedron_example.png

19

CHAPTER 1

Preliminaries

In this chapter, we recall the important notions behind the simplicial complex model of distributed com-

putability. Most of the definitions and theorems presented here can be found in the book by Herlihy, Kozlov

and Rajsbaum [64], except for Section 1.4 which is novel work, recently accepted for publication [50].

In Section 1.1, we discuss informally the distributed computing setting, and the kind of problems that

we want to study. Section 1.2 introduces the notions from combinatorial topology that we will need in

the remainder of the thesis, as well as two important lemmas, Sperner’s lemma and the Index lemma. In

Section 1.3, we show how the distributed computing concepts of tasks and protocols can be modeled using

combinatorial topology. Finally, in Section 1.4, we showcase how this topological characterization of

task solvability can be used to prove impossibility results. In particular, we propose to study the so-called

equality negation task, whose unsolvability hinges on subtle topological properties.

1.1 The distributed computing setting

The field of fault-tolerant computability studies which concurrent tasks can or cannot be solved in various

computational models. In particular, the topological approach that we present here has been developed

in order to prove impossibility results. One of the first such result is known as “FLP impossibility” [42],

and says that in an asynchronous message-passing system with one faulty process, the consensus task is

not solvable. Soon thereafter, people started developing powerful mathematical tools based on algebraic

topology in order to prove impossibility results [14, 112, 70].

There is a wide variety of distributed computing models that we might want to consider:

– the processes might be synchronous or asynchronous;
– we might consider shared memory or message-passing systems;
– various shared objects or synchronization primitives might be available to the processes;
– there are various kinds of faults, from simple crashes where a faulty process just stops computing,

to messages getting lost, or byzantine failures where a process can send false information.

Unlike in sequential computability theory, where Turing machines provide a universal computing model,

all of these models are worth studying, and they can vary greatly in terms of computational power.

1.1.1 Tasks

In the basic setting that we study here, a fixed number n of processes are running concurrently. Initially,

each process is given a private input value. After communicating with each other using the communication

21

primitives at their disposal, each process produces an output value. The goal of such a computation is to

satisfy some relationship between the inputs and the outputs; this relation is called the task specification.

Tasks have been studied since early on in distributed computability [10].

The most well-known task is the consensus task, where the participating processes must agree on

one of their input values. For instance, if three processes start with input values (1, 2, 3), their goal is to

produce the same output, either (1, 1, 1), or (2, 2, 2), or (3, 3, 3). More precisely, if the n processes start

the computation with input values (v1, . . . , vn), they should output a set of decision values (d1, . . . , dn)

such that the following two properties are satisfied:

– Validity: each decision is among the proposed inputs, i.e., for all i, there exists j such that di = vj .

– Agreement: all processes decide on the same output, i.e., d1 = · · · = dn.

In fact, to account for the possibility of crashing processes, one should also specify what the expected

behavior is when some processes are missing. The fully formal definition of a task will be given in

Section 1.3.1.

1.1.2 Processes, programs and protocols

In principle, the simplicial complex approach to distributed computing should be able to model most

computational models that we can conceive of. However, in this thesis, we will usually restrict ourselves

to the context of asynchronous processes communicating through shared objects. In this section, we

discuss the various assumptions about the computational model that we usually make.

A fixed number of processes. A very common assumption in the field of fault-tolerant computability

is that we are running a fixed number n of processes. Those n processes start the computation together,

and once a process has decided its output value, it does not intervene in the computation anymore. The

processes are not allowed to create new threads: so, each process has its own sequential program, and

these n programs are running concurrently. A protocol simply consists of one program for each process.

The processes have unique identifiers. Each process has access to its own identifier, or “PID”, and all

processes have distinct identifiers. Moreover, all the processes know in advance the names of all the other

processes; in particular, they know the number n of participating processes. In practice, this assumption

is enforced by the fact that we allow each process to have its own program. This is contrasted with the

context of anonymous computation, where all the processes run the same program. In this context, the

suitable notion of task is called a colorless task [64].

Processes are asynchronous. We will mostly be interested in asynchronous computation, where an

execution consists of an arbitrary interleaving of operations of all the processes. However, in some cases,

a round-based structure can be recovered in an asynchronous model, such as in the case of the iterated

immediate-snapshot protocol [15].

Protocols are wait-free. We usually require the protocols to be wait-free, meaning that every process

must be guaranteed to terminate its program in a bounded number of steps. In the presence of asynchrony,

this implies that a process is not allowed to wait until it receives information from any of the other

processes, since they may be arbitrarily slow. This assumption makes sense when we consider that any

22

number of processes are allowed to crash during the computation. In contrast, the weaker t-resilience

assumption is also often considered, when we consider that at most t processes can crash. Intuitively, that

means that a process is allowed to wait until it hears from n− t− 1 other processes before making any

progress. We will occasionally mention t-resilience in the rest of the thesis, but the focus will be mostly

on wait-free protocols.

Faulty processes do not participate in the execution. The only kind of failure that we consider is

when some processes crash before they take any steps in the computation. Thus, in an execution of a

protocol, we simply select a subset of the n processes (the non-faulty ones), and we run their programs

together. The subset of participating processes is not known in advance by the processes. This assumption

is not as restrictive as it seems: indeed, in an asynchronous and wait-free context, a process that crashes

in the middle of its execution is indistinguishable from a process that is just very slow. Moreover, other

kinds of failures such as messages getting lost, or byzantine failures, can be encoded in the behavior of

the communication primitives that we use (see Section 1.1.4).

1.1.3 The (un)importance of crashes

In many cases, the two ingredients that allow us to prove impossibility results are asynchrony and wait-

freeness. Once we make those two assumptions, the possibility of crashing processes often becomes

irrelevant: this is for example the case for the usual impossibility of solving consensus [63] and set-

agreement [112] using read/write registers. Similarly, the impossibility result that we present in Section 1.4

takes place in a setting without any crashes: all the n processes are guaranteed to participate in the

execution, and to run until the end of their program.

Of course, the reason why one would study wait-free protocols in the first place is that we want our

programs to be correct in the presence of failures. But the point that we want to make here is that there is

often no need to explicitly model the crashes in order to obtain impossibility results.

However, there is one subtle difference between whether or not we allow the processes to crash. We

illustrate it by comparing the consensus task (see Section 1.1.1), and the leader election task. The leader

election task is very similar to consensus, except that instead of being given input values, the processes

must elect a leader, that is, agree on one of their PIDs. Thus, in a leader election task, every process knows

in advance its “input”, as well as the inputs of the other processes.

If there is no possibility of crashes, there is a trivial solution to the leader election task: every process

elects the process with the smallest PID, without needing to communicate with the others. This protocol

would not work if crashes can happen: indeed, if the process with the smallest PID has crashed (does not

participate in the computation), then this is not a valid decision anymore. And in fact, leader election is

unsolvable in an asynchronous wait-free setting using read/write registers, if there is a possibility of crash.

On the other hand, the consensus task, where the processes do not know their inputs in advance, is

unsolvable whether or not there is a possibility of crashes. Indeed, consider a model without crashes, and

suppose that a process P starts the computation with input i. Since our model is asynchronous, it might

be the case that all the other processes are very slow; and since the model is wait-free, process P must

eventually decide on an output after running in isolation. Since there is a possibility that the set of inputs

was (i, i, . . . , i), and because of the validity requirement, the only possible decision is to return i. This is

precisely the restriction that we would add in a model with crashes: in a solo execution, a process must

23

return its own input. Here, there is no need to add this requirement in advance, since it can be derived

from the wait-free and asynchrony assumptions, and the task specification.

This distinction will be important in Chapter 3, where the epistemic logic definition of task solvability

is naturally “without crashes”, but we are still able to prove impossibility results.

1.1.4 Shared objects

As we mentioned before, in our setting, the processes communicate through shared objects. Here, the

notion of object should be understood in an abstract sense; in particular, it does not necessarily mean

shared memory. An object is seen as a “black box” with which the processes can interact by calling its

methods. Examples of objects include:

– shared memory primitives: read/write registers, immediate-snapshot objects,
– synchronization primitives: test-and-set, compare-and-swap,
– concurrent data structures: lists, queues, trees, hashmaps,
– message-passing interfaces: reliable or with failures,
– consensus objects, set-agreement objects, . . .

Chapter 2 will discuss thoroughly the various methods that can be used to specify the behavior of such

objects. For the moment, the main point that we want to make is that all these objects can be specified

by giving their interface (i.e., a set of methods), and by specifying the behavior of these methods. For

instance, lists and queues both have the same interface (with methods push and pop), but depending on

the case, the specification of the pop method will say that it returns either the last or the first value that

was previously pushed. Similarly, a message-passing interface is usually specified by its methods send

and receive, but depending on their specification, we can model reliable or unreliable operations.

Since we are interested in an asynchronous wait-free setting, our main degree of freedom to produce

models of varying computational power will be the choice of objects that the processes have access to.

1.2 Combinatorial topology

In this section, we recall the definitions from combinatorial topology that we will be using in the rest of

the thesis. A more thorough account of these notions can be found in [64].

1.2.1 Simplicial complexes and simplicial maps

The main basic structure that we will use is called a simplicial complex. Combinatorially, it can be seen

as a kind of higher-dimensional generalization of a graph: it has vertices and edges, but also higher-

dimensional cells such as triangles, tetrahedra, and so on. A n-dimensional cell is called a n-simplex or

just simplex (plural simplices), when the dimension is irrelevant, or clear from the context. Thus, vertices,

edges, triangles and tetrahedra can also be called 0, 1, 2 and 3-simplices, respectively. Geometrically, an

n-simplex corresponds to the convex hull of n+ 1 affinely independent points in Rd, for d ≥ n.

Although this geometric interpretation will be useful when we use pictures to illustrate what is going

on in low-dimensional examples, our formalization will rely entirely on the following combinatorial

definition. In the literature, the name abstract simplicial complex is often used to differentiate it from

other more geometric definitions; here we simply refer to them as simplicial complexes, since it is the

only definition that we use.

24

Definition 1.1. A simplicial complex C = (V, S) consists of a set V of vertices and a set S of non-empty

finite subsets of V called simplices, such that:

– for each vertex v ∈ V , {v} ∈ S, and

– S is closed under containment, i.e., if X ∈ S and Y ⊆ X with Y 6= ∅, then Y ∈ S.

We sometimes abuse notations and write X ∈ C instead of X ∈ S to mean that X is a simplex

of C. If Y ⊆ X , we say that Y is a face of X . The simplices that are maximal w.r.t. inclusion are called

facets. The dimension of a simplex X ∈ S is dim(X) = |X| − 1, and a simplex of dimension n is called

an n-simplex. We usually identify a vertex v ∈ V with the 0-simplex {v} ∈ S. The dimension of the

simplicial complex C is dim(C) = sup{dim(X) | X ∈ S}. A simplicial complex is pure if all its facets

have the same dimension (which is also the dimension of the complex). We say that a simplicial complex

C = (V, S) is a subcomplex of C′ = (V ′, S′) when S ⊆ S′, and we write it C ⊆ C′.

Example 1.2. The simplicial complex represented below has set of vertices V = {a, b, c, d, e, f, g, h, i, j},
and its five facets are {a, b}, {b, c, d}, {c, d, e}, {f}, and {g, h, i, j}. So, the set S of simplices contains

all subsets of these facets. For instance, the 2-dimensional simplex {g, h, j} is a face of {g, h, i, j}. This

simplicial complex is of dimension 3 because the largest simplex {g, h, i, j} is a 3-simplex.

a b

c

d

e

f

g

h

i

j

Definition 1.3. A simplicial map f : C → C′ from C = (V, S) to C′ = (V ′, S′) is a mapping f : V → V ′

between the vertices of the two complexes, such that the image of a simplex is a simplex, i.e., for

every X ∈ S, we have f(X) := {f(v) | v ∈ X} ∈ S′.

A simplicial map is rigid if the image of each simplex X ∈ S has the same dimension, i.e.,

if dim(f(X)) = dim(X). It is easily checked that the composition of two simplicial maps is a simplicial

map, and that rigidity is preserved by composition. If K ⊆ C is a subcomplex of C, and f : C → C′ is a

simplicial map, we write f(K) =
⋃
X∈K f(X), which is a subcomplex of C′.

Chromatic simplicial complexes. To model distributed computation, we will often decorate the vertices

of our simplicial complexes with various labelings: process names, input and output values, local states.

In some cases, it is important that in each simplex, all the vertices are assigned distinct labels. When this

is the case, we usually refer to these labels as colors. When a simplicial complex is equipped with such a

coloring, we say that it is a chromatic simplicial complex.

In the following, we fix a finite set A whose elements are called colors.

Definition 1.4. A chromatic simplicial complex C = (V, S, χ) consists of a simplicial complex (V, S)

equipped with a coloring map χ : V → A such that all vertices of every simplex X ∈ S have different

colors, that is, for all X ∈ S, for all v, v′ ∈ X , if v 6= v′ then χ(v) 6= χ(v′).

On the pictures, we often use the three colors black, gray and white, for printer-friendliness. The

example below depicts a pure 2-dimensional chromatic simplicial complex with three colors.

25

Definition 1.5. A chromatic simplicial map f : C → C′ from C = (V, S, χ) to C′ = (V ′, S′, χ′) is a

mapping f : V → V ′ between the vertices of the two complexes, such that:

– f is a simplicial map on the underlying simplicial complexes, and

– f is color-preserving, i.e., for every v ∈ V , χ′(f(v)) = χ(v).

Note that a chromatic simplicial map is necessarily rigid, and moreover, the composition of two such

maps is still a chromatic simplicial map.

Remark 1.6. An alternative way to define chromatic simplicial complexes is to consider the simplicial

complex ∆A = (A,P(A)), where P(A) is the powerset of A. Then, a chromatic simplicial complex is

given by a simplicial complex C = (V, S) and a rigid simplicial map χ : C → ∆A. A chromatic simplicial

map f : C → C′ is a simplicial map from C to C′ that makes the following diagram commute:

C ∆A

C′

χ

f
χ′

In other words, the category of chromatic simplicial complexes and chromatic simplicial maps is the slice

category RigidSC/∆A, where RigidSC is the category of simplicial complexes and rigid simplicial maps.

1.2.2 Carrier maps

To model distributed computing, we also need another kind of map between simplicial complexes, called

a carrier map. A carrier map Φ associates with each simplex X of C, a subcomplex Φ(X) of C′; therefore,

we write such a map Φ : C → 2C
′
, in order to mimic the usual powerset notation.

Definition 1.7. Let C = (V, S) and C′ = (V ′, S′) be two simplicial complexes. A carrier map Φ from C
to C′, written Φ : C → 2C

′
, assigns to each simplex X ∈ S a subcomplex Φ(X) of C′, such that Φ is

monotonic, i.e., if Y ⊆ X then Φ(Y) ⊆ Φ(X).

Given two carrier maps Φ : C → 2C
′

and Ψ : C → 2C
′
, we say that Φ is carried by Ψ, written Φ ⊆ Ψ,

when for every simplex X ∈ C, Φ(X) ⊆ Ψ(X). A carrier map is called rigid if for every simplex X ∈ S
with dim(X) = d, the subcomplex Φ(X) is pure of dimension d. For a subcomplex K ⊆ C of C, we

write Φ(K) =
⋃
X∈K Φ(X). Then the composition of two carrier maps can be defined as follows: given

Φ : C → 2C
′

and Ψ : C′ → 2C
′′

, their composition is Ψ ◦Φ : C → 2C
′′

, defined by Ψ ◦Φ(X) = Ψ(Φ(X)).

It is easily checked that Ψ ◦ Φ is still a carrier map, and that if both Φ and Ψ are rigid, then so it Ψ ◦ Φ. It

is also possible to compose a carrier map with a simplicial map. Let Φ : C → 2C
′

be a carrier map, and

f : C′ → C′′ a simplicial map. Then f ◦Φ : C → 2C
′′

, defined by f ◦Φ(X) = f(Φ(X)), is a carrier map.

We could also define similarly the precomposition of a carrier map with a simplicial map, but actually we

will only use the postcomposition.

26

Chromatic carrier maps. Unlike in the case of chromatic simplicial maps, here the rigidity is not

implied by the preservation of colors. So, we also require that a chromatic carrier map should be rigid.

Definition 1.8. A chromatic carrier map Φ from C = (V, S, χ) to C′ = (V ′, S′, χ′), written Φ : C → 2C
′
,

assigns to each simplex X ∈ S a subcomplex Φ(X) of C′, such that:

– Φ is monotonic, i.e., if Y ⊆ X then Φ(Y) ⊆ Φ(X),
– Φ is rigid, i.e., for every simplex X ∈ S of dimension d, Φ(X) is pure of dimension d,
– Φ is color-preserving, i.e., for every X ∈ S, χ(X) = χ′(Φ(X)), where χ(X) = {χ(v) | v ∈ X}

and χ′(Φ(X)) =
⋃
Z∈Φ(X) χ

′(Z).

Given two chromatic carrier maps Φ : C → 2C
′

and Ψ : C′ → 2C
′′
, and a chromatic simplicial map

f : C′ → C′′, we can check that the compositions Ψ ◦ Φ and f ◦ Φ are still chromatic carrier maps.

1.2.3 The standard chromatic subdivision

An important operation on chromatic simplicial complexes is called the standard chromatic subdivision.

This construction will naturally arise when we model the immediate-snapshot protocol complex in

Section 1.3.2. Chromatic subdivisions have been thoroughly studied by distributed computer scientists,

due to the fact that they are able to model wait-free computation using read/write registers [64, 54, 80].

We start with an abstract combinatorial description of this construction, without referring to the colors:

Definition 1.9. Let C = (V, S) be a simplicial complex. Its standard chromatic subdivision ChSub(C)
has vertices of the form (v,Xv) where v ∈ V is a vertex of C, and Xv ∈ S is a simplex of C that contains

v. The set of vertices {(v0, Xv0), . . . , (vk, Xvk)} is a k-simplex if:

– it can be indexed so that Xv0 ⊆ . . . ⊆ Xvk , and
– for all i, j, if vi ∈ Xvj , then Xvi ⊆ Xvj .

Of course, as the name indicates, the most notable property of this subdivision operator is that when

we subdivide a chromatic simplicial complex, we still have a chromatic simplicial complex.

Proposition 1.10. Let C = (V, S, χ) be a chromatic simplicial complex. Then ChSub(C), equipped with

the coloring χ̂(v,Xv) := χ(v), is a chromatic simplicial complex.

Proof. Let {(v0, Xv0), . . . , (vk, Xvk)} be a simplex of ChSub(C). First, notice that the vertices v0, . . . , vk

are distinct: if vi = vj for i 6= j, then since vi ∈ Xvj and vj ∈ Xvi , we would haveXvi = Xvj . Moreover,

if we index the vertices so that Xv0 ⊆ . . . ⊆ Xvk , then Xvk is a simplex of C that contains all the vertices

v0, . . . , vk. Since Xvk is properly colored, all the vertices vi must have distinct colors.

Chromatic subdivision

27

There is an associated carrier map Ψ : C → 2ChSub(C), carrying each simplex of C to its subdivided

image in ChSub(C). Formally, a simplex X ∈ C is sent to the subcomplex of ChSub(C) consisting of all

the simplices {(v0, Yv0), . . . , (vk, Yvk)} such that for all i, Yvi ⊆ X . It is easily checked that when C is a

chromatic simplicial complex, Ψ is a chromatic carrier map [64].

Finally, the iterated chromatic subdivision of C is obtained by iterating the previous construction,

subdividing each simplex of ChSub(C) and so on. We denote by ChSubk(C) the complex obtained by

iterating the subdivision operation k times.

1.2.4 Pseudomanifolds with boundary

We now define a class of simplicial complexes with nice topological properties, called pseudomanifolds

with boundary or simply pseudomanifolds. Our main motivation for introducing them is to be able to

formulate two important theorems of combinatorial topology, specifically Sperner’s lemma (Section 1.2.5

and the Index lemma (Section 1.2.6), both of which involve pseudomanifolds.

Definition 1.11. A pure simplicial complex C = (V, S) of dimension n is strongly connected if any two

n-simplices can be connected by a sequence of n-simplices where two consecutive simplices share an

(n− 1)-dimensional face. More formally, for all X,Y ∈ S of dimension n, there exists a sequence of

n-simplices X0, . . . , Xk ∈ S, such that X0 = X , Xk = Y , and for all i, dim(Xi ∩Xi+1) = n− 1.

Definition 1.12. A simplicial complex C is a pseudomanifold with boundary if:

– it is pure of dimension n,

– it is strongly connected,

– and every (n− 1)-simplex is a face of either one or two n-simplices.

The set of (n−1)-simplices that are the face of exactly one n-simplex induces a pure (n−1)-dimensional

subcomplex of C, called the boundary of C, and written ∂C.

As the name indicates, pseudomanifolds with boundary are the combinatorial counterpart of a manifold

in standard topology. However, they are less restricted than the usual manifolds, for two reasons. Firstly,

they are allowed to have a boundary, corresponding to the (n− 1)-simplices that are the face of exactly

one n-simplex; secondly, they are allowed to have singularities or “pinches”.

1.2.5 Sperner’s lemma

Sperner’s lemma is perhaps the most well-known result of combinatorial topology. It is a discrete version

of Brouwer’s fixed-point theorem, which says that a continuous function from the n-dimensional unit ball

into itself must have a fixed point. The simplest formulation of Sperner’s lemma deals with colorings of a

subdivided triangle (or, in dimension n, a subdivided n-simplex); but in fact, it can be generalized to any

pseudomanifold of dimension n. In this section, we just give the statement of this generalized version

of Sperner’s lemma. The proof is a straightforward adaptation of the usual proof. Detailed proofs of

Sperner’s lemma and its generalization in pseudomanifolds can be found in many places, such as in [79],

in chapter 9 of [64], or in chapter 1 of [13].

Sperner’s lemma is traditionally stated in terms of colorings of the vertices of a simplicial complex.

However, contrary to Section 1.2.1, several vertices of the same simplex can have the same color. In other

words, the simplicial complex is not necessarily chromatic. When this is the case, we use the colors red,

28

green, blue on the pictures (instead of black, gray, white) to differentiate. In this context, when a simplex

has all its vertices of distinct colors, we say that it is properly colored. Sperner’s lemma says that the

number of properly-colored simplices inside a pseudomanifold is odd, provided that the colors on its

boundary satisfy some properties.

The most basic statement, in two dimensions, is the following. Consider a triangle that has been

subdivided into smaller triangles. We color the vertices of this

subdivision according to the following rules:

– The three corner vertices are colored in red, blue and green.
– Each vertex along the subdivided boundary connecting two

corner vertices is colored with one of the two colors of the

corners. For example, each vertex on the red-green boundary

is colored either red or green.
– The vertices in the interior of the subdivision can be given

any of the three colors.

Sperner’s lemma says that, for any assignment of colors that respects these rules, there will always be an

odd number of properly colored triangles. In particular, there exists at least one.

To formulate the general version of this lemma, fix a finite set A of colors of cardinality n+ 1, and let

∆A = (A,P(A) \ {∅}) be the pure n-dimensional simplicial complex with only one facet. Note that a

(non-necessarily proper) coloring of a simplicial complex C is the same thing as a (non-necessarily rigid)

simplicial map f : C → ∆A. Moreover, we consider the identity carrier map Ξ : ∆A → 2∆A
, defined by

Ξ(X) = (X,P(X)). To each simplex X ⊆ A, it associates the subcomplex of ∆A consisting of X and

all of its faces.

Lemma 1.13 (Sperner’s lemma). Let C be a pure n-dimensional simplicial complex, f : C → ∆A a

coloring of the vertices of C, and Φ : ∆A → 2C a carrier map, such that:

– for every X ∈ ∆A, the subcomplex Φ(X) is a pseudomanifold with boundary,

– for every X ∈ ∆A, Φ commutes with the boundary operator, i.e., ∂Φ(X) = Φ(∂X), and

– f ◦ Φ is carried by Ξ,

then C has an odd number of properly colored n-simplices.

Proof. Cf. [64], chapter 9.

Intuitively, the carrier map Φ, along with the first two conditions, identifies a subcomplex of C that

is “shaped like” ∆A. The third condition says that f is a Sperner coloring: for instance, given an edge

X ⊆ A of ∆A, the fact that f ◦ Φ(X) ⊆ Ξ(X) says that all the vertices of Φ(X) must be colored using

only the two colors of the edge X .

1.2.6 The Index lemma

In this section, we introduce another important theorem of combinatorial topology, called the Index lemma.

It will only be used in Section 1.4, in order to showcase how the solvability of a task can be related to

subtle topological properties. The Index lemma can be understood as a more refined version of Sperner’s

lemma. Indeed, Sperner’s lemma, which is equivalent to Brouwer’s fixed point theorem, essentially says

that there is no surjective continuous map from an n-dimensional ball onto an (n− 1)-dimensional sphere.

29

So, it is about the nonexistence of continuous maps whose images have holes. The Index lemma relates to

a more subtle topological distinction: it is not only about the image of the map, but about how many times

and in which directions the continuous map is winding around holes.

As for Sperner’s lemma, this intuition is expressed combinatorially by counting the properly-colored n-

simplices inside a pseudomanifold. The new notion that intervenes is that of orientation: each simplex can

be oriented either positively or negatively. Then, the properly-colored simplices are counted by orientation,

meaning that two simplices with opposite orientations cancel each other. More precisely, the Index lemma

relates the number of properly-colored n-simplices inside a coherently oriented pseudomanifold, to the

number of properly colored (n− 1)-simplices on the boundary.

Consider a set X of n+ 1 elements. A permutation of X is an ordered sequence S of the elements

of X . We denote as Si the i-th element of the sequence S, where 0 ≤ i ≤ n. A transposition of S

consists of interchanging the position of two elements Si, Sj of S, with i 6= j. A permutation S′ of X is

an even transposition of another permutation S if S′ can be obtained from S by applying an even number

of transpositions. An odd transposition of S is defined similarly. This defines a partition of the set of

permutations of X into two equivalence classes, one containing the even transpositions of S (and S itself),

the other containing the odd transpositions of S.

Let C be a pure n-dimensional simplicial complex, and X = {x0, x1, . . . , xn} ∈ C be an n-simplex.

An orientation of X is a set consisting of a permutation of its vertices and all even transpositions of this

permutation. If n > 0, there are exactly two possible orientations for X: the sequence 〈x0, x1, . . . , xn〉
and all its even permutations, and the sequence 〈x1, x0, x2, . . . , xn〉 and all its even permutations. In

dimension n > 1, an orientation of X induces an orientation on all of its (n− 1)-faces as follows. If X

is given the orientation 〈x0, x1, . . . , xn〉, and if Yi := X \ {xi} denotes the (n− 1)-face of X without

vertex xi, then

– if i is even, then Yi gets the orientation 〈x0, x1, x2, . . . , xi−1, xi+1, . . . , xn〉,
– if i is odd, then Yi gets the opposite orientation 〈x1, x0, x2, . . . , xi−1, xi+1, . . . , xn〉.

For example, in dimension 2, if X = {x0, x1, x2} is oriented 〈x0, x1, x2〉, then its faces Y0, Y1, and Y2

get the orientations 〈x1, x2〉, 〈x2, x0〉 and 〈x0, x1〉, respectively. In the picture below, oriented simplices

are represented in 1 and 2 dimensions. In dimension 1, the two possible orientations correspond to the

two directions of an edge. In dimension 2, the two orientations can be depicted as “clockwise” and

“counterclockwise”.

x0

x1

1-simplex
oriented 〈x0, x1〉

x0 x1

x2

	

2-simplex
oriented 〈x0, x1, x2〉

x0 x1

x2

	

induced orientations
on the faces

Definition 1.14. A coherently oriented pseudomanifoldK of dimension n is a pseudomanifoldK equipped

with an orientation for each of its n-simplices such that if X,X ′ ∈ K share an (n− 1)-face Y , then the

two orientations on Y induced by X and X ′ are opposite.

30

A 2-dimensional coherently oriented pseudomanifold is depicted below (left), along with the induced

orientation on its boundary.

	
	

	

	

	
	

	
	

	

+

+

−

+

We now fix a set A of n+ 1 colors. Without loss of generality, we assume that our colors are natural

numbers: A = {0, . . . , n}. On the 2-dimensional pictures, we use colors red, green, blue, corresponding

respectively to the values 0, 1, 2. Let X be a k-simplex and χ : X → A a proper coloring of the vertices

of X . Let a0, . . . , ak ∈ A be the colors of the vertices of X in increasing order. We say that X is oriented

positively if the sequence of vertices 〈x0, . . . , xk〉, with χ(xi) = ai, belongs to the orientation of X .

Otherwise, we say that X is oriented negatively. Given a set of oriented properly-colored simplices, the

number of simplices counted by orientation is the number of positively oriented simplices, minus the

number of negatively oriented simplices (in other words, positive counts for +1, negative for −1).

In the next definition, if i ∈ A is a color, we write Ai := A \ {i}.

Definition 1.15. Consider a coherently oriented pseudomanifold K with the induced orientation on its

boundary ∂(K). Let χ be a coloring, not necessarily proper, of the vertices of K with the colors A.

– The content ofK, written C(K), with respect to χ is the number of the properly colored n-simplices

of K, counted by orientation.

– The index of K, written Ii(K), with respect to χ and i ∈ A, is the number of properly colored

(n− 1)-simplices of ∂(K) with colors Ai, counted by orientation.

If there is no ambiguity, we omitK and writeC or Ii. The next lemma is the restatement of Corollary 2

in [40] using our notations. This formulation that we use here can be found in [64, ch. 12]. See also [61,

pp. 46-47] for a simple version in dimension 2.

Lemma 1.16 (Index Lemma). Let K be a coherently oriented pseudomanifold of dimension n, colored

with A. Then C(K) = (−1)iIi(K).

Proof. Cf. [64], chapter 12.

On the example above, the content isC = +1, and the index when removing the blue color is I2 = +1.

One can also check that I0 = +1 and I1 = −1 (recall that 0, 1, 2 stands for red, green, blue). The

coloring χ of K can be seen as a simplicial map χ : K → ∆A from K to the standard n-simplex ∆A.

Thus, we can think of the index of K as the number of times that ∂(K) is wrapped around ∂(∆A), i.e., a

combinatorial version of the notion of degree in topology.

To compute the index and content of chromatic subdivisions, we can just compute it from the original

complex before subdivision happens. Indeed, we have the following Lemma:

31

Lemma 1.17. Let X be a properly colored n-simplex with colors from A. Let ChSub(X) be a chromatic

subdivision of X . Then C(ChSub(X)) = C(X).

Proof. Assume w.l.o.g. that X is counted positively. Thus, C(X) = 1. We proceed by induction on n.

For n = 0 (X is a single vertex), chromatic subdivisions do nothing so the result trivially holds. Now

assume X is of dimension n. For clarity, we now write the dimension n of K as a superscript when we

write the content Cn(K) or index Ini (K).

By the Index lemma, Cn(ChSub(X)) = (−1)n Inn (ChSub(X)). Let Yn be the (n − 1)-face of X

with colors from An. Since ChSub(X) is a chromatic subdivision of X , the subcomplex K induced by

the properly colored (n− 1)-simplexes on the boundary of ChSub(X) with colors in An, is a chromatic

subdivision of Yn. Thus, Inn (ChSub(X)) = Cn−1(K) = Cn−1(Yn) by induction hypothesis, and

Cn−1(Yn) = Inn (X) = (−1)nCn(X). This concludes the proof.

Chromatic subdivision+

+ − +

− − ++

− −

+

−

+ +

Now, assume we start with a coherently oriented pseudomanifoldK, and apply a chromatic subdivision

to each n-simplex. Every properly colored simplex will still have the same contribution to the content

(even after subdivision), and each non-properly colored simplex will not contribute to the content (even

after subdivision). So, the content remains unchanged, and the same goes for the index:

Corollary 1.18. Chromatic subdivisions preserve the index and content.

1.3 Distributed computing through combinatorial topology

We now show how we can model tasks and protocols using chromatic simplicial complexes. We work

with n + 1 processes, in order to get simplicial complexes of dimension n. Moreover, we will usually

assume that the process names are natural numbers [n] := {0, . . . , n}, and we refer to the i-th process as

either “process i” or just “Pi”. The process names will also be referred to as colors, since we use them to

color the vertices of our chromatic simplicial complexes. Intuitively, a k-dimensional simplex (for k ≤ n)

represents an execution in which k + 1 processes are participating, and the others have crashed. The set

of participating processes is the set of colors of the vertices of this simplex.

1.3.1 The task specification

A task is specified by giving two chromatic simplicial complexes I and O, called respectively the input

complex and the output complex, along with a carrier map from I to O. Intuitively, I describes all the

possible combinations of input values that the processes can start with, and O the combinations of output

32

values that they are allowed to decide. For that purpose, we suppose given a set Val of values that can be

exchanged between processes (usually, Val contains at least the natural numbers).

Definition 1.19 (Simplicial task). A task is a triple (I,O,∆), where:

– I = (VI , SI , χI , `I) is a pure chromatic simplicial complex of dimension n, colored with process

numbers, and equipped with a labeling `I : VI → Val of input values, such that each vertex is

uniquely determined by its color and label.
– O = (VO, SO, χO, `O) is a pure chromatic simplicial complex of dimension n, colored with process

numbers, and equipped with a labeling `O : VO → Val of output values, such that each vertex is

uniquely determined by its color and label.
– ∆ : I → 2O is a chromatic carrier map from I to O.

The purpose of the labelings is just to make explicit our intuition that the vertices of I andO should be

pairs (i, v), where i ∈ [n] is a process number and v ∈ Val is an input or output value. So, an n-simplexX

of I attributes one input value to each process. The image of this simplex under the carrier map ∆(X) is a

pure n-dimensional subcomplex of O (because ∆ is rigid), corresponding to the set of acceptable outputs.

But this carrier map specifies more than that: if we start with a k-dimensional face Y ⊆ X , meaning that

only some processes participate in the computation, then ∆(Y) specifies which k-dimensional outputs are

acceptable for these participating processes. The fact that ∆ is color-preserving means that the process

numbers do not change during the computation; and the fact that ∆ is monotonic says that ∆(Y) ⊆ ∆(X),

that is, if the “crashed” processes were just being slow, they can still manage to produce a valid output

afterwards.

So, this definition indeed corresponds to the intuitive idea of an input-output relation that we gave in

Section 1.1.1, along with a specification of what happens when only a subset of processes participate.

Examples

Example 1.20 (Consensus). In the consensus task, the processes can be given as input any value in Val.

– The input complex has vertices VI = [n]× Val, where a vertex (i, v) is colored by i and labeled

by v. The input simplexes are all the sets of vertices that are properly colored.
– The output complex has the same set of vertices, VO = [n] × Val, with the same coloring and

labeling; but the only output simplexes are those of the form {(0, v), (1, v), . . . , (n, v)} for each

value v ∈ Val, along with their faces.
– The carrier map ∆ sends an input simplex {(i0, v0), . . . , (ik, vk)} to all the output simplexes with

the same set of participating processes, where all processes decide on the same vi.

The binary consensus task is a variant of consensus where the only possible values are 0 and 1.

Example 1.21 (k-Set-agreement). k-Set-agreement (for k ≤ n) is a weaker variant of consensus, where

instead of agreeing on one common output, we require that the cardinality of the set of decision values

should be at most k. In particular, 1-set-agreement is the same as consensus.

– The input complex I is the same as the one of consensus.
– The output complex O has the same set of vertices, but the maximal simplexes are those of the

form {(0, d0), (1, d1), . . . , (n, dn)}, such that |{d0, . . . , dn}| ≤ k.
– The carrier map ∆ sends an input simplex {(i0, v0), . . . , (ik, vk)} to all the output simplexes with

the same set of participating processes, and where each decision value is valid: di ∈ {v0, . . . , vk}.

33

Example 1.22 (Adopt-commit). The adopt-commit task [3] is yet another variant of consensus, which can

be used to implement round-based protocols for set-agreement.

– The inputs are taken among a finite set of cardinality m+ 1, i.e., VI = [n]× [m]. All the properly

colored input simplices are allowed.
– The processes can make two kinds of decisions, either (ADOPT, v) or (COMMIT, v), for some

v ∈ [m]. The allowed output simplices are those that satisfy the coherence condition: if one process

decides on (COMMIT, v), then every process decides either on (COMMIT, v) or (ADOPT, v).
– The carrier map ∆ formalizes the two following conditions:

– validity: every decision value is among the inputs of the participating processes,
– convergence: if all the inputs are v, then all the outputs are (COMMIT, v).

Example 1.23 (Validity). Validity is an even weaker version of consensus and set-agreement, where we

only keep the requirement that the decision values should be valid, i.e., among the input values of the

processes. There is no agreement requirement at all.

– I is the same as for consensus.
– All output simplexes are allowed: O = I.
– The carrier map ∆ sends an input simplex {(i0, v0), . . . , (ik, vk)} to all the output simplexes with

the same set of participating processes, and where each decision value is valid: di ∈ {v0, . . . , vk}.

Example 1.24 (Weak symmetry breaking). The weak symmetry breaking task is interesting in the context

of anonymous protocols, where the processes do not have access to their PID. As input, each process has a

name p ∈ Π, where usually there are many more possible names than processes |Π| � n+ 1. As output,

they must return a binary value 0 or 1, such that not all processes decide on the same output.

– I has all vertices VI = [n]×Π, but not all input simplices are allowed: the processes must be given

distinct names. So, an input simplex is of the form {(0, p0), . . . , (n, pn)} where the pi are distinct.
– O has vertices VO = [n]×{0, 1}, and it contains all the properly colored simplexes, except the one

where the decisions are all 0, and the one where the decisions are all 1.
– The carrier map ∆ takes each k-simplex of I to all the simplexes of O with the same set of

participating processes. Thus, if less than n+ 1 processes participate, there is no restriction at all

on the outputs; if n + 1 processes participate, the only restriction is that the two missing output

simplexes are forbidden.

A related task is renaming, which has the same input complex, but as output the processes are required to

decide names from a smaller set of names, so that all the participating processes pick distinct names.

1.3.2 The protocol complex

In the context of distributed computability, the only purpose of a protocol is to solve a task. So, the

processes start the computation with input values taken from the input complex I of the task that we want

to solve. It is helpful to separate the computation into two phases: first, the processes communicate using

the shared objects at their disposal, until they reach a final state where they are ready to decide on an

output value; then, when all the participating processes are decided, the decision values are returned. The

simplicial definition of a protocol (Definition 1.25 below) corresponds to the first phase. The decision

phase will be taken into account in Definition 1.29.

At the end of an execution, each process has a local view of the computation, which intuitively

represents the partial information that it has managed to acquire during this execution. From the point of

34

view of one process, two different executions might produce the same local view, in which case these

executions are indistinguishable for this process. The output value that is decided by a process can only

depend on its local view; so, in two indistinguishable executions, a process must decide on the same

output. In the next definition, let Views denote an arbitrary set of local views.

Definition 1.25 (Simplicial protocol). A protocol is a triple (I,P,Ψ), where:

– I = (VI , SI , χI , `I) is a pure chromatic simplicial complex of dimension n, colored with process

numbers, and equipped with a labeling `I : VI → Val of input values, such that each vertex is

uniquely determined by its color and label.
– P = (VP , SP , χP , `P) is a pure chromatic simplicial complex of dimension n, colored with process

numbers, and equipped with a labeling `P : VP → Views of local views, such that each vertex is

uniquely determined by its color and label. P is called the protocol complex.
– Ψ : I → 2P is a chromatic carrier map from I to P .

This is very similar to the definition of a task, except that we do not label vertices with output values

but with views. Intuitively, a n-simplex of P represents one possible execution of the protocol. A single

vertex of v ∈ VP represents a single process, whose process number is i := χP(v), along with its local

view `P(v). This vertex might belong to several n-simplices of P; they correspond to all the executions

that are indistinguishable for process i. Given an input simplex X ∈ I, the carrier map Ψ keeps track of

which final configurations are reachable starting from the input configuration X .

Examples

The most important protocol in distributed computability is called the immediate-snapshot protocol. It

was introduced by Borowsky and Gafni [15], and has been thoroughly studied for two important reasons:

1. it is equivalent to the usual setting of read/write registers in terms of wait-free task solvability [16];
2. it preserves the topology of the input complex.

Example 1.26 (The immediate-snapshot protocol). Given any input complex I, the immediate-snapshot

protocol is defined as follows.

– The protocol complex is P := ChSub(I), the chromatic subdivision of I (see Section 1.2.3).
– The carrier map Ψ : I → 2P is also the one of Section 1.2.3.

Of course, this abstract specification of the protocol deserves an explanation of the computational intuition

behind it. In the immediate snapshot protocol, each process has a designated memory cell where it can

atomically write its input value. After doing so, it can atomically take a snapshot of the whole shared

memory, in order to read the values that have been written by the other processes. Moreover, we restrict to

a subset of all the executions described above: the snapshot is guaranteed to happen “immediately” after

the write, in the following sense. Formally, an immediate snapshot execution consists of a sequence of

sets of processes, where each set is called a concurrency class. All the processes in the same concurrency

class will execute their write operations together. Then, they all execute their snapshots together. Then,

we move on to the next concurrency class. Thus, all the processes inside a given concurrency class will

see each other’s values, as well as the values of the previous concurrency classes.

The view of a process in such an execution is the vector that was returned by the snapshot operation.

In other words, it contains the set of values that it was able to observe from the other processes, along with

which value belongs to which process. So, formally, a view is a set of pairs (i, v) ∈ [n]× Val where each

35

process appears at most once, i.e., it is a simplex of the input complex. Moreover, a process necessarily

sees its own value, so a vertex of the protocol complex P should intuitively be a pair (i,Xi) consisting of

a process number i and the local view of this process. This looks almost like the vertices of ChSub(I),

except that in Definition 1.9, the first component was an i-colored vertex v ∈ VI . But this vertex v

can be recovered since it belongs to Xi, so this distinction is irrelevant. Finally, the two conditions of

Definition 1.9 correspond to the “immediacy” of the snapshot.

See [4] for a more thorough account of the immediate-snapshot model, and a formal proof that its

protocol complex is indeed the standard chromatic subdivision.

Example 1.27 (The k-round immediate-snapshot protocol). The previous example was for one round of

immediate-shapshot communication. This protocol can be iterated as follows. At each round, a fresh

shared memory array is used. Each process writes its local view, and then it takes a snapshot of the whole

array in order to obtain its next view, and so on. After repeating this action k times, the protocol complex

that we obtain is an iterated chromatic subdivision.

– The protocol complex is P := ChSubk(I).

– The carrier map Ψ : I → 2P sends each input simplex to its subdivided image.

Example 1.28 (Test-and-set protocol with one flag). As a toy example, we present a very simple protocol

using a single test-and-set object. A test-and-set object is a shared memory cell that contains a single

bit of information. Initially, the value is set to 0. The processes can access this cell by calling its

test-and-set() method, which takes no argument. Its effect is to atomically perform the two

following operations: first, read the value of the cell, then, write the value 1. The method returns the value

that has been read.

So, when n processes call this object concurrently, exactly one of them (“the winner”) sees value 0,

and the others (“the losers”) see value 1. The view of a process in this execution is simply the binary digit

that it reads.

– Since the processes cannot exchange values using this protocol, their input values are irrelevant,

and we will consider that I consists of just one n-simplex: VI = [n], and SP = P([n]).

– The protocol complex P has vertices VP = [n]×{0, 1}, colored by the first component and labeled

by the second, as usual. An n-simplex of P is of the form {(0, b0), (1, b1), . . . , (n, bn)} where

exactly one of the bi’s is 0 and the others are 1. SP contains all the faces of these simplices.

– The carrier map Ψ : I → 2P takes each input k-simplex (i.e., a set of k+ 1 participating processes),

to the simplices of P of the form {(i0, b0), (i1, b1), . . . , (ik, bk)}, where exactly one of the bi’s is 0,

along with their faces.

0

0

0

1

1

1

Input complex I

Protocol complex P

Ψ

36

The picture above depicts the corresponding protocol complex for three processes, whose names are

represented as colors black, gray and white. As we can see on the picture, the topology of the input

complex is not preserved: a hole has been created.

1.3.3 Definition of solvability

Now that we have defined tasks and protocols, we can define what it means for a protocol to solve a task.

Definition 1.29. A protocol (I,P,Ψ) solves a task (I,O,∆) if there exists a chromatic simplicial map

δ : P → O, called the decision map, such that δ ◦Ψ is carried by ∆. That is, for all X ∈ I , we must have

δ(Ψ(X)) ⊆ ∆(X)

The intuition behind this definition is simple: the decision map δ associates with a local view of

process i an output value for this process. So, a process must decide on its output only according to its

local view. The fact that δ ◦Ψ is carried by ∆ says that these decisions are made according to the task

specification.

Input complex

Protocol complex

Protocol
Specification

Ψ

0 0

0

1 1

1

Output complex

Task
Specification

∆

Decision map

∃δ ?

⊆

This topological characterization of task solvability is particularly interesting when we want to prove

impossibility results. Indeed, to prove that a task is not solvable, one must prove the non-existence of a

particular simplicial map between simplicial complexes. Many powerful mathematical tools can be used

to prove such results: arguments based on k-connectedness, homology, or combinatorial theorems such as

Sperner’s lemma and the Index lemma.

1.4 A case study: solvability of Equality Negation tasks

In order to showcase how combinatorial topology can be used to prove impossibility results in distributed

computing, we now present a study of the solvability of a class of tasks, called equality negation tasks, in

the usual model of wait-free processes communicating through read/write registers. Unlike the previous

37

sections of this chapter, which were concerned with introducing classic definitions from the literature, this

chapter presents a new contribution of this thesis. The work presented here was done in collaboration with

Éric Goubault, Marijana Lazić and Sergio Rajsbaum, and was accepted for publication at DISC 2019 [50].

The equality negation task for two processes was originally introduced by Lo and Hadzilacos [88], as

the central idea to prove that the consensus hierarchy [63, 77] is not robust. Consider two processes P0

and P1, each of which has a private initial value, drawn from the set of possible input values I = {0, 1, 2}.
Each process must decide on a binary output value, either 0 or 1, so that the decisions of the processes are

the same if and only if the initial values of the processes are different. The input and output complexes of

this task are depicted below.

0

0 1

1

Output complex O
0

0 1

1 2

2

Input complex I

The carrier map ∆ : I → 2O takes each of the three vertical input edges (with equal inputs), to the two

horizontal output edges (with different outputs); and each of the six other input edges to the two vertical

output edges. As we will discuss later, there is no restriction imposed on the “solo executions”, because

we will consider a model without crashes.

It is proved in [88] that this task is strictly weaker than consensus, i.e., that consensus is not solvable

using equality negation objects. However, like consensus, the equality negation task is not solvable using

read/write registers. In [88], this fact is proved by reduction to the consensus task. They show that,

under the assumption that equality negation is solvable using registers, then there would be a correct

implementation of consensus using equality negation. Thus, consensus would be solvable with read/write

registers, which we know is impossible.

A topological proof. In fact, there is a simple topological argument to show that there is no solution to

the equality negation task in the immediate-snapshot model (which is equivalent to read/write registers).

Assume for contradiction that there is a solution, with some number of rounds, k. Then, the protocol

complex P for k-round immediate-snapshot is a subdivision ChSubk(I) of the input complex, where each

edge is divided into 3k edges. The carrier map Ψ : I → 2P , carries each input edge to its subdivision

in the protocol complex, and each input vertex (i, v) to the i-colored extremity of that subdivided edge.

Also, Definition 1.29 states that P solves equality negation if there exists a simplicial map δ : P → O
such that δ ◦Ψ is carried by ∆.

Assume that this is the case, and consider the subcomplex C of I induced by all edges that have

distinct input values. Notice that C is connected (it is in fact a circle). Thus, Ψ(C) is also connected, since

it is a subdivision of C. Since the image of a connected simplicial complex under a simplicial map is

connected, δ(Ψ(C)) is a connected subcomplex of O.

The specification of the equality negation task states that the decisions should be equal, for all the

simplexes of C. But the subcomplex of O of edges with the same decision values is disconnected.

Therefore, δ(Ψ(C)) must be equal to one of the edges in this subgraph. Without loss of generality, we

38

assume that δ(Ψ(C)) is the edge of O where both processes decide 0. It follows, in particular, that

δ(Ψ(P0, 2)) = (P0, 0) and δ(Ψ(P1, 2)) = (P1, 0), since those two input vertices belong to C.

Now, consider the input edge e := {(P0, 2), (P1, 2)}, where both processes have the same input. For

the same reason as before, δ(Ψ(e)) must be connected. Thus, δ(Ψ(e)) is equal to one of the two edges

of O with distinct output values. Without loss of generality, suppose it is the edge {(P0, 0), (P1, 1)}. This

implies that δ(Ψ(P1, 2)) = (P1, 1). But this contradicts the equality δ(Ψ(P1, 2)) = (P1, 0) above.

Equality negation tasks for n processes. The equality negation task for two processes defined in [88]

does not have a unique generalization to the case with more than two processes.

In the rest of this section, we introduce a generalization that allows any number of input values, but

we keep the set of possible decision values as {0, 1}. It seems natural to require the following conditions:

(i) if all the processes have (pairwise) different input values, they decide on the same output, and
(ii) if they all initially have the same input value, they do not decide on the same output.

Still, this definition does not cover all possible combinations of input values of all processes, for example,

if there are two processes with the same input, and a third process with a different one. Therefore, there is

a lot of freedom for defining output constraints for the remaining input cases. Our goal is to analyse all

the possible generalizations of a certain form.

We define a family of equality negation tasks, based on the cardinality of the set of input values

of all processes. Let n be the number of processes and let there exist exactly n input values, namely

I = {0, 1, 2, . . . , n − 1}. This assumption is done w.l.o.g., as we explain at the end of the section: all

our results can be extended to |I | > n in a straightforward manner. Let I denote the corresponding input

complex, where every possible combination of input values from I is allowed. In a given input simplex

X ∈ I, the set of input values of all processes is written InputSet(X). As this set is always a non-empty

subset of the set I of all possible input values, its cardinality ranges from 1 to n. Note that the case when

all processes have the same input value is represented by |InputSet(X)| = 1, and the case when all

processes have different input values is the one when |InputSet(X)| = n. Different constraints on the

intermediate cases introduce a family of tasks.

For every k, ` ∈ N with 1 ≤ k < ` ≤ n, we define a generalized equality negation task as follows:

– If we have |InputSet(X)| ≥ `, then all processes must decide on the same value, either 0 or 1.
– If |InputSet(X)| ≤ k, then not all processes decide on the same output value, i.e., there must be at

least one process deciding 0, and at least one deciding 1.
– If k < |InputSet(X)| < `, then each process can decide independently on any value from {0, 1}.

We propose to study the solvability of this task, depending on the values of the two parameters k and `.

The original equality negation task for two processes of Lo and Hadzilacos [88] is recovered as a special

case, where n = 2, I = {0, 1, 2}, k = 1 and ` = 2. Note that the same task with I = {0, 1} is trivially

solvable; this is a peculiarity of the two-process case. We discuss this fact at the end of the section.

The computational model. We study the solvability of this task in the usual immediate-snapshot model

(see Example 1.26). However, there is one little oddity: we do not consider crashing processes. All the n

processes are present in the beginning of an execution, and they are guaranteed to run until the end of their

program. This is a simplifying assumption: there is no need to wonder about what the specification of a

solo execution should be (how does one single process manage to “disagree”?). Instead of crashes, the

two ingredients that allow us to obtain impossibility results are asynchrony and wait-freedom. Although

39

a bit unusual, this assumption is not restrictive: if we wanted to transpose our results to a model where

processes can crash, we could simply say that the task specification does not impose any restrictions on

the outputs whenever at least one process has crashed.

1.4.1 Solvable cases

We claim that whenever there is a “gap” between the two parameters k and `, where the processes are

allowed to decide on any output value without constraint, the equality negation task is solvable.

1 Integer v := input_value
2

3 P0: V := immediateSnapshot(v);
4 return 0;
5

6 Pi: V := immediateSnapshot(v);
7 if |V| ≥ 2 and |val(V)| ≤ 1 then
8 return 1
9 else return 0;

Figure 1.1: Case k = 1 and ` = n, for n ≥ 3.

1 Integer v := input_value
2

3 P0: V := immediateSnapshot(v);
4 return 0;
5

6 Pi: V := immediateSnapshot(v);
7 if |V| ≥ n+k−`+1 and |val(V)| ≤ k then
8 return 1
9 else return 0;

Figure 1.2: Arbitrary k and ` with `− k ≥ 2.

For simplicity, we first focus on the special case when n ≥ 3, k = 1 and ` = n. A protocol to solve

this task is presented in Figure 1.1. First, notice that the processes are not anonymous: they can execute

a different piece of code depending on their process number. Here, the program run by process P0 is

indicated at lines 3-4; whereas all the other processes Pi for 1 ≤ i ≤ n run the program at lines 6-9.

In this figure, the input value of a the process is named v. The operation immediateSnapshot(v)

returns the vector V of values that were observed by the snapshot. |V| denotes the number of processes

whose values appear in V, and val(V) denotes the set of values that appear in V. In this algorithm,

process P0 participates in the immediate-snapshot, and then it decides 0 independently of its input and the

result of the snapshot. All the other processes decide on their output value according to the following rule:

if Pi sees at least 2 processes (including itself), and their input values are the same, then Pi decides 1.

Otherwise, it decides 0.

Proposition 1.30. The algorithm of Figure 1.1 solves equality negation if n ≥ 3, k = 1 and ` = n.

Proof. As k = 1 and ` = n, we need to show that the following two conditions are satisfied: (i) when all

processes have the same input value, they will disagree, and (ii) when all processes have different inputs,

then they all decide on the same value (in this case, 0).

(i) The distinguished process P0 always decides 0, so we need to make sure that at least one process

will decide 1. Among the last two processes that execute their snapshots, one is not P0. This

process, say Pj , will see at least n− 1 processes. Since n− 1 ≥ 2, and since all processes have the

same input value, Pj decides 1, which is enough for the disagreement.
(ii) Suppose that no two processes have the same input value. Then all the processes in this will agree

and decide 0. Indeed, the only way that a process can decide 1 is when it has seen 2 processes with

the same input value. But that would contradict our assumption.

In the general case, for any n, k and ` such that `− k ≥ 2, the idea is the same. The corresponding

algorithm is given in Figure 1.2. As before, process P0 always decides 0. All the other processes decide

40

according to the following rule: if it sees at least n+ k − `+ 1 processes, and among their input values

there are at most k different values, the process decides 1, and otherwise it decides 0.

Theorem 1.31. The algorithm of Figure 1.2 solves the equality-negation task if `− k ≥ 2.

Proof. The two conditions that we want to prove are the following. For every input configuration X ,

(i) if |InputSet(X)| ≤ k, then at least one process decides 0 and at least one decides 1; and (ii) if

|InputSet(X)| ≥ `, then all processes decide on the same value, here 0.

(i) Again, we have process P0 that decides 0 and there is a process Pj , with j 6= 0, that sees at

least n− 1 processes. Since `− k ≥ 2 (by assumption), we have that n− 1 ≥ n+ k − `+ 1, and

thus Pj will indeed decide 1.
(ii) By means of contradiction, suppose that a process Pi decides 1. Then Pi has seen at least n+k−`+1

processes with at most k different input values. Note that Pi did not see any process with the

remaining `− k values, and that there must be at least one process with each of those values. So

the total number of processes would be at least n+ 1 processes, which is not the case.

Thus, we have proved that all variants of the equality negation task are solvable whenever k + 2 ≤ `.
Since by definition the two parameters k and ` are such that 1 ≤ k < ` ≤ n, the only remaining cases are

those with ` = k+ 1. In the following, we discuss the solvability of the tasks depending on the value of k.

The other parameter ` is now always assumed to be k + 1.

1.4.2 Impossibility proof when k is small

For simplicity, we first look at the case where k = 1; we will see later that it can be easily generalized to

any k ≤ n/2. For k = 1, the goal of the task is the following. If all the input values are the same, then the

processes should disagree (i.e., not all of them should decide on the same output). In all other cases, the

processes should agree.

Let us assume for contradiction that the task is solvable in the immediate snapshot model. We focus

on what happens in one of the initial configurations where all the processes have the same input value

a. Let us call X = {(P0, a), . . . , (Pn−1, a)} the corresponding simplex of the input complex. After the

processes exchange information using iterated immediate snapshot communications, we obtain in the

protocol complex a chromatic subdivision ChSubk(X) of the original simplex X . The situation for 3

processes and one round of immediate snapshot is depicted below. The color of a vertex represents the

process name; the value written inside a vertex is its input value; and next to it is the decision value.

a a

a

X

Immediate Snapshot

a
0

a
0

a
0

a

0

a

0

a0

a0

a
0

a 0
aa

a

b 0

41

In the input complex, the simplex X is surrounded by other simplices where not all inputs are the

same. Thus, after the immediate snapshot computation occurs, the boundary of the subdivided simplex

ChSubk(X) is still surrounded by simplices with a different input value (three of them are depicted above,

with input value b). In these simplices, the task specifies that all the processes must decide on the same

output. Assume w.l.o.g. that this output is 0. Since the boundary of ChSubk(X) is connected, we can

propagate the 0’s step by step and we obtain that every vertex on the boundary of ChSubk(X) must decide

on value 0.

0 0

0

1

To reach a contradiction, we will show that, given any assignment of output

values 0 or 1 to the inner vertices of ChSubk(X), there will always be at least one

simplex of ChSubk(X) where all the outputs are equal. This contradicts the task

specification. Note that the next part of the proof only works because ChSubk(X)

is a chromatic subdivision; the statement does not hold for other subdivisions, as

depicted on the right. If we regard the output values 0 and 1 as colors, the result that we want to prove

looks like Sperner’s lemma (Section 1.2.5), where instead of counting the properly colored simplices

inside the subdivision, we want to count the monochromatic ones, with respect to output values 0 and 1.

To be able to use Sperner’s lemma in this situation, we use a recoloring trick which was already used

in [21] to obtain lower bounds on the renaming problem.

Suppose we are given an assignment of output values to the vertices of ChSubk(X), such that all the

vertices on the boundary decide 0. For v a vertex of ChSubk(X), we write dv ∈ {0, 1} the decision value

of v, and idv ∈ {0, . . . , n− 1} its process number. We define the recoloring of v to be cv := (idv + dv)

mod n. We have the following property:

Lemma 1.32. A simplex S of ChSubk(X) is monochromatic w.r.t. the decision values dv if and only if it

is proper w.r.t. the recoloring cv.

Proof. Since ChSubk(X) is a chromatic subdivision of the simplex X , every simplex S of ChSubk(X) is

properly colored w.r.t. the process numbers idv. Thus, if S is monochromatic w.r.t. the decision values dv
(that is, if all its vertices have the same decision value d), it is clear that the recoloring cv = (idv + d)

mod n will still be proper. Conversely, we proceed by contraposition: suppose that not all decision values

are the same. Then, there must be two vertices v and w of S, such that idw = (idv + 1) mod n and

dv = 1 and dw = 0. Thus cv = cw, and the recoloring c is not proper.

We can now easily conclude the proof. Since on the boundary of ChSubk(X) all the vertices have

the decision value 0, the recoloring c is just the process number: cv = idv for every boundary vertex v.

Moreover, since ChSubk(X) is the (iterated) chromatic subdivision of a single input simplex X , we know

that the process numbers idv form a Sperner coloring on its boundary. Thus, by Sperner’s lemma, there

must exist a simplex S ∈ ChSubk(X) that is properly colored w.r.t. the recoloring c, and by Lemma 1.32

this means that all the vertices of this simplex decide on the same output. Therefore, the equality negation

task with parameter k = 1 cannot be solved by iterated immediate snapshot.

The same proof can be adapted for any k ≤ n/2:

Theorem 1.33. The equality negation task for n ≥ 3 processes, with parameters k ≤ n/2 and ` = k + 1

is not solvable in the immediate snapshot model.

42

Proof. The only difference with the case k = 1 above is that we now start with the simplex X =

{(P0, 0), . . . , (Pk−1, k − 1), (Pk, 0), . . . , (P2k−1, k − 1), . . .}, which has exactly k distinct input values,

and every input appears at least twice. Therefore, if we remove one vertex from X , we obtain a face of

X (of cardinality n − 1), which still has k distinct inputs. Then, this face belongs to another simplex

with k + 1 input values. Thus, after subdivision, every process on the boundary of X must decide on the

same output (say, 0). Now the rest of the proof is exactly the same as in the case of k = 1: we have a

simplicial complex ChSubk(X) which is a chromatic subdivision of X , and we know that every process

on its boundary has decision value 0. By Sperner’s lemma, there is a simplex S ∈ ChSubk(X) that is

properly colored w.r.t. the recoloring c, and by Lemma 1.32 it is monochromatic w.r.t. the decision values.

Since X has ≤ k distinct input values, this set of outputs is not allowed.

1.4.3 Impossibility proof when n− k is odd

We now extend the proof of Section 1.4.2 to show that the task is not solvable by iterated immediate

snapshot in half of the remaining cases: namely, whenever n− k is odd, the task is unsolvable. We will

rely on the same recoloring trick (and the associated Lemma 1.32), but instead of Sperner’s lemma, we

will use a more refined topological property, the Index lemma (see Section 1.2.6).

Low-dimensional example

Before we proceed to the general construction, let us illustrate the idea of the proof using the particular

case of 3 processes and parameter k = 2. This instance of the task is the following: if the three input

values are different, then the processes should decide on the same output; otherwise, they should disagree.

The input complex I contains every possible assignment of input values {0, 1, 2} to the three processes

{P,Q,R}. More formally, its maximal simplices are of the form Xijk = {(P, i), (Q, j), (R, k)}, for all

i, j, k ∈ {0, 1, 2}. We can decompose this input complex I into two parts (depicted in Figure 1.3 below):

0

0

0

1

1

1 1

1

1

2

2

2

2

2

0

0

0

20

0

0

1

1

1

22

2

2 2

2

Figure 1.3: Exploded view of the input complex for n = 3 processes. All vertices with the same color
and input value should be identified.

– There are 6 maximal simplices Xijk such that |{i, j, k}| = 3, that is, where all three processes have

distinct values. In each of these simplices, the processes should agree on a common output value;

moreover, since this subcomplex is connected, this common output has to be the same in all six of

them.

43

– The rest of the input complex consists of simplices Xijk such that |{i, j, k}| ≤ 2. In that part of

the input, the processes should not agree. This part of the input complex is topologically a “pearl

necklace” of three spheres.

Note that the 6 simplices with three distinct inputs are actually filling the hole in the middle of the

“necklace”. Thus, I is homotopy equivalent to a wedge of 2-spheres; in the terminology of [64], it is a

pseudosphere.

We now focus on one of the three spheres depicted in Figure 1.3; for example, the one where all inputs

are either 0 or 1. That sphere has six edges that are labeled with two distinct input values 0 and 1. Each

of these 01-edges also belongs to one of the six simplices with three inputs 0, 1, 2: therefore, on each of

these edges, all processes have to decide on the same output value (say, w.l.o.g., that the common output

value is 0). In the picture below, the 01-edges of the sphere are depicted in red. They form a circle on the

surface of the sphere, splitting it in two half-spheres. We now look at only one of those two half-spheres,

and call it H . It consists of four 2-simplices, and its boundary contains only 01-edges. Thus, after the

immediate snapshot computation occurs, this complex will be subdivided, and in order to solve the task,

we should satisfy the following two conditions:

(1) All the vertices on the (red) boundary must be mapped to the same output, say, 0; and

(2) In every triangle, not all processes should decide on the same output.

This means we should have a simplicial map from a chromatic subdivision of H to the subcomplex T of

the output complex where not all decision values are the same.

0

0

0

1

1

1

0

0

0

1

1

1

H ⊆ Input complex
0 0

0

11

1

T ⊆ Output complex

Subdivision and decision map

Since the processes on the boundary of H all decide on output 0, the boundary of H has to be mapped

to the outside boundary of T . In this situation, it seems clear topologically that some simplex inside H

will necessarily be sent to the “111-hole” in the middle of T , contradicting condition (2). Notice however

that the boundary of H is winding twice around the boundary of T . Moreover, this winding number is

preserved by the chromatic subdivisions of H induced by the immediate snapshot protocol. Sperner’s

lemma, that we used in Section 1.4.2, only works if the boundaries are matched exactly (i.e., if we have a

Sperner coloring). That’s why we need to use the index lemma, which is able to handle cases where one

boundary is winding several times around the other.

Proposition 1.34. The equality negation task for n = 3 processes, with parameters k = 2 and ` = 3 is

not solvable in the immediate snapshot model.

Proof. Assume for contradiction that the task is solvable, and let H be the subcomplex of the input

complex described above. So, there should be a chromatic subdivision ChSubk(H) of H , and an

assignment of decision values to its vertices, which solves the task. Remember that all the vertices

on the boundary of ChSubk(H) must decide on the same output value, for example 0. We choose an

44

arbitrary (coherent) orientation for the simplices of H; and we assign colors using the same recoloring as

in Section 1.4.2. What we want to do now is prove that the content of ChSubk(H) is non-zero. Using

the index lemma, we can also compute its index. And by Corollary 1.18, applied to the boundary of

ChSubk(H), it is equal to the index of H itself.

Then, an easy calculation shows that the index of H is either 2 or −2 depending on the orientation

that we chose. So, no matter how many rounds of immediate snapshot we do, the index of ChSubk(H)

is either 2 or −2. By the index lemma, its content must be equal to its index (in absolute value). Since

it is non-zero, there must exist proper triangles in ChSubk(H), which by Lemma 1.32 correspond to

monochromatic triangles w.r.t. the decision values. This contradicts the solvability of the task.

General case

We now work with any k and n (remember however that k < n since ` = k+ 1 ≤ n), and we try to follow

the same recipe as in the previous section. So, our goal is to find a subcomplex of the input complex,

which is a pseudomanifold (in order to be able to apply the index lemma), and whose boundary consists of

simplices with exactly k distinct input values (so that we can say that every process on the boundary has

to decide on the same output). A simple way to obtain a pseudomanifold is to choose a sphere in the input

complex, and restrict ourselves to a subcomplex of this sphere. Although this idea is inspired from what

we did in the low-dimensional example, the reader should be warned that the general construction we are

about to do, when instantiated with n = 3 and k = 2, does not give the same proof as in Proposition 1.34.

Consider the subcomplex S of the input complex, which contains all the vertices of the form (Pi, ai),

where ai = 0 or ai = i if 1 ≤ i ≤ k, and ai = 0 or ai = 1 for all other values of i. The simplices

of S are all combinations of such vertices, which are properly colored w.r.t. the process names. For

example, X = {(P0, 0), (P1, 0), . . . , (Pn−1, 0)} is a simplex of S. For ease of notation, when talking

about maximal simplices, we omit the process names and just write X = 〈0, . . . , 0〉, where the i-th

component is the value of process Pi. Another simplex of S is 〈0, 1, 2, . . . , k, 0, . . . , 0〉.
For the case n = 3, k = 2, the sphere S = {〈a, b, c〉 | a, b ∈ {0, 1}, c ∈ {0, 2}} is represented below

(the colors black, gray, white correspond to P0, P1, P2, respectively).

0

0

0

1

1

2

S

0

0

0

1

1

2

S≤2

0

0

1

1

2

S3

=
⋃

Since every process can take exactly two different input values, independently from the other processes,

the complex S is a (n− 1)-sphere. In particular, it is a pseudomanifold. Among the maximal simplices

of S, some of them contain exactly k + 1 distinct input values, and the others contain k values or fewer.

We write Sk+1 ⊆ S for the subcomplex of S that contains all the simplices with k + 1 input values,

and S≤k = S \ Sk+1. Both Sk+1 and S≤k are pseudomanifolds, and they have the same boundary

∂Sk+1 = ∂S≤k = Sk+1 ∩ S≤k. In every simplex of Sk+1, the processes must decide on the same value

(since Sk+1 is connected); assume w.l.o.g. that they decide on the output value 0.

45

The complex S≤k will play the role of the complex H that we had in Section 1.4.3. In the case of

n = 3, k = 2, it corresponds to the sphere S with two holes corresponding to the two simplices with

three distinct inputs. Its boundary is represented in red in the picture above. So the situation is a bit

different than what we had in Section 1.4.3: instead of one boundary winding twice around the output,

we now have two holes, each of them winding once around the output complex. Fortunately, the index

lemma can also deal with such cases, as long as the two holes are winding in the same direction around

the output (otherwise they would cancel each other). This is taken into account when we compute the

index: here, one can check that the two holes have the same orientation, so the index will be either 2 or

−2. For general k and n, the boundary of S≤k can have many holes, each of them winding several times

around the output complex. Our goal is once again to prove that the index is non-zero.

Theorem 1.35. The equality negation task for n ≥ 3 processes, with parameters k and ` = k + 1 such

that n− k is odd, is not solvable in the immediate snapshot model.

Proof. After the immediate snapshot communication occurs, we obtain a chromatic subdivision ChSubk(S≤k).

We already know that it is a pseudomanifold, and that on its boundary every process has to decide 0. Our

goal is now to use the index lemma to prove that there exists a simplex inside ChSubk(S≤k) which is

monochromatic w.r.t. the decision values. First, we use the recoloring of Lemma 1.32, so that we are now

searching for a properly colored simplex in ChSubk(S≤k). All we need to show is that the content of

ChSubk(S≤k) is non-zero; thus, we want to compute its index. Since the index is preserved by chromatic

subdivisions (see Corollary 1.18), we just need to compute the index of S≤k. Since the boundary of S≤k
is the same as the boundary of Sk+1, their index is the same (in absolute value), and since the index of

Sk+1 is equal to its content, we want to compute the content of Sk+1. In Sk+1, every simplex is properly

colored (because everyone decides 0), so we just need to count the simplices of Sk+1 by orientation. If

the result is non-zero, this concludes the proof.

So let us pick an arbitrary orientation, say that the simplex 〈0, . . . , 0〉 is oriented positively. Each time

we change the value of one coordinate, the orientation changes: for example, the simplex 〈1, 0, . . . , 0〉
is oriented negatively. Let us first characterize the maximal simplices of Sk+1: they are of the form

〈a0, a1, 2, 3, . . . , k, ak+1, . . . , an−1〉, where for each i /∈ {2, . . . , k}, ai ∈ {0, 1}, and at least one of the

ai must be 0, and at least one must be 1. There are exactly 2n−k+1 − 2 such simplices: all combinations

of 0’s and 1’s are possible, except for z = 〈0, 0, 2, 3, . . . , k, 0, . . . , 0〉 and u = 〈1, 1, 2, 3, . . . , k, 1, . . . , 1〉.
To go from z to u, we need to change n− k + 1 coordinates. Thus, since n− k + 1 is even, then z and u

have the same orientation; otherwise, they would have opposite orientations.

A simple calculation shows that summing the orientations of all the simplices of Sk+1, plus z and u,

gives 0 as a result. Indeed, if we omit the middle components “2, 3, . . . , k”, these 2n−k+1 simplices

correspond to all the binary sequences of size n− k+ 1. We can, for example, enumerate those sequences

using Gray code, so that the orientations are alternating, hence there is the same number of positively and

negatively oriented simplices. Since z and u are not in Sk+1, and they have the same orientation, then the

content of Sk+1 must be either 2 or −2. In any case, it is non-zero: so the task is not solvable whenever

n− k is odd.

In particular, the case of k = n− 1 is not solvable for any n, as n− k = 1 is odd. Note that in this

proof, we do not really use the full power of the index lemma: we use it to show that the content of S≤k is

equal (in absolute value) to the content of Sk+1. This also follows from the simple fact that the content of

46

a sphere is always 0, which is a direct consequence of the index lemma; so the contents of S≤k and Sk+1

must be opposite.

1.4.4 Discussion on the number of input values

Since the beginning of this section, we have been working with a set of input values I = {0, . . . , n−1} of

size n, for a number n ≥ 3 of processes. This might seem a bit surprising, considering that in the original

equality negation task for two processes [88], the size of the input set matters a lot. For I = {0, 1}, the

task is solvable, but for I = {0, 1, 2}, it becomes unsolvable. It is quite informative to think about why

our unsolvability proofs of Theorems 1.33 and 1.35 fail in the case of two processes and I = {0, 1}.
Both of them fail for a similar reason. In those proofs, we identify a subcomplex of the input complex

(ChSubk(X) in Section 1.4.2 and S≤k in Section 1.4.3), and we surround its boundary by simplexes

where every process must decide on the same output. However, in order to assume that every vertex on the

boudary decides on the same output 0, we need to know that the part of the input complex which decides

on the same output is connected. For two processes, this is not the case if I = {0, 1}, however taking

I = {0, 1, 2} ensures connectedness. Both input complexes are depicted below; the subcomplex where

decisions should be the same is represented in blue.

0

0 1

1 0

0 1

1 2

2

No such problem occurs when there are more than 3 processes, as the relevant subcomplexes remain

connected regardless of the number of input values. Nevertheless, we can still wonder what happens when

we allow an input set I of size |I| > n. Actually, all the results of this section can be extended to such a

setting in a straightforward way:

– Theorem 1.31 can easily be shown to work when more than n input values are allowed: intuitively,

the algorithm relies only on the size of the sets of values that are seen by the processes. It never

looks at the actual values.
– In all our unsolvability proofs (Theorems 1.33 and 1.35, and Proposition 1.34), we proceed by

picking a subcomplex of the input complex, and then we work in this subcomplex to find a

contradiction. If we add more input values, this just makes the input complex bigger, but all those

proofs still work as they stand.

Conclusion. For some values of the parameters (when k > n/2, ` = k + 1 and n − k is even), the

solvability of the equality negation tasks remains open. We conjecture that they should be unsolvable. The

same proof method as in Section 1.4.3 using the Index lemma might work for the remaining cases, but we

would need to find another subcomplex of the input complex on which to apply it. There are a number of

other variations of this task that we could have studied. For example, instead of having binary outputs

in {0, 1}, we could have a larger set of output values. Then, we could introduce two more parameters to

define what it means to “agree” or to “disagree” in that context. Such parameters appear in the generalized

symmetry breaking task [20].

47

CHAPTER 2

Trace semantics

The typical framework in which one studies distributed computing is that of asynchronous processes

communicating through shared objects. A wide variety of computational models have been introduced,

depending on the communication primitives the processes are allowed to use, and the assumptions made on

the kind of failures that might happen during the computation. The area of fault-tolerant computability [64]

studies what kind of decision tasks can be solved in such models. To solve a task, each process starts with

a private input value, and after communicating with the other processes, it has to decide on an output. For

instance, a well-known task is consensus, where the processes must agree on one of their inputs.

A very well-studied setting is the one of wait-free protocols communicating through shared read/write

registers. In order to prove impossibility results in this context, people started developing powerful

mathematical tools based on algebraic topology [14, 112]. The fundamental paper by Herlihy and

Shavit [70] provides a topological characterization of the tasks that can be solved by a wait-free protocol

using read/write registers. First, they showed that the specification of a task gives rise to a carrier map

between two chromatic simplicial complexes called the input complex and the output complex. The

Asynchronous Computability Theorem, which says that a read/write protocol solves a decision task if

and only if there exists a map from a subdivision of the input complex to the output complex that is

carried by the task specification. The subdivided simplicial complex that appears in this theorem was

the first occurrence of a protocol complex, a very compact way of expressing combinatorially the partial

knowledge that each process acquires during the computation.

Soon thereafter, it became clear that this method actually extends beyond the setting of read/write

registers: many other computational models can also be described as protocol complexes. This idea

gave birth to the combinatorial topology approach to distributed computing, as described in Section 1.3

and in [64]. Generalizing the ideas behind the asynchronous computability theorem, one can define an

abstract notion of protocol using carrier maps between an input complex and a protocol complex. Then,

we can take Herlihy and Shavit’s characterization as the definition of what it means for a protocol to

solve a task. This abstract approach is very appealing because it offers a great deal of generality: for

example, the set-agreement task cannot be solved in any computational model whose protocol complex

is a pseudomanifold [64, Chapter 9]. We are thus able to prove impossibility results for a wide class of

computational models, instead of studying them one at a time. In principle, most computational models

and synchronization primitives can be formulated using the protocol complex formalism: it has been

used in the literature to model processes communicating using test-and-set objects [66], (N, k)-consensus

objects [65], weak symmetry breaking and renaming [44], or various synchronous or asynchronous

49

message-passing primitives [68, 69].

Figure 2.1: Protocol complexes for test-and-set [65] (left) and synchronous message-passing [69] (right).

The drawback of this high level of abstraction is that we have to trust that our protocol complex

faithfully represents the behavior of the objects that we want to model. Concretely, when we use this

approach to prove that some task is unsolvable in some computational model, what we really prove is just

that there is no simplicial map between some simplicial complexes having some particular properties. In

the case of wait-free read/write register computation, Herlihy and Shavit’s asynchronous computability

theorem provide an additional guarantee: namely, that the existence of such a simplicial map corresponds

to a more basic notion of solvability. But for other objects such as test-and-set, there is no such guarantee.

When we want to define, for example, the protocol complex which is supposed to model test-and-set

computation, we must define it carefully so that the simplicial notion of “solving” a task will agree with

the concrete operational semantics of test-and-set objects. Ideally, one would have to prove another

version of the asynchronous computability theorem for test-and-set protocols, relating a concrete notion

of solvability with the abstract simplicial definition. This is usually not done in practice, since it is often

intuitively clear that the proposed notion of protocol complex makes sense operationally.

In this chapter, our main goal will be to fix this gap by generalizing the Asynchronous Computability

Theorem to a large class of concurrent objects. To achieve this goal, there are three main technical steps.

(1) Define a notion of concurrent object which is as general as possible. In particular, it should be

general enough to include all the examples from the literature that we mentioned above.

(2) Define an operational semantics for concurrent processes communicating through arbitrary shared

objects. The goal is to obtain a concrete definition of solving a task.

(3) Derive the protocol complex from the operational semantics, and prove a generalized asynchronous

computability theorem, saying that the simplicial notion of solvability agrees with the concrete one.

By proving this theorem, we increase our trust in the topological approach to task solvability. But this

is not the only benefit of this work. Indeed, along the way, we will give a precise definition of how

the protocol complex should be defined, for arbitrary objects. In the literature, there are many informal

descriptions of how the protocol complex can be constructed in practical examples, by putting together

the “local views” of the processes in every possible computation. Depending on the context, the notion of

“view” can be defined as a partial history of the computation, or some local state of the process. Since

50

the definition of protocol complex that we give in this chapter is proved to be correct (with respect to our

operational semantics), it can be instantiated in practical examples as a point of comparison, to make sure

that some other ad-hoc definition is also correct.

Finally, another point of interest of this chapter will be to understand the protocol complex approach

in terms of compositionality. By definition, the protocol complex is a huge, monolithic combinatorial

structure, which contains information about all the possible executions of the whole protocol. However, in

computer science, a very important notion to study programs is modularity: a complex system is built and

analyzed by assembling basic blocks to construct a more complex one, and so on. So, what happens to

the protocol complex when we compose programs? Can we combine two protocol complexes to create a

larger one? Conversely, can we decompose a large protocol complex into smaller components, in order to

understand it better? We do not give definitive answers to these questions in this chapter, but we will keep

them in mind when defining our operational semantics.

Related work. Of course, the original paper of Herlihy and Shavit [70] is our main point of comparison,

since it contains the Asynchronous Computability Theorem that we intend to generalize. Another

notable generalization of this theorem was proved by Saraph, Herlihy and Gafni [113], where they give a

topological characterization of task solvability using t-resilient read/write protocols, instead of wait-free.

Our approach is somewhat orthogonal, since we keep the wait-free assumption, but instead work on

generalizing the class of objects that the processes are allowed to use.

The notion of concurrent object specification that we use is closely related to Lamport’s notion of

specification [85, 84]. In order to discuss the relevance of our notion, we compare it to other specification

techniques for concurrent objects, namely, linearizability [71] and interval-linearizability [18]. In fact, the

formalism that we use is largely inspired by those linearizability-based techniques. We came up with the

so-called expansion property that we impose on our concurrent specifications when trying to understand

interval-linearizability, and indeed, thanks to it, the class of concurrent objects that we are able to specify

exactly corresponds to the interval-linearizable objects. The trace-based operational semantics that we

provide is slightly unusual, since the processes are allowed to use non-linearizable objects. However,

other similar models can be found in the literature, e.g. in [41]. It is also related to I/O automata [91] in

the sense that every object call is decomposed into an invocation and a response, which can be interleaved

arbitrarily. Yet, as far as we know, our computational model is the only one that completely abstracts the

notion of internal state of the objects, and relies exclusively on their high-level specification.

Plan. We first start with a simple approach in Section 2.1, where we prove an asynchronous computability

theorem which is limited to processes communicating through linearizable objects. Since this case is

easier and more intuitive than the more general setting that we use afterwards, it will serve as an outline

for the rest of the chapter. The Sections 2.1.1, 2.1.3 and 2.1.4 correspond to the three main steps of the

proof (1), (2), (3) that we described in the introduction.

Then, the main contribution of the chapter is given in the next three sections, once again following

the same outline. In Section 2.2, we define a very general way of specifying concurrent objects. We

argue the relevance of this definition in Section 2.2.3, where we prove Theorem 2.32 which relates nicely

several specification techniques. In Section 2.3, we define a concrete computational model, which uses the

concurrent specifications of the previous section. Finally, in Section 2.4, we define the protocol complex

and prove our generalized asynchronous computability theorem in Theorem 2.73. Along the way, we also

51

study the relationship between tasks and one-shot objects, in Theorem 2.66. The work presented in these

three sections has been published in two papers, [52] for Sections 2.2 and 2.3, and [86] for Section 2.4.

The last Section 2.5 relates work in progress about the compositionality of the protocol complex. Its

main purpose is to reformulate the computational model of Section 2.3 in the language of game semantics.

2.1 A first approach

This section describes our first attempt at defining the protocol complexes associated with general objects;

and a generalized version of the asynchronous computability theorem. The reason why this is just a

“first attempt” is not that it fails: in the end, we do obtain a satisfying definition of protocol complex,

which allows us to formulate an extended version of the asynchronous computability theorem. But the

notion of object specification that we use here is too restrictive. It includes basic low-level primitives like

read/write registers, test-and-set, compare-and-swap, as well as linearizable data structures such as lists or

trees. This contrasts with the recent discovery [18] that many of the objects that are used in fault-tolerant

computability are of a more complex nature. Indeed, they are usually not linearizable, meaning that each

individual call to such an object can perform many consecutive atomic operations, each of which can be

observed individually by the other processes. In contrast, a linearizable object must behave as if each

method call is atomic.

Even if the end result is not completely satisfactory, this first approach is intuitive and easy to follow.

It will serve as an outline of what we want to do in the rest of this chapter, once we have a more powerful

notion of object specification. The approach that we take here is based on a paper by Goubault, Mimram

and Tasson [55], where the immediate-snapshot object (called scan/update in their paper) is studied.

They compare three different kinds of semantics: a simple trace-based semantics; the protocol complex

approach; and the so-called directed space semantics. Here, we focus on the trace semantics, which we

extend to a slightly more general setting. The directed space semantics will be the topic of Chapter 4. All

the definitions and notations that we introduce here are local to this section. They will be redefined in

Sections 2.2, 2.3 and 2.4, in a more general setting.

2.1.1 Objects specifications

We fix a number n of processes and a set V of values that contains some distinguished value⊥, representing

an uninitialized value. If v̄ ∈ Vn is a tuple of values, we write vi ∈ V for the i-th component of v̄, and

v̄[i← x] ∈ Vn for the vector v̄ where the i-th component has been replaced by x. We write [n] for the

set {0, . . . , n− 1}, whose elements are called process numbers. In our setting, the n processes start the

computation together, and each of them is given a private input value. In order to communicate, they

have access to shared objects: for example, they might be able to write and read a shared memory, or to

synchronize using test-and-set objects. Each process has its own program, and they run in an asynchronous

way, meaning that any interleaving of the actions of each process can occur. At the end of the computation,

each process must decide individually on an output value.

Our first step is to define the notion of shared object. It can be thought of as a black box, with several

methods that a process can call in order to obtain a response. To avoid working with too many parameters,

we will assume that the methods do not have arguments. This is done without loss of generality: for

52

instance, with a read/write register, the two method calls write(1) and write(2) will be modeled by

to two distinct methods m and m′.

Definition 2.1 (Object specification). An object is specified by a setM of methods, along with

– a set of memory states Q,

– an initial state qinit ∈ Q,

– a transition function δ : Q×M× [n]→ Q,

– a return function ret : Q×M× [n]→ V .

Intuitively, when process i calls the method m from the memory state q, the object goes to the new

memory state δ(q,m, i), and it returns the value ret(q,m, i) to the calling process.

Example 2.2 (Write-snapshot object). This is usually described as an object with two methods, write

and snapshot. We suppose given a shared memory array of size n. The method write(v) performed

by process iwrites the value v in the i-th memory cell. The method snapshot() performed by process i

reads the whole memory array atomically, and returns it. For the moment, we do not impose any restriction

on how these two methods are used; the processes are not obligated to alternate between writes and

snapshots, there is no “immediate snapshot” condition, and the processes can write any value (the protocol

might not be “full information”).

As explained above, the write method is split into many methods wx for each value x ∈ V:

– The set of methods isM = {s} ∪ {wx | x ∈ V}.
– The set of memory states is Q = Vn.

– The initial state is qinit = (⊥, . . . ,⊥) ∈ Vn.

– Taking a snapshot does not change the memory state: δ(q, s, i) = q.

Snapshots return (an encoding of) the memory state: ret(q, s, i) = pqq.

– Writing puts the value x in the i-th memory location: δ(q, wx, i) = q[i← x].

Writing does not return a value: ret(q, wx, i) = ⊥.

Note that the ret function of the snapshot method should return the memory array q ∈ Vn, but our

definition says that ret returns a single value. We simply assume that there is a suitable encoding p−q
of Vn into V , and we do not worry too much about this detail in the future.

Example 2.3 (One test-and-set flag). A test-and-set flag is a single shared memory cell, containing a binary

value 0 or 1. In the beginning of the computation, it contains the value 0. This object has a single method,

test-and-set(), which atomically performs the two following operations: read the old value of the

cell, and set it to 1. The old value of the flag is returned to the calling process. So, when several processes

use this object concurrently, only one of them (the first to perform the test-and-set() method) will

see the value 0, and all the others will see the value 1. This object is specified as follows:

– There is only one method,M = {t}.
– The set of memory states is Q = {0, 1}.
– The initial state is qinit = 0.

– Always set the flag to 1: δ(q, t, i) = 1.

Return the old value of the flag: ret(q, t, i) = q.

Example 2.4 (Several test-and-set flags + read/write registers). When a test-and-set flag has been used, it

cannot be reset to 0. So, one might want to consider several such flags. Also, since test-and-set flags do not

allow the processes to exchange their input values, we might want to add shared read/write registers. Here

53

is an object combining a test-and-set flags (each with one method test-and-set()), and b read/write

registers (each with two methods read() and write(v)).

– The set of methods isM = {tk | k ∈ [a]} ∪ {r` | ` ∈ [b]} ∪ {w`,x | ` ∈ [b], x ∈ V}.
– The set of memory states is Q = {0, 1}a × Vb

– The initial state is qinit = (0a,⊥b)
– Set the k-th flag to 1: δ((q, q′), tk, i) = (q[k ← 1], q′).

Return the old value of the k-th flag: ret((q, q′), tk, i) = qk.
– Reading a register does not change the state: δ((q, q′), r`, i) = (q, q′).

Reading the `-th register returns its value: ret((q, q′), r`, i) = q′`.
– Write the value x in the `-th register: δ((q, q′), w`,x, i) = (q, q′[`← x]).

Writing a register does not return a value: ret((q, q′), w`,x, i) = ⊥.

From now on, we suppose fixed an object specification 〈M, Q, qinit, δ, ret〉. A pair (m, i) ∈ M× [n]

consisting of a process number and a method is called an action, and is written mi for short (since we

never consider tuples of methods, there should be no confusion with the notation qi denoting the i-th

component of a tuple q). Given a process number i, we writeMi = {mi | m ∈M} for the set of actions

of process i. Thus, the set of actions is A =
⋃
i∈[n]Mi =M× [n]. Finally, we write T = A∗, for the

free monoid on A, called the trace monoid. Elements of T are called execution traces or just traces,

written with capital letters T, T ′. Thus, a trace is just a finite sequence of actions. Since the transition

function δ : Q ×A → Q is defined on all the basic elements of T , we can extend it to a right monoid

action δ : Q× T → Q as follows:

δ(q, ε) := q

δ(q, a · T) := δ(δ(q, a), T)

This just means that an execution trace is executed from left to right, as expected. For instance, taking the

write-snapshot object of Example 2.2, with 4 processes, a possible execution trace is T = w1
1 ·w0

0 ·s3 ·w42
3 .

Executing it from the initial state qinit = (⊥,⊥,⊥,⊥) , we obtain the state δ(qinit, T) = (0, 1,⊥, 42).

Moreover, the value returned by the snapshot is p(0, 1,⊥,⊥)q since it occurs before the last write.

Remark 2.5. Depending on the object that we consider, two execution traces might be equivalent, in

the sense that they have the same effect on the memory states Q of the object. More precisely, T ∼ T ′

when for every q ∈ Q, δ(q, T) = δ(q, T ′). In general, we are only interested in studying traces up to

equivalence. In [55], this equivalence relation (for the write-snapshot object) is thoroughly studied. It is

shown to have a topological interpretation in the directed space setting, as it corresponds to dihomotopy

equivalence of directed paths. Here, for simplicity, we will not worry about this equivalence and simply

study traces individually.

2.1.2 Tasks

Once we have fixed one or several objects that our processes are allowed to use in order to compute, the

goal of distributed computability is to determine which tasks can be solved using these objects. A task

for n processes is simply a relation between n-tuples of input values, and n-tuples of output values. Let

I ⊆ V be a set of input values, and O ⊆ V be a set of output values, such that ⊥ ∈ I ∩ O.

Definition 2.6. A task Θ is a relation Θ ⊆ In ×On such that for all (v̄, v̄′) ∈ Θ and i ∈ [n],

54

– vi = ⊥ if and only if v′i = ⊥.
– there is v̄′′ ∈ On such that (v̄, v̄′′) ∈ Θ and (v̄[i← ⊥], v̄′′[i← ⊥]) ∈ Θ.

The domain of Θ, written dom Θ ⊆ In, is the set of all input assignments v̄ ∈ In such that there

exists v̄′ ∈ On such that (v̄, v̄′) ∈ Θ. When trying to solve such a task Θ, the n processes will start

the computation with some combination input values v̄ ∈ In. At the end of the computation, each

process will individually decide on an output value, thus yielding a tuple of output values v̄′ ∈ On. The

goal of the processes is to collectively decide their outputs so that (v̄, v̄′) ∈ Θ. Since we also want to

model computations where some processes might crash, the symbol ⊥ indicates that a process does not

participate in a computation.

The first condition asserts that the processes that do not participate in the computation do not have

a specified behavior; and the processes that do participate are always required to output some value.

The second condition asserts that for every possible combination v̄ of input values, there is some valid

execution that still remains valid if process i does not participate. This reflects the idea that a very slow

process cannot be distinguished from a dead process: if process i takes too long to start, all the other

processes will eventually behave as if process i did not participate in the computation.

Remark 2.7. Definition 2.6 is a direct reformulation of the usual simplicial simplicial definition of tasks

(as in Definition 1.19). This presentation with tuples is perhaps less elegant than the one with simplicial

complexes and carrier maps, but the point here is to give a concrete definition of what it means to solve a

task, without relying on topological notions. We will discuss tasks much more in depth in Section 2.2.1

and in Section 2.4.1; the above definition is just a placeholder in order to make this “first approach” section

self-contained.

2.1.3 Protocols

Suppose fixed an object 〈M, Q, qinit, δ, ret〉 as in Definition 2.1 (note that, as in Example 2.4, it can

actually comprise several objects), and a task Θ ⊆ In×On. We now want to define how several processes

can use this object to communicate in order to solve a task. A protocol consists of several processes, each

process having its own program and local memory. The processes communicate by calling the methods

m ∈M of the shared object(s). In the next definition,MtO denotes the disjoint union ofM and O.

Definition 2.8. A program (for process i) is given by

– A set of local states Li and an injection ιi : I → Li.
– A decision function di : Li →MtO such that di(ιi(⊥)) = ⊥.
– A transition function τi : Li × V → Li.

Intuitively, at the beginning of the computation, the the process is given an input value v ∈ I and goes to

local state ιi(v) ∈ Li. The decision function says what is the next step taken by the process: either call a

method, or decide on an output value. If a method is called, it returns a value in V . The transition function

says what the new local state will be, depending on the value returned by the method.

Remark 2.9. We could also have defined a programming language, with a syntax and semantics. Here, for

simplicity, we use instead this automata-like definition, which roughly corresponds to the control-flow

graph of the program. It allows us to forget about all the insignificant details such as local computations,

and go directly from one method call to the next one.

55

Definition 2.10. A protocol 〈Li, di, τi〉i∈[n] consists of a program for each process.

Example 2.11 (Test-and-set protocol for consensus). We use the object of Example 2.4, with one test-and-

set flag t and two read-write registers r1 and r2. The pseudo-code below describes a protocol for two

processes, solving consensus using these three objects.

P0: consensus(v) {

1 r0.write(v);

2 x := t.test-and-set();

3 if (x == 0)

4 return v;

5 else

6 v’ := r1.read();

7 return v’;

8 }

P1: consensus(v) {

1 r1.write(v);

2 x := t.test-and-set();

3 if (x == 0)

4 return v;

5 else

6 v’ := r0.read();

7 return v’;

8 }

We can easily translate the pseudo-code of P0 to an automaton as in Definition 2.8. Recall that the set of

methodsM is the one of Example 2.4. The local states L0 will store the values of the local variables v,

v’ and x used by the program, as well as the current position of the program counter. To be fully formal,

we can take L0 = I × I × {⊥, 0, 1} × {1, 2, 4, 6, 7}, where the last component indicates the current line

in the program, with the injection ι0(v) = (v,⊥,⊥, 1).

At first, process P0 is in some state (v,⊥,⊥, 1) ∈ L0 corresponding to its input value v ∈ I. Its first

action is to write v in the register r0, so the decision function is d0((v,⊥,⊥, 1)) = w0,v ∈M. This write

operation has only one possible return value ⊥, so after the write is performed, the automaton will go to

the state τ0(qinit,⊥) = (v,⊥,⊥, 2) ∈ L0, indicating that we are at the second line of the program, with

input value v, and the other two local variables are still undefined.

From this new state (let us call it q), the next action is to call the test-and-set flag, so d0(q) = t ∈M.

This call will return a value, either 0 or 1, which is stored in the local variable x; and depending on this

value the next action is either at line 4 or line 6 of the program. So, the transition function τ0 can go

into two new states: either τ0(q, 0) = (v,⊥, 0, 4) ∈ L0 (let us call it q′) if the test-and-set returns 0, or

τ0(q, 1) = (v,⊥, 1, 6) ∈ L0 (let us call it q′′) if the test-and-set returns 1.

In state q′, we are at line 4 of the program, and the process has decided to output the value v. So, we

have d0(q′) = v ∈ O, and the value of the transition function for this state does not matter. In state q′′

(line 6), the next action is to read the register r1, so d0(q′′) = r1 ∈ M. This read operation returns

a value v′, which we want to remember, so the transition function τ0(q′′, v′) = (v, v′, 1, 7) will go to

many different states, one for each value of v′. From these new states, the decision function will be

d0(qv′) = v′ ∈ O, since the next action is to return the value v′.

The global state of a protocol is an element (`, q) ∈ (
∏
i Li) × Q. We write `i ∈ Li for the local

state of process i. The q component is the memory state of the object (from Definition 2.1). Recall

from Section 2.1.1 that the transition function δ of the object can be extended to a right monoid action

δ : Q× T → Q. We can further extend it to act on global states instead of just memory states, and hence

56

we get ∆ : ((
∏
i Li)×Q)× T → (

∏
i Li)×Q, defined as follows:

∆((`, q), ε) = (`, q)

∆((`, q),mi) = (`[i← τi(`i, ret(q,m, i))], δ(q,m, i))

∆((`, q),mi · T) = ∆(∆((`, q),mi), T)

Note that in the above definition, we have not used the decision function di of the programs. The action

of ∆ is defined on every trace, even those where the sequence of actions has no connection with the “code”

of the program. Thus, we need to define the valid traces, i.e., traces where each action is taken according

to the program of the corresponding process.

Definition 2.12. For a given protocol, the set valid(`, q) of valid traces starting from (`, q) is defined by

induction on the length of the trace:

– ε ∈ valid(`, q)

– T ·mi ∈ valid(`, q) if T ∈ valid(`, q) and di(`
′
i) = m, where (`′, q′) = ∆((`, q), T)

An easy induction gives the following equivalent characterization of valid traces:

Proposition 2.13. A trace T is in valid(`, q) iff for every decomposition T = T ′ ·mi · T ′′, we have

di(`
′
i) = m, where (`′, q′) = ∆((`, q), T ′) is the global state after executing T ′.

Starting from a global state (`, q), we say that a valid trace is terminating if all the processes are

decided after executing that trace. Formally, T is terminating if ∆((`, q), T) = (`′, q′) where di(`′i) ∈ O
for all i ∈ [n]. Notice here that we do not have to worry about processes that do not participate in the

execution, since they will start with the input value ⊥ and immediately “decide” the output ⊥ ∈ O.

The following proposition states that computation cannot get stuck:

Proposition 2.14. A valid trace is either terminating, or it can be extended to a longer valid trace.

Proof. Assume T is not terminating, then in the global state (`′, q′) = ∆((`, q), T) there is some process i

such that di(`′i) ∈M. Taking m = di(`
′
i), we can easily check that the trace T ·mi is valid.

We are almost ready to define what it means for a protocol to solve a task. Given a task Θ ⊆ In×On,

and an assignment of input values v̄ = (v0, . . . , vn−1) ∈ dom Θ, we write ι(v̄) ∈
∏
i Li for the tuple of

local states obtained by applying the injection ιi in each component: ι(v̄) := (ι0(v0), . . . , ιn−1(vn−1)).

A global state is initial if it is of the form (`, qinit), where ` = ι(v̄) for some v̄ ∈ dom Θ.

We also need to define wait-free protocols. Just for the purpose of that definition, we extend the

notion of valid traces to infinite traces: an infinite trace T ∈ Mω is valid starting from (`, q) if all its

finite prefixes are valid. Then, a protocol is wait-free if there is no valid infinite trace starting from an

initial global state (`, qinit). In a wait-free protocol, every valid computation path eventually leads to a

terminating trace.

Definition 2.15. A wait-free protocol solves a task Θ if for every input v̄ ∈ dom Θ (we write ` = ι(v̄)),

and for every trace T ∈ T that is valid and terminating starting from (`, qinit), we have (v̄, d(`′)) ∈ Θ,

where `′ is the local memory states after executing T , and d(`′) is the componentwise application of the

decision functions di, i.e., (`′, q′) = ∆((`, qinit), T) and d(`′) = (d0(`′0), . . . , dn−1(`′n−1)).

57

2.1.4 Protocol Complex

Now that we have defined a concrete notion of solving a task, our goal is to show that it agrees with the

more abstract topological definition based on the existence of a simplicial map (Definition 1.29). To

do that, the main technical difficulty is to carefully define the protocol complex that represents a given

protocol.

Usually, the protocol complex is defined in terms of the notion of view. Informally, the view of a

process at the end of an execution is the full history of all the events that occurred; it contains all the

information that the process was able to observe during the computation. In [55], several definitions of

view are thoroughly studied, in the context of the write-snapshot object. They show that the view can

equivalently be characterized using execution traces; using interval orders; and using directed spaces.

For other objects (e.g., test-and-set objects in [66], set-agreement objects in [65]), ad-hoc definition are

usually given. For instance, for a protocol using only test-and-set flags, taking the sequence of all the

observed values (0 or 1) of the flags that were tested during the execution seems to be a working notion of

view.

Here, we will use the following very simple definition of view: the view of process i in some global

state (`, q) is its local state, `i. To build the protocol complex, we will be interested in particular in the

views at the end of an execution, that is, the local states `′i, where (`, qinit) is an initial global state, T is a

terminating valid trace starting from (`, q), and (`′, q′) = ∆((`, qinit), T).

Definition 2.16. The protocol complex associated to a protocol 〈Li, di, τi〉i∈[n] is the following chromatic

simplicial complex:

– Its i-colored vertices are all the possible views of process i after executing a valid and terminating

trace T starting from any initial global state (`, qinit).

– For every such valid and terminating trace T , there is a simplex whose vertices are the views of all

the participating processes after executing T .

Remark 2.17. There is another candidate for the definition of view, following the intuition of “history

of the computation”. Given a trace T , each action mi that occurs in T can be given a response value, as

follows. We can decompose T = T ′ ·mi ·T ′′, and write q = δ(qinit, T
′) for the internal state of the object

after executing T ′. The response associated to this occurrence of mi in T is ret(q,mi) ∈ V . Then the

history of process i after executing the trace T is the (ordered) sequence of responses to all the actions mi

that occur in T . From this history, we can reconstruct the whole computation from the point of view of i.

In general, history and view are not equivalent. Indeed, imagine a program where a process calls

a shared object, but discards the value that is returned (formally, the transition function τi goes to the

same local state for all values). Then, two different execution traces might produce different histories, but

still have the same view (local state). However, these two notions become equivalent when we consider

full-information protocols, that is, protocols where the graph of the transition function is a tree. Intuitively,

that means that the processes are not allowed to forget information that they observed. In a full-information

protocol, two traces with different histories will also have different views. Conversely, traces with the

same histories will also have the same view (this works for any protocol).

To study task (un)solvability, we can safely restrict to full-information protocols [64]: indeed, if a task

is solvable, then it is also solvable by a full-information protocol. In this context, the history would be a

58

suitable notion of view. But in fact, there is no need for such a restriction. In the following, we work with

general protocols, so the right notion of view is the one based on local states.

Example 2.18. We can draw the protocol complex for the protocol of Example 2.11. To avoid having too

many vertices, we assume that there are only two possible input values, v = 0 or v = 1 (that is, we are

solving binary consensus). The final views for process i are either of the form (v,⊥, 0, 4) ∈ Li (if the

process wins the test-and-set race and ends at line 4), or of the form (v, v′, 1, 6) ∈ Li (if the process loses

the race and ends at line 6). In both cases, v is the input value of the process, and v′ is the value read from

the other process. In the picture below, the vertices of process P0 are represented in black, and those of

process P1 are in white; the initial value / final view is written inside the nodes.

0

0 1

1

Input complex 0,⊥, 0, 4

0,⊥, 0, 4 1,⊥, 0, 4

1,⊥, 0, 4

0, 0, 1, 6

0, 1, 1, 6

1, 0, 1, 6

1, 1, 1, 60, 0, 1, 6

0, 1, 1, 6

1, 0, 1, 6

1, 1, 1, 6

Protocol complex

Before we can formulate our final result, we need to say a few words about the input and output

complexes. As we said in Section 2.1.2, our notion of task is a direct reformulation of the usual simplicial

definition; but for clarity, let us spell out the correspondence between the two. The vertices of the input

complex are of the form (v, i), where v ∈ I is an input value with v 6= ⊥, and i ∈ [n] is a process number.

Such a vertex is colored by i. For each input vector v̄ ∈ dom Θ, we will have one input simplex, which is

the set vertices (vi, i) with vi 6= ⊥. This is indeed a simplicial complex thanks to the second condition

of Definition 2.6. For the output complex, we do the same construction using the output values v ∈ O
as vertices, and for simplices the codomain of Θ, codom Θ = {v̄′ ∈ On | ∃v̄, (v̄, v̄′) ∈ Θ}. The task

Θ ⊆ In × On itself describes a rigid and chromatic carrier map: to an input vector v̄ ∈ dom Θ, we

associate a set of output vectors Θ(v̄), with the same set of participating processes by Definition 2.6. So,

to the input simplex corresponding to v̄, the task Θ associates a subcomplex of the output complex, which

is pure and has the same dimension and colors.

Finally, remark that the vertices of our protocol complex are local states `i ∈ Li such that the decision

function di gives an output value di(`i) ∈ O. Hence, the functions (di)i∈[n] send the vertices of the

protocol complex to the vertices of the output complex. Our final Theorem says that a protocol solves a

task (in the sense of Definition 2.15) if and only if this map is a simplicial map, and it is carried by the

task specification (cf. Definition 1.29).

Theorem 2.19. The protocol 〈Li, di, τi〉i∈[n] solves the task Θ iff the decision functions (di)i∈[n] induce

a chromatic simplicial map from the protocol complex to the output complex, which is carried by Θ.

Proof (Sketch). Once we unfold the definitions, the statement of the theorem becomes almost tautological.

Assume the protocol solves the task and let X be a simplex in the protocol complex. We want to prove

that d(X) is a simplex of the output complex. By definition, there is an input vector v̄ ∈ dom Θ, inducing

an initial global state (`, qinit) with ` = ι(v̄), and a valid and terminating trace T starting from (`, qinit),

59

such that ∆((`, qinit), T) = (`′, q′) and X is the set of local states in `′ of the participating processes. The

fact that the protocol solves the task says that (v̄, d(`′)) ∈ Θ. So d(`′) belongs to the codomain of Θ, and

thus d(X) is a simplex of the output complex. This also implies that the simplicial map is carried by Θ.

Conversely, assume that the decision functions induce a simplicial map which is carried by Θ. So,

for every v̄ ∈ dom Θ, and every valid and terminating trace T starting from (ι(v̄), qinit), we reach a final

global state (`′, q′) such that the simplex corresponding to `′ is sent to an output simplex in the codomain

of Θ. For the processes that do not participate in the execution, the decision function will decide ⊥ (by

Definition 2.8), so we have (v̄, d(`′)) ∈ Θ. This proves that the protocol solves the task.

2.1.5 Limits of this approach

Theorem 2.19 extends the Asynchronous Computability Theorem of Herlihy and Shavit [70], which

works only for read/write registers, by generalizing it to various other kinds of objects such as test-and-set

(note that, in fact, it only generalizes one part of the asynchronous computability theorem – see the

first paragraph of Section 2.4.4). However, as we already mentioned at the beginning of the section,

Theorem 2.19 is still not as general as we would like. The reason is that our notion of object (Definition 2.1)

is not expressive enough: it can only specify objects where each method of the object happens atomically.

Many objects behave like that in practice; namely, all the linearizable implementations of concurrent data

structures.

Nevertheless, many other objects that are relevant in distributed computability are not linearizable.

For instance, Neiger has shown that set-agreement objects cannot be specified using such methods [99];

and yet, there is a paper that investigates task solvability with set-agreement objects, using the protocol

complex approach [65]. Other examples of non-linearizable objects that are found in the field of distributed

computability are investigated in [18]. In order to justify the simplicial complex approach in those cases,

we need an even more general version of the Asynchronous Computability Theorem, which also applies

to non-linearizable objects.

Remark 2.20. As mentioned earlier, this Section 2.1 is inspired from a paper by Goubault et al. [55]. In

their paper, they study the immediate-snapshot object, which is not linearizable. This seems to contradict

the above discussion, since they are able to specify it using a definition similar to Definition 2.1.

In fact, what they do is first specify the write-snapshot object as in Example 2.2. Then, they

impose some restrictions on the shape of the execution traces that they consider: each process must

alternate between writes and snapshots, and moreover there must be some “immediacy” condition. While

this correctly models the immediate-snapshot computations, this is not a good way of specifying non-

linearizable objects in general. Firstly, restricting the shape of execution traces breaks the assumption

that the processes are asynchronous, i.e., that every interleaving of operations can occur. For immediate

snapshot, it is known that this behavior can actually be implemented in an asynchronous way, but this

would not be a safe assumption when considering general objects. Secondly, an immediate-snapshot

operation essentially consists of two atomic operations: a write, followed by a snapshot. But if we want to

study more complex objects, which might be performing thousands of atomic operations bundled together

in one method call, we cannot keep splitting things up to the level of atomic operations: this would be like

trying to analyze assembly code! Instead, we need a high-level notion of specification, which is able to

express directly what an object is doing.

60

2.2 Specifying concurrent objects

What we did in Section 2.1 comes close to fulfilling the first goal of this chapter: we gave a concrete

definition of what it means for a protocol to solve a task, and showed that we can recover from it the

topological characterization of task solvability. This is already an extension of Herlihy and Shavit’s

Asynchronous computability Theorem [70], since it applies to objects such as test-and-set.

However, this is not completely satisfactory for a number of reasons.

(1) As we mentioned in Section 2.1.5, we are limited to objects whose operations seem to occur

atomically. This includes many hardware primitives such as read/write registers, test-and-set,

compare-and-swap, as well as linearizable implementations of common data structures such as lists

or trees. We can even model non-atomic objects such as the immediate snapshot, by decomposing

them into several atomic operations, and restricting to execution traces where these atomic operations

appear in the right order. But this is not a good way of specifying the behavior of such objects:

while the immediate snapshot object can be naturally decomposed in two atomic operations, it does

not seem tractable to use the same procedure for more complex objects consisting of many atomic

operations. Even worse, some objects such as the validity object or set-agreement objects do not

seem to have a natural description in terms of atomic operations. What we would like is a more

abstract, high-level specification, which is able to express what a complex object is doing without

decomposing it into thousands of atomic operations.

(2) Our notion of object (Definition 2.1) relies on an internal state of the object. While this is commonly

seen in practice (for example, when specifying a list, the push and pop operations are usually

described in terms of their effect on the internal state of the list), we would like to avoid this kind of

confusion between implementation and specification. Indeed, in a distributed system, it is possible

to implement a data structure without storing explicitly its internal state. This usually happens

when we emulate a shared-memory architecture in a message-passing system [5, 76, 26]: the shared

memory itself does not physically exist, but is disseminated among several processes. Thus, a more

abstract way of specifying objects should not refer to a particular implementation of the object, but

rather view it as a black box, hiding the internal state, and only specify how it interacts with its

environment.

(3) Following the usual outline of the topological approach to distributed computing, we defined the

two different notions of tasks and objects. This distinction between tasks and objects is what

prevents us from formulating compositionality arguments such as: “if I can solve consensus using

test-and-set, and I can solve set-agreement using consensus objects, then I can solve set-agreement

using test-and-set”. Given our current definitions, the consensus task and consensus objects are

described using different formalisms, and the relationship between the two is unclear. However, the

above reasoning seems intuitively sound: if I can implement a black box that solves consensus, and

I can solve set-agreement using a black box that solves consensus, then I can solve set-agreement.

A good notion of concurrent specification should be able to play both the role of the task (“what we

want to implement”) and the objects (“what we are allowed to use to compute”).

In short, the goal is now to repeat what we did in Section 2.1, but starting from a notion of concurrent

specification which: (1) can specify objects with an intrinsically concurrent behavior; (2) does not refer to

an internal state of the object; and (3) can specify both tasks and objects.

61

To illustrate what we mean by an object with an “intrinsically concurrent” behavior, let us first

introduce a toy (and running) example that we call the COUNT object. Other examples include the

immediate-snapshot object (Example 1.26), Java’s exchanger object, as well as object versions of most

tasks described in Section 1.3.1: k-set-agreement objects, the validity object, and the adopt-commit object.

In short, any object that is non-linearizable. See [18] for more examples of non-linearizable objects that

are useful in distributed computing.

Counting processes. When a process calls the COUNT object, it should return the number of processes

that are currently calling the object in parallel. This is similar, although not completely identical, to

Java’s Thread.activeCount method, which returns “an estimate of” the current number of running

threads. A typical execution of the COUNT object is depicted below. Each of the three processes P0, P1

and P2 is calling the COUNT object twice. The horizontal axis represents the real-time scheduling of

the operations and the intervals between square brackets depict the time span during which a process is

executing the count() method: when two intervals vertically overlap, the processes are running the

method concurrently. For instance, the last three calls are concurrent: the three processes should see each

other and all return 3.

count() 2

count() 2

count() 1

count() 3

count() 3

count() 3

P0

P1

P2

The specification of COUNT seems to be clear on this example. But what about the behaviors depicted

below? In execution (a), process P1 responds 3 since it has seen the two other processes; but there is

no point in time when the three processes are running concurrently. Execution (b) represents the same

situation, but this time P1 has seen two different calls of P0. In execution (c), the two calls are concurrent,

but for a very short time, so they did not manage to see each other. In execution (d), process P1 managed

to see process P0, but not reciprocally. All of these executions may or may not seem correct depending on

what exact specification we have in mind. One could for example ask for a variant of the COUNT object

that accepts executions (a) and (c), but rejects (b) and (d), and so on.

count() 2

count() 3

count() 2

P0

P1

P2

(a)

count() 2

count() 3

count() 2
P0

P1

P2

(b)

count() 1

count() 1

P0

P1

P2

(c)

count() 1

count() 2

P0

P1

P2

(d)

Thus, our description of the COUNT object has to be made more formal. We need a way to formally

specify the behavior of a concurrent object without any ambiguity. This is what we are aiming to do in

this section. More precisely, our definition of a concurrent specification will be given in Section 2.2.2,

and will be crucial for the rest of the chapter. Then in Section 2.2.3, we compare our notion with other

popular specification techniques, namely, linearizability and its variants.

62

Once we have a satisfying notion of concurrent specification, the next step will be to build a computa-

tional model out of it: what does it mean for a program to implement such a specification? And given a

concurrent object that satisfies such a specification, what does it mean to use this object in a computation?

Answering these questions will be the aim of Section 2.3.

2.2.1 Objects vs Tasks

In the classic setting of distributed computability, a fixed number of processes are communicating through

shared objects in order to solve a task. As we mentioned in the introduction of this section, this point

of view becomes problematic when we want to compose protocols. Moreover, there seems to be some

overlap between the two notions: we sometimes want to think about the same entity either as a task or as

an object, depending on the context. An instance of this, that we mentioned in Section 1.4, is the proof of

Lo and Hadzilacos [88] that equality negation for two processes is not solvable using read/write registers.

They argue that, assuming that the equality negation task is solvable using registers, then consensus could

be solved using an equality negation object, and therefore consensus would be solvable using registers.

However, the difference between tasks and objects is not just a question of point of view. There are

two main conceptual differences:

– Tasks are one-shot, whereas objects are long-lived. For tasks, all processes start together with their

input values, compute, and once a process has decided an output value it does not take part in the

computation anymore. This is contrasted with concurrent objects, where new processes can start

and terminate at any point during the computation, and a single process is allowed to make several

consecutive calls to the object.

– Tasks are “intrinsically concurrent”, whereas objects have a “sequential flavor”. Usually, a task

is specified as a global relationship between the inputs and outputs of all the processes. On the

other hand, an object should behave according to some sequential specification that it is supposed

to emulate in a concurrent setting.

So, in the usual setting, tasks and objects are not comparable: there are objects that cannot be viewed as

tasks, and vice versa.

Unifying objects and tasks. The usual way to specify an object (such as, for example, a concurrent list),

is to rely on its standard sequential specification, and to extend it to a concurrent setting using a correctness

criterion. There are many such criteria, such as sequential consistency [83], causal consistency [109] and

linearizability [71]. These techniques are particularly suitable to specify objects such as lists or queues,

which are concurrent versions of sequential data structures.

A first step towards unifying objects and tasks was the introduction of set-linearizability [99]: noticing

that linearizability is unable to specify k-set-agreement objects, they defined a more expressive version

of linearizability that allows intrinsically concurrent behaviors. However, this is still not sufficient to

specify all tasks: in a recent paper [18], Castañeda et al. remarked that many interesting objects, such

as validity, write-snapshot or adopt-commit are not set-linearizable. So, they introduced the notion of

interval-linearizability, and proved that any task can be seen as the one-shot restriction of an interval-

linearizable object. Therefore, the notion of interval-linearizability unifies tasks and objects: now, tasks

can be seen as a subset of interval-linearizable objects. It is a strict subset, since tasks are one-shot,

whereas objects can be used any number of times. More surprisingly, they also show that tasks are a

63

strict subset of one-shot objects: the task formalism is not expressive enough to specify some one-shot

behaviors of objects. They give an extended notion of tasks, called refined tasks, which corresponds

exactly to the one-shot interval-linearizable objects.

In this thesis, we adopt a similar approach: our notion of object will be very general, in order to

include all tasks. We do not use directly interval-linearizability to specify our objects, but as it turns out,

our concurrent specifications will coincide with the interval-linearizable ones.

2.2.2 Concurrent specifications

In this section, we define the notion of concurrent object specification that we will use for the rest of

the chapter. It is based on an idea introduced by Lamport in 1986 [85], which is expressive enough to

specify non-linearizable objects. This fact was already remarked in Herlihy and Wing’s original paper on

linearizability [71], where they say the following about Lamport’s notion of specification:

His approach is more general than ours, as it addresses [. . .] nonlinearizable as well as

linearizable behavior. Our approach, however, focuses exclusively on a subset of concurrent

computations that we believe to be the most interesting and useful. In place of a specification

language powerful enough to specify all conceivable concurrent behaviors, we re-interpret as-

sertions about “well-behaved” concurrent computations as assertions about their equivalent

sequential computations.

Here, our intention is precisely to have a notion of object which encompasses “all conceivable concurrent

behaviors”. So, Lamport’s approach seems better suited than the ones based on linearizability.

Lamport’s specifications. A simple but very general way of specifying concurrent objects was proposed

by Lamport [85]. The specification of a concurrent object is simply the set of all the execution traces that

we consider correct for this object. For the COUNT object example that we described in the beginning of

the section, if we draw every possible diagram such as the ones in the pictures (a) – (d) and decide which

ones correspond to “good” behaviors and which ones do not, we will have a well-specified object. Notice

that this point of view allows us to specify a concurrent object without referring to a notion of internal

state. For example, to specify a concurrent list using this method, we never mention a chain of memory

cells pointing to each other: all we need to say is how the push and pop operations will interact when

they are called successively.

Of course, we need a mathematical abstraction of the drawings (a) – (d) representing executions of the

program. We represent them by execution traces, i.e., finite words whose letters are either invocations ixi
or responses ryi . In the picture (e) below, an execution of a concurrent list is depicted. The corresponding

trace T has events of the form ipush,xi representing the invocation of the push method by process i with

input value x, and ryi representing the response of some operation of process i with output value y.

Remark 2.21. Lamport originally axiomatized the happens-before partial order between operations in

order to formally define executions; the trace formalism that we use here was introduced by Herlihy and

Wing in their linearizability paper [71]. These two formalisms are not equivalent: for example, if we

permute two invocation events, we obtain different traces but the happens-before relation is unchanged.

This distinction will vanish when we impose some axioms on our specifications in Definition 2.22: as we

will see, two successive invocations (or two successive responses) will always commute.

64

push(0) OK

push(2) OK

pop() 0

pop() 2
P0

P1

P2

T = ipush,00 · rOK
0 · ipush,22 · ipop1 · r01 · ipop0 · rOK

2 · r20

(e)

An implicit assumption of this representation is that invocations and responses are totally ordered

according to some global time clock. At first sight this might look like a harmless assumption, but recent

works have been trying to get rid of this hypothesis, with applications to weak memory models [115]

and relativistic effects [45]. Another assumption is that only the relative position of the events in time

matters: the intervals can be moved around as long as the overlapping pattern is conserved. This means

for example that we cannot express specifications based on timing constraints. Another consequence,

for our COUNT object example, is that we cannot tell how long processes overlap, so execution (c) is

indistinguishable from an execution where P0 and P1 are fully concurrent.

Concurrent specifications. The notion of concurrent specification that we will use in the rest of this

chapter is very close to Lamport’s idea: it will be a set of execution traces (intended to be the “correct”

ones), but we also impose a number of properties that this set of traces has to satisfy. In particular, the

crucial one is the so-called expansion property, which will be necessary to prove most of the important

results of the chapter.

We now suppose fixed a number n ∈ N of processes and write [n] = {0, 1, . . . , n− 1} for the set of

process names (a process is identified by its number). We also suppose fixed a set V of values that can be

exchanged between processes and objects (typically V = N). The set A of possible actions for an object

is defined as

A = {ixi | i ∈ [n], x ∈ V} ∪ {ryi | i ∈ [n], y ∈ V}

An action is thus either

– ixi : an invocation of the object by the process i with input value x,

– ryi : a response of the object to the process i with output value y.

An execution trace is a finite sequence of actions, i.e., an element of A∗; we write ε for the empty trace

and T · T ′ or TT ′ for the concatenation of two traces T and T ′.

Given a process i ∈ [n], the i-th projection πi(T) of a trace T ∈ T is the trace obtained from T by

removing all the actions of the form ixj or rxj with j 6= i. A trace T ∈ T is alternating if for all i ∈ [n],

πi(T) is either empty or it begins with an invocation and alternates between invocations and responses,

i.e., using the traditional notation of regular expressions:

πi(T) ∈
(⋃
x,y∈V

ixi · r
y
i

)∗
·
(⋃
x∈V

ixi + ε
)

We write T ⊆ A∗ for the set of alternating traces. In the remaining of the chapter, we will only consider

alternating traces, and often drop the adjective “alternating”. If πi(T) ends with an invocation, we call it a

pending invocation. An alternating trace T is complete if it does not have any pending invocation.

65

Definition 2.22. A concurrent specification σ is a subset of T which is

(1) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(2) non-empty: ε ∈ σ,
(3) receptive: if T ∈ σ and πi(T) has no pending invocation, then T · ixi ∈ σ for every x ∈ V ,
(4) total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T · rxi ∈ σ,
(5) is closed under expansion:

– if T · aj · ixi · T ′ ∈ σ where aj is an action of process j 6= i, then T · ixi · aj · T ′ ∈ σ.
– if T · ryi · aj · T ′ ∈ σ where aj is an action of process j 6= i, then T · aj · ryi · T ′ ∈ σ.

We write CSpec for the set of concurrent specifications.

A concurrent specification σ is the set of all executions that we consider acceptable: a program

implements the specification σ if all the execution traces that it generates belong to σ (this will be detailed

in Section 2.3). The axioms (1-4) are quite natural and commonly considered in the literature (e.g. in [71]).

They can be read as follows: (1) an object does one action at a time, i.e., the processes are asynchronous,

(2) an object can do nothing, (3) it is always possible to invoke an object. The axiom (4) states that

objects always answer and in a non-blocking way; this is a less fundamental axiom and more of a design

choice, since we want to model wait-free computation. Note that receptivity (3) does not force objects

to accept all inputs: we could have a distinguished “error” value which is returned in case of an invalid

input. Similarly, an object with several inputs, or several interacting methods (for example, a list) can be

modeled by choosing a suitable set of values V .

The condition (5) might seem more surprising, and will be crucial in the rest of the chapter. As the

name suggests, it can be understood pictorially as follows. Given some execution trace that is considered

correct, if we expand the intervals then the new trace must also be correct. When we expand the intervals,

more overlappings between them might occur: the trace becomes more concurrent.

P0

P1

P2

P0

P1

P2

P0

P1

P2

expand expand

It is easy to see that the expansion property implies that invocations “commute”: we have T · ixi · i
y
j ·T ′ ∈ σ

iff T · iyj · ixi · T ′ ∈ σ, and similarly for responses. For example, one could expect to specify an object

whose behavior depends on which process was invoked first; but that would break the commutativity of

invocations. As we show in Section 2.3, in an asynchronous model, no program can implement such a

specification. Let us explain intuitively why this “expansion property” should hold. Suppose T · aj · ixi ·T ′

is an acceptable execution of the object we are specifying. Then, in the trace T · ixi ·aj ·T ′, where process i

invokes its operation a little bit earlier, i might be idle for a while and only start computing after the

action aj has occurred, resulting in the same behavior. Thus, the execution T · ixi · aj · T ′ should also be

considered acceptable. The second condition is similar: in the execution trace T · aj · ryi · T ′, it might be

the case that process i had already finished its computation before the action aj occurred, but then it was

idle for a while before returning its output. So, it might actually behave like in the trace T · ryi · aj · T ′,
which we assumed to be correct. Thus, this expansion condition reflects the idea that invocations and

responses do not correspond to actual actions taken by the processes, but rather define an interval in which

they are allowed to take steps.

66

Example 2.23. Applied to the COUNT object example, the expansion property implies that execution (c)

must be accepted, since it is obtained by expanding a correct sequential execution. This might seem

surprising: our first intuition was that execution (c) is a mistake, where the processes did not manage

to see each other. But as we argue in the next sections, the expansion property is an essential property

that any concurrent specification must satisfy, just as prefix-closure. This means that the “mistake” of

execution (c) cannot be avoided; we cannot force two concurrent processes to see each other, there is

always a chance that they might exhibit sequential behavior.

As we said earlier, the condition (5) above ensures that two invocations (resp. two responses) “com-

mute”: we say that two alternating traces T, T ′ ∈ T are equivalent, written T ≡ T ′, if one is obtained

from the other by reordering the actions within each block of consecutive invocations or consecutive

responses. Generally, in the rest of the chapter, we are only interested in studying traces up to equivalence.

It will prove quite useful to consider operations in traces, which are pairs consisting of an invocation

and its matching response. Formally,

Definition 2.24. Consider an alternating trace T = T0 · · ·Tk−1. An operation of process i in T is either

– a complete operation: a pair (p, q) such that Tp = ixi and Tq = ryi and Tq comes right after Tp in

πi(T), or
– a pending operation: a pair (p,+∞) where Tp is a pending invocation,

where p, q ∈ N, with 0 ≤ p, q < k, are indices of actions in the trace. We write opi(T) for the set of

operations of the i-th process and op(T) for the set of all operations.

The operations of a trace can be ordered by the smallest partial order� such that (p, q) ≺ (p′, q′) whenever

q < p′. This partial order is called precedence and two incomparable operations are called overlapping or

concurrent. Note that for every i ∈ [n], (opi(T),�) is totally ordered.

2.2.3 Comparison of linearizability-based techniques

The notion of concurrent specification of Definition 2.22 is very general, in the sense that it can express

all the concurrent objects that we are interested in studying:

– concurrent implementations of sequential data structures, such as lists, trees, and so on;
– hardware communication primitives: read/write registers, test-and-set, message-passing;
– and most importantly, the objects that are studied in fault-tolerant distributed computing, such as

immediate-snapshot, consensus or set-agreement objects, the COUNT object. These kinds of objects

are usually “intrinsically concurrent”, meaning that the concurrent traces might exhibit different

behavior than the sequential ones.

However, Definition 2.22 is not very well suited for reasoning about concurrent objects in practice. For

example, if we want to specify what is a concurrent list, we need to find a way to enumerate all the

correct execution traces. Without additional tools, this seems quite tedious: even if we consider just one

concurrent trace, such as the one below, it can already be quite tricky to figure out whether it is a correct

execution or not.

push(1) OK

push(2) OK

pop() 1

pop() FAIL
P0

P1

P2

67

Trying to describe formally the general form of all the correct execution traces seems like an awkward

and unintuitive way to think about concurrent lists. Moreover, there is one fact about lists that we did not

use. In the sequential setting, there are many well-studied techniques that can specify how a list should

behave. For instance, we could use an automata-like representation of a list, like we did in Section 2.1.1;

or rely on a more involved specification method such as Hoare’s logic [73] or temporal logic [102].

Thus, the set of sequential executions of a concurrent list is easy to describe. And since the role of the

concurrent executions is simply to emulate these sequential behaviors, we can expect to be able to define

the concurrent traces in terms of the sequential ones.

This specificity of concurrent lists actually applies to many other concurrent data structures: usually,

we have a sequential object that we would like to be able to use in a concurrent setting, while keeping the

illusion that the operations occurred sequentially. Many techniques have been developed in order to specify

such objects: atomicity [94], sequential consistency [83], serializability [101], causal consistency [109],

or linearizability [71]. In general, we are given a sequential specification σ, and the goal is to find

a correctness criterion which, given a concurrent trace, says whether it is correct or not with respect

to σ. Depending on the correctness criterion that we choose, we obtain different objects: for instance, a

sequentially consistent concurrent list or a linearizable concurrent list are two distinct concurrent objects.

If we see them as sets of correct traces, as in Definition 2.22, the former contains strictly more traces than

the latter: it is a more relaxed version of concurrent lists, which allows more behaviors to occur.

In this section, we will focus on one of those correctness criteria, linearizability, which was introduced

by Herlihy and Wing [71]. It is very popular thanks to its locality property, which allows programmers to

reason modularly about a complex system by studying each of its components in isolation. Here, we adopt

a slightly unusual point of view on linearizability: instead of seeing it as a correctness criterion, we view

it as a map that turns a sequential specification into a concurrent specification. Namely, given a sequential

specification σ, we are interested in studying the set Lin(σ) of all the linearizable traces (w.r.t. σ), which

are to be understood as the correct ones. We will show that is it a concurrent specification in the sense

of Definition 2.22. Thus, Lin is a map from the set of sequential specifications to the set of concurrent

specifications. By studying the properties of this map, we obtain Theorem 2.32, which explains in what

sense linearizability is the canonical way to extend a sequential specification to a concurrent one.

Linearizability is a very powerful tool when we want to extend sequential data structures to a concurrent

setting. As we discussed previously, we also want to consider objects that exhibit a more concurrent

behavior. The original paper on linearizability [71] already remarked that there are non-linearizable

objects; that is, objects whose behavior cannot be specified using linearizability. The COUNT object

described in Section 2.2 is a typical example of such an object. Many other examples can be found in the

area of distributed computability [64], Another notable example is Java’s Exchanger object. In order to

specify those objects, many variants of linearizability have been defined: set-linearizability [99] (a.k.a.

concurrency-aware linearizability [60]), local linearizability [57], and interval-linearizability [18]. Here,

we will focus on two of them, which are relevant in the context of fault-tolerant distributed computing. Set-

linearizability was introduced by Neiger in order to specify set-agreement objects. Later on, Castañeda et

al. remarked that the (non-immediate) write-snapshot object and the validity object are not set-linearizable,

and defined the notion of interval-linearizability to be able to specify them. The latter notion is the most

expressive one; in particular, they show that their framework allows to specify every concurrent task.

As we will see in Proposition 2.27, our Definition 2.22 encompasses all those specification techniques

68

based on linearizability. As it turns out (Proposition 2.40), we actually have an equality between CSpec

and the set of interval-linearizable specifications.

Concurrent specifications CSpec

= (by Proposition 2.40)

Interval-linearizability

validity

write-snapshot

adopt-commit

Set-linearizability

exchanger

set-agreement

immediate snapshot
Linearizability

list
queue

test-and-set

As in the case of standard linearizability, all these techniques give rise to a concurrent specification

Lin(σ) ∈ CSpec (in the sense of Definition 2.22); but here, σ is no longer a sequential specification.

Namely, σ specifies the sequential behaviors of the object, but also some of the concurrent ones. The role

of the Lin map is to extend this σ in order to specify all concurrent behaviors.

For ease of presentation, we begin by introducing a general notion called L-linearizability, which

subsumes the three variants of linearizability that we have discussed. It is actually quite straightforward to

check that the usual notions of linearizability, set-linearizability and interval-linearizability are recovered

by instantiating L with the right set of traces. Thus, the definition of L-linearizability itself should not be

regarded as a new concept; it is merely a presentation trick to avoid dealing with three variants of the same

definition. The main result of this section is stated in Theorem 2.32. We then explore its consequences in

three particular cases: standard, set- and interval-linearizability.

L-specifications

We first introduce a notion of specification, akin to the one of Definition 2.22, which is parameterized by

a set L of traces, which we abstractly consider as the “linear” ones. To recover the standard notion of

linearizability, we let L be the set of all sequential traces, in which case L-specifications correspond to

sequential specifications (this will be done formally later).

We always require L to be prefix-closed, non-empty and

– receptive for complete traces: if T ∈ L is complete then T · ixi ∈ L for all i ∈ [n] and x ∈ V ,
– fully total: if T ∈ L and πi(T) has a pending invocation then T · rxi ∈ L for every x ∈ V .

Intuitively, these conditions mean that L is a set of traces that have some specific “shape” (e.g., being

sequential), but it does not say anything about the input or output values. The set of sequential traces

is the smallest set satisfying those properties. Now, given such a set L, an L-specification says which

execution traces are correct or not, but only among those of L.

69

Definition 2.25 (L-specification). An L-specification σ is a set of traces in L which is

(1) prefix-closed,
(2) non-empty,

(3’) receptive within L: for all T ∈ σ, i ∈ [n] and x ∈ V , if T · ixi ∈ L then T · ixi ∈ σ,
(4) total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T · rxi ∈ σ.

We write SpecL for the set of L-specifications.

Notice that conditions (1), (2), (4) are the same as in Definition 2.22, and condition (3’) is just a weakened

version of (3) which only applies to traces in L. In particular, a concurrent specification (Definition 2.22)

is an L-specification for L = T the set of all traces, such that moreover the expansion property (5) is

satisfied.

L-linearizability

We now define a notion of linearizability which is parameterized by some set L. So, assume we are given

an L-specification σ ∈ SpecL, which only specifies the behavior of the object among the traces of L. Our

goal is to extend it to a full concurrent specification LinL(σ). For this, we need a correctness criterion that

says, for every concurrent trace T ∈ T , whether it is a good or a bad behavior with respect to σ. This

criterion is precisely the notion of L-linearizability, that we now define.

We write T T ′ when the trace T ′ can be obtained from the trace T by applying the following series

of local transformations (forming a string rewriting system):

ixi · i
y
j iyj · i

x
i rxi · r

y
j ryj · r

x
i ixi · r

y
j ryj · i

x
i for i 6= j.

This amounts to contracting the intervals, the opposite of expansion. Two traces T and T ′ such that

T T ′ should be pictured as follows, where T is represented in blue with square brackets, T ′ in red with

angle brackets:
P0

P1

P2

Definition 2.26. A trace T ∈ T is L-linearizable w.r.t. an L-specification σ if there exists a completion T ′

of T , obtained by appending responses to the pending invocations of T , and a trace S ∈ σ, such

that T ′ S. Moreover, we write LinL(σ) ⊆ T for the set of L-linearizable traces.

The above definition in terms of a rewriting system is quite unusual, but it is not difficult to check that

it is equivalent to the usual one of [71], which uses the precedence partial order (op(T),�). This local

presentation as a rewriting system is sometimes used in linearizability proofs using Lipton’s left/right

movers [87]. For the sake of completeness, we will prove in the next paragraph that these two alternative

ways of defining linearizability are equivalent. But first, let us prove that LinL(σ) is indeed a concurrent

specification; i.e., that it satisfies the axioms (1-5) of Definition 2.22.

Proposition 2.27. Let σ ∈ SpecL be an L-specification. Then

LinL(σ) = {T ∈ T | T is L-linearizable with respect to σ}

is a concurrent specification.

70

Proof. Let σ be an L-specification. We check that LinL(σ) satisfies all the conditions of concurrent

specifications (Definition 2.22).

(1) Prefix-closure is a bit more technical than other conditions, see below.

(2) The empty trace is linearizable.

(3) For receptivity, let T ∈ LinL(σ) be a linearizable trace such that πi(T) does not have a pending

invocation. Let T · T̂ be an extension of T and S ∈ σ such that T · T̂ S. We want to show that

T · ixi is linearizable. Since σ is an L-specification and S is complete, by receptivity S · ixi ∈ σ, and

by totality there exists y ∈ V such that S′ = S · ixi · r
y
i ∈ σ. Take T ′ = T · ixi · T̂ · r

y
i as the extension

of T · ixi required in Definition 2.26, then we can check that T ′ S′.

(4) For totality, let T ∈ LinL(σ) be a linearizable trace such that πi(T) has a pending invocation. Again,

we write T · T̂ and S ∈ σ the two traces of Definition 2.26. The suffix T̂ contains some response

ryi , and by reordering the responses in T̂ we get T · T̂ ≡ T · ryi · T̂ ′. So we obtain an extension of

T · ryi such that T · ryi · T̂ ′ S.

(5) For closure under expansion, suppose T = U · aj · ixi · V ∈ LinL(σ) with i 6= j. So there is

a sequence of responses T̂ and a trace S ∈ σ such that T · T̂ S. We want to show that

T ′ = U · ixi · aj · V ∈ LinL(σ). By rewriting one step, we have T ′ T . So, we pick the same

suffix T̂ and trace S ∈ σ, and since T ′ · T̂ T · T̂ S, we are done. The same reasoning applies

when starting from T = U · ryi · aj · V .

As mentioned above, closure under prefix is a bit more tedious to check. Suppose T ·T ′ ∈ LinL(σ). There

is an extension T · T ′ · T̂ that has a linearization S ∈ σ. We want to show that T is linearizable. First, we

need to extend T by adding responses to its pending invocations. These invocations have responses either

in T ′ or in T̂ : a first idea would be to use these responses. But some of these responses might be “bad” in

the sense that they rely on actions of T ′ in order to be valid. Some of them might be “good” in the sense

that some actions of T rely on them in order to valid. The picture below shows the trace T · T ′ · T̂ (in

blue with squared brackets) and a linearization S (in red with angle brackets):

T T ′ T̂

“bad”

last(T)

q

“good”

Given an operation e ∈ op(T), we can view it as an operation of S, whose response happens at index

φ(e) in S. Let last(T) ∈ op(T) be the complete operation of T whose index φ(last(T)) is maximal,

and let q be that index. We truncate S after index q to obtain S′ = S0 · · ·Sq. Then S′ ∈ σ since σ is

prefix-closed. S′ might have some pending invocations, but we can complete it using totality to obtain a

trace S′′ ∈ σ. Then all the complete operations of T are in S′′, by definition of the index q. Moreover,

all the other operations of S′′ correspond to pending invocations of T (they are the “good” responses

we want to keep). Indeed, an operation e whose invocation is not in T satisfies last(T) ≺
TT ′T̂ e, which

implies last(T) ≺S e, and so e /∈ op(S′′). Write T̄ for the trace T where the pending invocations whose

operations are not in op(S′′) (the “bad” ones) have been removed. Complete T̄ by appending responses

to match those of S′′, and we can check that S′′ is a linearization of T̄ . So, T̄ ∈ LinL(σ). Since we have

71

already proved receptivity, we can add the missing invocations at the end of T̄ , and then we move them

inside to their original place using expansions and commutations, we finally get T ∈ LinL(σ).

Therefore, by Proposition 2.27, we have a map LinL : SpecL → CSpec. This result shows that all the

axioms that we impose on our concurrent specifications are reasonable. Indeed, when we instantiate L in

order to recover the standard notion of linearizability (as well as set- and interval-linearizability), this will

imply that every object that can be specified using linearizability, is in CSpec. In short, all our axioms are

naturally enforced by all the specification techniques based on linearizability.

The usual definition of linearizability

We have defined the notion of L-linearizability in a slightly unusual way, using a rewriting system. We

detail here how to relate it to the usual definition given in [71]. To make it fully formal, we need some

preliminary definitions.

Definition 2.28. Two alternating traces T, T ′ ∈ T are compatible if for all i ∈ [n], πi(T) = πi(T
′).

When two traces T and T ′ are compatible, T ′ is a reordering of the actions of T that does not exchange

actions with the same process number. Thus, there is a canonical bijection between op(T) and op(T ′)

that sends the k-th operation of process i in T to the k-th operation of process i in T ′. In the following,

we keep this bijection implicit and we work as if op(T) = op(T ′).

Definition 2.29. A trace T ′ is a linearization of T if:

– T and T ′ are compatible, and

– if e �T e′ in op(T), then e �T ′ e′ in op(T ′).

The original definition of linearizability is just like Definition 2.26, except that instead of T ′ S, we

require S to be a linearization of T ′. Thus, we need to show that these two notions coincide.

Lemma 2.30. Two traces are equivalent iff they are compatible and �T = �T ′ .

Proof. Remember that T ≡ T ′ when they only differ by a reordering of consecutive invocations (resp.

consecutive responses). Two equivalent traces are compatible because of alternation: they cannot contain

two consecutive invocations (or responses) with the same process number. Moreover, the precedence

ordering is preserved since it only compares the position of an invocation with the position of a response.

Conversely, assume T and T ′ are compatible but not equivalent. That means an invocation and a response

have been exchanged: let e and e′ be the two corresponding operations (e = e′ would break compatibility).

Suppose w.l.o.g. that the invocation of e happens after the response of e′ in T and are reversed in T ′, then

e′ �T e but e′ �T ′ e.

If T = U · ixi · r
y
j · V and T ′ = U · ryj · ixi · V for i 6= j, we say that T ′ is obtained from T by one-step

contraction, and we write T 1
 T ′.

Lemma 2.31. T ′ is a linearization of T iff T T ′, i.e. we can go from T to T ′ by a sequence of

contractions and equivalences:

T ≡ T0
1
 T1 ≡ T ′1

1
 · · · 1

 Tk ≡ T ′

72

Proof. The right-to-left implication is due to the fact that T 1
 T ′ implies �T ⊆ �T ′ . Indeed, two

overlapping intervals have been separated, resulting in one more couple in the precedence relation.

For the converse, if�T = �T ′ , we are done by Lemma 2.30. So assume that we have a strict inclusion

�T (�T ′ . We will construct a trace T1 such that �T (�T1 ⊆ �T ′ and T 1
 T1 (up to equivalence).

Since �T (�T ′ , there are two operations e, e′ such that e �T ′ e′ but e and e′ are incomparable in op(T).

Among such pairs (e, e′), we choose one such that the difference q − p′ is minimal, where e = (p, q) and

e′ = (p′, q′), with indexes in T .

Claim: Up to equivalence, T is of the form U · ixi · r
y
j · V where rxi is the response of e and iyj is the

invocation of e′. Indeed, assume by contradiction that T is of the form U · ixi · · · r′ · · · i′ · · · r
y
j · V , then we

have two candidates for a smaller gap between invocation and response; a case analysis shows that at least

one of them would work, thus contradicting minimality.

By applying one step of contraction, we obtain T1 = U · ryj · ixi · V . The ordering �T1 is �T with one

more relation e � e′.
Starting from T , we repeat this reasoning until we reach T ′. This procedure terminates since the

sequence of orderings (�Tk)k is strictly increasing and there are only finitely many such relations (because

op(T) is finite).

Lemma 2.31 almost bridges the gap between our definition of linearizability and the original one.

There remains one minor difference: the completion T ′ of T of Definition 2.26 is usually allowed to

remove some of the pending invocations of T . This is not useful here since all our specifications are total

and non-blocking: a response to the pending invocations can always be found. In the rest of the chapter,

we always use the definition based on rewriting. It is quite convenient to be able to work directly on

the trace instead of its associated partial order; moreover, the relation is a straight counterpart of the

expansion property (5) of Definition 2.22.

Comparison with concurrent specifications

As we saw in Proposition 2.27, we have defined a map LinL : SpecL → CSpec. In order to compare

L-specifications and concurrent ones, we define a map in the other direction, UL : CSpec→ SpecL. Its

definition is straightforward. Given a concurrent specification τ , we keep only the linear traces of τ , i.e.,

UL(τ) := τ ∩ L. Intuitively, the map UL forgets about what the object τ does on the traces that are not

linear. The role of LinL is then to try to reconstruct these missing traces; but of course, in general, some

information might have been lost, and LinL(UL(τ)) 6= τ .

The precise relationship between LinL and UL is contained in Theorem 2.32 below: they form a

Galois connection. We can picture it as in the following diagram:

SpecL CSpec

LinL

UL

a

This important property explains in which sense linearizability is a canonical way of turning a weaker

specification σ (e.g., one specifying only sequential behaviors) into a concurrent specification. It is the

main result of this section.

73

Theorem 2.32. The functions LinL and UL are monotonous w.r.t. inclusions, and form a Galois connec-

tion: for every σ ∈ SpecL and τ ∈ CSpec,

LinL(σ) ⊆ τ ⇐⇒ σ ⊆ UL(τ).

Proof. The monotonicity of UL is trivial. For LinL, assume σ ⊆ σ′ and T ∈ LinL(σ). Let S ∈ σ be a

linearization of T . Since S ∈ σ′, we also have T ∈ LinL(σ′).

Now let σ and τ as in the theorem and assume LinL(σ) ⊆ τ . By monotonicity of UL, UL(LinL(σ)) ⊆
UL(τ). But σ ⊆ UL(LinL(σ)) since every T ∈ σ is in L and is its own linearization (if T has pending

invocations, we can add any valid response using totality).

Conversely, assume σ ⊆ UL(τ), and let T be a linearizable trace w.r.t. σ. Let T ′ be an extension of T

and S ∈ σ ⊆ UL(τ) ⊆ τ such that T ′ S. So we can go from S to T ′ through a sequence of expansions

and commutations, which gives us T ′ ∈ τ by applying axiom (5) of concurrent specifications, and by

prefix closure, T ∈ τ .

In general, the posets SpecL and CSpec ordered by inclusion are not isomorphic, but the above

theorem shows that the next best thing one could expect happens: every L-specification has a canonical

approximation as a concurrent specification and conversely. Note that Galois connections are widely

used for comparing semantics of programs and deriving program analysis methods [24], and are a

particular case of adjunctions, which have been promoted as the canonical way of comparing models for

concurrency [100].

The right-to-left implication of Theorem 2.32 can be understood as follows: LinL(σ) is the smallest

concurrent specification that contains σ. Notice that the expansion property (5) is crucial here: without it,

we could produce specifications smaller than or incomparable to LinL(σ). In fact, the theorem states that

LinL is a kind of free construction: starting with the traces in σ, we add all the traces that are required to

be in the specification by our axioms, and no other trace than the required ones.

Finally, we have the following factorization lemma:

Lemma 2.33. Suppose L andK are two sets of traces satisfying the conditions in the beginning of Section

2.2.3, such that L ⊆ K. Then the map LinL factors through SpecK as shown in the following commutative

diagram:

SpecL SpecK CSpec
Lin′L

LinL

LinK

where Lin′L(σ) = {T ∈ K | T is L-linearizable with respect to σ} = LinL(σ) ∩ K.

Proof. To show that Lin′L(σ) is a K-specification, we go through the proof of Proposition 2.27, and check

that the new traces that we construct are still inK. Let σ ∈ SpecL, we show that LinK◦Lin′L(σ) = LinL(σ).

Let T ∈ LinK ◦ Lin′L(σ), and observe that if T S′ S with S′ ∈ Lin′L(σ) and S ∈ σ, then T S.

Conversely, suppose T S with S ∈ σ. Since S ∈ L ⊆ K and S is its own L-linearization, we have

S ∈ Lin′L(σ), so we obtain the factorization T S S.

74

Sequential linearizability

A trace T is sequential when the poset (op(T),�) is totally ordered, we write seq for the set of sequential

traces. A sequential specification is a seq-specification (i.e., Definition 2.25 with L = seq). Note that a

sequential specification is not a particular case of concurrent specification: it only satisfies the receptivity

condition of Definition 2.25, not the stronger one of Definition 2.22. Intuitively, this means a sequential

specification does not specify which behaviors are allowed when some of the processes run in parallel.

As we mentioned previously, sequential specifications are very well-understood objects: all the usual

techniques that can specify sequential data structures, are various ways to describe seq-specifications

in the formal sense of Definition 2.25. Sequential linearizability is thus a canonical way to extend a

sequential specification to a concurrent one. It is a useful specification technique because it allows us to

build a complex mathematical object, Linseq(σ), by providing a much more simple description of it, σ.

The notion of seq-linearizability coincides with the usual notion of linearizability, that we call here

sequential linearizability to avoid confusion. The Galois connection of Theorem 2.32 says that Linseq(σ)

is the smallest concurrent specification whose set of sequential traces contains σ. Moreover, it is a Galois

insertion:

Proposition 2.34. For every σ ∈ Specseq, we have Useq(Linseq(σ)) = σ.

Proof. The inequality σ ⊆ Useq(Linseq(σ)) is implied by the Galois connection. Let T ∈ Useq(Linseq(σ)),

i.e., T is both sequential and linearizable w.r.t. σ. Let T ′ be a completion of T and S ∈ σ such that

T ′ S. Since T ′ is sequential, it is a normal form of the rewriting system (i.e., no rule can be applied):

so we must have T ′ = S. Moreover S is required to be in σ, so T ′ ∈ σ and by prefix-closure, T ∈ σ.

This implies that Specseq is a subposet of CSpec, which justifies calling linearizable a concurrent

specification in the image of Linseq. This is however a strict subposet, as an application of Theorem 2.32:

Proposition 2.35. There are non-linearizable concurrent specifications.

Proof. From Proposition 2.34, any linearizable concurrent specification τ = Linseq(σ) must satisfy the

equality Linseq(Useq(τ)) = τ . Now, consider the concurrent specification SET-COUNT ⊆ T which is the

set of traces whose set of operations has a partition (Ei)i∈I such that every e, e′ ∈ Ei are concurrent and

their response value is the cardinal of Ei.

Informally, Ei is a set of pairwise-concurrent processes that “saw” each other. Note that, because of

expansion, we cannot require that all processes running in parallel should see each other: the execution (b)

is accepted. All other executions (a), (c), (d) and (e) are rejected. In a sequential trace T ∈ SET-COUNT,

every response returns 1. Thus, Linseq(Useq(SET-COUNT)) only contains traces whose response is 1. But

SET-COUNT also has traces with different responses, e.g. ii · ij · r2j · r2i . Therefore, SET-COUNT is not

linearizable.

Remark 2.36. Here, we are talking about linearizable specifications, that is, concurrent specifications that

can be expressed using the (standard) linearizability technique. Proposition 2.35 claims that there are

objects whose behavior cannot be specified using linearizability. This should not be confused with the

somewhat more common terminology of a linearizable implementation of an object. Usually, this is used

when we have in mind a particular sequential specification σ (say, a list), and we want to implement a

concurrent version of it. Saying that the implementation is linearizable simply means that it satisfies the

specification Linseq(σ).

75

Set-linearizability

The idea behind set-linearizability [99] is to specify what happens when a set of processes call an object

at the same time. In this setting, an execution trace will be a sequence of sets of processes. In each of

these sets, all the processes start executing, then all of them must terminate before we proceed with the

next set of processes. Set-linearizability was also recently re-discovered by Hemed et al. [60], who call it

concurrency-aware linearizability. A typical example of a set-linearizable (but not linearizable) object is

the immediate-snapshot protocol [15] widely used in distributed computability [64]. Another example is

Java’s exchanger that allows two concurrent threads to atomically swap values.

A trace T is set-sequential if it is of the form T = I1 · R1 · · · Ik · Rk, where each of the Ii is a

non-empty sequence of invocations, Ri for i < k is a sequence of responses with the same set of process

numbers as Ii, and Rk is a (possibly empty) sequence of responses whose process numbers are included

in those of Ik. We write set for the set of such traces. If we consider L-linearizability with L = set, we

recover the previously defined notion of set-linearizability [99]. Of course, Theorem 2.32 still holds, but

we do not have an analogue of Proposition 2.34 here: given σ ∈ Specset, Uset(Linset(σ)) might actually

contain more set-sequential traces than σ. This is because set-sequential specifications are not required to

satisfy the expansion property nor the commutativity of invocations and of responses. The linearizability

map adds just enough set-sequential traces to make these properties verified. A concurrent specification is

set-linearizable if it is of the form Linset(σ) for some σ ∈ Specset.

Example 2.37. The SET-COUNT specification defined in the proof of Proposition 2.35 is set-linearizable.

It is obtained as Linset(σ) where σ is the set of set-sequential traces of the form I1 ·R1 · · · Ik ·Rk, where

every response in Ri is returning the value |Ii|.

Proposition 2.38. There are non-set-linearizable concurrent specifications.

Proof. This is again an application of Theorem 2.32: from the properties of Galois connections, a

set-linearizable concurrent specification τ = Linset(σ) must be such that Linset(Uset(τ)) = τ . Indeed,

using the right-to-left implication of Theorem 2.32 we obtain Linset(Uset(τ)) ⊆ τ . Conversely, since

we have σ ⊆ Uset(Linset(σ)) using the left-to-right implication, and by monotonicity of Linset, we get

τ ⊆ Linset(Uset(τ)). Define the concurrent specification INTERVAL-COUNT as the set of alternating

traces such that every operation e has a response of the form rki , where k is smaller or equal to the number

of operations that are overlapping with e. This is a very permissive version of counting: all executions

(a)–(e) are allowed. In a set-sequential trace, all return values are at most n, the total number of processes.

Therefore, Linset(Uset(τ)) only contains traces whose response is smaller than n. But τ also contains

traces with greater responses, as in execution (b) where process P1 responds 3 even though only two

processes are running. We deduce that INTERVAL-COUNT is not set-linearizable.

Interval-linearizability

Interval-linearizability was introduced in [18] with the aim of going beyond linearizability and set-

linearizability, in order to be able to specify every distributed task. They prove that every task can be

obtained as the restriction to one-shot executions of an interval-linearizable object. We will show that this

result actually extends beyond one-shot tasks: every concurrent specification is interval-linearizable. An

76

example of an interval-linearizable (but not set-linearizable) object is the (non-immediate) write-snapshot

object.

We write int for the set of all alternating traces. The notions of interval-sequential specification and

interval-linearizability defined in [18] coincide with L-specifications and L-linearizability where L = int.

Interval-sequential specifications are almost the same as concurrent specifications, except that they do not

require the expansion property to be satisfied. In fact, it is mentioned in [18] that one can without loss

of generality restrict to interval-sequential executions of the form I1 ·R1 · · · Ik ·Rk, where the Ii (resp.,

Ri) are non-empty sets of invocations (resp., responses). This amounts to enforcing the commutativity of

invocations and of responses, which are both consequences of the expansion property. We do not include

this assumption here since it will be enforced anyway after we apply linearizability.

Uint is by definition the “identity” function. As in the case of set-linearizability, an analogue of

Proposition 2.34 does not hold, but we have the converse:

Proposition 2.39. For every τ ∈ CSpec, Linint(Uint(τ)) = τ .

Proof. The inclusion Linint(Uint(τ)) ⊆ τ follows from the Galois connection. For the other inclusion,

recall that Uint is the identity, so we want to prove τ ⊆ Linint(τ). But this is trivial since every trace is its

own linearization.

We say that a concurrent specification is interval-linearizable if it is in the image of Linint.

Proposition 2.40. Every concurrent specification is interval-linearizable.

Proof. This is an immediate corollary of Proposition 2.39: τ = Linint(τ), and τ is (in particular) an

interval-sequential specification.

Thus, putting together Propositions 2.27 and 2.40, we deduce that interval-linearizable objects and

concurrent specifications are one and the same. One can see interval-linearizability as a convenient way

of defining concurrent specifications in practice. Imagine that we have a concurrent object in mind (say,

the COUNT object described informally in the introduction of Section 2.2) and we want to specify its

behavior. We choose some set of execution traces σ that we consider to be the correct ones, but we

forget to include the execution trace (c); indeed, it looks like a wrong behavior, but as we discussed

before, it cannot be avoided because of the expansion property (5). Then interval-linearizability fixes this

mistake automatically, by producing the set of execution traces Linint(σ) which will include execution

(c), as well as any other trace which is required to exist by the expansion property. This is the benefit of

interval-linearizability: thanks to it, we do not have to worry about the expansion property, the map Linint

does that for us.

The results of the last three sections can be summed up in the following diagram, by factoring Linseq

and Linset as follows:

Specseq Specset Specint CSpec

Lin′seq Lin′set

U′
seq

Linint

U′
set Id

a

77

where the a symbol between Linint and Id indicates that they are related by a Galois connection, and the

primed functions are the expected ones. Moreover, the two other Galois connections are obtained by

composition:

Linint ◦ Lin′set = Linset a Uset and Linint ◦ Lin′set ◦ Lin′seq = Linseq a Useq.

Other variants

Using the framework of L-linearizability, it is easy to come up with new notions of linearizability, by

instantiating L with another suitable set of traces. For instance, say a trace T is k-concurrent if every

prefix of T has at most k pending invocations. Intuitively, a trace is k-concurrent if at any time, no

more than k processes are running in parallel. Let L be the set of k-concurrent traces. Then, given a

specification that says how an object behaves when it is accessed concurrently by at most k processes,

L-linearizability is a canonical way of extending this specification to any number of processes. In their

paper about concurrency-aware linearizability [60], Hemed et al. specify Java’s exchanger object on traces

that are both 2-concurrent and set-sequential, then they apply linearizability to obtain the full concurrent

specification.

2.3 A computational model

In Section 2.2, we have defined how to specify the behavior of concurrent objects (Definition 2.22), and

we discussed the relevance of this definition by comparing it to other specification techniques. Our goal

now is to build a computational model that relies on this notion of concurrent specification.

More precisely, in this section, we provide an operational model for concurrent programs communicat-

ing through shared objects. We assume given a set Obj of objects: they might be, for instance, concurrent

data structures that have already been implemented, and that our programs are able to use in order to

compute and communicate. We do not want to depend on a particular implementation of these objects, but

on their specification. Thus, each object comes with its concurrent specification (as in Definition 2.22),

which is the set of behaviors that it might exhibit. Note that our model does not have any special construct

for reading and writing in the shared memory: we assume that the memory itself is given as an object

in Obj, with an appropriate specification. Thus, the only meaningful action a program can take is to call

one of the objects; and possibly do some local computation to determine what the next call should be.

2.3.1 Programs and protocols

To abstract away the syntax of the programming language, we use an automata-like representation, as we

did in Section 2.1.3. Morally, our notion of program (Definition 2.41) is the same as the one that we had

in the “first approach” section (Definition 2.8). Here, we recall it with updated notations, since we are

now working with a different notion of object specification.

The example below shows an implementation of binary consensus among two processes, using three

shared objects: two read-write registers a and b, and a test-and-set object t. The pseudo-code written on

the left is the program that is run by one of the processes. The other process should run the same program,

but where the role of a and b is reversed. The automaton on the right depicts how this program will be

formally represented in our formalism. Each state of the automaton contains the following information:

78

the current position of the program pointer, as well as the values of the local variables of the program (x

and v’ in the example), and of the initial input value (v in the example). In a given state of the automaton,

the decision function δ indicates which is the next object that the program will call, and which argument is

given in the invocation. The transition function τ says what the next state will be depending on the return

value of the call.

consensus(v) {

a . w r i t e(v);
x := t . t e s t−a n d− s e t();
if (x == 0)

return v;

else

v’ := b .read();
return v’;

}

δ = 0 δ = (b, read) δ = 1 δ = (b, read)

δ = (t, ()) δ = (t, ())

δ = (a, (write, 0)) δ = (a, (write, 1))

δ = 0 δ = 1 δ = 0 δ = 1

⊥
τ(0) τ(1)

τ(done) τ(done)

τ(0) τ(1) τ(0) τ(1)

τ(0) τ(1) τ(0) τ(1)

We suppose fixed a set Obj of objects, along with their concurrent specification spec(o) ∈ CSpec for

each o ∈ Obj. Here, a program is basically a piece of code (executed by one of the processes) that takes

a value as input, makes several calls to the objects in Obj (using algebraic operations to combine their

results) and finally returns a value. Formally,

Definition 2.41. A program is a quadruple (Q,⊥, δ, τ) consisting of:

– a (possibly infinite) set Q of local states containing an idle state ⊥ ∈ Q,

– a decision function δ : Q \ {⊥} → (Obj× V) ∪ V ,

– a transition function τ : Q× V → Q \ {⊥}.

The idle state is the one where the program is waiting to be called with some input value x, in which case

it will go to state τ(⊥, x). After that, the decision function gives the next step of the process depending

on the current state: either call some object with a given input value, or terminate and output some value.

In the case where an object is called, the transition function gives the new local state of the process,

depending on the previous state and the value returned by the object.

Definition 2.42. A protocol P is given by a program Pi = (Qi,⊥i, δi, τi) for each process i ∈ [n].

Remark 2.43. It is more common in practice to have all the processes running the same program, since we

do not want to write as many programs as there are processes. However, in this context, each process has

access to its process number, and can use it to enter parts of the code that the other processes will skip. So,

the above presentation with one program for each process is equivalent.

2.3.2 Semantics of a protocol

The global state of a protocol P is an element q = (q0, . . . , qn−1) of Q =
∏
iQi, consisting of a state for

each process Pi. The initial state is qinit = (⊥0, . . . ,⊥n−1) and, given a global state q, we write q[i← q′i]

for the state where the i-th component qi has been replaced by q′i. We now describe the set A of possible

actions for P , as well as their effect ∆ : Q×A → Q on global states.

79

ixi : the i-th process is called with input value x ∈ V . The local state qi of process i is changed from ⊥i
to τi(⊥i, x):

∆(q, ixi) = q[i← τi(⊥i, x)]

where the state on the right is q where qi has been replaced by τi(⊥i, x).

i(o)xi : the i-th process invokes the object o ∈ Obj with input value x ∈ V . This does not have any effect

on the global state:

∆(q, i(o)xi) = q

r(o)xi : the object o ∈ Obj returns some output value x ∈ V to the i-th process. The local state of process i

is updated according to its transition function τi:

∆(q, r(o)xi) = q[i← τi(qi, x)]

rxi : the i-th process has finished computing, returning the output value x ∈ V . It goes back to idle state:

∆(q, rxi) = q[i← ⊥i]

The actions of the form ixi and rxi (resp. i(o)xi and r(o)xi) are called outer (resp. inner) actions. Given a

trace T ∈ A∗ and an object o, we denote by To, called the inner projection on o, the trace obtained from T

by keeping only the inner actions of the form i(o)xi or r(o)yi . The function ∆ is extended as expected as a

function ∆ : Q×A∗ → Q, i.e., ∆(q, T · T ′) = ∆(∆(q, T), T ′) and ∆(q, ε) = q. A trace is valid if at

each step in the execution, the next action is taken according to the decision function δ. Formally:

Definition 2.44. A trace T ∈ A∗ is valid when for every strict prefix U of T , writing T = U · a · V and

q = ∆(qinit, U), with a ∈ A, we have:

– if a = ixi then qi = ⊥i,
– if a = ryi then qi 6= ⊥i and δi(qi) = y,

– if a = i(o)xi then qi 6= ⊥i and δi(qi) = (o, x),

– if a = r(o)yi then qi 6= ⊥i.
Moreover, we require that for every object o ∈ Obj, the inner projection To belongs to spec(o). The set of

valid traces for P is written TP ⊆ A∗.

Example 2.45. An example of a valid trace T ∈ TP is depicted below, where the protocol P is the one of

Section 2.3.1. The outer actions are represented as black intervals with square brackets. The inner actions

are represented as colored intervals with angle brackets. The validity of this trace expresses two things:

each process behaves according to its program; and the three objects a, b and t behave according to their

specification. Note that being valid does not have anything to do with whether or not the outer actions

meet the specification of consensus.

P0

P1

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1

a.read() 0

a.write(0) done

t.test&set() 0

80

A protocol P is obstruction-free if there is no valid infinite trace (i.e., all its finite prefixes are valid)

involving only inner-i-actions after some position: in other words, a process running alone will eventually

decide on an output value. A protocol P is wait-free if there is no valid infinite trace involving infinitely

many inner-i-actions and no outer-i-action after some position: in other words, a process will eventually

decide on an output, no matter what the other processes do. In particular, a wait-free protocol is also

obstruction-free. Given a trace T ∈ A∗, we write π(T) for the trace obtained by keeping only outer

actions.

Definition 2.46. The semantics of a protocol P is the set of traces JP K = {π(T) | T ∈ TP }, and P

implements a concurrent specification σ whenever JP K ⊆ σ, i.e., all the outer traces that P can produce

are correct with respect to σ.

Remark 2.47. This notion of implementation might seem surprising at first. Why do we only require

JP K ⊆ σ, instead of JP K = σ? The intuition behind the specification σ is that it is the set of all the correct

execution traces. The elements of σ correspond to behaviors of the object that are allowed to happen. But

are there cases where we would like to require some behaviors to actually happen?

Most of the time, the inclusion of Definition 2.46 makes sense. For instance, when we talk about

solving consensus, what we want is to reach an agreement, we do not care about which value is agreed

upon. If two processes start with input values 0 and 1, the output values are allowed to be either 00 or 11.

A program that always agrees on 00 in such a situation would be considered correct. Another example

from concurrent data structures: as we saw in the previous section, linearizable concurrent lists are the

most constrained version of concurrent lists. When we consider weaker implementations of concurrent

lists (for example in [57]), the additional traces that we allow are not particularly desirable behaviors. On

the contrary, they correspond to “slightly wrong” behaviors that we decide to tolerate, for performance

reasons. In particular, a linearizable implementation of lists should also meet these weaker specifications.

However, there are a few cases where this notion of implementation seems to permit trivial solutions.

With our COUNT object, as we discussed previously, even when the processes are concurrent, the execution

where every process returns 1 cannot be avoided because of the expansion property. So, what if we

write a program that always returns 1, without even trying to detect other processes? According to the

current definition, this is a good implementation of the COUNT object. A possible way to fix this would

be to refine our notions of specification and implementation to have not only a set σ of traces that are

allowed, but also a set τ of traces that are required. Then, a protocol P implements such a specification

whenever τ ⊆ JP K ⊆ σ. This is still not completely satisfactory: we require that some behaviors can

happen, but we have no idea how often they actually occur. So maybe one would like to equip the set of

correct traces with some probability distributions.

While this research direction might be worth pursuing, for the rest of this chapter, we will stick with

Definition 2.46. Since our goal is to recover the topological characterization of task solvability, it makes

sense to stay as close as possible to Definition 1.29, where we also require an inclusion between carrier

maps.

We will now show that if the protocol P is obstruction-free, then JP K itself is a concurrent specification

(Theorem 2.54). This is expected: no matter what the protocol is, if our notion of concurrent specification

is general enough, it should be able to express that the protocol P is doing. Hence, Theorem 2.54 confirms

once again that the axioms of Definition 2.22 are well-chosen. Indeed, in our model, the set of traces

81

generated by a protocol necessarily satisfies all of these axioms; and in particular, the expansion property

cannot be avoided. In the following, we use uppercase letters T, T ′ to denote traces containing only outer

actions, and lowercase letters w,w′, r, s, t to denote traces that might contain both inner and outer actions.

Lemma 2.48. Every trace T ∈ JP K is alternating.

Proof. T must begin by an invocation because qiniti = ⊥i and the only i-action that can occur with local

state ⊥i is ixi . We then prove by induction on the length of w ∈ A∗ that ∆(qinit, w)i 6= ⊥i if the last outer

i-action in w was an invocation, and ∆(qinit, w)i = ⊥i if it was a response. This implies that no two

invocations nor two responses by the same process can occur consecutively in a valid trace.

Lemma 2.49. JP K has the expansion property, i.e., for all outer traces T, T ′, process numbers i, j ∈ [n]

with i 6= j, values x, y ∈ V and outer action aj ∈ A of process j, we have:

– if T · aj · ixi · T ′ ∈ JP K, then T · ixi · aj · T ′ ∈ JP K, and

– if T · ryi · aj · T ′ ∈ JP K, then T · aj · ryi · T ′ ∈ JP K.

Proof. First, let us give an intuitive explanation of why these two properties hold. For the first one, assume

that a valid execution of the protocol P occurred, where process i invoked the object after the action aj
was performed. Then, another execution could have occurred, where instead process i invokes a bit sooner,

but it immediately starts idling without performing any inner action. Then, process j cannot distinguish

these two executions, so performing the action aj after the invocation ixi is still valid. For the second

property, the reasoning is similar, except that in the new execution that we construct, process i idles just

before returning its value.

We now formalize these two proofs. Assume T · aj · ixi · T ′ ∈ JP K, i.e., there is a word w ∈ TP
such that π(w) = T · aj · ixi · T ′. So, w is of the form t · aj · s · ixi · t′ where s does not contain outer

actions. We will show that w′ = t · ixi · aj · s · t′ ∈ TP , and the result follows by projection. Since

the inner projections of w and w′ are the same, the specifications of the objects are satisfied. We have

to show that the conditions regarding the decision functions are respected. Write q = ∆(qinit, t) and

q′ = ∆(qinit, t · aj · s). Then since w is valid, we have q′i = ⊥i.

Claim 1: the inner trace s does not contain any action of process i. Indeed, only an outer action ryi can

set the local state of i to ⊥i, and s has no outer action: so i’s local state is ⊥i during all of s. But inner

actions can only be valid when the local state is not ⊥i.

Claim 2: Let u be a prefix of s and q′′ = ∆(qinit, t · aj · u) = ∆(q, aj · u). Then ∆(q, ixi · aj · u) =

q′′[i← τi(⊥i, x)]. This is proved by induction on the length of the prefix u and using Claim 1.

Claim 3: ∆(q, aj · s · ixi) = ∆(q, ixi · aj · s). This is proved by taking u = s in Claim 2.

Finally, let u is a prefix of w′ = t · ixi · aj · s · t′. If u ends in t or (by Claim 3) in t′, the global state

after executing it is the same as for w, so the validity condition is verified. If u ends in s, then by Claim 2

the global state only differs by its i component, but since by Claim 1 the next action is not from i, the

validity condition is also verified. Therefore w′ ∈ TP , and hence π(w′) = T · ixi · aj · T ′ ∈ JP K.

For the second implication, the situation is very similar: suppose that w = t · ryi · s · aj · t′ ∈ TP , and

show that w′ = t ·s ·aj · ryi · t′ ∈ TP . Once again, we can show that s contains only inner actions, and none

of them is from process i. The analogue of Claim 3 says that ∆(qinit, t · ryi · s · aj) = ∆(qinit, t · s · aj · ryi),

and it is also proved by first generalizing it to prefixes of s.

82

Remark 2.50. The key reason that makes Lemma 2.49 go through is the fact that the actions ixi and ryi do

not have any effect besides starting a process or terminating it. Taking these steps does not communicate

any information to the other processes. For example, a process might start running and then wait for a

while before doing any “real” computation. Such a process cannot be seen by the others. This fact is

an arbitrary choice in how we designed our computational model, but it reflects what really happens in

practice: calling a function, or returning a value, both consume some amount of clock cycles from the

processor, and they do not usually have any effect on the shared memory. Thus, one could possibly have a

process that has started running, but was immediately preempted by the scheduler before it could perform

any meaningful operation.

Lemma 2.51. JP K is closed under prefix.

Proof. TP is closed under prefix since for all o ∈ Obj, spec(o) is closed under prefix by definition, and

the conditions on the decision functions are also preserved. Then, JP K is also closed under prefix.

Lemma 2.52. JP K is receptive.

Proof. Assume T ∈ JP K where πi(T) does not have a pending invocation. Let w ∈ TP such that

π(w) = T . The last outer i-action in w is a response, and thus we have τ(qinit, w)i = ⊥i (cf. proof of

Lemma 2.48). So w · ixi is valid for all x, and T · ixi ∈ JP K.

Lemma 2.53. JP K is total.

Proof. Assume T ∈ JP K where πi(T) has a pending invocation. Let w ∈ TP such that π(w) = T .

The last outer i-action in w is an invocation, so the local state of i after executing w is qi 6= ⊥i. If

δi(qi) = y ∈ V , then w · ryi is a valid execution, which concludes the proof. Otherwise, δi(qi) = (o, x).

Then w · i(o)xi is valid because the object o is receptive. And since o is total, there exists y such that

w · i(o)xi · r(o)
y
i is valid. The new local state of i after executing this trace is q′i 6= ⊥i, so we can iterate the

previous reasoning. Eventually, we will reach some local state q′′i with δi(q′′i) = y′′ ∈ V , because P is

obstruction-free (i.e., there is no infinite execution ending with only inner i-actions).

Putting all the previous lemmas together, we obtain Theorem 2.54. Notice that the obstruction-free

assumption was only used to prove totality; all the other axioms are true for any program.

Theorem 2.54. The semantics JP K of an obstruction-free protocol is a concurrent specification.

This theorem ensures that the axioms of concurrent specifications are reasonable, in the sense that they are

validated in our model. Thus, our concurrent specifications are the only ones of interest: specifications that

do not satisfy these axioms cannot be implemented. For instance, this theorem implies that any protocol

implementing a COUNT-like object must accept execution (c), since it is obtained by expanding a valid

sequential execution, and the protocol’s behavior is closed under expansion.

2.4 From trace semantics to geometric semantics

In Sections 2.2 and 2.3, we have defined a general notion of concurrent object specifications, and a

computational model where several processes can communicate through these objects. The purpose of

these two sections was achieved at Definition 2.46: we now have a concrete meaning of what is means to

83

implement an object. Our goal now is to compare this notion of implementation to the topological notion

of solving a concurrent task (Definition 1.29). By doing so, we will obtain an analogue of Herlihy and

Shavit’s Asynchronous Computability Theorem [70] for arbitrary objects (Theorem 2.73), which is the

main goal of this chapter.

This section is organized as follows. First, in Section 2.4.1, we study more in-depth the relationship

between tasks ans objects. Then in Section 2.4.3 we show how we can associate a protocol complex to

any protocol, in a systematic way. Finally, our generalized version of the asynchronous computability

theorem is proved in Section 2.4.4.

2.4.1 Tasks as one-shot objects

The topological approach to fault-tolerant distributed computing [64] is not interested in implementing

long-lived objects as in the previous sections, but in solving decision tasks. We already discussed the

differences and similarities between objects and tasks, in Section 2.2.1 and throughout the chapter. For

the sake of clarity, we briefly recall the key points that will matter in this section.

1. Tasks might exhibit complex concurrent behavior, whereas many common objects (e.g., the lineariz-

able ones) usually behave as in a sequential setting.

2. Concurrent objects are long-lived (i.e., each process can call the object several times), whereas tasks

are one-shot (once a process decides on an output, it does not participate in the computation again).

The first point was tackled by Castañeda et al. in [18], where they defined the notion of interval-

linearizability that subsumes both tasks and objects. Since we showed in Propositions 2.27 and 2.40 that

our notion of concurrent specification (Definition 2.22) coincides with interval-linearizable specifications,

the same result holds for CSpec. Thus, tasks are a special case of objects; and by point 2, they are even

a subset of one-shot concurrent specifications, that is, objects where only the first call of each process

matters.

A more surprising fact, also noted in [18], is that tasks are actually weaker than one-shot objects:

there exists one-shot objects that cannot be expressed as tasks. The situation is summed up in the diagram

below. To fix this issue, they defined a notion of “refined task”, which is as expressive as one-shot objects.

Our goal here is dual: we want to characterize the subclass of one-shot objects that correspond to tasks.

Concurrent specifications CSpec

= Interval-linearizability

Set-linearizability

Linearizability

One-shot concurrent specifications

Tasks

84

Let us start by defining formally what a one-shot concurrent object specification is. Intuitively, this is

very close to Definition 2.22, except that we are only interested in the execution traces where each process

calls the object at most once. We say that a trace T ∈ T is one-shot if for every i ∈ [n], πi(T) contains at

most one invocation and one response; that is, πi(T) can be either ε or ixi or ixi r
y
i for some values x, y ∈ V .

We write T1 for the set of all one-shot traces.

Definition 2.55. A one-shot concurrent specification σ is a subset of T1 which is

(1) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(2) non-empty: ε ∈ σ,

(3”) receptive among one-shot traces: if T ∈ σ and πi(T) = ε, then T · ixi ∈ σ for every x ∈ V ,
(4) total: if T ∈ σ and πi(T) has a pending invocation, there exists x ∈ V such that T · rxi ∈ σ,
(5) is closed under expansion:

– if T · aj · ixi · T ′ ∈ σ where aj is an action of process j 6= i, then T · ixi · aj · T ′ ∈ σ.
– if T · ryi · aj · T ′ ∈ σ where aj is an action of process j 6= i, then T · aj · ryi · T ′ ∈ σ.

We write CSpec1 for the set of one-shot concurrent specifications.

The only difference with Definition 2.22 is the receptivity axiom (3”), which only requires an object

to accept the very first invocation of each process. The behavior of the object for any subsequent calls is

not specified.

Remark 2.56. Note that with this definition, a one-shot concurrent specification σ is not a concurrent

specification. The reason for this is that a one-shot specification contains only one-shot traces, whereas

axiom (3) of Definition 2.22 implies that a concurrent specification must contain traces that are not

one-shot. So, formally, CSpec1 is not a subset of CSpec.

However, as depicted in the Venn diagram above, we will often refer to one-shot specifications as

a particular case of concurrent specifications. The reason for this is that there is a canonical way to

turn a one-shot specification into a regular one, by saying that, whenever a process tries to invoke the

object twice, the response to any of the subsequent calls can have any output value. Indeed, since the

one-shot specification does not say how the object behaves on traces that are not one-shot, we should

not impose any restrictions on them. More formally, there is an injection ι : CSpec1 → CSpec defined

as ι(σ) = {T ∈ T | every one-shot prefix of T is in σ}. In the remainder of the section, we keep this

injection implicit.

Example 2.57 (One-shot linearizable list). An object which is not very useful in practice, but easy to

describe, is the one-shot version of a concurrent list. It behaves just like a list, with two operations

push and pop, except that each process is allowed to use it only once (either to push a value, or to

pop a value, but not both). To define it formally, first take σlist ∈ Specseq, the sequential specification

of a list. It can be described by usual sequential techniques, e.g., an automaton as in Definition 2.1.

Then, Linseq(σlist) ∈ CSpec is the usual concurrent specification of a linearizable list. To get a one-shot

version of it, we simply remove all the traces that are not one-shot: we obtain the one-shot specification

σos-list ∈ CSpec1, defined as σos-list = {T ∈ Linseq(σlist) | T is one-shot}.

Example 2.58 (Consensus object). A more natural example is of course the consensus object. Each process

can propose an input value k by calling the only method consensus(k) of the object. The return value

should be one of the proposed values; so that every process receives the same output. Even if this object is

85

well-known when described as a task, it can be a bit tricky to formally define the corresponding set of

one-shot traces. It is clear which fully-concurrent traces should be accepted; for example, the trace (f)

below is obviously correct.

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

(f)

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

(g)

But what about trace (g)? If we just look at the sets of input and output values, they respect the task

specification. However, remember that one-shot specifications must be prefix-closed. If we cut the trace

before the vertical dotted line, process P0 is returning a value that has not been proposed yet. So, the

execution trace (g) should actually not be considered correct. We will explain below how to properly

define the consensus one-shot object.

We now give a formal definition of tasks. The formalism that we use here is similar to the one used

in Herlihy and Shavit’s paper where the asynchronous computability theorem was first introduced [70].

Although it does not explicitly refer to simplicial complexes, it is a direct reformulation of the usual

topological definition of a task (Definition 1.19). Recall that the set of values is written V and n is the

number of processes. Let ⊥ be a fresh symbol which is not in V . A vector is a tuple U ∈ (V ∪ {⊥})n,

such that at least one component of U is not ⊥. We write Ui for the i-th component of U , and U [i← x]

for the vector U where the i-th component Ui has been replaced by x ∈ V . Given two vectors U and V ,

we say that U matches V when Ui = ⊥ iff Vi = ⊥. We say that U is a face of V , written U � V , when

for all i, either Ui = Vi or Ui = ⊥. A vector U is maximal if none of its components is ⊥. If X is a set of

vectors, its downward closure is ↓X = {U | U � V for some V ∈ X}.

Definition 2.59. A task is a triple Θ = (I,O,∆) such that:

– I = Vn and O ⊆ Vn are sets of maximal vectors. The elements of I (resp. of O) and their faces are

called input vectors (resp. output vectors).
– ∆ ⊆ ↓I × ↓O is a relation between input and output vectors, such that:

– ∆ only relates matching vectors,
– for every input vector U ∈ ↓I , ∆(U) 6= ∅,
– for all input vectors U � U ′, ∆(U) ⊆ ↓∆(U ′).

Above, we write ∆(U) = {V | (U, V) ∈ ∆}. Intuitively, the task specification says that if each

process i starts with the input Ui, the set ∆(U) consists of all the output vectors that are considered

acceptable outputs. A ‘⊥’ component in a vector represents a process that is not participating in the

computation, either because it crashed, or because it was so slow that all the other processes terminated

before it could take any steps. With that in mind, the third condition on ∆ asserts that, if such a “slow”

process wakes up, there is at least one valid output that is compatible with what the other processes already

decided.

Remark 2.60. Note that there is a little mismatch between this definition and the usual definition of a

task in distributed computing: namely, we are requiring I = Vn, whereas the more usual definition

would allow any I ⊆ Vn. The reason why we always require a full input complex is that we want to

match the receptivity property of concurrent specifications, where an object must always accept any input.

86

Intuitively, with our definition, a task must specify, for each input vector, what the corresponding outputs

should be. This is not a restriction compared to the usual definition of a task: if we do not care about what

happens on some of the input vectors, we can simply consider that every output is correct. This is the

same idea as in Remark 2.56: unspecified behavior is equivalent to saying that every output is correct.

We now describe how we can turn a task into a one-shot object. Given a vector U , the set {i ∈ [n] |
Ui 6= ⊥} is called the participating set of U . A pair (U, V) ∈ ∆, where U and V have participating set

I = {i1, . . . , ik}, corresponds to a correct execution trace of the form i
Ui1
i1
· · · iUik

ik
· rVi1i1

· · · rVikik
. This is a

fully-concurrent trace, that is, a trace where all the participating processes invoke with the input values

from U , and then they all respond with the output values from V . Remember that the order of consecutive

invocations or consecutive responses does not matter. For convenience, we will write such a trace iU · rV .

Thus, the task specification ∆ gives us a set of execution traces {iU · rV | (U, V) ∈ ∆} ⊆ T . But

this set does not satisfy the conditions of Definition 2.22: we need to specify which traces are correct or

not, among the traces of other “shapes” (i.e., traces where invocations and responses are interleaved). For

example, consider a trace of the form iU · rV · ixj · r
y
j , where (U, V) ∈ ∆ have a participating set I , and

j /∈ I . Intuitively, this represents the situation where all the processes in I ran together without hearing

from j, and after all of these processes terminated, the process j ran alone with input x and decided

output y. What should be the condition on x and y for this trace to be considered correct? The most

sensible answer is that we should require (U [j ← x], V [j ← y]) ∈ ∆. The next definition generalizes

this idea to traces of any shape.

Definition 2.61. Let Θ = (I,O,∆) be a task. We define the one-shot concurrent specificationG(Θ) ⊆ T1

as the set of execution traces T ∈ T such that:

– T is one-shot, i.e., every process has at most one invocation and one response in T ,
– for every prefix S of T , there exists a completion S′ of S (obtained by appending responses to the

pending invocations), such that (US′ , VS′) ∈ ∆, where the i-th component of US′ (resp. VS′) is x

if ixi (resp., rxi) appears in S, and ⊥ otherwise.

Example 2.62 (Consensus object). With Definition 2.61, we can now define precisely the consensus object

mentioned in Example 2.58. Let Θ be the usual specification of the consensus task; then G(Θ) is the set

of traces allowing us to view it as a one-shot object specification. In particular, G(Θ) does not contain

execution (g). Indeed, if we take the prefix S corresponding to the part before the dotted line, there is no

way to complete it (by adding a response to process P2) so that the task specification is satisfied.

Proposition 2.63. G(Θ) is a one-shot concurrent specification.

Proof. Prefix-closure (1) and non-emptiness (2) are obvious.

– (3”): Let T ∈ G(Θ) and assume that no action from process i occurs in T . Let x ∈ V , we want to

show that T · ixi ∈ G(Θ). It is a one-shot trace, since T is one-shot and does not contain actions

from process i. Let S be a prefix of T · ixi . If it is a strict prefix, then it is also a prefix of T , and

since T ∈ G(Θ) we are done. The only remaining prefix is the trace S = T · ixi itself.

What we have to do is find responses to the pending invocations of S. They are either pending

invocations of T , or the last invocation ixi . Since T is a prefix of itself and T ∈ G(Θ), we know that

there is a completion T ′ of T , such that (UT ′ , VT ′) ∈ ∆. Write T ′ = T · T̂ , so that T̂ contains the

responses to the pending invocations of T .

87

Now, we want to find a response to the invocation ixi that obeys the specification of the task Θ. Since i

does not participate in T , the vector UT ′ has a ⊥ at position i, and so UT ′ � UT ′ [i ← x]. Thus,

we have ∆(UT ′) ⊆ ↓∆(UT ′ [i ← x]), since Θ is a task. So in particular VT ′ ∈ ↓∆(UT ′ [i ← x]),

which means that there is some W ∈ ∆(UT ′ [i ← x]) which extends VT ′ . Let y ∈ V be the

i-th component of W . Pick the complete trace S′ = T · ixi · T̂ · r
y
i . Then we can check that

(US′ , VS′) = (UT ′ [i← x],W) ∈ ∆, and therefore T · ixi ∈ G(Θ).

– (4): Let T ∈ G(Θ) and assume that πi(T) has a pending invocation. Using the same notations

as before, the suffix T̂ that completes T must contain a response ryi to the pending invocation of

process i. We need to prove that T · ryi ∈ G(Θ). As before, it is one-shot and all its strict prefixes

satisfy the required condition. For S = T · ryi , up to a (harmless) reordering of the responses in T̂ ,

we can just take the same completion S′ = T · T̂ , which gives T · ryi ∈ G(Θ).

– (5): Let T = T1 ·aj · ixi ·T2 ∈ G(Θ), with j 6= i; we want to prove that T ′ = T1 · ixi ·aj ·T2 ∈ G(Θ).

Let S be a prefix of T ′. The only case that could fail is if we split between ixi and aj : if we split

before, S is also a prefix of T and has the required property; if we split after, we can split T at the

same place and use the same suffix to complete the trace. So the last remaining case is if S = T1 · ixi ,

but we already did it while proving property (3”) above.

For the second half of condition (5), assume T = T1 · ryi · aj · T2 ∈ G(Θ) with j 6= i, and let us

prove that T ′ = T1 · aj · ryi · T2 ∈ G(Θ). As is the other case, the only interesting prefix that we

need to complete is S = T1 · aj . Note that in this trace, there is a pending invocation from process i.

Let T̂ be the completion of the trace T1 · ryi · aj that is provided by the fact that T ∈ G(Θ). We can

then complete S by taking S′ = T1 · aj · ryi · T̂ ; and we easily check that (US′ , VS′) ∈ ∆.

So we have a canonical way to turn a task into a one-shot specification. There is also a map in the

other direction: from a one-shot concurrent specification σ, we can produce a task F (σ). This direction is

much easier to define, all we have to do is keep all the traces of σ that consist of a sequence of invocations

followed by a sequence of responses, and put in ∆ the corresponding pair (U, V).

Definition 2.64. Given a one-shot concurrent specification σ ⊆ T , the task F (σ) = (I,O,∆) is defined

as follows. For each trace T ∈ σ of the form T = ix1i1 · · · i
xk
ik
· ry1i1 · · · r

yk
ik

(we say that T is fully-concurrent),

we define the vectors UT (resp., VT) whose ij-th component is xj (resp., yj) and all the other components

are ⊥. Then ∆ = {(UT , VT) | T ∈ σ is fully-concurrent}, and I (resp., O) is the set of all the maximal

input (resp., output) vectors that appear in ∆.

Proposition 2.65. F (σ) is a task.

Proof. First, we justify that ∆ ⊆ ↓I × ↓O. Let (UT , VT) ∈ ∆ for some trace T . We want to show that

UT and VT are faces of maximal vectors that appear in ∆. We will find a fully-concurrent trace T ′ ∈ σ
such that UT � UT ′ and VT � VT ′ . For each process i that does not participate in T , by the receptivity

property of σ, we can add an invocation ixi at the end of T . By totality, this invocation has an appropriate

response ryi , that we add at the end of the trace. Then by applying the expansion property several times,

we can push all the new invocations to the left to obtain the trace T ′ ∈ σ, which is fully-concurrent.

We then check that the three conditions on ∆ are satisfied. ∆ always relates matching vectors because

the trace T has matching invocation and responses. For any input vector U , we can use totality of σ to

find matching responses, which shows that ∆(U) 6= ∅. Finally, given two input vectors U � U ′, and an

88

element V of ∆(U), let T be the trace witnessing that (U, V) ∈ ∆. Then, as in the first paragraph, we can

add the missing invocations by receptivity, and matching responses by totality, and get a fully-concurrent

trace by expansion. This yields a pair (U ′, V ′) ∈ ∆, with V � V ′, which is what we want.

The maps F and G are not inverse of each-other: as we stated in the introduction of the section,

one-shot objects are more expressive than tasks (an example of a simple object that cannot be expressed

as a task is exhibited in [18]). The next Theorem shows that we still have a close correspondence between

tasks and objects: F and G form a Galois connection, as represented in the following diagram.

CSpec1 Tasks

F

G

a

Given two tasks Θ = (I,O,∆) and Θ′ = (I ′, O′,∆′), we write Θ ⊆ Θ′ when ∆ ⊆ ∆′.

Theorem 2.66. The maps F and G are monotonic, and they form a Galois connection between tasks and

one-shot objects: for every task Θ and one-shot specification σ, we have

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

Moreover, the following equality holds: F ◦G(Θ) = Θ.

Proof. The monotonicity of F and G follows directly from the definitions. In the rest of the proof, we

write F (σ) = (I ′, O′,∆′).

– (⇒): Assume σ ⊆ G(Θ). Let (UT , VT) ∈ ∆′, for some fully-concurrent trace T ∈ σ. So, we also

have T ∈ G(Θ). Since T is already complete (and a prefix of itself), we obtain (UT , VT) ∈ ∆.
– (⇐): Conversely, assume F (σ) ⊆ Θ, and let T ∈ σ. Let S be a prefix of T . By prefix-closure,

S ∈ σ, and by totality, we can add responses to the pending invocations of S and get a complete

trace S′ ∈ σ. Then, using the expansion property, we can push all the invocations to the left

in order to get a trace S′′ ∈ σ, which is fully-concurrent. Moreover, Since S′′ is obtained by

reordering the actions of S′, we have US′ = US′′ and VS′ = VS′′ . By definition of F (σ), we have

(US′′ , VS′′) ∈ F (σ), so by assumption (US′ , VS′) = (US′′ , VS′′) ∈ ∆.
– From the first implication, sinceG(Θ) ⊆ G(Θ), we get F ◦G(Θ) ⊆ Θ. To prove the other inclusion,

take (U, V) ∈ ∆, and consider the associated trace T = iU · rV . We have (by construction) U = UT

and V = VT , so we just need to check that T ∈ G(Θ). So let S be a prefix of T ; we can choose T

itself as the completion of S, and by assumption we have (UT , VT) ∈ ∆.

Theorem 2.66 tells us a lot about the relationship between tasks and one-shot objects. The implication

from left to right explains in what sense G is a canonical way to turn a task into a one-shot object: G(Θ) is

the largest one-shot specification whose set of fully-concurrent traces obeys the task Θ. The fact thatG(Θ)

is the largest such specification means that it is the least restrictive one; i.e., we did not impose any other

conditions beyond what the task Θ requires. Moreover, the equality F ◦ G = id tells us that G is an

injection of tasks into one-shot objects. Thus, the objects that we are interested in are precisely the ones in

the image of G.

Definition 2.67. A task-object σ is a one-shot concurrent specification that can be written as σ = G(Θ)

for some task Θ.

89

Remark 2.68. There exist one-shot concurrent specifications that are not task-objects. An example of such

an object is the one-shot list of Example 2.57. A detailed proof of this fact can be found in [18], where it

was first remarked.

The maps F andG form a bijection between tasks and task-objects: indeed, given a task-object σ = G(Θ),

we haveG◦F (σ) = G◦F ◦G(Θ) = G(Θ) = σ. Conversely, if a one-shot object σ satisfies σ = G◦F (σ),

then it is a task-object (corresponding to the task F (σ)). Thus, we have a characterization of task-objects,

which does not refer to the notion of task: σ is a task-object iff G ◦ F (σ) = σ. In fact, since the inclusion

σ ⊆ G ◦ F (σ) holds for any one-shot object (as a consequence of Theorem 2.66), we even have the

equivalence: σ is a task-object iff G ◦ F (σ) ⊆ σ. If we reformulate this inclusion by unfolding the

definitions of F and G, we obtain a kind of closure property, in the style of Definition 2.55:

(6) Task property: for every one-shot trace T ∈ T , if every prefix S of T can be completed to a trace S′

such that expanding S′ gives a fully-concurrent trace S′′ ∈ σ, then T ∈ σ.

Then, a task-object is a set of one-shot traces that satisfies the axioms (1)− (6).

Now that we have clearly identified the notion of task-object, we will be able to formulate our

version of the asynchronous computability theorem: it says that implementing a task-object, the sense of

Definition 2.46, is the same as solving the corresponding task, in the sense of Definition 1.29.

2.4.2 Simplicial tasks

As we mentioned earlier, the notion of task of Definition 2.59 is a direct reformulation of the usual

definition that is used in the context of combinatorial topology. For the sake of completeness, we now

recall the usual definition, and explain briefly why it is the same as Definition 2.59. Recall that the set of

values is V , and n is the number of processes. Moreover, when we talk about chromatic complexes, the

underlying set of colors will be [n].

Definition 2.69. A simplicial task is a triple (I,O,Ξ), where:

– I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose vertices

are of the form (i, v) for all i ∈ [n] and v ∈ V , and which contains all the simplices that are

well-colored. I is called the input complex.
– O = (VO, SO, χO, `O) is a pure chromatic simplicial complex of dimension (n− 1), together with

a labeling `O : VO → V , such that every vertex is uniquely identified by its color and its label. O is

called the output complex.
– Ξ : I → 2O is a chromatic carrier map from I to O.

Note that there is a slight difference with Definition 1.19: as in Definition 2.59, we force the input

complex to contain every possible combination of input values, which is a bit unusual but can safely

be assumed without loss of generality (see Remark 2.60). There is a straightforward bijection between

tasks and simplicial tasks. Consider a task Θ = (I,O,∆) in the sense of Definition 2.59. A vector

U ∈ (V ∪ {⊥})n corresponds to the simplex X = {(i, Ui) | i ∈ [n] and Ui 6= ⊥}, where the vertex

(i, Ui) is colored by i and labeled by Ui. Two matching vectors correspond to simplices with the same

dimension and set of colors. A maximal vector (i.e., with no ⊥ component) corresponds to a simplex of

dimension (n− 1). Thus, the sets of maximal vectors I and O of a task correspond to the facets of the

corresponding pure simplicial complexes I and O; and their downward closures ↓I and ↓O correspond

90

to I and O. The fact that the relation ∆ ⊆ ↓ I × ↓O relates only matching vectors, along with the

non-emptiness of ∆(U), is equivalent to saying that the corresponding carrier map is rigid and chromatic.

The last remaining condition is monotonicity of ∆, which must also hold for carrier maps. With that

correspondence in mind, in the rest of the section, we will not distinguish tasks and simplicial tasks.

2.4.3 The protocol complex

As in the previous section, we recall the usual topological definition of a protocol. It is very similar to

Definition 1.25, except that we once again require the input complex to contain every possible combination

of input values.

Definition 2.70. A simplicial protocol is a triple (I,P,Ψ), where:

– I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose vertices

are of the form (i, v) for all i ∈ [n] and v ∈ V , and which contains all the simplices that are

well-colored. I is called the input complex.

– P = (VP , SP , χP , `P) is a pure chromatic simplicial complex of dimension (n− 1), together with

a labeling `P : VP → Views, where Views is an arbitrary set of views, such that every vertex is

uniquely identified by its color and its label. P is called the protocol complex.

– Ψ : I → 2P is a chromatic carrier map from I to P .

Remember that the intended meaning of Definitions 2.69 and 2.70 is the following: the simplicial protocol

(I,P,Ψ) solves the simplicial task (I,O,Ξ) if there exists a chromatic simplicial map δ : P → O such

that δ ◦Ψ is carried by Ξ. In [64], this is taken as the definition of what it means for a protocol to solve

a task. In Section 2.3.1, we have given more concrete definitions of protocols and solvability. Our goal

in this section is the following: given a concrete protocol P (as in Definition 2.42), define a simplicial

protocol (I,P,Ψ), so that the concrete definition of solvability (Definition 2.46) will agree with the

simplicial one.

Remark 2.71. In the previous section, we said that tasks and simplicial tasks are a straightforward

reformulation of one another. This is not at all the case for protocols and simplicial protocols: they

contain very different information. A protocol is comprised of all the programs that the processes run in

parallel; it allows us to reconstruct the possible executions of the programs. On the other hand, a simplicial

protocol simply contains the local views of each process at the end of each execution; but it says nothing

about the computations that occurred in order to produce these views. Defining correctly the protocol

complex P associated to a concrete protocol P is a crucial step in proving our generalized asynchronous

computability theorem.

Let Obj be the set of objects that our programs are allowed to use. Let P = (Pi)i∈[n] be a wait-free

protocol in the sense of Definition 2.42. Recall that each Pi = (Qi,⊥i, δi, τi) is the program of process i.

As before, we write A = {ixi , rxi , i(o)xi , r(o)xi | o ∈ Obj, i ∈ [n], x ∈ V} for the set of actions of the

protocol. The effect of a trace T ∈ A∗ on global states is the function denoted by ∆ : Q×A∗ → Q.

The states q ∈ Qi \ {⊥i} such that δi(q) ∈ V are called the final states of process i. Let Fi ⊆ Qi

denote the set of final states of process i. A trace T ∈ A∗ is one-shot if it contains at most one outer

invocation ixi and one outer response rxi for each process i. In particular, there is no restriction on the

number of inner actions, since the objects in Obj are not assumed to be one-shot. A one-shot trace T ∈ A∗

91

is terminating if after executing it, each process that participates in T ends in a final state. More formally,

if we write q = ∆(qinit, T), for each i such that ixi occurs in T , we must have qi ∈ Fi. Note that in a valid

terminating trace, no action rxi occurs: when a process is in a final state, the process is ready to return its

output value, but it did not return it yet.

We can now define the simplicial protocol (I,P,Ψ) associated to P .

Definition 2.72 (Simplicial protocol associated to P). The protocol complex P = (VP , SP , χP , `P)

is defined as follows. The set of views is Views =
⋃
i Fi. The vertices are of the form (i, qi) where

i ∈ [n] is a process number and qi ∈ Fi is a final state of process i. Such a vertex is colored by i

and labeled by qi. Finally, for each one-shot trace T that is valid and terminating, we get a simplex

YT = {(i, qi) | i participates in T} ∈ SP , where qi is the i-th component of ∆(qinit, T).

We now define the carrier map Ψ : I → 2P . For X ∈ I an input simplex, we let S = χI(X) be the

set of participating processes, and (vi)i∈S their input values. Then, Ψ(X) consists of all simplexes YT
where T is a valid terminating one-shot trace such that every invocation that occurs in T is of the form ivii
for some i ∈ S.

It is straightforward to see thatP is chromatic, and that Ψ is monotonic and chromatic. To check thatP
is pure of dimension (n− 1), let YT be a simplex of P . We want to extend it to an (n− 1)-dimensional

simplex. To do so, first we append at the end of the trace T invocations ixi for each process i that does not

participate in T . Since we assumed that the protocol P is wait-free, we can run each of these processes

until it reaches a final state. Thus, we get a trace T ′ that is valid and terminating, and the corresponding

simplex YT ′ is of dimension (n− 1) and contains YT . Checking that Ψ is rigid is similar.

2.4.4 A generalized asynchronous computability theorem

The asynchronous computability theorem of Herlihy and Shavit [70] states that a task Θ has a wait-free

protocol using read/write registers if and only if there exists a chromatic subdivision of the input complex,

and a chromatic simplicial map from this subdivision to the output complex, that satisfies some conditions.

That statement actually combines two claims: (a) a given protocol P using read/write registers solves the

task Θ if and only if there exists a chromatic simplicial map from the protocol complex of P to the output

complex, satisfying some conditions; and (b) to study task solvability using read/write registers, we can

restrict to a particular class of protocols (iterated immediate snapshots) whose protocol complexes are

subdivisions of the input complex.

In this section, we will prove a generalization of claim (a), which works not only for read/write

registers, but for protocols which are allowed to use any combination of arbitrary objects, as defined in

Section 2.3.1. We will not have a counterpart of claim (b), since this characterization is specific to the

particular case of protocols using read/write registers.

Let Θ = (I,O,Ξ) be a task, P = (Pi)i∈[n] a protocol, and (I,P,Ψ) its associated simplicial protocol

as described in the previous section. Notice that, since we defined the vertices of P to be pairs (i, qi)

where qi ∈ Fi is a final state of process i, there is a map δ : VP → V defined as δ(i, qi) = δi(qi), where δi
is the decision function of the program Pi.

The following Theorem gives a topological characterization of what it means for the protocol P to

implement (in the sense of Definition 2.46) the task Θ:

92

Theorem 2.73 (Generalized Asynchronous Computability Theorem). The protocol P implements the

task-object G(Θ) if and only if the map δ : VP → V induces a chromatic simplicial map δ : P → O such

that δ ◦Ψ is carried by Ξ.

Proof. In this proof, to distinguish between the execution traces of P (on the alphabet {ixi , rxi , i(o)xi , r(o)xi })
and the outer traces (on the alphabet {ixi , rxi }), we use lowercase letters t, t′, s, s′ for the former and capital

letters T, T ′, S, S′ for the latter.

(⇒): Assume that P implements the object G(Θ), i.e., every trace T ∈ JP K satisfies the conditions

of Definition 2.61. First, we want to define the map δ : VP → VO. Let (i, qi) ∈ VP be a vertex of P;

we would like to take δ(i, qi) = (i, δi(qi)), but we do not know yet that it is a vertex of O. The vertex

(i, qi) belongs to a (n− 1)-dimensional simplex Yt for some execution trace t which is valid, one-shot

and terminating. Let q = ∆(qinit, t) be the global state after executing t. In particular, the i-th component

of q is qi. For each j ∈ [n], write dj = δj(qj) the value that process j is about to decide in the trace t.

We also write vj ∈ V the input value of process j in t. Let t′ denote the trace obtained by appending

responses rdjj at the end of t. Then t′ is still a valid trace, so if we write T = π(t) its projection, we get

T ∈ JP K ⊆ G(Θ). Since T is a prefix of itself, and T is a complete trace, that means it respects the task

specification, i.e., {(j, dj) | j ∈ [n]} ∈ Ξ({(j, vj) | j ∈ [n]}). In particular, (i, di) is in the image of Ξ,

so it is a vertex of O.

The map δ : VP → VO is chromatic since it sends i-colored vertices to i-colored vertices. Let us

show that it is a simplicial map. Let Yt ∈ SP be a simplex of P . Let S ⊆ [n] be the set of processes

participating in t, then Yt is of the form Yt = {(i, qi) | i ∈ S}, and δ(Yt) = {(i, di) | i ∈ S}. As we

did in the previous paragraph, we can add responses rdii for i ∈ S at the end of the trace t, to obtain a

complete valid trace whose projection is in JP K, and thus also in G(Θ). This implies that δ(Yt) is in the

image of Ξ, so it is a simplex of O.

Finally, we need to show that δ ◦ Ψ is carried by Ξ. Let X ∈ I be an input simplex, and let

Z ∈ (δ ◦ Ψ)(X) be an output simplex. Then Z must be of the form δ(Yt) for some Yt ∈ Ψ(X).

We write S ⊆ [n] the set of participating processes of X , and (vi)i∈S their input values. So, t is

a valid terminating one-shot trace such that every invocation in t is of the form ivii for some i ∈ S.

Let S′ ⊆ S be the participating set of t. Let q = ∆(qinit, t) be the global state after executing t;

we have Yt = {(i, qi) | i ∈ S′}, and δ(Yt) = {(i, di) | i ∈ S′}. Once again, we can append

appropriate responses rdii to the trace t, and then we obtain π(t′) = T ∈ JP K ⊆ G(Θ). So, we obtain

δ(Yt) ∈ Ξ({(i, vi) | i ∈ S′}). Since {(i, vi) | i ∈ S′} ⊆ X , by monotonicity of Ξ, we finally get

δ(Yt) ∈ Ξ(X).

(⇐): Assume that the induced map δ : VP → VO defined as δ(i, qi) = (i, δi(qi)) is a chromatic

simplicial map from P to O, and that δ ◦ Ψ is carried by Ξ. We want to prove that P implements the

object G(Θ), i.e., that JP K ⊆ G(Θ). Let T ∈ JP K be a one-shot outer trace; to show that T ∈ G(Θ),

we take a prefix S of T . Since JP K is prefix-closed by Theorem 2.54 we also have S ∈ JP K; i.e., there

is an execution trace s which is valid for P and such that π(s) = S. Our first goal is to complete the

trace S, that is, find valid responses to the pending invocations of S. Since the protocol P is wait-free, we

can just run the pending processes one by one until they all reach a final state: formally, this amounts to

appending inner actions to the trace s according to its program, until a final state qi is reached. Then, we

add the appropriate response r
δi(qi)
i to obtain a trace s′, which extends s, is still valid and one-shot, and

which does not have pending invocations. The projection S′ = π(s′) ∈ JP K is an extension of S where

93

we added the responses rδi(qi)i to the pending invocations of S.

Now that we have S′, we need to prove that ZS′ ∈ Ξ(XS′), where XS′ is the input simplex defined

by XS′ = {(i, vi) | ivii occurs in S′}, and ZS′ is the output simplex ZS′ = {(i, di) | rdii occurs in S′}.
Our goal is now to decompose ZS′ as ZS′ = δ(Y) for some Y ∈ Ψ(XS′). We write s′′ for the trace

obtained by removing from s′ all the outer responses, i.e., actions of the form rdii . We claim that s′′ is still

a valid trace. Indeed, no action from process i can occur after the outer response (otherwise, s′ would

not be one-shot), and the only effect of rdii is to change the local state of i, which does not affect the

validity of the actions of other processes. Moreover, in the global state q = ∆(qinit, s
′′), every process that

participates in s′′ is in a final state, in other words, s′′ is terminating. Thus, we have a simplex Ys′′ ∈ SP
in the protocol complex, consisting of all the vertices (i, qi) where i participates in s′′. Since s′′, s′ and S′

all have the same participating set, Ys′′ ∈ Ψ(XS′). And since di = δi(qi) (because in s′′, process i is

ready to decide rdii), we have δ(Ys′′) = ZS′ . This decomposition of ZS′ shows that ZS′ ∈ δ ◦ Ψ(XS′).

Since we assumed that δ ◦Ψ is carried by Ξ, this implies ZS′ ∈ Ξ(XS′), which concludes the proof.

Despite the verbosity of the proof, nothing complicated is going on: we are just putting together all

the definitions of the chapter. In particular, the crucial definitions that allow the proof to go through are

the expansion property (5) in Definition 2.22; the map G (Definition 2.61) that characterizes the objects

that correspond to tasks; and the definition of the protocol complex P associated to a protocol P in

Section 2.4.3.

If we instantiate Theorem 2.73 with Obj containing only an iterated immediate snapshot object,

combined with the fact that immediate snapshot protocol complexes are subdivisions of the input complex,

we obtain Herlihy and Shavit’s asynchronous computability theorem for read/write registers. If our set Obj

of objects contains only linearizable objects, then we obtain Theorem 2.19, our first generalization of

the asynchronous computability theorem that we obtained in the “first approach” Section 2.1. Thus,

Theorem 2.73 subsumes both these weaker versions, since it can deal with arbitrary (not-necessarily

linearizable) objects.

In general, if we fix a particular set of objects Obj, to prove that a task cannot be solved using the

objects of Obj, one needs to find a topological invariant that holds in any protocol complex P associated

to any protocol P . This is usually where all the difficulty of the proof lies, and of course Theorem 2.73

does not help with that part. What the Theorem says is merely that solvability in the sense of protocol

complexes agrees with the more basic notion of solvability defined in Section 2.3.

Conclusion. In Sections 2.2, 2.3 and 2.4, we have extended Herlihy and Shavit’s asynchronous com-

putability theorem, which gives a topological characterization of the solvability of tasks by wait-free

protocols, not only in the context of read/write registers, but for a large class of arbitrary objects. In the

usual topological approach to fault-tolerant computability, as described for example in [64], the existence

of a simplicial map from the protocol complex to the output complex is taken as the definition of task

solvability. Thanks to Theorem 2.73, we now know that this definition is sound, in the sense that it actually

reflects our concrete understanding of what it means to solve a task. In particular, our construction of the

protocol complex in Section 2.4.3 is a valuable tool to define protocol complexes in a systematic way.

Given a particular object of interest, instead of trying to think about what the right notion of "view" should

be, we can instantiate Definition 2.72 to obtain a protocol complex, which we proved to be the correct one.

94

There are still several ways in which we could generalize this theorem. Firstly, it would be nice to

relax the “wait-free” assumption, in order to obtain a t-resilient Asynchronous Computability Theorem

for arbitrary objects, extending the work of [113] which is restricted to read/write protocols. We expect

that this should not be too difficult to do: it would mainly require some technical overhead to adapt all of

our definitions, but no conceptual difficulty should arise. A more challenging extension would be to go

beyond tasks, for example using the notion of refined task [18], which can express all one-shot objects, or

even long-lived tasks [22], which can be invoked multiple times. Doing so would probably require a truly

novel idea, since the usual notion of protocol complex is by definition “frozen in time”.

In the next section, we explore more in depth one property of our trace semantics: compositionality.

In computer science, complex programs are usually built in a modular way: smaller components are

combined to obtain more complex ones, and so on. Our point of view of “objects implementing objects”

in Definition 2.46, instead of the traditional “objects solving tasks” point of view, opens the door to such a

compositional approach.

2.5 Towards game semantics for fault-tolerant protocols

Remark 2.74. This section aims at presenting the framework of game semantics to people from the

field of distributed computability, who might not be aware of it. Thus, we do not assume any prior

knowledge of game semantics from the reader, and very limited knowledge of functional programming.

As a consequence, we do not dig very deep into the formal constructions, and instead explain things at

an intuitive level. The technical part of the section will consist mostly of definitions, reformulating the

computational model of Section 2.3 into the language of games and strategies. Finding actual applications

of this point of view to distributed computability is still work in progress.

In this section, we study the compositionality properties of the computational model that we presented

in Section 2.3, using the formalism of game semantics. To define the semantics of a protocol in Defini-

tion 2.46, we first considered execution traces with inner actions and outer actions, and then, in order to

“forget” how the protocol was implemented and see it as a black box, we removed all the inner actions.

This operation is quite reminiscent of what happens when we compose strategies in game semantics: to

compose a strategy σ : A → B with a strategy τ : B → C, we “forget” about what happens in the B

component and obtain a strategy τ ◦ σ : A→ C.

2.5.1 What is game semantics?

Originally, game semantics [75, 2] came up in the setting of sequential programs, and more precisely,

functional programming languages. These languages are characterized by their type system and the use of

higher-order functions, that is, functions that can take other functions as argument. A basic language to

study such programs is the simply-typed λ-calculus, or extensions of it such as PCF.

In PCF, there are three basic types of data: Nat, the type of natural numbers, which contains

values 0, 1, 2, . . .; Bool, the type of booleans, which contains the two values true and false; and Unit, the

unit type, which contains only one value ∗. Moreover, given two types T and U , we can create the product

type T × U , which contains pairs of elements of T and U , and the function type T → U , which contains

functions from T to U . To manipulate this data, we are allowed to use basic programming constructs,

namely, “if - then - else” statements and recursion on natural numbers.

95

For instance, we can form the type Bool× Bool→ Bool; a program of this type takes two arguments

as input, each of them a boolean, and returns a boolean. For example, the following two programs p and q

are of type Bool× Bool→ Bool. They both implement the “or” function on booleans.

let p (b1,b2) =

if (b1 == true)

then return true

else if (b2 == true)

then return true

else return false

let q (b1,b2) =

if (b1 == true)

then if (b2 == true)

then return true

else return true

else if (b2 == true)

then return true

else return false

A very simple semantics for PCF is the set-theoretic one: the types Nat, Bool and Unit are interpreted

as sets, N, {true, false} and {∗}, respectively. The type constructor T × U is interpreted as the cartesian

product, and the type T → U as the set of functions. In this set-theoretic model, the two programs p and q

are given the same interpretation: they correspond to the set-theoretic “or” function f(b1, b2) = b1 ∨ b2. It

is well known to all computer scientists that programs contain much more information than set-theoretic

functions: in computer science, notions such as algorithmic complexity or computational effects come into

play. Different kinds of semantics can put the emphasis on different aspects of programming languages.

In the case of game semantics, the notion that it aims to capture is called observational equivalence: we

view the two programs p and q above as black boxes, consider some client code that is allowed to call

these programs. Is it able to observe the difference between p and q from the outside?

The answer is yes, as long as we are considering call-by-name computation, as opposed to call-by-

value. In a call-by-name programming language, the arguments given to a function (such as b1 and b2)

are not computed before the function is called, but later, when the function is actually using its argument.

Thus, we can take the following program t of type Bool,

let t =

print("Hello World!");

return true

and use it to exhibit different behaviors for p and q. Indeed, the computation p(true,t) will not print

the message, since the second argument is never evaluated, but q(true,t) will evaluate both arguments

and print the message.

The central concept of game semantics is the notion of interaction between a program and its

environment. In the above example, the “environment” simply consists of the arguments that are given to

the program: are they accessed by the program? How many times? In what order? To be able to make

such distinctions, the programs are not interpreted as set-theoretic functions, but as sets of execution

traces. Moreover, these execution traces are viewed as plays in a two-player game, where the program,

called P (for “Player”), plays against its environment, called O (for “Opponent”). The programs will

correspond to strategies in this game, that is, sets of plays satisfying some properties.

In the picture below are depicted the plays that occur when we compute p(true,false) (depicted

on the left) and q(true,false) (depicted on the right). They are read from top to bottom, and can be

96

understood as follows. In the play on the left, the opponent starts by asking a question (written as q) to

the program: “what value do you return?”. Then, the player answers that question with another question:

“what is my first argument?”. The opponent answers “true” to this question, and thus the player can also

answer “true” to the initial question. The depicted edges are called pointers; when one of the two players

plays a move, it is directly responding to one of the previous moves from the other player, which is not

necessarily the last one. The pointers simply keep track of which moves respond to each other. In the play

on the right, the first three moves are the same, but then the player does not give his answer right away,

and asks another question: “what is my second argument?”. The opponent answers “false”, and the player

finally answers the initial question by “true”.

Bool × Bool −→ Bool

O q

P q

O true

P true

Bool × Bool −→ Bool

O q

P q

O true

P q

O false

P true

A play, as represented in the pictures above, represent single executions of the program. The program

itself is interpreted as a strategy for player P, that is, a set of plays. Intuitively, this set specifies, for every

possible sequence of moves from the opponent, what the player’s next move will be.

2.5.2 Back to our computational model

We now explain informally how game semantics relates to the computational model of Section 2.3. First,

notice that the previous section deals with sequential programs only. There exist many approaches that aim

at extending game semantics to concurrent programs [92, 93, 23]. These works usually consider a very

general setting, where an unbounded number of processes can be created and terminated at any time during

the computation. In our case, we are interested in a much simpler kind of concurrent programs: a fixed

number n of processes are run in parallel. The main thing we have to do is, given n sequential strategies

corresponding to the programs run by the processes, to find a way to make them interact in parallel. So,

we can hope to avoid many of the technical difficulties that occur in concurrent game semantics, and

instead find a simple adaptation of the usual sequential setting.

We will illustrate our idea using the example of Section 2.3.1, where two processes solve consensus

using two shared registers and one test-and-set object.

Object types. The type of an object will simply be its signature, that is, the types of the methods of the

object. For example, a read/write register has two methods, write : Nat→ Unit (which takes a natural

number as argument and does not return a value), and read : Unit → Nat (which takes no argument

and returns a natural number). The corresponding type is Register := (Nat → Unit) × (Unit → Nat).

Similarly, the type of the test-and-set object is Test-and-set := Unit→ Bool, since it takes no argument

and returns a value 0 or 1, which we identify with booleans. The type of consensus is Consensus :=

Nat→ Nat, it takes as argument the value that the process proposes, and returns the agreed-upon value.

97

Concurrent strategies. The example program of Section 2.3.1 is an implementation of a consensus

object. Moreover, this program is making use of two registers and one test-and-set object, which have been

implemented previously. This program should still work given any particular implementation of these

three objects. So, we can see it as a program of type Register × Register × Test-and-set→ Consensus,

meaning that it is parameterized by two registers and one test-and-set object, and it implements a consensus

object. This is the type of the program that is run by one single process, and we could easily interpret it as

a sequential strategy using the standard sequential framework of game semantics.

Now, our goal is to define the executions of the protocol, that is, the two programs running together

and interacting by calling the shared objects. Remember how we defined in Section 2.3.2 the set TP of

valid executions of the protocol, using so-called inner actions and outer actions. A valid execution is

represented of our consensus protocol in the picture below.

P0

P1

consensus(1) 0

consensus(0) 0

b.write(1) done

t.test&set() 1

a.read() 0

a.write(0) done

t.test&set() 0

Recall that, formally, the outer invocations and responses (in black, square brackets) are of the form ixi
and rxi , while the inner invocations and responses (colored, angle brackets) are of the form ixi (o) and rxi (o),

where i is a process number, x is an input or output value, and o is an object. So, the trace above can be

written i11 · i
write,1
1 (b) · i00 · i

write,0
0 (a) · rdone

1 (b) · · · , and so on. If we rotate the picture by 90◦, we can

view it as the following concurrent play, where time flows from top to bottom:

Register × Register × Test-and-set −→ (Consensus)P0 × (Consensus)P1

O i1

P iwrite,1

O i0

P iwrite,0

O rdone

O rdone

P i

P i

O r0

O r1

P r0

P iread

O r0

P r0

This is still a two-player game: both processes have the role of the player, with label P, while the

opponent represents the environment, with label O. The type Consensus on the right has been duplicated

98

in two components, corresponding to the two processes P0 and P1. Notice how we have removed some

informations from the invocation and response symbols. More precisely, the process number i and the

object o have been omitted in the symbols ixi , rxi , ixi (o) and rxi (o). Indeed, they can be recovered as follows.

The object o of an inner action is obtained by looking vertically in which of the components it occurs. The

process number i of an action is recovered by following the pointers upwards in order to find in which

component, (Consensus)P0 or (Consensus)P1 , the thread started.

Another thing we can remark about this play, is that what is usually called “questions” and “answers”

in game semantics corresponds to “invocations” and “responses” in our execution traces. The O/P

polarity of the moves is a bit more subtle. The player moves are the ones that correspond to actions

that the programs choose to do: invoke one of the shared objects (inner invocation), or decide on an

output value (outer response). The opponent moves are the ones coming from the environment: the

outer invocations, which give its argument to the program, and the inner responses, which depend on the

behavior of the shared objects. Notice how we no longer have an alternation between opponent and player

moves. However, we can recover this alternation if we consider only the moves coming from one of the

components (Consensus)Pi . In fact, we can decompose this concurrent play into two sequential plays,

one containing the moves of process 0, and the other containing the moves of process 1. These sequential

plays belong to the sequential strategies of the programs.

Lastly, by looking vertically at the first column (corresponding to register a), we can see how the two

processes communicate by using the shared register: first one of them writes 0, then the other reads and

obtains value 0. However, in a concurrent strategy, the player should consider every possible move from

the opponent. So, a strategy will also contain plays where the register does not behave as expected. This is

contrasted with what we did in Definition 2.44, where the specification of the objects was given in advance.

Here, if we want to take into account the fact that we actually have registers and test-and-set objects, we

need to precompose with an implementation of these objects. For instance, if we have three protocols of

type A→ Register, B → Register, and C → Test-and-set, implementing each shared object using other

objects A, B, C respectively, we obtain after composition a protocol of type A×B × C → Consensus,

implementing consensus from the three objects A, B and C.

2.5.3 A game semantics for fault-tolerant protocols

We now formalize the game model that we sketched in the previous section.

A simple programming language

First, we define formally the syntax of a toy programming language, which is powerful enough to express

the examples that we are interested in.

Types.

τ ::= Nat | Bool | Unit | τ × τ | τ → τ

Arithmetic expressions. We now fix a set Var of local variables, written as x, y, z ∈ Var. A variable

denotes a value of basic type (Unit, Bool or Nat), or a tuple of such values, which is held locally by a

process.

99

e ::= x | ∗ | true | false | 0 | 1 | 2 | . . . x ∈ Var

| e ∨ e | e ∧ e | e+ e | e× e | . . .

| 〈e, e〉 | proj1(e) | proj2(e)

An arithmetic expression is just a local computation made by some process. It can use local variables as

well as constants, and combine them using the usual operations on booleans and natural numbers.

Programs. We also fix and a set Obj of objects names, written a, b, c ∈ Obj. They denote shared

objects, whose type is usually a function type or product of functions. When it is a product of functions,

each component is called a method. A program run by one process implements all the methods of the

object that is being implemented:

P ::= method1(v) { C } v ∈ Var

method2(v) { C }

. . .

methodk(v) { C }

The body C of each method implementation is given by the following grammar:

C ::= return(e)

| x := a.calli(e); C x ∈ Var, a ∈ Obj, i ∈ N

| if e then C else C

So, a program can either:

– return a value using return(e), where e is an arithmetic expression, or

– call the i-th method of object a, with input value e, and store the result in variable x, or

– branch depending on its local state to choose the next call.

The arithmetic expressions e are allowed to use the variables that have been previously defined, as well as

the input value v of the method. Note that for simplicity we do not include while loops; this is of course

restrictive, but not necessary for the examples that we are interested in. In particular, if the object calls

always terminate, every such program is wait-free. Another simplifying assumption is that we cannot

nest object calls: we cannot write something like a.write(t.test-and-set()). Instead, we have

to separate the two object calls as follows, x := t.test-and-set(); a.write(x). This forces

a call-by-value computation of object calls, and avoids dealing with issues like the evaluation order of

arithmetic operations.

Protocol. Finally, a protocol P for a fixed number n of processes declares the types of the shared objects

a1, . . . , ak, as well as the type of the object that is being implemented, and it gives one program Pi for

100

each of the n processes.

P ::= shared a1 : τ1

. . .

shared ak : τk

implements τ

P1 ‖P2 ‖ . . . ‖Pn

Typing rules. Such a protocol P is well-typed if, in the context Γ = a1 : τ1, . . . , ak : τk, the program Pi

of each process is of type τ . The typing rules for programs are the following:

RET

Γ ` e : τ

Γ ` return(e) : τ

CALL

Γ ` a : Πiσi → τi Γ ` e : σi Γ, x : τi ` C : τ

Γ ` x := a.calli(e); C : τ

IF

Γ ` e : Bool Γ ` C1 : τ Γ ` C2 : τ

Γ ` if e then C1 else C2 : τ

OBJ

Γ, a : τ ` a : τ

PROG

Γ, v : σi ` C : τi

Γ ` methodi(v) { C } : σi → τi

The typing rules for arithmetic expressions are defined as expected.

Example 2.75. The consensus implementation of Section 2.3.1 for two processes is given by:

shared a : (Unit→ Nat)× (Nat→ Unit)

shared b : (Unit→ Nat)× (Nat→ Unit)

shared t : Unit→ Bool

implements Nat→ Nat

P0: consensus(v) {

x := a.write(v);

y := t.test-and-set(∗);
if y then

return v;

else

z := b.read(∗);
return z;

}

P1: consensus(v) {

x := b.write(v);

y := t.test-and-set(∗);
if y then

return v;

else

z := a.read(∗);
return z;

}

For readability, instead of numbering the methods, we gave them usual names: the two methods of the

objects a and b are “read” and ”write”, the only method of the object t is “test-and-set”, and the only

method of the object being implemented (let us call it c) is “consensus”. Notice however that nothing

indicates that the objects a, b, t behave like read/write registers or test-and-set objects. The only restriction

is about their types; but of course, this is far from enough to ensure that this protocol will indeed solve

consensus. If we write τa the type of object a, the type of this protocol is τa × τb × τt → τc, meaning that

101

it is an implementation of an object of type τc = Nat → Nat, which is parameterized by three shared

objects of type τa, τb, τt. The behavior of this protocol depends on a particular implementation of the

three objects that we plug into it.

Remark 2.76. This syntax is very unusual in game semantics literature, which usually prefers λ-calculus

notations. However, except for the parallel operator P1 ‖P2 ‖ . . . ‖Pn, everything else is just syntactic

sugar for usual functional programming constructions. A protocol P simply introduces object names

with their types, i.e., it is a sequence of lambda-abstractions λa1 . . . λan. Pi. In programs, the return(e)

operation would simply be written e in λ-calculus, and the x := a.calli(e);C operation corresponds to the

“let expression” let x = (proji a) e in C. From the point of view of game semantics, the main interest of

what we do in this section is the interpretation of the parallel operator.

Notice that we do not use the full power of higher-order functions: the type of programs has order 1

(functions between basic types), and the type of protocols has order 2 (functions between functions).

We now define a game semantics for these protocols, keeping in mind that we want to understand

the composition of protocols. Given a protocol of type τ → τ ′ and a protocol of type τ ′ → τ ′′, their

composition has type τ → τ ′′. Can we define its behavior in terms of the behaviors of its two components?

Sequential game semantics

First, we recall the usual definitions of arenas and strategies from game semantics. We use them to

interpret programs, that is, the sequential piece of code that is run by a single process. All the notions

defined in this section are standard, see e.g. [75] or [2] for more details.

Arenas. The games of game semantics are played on arenas. An arena defines the set of possible moves

for both players; they will be used to interpret the types of our programming language.

Definition 2.77 (Arena). An arena is a labeled oriented forest A = (M,`, λOP, λQA), where λOP :

M → {O,P} and λQA : M → {Q,A} such that:

– If m is a root, then λOP(m) = O and λQA(m) = Q,

– If m ` m′, then λOP(m) 6= λOP(m′),

– If m ` m′ and λQA(m′) = A, then λQA(m) = Q.

Elements of M are called moves, the roots are initial moves. When m ` m′, we say that m justifies m′.

If λOP(m) = P (resp., O), we say that m is a Player move (resp., Opponent move). If λQA(m) = Q

(resp., A), we say that m is a Question (resp., an Answer).

Example 2.78. We can define arenas corresponding to the basic types:

– The empty arena is written 1.

– The singleton arena with one OQ-labeled move is written 0.

– The arena B of booleans has the set of moves {q, true, false} where q is an Opponent Question,

and true and false are Player Answers such that q ` true and q ` false.

– The unit arena U has moves {q, ∗}, where q is an Opponent Question, and ∗ is a Player Answer

with q ` ∗.
– The arena N of natural numbers has moves {q} ∪ N where q is an Opponent Question, and every

n ∈ N is a Player Answer with q ` n.

102

Definition 2.79 (Product arena). The product A×B of two arenas is given by their disjoint union.

Definition 2.80 (Arrow arena). Given two arenas A and B, the arena A⇒ B is obtained by taking their

disjoint union; adding the edges m ` m′ where m and m′ are initial moves of B and A respectively; and

reversing the OP-polarity of A.

The above operations are usually sufficient to interpret λ-calculus. However, in our case, we also need

a slightly different version of the arrow, for types of order 1. Indeed, we care about how many times and

in what order a protocol is calling the shared objects; but we do not care about how many times it uses its

input value. So we define a call-by-value version of the arrow arenas for first order types. This definition

is inspired from [74], but we do not use their categorical constructions here; this can simply be seen as an

unusual interpretation of our base types, the category constructed above it is the usual call-by-name one.

Example 2.81 (Cbv arrow arena). The arena N
cbv
=⇒ N has the set of moves {0, 1} × N (i.e., two disjoint

copies ofN), where the moves of the form (0, n) are Opponent Questions, and the moves of the form (1, n)

are Player Answers. Moreover, for every n,m ∈ N, (0, n) ` (1,m).

We define similar arenas for all first order function types, for instance the arena B × N
cbv
=⇒ U has

Opponent Questions of the form (0, b, n) for b ∈ {true, false} and n ∈ N and one Player Answer, (1, ∗).

Strategies. A strategy for player P on a given arena is a set of plays, which specifies what is the player’s

response to the possible moves played by the Opponent.

Definition 2.82 (Pointed sequence). A pointed sequence on an arenaA is a pair (s, f) where s = s1 · · · sk
is a sequence of moves in A, and f : {1, . . . , k} → {0, . . . , k − 1} is a function such that:

– f(i) < i,
– if f(i) = 0, then si is an initial move,
– if f(i) = j 6= 0, then sj ` si.

When f(i) = j, we say that si points to sj or that sj justifies si in (s, f). When fp(i) = j for some

p > 0, we say that si points hereditatily to sj (or sj justifies hereditarily si) in (s, f). There is an abuse of

notation here, when we write si to refer to the indexed occurrence (i, si) of the move si at position i in s.

When manipulating these sequences, we often omit the pointers and just write s for the pointed sequence

(s, f). For example, if we write s = s′, it is implied that both the sequences and the pointers are equal.

Definition 2.83 (Play). A play on an arena A is a pointed sequence s on A that is alternating: for all i,

λOP(si) 6= λOP(si+1). The set of plays is written PA.

Given a pointed sequence s on A × B (or A ⇒ B), the restriction of s to A (resp., to B) is the

sequence s�A (resp., s�B) obtained by keeping only the moves from A (resp., from B). Note that in the

case of A⇒ B, an initial move of A points to a move of B in s, in which case, it loses its pointer in s�A.

Notice that s�A (resp., s�B) is a pointed sequence on A (resp., on B), but it is not necessarily a play.

We write s′ v s when s′ is a prefix of s (pointers included). We write s′ vP s (resp., s′ vO s) to

indicate that in addition s′ ends with a Player (resp., Opponent) move. A play that ends with a Player

move is called a P-play, and when s′ vP s, s′ is a P-prefix of s (similarly for Opponent).

Definition 2.84 (Strategy). A strategy σ on an arena A, written σ : A, is a set of P-plays on A that is

closed under P-prefix: if s′ vP s and s ∈ σ then s′ ∈ σ.

103

Definition 2.85 (Identity). We define the strategy idA : A⇒ A as follows:

idA = {s ∈ PA1⇒A2 | s is a P-play and for all s′ vP s, s′�A1
= s′�A2

}

where the indexes A1, A2 are only here to distinguish the two occurrences of A. It is easily checked

that idA is a strategy on A⇒ A.

Definition 2.86 (Interaction). Let A,B,C be arenas. An interaction u on A, B, C, written u ∈
Int(A,B,C), is a pointed sequence on the arena (A⇒ B)⇒ C such that u�A,B , u�B,C and u�A,C are

plays on A⇒ B, B ⇒ C and A⇒ C, respectively. The three restrictions have the following meaning:

– u�A,B = u�A⇒B as in the usual definition of restriction.
– u�B,C is obtained by keeping the moves from B and from C.
– u�A,C is obtained by keeping the moves from A and from C, and adding the following pointers:

whenever, in u, a move a of A points to a move b of B; and b points to a move c of C, then a points

to c in u�A,C . Note that in such a case, a, b, c are initial moves of A,B,C, which makes u�A,C a

pointed sequence on A⇒ C.

Definition 2.87 (Composition). Let σ : A ⇒ B and τ : B ⇒ C be two strategies. We define their

composition σ; τ : A⇒ C as follows (note that we write composition in the opposite order compared to

the usual set-theoretic notation, σ; τ = τ ◦ σ).

σ; τ = {u�A,C | u ∈ Int(A,B,C) and u�A,B ∈ σ and u�B,C ∈ τ}

Composition of strategies can be depicted as follows, where the “B” component of the interaction u

has been duplicated to see more clearly the two plays on A⇒ B and B ⇒ C.

A ⇒ B B ⇒ C A ⇒ C

q O O q

O q q P

P q P q

O a1 O a1

P a2 a2 O

a3 P P a3

Checking that σ; τ is indeed a strategy on A ⇒ C requires some technical machinery of game

semantics (the so-called Zipping lemma), that we do not detail here. Moreover, given strategies σ : A⇒ B,

τ : B ⇒ C and ρ : C ⇒ D, one can prove that (σ; τ); ρ = σ; (τ ; ρ), and that idA;σ = σ and σ; idB = σ.

Thus, arenas and strategies form a category. We write Str for the category whose objects are arenas and

morphisms from A to B are strategies on A⇒ B. The composition and identities are those defined above.

The product of arenas A × B it is not a cartesian product in Str, but it can be extended to a bifunctor

× : Str× Str→ Str. The empty arena 1 is the terminal object of Str, and the neutral element of the

product operation ×. The arrow A ⇒ B can also be extended to a bifunctor⇒ : Strop × Str → Str,

and for every arena A, the functor (A⇒ −) is right-adjoint to (−×A). In short:

Theorem 2.88 ([75]). The category Str is a symmetric closed monoidal category.

104

Remark 2.89. This structure makes it a suitable model to interpret λ-calculus (i.e., sequential programs).

However, not all strategies correspond to the interpretation of some program! One can characterize exactly

the set of strategies that correspond to some program: is a strategy is deterministic, total, well-bracketed

and innocent, then it is the interpretation of some λ-term. In fact, we can do even better than this

completeness result, which is called full abstraction: two λ-terms correspond to the same strategy if and

only if they are observationally equivalent. We refer the reader to [75] for the definitions of all those

notions, and the proofs of those theorems.

Concurrent game semantics

We know how to interpret sequential programs as strategies. To interpret protocols, we need a notion of

concurrent strategy, which will correspond to n sequential strategies “running in parallel”. Let n ∈ N be

some fixed number of processes. An integer p ∈ [n] is called a process number. Given an arena A, we

write TA := An for the n-ary product of A with itself. When we want to distinguish the components

of TA, we write them TA = A0 × · · · ×An−1. A concurrent strategy will be defined on arenas of the

form A⇒ TB, whose intended meaning is to represent n processes executing a function of type A⇒ B

concurrently, where A is the type of some shared object.

Definition 2.90 (p-Restriction). Let s be a pointed sequence on A ⇒ TB and p ∈ [n] be a process

number. The restriction of s to process p, written s�p, is obtained by keeping only the moves that are

hereditarily justified by a move of Bp. Notice that s�p is a pointed sequence on A⇒ B.

Definition 2.91 (Concurrent play). A concurrent play on A⇒ TB is a pointed sequence s such that for

all p ∈ [n], s�p is a play.

Recall from Definition 2.83 that a play is simply a pointed sequence that is alternating, i.e., the

moves alternate between Opponent and Player. Since we remarked that s�p is already a pointed sequence,

Definition 2.91 amounts to requiring that each s�p be alternating. Note that a concurrent play is not in

general a play, since it might not be globally alternating.

Definition 2.92 (Concurrent strategy). A concurrent strategy on A ⇒ TB is a set σ of concurrent

P-plays which is closed under P-prefix and such that σ�p is a strategy on A⇒ B for all p ∈ [n], where

σ�p = {s�p | s ∈ σ and the last move of s is hereditarily justified by a move of Bp}.

Definition 2.93 (Return). Let A be an arena. The concurrent strategy ηA : A⇒ TA is defined as follows:

ηA = {s | ∀p ∈ [n], s�p ∈ idA}

Proposition 2.94. ηA is a concurrent strategy.

Proof. Every pointed sequence s ∈ ηA is a concurrent play, since each s�p ∈ idA is a play. Moreover, ηA
is closed under P-prefix since idA is closed under P-prefix. Finally, one can check that ηA�p = idA for

all p, so it is indeed a strategy on A⇒ A.

Definition 2.95 (Bind). Let σ : A ⇒ TB be a concurrent strategy. We define the concurrent strategy

σ∗ : TA⇒ TB as

σ∗ = {s∗ | s ∈ σ}

105

where s∗ is defined by induction on the length of s as follows. If s is a pointed sequence on A⇒ TB, s∗

will be a pointed sequence on TA⇒ TB.

– if s = ε then s∗ = ε,

– if s = s′m where m is a move of Bp, then s∗ = (s′)∗m,

– if s = s′m where m is a move of A that is hereditarily justified by a move in Bp, then s∗ = (s′)∗m,

where m is played in Ap.

Proposition 2.96. σ∗ is a concurrent strategy.

Proof. It can be checked by an easy induction that if s is a concurrent play on A ⇒ TB, then s∗ is a

concurrent play on TA⇒ TB. Another induction shows that a prefix of s∗ is of the form (s′)∗, where s′

is a prefix of s. Thus, since σ is closed under P-prefix, so is σ∗. Finally, in σ∗�p, which is a set of

concurrent plays on TA⇒ B, every move played in TA is actually played in Ap, by definition of the s∗

operation. We can check that σ∗�p : TA ⇒ B is just a copy of σ�p : A ⇒ B, where all the moves on

the left of the arrow are played in Ap (formally, we first need to prove by induction that s∗�p = (s�p)
∗).

Since σ�p is a strategy, then σ∗�p is also a strategy.

Definition 2.97 (Concurrent interaction). A concurrent interaction u on A, TB, TC, written u ∈
CInt(A, TB, TC) is a pointed sequence on the arena (A⇒ TB)⇒ TC such that u�A,TB , u�TB,TC and

u�A,TC are concurrent plays on A⇒ TB, TB ⇒ TC and A⇒ TC, respectively.

Definition 2.98 (Concurrent composition). Given two concurrent strategies σ : A⇒ TB and τ : B ⇒
TC, their composition σ; τ : A⇒ TC is defined as follows:

σ; τ = {u�A,TC | u ∈ CInt(A, TB, TC) and u�A,TB ∈ σ and u�TB,TC ∈ τ∗}

Claim 2.99. σ; τ is a concurrent strategy on A⇒ TC.

Proving this claim formally would require some technical game semantics machinery that we did not

introduce. However, as we explain later in Remark 2.103, this is an instance of a more general construction,

namely the composition in a Kleisli category, which should prove this claim as a consequence of the usual

composition in Str. We simply admit this claim for now.

Proposition 2.100. We have a category CStr whose objects are arenas and morphisms from A to B

are concurrent strategies on A ⇒ TB. The identity morphisms are given by ηA : A ⇒ TA, and the

composition is the one defined above.

In order to interpret our programming language in this category, we need one more operation,

corresponding to running n sequential programs in parallel. Suppose given n strategies (σp)p∈[n] on the

arena A⇒ B. Then we can interleave them to get a concurrent strategy on A⇒ TB:

Definition 2.101 (Shuffling). Let σp : A⇒ B in Str for all p ∈ [n]. We define the concurrent strategy

F (σ0, . . . , σn−1) : A⇒ TB as follows:

F (σ0, . . . , σn−1) = {s pointed sequence on A⇒ TB | ∀p ∈ [n], s�p ∈ σp}

Proposition 2.102. F (σ0, . . . , σn−1) is a concurrent strategy on A⇒ TB.

106

Proof. The pointed sequences s ∈ F (σ0, . . . , σn−1) are concurrent plays since each component s�p ∈ σp
is a play. Moreover, F (σ0, . . . , σn−1) is closed under P-prefix since each of the strategies σp is closed

under P-prefix. Finally, we can show that F (σ0, . . . , σn−1)�p = σp, so it is a strategy on A⇒ B.

We can finally give a semantics to our protocols. Let P be a protocol, i.e., of the form

P = shared a1 : τ1, . . . , ak : τk

implements τ

P0 ‖P1 ‖ . . . ‖Pn−1

The usual sequential game semantics allow us to associate a strategy in the category Str with each

program Pi, which we write JPiK : Jτ1K × . . . × JτkK ⇒ JτK. Then, the semantics of P is JPK :=

F (JP0K, . . . , JPn−1K), which is a concurrent strategy on the arena Jτ1K× . . .× JτkK⇒ T JτK. Note that

each object type τi is interpreted using the call-by-value arrow, for instance, the interpretation of the type

of read/write registers is J(Unit→ Nat)× (Nat→ Unit)K := (U
cbv
=⇒ N)× (N

cbv
=⇒ U).

Remark 2.103. As our notations and terminology suggests, these definitions of concurrent strategies are

not just an ad-hoc constructions, but an instantiation of Moggi’s categorical semantics for computational

effects using monads [95, 96]. The operator TA = An on arenas can actually be extended to a monad

in the category of strategies, with ηA and σ∗ playing the role of the return and bind operations. The

composition of the category CStr is defined similarly to the one of the Kleisli category over T ; however,

one must be a bit careful. In the Kleili category StrT , the strategies are globally alternating, which is

stronger than the component-wise alternation that we impose on CStr. In fact, what we must do is

define the monad T in the category NStr of non-alternating strategies. Then, CStr can be defined as a

subcategory of the Kleisli category NStrT . This more categorical approach will be developed in a future

paper.

Future work. This game semantics approach for fault-tolerant protocols is still work in progress. We

have the basic definitions in place, but many questions remain to be investigated.

First, the link with our trace-based computational model of Sections 2.2 and 2.3 should be clarified.

The notion of concurrent specifications of Definition 2.22 (say, with input and output values V = N)

should closely correspond to concurrent strategies on the arena 1⇒ T (N
cbv
=⇒ N), with one additional

restriction which is the expansion property. Then, in Section 2.3.2, in order to define the semantics of

protocols, we first define the set TP of valid executions of our protocol P , by considering traces with

inner and outer actions. This set TP should correspond to a strict subset of the concurrent strategy

σ∗P : TA⇒ TB, where σP : A⇒ TB is the concurrent strategy associated to P in our game semantics.

Indeed, in TP we are assuming that the shared objects behave according to their specification, whereas

in game semantics they are unspecified. Finally, in Definition 2.46, we remove the inner actions from

TP to obtains the semantics JPK of the protocol, which is a concurrent specification. In game semantics,

this corresponds to precomposing the strategy σP : A⇒ TB by a strategy τ : 1⇒ TA, specifying the

behavior of the object. We obtain a strategy τ ;σP : 1⇒ TB, which should correspond to JP K.

As we mentioned in Remark 2.89, an important question in game semantics is whether our model

is fully abstract. In our case, a natural idea seems to be to extend the usual conditions on strategies

(deterministic, total, innocent, well-bracketed, . . .) to concurrent strategies in a component-wise manner.

107

Namely, a concurrent strategy σ : A⇒ TB is deterministic / total / innocent if for every process p, the

p-restriction σ�p is deterministic / total / innocent / etc. Is this sufficient to get completeness and full

abstraction? It might not be the case, since some of these notions are known to be problematic in the

presence of asynchrony [92].

Finally, an important result of game semantics that might be useful in the context of fault-tolerant

distributed computing is the characterization of strategies with memory [1]. By weakening the innocence

condition, one can identify precisely the strategies that arise when a sequential program has access to

a global memory. Our goal would be to transpose this result to the setting of concurrent processes

communicating through shared read/write registers. Having an exact characterization of the strategies that

can be produced in this setting might give us new tools to analyze the solvability of concurrent tasks in a

read/write shared memory setting.

108

CHAPTER 3

Epistemic logic semantics

From the very beginning of the topological approach for fault-tolerant computability, the notions of

knowledge and indistinguishability have been used to give an intuitive explanation of the constructions

at hand. A very revealing example is the 1993 paper of Saks and Zaharoglou is titled: “Wait-free K-set

Agreement is Impossible: The Topology of Public Knowledge”. Indeed, in the simplicial complex which is

nowadays known as the protocol complex, the facets are interpreted as executions of the protocol, while

vertices represent the local view of a single process in such an execution. When a given vertex belongs

to two facets, this means that the corresponding process cannot distinguish between the two executions.

In other words, the process does not know which of the two executions occurred, and therefore it must

choose the same decision value in both situations.

These notions of indistinguishability and knowledge are central in the field of epistemic logic, the

modal logic of knowledge. Epistemic logic is concerned with reasoning about systems where a finite

number of agents can know facts about the world, and about what the other agents know. The usual

model for multi-agent epistemic logic is based on a Kripke frame, which is a graph whose vertices

represent the possible worlds, and edges are labeled with agents that do not distinguish between two

worlds. Such a Kripke model represents the knowledge of the agents about a given situation. Our central

result is the following observation: the information contained in a Kripke model can be reformulated

using the formalism of chromatic simplicial complexes, to obtain a new kind of model for epistemic logic

called simplicial models. Epistemic logic formulas can be interpreted in those simplicial models, while

preserving the nice properties of Kripke models, such as soundness and completeness with respect to (a

slightly modified version of) the axiomatic system S5n. Moreover, we prove that these simplicial models

are very closely related to the usual Kripke models: there is an equivalence of categories between the

two structures. Thus, we are merely uncovering the higher-dimensional topological information which is

already present in Kripke models.

To explain the interest of this new kind of models, we use them to study fault-tolerant distributed

computability, because its intimate relation with topology is well understood [64]. However, epistemic

logic is a static study of an epistemic situation; while distributed computing is concerned with how the

knowledge of the processes evolves during the computation. The field which studies how the knowledge

of the agents evolve when communication occurs is called Dynamic Epistemic Logic (DEL) [7, 27]. More

precisely, the variant of DEL that we use is based on the notion of action model [8, 6], which specifies the

communicative actions that might occur, along with their effect on the system. The key notion of DEL

is the so-called product-update operation: given an initial Kripke model and an action model, we can

109

combine them to obtain a new Kripke model, representing the knowledge of the agents after an action has

occurred. We extend the equivalence between simplicial models and Kripke models to the context of DEL,

by defining a simplicial version the product-update operation. When modeling distributed computing, this

product-update operation will play the role of the carrier maps that we used in Chapter 1.

This connection between epistemic logic and distributed computability has important consequences

for both fields. From the point of view of epistemic logic, uncovering the higher-dimensional topological

structure hidden in Kripke models allows us to transport methods that have been used successfully in

distributed computability [64] to the realm of DEL. In particular, the knowledge gained by applying an

action model is intimately related to how it modifies the topology of the initial model. Conversely, the

benefit of this approach in distributed computing is in providing a formal epistemic logic semantics to

task solvability. The abstract topological arguments that are used to prove impossibility results can now

be given a concrete interpretation in terms of how much knowledge is necessary to solve a task.

Most of the results presented in this chapter were published in two papers: GandALF 2018 [53] and

DaLi 2019 [51]. Some preliminary versions of these findings appear in two Technical Reports [46, 47].

Related work. Work on knowledge and distributed systems is of course one of the main inspirations

of the present work [106, 58], especially where connectedness [17, 19, 29] is used. To the best of our

knowledge, no previous work uses Dynamic Epistemic Logic [7, 27] to study such systems, and neither on

directly connecting the combinatorial topological setting of [64] with Kripke models. One approach worth

mentioning is a categorical connection between Kripke frames and geometry [104, 103] that appears in the

context of multiagent systems. In [72], the author proposes a variant of (non-dynamic) epistemic logic for

a restricted form of wait-free task specification that cannot account for important tasks such as consensus.

Similar to [97], we show that even though a problem may not explicitly mention the agents’ knowledge, it

can in fact be restated as knowledge gain requirements. Nevertheless, we exploit the “runs and systems"

framework in an orthogonal way, and the knowledge requirements we obtain are about inputs; common

knowledge in the case of consensus, but other forms of nested knowledge for other tasks. In contrast, the

knowledge of precondition principle of [97] implies that common knowledge is a necessary condition for

performing simultaneous actions [58].

DEL is often thought of as inherently being capable of modeling only agents that are synchronous, but

as discussed in [25], this is not the case. More recently, [78] proposes a variant of public announcement

logic for asynchronous systems that introduces two different modal operators for sending and receiving

messages. A similar approach of asynchronous announcement has been taken in [116], furthermore

showing that on multi-agent epistemic models, each formula in asynchronous announcement logic is

equivalent to a formula in epistemic logic. We show here that DEL can naturally model the knowledge in

an asynchronous distributed system, at least as far as it is concerned with task solvability.

Finally, note that our formulation of carrier maps as products has been partially observed in [59].

Plan. The chapter is organized as follows. We start by recalling in Section 3.1 the usual notion of model

for epistemic logic, based on Kripke frames. Section 3.2 introduces our new notion of model based on

chromatic simplicial complexes, and prove that they are equivalent to Kripke models. In Section 3.3, we

define the distributed computing notions of protocols, tasks and solvability using our DEL framework.

Then, in Section 3.4, we analyze several examples of tasks in order to showcase the benefits of the DEL

approach to study the solvability of concurrent tasks. In Section 3.5 we study yet another example, but this

110

time we show that our proof method is unable to prove the unsolvability of the task. We find a workaround

to this issue in Section 3.6, and discuss its relevance. Finally in Section 3.7, we conclude and discuss

future research directions.

3.1 Preliminaries

We start by recalling the usual way in which (dynamic) epistemic logic is studied in the literature, using

Kripke models. Therefore, this section only contains standard definitions of epistemic logic, which can

be found for example in [7, 27]. For a very thorough study of modal logics in general, see [11]. We will

revisit those notions in Section 3.2 using a topological approach.

3.1.1 Syntax

Epistemic logic is the modal logic of knowledge. Its syntax is based on standard propositional logic, to

which we add modal operators. The most important one is the knowledge operator, which is written

Kaϕ and read “a knows ϕ”. It corresponds to the usual � operator from modal logic, and is moreover

parameterized by an agent a, taken from some finite set. Intuitively, the agents are entities which are able

to know things about the world, and about what the other agents know.

Let At be a countable set of atomic propositions and Ag a finite set of agents. The language of

formulas LK(Ag,At), or just LK if Ag and At are implicit, is generated by the following BNF grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ p ∈ At, a ∈ Ag

As usual, can derive other logical connectives from these, such as the disjunction ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

and the implication ϕ ⇒ ψ := ¬ϕ ∨ ψ. For a set A ⊆ Ag of agents, we define the everybody knows

operator as EAϕ =
∧
a∈AKaϕ. For example, E{a,b}ϕ means that “both a and b know ϕ”. The dual of

the Ka operator, ¬Ka¬ϕ, intuitively means that “a considers it possible that ϕ”; but we do not introduce

a notation for it since we do not use it in the rest of the chapter.

Another important operator of epistemic logic is called common knowledge. It is not definable using

the language LK , so we need to extend it. We denote by LCK the language generated by the grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CAϕ p ∈ At, a ∈ Ag, A ⊆ Ag

For a group of agents A ⊆ Ag, common knowledge of ϕ among A is, semantically, the greatest solution

of the equation CAϕ = ϕ ∧EA(CAϕ). In other words, the formula CAϕ of LCK behaves like an infinite

formula CAϕ = ϕ ∧EAϕ ∧EAEAϕ ∧ . . . saying that the formula ϕ is true and moreover, among the set

of agents A, everyone knows ϕ, and everyone knows that everyone knows ϕ, and so on.

The logic S5n

Studying the proof theory of epistemic logic is not at all our main interest; but since we briefly mention

some soundness and completeness result for S5n in Section 3.2.3, let us define that logic. The deduction

rules of S5n are all the standard rules of propositional logic, along with the following axiom schemas:

– Axiom K: Ka(ϕ⇒ ψ)⇒ (Kaϕ⇒ Kaψ),

– Axiom T , or axiom of truth: Kaϕ⇒ ϕ,

111

– Axiom 5, or negative introspection: ¬Kaϕ⇒ Ka¬Kaϕ,

– Rule of necessitation: if ϕ is derivable without assumption, then so is Kaϕ.

Note that the rule of necessitation is not the axiom schema ϕ ⇒ Kaϕ (“the agents know everything

which is true”); it merely says that the agents are “rational”, in the sense that they are able to make logical

deductions. The deduction rules of S5n are summed up below. For the propositional fragment, we use

the rules of natural deduction, written using the sequent notation Γ ` ϕ, where Γ is a set of formulas.

Intuitively, such a sequent means that the formula ϕ is provable using the set of hypothesis Γ.

HYP

Γ, ϕ ` ϕ

EX FALSO

Γ ` ⊥

Γ ` ϕ

¬INTRO

Γ, ϕ ` ⊥

Γ ` ¬ϕ

¬ELIM

Γ ` ϕ ∧ ¬ϕ

Γ ` ⊥

∧INTRO

Γ ` ϕ Γ ` ψ

Γ ` ϕ ∧ ψ

∧ELIMi

Γ ` ϕ1 ∧ ϕ2

Γ ` ϕi

EM
Γ ` ¬¬ϕ

Γ ` ϕ

K
Γ ` Ka(ϕ⇒ ψ) Γ ` Kaϕ

Γ ` Kaψ

T
Γ ` Kaϕ

Γ ` ϕ

5
Γ ` ¬Kaϕ

Γ ` Ka¬Kaϕ

NEC

` ϕ

` Kaϕ

Note that the standard rules for the derived connectives, such as modus ponens, are admissible in this

system. Another important rule which is also admissible in this system (cf. [110]) is the so-called Axiom 4,

which says that Kaϕ⇒ KaKaϕ.

MODUS PONENS

Γ ` ϕ⇒ ψ Γ ` ϕ

Γ ` ψ
====================

4
Γ ` Kaϕ

Γ ` KaKaϕ
===========

If we include the common knowledge operator, the corresponding logic is called S5Cn. It is obtained

by adding to S5n the following deduction rules:

– Axiom K for CA: CA(ϕ⇒ ψ)⇒ (CAϕ⇒ CAψ),

– Mix axiom: CAϕ⇒ (ϕ ∧ EACAϕ),

– Induction axiom: CA(ϕ⇒ EAϕ)⇒ (ϕ⇒ CAϕ),

– Necessitation of CA: if ϕ is derivable without assumption, then so is CAϕ.

3.1.2 Kripke semantics

Kripke frames. Modal logics are usually interpreted using variants of Kripke frames, that is, sets of

possible worlds equipped with a binary relation. Different flavors of modal logic can be modeled by

imposing various conditions on this binary relation. In the case of multi-agent epistemic logic S5n, the

relevant notion of model is based on Kripke frames with one binary relation for each agent, and such that

each of them is an equivalence relation. Since it is the only kind of frame that we will use, we simply call

them “Kripke frames”.

Definition 3.1. A Kripke frameM = 〈W, (∼a)a∈Ag〉 over a set Ag of agents consists of a set of worldsW

and a family of equivalence relations onW , written∼a∈W×W for every a ∈ Ag. Two worlds v, w ∈W
such that v ∼a w are said to be indistinguishable by a. When the set of agents is clear from the context,

we usually write M = 〈W,∼〉.

112

A Kripke frame is proper if any two worlds can be distinguished by at least one agent. Thus, being

proper means that the intersection of all equivalence relations ∼a is the identity; in other words, the

distributed knowledge (see e.g. [106]) of all the agents together is enough to identify a world uniquely. In

the remainder of the chapter, we will focus on proper frames. This is not done without loss of generality;

the consequences of this assumption will be discussed later on. Let M = 〈W,∼〉 and M ′ = 〈W ′,∼′〉 be

two Kripke frames. A morphism from M to M ′ is a function f from W to W ′ such that for all v, w ∈W ,

for all a ∈ Ag, v ∼a w implies f(v) ∼′a f(w). We write KAg for the category of proper Kripke frames,

with morphisms of Kripke frames as arrows.

Kripke models. To get a notion of model, we simply decorate each world with a set of atomic proposi-

tions, which correspond to the propositions which are true in this particular world.

Definition 3.2. A Kripke model M = 〈W,∼, L〉 consists of a Kripke frame 〈W,∼〉 and a labeling

L : W →P(At). Intuitively, L(w) is the set of atomic propositions that are true in the world w.

A Kripke model is proper if the underlying Kripke frame is proper. Let M = 〈W,∼, L〉 and

M ′ = 〈W ′,∼′, L′〉 be two Kripke models on the same set At of atomic propositions. A morphism of

Kripke models f : M →M ′ is a morphism of the underlying Kripke frames such that L′(f(s)) = L(s)

for every world w in W . We write KMAg,At for the category of proper Kripke models with such

morphisms.

An epistemic logic formula ϕ ∈ LCK(Ag,At) is interpreted in one world of a Kripke model. We

write M,w |= ϕ to denote that the formula ϕ is true in the world w of the Kripke model M .

Definition 3.3. Given a Kripke model M = 〈W,∼, L〉 and a world w ∈ W , we define the truth of a

formula ϕ ∈ LCK(Ag,At) in the world w by induction on ϕ as follows.

M,w |= p if p ∈ L(w)

M,w |= ¬ϕ if M,w 6|= ϕ

M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ

M,w |= Kaϕ if for all w′ ∈W,w ∼a w′ implies M,w′ |= ϕ

M,w |= CAϕ if for all w′ ∈W in the A-connected component of w, M,w′ |= ϕ

Here, by “A-connected component”, we mean that w and w′ are connected through a finite sequence of

worlds w ∼a1 w1 ∼a2 · · · ∼ak wk ∼ak+1
w′, where ai ∈ A for every agent ai in the sequence.

In the previous definition, the first three cases are just Tarski’s usual definition of truth for propositional

logic. The fourth case is the most interesting one: it says that an agent a ∈ Ag knows a formula ϕ in some

world w whenever that formula is true in every possible world w′ which is indistinguishable from w by

that agent. Finally, the last case, for common knowledge, is obtained by iterating the previous one any

number of times. If M,w |= ϕ holds for every world w ∈ W , we write M |= ϕ; and we write |= ϕ if

M |= ϕ holds for every Kripke model M .

Example 3.4. Consider the following scenario. There are three agents, a, b, and c, and a deck of three

cards, {1, 2, 3}. Each agent is dealt a card from the deck, face down, and then the agents are allowed

to look at the value of their own card. Let us describe the Kripke model M = 〈W,∼, L〉 representing

that situation. There are six possible worlds, corresponding to the six possible assignments of cards to

113

agents. We write the set of worlds W = {123, 132, 213, 231, 312, 321}, where the three digits correspond

to the card given to a, b, c, respectively. The indistinguishability relation models the fact that an agent

only knows its own card: thus, worlds where the first digit are the same are indistinguishable for agent a,

i.e., 123 ∼a 132 and 213 ∼a 231 and 312 ∼a 321; and similarly for ∼b and ∼c, using the second and

third digits. We choose the set of atomic propositions At = {hasi(x) | i ∈ {1, 2, 3} and x ∈ {a, b, c}}.
Intuitively, the proposition hasi(x) means that agent x has card i. The worlds are labeled by atomic

propositions as expected: for example, L(123) = {has1(a), has2(b), has3(c)}.
This Kripke model is represented below as a graph, where the worlds are the vertices, and the ∼

relations are represented as labeled edges. The labeling of atomic propositions is not depicted.

321

123 132

312

213231

b

a

c

b

a

c

a

c

b

For example, in the world 123, the formulas has1(a) and Ka(has1(a)) are true; the formula Kb(has1(a))

is false; the formula Ka¬Kb(has1(a)) is true; the formula Ka(has2(b) ∨ has3(b)) is true; and the formula

C{a,b,c}(has1(a) ∨ has1(b) ∨ has1(c)) is true.

It is well-known that the axiom systems S5n and S5Cn are sound and complete for the languages LK
and LCK , with respect to the class of Kripke models [27], i.e.,

Theorem 3.5 (Soundness and completeness). For every formula ϕ ∈ LK(Ag,At), we have

|= ϕ ⇐⇒ `S5n ϕ

and for every formula ϕ ∈ LCK(Ag,At),

|= ϕ ⇐⇒ `S5Cn ϕ

3.1.3 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) [7, 27] is a family of modal logics which study how an epistemic model

changes when the agents learn new information about the world. The syntax of epistemic logic is enriched

by a new modal operator [α]ϕ, which expresses that the formula ϕ is true after some action α has occurred.

An action can be thought of as an announcement made by the environment, which is not necessarily

public, in the sense that not all agents receive these announcements. Semantically, to determine whether

the formula [α]ϕ is true in some world w of a Kripke model M , we construct a new Kripke model M [α]

and world w[α], representing the new knowledge of the agents after the action has occurred, and we

investigate whether ϕ is true in this new model. There are many variants of DEL, depending on what kind

of actions we want to consider: public announcements, communications between agents with various

degrees of privacy, lying, forgetting, and so on. One variant of DEL which can express various complex

epistemic interactions is the one based on action models [6]. An action model is a relational structure that

114

can be used to describe a variety of informational actions. This action model describes all the possible

actions that might happen, as well as how they affect the different agents.

We do not introduce formally the syntax and semantics of DEL formulas, because we will not be using

them. In fact, the key notion of DEL that we are interested in is the so-called product-update operation:

given an epistemic model M and an action model A, the product update M [A] is a new model which

describes all the new possible worlds after an action from A has occurred in M . Suppose fixed a set Ag

of agents and a set At of atomic propositions.

Definition 3.6. An action model is a structure A = 〈T,∼, pre〉, where T is a set of actions, such

that for each a ∈ Ag, ∼a is an equivalence relation on T called the indistinguishability relation, and

pre : T → LK(Ag,At) is a function that assigns a precondition formula pre(t) to each action t ∈ T .

Intuitively, given an initial model M and an action t ∈ T , the role of the precondition formula

pre(t) ∈ LK(Ag,At) is to select a subset of the worlds of M , which consists of the worlds where pre(t)

is true. These worlds are the ones where the action t is allowed to occur. Moreover, some agent a may not

be able to distinguish some actions t and t′; in which case, if action t occurs, the agent a only learns the

fact that one action in the ∼a-equivalence class of t has occurred.

Definition 3.7 (Product update). Let M = 〈W,∼, L〉 be an initial Kripke model, and A = 〈T,∼, pre〉 an

action model. The product-update model M [A] is defined as M [A] = 〈W [A],∼[A], L[A]〉, where each

world of W [A] is a pair (w, t) with w ∈W, t ∈ T such that pre(t) holds in w, i.e., M,w |= pre(t). Then,

we define (w, t) ∼[A]
a (w′, t′) whenever both w ∼a w′ and t ∼a t′. The valuation L[A] at a pair (w, t) is

just as it was at w, i.e., L[A]((w, t)) = L(w).

It is easily shown that ∼[A] is an equivalence relation, and therefore M [A] is a Kripke model.

Intuitively, the world (w, t) of M [A] represents the situation where we started from the world w of M

and the action t occurred. In order to be able to distinguish between two such worlds (w, t) and (w′, t′),

an agent must be able to either distinguish the world w from w′, or to distinguish the action t from t′.

Example 3.8. We start from the initial Kripke model M of Example 3.4, with three agents Ag = {a, b, c}
and three cards {1, 2, 3}. Let us model the situation where agent a publicly reveals its card to the others.

There are three possible actions: a reveals that it has card 1; a reveals that it has card 2; and a reveals that

it has card 3. We name these three actions t1, t2 and t3, and let T = {t1, t2, t3}. Since the announcement

is public, everyone is able to distinguish between the actions. So, we let ∼x be the identity relation for all

x ∈ Ag. Finally, the preconditions indicate that a can reveal only its own card: pre(t1) = has1(a), and

similarly for t2 and t3. If we write A = 〈T,∼, pre〉, the product update model M [A] is depicted below.

(321, t3)

(123, t1) (132, t1)

(312, t3)

(213, t2)(231, t2)

a

a

a

Assume that we started in the world 123 ofM , and action t1 occurred; then we arrive in the world (123, t1)

of M [A]. In this world, the formula E{b,c}(has1(a)∧ has2(b)∧ has3(c)) is true, that is, both b and c know

115

all the cards of the other agents. The agent a still does not know the cards of the others (Ka has2(b) is

false), but it did learn some new information: for instance, now the formula KaKb has1(a) is true.

Example 3.9. We once again start from the same initial model M of Example 3.4, but now agent a reveals

its card privately to agent b. Agent c sees the communication happen, but does not see the card being

revealed. The action model A = 〈T,∼, pre〉 is represented below, on the left. The three actions t1, t2, t3
are the same as in the previous example, with the same preconditions, but now agent c cannot distinguish

between them.

t1

t2

t3

c c

c

Action model A

(321, t3)

(123, t1) (132, t1)

(312, t3)

(213, t2)(231, t2)

a

a

a

c

c c

Product update model M [A]

If we start once again in the world 123 and action t1 occurs, we can see that agent c has learned something

from this interaction. Indeed, the formula Kc(has1(a) ⇒ Kb has1(a)) is true in the world (123, t1)

of M [A], whereas it was false in the world 123 of M .

Example 3.10. To model a situation where a reveals its card to b in a non-public way, such that agent c

considers it possible that nothing happened, we can proceed as follows. We add one more action, which

means intuitively that nothing happened. So, the set of actions is T = {t1, t2, t3, n}. The agent c cannot

distinguish between any of those actions; and the agents a and b can distinguish between all of them. The

precondition of the action n is a tautology: so, n can happen in any world.

The product update model M [A] has 12 possible worlds. It contains a copy of M (containing the

worlds of the form (w, n)), a copy of the product update model of Example 3.9 (containing the worlds

of the form (w, ti)), and some c-labeled edges between the two copies. It can be checked that in the

world (123, t1) of this model, the agent c has learned nothing: the true formulas of the form Kc ϕ are the

same as in M .

3.2 Simplicial complex models for Dynamic Epistemic Logic

We describe here a new kind of model for epistemic logic, based on chromatic simplicial complexes.

We will show that these simplicial models are very closely related to the usual Kripke models: there

is an equivalence of categories between the two structures. This means that our models are merely

a reformulation of Kripke models using a different formalism. The geometric nature of simplicial

complexes allows us to consider higher-dimensional topological properties of our models, and investigate

their meaning in terms of knowledge. Of course, the idea of using simplicial complexes comes from the

topological approach to distributed computability, presented in Chapter 1. The link between DEL and

distributed computing will be developed in the next sections.

We begin in Section 3.2.1 by defining our notion of simplicial models for epistemic logic and the

associated semantics. We prove the equivalence of categories between simplicial models and Kripke

models in Section 3.2.2. This equivalence works under a locality restriction on Kripke models, but as

116

we show in Section 3.2.4, this assumption can be lifted for finite models. In Section 3.2.3 we show that

our class of models is sound and complete w.r.t. the logics S5n and S5Cn. Finally, in Section 3.2.5, we

define a simplicial product update operation, allowing us to use our simplicial models in the context of

DEL.

3.2.1 Simplicial models

Recall from Section 1.2 the notions of chromatic simplicial complexes and chromatic simplicial maps. In

the following, we work with n+ 1 agents, and write Ag = {a0, . . . , an} for the set of agents. From now

on, the agents will sometimes be regarded as colors.

For technical reasons, we restrict to models where all the atomic propositions are saying something

about some local value held by one particular agent. All the examples that we are interested in will fit in

that framework (that was for example the case in Example 3.4). Let V be some countable set of values,

and At = {pa,x | a ∈ Ag, x ∈ V} be the set of atomic propositions. Intuitively, pa,x is true if agent a

holds the value x. In all our examples, an agent will hold exactly one value, but we do not enforce that in

general. We write Ata for the atomic propositions concerning agent a. Thus, At =
⋃
a∈Ag Ata.

Definition 3.11. A simplicial model M = 〈V, S, χ, `〉 consists of a pure chromatic simplicial complex

〈V, S, χ〉 of dimension n, colored by the agents, equipped with a labeling ` : V →P(At) that associates

with each vertex v ∈ V a set of atomic propositions concerning agent χ(v), i.e., such that `(v) ⊆ Atχ(v).

Given a simplex X ∈ S, we write `(X) =
⋃
v∈X `(v). A morphism of simplicial models f : M →

M ′ is a chromatic simplicial map that preserves the labeling: `′(f(v)) = `(v). We denote by SMAg,At

the category of simplicial models over the set of agents Ag and atomic propositions At. Intuitively, each

facet (i.e., n-simplex) of M corresponds to one possible world of the model. This facet has n+ 1 vertices,

one for each agent, so that whenever an agent cannot distinguish between two worlds, the two facets will

be glued along the corresponding vertices. In the following, F(M) denotes the set of facets of M .

Given a simplicial model M , the truth of an epistemic formula is defined in one facet X ∈ F(M).

The following definition is a direct translation of Definition 3.3, under the equivalence between simplicial

models and Kripke models which will be explained in Section 3.2.2, Theorem 3.20.

Definition 3.12. The truth of a formula ϕ ∈ LCK(Ag,At) in some epistemic state (M,X) with M =

〈V, S, χ, `〉 a simplicial model and X ∈ F(M) a facet of M , is written M,X |= ϕ. We define it by

induction on ϕ as follows.

M,X |= p if p ∈ `(X)

M,X |= ¬ϕ if M,X 6|= ϕ

M,X |= ϕ ∧ ψ if M,X |= ϕ and M,X |= ψ

M,X |= Kaϕ if for all Y ∈ F(C), a ∈ χ(X ∩ Y) implies M,Y |= ϕ

M,X |= CAϕ if for all Y ∈ F(C) in the A-connected component of X , M,Y |= ϕ

Here, by “A-connected component”, we mean that X and Y are connected through a finite sequence of

facets X = X0, X1, . . . , Xk = Y , where for all i, there is an agent a ∈ A such that a ∈ χ(Xi ∩Xi+1).

Example 3.13. We now model the epistemic situation of Example 3.4 as a simplicial model. The three

agents will now be called Ag = {black , gray ,white}, and represented as colors on the pictures. The

simplicial model M = 〈V, S, χ, `〉 is defined as follows.

117

– There are 9 vertices, one for each pair of agent and card, i.e., V = Ag × {1, 2, 3}.
– There are six facets, corresponding to the six ways to distribute one card to each agent. The set S of

simplices consists of all the faces of these facets.
– The vertex (a, i) ∈ V is colored by a and labeled by {hasi(a)}.

This simplicial complex is represented below (right). In the planar drawing, vertices that appear several

times with the same color and same card should be identified. To visualize the real simplicial model, one

should fold each pair of opposite triangles towards the inside, to join the two vertices with the same card

and color. For comparison, the Kripke model of Example 3.4 is represented on the left, with renamed

agents.

321

123 132

312

213231

gray

black

white

gray

black

white

black

white

gray

3

2

1

3

2

1

2

1

3

3 3

3

Example 3.14. We now consider the same situation as in the previous example, but now there are four

possible cards {1, 2, 3, 4}. The three agents black , gray and white are given one card each from the deck,

and the remaining card is kept hidden. So, each agent knows only its own card. A planar representation of

the resulting simplicial model is depicted below, on the left. As before, some vertices have been duplicated

and should be identified. In fact, the two arrows A and B indicate how the edges should be glued together.

This gluing diagram is well known to topologists: what we obtain is a triangulated torus.

1 4 1 4 1 4 1

3 2 3 2 3 2 3

1 4 1 4 1 4 1

A

A

B

B

The following lemma is a classic result of modal logics, saying that morphisms of simplicial models

cannot “gain knowledge about the world”. This will be useful in Section 3.3.3 when we formulate the

solvability of a task as the existence of some morphism.

Lemma 3.15 (knowledge gain). Consider simplicial models M = 〈V, S, χ, `〉 and M ′ = 〈V ′, S′, χ′, `′〉,
and a morphism f : M → M ′. Let X ∈ F(M) be a facet of M , a an agent, and ϕ ∈ LCK(Ag,At) a

“positive” formula, i.e. which does not contain negations except, possibly, in front of atomic propositions.

Then, M ′, f(X) |= ϕ implies M,X |= ϕ.

Proof. We proceed by induction on ϕ. First, for p an atomic proposition, since morphisms preserves the

valuation `, we have M ′, f(Y) |= p iff M,Y |= p. Thus the theorem is true for (possibly negated) atomic

propositions. The case of the conjunction follows trivially from the induction hypothesis.

118

Suppose now that M ′, f(X) |= Kaϕ. In order to show M,X |= Kaϕ, assume that a ∈ χ(X ∩ Y)

for some facet Y , and let us prove M,Y |= ϕ. Let v be the a-colored vertex in X ∩ Y . Then f(v) ∈
f(X) ∩ f(Y) and χ(f(v)) = a. So a ∈ χ(f(X) ∩ f(Y)) and thus M ′, f(Y) |= ϕ. By induction

hypothesis, we obtain M,Y |= ϕ. Finally, suppose that M ′, f(X) |= CAϕ. We want to show that

M,X |= CAϕ, i.e., for every Y reachable from X following a sequence of simplexes sharing a A-colored

vertex, M,Y |= ϕ. By the same reasoning as in the Ka case, f(Y) is A-reachable from f(X), so

M ′, f(Y) |= ϕ, and thus M,Y |= ϕ.

The restriction on ϕ forbids formulas saying something about what an agent does not know. Indeed,

one can “gain” the knowledge that some agent does not know something; but this is not relevant information

for solving the tasks that we have in mind.

3.2.2 Equivalence between simplicial and Kripke models

In this section, we prove the equivalence between Kripke models and simplicial models. In fact, this will

require an additional assumption on Kripke models (namely, that they are local). But before we turn

to models, we can first forget about the atomic propositions and compare Kripke frames and chromatic

simplicial complexes. In this case, the equivalence between the two structures does not require any extra

assumption.

Kripke frames and chromatic simplicial complexes

Let Ag = {a0, . . . , an} be a set of n+ 1 agents. Recall that KAg denotes the category of proper Kripke

frames, with morphisms of Kripke frames as arrows. Let SAg be the category of pure n-dimensional

chromatic simplicial complexes colored by Ag, with chromatic simplicial maps for morphisms. The

following theorem states that we can canonically associate a proper Kripke frame with a pure chromatic

simplicial complex, and vice versa. In fact, this correspondence extends to morphisms, and thus we have

an equivalence of categories, meaning that the two structures contain the same information.

Theorem 3.16. SAg and KAg are equivalent categories.

Proof. We construct functors F : SAg → KAg and G : KAg → SAg as follows.

Let C = 〈V, S, χ〉 be a pure chromatic simplicial complex on the set of agents Ag. Its associated

Kripke frame is F (C) = 〈W,∼〉, where W is the set of facets of C, and the equivalence relation ∼a, for

each a ∈ Ag, is generated by the relations X ∼a Y (for X and Y facets of C) if a ∈ χ(X ∩ Y), that is,

if X and Y share an a-colored vertex.

For a morphism f : C → D in SAg, we define F (f) : F (C) → F (D) which takes a facet X of C

to its image f(X), which is a facet of D since f is a chromatic map. Assume X and Y are facets of C

such that X ∼a Y in F (C), that is, a ∈ χ(X ∩ Y). So there is a vertex v ∈ V such that v ∈ X ∩ Y
and χ(v) = a. Then f(v) ∈ f(X) ∩ f(Y) and χ(f(v)) = a, so a ∈ χ(f(X) ∩ f(Y)). Therefore,

f(X) ∼a f(Y), and F (f) is a morphism of Kripke frames.

Conversely, consider a Kripke frame M = 〈W,∼〉 on the set of agents Ag = {a0, . . . , an}. Given

an agent a ∈ Ag and a world w ∈ W , we write [w]a for the ∼a-equivalence class of w, and W/∼a for

the set of all equivalence classes of ∼a. We define G(M) = 〈V, S, χ〉 as follows. Its set of vertices is

defined as V = {(a,E) | a ∈ Ag, E ∈W/∼a}. A vertex (a,E) ∈ V is colored by the first component,

119

i.e., χ(a,E) = a. For each world w ∈W , we have one n-simplex Xw = {(a0, [w]a0), . . . , (an, [w]an)}.
Then, the set S of simplices of G(M) contains all the faces of these simplices. By definition, it is pure and

n-dimensional. Notice that since the Kripke frame M is proper, all the simplices (Xw)w∈W are distinct,

so there is a bijection between W and the facets of G(M).

Now let f : M → N be a morphism in KAg. We define G(f) : G(M)→ G(N) that maps a vertex

(a, [w]a) of G(M) to the vertex (a, [f(w)]a) of G(N). It is easily checked that G(f) is a chromatic

simplicial map: a facet Xw of G(M) is sent to G(f)(Xw) = {(a0, [f(w)]a0), . . . , (an, [f(w)]an)},
which is a facet of G(N) by definition. Thus, a face of Xw is sent to a face of G(f)(Xw).

Consider now a Kripke frame M = 〈W,∼〉 in KAg with agent set Ag. FG(M) is the Kripke frame

N = 〈T,∼′〉 such that T is the set of facets ofG(M). But we have seen above that the facetsXw ofG(M)

are in bijection with the worlds of W . Finally, in FG(M), Xw ∼′ai Xw′ if and only if ai ∈ χ(Xw ∩Xw′),

where χ is the coloring, in G(M), of Xw and Xw′ which are facets of G(M). But ai ∈ χ(Xw ∩Xw′)

means that there is some vertex (ai, E) which belongs both to Xw and Xw′ . So, w and w′ belong to the

same equivalence class E, that is, w ∼ai w′. This proves that FG(M) and M are isomorphic.

Conversely, let C = 〈V, S, χ〉 ∈ SAg be a pure chromatic simplicial complex. Given a vertex v ∈ V
colored by ai, we denote by v̂ the set of all the facets of C which contain v. By definition, v̂ is an

equivalence class of the relation ∼ai in the Kripke frame F (C). Therefore, the pair f(v) := (ai, v̂) is a

vertex of GF (C). It is easy to check that the map f is a bijection between the vertices of C and those

of GF (C). Moreover, the facets of GF (C) are of the form Xw, where w is a world of F (C), that is, a

facet of C. So, we have a bijection between the facets of C and those of GF (C). This bijection is given

precisely by f . Indeed, a facet Y = {v0, . . . , vn} of C is sent to f(Y) = {(a0, v̂0), . . . , (an, v̂n)}. But

since each vertex vi ∈ Y , we have v̂i = [Y]ai , and therefore f(Y) = XY . Hence C and GF (C) are

isomorphic and therefore, SAg and KAg are equivalent categories.

Remark 3.17. A more categorical definition of the simplicial complex G(M) associated to a Kripke

frame M is the following. Let ∆Ag be the pure n-dimensional chromatic simplicial complex consisting of

just one facet, colored by Ag. We define G(M) as a quotient of the coproduct of W -many copies of ∆Ag,

G(M) :=

(∐
w∈W

∆Ag

)
/R

where the equivalence relation R is defined by vwi Rv
w′
i iff w ∼ai w′, where vwi denotes the ai-colored

vertex of the w-th copy of ∆Ag. Intuitively, what this means is that we take one n-simplex for each

w ∈ W , and glue them together according to the indistiguishability relation. Taking a quotient in the

category of simplicial complexes simply amounts to taking equivalence classes as vertices, like we did in

the proof of Theorem 3.16.

Example 3.18. The picture below shows a Kripke frame (left) and its associated chromatic simplicial

complex (right). The three agents, named black , gray ,white, are represented as colors on the vertices

of the simplicial complex. The three worlds of the Kripke frame correspond to the three triangles (i.e.,

2-dimensional simplexes) of the simplicial complex. The two worlds indistinguishable by agent black ,

are glued along their black vertex; the two worlds indistinguishable by agents gray and white are glued

along the gray-and-white edge.

120

gray ,white black

F

G

Kripke models and simplicial models

Local Kripke models. As in the case of simplicial models, we fix the set of atomic propositions

At = {pa,x | a ∈ Ag, x ∈ V}, and for a given agent a, Ata = {pa,x | x ∈ V}. A Kripke model

M = 〈W,∼, L〉 is local if for every agent a ∈ Ag, w ∼a w′ implies L(w) ∩Ata = L(w′) ∩Ata, i.e., an

agent always knows its own values. We write KMloc
Ag,At for the category of local proper Kripke models.

Remark 3.19. It is unusual in the literature to consider classes of Kripke models with this kind of semantic

restriction. Most of the time, the restrictions are on the Kripke frame, and once a class of frames is chosen,

any labeling of atomic propositions is allowed. One notable occurrence of this is the notion of hypercube

system [89], which is closely related to our locality assumption. Hypercube systems are special cases of

interpreted systems [106], which are used to model knowledge in distributed computing.

We can now extend the two maps F and G of Theorem 3.16 to an equivalence between simplicial

models and local proper Kripke models.

Theorem 3.20. SMAg,At and KMloc
Ag,At are equivalent categories.

Proof. We describe the functors F : SM→ KMloc and G : KMloc → SM. On the underlying Kripke

frame and simplicial complex, they act the same as in the proof of Theorem 3.16.

Given a simplicial model M = 〈V, S, χ, `〉, we associate the Kripke model F (M) = 〈F(M),∼, L〉
where the labeling L of a facet X ∈ F(M) is given by L(X) =

⋃
v∈X `(v). This Kripke model is local

since X ∼a Y means that X and Y share an a-colored vertex v, so L(X) ∩Ata = L(Y) ∩Ata = `(v).

Conversely, given a Kripke model M = 〈W,∼, L〉, the underlying simplicial complex of G(M) has

vertices of the form (a, [w]a) where a is an agent and [w]a is the equivalence class of w for the relation

∼a. We label this vertex (which is colored by a) by `(a, [w]a) = L(w) ∩ Ata. This is well defined

because two vertices (a, [w]a) and (a, [w′]a) are identified whenever w ∼a w′. Since M is local, we have

L(w) ∩Ata = L(w′) ∩Ata, and the labeling ` does not depend on the choice of w.

The action of F and G on morphisms is the same as in Theorem 3.16. It is easy to check that the

additional properties of morphisms between models are verified. Checking that FG(M) ' M and

GF (M) 'M also works the same as in the previous theorem.

Example 3.21. The figure below shows the binary input complex and its associated Kripke model, for 2

and 3 agents. Each agent is given a binary value 0 or 1, but does not know which value has been given to

other agents. So, every possible combination of 0’s and 1’s is a possible world.

In the Kripke model, the agents are called b, g, w (short for black , gray and white), and the labeling

L of the possible worlds is represented as a sequence of values, e.g., 101, representing the values given to

the agents b, g, w (in that order). In the 3-agents case, the labels of the dotted edges have been omitted to

avoid overloading the picture, as well as other edges that can be deduced by transitivity.

121

In the simplicial model, agents are represented as colors (black, gray, and white). The labeling ` is

represented as a single value in a vertex, e.g., “1” in a gray vertex means that agent g has value 1. The

possible worlds correspond to edges in the 2-agents case, and triangles in the 3-agents case.

01 0 1

00 11

10 0 1

b

w b

w

111

011101

001

110

010100

000

gwbw

gw bw

bg bw

bg

gw

bg

It is well known in the context of distributed computing [64] that the binary input simplicial complex for

n+ 1 agents is a n-dimensional sphere. In epistemic logic, this is an example of a hypercube system [89].

We can show that our simplicial definition of truth (Definition 3.12) agrees with the usual one

(Definition 3.3) on the corresponding Kripke model. To distinguish the two, we write them |=S and |=K
in the next proposition.

Proposition 3.22. Given a simplicial model M and a facet X , M,X |=S ϕ iff F (M), X |=K ϕ.

Conversely, given a local proper Kripke model N and world w, N,w |=K ϕ iff G(N), Xw |=S ϕ, where

Xw is the facet of G(N) defined in the proof of Theorem 3.16.

Proof. The first claim is proved by a straightforward induction on the formula ϕ. The second claim

reduces to the first one by applying Theorem 3.20, since N ' FG(N).

3.2.3 Soundness and completeness

It is well-known that the axiom system S5n is sound and complete for LK with respect to the class of

Kripke models [27]. Since we restrict here to local Kripke models, we need to add the following axiom

(or axiom schema, if V is infinite), saying that every agent knows which values it holds:

Loc =
∧

a∈A,x∈V
Ka(pa,x) ∨Ka(¬pa,x)

Remark 3.23. Note that a similar axiomatization has been considered in [89] to study hypercube systems,

also axiomatized by a formula depending on atoms (and not just on the underlying frame structure). In

their case, the axiom that they introduce is even stronger than ours, saying that an agent knows its own

values, but also that it knows only its value. These formulas depending on atoms are rather rare in the

literature, but can also be found in distributed computing related epistemic logics, where for example

public announcements can be lost during transmission [12].

Proposition 3.24. The axiom system S5n + Loc is sound and complete for the language LK w.r.t. the

class of local proper Kripke models.

Proof. We adapt the proof of [27] for S5n, which works for non-necessarily local Kripke models.

Soundness: If ϕ is provable in S5n + Loc, then it is true in every world of every proper local Kripke

model. It is well known that all the deduction rules of S5n are admissible in all Kripke models; we only

have to check that local Kripke models moreover satisfy the Loc axiom, which is straightforward.

122

Completeness: If ϕ is true in every proper local Kripke model, then it is provable. The usual proof for

S5n [27] proceeds by contraposition: assuming ϕ is not provable, we construct a model in which ϕ is

false. This model is called the canonical model.

A set Γ of formulas is consistent if Γ 6`S5n+Loc ⊥, and it is maximal if there is no greater consistent

set Γ′) Γ. The canonical model M c is defined as M c = 〈Sc,∼c, Lc〉, where:

– Sc = {Γ | Γ is a consistent and maximal set of formulas}

– Γ ∼ca ∆ iff {Kaϕ | Kaϕ ∈ Γ} = {Kaϕ | Kaϕ ∈ ∆}

– Lc(Γ) = Γ ∩At

The usual machinery on the canonical model shows that if ϕ is not provable in S5n + Loc, then there

is Γ such that M c,Γ 6|= ϕ. We only have to check that M c is proper and local. First notice that if Γ

is consistent and maximal, then pa,x ∈ Γ ⇔ Ka(pa,x) ∈ Γ. The right-to-left direction follows from

the truth axiom Kaϕ ⇒ ϕ. For the converse, assume pa,x ∈ Γ and Ka(pa,x) /∈ Γ. Then we must have

Ka(¬pa,x) ∈ Γ because of the Loc axiom, which implies ¬pa,x ∈ Γ, and thus Γ would be inconsistent.

M c is local: assume Γ ∼ca ∆, we show that Lc(Γ) ∩ Ata = Lc(∆) ∩ Ata. Indeed, pa,x ∈ Γ ⇔
Ka(pa,x) ∈ Γ⇔ Ka(pa,x) ∈ ∆⇔ pa,x ∈ ∆.

M c is proper: assume that for all a, Γ ∼ca ∆. Then we show by a straightforward induction on ϕ that

ϕ ∈ Γ⇔ ϕ ∈ ∆, i.e., Γ = ∆.

Remark 3.25. Notice that we could have omitted the “proper” assumption: S5n + Loc is also sound and

complete w.r.t. the class of local Kripke models. The proof is the same as for Proposition 3.24, without

the last line.

Corollary 3.26. The axiom system S5n +Loc is sound and complete w.r.t. the class of simplicial models.

Proof. Using Proposition 3.22, we can now transpose Proposition 3.24 to simplicial models. Suppose that

a formula ϕ is true for every local proper Kripke model and any world. Then given a simplicial model M

and facet X , since by assumption F (M), X |=K ϕ, we also have M,X |=S ϕ by Proposition 3.22. So ϕ

is true in every simplicial model. Similarly, the converse also holds.

Remark 3.27. When we include common knowledge in our formulas, the proof of soundness and

completeness of S5Cn w.r.t. the class of Kripke models [27] is very similar to the one for S5n. It seems

that it can be adapted to account for the locality assumption and the Loc axiom, but there are some

technical details in the proof of completeness that we have not worked out completely yet.

The proof of soundness can be adapted straightforwardly, since the rules of S5Cn are known to be

admissible in all Kripke models, and moreover the Loc axiom is admissible in the local Kripke models.

For completeness, due to some technical difficulties, it is not possible to use infinite maximal consistent

sets of formulas, because the system S5Cn is not compact. So, instead, given the formula ϕ that we are

interested in, we construct a model based on maximal consistent sets for a finite fragment cl(ϕ) of the

language LCK , called the closure of ϕ. Then, the canonical model for cl(ϕ) is defined as in the proof of

Proposition 3.24. As before, all we have to show is that this canonical model is local (and proper), but in

fact this might not be the case. One way to fix it seems to be to extend the definition of cl(ϕ), to say that

if an atom pa,x ∈ cl(ϕ), then Ka pa,x ∈ cl(ϕ), and similarly for negated atoms.

123

3.2.4 Relaxing the locality condition

Let us assume we are given a Kripke model, and we want to understand it geometrically. Theorem 3.20

gives us a way to translate a Kripke model into a simplicial model, with two restrictions: the original

model must be proper and local. Being proper is not a very stong requirement, since many practical

situations usually produce proper Kripke frames. However, the locality condition might seem quite

restrictive. Indeed, we can think of many situations where some properties of the worlds do not take the

form of a value held by one of the agents.

For instance, in Example 3.14, we could have wanted an atomic proposition representing the value of

the remaining card that was not dealt to any of the agents. We cannot assign the hidden card to one of the

agents, because none of them knows what its value is. Thus, this is a non-local situation. However, in this

particular example, we did not need an atomic proposition for the hidden card, because this information

would be redundant: we can recover it from the values of the cards that were dealt to the agents.

In this section, we will show that it is always possible to do this trick. Starting with a (proper) non-local

Kripke model M , we will construct a local Kripke model M loc (with a new set of atomic propositions),

such that every formula ϕ on M can be translated to an equivalent formula ϕloc on M loc.

In this section only, At will denote an arbitrary set of atomic propositions. Let M = 〈W,∼, L〉 be a

proper Kripke model on At. For each agent a ∈ Ag, we write Xa = W
/
∼a for the set of equivalence

classes of ∼a. For w ∈ W , we write [w]a ∈ Xa the equivalence class of w. Then we take one atomic

proposition symbol for each agent and equivalence class, yielding a new set of atomic propositions Atloc:

Atloc = {Ea,x | a ∈ Ag and x ∈ Xa}

We now define a Kripke model M loc = 〈W,∼, Lloc〉 on Atloc, with the same underlying Kripke frame

〈W,∼〉 as M , and the labeling Lloc : W →P(Atloc) is defined as Lloc(w) = {Ea,[w]a | a ∈ Ag}.

Proposition 3.28. The Kripke model M loc is proper and local.

Proof. It is proper since it has the same underlying Kripke frame as M , which is proper. To check locality,

suppose w ∼a w′. Then Lloc(w) ∩Atloc
a = {Ea,[w]a} = Lloc(w′) ∩Atloc

a , since [w]a = [w′]a.

We now want to translate every formula ϕ ∈ LCK(At) to a formula ϕloc ∈ LCK(Atloc), such that

for every world w ∈ W , M,w |= ϕ iff M loc, w |= ϕloc. First, remark that, since M is proper, every

world w ∈ W is uniquely determined by the set of equivalence relations {[w]a | a ∈ Ag}. Thus, we

can translate every atomic proposition p ∈ At as follows. Let Vp = {w ∈W | p ∈ L(w)} be the set of

worlds where p is true in M . We then define ploc =
∨
w∈Vp

∧
a∈Ag Ea,[w]a . The above remark says that,

in M loc, the formula
∧
a∈Ag Ea,[w]a is true exactly in the world w. So, the formula ploc is true exactly in

the worlds of Vp, i.e., M,w |= p iff M loc, w |= ploc. It is now straightforward to extend this translation to

every formula ϕ ∈ LCK(At): we just replace every occurrence of an atomic proposition p by ploc. This

gives us a formula ϕloc ∈ LCK(Atloc), and by a trivial induction we get:

Theorem 3.29. For every w ∈W , M,w |= ϕ iff M loc, w |= ϕloc.

Therefore, through this translation, even the non-local Kripke models can be interpreted geometrically.

The only condition which is really relevant is that the underlying Kripke frame must be proper.

124

3.2.5 A simplicial product update model

Our notion of simplicial model allows us to interpret formulas of epistemic logic LCK . In order to interpret

dynamic epistemic logic, we need to define the product-update operation on simplicial models. Of course,

one way to do it would be, given a simplicial model M , to transform it into a Kripke model F (M) using

the equivalence of Section 3.2.2, apply the usual product-update construction to get F (M)[A], and then

transform the result into a simplicial model again, which gives G(F (M)[A]). This last step is possible

only if the product-update model F (M)[A] is local and proper, which is the case as soon as A is proper:

Proposition 3.30. Let M be a local proper Kripke model and A = 〈T,∼, pre〉 a proper action model,

then M [A] is proper and local.

Proof. M [A] is proper: let (w, t) and (w′, t′) be two distinct worlds of M [A]. Then either w 6= w′ or

t 6= t′, and in both cases, since M and A are proper, at least one agent can distinguish between the two.

Now, M [A] is local: suppose (w, t) ∼[A]
a (w′, t′). Then in particular w ∼a w′ and since M is local,

L(w) ∩Ata = L(w′) ∩Ata. The same goes for L[A] since it just copies L.

Instead of using G(F (M)[A]), which is rather cumbersome, we give an explicit construction of a

simplicial model M [A], where M is a simplicial model and A and action model. We call this the “hybrid”

product-update operation. We also describe a fully simplicial version, where the action model A is also

given as a simplicial complex. Finally, we prove that these three versions of the product-update model

yield the same result.

The hybrid product-update. We now define a variant of the product-update, where we start with a

simplicial model M and a usual action model A; and the product-update model M [A] that we obtain at

the end should also be a simplicial model. To understand the following definitions, the reader should keep

in mind the translation between Kripke models and simplicial models (see Theorem 3.20).

Intuitively, the facets of M [A] should correspond to pairs (X, t) where X ∈ F(M) is a world of M

and t ∈ T is an action of A, such that M,X |= pre(t). Moreover, two such facets (X, t) and (Y, t′)

should be glued along their a-colored vertex whenever a ∈ χ(X ∩ Y) and t ∼a t′.

Definition 3.31 (Hybrid product-update). Let M = 〈V, S, χ, `〉 be a simplicial model, and A = 〈T,∼
, pre〉 be a proper action model. The hybrid product-update model M [A] = 〈V [A], S[A], χ[A], `[A]〉
is defined as follows. The vertices V [A] are pairs (v,E) where v ∈ V is a vertex of M ; E is an

equivalence class of ∼χ(v); and v belongs to some facet X ∈ F(M) such that there exists t ∈ E such that

M,X |= pre(t). Such a vertex keeps the color and labeling of its first component: χ[A](v,E) = χ(v)

and `[A](v,E) = `(v). For each pair (X, t) such that M,X |= pre(t), where X = {v0, . . . , vn} is a

facet of M and t ∈ T , we get a facet of M [A] defined as {(v0, [t]χ(v0)), . . . , (vn, [t]χ(vn))}. The set of

simplices S[A] is the set of all their faces.

Example 3.32. Below is depicted an example with three agents, where M consists of two worlds X and

Y , and A has two actions t1 and t2. The gray agent is the only one which cannot distinguish between the

two actions. The precondition pre(t1) is true in both X and Y , but pre(t2) is true only in Y .

125

X Y

M

t1

t2

gray

A

X, t1 Y, t1 Y, t2

M [A]

The advantage of this “hybrid” product update is that it mimics closely the classic definition; thus,

it should be easier to understand for readers already familiar with DEL. In the following, we define yet

another product update operation, where both M and A are simplicial. This will help us uncover the

geometric structure of this operation.

The fully simplicial product-update. We can extend the translation of DEL into simplicial complexes

by noticing that the action model A = 〈T,∼, pre〉 merely consists of a Kripke frame 〈T,∼〉 along with

precondition formulas. By applying Theorem 3.16 to the underlying Kripke frame, we obtain a simplicial

counterpart of action models.

Definition 3.33 (Simplicial action model). A simplicial action model 〈VT , ST , χT , pre〉 consists of a

pure chromatic simplicial complex T = 〈VT , ST , χT 〉, where the facets F(T) represent communicative

actions, and pre : F(T) → LCK(Ag,At) assigns to each facet X ∈ F(T) a precondition formula in

LCK .

Before defining the corresponding product-update operation, we first need to define the cartesian

products in the category of chromatic simplicial complexes.

Definition 3.34 (Cartesian product in SAg). Given two pure chromatic simplicial complexes of dimen-

sion n, C = 〈VC , SC , χC〉 and T = 〈VT , ST , χT 〉, the cartesian product C × T is the following pure

chromatic simplicial complex of dimension n. Its vertices are of the form (u, v) with u ∈ VC and

v ∈ VT such that χC(u) = χT (v); the color of (u, v) is χ(u, v) := χC(u) = χT (v). Its simplexes are

of the form X × Y = {(u0, v0), . . . , (uk, vk)} where X = {u0, . . . , uk} ∈ C, Y = {v0, . . . , vk} ∈ T ,

and χ(ui) = χ(vi).

Definition 3.35 (Simplicial product-update). Given a simplicial model M = 〈V, S, χ, `〉, and a sim-

plicial action model A = 〈VT , ST , χT , pre〉, we define the simplicial product-update model M [A] =

〈V [A], S[A], χ[A], `[A]〉 as a simplicial model whose underlying simplicial complex is a sub-complex of

the cartesian product C × T , induced by all the facets of the form X × Y such that M,X |= pre(Y). The

valuation ` : V [A]→P(At) at a pair (u, v) is just as it was at u, i.e., `[A](u, v) := `(u).

Recall from Theorem 3.20 the two functors F and G that define an equivalence of categories between

simplicial models and Kripke models. We have a similar correspondence between action models and

simplicial action models, which we still write F and G. On the underlying Kripke frame and simplicial

complex they are the same as before; and the precondition of an action point is just copied to the

corresponding facet. Proposition 3.36 says that the “hybrid” product update and the “fully simplicial” one

give the same result.

126

Proposition 3.36. Let M be a simplicial model, and A a proper action model. G(A) is the associated

simplicial action model. Then the simplicial models M [A] and M [G(A)] are isomorphic.

Proof. By definition of the hybrid product update M [A], its vertices are of the form (u,E) where u is a

vertex of M and E an equivalence class of ∼χ(u). On the other hand, the vertices of the product update

M [G(A)] are of the form (u, v) where u is a vertex of M and v a vertex of G(A). But by definition of G

(see the proof of Theorem 3.16), v corresponds precisely to an equivalence class of ∼χ(u). This gives

us a bijection between the vertices of M [A] and those of M [G(A)]. There remains to check that both

directions of the bijection are actually simplicial maps, which is straightforward.

The next proposition says that the usual product update operation agrees with the simplicial one:

Proposition 3.37. Consider a simplicial modelM and simplicial action modelA, and their corresponding

Kripke model F (M) and action model F (A). Then, the Kripke models F (M [A]) and F (M)[F (A)] are

isomorphic. The same is true for G, starting with a Kripke model M and action model A.

Proof. The main observation is that both constructions of product update model rely on a notion of

cartesian product (in the category of pure chromatic simplicial complexes for M [A], and in the category

of Kripke frames for F (M)[F (A)]). These are both cartesian products in the categorical sense, therefore

they are preserved by the functor F because it is part of an equivalence of category: given C and T the

underlying chromatic simplicial complexes ofM andA respectively, we have F (C×T) ' F (C)×F (T).

Intuitively, a world of F (C × T) is a facet of C × T of the form X × Y , which is entirely determined by

the two facets X ∈ F (C) and Y ∈ F (T).

Then, M [A] is defined as the sub-complex of C × T consisting of all facets X × Y such that pre(Y)

holds in X , that is, M,X |=S pre(Y). On the other hand, F (M)[F (A)] is defined as the sub-frame of

F (C)×F (T) consisting of all worlds (X,Y) such that pre(Y) holds inX , that is, F (M), X |=K pre(Y).

By Proposition 3.22, these two conditions are equivalent, so the underlying Kripke frames of F (M [A])

and F (M)[F (A)] are isomorphic. Moreover, in both cases, the labeling L of atomic propositions is just

copied from the first component, so they are also isomorphic as Kripke models.

As a direct consequence of Propositions 3.37 and 3.36, we get the equivalence between the hybrid

product update M [A] and the construction G(F (M)[A]) mentioned in the beginning of the section:

Proposition 3.38. Given a simplicial model M and an action model A, we have G(F (M)[A]) 'M [A].

Proof. By the second part of Proposition 3.37, applied using the Kripke model F (M) and the action model

A, we get G(F (M)[A]) ' GF (M)[G(A)]. Using the fact that GF (M) 'M , and Proposition 3.36, we

obtain GF (M)[G(A)] 'M [A].

3.3 Distributed computing through Dynamic Epistemic Logic

We now use the simplicial models of DEL defined in Section 3.2 to model distributed computability.

It is clear that simplicial models are closely related to the labeled chromatic simplicial complexes of

Chapter 1. For instance, the simplicial model of Example 3.21 corresponds to the input complex of

the binary consensus task (Example 1.20). What is less obvious is the relationship between the carrier

127

maps of Chapter 1, and the product-update construction: both of them model what happens when the

agents/processes communicate and learn new information about the world.

From now on, the set Ag of agents will correspond to the n + 1 processes in a distributed system.

Consider a simplicial model I representing the possible initial states of the system, for instance, the

binary input simplicial model of Example 3.21. We will model a protocol as an action model A, so that

the product update model I[A] represents the knowledge of the agents after executing the protocol. The

simplicial model I[A] corresponds to the protocol complex of distributed computability.

Similarly, action models can be used to specify a concurrent task, but the correspondence with

the approach of Chapter 1 is not exactly the same. A task is specified by an action model T , which

describes the output values that the agents should be able to produce, as well as preconditions specifying

which inputs are allowed to produce which outputs. Here, the action model T itself will correspond

I[A]

I[T]I

π δ

π

to the output complex of distributed computing. The product update of the input

model I with T yields an epistemic model I[T], which is not usually considered

in distributed computing. A possible intuitive explanation of this model is that it

represents the amount of knowledge that the agents should be able to acquire in order

to solve the task. Once the protocol action model A and the task action model T
are specified, we can define what it means for a protocol to solve a task, i.e., give an

analogue of Definition 1.29. The protocol A solves the task if there exists a morphism

δ that makes the diagram on the right commute. On the diagram, the two simplicial

maps labeled π are simply projections on the first component (recall that the product update models I[A]

and I[T] are subcomplexes of a cartesian product). Notice how this diagram differs from the one of

Definition 1.29: the two carrier maps have been replaced by simplicial maps going in the other direction.

3.3.1 Protocols as action models

We focus on the specific setting of asynchronous wait-free processes communicating using shared

read/write memory. In fact, we present two computational models which are both known to be equivalent

to this setting in terms of computational power. First, we define the layered message-passing model for

two processes, which is very easy to describe. To be able to work with any number of processes, we then

define the immediate snapshot model (as in Example 1.26).

The layered message-passing action model

We start with an informal explanation of the layered message-passing model for two processes. More

details about this model can be found in [64].

Let the processes be b,w , in order to draw them in the pictures with colors black and white. In the

layered message-passing model, computation is synchronous: b and w take steps at the same time. We

will call each such step a layer. In each layer, b and w both send a message to each other. Moreover,

communication in this model is unreliable: in each layer, at most one message may fail to arrive. So,

either one or two messages will be received. This is a full information model, in the sense that each

time a process sends a message, the message consists of its local state (i.e., all the information currently

known to the process), and each time it receives a message, it appends it to its own local state (remembers

everything). A protocol is defined by the number N of layers that the processes execute. Then, each

128

process should produce an output value based on its state at the end of the last layer. A decision function

δ specifies the output value of each process at the end of the last layer.

Given an initial configuration, an execution can be specified by a sequence of N symbols over the

alphabet {⊥, b,w}, where the i-th symbol is the name of the process whose message was lost in the

i-th layer. More precisely, if the i-th symbol is ⊥ then in the i-th layer both messages arrived, and if

the i-th symbol is b (resp. w) then only b’s message failed to arrive (resp. w) in the i-th layer. As an

example, ⊥bw corresponds to an execution in which both processes have received each other’s message

at layer one, then b received the message from w but w did not receive the message from b at layer two,

and finally at layer three, w received the message from b but b did not receive the message from w .

Notice that there are three 1-layer executions, namely ⊥, b and w , but from the point of view of

process b, there are only two distinguished cases: (i) either it did not receive a message, in which case it

knows for sure that the execution that occurred was w , or (ii) it did receive a message from w , in which

case the execution could have been either b or ⊥. Thus, for the black process, the executions b and ⊥ are

indistinguishable.

As an action model. Consider the situation where the agents Ag = {b,w} start in an initial configura-

tion, defined by input values given to each agent. The values are local, in the sense that each agent knows

its own initial value, but not necessarily the values given to other agents. The agents communicate with

each other via the layered message-passing model described above.

Let V in be an arbitrary domain of input values, and take the following set of atomic propositions

At = {inputxa | a ∈ Ag, x ∈ V in}. Consider a simplicial model I = 〈VI , SI , χ, `〉 called the input

simplicial model. Moreover, we assume that for each vertex v ∈ VI , corresponding to some agent

a = χ(v), the labeling `(v) ⊆ Ata is a singleton, assigning to the agent a its private input value. A facet

X ∈ F(I) represents a possible initial configuration, where each agent has been given an input value.

Definition 3.39. The action modelMPN = 〈T,∼, pre〉 corresponding to N layers is defined as follows.

Let LN be the set of all sequences of N symbols over the alphabet {⊥, b,w}. Then, we take T =

LN ×F(I). An action (α,X), where α ∈ LN and X ∈ F(I) represents a possible execution starting in

the initial configuration X . We write Xa for the input value assigned to agent a in the input simplex X .

Then, pre : T → LCK assigns to each (α,X) ∈ T a precondition formula pre(α,X) which holds exactly

in X (formally, we take pre(α,X) =
∧
a∈Ag input

Xa
a). To define the indistinguishability relation ∼a, we

proceed by induction on N . For N = 0, we define (∅, X) ∼a (∅, Y) when Xa = Ya, since process a

only sees its own local state. Once the indistinguishability relations ofMPN have been defined, we define

∼a onMPN+1 as follows. Let α, β ∈ LN and p, q ∈ {⊥, b,w}. We define (α · p,X) ∼b (β · q, Y) if

either:

(i) p = q = w and (α,X) ∼b (β, Y), or

(ii) p, q ∈ {⊥, b} and X = Y and α = β,

and similarly for ∼w , with the role of b and w reversed.

Intuitively, either (i) no message was received, and the uncertainty from the previous layers remain;

or (ii) a message was received, and the process b can see the whole history, except that it does not know

whether the last layer was b or ⊥. To see what the effect of this action model is, let us start with an input

model I with only one input configuration X (input values have been omitted).

129

After one layer of the message passing model, we get the following model I[MP1]:

w ⊥ b

After a second layer, we get I[MP2]:

ww w⊥ wb ⊥b ⊥⊥ ⊥w bw b⊥ bb

The remarkable property of this action model is that it preserves the topology of the input model. This

is a well-known fact in distributed computing [64], reformulated here in terms of DEL.

Proposition 3.40. Let I = 〈V, S, χ, `〉 be an input model, and MPN = 〈T,∼, pre〉 be the N -layer

action model. Then, the product update simplicial model I[MPN] is a subdivision of I , where each edge

is subdivided into 3N edges.

Usual presentation in terms of local views. This presentation of the layered message-passing model

is very unusual from a distributed computing perspective. It does not refer to the very central notion of

view (or local states); instead, it axiomatizes what it means for two executions to be indistinguishable for

one process. To convince ourselves that this axiomatization is correct, let us define the usual protocol

complex using local views, and prove that we do get the same result as I[MPN].

First, let us define by induction on N the view of a process in an N -layer execution, starting from

the input configuration X ∈ F(I) where b has value i and w has value j. For N = 0, we de-

fine viewb(∅, X) = i and vieww (∅, X) = j. Let αx be an N -layer execution, where α is an (N − 1)-

layer execution and x ∈ {b,w ,⊥}. Assume that, after the execution α has occurred, the view of b is

Vb := viewb(α,X), and the view of w is Vw := vieww (α,X). Then:

– if x = b, then viewb(αx,X) = (Vb , Vw) and vieww (αx,X) = (�, Vw).
– if x = w , then viewb(αx,X) = (Vb ,�) and vieww (αx,X) = (Vb , Vw).
– if x = ⊥, then viewb(αx,X) = (Vb , Vw) and vieww (αx,X) = (Vb , Vw).

In a pair such as (Vb , Vw), the first component is the message received from process b, and the second

component is the message received from process w . The symbol� indicates that no message was received.

A process always “receives” its own message, i.e., it remembers its previous view).

Finally, the protocol complex PN of the N -layer message-passing protocol with input complex I has

vertices of the form (a, viewa(α,X)) with a ∈ {b,w}, α ∈ {b,w ,⊥}N and X ∈ F(I). Its facets are of

the form {(b, viewb(α,X)), (w , vieww (α,X))}, with α ∈ {b,w ,⊥}N and X ∈ F(I). Thus, a vertex of

color a belongs to two such facets whenever viewa(α,X) = viewa(β, Y), for some α, β,X, Y .

Example 3.41. Suppose that the input complex I has two facets X and Y , as represented below,

i j k
X Y

then the protocol complex P1 for the single-layer protocol is the following one:

i� ij ij �j kj kj k�
(w , X) (⊥, X) (b, X) (b, Y) (⊥, Y) (w , Y)

130

The following lemma states that two different choices for the pair (α,X) will necessarily give rise to

two distinct facets in P .

Lemma 3.42. For all N ∈ N, α, β ∈ {⊥, b,w}N , and X,Y ∈ F(I), if viewb(α,X) = viewb(β, Y)

and vieww (α,X) = vieww (β, Y), then α = β and X = Y .

Proof. By induction on N .

Proposition 3.43. The protocol graph PN for the N -layer message-passing protocol is isomorphic to the

product update model I[MPN] of Definition 3.39.

Proof. The main property that we need to prove is the following claim, for any number of layers N , for

all α, β ∈ LN and X,Y ∈ F(I):

viewb(α,X) = viewb(β, Y) ⇐⇒ (α,X) ∼b (β, Y) (3.1)

and similarly for vieww and ∼w . We prove it by induction on N .

– For N = 0, this holds from the definitions.
– Let αx and βy be executions of length N + 1, with x, y ∈ {b,w ,⊥}.

(⇐): Assume (αx,X) ∼b (βy, Y). By definition, there are two possible cases.

– x = y = w and (α,X) ∼b (β, Y). By induction hypothesis, we get viewb(α,X) =

viewb(β, Y). Let us write Vb for this view. Then, by definition, we get viewb(αx,X) =

(Vb ,�) and viewb(βy, Y) = (Vb ,�), which are equal.
– x, y ∈ {⊥, b} and X = Y and α = β. We write Vb = viewb(α,X) = viewb(β, Y),

and Vw = vieww (α,X) = vieww (β, Y). Then by definition viewb(αx,X) = (Vb , Vw) =

viewb(βy, Y).

(⇒): Assume viewb(αx,X) = viewb(βy, Y). Since a view can never be just ‘�’ (it is either an

input value, or a pair of values), we can never have Vw = �. Thus the equality can be true only in

one of the two following cases.

– Either x = y = w . In which case, we get viewb(α,X) = viewb(β, Y) by identifying the

first components of the views, and by induction hypothesis, (α,X) ∼b (β, Y). Therefore,

(αx,X) ∼b (βy, Y).
– Or x, y ∈ {⊥, b}. By identifying the components of the pair, we get viewb(α,X) =

viewb(β, Y) and vieww (α,X) = vieww (β, Y). By Lemma 3.42 we deduce α = β and

X = Y , and thus we obtain (αx,X) ∼b (βy, Y).

The proof for the correspondence between vieww and ∼w is similar, with the role of b and w reversed.

Once we have shown (3.1), proving the proposition is just a matter of unfolding the definitions of the

product update model. A vertex of I[MPN] is formally given by a pair (v,E), where v is a vertex of I
(say, of color b) and E is an equivalence class of ∼b . Let (α,X) ∈ E be an action in E. Then, to the

vertex (v,E) of I[MPN] we associate the vertex (b, viewb(α,X)) of PN ; this is well-defined thanks

to (3.1). Surjectivity is obvious. To show injectivity, assume that (v,E) and (v′, E′) give the same view.

By (3.1), we get E = E′; and v = v′ according to the precondition pre of the action model. Finally, in

I[MPN], we get an edge between (vb , Eb) and (vw , Ew) whenever there is an action t = (α,X) with

X := {vb , vw} and t ∈ Eb and t ∈ Ew . Then by definition of our bijection between the vertices, this

edge is sent to the pair {(b, viewb(α,X)), (w , vieww (α,X))}, which is also an edge.

131

The immediate-snapshot action model

We describe here the immediate snapshot action model IS for one communication exchange among n+ 1

asynchronous agents. As an action model, it is new and to the best of our knowledge it has not been

studied from the DEL perspective. Immediate snapshot operations are important in distributed computing,

and many variants of computational models based on them have been considered, including multi-round

communication exchanges, see e.g. [64, 4]. For the point we want to make about using DEL, the main

issues can be studied with this action model, even in the one communication exchange case. In the case of

two processes, the immediate-snapshot action model coincides with the layered message-passing model

that we presented previously.

The situation we want to model is the following. The n+ 1 agents correspond to n+ 1 concurrent

processes. Initially, each process has some input value, and they communicate (only once) through a

shared memory array in order to try to learn each other’s input values. They use the following protocol:

each process has a dedicated memory cell in the array, to which it writes its input value. Then, it takes

a snapshot, that is, it reads the whole shared array atomically, in order to see which other input values

have been written. Finally, we only take into account the executions of this protocol which satisfy some

“immediacy” condition.

In Chapter 1, this protocol was formally defined using carrier maps in Example 1.26. Here, we define

it using an action model. We will not try to axiomatize abstractly the indistinguishability relation between

immediate-snapshot executions, as we did in Definition 3.39 for the layered message-passing action

model. Instead, we directly define it in the usual “distributed computing” way, using the notion of local

view. By definition, two immediate-snapshot executions are indistinguishable by some agent whenever

they give rise to the same local view for this agent. So, the property (3.1) that appeared in the proof of

Proposition 3.43 will be our definition of the indistinguishability relation ∼.

An immediate-snapshot execution for the set of agents Ag is given by a sequence c1, c2, . . . , cm of

non-empty, disjoint subsets of Ag, whose union is equal to Ag. Such a sequence is called a sequential

partition. Each ci is called a concurrency class. Notice that 1 ≤ m ≤ |Ag|, and when m = 1 all

agents take an immediate snapshot concurrently, while if m = |Ag|, all agents take immediate snapshots

sequentially. The agents in a concurrency class cj learn the input values of all the agents in earlier

concurrency classes ci for i ≤ j, and they also learn which agent wrote which value. In particular, agents

in cm learn the inputs of all the other agents (and there is always at least one such agent). If m = 1, then

all agents learn all the values.

Example 3.44. As a concrete example, suppose we have four agents Ag = {a, b, c, d}, and suppose that

their input values are, respectively, 1, 2, 3 and 4. We consider the execution x = {b}, {a, d}, {c} with

three concurrency classes. Initially, the shared array is empty, which we represent as ⊥ ⊥ ⊥ ⊥ ,

where the four cells correspond to a, b, c, d, in that order. First, process b, which is alone in the first

concurrency class, writes its value and immediately reads. Thus, b sees only its own value, and its view is

⊥ 2 ⊥ ⊥ . Then, in the second concurrency class, both a and d write their values simultaneously,

and after that, they read simultaneously. So, both a and d have the same view, which is the following

array: 1 2 ⊥ 4 . Finally, process c goes last in the third concurrency class, and it sees all the values

of all the other processes: 1 2 3 4 .

Notice that, to define the view, we need to know not only the execution c1, . . . , cm, but also the input

values of the agents. Thus, the action model IS that we are defining will actually be parameterized by an

132

input model, which represents all the possible input values that we want to take into consideration. An

action of IS will consist of an execution c1, . . . , cm, along with an assignment of an input value to each

agent. This is in accordance with what is usually done in DEL: for instance, in Example 3.8, to model a

situation where an agent reveals its card, we did not have only one action “reveal card”, but many actions

“reveal that the card is x”, for each possible value of x. Then the preconditions make sure that such an

action happens in a world where the value of the card is actually x.

To make things simpler, let us fix one particular input model: the simplicial model of Example 3.21

where three agents Ag = {b, g, w} each have a binary input value 0 or 1. Let I = 〈VI , SI , χ, `〉
be the corresponding simplicial model, and denote a facet X ∈ F(I) by a binary sequence b0b1b2,

corresponding to the three values of b, g, w, in that order (alphabetical). We take the set of atomic

propositions At = {inputxa | a ∈ Ag, x ∈ {0, 1}}, where inputxa is the atomic proposition expressing that

agent a has input value x.

Definition 3.45. We define the immediate snapshot action model IS = 〈T,∼, pre〉 as follows. An action

t ∈ T is given by the data c, b0, b1, b2, where c is a sequential partition of Ag = {b, g, w}, and b0, b1,

b2 are binary values 0 or 1. Such an action will be written cb0b1b2 . The precondition pre(cb0b1b2) of

this action is a formula expressing the fact that the inputs of the agents b, g, w are respectively b0, b1, b2.

Therefore, pre(cb0b1b2) is true precisely in the facet b0b1b2 of I. Formally, we can take the formula

pre(cb0b1b2) = inputb0b ∧ inputb1g ∧ inputb2w . The indistinguishability relation is defined as t ∼a t′ iff

viewa(t) = viewa(t
′), where viewa(t) is defined as expected: if c = c1, . . . , cm is a sequential partition

of Ag, and the agent a is in cj , then viewa(c
b0b1b2) is the vector obtained from b0b1b2 by replacing the

value bi by ⊥ whenever the corresponding agent is not in
⋃
i≤j ci.

We can also describe the simplicial action model G(IS), which is the simplicial counterpart of

IS given by Theorem 3.16. It contains exactly the same data as IS, but it is translated into the

language of chromatic simplicial complexes, which allows us to visualise it better. Formally, we have

G(IS) = 〈VT , ST , χT , pre〉 where 〈VT , ST , χT 〉 is a chromatic simplicial complex whose vertices are

VT = {(a, viewa(cb0b1b2)) | a ∈ Ag, c is an execution, and b0, b1, b2 ∈ {0, 1}}; and whose facets are of

the form:

X = {(b, viewb(cb0b1b2)), (g, viewg(c
b0b1b2)), (w, vieww(cb0b1b2))}

The precondition of such a facet is pre(X) = inputb0b ∧ inputb1g ∧ inputb2w .

The picture below illustrates (part of) the simplicial action model G(IS). The two triangles on the

left represent two facets of the input model I, with input values 000 (green) and 100 (yellow). On the

right are the corresponding facets of G(IS). We recognize the standard chromatic division of the input

complex, where each of the two input triangles have been subdivided into 13 smaller triangles: one for

each possible sequential partition of A = {b, g, w}. Four of these sequential partitions are depicted in the

bubbles X,Y, Z,W . The tables in the bubbles show the scheduling of the execution from top to bottom:

for example, in execution Z, process b goes first and sees only itself; then process g goes second and sees

both b and g; then process w goes last and sees everyone. The colors black, grey, white of the vertices

correspond respectively to agents b, g, w. The view of each vertex is written next to it; when two (or three)

neighboring vertices have the same view, it is written only once, on the edge (or triangle) between the two

(or three) vertices. The precondition of all the green facets on the right is true exactly in the green facet of

the input model I on the left, and similarly for the yellow facets.

133

When we compute the product update model I[IS], we obtain a simplicial model whose underlying

simplicial complex is the same as the one of IS , depicted on the right. So, starting from the input model

I, the effect of applying IS is to subdivide each facet of the input. The same thing happens for any input

model I . So, the simplicial model I[IS] is isomorphic to the usual immediate-snapshot protocol complex

(Example 1.26), as expected. Remarkably, the topology of the input simplicial complex is preserved: if I
is a sphere as in Example 3.21, then I[IS] is still a sphere.

In the rest of the chapter, since by Proposition 3.36, I[G(IS)] and I[IS] are isomorphic, we drop the

distinction between regular and simplicial action models, and just write IS for both of them.

Multi-round communication In the IS model, each agent executes a single immediate snapshot.

Iterating this model gives rise to the iterated immediate snapshot model ISr [64, 107], where each agent

executes r consecutive immediate snapshots, on r consecutive shared memory arrays. Starting from an

input model I, the effect of applying the iterated immediate snapshot protocol is to subdivide each facet

of the input complex r times. So, once again, the topology of I is preserved in I[ISr]. In the non-iterated

version, the r immediate snapshots are executed on the same memory. A subdivision is still obtained, but

it is more complex [4]. If all schedules are considered, not only immediate snapshot schedules, then the

topology is still preserved, even-though the resulting complex is no longer a subdivision, see e.g. [9] for

more precise meaning about these claims and further discussion.

3.3.2 Tasks as action models

We now show how a concurrent task can be specified using an action model. As before, we suppose

fixed an input simplicial model I, describing all the possible initial configurations, where one input

value is given to each agent. The agents communicate with each other according to some protocol action

model, such as MPN or IS of Section 3.3.1. Then, based on the information that it acquired after

communication, the agent produces an output value. A task specifies the output values that the agents may

decide, when starting in a given input configuration. Thus, in this section, we use DEL in a novel way.

Indeed, we do not use it to model an exchange of information between agents: we use DEL as a way to

provide a specification of the problem that the agents should solve.

Consider a simplicial model I = 〈V, S, χ, `〉 called the input simplicial model. Each facet of I, with

its labeling `, represents a possible initial configuration.

134

Definition 3.46. A task for I is an action model T = 〈T,∼, pre〉 for agents Ag, where each action t ∈ T
consists of a function t : Ag→ V out, where V out is an arbitrary domain of output values. Such an action is

interpreted as a possible assignment of an output value for each agent. Each such t has a precondition that

is true in one or more facets of I , interpreted as “if the input configuration is a facet in which pre(t) holds,

and every agent a ∈ Ag decides the value t(a), then this is a valid execution”. The indistinguishability

relation is defined as t ∼a t′ when t(a) = t′(a).

Remark 3.47. This way of specifying a task is weaker than the usual distributed computing definition

based on carrier maps (Definition 1.19). Indeed, it only allows us to specify the input/output relation

on |Ag|-tuples. Hence, we cannot express what the task specification should be for sub-executions

where some processes do not participate. That is, we can only specify tasks without crashes. See also

Section 1.1.3 for a discussion of this subtle difference between the two ways of specifying a task.

Example 3.48. The most important task in distributed computing is binary consensus. Assume we

have three agents Ag = {b, g, w}, and the input model I is the binary input model from Example 3.21.

This means that every combination of 0’s and 1’s is a possible initial configuration. At the end of the

computation, each agent must decide an output value, which can be either 0 or 1. We write db, dg, dw for

the decision value of agent b, g, w respectively. The goal of the task is to achieve the following properties:

– Agreement: the agents must decide the same value, i.e. db = dg = dw.

– Validity: the agreed value must be one of the three inputs.

Say, for example, that the three inputs are (0, 1, 0), then the three outputs can be either (1, 1, 1) or (0, 0, 0).

On the other hand, if the three inputs are (1, 1, 1), then the only possible output is (1, 1, 1), because

agreeing on value 0 would break the validity condition.

Formally, this task is described by an action model T = 〈T,∼, pre〉. There are two possible

combinations of outputs: t0 where all the decisions are 0, and t1 where all the decisions are 1. There

is no indistinguishability relation between these two actions. The precondition pre(t0) must be true

in all the facets of I where the output (0, 0, 0) is valid, i.e., whenever at least one of the agents has

input value 0. If inputxa denotes the atomic formula saying that agent a has input value x, we take

pre(t0) = input0b ∨ input0g ∨ input0w. Similarly, pre(t1) is true whenever at least one agent has input 1,

i.e., we take pre(t1) = input1b ∨ input1g ∨ input1w. The picture below represents the associated simplicial

actions model G(T) (in blue). It has two disjoint facets, X0 where all decisions are 0, and X1 where all

decisions are 1. The two simplices on the left are a fragment of the input model I.

Notice that the simplicial action model G(T) is isomorphic to the output complex of the consensus

task described in Example 1.20. However, when we compute the simplicial model I[T], we get a new

135

simplicial complex which is usually not considered in distributed computing. Recall that the binary

input model I is a triangulated sphere. Then, I[T] consists of two disjoint copies of I, obtained via

the cartesian products I ×X0 and I ×X1, except that one simplex is missing from each sphere. In the

sphere I × X0, the simplex corresponding to the (1, 1, 1) is removed, because it does not satisfy the

precondition of X0. In the sphere I × X1, the simplex (0, 0, 0) is missing. Intuitively, the simplicial

model I[T] represents the minimal amount of knowledge that the processes should acquire in order to

solve the task T .

3.3.3 DEL definition of task solvability

Suppose fixed an input simplicial model I, and a protocol action model A (such as IS or MPN).

We get the protocol simplicial model I[A], which represents the knowledge gained by the agents after

executing A. To solve a task T , each agent, based on its own knowledge, should produce an output value,

such that the vector of output values respects the specification of the task.

The following gives a formal epistemic logic semantics to task solvability. Recall that the product

update model I[A] is a sub-complex of the cartesian product I × A, whose vertices are of the form (i, t)

with i a vertex of I and t a vertex of A. We write πI for the first projection on I , which is a morphism of

simplicial models.

Definition 3.49. A task T is solvable by the action model A if there exists a morphism δ : I[A]→ I[T]

such that πI ◦ δ = πI , i.e., the diagram of simplicial complexes below commutes.

I[A]

I[T]I

π I δ

πI

The justification for this definition is the following. A facet X in I[A] corre-

sponds to a pair (I, t), where I ∈ F(I) represents input value assignments to all

agents, and t ∈ A represents an action, codifying the communication exchanges

that took place. The morphism δ takes X to a facet δ(X) = (I, dec) of I[T],

where dec ∈ T is the assignment of decision values that the agents will choose

in the situation X . Moreover, pre(dec) holds in I , meaning that dec corresponds

to valid decision values for inputs I . The commutativity of the diagram expresses

the fact that both X and δ(X) correspond to the same input assignment I . Now

consider a single vertex v ∈ X with χ(v) = a ∈ Ag. Then, agent a decides its value solely according to

its knowledge in I[A]: if another facet X ′ contains v, then δ(v) ∈ δ(X) ∩ δ(X ′), meaning that a has to

decide the same value in both situations.

The diagram above has two illuminating interpretations. First, by Lemma 3.15, we know that the

knowledge about the world of each agent can only decrease (or stay constant) along the δ arrow. So

agents should improve knowledge through communication, by going from I to I[A]. The task is solvable

if and only if there is enough knowledge in I[A] to match the knowledge required by I[T]. Secondly,

the possibility of solving a task depends on the existence of a certain simplicial map from the complex

of I[A] to the complex of I[T]. Recall that a simplicial map is the discrete equivalent of a continuous

map, and hence task solvability is of a topological nature.

Outline of impossibility proofs. To prove that a task T is not solvable in A, our usual proof method

goes like this. Assume δ : I[A]→ I[T] exists, then:

1. Pick a well-chosen positive epistemic logic formula ϕ,

136

2. Show that ϕ is true in every world of I[T],

3. Show that there exists a world X of I[A] where ϕ is false,

4. By Lemma 3.15, since ϕ is true in δ(X) then it must also be true in X , which is a contradiction

with the previous point.

This kind of proof is interesting because it explains the reason why the task is not solvable. The formula ϕ

represents some amount of knowledge which the processes must acquire in order to solve the task. If ϕ is

given, the difficult part of the proof is usually the third point: finding a world X in the protocol complex

where the processes did not manage to obtain the required amount of knowledge. The existence of this

world can be proved using theorems of combinatorial topology, such as Sperner’s lemma or the Index

lemma. Thus, the formula ϕ describes the epistemic content of the abstract topological arguments for

unsolvability. For example, when the usual topological proof would claim that consensus is not solvable

because of the connectedness of the protocol complex, we will see in the next section that another reason

for impossibility is that the processes did not reach common knowledge of the set of input values.

3.4 Examples

In this section, we use our DEL setting to analyze the solvability in the immediate-snapshot model of three

well-studied distributed computing tasks: consensus, approximate agreement, and set agreement. Their

solvability is already well-understood; in particular, Theorems 3.50, 3.54 and 3.55 are already known.

The novelty here is that we give new proofs based on logical arguments.

3.4.1 Consensus

Let I = 〈V, S, χ, `〉 be the initial simplicial model for binary input values (see Example 3.21), and

T = 〈VT , ST , χT , pre〉 be the simplicial action model for binary consensus (see Example 3.48). Thus, T
has only two facets, X0 where all decisions are 0 and X1, where all decisions are 1. The underlying

complex of I[T] consists of two disjoint simplicial complexes: I0 ×X0 and I1 ×X1, where I0 consists

of all input facets with at least one 0, and I1 consists of all input facets with at least one 1. Notice that, in

fact, each of the two complexes Ii ×Xi, for i ∈ {0, 1}, is isomorphic to Ii, since Xi consists of just one

facet. The labeling `[T] of the vertices of I[T] is copied from the first component Ii.

To show that binary consensus cannot be solved by the immediate snapshot protocol, we must prove

that the map δ : I[IS]→ I[T] of Definition 3.49 does not exist. The usual proof of impossibility uses a

topological obstruction to the existence of δ. Here, instead, we exhibit a logical obstruction.

Theorem 3.50. The binary consensus task is not solvable by IS.

Proof. Following the outline for impossibility proofs of Section 3.3.3, the first step is to find a formula

ϕ expressing the knowledge which is required to solve the task. Let ϕi :=
∨
a∈Ag input

i
a be a formula

denoting that at least one agent has input i. We pick the formula ϕ := CAg ϕ0 ∨ CAg ϕ1.

For i ∈ {0, 1}, it is straightforward to check that at any facet Y of Ii×Xi, there is common knowledge

that at least one input is i, that is, I[T], Y |= CAgϕi. So, the formula ϕ is true in every world of I[T].

Now, consider the simplicial model I[IS], for the immediate snapshot action model. Since I[IS] is a

subdivision of I, it is connected, and therefore from any facet X of I[IS], there is a path to the facet

137

where all inputs are 0, and to the facet where all inputs are 1. Hence, we gave I[IS], X 6|= CAϕi, for

both i = 0 and i = 1. That is, I[IS], X 6|= ϕ.

Finally, we know that morphisms of simplicial models cannot “gain knowledge about the world” from

Lemma 3.15, and so, there cannot be a morphism δ from I[IS] to I[T], by the two previous claims.

Remark 3.51. There are two things to observe about this proof. First, notice that the argument holds

for any other model, instead of IS, which is connected. For instance, this is the case for any number of

immediate-snapshot communication rounds by wait-free asynchronous agents [62]. Secondly, the usual

topological argument for impossibility is the following: because simplicial maps preserve connectedness,

δ cannot send a connected simplicial complex into a disconnected simplicial complex. Notice how in both

the logical and the topological proofs, the main ingredient is a connectedness argument.

3.4.2 Approximate agreement

We now discuss a weaker version of the consensus task, where agents are required to decide values which

are close to each other, not necessarily equal. It turns out, that no matter how close to each other one

requires the agents to decide, this task is solvable in the immediate snapshot (multi-round) model. Many

versions of this task have been considered. We present here a simple one, for two agents, b and w.

The input complex is the binary input complex for two agents, depicted on the left of Example 3.21:

so, every possible combination of 0 and 1 can be assigned to the two agents. Their goal will be to output

real values in the interval [0, 1], such that:

– if both inputs are the same (i.e., 00 or 11), they should both choose their input value as output.

– if the inputs are different (i.e., 01 or 10), they should decide values db and dw such that |db−dw| ≤ ε.
In order to be able to work with finite models, we define a discrete version of this task, M -approximate

agreement. The output values are only allowed to be of the form k/M for 0 ≤ k ≤M . The two decision

values should be within 1/M of each other: |db − dw| ≤ 1/M .

Let I = 〈V, S, χ, `〉 the binary input model for two agents, and T = 〈VT , ST , χT , pre〉 the following

simplicial action model. The set of vertices of T is VT = {(a, k/M) | a ∈ Ag and 0 ≤ k ≤ M}.
The facets of T are edges Xk,k′ = {(b, k/M), (w, k′/M)} with |k − k′| ≤ 1. The color of a vertex is

χ(a, k/M) = a. The precondition pre(X0,0) is true in the worlds 00, 01 and 10 of I; the precondition

pre(XM,M) is true in the worlds 11, 01 and 10; and all the other preconditions pre(Xk,k′) are true in

the worlds 01 and 10. In the figure below are depicted the input model I (left) and the simplicial action

model T (right), for M = 5.

I

0

0 1

1

T

1/5

1/5

3/5

3/5

2/5

2/5

4/5

4/5

0

0

1

1

The product update I[T] is the simplicial model depicted in the next figure. The numbers depicted in

the nodes are the atomic propositions describing the input values from I. The decisions values (of the

form k/5) are implicit, the first column of nodes corresponds to the decision value 0, the second column

138

is decision value 1/5, and so on. For example, the world marked X on the figure corresponds to the

situation where b started with value 1 and decided value 2/5, while w started with value 0 and decided

value 3/5. This is a correct execution of the 5-approximate agreement task.

I[T]

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

1

0

1

0

0

1

X

Y

Notice that the world X on the figure is the one with the most knowledge in the following sense. We

write ϕ01 the formula expressing that the two inputs are different, and Eϕ = Kbϕ ∧Kwϕ for the group

knowledge of ϕ among the agents {b, w}. Then, we have I[T], X |= E3ϕ01, where E3 denotes three

nested E operators. The world Y is one step closer from the 00 or 11 edges, so I[T], Y 6|= E3ϕ01, but

we have the weaker knowledge I[T], Y |= E2ϕ01.

Lemma 3.52. In the simplicial model I[T] for the M -approximate agreement task, there is a world X

such that I[T], X |= Ekϕ01, for k = dM/2e.

Proof. We choose for X one of the “middle” worlds, where the two agents have input 0 and 1, and they

decide the values k/M and (k − 1)/M , for k = dM/2e.

We now study the solvability of this task in the N -layer message-passing model MPN . Each

consecutive layer subdivides each edge into three parts. The picture below shows the input model I, the

model I[MP1] after one layer, and the model I[MP2] after two layers.

I

0

0 1

1

I[MP1]

0

0 1

1

0

0

01

1 0

1

1

I[MP2]

0

0 1

1

0

0

01

1 0

1

1

Lemma 3.53. In the N -layer message-passing model I[MPN], there is no world X where the for-

mula Ekϕ01 is true for k = d3N/2e, i.e., for all X , I[MPN], X 6|= Ekϕ01.

Proof. After N layers, each of the four edges of the input model I have been subdivided into 3N edges.

Thus, every world is at a distance at most k − 1 from the nearest world with inputs 00 or 11.

139

Putting the two lemmas together, we get the following result:

Theorem 3.54. The M -approximate agreement task is not solvable in the N -layer message-passing

model, when N < dlog3(M)e.

Proof. Assume by contradiction that the task is solvable. Then, we have a map δ : I[MPN] → I[T].

Our goal is to find a contradiction using Lemma 3.15. To achieve this, we should find a formula ϕ and

a world Z of I[MPN], such that ϕ is false in Z but true in δ(Z). We have to be a little bit cautious,

because there is no guarantee that the world X exhibited in Lemma 3.52 is in the image of δ.

Since I[MPN] is connected, and simplicial maps preserve connectedness, its image δ(I[MPN]) is

connected too. Moreover, the world 00 and the world 11 of I[T] must be in the image of δ, because of the

commutative diagram of Definition 3.49. By connectedness, one of the two middle worlds X or Y must

be in the image of δ. Since Y is one step closer to the edge than X , we “lose” one nested E operator, and

we have by Lemma 3.52: I[T], Y |= EbM/2cϕ01.

We now show that no world of I[MPN] has this amount of knowledge, which contradicts Lemma 3.15.

By Lemma 3.53, the formula Ed3
N/2eϕ01 is false in every world of I[MPN]. Since N < dlog3(M)e

implies d3N/2e ≤ bM/2c, this concludes the proof.

Conversely, it is known (and easy to show) in distributed computing that M -approximate agreement

is solvable inMPN whenever N ≥ dlog3(M)e, see [64] for example. The proof of the above theorem

sheds light on the required knowledge to solve approximate agreement: while consensus is about reaching

common knowledge, approximate agreement is about reaching some finite level of nested knowledge.

This is possible to solve as long as we perform a large-enough number of layers.

3.4.3 2-Set agreement

The k-set agreement task (see Example 1.21) is a weaker version of consensus where the agents must

agree on at most k different values. From the topological perspective, this class of tasks is interesting

because the solvability of this task is related to the (k − 1)-connectedness of the protocol complex [64].

For k = 1, the 1-set agreement task is the consensus task. And indeed, as we saw in Section 3.4.1, the

unsolvability proof relies on the 0-connectedness (or path-connectedness) of the protocol complex. From

the epistemic logic perspective, the unsolvability of consensus is related to common knowledge. The link

between common knowledge and the path-connectedness of the model is well known to logicians: since it

is a 1-dimensional property, it can be expressed using standard Kripke models.

In this section, we propose to study the 2-set agreement task from the point of view of epistemic logic.

The reason why 2-set agreement is unsolvable is related to a higher-dimensional topological property: the

fact that the protocol complex is simply-connected, that is, that any loop on the protocol complex can be

continuously contracted to a single point. In other words, this means that there is no “hole” in the protocol

complex. This kind of topological property cannot be expressed on a Kripke model; so, to study 2-set

agreement from an epistemic logic perspective, the use of simplicial models seems mandatory.

Another important thing to note about this 2-set agreement task is that it is strictly weaker than

consensus (since consensus cannot be implemented using set-agreement objects [65]), but strictly stronger

than approximate agreement (since set-agreement is not solvable using read/write memory [64]). So,

according to what we did in Sections 3.4.1 and 3.4.2, the amount of knowledge required to solve 2-set

140

agreement should be less than common knowledge, but more than any finite number of nested knowledge.

As far as we know, no such notion of knowledge has ever been exhibited in the epistemic logic literature.

Let I = 〈V, S, χ, `〉 be the input simplicial model for three agents Ag = {b, w, g}, and three

possible input values, {0, 1, 2}. This input model was already used in Chapter 1 and is depicted in

Figure 1.3. The simplicial action model T = 〈VT , ST , χT , pre〉 for 2-set agreement is defined as

follows. The vertices of T are pairs of the form (a, d) with a ∈ Ag and d ∈ {0, 1, 2}, and the facets

of T are Xd0,d1,d2 = {(b, d0), (g, d1), (w, d2)}, for each vector d0, d1, d2, such that di ∈ {0, 1, 2} and

|{d0, d1, d2}| ≤ 2. The preconditions are pre(Xd0,d1,d2) = ϕd0 ∧ ϕd1 ∧ ϕd2 , where the formula ϕi
expresses that at least one agent has input i.

The underlying simplicial complex of T is the “necklace of spheres” on the right of Figure 1.3. But,

unlike I , it does not have the six extra simplices depicted on the left. In particular, T has a 1-dimensional

hole in the middle of the “necklace”, so it is not simply connected. On the other hand, I is isomorphic

to a wedge of spheres; so, in particular, it is simply connected (see [64] for a formal proof of this fact).

Using these topological facts about I and T , one can prove the following theorem [64, chap. 10].

Theorem 3.55. The 2-set agreement task is not solvable by IS.

Our goal here would be to find an epistemic logic formula ϕ witnessing the unsolvability the task,

as explained in Section 3.3.3. Unfortunately, we have not been able to find such a formula. In fact, we

conjecture that no suitable formula ϕ exists for this particular task. Intuitively, the reason why our proof

method fails is because the language LCK(Ag,At) is too weak to express the amount of knowledge

which is required to solve 2-set agreement.

In the next section, we study another task, the equality negation task for two processes, which was

already mentioned in Section 1.4. For this simpler task, we will actually have a proof that there is no

formula ϕ witnessing the unsolvability. Then, in Section 3.6, we describe a way to strengthen the language

of our logic by adding new atomic propositions. This allows us to prove the impossibility of solving both

equality negation and 2-set agreement, using a logical formula.

3.5 Limits of the DEL approach

In this section, we exhibit a limit of our DEL approach for finding logical obstructions to the solvability of

concurrent tasks, as outlined in Section 3.3.3. Namely, we exhibit a task, which is known to be unsolvable,

but which is such that no epistemic logic formula ϕ can witness the unsolvability of the task. This task

will be the equality negation task, which was introduced by Lo and Hadzilacos [88]. In Section 1.4, we

extended it to n processes and studied its (un)solvability in the immediate-snapshot model. Here, we

focus on the original version of the task, for 2-processes. A simple topological proof of impossibility was

given in the beginning of Section 1.4. We will try to find an epistemic logic proof of impossibility, in

order to understand why it fails.

3.5.1 Bisimulation between simplicial models

First, we define the notion of bisimulation between simplicial models. This is a straightforward translation

of the usual notion of bisimulation for Kripke models, using the equivalence of Theorem 3.20.

141

Definition 3.56 (Bisimulation). LetM = 〈V, S, χ, `〉 andM′ = 〈V ′, S′, χ′, `′〉 be two simplicial models.

A relation R ⊆ F(M)×F(M ′) is a bisimulation betweenM andM′ if the following conditions hold:

(i) If X R X ′ then `(X) = `′(X ′).
(ii) For all a ∈ Ag, if X R X ′ and a ∈ χ(X ∩ Y), then there exists Y ′ ∈ F(M ′) such that Y R Y ′

and a ∈ χ′(X ′ ∩ Y ′).
(iii) For all a ∈ Ag, if X R X ′ and a ∈ χ′(X ′ ∩ Y ′), then there exists Y ∈ F(M) such that Y R Y ′

and a ∈ χ(X ∩ Y).

When R is a bisimulation and X R X ′, we say that X and X ′ are bisimilar.

The next lemma states that two bisimilar worlds satisfy exactly the same formulas. This is a well-

known fact in the context of Kripke models. Since we simply translated the usual definition of bisimulation

in the language of simplicial models, the same result also holds for simplicial models.

Lemma 3.57. Let R be a bisimulation betweenM andM′. Then for all facets X,X ′ such that X R X ′,

and for every epistemic logic formula ϕ,

M, X |= ϕ iff M′, X ′ |= ϕ

Proof. We prove it by induction on ϕ. Let X ∈ F(M) and X ′ ∈ F(M ′) be facets with X R X ′.

– CASE p ∈ At. Since we assumed X R X ′, by Definition 3.56(i) this implies that `(X) = `′(X ′).

Then,M, X |= p ⇐⇒ M′, X ′ |= p, because we have p ∈ `(X) ⇐⇒ p ∈ `′(X ′).
– CASE ¬ϕ. By induction hypothesis,M, X |= ϕ iff M′, X ′ |= ϕ. Then the negations are also

equivalent, that is,M, X |= ¬ϕ ⇐⇒ M′, X ′ |= ¬ϕ.
– CASE ϕ ∧ ψ. By induction hypothesis,M, X |= ϕ iff M′, X ′ |= ϕ and similarly for ψ. Then we

trivially getM, X |= ϕ ∧ ψ ⇐⇒ M′, X ′ |= ϕ ∧ ψ.
– CASE Ka ϕ. Assume thatM, X |= Ka ϕ for some agent a ∈ Ag. That is, we have:

∀Y ∈ F(M), a ∈ χ(X ∩ Y) =⇒ M, Y |= ϕ

We want to show thatM′, X ′ |= Kaϕ. Let Y ′ be an arbitrary facet ofM′ such that a ∈ χ′(X ′∩Y ′).

Since X R X ′, by Definition 3.56(iii), we know that there exists Y ∈ F(M) with a ∈ χ(X ∩ Y)

and Y R Y ′. Using the fact thatM, X |= Ka ϕ and a ∈ χ(X ∩ Y), we getM, Y |= ψ. Finally,

by induction hypothesis, since Y R Y ′, this impliesM′, Y ′ |= ψ.

The converse implication is proved similarly, using Definition 3.56(iii) instead.
– CASE CA ϕ. We assumeM, X |= CA ϕ and show thatM′, X ′ |= CAϕ. Let Y ′ ∈ F(M′) such

that there is a finite path from X ′ to Y ′ going through facets which share an A-colored vertex. By

iterating the previous reasoning a finite number of times, we will get a facet Y ∈ F(M), such

that Y R Y ′, and Y is in the A-connected component of X . HenceM, Y |= ϕ, and by induction

hypothesis,M′, Y ′ |= ϕ. The converse is similar.

3.5.2 The equality negation task

We now now define the equality negation task for two processes as an action model. Recall that in the

equality negation task, each process starts with an input value in the set {0, 1, 2}, and has to irrevocably

decide on a value 0 or 1, such that the decisions of the two processes are the same if and only if their input

values are different.

142

Let Ag = {b,w} be the two agents (or processes), represented on the pictures in black and white,

respectively. The atomic propositions are of the form inputia, for a ∈ Ag and i ∈ {0, 1, 2}, meaning that

agent a has input value i. The input model is I = 〈VI , SI , χI , `I〉 where:

– The set of vertices of I is VI = Ag × {0, 1, 2}
– The facets are of the form {(b, i), (w, j)} for all i, j.

– The coloring χI : VI → Ag is the first projection χI(a, i) = a.

– The labeling of atomic propositions is `I(a, i) = {inputia}.
The input model I is represented below. In the picture, a vertex (a, i) ∈ VI is represented as a vertex

of color a with value i.

0

1

2

0

1

2

0

10

1

I G(T)

We now define the action model T = 〈T,∼, pre〉 that specifies the task. Since the only possible outputs

are 0 and 1, there are four possible actions: T = {0, 1}2, where by convention the first component is the

decision of b, and the second component is the decision of w . Thus, two actions (db , dw) ∼b (d′b , d
′
w)

in T are indistinguishable by b when db = d′b , and similarly for w . Finally, the precondition pre(db , dw)

specifies the task as expected: if db = dw then pre(db , dw) is true exactly in the simplices of I which

have different input values, and otherwise in all the simplices which have identical inputs. The associated

simplicial action model G(T) is depicted above, on the right.

The output model is obtained as the product update model O = I[T] = 〈VO, SO, χO, `O〉. By

definition, the vertices of O are of the form (a, i, E), where (a, i) ∈ VI is a vertex of I, and E is an

equivalence class of ∼a. But note that ∼a has only two equivalence classes, depending on the decision

value (0 or 1) of process a. So, a vertex of O can be written as (a, i, d), for d ∈ {0, 1}, meaning

intuitively that process a started with input i and decided value d. The facets of O are of the form

{(b, i, db), (w , j, dw)} where either i = j and db 6= dw , or i 6= j and db = dw . The coloring χO and

labeling `O behave the same as in I.

The output model for the equality negation task is depicted below. The value written inside a node is

the input value of the corresponding process. Decision values do not appear explicitly on the picture, but

notice how the vertices are arranged as a rectangular cuboid: the vertices on the front face have decision

value 0, and those on the rear face decide 1.

0

1

2

2

1

0

0

1

2

0

1

2

O = I[T]

143

We would like to prove that this task is not solvable in the N layer message-passing model, i.e., that there

is no morphism δ : I[MPN] → O that makes the diagram of Definition 3.49 commute. So, we want

to find an epistemic logic formula ϕ which is false in some world X of I[MPN], but true in its image

δ(X). We now show that no such formula exists.

First, notice that there is a bisimulation between the input model I and the output model O.

Lemma 3.58. Let π denote the first projection simplicial map π : O → I. Then, the relation R defined

by R := {(π(X), X) | X ∈ F(O)} ⊆ F(I)×F(O) is a bisimulation between I and O.

Proof. The first condition of Definition 3.56 is trivially verified, because the labeling `O is taken by

definition from the first component. Let us check that condition (ii) is verified. Let X and X ′ be

facets of I and O respectively, such that X R X ′. Thus, we have X = {(b, i), (w , j)} and X ′ =

{(b, i, db), (w , j, dw)}, for some i, j, db , dw . Now let a ∈ Ag (w.l.o.g., let us pick a = b), and assume

that there is some Y ∈ F(I) such that b ∈ χ(X ∩ Y). So, Y can be written as Y = {(b, i), (w , j′)}
for some j′. We now need to find a facet Y ′ of O that shares a b-colored vertex with X ′, and whose

projection π(Y ′) is Y . Thus, Y ′ should be of the form Y ′ = {(b, i, db), (w , j′, d′w)}, for some d′w , such

that i = j′ ⇐⇒ db 6= d′w . But whatever the values of i, j′, db are, we can always choose a suitable d′w .

This concludes the proof. The third condition (iii) is checked similarly.

We can finally use Lemma 3.57 to show that no formula ϕ will allow us to prove the unsolvability of

the equality negation task.

Lemma 3.59. Let X be a facet of I[MPN] and let Y be a facet of O such that π(X) = π(Y). Then for

every positive formula ϕ we have the following: if O, Y |= ϕ then I[MPN], X |= ϕ.

Proof. Let ϕ be a positive formula and assume O, Y |= ϕ. Since we have shown in Lemma 3.58 that

π(Y) and Y are bisimilar, by Lemma 3.57, we have I, π(Y) |= ϕ. Since π(Y) = π(X), this means that

I, π(X) |= ϕ, and by applying Lemma 3.15 we obtain I[MPN], X |= ϕ.

In the above lemma, the world Y should be thought of as a candidate for δ(X). The condition

π(X) = π(Y) comes from the commutative diagram of Definition 3.49. Thus, Lemma 3.59 says that we

will never find a formula ϕ which is true in δ(X) but false in X .

Remark 3.60. Lemma 3.59 does not apply to consensus, since we know from Section 3.4.1 that there exists

a formula proving its unsolvability. The reason is that the projection mapping π : O → I in consensus

does not induce a bisimulation. More precisely, condition (ii) of Definition 3.56 does not hold. Indeed,

if X = {(b, 0), (w , 1)} and X ′ = {(b, 0, 1), (w , 1, 1)} and Y = {(b, 0), (w , 0)}, then by definition of

consensus there cannot exist a facet Y ′ with Y R Y ′ and b ∈ χ′(X ′ ∩ Y ′). Such a facet would have

the form Y ′ = {(b, 0, 1), (w , 0, d)}, for a d ∈ {0, 1}, which is not a valid world in the output model of

consensus for any decision d.

This reasoning can be adapted in the case of the k-set agreement task, to show that the input and

output models are not bisimilar. Thus, the above argument cannot be used to show that there is no formula

witnessing the impossibility of solving 2-set agreement. This remains an open question.

144

3.6 Extended DEL

In the usual DEL framework (see Section 3.1.3), when we start with some Kripke model M and apply an

action model A, we obtain a new Kripke model M [A]. The worlds of M [A] are pairs (w, t), where w is

a world of M and t is an action of A. The intuitive meaning of the world (w, t) is: “I was in world w

and then the action t occurred”. By definition, the atomic propositions in the model M [A] are the same

as in M : thus, we only consider formulas which say something about what the agents know about the

original model M . Our logic does not allow us to write something like “I know that the action t occurred”,

even though this kind of consideration would make sense in the model M [A].

The idea of this section is simply to extend the set of atomic propositions Ât := At ∪ {pt | t ∈ T},
where the atom pt means “the action t happened”. In the language LCK(Ag, Ât), one can write epistemic

logic formulas expressing what the agents know about the initial model, as well as what they know about

the actions that occurred. To be able to interpret these formulas in the product-update model M [A], one

must label the worlds of M [A] with the new atomic propositions: namely, the world (w, t) is given the

label L(w, t) := L(w) ∪ {pt}. We will call this approach “Extended DEL”. As noted by one of the

referees of this thesis manuscript, it is actually a well-known construction in DEL. It is used for example

in [90] to establish complexity results for the satisfiability of DEL formulas. More generally, the idea

of allowing formulas talking about the actions that occur is related to extensions of DEL with history

operators [111] or factual change [117]. Below, we describe the extended product-update model in terms

of simplicial models.

Definition 3.61. Let M = 〈V, S, χ, `〉 be a simplicial model and A = 〈T,∼, pre〉 an action model. We

write Ât for the extended set of atomic propositions, defined by Ât = At∪ {pa,E | E ∈ T/∼a, a ∈ Ag},
where T/ ∼a denotes the set of all equivalence classes of ∼a. Then, the (hybrid) extended product-

update simplicial model M̂ [A] = 〈V [A], S[A], χ[A], ̂̀[A]〉 is defined as follows. The three components

V [A], S[A], χ[A] are defined as in the usual product-update construction (Definition 3.31). In particular,

the vertices (v,E) ∈ V [A] are pairs where v ∈ V is a vertex of M and E is an equivalence class

of ∼χ(v). The enriched labeling ̂̀[A] maps each vertex (v,E) ∈ V [A] to the set of atomic propositionŝ̀[A](v,E) := `(v) ∪ {pχ(v),E}.

Remark 3.62. Note that the atomic propositions pa,E that we introduce are “local” propositions pertaining

to one particular agent, as required by our definition of simplicial models. The fact thatE is an equivalence

class of ∼a is reminiscent of the construction of Section 3.2.4, where we make a non-local model local.

Indeed, by doing this construction, we are in some sense “making the action model local”. Here the

equivalence class E has an intuitive meaning: the proposition pa,E means that “some action t ∈ E

occurred”. The agent a necessarily knows this information, since E is an equivalence class of ∼a.

In our case, we will use this extended product update in the following way. Given an input simplicial

model I and a task action model T , the extended output model Ô is defined as Ô = Î[T]. Recall from

Definition 3.46 that the indistinguishability relation ∼a of a task action model T is defined as t ∼a t′ if
the agent a takes the same decision in t and t′. So, an equivalence class E of ∼a is a set of actions t ∈ T
where a takes the same decision value, say d ∈ V out. Therefore, the new atomic propositions pa,E will be

written decideda, meaning that the agent a decides the output value d.

Consider the atomic propositions Ât = {inputia | a ∈ Ag, i ∈ V in} ∪ {decideda | a ∈ Ag, d ∈ V out}.
Formulas in LCK(Ag, Ât) can express what the agents know about the inputs of the other agents, but also

145

what they know about their decisions. In this language, we will be able to write formulas witnessing the

impossibility of solving equality negation and 2-set-agreement.

Suppose we have a protocol action model A, and a candidate formula ϕ for proving the impossibility

of solving the task T in A. To be able to use Lemma 3.15 (as outlined in Section 3.3.3), we would also

like the formula ϕ to make sense in the protocol model I[A]. However, the extended product-update Î[A]

does not have information about decision values, but about the executions that occurred. In fact, it is

precisely the role of the simplicial map δ : I[A]→ O to assign decision values to each world of I[A].

Thus, given such a map δ, we can lift it to a map δ̃ : Ĩ[A]→ Ô as the following lemma states.

Lemma 3.63. Let M = 〈V, S, χ, `〉 be a simplicial model over the set of agents Ag and atomic proposi-

tions At, and let δ : M → O be a morphism of simplicial models. Then there is a unique model of the

form M̃ = 〈V, S, χ, ˜̀〉 over Ât, with the same underlying simplicial complex as M , and where ˜̀agrees

with ` on At, such that δ̃ : M̃ → Ô is still a morphism of simplicial models.

Proof. All we have to do is label the worlds of M with the decideda atomic propositions, so that the

map δ̃ is a morphism of simplicial models. Thus, we define ˜̀ : V →P(Ât) as ˜̀(v) = `(v) ∪ {decideda},
where a = χ(v) and decideda ∈ `Ô(δ(v)). Then δ̃ is still a chromatic simplicial map (since we did not

change the underlying complexes nor their colors), and moreover we have ˜̀(v) = `Ô(δ(v)) for all v. The

model M̃ is unique since any other choice of ˜̀(v) would have broken this last condition, so δ would not

be a morphism of simplicial models.

3.6.1 Unsolvability of equality negation and 2-set-agreement

We apply this “Extended DEL” framework to prove the two impossibility results where the standard

method did not succeed: equality negation and 2-set-agreement.

Equality negation

We prove the impossibility of solving equality negation in the N -layer message-passing modelMPN . To

do so, we rely on the following formula, written in the language LCK(Ag, Ât):

ϕ =
∧
a,i,d

inputia ∧ decideda =⇒
(

(inputia ∧ decideda) ∨ (inputia ∧ decideda)
)

where a, i, d denote values different from a, i, d, respectively. Note that a and d are uniquely defined

(since there are only two agents and two decision values), but for i, there are two possible inputs different

from i. So, for example, input0a is actually a shortcut for input1a ∨ input2a.

This formula simply expresses the specification of the task: if process a has input i and decides d,

then the other process should either have the same input and decide differently, or have a different input

and decide the same. Then hopefully ϕ would be true in every world of the output model, but would

fail somewhere in the protocol model I[MPN], meaning that the N -layer message-passing model is not

powerful enough to obtain this knowledge.

The extended output model Ô for equality negation is represented below. It is almost the same as O,

except that the decision values are now explicit. A vertex represented with color a and value (i, d) means

that it is labeled with the atomic propositions inputia and decideda. It is easily checked that the formula ϕ

is true in every world of Ô.

146

0, 0

1, 0

2, 0

2, 0

1, 0

0, 0

0, 1

1, 1

2, 1

0, 1

1, 1

2, 1

We can finally prove that the equality negation task is not solvable:

Theorem 3.64. Equality negation for two processes is not solvable in the N -layer message-passing

model.

Proof. Let us assume by contradiction that the task is solvable, i.e., by Definition 3.49, there exists a

morphism of simplicial models δ : I[MPN]→ O that makes the diagram commute. By Lemma 3.63, we

I[MPN]

O

˜I[MPN]

ÔI

π δ δ̃

π

can lift δ to a morphism δ̃ : ˜I[MPN]→ Ô between the extended

models. As we remarked earlier, the formula ϕ is true in every

world of Ô. Therefore, it also has to be true in every world of
˜I[MPN]. Indeed, for any world X , since Ô, δ̃(X) |= ϕ, and δ̃

is a morphism, by Lemma 3.15, we must have ˜I[MPN], X |= ϕ.

We will now derive a contradiction from this fact.

Recall that the protocol model I[MPN] is just a subdivision of the input model I, as depicted below

for N = 1. (For simplicity, some input values have been omitted in the vertices on a subdivided edge; it is

the same input as the extremity of the edge which has the same color. Also, the picture shows only one

subdivision, but our reasoning is unrestricted and it applies to any number of layers N .)

0

1

2

0

1

2

X1 X2

X ′

X ′′

Let us start in some world 1 on the (w , 0) − (b, 1) edge. In the world X1, the two processes have

different inputs. Since in ˜I[MPN], the formula ϕ is true in X1, the decision values have to be the same.

Without loss of generality, let us assume that in X1, both processes decide 0. We then look at the next

world X2, which shares a black vertex with X1. Since the inputs are still 0 and 1, and ϕ is true, and we

assumed that process b decides 0, then the white vertex of X2 also has to decide 0.

We iterate this reasoning along the (w , 0)− (b, 1) edge, then along the (b, 1)− (w , 2) edge, and along

the (w , 0)− (b, 2) edge: all the vertices on these edges must have the same decision value 0. Thus, on the

picture, the top right (b, 2) corner has to decide 0, as well as the bottom right (w , 2) corner.

Now in the world X ′, the two input values are equal, so the processes should decide differently. Since

the black vertex decides 0, the white vertex must have decision value 1. If we keep going along the

rightmost edge, the decision values must alternate: all the black vertices must decide 0, and the white

ones decide 1. Finally, we reach the world X ′′, where both decision values are 0, whereas the inputs are

both 2. So the formula ϕ is false in X ′′, which is a contradiction.

147

2-set agreement

We now use the same reasoning to prove the impossibility of solving 2-set agreement (Section 3.4.3). To

express the property that must be achieved in order to solve the task, we take the following formula ϕ,

which expresses the specification of the 2-set-agreement task:

ϕ = ∀d0, d1, d2. decide
d0
b ∧ decided1g ∧ decided2w

=⇒ |{d0, d1, d2}| ≤ 2 ∧ ∃a. inputd0a ∧ ∃a. inputd1a ∧ ∃a. inputd2a

The quantifiers ∀ and ∃ are just shortcuts for conjunctions and disjunctions ranging over all possible

values for d0, d1, d2 and a (there are only finitely many of them). The condition |{d0, d1, d2}| ≤ 2 cannot

be expressed as it is, but we could simply replace it by “true” or “false” in each case, depending on the

values of d0, d1, d2. It is easily checked that the formula ϕ is true in every world of Ô. We can finally

prove that 2-set agreement is not solvable by the immediate snapshot protocol.

Proof of Theorem 3.55. Assume by contradiction that the task is solvable, i.e., that there exists a morphism

δ : I[IS]→ I[T] that makes the diagram of Definition 3.49 commute. By Lemma 3.63, δ can be lifted

to a map δ̃ : Ĩ[IS]→ Î[T]. Our goal is to contradict Lemma 3.15, using the formula ϕ defined in the

beginning of this section. As we remarked earlier, ϕ is true in every world of Î[T]. Thus, all we have to

do is prove that there exists one world X of Ĩ[IS] where the formula is false.

Consider one facet of the input model I where all the agents start with distinct values, for example,

I012 = {(b, 0), (g, 1), (w, 2)} ∈ I. This facet induces a subcomplex of I[IS], which we write I012[IS].

It consists of all the worlds of the form (I012, c
012), where c is a sequential partition of the agents. The

figure below represents the subcomplex I012[IS]; the values written inside the nodes represent the inputia
atomic propositions.

0 1

2

0 1

2

01

0

2

1

2
01

2

Since it is a chromatic subdivision, it is known that I012[IS] is a pseudomanifold with boundary [64].

Moreover, in the extended model Ĩ[IS], the decision values induce a Sperner coloring on its boundary.

Indeed, let us first look at the extremal vertices of the triangle, for example the bottom left (b, 0) vertex.

The view of this vertex is 0⊥⊥, so, it also belongs to the subcomplex I000[IS] where everyone started

with value 0. In this subcomplex, all the decision values must be 0, otherwise the formula ϕ would be

false (which would conclude our proof). So, this vertex must have the decision value 0. Simularly, the

bottom right vertex (g, 1) must decide 1, and the top vertex (w, 2) must decide 2. We can reason similarly

with the edge vertices. For example, the view of the vertices on the bottom edge is 01⊥. So, they also

belong to the subcomplex I010[IS] where white has value 0. In this subcomplex, all the decision values

must be either 0 or 1, otherwise the formula ϕ would not be satisfied.

148

Thus, by Sperner’s Lemma, there must be one world X of I012[IS] with three different decision

values. Then, it is easily checked that Ĩ[IS], X 6|= ϕ, which concludes the proof.

3.6.2 Perspectives of the Extended DEL approach

It is interesting to compare the epistemic formulas that we used in Section 3.6.1 to prove the unsolvability

of equality negation and 2-set-agreement, with the ones that we used in Sections 3.4.1 and 3.4.2 for

consensus and approximate agreement. In the case of consensus and approximate agreement, we did not

need the “Extended DEL” framework. The formula ϕ was only talking about the knowledge that the

agents acquired about the input values. These two formulas are quite informative about the underlying

task: they tell us that the main goal of the consensus task is to achieve common knowledge, while the goal

of approximate agreement is to reach some finite depth of nested knowledge operators.

On the other hand, the formulas for equality negation and 2-set-agreement are less informative: they

simply state the specifications of the tasks. They do not even seem to be talking about knowledge, since

there are no K or C operators in the formulas. In fact, their epistemic content is hidden in the decideda
atomic propositions. Indeed, their semantics in ĨA is referring to the decision map δ, which assigns a

decision value d to each vertex of I[A]. The fact that we assign decisions to vertices means that each

process must decide its output solely according to its knowledge. So, it seems that the use of Extended

DEL is making the epistemic content of the formulas implicit. This goes against the main motivation of

our DEL approach, which is to explain the topological impossibility proofs in terms of knowledge.

Despite the fact that it produces less informative formulas, the “Extended DEL” proof method has

two benefits. The first one is that it is actually able to prove any impossibility result. Indeed, let

T = 〈T,∼, pre〉 be a task action model, on the input model I, and let A be a protocol action model.

Remember that the elements of T are functions t : Ag→ V out assigning a decision value to each agent.

Let ϕ denote the following formula:

ϕ =
∧

X∈F(I)

 ∧
a∈Ag

inputX(a)
a =⇒

∨
t∈T

I,X|= pre(t)

∧
a∈Ag

decidet(a)
a

 (3.2)

where X(a) denotes the input value of process a in the input simplex X . Then we get the following

theorem.

Theorem 3.65. The task T is solvable in the protocol A if and only if there exists an extension Ĩ[A] of

I[A] (assigning a single decision value to each vertex of I[A]) such that ϕ from (3.2) is true in every

world of Ĩ[A].

Proof. (⇒): We already proved this direction in Section 3.6.1. Assume that the task is solvable, i.e., by

Definition 3.49, there is a morphism δ : I[A] → I[T] such that π ◦ δ = π. The model Ĩ[A] is given

Lemma 3.63, where the assignment of decision values is the one given by δ. Then ϕ is easily seen to be

true in every world of Î[T], and by Lemma 3.15, it is also true in every world of Î[A].

(⇐): For the converse, assume that there is a model Ĩ[A] where the formula ϕ is true in every world. Then

we build a map δ : I[A]→ I[T] as follows. If a vertex (i, E) of Ĩ[A], colored by agent a, is labeled with

the atomic proposition decideda, we send it to the vertex δ(i, E) := (i, d) of I[T].

149

By definition, we have the commutative diagram π(i, E) = i = π ◦ δ(i, E). We now need to show

that δ is a morphism of simplicial models. The coloring and labeling maps are preserved, since by definition

they just copy the coloring and labeling of I. We still have to prove that δ sends simplices to simplices.

Let Y be a facet of I[A]. Let X = π(Y) ∈ F(I) be the facet of the input complex corresponding to

the initial values of the processes in the execution Y . Then we have I[A], Y |=
∧
a∈Ag input

X(a)
a , and

since Ĩ[A], Y |= ϕ, by modus ponens there must be some action t ∈ T , with I, X |= pre(t), such that

Ĩ[A], Y |=
∧
a∈Ag decide

t(a)
a . Thus, the vertex v of Y which is colored by a must be labeled with the

atomic proposition decide
t(a)
a , and so the map δ sends it to the vertex (i, t(a)) of I[T]. By definition

of the action model, since I, X |= pre(t), the set of vertices δ(Y) = {(i, t(a)) | i ∈ X, a = χ(i)} is a

simplex of I[T]. Therefore, the map δ is a simplicial map.

This theorem implies that the situation of Section 3.5 cannot happen with the “Extended DEL”

approach: if the task is not solvable, there necessarily exists a world X of Ĩ[A] where the formula fails.

Of course, finding such a world is usually the hard part of an impossibility proof, but at least we know it

exists. In fact, in the particular case of read/write protocols (or, equivalently, layered message-passing or

immediate-snapshot), the solvability of tasks is known to be undecidable when there are more than three

processes [43, 67]. Thus, according to Theorem 3.65, given a formula ϕ, the problem of deciding whether

there exists a number of layers N and an extension of I[MPN] which validates a given formula ϕ, is

also undecidable.

The second benefit of the “Extended DEL” framework is that it gives us a way of using epistemic

logic directly as a specification language for tasks. Indeed, notice that in Theorem 3.65, we characterized

the solvability of a task without referring to T itself: the formula ϕ contains all the information of T .

Thus, instead of relying on the commutative diagram of Definition 3.49, we can specify a task directly

as a logical formula. Of course, we need not restrict ourselves to formulas such as ϕ which are direct

translations of the input/output relation specifying a task. One could decide to pick a more informative

formula, with an interesting epistemic content, and study whether this amount of knowledge can be

reached in some computational model.

3.7 Conclusion and future work

The main contribution of this chapter is given in Theorem 3.20, which is the equivalence between

Kripke models and simplicial models. This theorem establishes a bridge between the field of epistemic

logic and distributed computability. It has important consequences for both fields. From the point of

view of epistemic logic, this equivalence shows that Kripke models actually contain hidden topological

information, which can be uncovered by the use of simplicial models. For distributed computing, it

allows us to interpret epistemic logic formulas on the chromatic simplicial complexes that appear in

impossibility proofs. The proof method outlined in Section 3.3.3 gives a more concrete meaning to the

abstract topological arguments for unsolvability: in order to solve a task, the processes must acquire some

amount of knowledge.

We have used our DEL framework to study the solvability of four tasks: consensus, approximate

agreement, 2-set agreement and equality negation. The first two examples are quite encouraging, since

the epistemic logic formulas that we use in the impossibility proofs shed a new light on the conditions

that must be attained in order to solve these tasks. For the other two examples, we have not been able

150

to find interesting formulas explaining the unsolvability of the tasks. The use of the “Extended DEL”

framework allows us to conclude the proofs, but it comes with a major drawback: the epistemic content of

the formulas is hidden in the decideda atomic propositions.

Perhaps another way to understand these two tasks would be to extend the language of formulas in a

different way. Instead of adding new atomic propositions as we did in the Extended DEL approach, it

would be interesting to introduce new epistemic operators, besides Ka and CA. Indeed, the solvability of

the k-set agreement task is known to be related to the higher-dimensional connectedness properties of the

protocol complex. It would be very interesting to find a formalization of such topological properties in

terms of knowledge, and thus obtain a generalization from common knowledge (that is tightly related

to 1-dimensional connectedness) to other forms of knowledge (whose semantics would be related to

higher-dimensional connectedness).

Future work. Many interesting questions are left for future work. We have developed here all our

theory on pure simplicial complexes, where all the facets are of the same dimension. This means that

the number of agents is the same in every world. In contrast, the systems that are studies in fault-tolerant

distributed computing often have a varying number of processes (agents), since processes may crash

during the execution. To model such systems, we would simply need to consider simplicial models where

the underlying complex is not pure. As far as we know, this kind of situation with a variable number of

agents is not usually considered in standard epistemic logic. Indeed, the usual Kripke models cannot

express which agent are present or not in a given world. The simplicial setting looks like an elegant way

of modeling these situations.

Another restriction that we have, which is very related to the previous one, is that the truth of a formula

M,X |= ϕ is defined only when X is a facet of M . It would be interesting to define what it means to

interpret a formula in a lower-dimensional simplex Y (X . This would allow us to model sub-executions

where some processes do not participate in the computation. Indeed, our current DEL framework only

allows us to work with computational models without crashes (see the discussion in Section 1.1.3). From

the point of view of epistemic logic, this seems related to notions of group knowledge and distributed

knowledge.

An important notion of epistemic logic that we have not considered is belief. Belief behaves a lot like

knowledge, except that an agent may believe some formula ϕ which is false. After discussions with Hans

van Ditmarsch, it seems that belief can be expressed elegantly in simplicial models, by equipping them

with an idempotent map from vertices to vertices. More generally, there are many interesting multi-agent

logics besides S5n, which are modeled by Kripke frames whose∼a relations are not equivalence relations.

Finding simplicial versions of these kinds of frames is an interesting open question.

Finally, another variation of our simplicial models that we could study, is one relying not on simplicial

complexes but on simplicial sets. Simplicial sets are more general than simplicial complexes, since they

allow things like self-loops, or having several edges between the same pair of vertices, and so on in higher

dimensions. In particular, this would allow us to represent Kripke frames which are not proper: in a

simplicial complex, we cannot have two triangles with the same three vertices, but in a simplicial set this

is allowed. In fact, this would allow us to model much more than that. For instance, we could have the

simplicial set:

151

X Y

Here, the agents white and black, individually, cannot distinguish between the two worlds X and Y . But if

we combine their knowledge, then their distributed knowledge contains enough information to distinguish

the two worlds. We do not know of a concrete example where such a situation has been studied, neither

from the field of epistemic logic, nor distributed computing.

152

CHAPTER 4

Towards directed topological
semantics

The topological methods for studying fault-tolerant protocols that we presented in Chapter 1 were

discovered and developed in the beginning of the 1990’s. Roughly at the same period, another kind

of geometric model for concurrent programs was developed [105, 118], with close connections to

directed algebraic topology [49]. Since then, this approach has yielded many fascinating results, both

in mathematics and computer science. On the theoretical side, it helped develop the theory of directed

homotopy and homology [39, 48, 108, 56, 28]. More concrete applications include deadlock detection [37]

and state-space reduction [35] for concurrent programs. A recent book sums up most of the important

advances that have been made in this field [36].

While the directed space models and the simplicial complex models both constitute algebraic topolog-

ical semantics for concurrent programs, they make a very different use of topology, and their goals are

very different. Indeed, on the one hand, the chromatic simplicial complexes of Chapter 1 model the local

information that each process acquires during an execution (i.e., its knowledge, c.f. Chapter 3). On the

other hand, the directed space semantics is concerned with studying the different ways in which a program

can go from its initial state to its final state. Thus, it is typically used to study objects such as locks and

semaphores, which alter the flow of the computation. This is in contrast with the wait-free objects that we

have been studying in the previous chapters. However, it is in fact possible to use directed topology to

study wait-free protocols; this approach has started to be studied in [55].

Directed algebraic topology is based on directed topological spaces, that is, topological spaces

equipped with a notion of direction. There are many variants of this notion: continuous ones, such

as partially-ordered spaces [30, 98], local po-spaces [38], streams [81] or d-spaces [56]; as well as

combinatorial ones such as pre-cubical sets or, as they are called in computer science, Higher Dimensional

Automata (HDA) [105]. We will only use HDAs in this chapter, but as a first intuitive introduction to

the ideas of directed topology, we use continuous pictures to illustrate our explanations. Consider the

following protocol for two processes P0 and P1, which is using two locks a and b. Using Dijkstra’s

classical notation for semaphores, we write P (x) to acquire the lock x, and V (x) to release it.

P0 : P (a);P (b);V (b);V (a)

P0 : P (b);P (a);V (a);V (b)

So, process P0 first tries to take the lock a, then the lock b, and then it releases both locks in reverse

153

order. For process P1, the role of a and b is switched. This protocol is nicknamed the “Swiss cross”,

referring to the picture below, representing the directed space associated with this protocol. It consists of

the two-dimensional square [0, 1]× [0, 1], where the gray area, which is called the forbidden region, has

been removed. Each axis is labeled with actions from one process: the x-axis corresponds to process P0,

while the y-axis corresponds to process P1. The points in the gray area would correspond to states where

both processes are holding the same lock at the same time, which is forbidden.

0 1

1

P(b)

P
(
a
)

P(a)
P
(
b
)

V(a)

V
(
b
)

V(b)

V
(
a
)

d

An execution of the protocol corresponds to a path in this space, starting at the origin (0, 0), and increasing

in both components. Three examples of paths are depicted. Intuitively, when a path goes right, process P0

is making progress, and when it goes up, process P1 is making progress. Paths that are not increasing

do not make sense from a computational point of view, since processes cannot go backwards in their

program. Thus, this topological space is directed in the sense that paths can only go in one direction. The

point labeled d is a deadlock: when a path reaches this point, it cannot make any more progress, and will

never be able to reach the endpoint (1, 1). In other words, the protocol will never terminate. The central

idea of this approach is that paths should be considered only up to di-homotopy, that is, up to continuous

deformation. In the example above, even though there are six possible interleavings of the actions of the

processes, there are only three maximal paths up to di-homotopy. This reflects the idea that some actions

commute, that is, the order in which they occur does not affect the computation.

This chapter presents some preliminary results relating these directed topological models with the

simplicial complex approach for fault-tolerant distributed computing. More precisely, we focus on a

combinatorial version of these directed spaces, Higher-Dimensional Automata. On these structures,

various notions of paths can be defined, cube chains [119] and carrier sequences [34]. We show how

these two notions are related, respectively, to the set-sequential traces and the interval traces that we

mentioned in Section 2.2.3 in the context of set-linearizability and interval-linearizability. In the case

of cube chains and set-sequential traces, we go a bit further and show how we can recover the standard

chromatic subdivision by considering partial cube chains (see Theorem 4.24). These results are first

steps towards a better understanding of the relationship between the protocol complex and the directed

space associated to a given protocol. At the end of the chapter, we discuss future research directions that

154

could lead to interesting results relating the two fields. Eventually, we would like to answer the following

questions:

– Can we reconstruct the protocol complex from the directed semantics of the objects that we use?

– Can we derive impossibility results relying only on the topological properties of the directed space?

As we explain below, the answer to these two questions as they currently stand is no: the directed space

lacks some information regarding the local views of the processes. Hence, the real question is: what is the

right way to extend the directed space semantics in order to model the notion of view?

Limitations of the directed space semantics. As a counter-example to the questions above, we exhibit

two concurrent objects that have the same directed semantics, but not the same power in terms of task

solvability. We fix a set of 3 processes, {P,Q,R}.
– Test-and-set: at the beginning the memory cell has value 0. The test-and-set() method atomically

sets it to 1, and returns the old value.

– Compare-and-swap: at the beginning the memory cell has value ⊥. The compare-and-set(x, y)

method atomically compares the current value of the flag to x, and, if they are equal, it stores the

value y in the memory cell. In both cases, the old value of the flag is returned.

It is well known in distributed computing [63] that the test-and-set object has consensus number 2 while

the compare-and-swap object has consensus number∞. For three processes, this means that test-and-set

cannot solve consensus, but compare-and-swap can. We consider the following two protocols using these

objects.

(1) There is one test-and-set object, t. Each process calls the method t.test-and-set() exactly once.

Thus, one process (“the winner”) receives value 0, and the two others receive value 1.

(2) There is one compare-and-set object, c. Process X calls the method c.compare-and-swap(⊥, X)

exactly once. Thus, one process (“the winner”) receives value ⊥, and the two others receive the

name of the winner.

The corresponding protocol complexes are represented below, where the processes P,Q,R are represented

in black, gray, white, respectively.

0

0

0

1

1

1

⊥ Q

Q

P

⊥

P

R

R ⊥
Protocol complex for (1)

Protocol complex for (2)

However, both these protocols are associated with the same directed space. Indeed, there is a conflict

regarding which process goes first, but afterwards the other two processes can go concurrently. The

corresponding directed space is depicted below, where, the gray region is the forbidden region. There are

three di-homotopy classes of paths in this space: one for each face by which we can exit the dotted cube.

155

P

Q

R

As we mentioned before, the missing information in this directed space is the notion of view. The

di-homotopy classes of paths indicate all the possible executions that can happen, that is, they correspond

to the facets of the protocol complex. However, it does not tell us how these facets are “glued together”

in the protocol complex. Indeed, from the point of view of a given process two executions might be

indistinguishable, even if from a global perspective they are not equivalent.

Related work. A first paper by Goubault, Mimram and Tasson [55] studied the relationship between

the directed semantics of the write-snapshot object (called scan-update in their paper), and the associated

protocol complex. As in the examples above, a bijection between the di-homotopy classes of paths and the

facets of the protocol complex is easily achieved. The difficulty lies in recovering the gluing information

between those facets. To do so, they explore various notions of view: one based on execution traces

(which was the starting point of our work in Section 2.1), and one based on interval orders.

The main result of the chapter, Theorem 4.24, is very much inspired from the paper by Ziemi-

ański [119] about cube chains. In this paper, the cube chains are used to provide a combinatorial

description (more precisely, a CW-complex) of the space of directed paths in the geometric realization

of an HDA. The other important notion of path on HDAs that we use, carrier sequences, was invented

by Fajstrup in [34]. The bijection between carrier sequences and interval orders was also independently

discovered by Fahrenberg et al. in an unpublished work about pomset languages for HDAs [31].

Plan. In Section 4.1, we start by recalling the important definitions that we use in this chapter: HDAs

and the various notions of paths on HDAs. Then, we prove our main theorem in Section 4.2. Finally, in

Section 4.3 we discuss the future research directions on this topic, and the potential applications of the

results we already have.

4.1 Preliminaries

This section is not intended as a general introduction to the directed semantics approach for concurrency.

We simply provide the technical definitions that we will be working with in the rest of the chapter. We

156

refer the reader to [36] for an explanation of how these notions are used in the context of concurrent

programming. In particular, we will not discuss how to associate an HDA with a given program, nor how

to define the geometric realization of an HDA as a d-space.

4.1.1 Higher-dimensional automata

As in the previous chapters, we write [n] for the set {0, . . . , n} of cardinality n+ 1.

Definition 4.1. A pre-cubical set K is a sequence of disjoints sets (Kn)n≥0, equipped with face maps

∂εi : Kn+1 → Kn, for ε ∈ {−,+} and i ∈ [n], satisfying the following pre-cubical relations for i < j:

∂εi ◦ ∂
η
j = ∂ηj−1 ◦ ∂

ε
i

Elements of K0 are called vertices, elements of K1 are called edges, elements of K2 are called squares.

More generally, elements of Kn are called n-cubes.

We denote by ∂− : Kn → K0 the n-fold composition of maps of the form ∂−i (the indexes do not

matter according to the pre-cubical relations). The map ∂+ : Kn → K0 is defined similarly. When K

is a pre-cubical set, we write c ∈ K to denote that c ∈ Kn for some n. Given two cubes c, c′ ∈ K, if

c′ = ∂+
i0
◦ · · · ◦ ∂+

ik
(c) for some suitable indexes i0, . . . , ik, k ≥ 0, we say that c′ is a front face of c and

we write c .+ c′. Similarly, if c′ = ∂−i0 ◦ · · · ◦ ∂
−
ik

(c) for some i0, . . . , ik, we say that c′ is a back face of c

and we write c .− c′. Note that with this definition, a cube is neither a front face nor a back face of itself.

A pre-cubical set is of dimension n if Kn 6= ∅ and Kk = ∅ for all k > n.

Example 4.2. Below is depicted a pre-cubical complex of dimension 2. It has four vertices K0 =

{v0, v1, v2, v3}, four edges K1 = {e0, e1, e2, e3} and one square K2 = {s}. The face maps are defined

as follows:

∂−0 (e0) = v0 ∂−0 (e1) = v0 ∂−0 (e2) = v2 ∂−0 (e3) = v1 ∂−0 (s) = e0 ∂−1 (s) = e1

∂+
0 (e0) = v1 ∂+

0 (e1) = v2 ∂+
0 (e2) = v3 ∂+

0 (e3) = v3 ∂+
0 (s) = e2 ∂+

1 (s) = e3

Notice that the pre-cubical relations are satisfied, for instance, v1 = ∂−0 ◦ ∂
+
1 (s) = ∂+

0 ◦ ∂
−
0 (s). The

meaning of those relations can be understood on the picture below: intuitively, they say that starting

from s, projecting first horizontally and then vertically, or vice versa, gives the same result. Moreover,

one can check that s has three front faces (e2, e3 and v3) and three back faces (e0, e1 and v0). Note that v1

and v2 are neither front nor back faces of s. Finally, we have ∂−(s) = v0 and ∂+(s) = v3.

v0

v1

v2

v3

se0

e1

e2

e3

Example 4.3. Pre-cubical sets of dimension 1 correspond to directed graphs, where K0 is the set of

vertices, K1 the set of edges, and ∂−0 , ∂
+
0 : K1 → K0 are respectively the source and target maps. Notice

157

however that it is a rather unrestricted notion of graphs: they are allowed to contain self-loops, as well as

parallel edges. The same phenomenon occurs with higher-dimensional pre-cubical sets. For instance, the

cylinder depicted below on the right has one square s, three edges e0, e1, e2 and two vertices v0, v1. The

face maps of the square are defined as ∂−0 (s) = e0 and ∂+
0 (s) = e1 and ∂+

1 (s) = ∂−1 (s) = e2. Thus, the

square s is rolled on itself to form a cylinder, since it has the same vertical source and target, e2.

v0

v1

e0

e1

e2
e1

v0 v1

se0

e2

The pre-cubical set of Example 4.2 is the 2-dimensional version of what we call the standard n-cube.

It can be defined combinatorially in any dimension n ≥ 0 as follows.

Definition 4.4. We define a pre-cubical set �n called the standard n-cube as follows.

– �nk ⊆ {−,+, 0}n is the set of sequences of length n on the set {−,+, 0} where the symbol 0

occurs exactly k times. In particular, �nk = ∅ for k > n.

– The face map ∂εi : �nk+1 → �nk replaces the i-th occurrence of 0 by ε (numbering starts at 0).

Example 4.5. For n = 2, the pre-cubical set �2 is indeed the square of Example 4.2.

−−

−+

+−

++

00−0

0−

+0

0+

The computational interpretation of the standard n-cube is the following: n asynchronous processes

are about to execute one operation each. The computation starts at the source vertex s = −− · · ·−, and

ends at the target vertex t = + + · · ·+. Going from ‘−’ to ‘+’ in the i-th dimension means that process i

has performed its operation. We will also be interested in interpreting situations where each process

performs more that one operation. The corresponding pre-cubical set is defined as follows.

Definition 4.6. We define the n-dimensional stack of cubes �n as follows.

– �nk ⊆ (N∪ N̂)n, where N̂ = {n̂ | n ∈ N}, is the set of sequences of length n that contain exactly k

symbols in N. In particular, �nk = ∅ for k > n.

– The face map ∂−i : �nk+1 → �nk replaces the i-th symbol in N, say n ∈ N, by n̂ ∈ N̂ .

– The face map ∂+
i : �nk+1 → �nk replaces the i-th symbol in N, say n ∈ N, by n̂+ 1 ∈ N̂ .

Note that this pre-cubical set has infinitely many cubes.

Example 4.7. Parts of the 2-dimensional stack of cubes �2 is represented below. The full pre-cubical set

extends infinitely to the right and up.

158

0̂0̂

0̂1̂

1̂0̂

0̂2̂

2̂0̂

00 10

01 11

0̂0

00̂ 10̂

0̂1

Since we are interested in modeling wait-free computations, we will usually consider executions where

each process executes a bounded number of operations. If each process executes exactly k operations,

we will consider paths in �n which start at the source vertex s = 0̂ · · · 0̂ and end at the target vertex

t = k̂ · · · k̂. So, we only use a finite portion of �n. A pre-cubical set equipped with source and target

vertices is usually called a Higher-Dimensional Automaton (HDA).

Definition 4.8. An HDA is a triple (K, s, t) where K is a pre-cubical set, the vertex s ∈ K0 is the source

and the vertex t ∈ K0 is the target.

Remark 4.9. Alternatively, the source can also be called the initial state, and the target is a final state.

When interpreting concrete programs, one often considers a set F ⊆ K0 of final states; but here we

are only interested in studying the space of paths between two given points. Usually, some topological

conditions are imposed on HDAs in order to avoid pathological cases: in [31], they are required to be

non-selflinked and geometric, while in [119], they must have a proper non-looping length covering. Here,

we only work on �n and on finite subsets of �n, both of which are very non-pathological since they can

be embedded on a standard N -cube (possibly for N > n). Of course, it would be interesting to identify

more precisely the class of pre-cubical sets on which our constructions make sense. Another difference

with the usual definition of HDAs is that they are usually equipped with a labeling of the edges. We

do not include these labels here since they do not play any role in the theorems that we want to prove.

When using HDAs to model actual programs, the labels would be added to indicate which operations the

processes are performing.

4.1.2 Notions of paths on HDAs

There are several ways to define a combinatorial notion of path on an HDA. The most simple one is to

consider sequences of consecutive edges from an initial state to a final state, as one would do on a graph.

We will call those edge paths. However, this does not make use of the higher-dimensional topological

information in HDAs, and thus it is usually not a relevant notion of path in this context. Other notions

of paths have been defined that provide a combinatorial counterpart to the space of directed paths in the

geometric realization of an HDA: cube chains in [119] and carrier sequences in [34].

159

Edge paths. Let (K, s, t) be an HDA. An edge path from s to t in K is a finite sequence of edges

e1, . . . , ek ∈ K1 such that ∂−0 (e1) = s, ∂+
0 (ek) = t and for all 1 ≤ i < k, ∂+

0 (ei) = ∂−0 (ei+1). Note that

this is simply a graph-theoretic path on the 1-skeleton of K, that is, on the graph whose set of vertices

is K0, whose set of edges is K1, and whose source and target maps are ∂−0 and ∂+
0 . The picture below

depicts a path (in red) from s = 0̂0̂ to t = 2̂2̂ in �2.

s

t

Cube chains. Cube chains were introduced in [119] in order to provide a minimal combinatorial model

of the space of directed paths on the geometric realization of a pre-cubical set. The main difference

between edge paths and cube chains is that instead of a sequence of edges, we may have a sequence of

cubes of any dimension.

Definition 4.10. Let (K, s, t) be an HDA. A cube chain from s to t in K is a sequence of cubes

c = (c1, . . . , c`) where ci ∈ Kni (ni > 0) such that:

– ∂−(c1) = s,

– ∂+(c`) = t,

– and for all 1 ≤ i < `, ∂+(ci) = ∂−(ci+1).

Recall that the maps ∂− and ∂+ (without index) denote the iterated composition of the face maps ∂−j
and ∂+

j , so that ∂−(c) and ∂+(c) are always vertices. So, two consecutive cubes are always linked by

their extremal vertices. The sequence (n1, . . . , n`) is called the type of the cube chain c. The dimension

of c is dim(c) = n1 + . . .+ n` − `; and n1 + . . .+ n` is the length of c. The vertices s and t are called

respectively the source and target of c. The set of cube chains from s to t in K is written Ch(K)ts.

Two cube chains from s = 0̂0̂ to t = 2̂2̂ in �2 are represented below (in red). The one on the left

consists of two cubes c1, c2, both of which are of dimension 2. So, its type is (2, 2); its dimension is 2, and

its length is 4. The one on the right consists of three cubes, c′1, c
′
2, c
′
3. Its type is (1, 2, 1), its dimension

is 1 and its length is 4.

s

t

c1

c2 c′3

c′1
s

t

c′2

160

Remark 4.11. Note that an edge path is a particular case of a cube chain, where all cubes are actually

edges (i.e., of dimension 1). More precisely, the edge paths are exactly the cube chains of dimension 0.

Notice that the term “dimension” does not correspond to the intuitive notion of edges, squares, cubes and

so on. Rather, it measures how much concurrency has occurred in the execution represented by a path.

The terminology comes from [119], where it actually corresponds to the dimension of the cells of the

CW-complex that they construct using cube chains.

Carrier sequences. The third notion of paths is the most permissive. It was introduced in [34] and later

used in [31] to provide a notion of language for HDAs. In a cube chain, two consecutive cubes are always

linked by a vertex, which is the target of one cube and the source of the next one. The idea behind carrier

sequences is that we are allowed to link two consecutive cubes by any other cube (of lower dimension)

that is a front face of one cube, and a back face of the next one.

Definition 4.12. Let (K, s, t) be an HDA. A carrier sequence from s to t in K is a sequence of cubes

c = (c1, . . . , c`) such that s /− c1 .
+ c2 /

− c3 .
+ · · · /− c` .+ t. In other words:

– s is a back face of c1 (since s is a vertex, this means that ∂−(c1) = s);
– for all 1 ≤ i ≤ b `2c, c2i is a front face of c2i−1 and a back face of c2i+1; and
– t is a front face of c`, i.e., ∂+(c`) = t.

Note that, necessarily, the number ` must be odd. Intuitively, the even numbered cubes c2i are the

“interfaces” by which the two cubes c2i−1 and c2i+1 are linked together. The set of carrier sequences

from s to t in K is written Car(K)ts.

The picture below represents a carrier sequence from s = 0̂0̂ to t = 2̂2̂ in �2. It is composed of five

cubes c1, c2, c3, c4, c5, where c1, c3, c5 are squares and c2, c4 are edges. One can check that we indeed

have s /− c1 .
+ c2 /

− c3 .
+ c4 /

− c5 .
+ t.

c2

c4

s

t

c1

c5

c3

Remark 4.13. Cube chains (and, by Remark 4.11, edge paths too) are particular cases of carrier sequences.

Indeed, they correspond exactly to the carrier sequences where every even-numbered cube c2i is a vertex.

4.2 Relating trace semantics and paths on HDAs

The usual computational interpretation of the directed space semantics for concurrency is that directed

paths correspond to executions of a program. As we mentioned before, the pre-cubical set �n represents

the situation where n asynchronous processes each execute a sequence of operations. Specifically, a path

from s = 0̂ · · · 0̂ to t = k̂ · · · k̂ should represent an execution where each process performs a sequence

of exactly k operations. In this section, we explore a bit further the different notions of paths and their

computational interpretation in terms of execution traces.

161

4.2.1 Three simple bijections

First, we relate the three notions of paths of Section 4.1.2 (edge paths, cube chains and carrier se-

quences) to the three variants of linearizability that we studied in Section 2.2.3 (linearizability [71], set-

linearizability [99] and interval-linearizability [18]). Recall that the main purpose of those linearizability-

based techniques is to produce a concurrent specification, by providing a (usually simpler) specification,

which only specifies the behavior of the object on traces of a specific shape. Namely, standard lin-

earizability starts with a specification that deals with sequential traces; set-linearizability specifies the

set-sequential traces; and interval-linearizability specifies interval-sequential traces, that is, traces of any

shape.

Edge paths Cube chains Carrier sequences

P

Q

P

Q

P

Q

Sequential traces Set-sequential traces Interval traces

The picture above sums up the three results that we will prove in the remainder of the section. Namely,

edge paths correspond to sequential traces; cube chains correspond to set-sequential traces; and carrier

sequences correspond to general traces. A little subtlety is that in order to obtain a bijection, we must

consider traces up to commutations of invocations and commutations of responses (this was discussed

in the last paragraph of Section 2.2.2). A bit more abstractly, this means that the notion that we really

capture is Lamport’s so-called precedence partial order [85] between operations. This is the approach

that has been taken in [31], which is based on partial orders rather than execution traces.

Edge paths and sequential traces

This correspondence is well known: edge paths correspond to interleavings of the operations of the

processes. Interleaving semantics are known to be well-suited for studying concurrent objects in which

every action appears to happen atomically. One of the reasons for the introduction of HDAs was to get

away from interleaving semantics in order to model true concurrency, where operations can happen at the

same time. In order to prove this result formally, we recall the definition of a sequential trace. Since we

only care about the “shape” of the traces and not about the operations, we do not include input and output

values.

Consider n processes and let {0, . . . , n− 1} be the set of process numbers. A trace is a finite word

on the alphabet A = {ii, ri | 0 ≤ i < n} that is alternating, that is, that begins with an invocation and

alternates between invocations and responses (see Section 2.2.2). We write T for the set of all traces. A

trace is sequential if every invocation ii is immediately followed by a matching response ri. For k ∈ N, we

write Seqk for the set of sequential traces where each process performs exactly k operations, that is, traces

162

that contain exactly k occurrences of ii and ri for each 0 ≤ i < n. We also write Edg(K)ts for the set of

edge paths from s to t in K. We also write 0̂ for the vertex 0̂ · · · 0̂ of �n, and k̂ for the vertex k̂ · · · k̂.

Theorem 4.14. There is a bijection between Seqk and Edg(�n)k̂
0̂

.

Proof. A sequential trace T ∈ Seqk can be seen as a sequence of integers i1, . . . , ikn ∈ {0, . . . , n− 1},
where each process number j appears exactly k times in s. Indeed, since each invocation is immediately

followed by a matching response, we can group the two symbols together and write i instead of ii · ri.
Let p ∈ Edg(�n)k̂

0̂
be an edge path from 0̂ to k̂ in �n. An induction on k shows that it must be of

length kn. So, p is given by a sequence of edges e1, . . . , ekn ∈ �n1 . By definition, an edge of �n is an

n-tuple of elements of N ∪ N̂, where exactly one component is in N. If the j-th component (numbering

starts at 0) of e is in N, we associate the process number j with it. This gives us a sequence of process

numbers i1, . . . , ikn, that is, a sequential trace. Moreover, each process number 0 ≤ j < n must appear

exactly k times in the sequence. Indeed, we can prove by induction on the length of the path that an edge

path in �n which starts at 0̂, and whose associated sequence contains a occurrences of j, ends at a vertex

whose j-th component is â.

Conversely, given a sequential trace, viewed as a sequence of integers i1, . . . , ikn, we can construct

an edge path e1, . . . , ekn as follows. For an index 1 ≤ r ≤ kn and a process number j, we write

#r(j) := |{s | is = j, 1 ≤ s < r}| for the number of occurrences of j in the sequence i1, . . . , ir−1.

Then, the edge er for 1 ≤ r ≤ kn has the symbol #r(ir) in its ir-th component, and the symbol #̂r(j) in

its j-th component for j 6= ir. This is indeed an edge path: indeed, consider two consecutive edges er
and er+1. We have #r+1(ir) = #r(ir) + 1, and for j 6= ir, #r+1(j) = #r(j). So all the components are

unchanged, except for the ir-th one which has been incremented by one. So, we have ∂+
0 (er) = ∂−0 (er+1)

since the effect of ∂+
0 is to increment the component without a hat, that is, the ir-th one. Similarly, a

simple calculation shows that ∂−0 (e1) = 0̂ and ∂+
0 (ekn) = k̂.

Checking that the composition Seqk → Edg(�n)k̂
0̂
→ Seqk is the identity is straightforward. For

the other direction, let e1, . . . , ekn be an edge path, and i1, . . . , ikn its associated sequence. A simple

induction on r shows that the value (with or without hat) of the j-th component of er is #r(j). Since the

construction also preserves the position of the hats, we obtain the same edge path that we started with.

Cube chains and set-sequential traces

Set-sequential traces are a somewhat ad-hoc formalism that came up in order to specify useful concurrent

objects such as set-agreement objects and immediate-snapshot. In contrast, cube chains are a canonical in

the sense that they provide a combinatorial model of the space of directed paths on a pre-cubical set, which

is minimal among such constructions. Thus, this relationship between cube chains and set-sequential

traces is surprising, and might provide some insight on why the immediate-snapshot object is so important

in distributed computing.

Recall that a trace T ∈ T is set-sequential if whenever a response occurs, all the pending invocations

must receive a response before a new invocation can occur. More formally, for every prefix of T of the

form T ′ · ri · ij , there must be no pending invocation in T ′ · ri (i.e., for all j, it contains the same number of

ij and rj symbols). We write SetSeqk for the set of set-sequential traces that contain exactly k invocations

ii and k responses ri for each process i. As we mentioned earlier, we will actually consider these traces up

163

to commutations of invocations and of responses. As in Section 2.2.2, we write T ≡ T ′ to denote that T ′

is obtained from T by reordering the blocks of consecutive invocations or consecutive responses.

Theorem 4.15. There is a bijection between SetSeqk/≡ and Ch(�n)k̂
0̂

.

Proof. First, remark that we have a simple representation of the elements of SetSeqk/ ≡. They are

sequences of sets of process numbers, I1, . . . , Im where each Is ⊆ {0, . . . , n − 1}, such that each

0 ≤ j < n appears in exactly k of those sets. Indeed, such a sequence can be turned into a set-sequential

trace by replacing each set I = {i1, . . . , ir} by the word ii1 · · · iir · ri1 · · · rir , and concatenating them.

Conversely, we can associate with a set-sequential trace the sequence of sets of participating processes;

this is well-defined on the quotient set since it is invariant under reordering of consecutive invocations and

consecutive responses. It is straightforward to check that composition in both ways gives the identity.

The remainder of the proof is quite similar to the one of Theorem 4.14. Recall that the cubes of �n

of dimension d are n-tuples of elements of N ∪ N̂, with exactly d components in N. We write cr[j] for

the j-th component of the cube cr. Consider a cube chain c = c1, . . . , cm ∈ Ch(�n)k̂
0̂

. For each cr, we

define Ir = {j | cr[j] ∈ N} the set of indexes at which cr has a symbol in N. This gives us a sequence of

sets of process numbers, i.e., an equivalence class of set-sequential traces. To check that it is an element

of SetSeqk/≡, we must prove that each process number j ∈ {0, . . . , n− 1} appears exactly k times in

the sequence I1, . . . , Im. As in the previous proof, we can show by induction that a cube chain in �n

which starts at 0̂, and whose associated sequence contains a occurrences of j, ends at a vertex whose j-th

component is â. So, in order to end at k̂, every j must appear k times.

The converse is also very similar to the one of the previous theorem. Assume given a sequence of sets

I1, . . . , Im, where every process number 0 ≤ j < n appears exactly k times. Given an index 1 ≤ r ≤ m
and a process number j, we write #r(j) := |{s | j ∈ Is, 1 ≤ s < r}| for the number of occurrences of j

in I1, . . . , Ir−1. Then, we can construct a cube chain c1, . . . , cm ∈ Ch(�n)k̂
0̂

as follows. The cube cr, of

dimension |Ir|, is obtained by putting the symbol #r(j) in the j-th component if j ∈ Ir, and #̂r(j) in

the j-th component if j 6∈ Ir. Checking that this is still a cube chain is a straightforward calculation as in

the case of edge paths: two consecutive cubes cr and cr+1 have the same values in all components, except

for the j-th ones with j ∈ Ir, which have been incremented in cr+1. Since they are also the components

without hats in cr, we have ∂+(cr) = ∂−(cr+1). The conditions on 0̂ and k̂ are checked similarly.

For convenience, we name f : Ch(�n)k̂
0̂
→ SetSeqk/≡ and g : SetSeqk/≡→ Ch(�n)k̂

0̂
the two

maps defined above. To show that f ◦ g is the identity, consider a sequence s = I1, . . . , Im. Its image by g

is g(s) = c1, . . . , cm, where each cube cr has symbols without hats (in N) exactly at the indexes j ∈ Ir.
Hence f ◦ g(s) = I1, . . . , Im by definition of f . Conversely, take a cube chain c = c1, . . . , cm from 0̂

to k̂ in �n, and let f(c) = I1, . . . , Im be its image by f . We prove the following by induction on r: for

all 0 ≤ j < n, cr[j] = #r(j) (we disregard the hats for now). For r = 1, #r(j) = 0 for all j by definition,

and since we must have ∂−(c1) = 0̂, we also have c1[j] = 0 or 0̂ for all j. Now assume by induction

hypothesis that some r, cr[j] = #r(j) for all j. As we said before, #r+1(j) = #r(j) + 1 if j ∈ Ir and

#r+1(j) = #r(j) otherwise. By definition of ∂+, the vertex v = ∂+(cr) has value ̂cr[j] + 1 = #̂r+1(j)

in the j-th component if j ∈ Ir, and ĉr[j] = #̂r+1(j) otherwise. Since we must also have v = ∂−(cr+1),

the j-th component of cr+1 must have value #r+1(j) (with or without hat) for all j. What we have shown

so far proves that the cubes of g ◦ f(c) have the same values as those of c. We still need to check that the

hats are at the same places, but this is obvious, since the set Ir is by definition the set of indexes j such that

cr[j] ∈ N, and the function g also puts values in N for the indexes in Ir, and values in N̂ otherwise.

164

Carrier sequences and interval traces

The third correspondence is between carrier sequences and general (unconstrained) traces, which are also

called “interval-sequential” in [18]. As this name suggests, traces are closely related to so-called interval

orders, via Lamport’s precedence partial order that we mentioned in Chapter 2, just after Definition 2.24.

The correspondence between carrier sequences and interval orders has been noticed independently by

Fahrenberg et al. [31].

Like in the previous case, we want to consider traces only up to commutations of invocations and

of responses. In fact, this is already how it is done in [18], where a trace is represented as a sequence

I1, R1, . . . , Im, Rm where each Ir (resp., Rr) is a non-empty set of invocations (resp., responses). In

our case, the only information contained in invocations and responses is the process number, so we

can represent an equivalence class of traces as a sequence I1, R1, . . . , Im, Rm where each Ir, Rr ⊆
{0, . . . , n− 1} are non-empty sets of process numbers. Moreover, recall that traces are always assumed to

be alternating, which can be formulated as follows when working with equivalence classes. The sequence

I1, R1, . . . , Im, Rm is alternating if:

(i) each process begins with an invocation: if j ∈ Rr then there exists s ≤ r such that j ∈ Is,
(ii) no two consecutive invocations: if j ∈ Ir and j ∈ Is for r < s, then j ∈ Rt for some r ≤ t < s,

(iii) no two consecutive responses: if j ∈ Rr and j ∈ Rs for r < s, then j ∈ It for some r < t ≤ s.
Constructing the bijection between T /≡ and these sequences is quite straightforward. Given a trace, we

obtain the corresponding sequence by replacing each maximal block of invocations (resp., responses) by

the set Ir (resp., Rr) of process numbers that appear in it. This is well-defined on T /≡ since it does not

depend on the choice of the representative of an equivalence class. Conversely, given a sequence of sets,

we can reconstruct a trace by choosing an arbitrary ordering of the invocations/responses in each set. It is

easy to see that composing these two maps gives the identity in both directions.

Remark 4.16. To be completely formal, we should also show that, along this bijection, the above definition

of “alternating” coincides with the one on regular traces. Although it is not difficult to prove, it is quite

cumbersome to write fully formally. Since it is not our main point of interest here, we leave out the details.

An alternating sequence of sets is complete if moreover it has the following property:

(iv) each process ends with a response: if j ∈ Ir then there exists s ≥ r such that j ∈ Rs.
We write Tk for the set of traces that contain exactly k occurrences of the symbol ii, and k occurrences

of ri, for each process number 0 ≤ i < n. Thus, an equivalence class in Tk/≡ can be seen as a sequence

I1, R1, . . . , Im, Rm that is alternating, complete, and where each process i appears in exactly k of the sets

Rr (automatically, the same is true for invocations).

Theorem 4.17. There is a bijection between Tk/≡ and Car(�n)k̂
0̂

.

Proof. We define a function f : Car(�n)k̂
0̂
→ Tk/≡ as follows. Let c1, . . . , c2m−1 be a carrier sequence

from 0̂ to k̂, i.e., such that 0̂ /− c1 .
+ c2 /

− c3 .
+ · · · /− c2m−1 .

+ k̂. For each cube cr, we define

Sr = {j | cr[j] ∈ N} the set of indexes at which cr has a symbol in N. We also take S0 = S2m = ∅,

which amounts to the same construction on the cubes c0 = 0̂ and c2m = k̂. Then, for each 1 ≤ ` ≤ m we

choose I` = S2`−1 \ S2`−2 and R` = S2`−1 \ S2`. This gives us a sequence of sets I1, R1, . . . , Im, Rm.

We now prove that this sequence is alternating. First, note that whenever cr /+ cs, then Sr ⊆ Ss, and the

same is true when cr /− cs. That is because the face maps ∂+
i and ∂−i always replace symbols in N by

symbols in N̂. So, we have S0 ⊆ S1 ⊇ S2 ⊆ · · · ⊇ S2m−1 ⊆ S2m.

165

(i) if j ∈ R`, then j ∈ S2`−1. Take the largest r < 2`− 1 such that j 6∈ Sr (worst case, r = 0 works).

Then r must be even because of the inclusions above, and therefore j ∈ I r
2

+1 = Sr+1 \ Sr.
(ii) Assume j ∈ I` and j ∈ It for ` < t. Then in particular, j ∈ S2`−1 and j 6∈ S2t−2. Take the largest

index r with 2`− 1 ≤ r < 2t− 2, such that j ∈ Sr. It exists since 2`− 1 works, and it must be

odd because of the inclusions. Then, we get j ∈ Rb r
2
c+1 = Sr \ Sr+1.

(iii) Assume j ∈ R` and j ∈ Rt for ` < t. Then in particular, j 6∈ S2` and j ∈ S2t−1. Take the largest

index r with 2` ≤ r < 2t − 1, such that j 6∈ Sr. It exists since 2` works, and it must be even

because of the inclusions. Then, we get j ∈ I r
2

+1 = Sr+1 \ Sr.
It is also complete:

(iv) if j ∈ I`, then j ∈ S2`−1. Take the smallest r > 2`− 1 such that j 6∈ Sr (it exists since r = 2m

works). Then r must be even, and we get j ∈ R r
2

= Sr−1 \ Sr.
Moreover, each process number j appears exactly k times in the sets R1, . . . , Rm. To show this, we prove

the following property by induction on 0 ≤ ` ≤ m: if j appears a times in R1, . . . , R`, then the cube c2`

has value a or â at position j. Therefore, since c2m = k̂ has value k̂ at position j, the only possibility is to

have k occurrences of j in R1, . . . , Rm. The property is true for ` = 0. Assume by induction hypothesis

that it is true for `, and let a be the number of occurrences of j in R1, . . . , R`+1. We distinguish two cases,

depending whether or not j ∈ R`+1.

– If j ∈ R`+1, by induction hypothesis the cube c2` has value a− 1 (or â− 1) in its j-th component.

Since c2` /
− c2`+1, the cube c2`+1 also has the same value, because the maps ∂−i do not change the

value of the components. Moreover, j ∈ R`+1 implies that j ∈ S2`+1 and j 6∈ S2`+2. This means

that the j-th component of c2`+1 is in N, while the j-th component of c2`+2 is in N̂. Thus, one of

the face maps ∂+
i modified the j-th component, which is now â in c2`+2.

– If j 6∈ R`+1, by induction hypothesis the cube c2` has value a or â in its j-th component. As in the

previous case, the same is true for c2`+1. Then, because j 6∈ R`+1, the j-th component of c2`+1 and

c2`+1 either both have a hat, or neither of them do. In both cases, that means the face maps did not

affect the j-th component, which is still a or â.

Therefore, the sequence I1, R1, . . . , Im, Rm that we constructed is in Tk/≡, and the map f is well-defined.

We now need to define its inverse g : Tk/≡ → Car(�n)k̂
0̂

. Take a sequence of sets I1, R1, . . . , Im, Rm

that is alternating and has exactly k responses from each process. We construct a sequence of cubes

c0, . . . , c2m by induction as follows. We start with c0 = 0̂. Assume that c2` has been defined. Then:

– c2`+1 is the cube obtained from c2` by removing the hats from each component j ∈ I`+1. The

natural number inside the component remains unchanged.
– c2`+2 is the cube obtained from c2`+1 by incrementing the value of each component j ∈ R`+1, and

adding a hat to them.

We now prove that this is indeed a carrier sequence. Checking that c2` /
− c2`+1 is straightforward: just

use the face maps ∂−i with the indexes corresponding to the components where hats must be added.

Checking that c2`+1 .
+ c2`+2 is more tricky: we must make sure that we never increment a component

that already has a hat, since face maps cannot do that. To prove this, we use the fact that the sequence

I1, R1, . . . , Im, Rm is alternating, and in particular that no two responses can occur consecutively. For

each j ∈ R2`+2 we look at the largest r < 2`+ 1 such that j ∈ Ir (it must exist because of (i)). By (iii),

there is no s such that r ≤ s < 2` + 2 and j ∈ Rs. Then the invocation Ir has removed the hat from

the j-th component, and this component has not been changed since then. Therefore each j ∈ R2`+2 is

166

the index of a component without hat of c2`+1, and we can choose the corresponding face maps ∂+
i so that

c2`+1 .
+ c2`+2. Finally, we also need to check that c2m = k̂, which is the case because each component

will be incremented k times, and because the trace is complete.

To show that f ◦g = id, take a sequence s = I1, R1, . . . , Im, Rm, and its image g(s) = c1, . . . , c2m−1.

We can prove by an easy induction that the set of indexes without hats of c2`+1 is given by the formula

((((I1 \R1)∪I2)\R2)∪ . . .)∪I`+1, and the one of c2`+2 is (((((I1 \R1)∪I2)\R2)∪ . . .)∪I`+1)\R`+1.

In other words, the sets Sr that we use in the construction of f satisfy the equations S2`+1 = S2` ∪ I`+1

and S2`+2 = S2`+1 \R`+1. Then f ◦ g(s) will give the sets S2`−1 \ S2`−2 = I` and S2`−1 \ S2` = R`.

Conversely, let c = c1, . . . , c2m−1 be a carrier sequence, and let f(c) = I1, R1, . . . , Im, Rm. By

definition, we have I` = S2`−1 \ S2`−2 and R` = S2`−1 \ S2`, with S0 = S2m = ∅. Let g ◦ f(c) =

c′1, . . . , c
′
2m−1 be the sequence of cubes obtained by the definition of g. We pose c0 = c′0 = 0̂, and we

prove by induction on r that for all r, cr = c′r. This is true for r = 0. Assume that c′2` = c2`. Then:

– c′2`+1 is obtained from c′2` = c2` by removing the hats from each component j ∈ I`+1. Moreover,

since c2` /
− c2`+1, the cube c2`+1 is also obtained from c2` by removing hats. The set of indexes

where hats have been removed is precisely S2`+1 \ S2`, which is equal to I`+1 by definition.
– c′2`+2 is obtained from c′2`+1 = c2`+1 by incrementing each component j ∈ R`+1 and adding hats.

Since c2`+1 .
+ c2`+2, the cube c2`+2 is also obtained from c2`+1 by incrementing some indexes

and adding hats. The set of indexes where hats have been added is S2`+1 \ S2`+2 = R`+1.

4.2.2 Chromatic subdivisions via partial cube chains

The bijections of the previous section explain the computational intuition behind the various notions of

paths, but they do not really reflect the topological structure of the space of paths on an HDA. Indeed,

as it is shown in Ziemiański’s paper about cube chains [119], one can link cube chains together in order

to capture the continuous deformation of paths that occurs on HDAs. Similarly, if we want to construct

protocol complexes from HDA semantics, we need to consider not only the sets of executions (i.e., the set

of facets of the protocol complex), but also how those facets are glued together (i.e., the local views of the

processes). This is the same issue as for the test-and-set and compare-and-swap examples presented in the

introduction of this chapter.

In this section, we focus on the equivalence between cube chains and set-sequential traces. The

typical example of a set-linearizable object is the immediate-snapshot object. Its particularity is that

each set-sequential execution trace (up to equivalence) produces a distinct global state. Thus, we have a

bijection between the set of set-sequential traces, and the set of facets of the immediate-snapshot protocol

complex. By Theorem 4.15, this means that we have a bijection between the facets of the standard

chromatic subdivision, and the set of cube chains. Our goal in this section is to recover the full structure

of the standard chromatic subdivision, that is, explain how these facets are glued together. To do so, we

introduce the new notion of partial cube chains.

Definition 4.18. Let K be a pre-cubical set and s, t ∈ K0 two of its vertices. A partial cube chain from s

to t in K is a sequence of cubes c = (c1, . . . , c`) where ci ∈ Kni (ni > 0) such that:

– There is a (possibly empty) edge path from s to ∂−(c1).
– There is a (possibly empty) edge path from ∂+(c`) to t.
– For 1 ≤ i ≤ `− 1, there is a (possibly empty) edge path from ∂+(ci) to ∂−(ci+1).

We write PCh(K)ts for the set of partial cube chains from s to t.

167

Note that in particular, cube chains are partial cube chains, i.e., Ch(K)ts ⊆ PCh(K)ts. The length

and dimension of partial cube chains are defined as for total ones. A partial cube chain can be pictured as

follows, where dotted lines represent the existence of a path.

s

t

Definition 4.19. Given two partial cube chains c, c′ ∈ PCh(K)ts, we say that c′ extends c, written

c 4 c′, whenever:

– Either c′ = (c1, . . . , c`) and c = (c1, . . . , ci−1, ci+1, . . . , c`), i.e., c is obtained from c′ by removing

one cube.
– Or c′ = (c1, . . . , ci−1, c

′
i, ci+1 . . . , c`) and c = (c1, . . . , ci−1, ci, ci+1, . . . , c`), where ci = ∂+

k (c′i)

for some k < n′i.

By taking the reflexive and transitive closure of this relation (still written 4), we obtain a partial order on

PCh(K)ts (antisymmetry is proved by looking at the length of the chains).

Remark 4.20. Note that in the second case of Definition 4.19, ci is only allowed to be a forward face of c′i.

This introduces some asymmetry in the relation, as illustrated in Example 4.21. This point will be crucial

when we want to connect this to the simplicial chromatic subdivision that arises in immediate snapshot

protocols. Indeed, a process P views a process Q whenever Q runs either before or concurrently, and

doesn’t view it when Q runs after P .

Example 4.21. In the 3-dimensional cube �3:

4 but 64

We will now show that the partial cube chains in �n, equipped with the partial order 4, are order

isomorphic to the poset of simplices of the standard chromatic subdivision. First, we recall the definition

of the one-round standard chromatic subdivision (cf. Section 1.2.3).

Definition 4.22. The combinatorial n-simplex ∆n is the abstract simplicial complex with [n] as the set of

vertices and all subsets of [n] as simplices. Thus, ∆n is of dimension n.

Definition 4.23. The standard chromatic subdivision of ∆n, written ChSub(∆n), is the following abstract

simplicial complex:

– Its set of vertices is {(i,Xi) | Xi ∈ [n], i ∈ Xi}.
– The set {(i0, Xi0), . . . , (ik, Xik)} is a k-simplex iff

(1) It can be indexed so that Xi0 ⊆ . . . ⊆ Xik , and

168

(2) If i` ∈ Xim then Xi` ⊆ Xim .

Recall the definition of the standard (n+ 1)-cube �n+1 (see Definition 4.4). We write s := − · · ·−
for its source, and t := + · · ·+ for its target. We can now state the main theorem of this section:

Theorem 4.24. The poset of partial cube chains in the combinatorial (n+ 1)-cube is order isomorphic

to the face poset of the n-dimensional standard chromatic subdivision:

(PCh(�n+1)ts,4) ' (ChSub(∆n),⊆)

Before we prove it, let us show a helper lemma about what partial cube chains in the cube look like:

Lemma 4.25. In a partial cube chain c = (c1, . . . , c`) ∈ PCh(�n+1)ts, whenever a cube ck has a ‘0’

or ‘+’ symbol at a position i, all the subsequent cubes also have a ‘+’ symbol at position i.

Proof. We prove the lemma for total cube chains. Since a partial cube chain can always be extended to a

total one (by filling the holes with the paths that are required to exist by definition), the result follows

for all partial cube chains. The endpoint v = ∂+(ck) must have a ‘+’ symbol at position i. Moreover,

we must also have v = ∂−(ck+1) since we are dealing with a cube chain. As a result, ck+1 can only

have a ‘+’ symbol at position i (otherwise ∂−(ck+1) would have a ‘−’ at position i). By iterating this

reasoning, all the subsequent cubes must also have a ‘+’.

Corollary 4.26. Let c = (c1, . . . , c`) ∈ PCh(�n+1)ts. For every i ∈ [n], there is at most one cube ck
that has symbol 0 at position i.

Proof. Let ck be the first cube (if any) that has a ‘0’ symbol at position i. By Lemma 4.25, all the

subsequent cubes must have a ‘+’.

Remark 4.27. The computational intuition behind this is that �n+1 is interpreted as the trace space for

n+ 1 processes, each of which performs one set-linearizable operation (such as a call to the immediate-

snapshot object). A cube chain in that space represents one possible execution. Running the process

i corresponds to advancing in the i-th direction along the cube. Corollary 4.26 states that in such an

execution, each process runs only once.

If c is a cube in �n+1, we write procc ⊆ [n] for the set of indexes where c has symbol ‘0’, and

viewc ⊆ [n] for the set of indexes where c has symbol ‘0’ or ‘+’.

Lemma 4.28. Let c = (c1, . . . , c`) be a partial cube chain in �n+1. If k ≤ k′, then viewck ⊆ viewck′ .

Proof. This is a direct consequence of Lemma 4.25

Definition 4.29. We define a map f : PCh(�n+1)ts → ChSub(∆n) as follows. Let c = (c1, . . . , c`) be

a partial cube chain. Then f(c) is the simplex

f(c) =
⋃

1≤k≤`
{(i, viewck) | i ∈ procck}

Let us show that it is indeed a simplex of ChSub(∆n). First, i ∈ viewck since i ∈ procck ⊆ viewck . The

views in f(c) can be totally ordered by inclusion thanks to Lemma 4.28. Finally, suppose (i, viewck) and

(j, viewcm) are two elements of f(c) such that i ∈ viewcm . Then cm has a ‘0’ or ‘+’ symbol at position i,

and by Lemma 4.25, all the subsequent cubes must have a ‘+’ at position i. Since i ∈ procck , ck cannot

be after cm, i.e., k ≤ m. By Lemma 4.28, viewck ⊆ viewcm .

169

Lemma 4.30. The dimension of f(c) is dim(f(c)) = length(c)− 1.

Proof. Let c = (c1, . . . , c`) be of type (n1, . . . , n`). The sets procci are disjoint by Corollary 4.26. Thus,

|f(c)| =
∑

i |procci | =
∑

i ni = length(c)

The picture below illustrates the map f for n = 2: partial cube chains in the 3-dimensional cube

correspond to the simplexes of the 2-dimensional chromatic subdivision. In particular, total cube chains,

which are of length 3, correspond to the facets of ChSub(∆2), of dimension 2.

Definition 4.31. We now define g : ChSub(∆n)→ PCh(�n+1)ts. Let X = {(i0, Xi0), . . . , (im, Xim)}
be a simplex in ChSub(∆n), indexed such that Xi0 ⊆ . . . ⊆ Xim . We split this sequence at the indexes

where the inclusion is strict. Let (Ik)1≤k≤` be the (unique) partition of {i0, . . . , im} such that:

– For j, j′ ∈ Ik, Xj = Xj′ . We write this common view XIk .
– The inclusion XIk (XIk+1

is strict.

We can now construct a partial cube chain g(X) = (c1, . . . , c`), where ck has symbol ‘0’ at all positions

j ∈ Ik; symbol ‘+’ at all positions j ∈ (XIk \ Ik); and symbol ‘−’ at the remaining positions.

To check that this is indeed a partial cube chain, we need to show that there is a (possibly empty) path

from ∂+(ck) to ∂−(ck+1). The only effect a path in the cube can have on vertices is to turn ‘−’ symbols

into ‘+’ symbols, so we need to check that whenever ∂+(ck) has a ‘+’ symbol at some position, then

∂−(ck+1) also does. ∂+(ck) has a ‘+’ symbol exactly at the positions j ∈ XIk . Since XIk ⊆ XIk+1
, ck+1

has either a ‘0’ or a ‘+’ at those positions, so we need to show that it cannot be a ‘0’, i.e., Ik+1∩XIk = ∅.

Suppose there is j ∈ Ik+1 such that j ∈ XIk , then by condition (2) of Definition 4.23, we would have

XIk+1
⊆ XIk which is impossible since the inclusion is strict.

Lemma 4.32. f and g are inverse of each other.

Proof. It is straightforward to check that f ◦ g(X) = X . We take the notations from Definition 4.31, with

g(X) = (c1, . . . , c`). Then procck = Ik and viewck = XIk , and we get

f ◦ g(X) =
⋃

1≤k≤`
{(i,XIk) | i ∈ Ik}

Since the sets (Ik)1≤k≤` form a partition of {i0, . . . , im}, andXIk = Xi for i ∈ Ik, we get f ◦g(X) = X .

170

Now we show that g ◦ f(c) = c. By Lemma 4.28, the views that appear in f(c) are ordered according

to the ordering of the cubes of c: viewc1 ⊆ . . . ⊆ viewc` . Moreover, all those inclusions are strict: since

cube chains do not contain 0-cubes, ck+1 must have at least one position with symbol ‘0’, and that position

cannot be in viewck (otherwise it would be a ‘+’). Thus, the corresponding partition (Ik) is Ik = procck
with its associated view XIk = viewck , and applying g gives back the original chain c.

Lemma 4.33. For all c, c′ ∈ PCh(�n+1)ts, c 4 c′ iff f(c) ⊆ f(c′).

Proof. Assume c 4 c′. We treat both cases of Definition 4.19.

– c′ is obtained by adding one cube to c: since viewck and procck only depend on the cube and not on

the rest of the chain, we trivially get f(c) ⊆ f(c′).

– Or c and c′ only differ by one cube, say ck and c′k, such that ck = ∂+
i (c′k), i.e., a ‘0’ in c′k has

been replaced by a ‘+’ in ck. Thus, viewck = viewc′k and procck ⊆ procc′k , from which we deduce

f(c) ⊆ f(c′).

Conversely, we show that if X ⊆ X ′ then g(X) 4 g(X ′) (and conclude by Lemma 4.32). We

treat the case when |X ′| = |X| + 1, the general result follows by iterating the same process. Assume

X = {(i0, Xi0), . . . , (im, Xim)} and X ′ has one more element (j,Xj). Let (Ik)1≤k≤` be the partition

that arises from X in Definition 4.31, giving a cube chain g(X) = (c1, . . . , c`). We distinguish two cases:

– Either Xj is equal to one of the XIk , say for k = k0. Then, when computing g(X ′), we will get a

partition (I ′k)1≤k≤` such that I ′k0 = Ik0 ∪ {j} and I ′k = Ik for k 6= k0. This will give a cube chain

g(X ′) = (c1, . . . , c
′
k0
, . . . , c`) that differs from g(X) only by one cube c′k0 . Moreover by definition

of g, c′k0 will have a ‘0’ symbol at position j, whereas ck0 has a ‘+’ since j ∈ Xj = XIk0
. All

other positions are the same, thus ck0 is a forward face of c′k0 , i.e., g(X) 4 g(X ′).

– Otherwise,Xj is different to all of theXIk . Then the partition (I ′k) will be the same as (Ik) with one

more set {j} added to it. Thus, g(X ′) will have the same cubes as g(X), plus one additional 1-cube.

That is, g(X) 4 g(X ′).

This concludes the proof of Theorem 4.24. Thus, we were able to recover the notion of view from

distributed computability, using only notions from directed topology. In classic distributed computability,

there are usually two intuitions about the protocol complex: the facets (of dimension n) correspond to

global executions, and the vertices (if dimension 0) correspond to the local view of one process. The

simplexes of other dimensions are usually not attributed a clear meaning. Of course, the computational

meaning of those “partial executions” is not yet well-understood, but this correspondence might give some

new insights about the protocol complex.

4.3 Future work and open questions

The work presented in this chapter is still very incomplete. Theorem 4.24 on partial cube chains can

be extended in many ways. More importantly, the computational meaning of this construction is not

completely understood yet: cube chains describe set-sequential executions in general, without making

assumptions about whether we are running an immediate-snapshot object or any other set-linearizable

object. So, in what sense is the notion of partial cube chains related to immediate-snapshot? Can we find

some different ways to link the cube chains together in order to produce other protocol complexes?

171

Partial cube chains on other HDAs

One interesting thing that we can do, is take the construction of Section 4.2.2, and apply it to other HDAs

rather than �n. For instance, the HDA modeling the test-and-set object is depicted below (left). It is the

combinatorial version of the directed space for test-and-set that we mentioned in the introduction.

If we look at the set of partial cube chains on this HDA, equipped with the extension partial order 4,

we obtain the simplicial complex depicted on the right. Surprisingly, it is quite similar topologically to the

protocol complex for test-and-set, in the sense that it is homotopy-equivalent to a circle. However, it has

more triangles than the one depicted in the introduction. It is also embedded on a chromatic subdivision

of a simplex, which might suggest that it could be a protocol complex obtained by combining test-and-set

and immediate-snapshot. Moreover, as in the case of directed spaces, the compare-and-swap object

also corresponds to the same HDA, in which case this construction does not give the expected protocol

complex at all.

It seems that the simplicial complex that our construction produces is a kind of “intermediate step”

towards the protocol complex. It describes the information acquired by the processes thanks to the

scheduling that occurred, but it does not say anything about the input and output values that a process

has seen during the execution. So, in order to get the real protocol complex, one would need to add this

additional information; for test-and-set it would collapse the equivalent facets, and for compare-and-swap

it would separate the triangles.

This kind of picture, where protocol complexes are embedded on a chromatic subdivision with some

missing facets, appear in two different settings in the literature to our knowledge. One of them is the

refined tasks of Castañeda, Rajsbaum and Raynal [18], that we mentioned briefly in Chapter 2. The idea

of refined tasks is to include scheduling information in addition to the output/output relation of classical

tasks. They were introduced in order to provide a task specification mechanism that is as expressive as

interval-linearizability. The other one is called affine tasks [82], which are defined as sub-complexes of the

second iteration of the chromatic subdivision. They are used to provide an Asynchronous Computability

Theorem for various adversarial models in a read/write memory setting.

Iterated chromatic subdivisions

An important feature of the immediate-snapshot model is that we can iterate it in order to subdivide the

input complex further. It seems that our current definition of partial cube chains may not be suitable

to produce iterated chromatic subdivisions. A first idea would be to look at the poset of partial cube

chains from 0̂ to k̂ in the stack of cubes �n, as we did in Section 4.2.1. However, this does not model

the round-based structure of the iterated immediate snapshot model, since in �n a process can start the

172

second “round” before the other processes are finished with the first one. A better option is to look at

partial cube chains in the following HDA (for 2 processes and 3 rounds):

But even in this case, we do not get the right simplicial complex. The reason is that partial cube chains

does not keep track of process identity. For example, in the picture above, the three horizontal actions are

performed by one process, and the three vertical actions are performed by the other process. In order to

obtain the iterated immediate-snapshot protocol complex, one would have to take this into account in the

definition of partial cube chains, by requiring that whenever some cube in the chain is missing, then the

corresponding processes never appear again in the future.

Non-immediate write-snapshot object

The (non-immediate) write-snapshot object is also very well-studied in the distributed computing literature.

Its protocol complex includes the chromatic subdivision, as well as some extra simplexes that do not alter

the topology of the input complex. It was shown in [18] that the right way to specify this object is using

interval-linearizability, since its specification cannot be expressed using set-linearizability. Thanks to

Theorem 4.17, it is easy to see that we have a bijection between the set of carrier sequences in �n+1, and

the facets of the n-dimensional protocol complex for non-immediate write-snapshot.

As in Section 4.2.2, the goal would now be to find a way to interpret the lower-dimensional simplices

of the protocol complex, as well as the face relations between them. However this seems quite tedious to

do, and we currently do not have a candidate for a suitable notion of “partial carrier sequence”.

Modeling the space of directed paths

Originally, cube chains were introduced by Ziemiański in [119] as a model for the space of directed paths

in the geometric realization of a pre-cubical set. The important result in this paper is that the combinatorial

model that he builds using cube chains (which is a CW-complex instead of a simplicial complex) is

homotopy equivalent to the (continuous) path space in the corresponding d-space.

In our case, we can already see that this property does not hold in our partial cube chains model, by

looking at the test-and-set example on page 172. Indeed, the trace space of the HDA on the left has three

connected components, since there are three non-homotopic paths. However, the simplicial complex on

the right has the homotopy type of a circle, and only one connected component! After discussions with

Krzysztof Ziemiański, it seemed that a possible way to fix this issue would be to change the definition

of partial cube chains (Definition 4.18) and replace each occurrence of “there exists a path from x to y”

by “the trace-space between x and y is contractible”. On the standard n-cube �n, the two definitions are

173

equivalent since whenever there exists a path between two points, the trace space is always contractible.

If we apply this definition to the test-and-set example, this would remove the three middle vertices of

the simplicial complex, which would create three connected components. However, what we get is not a

simplicial complex anymore, since we remove vertices but not the triangles and edges that contain them.

HDA semantics for non-linearizable objects

The trace-based semantics that we used in Chapter 2 specifies concurrent objects by giving the set of all

execution traces that they can produced. In the setting of labeled transition systems, it is well known

that trace equivalence is not always the good notion to compare program behaviors. For instance, in the

context of non-determinism, two systems might have distinct observable behaviors but still produce the

same sets of traces. To distinguish them, one must rely on notions such as bisimilarity.

a a

b c

a

b c

HDAs can be viewed as labeled transition systems with higher-dimensional cells, which encode

whether or not some operations may be performed concurrently. Thus, using HDAs, we hope to be able to

exhibit that kind of distinction between concurrent programs, that trace semantics cannot express. The idea

would be to replace Definition 2.22 by a definition based on an HDA. The three bijections of Section 4.2.1

suggest that we could capture the notions of sequential, set-sequential and interval specifications by

labeling the sets of edge paths, cube chains and carrier sequences (respectively) on an HDA with output

values. As a tentative definition, suppose given a set A of actions, containing a special value ⊥ ∈ A. In

practice, an action could contain information such as the object and method being called, as well as the

input value of the call. We write Ch(K)s for the set of cube chains with source s and any target.

Definition 4.34. An HDA set-sequential specification is given by a tuple (K, s, λ,V,∆) where:

– K is a pre-cubical set,
– s ∈ K0 is the source vertex,
– λ is a map from K to sequences of actions. To a n-dimensional cube x ∈ Kn, it associates a

sequence λ(x) = (λ0(x), . . . , λi(x), . . .) such that |{i ∈ N | λi(x) 6= ⊥}| = n. Moreover, for all

cube x and direction j, we require λ(∂+
j (x)) = λ(∂−j (x)).

– V is a set of output values, containing the special value ⊥,
– ∆ associates to each cube chain c1, . . . , c` ∈ Ch(K)s a set of `-tuples in (VN)`. The r-th

component of such a tuple (written resp(cr)) is a sequence of values assigning responses to the

participating processes in cr. We require {j ∈ N | resp(cr)j 6= ⊥} = {j ∈ N | λj(cr) 6= ⊥}.

An interval-specification would be a similar definition, replacing the set of cube chains Ch(K)s by

carrier sequences Car(K)s (then capturing the sets of participating processes becomes a bit cumbersome).

To get a general notion of HDA specification (analogous to our definition of concurrent specifications

in Chapter 2), we would add the expansion property, which amounts to requiring that ∆ be monotonic

174

with respect to inclusion of carrier sequences. Ultimately, the goal would be to have the following

correspondences:

– HDA specifications on �n correspond to concurrent specifications (Definition 2.22),
– HDA specifications on �n correspond to one-shot concurrent specifications (Definition 2.55).

On other HDAs, such a definition would provide us with a handy way of dealing with object that include

some level of synchronization: locks, barriers, and so on. Lastly, we could also consider HDAs of infinite

dimension, which would allow us to deal with an unbounded number of processes.

As we mentioned above, the main motivation for moving from trace semantics to HDA semantics is

that HDAs can be compared using various notions of bisimulation [33, 32]. This richer structure should

allow for a better understanding of what concurrent programs are computing. For instance, it would be

interesting to see whether the Galois connection of Theorem 2.32 turns into an adjunction between some

categories of HDA specifications.

175

Conclusion

The starting point of this thesis was the paper by Goubault, Mimram and Tasson [55], which shows that

we can recover the immediate-snapshot protocol complex by looking at di-homotopy classes of paths

in the associated directed space. Our initial goal was to extend this correspondence between directed

topology and the protocol complex approach to other classes of concurrent objects.

By looking at other examples such as test-and-set, it became clear that there was always a one-to-one

correspondence between the di-homotopy classes of paths in the directed semantics and the facets of the

protocol complex. But we could not figure out how to recover the “gluing” between these facets. One of

the first results that we came up with was the construction of the chromatic subdivision via partial cube

chains (Theorem 4.24). However, we could not understand the meaning behind this construction: the

notion of cube chain alone does not have any relationship with the immediate-snapshot object. Indeed,

the different kinds of paths on HDAs are related to the schedulings that can occur, but they do not give

information about the values exchanged between processes.

We decided that, instead of trying to link directly the two geometric approaches together, we should

first understand how they can both be derived from a more concrete operational semantics. In the directed

space semantics as presented in [36], it is clear how to obtain a directed space from any program, by

providing the semantics of the basic objects that we use. On the other hand, the protocol complex in [64]

is defined only for some particular objects, and assuming a round-based structure.

Operational semantics

(Trace semantics)

Directed semantics Protocol complex

[36] Chapter 2

?

So we began the work that we presented in Chapter 2, which proved to be much more challenging

that we initially expected. Indeed, after discussing with Sergio Rajsbaum about his work on interval-

linearizability [18], we realized that the objects of interest for asynchronous computability are usually of a

more complex nature than the linearizable ones that appear in practical implementations. As it turned out,

this was a very fruitful endeavor, since we discovered that the different variants of linearizability actually

177

correspond to the various notions of paths on HDAs (Section 4.2.1). Thus, we managed to understand the

link between cube chains and the immediate-snapshot object: they both describe set-sequential executions.

The work presented in Chapter 3 was also a result of our collaboration with Sergio Rajsbaum. Studying

the protocol complexes from the point of view of epistemic logic was quite illuminating, and helped us

understand better what is really going on in the abstract topological proofs for impossibility. Even though

the notion of knowledge has always been present in the intuitive explanations about the protocol complex

construction, the relationship between the two had never been fully formalized before. Perhaps one of

the key points that we have learned is that the information contained in the protocol complex is not so

much the local views of the processes, but the indistinguishability between executions. Even though

the indistinguishability relations are often derived from a notion of local view, it need not be the case in

general. Hence, another way to recover the protocol complex from the directed semantics could be to

equip it with some notion of indistinguishability.

In conclusion, studying the protocol complex from various different angles has given us a much better

understanding of the concrete properties of programs underlying this abstract topological construction.

While there are still many research directions left to explore, it seems that we now have enough tools to

start investigating the relationship between the directed semantics and the protocol complexes for general

non-linearizable objects. The notion of HDA specification that we sketched at the very end of Chapter 4

seems to be a quite promising line of research.

178

Bibliography

[1] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for general

references. In Thirteenth Annual IEEE Symposium on Logic in Computer Science, Indianapolis,

Indiana, USA, June 21-24, 1998, pages 334–344, 1998. doi:10.1109/LICS.1998.705669.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF. Inf.

Comput., 163(2):409–470, 2000. doi:10.1006/inco.2000.2930.

[3] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. Of choices, failures and

asynchrony: The many faces of set agreement. Algorithmica, 62(1-2):595–629, 2012. doi:

10.1007/s00453-011-9581-7.

[4] H. Attiya and S. Rajsbaum. The combinatorial structure of wait-free solvable tasks. SIAM J.

Comput., 31(4):1286–1313, 2002. doi:10.1137/S0097539797330689.

[5] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing

systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

[6] A. Baltag, L.S. Moss, and S. Solecki. The logic of common knowledge, public announcements, and

private suspicions. In TARK VII, pages 43–56, 1998. doi:10.1007/978-3-319-20451-2_

38.

[7] A. Baltag and B. Renne. Dynamic epistemic logic. In The Stanford Encyclopedia

of Philosophy, see https://plato.stanford.edu/archives/win2016/entries/

dynamic-epistemic/. Metaphysics Research Lab, Stanford University, 2016.

[8] Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese, 139(2):165–

224, 2004.

[9] F. Benavides and S. Rajsbaum. Collapsibility of read/write models using discrete morse the-

ory. Journal of Applied and Computational Topology, pages 1–32, 2018. doi:10.1007/

s41468-018-0011-7.

[10] O. Biran, S. Moran, and S. Zaks. A Combinatorial Characterization of the Distributed 1-Solvable

Tasks. J. Algorithms, 11(3):420–440, 1990. doi:10.1016/0196-6774(90)90020-F.

179

http://dx.doi.org/10.1109/LICS.1998.705669
http://dx.doi.org/10.1006/inco.2000.2930
http://dx.doi.org/10.1007/s00453-011-9581-7
http://dx.doi.org/10.1007/s00453-011-9581-7
http://dx.doi.org/10.1137/S0097539797330689
http://dx.doi.org/10.1145/200836.200869
http://dx.doi.org/10.1007/978-3-319-20451-2_38
http://dx.doi.org/10.1007/978-3-319-20451-2_38
https://plato.stanford.edu/archives/win2016/entries/dynamic-epistemic/
https://plato.stanford.edu/archives/win2016/entries/dynamic-epistemic/
http://dx.doi.org/10.1007/s41468-018-0011-7
http://dx.doi.org/10.1007/s41468-018-0011-7
http://dx.doi.org/10.1016/0196-6774(90)90020-F

[11] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.

[12] Thomas Bolander, Hans van Ditmarsch, Andreas Herzig, Emiliano Lorini, Pere Pardo, and Francois

Schwarzentruber. Announcements to attentive agents. Journal of Logic, Language and Information,

25(1):1–35, 2016.

[13] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North Holland, 5 edition, 1982.

[14] Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-

chronous computations. In Proceedings of the Twenty-fifth Annual ACM Symposium on The-

ory of Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM. doi:

10.1145/167088.167119.

[15] Elizabeth Borowsky and Eli Gafni. Immediate Atomic Snapshots and Fast Renaming. In Proceed-

ings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing, PODC ’93,

pages 41–51. ACM, 1993.

[16] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of wait-free

computations. In In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed

Computing, pages 189–198. ACM Press, 1996.

[17] A. Castañeda, Y. A. Gonczarowski, and Y. Moses. Unbeatable set consensus via topological and

combinatorial reasoning. In PODC, pages 107–116. ACM, 2016. doi:10.1145/2933057.

2933120.

[18] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying concurrent objects and

distributed tasks: Interval-linearizability. J. ACM, 65(6):45:1–45:42, 2018. doi:10.1145/

3266457.

[19] A. Castañeda, Y. A. Gonczarowski, and Y. Moses. Unbeatable consensus. In DISC, number 8784

in LNCS, pages 91–106. Springer, 2014. doi:10.1007/978-3-662-45174-8_7.

[20] Armando Castañeda, Damien Imbs, Sergio Rajsbaum, and Michel Raynal. Generalized symmetry

breaking tasks and nondeterminism in concurrent objects. SIAM J. Comput., 45(2):379–414, 2016.

doi:10.1137/130936828.

[21] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renam-

ing: the lower bound. Distributed Computing, 22(5):287–301, Aug 2010. doi:10.1007/

s00446-010-0108-2.

[22] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Long-lived tasks. In Amr El Abbadi and

Benoît Garbinato, editors, Networked Systems, pages 439–454, Cham, 2017. Springer International

Publishing.

[23] Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The concurrent game

semantics of probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 215–224, 2018.

doi:10.1145/3209108.3209187.

180

http://dx.doi.org/10.1145/167088.167119
http://dx.doi.org/10.1145/167088.167119
http://dx.doi.org/10.1145/2933057.2933120
http://dx.doi.org/10.1145/2933057.2933120
http://dx.doi.org/10.1145/3266457
http://dx.doi.org/10.1145/3266457
http://dx.doi.org/10.1007/978-3-662-45174-8_7
http://dx.doi.org/10.1137/130936828
http://dx.doi.org/10.1007/s00446-010-0108-2
http://dx.doi.org/10.1007/s00446-010-0108-2
http://dx.doi.org/10.1145/3209108.3209187

[24] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Conference Record of the

Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA,

January 1977, pages 238–252, 1977.

[25] C. Dégremont, B. Löwe, and A. Witzel. The synchronicity of dynamic epistemic logic. In TARK

XIII, pages 145–152. ACM, 2011. doi:10.1145/2000378.2000395.

[26] Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. Implementing

snapshot objects on top of crash-prone asynchronous message-passing systems. IEEE Trans.

Parallel Distrib. Syst., 29(9):2033–2045, 2018. doi:10.1109/TPDS.2018.2809551.

[27] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Springer, 2007.

doi:10.1007/978-1-4020-5839-4.

[28] Jérémy Dubut. Directed homotopy and homology theories for geometric models of true concurrency.

(Théories homotopiques et homologiques dirigées pour des modèles géométriques de la vraie

concurrence). PhD thesis, University of Paris-Saclay, France, 2017. URL: https://tel.

archives-ouvertes.fr/tel-01590515.

[29] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine environ-

ment: Crash failures. Inf. Comput., 88(2):156–186, 1990. doi:10.1016/0890-5401(90)

90014-9.

[30] Samuel Eilenberg. Ordered topological spaces. American Journal of Mathematics, 63(1):39–45,

1941. URL: http://www.jstor.org/stable/2371274.

[31] Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Badahur Thapa. Pomset languages of

Higher-Dimensional Automata (unpublished).

[32] Uli Fahrenberg and Axel Legay. History-preserving bisimilarity for higher-dimensional automata

via open maps. Electr. Notes Theor. Comput. Sci., 298:165–178, 2013. doi:10.1016/j.

entcs.2013.09.012.

[33] Ulrich Fahrenberg. A category of higher-dimensional automata. In Foundations of Software Science

and Computational Structures, 8th International Conference, FOSSACS 2005, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,

April 4-8, 2005, Proceedings, pages 187–201, 2005. doi:10.1007/978-3-540-31982-5\

_12.

[34] Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math., 35(2):188–206,

2005. doi:10.1016/j.aam.2005.02.003.

[35] Lisbeth Fajstrup, Éric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen. Trace

spaces: An efficient new technique for state-space reduction. In Helmut Seidl, editor, Programming

Languages and Systems, pages 274–294, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

181

http://dx.doi.org/10.1145/2000378.2000395
http://dx.doi.org/10.1109/TPDS.2018.2809551
http://dx.doi.org/10.1007/978-1-4020-5839-4
https://tel.archives-ouvertes.fr/tel-01590515
https://tel.archives-ouvertes.fr/tel-01590515
http://dx.doi.org/10.1016/0890-5401(90)90014-9
http://dx.doi.org/10.1016/0890-5401(90)90014-9
http://www.jstor.org/stable/2371274
http://dx.doi.org/10.1016/j.entcs.2013.09.012
http://dx.doi.org/10.1016/j.entcs.2013.09.012
http://dx.doi.org/10.1007/978-3-540-31982-5_12
http://dx.doi.org/10.1007/978-3-540-31982-5_12
http://dx.doi.org/10.1016/j.aam.2005.02.003

[36] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin

Raussen. Directed Algebraic Topology and Concurrency. Springer, 2016. doi:10.1007/

978-3-319-15398-8.

[37] Lisbeth Fajstrup, Eric Goubault, and Martin Raußen. Detecting deadlocks in concurrent systems.

In Davide Sangiorgi and Robert de Simone, editors, CONCUR’98 Concurrency Theory, pages

332–347, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[38] Lisbeth Fajstrup, Martin Raußen, and Eric Goubault. Algebraic topology and concurrency. Theor.

Comput. Sci., 357(1-3):241–278, 2006. doi:10.1016/j.tcs.2006.03.022.

[39] Lisbeth Fajstrup, Martin Raußen, Eric Goubault, and Emmanuel Haucourt. Components of the

fundamental category. Applied Categorical Structures, 12(1):81–108, 2004. doi:10.1023/B:

APCS.0000013812.75342.de.

[40] Ky Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral

triangulation. Journal of Combinatorial Theory, 2(4):588–602, 1967. doi:https://doi.

org/10.1016/S0021-9800(67)80063-2.

[41] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concurrent

objects. Theoretical Computer Science, 411(51):4379 – 4398, 2010. European Symposium on

Programming 2009.

[42] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus

with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

[43] Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput.,

28(3):970–983, 1999.

[44] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker than

set agreement. In Shlomi Dolev, editor, Distributed Computing, pages 329–338. Springer Berlin

Heidelberg, 2006.

[45] Seth Gilbert and Wojciech Golab. Making sense of relativistic distributed systems. In Fabian Kuhn,

editor, Distributed Computing, DISC 2015, volume 8784 of LNCS, pages 361–375. Springer Berlin

Heidelberg, 2014.

[46] E. Goubault and S. Rajsbaum. A simplicial complex model of dynamic epistemic logic for

fault-tolerant distributed computing. Technical report, arXiv:1703.11005, 2017.

[47] E. Goubault and S. Rajsbaum. Models of fault-tolerant distributed computation via dynamic

epistemic logic. Technical report, arXiv:1704.07883, 2017.

[48] Eric Goubault and Emmanuel Haucourt. Components of the fundamental category II. Applied

Categorical Structures, 15(4):387–414, 2007. doi:10.1007/s10485-007-9082-7.

[49] Eric Goubault and Thomas P. Jensen. Homology of higher dimensional automata. In CONCUR

’92, Third International Conference on Concurrency Theory, Stony Brook, NY, USA, August 24-27,

1992, Proceedings, pages 254–268, 1992. doi:10.1007/BFb0084796.

182

http://dx.doi.org/10.1007/978-3-319-15398-8
http://dx.doi.org/10.1007/978-3-319-15398-8
http://dx.doi.org/10.1016/j.tcs.2006.03.022
http://dx.doi.org/10.1023/B:APCS.0000013812.75342.de
http://dx.doi.org/10.1023/B:APCS.0000013812.75342.de
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(67)80063-2
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(67)80063-2
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1007/s10485-007-9082-7
http://dx.doi.org/10.1007/BFb0084796

[50] Éric Goubault, Marijana Lazić, Jérémy Ledent, and Sergio Rajsbaum. Wait-free solvability of

equality negation tasks. In 33rd International Symposium on Distributed Computing, DISC 2019,

October 14-18, 2019, Budapest, Hungary., pages 21:1–21:16, 2019. doi:10.4230/LIPIcs.

DISC.2019.21.

[51] Éric Goubault, Marijana Lazić, Jérémy Ledent, and Sergio Rajsbaum. A dynamic epistemic logic

analysis of the equality negation task. Dynamic Logic: New Trends and Applications, DaLi 2019,

to appear.

[52] Éric Goubault, Jérémy Ledent, and Samuel Mimram. Concurrent specifications beyond lineariz-

ability. In 22nd International Conference on Principles of Distributed Systems, OPODIS 2018,

pages 28:1–28:16, 2018. doi:10.4230/LIPIcs.OPODIS.2018.28.

[53] Éric Goubault, Jérémy Ledent, and Sergio Rajsbaum. A simplicial complex model for dynamic epis-

temic logic to study distributed task computability. In Proceedings Ninth International Symposium

on Games, Automata, Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany,

26-28th September 2018., pages 73–87, 2018. doi:10.4204/EPTCS.277.6.

[54] Éric Goubault, Samuel Mimram, and Christine Tasson. Iterated chromatic subdivisions

are collapsible. Applied Categorical Structures, 23(6):777–818, 2015. doi:10.1007/

s10485-014-9383-6.

[55] Éric Goubault, Samuel Mimram, and Christine Tasson. Geometric and combinatorial views on

asynchronous computability. Distributed Computing, 31(4):289–316, Aug 2018. doi:10.1007/

s00446-018-0328-4.

[56] Marco Grandis. Directed Algebraic Topology: Models of Non-Reversible Worlds. New Mathemati-

cal Monographs. Cambridge University Press, 2009. doi:10.1017/CBO9780511657474.

[57] Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz,

Hannes Payer, Ali Sezgin, Ana Sokolova, and Helmut Veith. Local linearizability for concurrent

container-type data structures. In 27th International Conference on Concurrency Theory, CONCUR

2016, August 23-26, 2016, Québec City, Canada, pages 6:1–6:15, 2016.

[58] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed

environment. J. ACM, 37(3):549–587, 1990. doi:10.1145/79147.79161.

[59] J. Havlicek. Computable obstructions to wait-free computability. Distributed Computing, 13(2):59–

83, 2000. doi:10.1007/s004460050068.

[60] Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. Modular Verification of Concurrency-Aware

Linearizability. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo,

Japan, Proceedings, pages 371–387, 2015.

[61] Michael Henle. A Combinatorial Introduction to Topology. Dover, 1983. doi:10.2307/

1574757.

[62] M. P. Herlihy. Impossibility and universality results for wait-free synchronization. In PODC, pages

276–290. ACM, 1988. doi:10.1145/62546.62593.

183

http://dx.doi.org/10.4230/LIPIcs.DISC.2019.21
http://dx.doi.org/10.4230/LIPIcs.DISC.2019.21
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2018.28
http://dx.doi.org/10.4204/EPTCS.277.6
http://dx.doi.org/10.1007/s10485-014-9383-6
http://dx.doi.org/10.1007/s10485-014-9383-6
http://dx.doi.org/10.1007/s00446-018-0328-4
http://dx.doi.org/10.1007/s00446-018-0328-4
http://dx.doi.org/10.1017/CBO9780511657474
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1007/s004460050068
http://dx.doi.org/10.2307/1574757
http://dx.doi.org/10.2307/1574757
http://dx.doi.org/10.1145/62546.62593

[63] Maurice Herlihy. Wait-free Synchronization. ACM Transactions on Programming Languages and

Systems, 13(1):124–149, January 1991.

[64] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combina-

torial Topology. Morgan Kaufmann Publishers Inc., 2013.

[65] Maurice Herlihy and Sergio Rajsbaum. Set consensus using arbitrary objects (preliminary

version). In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC ’94, pages 324–333, New York, NY, USA, 1994. ACM. doi:

10.1145/197917.198119.

[66] Maurice Herlihy and Sergio Rajsbaum. Algebraic topology and distributed computing: a primer,

pages 203–217. Springer Berlin Heidelberg, 1995. doi:10.1007/BFb0015245.

[67] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks (extended

abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing

(STOC), El Paso, Texas, USA, May 4-6, 1997, pages 589–598, 1997.

[68] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying synchronous and asynchronous

message-passing models. In Proceedings of the Seventeenth Annual ACM Symposium on Principles

of Distributed Computing, PODC ’98, pages 133–142, New York, NY, USA, 1998. ACM. doi:

10.1145/277697.277722.

[69] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. An overview of synchronous message-

passing and topology. Electr. Notes Theor. Comput. Sci., 39(2):1–17, 2001. doi:10.1016/

S1571-0661(05)01148-5.

[70] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.

ACM, 46(6):858–923, November 1999. URL: http://doi.acm.org/10.1145/331524.

331529.

[71] Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for Concurrent

Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[72] Y. Hirai. An intuitionistic epistemic logic for sequential consistency on shared memory. In LPAR,

pages 272–289. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-17511-4_

16.

[73] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,

1969. doi:10.1145/363235.363259.

[74] Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value computation. Theor.

Comput. Sci., 221(1-2):393–456, 1999. doi:10.1016/S0304-3975(99)00039-0.

[75] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,

163(2):285–408, 2000. doi:10.1006/inco.2000.2917.

184

http://dx.doi.org/10.1145/197917.198119
http://dx.doi.org/10.1145/197917.198119
http://dx.doi.org/10.1007/BFb0015245
http://dx.doi.org/10.1145/277697.277722
http://dx.doi.org/10.1145/277697.277722
http://dx.doi.org/10.1016/S1571-0661(05)01148-5
http://dx.doi.org/10.1016/S1571-0661(05)01148-5
http://doi.acm.org/10.1145/331524.331529
http://doi.acm.org/10.1145/331524.331529
http://dx.doi.org/10.1007/978-3-642-17511-4_16
http://dx.doi.org/10.1007/978-3-642-17511-4_16
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1016/S0304-3975(99)00039-0
http://dx.doi.org/10.1006/inco.2000.2917

[76] Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write shared memory

abstraction on top of asynchronous byzantine message-passing systems. J. Parallel Distrib. Comput.,

93-94:1–9, 2016. doi:10.1016/j.jpdc.2016.03.012.

[77] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the Twelfth Annual

ACM Symposium on Principles of Distributed Computing, PODC ’93, pages 145–157, New York,

NY, USA, 1993. ACM. doi:10.1145/164051.164070.

[78] S. Knight, B. Maubert, and F. Schwarzentruber. Reasoning about knowledge and messages in

asynchronous multi-agent systems. Mathematical Structures in Computer Science, pages 1–42,

2017. doi:10.1017/S0960129517000214.

[79] Dmitry Kozlov. Combinatorial Algebraic Topology. Springer, 2007. doi:10.1007/

978-3-540-71962-5.

[80] Dmitry N. Kozlov. Combinatorial topology of the standard chromatic subdivision and weak

symmetry breaking for 6 processes. CoRR, abs/1506.03944, 2015. URL: http://arxiv.org/

abs/1506.03944, arXiv:1506.03944.

[81] Sanjeevi Krishnan. A convenient category of locally preordered spaces. Applied Categorical

Structures, 17(5):445–466, 2009. doi:10.1007/s10485-008-9140-9.

[82] Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem for fair

adversaries. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,

PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 387–396, 2018. URL: https:

//dl.acm.org/citation.cfm?id=3212765.

[83] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Transactions on Computers, 28(9):690–691, 1979.

[84] Leslie Lamport. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst.,

5(2):190–222, 1983. doi:10.1145/69624.357207.

[85] Leslie Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 1986.

[86] Jérémy Ledent and Samuel Mimram. A sound foundation for the topological approach to task

solvability. In 30th International Conference on Concurrency Theory, CONCUR 2019, August

27-30, 2019, Amsterdam, the Netherlands., pages 34:1–34:15, 2019. doi:10.4230/LIPIcs.

CONCUR.2019.34.

[87] Richard J Lipton. Reduction: A method of proving properties of parallel programs. Communications

of the ACM, 18(12):717–721, 1975.

[88] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic

wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689–728, 2000. doi:10.1137/

S0097539798335766.

185

http://dx.doi.org/10.1016/j.jpdc.2016.03.012
http://dx.doi.org/10.1145/164051.164070
http://dx.doi.org/10.1017/S0960129517000214
http://dx.doi.org/10.1007/978-3-540-71962-5
http://dx.doi.org/10.1007/978-3-540-71962-5
http://arxiv.org/abs/1506.03944
http://arxiv.org/abs/1506.03944
http://arxiv.org/abs/1506.03944
http://dx.doi.org/10.1007/s10485-008-9140-9
https://dl.acm.org/citation.cfm?id=3212765
https://dl.acm.org/citation.cfm?id=3212765
http://dx.doi.org/10.1145/69624.357207
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.34
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.34
http://dx.doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1137/S0097539798335766

[89] Alessio Lomuscio and Mark Ryan. On the relation between interpreted systems and kripke models.

In Wayne Wobcke, Maurice Pagnucco, and Chengqi Zhang, editors, Agents and Multi-Agent

Systems Formalisms, Methodologies, and Applications, pages 46–59, Berlin, Heidelberg, 1998.

Springer Berlin Heidelberg.

[90] Carsten Lutz. Complexity and succinctness of public announcement logic. In 5th International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,

May 8-12, 2006, pages 137–143, 2006. doi:10.1145/1160633.1160657.

[91] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI Quarterly,

2:219–246, 1989. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.83.7751.

[92] Paul-André Melliès and Samuel Mimram. Asynchronous games: innocence without alternation. In

International Conference on Concurrency Theory, pages 395–411. Springer, 2007.

[93] Paul-André Melliès and Léo Stefanesco. A game semantics of concurrent separation logic. Electr.

Notes Theor. Comput. Sci., 336:241–256, 2018. doi:10.1016/j.entcs.2018.03.026.

[94] J. Misra. Axioms for memory access in asynchronous hardware systems. In Stephen D. Brookes,

Andrew William Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, pages 96–110.

Springer Berlin Heidelberg, 1985.

[95] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual

Symposium on Logic in Computer Science, pages 14–23. IEEE Press, 1989.

[96] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991. doi:

10.1016/0890-5401(91)90052-4.

[97] Yoram Moses. Relating knowledge and coordinated action: The knowledge of preconditions

principle. In TARK, pages 231–245. EPTCS, 2015. doi:10.4204/EPTCS.215.17.

[98] Leopoldo Nachbin. Topology and order. Van Nostrand mathematical studies. Van Nostrand, 1965.

[99] Gil Neiger. Set-Linearizability. In Proceedings of the Thirteenth Annual ACM Symposium on

Principles of Distributed Computing, page 396, 1994.

[100] Mogens Nielsen. Models for concurrency. In International Symposium on Mathematical Founda-

tions of Computer Science, pages 43–46. Springer, 1991.

[101] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM,

26(4):631–653, 1979.

[102] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of

Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57,

1977. doi:10.1109/SFCS.1977.32.

[103] Timothy Porter. Geometric aspects of multiagent systems. Electr. Notes Theor. Comput. Sci.,

81:73–98, 2003. doi:10.1016/S1571-0661(04)80837-5.

186

http://dx.doi.org/10.1145/1160633.1160657
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
http://dx.doi.org/10.1016/j.entcs.2018.03.026
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.4204/EPTCS.215.17
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/S1571-0661(04)80837-5

[104] Timothy Porter. Interpreted systems and kripke models for multiagent systems from a categorical

perspective. Theoretical Computer Science, 323(1):235 – 266, 2004. doi:10.1016/j.tcs.

2004.04.005.

[105] Vaughan R. Pratt. Modeling concurrency with geometry. In Conference Record of the Eighteenth

Annual ACM Symposium on Principles of Programming Languages, Orlando, Florida, USA,

January 21-23, 1991, pages 311–322, 1991. doi:10.1145/99583.99625.

[106] Y. Moses R. Fagin, J. Halpern and M. Vardi. Reasoning About Knowledge. MIT Press, 1995.

[107] S. Rajsbaum. Iterated shared memory models. In LATIN, volume 6034 of LNCS, pages 407–416.

Springer, 2010. doi:10.1007/978-3-642-12200-2_36.

[108] Martin Raussen. Invariants of directed spaces. Applied Categorical Structures, 15(4):355–386,

2007. doi:10.1007/s10485-007-9085-4.

[109] M. Raynal, G. Thia-Kime, and M. Ahamad. From serializable to causal transactions for col-

laborative applications. In Proceedings of the 23rd EUROMICRO Conference, pages 314–321,

1997.

[110] Rasmus Rendsvig and John Symons. Epistemic logic. In The Stanford Encyclopedia

of Philosophy, see https://plato.stanford.edu/archives/sum2019/entries/

logic-epistemic/. Metaphysics Research Lab, Stanford University, 2019.

[111] Joshua Sack. Logic for update products and steps into the past. Ann. Pure Appl. Logic, 161(12):1431–

1461, 2010. doi:10.1016/j.apal.2010.04.011.

[112] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology

of public knowledge. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of

Computing, STOC ’93, pages 101–110. ACM, 1993. doi:10.1145/167088.167122.

[113] Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability theorems for

t-resilient systems. In Distributed Computing - 30th International Symposium, DISC 2016. Pro-

ceedings, pages 428–441, 2016. doi:10.1007/978-3-662-53426-7_31.

[114] Dana Scott and C. Strachey. Towards a mathematical semantics for computer languages. Proceed-

ings of the Symposium on Computers and Automata, 21, 01 1971.

[115] G. Smith, K. Winter, and R. J. Colvin. A sound and complete definition of linearizability on weak

memory models. ArXiv e-prints, February 2018. arXiv:1802.04954.

[116] Hans van Ditmarsch. Asynchronous announcements. CoRR, abs/1705.03392, 2017. URL:

http://arxiv.org/abs/1705.03392, arXiv:1705.03392.

[117] Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld P. Kooi. Dynamic epistemic logic with

assignment. In 4th International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2005), pages 141–148, 2005. doi:10.1145/1082473.1082495.

[118] Rob van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report,

Stanford University, 1991. URL: http://theory.stanford.edu/~rvg/hda.

187

http://dx.doi.org/10.1016/j.tcs.2004.04.005
http://dx.doi.org/10.1016/j.tcs.2004.04.005
http://dx.doi.org/10.1145/99583.99625
http://dx.doi.org/10.1007/978-3-642-12200-2_36
http://dx.doi.org/10.1007/s10485-007-9085-4
https://plato.stanford.edu/archives/sum2019/entries/logic-epistemic/
https://plato.stanford.edu/archives/sum2019/entries/logic-epistemic/
http://dx.doi.org/10.1016/j.apal.2010.04.011
http://dx.doi.org/10.1145/167088.167122
http://dx.doi.org/10.1007/978-3-662-53426-7_31
http://arxiv.org/abs/1802.04954
http://arxiv.org/abs/1705.03392
http://arxiv.org/abs/1705.03392
http://dx.doi.org/10.1145/1082473.1082495
http://theory.stanford.edu/~rvg/hda

[119] Krzysztof Ziemianski. Spaces of directed paths on pre-cubical sets. Appl. Algebra Eng. Commun.

Comput., 28(6):497–525, 2017. doi:10.1007/s00200-017-0316-0.

188

http://dx.doi.org/10.1007/s00200-017-0316-0

Titre : Sémantiques Géométriques pour la Calculabilité Asynchrone

Mots clés : Sémantique, protocoles tolérants aux pannes, topologie, logique épistémique

Résumé : Le domaine des protocoles tolérants
aux pannes étudie quelles tâches concurrentes
sont résolubles dans différents modèles de
calcul avec pannes. Des outils mathématiques
basés sur la topologie combinatoire ont été
développés depuis les années 1990 pour aborder
ces questions. Dans ce cadre, la tâche que l’on
veut résoudre, et le protocole auquel on fait
appel, sont modélisés par des complexes simpli-
ciaux chromatiques. On définit qu’un protocole
résout une tâche lorsqu’il existe une certaine
application simpliciale entre ces complexes.
Dans cette thèse, on étudie ces méthodes géo-
métriques du point de vue de la sémantique. Le
premier objectif est de fonder cette définition
abstraite de résolution d’une tâche sur une autre
plus concrète, basée sur des entrelacements de
traces d’exécution. On examine diverses notions

de spécifications pour les objets concurrents,
afin de définir un cadre général pour la
résolution de tâches par des objets partagés. On
montre ensuite comment extraire de ce cadre la
définition topologique de résolubilité de tâches.
Dans la deuxième partie de la thèse, on prouve
que les complexes simpliciaux chromatiques
peuvent être utilisés pour évaluer des formules
de logique épistémique. Cela permet d’inter-
préter les preuves topologiques d’impossibilité
en fonction de la quantité de connaissances à
acquérir pour résoudre une tâche.
Enfin, on présente quelques liens préliminaires
avec la sémantique dirigée pour les programmes
concurrents. On montre comment la subdivision
chromatique d’un simplexe peut être retrouvée
en considérant des notions combinatoires de
chemins dirigés.

Title: Geometric Semantics for Asynchronous Computability

Keywords: Semantics, fault-tolerant protocols, topology, epistemic logic

Abstract: The field of fault-tolerant protocols
studies which concurrent tasks are solvable in
various computational models where processes
may crash. To answer these questions, powerful
mathematical tools based on combinatorial to-
pology have been developed since the 1990’s.
In this approach, the task that we want to solve,
and the protocol that we use to solve it, are both
modeled using chromatic simplicial complexes.
By definition, a protocol solves a task when
there exists a particular simplicial map between
those complexes.
In this thesis we study these geometric methods
from the point of view of semantics. Our first
goal is to ground this abstract definition of task
solvability on a more concrete one, based on
interleavings of execution traces. We investigate

various notions of specification for concurrent
objects, in order to define a general setting for
solving concurrent tasks using shared objects.
We then show how the topological definition of
task solvability can be derived from it.
In the second part of the thesis, we show that
chromatic simplicial complexes can actually be
used to interpret epistemic logic formulas. This
allows us to understand the topological proofs
of task unsolvability in terms of the amount of
knowledge that the processes should acquire in
order to solve a task.
Finally, we present a few preliminary links with
the directed space semantics for concurrent pro-
grams. We show how chromatic subdivisions of
a simplex can be recovered by considering com-
binatorial notions of directed paths.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

