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General Introduction

1 From a Centralized to a Decentralized Electric System

The major innovations and new regulations of the last decade have transformed electric
systems across all continents.

Technological innovations and disruptive projects—the massive installation of smart me-
ters in households [AY15] and associated communication technologies or the integration of
electric vehicles in the grid [TRY16], along with smart charging and vehicle-to-grid technolo-
gies — have paved the way to the modern electric system.

Besides, new regulations—openings to competition, regulated markets, local renewable
productions—emerging from institutional actors (governments, European energy commis-
sions, competition authority) have painted a new, decentralized, electric landscape [AO16].
In France, the opening to competition of the production and distribution of electricity has
started in 2000, after an historical monopoly of a unique centralized actor, EDF. The opening
to competition for electricity supply to residential consumers followed later in 2014. Since
then, the number of residential distribution companies in France has increased every year, to
reach more than thirty in 2019. The number of decentralized, local renewable production in-
stallations has soared, as a consequence of the decrease in prices of photovoltaic panels and
significant political incentives. In France in 2019, there are more than 36500 PV production
sites [Rte].

Changes and innovations are fostered by ambitious objectives of environmental sustain-
ability and reduction of green house gas emissions. For instance, with the Paris Agreement,
the European Union has pledged to achieve greenhouse gas emission reductions of at least
40% by 2030 [Com19].

Aside from local renewable productions sources, other distributed energy resources (DERs)
as distributed storage and load flexibility aggregators, new actors on the electric system, com-
plete this decentralized picture.

Flexibility aggregators [GKS13] act as intermediaries between residential and commer-
cial end-users and the operator of the electric system, possibly through a market. Their role
is to aggregate a large number of negligible consumption flexibilities offered by end-users
(originating from flexible usages such as charging of electric vehicles, smart washing ma-
chines and dishwashers, air conditioning, etc, see Figure 1) and valuate this lever on global
load on the market or as a service offered to system operators (see Figure 2).

FIGURE 1: A flexible consumer is equipped with a smart meter and a con-
sumption scheduler that can control one or several flexible appliances (elec-

tric vehicle, air conditioning, washing machine, etc.).

In the optimization of the electric system and the balance between demand and supply,
these perspectives change the way we consider the load, from a fixed parameter in the former
paradigm, to a variable in the new paradigm, which can be partially controlled, although in
a decentralized way.
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FIGURE 2: An aggregator is in charge of the consumption flexibilities of many
individual electricity consumers and interacts with the system operator and

electricity markets

In this context, Demand Response (DR) refers to the set of techniques used to exploit elec-
tricity consumers consumption flexibilities by giving them particular incentives, in order
to achieve energy balancing or ancillary services to the grid as mentioned above [Sia14;
Saa+12].

The exploitation of consumption flexibilities is considered a key lever to achieve the emis-
sions reductions objectives, increase the share of intermittent renewable energy sources, limit
infrastructure investments [All11] and ensure the network reliability and resilience [Sia14].

In this thesis, we address this problem of management of consumption flexibilities, by
different methods based on optimization and game theory.

This topic has drawn the attention of a large community of researchers from electrical
engineering, optimization and control, game theory and computer science: one can refer to
[Den+15], [Sia14] and [VZV15] for surveys on the topic. Three fundamental aspects make
this problem difficult. First, as we are modeling the flexibility of each individual electricity
consumer, we are dealing with a very large number of variables. Second, the information
concerning the constraints of consumers is not totally known to the central planning oper-
ator, but remains at the local consumer’s level. It seems unrealistic to assume that a central
operator would access to all the information, because of the quantity and variability of data
involved and because of privacy issues. Indeed, consumers are not willing to provide crit-
ical and private information such as their time of presence at home. Last, decentralization
entails the fact that a central operator can only have an indirect and partial control over the
consumption profiles of end-consumers, for instance by the mean of incentives or signals,
which may be received locally at the consumer’s level by a smart meter linked to an autono-
mous consumption scheduling device.

The framework we consider, in particular in Part I and Part II, is the following: a central
operator, for instance an isolated microgrid operator holding power production assets (gen-
eration plants, renewables, physical contracts, etc.) or an energy aggregator interacting with
the electricity markets and other actors (see Figure 2), is in charge of the management of a
pool of several consumers. Within the smart grid context, each consumer is equipped with an
automatic Energy Consumption Scheduler (ECS), a device integrated inside a smart meter. This
ECS is connected both to the central operator (via the power network or an ad-hoc commu-
nication network), from which it can receive and transmit signals, and to flexible electrical
appliances (such as plug-in electric vehicles, air conditioning, heating, etc., see Figure 1), and
is able to locally run algorithms to schedule the consumption profile of those appliances.
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2 Mathematical framework: from Optimization to Games

Shifting from the centralized paradigm to the decentralized paradigm, as depicted in the
previous section, requires to replace the standard optimization tools by game theory meth-
ods. We next review the main mathematical notions used in this context.

2.1 Distributed Optimization of a Centralized Problem

Let us adopt the point of view of a central operator, facing a cost function f (·) that depends
on some variables p ∈ P , on which it has a direct control, but also depends on other variables
x def
= (xn)n∈N , where N denotes a set of actors different from the operator: for instance a set

of flexible electricity consumers. Each individual variable xn, corresponding to agent n, is
subject to some local constraints xn ∈ Xn. If the individual variables (xn)n are controlled by
the operator, we arrive at the centralized optimization problem:

min
p,x

f (p, x) (1a)

s.t. p ∈ P (1b)
xn ∈ Xn, ∀n ∈ N , (1c)
h(p, x1, . . . , xN) 6 0, (1d)

where the constraint (1d) couples the operator variable and the other actors variables. This
coupling can be simple (for instance if p refers to the aggregate profile of a set of consumers,
i.e. p = ∑n xn) but also very complex (for instance to integrate electricity network flow
constraints).

A standard approach in optimization to solve problems of the form (1) taking advan-
tage of the local character of the agents constraints one sees, is to rely on decomposition
techniques [Coh78], [BT89], [BV04], in particular Lagrangian decomposition methods [PC06;
XJB04], including dual subgradient methods [Ber99, Chapter 6] or ADMM [GM75]. Such ap-
proaches have also been investigated in the context of decentralized electric systems and De-
mand Response [Sag12], [Mol+17], [CBK17], [Shi+14], [LCL11], [Den+15]. The main draw-
back of these methods is that they usually rely on convexity hypotheses for the problem
(1), which can be very restrictive in practice: for instance, the power production constraints
[CA06] or the electricity network constraints are nonconvex. In Chapter 1, we provide an
original method to solve particular instances of problem (1) in a decentralized manner, which
does not rely on convexity of the function f or the set P .

2.2 Game Models for Energy Management

The centralized problem (1) does not take into account the fact that the actors are strategic, in
the sense that these actors will choose actions (the agent n has a control over her variable xn)
and that their actions impact their individual objective (cost, bill, or comfort), which can be
competing with the other agents objectives or with the objective function f of the operator.
To model these strategic aspects in the context of DR, a large community of researchers has
turned to the framework of game theory, e.g. [MR+10], [CK14], [Cha+14], [Saa+12], [Che+14],
[Atz+13], [LCL11], [Bah+13].

A different but related framework one could use to address (1) while considering in-
dividual objective functions for agents, is bilevel optimization [CMS07]. However, to avoid
the complexity of bilevel programming, we focus in this thesis on single-level models and
problems, through the frameworks of distributed optimization and game theory.

A game [FT91] is a situation where a set of strategic agents, that we denote N , called
players (e.g. flexible consumers) can choose actions in individual feasibility sets, that we denote
(Xn)n (e.g. admissible electricity consumption profiles) and are in interactions.

This interaction is modeled through an individual cost function for each player n ∈ N ,
(xn, x−n) 7→ fn(xn, x−n) ∈ R that depends not only on her own action xn but also on the
actions of the others x−n

def
= (xm)m 6=n.
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In the context of DR, we can model the interaction between energy consumers in this
framework, with fn representing an electricity bill minimized by agent n. The dependence of
fn on other agents consumption profiles x−n results from the fact that the central operator
is willing to avoid synchronization in the consumptions. Indeed, the load profile resulting
from the consumers determines the sourcing cost of the energy: the higher the electric load
is on a given time period, the more expensive it will be to produce and deliver electricity
because of increasing marginal costs of production sources and of congestion effects.

In the game framework, we can consider a minimization problem for each agent n as:

min
xn

fn(xn, x−n) (2a)

s.t. xn ∈ Xn . (2b)

In the framework of noncooperative games, a fundamental notion is brought by the concept
of Nash equilibrium (NE) [Nas50]. This notion has emerged as the central solution concept
in game theory, with extremely diverse applications [Nis+07, Sec.1.3.3]. A situation of Nash
Equilibrium corresponds to action profiles x̂ = (x̂n)n∈N such that each player n ∈ N , con-
sidering the actions of the other players x̂−n as fixed, has no interest to change her current
action xn (the player locally minimizes her cost function, and solves the problem (2)), that is:

∀n ∈ N , ∀xn ∈ Xn, fn(x̂n, x̂−n) 6 fn(xn, x̂−n) .

The Nash equilibrium captures the notion of a stable solution, from which no single player
can individually decrease her cost function by deviating. When players are at such a solu-
tion, it is in each player’s interest to stick to her current action.

2.3 Congestion Games

A class of games of particular importance in the context of DR are the so-called congestion
games, introduced by [Ros73b]. In these games, each player chooses a subset of a set of
shared resources T . Each resource t ∈ T has a cost ct(.) given as an increasing function of
the number of players selecting this resource.

When the action of each player n consists in selecting resources, that is, her action set
is given as a subset Xn ⊂ {0, 1}T , we obtain a class of games called unsplittable congestion
games. On the contrary, when each player n decides of a load on each resource t ∈ T , that
is, her action set is given as Xn ⊂ RT+ , we obtain a class of games called splittable congestion
games [ORS93], [Wan12b, Sec. 1.3.3]. These games found their first applications in network
routing problems [ORS93].

Splittable congestion games are particularly adapted in our context: if we consider that
each agent chooses her consumption profile xn = (xn,t)t∈T ∈ Xn for a set of time periods
T = {1, . . . , T}, and that her cost function fn corresponds to an energy bill with, for each
period t, a per-unit electricity price Xt 7→ ct(Xt) depending on the aggregate consumption
Xt = ∑n∈N xn,t of users on time period t, we end up with congestion-like objective functions
as:

fn(xn, x−n) = ∑
t∈T

xn,tct
(

∑
m∈N

xm,t
)
. (3)

Indeed, this framework corresponds to the splittable congestion games, or routing games,
described in [ORS93], on a parallel network of T edges representing the time periods, and
where each price function ct(.) corresponds to a latency function on edge t, as illustrated in
Figure 3.

2.4 Efficiency of Equilibria

The evaluation of the efficiency of an equilibrium, or more generally of the outcome of a
game, can follow several criteria depending on the situation: for instance, in our framework,
an electricity operator could be interested in evaluating the total production costs or the total
carbon emissions associated with the consumption outcome. However, a standard criterion
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FIGURE 3: A congestion game for the energy consumption on T time periods
can be interpreted as a routing congestion game on a parallel-arc network

with T edges.

that has been widely adopted in the congestion game literature is what we refer to as the
social cost, that is, the sum of the cost functions of all players, SC(x) def

= ∑n∈N fn(x).
Considering this criterion, a quantitative measure of the efficiency of equilibria in a game

is the so-called Price of Anarchy (PoA) [KP99], given as the worst (maximal) social cost at a
Nash equilibrium divided by the optimal (minimal) social cost that can be achieved (corre-
sponding to a situation where a central operator could optimize and choose the actions for
all players in order to minimize the social cost), that is:

PoA =
maxx̂∈XNE SC(x̂)

minx∈X SC(x)
,

with XNE denoting the set of possible NEs. As an equilibrium situation, corresponding to
locally stable but selfish choices of actions for players, has no reason a priori to correspond
to a minimizer of the social cost, the PoA is usually greater than one.

Different works in the congestion game literature focus on bounding the PoA in partic-
ular frameworks: for instance, [CBCS16] and [CB+17] have recently shown that in network
congestion games, the PoA converges to one in the limit of infinitely large demands. The
PoA has also been adopted as a reference in the smart grid literature to measure the ef-
ficiency of a game theoretic system, e.g. [CBK17], [Zhu+12], [CK14], [Saa+12], [NAC14],
[HRD14].

As stated above, game theory offers a natural framework for distributed and decentral-
ized optimization: for a central operator in charge of several agents (e.g. flexible electricity
consumers), the problem is originally stated as an optimization problem (e.g. minimizing
the system cost). Then, the question is: how to design a game (through incentives or prices)
whose equilibria correspond to minimizers of the system cost ? In this context, game theory
is used as a tool to operate distributed optimization [MRP13], [MS15]. For these mechanism
design considerations, an important class of games are the so-called potential games [MS96]:
a game is an exact potential game if there exist a potential function Φ : (Xn)n∈N → R that all
players have interest to minimize, that is:

∀n ∈ N , ∀x ∈ (Xm)m∈N , ∀x′n ∈ Xn, fn(xn, x−n)− fn(x′n, x−n) = Φ(xn, x−n)−Φ(x′n, x−n) .

In particular, if a central operator designs a game which has a potential [LM13], NEs of this
game will correspond to local minima of the function Φ and, if Φ is convex, will be easy to
compute. This approach has been followed in the context of DR, see e.g. [Tus+18], [Wu+11],
[BW15], [YH16].

3 Contents of the manuscript

This dissertation is organized in four main parts. The works and models presented follow
an order of increasing decentralization and degree of autonomy for the end-consumers.

• Part I addresses the problem of the management of consumption flexibilities through
a distributed optimization approach. The point of view adopted in this part is the one of
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a central operator in charge of decentralized resources (flexibilities) of many agents (con-
sumers), and willing to optimize the distributed resources of agents while respecting their
privacy. In Chapter 1, we start by defining the general framework of a distributed resource
allocation problem—resources being, in our specific case, the energy on each time period—
taking the point of view of the central operator in charge of multiple agents, each agent hav-
ing individual and confidential constraints. We provide a method to compute an optimal
solution of this problem while ensuring the privacy of the agents, and prove the validity
and the computational efficiency of this method.

• Part II considers the same problem of the management of consumption flexibilities
(Demand Response), but through a game theoretic approach. In Chapter 2 and Chapter 3,
we use game theory as a tool for decentralized optimization: a billing mechanism, defined by
an operator, corresponds to price signals sent to consumers and incentives for them to reach
an equilibrium in the corresponding game. We compare two billing mechanisms in Chap-
ter 2, and then, in Chapter 3, we focus on an hourly billing mechanism—corresponding
to an atomic splittable congestion game—and its computational aspects. In Chapter 4, we
consider the possibility for consumers to have local, divergent objectives, formulated as pre-
ferred consumption profiles, in addition to their energy bill set by the operator.

• Part III gives some theoretical results on the approximation of equilibria in large con-
gestion games—where large refers to the cardinality of the players set. This can be applied
in the case where players represent individual electricity consumers at a regional or national
scale, where one obtains a game with hundreds of thousands of players. In Chapter 5, we
consider a congestion game with a large number of players and coupling constraints, and
we show that a Nash equilibrium can be approximated by the Wardrop equilibrium of an
approximating game where similar players are clustered in populations. In Chapter 6, we
consider the framework of generalized nonatomic aggregative games with an infinity of differ-
ent types of players: this situation models, for instance, the interactions of a large popu-
lation of consumers, described by a parametric distribution (their energy need, their time
constraints). We show that, in this game, a variational Wardrop equilibrium, a notion we in-
troduce, can be approximated by a Wardrop equilibrium of a population game of smaller
dimension.

• Part IV goes further in terms of decentralization of the electric system, by considering
a situation without any central operator and where consumers can exchange energy directly
in peer to peer transactions. In Chapter 7, we propose an original model of a generalized
game where each player is a flexible consumer owning a local renewable production source,
and having preferences over the energy transactions she can engage to, in addition to her
local objective. We study the generalized equilibria of this game and, in particular, we show
that a variational equilibrium realizes the social optimum of the game.

4 Contributions of the Chapters

This work brings contributions of different types: theoretical, algorithmic, empirical and on
modeling aspects. Indeed, this thesis introduces and analyzes different tools and models for
the energy framework described in Section 1, but also brings several theoretical results in
the fields of decentralized optimization and game theory, in particular in the framework of
splittable congestion games. The main contributions are given below, in order of appearance.

Chapter 1. We propose an original algorithm (Algorithm 1.4) that computes an optimal
aggregate resource allocation, solution of a nonconvex optimization problem and corre-
sponding to the aggregation of feasible individual profiles for a set of agents having individ-
ual constraints. The algorithm is distributed and privacy-preserving, in the sense that the
computation is done without revealing the individual constraints of each agent to a third
party, either another agent or a central operator. In practice, this algorithm can be used for
instance to optimize an electricity load profile aggregated from a pool of flexible consumers,
while ensuring that the confidential information of each consumer remains private. The
application of the method in this context has led to a patent application by EDF [Jac+18b].
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As our algorithm relies on the method of alternate projections [VN50], [GPR67] on trans-
portation polytopes, a key theoretical result for the algorithm is proven in Chapter 1: in
Theorem 1.3 we show that, when the projections do not converge to a single point, we can
build a polyhedral Hoffman cut [Hof60] in the network flow problem associated to a trans-
portation polytope.

Last, in Theorem 1.4, relying on spectral graph theory arguments [CG97], we obtain an
explicit bound on the speed of convergence of alternate projections on transportation poly-
topes. This result shows that the time complexity of the method proposed in this chapter
evolves only linearly with the number of agents and can therefore be used at a large scale.

Chapter 2. We consider two DR mechanisms based on a potential game (referred to as
Daily Proportional mechanism, introduced in [MR+10]) and based on an atomic splittable
congestion game (referred to as Hourly Proportional mechanism, introduced in [Bah+13], see
Section 2), and we study the Nash equilibria of these games through their existence and
uniqueness. In particular, Theorem 2.1 gives a sufficient condition on the derivatives of the
price functions (latency functions in a congestion game) for the uniqueness of an equilibr-
ium, obtained from the standard strict monotonicity condition [Ros65] and using a result
from perturbation theory in linear algebra. In the same chapter, we provide in Theorem 2.2
a theoretical bound on the Price of Anarchy (see the definition above) for this class of games,
obtained from the (λ, µ)-local smoothness technique introduced in [RS15].

Chapter 3. We focus on the algorithmic aspects in atomic splittable congestion games.
First, Theorem 3.2 extends the result of [ORS93] to prove the uniqueness of NE in a more
general context. We give several results on the convergence of the best response (BR) algo-
rithm [GM91], [DG16], [DGG19b] in particular frameworks of splittable congestion games.
Theorem 3.4 proves the geometric convergence of the cyclic version of BR in a potential case,
while Corollary 3.2 proves the geometric convergence of the randomized version of BR in
specific cases. This proves the convergence of BR in a different context than the one consid-
ered in [Mer08]. We also study a projected gradient method, and show in Theorem 3.5 that,
under strong monotonicity assumptions, this method converges geometrically to the unique
equilibrium of the game. Using a result from perturbation theory in linear algebra, Propo-
sition 3.1 gives a sufficient condition on the price functions ct(.) for strong monotonicity to
hold. Last, we propose in this chapter an online DR procedure with receding horizons (Algo-
rithm 3.4), in the spirit of Model Predictive Control [Wu+11], to take into account updated
forecasts in a stochastic environment. Theorem 3.6 proves that the consumption profiles
computed by this procedure correspond to the desired NE in the limit of perfect forecasts.

Chapter 4. We extend the energy consumers game model introduced in Chapter 2, by
considering individual temporal preferences in the objective functions of electricity con-
sumers. In the simplified framework of two time periods (resources) we give theoretical
results on the impact of preferences at the equilibria in the two mechanisms introduced in
Chapter 2. We compare the PoA in those games and the price of efficiency, a similar concept
we introduce to measure the efficiency of the mechanism from the system operator side. In
particular, Theorem 4.4 shows that the system costs are always smaller in the hourly propor-
tional mechanism. This chapter also presents numerical results on a realistic test case, using
consumption data from the PecanStreet project database [Pec].

Chapter 5. We consider atomic splittable congestion games with coupling constraints
[Har91] and with a very large number of players, heterogeneous by their individual con-
straints or objective functions. Using the framework of variational inequalities [FP07], we
show in Theorem 5.1 that Variational Nash Equilibria (VNE) are well approximated by Vari-
ational Wardrop Equilibria (VWE). We show in Theorem 5.2 that, regrouping similar players
into homogeneous populations, we can define an approximating game whose equilibrium
is close to an equilibrium of the initial game. Those results improve the work of [Pac+18],
where the authors show that VNEs are close to VWEs in large aggregative games: Chapter 5
shows in addition that we can consider a small number of populations in the population
game and that the VWE remains close to a VNE of the initial game. Those approximation
results are very relevant for computational purposes, as the problems characterizing the
equilibria in the approximations are of much smaller dimension than the initial problems.
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Chapter 6. We define a new family of games, namely, nonatomic aggregative games with
infinitely many types of players (Definition 6.1), where a player’s type is defined by her feasi-
ble set of actions and her objective function, extending the framework considered in [MZ97].
These games emerge naturally when considering a population described by a parametric
distribution. In the presence of coupling constraints, we define the notion of VWE for a
game with infinitely many types (Definition 6.4), characterized by an infinite dimensional
variational inequality. We prove in Theorem 6.5 an approximation result stating that an ini-
tial VWE can be approximated by a Wardrop equilibrium of a game with a finite number of
homogeneous populations. This latter equilibrium is symmetric in the sense that all players
within each population adopt the same equilibrium action. This result can also be used for
computational purposes, as it establishes a low-dimension characterization of the equilibr-
ium of the initial game.

Chapter 7. We present an original model of peer-to-peer exchanges within a community
of electricity consumers with preferences. The model is defined as a generalized game [HP90],
as the trade reciprocity conditions define coupling constraints between a consumer and her
neighbors. This game model captures the strategic behavior of consumers, as opposed to
the usual decomposition and distributed optimization approaches addressing this problem
e.g. [SBP18]. A particular result we obtain is Proposition 7.6 which shows that the variational
Nash equilibria of this game are socially optimal. We study numerically the efficiency of equi-
libria, through the PoA, by computing the generalized equilibria of the game on test cases
and comparing the energy flows at equilibrium with the flows obtained in the centralized
solution, corresponding to the social optimum.

Each of the seven chapters presented in this thesis is based on a conference proceeding
reviewed and accepted, or on a journal article that has been either published or has been
submitted for publication:

• Chapter 1 is based on the paper [Jac+19b] submitted for publication, and on the confer-
ence paper [Jac+19a] accepted in the 2019 IEEE 58th Conference on Decision and Control;

• Chapter 2 is based on the conference paper [Jac+17b] presented at the 2017 IEEE Con-
ference on Innovative Smart Grid Technologies (ISGT);

• Chapter 3 is based on the paper [Jac+19c], published in IEEE Transactions on Smart Grid;

• Chapter 4 is based on the conference paper [Jac+17a] presented at the 2017 IEEE Con-
ference on Smart Grid Communications;

• Chapter 5 is based on the paper [Jac+18a] submitted for publication;

• Chapter 6 is based on the preprint [JW18a], on the paper [JW19] submitted for publica-
tion, and on the conference paper [JW18b], presented at the 2018 IEEE 57th Conference
on Decision and Control;

• Chapter 7 is based on the journal paper [LC+19b], accepted for publication in European
Journal of Operational Research.
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Notation and Conventions

Below we define the mathematical notation and conventions used throughout the thesis.
The papers presented in this thesis have been modified in order to have a coherent notation
along the chapters.

• bold letters such as x are used to denote vectors, while normal letters x denote scalars;

• when x = (xn)n∈N is a vector indexed by a set N of players or agents, the associated
uppercase letter X denotes the aggregate vector X = ∑n∈N xn;

• calligraphic letters such as X , T ,H,A are used to denote sets, except for L that is usually
employed for a Lagrangian function;

• for a subset T0 of a set T , the set T c
0

def
= {t ∈ T \ T0} denotes the complementary set of T0;

• U ([a, b]) stands for the uniform distribution on [a, b];

• PC denotes the (Euclidean) projection on a convex set C;

• x> (resp. A>) denotes the transpose of a vector x (resp. of a matrix A);

• For d ∈N,1d denotes the vector of ones (1 . . . 1)> ∈ Rd;

• for a vector (xn)n∈N and an index n ∈ N, the notation x−n denotes (xm)m∈N ,m 6=n;

• we write a def
= b when a is equal to b by definition.
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Part I

Decentralized Management of
Flexibilities and Optimization
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In the management of energy consumption, the aggregate load (that is, the total load
to deliver to a set of consumers) is a key metric: a central operator interacts with flexible
consumers to optimize the aggregate production or the trades on the wholesale electricity
market.

However, demand response management also involves a local, disaggregated scale at the
consumers level: each flexible consumer has her own local and individual constraints (for
instance, in the case of an electric vehicle, the energy need and the time periods available
for charging), and the aggregate load—the main concern of the central operator—has to
correspond to the aggregation of feasible individual profiles for the flexible consumers.

In this Part I, we consider a generalization of the DR problem described above, namely,
the distributed resource allocation problem, involving the minimization of a cost as a function
of an aggregate profile (the central operator cost function)and a constraint of disaggregation to
individual profiles, each of these profiles being subject to individual constraints (see problem
1.1 in Chapter 1).

Owing to the high dimension of the problem and privacy issues concerning individual
consumers constraints, the need for a decentralized optimization approach is a global con-
sensus in the DR literature [VZV15].

A standard approach to solve resource allocation problems in a distributed way is to
rely on Lagrangian decomposition methods (e.g. [XJB04]). These kind of approaches have
also been considered in the context of DR [PC06; CBK17; Shi+14; LCL11; Den+15]: in that
case, the central operator computes a vector of Lagrange multipliers (e.g. from the supply-
demand balancing constraint) and sends it to consumers as energy prices for each time pe-
riod.

However, there are two main drawbacks in the use of Lagrangian decomposition ap-
proaches. First, they require some convexity hypothesis of the problem considered, which
do not hold in general in the energy context as, for instance, the problem of the optimization
of production assets is nonconvex (see Section 1.5.2). Second, even in the convex case, the
primal solution of the decomposition—which in our case would correspond to the consump-
tion profiles—cannot be easily recovered (due to the absence of uniqueness of the responses
to Lagrangian prices, see e.g. [CZ84]).

In the following Chapter 1, we consider a different decentralized optimization approach,
and we provide an original privacy-preserving algorithm that does compute the optimal
allocation of resources, avoiding each individual agent to reveal her private information
(constraints and individual solution profile) neither to the central operator nor to a third
party, and avoids the two drawbacks of Lagrangian methods mentioned above.

Our method relies on an aggregation procedure: we compute iteratively a global allo-
cation of resources, and gradually ensure existence of a disaggregation, that is individual
profiles satisfying agents’ private constraints, by a protocol involving the generation of poly-
hedral cuts and Secure Multiparty Computation (SMC).

To obtain these cuts, we use an alternate projection method, which is implemented locally
by each agent, preserving her privacy needs. We address especially the case in which the
local and global constraints define a transportation polytope. Then, we provide theoretical
convergence estimates together with numerical results, showing that the algorithm can be
effectively used to solve the allocation problem in high dimension, while addressing privacy
issues. We illustrate the procedure through the example of a microgrid operator minimizing
production costs, resulting in a nonconvex optimization problem.
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Chapter 1

A Privacy-preserving
Disaggregation Method to
Optimize Distributed Resource
Allocation

This chapter is based on the paper [Jac+19b], submitted for publication, and on the conference paper
[Jac+19a]. Appendix 1.C was added in the manuscript and has not been submitted for publication.

1.1 Introduction

1.1.1 Motivation

Consider an operator of an electricity microgrid optimizing the joint production schedules of
renewable and thermal power plants in order to satisfy, at each time period, the consump-
tion constraints of its consumers. To optimize power generation or market costs and the
integration of renewable energies, this operator relies on demand response techniques, that
is, taking advantage of the flexibilities of some of the consumers electric appliances—those
which can be controlled without impacting the consumer’s comfort, as electric vehicles or
water heaters [Jac+19c]. However, for privacy reasons, consumers are not willing to provide
neither their consumption constraints nor their consumption profiles to a central operator or
any third party, as this information could be used to infer private information such as their
presence at home.

The global problem of the operator is to find an allocation of power (aggregate consump-
tion) p = (pt)t at each time period (resource) t ∈ T , such that p ∈ P (feasibility constraints of
power allocation, induced by the power plants constraints). Besides, this aggregate alloca-
tion has to match an individual consumption profile xn = (xn,t)t∈T for each of the consumer
(agent) n ∈ N considered. The problem can be written as follows:

min
x∈RN×T, p∈P

f (p) (1.1a)

xn ∈ Xn, ∀n ∈ N (1.1b)

∑
n∈N

xn,t = pt, ∀t ∈ T . (1.1c)

The (aggregate) allocation p can be made public, that is, revealed to all agents. However,
the individual constraint set Xn and individual profiles xn constitute private information of
agent n, and should not be revealed to the operator or any third party.

It will be helpful to think of problem (1.1) as the combination of two interdependent
subproblems:
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i) given an aggregate allocation p, the disaggregation problem consists in finding, for each
agent n, an individual profile xn satisfying her individual constraint (1.1b), so that con-
straint (1.1c) is satisfied, or equivalently, solve the problem:

FIND x ∈ Yp ∩ X (1.2a)

where Yp
def
= {y ∈ RNT |y>1N = p} and X def

= ∏
n∈N
Xn . (1.2b)

When (1.2) has a solution, we say that a disaggregation exists for p;

ii) For a given subset Q ⊂ P , we define the master problem,

min
p∈Q

f (p) . (1.3)

When Q is precisely the set of aggregate allocations for which a disaggregation exists, the
optimal solutions of the master problem correspond to the optimal solutions of (1.1).

Aside from the example above, resource allocation problems (optimizing common resources
shared by multiple agents) with the same structure as (1.1), find many applications in energy
[Mül+17; Jac+19c], logistics [LLC95], distributed computing [Ma+82], health care [RV11]
and telecommunications [ZHS10]. In these applications, several entities or agents (e.g. con-
sumers, stores, tasks) share a common resource (energy, products, CPU time, broadband)
which has a global cost for the system. For large systems composed of multiple agents, the
dimension of the overall problem can be prohibitive: a solution is to rely on decomposition
and distributed approaches [BT89; PC06; XB06]. Besides, agents’ individual constraints are
often subject to privacy issues [HAF05]. These considerations have paved the way to the de-
velopment of privacy-preserving, or non-intrusive methods and algorithms, e.g. [Zoh+12;
JPW06].

In this work, except in Section 1.4, we consider that each agent n ∈ N has a global
demand constraint (e.g. energy demand or product quantity), which confers to the disag-
gregation problem the particular structure of a transportation polytope [Bol72]: the sum
over the agents is fixed by the aggregate solution p, while the sum over the T resources are
fixed by the agent global demand constraint. Besides, individual constraints can also include
minimal and maximal levels on each resource, as for instance electricity consumers require,
through their appliances, a minimal and maximal power at each time period.

1.1.2 Main Results

The main contribution of the chapter is to provide a non-intrusive and distributed algorithm
(Algorithm 1.4) that computes an aggregate resource allocation p, optimal solution of the—
possibly nonconvex—optimization problem (1.1), along with feasible individual profiles x
for agents, without revealing the individual constraints of each agent to a third party, either
another agent or a central operator. The algorithm solves iteratively instances of master prob-
lems minp∈P (s) f (p) by constructing successive approximations P (s) ⊂ P of the aggregate

feasible set of (1.1) for which a disaggregation exists, by adding to the set P (s) a new con-
straint on p (i.e. a cutting plane), before solving the next master problem. We shall see that
this cutting plane can be computed and added to the master problem without revealing any
individual information on the agents.

More precisely, to identify whether or not disaggregation (1.2) is feasible and to add a
new constraint in the latter case, our algorithm relies on the alternate projections method
(APM) [VN50; GPR67] for finding a point in the intersection of convex sets. Here, we con-
sider the two following sets: on the one hand, the affine space of profiles x ∈ RNT aggre-
gating to a given resource allocation p, and on the other hand, the set defined by all agents
individual constraints (demands and bounds). As the latter is defined as a Cartesian prod-
uct of each agent’s feasibility set, APM can operate in a distributed fashion. The sequence
constructed by the APM converges to a single point if the intersection of the convex sets is
nonempty, and it converges to a periodic orbit of length 2 otherwise. If the APM converges
to a periodic orbit, meaning that the disaggregation is not feasible, we construct from this
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orbit a polyhedral cut, i.e. a linear inequality satisfied by all feasible solutions p of the global
problem (1.1), but violated from the current resource allocation (Theorem 1.3). Adding this
cut to the master problem (1.3) by updating Q to a specific subset, we can recompute a new
resource allocation and repeat this procedure until disaggregation is possible. At this stage,
the use of a cryptographic protocol, secure multiparty computation, allows us to preserve
the privacy of agents. Another main result stated in this chapter is the explicit upper bound
on the convergence speed of APM in our framework (Theorem 1.2), which is obtained by
spectral graph theory methods, exploiting also geometric properties of transportation poly-
topes. This explicit speed shows a linear impact of the number of agents, which is a strong
argument for the applicability of the method in large distributed systems.

1.1.3 Related Work

A standard approach (e.g. [PC06; XJB04; SMC06]) to solve resource allocation problems in a
distributed way is to rely on a Lagrangian based decomposition technique: for instance dual
subgradient methods [Ber99, Ch. 6] or ADMM [GM75]. Such techniques are generally used
to decompose a large problem into several subproblems of small dimension. However, those
methods often require global convexity hypothesis, which are not satisfied in many practical
problems (e.g. MILP). We refer the reader to [Ber99, Chapter 6] for more background. On
the contrary, our method can be used when the allocation problem (1.1) is not convex.

As developed in Section 1.4, the method proposed here can be related to Bender’s de-
composition [Ben62]. The difference with Bender’s approach is in the way of generating
a new cut to add in the master problem: instead of solving linear programs, we use APM
and our theoretical results, which provides a decentralized, privacy-preserving and scalable
procedure. In contrast, at each stage, Benders’ algorithm requires to solve a linear program
requiring the knowledge of the private constraints of each individual agent (see Section 1.4.1
for more details).

The problem of the aggregation of constraints has been studied in the field of energy, in
the framework of smart grids [Mül+17; ALT18]. In [Mül+17], the authors study the manage-
ment of energy flexibilities and propose to approximate individual constraints by zonotopic
sets to obtain an aggregate feasible set. A centralized aggregated problem is solved via
a subgradient method, and a disaggregation procedure of a solution computes individual
profiles. In [ALT18], the authors propose to solve the economic power dispatch of a micro-
grid, subject to several agents private constraints, by using a Dantzig-Wolfe decomposition
method.

The APM has been the subject of several works in itself [GPR67; BB93; BCW15]. The au-
thors of [BLY14] provide general results on the convergence rate of APM for semi-algebraic
sets. They show that the convergence is geometric for polyhedra. However, it is generally
hard to compute explicitly the geometric convergence rate of APM, as this requires to bound
the singular values of certain matrices arising from the polyhedral constraints. A remark-
able example where an explicit convergence rate for APM has been established is in [NJJ14],
where the authors consider a different class of polyhedra arising in submodular optimiza-
tion. A common point with our results is the use of spectral graph theory arguments to
estimate singular values.

1.1.4 Structure

Section 1.2 describes the class of resource allocation problems we address in this chapter,
and formulate the idea of the decomposition with the disaggregation subproblems. In Sec-
tion 1.3, we focus on APM, the subroutine used to solve the disaggregation subproblems.
After stating results on the convergence of APM, In Section 1.3.1, we show the key result on
which relies the proposed decomposition: how to generate a new cut to add in the master
problem, from the output of APM. In Section 1.3.2, we show how to improve the privacy of
the proposed procedure by using secure multiparty computation techniques. In Section 1.3.3
, we prove an explicit upper bound on the rate of convergence of APM in our case. In Sec-
tion 1.4, we generalize part of our results and propose a modified algorithm in the case where
agents constraints are polyhedral. Finally, in Section 1.5, we propose numerical examples of
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the method: Section 1.5.1 gives an illustrative toy example in dimension T = 4, while in
Section 1.5.2, we consider a larger scale, nonconvex example, coming from the microgrid
application exposed at the beginning of the introduction.

1.2 Resource Allocation and Transportation Structure

1.2.1 A Decomposition based on Disaggregation

As stated in the introduction, we consider a centralized entity (e.g. an energy operator) in-
terested in minimizing a possibly nonconvex cost function p 7→ f (p), where p ∈ RT is the
aggregate allocation of T dimensional resources (for example power production over T time
periods). This resource allocation p is to be shared between a set N of N individual agents,
each agent obtaining a part xn ∈ Xn, where Xn denotes the individual feasibility set of agent
n.

The global problem the operator wants to solve is described in (1.1). The idea behind the
results of this chapter is that, in problem (1.1), the constraints setXn and individual profile xn
are confidential to agent n and should not be disclosed to the central operator or to another
agent.

Let us define the set PD of feasible aggregate allocations that are disaggregeable as:

PD
def
=
{

p ∈ P | ∃x ∈ X ; p = ∑n xn
}

. (1.4)

Feasibility of problem (1.1) is equivalent to having PD not empty.
Constraints for each agent are composed of a global demand over the resources and

lower and upper bounds over each resource, as given below:

Assumption 1.1. For each n ∈ N , there exists En > 0, xn ∈ RT , xn ∈ RT such that :

Xn = {xn ∈ RT : ∑t∈T xn,t = En and xn,t 6 xn,t 6 xn,t} 6= ∅. (1.5)

In particular, Xn is convex and compact. Given an allocation p, the structure obtained
on the matrix (xn,t)n,t, where sums of coefficients along columns and along rows are fixed,
is often referred to as the transportation problem. These problems found various applications
(see e.g. [AN79; Mun57]). We focus on this case in Sections 1.2 and 1.3, while in Section 1.4,
we shall give a generalization of some of our results in the general case where Xn is a poly-
hedron.

Given a particular allocation p ∈ P , the operator will be interested to know if this allo-
cation is disaggregeable, that is, if there exists individual profiles (xn)n∈N ∈ ∏n Xn summing
to p, or equivalently if the disaggregation problem (1.2) has a solution.

Following (1.2), the disaggregate profile refers to x, while the aggregate profile refers to
the allocation p. Problem (1.2) may not always be feasible. Some necessary conditions for
a disaggregation to exist, obtained by summing the individual constraints on N , are the
following aggregate constraints:

p>1T = E>1N (1.6a)

and x>1N 6 p 6 x>1N . (1.6b)

Those conditions are not sufficient in general, as explained in the following section.

1.2.2 An equivalent flow problem and Hoffman conditions

The particular structure of the problem we consider implies that we can write it as a flow
problem in a graph, as stated in Proposition 1.1. We refer the reader to the book [Coo+09,
Chapter 3] for the terminology.

Definition 1.1. Consider a directed graph G = (V , E) with vertices V and edges E ⊂ V × V ,
and demands d : V → R (where dv < 0 means that v is a production node), edge lower
capacities ` : E → R+ and upper capacities u : E → R+. A flow on G is a function
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t = 1p1 = 0

t = 2p2 = 3

1 E1 = 2

2 E2 = 0.5

3 E3 = 0.5
T N

FIGURE 1.1: Example of a flow representation of the disaggregation problem
(T = 2 and N = 3, x = 0, x = 1). Here, the aggregate constraints (1.6) are verified,

but condition (1.7) written with A = {t1, n1} (dashed nodes) does not hold.

x : E → R+ such that x satisfies the capacity constraints, that is ∀e ∈ E , `e 6 xe 6 ue,
and Kirchoff’s law, that is, ∀v ∈ V , ∑e∈δ+v

xe = dv + ∑e∈δ−v
xe, where δ+v (resp. δ−v ) is the set

of edges ending at (resp. departing from) vertex v.

The following proposition is immediate:

Proposition 1.1. Consider the bipartite graph G with vertices V = T ∪ N and with edges E =
{(t, n)}t∈T ,n∈N . Define demands on nodes T by dt = −pt and demands on nodes N by dn = En.
Assign to each edge (t, n) an upper capacity un,t = xn,t and lower capacity `n,t = xn,t. Then, finding
a solution x to (1.2) is equivalent to finding a feasible flow in G.

Hoffman [Hof60] gave a necessary and sufficient condition for the flow problem to be
feasible. This generalizes a result of Gale (1957). The stated condition is intuitive: there
cannot be a subset of nodes whose demand exceeds its “import capacity”.

Theorem 1.1 ([Hof60]). Given a digraph G = (V , E) with demand d ∈ RV such that d(V) = 0
and capacities ` ∈ (R ∪ {−∞})E and u ∈ (R ∪ ∞)E with ` 6 u, there exists a feasible flow
x ∈ E → R+ on G if and only if:

∀A ⊂ V , ∑
e∈δ+(A)

ue > ∑
v∈A

dv + ∑
e∈δ+(Ac)

`e , (1.7)

where δ+(A) def
= {(u, v) ∈ E|u ∈ Ac, v ∈ A} is the set of edges coming to set A and Ac def

= V \ A.

The following Proposition 1.2 translates Theorem 1.1 in our framework:

Proposition 1.2. Disaggregation is possible iff:

∀T0 ⊂ T , ∀N0 ⊂ N , ∑
t∈T0

pt − ∑
n∈N0

En + ∑
t/∈T0,n∈N0

xn,t 6 ∑
t∈T0,n/∈N0

xn,t . (1.8)

Proof. We apply (1.7) withA def
= T c

0 ∪N c
0 and use the equality d(V) = 0 = ∑v∈ dv +∑v∈Ac dv.

From Theorem 1.1 or Proposition 1.2 above, one can observe that the aggregate con-
straints (1.6) are in general not sufficient to ensure that the disaggregation problem has a
solution.

For a given set T0, there is a choice of N0 which leads to the strongest inequality (1.8),
namely:

∑
t∈T0

pt 6 min
N0⊂N

{
∑

n∈N0

En − ∑
t/∈T0,n∈N0

xn,t + ∑
t∈T0,n/∈N0

xn,t

}
, (1.9)

In this way, we get 2T − 2 inequalities corresponding to the proper subsets T0 ⊂ T . More-
over, in general, these 2T − 2 inequalities are not redundant. Although this is not stated in
[Hof60], this is a classical result whose proof is elementary.
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1.3 Disaggregation based on APM

1.3.1 Generation of Hoffman’s constraints with APM

In this section, we propose an algorithm that solves (1.1) while preserving the privacy of each
agent constraints Xn and individual profile xn ∈ RT . To do this, the proposed algorithm
is implemented in a decentralized fashion and relies on the alternate projections method
(APM) to solve the disaggregation problem (1.2).

Let us consider the polyhedron enforcing the agents constraints:

X def
= X1 × · · · × XN ,

where

Xn
def
=
{

xn ∈ RT
+ | ∑t∈T xn,t = En and ∀t, xn,t 6 xn,t 6 xn,t

}
. (1.10)

Besides, given an allocation p ∈ P , we consider the set of profiles aggregating to p :

Yp
def
=
{

x ∈ RNT | ∀t ∈ T , ∑n∈N xn,t = pt
}

.

Note that Yp is an affine subspace of RNT (to be distinguished from P which is a subset
of RT), and that Yp ∩ X is empty iff p /∈ PD, according to the definition of PD in (1.4). The
idea of the proposed algorithm is to build a finite sequence of decreasing subsets (P (s))06s6S
such that:

P = P (0) ⊃ P (1) ⊃ · · · ⊃ P (S) ⊃ PD .

At each iteration, a new aggregate resource allocation p(s) is obtained by solving an instance
of the master problem introduced in (1.3) with Q = P (s):

min
p∈RT

f (p) (1.11a)

s.t. p ∈ P (s) . (1.11b)

In the remaining of the chapter, we will refer to (1.11) as an instance of master problem. Our
procedure relies on the following immediate observation:

Proposition 1.3. If p(s) is a solution of (1.11), and Yp(s) ∩ X 6= ∅ and x ∈ Yp(s) ∩ X , then

(p(s), x) is an optimal solution of the initial problem (1.1).

Having in hands a solution p(s), we can check if Yp(s) ∩ X 6= ∅ using APM on X and
Yp(s) , as described in Algorithm 1.1 below (where Y = Yp).

Algorithm 1.1 Alternate Projections Method (APM)

Require: Start with y(0), k = 0 , εcvg, a norm ‖.‖ on RNT

1: repeat
2: x(k+1) ← PX (y(k))

3: y(k+1) ← PY (x(k+1))
4: k← k + 1
5: until

∥∥∥x(k) − x(k−1)
∥∥∥ < εcvg

The idea of using cyclic projections to compute a point in the intersection of two sets
comes from Von Neumann [VN50], where the idea was applied for affine subspaces. Con-
vergence of APM is proved by Theorem 1.2:

Theorem 1.2 ([GPR67]). Let X and Y be two closed convex sets with X bounded, and let (x(k))k
and (y(k))k be the two infinite sequences generated by APM on X and Y (Algorithm 1.1) with
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εcvg = 0. Then there exists x∞ ∈ X and y∞ ∈ Y such that:

x(k) −→
k→∞

x∞ , y(k) −→
k→∞

y∞; (1.12a)

‖x∞ − y∞‖2 = min
x∈X ,y∈Y

‖x− y‖2 . (1.12b)

The convergence theorem is illustrated in Figure 1.2 in the case where X ∩ Y = ∅, that
is, when the disaggregation problem (1.2) is not feasible. The idea of the algorithm proposed

Y

X
x∞

y∞

x(0)
•

y(0)

x(1)

y(1)

FIGURE 1.2: Alternate projections method (APM) on two sets X and Y . When
X ∩ Y = ∅, APM cycles over two points x∞ and y∞.

in this chapter is, in the case where Yp(s) ∩ X = ∅, to use the resulting vectors x∞ and y∞

to construct a new subset P (s+1) by adding a constraint of type (1.8) to P (s): indeed, from
Proposition 1.2, we know that, if Yp(s) ∩ X = ∅, there exists at least one inequality (1.8)
violated.

The difficulty is to guess one of this violated inequality among the set of 2T possible
inequalities. It turns out that, using the output of APM, we can build such an inequality.

Suppose that we obtain x∞ 6= y∞ as defined in Theorem 1.2: we get a periodic cycle of
the APM, that is, we have x∞ = PX (y∞) and y∞ = PY (x∞), and the couple (x∞, y∞) is the
solution of the following optimization problem:

min
x,y

1
2
‖x− y‖2

2 (1.13a)

∀n ∈ N , ∑
t∈T

xn,t = En (λn) (1.13b)

∀n ∈ N , ∀t ∈ T , xn,t 6 xn,t 6 xn,t (µ
n,t

, µn,t) (1.13c)

∀t ∈ T , ∑
n∈N

yn,t = pt (νt) , (1.13d)

where λn ∈ R, µ
n,t

, µn,t ∈ R+ and νt ∈ R are the Lagrangian multipliers associated to the
constraints (1.13b),(1.13c),(1.13d), with the associated Lagrangian function:

L(x, y, λ, µ, ν)=
1
2
‖x−y‖2

2−λ> (∑t xn,t−En)n−µ>(x−x)−µ>(x−x)−ν>(∑n yn−p) .

We notice that the stationarity condition of the Lagrangian with respect to the variable yn,t
yields:

∀n ∈ N , ∀t ∈ T , νt = xn,t − yn,t . (1.14)

Let us consider the sets T0 ⊂ T and N0 ⊂ N defined from the output of APM on X and Yp
as:

T0
def
=
{

t ∈ T | ∃n ∈ N , yn,t > xn,t
}

(1.15)

and N0
def
=
{

n ∈ N | En −∑t/∈T0
xn,t −∑t∈T0

xn,t < 0
}

. (1.16)
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In Theorem 1.3 below, we show that applying the inequality (1.8) with the sets T0 and N0
defined in (1.16) defines a valid inequality for the disaggregation problem violated by the
current allocation p.

The intuition behind the definition of T0 andN0 in (1.16) is the following: T0 is the subset
of resources for which there is an over supply (which overcomes the upper bound for at least
one agent). Once T0 is defined, N0 is the associated subset of N minimizing the right hand
side of (1.9). Indeed, (1.9) can be rewritten as:

∑
t∈T0

pt 6 min
N0⊂N

{
∑

n∈N0

(
En −∑t/∈T0

xn,t −∑t∈T0
xn,t
)}

+ ∑
t∈T0,n∈N

xn,t.

The following Theorem 1.3 is the key result on which relies the algorithm proposed in
this chapter.

Theorem 1.3. Consider the sequence of iterates (x(k), y(k))k∈N generated by the APM on X and
Yp (see Algorithm 1.1). Then one of the following holds:

(i) if X ∩ Yp 6= ∅, then x(k), y(k) −→
k→∞

x∞ ∈ X ∩ Yp;

(ii) else, if X ∩ Yp = ∅, then x(k) −→
k→∞

x∞ ∈ X and y(k) −→
k→∞

y∞ ∈ Yp. Then, considering the

sets T0 and N0 as defined in (1.16) gives an inequality of Hoffman (1.8) violated by p, that is:

∑
n∈N0

En − ∑
t∈T0

pt + ∑
t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t < 0 . (1.17)

Moreover, this Hoffman inequality can be written as a function of x∞ as:

AT0(x∞) < ∑
t∈T0

pt with AT0(x∞) def
= ∑

t∈T0

∑
n∈N

x∞
n,t . (1.18)

Before giving the proof of Theorem 1.3, we need to show some technical properties on the
sets T0,N0. For simplicity of notations, we use x and y to denote x∞ and y∞ in Proposition 1.4
and the proof of Theorem 1.3.

Proposition 1.4. With x 6= y solutions of problem (1.13) (outputs of the APM on X and Yp with
εcvg = 0), the following assertions hold:

(i) ∀t ∈ T0, ∀n /∈ N0, yn,t > xn,t and xn,t = xn,t ;

(ii) T0 = {t | νt > 0} = {t | pt > ∑n xn,t}, where νt is the optimal Lagrangian multiplier
associated to (1.13d);

(iii) ∀n ∈ N0, λn < 0 ;

(iv) ∀t /∈ T0, ∀n ∈ N0, xn,t = xn,t ;

(v) the sets T0, T c
0 , N0 and N c

0 are nonempty.

The proof of Proposition 1.4 is technical and given in Section 1.A. With Proposition 1.4,
we are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. We have:

∑
n∈N0

En + ∑
t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t − ∑
t∈T0

pt

= ∑
n∈N0

∑
t

xn,t + ∑
t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t − ∑
t∈T0

pt (from (1.13b))

= ∑
n∈N0

(
∑

t/∈T0

xn,t + ∑
t∈T0

xn,t

)
+ ∑

t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t − ∑
t∈T0

pt (from Prop.1.4 (i)-(iv))

= ∑
t∈T0

(
∑

n∈N0

xn,t + ∑
n/∈N0

xn,t

)
− ∑

t∈T0

pt = ∑
t∈T0

(
∑

n∈N
xn,t − ∑

n∈N
yn,t

)

= ∑
t∈T0

(
∑

n∈N
−νt

)
= ∑

t∈T0

(
− ∑

n∈N
|xn,t − yn,t|

)

using the stationarity conditions (1.14) and for all t ∈ T0, νt > 0 by Prop.1.4 (ii). Moreover,
using:

∑
t∈T

∑
n∈N

(xn,t − yn,t) = ∑
n∈N

En − ∑
t∈T

pt = 0 , (1.19)

we see that:
∑

t∈T0

(
− ∑

n∈N
|xn,t − yn,t|

)
= −(‖x− y‖1)/2 < 0 , (1.20)

which shows (1.17). We now show that inequality (1.18) is obtained by a rewriting of (1.17),
indeed:

∑
n∈N0

En + ∑
t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t

= ∑
n∈N0

∑
t∈T

xn,t + ∑
t∈T0,n/∈N0

xn,t − ∑
t/∈T0,n∈N0

xn,t (from Prop.1.4 (i) and (iv))

= ∑
t∈T0,n∈N0

xn,t + ∑
t∈T0,n/∈N0

xn,t = ∑
t∈T0

∑
n∈N

xn,t = AT0(x).

Suppose, as before, that the two sequences generated by the APM on X and Y converge
to two distinct points x∞ and y∞. Then, at each round k, we can define from (1.40) and
considering any n ∈ N , the multiplier ν(k) = y(k)

n − x(k)n , which converges to y∞
n − x∞

n
def
= ν∞.

The set T0 of Theorem 1.3 is:
T ∞

0
def
= {t ∈ T | 0 < ν∞

t }, (1.21)

which raises an issue for practical computation, as ν∞ is only obtained ultimately by APM,
possibly in infinite time. To have access to T ∞

0 in finite time, that is, from one of the iterates
(ν(k))k, we consider the set:

T (K)
0

def
= {t ∈ T | Bεcvg < ν

(K)
t },

where εcvg is the tolerance for convergence of APM as defined in Algorithm 1.1, B > 0 is
a constant, and K (depending on εcvg) is the first integer such that the profile x(k) satisfies∥∥∥x(K) − x(K−1)

∥∥∥ < εcvg.

We next show that we can choose B to ensure that T (K)
0 = T ∞

0 for εcvg small enough. We
rely on the geometric convergence rate of APM on polyhedra [BLY14; NJJ14]:

Proposition 1.5. [NJJ14] If X and Y are polyhedra, there exists ρ ∈ (0, 1) such that the sequence
(x(k))k and (y(k))k generated by APM verify for all k > 1:∥∥∥x(k+1) − x(k)

∥∥∥
2
6 ρ

∥∥∥x(k) − x(k−1)
∥∥∥

2
and

∥∥∥y(k+1) − y(k)
∥∥∥

2
6 ρ

∥∥∥y(k) − y(k−1)
∥∥∥

2
.
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Proposition 1.5 applies to any polyhedra X and Y . In Section 1.3.3 we shall give an
explicit upper bound on the constant ρ in the specific transportation case given by (1.1c) and
(1.5).

From the previous proposition, we can quantify the distance to the limits in terms of ρ:

Lemma 1.1. Consider an integer K such that the sequence (x(k))k>0 generated by APM satisfies∥∥∥x(K) − x(K−1)
∥∥∥ 6 εcvg, then we have for any K′ > K− 1:∥∥∥x∞ − x(K

′)
∥∥∥ 6 εcvg

1−ρ .

Proof. From Proposition 1.5, we have for any k > K:

∥∥∥x(k) − x(K
′)
∥∥∥ 6 k−K′

∑
s=0

∥∥∥x(K+s+1) − x(K+s)
∥∥∥ 6 k−K′

∑
s=0

ρs
∥∥∥x(K

′+1) − x(K
′)
∥∥∥ 6 1

1− ρ
εcvg ,

so that, by taking the limit k→ ∞, one obtains
∥∥∥x∞ − x(K

′)
∥∥∥ 6 εcvg

1−ρ .

With this previous lemma, we can state the condition on B ensuring the desired property:

Proposition 1.6. Define ν def
= min{|ν∞

t | > 0} (least nonzero element of ν∞). If the constants B and
εcvg > 0 are chosen such that B > 1

1−ρ and εcvg × 2B < ν, and Algorithm 1.1 stops at iteration K,
then we have:

T (K)
0 = T ∞

0 .

Proof. Let t ∈ T ∞
0 , that is ν∞

t > 0 which is equivalent to ν∞
t > ν by definition of ν. We have:

ν
(K)
t =

1
N
(pt −∑

n
x(K)n,t ) =

1
N
(pt −∑

n
x∞

n,t) +
1
N
(∑

n
x∞

n,t −∑
n

x(K)n,t )

> ν∞
t −

εcvg
1−ρ > ν− εcvg

1−ρ > εcvg(2B− 1
1−ρ ) ,

and this last quantity is greater than Bεcvg as soon as B > 1
1−ρ , thus t ∈ T (K)

0 .

Conversely, if t ∈ T (K)
0 , then:

ν∞
t =

1
N
(pt −∑

n
x∞

n,t) =
1
N
(pt −∑

n
x(K)n,t )−

1
N
(∑

n
x∞

n,t −∑
n

x(K)n,t )

> ν
(K)
t − B

1−ρ > ν
(K)
t − Bεcvg > (B− B)εcvg > 0 ,

so that t ∈ T ∞
0 . Furthermore, the “approximated” cut ∑t∈T0

(
∑n∈N x(K)n,t − pt

)
> 0 is vio-

lated by the current value of p (or p(s) at iteration s) in the algorithm as:

∑
t∈T0

(
∑

n∈N
x(K)n,t − pt

)
6 ∑

t∈T0

(
∑

n∈N
x(K)n,t − x∞

n,t

)
+ ∑

t∈T0

(
∑

n∈N
x∞

n,t − pt

)

6
∥∥∥x(K) − x∞

∥∥∥
1
− 1

2
‖x∞ − y∞‖1

using (1.19) and (1.20). This last quantity is negative as soon as
∥∥∥x(K)− x∞

∥∥∥
1
< 1

2 ‖x∞ − y∞‖1

which holds in particular if Bεcvg < 1
2 ‖x∞ − y∞‖1.

This second proposition shows a surprising result: even if we do not have access to the
limit x∞, we can compute in finite time the exact left hand side term AT0(x∞) of the cut (1.18):

Proposition 1.7. Under the hypotheses of Proposition 1.6, we have:

AT0(x(K)) = ∑
t∈T0

∑
n∈N

x(K)n,t = AT0(x∞) .
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Proof. We start by showing some technical properties similar to Proposition 1.4:

Lemma 1.2. The iterate x(K) satisfies the following properties:

(i) ∀t ∈ T0, ∀n /∈ N0, x(K)n,t = x∞
n,t = xn,t ;

(ii) ∀t /∈ T0, ∀n ∈ N0, x(K)n,t = x∞
n,t = xn,t .

The proof of Lemma 1.2 is similar to Proposition 1.4 and is given in Section 1.B. Then,
having in mind that T (K)

0 = T ∞
0 from Proposition 1.6, andN0 is obtained from T ∞

0 by (1.16),
we obtain:

AT0(x(K)) = ∑
n∈N0

(
∑

t/∈T0

xn,t + ∑
t∈T0

x(K)n,t

)
− ∑

t/∈T0,n∈N0

xn,t + ∑
t∈T0,n/∈N0

x(K)n,t

6 ∑
n∈N0

∑
t∈T

x(K)n,t − ∑
t/∈T0,n∈N0

xn,t + ∑
t∈T0,n/∈N0

xn,t (from Lemma 1.2)

which equals to AT0(x∞) as we have ∑t∈T x(K)n,t = En for each n ∈ N .

Before presenting our algorithm using this last result, we focus on the technique of mul-
tiparty secure computation (SMC) which will be used here to ensure the privacy of agent’s
constraints and profiles while running the APM.

1.3.2 Privacy-preserving Projections through SMC

APM, as described in Algorithm 1.1, enables a distributed implementation in our context, by
the structure of the algorithm itself: the operator computes the projection on Yp while each
agent n can compute, possibly in parallel, the projection onXn of the new profile transmitted
by the operator. This enables each agent (as well as the operator) to keep her individual
constraint and not reveal it to the operator or other agents. However, each agent has to
transmit back her newly computed individual profile to the operator for the next iteration.

Using a secure multi-party computation (SMC) protocol (see [Yao86]), we can avoid this
communication of individual profiles and perform APM without revealing the sequence of
agent profiles x to the aggregator.

For this, we use the fact that Yp is an affine subspace and thus the projection on Yp can be
obtained explicitly component-wise. Indeed, summing (1.14) on T , we immediatly obtain:

∀n ∈ N , [PYp(x)]n = xn +
1
N (p−∑m∈N xm) . (1.22)

Thus, having access to the aggregate profile S def
= ∑n∈N xn, each agent can compute locally the

component of the projection on Yp of her profile, instead of transmitting the profile to the
operator for computing the projection in a centralized way.

Using SMC, the sum S can be computed in a non-intrusive manner, by several commu-
nications between agents and the operator, as described in Algorithm 1.2. The main idea of
SMC is that, instead of sending her profile xn, agent n splits xn,t for each t into N random
parts (sn,t,m)m, according to an uniform distribution and summing to xn,t (Lines 2-3). Thus,
each part sn,t,m taken individually does not reveal any information on xn nor on Xn, and can
be sent to agent m. Once all exchanges of parts are completed (Line 5), and n has herself
received the parts from other agents, agent n computes a new aggregate quantity σn (Line
7), which does not contain either any information about any of the agents, and sends it to
the operator (Line 8). The operator can finally compute the quantity S = x>1N = σ>1N .

Remark 1.1. As σn, and sn are random by construction, an eavesdropper aiming to learn the pro-
file xn of n has no choice but to intercept all the communications of n to all other agents (to learn
(sn,t,m)m 6=n and (sm,t,n)m 6=n) and to the operator (to learn σn).

We sum up in Algorithm 1.3 below the procedure of generating a new constraint as stated
in Theorem 1.3 from the output of APM in finite time (see Proposition 1.6) and in a privacy-
preserving way using SMC.
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Algorithm 1.2 SMC of Aggregate (SMCA) ∑n∈N xn

Require: A profile xn for each agent n ∈ N
1: for each agent n ∈ N do
2: Draw ∀t, (sn,t,m)

N−1
m=1∈U ([0, A]N−1)

3: and set ∀t, sn,t,N
def
=xn,t −∑N−1

m=1 sn,t,m
4: Send (sn,t,m)t∈T to agent m ∈ N
5: done
6: for each agent n ∈ N do
7: Compute ∀t, σn,t = ∑m∈N sm,t,n
8: Send (σn,t)t∈T to operator
9: done

10: Operator computes S = ∑n∈N σn (and broadcasts it to agents)

Algorithm 1.3 Non-intrusive APM (NI-APM)

Require: Start with y(0), k= 1, εcvg, εdis, norm ‖.‖ on RNT

1: repeat
2: for each agent n ∈ N do
3: x(k)n ← PXn(y

(k−1)
n )

4: done
5: Operator obtains S(k) ←SMCA(x(k)) (cf Algo. 1.2)
6: and sends ν(k) def

=
1
N (p− S(k)) ∈ RT to agents N

7: for each agent n ∈ N do
8: Compute y(k)

n ← x(k)n + ν(k) . from (1.14) and (1.22), y(k)
n = [PYp(x(k))]n

9: done
10: k← k + 1
11: until

∥∥∥x(k) − x(k−1)
∥∥∥ < εcvg

12: if
∥∥∥x(k) − y(k)

∥∥∥ 6 εdis then . found a εdis-solution of the disaggregation problem

13: Each agent adopts profile x(k)n
14: return DISAG← TRUE
15: else . have to find a valid constraint violated by p
16: Operator computes T0 ← {t ∈ T | Bεcvg < ν

(k)
t }

17: Operator computes AT0 ← SMCA( (x(k)t )t∈T0 )
18: if AT0 −∑t∈T0

pt < 0 then
19: return DISAG← FALSE, T0, AT0
20: else . need to run APM with higher precision
21: Return to Line 1 with εcvg ← εcvg/2
22: end
23: end

To choose B and εcvg satisfying the conditions of Proposition 1.6 a priori, one has to know
the value of ν. Although a conservative lower bound could be obtained by Diophantine
arguments if we consider rationals as inputs of the algorithm, in practice it is easier and more
efficient to proceed in an iterative manner for the value of εcvg. Indeed, one can start with
εcvg arbitrary large so that APM will converge quickly, and then check if the cut obtained is
violated by the current value of p (Line 18): if it is not the case, we can continue the iterations
of APM with convergence precision improved to εcvg/2 (Line 21). Proposition 1.6 ensures
that this loop terminates in finite time.

The parameter εdis > 0 (Line 12 of Algorithm 1.3) has to be chosen a priori by the opera-
tor, depending on the precision required. In general in APM, x∞ = y∞ will only be achieved
in infinite time, so choosing εdis strictly positive is required.

We end this section by summarizing in Algorithm 1.4 the global iterative procedure to
compute an optimal and disaggregable resource allocation p, solution of the initial problem
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(1.1), using iteratively NI-APM (Algorithm 1.3) and adding constraints as stated in Theo-
rem 1.3.

Algorithm 1.4 Non-intrusive Optimal Disaggregation

Require: s = 0 , P (0) = P ; DISAG= FALSE
1: while Not DISAG do
2: Solve minp∈P (s) f (p)
3: if problem infeasible then
4: Exit
5: else
6: Compute p(s) = arg minp∈P (s) f (p)
7: end
8: DISAG← NI-APM(p(s)) (Algo. 1.3)
9: if DISAG then

10: Operator adopts p(s)

11: else
12: Obtain T (s)

0 , A(s)
T0

from NI-APM(p(s))

13: P (s+1) ← P (s) ∩ {p|∑t∈T (s)
0

pt 6 A(s)
T0
}

14: end
15: s← s + 1
16: done

Algorithm 1.4 iteratively calls NI-APM (Algorithm 1.3) and in case disaggregation is not
possible (Line 11), a new constraint is added (Line 13), obtained from the quantity AT0 de-
fined in (1.18), to the feasible set of resource allocations P (s) in problem (1.11). This con-
straint is an inequality on p and thus does not reveal significant individual information to
the operator. The algorithm stops when disaggregation is possible (Line 9). The termination
of Algorithm 1.4 is ensured by the following property and the form of the constraints added
(1.17):

Proposition 1.8. Algorithm 1.4 stops after a finite number of iterations, as at most 2T − 2 con-
straints (Line 13) can be added to the master problem (Line 2).

The following Proposition 1.9 shows the correctness of our Algorithm 1.4.

Proposition 1.9. Let B and εcvg satisfy the conditions of Proposition 1.6 and 1.7. Then:

• if the problem (1.1) has no solution, Algorithm 1.4 exits at Line 4 after at most 2T− 2 iterations;

• else, Algorithm 1.4 computes, after at most s 6 2T − 2 iterations, an aggregate solution p(s) ∈
P , associated to individual profiles (x∗)n = NI-APM(p(s)) such that:

p(s) ∈ P , ∀n ∈ N , x∗n ∈ Xn,
∥∥∑n∈N x∗n − p(s)

∥∥ 6 εdis and f (p(s)) 6 f ∗ ,

where f ∗ is the optimal value of problem (1.1).

Proof. The proof is immediate from Theorem 1.3, Proposition 1.6 and Proposition 1.7.

Remark 1.2. The upper bound on the number of constraints added has no dependence on N because,
as stated in (1.9), once a subset of T is chosen, the constraint we add in the algorithm is found by
taking the minimum over the subsets of N .

Although there exist some instances with an exponential number of independent con-
straints, this does not jeopardize the proposed method: in practice, the algorithm stops after
a very small number of constraints added. Intuitively, we will only add constraints “sup-
porting” the optimal allocation p. Thus, Algorithm 1.4 is a method which enables the oper-
ator to compute a resource allocation p and the N agents to adopt profiles (xn)n, such that
(x, p) solves the global problem (1.1), and the method ensures that both agent constraints
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(upper bounds xn, lower bounds xn, demand En); and disaggregate (individual) profile xn

(as well as the iterates (x(k))k and (y(k))k in NI-APM) are kept confidential by agent n and
can not be induced by a third party (either the operator or any other agent m 6= n).

Remark 1.3. A natural approach to adress problem (1.1) in a distributed way, assuming that both
the cost function p 7→ f (p) and the feasibility set P are convex, is to rely on Lagrangian based de-
composition techniques. Examples of such methods are Dual subgradient methods [Ber99, Chapter 6],
auxiliary problem principle method [CZ84], ADMM [GM75],[YN17] or bundle methods [LNN95].

One can think of a privacy-preserving implementation of those techniques, where Lagrangian
multipliers associated to the (relaxed) aggregation constraint ∑n xn = p would be updated using
the SMC technique as described in Algorithm 1.2. However, those techniques usually ask for strong
convexity hypothesis: for instance, in ADMM, in order to keep the decomposition structure in agent
by agent, a possibility is to use multi-blocs ADMM with N + 1 blocs (N agents and the operator),
which is known to converge in the condition that strong convexity of the cost function in at least N
of the N + 1 variables holds [Den+17]. The complete study of privacy-preserving implementations of
Lagrangian decomposition methods is left for further work.

The advantage of Algorithm 1.4 proposed here is that convergence is ensured (see Proposition 1.8)
even if the cost function p 7→ f (p) and the feasibility set P are not convex, which is the case in many
practical situations (see Section 1.5.2).

In the next section, we focus on the convergence rate of APM in the particular case of
transportation constraints, precising the geometric rate stated in Theorem 1.2.

1.3.3 Complexity Analysis of APM in the Transportation Case

In this section we analyze the speed of convergence of the alternate projections method
(APM) described in Algorithm 1.1 on the sets X and Yp defined in Section 1.2.

A general result in [BLY14] gives an upper bound on the convergence of the sequences
generated by APM on X and Y if these two sets are semi-algebraic. In particular, it estab-
lishes the geometric convergence for polyhedral sets. However, as stated in [NJJ14], given
two particular polyhedral sets X and Y , it is not straightforward to deduce an explicit rate
of convergence from their result.

The authors in [NJJ14] established in a particular case a geometric convergence with an
explicit upper bound on the convergence rate. They consider APM on two sets P and Q,
where P is a linear subspace and Q is a product of base polytopes of submodular functions.

In this section, we also establish an explicit upper bound on the convergence rate of APM
in the transportation case, that is with X and Yp defined in (1.5) and (1.2b):

Theorem 1.4. For the two sets X and Yp, the sequence of alternate projections converges to x∗ ∈ X ,
y∗ ∈ X P satisfying ‖x∗ − y∗‖ = infx∈X ,y∈Yp ‖x− y‖, at the geometrical rate:∥∥∥x(k) − x∗

∥∥∥ 6 2
∥∥∥x(0) − x∗

∥∥∥× (1− 4
N(T+1)2(T−1)

)k
,

and the symmetric inequalities hold for (y(k))k.

For the remaining of this section, we will just use Y to denote Yp, as p remains fixed
during APM. For the result stated in Theorem 1.4 above, we use several partial results of
[NJJ14].

Proof. First, we use the fact stated in [NJJ14] that APM on subspaces U and V converge with
geometric rate cF(U, V)2, where the rate is given by the square of the cosine of the Friedrichs
angle between U and V, given by:

cF(U, V) def
= sup{uTv | u ∈ U ∩ (U ∩V)⊥, v ∈ V ∩ (U ∩V)⊥, ‖u‖ 6 1, ‖v‖ 6 1}.

An intuitive generalization of this result for polyhedra X and Y , considering all affine sub-
spaces supporting the faces of X and Y is given in [NJJ14]:
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Lemma 1.3 ([NJJ14]). For APM on polyhedra X and Y in RD, the convergence is geometric with
rate bounded by the square of the maximal cosine of Friedrichs angle between subspaces supporting
faces of X and Y :

max
x,y

cF
(

aff0(Xx), aff0(Yy)
)
, (1.23)

where, for any x ∈ RD, Xx
def
= arg maxv∈X x>v is the face of X generated by direction x and

aff0(C) = aff(C) − c for some c ∈ C denotes the subspace supporting the affine hull of C, for
C = Xx or C = Yy.

In the remaining of the proof, we bound the quantity (1.23) for our polyhedra X and Y .
For this, we use the space RNT = RT × · · · ×RT , where the (n− 1)T + 1 to nT entries

correspond to the profile of agent n, for 1 6 n 6 N. As in [NJJ14], we use a result connecting
angles between subspaces and the eigenvalues of matrices giving the directions of these
spaces:

Lemma 1.4 ([NJJ14]). If A and B are matrices with orthonormal rows with same number of columns,
then:

• if all singular values of AB> are equal to one, then cF
(

Ker A, Ker B
)
= 0;

• else, cF
(

Ker A, Ker B
)

is equal to the largest singular value of AB> among those that are
smaller than one.

We are left with finding a matricial representation of the faces of polyhedra X and Y and,
then, bounding the corresponding singular values.

In our case, the polyhedra Y is an affine subspace Y = {x ∈ RNT |Ax =
√

N
−1

p}
where:

A def
=
√

N
−1

J1,N ⊗ IT ,

where ⊗ denotes the Kronecker product. The matrix A has orthonormal rows and the linear
subspace associated to Y is equal to Ker(A).

Obtaining a matricial representation of the faces of X is more complex. The faces of X
are obtained by considering, for each n ∈ N , subsets of the time periods that are at lower or
upper bound (respectively T n and T n, with T n ∩ T n = ∅). Considering a collection of such
subsets, a face of X can be written as:

A(T n ,T n)n
def
=
{
(x)n,t |∀n, ∑t xn,t=En and ∀t ∈ T n, xn,t=xn,t, and ∀t ∈ T n, xn,t=xn,t

}
.

For some particular collection of subsets (T n, T n)n, the set A(T n ,T n)n
might be empty. The

linear subspace associated to A(T n ,T n)n
is given by {x ∈ RNT | Bx = 0} = Ker(B), where the

N first rows of B, corresponding to the constraints ∑t xn,t = En, are given before orthonor-
malization by: √

T
−1

IN ⊗ J1,T ,

and the matrix B has b def
= ∑n |Tn| more rows, where Tn

def
= Tn ∪ Tn, corresponding to the

saturated bounds. Each of this row is given by the unit vector e>n,t ∈ RNT for n ∈ N ,
t ∈ Tn, which gives already an orthonormalized family of (unit) vectors. Therefore, a simple
orthonormalized matrix B giving the direction of A(T n ,T n)n

is given by:

B def
=



√
T − |T1|

−1
1>T c

1
0 . . . 0

0
√

T − |T2|
−1

1>T c
2

. . . 0

0 0 . . .
√

T − |TN |
−1

1>T c
N

BT1 0 . . . 0
0 BT2 . . . 0
0 . . . BTN


,
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where 1T c
n ∈ RT is the vector where the indices in T c

n are equal to 1 and 0 otherwise, and
BTn

def
= ∑ 16k6|Tn |

Tn={t1,...,t|Tn |}
Ektk

is the matrix |Tn| × T with indices of Tn. We obtain the double

product:

(AB>)(BA>) =
1
N

(
∑n

1k/∈Tn∧`/∈Tn

T − |Tn|

)
16k,`6T

+
1
N ∑

n
B>Tn

BTn

=
1
N

(
∑n

1{k,`}⊂T c
n

T − |Tn|

)
16k,`6T

+
1
N ∑

16t6T
(∑n 1t∈Tn) Et,t .

We observe that:

• if t0 ∈
⋂N

i=1 Tn, then et0 is an eigenvector associated to eigenvalue λt0 = 1;

• the vector 1T̄
def
= (1t/∈∩nTn)t∈T ∈ RT , where T̄ def

= ∪nT c
n , is an eigenvector associated to

eigenvalue λ = 1. Indeed, if we denote by Nθ = {n ∈ N |θ ∈ Tn}, then [1T̄ ]θ = 1 ⇔ N c
θ 6=

∅, and for each θ ∈ T̄ :

[(AB>)(BA>)]θ1T̄ =
1
N

 ∑
i∈N c

θ

∑
t

1t/∈Tn

T − |Tn|
[1T̄ ]t + ∑

n
1θ∈Tn [1T̄ ]θ


=

1
N

 ∑
i∈N c

θ

T − |Tn|
T − |Tn|

1 + ∑
i∈Nθ

1× [1T̄ ]θ

 =
|N c

θ |+ |Nθ |[1T̄ ]θ
N

= [1T̄ ]θ .

To bound the other eigenvalues of the matrix (AB>)(BA>), we rely on spectral graph
theory arguments. Consider the weighted graph G = (T , E) whose vertices are the time pe-

riods T and each edge (k, `) ∈ T × T with k 6= ` has a weight given by Sk,` =
1
N ∑n

1{k,`}⊂T c
n

T−|Tn |
(if this quantity is zero, then there is no edge between k and `).

The matrix P def
= IT − (AB>)(BA>) verifies for each k ∈ T :

∑
` 6=k
−Pk,` = ∑

` 6=k

1
N ∑

n

1{k,`}⊂T c
n

T − |Tn|
= 1

N ∑
n

1k∈T c
n (T − |Tn| − 1)

T − |Tn|

= 1
N ∑

n
(1− 1k∈Tn)−

1
N ∑

n

1k∈T c
n

T − |Tn|
= Pkk ,

which shows that P is the Laplacian matrix of graph G. As Sp(AB>BA>) = 1−Sp(P), we
want to have a lower bound on the least eigenvalue of P greater than 0, that we denote by
λ1.

By rearranging the indices of T in two blocs T̄ and T̄ c, we observe that P can be written
as a block diagonal matrix P = diag(PT̄ , 0T̄ c). As we are only interested in the positive
eigenvalues of P , we can therefore study the linear application associated to P restricted to
the subspace Vect(et)t∈T̄ .

As 1T̄ is an eigenvector of P associated to λ0 = 0, from the minmax theorem, we have:

λ1 = min
u⊥1T̄ ,u 6=0

u>Pu
u>u

. (1.24)

Let us consider an eigenvector u realizing (1.24). Let t∗ ∈ arg maxt ut and s∗ ∈ arg mint ut
and let ds∗ ,t∗ be the distance between s∗ and t∗ in G, and let (s∗-t∗) denote a shortest path
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from s∗ to t∗ in G. As P is a Laplacian matrix, we have:

u>Pu =
1
2 ∑

k,`∈T̄
−Pk,`(uk − u`)

2

>
1
2 ∑
{k,`}∈(s∗-t∗)

−Pk,`(uk − u`)
2

> min
k,`∈(s∗-t∗)

(−Pk,`)
(ut∗ − us∗)

2

ds∗ ,t∗
, (1.25)

where the last inequality is obtained from Cauchy-Schwartz inequality.
Let us write the path (s∗-t∗) = (t0, t1, . . . , td). As (s∗-t∗) is a shortest path, for each k ∈

{0, d− 1}, the edge (tk, tk+1) exists so there exists n ∈ N such that {tk, tk+1} ⊂ T c
n . Moreover,

for each n, we have T c
n ∩ {t0, . . . , tk−1, tk+2, . . . , td} = ∅, otherwise we could “shortcut” the

path (s∗-t∗), thus we have |Tn| > d− 1. We obtain:

−Ptk ,tk+1 =
1
N ∑

n

1{tk ,tk+1}⊂T c
n

T − |Tn|
>

1
N(T − d + 1)

.

On the other hand, we have (ut∗ − us∗) > ut∗ +
ut∗

T−1 = T
T−1 ut∗ > T

(T−1)
√

T
‖u‖2.

Using these bounds and (1.25), we obtain:

u>Pu >
(ut∗ − us∗)

2

N(T − ds∗ ,t∗ + 1)ds∗ ,t∗

>
4T

N(T + 1)2(T − 1)2 ‖u‖
2
2 >

4
N(T + 1)2(T − 1)

‖u‖2
2 .

Therefore, λ1 >
4

N(T+1)2(T−1)
def
= κN,T and the greatest singular value lower than one of

(AB>)(A>B) is 1− κN,T . We conclude by applying successively Lemma 1.4 and Lemma 1.3,
to obtain the convergence rate stated in Theorem 1.4.

FIGURE 1.3: Evolution of the convergence rate, given as λ1(P) (lowest
nonzero eigenvalue of P), with N = 6 and T ∈ {4, 6, 8, 12, 20, 60}. The worst
convergence rate is evaluated by taking 100× T random draws of the sets Tn ⊂ T
for each n, and evaluating the eigenvalue of the matrix. The slope is around -0.93,
which indicates that in practice the convergence rate is O(T−1), faster than the up-

per bound in O(T−3) established in Theorem 1.4.
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1.4 Generalization to Polyhedral Agents Constraints

In this section, we extend our results to a more general framework where for each n ∈ N ,
Xn is an arbitrary polyhedron, instead of having the particular structure given in (1.5). Let
us now consider that (Xn)n are polyhedra with, for each n:

Xn = {xn ∈ RT |Anxn 6 bn} , (1.26)

with An ∈ MT,kn(R) with kn ∈ N. The disaggregation problem (1.2), with p ∈ P fixed,
writes:

min
x∈RNT

0 (1.27a)

s.t. A0x = Bp (λ0) (1.27b)
Anxn 6 bn, ∀n ∈ N (λn) . (1.27c)

where A0 = J1,N ⊗ IT , B = IT , (such that (1.27b) corresponds to the aggregation constraint
∑n xn = p) and λ0 ∈ RT

+, (λn)n∈N ∈ R∑n kn are the Lagrangian multipliers associated to
(1.27b) and (1.27c).

With the polyhedral constraints (1.26), the graph representation of the disaggregation
problem, as illustrated in Figure 1.1 is no longer valid. Consequently, one can not directly
apply Hoffman’s theorem (Theorem 1.1) to obtain a characterization of disaggregation feasi-
bility by inequalities on p. However, using duality theory, Proposition 1.10 below also gives
a characterization of disaggregation:

Proposition 1.10. A profile p ∈ P is disaggregeable iff:

∀
(
λ0, λ1, . . . λN

)
∈ Λ, λ>0 Bp + ∑n∈N λ>n bn > 0 , (1.28)

where Λ def
= {λ0∈ Rk0 , ∀n∈ N , λn∈ R

kn
+ | A>0 λ0 + A>(λn)n = 0}, with A def

= diag(An)n∈N .

Proof. From strong duality, we have:

min
x∈RNT

max
λ0∈Rk0 ,λn∈R

kn
+

λ>0 (A0x− Bp) + ∑
n

λ>n (Anxn − bn) (1.29)

=
max

λ0∈Rk0 ,λn∈R
kn
+

−λ>0 Bp−∑
n

λ>n bn

s.t. λ>0 A0 + (λn)>n A = 0
. (1.30)

If the polytope Yp ∩X given by the constraints of (1.27) is empty, then there is an infeasibility
certificate λ> = (λ>0 λ>1 . . . λ>N) ∈ RT ×∏n R

kn
+ such that:

λ>0 A0 + (λ>n )n A = 0 (1.31a)

λ>0 Bp + (λn)
>
n b < 0 . (1.31b)

On the other hand, if Yp ∩ X is nonempty, then a solution to the dual problem (1.30) is
bounded, which implies that ∀λ def

= (λ0, (λn)n) ∈ Λ, λ>0 Bp + ∑n λ>n bn > 0 .

As opposed to Hoffman circulation’s theorem where disaggregation is characterized by
a finite number of inequalities, Proposition 1.10 involves a priori an infinite number of in-
equalities.

However, we know that the polyhedral cone Λ can be represented by a finite number of
generators (edges), that is, there exists Λ∗ def

= {λ∗(1), . . . , λ∗(d)} such that:

Λ =
{

∑16i6d αiλ
∗(i) | (αi)i ∈ Rd

+

}
. (1.32)

Thus, we obtain the following corollary to Proposition 1.10:
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Corollary 1.1. There exists a finite set Λ∗ ⊂ Λ such that, for any p ∈ P , p is disaggregeable iff:

∀(λ0, (λn)n) ∈ Λ∗, λ0Bp + ∑n λnbn > 0 . (1.33)

Remark 1.4. In the transportation case (1.5), we can write each agent constraints in the form
Anxn 6 bn (writing the equality ∑t xn,t = En is written as two inequalities), and Hoffman con-
ditions (1.8) can be written in the form (1.31). Moreover, Theorem 1.3 ensures that one possibility for
Λ∗ of Corollary 1.1 is to consider the collection of 2T multipliers corresponding to the subsets T0 ⊂ T
and N0 minimizing (1.9). We skip the details here for brevity.

As in the first part of the chapter, we want to use APM to decompose problem (1.1)
and, in the case where disaggregation is not possible, use the result of APM to generate an
inequality (1.28) violated by the current profile p.

In the case of impossible disaggregation, the APM converges to the orbit (y∞, x∞) and if
we define µ def

= y∞ − x∞, it defines a separating hyperplan x̄ + µ⊥ , where x̄ = y∞+x∞

2 , that
satisfies, with a def

= x̄.µ (note that x̄ can be replaced by any y ∈ [y∞, x∞]):

∀x ∈ Yp; µ>x > a ∀x ∈ X ; a > µ>x,

which give lower bounds on the following linear problems (problem (1.35) is decomposed
because A is a block-diagonal matrix, but it can also be written in one single problem):

min
x∈RNT

µ>x

A0x = Bp (λ0)
=

max
λ0∈Rk0

−λ>0 Bp

µ = −A>0 λ0

(1.34)

and ∀n ∈ N ,
max

x∈RNT
µnxn

Anxn 6 bn (λn)
=

min
λn∈R

kn
+

b>n λn

µn = λ>n An
. (1.35)

Strong duality on these problems implies that there exist λ0 and λ such that:

µ = −A>0 λ0 and a < −λ>0 Bp µ = λ>A and a > b>λ . (1.36)

Thus, we obtain (λ0, λ) ∈ Λ satisfying (1.31), that is, λ>0 Bp + b>λ < 0, and we can use this
to add a new valid additional inequality on p of form (1.28), that will change the current
profile p:

λ>0 Bp + λ>b > 0 . (1.37)

In Algorithm 1.5 below, we summarize the proposed decomposition of problem (1.1).
This is a generalization of the decomposition principle used for Algorithm 1.4.

Algorithm 1.5 Non-intrusive optimal disaggregation with polyhedral constraints

Require: Start with Λ(0) = {}, k = 0, DISAG= false
1: while not DISAG do
2: get solution p(k) of problem minp∈P{ f (p) | λ>0 Bp + λ>b > 0, ∀λ ∈ Λ(k)}
3: get µ(k) = y∞ − x∞ ← APM(Yp(k) ,X )

4: if µ(k) 6= 0 then
5: obtain λ

(k)
0 ← max

λ0∈Rk0 {−λ>0 Bp(k) | µ(k) = −A>0 λ0}

6: obtain for each n, λ
(k)
n ← maxλn>0{b>n λn | µ(k)

n = λ>n An}
7: add Λ(k+1) = Λ(k) ∪ {(λ(k)

0 , λ(k))}
8: else
9: Return DISAG = true, p(k) as optimal solution

10: end
11: k← k + 1
12: done
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Remark 1.5. We use the fact that µ = y∞ − x∞ although, as before, we only have an approxi-
mation of this quantity. The approximation has to be precise enough to ensure that the solution
obtained verifies λ>0 Bp + b>λ < 0. In practice, one can proceed as in the transportation case and
Algorithm 1.3: start with a large εcvg as stopping criterion in APM, then compute (λ0, λ) ∈ Λ and
check if λ>0 Bp + b>λ < 0. If this is not the case, restart with εcvg = εcvg/2.

Remark 1.6. When Yp = {x ∈ RNT |A0x = B0 p} = {x|∑n xn = p}, we can obtain a non-
intrusive version of APM on Yp and X , similar to Algorithm 1.3. In this case, (1.36) ensures that we
have µn,t = −[λ0]t for each n ∈ N , and λ0 is fixed by µ). The only difference with the transportation
case for a non-intrusive APM in the general polyhedral case, is in the way of computing the valid
constraint violated by p. Thus, Lines 16 to 19 of Algorithm 1.3 have to be replaced by Algorithm 1.6.

Algorithm 1.6 Modification of Lines 16-19 of Algorithm 1.3 for NI-APM with polyhedral
constraints
16: for each agent n ∈ N do
17: compute Mn optimal value of (1.35).
18: done
19: Operator computes M← SMCA((Mn)n)
20: if −ν.p + M < 0 then
21: return DISAG← FALSE, −ν, M

1.4.1 Link with Benders’ decomposition

In this generalized case, we obtain an algorithm related to Benders’ decomposition [Ben62]
(recall that in our specific case (1.27), the cost function does not involve the variable x but
only variable p).

The difference between the proposed Algorithm 1.5 and Benders’ decomposition is on
the way of generating the new cut. Benders’ decomposition would directly solve the dual
problem (1.30): maxλ{−λ>0 B0 p − (λn)>n b | λ0 A0 + (λn)n A = 0} and obtain a cut if it is
unbounded. However, this problem involves the constraints of all users (through A and b),
and it is not straightforward to obtain a method to solve this problem in a decentralized and
efficient way.

1.5 Numerical examples

1.5.1 An illustrative example with T=4

In this section we illustrate the iterations of the method proposed in this chapter on an ex-
ample with T = 4 and N = 3. Assuming that we have to satisfy the aggregate constraint
∑t pt = ∑n En, we can use the projections on this affine space of solutions of master problems
(p(s))s to visualize them in dimension 3.

One can wonder if, in the transportation case, applying Algorithm 1.4 or Algorithm 1.5
will always lead to the same cuts and solutions: the answer is no, as shown by the in-
stance considered in this section, for which Algorithm 1.4 converges in 3 iterations and Al-
gorithm 1.5 needs 4 iterations.

We consider the problem (1.1) with agents constraints (1.5) with parameters x def
= 0 and:

x def
=

[0.8, 0.2, 0.7, 0.1]
[0.5, 0.1, 0.3, 0.6]
[0.1, 0.1, 0.7, 0.2]

,
E1 = 1.8
E2 = 0.4
E3 = 1.1

, ∀p ∈ R4, f (p) def
= ∑

16t64
0.8× pt + 0.1× p2

t . (1.38)

Considering the aggregate equality constraint ∑16t64 pt = ∑16n63 En = 3.3, we use the
canonical projection of 4 dimensional vectors into the 3 dimensional space (p1, p2, p3) to
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visualize the cuts and solutions. We first derive on this example the 2T − 2 = 14 Hoffman
inequalities characterizing disaggregation from Theorem 1.1:

p1 6 1.3 p2 6 0.4 p3 6 1.7 p4 6 0.7
p1 + p2 6 1.6 p1 + p3 6 2.7 p1 + p4 6 1.6 p2 + p3 6 2.1
p2 + p4 6 1.0 p3 + p4 6 2.1 p1 + p2 + p3 6 3.0 p1 + p2 + p4 6 1.9
p2 + p3 + p4 6 2.4 p1 + p3 + p4 6 3.0

The projection of the obtained polytope PD, as defined in (1.4), is represented in Figure 1.4a.
One can remark that this polytope has only 6 facets. Our Algorithm 1.4 applied on this in-
stance with εdis = 10−3 and εcvg = 10−5 converges in 3 iterations, with successive solutions
of the master problem (1.11) and cuts added:

p(1) = [1., 0.4, 1., 0.9] cut−→ p1 + p2 + p4 6 1.9

p(2) = [0.75, 0.4, 1.4, 0.75] cut−→ p2 + p3 + p4 6 2.4

p(3) = [0.9, 0.4, 1.4, 0.6] .

Figure 1.4b represents in the projection space the three successive solutions and the two
generated cuts (in red for each iteration).

On the other hand, applying Algorithm 1.5 with the same parameters (εdis, εcvg), there
are 3 cuts generated and 4 resolutions of master problem needed for convergence, given by
(we refer the reader to Remark 1.5 for the numerical precision obtained in the values):

p̂(1) = [1., 0.4, 1., 0.9]
cut−→ −0.25p1 − 0.25p2 + 1.0p3 − 0.5p4 > 0.75

p̂(2) = [0.8097, 0.4, 1.3984, 0.6919]
cut−→ 1.0p1 − 0.509p2 + 0.018p3 − 0.509p4 > 0.4161

p̂(3) = [0.9062, 0.4, 1.3823, 0.6115]
cut−→ −0.333p1 − 0.333p2 + 1.0p3 − 0.333p4 > 0.7666

p̂(4) = [0.9, 0.4, 1.4, 0.6] .

Owing to the strict convexity of the cost function p 7→ f (p), the global problem (1.1) has
a unique minimizer p, and Algorithms 1.4 and 1.5 both lead to this solution, albeit with a
different number of cuts. The 4 successive solutions and the 3 added cuts are represented in
the three dimensional space on Figure 1.4c: we observe that the last cut needed to obtain the
convergence of Algorithm 1.5, corresponds to the first one added with Algorithm 1.4.

1.5.2 A nonconvex example: management of a microgrid

In this section, we illustrate the proposed method on a larger scale practical example from
energy. We consider an electricity microgrid [Kat+08] composed of N electricity consumers
with flexible appliances (such as electric vehicles or water heaters), a photovoltaic (PV) po-
wer plant and a conventional generator. The operator of the microgrid aims at satisfying the
demand constraints of consumers over a set of time periods T = {1, . . . , T}, while minimiz-
ing the energy cost for the community. We have the following characteristics:

• the PV plant generates a nondispatchable power profile (pPV
t )t∈T at marginal cost zero;

• the conventional generator has a starting cost CST, minimal and maximal power pro-
duction pg, pg, and piecewise-linear and continuous generation cost function pg 7→ f (pg):

f (pg) = αk + ck pg, if pg ∈ Ik
def
= [θk−1, θk[, k = 1 . . . K,

where θ0
def
= 0 and θK

def
= pg;

• each agent n ∈ N has some flexible appliances which require a global energy demand
En on T , and has consumption constraints on the total household consumption, on each time
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(A) Projected Polyhedron PD

p(1)= p̂(1)

p(2)

p(3)= p̂(4)
p̂(2)

p̂(3)

(B) Solutions and cuts obtained with Algorithm 1.4
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(C) Solutions and cuts (projected) obtained with Algorithm 1.5
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FIGURE 1.4: Illustration of the iterations of the proposed decomposition
method. The cut p3 > 1.4, which is added at first for Algorithm 1.4 , is only

added at the third iteration of Algorithm 1.5

period t ∈ T , that are formulated with xn, xn. These parameters are confidential because
they could for instance contain some information on agent n habits.

The master problem (1.11) can be written as the following MILP (1.39):

min
p,pg ,(pg

k ),(bk),b
ON ,bST

∑
t∈T

(
α1bON

t + ∑
k

ck pg
k t + CSTbST

t

)
(1.39a)

pg
t = ∑K

k=1 pg
k,t , ∀t ∈ T (1.39b)

bk,t(θk − θk−1) 6 pg
k,t 6 bk−1,t(θk − θk−1), ∀1 6 k 6 K, ∀t ∈ T (1.39c)

bST
t > bON

t − bON
t−1, ∀t ∈ {2, . . . , T} (1.39d)

pgbON
t 6 pg

t 6 pgbON
t , ∀t ∈ T (1.39e)

bON
t , bST

t , b1,t, . . . , bK−1,t ∈ {0, 1}, ∀t ∈ T (1.39f)
p 6 pPV + pg (1.39g)

p>1T = E>1N (1.39h)

x>1N 6 p 6 x>1N . (1.39i)

In this formulation (1.39b-1.39c), where b0,t
def
= 1 and bK,t

def
= 0, are a mixed integer formulation

of the generation cost function f . One can show that the Boolean variable bk,t is equal to one
iff pg

t > θk for each k ∈ {1, . . . , K − 1}. Note that only α1 appears in (1.39a) because of the
continuity of f .

Constraints (1.39d-1.39e) ensure the on/off and starting constraints of the power plant,
(1.39g) ensures that the power allocated to consumption is not above the total production,
and (1.39h-1.39i) are the aggregated feasibility conditions already referred to in (1.6). The
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nonconvexity of (1.39) comes from the existence of starting costs and constraints of minimal
power, which makes necessary to use Boolean state variables bST, bON.

We simulate the problem described above for different values of N ∈ {24,25, 26,27,28}
and one hundred instances with random parameters for each value of N. A scaling factor
κN = N/20 is applied on parameters to ensure that production capacity is large enough to
meet consumers demand. The parameters are chosen as follows:

• T = 24 (hours of a day);

• production costs: K = 3 , θ = [0, 70, 100, 300]κN , c = [0.2, 0.4, 0.5], pg = 50κN , pg = 300κN ,
α1=4 and CST = 15;

• photovoltaic: pPV
t =

[
50(1−cos( (t−6)2π

16 )+U ([0, 10])
]
κN for t ∈ {6, . . . , 20}, pPV

t = 0 other-
wise;

• consumption parameters are drawn randomly with: xn,t ∼ U ([0, 10]), xn,t ∼ U ([0, 5]) +
xn,t and En ∼ U ([1>T xn,1>T xn]), so that individual feasibility (Xn 6= ∅) is ensured.

N = 24 25 26 27 28

# master 193.6 194.1 225.5 210.9 194.0
# projs. 9507 15367 24319 26538 26646

TABLE 1.1: number of subproblems solved (average on 100 instances)

We implement Algorithm 1.4 using Python 3.5. The MILP (1.39) is solved using Cplex Studio
12.6 and Pyomo interface. Simulations are run on a single core of a cluster at 3GHz. For the
convergence criteria (see Lines 11 and 12 of Algorithm 1.3), we use εdis = 0.01 with the op-
erator norm defined by ‖|x|‖ = maxn∈N ∑t |xn,t| (to avoid the

√
N factor in the convergence

criteria appearing with ‖.‖2), and starts with εcvg = 0.1. The largest instances took around
10 minutes to be solved in this configuration and without parallel implementation. As the
CPU time needed depends on the cluster load, it is not a reliable indicator of the influence on
N on the complexity of the problems. Moreover, one advantage of the proposed method is
that the projections in APM can be computed locally by each agent in parallel, which could
not be implemented here for practical reasons.

Table 1.1 gives the number of master problems solved and the total number of projections
computed, on average over the hundred instance for each value of N.

One observes that the number of master problems (1.39) solved (or equivalently, the
number of “cuts” added), remains almost constant when N increases. In all instances, this
number is way below the upper bound of 224 > 1, 6× 107 possible constraints (see Proposi-
tion 1.8), which suggests that only a limited number of constraints are added in practice. The
average total number of projections computed for each instance (total number of iterations
of the while loop of Algorithm 1.3, Line 1 over all calls of APM in the instance) increases in
a sublinear way which is even better that one could expect from the upper bound given in
Theorem 1.4.

1.6 Conclusion

We provided a non-intrusive algorithm that enables to compute an optimal resource alloca-
tion, solution of a–possibly nonconvex–optimization problem, and to affect to each agent an
individual profile satisfying a global demand and lower and upper bounds constraints. Our
method uses local projections and works in a distributed fashion. Hence, the resolution of
the problem is still efficient even in the case of a very large number of agents. The method is
also privacy-preserving, as agents do not need to reveal any information on their constraints
or their individual profile to a third party.

Several extensions and generalizations can be considered for this work.
Section 1.4 generalizes the procedure to arbitrary polyhedral constraints for agents. How-
ever, the number of constraints (cuts) added to the master problem is not proved to be finite
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as done in the transportation case. Proving that only a finite number of constraints can be
added (maybe up to a refinement procedure of the current constraint obtained) will enable to
have a termination result for the algorithm in the general polyhedral case. In the transporta-
tion case, we showed the geometric convergence of APM with a rate linear in the number of
agents. Moreover, the number of cuts added in the procedure is finite but the upper bound
that we have remains exponential. In practice however, the number of constraints to con-
sider remains small, as seen in Section 1.5. A thinner upper bound on the number of cuts
added in the algorithm in this case would constitute an interesting result.

Appendix

1.A Proof of Proposition 1.4

Proof of Item (i). Let us write the stationarity conditions associated to problem (1.13):

∀n ∈ N , ∀t ∈ T , 0 = (xn,t − yn,t)− λn − µ
n,t

+ µn,t and yn,t = xn,t + νt . (1.40)

By summing the preceding equalities on T and N , we obtain the three equalities:

∑
t

νt = ∑
t

yn,t − En, ∀n ∈ N pt = ∑
n

xn,t + Nνt, ∀t ∈ T (1.41)

|T ◦n |λn = En − ∑
t∈T n

xn,t − ∑
t∈T ◦n

yn,t − ∑
t∈T n

xn,t, ∀n ∈ N , (1.42)

where we define for each n ∈ N :

T ◦n def
= {t | xn,t < xn,t < xn,t}, T n = {t | xn,t = xn,t} and T n = {t | xn,t = xn,t} .

From (1.41) and the aggregate equality ∑n En = ∑t pt, we obtain ∑t νt = 0 and:

∀n ∈ N , ∑t∈T yn,t = En. (1.43)

Suppose that Item (i) is false: there exists n /∈ N0 and t̂ ∈ T0 such that xn,t̂ < xn,t̂. We have:

xn,t̂ > yn,t̂ + λn = xn,t̂ + νt̂ + λn =⇒ λn < 0 .

Immediatly, we have T n ⊂ T0: indeed, for t ∈ T n, we have:

yn,t + λn > xn,t =⇒ yn,t > xn,t − λn > xn,t =⇒ t ∈ T0 .

From the condition (1.43) and from νt > 0 for each t ∈ T n because T n ⊂ T0, we get:

0 = ∑
t∈T

(yn,t − xn,t) = ∑
t∈T n

(yn,t − xn,t) + ∑
t∈T ◦n

(−λn) + ∑
t∈T n

νt

⇐⇒ ∑
t∈T n

(yn,t − xn,t) = ∑
t∈T ◦n

λn − ∑
t∈T n

νt,

which is strictly negative: this implies that there exists t′ ∈ T n such that yn,t′ < xn,t′ .
Necessarily, t′ /∈ T0 because νt′ = yn,t′ − xn,t′ < xn,t′ − xn,t′ = 0. Then, as we have
∑m∈N ym,t′ = pt′ > ∑m xm,t′ , there exists m ∈ N such that ym,t′ > xm,t′ . If λm 6 0, and
as xm,t′ = ym,t′ − νt′ > xm,t′ , we get:

xm,t′ = min(xm,t′ , ym,t′ + λm) 6 ym,t′ + λm 6 ym,t′ = xm,t′ + νt′ < xm,t′ ,

which is impossible, thus λm > 0. Now, we observe that T ◦n ⊂ T0. Indeed, otherwise, if
t” ∈ T ◦n ∩ T c

0 , we have νt” = −λn > 0 and xm,t” = ym,t” − νt” < ym,t” < xm,t”, thus we get:

xm,t” = max(xm,t”, ym,t” + λm) > ym,t” + λm > ym,t” = xm,t” + νt” + λm > xm,t” ,



38 Chapter 1. Privacy-preserving Disaggregation for Optimal Resource Allocation

which is impossible, thus T ◦n ⊂ T0.
Finally, since T c

n 6= ∅, consider t0 ∈ arg mint/∈T n
{xn,t − yn,t}. By (1.42), we obtain:

yn,t0 + λn < xn,t0 ⇐⇒ En − ∑
t∈T n

xn,t − ∑
t∈T ◦n

yn,t − ∑
t∈T n

xn,t < |T ◦n |(xn,t0 − yn,t0) (1.44)

and thus:

En− ∑
t∈T c

0

xn,t−∑
t∈T0

xn,t

= En − ∑
t∈T n

xn,t + ∑
t∈T n∩T0

xn,t − ∑
t∈T n∪T ◦n

xn,t − ∑
t∈T n∩T0

xn,t (as T n ∪ T ◦n ⊂ T0) (1.45)

< ∑
t∈T ◦n

(xn,t0 − yn,t0)− (xn,t − yn,t) + ∑
T n∩T0

(xn,t − xn,t) (from (1.44)) (1.46)

6 0 (from the definition of t0 and xn,t 6 xn,t), (1.47)

which contradicts n /∈ N0 and terminates the proof for Item (i).

Proof of Item (ii). To prove (ii), we see that if t is such that νt > 0, then all the facts said before
are true for n /∈ N0 if we consider T ′0

def
= {t|νt > 0} instead of T0. In that case we will have

λn < 0. However we cannot have t” ∈ T ◦n ∩T ′c0 because this would mean νt” = −λn > 0 but
we have νt” 6 0 because t” /∈ T ′0 . Thus T ◦n is necessarily empty, and if there is t ∈ T n ∩ T ′0 ,
the same serie of inequalities as (1.46-1.47) show a contradiction. Consequently, for each
t ∈ T ′0 , xn,t = xn,t and yn,t = xn,t + νt > xn,t, thus t ∈ T0 and T ′0 ⊂ T0. The other inclusion is
immediate.

Proof of Item (iii). Suppose on the contrary that there exists n ∈ N0 such that λn > 0. For
t ∈ T ◦n , we have νt = −λn 6 0, thus, T ◦n ⊂ T c

0 . Then, if t ∈ T0 and if xn,t < xn,t, we would
have:

xn,t = max(xn,t, yn,t + λn) > xn,t + 0 + νt > xn,t ,

which is impossible, thus xn,t = xn,t, and T0 ⊂ T n. As we show independently in Item (v)
that T0 6= ∅, we know T n 6= ∅. Let us consider t0 ∈ arg mint/∈T n

{yn,t − xn,t}. By (1.42), we
obtain:

yn,t0 + λn > xn,t0
⇐⇒ En − ∑

t∈T n

xn,t − ∑
t∈T ◦n

yn,t − ∑
t∈T n

xn,t > |T ◦n |(xn,t0
− yn,t0) (1.48)

and thus:

En − ∑
t∈T c

0

xn,t −∑
T0

xn,t

= En − ∑
t∈T n

xn,t − ∑
t∈T c

0 ∩T n

xn,t − ∑
t∈T ◦n

xn,t − ∑
t∈T n

xn,t + ∑
t∈T c

0 ∩T n

xn,t (as T0 ⊂ T n) (1.49)

> ∑
t∈T ◦n

(
(yn,t − xn,t)− (yn,t0 − xn,t0

)
)
+ ∑

t∈T c
0 ∩T n

xn,t − xn,t (from (1.48)) (1.50)

> 0 (from the definition of t0 and xn,t 6 xn,t), (1.51)

which contradicts n ∈ N0 and terminates the proof of Item (iii).

Proof of Item (iv). From (ii), we know that T c
0 = {t|νt 6 0}, thus, if t /∈ T0 and n ∈ N0,

if xn,t > xn,t then we would have xn,t 6 yn,t + λn = xn,t + νt + λn < xn,t, which is a
contradiction.

Proof of Item (v). From ∑t νt = 0, we see that if T0 = ∅, then this means that νt = 0 for all
t ∈ T , and thus y = x which is a contradiction. Thus there exists t0 such that νt0 > 0 and for
the same reason, there exists t′0 such that νt′0

< 0.
IfN0 = ∅, then using (i), we would have for all n, yn,t0 > xn,t0 and thus pt0 > ∑n∈N xn,t0 ,

which contradicts the aggregate upper bound constraint pt 6 ∑n∈N xn,t for each t ∈ T .
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If N c
0 = ∅, then using (iv), we would have for all n, yn,t′0

< xn,t′0
and thus pt′0

<

∑n∈N xn,t′0
, which contradicts the aggregate lower bound constraint ∀t, pt > ∑n∈N xn,t.

1.B Proof of Lemma 1.2

Proof of Item (i). From x(K) = PX (y(K−1)) and y(K) = PY (x(K)), we obtain, similarly to (1.40):

∀n ∈ N , ∀t ∈ T , 0 = (x(K)n,t − y(K−1)
n,t )− λ

(K)
n − µ(K)

n,t
+ µ

(K)
n,t

and y(K)n,t = x(K)n,t + ν
(K)
t .

where the Lagrangian multipliers λ
(K)
n , µ(K)

n,t
, µ

(K)
n,t (resp. ν

(K)
t ) are associated to the quadratic

problem characterizing the projections PX (y(K−1)) (resp. y(K) = PY (x(K))). We obtain
equalities similar to (1.41, 1.42). We proceed as for Proposition 1.4(i) and suppose that
there exists n /∈ N0 and t̂ ∈ T0 such that xn,t̂ < xn,t̂. Then, as

∥∥∥y(K) − y∞
∥∥∥ 6 εcvg

1−ρ and

∑t∈T y(K)
t = ∑t∈T y∞

t , we have for each n ∈ N , t ∈ T , |y(K)n,t − y∞
n,t| 6

εcvg
2(1−ρ)

, and thus we
get:

xn,t̂ > x(K)n,t̂ > y(K−1)
n,t̂ + λ

(K)
n > y∞

n,t̂ −
εcvg

2(1−ρ)
+ λ

(K)
n = x∞

n,t̂ + ν∞
t̂ −

εcvg
2(1−ρ)

+ λ
(K)
n

=⇒ λ
(K)
n <

εcvg
2(1−ρ)

v− ν∞
t̂ <

Bεcvg
2 − 2Bεcvg = − 3

2 Bεcvg ,
(1.52)

as ν∞
t̂ > ν > 2Bεcvg. Let us now consider t′ ∈ T ◦n (K) ∪ T (K)

n , then:

ν
(K)
t′ = y(K)n,t′ − x(K)n,t′ > y(K)n,t′ − y(K)n,t′ − λ

(K)
n (1.53)

> − εcvg
2 + 3

2 Bεcvg > Bεcvg +
εcvg

2 (B− 1) > Bεcvg , (1.54)

which shows that t′ ∈ T (K)
0 = T ∞

0 and thus T ◦n (K) ∪ T (K)
n ⊂ T0. Then, the same serie of

inequalities as (1.44, 1.46, 1.47) applied to y(K−1) gives a contradiction to n /∈ N0.

Proof of Item (ii). The proof of Item (ii) is symmetric to the one of Item (i): if we suppose that
there exists n ∈ N0 and t̂ /∈ T0 such that x(K)n,t̂ > xn,t̂, we obtain, symmetrically to (1.52),

that λ
(K)
n > − εcvg

2(1−ρ)
. Then, considering t′ ∈ T (K)

n ∪ T ◦n (K), we show, symmetrically to (1.53),

that ν
(K)
t′ < Bεcvg i.e. t′ /∈ T0 and thus T (K)

n ∪ T ◦n (K) ⊂ T c
0 . We conclude by obtaining a

contradiction to n ∈ N0 by the same serie of inequalities as (1.48, 1.50, 1.51).

1.C Fast Projection on a Boxed Simplex

In general, the Euclidean projection onto a convex set X can be computed with a mathemat-
ical program with a quadratic objective. Indeed the projection PX (y) of a vector y will be
the solution of:

min
x∈X
‖x− y‖2

2 . (1.55)

However, in some cases, the projection can be computed much more efficiently: for instance
in the case of a box, the L1-ball or the simplex X = {x ∈ R

p
+ ; ∑i xi = 1} ⊂ Rp for which

there is an algorithm in O(p log(p)) where p is the dimension of the space [CY11; Con16;
Mic86; WCP13].

This happens to be also the case for the polytope (1.10) that we consider in this paper.
Indeed, we give here a generalization of the algorithm studied in [WCP13] for the projection
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onto a simplex, adapted to a polytope X of the form (1.10), that is defined as:

X def
= {(xi)i ∈ Rp ;

p

∑
i=1

xi = E and ∀i, xi 6 xi 6 xi} . (1.56)

In this Section 1.C, we drop the index n to simplify the notation, as we consider on individual
projection for a fixed agent n ∈ N .

Of course, as the algorithm for projection onto a simplex in [WCP13] is of complexity
O(p log p), and can be easily adapted to lower bounds xi > xi (instead of xi > 0), we can
easily get the projection on our set X in time O(p2). For that, one can sort the indices and
consider adding them to the set Imax = {i|xi = xi} one by one, and calling each time (at
most p times) the algorithm [WCP13] which is of order p once the sorting has been done.
This is the idea the authors of [WCP13] exposed in a later paper [WL15].

Some algorithms (see [Bru84; HKL80] and the references therein) with running time of
order O(p log p) (or even of order O(p) in average complexity for [Bru84]) have been found
to solve, more generally, convex quadratic programs with a unique equality constraint, that
is, problems having the structure:

min
x∈Rp ∑

16i6p
aixi +

bi
2 x2

i (1.57a)

∑
16i6p

bixi = b0 (1.57b)

xi 6 xi 6 xi, ∀i, (1.57c)

with bi > 0, ∀i, for which (1.55)-(1.56) is a particular case.
Algorithm 1.7 presented here has the advantages of being very simple to implement

and of having a simple proof of validity, which relies on the optimality conditions of the
quadratic optimization problem (1.55). In fact, one can easily extend Algorithm 1.7 and the
proof of validity to generalized convex quadratic programs as (1.57), by an affine transfor-
mation of the coefficients. This extension is easy and left to readers: we prefer to give and
prove the validity of the algorithm in the case of (1.56) for simplicity and as it is directly
linked to the framework of this thesis (Chapter 1 and Chapter 3).

The Algorithm 1.7 presented here relies on the following result: on the resulting projec-
tion of y on X , x def

= PX (y), some coordinates will be at the upper bound xi, some at the
lower bound xi and some within the two bounds. If we denote by Imax, Imin and Iint the
respective set of indices, then a result from the Karush-Kuhn-Tucker conditions (see in the
proof below) is that:

∀i ∈ Iint, xi = yi + λ with λ =
1
|Iint| ∑

i∈Iint

(xi − yi)

=
1
|Iint|

(
E− ∑

i∈Iint

yi − ∑
i∈Imin

xi − ∑
i∈Imax

xi

)
.

Thus, the complexity of the computation of the projection x = PX (y) lies in finding the
sets Imax and Imin: once these sets are obtained, we can immediatly obtain λ and x by the
above formula. The algorithm presented here computes these two sets Imax and Imin by
considering the indices i ∈ I sorted in two different orders.

Termination and Complexity We first show that Algorithm 1.7 terminates if the instance
is feasible, that is X is nonempty. One can notice that in the first while (line 6) we run over
the list Lmax and as soon as the condition on line 18 is not satisfied, we break on Line 22,
thus we can enter the while loop at most cardLmax) = p times.

The second while loop (line 7) runs over the list Lmin. At each entering in the loop we get
a new index as the last element from Lmin (this action can be executed on a list in constant
time). If we put it back in Lmin afterwards (line 22), then we exit the while loop and Lmax
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Algorithm 1.7 Fast Projection on Boxed Simplex Algorithm
Require: a point y ∈ Rp

1: compute sorting σ such that (yσ(1)−xσ(1))6(yσ(2)−xσ(2)) 6 . . . 6 (yσ(p)−xσ(p))

2: compute sorting τ such that (xτ(1)−yτ(1))>(xτ(2)−yτ(2)) > . . . > (xτ(p)−yτ(p))

3: Lmin = [σ(1), σ(2), . . . , σ(p)] . List of indices that are at x
4: Lmax = [τ(1), τ(2), . . . , τ(p)] . List of indices that are NOT at x
5: S← E−∑

p
i=1 xi Nint ← 0 . number of resulting indices in ]x, x[

6: while Lmax 6= ∅ do
7: while Lmin 6= ∅ do
8: i← get and remove last element of Lmin
9: if yi +

S+xi−yi
Nint+1 > xi then

10: S← S + xi − yi
11: Nint ← Nint + 1
12: else
13: append i at the end of Lmin
14: break
15: end
16: done
17: i← get and remove last element of Lmax
18: if yi +

S
Nint

> xi then
19: S← S + yi − xi
20: Nint ← Nint − 1
21: else
22: Lmax.append(i)
23: break
24: end
25: done
26: return

[
min

(
xi, max

(
xi, yi +

S
Nint

))]
16i6p

decreases (line 17): this can happen only p times, so finally we can enter this second while
loop line 7 only 2p times in total.

Thus, the algorithm terminates and the lines 6 to 25 are run within O(p) operations
(affectations and additions). As the sortings on lines 1 and 2 takesO(p log p) operations, the
overall complexity of Algorithm 1.7 is of O(p log p).

Proof of Validity. The proof extends the one of [WCP13]. Let us consider the problem:

min
x

1
2
‖x− y‖2

2 (1.58a)

s.t.
p

∑
i=1

xi = E (1.58b)

∀i, xi 6 xi 6 xi , (1.58c)

for which the solution is the projection PX (y) and for which the Lagrangian function is:

L(x) =
1
2
‖x− y‖2

2 + λ(E−
p

∑
i=1

xi) + ∑
i

νi(xi − xi) + ∑
i

νi(xi − xi)

with λ ∈ R the Lagrangian multiplier associated to (1.58b) and ν, ν > 0 the multipliers
associated to (1.58c). The KKT stationarity conditions give:

∀i ∈ I , (xi − yi) = λ− νi + νi (1.59)
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along with the completarity conditions:

∀i ∈ I , 0 6 νi ⊥ (xi − xi) > 0 and 0 6 νi ⊥ (xi − xi) > 0 .

Thus, if νi > 0 then xi = xi and if νi > 0 then xi = xi. Denote by I def
= {1, . . . , p} the set of

indices, Imax
def
= {i ∈ I ; xi = xi} , Imin

def
= {i ∈ I ; xi = xi} and Iint

def
= {i ∈ I ; xi < xi < xi}

the subsets of indices to the max , min and in-between at the solution, and denote by kint
def
=

|Iint| the cardinal of Iint at the solution. Then we get by summing (1.59) on Iint that:

kintλ = ∑
in∈Iint

(xi − yi) = E− ∑
i∈Iint

yi − ∑
i∈Imin

xi − ∑
i∈Imax

xi

where the second equality is obtained from ∑
p
i=1 xi = E. Hence, because we have νi > 0 ⇔

xi < yi + λ and νi > 0⇔ xi > yi + λ, the solution is given by:

∀i , xi = min (xi, max (xi, yi + λ)) ,

and thus, to show the validity of Algorithm 1.7, it is sufficient to show that at the end of the
algorithm, S

Nint
is equal to λ, or equivalently, that S = E−∑i∈Iint

yi −∑i∈Imin
xi −∑i∈Imax xi

and that Nint corresponds to kint, the cardinality of Iint.
For that, we first notice that the coordinates are at xi in the order of σ, that is for i, j ∈ I :[

yi − xi 6 yj − xj and xj = xj

]
⇒ xi = xi . (1.60)

Inded, if not we have from (1.59) xi − yi = λ− νi 6 λ and xj − yj = λ + νj > λ. Thus:

xj − yj > λ > xi − yi > xi − yi ,

which is impossible by hypothesis. Symmetrically, we have:[
xi − yi 6 xj − yj and xj = xj

]
⇒ xi = xi . (1.61)

Let us denote by kmin and kmax the cardinals of Imin and Imax at the solution. Then we know
from (1.60) that Imin = {σ(1), . . . , σ(kmin)} and from (1.61) that Imax = {τ(p − kmax +
1), . . . , τ(p)}.

If i is taken out of Lmax (line 17) and condition line 18 is True, then i was already taken
out of Lmin before because xi 6 xi (feasibility). At any time of the algorithm, we have:

Lmax = [τ(1), . . . τ(p− Nmax)]

Lmin = [σ(1), . . . , σ(Nmin)] with Nmin = p− (Nint + Nmax)

S = E−
p

∑
i=1

xi +
Nint+Nmax

∑
i=1

(xσ(i) − yσ(i)) +
p

∑
i=p−Nmax+1

(yτ(i) − xτ(i))

= E− ∑
i∈Lmin

xi − ∑
i/∈Lmax

xi − ∑
i∈(Lmax\Lmin)

yi .

Taking the values of Lmin, Lmax, Nint, Nmin, Nmax and S at the end of the algorithm, we have:

yσ(Nmin+1) +
S

Nint
> xσ(Nmin+1) (1.62)

yσ(Nmin)
+

S + xσ(Nmin)
− yσ(Nmin)

Nint + 1
6 xσ(Nmin)

(1.63)

yτ(p−Nmax) +
S

Nint
6 xτ(p−Nmax) . (1.64)
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For i /∈ Lmin, we want to show that yi − xi +
S

Nint
> 0. We know that yi − xi > yσ(Nmin+1) −

xσ(Nmin+1). From (1.62) we get:

S + Nint(yi − xi) = S + Nint(yσ(Nmin+1) − xσ(Nmin+1)) + Nint

(
yi − xi)− (yσ(Nmin+1) − xσ(Nmin+1))

)
and both parts are nonnegative. For i ∈ Lmin ⇔ σ−1(i) 6 Nmin, we have yi − xi 6
(yσ(Nmin)

− xσ(Nmin)
) and from (1.63) we get:

Nint(yσ(Nmin)
− xσ(Nmin)

) + S 6 0

=⇒ S + Nint(yi − xi) =
(

S + Nint(yσ(Nmin)
− xσ(Nmin)

)
)

+ Nint

(
(yi − xi)− (yσ(Nmin)

− xσ(Nmin)
)
)

and both parts are nonpositive, so that yi +
S

Nint
6 0.

Now, let us consider i ∈ Lmax ⇔ τ−1(i) 6 p − Nmax so that we have xi − yi >
xτ(p−Nmax) − yτ(p−Nmax) and from (1.64):

yi − xi +
S

Nint
6 yτ(p−Nmax) − xτ(p−Nmax) +

S
Nint

6 0

so that yi +
S

Nint
6 xi.

It remains to show that for i /∈ Lmax⇔ τ−1(i) > p− Nmax + 1 , we have yi +
S

Nint
> xi .

We begin with the last index popped out of Lmax, a def
= τ(p− Nmax + 1). We know that

when a was popped out of Lmax at line 17, there was S′ and N′int such that:

ya +
S′

N′int
> xa . (1.65)

After that, we went into the while loop Line 7 only once before the algorithm terminated.
There was a set of r (possibly 0) indices k1, . . . , kr popped out of Lmin during this last step,
starting with k1 which gives (1.66). As k1 was not popped out of Lmin before adding a to the
indices at max, we have also (1.67):

yk1 +
S′ + xk1

− yk1

N′int + 1
6 xk1

⇔ N′int(yk1 − xk1
) + S′ 6 0 (1.66)

yk1 +
S′ + ya − xa + xk1

− yk1

N′int − 1 + 1
> xk1

(1.67)

These two equations (1.66) and (1.67) imply that:

ya − xa + xk1
− yk1 > −(N′int(yk1 − xk1

) + S′) > 0 . (1.68)

As at the end of the algorithm, we have S = S′ + ya − xa + ∑r
j=1(xkj

− ykj
) and Nint =

N′int − 1 + r, we get:

Nint

(
ya − xa +

S
Nint

)
= Nint (ya − xa) + S

= N′int(ya − xa) + (r− 1)(ya − xa) + S′ + ya − xa +
r

∑
j=1

(xkj
− ykj

)

=
[
N′int(ya − xa) + S′

]
+

r

∑
j=1

(ya − xa) + (xkj
− ykj

) > 0

where the positivity of the first term comes from (1.65) and the sum is positive component-
wise because (ya − xa) + (xkj

− ykj
) > ya − xa + xk1

− yk1 > 0 by (1.68). Hence we get that
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ya +
S

Nint
> xa. By induction, the next elements of the list τ(k) for k > p − Nmax + 1 also

satisfy yτ(k) +
S

Nint
> xτ(k).

Finally, we have shown that the solution (x, ν, ν, λ) defined by:

∀i ∈ Lmin, xi = xi, ∀i /∈ Lmax, xi = xi, and xi = yi +
S

Nint
else

and with the optimal Lagrangian multipliers:

λ =
S

Nint
, ∀i ∈ I , νi =

{
0 if i /∈ Lmin
xi − yi − S

Nint
else , νi =

{
0 if i ∈ Lmax

S
Nint
− (xi − yi) else ,

satisfy the KKT conditions. Hence it corresponds to the unique solution of the system, which
is the projection PX (y).

It is an open question to know if the proposed Algorithm 1.7, based on a sorting of the
coordinates, could be extended to other family of polyhedra: for instance to polyhedra de-
fined by two linear equalities instead of a single one. Such a generalization, along with the
impact on the time complexity of the algorithm, is not straightforward from our results and
is out of the scope of this paper, but would be an interesting avenue for further work.
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Part II

Decentralized Management of
Flexibilities and Game Theory
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Demand Response has been the subject of a blooming literature in the last decade. One
can refer to [Sia14], [VZV15] and [Saa+12] for surveys on the topic. Various aspects of
DR have been investigated such as consumers personal utilities and discomfort related to
their electricity consumption, consumers privacy, network and power flow constraints, of-
ten leading to complex optimization problems.

As stated in Part I, the need for a decentralized optimization approach is a consensus
and, among the different decentralized approaches considered in the DR literature, several
works rely on a dual decomposition of the optimization problem of a central operator (e.g.
[CBK17; Shi+14; LCL11; Den+15]). In those works, an iterative algorithm between the oper-
ator (updating the Lagrange multipliers) and the consumers (adjusting their consumption)
is run until convergence of the consumption profiles (decomposition-coordination).

In Chapter 1, we considered another decentralized optimization approach, which can be
applied to solve the central optimization of flexibilities subject to individual and confiden-
tial constraints for each consumer. In the method proposed in Chapter 1, as well as in the
dual decomposition approaches, it is considered that each consumer (agent) is indifferent
between the profiles that satisfy her individual constraints (Chapter 1 focuses on the privacy
issues in the procedure used to manage the flexibilities).

In these decentralized approaches, agents are not strategic, in the sense that they do not
have individual and possibly competing objective cost functions to optimize.

To answer to these strategic aspects, different game-theoretic frameworks have been pro-
posed in the smart grid literature, e.g. [Cha+14; Saa+12; Che+10; Che+14; Atz+13; CK14;
Bah+13], following the seminal paper [MR+10].

This Part II of the thesis follows this path and focuses on game-theoretic approaches for
demand response. Among the different game theory models studied in the literature, we
focus in this thesis on the daily billing mechanism proposed by [MR+10], that we compare
in Chapter 2 and Chapter 4 with the hourly billing mechanism considered in [Bah+13; Atz+13;
Che+14; CK14]. In the latter, a consumer pays for each time period (e.g. each hour) propor-
tionally to the energy consumed on this period. This billing mechanism has the structure
of a routing congestion game [ORS93]. We show in Chapter 2, in addition to [Bah+13], that
this latter model has desirable properties of fairness, incentives compatibility and efficiency,
while remaining simple and intuitive. These properties are also confirmed by the analy-
sis conducted in Chapter 4, considering consumers individual preferences. In Chapter 3,
we focus on the hourly billing mechanism and analyze its implementation and algorithmic
aspects.

This part of the thesis is divided in three chapters:

• Chapter 2 is based on the conference paper [Jac+17b]. In this chapter, we introduce
and compare the two DR mechanisms, introduced respectively by [MR+10] and [Bah+13],
in terms of efficiency and fairness. Each mechanism defines a game where the consumers
optimize their flexible consumption to reduce their electricity bills. Mohsenian-Rad et al pro-
pose a daily mechanism for which they prove the social optimality. Baharlouei et al propose
a hourly billing mechanism for which we give theoretical results: we prove the uniqueness
of an equilibrium in the associated game and give an upper bound on its price of anarchy,
quantifying its distance to the social optimum. Section 2.4.3 and Section 2.5.3 give an ex-
plicit expression of the equilibrium profiles under each of the two billing mechanisms in a
particular case, and have not been submitted for publication.

• Chapter 3 is based on the journal paper [Jac+19c]. As the hourly billing mechanism
has been shown in Chapter 2 to be of special interest as an intuitive and fair mechanism, we
focus on this model and answer to several theoretical and practical questions. After precising
some theoretical results on the uniqueness of the equilibrium profiles in the game defined,
this chapter focuses on the computational aspects. We provide results on the convergence
rates of two decentralized algorithms to compute the equilibrium: the cycling best response
dynamics and a projected gradient descent method. Last, we simulate the proposed demand
response framework in a stochastic environment where the parameters depend on forecasts.
We show numerically the relevance of an online demand response procedure which reduces
the impact of inaccurate forecasts in comparison to a standard offline procedure.
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• Chapter 4 is based on the conference paper [Jac+17a]. In Demand Response programs,
price incentives might not be sufficient to modify residential consumers load profile. In this
work, we consider that each consumer has a preferred profile and a discomfort cost when
deviating from it. Consumers can value this discomfort at a varying level that we take as a
parameter. As in Chapter 2, we study a Demand Response environment as a game between
consumers, and consider now their profile preferences. We compare the equilibria of the
games associated to the two different dynamic pricing mechanisms defined and studied in
Chapter 2. We give new results about equilibria as functions of the preference level in the
case of quadratic system costs and prove that, whatever the preference level, system costs
are smaller with the hourly mechanism.
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Chapter 2

Two billing mechanisms for
Demand Response: an Efficiency
and Fairness Tradeoff

This chapter is based on the conference paper [Jac+17b], except for Section 2.4.3 and Section 2.5.3,
which give explicit expressions of the equilibrium profiles under each of the two billing mechanisms
studied in this chapter, in a specific case (quadratic costs and symmetric users).

2.1 Introduction

The implementation of a Demand Response (DR) mechanism raises several difficulties. Ow-
ing to the huge number of variables and constraints and to the impossibility for an aggrega-
tor to collect all the consumption constraints because of privacy concerns, the optimization
has to rely on a decentralized algorithm that minimizes the information exchanged with the
users. Obviously, efficiency is also a desirable property. One wishes that, as in [MR+10], the
scheduling process leads to an optimal or close to optimal consumption profile for the global
system cost, while respecting all the users constraints. Another important feature, more dis-
cussed in [BNMR12], is fairness: the payment model should penalize consumers imposing
costly constraints for the system, while rewarding flexible ones. This point is essential to
ensure the acceptability of the process and encourage users to stay in a DR program. Be-
sides, this feature has a merit in terms of incentives. Indeed, such fair billing models would
encourage consumers to modify their constraints so that available flexibility for the system
increases.

The contributions of this chapter are twofold. First, we give new theoretical results asso-
ciated with the hourly billing mechanism [BNMR12] by proving the uniqueness of a Nash
Equilibrium, and by specifying an explicit upper bound on its price of anarchy. Next, we
present numerical results, based on simulations using real consumption data, that compare
the two billing mechanisms [MR+10] and [BNMR12] in terms of efficiency and fairness. The
results show that the hourly mechanism achieves a very small price of anarchy and an im-
portant fairness property.

The chapter is organized as follows. In Section 2.2 we introduce the consumption game
model. In Section 2.3 we recall some notions from game theory and define quantitative indi-
cators to measure the efficiency and the fairness of a given billing mechanism. In Section 2.4
we introduce the daily proportional billing considered in [MR+10] and recall its main prop-
erties. In Section 2.5, we focus on the hourly proportional billing proposed in [BNMR12] and
present our new theoretical results. Last, Section 2.6 is devoted to numerical experiments,
based on real consumption data, from which we compare the fairness and efficiency of the
two different billing mechanisms.
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2.2 Energy Consumption Game

We consider an autonomous network composed of a unique electricity provider and a setN
of N electricity consumers. We use a model similar to Mohsenian-Rad et al [MR+10].

2.2.1 Consumers constraints

Each user n has a set of electric appliances An. For each a ∈ An, this user—itself or through
an Energy Consumption Scheduler (ECS)—can set the power xna,t allowed to a at each time
period t in Tna = {αna, . . . , βna} ⊂ T , where T is the set of time periods considered over a
day. We consider the following constraints:

∑
t∈T

xna,t = Ena, ∀a ∈ An , (2.1a)

xna,t 6 xna,t 6 xna,t, ∀a ∈ An, ∀t ∈ T . (2.1b)

Each electric appliance a ∈ An requires a fixed daily amount of energy (2.1a). Due to phys-
ical limits, the power set to appliance a is bounded from below and above (2.1b). If the
appliance a can not be used in the time period t, we set xna,t = xna,t = 0. The set of available
time periods for a ∈ An is therefore given by Tna = {t : xna,t > 0}, and thus, without loss of
generality, we can consider T = Tn,a for each n, a.

We will denote more compactly by Xn the set of feasible loads (xna,t)a,t that respect the
constraints given by (2.1).

2.2.2 System cost functions

We denote by Ct(Xt) the system cost for providing to users the total aggregate load

Xt
def
= ∑

a,n
xna,t

at time t. It is widely accepted that marginal production costs increase with demand. Hence
we assume that cost functions Ct(.) are increasing and strictly convex [MR+10]. These func-
tions can depend on the period t as it is more expensive to produce energy on peak hours
or for instance, when the renewable production is low. Practically, in our model, (Ct)t∈T
can be the actual costs for the provider but can also be an artificial signal that is sent to each
user’s ECS in order to make him perform a decentralized optimization of his consumption.
We will mostly consider quadratic cost functions as done in [MR+10]:

Ct(Xt) = βt(Xt)
2 + αtXt + δt . (2.2)

We assume for simplicity that the total system cost, denoted by C def
= ∑t Ct is divided among

consumers, in a way defined by the provider. If we denote by bn the bill paid by user n for
the day, then we have C = ∑n bn. In general, bn can depend on the induced costs (Ct)t and
the load vector of each user (xn,t)n,t, where xn,t

def
= ∑a xna,t. In this work we are interested in

two different billing models given in Sections 2.4 and 2.5.
Finally, each user will try to minimize his bill bn while respecting his constraints (2.1), by

solving the problem:
min

xn∈Xn
bn(xn, x−n) (2.3)

where xn
def
= (xna,t)a,t and x−n = (xm)m 6=n stands for the consumption vector of all users but

n. As bn depends on both xn and x−n, this problem can be stated in the framework of game
theory. We refer the reader to [FT91] for background. With N denoting the set of players,
X def

= ∏n∈N Xn the set of pure strategies and (bn)n the vector of bills, the game is formulated
under normal form by G = (N ,X , (bn)n).
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2.3 Measuring efficiency and fairness

2.3.1 Efficiency and the Price of Anarchy

We define the social cost of a load solution x = (xn)n∈N as the sum of the bills in the popu-
lation, that is:

SC(x) def
= ∑

n∈N
bn(xn, x−n) . (2.4)

Since we assume that the total system cost C is shared among the users, we also have the
equality:

C(x) def
= ∑

t∈T
Ct(Xt) = SC(x) , (2.5)

with Xt
def
= ∑a,n xna,t the total load at time t.

In game-theoretic models, a desirable stability property is when each player n has no
interest to deviate unilaterally from her current profile xn. This corresponds to the notion of
Nash Equilibrium (NE), that is:

Definition 2.1 (Nash [Nas50]). Nash Equilibrium (NE).
(x̂n) is a NE of the minimization game G = (N ,X , (bn)n) iff for any player n ∈ N :

∀xn ∈ Xn, bn(x̂n, x̂−n) 6 bn(xn, x̂−n) .

An NE situation does not necessarily correspond to an optimal situation in terms of social
cost. The efficiency of a mechanism is usually measured in game theory by the ratio of the
optimal social cost of the system SC∗ def

= infx∈X SC(x) and the social cost of the worst Nash
Equilibrium:

Definition 2.2 ([KP99]). Price of Anarchy.
Given a game G and XNE

G its set of Nash Equilibria, the price of anarchy of G is given as:

PoA(G) def
=

supx∈XNE
G

SC (x)

SC∗
, (2.6)

where SC∗ def
= infx∈X SC(x) is the optimal social cost of the system.

The notion of Price of Anarchy has been widely studied in congestion and routing games
(see [Rou16],[JMT05],[JT06]). Theoretical bounds have been established in particular frame-
works (e.g. congestion games in [CK05],[Rou06],[Rou15]).

2.3.2 Fairness and Marginal Cost Pricing

To design a fair mechanism, the bill bn paid by each user n should reflect the cost user n
induces to the system, what we call the externality of n. Precisely, we denote by:

C∗M
def
= inf

(xm)m∈M
∑t∈T Ct (∑m∈M xm,t) (2.7)

the optimal system cost that can be achieved with the users in the setM⊂ N while respect-
ing their constraints. The externality of user n is the difference between the optimal system
cost achieved with n in the population and the optimal system cost that can be achieved
without n, that is,

Vn
def
= C∗N − C∗N\{n} .

The quantity Vn is not necessarily proportional to the total energy the user asks per day, as
the load distribution between peak and off-peak hours also impacts the system cost.

To be fair, the bill of user n should be proportional to Vn [BNMR12]. This motivates the
introduction of the following mechanism:

bVCG
n (xn, x−n)

def
= ∑

t∈T
Ct

(
∑

m∈N
xm,t

)
− C∗N\{n} (2.8)
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which, as noticed in [Sam+12], corresponds to a Vickrey-Clarke-Groves mechanism (VCG,
see [Cla71]). In particular, it minimizes the system cost, which implies that in this model at
an equilibrium xNE we will have ∀n, bVCG

n (xNE) = Vn. The authors in [MS01] defined, in a
more general framework, this pricing as Marginal Cost Pricing, and showed (Prop. 3) that it
is the unique VCG mechanism that satisfies reasonable conditions. However, the mechanism
(2.8) does not recover the system cost C∗N , and should be renormalized as bF

n
def
=

bVCG
n

∑m Vm
C∗N . Al-

though being centralized and hardly tractable, the billing mechanism bF
n is efficient (PoA=1)

and fair (bF
n ∝ Vn) and we take it as a reference, following [Bah+13],[BH14], to define a fair-

ness measure of any billing mechanism:

Definition 2.3 ([BH14]). Fairness Index.
The fairness index of a billing mechanism (bn)n is its maximal normalized distance to

(Vn)n (or equivalently to (bF
n)n) at a Nash Equilibrium:

F def
= sup

x∈XNE
G

[
∑

n∈N

∣∣∣∣ Vn

∑m∈N Vm
− bn (x)

∑m∈N bm (x)

∣∣∣∣
]

. (2.9)

In [BH14], the authors notice the link between Vn and the notion of Shapley Value [Sha53]
defined for cooperative games. However, since the Shapley Value is given by a combinatorial
formula involving all possible coalitions within N , it becomes quickly untractable as the
cardinality of N grows. It is therefore more appropriate to use (Vn)n as reference.

2.4 Daily Proportional Billing: social optimality

2.4.1 Daily Proportional (DP) billing: definition

In this section, we recall the standard billing mechanism of [MR+10]. Consumers share
the total cost of the system proportionally to their total consumption over the day. More
precisely, if we denote by En = ∑a∈An Ena the total energy needed by n, the bill of this user
is:

bDP
n (xn, x−n)

def
=

En

∑m∈N Em
∑
t∈T

Ct(Xt) . (2.10)

2.4.2 Properties

As all users minimize SC(x) up to a constant factor, several properties follow (detailed proofs
are in [MR+10]). First, [MR+10, Thm. 1] ensures that a Nash Equilibrium (NE) exists and,
as cost functions (Ct)t are assumed strictly convex, it is unique in terms of aggregated load
(Xt)t. The NE minimizes the social cost SC ([MR+10, Thm. 2]). In order to compute the NE in
the game, the authors in [MR+10] consider the implementation of Best Response Dynamic,
that can be defined as follows:

Definition 2.4. Best Response Dynamic (BRD).
In BRD, at each iteration k, a user n is randomly chosen, and solves his local optimiza-

tion problem (2.3) with knowledge of the load of others x(k−1)
−n , taken as a parameter. The

resulting load x∗n is used to update x(k)n = x∗n and x(k)−n = x(k−1)
−n .

In practice, we only need the aggregated load ∑m 6=n xm,t to solve user n’s problem, which
can help to protect the privacy of the users (we refer the reader to Chapter 1 for more insight).
Again, due to the proportionality of the users objectives, the BRD will converge to the NE
[MR+10, Thm. 3]. Finally, [MR+10, Thm. 4] ensures that no user n can reduce his bill bn by
giving wrong information about his load (xn,t)t during the process.

2.4.3 Explicit DP solution without power bounds and quadratic costs

In this section, we focus on a particular case where we can compute explicitly the equilibr-
ium profile of each player. For that, we consider the total energy demand for all appliances of
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each consumer, and consider that there is no power upper bound in the constraints of each
consumer. We consider that the cost function associated to each time period is quadratic.
More precisely, the social cost minimization problem is given by:

min
xn

∑
n

bn(xn, x−n) = ∑
t

Ct (Xt) (2.11a)

0 6 xn,t, ∀n, ∀t (2.11b)

∑
t∈T

xn,t = En, ∀n (2.11c)

where Ct(Xt) = αtXt + βtXt
2 (no constant term, ∀t, δt = 0).

We know from [MR+10] that the equilibrium profiles correspond to the solution of (2.11).
The optimal hourly load can be computed explicitly as given in Proposition 2.1:

Proposition 2.1. Let us consider quadratic cost functions: ∀t ∈ T , Ct(Xt) = αtXt + βtXt
2 with

βt > 0, and, as in Proposition 2.1, w.l.o.g, let us assume that α1 6 α2 . . . 6 αT and define, for all t:

κt
def
=

1
2 ∑

k<t

αt − αk
βk

, (2.12)

then 0 def
= κ1 6 κ2 6 . . . 6 κT < κT+1

def
= ∞. Let t̄ the unique integer in {1, . . . , T} such that

E ∈ [κt̄, κt̄+1]. Then the support of the optimal aggregate profile X∗ is:

T1 = {1, 2, . . . , t̄} ,

and the optimal aggregate profile (X∗t )t∈T is given, for all t ∈ T1 by:

X∗t =
1

∑k∈T1
βt
βk

1
2

 ∑
k∈T1\{t}

αk − αt

βk

+ E

 . (2.13)

Proof of Proposition 2.1. We denote by νn,t the Lagrangian multiplier associated to the con-
straint (2.11b) and λn the one associated with constraint (2.11c). The Lagrangian function
associated to (2.11) is:

L(x, λ, ν) = ∑
t

Ct (Xt)−∑
n

λn(∑
t∈T

xn,t − En)−∑
n,t

xn,tνn,t . (2.14)

The KKT conditions ensure that for all t and n:

∂L
∂xn,t

= C′t (Xt)− λn − νn,t = 0. (2.15)

Let us start by the simple case where xn,t > 0 for each n ∈ N , t ∈ T . Thus we have νn,t = 0
and ∀t ∈ T , n ∈ N , C′t(Xt), is equal to λn. Thus, for all t, k ∈ T :

αt + 2βtXt = αk + 2βkXk , (2.16)

and X∗ is the solution of AX∗ = b with:

A def
=


β1 −β2 . . .
0 β2 −β3

0
. . . . . . 0

0 . . . 0 βT−1 −βT
1 1 1 1 1

 , b def
=


α2−α1

2
...

αT−αT−1
2
E

 (2.17)

We can compute det(A) = σT−1(β) with σk denoting the kth symmetric function σT−1(β) =

∑
t∈T

∏
t′ 6=t

βt′ . By inverting the matrix A, we get the expression (2.13).
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We remark that the positiveness of X∗t in (2.13) is verified if:∑
k∈T
k 6=t

 ∏
k′∈T
k′ 6=t,k

βk′

 αk

+

∏
k∈T
k 6=t

βk

 2E > σT−2(
(

βk)k 6=t
)

αt . (2.18)

In the general case, let t̄ ∈ T be such that E ∈ [κt̄, κt̄+1] and let T̄ def
= {1, . . . , t̄}. Let us

show that the support of X∗ is given by T1 = T̄ as stated in Proposition 2.1. Let us define
the profile:

∀t ∈ T̄ , X∗t
def
=

1

∑k∈T1
βt
βk

1
2

 ∑
k∈T1\{t}

αk − αt

βk

+ E

 , and ∀t /∈ T̄ , X∗t
def
= 0 , (2.19)

and check that the KKT conditions and complementarity conditions hold.
For t such that X∗t > 0, the multiplier λ associated to total energy is given by the marginal

cost at t:

λ = C′t(X∗t ) = αt + 2βtX∗t =

(
∑

k∈T1

1
βk

)−1 [
2E + ∑

k∈T1

αk
βk

]
, (2.20)

and besides, we have to ensure the positivity and complementarity of multipliers:

∀t ∈ T̄ , ν∗t = 0, ∀t /∈ T̄ , νt = C′t(0)− λ = αt −
(

∑
k∈T1

1
βk

)−1 [
2E + ∑

k∈T1

αk
βk

]
> 0 .

First, we observe that for any t, h ∈ T with t < h, we have:

2κh = ∑
k<h

αh − αk
βk

= ∑
k<t

αh − αk
βk

+ ∑
t6k<h

αh − αk
βk

> ∑
k<t

αh − αk
βk

> ∑
k<t

αt − αk
βk

= 2κt .

Then, for h ∈ T̄ and by the definition of h̄, we have:

1
2

 ∑
k∈T̄ \{h}

αk − αt

βk

+ E > 0 ,

such that for t ∈ T̄ , X∗t as defined in (2.19) is positive. Besides, for any t /∈ T̄ (that is
t > t̄ + 1), we have:

νt
def
=αt −

(
∑

k∈T̄

1
βk

)−1 [
2E + ∑

k∈T̄

αk
βk

]

>

(
∑

k∈T̄

1
βk

)−1 [
−2E + ∑

k∈T̄

αt − αk
βk

]
αt>αt̄+1
>

(
∑

k∈T̄

1
βk

)−1 [
−2E + ∑

k∈T̄

αt̄+1 − αk
βk

]

=

(
∑

k∈T̄

1
βk

)−1

[−2E + 2κt̄+1] > 0 ,

which terminates the proof of Proposition 2.1.
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2.5 Hourly Proportional Billing: Fairness

2.5.1 Hourly Proportional (HP) billing: definition

Here, the total cost is divided between consumers at each time period, according to the load
they asked at this time period. Intuitively, this enables to bring to each user the real cost of
its demand, in particular during peak hours. More formally, the bill of user n is:

bHP
n (xn, x−n)

def
= ∑

t∈T

xn,t

∑m∈N xm,t
Ct(Xt) . (2.21)

This billing mechanism was already formulated in [BNMR12], [Bah+13], [BH14]. In the
latter, the authors show numerically that it is fairer (according to indicator F (2.9)) than the
billing mechanism (2.10).

2.5.2 Properties

With payments (2.21), the game G =
(
N ,X , (bHP

n )n
)

has the following properties.

Theorem 2.1. Let ct(Xt)
def
=

1
Xt

Ct(Xt) be the per-unit price of electricity. If c′t > 0, i.e. prices are
increasing with global load, then a Nash Equilibirum exists. If, in addition:

∀t,
(Xt)2

∑n(xn,t)2 >

(
Xtc′′t (Xt)

2c′t(Xt)

)2

(2.22)

then the Nash Equilibrium is unique.

Note that if the load is close to uniform, we have xn,t
Xt
' 1

N so Xt
2/∑ xn,t

2 ' N, and
Assumption (2.22) is satisfied as soon as the network has enough users.

We refer the reader to Theorem 3.1 in Chapter 3 for the proof.
In general, the Nash Equilibrium does not achieve social optimality. However, the fol-

lowing result provides a bound on the Price of Anarchy (Definition 2.2).

Theorem 2.2. In the quadratic case (2.2) with no constant coefficient (∀t, δt = 0), the price of
anarchy is bounded:

PoA 6 1 +
3
4

sup
t∈T

1
1 + αt/(βtXt)

, (2.23)

where Xt
def
= ∑n xn,t.

We refer the reader to Chapter 3 and Theorem 3.3 where this result is recalled for the
proof.

2.5.3 Explicit HP solution without power bounds and quadratic costs

As in Section 2.4.3, we can compute explicitly the equilibrium when the costs are quadratic
and with the additional assumption that agents have the same energy demand, as shown in
proposition Proposition 2.2 below. In the general case, it is difficult to obtain such an explicit
expression of the equilibrium profiles, due to the combinatorial choices of the different cases
of positivity of the multipliers.

Proposition 2.2. Let us consider quadratic cost functions: ∀t ∈ T , Ct(Xt) = αtXt + βtXt
2 with

βt > 0, and, as in Proposition 2.1, w.l.o.g, let us assume that α1 6 α2 . . . 6 αT .
Let assume that all agents have the same energy demand, that is En = Em for each n, m ∈ N .

Then, with (κt)t as defined in (2.12) above, let t̄ be the unique integer in {1, . . . , T} such that E ∈
[ 2N

N+1 κt̄,
2N

N+1 κt̄+1]. Then the support of the aggregate equilibrium profile X̂ is:

T1 = {1, 2, . . . , t̄} ,
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and this HP aggregatepn equilibrium profile X̂ is given for all t ∈ T1 by:

X̂t =
1

∑k∈T1
βt
βk

 N
N + 1

 ∑
k∈T1\{t}

αk − αt

βk

+ E

 . (2.24)

Proof. First, we know from [Nas50] that, as there is a unique Nash Equilibrium, it is neces-
sarily symmetric for players. At the equilibrium, each user solves the quadratic program:

min
xn

bn(xn, x−n) = ∑
t

xn,tct(Xt) (2.25a)

0 6 xn,t, ∀t (2.25b)

∑
t∈T

xn,t = En . (2.25c)

We still denote by νn,t the Lagrangian multiplier associated to (2.25b) and λn the one associ-
ated with constraint (2.25c). The Lagrangian function associated to (2.25) is:

Ln(xn, νn, λn) = ∑
t

xn,tct(Xt)− λn

(
∑
t∈T

xn,t − En

)
−∑

n,t
xn,tνn,t. (2.26)

The KKT conditions state that, for all t ∈ T , we have:

∂Ln

∂xn,t
= xn,tc′t (Xt) + ct(Xt)− λn − νn,t = 0. (2.27)

Besides, from the complementarity conditions ∀n, t, xn,t > 0 ⇐⇒ νn,t = 0.
To simplify, let us make the assumption that the equilibrium is an interior point, in the

sense that ∀n ∈ N , ∀t ∈ T , xn,t > 0 (in this case, we have T1 = T ).
We then deduce that for all t, k ∈ T and for all n ∈ N :

xn,tc′t (Xt) + ct(Xt) = xn,kc′k (Xk) + ck(Xk)

⇐⇒ βt(2xn,t + X−n,t)− βk(2xn,k + X−n,k) = αk − αt ,

where X−n,t
def
= ∑m 6=n xm,t. The equilibrium point (x̂n,t)n,t is therefore given as the solution

of the linear system:
AN,Tx = bN,T

with AN,T the NT × NT matrix given by:
β1(IN + JN) −β2(IN + JN) 0 . . . 0

0 β2(IN + JN) −β3(IN + JN) 0 0
...

. . . . . .
...

0 . . . 0 βT−1(IN + JN) −βT(IN + JN)
IN IN . . . IN IN


where IN is the identity matrix and JN the matrix full of ones, of size N×N. The vector bN,T
is given by:

bN,T
def
=


(α2 − α1)1N
(α3 − α2)1N

...
(αT − αT−1)1N

(En)n∈N


T

with 1Neqd


1
1
...
1

 ∈ RN .

Using the results of Section 2.4.3, we can compute that:

det(AN,T) = (N + 1)T−1 (σT−1(β))N .
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By inverting the matrix AN,T , we finally get that, for all n, t:

x̂n,t =
(N + 1)T−2 (σT−1(β))N−1

(N + 1)T−1 (σT−1(β))N

[ ∑
k∈T \{t}

 ∏
k′∈T \{t,k}

βk′

 αk


+

 ∏
k∈T \{t}

βk

 (N + 1)En − σT−2(
(

βk)k 6=t
)

αt

]
,

(2.28)

leading to:

x̂n,t =
1

(N + 1)σT−1(β)

[ ∑
k∈T \{t}

 ∏
k′∈T \{t,k}

βk′

 αk


+

 ∏
k∈T \{t}

βk

 (N + 1)En − σT−2(
(

βk)k 6=t
)

αt

] (2.29)

=
1

∑k∈T
βt
βk

 1
N + 1

 ∑
k∈T \{t}

αk − αt

βk

+ En

 . (2.30)

In the case where T1 is a proper subset of T , we can adapt the proof to obtain an expres-
sion similar to (2.30) where T is replaced by T1. Then, as for the proof of Proposition 2.1,
we can conclude that the KKT optimality conditions of (2.25) are verified by the obtained
profiles, and finally obtain the aggregate load X̂t at period t at the equilibrium as stated in
Proposition 2.2.

Comparing the HP equilibrium expression (2.24) with the optimal load (DP) computed
in (2.13), we get immediately the two following results:

Proposition 2.3. With quadratic costs, the equilibrium associated to HP is socially optimal if and
only if the coefficients of the linear part of the costs functions (αt)t are uniform.

Proposition 2.4. If the provider gives modified coefficients (α̂k)k , defined as:

α̂k
def
=

N + 1
2N

αk,

to the users, then the equilibrium achieved in the modified game corresponds to the social optimum in
the initial game.

We can wonder if the two propositions still hold in the case where bounding constraints
are active at the equilibrium.

Proposition 2.3 still holds because, if the linear part is uniform (that is ∀t, αt is a constant)
then the quantity in (2.30) is still positive, hence it still defines an equilibrium.

However, the optimality given by Proposition 2.4 does not hold in general, as shown in
the Example 2.1 below.

Example 2.1. Let T = {P, O} and N = {1, 2} (2 players) with E1 = 0.5 and E2 = 2. Let us
define the costs:

αO = 0, αP = 1, βO = βP = 1 .

The modified costs are the same except α̂P = N+1
2N αP = 3

4 .
The optimal profile is given by (2.13) and corresponds to the loads:

X∗P = 1, X∗O =
3
2

. (2.31)

The expression of the equilibrium profile cannot be given by (2.30), otherwise x1,P would be
negative. Let us make the assumption that x1,O = E1, x1,P = 0 and x2,P, x2,O > 0. Then,
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from
∂L2

∂x2,P
=

∂L2

∂x2,O
= 0, we obtain:

(
2βO −2βP

1 1

)(
x2,O
x2,P

)
=

(
α̂P − α̂O − βOE1

E2

)

⇔
(

x2,O
x2,P

)
=


(

βO
βP

+ 1
)−1 [ 1

2
α̂P−(α̂O+βOE1)

βP
+ E2

]
(

βP
βO

+ 1
)−1 [ 1

2
(α̂O+βOE1)−α̂P

βO
+ E2

]
 .

This expression is similar to (2.30) where αO is replaced by α̂O + βOE1. With the values given
above, we get the equilibrium values x̂2,O = 17

16 and x̂2,P = 15
16 .

We show that x1 = (E1, 0) is the equilibrium profile for player 1 by verifying that the
multiplier ν1,P associated to constraint x1,P > 0 is positive:

ν1,P = λ1 − cP(X̂P) = E1c′O(X̂O) + cO(X̂O)− cP(X̂P)

= E1βO + α̂O + βO(E1 + x̂2,O)− α̂P − βP x̂2,P =
3
8
> 0 .

Finally, we obtain the aggregate load corresponding to the equilibrium:

X̂O =
17
16

+
1
2

, X̂P =
15
16

,

which differs from the optimal profile (2.31). Moreover, as the expressions of x̂2 depends on
E1, one can not find some cost coefficients α̂P, α̂O that will ensure that the equilibrium will
correspond to the optimal profile for any E1 > 0 !

Note that in Example 2.1, we took E2 > E1 and this is indeed necessary to obtain a
counter example to Proposition 2.4. If all customers have the same energy demand (En is a
constant), and there are no power bounds, then Proposition 2.2 shows that the property of
optimality with the modified costs stated in Proposition 2.4 holds.

We can go further and obtain an explicit PoA for this specific case of interior equilibrium.
To begin with, we can easily analyze the difference between the equilibrium (2.24) and the
social optimum profile (2.13), as for all t:

X̂t − X∗t =
N − 1

2N + 2
1

∑k∈T
βt
βk

 ∑
k∈T \{t}

αk − αt

βk

 , (2.32)

∣∣X̂t − X∗t
∣∣ 6 N − 1

2N + 2
σT−2((βk)k 6=t)

σT−1(β)
sup

k
|αk − αt| . (2.33)

To compute the PoA = SC(x̂)/SC∗, we start by obtaining simple expressions for SC(x̂) and
SC∗. We compute for the cross term in Xt

2:

∑
t

βt

(
∏k∈T \{t} βk

σT−1(β)

)2
 ∑

k∈T \{t}

αk − αt

βk

 =
∏t∈T βt

σT−1(β) ∑
t,k∈T 2

αk − αt

βtβk
= 0 (2.34)
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and:

∑
t

∏
k 6=t

βk

(
∑

k∈T

αk − αt

βk

)2

=

(
∏

t
βt

)
∑

t
∑
k,`

(αk − αt)(α` − αt)

βkβ`βt

=

(
∏

t
βt

)(
∑
k

αk
βk

∑
`,h

α` − αt

β`βt
−∑

k

1
βk

∑
`,h

αt
α` − αt

β`βt

)

= 0−
(

∏
t

βt

)
∑
k

1
βk

∑
`,h

α`
αt − α`

β`βt

= σT−1(β)
1
2 ∑

`,h

(αt − α`)
2

β`βt
.

(2.35)

With φ̂ = N
N+1 and φ∗ = 1

2 , and ] denoting either " ˆ "(equilibrium profile) or "∗" (social
optimum), we obtain the expression of the social cost as:

SC] =
1

∑k∈T
1
βk

(
φ]2 − φ]

2 ∑
k,t∈T 2

(αk − αt)2

βkβt
+ ∑

t

αt

βt
E + E2

)
. (2.36)

With φ∗2 − φ∗ = −1/4 and φ̂2 − φ̂ = −N/(N + 1)2, we get the price of Anarchy:

PoA = 1 +
1
2

(
1
4 −

N
(N+1)2

)
∑k,t∈T 2

(αk−αt)
2

βk βt

− 1
8 ∑k,t∈T 2

(αk−αt)2

βk βt
+ ∑t

αt
βt

E + E2
(2.37)

= 1 +

(
1− 4N

(N+1)2

)
V

−V + 8
(

∑t
αt
βt

E + E2
) , (2.38)

with V def
= ∑k,t∈T 2

(αk−αt)
2

βk βt
.

2.6 Numerical Experiments

We compare numerically the billing mechanisms DP (2.10) and HP (2.21), based on the two
criterias of efficiency (Def. 2.2) and fairness (Def. 2.3). We extracted a set N of 30 users
from the database PecanStreet Inc. [Pec], which gathers hundreds of disaggregated residen-
tial consumption profiles in Texas, U.S. We use hourly timesteps so that T = {0, 1, . . . , 23}.
We consider that each day, just before midnight, the flexible consumption of each user for
the next day is computed as an equilibrium strategy of the game, implementing a BRD al-
gorithm (Definition 2.4), relying on a communication infrastructure between consumers and
the operator for exchanging the information x−n. We run simulations day by day on the set
of 30 days 1 D def

= {02/01/2016, . . . , 31/01/2016}.

2.6.1 Flexible Appliances: Electric Vehicles and Heating

We study a population of residential consumers owning electric vehicles (EV) and electrical
heating systems (furnace). EVs present an important flexibility [Bea+16] since an EV remains
plugged in while it is parked, and a smart charging can be automated without impacting the
user. Similarly, the initial consumption profile of a heating system can be modified without
strong impact on the comfort of the household.

In our simulations, we consider a first case where EVs are the only flexible appliances,
accounting for 20.4% of an average daily global energy of 1014kWh, and a second case where
furnaces are also considered as flexible appliances, increasing the part of flexible energy to
25.8%. The remaining of each user’s consumption is nonflexible, which we denote by (xNF

n,t )t.

1To start simulations with a working day, we dismissed January, 1st.
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Figure 2.1(top) shows the repartition between flexible and nonflexible load on a typical
day. The nonflexible load is more important on some hours than others, so that even with
hourly uniform system cost (2.39), these hours will have bigger marginal costs.

The users constraints (2.1) are evaluated as follows: we consider two types of days: D1
for weekdays (Monday to Friday) and D2 for weekend days (Saturday and Sunday). For
each type Dk of day and each user n, we suppose that appliance a can be used at t if it exists
a day of type Dk where a was on at t. More precisely, for a day of type Dk, Tna =

⋃
d∈Dk
{t :

xdata
n,a,d,t > 0}. For simplicity, we took the min power xna,t equal to 0 and the max power

xna,t equal to the maximal nonnegative value found on the data set xna,t = max
t,d∈T ×D

xdata
n,a,d,t, if

t ∈ Tna, and 0 otherwise.

2.6.2 System Cost

We consider that the provider costs are gieven as functions (C̃t)t of the total load Xtot
t

def
=

XNF
t +Xt, where XNF

t denotes the aggregate nonflexible load at time period t, while Xt denotes
the flexible part.

Moreover, we assume that those costs are quadratic and are uniform over time periods,
and given in dollar cents by:

∀t ∈ T , C̃t(X) = C̃(X) def
= 0.1 + 8X + 0.04(X)2 . (2.39)

The average hourly nonflexible load on all days in D is:

〈XNF
t 〉 def

=
1

|D| × |T | ∑
d,t∈D×T

(
∑

n∈N
xNF

n,d,t

)
= 31.3kWh.

Coefficients in (2.39) are chosen arbitrarily but such that the per-unit price C̃t(〈XNF
t 〉)/〈XNF

t 〉
given by (2.39) matches the electricity price proposed by the distributor CoServ [Cos] of
8.5c/kWh for base contracts.

We assume that the nonflexible load (xNF
n,t )t is billed in a separate process (for instance,

according to a baseline contract as defined in the next subsection). We apply the proposed
billing mechanisms DP (2.10) and HP (2.21) on the flexible part xt only. Although the system
costs (C̃t)t are hourly uniform, the variation in the nonflexible load XNF

t over the hours
induces a variation on the cost of flexible load Ct(Xt) over the hours, as we have:

∀t ∈ T , Ct(Xt)
def
= C̃(XNF

t + Xt)− C̃(XNF
t )

= (8 + 0.08XNF
t )Xt + 0.04(Xt)

2 .
(2.40)

In practice, the operator could rely on a forecast of XNF
t for the next day to compute the

functions (C̃t)t before sending the signal to consumers.

2.6.3 Two Reference Non-Game Theoretic Billing Models

In order to compare the formulated game-theoretic models (2.10) and (2.21) to existent non
game-theoretic billing models, we also consider the two following standard models as refer-
ences:

1) Baseline billing. No information on the global load is sent to the users, who know a
priori that they will pay a fixed price per kWh p. Each user consumes energy without any
optimization of the system costs and we consider that the consumption profile is given by the
original (observed) profile of each user (xn,t)t. The bill of a user n with a total consumption
En = ∑t ∑a xna,t will be bbase

n (x) = bbase
n (xn)

def
= p× En. As both the PoA (2.6) and F (2.9) are

normalized, the choice of p has no influence at all on the values of those indicators.
2) Peak/Offpeak billing. This kind of contract already exists in many countries and

many of the Texas electricity distributors are proposing it. The provider defines a priori a
fixed set of peak hours TP on which the prices are higher. We consider that users avoid
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FIGURE 2.1: Aggregated load of 30 users on January 10, 2016.
top: Observed profile from the data. bottom: The profile is modified to avoid peak

hours in the billing model (2.41).

peak hours as soon as their constraints enable it, by applying a simple greedy algorithm:
recursively, a random offpeak hour toff is chosen and the onpeak load of an appliance a
is moved to toff until xna,toff is reached. The resulting consumption profile is denoted by
(x̃t)t (see Figure 2.1(bottom) for an example). In our simulations, we define TP as the set
of hours where the nonflexible load is the higher on average, which gives TP = [7A.M.-
9A.M.] ∪ [5P.M.-9P.M.]. We keep the same price ratio rpeak = ppeak/poff = 2.84 than the
Texan distributor Coserv [Cos]. The bill of user n is:

bPeak/Off
n (xn)

def
= rpeak poff ∑

t∈TP

x̃n,t + poff ∑
t∈T \TP

x̃n,t . (2.41)

As explained above, the choice of poff has no influence at all on the value of the PoA and F.
However, the ratio rpeak has a direct impact on the fairness indicator (2.9).
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Flexible Items EV only EV + furnace
Billing PoA-1 (%) F (%) PoA-1 (%) F (%)

HP 0.0830 (0.0772) 0.999 (0.286) 0.0886 (0.104) 1.17 (0.302)
DP 0.0 (0.0) 3.18 (1.38) 0 (0) 3.36 (1.57)

Baseline 18.8 (5.12) 3.19 (1.38) 18.5 (5.42) 3.36 (1.57)
Peak/Off 13.3 (3.17) 3.20 (1.34) 12.8 (3.69) 3.27 (1.04)

TABLE 2.1: Mean (and standard deviation) of inefficiency (PoA−1) and un-
fairness (F) over the days D and users N .

FIGURE 2.2: Equilibrium profiles for DP (left) and HP (right), on January 10,
2016. In DP, marginal costs are equal on all hours if the flexible load is sufficient.

The HP equilibrium profile remains close to the optimal DP profile.

2.6.4 Results

For each day in D, we obtain the equilibrium profile with HP billing (2.21) by running the
BRD (Definition 2.4). In most cases, a hundred iterations (that is, around three optimizations
of (2.3) per user) were sufficient to converge to the equilibrium. The optimal profile (corre-
sponding to the equilibrium in DP) is obtained as the solution of a quadratic program solved
with the solver Cplex 12.5. The simulations were implemented in Python 3.5 and run on a
single core IntelCore i7-6600U@2.6Ghz with 7.7GB of RAM. The BRD process takes around
50 seconds in average for each simulated day in D, resulting in a total simulation time of
around 20 minutes.

The inefficiency (PoA-1) and unfairness (F) induced by the four billing mechanisms, that
is, DP (2.10), HP (2.21), baseline billing and Peak/OffPeak billing (2.41), are represented in
Figure 2.4 for each day inD. The precise values (mean and variance) are given in Table 2.1. In
practice, the PoA of HP is one up to 10−3: this billing mechanism almost reaches the optimal
social cost. The equilibrium profile is not very far from the optimal load profile. Figure 2.2
shows the equilibria of the two mechanisms DP (optimal) an HP. The optimal load profile is
very flat. Indeed, due to Kuhn-Tucker conditions of optimality, marginal costs are equal on
all hours where constraints (2.1b) are not tight. Therefore, if the part of flexible load is large
enough, the total load Xt will be the same for all hours. The equilibrium of the mechanism
HP is not as flat, but it remains close to the optimal profile, due to its limited PoA.

Because of the absence of coordination among users in the non-game theoretic Peak/ Off-
Peak billing mechanism, some offpeak hours become congested, as seen on Figure 2.1(bot-
tom), resulting in high system costs. This efficiency loss is avoided by using a game mecha-
nism as HP and DP.

We can see both from Figure 2.4 and Table 2.1 that the HP mechanism achieves an impor-
tant fairness property in comparison with the other mechanisms. The associated standard
deviation of F of 0.3% indicates that its fairness is also more robust than the other mod-
els. Indeed, Figure 2.3 shows the evolution of the indicator F when we relax the constraint
of max power (2.1b) by scaling the value xna,t chosen in Section 2.6.1 by a factor in [0.5, 3].
The unfairness induced by DP decreases when the constraints are relaxed, and it gets closer
and closer to HP. Therefore, the HP mechanism will be much more interesting when the
constraints are tight.
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FIGURE 2.3: Evolution of unfairness in HP and DP with constraints.
When constraints (2.1b) are tight, the DP mechanism has a large unfairness and gets

fairer when the constraints are relaxed.

FIGURE 2.4: Comparison of billing mechanisms on the 30 days in D with EV
charging considered as flexible. HP has a PoA of one up to 10−3. The non-game
theoretic billings Baseline and Peak/Offpeak are dominated on average. Results

are similar when we also consider heating as a flexible appliance.

2.7 Conclusion

We gave theoretical results ensuring that the hourly proportional billing mechanism has a
unique equilibrium and that its price of anarchy is bounded. Experimental results revealed
that this mechanism achieves an important fairness property with our quantitative indicator
(2.9), while being very close to the social optimum (up to 0.08%). We have seen that the fair-
ness indicator of the hourly mechanism was three times smaller than the other mechanisms,
associated with a low variance. As this fairness difference increases with the level of con-
straints, using the hourly mechanism in practice will be really interesting if the consumption
is highly constrained. If we consider some utility functions in each user optimization (as in
[Sam+12]), the daily proportional billing mechanism has no reason to conserve its property
of social optimality, as the reader will see in Chapter 4. Therefore, the small efficiency loss of
the hourly mechanism should not have any influence in practice.
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Chapter 3

Analysis and Algorithms for an
Hourly Billing Mechanism for
Demand Response Management

This Chapter is based on the published paper [Jac+19c], except for Section 3.3.3, added in this chapter
and which has not been submitted for publication. In this Section 3.3.3, we show the convergence of a
randomized version of the best response algorithm in atomic splittable congestion games in two par-
ticular cases: the case of linear costs, and the case of two resources and general convex and increasing
costs.

As Chapter 2 has shown that the hourly proportional billing mechanism was a valuable model in
fairness and efficiency, we focus on this model in this Chapter 3. This chapter recalls some results and
concepts already enounced in Chapter 2: the bound on the price of anarchy Theorem 3.3 is the same
result than Theorem 2.2 above. Chapter 3 also presents some convergence results concerning the Best
Response algorithm introduced in Definition 2.4.

3.1 Introduction

In game-theoretic models for Demand Response , a major issue is to define an effective pro-
cedure to compute and reach the consumption equilibrium associated with the game. Several
papers [BNH17; Atz+13; Che+14] have investigated the complexity and algorithmic aspects
associated to the notion of equilibrium.

In [Atz+13] and [Che+14], the authors consider the same billing mechanism as the one
studied in this chapter, and propose decentralized methods to compute the Nash equili-
brium (an iterative proximal best response in [Atz+13] and a proximal-point algorithm in
[Che+14]).

In this chapter, we investigate the theoretical properties and computational aspects of the
hourly billing mechanism and discuss its practical implementation.
This chapter brings five theoretical and practical contributions:

1. We give a new result on the uniqueness of the equilibrium (Theorem 3.2) under a
convexity assumption. This result extends [Che+14, Prop. 1]—which relies on the general
results of [Ros65]—where uniqueness is given for a particular class of price functions (of the
form ct(x) = αt + βtxbt with αt > 0, βt > 0 and bt > 1). In contrast, our uniqueness theorem
applies to any convex and strictly increasing price functions. It extends [ORS93, Thm. 1] to a
more general model of constraints where we consider upper and lower bounds on the load
at each time period;

2. We give a new result on the induced Price of Anarchy (PoA). This result (Theorem 3.3)
gives an evaluation of the equilibrium efficiency in terms of social cost. The PoA is numeri-
cally close to one but not one. To our knowledge, there are very few existing results on the
PoA for this framework. A related but different result is [CK14], where the authors consider
a maximization game with individual utilities, and consider the same hourly proportional
billing. A bound on the PoA is obtained assuming that players individual utilities are large
enough compared to the system cost. Our bound applies to the minimization game without
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utilities, but is tighter asymptotically. Another related work is [Bea+16] where the authors
prove that the PoA converges to one in the asymptotic case of an infinite number of players;

3. We bound the convergence rate of the Best Response (BR) algorithm in the case of
affine prices (Theorem 3.4). In that case, convergence is known but, to our knowledge, no
bound on the rate has ever been given. The convergence has been conjectured more gener-
ally for any convex prices [Mer08; BPS13].

4. We introduce a different algorithm: SIRD, based on a simultaneous projected gradient
descent (Algorithm 3.2), and show its geometric convergence (Theorem 3.5) with a condition
on the price functions only. To our knowledge, those results are also new. The proposed
algorithms (BR and SIRD) and their convergence rates are compared numerically with the
algorithms proposed in [Che+14] and [Atz+13]. In the case of SIRD, we allow a fix step-size
and we do not need a proximal term so the convergence is faster;

5. Last, we introduce an online DR procedure with receding horizons (Algorithm 3.4),
in the spirit of Model Predictive Control [Wu+11], to take into account updated forecasts in
a stochastic environment. We prove that the consumption profiles computed by this proce-
dure correspond to the desired NE in the limit of perfect forecasts (Theorem 3.6). We show
numerically, based on real consumption data, that this procedure can achieve significant
savings compared to an offline procedure.

This chapter is organized as follows: Section 3.2 gives the mathematical model of the DR
framework and the associated billing mechanism, under the form of a game. In Section 3.3,
we define two decentralized algorithms that enable to compute the equilibrium consump-
tion profiles. We prove the convergence of those algorithms and provide upper bounds on
their convergence rates. We present a numerical study of the given algorithms and compare
them to two others algorithms from [Che+14] and [Atz+13]. Finally, in Section 3.4, we define
an online DR procedure and simulate it with historical consumption data of consumers with
electric vehicles as flexible consumptions. We compare the performance of this online DR
scheme to the offline version and other consumption scenarios.

3.2 Consumption Game with Hourly Billing

3.2.1 District of flexible consumers

We consider a setN = {1, . . . , N} of residential consumers linked to a local aggregator. Each
household is equipped with a smart meter enabling two-way communication of information
with the aggregator. We assume that each household electricity consumption can be divided
into two parts: one which is nonflexible (lights, cooking appliances, TVs) and one which is
flexible (Electric Vehicle charging, water heating, etc). Moreover, each smart meter is linked
to an Electricity Consumption Scheduler (ECS) that can automatically optimize and schedule
the consumption profile of the consumer’s flexible appliances, given the constraints set by
the consumer and the physical constraints of each appliance.

3.2.2 From individual to aggregated consumption profiles

In the DR program, we determine a consumption profile for each consumer on a finite time
horizon T. In this study, we take T as a discrete set of time periods T = {1, . . . T}. In
the simulations, T will correspond to one day, and each time period t to one hour. The
aggregated flexible load profile on the set of consumers is obtained as:

X = (Xt)t∈T ∈ RT with ∀t ∈ T , Xt
def
= ∑n xn,t , (3.1)

where xn,t denotes the flexible consumption of consumer n on time period t.
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3.2.3 Aggregator objective from the aggregated consumption

The aggregator is himself linked to electricity providers and we consider that he faces a per-
unit (of energy) price function Xt 7→ ct(Xt) associated with each time period t ∈ T for the
flexible electricity demand Xt given in (3.1). The total system cost for providing the flexible
profile (Xt)t∈T is then:

C(X) def
= ∑

t∈T
Xt × ct(Xt) , (3.2)

a quantity that should be minimized by the aggregator. In particular, we make the assump-
tion that the system cost C is time-separable. The prices (ct)t can either correspond to real
prices or be abstract functions revealing the objective function of the aggregator, up to an
additive or multiplicative constant, as seen in the three practical examples below.

Example 3.1. The aggregator has taken positions (XDA
t )t on the Day-Ahead market. Then

he is facing penalties on the balancing market, and wants to minimize the distance to its bid
profile:

C(X) =
∥∥∥XDA − X

∥∥∥2

2
= ∑

t∈T
(XDA

t )2 + ∑
t∈T

Xt × (Xt − 2XDA
t ) .

Example 3.2. The aggregator owns a source of renewable energy and forecasts a production
profile (Ĝt)t. He wants to maximize the flexible consumption when Ĝt is the most important
[WMRH12], and can therefore minimize:

C(X) =
∥∥Ĝ− X

∥∥2
2 = ∑

t∈T
Ĝ2

t + ∑
t∈T

Xt × (Xt − 2Ĝt) .

Example 3.3. The aggregator has his own production facilities with convex and increasing
production cost C(Xtot) where Xtot is the total power to be provided. If the set of con-
sumers has a total aggregated nonflexible profile XNF, then at each time the total demand is
Xtot

t = XNF
t + Xt. The additional cost for the flexible load is C(XNF

t + Xt)− C(XNF
t ) and the

aggregator will minimize:

C(X) = ∑
t

Xt ×
(

C(XNF
t + Xt)− C(XNF

t )

Xt

)
,

where the term between parentheses can be set as the price signal ct(Xt) to be sent to con-
sumers for coordination.

Note that in Examples 3.1 and 3.2, the functions (ct) are not directly related to real prices
but act rather as signals for coordination between consumers.

In our framework, we will consider the following different assumptions on the price
functions (ct)t.

Assumption 3.1. For each t ∈ T , ct is twice differentiable, convex and strictly increasing.

Assumption 3.2. For each t ∈ T , ct is twice differentiable, convex and strictly increasing. More-
over, there exists a > 0 s.t. for any t and admissible x:

2c′t(Xt)

(
1−

(
c′′t (Xt)
2c′t(Xt)

)2
‖xt‖2

2

)
> a. (3.3)

Assumption 3.3. For each t ∈ T , ct is affine, positive and increasing:

∀t ∈ T , ct(x) = αt + βtx with αt, βt ∈ (R∗+)
2 .

The three latter assumptions are more and more restrictive: Assumption 3.3 implies As-
sumption 3.2 with a = 2 mint βt, and Assumption 3.2 implies Assumption 3.1. Note that
Assumption 3.3 provides a practical case for which all our results hold, and is verified in the
case of Examples 3.1 and 3.2.
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Remark 3.1. For a = 0, inequality (3.3) in Assumption 3.2 simplifies to the condition:

‖xt‖−1
2 >

∣∣∣ c′′t (Xt)
2c′t(Xt)

∣∣∣ . For each t, c′′t has to be small relatively to c′t.

Assumption 3.1 is standard in the congestion games literature and corresponds to “type-
B” functions in the seminal paper [ORS93]. This assumption is also made in most of the
papers dealing with game-theoretic DR models as [Bah+13]. Indeed, it is justified by the fact
that marginal costs of producing and providing electricity are increasing. Assumption 3.3
is also a standard assumption made in [BH14] because it enables fast computation of NE
(see Section 3.3), but it is restrictive, although several papers as [MR+10; Atz+13] simply
consider linear price functions ct(x) = βtx. Last, Assumption 3.2 is not very explicit but is
an in-between condition that comprises a larger set of functions than linear functions and for
which our main results hold. For instance, the assumption holds for the family of polynomial
functions considered in [Che+14]: ct(x) = α + βxνt with α > 0, β > 0, 1 6 νt < 3 and if
Xt > 0 for each t ∈ T . More generally, this condition will be verified if c′′t is small enough
compared to c′t.

Whatever the assumption retained, the objective of the aggregator is to send the right
incentives to consumers through a billing mechanism in order to minimize his costs. A billing
mechanism does not refer to a real billing system but more generally to a signal sent in order
to coordinate consumers. It is given as a tuple of billing functions (bn)n∈N chosen by the
aggregator to recover the global system cost C(X) = ∑t∈T Xtct(Xt). As a result, the billing
functions bn are chosen such that C = ∑n∈N bn. Of course, one can always consider a profit
ratio κ if the billing functions are used to design real consumer bills (the bill of n is set to κbn).
The function bn depends of course on n’s flexible consumption profile xn but also depends
on the load of the other consumers through the aggregated load X.

3.2.4 Consumer’s Optimization Problems

In this chapter, following our studies in [Jac+17b; Jac+17a], we will use an hourly propor-
tional billing mechanism, where each consumer n ∈ N minimizes her bill:

bn(xn, x−n)
def
= ∑

t∈T
xn,tct(Xt) = ∑

t∈T
xn,tct

(
xn,t + sn,t

)
, (3.4)

where x−n
def
= (xm)m 6=n denotes the consumption of all consumers but n and sn,t

def
= ∑m 6=n xm,t.

This billing mechanism was shown to have interesting fairness properties and is also ad-
equate when considering consumers’ utility functions (representing, e.g., temporal prefer-
ences for flexible consumption) [BH14; Jac+17b; Jac+17a]. This mechanism gives a particular
aggregative structure, where the dependency to the others is only through the aggregated
load Xt = xn,t + sn,t.

Through her ECS, each consumer will adjust her flexible consumption profile xn ∈ RT to
minimize her bill, which corresponds to the following optimization problem:

min
xn∈Xn

bn(xn, x−n) (3.5)

where Xn ⊂ RT is the set of consumer n feasible profiles. In the remaining of the chapter,
we assume the following:

Assumption 3.4. For each n ∈ N , Xn is compact and convex.

Problem (3.5) is a convex nonlinear mathematical program for which efficient methods of
resolution exist [BTN01]. Most of the results given in this chapter hold without any further
assumptions than Assumption 3.4, but we will focus on feasibility sets of the form (3.6), also
considered in [MR+10; LCL11; Che+14; Bah+13; BH14; Sam+12].

Main Example 3.1. Deferrable load with fixed energy demand:

Xn
def
=
{

xn ∈ RT s.t. ∑t∈T xn,t = En , (3.6a)

xn,t 6 xn,t 6 xn,t, ∀t ∈ T
}

. (3.6b)
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Constraint (3.6a) ensures that the total energy given to n satisfies her daily flexible energy
demand over T , denoted by En, that we assume fixed and deterministic1. Constraint (3.6b)
takes into account the physical power constraints and the personal scheduling constraints
(supposed given by the user to her ECS). Note that taking xn,t = xn,t = 0 forces xn,t =
0 so that constraint (3.6b) includes in particular unavailability during some time periods.
Constraints (3.6) give a simple model for deferrable loads such as water heaters (energy to
heat a quantity of cold water between refill and usage periods) or electric vehicles (energy
to be charged in the battery during parking period) [CBK17].

Note that (3.6) gives a generalization of routing “atomic splittable” congestion games
[ORS93], well studied in the game theory literature, where the feasibility sets generally con-
sidered are Xn

def
= {xn ∈ (R+)T s.t ∑t xn,t = En} where xn,t represents the flow of n on arc

t. The addition of time-dependent bounding constraints (3.6b), also considered in [Che+14;
Sam+12], gives a more accurate model for electrical loads.

Another important practical example that fits in our context, considered for instance in
[CBK17; LCL11] is given below.

Example 3.4. Thermostatically controlled load :

Xn
def
=
{

θcomf
n,t 6 θn,t 6 θ

comf
n,t , ∀t ∈ T , (3.7a)

θn,t =θn,t−1 + ρn(θ
out
n,t − θn,t−1) + εnxn,t, ∀t ∈ T

}
. (3.7b)

Constraints (3.7) offer a model for thermostatically controlled loads such as fridges or air
conditioning. Here, (3.7a) ensures that the temperature remains within the comfort range
[θcomf

n,t , θcomf
n,t ]. The temperature evolves through the linear equation (3.7b) according to the

efficiency parameters ρn and εn, and to the exterior temperature θout
n,t (see [LCL11] for details).

Using (3.7b), one can rewrite (3.7) only with the variables (xn,t)t∈T .

Remark 3.2. Owing to the convexity of Xn (Assumption 3.4), we do not consider appliances that
require a fixed consumption profile but for which the starting time can be optimized (e.g. washing
machines). In this case, one can use a (nonconvex) mixed-integer formulation, as in [BWH17].

We denote by X def
= X1 × · · · × XN the Cartesian product of the feasible sets. As bn

depends both on xn and x−n, we get a N-person minimization game that we write in the
standard form [FT91] as G def

= (N ,X , (bn)n) .

3.2.5 Equilibrium Analysis and Efficiency

We are interested in the equilibrium situations of the game G. The concept of Nash Equilibr-
ium (NE) (see Definition 2.1), is accepted as a desirable and plausible outcome in N-person
noncooperative games, as it implies by definition individual stability (each player has no
interest to change her action unilaterally).

It is known that an NE may not exist or may not be unique, even in routing congestion
games [ORS93]. In our framework however, both properties are ensured, as stated below.

Theorem 3.1. Under Assumption 3.1, there exists an NE of G.

Proof. This is a corollary of Rosen [Ros65] as G is convex.

To ensure the uniqueness of the NE, a common approach, adopted in [Che+14], is to ver-
ify that a game is “diagonally strictly convex” [Ros65]. We will see further from Remark 3.8
and Proposition 3.1 that this property holds with Assumption 3.2. However, the uniqueness
results based on this approach ask for more demanding conditions on the price functions
ct(.) than Assumption 3.1. Here, in the case of feasibility sets of the form (3.6), Theorem 3.2
ensures the uniqueness for arbitrary convex and strictly increasing prices (Assumption 3.1).

Theorem 3.2. Under Assumption 3.1 and if, for each n ∈ N , Xn is of the form (3.6), then G has a
unique NE.

1En can be set by the consumer, induced by the physical parameters of her appliances (battery capacity), or
computed by learning the consumer’s habits.
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Proof: See Appendix 3.A. This proof extends the uniqueness theorem given in [ORS93] in
presence of the constraint (3.6b).

As said above, an NE is a very interesting situation in practice because of its stability:
each player will only increase her bill if she changes her profile. However, an NE does not
necessarily minimize the social cost

SC(x) def
= ∑

n
bn(x) . (3.8)

Remark 3.3. With the billing equation (3.4), SC(x) is equal to the total system cost, that is,
∑t Xtct(Xt), a quantity that the aggregator should minimize. In general, the system cost can dif-
fer from the social cost of consumers, for instance if we consider that the aggregator makes a positive
profit, or if we consider consumers utility functions as done in [Jac+17a].

In general games, an NE can be suboptimal in terms of SC. To measure the inefficiency
of Nash Equilibria in terms of social cost, a standard quantity is the Price of Anarchy:

Definition 3.1 (Koutsoupias et al, 1999). Price of Anarchy (PoA).
Given a N-player game G = (N ,X , (bn)n) and XNE its set of Nash equilibria, the PoA is

defined as the following ratio:

PoA(G) =
supx∈XNE

SC(x)

infx∈X SC(x)
.

Note that, from Definition 3.1, as XNE ⊂ X , the PoA is always greater than one. Fur-
thermore, finding an upper bound on the PoA ensures that the social cost at any NE will be
relatively close to the minimal social cost. Bounding the PoA is a hard theoretical question
in general congestion games [Rou15; JMT05]. In [RS15], the authors give an upper bound
if the price functions are polynomial with bounded degree and positive coefficients. With
degree one (affine prices, Assumption 3.3) the bound is PoA 6 1.5, which means that the NE
profile can induce costs as much as 50% higher than the optimal costs: implementing such
a framework would not be worthwhile for the aggregator, as uncoordinated consumers will
probably perform better (in our simulations, the uncoordinated profiles induce costs 16%
higher than the optimal costs, see Table 3.2). However, the results in [RS15] are worst-case
bounds and these bounds are only approached asymptotically2: in our simulations with
affine prices, the PoA was always much lower than 1.5 (around 1.017 from Table 3.2). One of
the reasons is that in [RS15] the model does not consider the power constraints (3.6b), and a
PoA of 1.5 might be reached in our case only if the constraints (3.6b) are coarse enough. To
further explain the low PoA in our instances, we found the following theorem by applying
the (λ, µ) local smoothness technique of [RS15]:

Theorem 3.3. Under Assumption 3.3, define for any t ∈ T , ϕt = (1+ αt
βtXt

)2, where Xt = ∑n xn,t

and t0
def
= arg mint

αt
βtXt

. Assuming that, for all t ∈ T :

ϕt 6 ϕt0 + 2 +
√

1 + ϕt0 , (3.9)

the following inequality holds:

PoA(G) 6 1
2

(
1 +

√
1 + ϕ−1

t0
+

1
2

ϕ
− 1

2
t0

)
. (3.10)

Proof: See Appendix 3.B.

Remark 3.4. Using the inequality ∀x > 0,
√

1 + x2 6 1 + x, inequality (3.10) implies the follow-
ing simplified—but coarser—bound:

PoA(G) 6 1 + 3
4 supt∈T

(
1 + αt

βtXt

)−1
. (3.11)

2Meaning that there exists a sequence of games (Gν)ν>0, with parameters depending on ν, and affine price
functions ct such that PoA(Gν) −→

ν→∞
1.5.
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The assumption (3.9) in Theorem 3.3 ensures that price functions (ct) cannot differ too much
from one time period to another. This is verified for instance if the price functions are uni-
form over T (i.e. ∀t, ct = c). One can see that, according to Theorem 3.3, the PoA converges
to one when αt/(βtXt) diverges to infinity for each t: the PoA can be arbitrarily close to one
if we choose the coefficients αt large enough. This result is indeed intuitive: when the prices
are constant (βt = 0), they do not depend on the aggregates X and there is no congestion
effect; the optimal profile is obtained by each consumer choosing the time periods with low-
est prices, independently of x−n. Another interesting result is that the PoA also converges
to one when the total load is low (∀t, Xt → 0). Note that the right-hand-side of inequality
(3.10) is decreasing with ϕ0 and is equal to ( 1+

√
2

2 )2 ≈ 1.457 for ϕ0 = 1 so our result is always
tighter than the bound of 1.5 given in [RS15]. However, in our simulations with linear prices,
the PoA was still lower than the bound (3.10), even when assumption (3.9) does not hold:
the inequality (3.10) gives PoA 6 1.271 (average on the simulated days), while the PoA on
mean values from Table 3.2 is 1.017. In this regards, getting a tighter bound or generalizing
Theorem 3.3 to more general price functions could be the subject of future work.

3.3 Fast Computation of the Nash Equilibrium

Since we have shown that the NE is a good decentralized optimization target, the next ques-
tion we address is the computation of the NE consumption profiles. This question is a central
problem in game theory [FPT04]. Furthermore, this computation has to be done in a short
time to be implemented in practice. In this section, we provide two algorithms, we prove
their convergence to the NE and we give a guarantee on their convergence rate in our specific
setting.

3.3.1 Two Decentralized Algorithms

Given a profile x−n of the others, consumer n chooses the profile xn corresponding to a
minimizer of (3.5), which is called her Best Response3. It is denoted by

BRn : sn 7→ argmin
xn∈Xn

∑
t

xn,tct(sn,t + xn,t) , (3.12)

which only depends on the sum of the load of the others sn
def
= ∑m 6=n xm ∈ RT because of the

“aggregated” structure: in a general setting, BRn would be a function of x−n.

Remark 3.5. Here, the arg min function in the definition (3.12) of BRn is single-valued because of
the strict monotonicity assumption (Assumption 3.1). In general, BRn(sn) can be multivalued. In
that case, we can still use Algorithm 3.1 by arbitrarily choosing any element of BRn(sn) at Line 5.

A natural algorithm to compute an NE is to iterate best responses and update the strate-
gies, cycling over the set of users until convergence. This procedure, referred to as Cycling
Best-Response Dynamics (CBRD) [GM91] is described by Algorithm 3.1.

Algorithm 3.1 Cycling Best Response Dynamics (CBRD)

Require: x(0), stopping criterion
1: k← 0
2: while stopping criterion not true do
3: for n = 1 to N do
4: s(k)n = ∑m<n x(k+1)

m + ∑m>n x(k)m

5: x(k+1)
n ← BRn(s

(k)
n )

6: done
7: k← k + 1
8: done

Standard stopping criteria that can be used in Algorithm 3.1 are a maximum number
of iterations kmax, a maximum CPU time, an objective on the distance between iterates

3As player n chooses her best profile to the fixed profiles of the others; she responds to them.
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∥∥∥x(k−1) − x(k)
∥∥∥ 6 εstop, or the satisfaction of the KKT conditions of optimality for each user’s

convex optimization problem (3.5) up to an absolute error tolerance.
The only computationally demanding step in Algorithm 3.1 is the computation of the

best response BRn(sn) on Line 5. Its complexity differs according to the price functions ct
and the feasibility set Xn. In general, there is no explicit expression of BRn(sn) but, as Xn
is convex and xn 7→ bn(xn, x−n) is convex, techniques of nonlinear convex optimization
can be used to find an approximating solution [BTN01]. The problem simplifies if prices are
affine (Assumption 3.3) andXn is given by (3.6a)-(3.6b) and none of the bounding constraints
(3.6b) is active. In that case, an explicit expression of BRn(sn) can be found [Alt+02] so
Line 5 can be executed in constant time. In the general case of feasibility sets of the form
(3.6) (bounding constraints (3.6b) can be active), we are still in a specific case of quadratic
programming where an exact solution can be computed in O(T) with [Bru84]. When Xn
is a general polytope given as a set of linear inequalities (as in [CBK17]), convex quadratic
programming [BTN01] can be used to compute the solution.

Remark 3.6. The for loop in Algorithm 3.1 (Line 3) implements sequential updates and cycles over
the set of players in the arbitrary order 1, 2, . . . , N in a Gauss-Seidel manner [PC06]. Choosing
a “good" order of the BR in the for loop might accelerate the convergence of the algorithm. A si-
multaneous version of Algorithm 3.1 (without Line 4 and with Line 5 executed by all players in
parallel) could also improve the speed of Algorithm 3.1, but we observed that doing so can prevent its
convergence.

Another natural algorithm to compute the equilibrium is to emulate the projected gra-
dient descent, well-known in convex optimization [CM87], by considering the gradient of
each objective function of the players, as described in Algorithm 3.2.

Algorithm 3.2 Simultaneous Improving Response Dynamics (SIRD)

Require: x(0), γ, stopping criterion
1: k← 0
2: while stopping criterion not true do
3: for n = 1 to N do
4: x(k+1)

n ← PXn

(
x(k)n − γ∇nbn(x(k)n , x(k)−n)

)
5: done
6: k← k + 1
7: done

At Line 4 of Algorithm 3.2, PXn denotes the projection on the feasibility set Xn of con-
sumer n and ∇nbn = (∂bn/∂xn,t)t∈T denotes the gradient with respect to variable xn. The
same stopping criteria listed below Algorithm 3.1 can be used for Algorithm 3.2. The cho-
sen denomination improving response recalls that, at each iteration of Algorithm 3.2, player n
improves her profile xn by performing a projected gradient step (Line 4), but in general does
not choose the best improvement as in Algorithm 3.1.

Note that from Algorithm 3.1 to Algorithm 3.2, only the instructions within the for loop
are changed: the update of sn and computation of BRn (Lines 4 and 5 of Algorithm 3.1) are
replaced with the gradient step (Line 4 of Algorithm 3.2).

Remark 3.7. Both Algorithm 3.1 and Algorithm 3.2 can be implemented in a “decentralized” pro-
cedure: Lines 4 and 5 in Algorithm 3.1 and Line 4 in Algorithm 3.2 can be performed locally by
each consumer’s ECS. In this way, consumers’ privacy is respected as they do not send any informa-
tion about their constraints to the aggregator. On the other hand, they only receive information on
the aggregated load s(k)n and can hardly deduce the individual consumption profiles x−n of the other
consumers.

The computational complexity of an iteration of Algorithm 3.2 (within the for loop) is
equivalent to the complexity of the projection PXn , Apart from specific cases—as the Eu-
clidean projection on a p-dimensional simplex which can be computed in O(pln(p)), see
[CY11]—this projection requires in general to solve a Quadratic Program (QP), so it is of the



72 Chapter 3. Analysis of an Hourly Billing Mechanism for Demand Response

same order of complexity (see [BTN01, Lecture 4]) as one iteration (within the for loop) of
algorithm CBRD. However, note that, as we do not update sequentially the load of the oth-
ers x−n in Algorithm 3.2, the projected gradient step within the for loop can be computed
simultaneously and can be parallelized.

3.3.2 Game Stability and Convergence of Algorithms BRD and SIRD

In this section, we provide theoretical convergence rates of the two algorithms proposed
in Section 3.3.1. We first recall the notion of stability, and prove (Proposition 3.1) that the
energy consumption game G defined above is strongly stable under Assumption 3.2. The
notion of stability was introduced in [HS09] in order to study different game dynamics in
continuous time and their convergence to NE. We extend this property to a “strong” version
(symmetrically to the concept of strong monotonicity for operators).

Definition 3.2 (Hofbauer and Sandholm [HS09]). Stable Game.
A minimization game G = (N ,X , (bn)n) is stable iff

∀x, x′ ∈ X , (x′ − x)T.
(

F(x′)− F(x)
)
> 0 , (3.13)

with F(x) def
= (∇nbn(x))n∈N .

Moreover, G is a-strongly stable, with a constant a > 0, iff:

∀x, x′ ∈ X , (x′ − x)T.
(

F(x′)− F(x)
)
> a

∥∥x− x′
∥∥2 . (3.14)

Remark 3.8. The condition of stability in (3.13) is equivalent to the condition of strict diagonal
convexity in [Ros65], which implies uniqueness of NE [Ros65, Thm.2].

Definition 3.2 gives an abstract condition on an operator that depends on the objective
functions of the players. In our case, players objectives (bn) depend linearly on price func-
tions (ct)t through (3.4), so it is interesting to translate the condition of Definition 3.2 directly
on the price functions, as stated in Proposition 3.1.

Proposition 3.1. Let a > 0 such that Assumption 3.2 holds. Then, the game G is a-strongly stable.

Proof: See Appendix Section 3.C.
This property will be used to show the convergence of Algorithm 3.2 in Theorem 3.5.

Concerning Algorithm 3.1, the approach is different and the convergence is established only
in the specific case of Assumption 3.3. In general games, CBRD might not converge [HB16]
or might take an exponential time to converge [AR08]. In atomic splittable congestion games
on a parallel network, as in our case, the convergence and the speed of Algorithm 3.1 has
been studied previously in [Mer08] and [BPS13], where the authors show by different meth-
ods that there is a geometric convergence in the case of N = 2 players and convex and
strictly increasing price functions (Assumption 3.1). However, to the best of our knowledge,
the convergence in this setting and for more players N > 2 is still an open question.

In our case, simulations show a geometric convergence rate for any instance of G sat-
isfying Assumption 3.3 and for any N ∈ N, as illustrated in Figure 3.1. In [BPS13], it is
conjectured that this geometric convergence may also hold under Assumption 3.1. Restrict-
ing ourselves to affine price functions, we notice that game G is a potential game [Jac+17a;
MS96] and we get the following guarantee on the rate of convergence of Algorithm 3.1:

Theorem 3.4. Under Assumption 3.3, the sequence of iterates
(
x(k)

)
k>0 of Algorithm CBRD con-

verges to the unique NE x̂ of G. Moreover, the convergence rate satisfies:

∀k > 0,
∥∥∥x̂− x(k)

∥∥∥
2
6 C

√
M
a
× N√

k
, (3.15)

where C depends on x(0) and the billing functions, M def
= 2 maxt βt and a def

= 2 mint βt.

Proof: See Appendix 3.D. The result is implied by convergence of alternating block coordi-
nate minimization method [Hon+17].
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The proof of Theorem 3.4 uses the fact that M = maxn Mn where Mn is a Lipschitz
constant of ∇nbn, and a is a strong convexity (and a-strong stability) constant. To the best
of our knowledge, the question to know if Theorem 3.4 holds for general price functions is
open; it can be an avenue for future research.

It is easier to get a strong guarantee on the convergence rate of Algorithm 3.2 for general
price functions, as stated in Theorem 3.5:

Theorem 3.5. Denote by Mn a Lipschitz constant of ∇nbn and M def
= maxn Mn. Under Assump-

tion 3.2 (a- strong stability), for a step γ def
= a/(NM2), SIRD converges to the NE. Moreover:

∀k > 0,
∥∥∥x̂− x(k)

∥∥∥
2
6
(

1− a2

NM2

)k ∥∥∥x̂− x(0)
∥∥∥

2
. (3.16)

Proof: See Appendix 3.E.
Under Assumption 3.3, as stated in Theorem 3.5 we have M def

= 2 maxt βt and a def
=

2 mint βt, which gives the explicit contraction ratio η = 1− maxt βt
N mint βt

.
The bound given in Theorem 3.5 shows that the convergence of Algorithm 3.2 is slower

when the number of consumers N increases.

3.3.3 Randomized Best Response and Convergence in Splittable Conges-
tion Games

As said above in Section 3.3.2, there are few results concerning the convergence of Best Re-
sponse (Algorithm 3.1) in splittable congestion games. Although the algorithm seems to
converge in practice in general splittable congestion games, to our limited knowledge, the
only existing theoretical results are the works of [Mer08] and [BPS13] showing, by two dif-
ferent methods, the convergence in the case of N = 2 players and with strictly convex costs.

In this section, we consider a randomized variant of Algorithm 3.1, and we give in Corol-
lary 3.2 the geometric convergence for two specific cases different from [Mer08]: the case of
linear cost functions, and the case with T = 2 resources and arbitrary cost functions.

We are interested in the randomized version of Best Response, where at each iteration k,
a player nk is drawn out uniformly amongN , and its strategy is updated to its best response
BRnk , as explained in Algorithm 3.3.

Algorithm 3.3 Randomized Alternate Best Response

Require: x(0), stopping criterion
1: k← 0
2: while stopping criterion not true do
3: Draw nk ∈ N uniformly
4: Update x(k+1)

nk ∈ BR(x(k)−nk
), leave other players strategy unchanged

5: Go to next iteration k← k + 1
6: done

Recall that, from the specific structure of a congestion game on a parallel network, the
best response of a player n ∈ N to other players strategies x−n is:

BRn(x−n) ∈ argmin
xn∈Xn

∑
t

xn,tct

(
∑

m 6=n
xm,t + xn,t

)
def
= Bn

(
∑

m 6=n
xm,t

)
, (3.17)

where Bn(.) : RT → RT is a function of the vector of the sum of load of other players.
For this analysis, we make the assumption that, for each t ∈ T and s ∈ R+, the function

x 7→ xct(s + x) is strictly convex. An immediate consequence is that, given any strategy
profiles (xm)m∈N and any player n, the best response BRn(x−n) is unique, and a Nash equi-
librium (Definition 2.1), if it exists, is also unique.
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To a point x ∈ X , we associate an extended vector y =
(

x ∑n∈N xn
)
∈ Y def

= X ×RT .
Let us introduce the operator

σ :
{
Y → RT

(x, s) 7→ s−∑n∈N xn
,

as well as the coordinate-wise Best Response operators on y ∈ Y by:

Qn :
{
Y → Y
(x, s) 7→

(
x1, . . . ,Bn(s− xn), . . . , xN , s− xn + Bn(s− xn)

) (3.18)

for n ∈ N . Then Algorithm 3.3 can be rewritten by a sequence of iterates y(k+1) = Qnk (y
(k)),

and we have the following property:

Lemma 3.1. Let y ∈ Y such that σ(y) = 0 and n ∈ N . Then σ (Qn(y)) = 0.

Proof. Let bn = Bn(s− xn). We have, for any t, σ (Qn(y))t = st − xn,t + bn,t − ∑m 6=n xm,t −
bn,t = st −∑m∈N xm,t = 0.

Next, we use the norm on Y : ‖y‖A
def
= (∑n ‖xn‖2

2 + A ‖s‖2
2)

1
2 , where the norm ‖.‖2 on RT

is the euclidean norm and A > 0 is a chosen constant. We have the following result:

Proposition 3.2. Assume that, for all n ∈ N , the sum best-response function introduced in (3.17)
Bn : RT → Xn is α-contracting and that Idn +Bn : RT → RT is β-contracting, and that α2 + β2 <
1. Denote by n a random variable with uniform law over N . Then there exists ρ < 1 such that, for
all y and y′ ∈ Y ∩Ker(σ):

EI∼U (N )

[∥∥QI(y)−QI(y′)
∥∥2

A

]
6 ρ

∥∥y− y′
∥∥2

A . (3.19)

Proof.

EI∼U (N )

[∥∥QI(y)−QI(y′)
∥∥2

A

]
=

1
N

(
∑

n∈N

∥∥Qn(y)−Qn(y′)
∥∥2

A

)

=
1
N ∑

n∈N

(
∑

m 6=n

∥∥xm − x′m
∥∥2

2 +
∥∥Bn(s− xn)−Bn(s′ − x′n)

∥∥2
2

+ A
∥∥(Id + Bn)(s− xn)− (Id + Bn)(s′ − x′n)

∥∥2
2

)
6
(

N − 1
N

∥∥x− x′
∥∥2
)
+

α2 + Aβ2

N ∑
n∈N

∥∥(s− xn)− (s′ − x′n)
∥∥2

2 .

Then, we observe that:

∑
n∈N

∥∥(s− xn)− (s′ − x′n)
∥∥2

2 = ∑
n∈N

∥∥s− s′
∥∥2

2 +
∥∥xn − x′n

∥∥2
2 − 2

〈
s− s′ , xn − x′n

〉
= N

∥∥s− s′
∥∥2

2 +
∥∥x− x′

∥∥2
2 − 2

〈
s− s′ , s− s′

〉
= (N − 2)

∥∥s− s′
∥∥2

2 +
∥∥x− x′

∥∥2
2 ,

so that we obtain:

E
[∥∥QI(y)−QI(y′)

∥∥2
A

]
6 N−1+α2+Aβ2

N

∥∥x− x′
∥∥2

2 +
(N−2)(α2+Aβ2)

N

∥∥s− s′
∥∥2

2

6 ρ
∥∥y− y′

∥∥
A ,

where ρ def
= max

(
N−1+α2+Aβ2

N , (N−2)(α2+Aβ2)
AN

)
< 1.

The two assumptions on Bn and Id−Bn in Proposition 3.2 might seem very demanding.
However, we observe that the first assumption holds coarsely in the case of affine costs
functions ct:
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Lemma 3.2. Let n ∈ N and costs on arcs be affine: for all t ∈ T , ct(x) = at + btx, with bt > 0.
Then the functions:

• Bn : RT 3 s 7→ argmin
xn∈xn

∑t xn,tct(st + xn,t),

• (Id + Bn) : RT 3 s 7→ s + Bn(s)

are 1
2 -contracting for ‖.‖2 on RT .

Proof. The proof is given in Appendix 3.G.
Combining this Lemma 3.2 and Proposition 3.2, we immediately obtain:

Corollary 3.1. Assume that the cost functions on resources (ct)t∈T are affine. Then Algorithm 3.3
is contracting in expectation, that is, for all y and y′ ∈ Y ∩Ker(σ):

∀y, y′ ∈ Y , EI∼U (N )

[∥∥QI(y)−QI(y′)
∥∥2

A

]
6 ρ

∥∥y− y′
∥∥2

A , (3.20)

where ρ < 1 is defined in the proof of Proposition 3.2 with α = β = 1
2 .

One idea to show a contraction property of the operator QI is to analyze the partial
derivatives of the best response function. It turns out that, with some calculus, we can com-
pute explicitly those partial derivatives, as shown below.

For n ∈ N and s = ∑m 6=n xm, let us denote the support of Best Response Bn by

Sn(s) =
{

t ∈ T | [Bn(s)]t ∈ (xn,t, xn,t)
}

.

For a given s ∈ RT , the optimal Lagrangian multiplier λn(s) defined in (3.40) and asso-
ciated to the solution of Bn(s), is uniquely determined [Ber99, Prop.3.3.2] if Bn(s) is regular,
that is if Sn(s) 6= ∅. From (3.41), for each t ∈ T , we have the implication:

t ∈ Sn(s) =⇒ γn,t
(
[Bn(s)]t, st

)
= λn(s) ,

but the reverse implication may not be true (a resource t can have marginal cost γn,t equal
to λn(s) and be either at lower bound or at upper bound).

From [BPS13], we know that Bn is differentiable and that Sn(s) is locally stable for the
points s for which this reverse implication is true, that is:

Admn
def
=
{

s ∈ RT | γn,t
(
[Bn(s)]t, st

)
= λn(s)⇔ t ∈ Sn(s)

}
,

which is the set of points for which the resources t ∈ T that have their marginal cost equal
to λn(s) are exactly those such that Bn(s)t ∈ (xn,t, xn,t).

For any point s ∈ Admn, we can explicitly compute the Jacobian of Bn, as stated below:

Lemma 3.3. For a player n ∈ N , the partial derivatives of the BR function s 7→ Bn(s) (function of
the sum of load of others s def

= ∑m 6=n xm,t) are equal to:

∀t, u ∈ T ,
∂[Bn]t

∂su
(s) = θu(s)× (rt(s)− δtu) ,

where δtu is the standard Kronecker symbol equal to one iff t = u and:

θu(s) def
=

[Bn(s)]u c′′u(su) + c′u(su)

[Bn(s)]u c′′u(su) + 2c′u(su)
and rt(s) def

=
([Bn(s)]tc′′t (st) + 2c′t(st))

−1

∑v∈Sn(s)([Bn(s)]vc′′v (sv)+2c′v(sv))
−1 .

Proof. The proof is given in Appendix 3.H.
For instance, in the case of affine costs ct(x) = at + btx, we get:

θu(s) =
1
2

, rt(s) =
b−1

t

∑v∈Sn(s) b−1
v

.
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In the case of two arcs |T | = 2 that we denote T = {t, t̃} the problem is easier as, for
each player n, the constraint xn,t + xn,t̃ can be considered directly in bn as:

bn(xn, s) = xn,tct(xn,t + st) + (En − xn,t)ct̃(E− (xn,t + st)) (3.21)

which only depends on xt, the load on arc t. One can see immediately that the bound con-
straints reduce to the two bounds on xn,t given by:

`n,t 6 xn,t 6 un,t where `n,t
def
= max(xn,t, E− xn,t̃) and un,t

def
= min(xn,t, E− xn,t̃) . (3.22)

We obtain the following result:

Proposition 3.3. Assume that T = {t, t̃}, and that cost functions ct, ct̃ are convex and strictly
increasing. Then, for each player n ∈ N , there exists two points sn,t 6 sn,t ∈ R such that:

i) Bn(s) = (un,t, En − un,t) for any s = (st, st̃) such that st 6 sn,t ;

ii) Bn(s) = (`n,t, En − `n,t) for any s = (st, st̃) such that st > sn,t;

iii) there exists αn ∈ [0, 1
2 ) for which Bn is αn contracting and (Id + Bn) is (1− αn) contracting

on S◦ def
= {s = (st, E− En − st) | st ∈ [sn,t, sn,t]} .

Proof. The proof is given in Appendix 3.I.
The contraction in expectation stated in Proposition 3.2 leads to the following conver-

gence property of the randomized BRD Algorithm 3.3.

Proposition 3.4. Let y(0) def
= (x(0), ∑n x(0)n ) a starting point, k ∈ N∗, and I1, . . . , Ik be k indepen-

dent random variables, uniformly distributed over N , and y∗ be the unique stationary point of the
algorithm. Then, if Proposition 3.2 holds, we have:

E
Iiid∼U (N )

[∥∥∥y∗ − y(k)
I

∥∥∥2

A

]
6 ρk

∥∥∥y∗ − y(0)
∥∥∥

A
, (3.23)

where y(k)
I denotes the random variable QIk ◦ · · · ◦ QI1(y

(0)), and ρ ∈ (0, 1) is defined in Proposi-
tion 3.2.

Proof. To obtain the result, we just apply recursively the contraction property and use the
independence of I1, . . . , Ik:

E
Iiid∼U (N )

[∥∥∥y∗ − y(k)
I

∥∥∥2

A

]
= EIk EIk−1 . . . EI1

[∥∥∥y∗ −QIk ◦ · · · ◦QI1(y
(0))
∥∥∥2

A

]
= EIk−1 . . . EI1EIk

[∥∥∥QIk (y
∗)−QIk ◦ · · · ◦QI1(y

(0))
∥∥∥2

A

]
6 ρEIk−1 . . . EI1

[∥∥∥y∗ −QIk−1 ◦ · · · ◦QI1(y
(0))
∥∥∥2

A

]
,

which, recursively, gives the result of Proposition 3.4.

Combining Proposition 3.4, Proposition 3.2, Proposition 3.3 and Lemma 3.2, we obtain
immediately the convergence of Algorithm 3.3 in the two specific cases:

Corollary 3.2. For a congestion game with costs functions (ct)t∈T on resources T , the randomized
Best response converges geometrically in the sense of Equation (3.23) in the two following cases:

1. if T = {t, t̃} and ct, ct̃ are strictly increasing and convex;

2. if (ct)t are affine and strictly increasing functions.

To our limited knowledge, it is an open question to know if the results of Corollary 3.2
can be extended to more general cases. Still considering convex and increasing resource
cost functions, numerical tests show that Algorithm 3.3 also converges in the case of a set
T of arbitrary length, and that the cyclic version of the algorithm (see Algorithm 3.1) also
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converges geometrically. Extending our techniques to prove the convergence in those cases
is not straightforward and would constitute interesting results.

3.3.4 Numerical Convergence and Comparisons

In this section, we present a numerical comparison of the two algorithms CBRD and SIRD
given above. We also add two other algorithms from related papers in the comparison:

• the distributed iterative proximal-point algorithm [Che+14, Algo. 1], referred to as it-
ProxPt. This algorithm is analogous to the SIRD algorithm proposed here, but with a de-
creasing time-step (as opposed to the constant step γ) and a regularization proximal term.
Line 4 of Algorithm 3.2 is replaced with:

x(k+1)
n ← PXn

[
x(k)n −γk

(
∇nbn(x(k)n , x(k)−n)+ θ(x(k)n − x(k−1)

n )
)]

.

In the numerical results below, we choose γ(k) = k−0.52 (to ensure the convergence criterion
of ∑ γk < ∞ and ∑ γ2

k = +∞ while keeping sufficiently large steps) and a regularization
weight θ = 0.5 (according to our tests, this latter parameter does not have a significant
impact on the speed of convergence);

• the proximal decomposition algorithm [Atz+13, Algo. 1] referred to as proxBR. This al-
gorithm is analogous to the CBRD (Algorithm 3.1) proposed here, with a proximal regu-
larization term and an additional loop to update this proximal term. Namely, the authors
introduced a “regularized” game where each player’s objective is replaced by:

fn(xn, x−n) = bn(xn, x−n) +
τ
2 ‖xn − x̄n‖2

2 , (3.24)

where x̄n is the “centroid” updated in an additional loop. The idea of the algorithm is to
compute the NE of this regularized game, and update the centroid to the computed NE.
Of course, the NE of the regularized game can only be computed approximately. In the
numerical results below, we choose to update the centroid when the distance between the
iterates of two BR cycles

∥∥∥x(k+1) − x(k)
∥∥∥

2
is lower than 10−4. The regularization parameter is

taken to τ = 3(N− 1)maxt ct, just high enough to ensure the given condition of convergence
(choosing a higher parameter τ slows the convergence). Note that CBRD corresponds to the
case τ = 0, a case dismissed by the proposed convergence conditions [Atz+13, Thm. 2].

We consider numerical instances with T = 10, and feasibility sets of the form (3.6), con-
structed as follows:

1. in instances I1, functions (ct) are affine and uniform i.e. ∀t, ct(X) = c(X) = α + βX
where α (resp. β) is drawn uniformly from [0, 4] (resp. [1, 4]). For each n ∈ N , En is drawn
uniformly from [1, 10]. The lower bounds are all set to xn,t = 0. A subset Tn of consecutive
time periods of length Tn > 4 is drawn randomly from T , and the upper bounds are set to
xn,t = En if t ∈ Tn and to xn,t = 0 if t /∈ Tn;

2. in instances I2, price functions are affine and time dependent i.e. ∀t, ct(X) = αt + βtX
where αt (resp. βt) is drawn uniformly from [0, 4] (resp. [1, 4]). For each n ∈ N , En is drawn
uniformly from [1, 10]. A subset Tn of consecutive time periods of length Tn > 4 is drawn
randomly from T . For t /∈ Tn, we take xn,t = xn,t = 0. For t ∈ Tn, xn,t is drawn uniformly
from [0, En/Tn], and xn,t is drawn uniformly from [En/Tn, En], ensuring that Xn 6= ∅.

The four algorithms considered above are implemented in Python 3.5 and run on an Intel
i7 @2.6GHz on a single core and with 8GB of RAM. To solve the quadratic programs (QP)
subproblems of each algorithm (Line 5 of CBRD and Line 4 of SIRD), we use the Brucker
algorithm [Bru84]. Note that if Xn is a general polytope, any quadratic programming solver
can be used instead to solve those subproblems.

Figure 3.1 shows the convergence of the four algorithms to the NE. The results are given
on average on a set of ten instances I1. The convergence speed of the algorithms decreases
with the number of users, as given in Theorem 3.5. We observe that, in spite of the weaker
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FIGURE 3.1: Average convergence rate of the four implemented algorithms
on ten instances I1. When the number of players N increases, the convergence rate

of both algorithms decreases. CBRD is faster than SIRD.

theoretical result for CBRD (see (3.15) compared to (3.16)), the convergence seems also ge-
ometric, and even faster than Algorithm SIRD. We also observe that the convergence rate
of the comparison algorithms itProxPt and proxBR is not comparable with the convergence
rate of CBRD and SIRD. This can be explained by the addition of the regularization term
which slows the convergence and, also, by the diminishing step for ItProxPoint (instead of a
constant step γ for SIRD) and by the additional loop for proxBR compared to CBRD.

N= 10 20 50 100
BR 0.15 1.4 23.98 112.1 TL(97)

SIRD 0.47 4.11 41.97 TL(100)
ItProxPt[Che+14] 2.07 17.18 89.3 TL(83) TL(100)
proxBR[Atz+13] 57.68 TL(2) 98.4 TL(94) TL(100) TL(100)

(A) I1 Uniform affine prices, bounds xn,t = 0, xn,t ∈ {0, En}
N= 10 20 50 100
BR 0.08 0.36 3.45 54.17 TL(3)

SIRD 2.24 12.08 95.5 TL(86) TL(100)
ItProxPt[Che+14] 0.77 4.83 65.1 TL(30) TL(100)
proxBR[Atz+13] 75.28 TL(4) TL(100) TL(100) TL(100)

(B) I2 Random affine prices, random bounds xn,t, xn,t

TABLE 3.1: Average CPU time (sec.) for NE computation for one hundred
instances I1 (a) and one hundred instances I2 (b). xx-TL(k) indicates that the
time limit (120 sec.) was reached for k instances, while the remaining instances took

an average CPU time of xx seconds.

Table 3.1 shows the CPU time needed to compute the NE at a given precision: the stop-
ping criterion considered here is the satisfaction of the KKT conditions for each problem (3.5)
with an absolute error of 10−2, with a time limit (TL) of two minutes per instance.
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We observe that CBRD is the fastest method to compute the NE. The algorithm ProxBR
reaches the time limit even for a relatively small number of consumers (N = 20). We notice
that SIRD is slower on the heterogeneous instances I2, which can be easily explained from
the step γ chosen in Theorem 3.5. On the contrary, CBRD and itProxPt are slower on ho-
mogeneous instances I1, which can be explained by the importance of symmetries in those
instances. We can see that for the bigger instances (N = 100), the time limit is reached
for half of the instances for CBRD (and for all instances for other algorithms). The time limit
considered here was only of two minutes: it could be extended in a practical implementation
of a DR program. However, the computational time can be limiting, for instance if the eq-
uilibrium needs to be recomputed in case of a change of parameters (see Section 3.4). Thus,
using those methods for a larger system (thousands of consumers) might be prohibited, in
particular if we allow a more complex description of users constraints than (3.6).

However, if we stay within the proposed order of magnitude (N 6 100), the simulations
show that CBRD (and SIRD in most cases) needs only a few seconds to compute the NE. It
enables to consider an online procedure, where the equilibrium can be recomputed at each
hour, as explained below.

3.4 Simulation of Online Demand Response

In this section, we propose a practical procedure to implement the DR framework described
above. We assume that, as described in Section 3.2.3 Example 3.3, the aggregator prices come
from a generic cost function C(.) that depends on the total load XNF

t + Xt (nonflexible plus
flexible) at each time period. The flexible consumption is considered as an additional load
and its price is set for each time period t ∈ T to:

ct(Xt)
def
=

1
Xt

(
C(XNF

t + Xt)− C(XNF
t )
)

. (3.25)

The equilibrium consumption for the flexible consumption profiles have to be computed be-
fore real-time consumption. As a result, the nonflexible demand XNF has to be estimated in
order to evaluate price functions (ct)t by injecting the estimation X̃NF in (3.25). To minimize
the impact of forecast errors made on XNF, we consider an online procedure in which, at
each hour, an updated forecast X̃NF is taken into account. The equilibrium profiles for the
flexible consumption is then re-computed for the hours ahead to the end of the optimization
horizon T, using Algorithm 3.1 or Algorithm 3.2.

3.4.1 Online Demand Response Procedure

The initial time horizon T that we consider for the planning via DR starts each day at noon
(t = 1) and stops at noon the day after (t = T), with an hourly time step. The “online” proce-
dure computes the DR equilibrium flexible consumption profiles on time horizon {1, . . . T}
for each day. As the price functions ct depend on the nonflexible load through (3.25), and
as the accuracy of forecast of this load improves when approaching from real-time, we re-
compute the equilibrium using updated forecasts at each time period, as described below.
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Algorithm 3.4 Online Demand Response Procedure
1: Start at t = 1
2: while t 6 T do
3: Set new horizon T (t) = {t, t + 1, . . . , T}
4: Get XNF forecast on T (t): X̃(t)

NF
def
=
(
X̃(t)

NF,s
)

t6s6T
5: Re-compute prices ct(.) for t ∈ T (t) from (3.25)
6: Run Algo. SIRD or BRD to compute NE x(t) on T (t)

7: for each user n ∈ N do
8: Realize computed profile on time t, x(t)n,t

9: Update X (t+1)
n

def
=
{
(xn,s)s>t|(x(t)n,t , [xn,s]s>t) ∈X (t)

n
}

10: done
11: Wait for t + 1
12: done

Remark 3.9. If one considers sets (Xn)n of the form (3.6), then the updating step on Line 9 only
consists in updating the energy demand for the remaining time: E(t+1)

n
def
= E(t)

n − x(t)n,t .

Remark 3.10. In practice, the NE profile x(t) has to be computed before period t to begin consumption
at time t (Line 8). If τ is an upper bound on the computation time of the NE profile (Line 6), then, as
we want to use the latest available forecast, Lines 3-5 would be run just before t− τ, Line 6 is run in
the interval [t− τ, t] and Line 8 is executed through [t, t + 1].

Observe that in Algorithm 3.4, considering an updated forecast at Line 4 leads to up-
dated price functions (ct)t (Line 5), according to equation (3.25). In turn, the updated price
functions modify the objective function of user n, bn, used in Line 6.

The difference of Algorithm 3.4 with an “offline” version is that we recompute the equili-
brium consumption (Line 6) at each time for all the time periods ahead. In an offline DR, we
would compute the equilibrium consumption for all the horizon T = {1, . . . , T} only once,
just before t = 1.

Proceeding with this “online” version has two main advantages. First, it enables to rely
on updated forecasts with new information acquired on the nonflexible load XNF (Line 4).
Second, it also enables to cope with local issues as disconnection of an user or a communi-
cation bug: in that case, lines 8 and 9 would not be executed for the involved user, and this
user will have the same energy demand for the next round at t + 1. With this kind of online
procedure, it is also important to ensure that the final realized profile (x(t)n,t)t∈T is globally
consistent: in the limit of perfect forecasts, it has to correspond to an equilibrium of the initial
game.

Theorem 3.6. Suppose that either Assumption 3.2 with a = 0 holds (strict stability from Proposi-
tion 3.1) or that Assumption 3.1 holds and the sets (Xn)n are of the form (3.6). Then the online DR
procedure of Algorithm 3.4 is consistent: if forecasts are perfect (i.e. ∀t ∈ T , ∀t′ ∈ T (t), X̃(t)

NF,t′ =

XNF
t′ ), then for any t2 > t1, the NE profile x(t1) computed at t1 with forecast X̃(t1)

NF is equal on

{t2, . . . , T} to the NE profile x(t2) computed at t2 with forecast X̃(t2)
NF .

Proof: See Appendix 3.F.
Theorem 3.6 states a dynamic programming principle adapted to our game-theoretic frame-

work. To quantify the value of this online procedure in the more realistic case of imperfect
forecasts, we simulate it on a set of consumers and parameters taken from real data, defined
below.

3.4.2 Consumers

We consider a set of N = 30 users owning an Electric Vehicle (EV) from the database of
Texan residential consumers PecanStreet Inc. [Pec]. We consider that the charging of the EV
is the only flexible appliance of each consumer managed through the DR program, while the
remaining of the user’s consumption is nonflexible and is taken as in the data. We denote by
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D def
= {16/01/01, . . . , 16/01/31} the set of the 31 days of January 2016 for which we simulate

the DR program and we index a parameter by d ∈ D when it is specific to day d. For
constraints (3.6a-3.6b), we take, for each day d ∈ D, the total flexible demand of user n, En,d
as the total observed consumption for the EV of n on the time set T = {1, . . . , T}, taken as the
twenty-four hours from day d 12PM to day d + 1 11AM (including the regular EV residential
night charging period). The power lower bound is always taken to zero xn,d,t = 0. For the
power upper bound xn,d,t, we consider two cases: if a positive power was given at d, t in
the data, we set xn,d,t to the maximum power given to n’s EV on all time periods in the data
in the set D. If the power given to the EV is 0 at d, t in the data, we take xn,d,t = 0 (i.e. we
consider that the EV of n was not available to charge on period d, t).

3.4.3 Price Functions and Forecasts of the Nonflexible Load

As in Chapter 2, we consider that the aggregator has a providing cost for the global demand
at time t, Xtot

t
def
= (XNF

t + Xt), that does not depend on the time, and given (in $) by

C̃(Xtot
t ) def

= 0.711− 0.0417Xtot
t + 0.00295(Xtot

t )2 , (3.26)

where the coefficients are chosen to replicate the cost function of a real residential electricity
provider4. For this, we computed the average, minimum and maximum values of XNF

t over
all the hours of the 31 days of January 2016 on our set of 30 consumers and interpolate the
three values (avg XNF

t , min XNF
t , max XNF

t ) to three respective prices proposed by the Texan
distributor Coserv [Cos] so that the per-unit price c̃(D) def

= C̃(D)/D verifies:

• c̃(avg XNF
t ) = 0.080$/kWh (price for “base” contracts);

• c̃(min XNF
t ) = 0.055$/kWh (price for Off-Peak hours in Time-of-Use contracts);

• c̃(max XNF
t ) = 0.14$/kWh (price for Peak hours).

Following (3.25), the price for the flexible load is given by:

ct(Xt) = (−4.17 + 0.590XNF
t ) + 0.295Xt , (3.27)

hence, Assumption 3.3 holds.
As prices depend on the nonflexible load, the aggregator has to compute a forecast

X̃(t)
NF

def
=
(
X̃(t)

NF,t, . . . X̃(t)
NF,T

)
at each time t so that the equilibrium consumption for time pe-

riods {t, . . . , T} can be computed using Algorithm 3.1 or Algorithm 3.2. To simulate the
forecasts, we assume that the forecast made at time t for period t′ > t, X̃(t)

NF,t′ has no bias, that

is E[XNF
t′ |σ(Ft)] = X̃(t)

NF,t′ (where Ft is the natural filtration over (XNF
t )t), and that we have

perfect information at time t, that is: X̃(t)
NF,t = XNF

t . Considering that XNF
t = PteXt where

Xt follows an Ornstein-Uhlenbeck [UO30] process with mean reverting coefficient m and
volatility σ, and Pt a seasonality factor that depends on the hour of the week (1st hour to
168th hour), we get for any t 6 t′:

X̃(t)
NF,t′ =Pt′

(
XNF

t
Pt

)e−m(t′−t)

exp
(

σ2

4m
(1− e−2m(t′−t))

)
.

Using a least-squares regression on the observed data from years 2014 and 2015, we compute
m ' 0.198 h−1 and σ ' 0.117 h−1/2. An example of the simulated forecasts made at four
different time periods is given in Figure 3.2.

3.4.4 Gains with the Online DR Procedure

For each day of January 2016, we run the online DR Procedure described in Section 3.4.1 to
get the flexible consumption profile of each user xn, and the associated social cost on the

4Although we still consider a quadratic cost model, the calibration of the price coefficients used here is more
sophisticated than the one used in Chapter 2.
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FIGURE 3.2: Forecasts of the nonflexible load X̃(t)
NF evolving in time.

We assume a perfect forecast at time t for t. Forecasting performance increases when
approaching real time.

DR horizon {1, . . . , T}. We compare the total social cost over the set D of simulated days
obtained via the DR online procedure with the total social costs obtained with the four other
consumption scenarios below:

1. uncoordinated case: no DR is implemented to control or incentivize consumers flexibil-
ity; the flexible consumption profiles are taken as the observed values in the data;

2. offline DR: the equilibrium is computed only once at t = 1 and for the whole time
horizon {1, . . . , T} considering the first forecast X̃(1)

NF available at t = 1;

3. perfect forecast DR: offline DR, where we take X̃(1)
NF = XNF. With Theorem 3.6, it is

useless to recompute the profiles at each time period;

4. optimal scenario: a centralized entity (with perfect forecasts) computes the flexible
consumption profile x that minimizes the system cost ∑t Xtct(Xt) (also equal to the social
cost, Remark 3.3).

For the online DR and the comparison scenarios 2) and 3), NE are computed by implement-
ing Algorithm 3.1 (CBRD) with the same configuration than in Section 3.3.4. For the compar-
ison scenario 4), we compute the optimal consumption profile satisfying all users constraints
(3.6a-3.6b), for each simulated day (from 12PM to 11AM) in D. The associated problems
are convex QPs with linear constraints, that are solved easily with the solver Cplex 12.6 in
0.31seconds on average.

Table 3.2 summarizes the numerical results: it gives the total costs on the 31 days of Jan-
uary 2016 and compares the gains of the different flexible consumption scenarios relatively
to the uncoordinated one. We first observe that performances of perfect forecasts DR are close
to the optimal scenario. This confirms the theoretical results provided on the efficiency of
the NE in Theorem 3.3. We see on this table that the online DR procedure achieves signif-
icant savings compared to the offline version for which the performance is really low on
average: using the offline DR decreases the system costs by 2% relatively to the uncoordi-
nated profile, that is, when consumers behave without any incentives (comparison scenario
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Cons. Scenario Social Cost Avg. Price Gain
Uncoordinated $ 1257.2 0.200 $/kWh —

Offline DR $ 1231.6 0.195 $/kWh 2.036%
Online DR $ 1131.1 0.180 $/kWh 10.03%

Perfect forecast DR $ 1075.2 0.171 $/kWh 14.47%
Optimal scenario $ 1056.8 0.169 $/kWh 15.94%

TABLE 3.2: Social Costs, average prices and relative gain to the uncoordi-
nated consumption scenario on January 2016 .

FIGURE 3.3: Consumption profiles on a typical day, with the different scenar-
ios listed in Section 3.4.4. The optimal profile flattens the consumption. The online
DR procedure of Algorithm 3.4 gets closer to the Perfect forecast (offline) DR profile.

1)). Implementing this offline DR program might not be worthy as it still involves a sophisti-
cated communication and automation structure and it adds more constraints for consumers.
This low performance is directly linked to our simple and naive model for the nonflexible
load forecasts, which results in inaccurate forecasts for the last hours, as seen in Figure 3.2.
Even if more advanced forecasting methods (see [AN02]) could improve this accuracy, we
cannot get rid of the high variance due to the small number of consumers (N = 30 in our ex-
ample, and several hundreds for an aggregator at the scale of a typical low-voltage station).
The online DR procedure seems to bring a solution to this issue: even with our simple fore-
cast model, we achieve more than 10% of savings, with a gap of only 4% from the scenario
with perfect forecasts. These results show that implementing the given online DR procedure,
even without very accurate forecasts, is worthwhile for the aggregator.

3.5 Conclusion

In this chapter, we developed a game-theoretic model for a residential demand response
program, and we addressed several issues both on the theoretical and practical aspects. We
gave several new theoretical results about the uniqueness and existence of a Nash equilibr-
ium consumption profile for which the price of anarchy is theoretically bounded. We proved



84 Chapter 3. Analysis of an Hourly Billing Mechanism for Demand Response

that the two proposed algorithms CBRD and SIRD provide approximations of the NE at an
arbitrary accuracy in finite time. We introduced and simulated an online procedure that
recomputes the NE profiles at each time period to take into account new information, for
example updated forecasts. We showed numerically that this online procedure achieves a
small price of anarchy when the parameters are fixed but also when the demand is uncertain.
Our simulations show that the online procedure reduces the impact of inaccurate forecasts
on the social cost by 8%.

Several extensions of this work can be undertaken. First, our online procedure can be
directly applied in the presence of other sources of stochasticity such as market prices or lo-
cal renewable production sources. The aggregator objective can also be generalized to take
into account the distance to a reference load profile or to maximize consumption during re-
newable production peaks or to take into account market prices. Also, two main theoretical
questions are still open. First, the result on the PoA bound could be improved to be tighter to
the numerical results, and generalized to a larger set of functions. Second, the convergence
theorem for the Best Response Dynamics (CBRD) could also be improved, as the observed
convergence rate is faster than the given bound, and the convergence is numerically ob-
served for a larger set of prices than affine functions.

Appendix

3.A Proof of Theorem 3.2: Uniqueness of NE in G
The proof follows the one of [ORS93], extending it to the constrained case with constraints
of the form (3.6b).

We denote by λn ∈ R the Lagrange multiplier associated to (3.6a), along with µ
n,t
> 0

(resp. µn,t > 0) the multiplier associated to xn,t 6 xn,t (resp. to xn,t 6 xn,t).
Note that the KKT conditions give that, at optimality:

γn,t(xn,t, Xt) = λn + µ
n,t
− µn,t , (3.28)

where γn,t(xn,t, Xt)
def
= ct(Xt) + xn,tc′t(Xt) is the marginal cost of n. Let us consider x and x̂

two NEs. From (3.28), we get:

xn,t < xn,t ⇒ µn,t = 0⇒ γn,t(xn,t, Xt) > λn

and xn,t > xn,t ⇒ µ
n,t

= 0⇒ γn,t(xn,t, Xt) 6 λn

and the same inequalities hold for x̂. First note that:(
λ̂n 6 λn and X̂t > Xt

)
⇒ x̂n,t 6 xn,t , (3.29)(

λ̂n > λn and X̂t 6 Xt
)
⇒ x̂n,t > xn,t . (3.30)

Let us show (3.29). If x̂n,t = xn,t or xn,t = xn,t, then x̂n,t 6 xn,t is clear. Else, x̂n,t > xn,t and
xn,t < xn,t so:

γn,t(x̂n,t, X̂t) 6 λ̂n 6 λn 6 γn,t(xn,t, Xt) 6 γn,t(xn,t, X̂t) (3.31)

as γn,t is increasing in Xt. As c′t(X̂t) > 0 from Assumption 3.1, γn,t is increasing in xn,t and
we deduce that xn,t > x̂n,t.

Now, let us consider T1 = {t : X̂t > Xt} along with T2 = T \ T1 = {t : X̂t 6 Xt} and
N0 = {n : λ̂n > λn}. Suppose T1 6= ∅. From constraint (3.6a) and from (3.30), we have:

∀n ∈ N0, ∑
t∈T1

x̂n,t = En − ∑
t∈T2

x̂n,t 6 En − ∑
t∈T2

xn,t = ∑
t∈T1

xn,t .
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On the other hand, considering for t ∈ T1 and n /∈ N0, we have from (3.29) that x̂n,t 6 xn,t,
and thus:

∑
t∈T1

X̂t = ∑
t∈T1

∑
n∈N0

x̂n,t + ∑
t∈T1

∑
n/∈N0

x̂n,t 6 ∑
t∈T1

Xt , (3.32)

which is in contradiction with the definition of T1. Thus T1 = ∅ and ∀t, X̂t = Xt. We can
now precise (3.29) with:[

λ̂n<λn and X̂t=Xt
]
=⇒

[
x̂n,t<xn,t or x̂n,t=xn,t=xn,t or x̂n,t=xn,t=xn,t

]
(3.33)

and similarly for (3.30). Indeed, if x̂n,t = xn,t (resp. if xn,t = xn,t) then the implication holds
because xn,t > xn,t (resp. xn,t 6 xn,t). Else, x̂n,t > xn,t and xn,t < xn,t, and the same sequence
of inequalities as in (3.31) gives γn,t(x̂n,t, Xt) < γn,t(xn,t, Xt), implying that x̂n,t < xn,t.

Finally, suppose that there exists n s.t. λ̂n < λn. If only the two latter cases in (3.33)
happen, then xn,t = x̂n,t, ∀t. Else, there is at least one t for which x̂n,t < xn,t, so En =
∑t x̂n,t < ∑t xn,t = En which cannot happen. Thus, λ̂n = λn for all n and (3.29) and (3.30)
imply that xn,t = x̂n,t for all n and t.

3.B Proof of Theorem 3.3: PoA upper bound

The proof relies on the notion of local smoothness introduced in [RS15]. The idea is to get
a tighter bound than [RS15] by specifying the parameters of the affine price functions (ct)t
and by using the upper bound on Xt instead of looking at the worst possible cases as done
in [RS15].

Let κt
def
= αt/βt so that ct(X) = βt(X + κ). From [RS15], we know that if there exist

λ, µ > 0 and a profile y ∈ X satisfying for each t ∈ T and each x ∈ X :

Yt(Xt + κt) +
Y2

t
4
6 λYt(Yt + κt) + µXt(Xt + κt), (3.34)

where Yt = ∑n yn,t and Xt = ∑n xn,t, then G is locally λ, µ-smooth for y, i.e. for any admissi-
ble profile x ∈ X :

∑
n∈N

bn(x) +∇nbn(x)>(yn − xn) 6 λSC(y) + µSC(x) ,

where SC(x) = ∑n bn(x). In that case, it follows from [RS15] that the PoA is bounded by
λ/(1− µ). We want to find the best possible λ, µ such that (3.34) holds for each t ∈ T . For
the remaining of the proof, we fix t and omit subscript t in the notations. As done in [RS15],
we introduce:

φxy(µ)
def
=

y(x + κ) + y2

4 − µx(x + κ)

y(y + κ)
, λ∗(µ) def

= sup
x,y>0

φxy(µ) .

λ∗(µ) is the minimum value of λ > 0 such that (3.34) holds with values (λ, µ). Let us

compute an explicit expression of λ∗(µ). If x = 0, φ0,y(µ) = y+4b
4(y+κ)

and
∂φ0,y

∂y
< 0 so

supx,y φx,y would be attained with y = 0 and is φ0,0 = 1. Otherwise:

0 =
∂φ

∂x
⇔ 1

y(y + κ)
(y− 2µx− µκ)⇒ x =

y− κµ

2µ

but as x > 0, this supposes that y > µκ. We compute:

φ y−κµ
2µ ,y =

1
y(y + κ)4µ

(
(y + κµ)2 + µy2

)
def
= h(y) .
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We can see that h′ vanishes on R+ at y+ def
=

κµ2+κµ
√

µ2+1−µ
1−µ that gives a min of h so h is

decreasing then increasing. At the lower bound y = κµ, we get:

φ =
κµ + 4b

4(κµ + κ)
=

µ + 4
4(µ + 1)

=
1
4
+

3
4(µ + 1)

< 1 ,

which is not the maximal value as φ0,0 = 1. At the upper bound y = X, we have:

h(X) =
(X + κµ)2 + µX2

X(X + κ)4µ
= λ∗(µ) .

Last, to compute the best bound infµ λ∗(µ)/(1− µ), let us consider:

g(µ) def
= 4X(X + κ)

λ∗(µ)

1− µ
=

(X + κµ)2 + µX2

µ(1− µ)
.

If we denote ϕ def
= (1 + r)2 and r def

= κ/X, g(µ) is minimal at µ∗ def
= (−1 +

√
1 + ϕ)/ϕ. We

finally get our PoA bound as:

λ∗(µ∗)

1− µ∗
=
(3 + 2r)+2

√
1 + ϕ

4(1 + r)
=

1
2

(
1 +

√
1 +

1
ϕ
+

1
2
√

ϕ

)
= 1

2

(
1 +

√
1 + (1 + r)−2 + (2(1 + r))−1

)
6 1 + 3

4(1+r) ,

where the last inequality, giving a more explicit bound, is obtained from the usual inequality:√
a2 + b2 6 a + b for any a, b > 0 .

Next, following [RS15], for x, y ∈ X (admissible solutions):

∑n bn(x) +∇nbn(x)>(y− x)
= ∑n ∑t∈T xn,t · ct(Xt) + (yn,t − xn,t) (ct(Xt) + xn,tc′t(Xt))

= ∑t Yt · ct(Xt) + c′t(Xt)∑n
(
yn,txn,t − xn,t

2)
6 ∑t Yt · ct(Xt)+c′t(Xt) · Xt

2

4

= ∑t βt

[
Yt(Xt + κt)+

Xt
2

4

]
(3.35)

6 ∑t βt [λYt(Yt + κt) + µXt(Xt + κt)] (3.36)
= λSC(y) + µSC(x) ,

where (3.36) is valid if (λ, µ) is chosen such that:

∀t ∈ T , λ >
(Xt + κtµ)2 + µX2

t

Xt(Xt + κt)4µ
def
= λ∗κt(µ) .

Let us denote t0
def
= argmin

t
κt and choose µ∗ def

= µ∗t0
, λ∗ def

= λ∗κt0
(µ∗) (the optimal (λ, µ) for t0),

then we have to check that for all t ∈ T , λ∗ > λ∗κt(µ
∗). For that, it is sufficient to show that

r 7→ λ∗r (µ
∗) is decreasing on [rt0 , rt], which is true if

rt < −1 +

√
1 +

1− µ∗

µ∗2 ⇐⇒ ϕrt < ϕrt0
+ 2 +

√
1 + ϕrt0

,

where ϕr = (1 + r)2, which gives condition (3.9) stated in Theorem 3.3.
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3.C Proof of Proposition 3.1: Strong Stability of G
We denote by G(x) def

= JF(x) the Jacobian of operator F = (∇nbn)n∈N . Since functions
bn are twice differentiable, condition (3.13) is equivalent to having the matrix G(x) + G>(x)
positive definite for all x ∈ X , that is, G(x) + G(x)> � 0.

As bn = ∑t bn,t, with bn,t(xt)
def
= xn,tct(Xt), is separable in t, we can re-index the ma-

trix G(x) to have a diagonal block hourly matrix G(x) = diag(G1, ...GT) , with Gt(xt)
def
=(

∂2bn,t

∂xn,t∂xm,t
(xt)

)
n,m∈N 2

and we get for each t ∈ T :

Gt(xt) + Gt(xt)
> =

(
∂2bn,t(xt)

∂xm,t∂xn,t
+

∂2bm,t(xt)

∂xn,t∂xm,t

)
n,m

.

Let t ∈ T and x ∈ RN \ {0}. Furthermore, let [σ(x, x)]t def
= x>t

(
Gt(xt) + G>t (xt)

)
xt. For

notation simplicity, let us forget the index t and the argument (X) in functions ct. We have:

[σ(x, x)]t =
N

∑
n=1

2x2
n(xnc′′+2c′)+2 ∑

n<m
xnxm

(
(xn+xm)c′′ + 2c′

)
=

N

∑
n=1

2x2
n (rnγ+(1−rn)a)+2 ∑

n<m
xnxm ((rn+rm)γ+(1−rn−rm)a)

with rn
def
= xn/X, a = 2c′(X) and γ def

= 2c′(X) + Xc′′(X). Then:

σ = a ∑
n

x2
n + a

(
∑
n

(
1− rn

(
1− γ

a
))

xn

)2
− (a−γ)2

a ∑
n,m

rnrmxnxm

which is the sum of three quadratic forms: q1(x) = a ∑ x2
n which has one eigenvalue a of mul-

tiplicity N, q2(x) = a
(

x>v>vx
)

with vn
def
= ∑n 1− xn

X
(
1− γ

a
)

of rank one whose nonzero
eigenvalue is a||v||22, and a negative form of rank one q3(x) = − 1

a (a− γ)2 (∑n,m
xn
X

xm
X xnxm

)
whose nonzero eigenvalue is − 1

a (a− γ)2 ∑n
( xn

X
)2.

We deduce that the quadratic form q1 + q2 is positive definite, and that its eigenvalues
are a with multiplicity N− 1 and a(1+ ||v||22) with multiplicity 1. Next, we use the following
result from perturbation theory:
Theorem 3.7 (Horn and Johnson,p. 367). Let A, E ∈ Mn be two Hermitian matrices and let
λM

1 6 ... 6 λM
n denotes the (real) ordered eigenvalues of an Hermitian matrix M. Then the following

inequalities hold:

∀k = 1 . . . n, λE
1 6 λA+E

k − λA
k 6 λE

n

and
∣∣∣λA+E

k − λA
k

∣∣∣ 6 ρ(E) = |||E|||2 .

Applying this theorem with A = q1 + q2 and perturbation E = q3 we get that the smallest
eigenvalue λA+E

1 of σ verifies:

λA+E
1 > min {Sp(q1+q2)} − (a−γ)2

a ∑
n

r2
n

= a
(

1−
(
1−γ

a
)2

∑n r2
n

)
.

Replacing a and γ, we can get the condition of Assumption 3.2.
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3.D Proof of Theorem 3.4: Convergence of CBRD

The key of the proof is that, under Assumption 3.3, the game is an exact potential game
[MS96] with convex potential:

Φ(x) = ∑t∈T αtXt +
βt
2 (X2

t + ∑n x2
n,t) ,

that is, for any x ∈ X and any n, ∇nΦ(x) = ∇nbn(x).
Thus, the NE corresponds to the minimum of Φ and we have, for any x ∈ X ,

argmin
xn∈Xn

bn(xn, x−n) = argmin
xn∈Xn

Φ(xn, x−n).

Therefore, running Algorithm 3.1 is equivalent to performing an alternating block coordi-
nate minimization on Φ. According to [Hon+17, Thm. 6.1]:

Φ(x(k))−Φ(x̂) 6 1
k × 2MN2R2Ω , (3.37)

with M = maxn Mn = 2 maxt βt (max of Lipschitz constants of ∇nbn = ∇nΦ), R =

maxx{‖x− x̂‖ ; Φ(x) 6 Φ(x(0))} and Ω = max{ 2
MN2R2 − 2, Φ(x(1)) − Φ(x̂), 2}. But Φ

is also strongly convex, that is, for any x, x′ ∈ X :

Φ(x)−Φ(x′) > 〈∇Φ(x′), x− x′〉+ a
2 ‖x− x′‖2 (3.38)

with a = 2 mint βt. Also, the minimality of x̂ on the convex set X implies that for any x ∈ X ,
〈∇Φ(x̂), x− x̂〉 > 0 . Then from (3.38) , we get for any k > 0:

a
2

∥∥∥x(k) − x̂
∥∥∥2
6 Φ(x(k))−Φ(x̂) + 〈∇Φ(xNE), x̂− x(k)〉 6 Φ(x(k))−Φ(x̂) ,

and from (3.37) we get the convergence result of Theorem 3.4.

3.E Proof of Theorem 3.5: Convergence of SIRD

We analyze the convergence of the sequence (Tk
γ(x))k where

[Tγ(x)]n def
= PXn (xn − γ∇nbn(xn, x−n)) .

First notice that the unique NE of the game xNE is the unique fixed point of Tγ i.e. xNE =

Tγ(xNE). The idea is then to prove that Tγ is a η-contraction, for a given norm ‖ · ‖ which
will imply the convergence rate ‖Tk(x(0))− xNE‖ 6 ηk‖x(0)− xNE‖ , for any initial condition
x(0) ∈ RN×T .

Let ‖ · ‖ denote the Euclidean norm on Rd for any positive integer d. As the projection
on a convex set is nonexpansive [RW09, Corollary 12.20], we get for x, y ∈ X :

‖Tγ(x)− Tγ(y)‖2 = ∑N
n=1 ‖[Tγ(x)]n − [Tγ(y)]n‖2

= ∑N
n=1 ‖PXn(xn − γ∇nbn(x))− PXn(yn − γ∇nbn(y))‖2

6 ∑N
n=1 ‖xn−yn+γ(∇nbn(y)−∇nbn(x))‖2

= ∑N
n=1 ‖xn−yn‖2 + γ2‖∇nbn(x)−∇nbn(y)‖2 − 2γ 〈∇nbn(x)−∇nbn(y), xn−yn〉 .

Since ∇nbn is Mn-Lipschitz for each n, we have

N

∑
n=1
|∇nbn(x)−∇nbn(y)|2 6 NM2‖x− y‖2 ,
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where M def
= maxn Mn. From a-strong stability (Definition 3.2), we get:

‖Tγ(x)− Tγ(y)‖2 6 η‖x− y‖2 ,

with η def
= 1 + NM2γ2 − 2γα. Minimizing on γ > 0 gives:

γ =
α

NM2 and η = 1− α2

NM2 < 1,

which shows that Tγ is a contraction.

3.F Proof of Theorem 3.6: Consistency of DR Procedure

First, we observe that an NE is unique in any “subgame” G(t) played on the subset of
time periods T (t) = {t, . . . , T } (considered at t in the procedure). Indeed, in the case where
we assume that the operator F (cf Definition 3.2) is strictly monotone onX , then the operator
F(t) : x(t) 7→ [∇

x(t)n
bn(x(t))]n∈N restricted to the set T (t), is also strictly monotone on X (t) =

∏n X
(t)
n . In the case where we consider Assumption 3.1 and that the sets (Xn)n have the

structure (3.6), this structure is inherited for the sets (X (t)
n )n so Theorem 3.2 can be applied

on the game G(t) to ensure the uniqueness.
Let t0 ∈ {1, . . . , T − 1} and G(t0) the DR-game played at t0. Let x(t0) be the unique NE of

G(t0). From the variational inequality characterization of an NE, we have:

〈F(t0)(x(t0)), λ(t0) − x(t0)〉 > 0, ∀λ(t0) ∈ X (t0) . (3.39)

Let G(t0+1) the DR-game on hours {t0 + 1, . . . T} with updated strategy sets

X (t0+1)
n

def
=
{
(xn,s)s>t0 |(x(t0)

n,t0
, [xn,s]s>t0) ∈ X

(t0)
n
}

for each n. Let λ(t0+1) ∈ X (t0+1), then λ(t0) def
= (x(t0)

t0
, λ(t0+1)) ∈ X (t0).

0 6 〈F(t0)(x(t0)), λ(t0) − x(t0)〉

= 0 + 〈F(t0+1)((x(t0)
s )s>t0), λ(t0+1) − (x(t0)

s )s>t0〉 ,

which shows, from (3.39), that (x(t0)
s )s>t0 is an NE of the game G(t0+1). From the uniqueness

of the NE in G(t0+1), we finally conclude that (x(t0)
s )s>t0 = x(t0+1).

3.G Proof of Lemma 3.2: Contraction of BR operator with
Linear Costs

Let s and s′ ∈ RT . Let us denote for simplicity by xn,t
def
= [Bn(s)]t the component t of

the best response of n to s, and x′n,t
def
= [Bn(s′)]t similarly for s′. We consider the Lagrangian

function L(xn, λn, µn, µ
n
) associated to the minimization problem defining Bn(s), given by:

∑
t

xn,tct(st + xn,t)− λn
(

∑
t∈T

xn,t − En
)
− ∑

t∈T

(
µn,t(xn,t − xn,t) + µ

n,t
(xn,t − xn,t)

)
, (3.40)

where, following the notations introduced before, λn, µn,t, µ
n,t

(resp. λ′n, µ′n,t, µ′
n,t

) are the
Lagrangian multipliers associated to the energy, upper and lower bound constraints on xn
(resp x′n).

Recall that the KKT conditions of optimality of xn ensure that for each t ∈ T :

γn,t(xn,t, st) = λn + µn,t − µ
n,t

, (3.41)
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and symmetrically for x′n and where γn,t is the marginal cost associated to period t given by:

γn,t(xn,t, st) = at + bt(2xn,t + st) , with st = ∑
m 6=n

xm,t.

According to the equality (3.41) on γn,t and the definitions of multipliers, we have:

xn,t < xn,t ⇒ γn,t(xn,t, st) > λn and xn,t > xn,t ⇒ γn,t(xn,t, st) 6 λn . (3.42)

Let us assume, w.l.o.g, that λn > λ′n. Then, consider the sets:

T− def
= {t ∈ T : xn,t < x′n,t} and T+ def

= {t ∈ T : xn,t > x′n,t} = T \ T− ,

and symmetrically consider the sets:

S− def
= {t ∈ T : st < st

′} and S+ def
= {t ∈ T : st > st

′} = T \ S− .

Suppose that there exists t ∈ T such that st 6 st
′ and xn,t > x′n,t > xn,t > xn,t. Then

according to (3.42), we have:

λn 6 γn,t(xn,t, st) < γn,t(x′n,t, st
′) 6 λ′n

which is impossible because we assumed λn > λ′n. Therefore T+ = S− and T− = S+.
If T− = ∅, then xn,t > x′n,t for all t and since ∑t xn,t = ∑t x′n,t = En, we have xn,t = x′n,t

for all t.
Now assume that T− 6= ∅ and let t ∈ T− so that xn,t > x′n,t > xn,t > xn,t so that

γn,t(xn,t, st) > λn > λ′n > γn,t(x′n,t, st
′)

⇔ at + bt(2xn,t + st) > at + bt(2x′n,t + st
′)

⇔ 1
2
(st − st

′) > x′n,t − xn,t > 0 , (3.43)

as bt > 0 and similarly for t ∈ T+. Finally, we obtain:∥∥x′n − xn
∥∥2

2 = ∑
t∈T−

(x′n,t − xn,t)
2 + ∑

t∈T+
(x′n,t − xn,t)

2

6
1
4 ∑

t∈T−
(st
′ − st)

2 +
1
4 ∑

t∈T+
(st
′ − st)

2

=
1
4
× ∑

t∈T
(st
′ − st)

2 , (3.44)

which concludes for Bn. For Id + Bn, one can observe that, adding (st
′ − st) on both sides of

(3.43) we get for t ∈ T−:

1
2
(st
′ − st) > (st

′ + x′n,t)− (st − xn,t) > 0 ,

and the symmetric inequality for t ∈ T+. We conclude as in (3.44).

3.H Proof of Lemma 3.3: Expression of the Jacobian of BR
function

Let us fix a player n. Assuming
∂st

∂su
= 0 if t 6= u, we have for any t 6= u ∈ T :

∂γn,t
(
st, [Bn(s)]t)

∂st
= (D2γn,t)

(
[Bn(s)]t, st

)
× 0 + (D1γn,t)

(
[Bn(s)]t, st

)
× ∂[Bn]t

∂su
(s),
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and:

∂γn,t
(
st, [Bn(s)]t)

∂su
= (D2γn,t)

(
[Bn(s)]t, st

)
× 1 + (D1γn,t)

(
[Bn(s)]t, st

)
× ∂[Bn]t

∂su
(s).

As we have ∑t∈Sn(s)[Bn(s)]t fixed, we get ∑t∈Sn(s)
∂Bn,t

∂su
(s) = 0 for any u ∈ T . Moreover,

as for any t ∈ Sn(s), the marginal cost is ht(s) = λn(s), we get for any t, u ∈ T:

∂λn

∂su
(s) = δtu × (D2γn,t)

(
[Bn(s)]t, st

)
+ (D1γn,t)

(
[Bn(s)]t, st

)
× ∂[Bn]t

∂su
(s)

⇔ 1
(D1γn,t)

(
[Bn(s)]t, st

) × ∂λn

∂su
(s) = δtu

(D2γn,t)
(
[Bn(s)]t, st

)
(D1γn,t)

(
[Bn(s)]t, st

) + ∂[Bn]t
∂su

(s)

∑t∈Sn=⇒ ∂λn

∂su
(s) =

 ∑
t∈Sn(s)

1
(D1γn,t)

(
[Bn(s)]t, st

)
−1

×
(D2γn,u)

(
[Bn(s)]u, su

)
(D1γn,u)

(
[Bn(s)]u, su

) .

Thus we get:

∂[Bn]t
∂su

(s) =
1

(D1γn,t)
(
[Bn(s)]t, st

) × ∂λn

∂su
(s)− δtu

(D2γn,t)
(
[Bn(s)]t, st

)
(D1γn,t)

(
[Bn(s)]t, st

) (3.45)

=
(D2γn,u)

(
[Bn(s)]u, su

)
(D1γn,u)

(
[Bn(s)]u, su

)
 [

(D1γn,t)
(
[Bn(s)]t, st

)]−1

∑v∈Sn(s)
[
(D1γn,v)

(
[Bn(s)]v, sv

)]−1 − δtu


= θu(s)× (rt(s)− δtu) .

With γn,t(st, xn,t) = xn,tc′t(st) + ct(st) we have:

D2γn,t(st, xn,t) = xn,tc′′t (st) + c′t(st)

D1γn,t(st, xn,t) = xn,tc′′t (st) + 2c′t(st) .

and we obtain finally:

∂[Bn]t
∂su

(s)=
[Bn(s)]u c′′u(su) + c′u(su)

[Bn(s)]u c′′u(su) + 2c′u(su)

(
([Bn(s)]tc′′t (st) + 2c′t(st))

−1

∑v∈Sn(s)([Bn(s)]vc′′v (sv) + 2c′v(sv))
−1 − δtu

)
.

3.I Proof of Proposition 3.3: Contraction of BR operator for
T=2

Let n ∈ N . We omit the indices n and t on xn,t and t on s, as we only look at player n and
arc t for variables x and s. From KKT conditions, in the case where the bounding constraints
(3.22) are not active, we get, with x = Bn(s) ∈ (`n,t, un,t):

0 =
dbn

dx
= (ct(x + s) + xc′t(x + s)− ct̃(E− x− s)− (En − x)c′t̃(E− x− s) (3.46)

and

d2bn

dx2 = 2c′t(x + s) + xc′′t (x + s) + 2c′t̃(E− x− s) + (En − x)c′′t̃ (E− x− s) > 0 ,

thus there exists at most one value such that
dbn

dx
(xn, s) = 0, and, from KKT conditions, we

obtain that if
dbn

dx
(xn, s) stays positive for x ∈ (`n,t, un,t), we will get Bn(s) = (`n,t, En −
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`n,t). If
dbn

dx
(xn, s) stays negative for x ∈ (`n,t, un,t), we will get Bn(s) = (un,t, En − un,t).

Combined with the fact that
dbn

dx
(xn, s) is increasing in s, we obtain Proposition 3.3 i), ii).

Then, taking the derivative of (3.46) with respect to s, we obtain:

∂x
∂s

=−
c′t(x + s) + c′t̃(E− x− s) + x

(
c′′t (x + s)− c′′t̃ (E− x− s)

)
+ Enc′′t̃ (E− x− s)

2
(

c′t(x+s) + c′t̃(E−x−s)
)
+ x

(
c′′t (x + s)− c′′t̃ (E−x−s)

)
+ Enc′′t̃ (E− x− s)

= −
c′t(Xt) + c′t̃(Xt̃) + xn,tc′′t (Xt) + xt̃

nc′′t̃ (Xt̃)

2
(

c′t(Xt) + c′t̃(Xt̃)
)
+ xn,tc′′t (Xt) + xt̃

nc′′t̃ (Xt̃)

def
= −αn(x)

We can see that αn(x) is always in [0, 1] as c′ > 0, c′′ > 0 and that:

αn(x) 6 1⇔ 0 6 c′t(Xt) + c′t̃(Xt̃) .

We have also that the derivative of Id + Bn is given by:

∂[Id + Bn]t
∂st

(s) = 1 +
∂x
∂s

=
c′t(Xt) + c′t̃(Xt̃)

2
(

c′t(Xt) + c′t̃(Xt̃)
)
+ xn,tc′′t (Xt) + xt̃

nc′′t̃ (Xt̃)

and thus:(
∂[Bn]t

∂st
(s)
)2

+

(
∂[Id + Bn]t

∂st
(s)
)2

= 1− 2αn + 2α2
n = 1− 2αn(1− αn) < 1 .
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Chapter 4

Impact of Consumers Temporal
Preferences in Demand Response

This Chapter is based on the conference paper [Jac+17a]. Here, as an extension of Chapter 2 and
Chapter 3, we consider a noncooperative setting where consumers have some preferences over their
energy consumption profiles, in addition to their energy bills. We analyze the influence of preferences
over the equilibria, in the two different billing mechanisms considered in Chapter 2.

4.1 Introduction

Individual and personal constraints will influence the behaviour of flexible consumers. In
turn, many papers have addressed the question of modeling individual effort of consumers
in the context of DSM. Several works, considering thermostatic control loads (AC, heating),
relate this individual effort to the desired indoor temperature. For instance, [NL14] con-
siders a distance between “desired indoor temperature” profile and effective one, weighted
by an occupancy variable. Another standard model consists in penalizing the delay be-
tween possible operation time (e.g., the starting period of availability) and effective one of
a flexible electrical appliance [YM13; CKS11; MRLG10]. In this case, the cost is generally
linear with the waiting time (and sometimes weighted by the power of considered task as in
[MRLG10]). A different approach in [Ban+14] considers as a metric for uncomfort of residen-
tial consumers the colour quality of a “smart lighting”. Note that in all of the aforementioned
metrics, the total flexible energy consumed is fixed, and consumption flexibility consists only
in temporal scheduling of this fixed amount. Individual effort made by consumers consists
then of a temporal preference for consumption. As a result, these metrics can be formulated
as particular cases of the framework that we will propose in this chapter.

Other works such as [LCL11; FA01; Sam+12] rather consider an individual utility term
that depends on the total flexible energy consumed; a standard representation of this util-
ity is made with an increasing and concave function of total amount of flexible energy (a
quadratic function with a saturation threshold is often used, as mentioned in [Den+15]). In
this model, consumers can receive no energy at all and it is assumed that their satisfaction
increases with the volume of energy they consume.

Whatever the metrics considered for the individual consumer preference, to the best of
our knowledge no study has been made on the impact of the weight given to this preference
on the consumers behaviour. More precisely, this weight will influence the induced equili-
brium in the associated consumption energy game, which will impact the system efficiency.
This is precisely the issue addressed in this chapter.

In this work, we will distinguish standard metrics of efficiency in a game: the system
cost and the social cost. We will study as well the Price of Anarchy (PoA) [KP99], a standard
measure of efficiency in a game, and a measure called Price of Efficiency defined to be similar
to the Price of Anarchy on the system operator side. While the study of such indicators
in energy consumption games has been done previously (see [MR+10] or [Bea+16] which
exhibit games where PoA = 1), the analysis of the evolution of these indicators with respect
to the weight on individual effort term is a novelty addressed here.
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This chapter brings several contributions. We extend the standard model of an energy
consumption game among consumers, studied in [Jac+17b], by adding individual temporal
preferences. Next, we give theoretical results in this extended framework about the impact
of preferences on the equilibria of the game and the efficiency of those equilibria. For that,
we analyse the induced social cost and system cost. Last, we present numerical results on
a realistic test case, using consumption data from PecanStreet database [Pec]. In particular,
we show that the equilibrium induced by the hourly billing mechanism [Bah+13] is robust
to the level given to preferences.

This chapter is organized as follows: Section 4.2 introduces the notion of consumers tem-
poral preferences and defines the energy consumption game model. In Section 4.3, we define
the main metrics of our study: we recall the definition of the Price of Anarchy and define the
Price of Efficiency. In Section 4.4, we give theoretical results and properties on the formu-
lated model. We present explicit results on the equilibria in a simplified framework. Last,
Section 4.5 is devoted to numerical experiments on a realistic framework, where we simulate
the equilibria among thirty Texan residential consumers in January, 2016.

4.2 Context and Energy Consumption Game

The model of this work falls within the class of DSM studies where the interaction of indi-
vidual consumers is coordinated introducing an energy consumption game, as in [MR+10].
While all the proposed results could be applied to numerous operational frameworks, the
one described here consists in the interaction between a provider and its setN = {1, · · · , N}
of consumers in a given day. As opposed to [MR+10] which does not show any preference
for consumers and suppose that they are indifferent to any consumption schedule as soon as
it satisfies their constraints, here we will focus on the integration of individual preferences
of consumers into their objectives.

Indeed, consumers tend to have a “natural” or preferred consumption profile, and asking
them to deviate from it might be inconvenient or decrease their comfort. Individual utility
functions have been previously used through different models. A common approach (see
for instance [FA01] and [Sam+12]) is to consider that a consumer’s utility can be modeled
as an increasing function of the total energy he receives. Here, on the contrary, we keep
the assumption made in [MR+10] that consumers have flexible appliances that need a fixed
quantity of energy per day, and this demand must be satisfied each day. However, we as-
sume that consumers are not indifferent to the time they can use electricity and therefore use
their appliances.

4.2.1 Introducing users temporal preferences

From the provider’s point of view, only the load profile asked by a user n, (xn,t)t∈T matters,
where T is the discrete set of time periods considered. However, that may not be the case
for users: for instance, one would like to charge an Electric Vehicle (EV) battery as soon as
possible in case of unscheduled need (Plug-and-Charge), or one would like to turn on the
heating system in a household at precise time periods ([NL14]), etc. We denote user n’s
preferred or desirable consumption profile by the vector:

x]na = (x]na,t)t ∈ RT ,

for his flexible appliance a. As a result, user n would like to receive the power profile
(x]n,t)t

def
= (∑a x]na,t)t and, if he has no incentives to do otherwise, this profile will be his

actual one. Deviating from the profile x]n decreases the comfort or utility of consumer n. To
model this fact, we introduce the individual utility un(xn) of consumer n as the opposite of
the squared distance1 between the actual consumption profile of consumer n, xn, and his

1 In general, one could use un(xn)
def
= −ωnd(xn, x]n) where d(., .) is an arbitrary metric. For simplicity and

computational purposes, we use d = ‖.‖2.
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preferred profile x]n:
un(xn)

def
= −ωn ∑t(xn,t − x]n,t)2 , (4.1)

where the weight ωn indicates how much user n values the distance to his preference. As
some users will give more importance to their electricity bills (defined below) and some
others to their utility, in a general framework we assume that each user could set a different
weight ωn in this model.

4.2.2 Users billing mechanism

As done in [MR+10; Jac+17b], we suppose that the providing costs on each period t are
represented as a quadratic function C̃(Xtot

t ) of the total load Xtot
t = XNF

t + Xt, where XNF
t

denotes the aggregated nonflexible load at period t and Xt the flexible part:

C̃(Xtot
t ) def

= δ̃ + α̃Xtot
t + β̃(Xtot

t )
2. (4.2)

The surplus cost induced by the flexible part of the load Xt, at time t, denoted by Ct(Xt), can
be deduced as:

Ct(Xt)
def
= C̃(Xtot

t )− C̃(XNF
t ) = αtXt + β(Xt)

2 (4.3)

with αt
def
=
(
α̃ + 2β̃XNF

t
)

and β = β̃. Even if the cost function for the provider (4.2) does not
depend on time, the nonflexible load profile XNF

t induces a difference in the costs (Ct)t∈T
between the different time periods t ∈ T .

In this chapter, we consider that the nonflexible part of the load is managed and billed
in a distinct process, e.g., in a standard contract. We focus on DR billing mechanisms for the
flexible part of the load. Through this study, we will consider two different billing mecha-
nisms which, in practice, would require a “two-way” communication system [IA09], which
enables the system operator to send its price functions (Ct)t and aggregated load (Xt)t and
users to send back their consumption profile xn. First, we consider the Daily Proportional (DP)
billing mechanism introduced in [MR+10]: we assume that the system cost Ct(Xt) induced
by the flexible load at time t:

Xt
def
= ∑n xn,t (4.4)

are shared among users proportionaly to their total flexible consumption on the entire day
En = ∑t∈T xn,t. Formally, each consumer will pay the daily bill:

bDP
n (xn, x−n) =

En

E ∑
t∈T

Ct(Xt) , (4.5)

where x−n = (xm)m 6=n and E def
= ∑n En. We will compare its efficiency to the natural “con-

gestion” Hourly Proportional (HP) billing mechanism introduced in [Bah+13], where system
costs on each period are shared among consumers respectively to their consumption on this
period. Formally, the daily bill bHP

n of user n for his flexible consumption is2:

bHP
n (xn, x−n) = ∑

t∈T

xn,t

Xt
Ct(Xt) . (4.6)

Intuitively, with bHP
n , users are more impacted by their actions to use expensive/cheap

time periods than with bDP
n where the costs induced by actions are “averaged” over the day.

This property helps to interpret the results of Section 4.4 and Section 4.5.

2Introducing per-unit prices ct
def
= Ct(Xt)/Xt, the bill of n can also be formulated in the “congestion” form:

bHP
n (x) = xn,tct(xt) analyzed in [ORS93].
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4.2.3 Energy consumption game

To analyze the impact of the importance given to users’ temporal preferences, we consider
through this work the parametrized users’ objective functions:

f θ
n(xn, x−n)

def
= (1− θ)bn(x)− θun(x) (4.7)

where the preference factor θ ∈ [0, 1] indicates the weight given to user n’s preference3 in
comparison to his bill bn. We get the optimization problem for user n, as already defined in
Chapter 2, but now indexed by θ:

min
xn∈RT

f θ
n(xn, x−n) (4.8a)

s.t. ∑t∈T xn,t = En, (4.8b)
xn,t 6 xn,t 6 xn,t, ∀t ∈ T . (4.8c)

Constraint (4.8b) expresses that a fixed daily amount of energy is required for the flexible
appliances of user n (EV battery, washing machine...). Due to physical limits of his electrical
items or personal constraints, the power given to n is bounded (4.8c). We denote more
compactly by Xn the feasible set of user n, given by the polytope (4.8b), (4.8c), and X def

=
X1 × · · · × XN . When θ = 0, user’s preference x]n has no influence on his behaviour, while
when θ = 1, the user gives no importance to bn and only wants to minimize −un: his
resulting load profile will be exactly his preference x]n.

As f θ
n depends on the consumption of n but also on other users, this induces a game

between users [FT91] denoted by Gθ
def
=
(
N ,X , ( f θ

n)n
)
. We will use the notations GDP

θ and
GHP

θ when we specify the billing mechanism according to the DP rule (4.5) or HP rule (4.6).
The importance that each user gives to his utility function un in comparison to his bill bn,
through the parameter θ, will change the set of Nash Equilibria (NE) of the game Gθ given
by:

XNE
θ

def
= {x ∈ X : ∀n, ∀x′n ∈ Xn, f θ

n(xn, x−n) 6 f θ
n(x′n, x−n)}.

4.3 Social cost versus System cost

An Independent System Operator is interested in both an efficient electricity network and
the welfare of the consumers. Starting with the latter, we define the social cost of the set of
consumers as the sum of their objective functions:

SCθ(x)def
= ∑

n∈N
f θ
n(x)= (1− θ) ∑

n∈N
bn(x)− θ ∑

n∈N
un(xn) . (4.9)

To quantify the efficiency of a billing mechanism in a game, we consider the standard notion
of Price of Anarchy (PoA) introduced by Koutsoupias and Papadimitriou [KP99] and which
we recall in Definition 2.2 in Chapter 2.

The PoA measures the gap between the minimal social cost (4.9), and the social cost
induced by the worst equilibrium of the game.

From the provider’s point of view, only the costs induced for the system, without users
personal utilities, matters: we denote by C the total system cost function, defined as the
providing costs induced by an aggregate consumption profile (Xt)t∈T :

C(x) def
= ∑t∈T Ct(Xt) . (4.10)

Note that in the particular billing mechanisms considered in (4.5) and (4.6), we assume that
the provider costs are shared among users4, so that we have the equality C(x) = ∑n bn(x).

3We could extend this study by using different (θn)n for different users.
4This assumption could be relaxed, as done in [MR+10], by adding a ratio profit κ > 1 for the provider, so that

we have the equality ∑n bn(x) = κC(x).
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We introduce a measure similar to the PoA (2.6), but that will be more relevant for a
provider that is more interested in the system cost C and does not have access to the utility
functions (un)n of its users. In the original paper [KP99], the authors introduce the notion
of PoA for an arbitrary social cost function. However, for clarity in this thesis, we will use
the term PoA to refer only to the quantity (2.6) (where SC to refers to the sum of players
cost functions, as in (4.9)) and we will use the term PoE to refer to the symmetric quantity
considering the global cost C instead of SC.

Definition 4.1. Price of Efficiency (PoE).
Given a game G, XNE

G its set of Nash Equilibria and its minimal feasible system cost
C∗ def

= minx∈X C(x) , the price of efficiency of G is given as:

PoE(G) def
=
(

supx∈XNE
G
C (x)

)
/ C∗ . (4.11)

Observe that PoA > 1 and PoE > 1. Following (4.7), one can notice that for θ = 0,
PoE(Gθ) = PoA(Gθ). In general, the PoA and PoE will be different as shown below.

4.4 Properties

4.4.1 Potential property, existence and uniqueness of NE

We start by showing that the considered games have the property of potential (see [MS96]).

Theorem 4.1. GDP
θ is a weighted potential game with potential:

WDP
θ = (1− θ) ∑

t∈T
Ct(Xt)− θ ∑

n

E
En

un(xn) . (4.12)

Proof: ∀n, ∇n f θ
n = En

E ∇nWDP
θ , we conclude from [MS96].

With the billing mechanism HP, we need an additional assumption on the system cost
functions to get a similar result:

Theorem 4.2. If we consider quadratic costs (4.2), GHP
θ is an exact potential game with potential:

WHP
θ =(1− θ)

[
∑
t∈T

βt
2

(
(Xt)

2+∑n(xn,t)
2
)
+αtXt

]
− θ ∑

n∈N
un(x) . (4.13)

Proof: Similarly to the proof of Theorem 4.1, ∀n, ∇n f θ
n = ∇nWHP

θ .

From the fact that WDP
θ and WHP

θ are strictly convex and from [MS96], we can deduce the
existence and uniqueness of NE:

Corollary 4.1. In the game GDP
θ (resp. GHP

θ ), there exists a unique Nash Equilibrium, corresponding
to the minimum argument of WDP

θ (resp. WHP
θ ) over the set X .

Corollary 4.1 extends the results of [MR+10] which gives the uniqueness of NE in the
particular case of θ=0 with the DP billing.

A natural algorithm to compute an NE is to run the Best Response Dynamics (BRD), as
defined below.

Definition 4.2 ([GM91]). Best Response Dynamics (BRD).
At each iteration k, a user nk is randomly chosen and solves problem (4.8) to optimum x∗nk

,

with load of others x(k)−nk
fixed (nk best responses to the others). We update x(k+1)

nk = x∗nk
.

From Theorem 4.1 and Theorem 4.2, we deduce the convergence of BRD:

Corollary 4.2. In GDP
θ and GHP

θ , BRD is equivalent to a block coordinate minimization of the poten-
tial function. Hence, it converges to the unique NE of the game (see [BT13]).
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4.4.2 Theoretical results on a simplified framework

In this section, we consider that the set T is reduced to two time periods T def
= {P, O} which

represent for instance the Peak and Offpeak times. For computational purposes, we consider
that the system cost is reduced to a quadratic term:

∀t ∈ T , Ct(Xt) = (Xt)
2 , (4.14)

and there is no nonflexible part as in the general case described in Section 4.2.2. Each
consumer n has a preference weight ωn = 1, a preferred profile (x]n,P, x]n,O), satisfying

x]n,P + x]n,O = En as in (4.8b). Without loss of generality, we assume X]
P >

E
2 > X]

O. Po-
wer constraints (4.8c) are replaced by positivity xn,t > 0.

Nash equilibrium

From the KKT conditions of optimality, we get the following result:

Theorem 4.3. Assume that for all n ∈ N , we have:

x]n,P

En
+

1
2
>

X]
P

E
, (4.15)

then, for θ ∈ (0, 1], the unique NE of GDP
θ is given by:

xn,P = x]n,P + En
E

1−θ
2 (X]

O − X]
P) , (4.16)

with symmetric expression for xn,O. For θ = 0, the KKT system is degenerated, and any (xn,t)n
satisfying XP = E/2 is an NE.

Assume that for all n ∈ N , we have:

2(N − 1)x]n,P > (X]
P − X]

O)− En , (4.17)

then, for θ ∈ [0, 1], the unique NE of GHP
θ is given by:

xn,P = x]n,P + 1−θ
2(1+θ)

(
φ(θ)(X]

O − X]
P) + (x]n,O − x]n,P)

)
, (4.18)

with symmetric expression holding for xn,O, and with:

φ(θ) def
=

2θ
(1+θ)+(1−θ)N ∈ [0, 1] . (4.19)

One can check that the positivity of the offpeak load xn,O in (4.16) and in (4.18) is always
verified. The positivity of the peak load xn,P is a consequence of assumptions (4.15) and
(4.17).

We consider that (4.15) and (4.17) hold through all this Section.

Corollary 4.3. The aggregated load at the NE is given by:

for GDP
θ , XP = E

2 + θ
(X]

P−X]
O)

2 , (4.20)

for GHP
θ , XP = E

2 + φ(θ)
(X]

P−X]
O)

2 . (4.21)

With HP and DP, the aggregated load evolves to the preferred profile when θ goes to
one but, with the HP mechanism, this evolution is influenced by the number of players N
through φ(θ).
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FIGURE 4.1: Evolution of PoE-1 with costs (4.14) and N = 5 users.
For all θ, HP billing is more efficient for the system than DP.

System Costs

The total system costs C(X) = (XP)
2 + (XO)

2 at the equilibrium are given from (4.20) and
(4.21) by:

for GDP
θ , CDP(θ) def

=
1
2

(
E2 + θ2(X]

P − X]
O)

2
)

, (4.22)

for GHP
θ , CHP(θ) def

=
1
2

(
E2 + φ2(θ)(X]

P − X]
O)

2
)

. (4.23)

On Figure 4.1, we see that the PoE is increasing with θ in both cases (the proof is straight-
forward from (4.22) and (4.23)), and that it is always smaller with the HP billing, as shown
below:

Theorem 4.4. The system costs induced by the equilibrium with HP are always smaller than with
DP, or equivalently:

∀θ ∈ [0, 1], PoE(GHP
θ ) 6 PoE(GDP

θ ) (4.24)

and the inequality is strict for θ ∈ (0, 1).

Proof: First, note that in (4.11), the minimal system cost C∗ does not depend on θ, so that
C and PoE are proportional. From the expressions (4.22) and (4.23), we get that:

CDP(θ)− CHP(θ) =
θ2(X]

P − X]
O)

2

2

(
1− 4

(N(1−θ)+(1+θ))2

)
> 0

because ∀θ ∈ (0, 1),
4

(N(1− θ) + (1 + θ))2 < 1⇐⇒ N > 1 .

Figure 4.1 shows the evolution of the PoE induced by the NE of Gθ , in the case of N = 5
players that have a flexible energy En = 1 that they prefer loading totally on peak hour
(x]n,P = 1).

Social Cost

If users do not care about their bills but only on their utility (θ = 1), they choose their
preferred profile (x]n,P, x]n,O). As a result, the social cost will be exactly zero. On the opposite,
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FIGURE 4.2: Evolution of Social Cost and PoA-1 with costs (4.14).
Social Cost always decreases with θ. The PoA is unimodal and with DP, it reaches
its maximum at a critical level of θ ' 0.72, where it is more than 10% larger than

with HP.

if consumers only care about their bills (θ = 0), [MR+10] shows that users will reach the
optimal system cost in GDP

0 (the potential WDP
0 is equal to the system costs) while [Jac+17b]

shows that the equilibrium in GHP
0 will stay close to the social optimum (it is even optimal

in the framework of this section, as seen in (4.21)). However, it is not clear how the social
cost evolves with θ ∈ [0, 1]. Figure 4.2 shows numerically that, for both the DP and HP
mechanism, the social cost is a decreasing function of θ. We prove this in Theorem 4.5 for
the DP mechanism.

To this end, considering the expressions of the equilibrium in GDP
θ from (4.16), we get the

induced social cost:

SCDP
θ = (1− θ)

[
E2

2 + D2

2 (θ2 + VE(1− θ)θ)
]

(4.25)

with E def
= ∑n∈N En, D def

= (X]
P − X]

O) and VE
def
= ∑n

E2
n

E2 .

Theorem 4.5. SCDP
θ is a decreasing function of θ.

Proof. ∂θSCDP
θ = D2

2
[
−3(1−VE)θ

2+2(1−2VE)θ
]
+D2VE−E2 is always negative. Details are

omitted here for brevity.
We did not manage to prove a symmetric result for SCHP

θ .

4.5 Numerical experiments

In this Section, we present numerical results on the sensitivity of the equilibria of GDP
θ and

GHP
θ to θ, in a realistic framework. We simulate the games GDP

θ and GHP
θ and the convergence

to the equilibria day by day on the set of the thirty one days of January 2016, which we
denote by D, each day being decomposed by a hourly timeset T = {0, 1, . . . , 23}.

4.5.1 Parameters

Consumers We extracted N = 30 residential consumption profiles of Electric Vehicles (EV)
owners from PecanStreet Inc. [Pec], a database of residential consumers in Texas (U.S.). Each
consumer has a nonflexible consumption (xNF

n,t )t (lights, cooking, TV...) and we consider EV
charging as the flexible usage. We take the EV historical profile of user n as its preferred
profile (x]n,t)t, and assume it corresponds to its flexible energy need En

def
= ∑t x]n,t. For power
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FIGURE 4.3: Aggregated consumption profiles at equilibrium GHP
θ for θ =

0, 0.5 and 1 on day 10/01/2016 with 30 users.
The equilibrium profile converges to (X]

t )t when θ → 1.

constraints (4.8c), we take xn,t = 0 and xn,t equal to the max observed value if hour t was
ever used by n and xn,t = 0 otherwise.

System Costs As explained in Section 4.2.2, we suppose that system costs are, for each time
t, function of the total load Xtot

t = XNF
t + Xt, and are given in dollar cents as:

C̃(Xtot
t ) = 71.1− 4.17Xtot

t + 0.295(Xtot
t )2 .

To compute those coefficients, we make an interpolation based on three load values and
three corresponding prices (Ct(Xt)/Xt). The three load values are the mean (33.8kW), min
(17.8kW) and max (58.9kW) values of the nonflexible load per hour aggregated over the
set N of consumers in all hours of January, 2016. The three corresponding prices are those
proposed by the Texan provider Coserv ([Cos]): 8.0 c /kWh for base contracts, 14.0 c /kWh
(Peak) and 5.5 c /kWh (OffPeak) in Time-of-Use contracts. From (4.3), the cost of flexible
load is given by:

Ct(Xt)
def
= (−4.17 + 0.590XNF

t )Xt + 0.295(Xt)
2 . (4.26)

To ensure that bn and un are of the same order of magnitude, we use a common factor in
(4.1) of ωn = ωdef

=
C∗

∑n

∥∥∥x∗n−x]n
∥∥∥2 =49.1 c/kWh2 with C∗=C(x∗) = minx C(x) the optimal costs.

Note that for θ = 1, SC∗θ = 0 = SCDP
θ = SCHP

θ so the PoA is not defined, but Figure 4.4
shows that limθ→1 PoA(Gθ) = 1.

4.5.2 Results

For both mechanisms HP and DP, we compute the NE by playing a BRD (Definition 4.2) with
a limiting number of 150 BR iterations, which in practice was sufficient for convergence.

The optimization problem (4.8) is a quadratic program that we solve with the optimiza-
tion solver Cplex 12.6. Playing the BRD takes around 2.5sec. for each of the 50 values of
θ and each day in D. The total simulation time was 3160 sec. with an Intel Xeon CPU E3-
1240v3@3.4GHz×8 run on 5 threads.

Figure 4.3 shows the different aggregated profile (Xt)t = (∑n xn,t)t at the equilibrium of
GHP

θ on January, 10, chosen arbitrarily in D. We can see a significant variation (more than
15%) on the aggregated load when θ changes.

From Figure 4.4, we see that at θ = 0, there is a very small PoA for the HP mechanism
(see [Jac+17b] for a deeper analysis) while DP achieves optimality. However, when θ grows
the HP mechanism becomes much more efficient than DP in terms of PoA (Figure 4.4) and



102 Chapter 4. Impact of Consumers Temporal Preferences in Demand Response

FIGURE 4.4: Evolution of PoA-1 (mean on days) with θ.
HP is more robust and has a smaller PoA than DP.

FIGURE 4.5: Evolution of PoE-1 (mean on days) with θ.
For θ > 3 · 10−4, the equilibrium induced by the HP billing is also more efficient in

terms of system cost.

PoE (Figure 4.5), as already seen in the simplified framework of Section 4.4.2. We observe
that, in Section 4.4.2 as in this realistic case, PoA(GDP

θ ) is an unimodal function of θ.
Figure 4.4 shows that the PoA induced by the equilibrium of GHP

θ remains very low (it
is maximal at θ = 0 with PoA=1.0015 and then decreases) while the PoA of DP reaches
a maximum of 1.122 at θ=0.06: this billing mechanism is much less robust to consumers’
preferences. This lack of robustness is underlined by the important discrepancy between the
minimal and maximal PoA values over our set of 31 days. Figure 4.5 shows that the PoE, as a
function of θ, is much more concave for the DP mechanism, resulting in a larger system cost
on a wide range of θ (the two curves intersect at θ ' 3 · 10−4). As a result, the HP mechanism
will also be more interesting for the provider. For θ 6 3 · 10−4 the system cost is larger for
HP than for DP because of the small PoA mentioned before [Jac+17b].

4.6 Conclusion

We considered a game theoretic model to study the behavior of residential consumers in
a DR program. We formulated an energy consumption game with a temporal preference
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term in each user’s cost function. We gave several theoretical results on a simplified test
case and showed by simulations that those results still hold in a realistic framework where
consumers have a nonflexible load. Without consumers preferences, the Daily Proportional
billing reaches the optimal social cost and is more efficient than the Hourly Proportional
billing which is not exactly optimal. When we add the temporal preference term, the Hourly
Proportional billing becomes much more advantageous than the Daily Proportional mecha-
nism in terms of social cost and in terms of costs induced for the provider.

Several extensions of this work could be considered. First, the theoretical results could be
extended to take into account a nonflexible part, or considering general functions instead of a
quadratic model for the system cost. Besides, we could study a dynamic population of users
who have the choice to remain in the demand response program or not: if consumers are
not satisfied with the program, they might consider another kind of contract or suscribing a
more competitive provider.
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Part III

Efficient Estimation of Equilibria
in Large Games: from Nash to

Wardrop
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In Part II, we have seen that the decentralized management of electricity consumers flex-
ibility (demand response management) can be modeled as an atomic splittable congestion
game, where consumers are the players optimizing their electricity bill or a price signal. In
those chapters, we have also explained that a Nash equilibrium of the considered game is
a desirable outcome to achieve, both in terms of stability and in terms of efficiency (small
price of anarchy). In the energy applications, we can imagine the situation of an operator
(an electricity aggregator) in charge of the consumption flexibilities of several thousands of
electricity consumers.

Despite the decentralized aspects of the proposed approaches, there is still a need for the
operator to anticipate the outcome of the system. The reasons for anticipation are multiple:
for instance, to optimize some price signal, to forecast an aggregate consumption to use on
forward electricity markets, or to propose quantitative services to the system operator.

However, as discussed in Part II, computing a Nash equilibrium in a splittable congestion
game with a very large number of players is computationally difficult: in this Part III of
the thesis, we propose some methods and results related to the approximation of a Nash
equilibrium with a very large number of players.

In this Part III, we are considering a more general setting than in Part II, as we consider
the notion of coupling constraints and the associated concept of generalized equilibrium. Cou-
pling constraints are constraints impacting several players in the game considered: in the
model of an electric system, these kind of constraints appear when considering bounds on
the aggregate consumption profile, global capacity constraints or ramp constraints on pro-
duction generators. We refer the reader to Section 5.4 in Chapter 5 for more details.

While these chapters are more theoretical than the aspects developed in Part II, the work
exposed in Chapters 5 and 6 is motivated by the use of large congestion games in the mod-
eling of demand response. This application is developed and used to illustrate the proposed
results in both Section 5.4 and Section 6.4.

The approximation results developed in Chapters 5 and 6 are based on the characteri-
zation of equilibria as solutions to variational inequalities. Even if the point of view adopted
in each chapter is different from the one adopted in the other, the reader will observe some
symmetry in the derived results:

• in Chapter 5 we consider the case of generalized atomic splittable congestion games,
with coupling constraints, and with a very large number of players (see discussion on de-
mand response aggregator above) that are heterogeneous through their action sets and their
utility functions. We obtain an approximation of the variational Nash equilibria—a subset of
generalized Nash equilibria in the presence of coupling constraints—of a large atomic con-
gestion game by a Wardrop equilibrium of an auxiliary population game, where each pop-
ulation corresponds to a group of atomic players of the initial game. Because the variational
inequalities characterizing the equilibrium of the auxiliary game have smaller dimension
than the original problem, this approach enables the fast computation of an estimation of
equilibria in a large congestion game with thousands of heterogeneous players. This chap-
ter is based on the work [Jac+18a];

• in Chapter 6, the point of view adopted is different. We consider modeling the inter-
actions of a population described by continuous parametric density functions: in this case,
one obtains a nonatomic game with an infinity of different players types (as opposed to the
atomic framework in Chapter 5). In this work, we consider the notion of nonatomic ag-
gregative games, which generalizes congestion games. We define and analyze the notion of
variational Wardrop equilibrium for nonatomic aggregative games with an infinity of play-
ers types. These equilibria are characterized through an infinite-dimensional variational
inequality. We show, under monotonicity conditions, a convergence theorem which enables
to approximate such an equilibrium with arbitrary precision. To this end, we introduce a se-
quence of nonatomic games with a finite number of players types, which approximates the
initial game. We show the existence of a symmetric Wardrop equilibrium in each of these
games. We prove that the sequence of symmetric equilibria converges to an equilibrium
of the infinite-type game, and that the symmetric equilibria can be computed as solutions
of finite-dimensional variational inequalities. The model is illustrated through an example
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from smart grids: the description of a large population of electricity consumers by a para-
metric distribution gives a nonatomic game with an infinity of different players types, with
actions subject to coupling constraints. This chapter is based on the paper [JW19], submitted
for publication.
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Chapter 5

Efficient Estimation of Equilibria
of Large Congestion Games with
Heterogeneous Players

This chapter is based on the paper [Jac+18a], submitted for publication.

5.1 Introduction

Motivation Congestion games form a class of noncooperative games [Nis+07]. In a con-
gestion game, each player chooses a certain quantity of each of the available resources, and
pays a cost for each resource obtained by the per-unit cost of that resource multiplied by the
quantity she has chosen. A congestion game is said to be atomic if there is a finite number
of players, and nonatomic if there is a continuum of infinitesimal players. The particular-
ity of congestion games is that the per-unit cost of each resource depends only on its total
demand. Congestion games find practical applications in various fields such as traffic man-
agement [Zie+08], communications [Scu+12; Alt+06] and more recently in electrical systems
[MR+10; Jac+19c].

The concept of Nash equilibrium (NE) [Nas50] has emerged as the most credible outcome
in the theory of noncooperative games. However, it has been shown in different frameworks
that the computation of a NE is a hard problem: for instance, [FPT04] shows that comput-
ing a pure NE in finite two-players matricial games is PPAD-complete. [KW18] shows that
the problem of computing of an NE in splittable congestion games with player-specific affine
latency functions is also PPAD-complete.

In splittable congestion games, NEs can be characterized as solutions of variational in-
equalities. Therefore, the efficiency of the computation of NEs depends on the dimension
of the variational inequalities in question, hence on the number of players and the number
of constraints. For the description of practical situations (transport, energy, etc), one may
consider several thousands of heterogeneous agents. At this scale, computing a Nash equi-
librium can be intractable. In the case where the model involves coupling constraints, the
computation of generalized Nash equilibria [Har91] is even harder to solve. Meanwhile,
coupling constraints commonly exist in practice: for instance, in transportation, roads and
communication channels have a limited capacity that should be considered. In the energy
domain, production plants are also limited in the magnitude of variations of power, induc-
ing some “ramp constraints” [CA06].

However, estimating the outcome situation—assumed to be an equilibrium—is often a
priority for the operator of the system. For instance, the operator controls some variables
such as physical or managerial parameters, of a communication or transport network and
wishes to optimize the performance of the system. The computation of equilibria or their
approximation is also a key aspect in bi-level programming [CMS07], where the lower level
corresponds to a usually large scale game, and the upper level corresponds to a decision
problem of an operator choosing optimal parameters. These parameters, such as prices or
taxes, are to be applied in the low level game, with the aim of maximizing the revenue in
various industrial sectors and public economics, such as highway management, urban traffic
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control, air industry, freight transport and radio network [LMS98; Bro+00; Bro+01; CMS03;
Eli+13].

In this chapter, we consider atomic congestion games with a finite but large number
of players. We propose a method to compute an approximation of variational Nash equi-
libria (VNEs) [Har91]. In the presence of coupling constraints VNEs form a subset of the
NEs while, without coupling constraints, all NEs are VNEs. The main idea is to reduce
the dimension of the variational inequalities characterizing VNEs. The players are divided
into groups with similar characteristics. Then, each group is replaced by a homogeneous
population of nonatomic players. To provide an estimation of the equilibria of the original
game, we compute a variational Wardrop equilibrium (VWE) [War52] in the approximating
nonatomic population game.The quality of the estimation depends on how well the charac-
teristics, such as action set and cost function, of each homogeneous population approximate
those of the atomic players it replaces.

In bi-level programming, the uniqueness of a low level equilibrium allows for clear-cut
comparative statics and sensitivity analysis at the high level. Last, from a computational
point of view, different algorithms have been proposed to solve monotone variational in-
equalities corresponding to VNE or VWE, such as [Coh88; Fuk86; ZM93; FP07; FK10], and
more recently [YP18; YP17; PGL17; TK18] and the references therein.

Related works The relation between VNEs in large games and VWEs has been studied in
Gentile et al. [Pac+18]. In their paper, the authors also consider atomic congestion games
with coupling constraints and show, using a variational inequalities approach, that the dis-
tance between an VNE and a VWE converges to zero when the number of players tends to
infinity. Their VWE corresponds to an equilibrium of the game where each atomic player
is replaced by a population, as done in Section 5.3.1 of this chapter. The objective of the
present work is different. We look for an approximation of VNEs by reducing the dimension
of the original game. To this end, in Section 5.3.2, we regroup many players into few ho-
mogeneous populations. This latter perspective, along with the subdifferentiable case we
consider, are not considered in [Pac+18].

In [JW18b], Jacquot and Wan show that, in congestion games with a continuum of het-
erogeneous players, the WE can be approximated by an NE of an approximating game with
a finite number of players. In [JW18a], those results are extended to aggregative games, a
more general class of games including congestion games, furthermore with nonsmooth cost
functions.

The approach developed in the present chapter is actually the inverse of the one taken in
[JW18b] and [JW18a]: here, the WE in the auxiliary game serves as an approximation of an
NE of the original large game.

Main contributions The contributions of this chapter are the following.

• We define an approximating population game (Section 5.3.2). The idea is that the auxil-
iary game has smaller dimension but is close enough to the original large game—quantified
through the Hausdorff distance between action sets and between subgradients of players’
objective functions.

• We show that a particular variational Wardrop equilibrium (VWE) of the approximat-
ing population game is close to any variational Nash equilibria (VNE) of the original game
with or without coupling constraints, while the computation of the former is much faster
than the latter because of the dimension reduction. We provide an explicit expression of the
error bound of the approximating VWE (Theorem 5.2).

• We give auxiliary results on variational equilibria: we show that when the number of
players is large, VNEs are close to each other (Corollary 5.1) and that VNEs are close to the
approximating VWE (Corollary 5.3). This last theorem extends [Pac+18, Thm. 1] to the case
of nondifferentiable cost functions (in the framework of congestion games, but can be easily
extended to aggregative games).
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• Last, we provide a numerical illustration of our results (Section 5.4) based on a practi-
cal application: the decentralized charging of electric vehicles through a demand response
mechanism [PD11]. This example illustrates the nondifferentiable case through piece-wise
linear electricity prices (“block rates tariffs”), with coupling constraints of capacities and
limited variations on the aggregate load profile between time periods. This example shows
that the proposed method is implementable and that it reduces the time needed to compute
an equilibrium by computing its approximation (six times faster for an approximation with
a normalized distance to the actual equilibrium of less than 2%).

Structure The remainder of this chapter is organized as follows: Section 5.2 specifies the
framework of congestion games with coupling constraints, and recalls the notions of varia-
tional equilibria and monotonicity for variational inequalities, as well as several results on
the existence and uniqueness of equilibria. Section 5.3 formulates the main results: Sec-
tion 5.3.1 shows that a VWE approximates VNEs in large games and then, Section 5.3.2 for-
mulates the approximating population game with the approximation measures, and gives
an upper bound on the distance between the VWE profile of the approximating game to
an original VNE profile. Section 5.4 presents a numerical illustration in the framework of
demand response for electric vehicle smart charging.

5.2 Congestion Games with Coupling Constraints

5.2.1 Model and equilibria

The original game throughout this chapter is an atomic splittable congestion game: a finite
set of resources is shared among finitely many players, and each resource incurs a cost in-
creasing with the aggregate demand for it. In an atomic game, there are finitely many play-
ers whose actions are not negligible on the aggregate profile and on the objectives of other
players. The term “atomic” is opposed to “nonatomic”: in the latter case, players have an
infinitesimal weight [Nis+07]. The term “splittable” refers to the infinite number of choices
of pure actions xn ∈ Xn for each player n, as opposed to the unsplittable case where each
player can only choose one action in a finite subset of 2T [Ros73a]. The formal definition is
as follows.

Definition 5.1. An atomic splittable congestion game G is defined by:

• a finite set of players: N = {1, . . . , n, . . . , N},

• a finite set of resources: T = {1, . . . , t, . . . , T},

• for each resource t, a cost function ct : R+ → R,

• for each player n, a set of feasible choices: Xn ⊂ RT
+, an element xn = (xn,t)t∈T ∈ Xn

signifies that n has demand xn,t for resource t,

• for each player n, an individual utility function un : Xn → R,

• a coupling constraint set A ⊂ RT .

We denote by X def
= X1 × · · · × XN the product set of action profiles. An action profile

x = (xn)n∈N ∈ X induces a profile of average demand for the resources, denoted by X =

(Xt)t∈T
def
= ( 1

N ∑n∈N xn,t)t∈T . We denote the set of feasible average demand profiles by:

X def
= {X ∈ RT : ∀n ∈ N , ∃xn ∈ Xn s.t. 1

N ∑n∈N xn = X} .

With the coupling constraint A, the set of feasible average demand profiles is X ∩ A, and
the set of feasible action profiles is denoted by:

X (A) = {x ∈ X : 1
N ∑n∈N xn ∈ X ∩A} .
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Let the vector of cost functions be denoted by c(X) = (ct(Xt))t∈T , where ct(Xt) is the
(per-unit of demand) cost of resource t when the average demand for it is Xt.

Player n’s cost function fn : Xn ×X → R is defined for each xn ∈ Xn and Y ∈ X by:

fn(xn, Y) = ∑t∈T xn,tct(Yt)− un(xn), . (5.1)

Given x−n ∈ ∏m 6=n Xm and X−n
def
=

1
N ∑m 6=n xm, player n’s cost is fn(xn, 1

N xn + X−n), com-
posed of the network costs and her individual utility.

This atomic congestion game with coupling constraints is written as the tuple:

G = (N , T ,X ,A, c, (un)n∈N ) .

Atomic splittable congestion games are particular cases of aggregative games [Pac+18]:
each player’s cost function depends on the actions of the others only through the average
profile X.

Remark 5.1. In this chapter, following [Pac+18], the dependency of cost functions in other players is
expressed through the average action X rather than the aggregate action X def

= ∑n∈N xn. Considering
a game with N fixed, the two formulations are equivalent, by a linear scaling of the cost functions.
However, the former formulation enables an intrinsic scaling of the game and of cost functions with
N, such that we can consider the limit N → ∞ and avoid diverging quantities.

In this chapter, we adopt the following standard assumptions:

Assumption 5.1.

i) For each player n ∈ N , the set Xn is a convex and compact subset of RT with nonempty relative
interior.

ii) For each resource t ∈ T , function ct is convex (hence continuous) and non-decreasing on
(−η,+∞) for a positive η > 0.

iii) For each player n ∈ N , individual utility function un is concave (hence continuous) in xn on
Xn.

iv) A is a convex closed set of RT , and X ∩A is not empty.

Example 5.1 (individual utility functions). A common example of utility function is the dis-
tance between a player’s choice and her preference yn ∈ Xn: un(xn) = −ωn ‖xn − yn‖

2,
where ωn > 0 is the value that the player attaches to her preference. Another common ex-
ample is un(xn) = ωn log (1 + ∑t xn,t), which measures the satisfaction of a player according
to the total demand she receives.

Finally, in congestion games, aggregate constraints are very common. For example, in
routing games, there can be a capacity constraint linked to each arc. In energy consumption
games, due to the operational constraints of the power grid, there can be both minimum
and maximum consumption level for each time slot, and ramp constraints on the variation
of energy consumption between time slots. This is why congestion games with aggregate
constraints are of particular interest.

To separate player n’s choice from those of the other players in her cost function, define

f̂n(xn, Y−n)
def
= fn(xn, Y−n +

1
N xn)

for xn ∈ Xn and Y−n ∈ X−n = { 1
N ∑m∈N\{n} xm : xm ∈ Xm, ∀m}.

Since c and un’s are not necessarily differentiable, let us define the subdifferential of the
players’ utilities w.r.t. their actions for the characterization of an equilibrium.
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Let us consider the two correspondences, Ĥ and H, from X to RNT : for any x ∈ X ,

Ĥ(x) def
= {(hn)n∈N ∈ RNT : hn ∈ ∂1 f̂n(xn, X−n), ∀n ∈ N}
= ∏n∈N ∂1 f̂n(xn, X−n) ;

H(x) def
= {(hn)n∈N ∈ RNT : hn ∈ ∂1 fn(xn, X), ∀n ∈ N}
= ∏n∈N ∂1 fn(xn, X) ,

where ∂1 signifies the partial differential w.r.t. the first variable of the function. The interpre-
tation of Ĥ(x) is clear: hn is a subgradient of player n’s utility function f̂n w.r.t. her action
xn. Let us leave the interpretation of H(x) until Definition 5.3. For the moment, let us write
the explicit expression of Ĥ and H:

Lemma 5.1. For each x ∈ X , we have:
• h ∈ Ĥ(x) if and only if there are g′n ∈ ∂(−un)(xn) and an ∈ ∏t∈T ∂ct(Xt) ∀n s.t.:

hn = c(X) + ( 1
N xn,t an,t)t∈T + g′n , ∀n ∈ N ;

• h′ ∈ H(x) if and only if there is g′n ∈ ∂(−un)(xn) ∀n s.t.:

h′n = c(X) + g′n , ∀n ∈ N .

where ∂(−un)(xn) is the subdifferential of convex function−un at xn and ∂ct(Xt) the subdifferential
of ct at Xt (w.r.t. Xt).

Proof. See Section 5.A.

In the presence of coupling constraints, the notion of Nash equilibrium (NE) [Nas50] is
replaced by the one of Generalized Nash Equilibrium (GNE). A profile x ∈ X (A) is a GNE
if, for each player n, f̂n(xn, X−n) 6 f̂n(yn, X−n) for all yn s.t. yn + X−n ∈ X ∩A. For atomic
games, a special class of GNE is called Variational Nash Equilibria (VNE) [Har91; KS12],
which enjoys some symmetric properties: in some sense, the burden of constraint X ∈ A
is shared symmetricaly by players (we refer to [Har91] for more details). VNEs, in the sub-
differentiable case, are characterized as the solution of generalized Variational Inequalities
(GVI) (5.2) stated below.

Definition 5.2 (Variational Nash Equilibrium (VNE), [Har91]). A VNE is a solution x̂ ∈
X (A) to the following GVI problem:

∃ g ∈ Ĥ(x̂) s.t.
〈
g, x− x̂

〉
> 0, ∀x ∈ X (A). (5.2)

In particular, if X ⊂ A, a VNE is an NE.

In this work, we adopt the notion of VNE as the equilibrium notion in the presence of
aggregate constraints.

As the first step of approximation, let us define a nonatomic congestion game G(A)′
associated to G(A). Let each player n be replaced by a continuum of identical nonatomic
players, represented by interval [0, 1] with each point thereon corresponding to a nonatomic
player. Each player in population n has action set Xn and individual utility function un.

Definition 5.3. A symmetrical variational Wardrop equilibrium (SVWE) of G(A)′ is a solution
x∗ ∈ X (A) to the GVI:

∃g ∈ H(x∗) s.t. 〈g, x− x∗〉 > 0, ∀x ∈ X (A) . (5.3)

For the definition of variational Wardrop equilibrium (VWE) and further discussion, we
refer to [JW18a]. In particular, a VWE is characterized by an infinite dimensional variational
inequality. Here, we consider only those VWE where all the nonatomic players in population
n take the same action xn. Such a SVWE exists because the players are identical in the same
population.
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Aside from the interpretation of each individual player as a population, a second inter-
pretation of SVWE is that, when the number of players is very large, the individual contri-
bution of each player on the aggregate action X is almost negligible, the term 1

N xn,t an,t in
h ∈ Ĥ(x) is so small that Ĥ(x) can be approximated by H(x) (cf. Lemma 5.1). This is the in-
terpretation adopted in [Pac+18]. However, a SVWE of G(A)′ is not an equilibrium of G(A)
in the sense of a “stable state” for the atomic congestion game, as the individual profile x∗n
affected to a player n at a SVWE does not necessarily minimize her cost function f̂n(., X−n).

The existence of equilibria defined in Definitions 5.2 and 5.3 are obtained under mild
assumptions:

Proposition 5.1 (Existence of equilibria). Under Assumption 5.1, G(A) (resp. G(A)′) admits a
VNE (resp. SVWE).

Proof. : We observe that f̂n(·, X−n) is convex on Xn for all X−n in X−n, fn(·, X) is convex on
Xn for all X ∈ X , and Ĥ and H are nonempty, convex, compact valued, upper hemicontin-
uous correspondences.

From [RW09, Proposition 8.7], we know that the subgradient mapping of a convex func-
tion is upper hemicontinuous. Thus, Ĥ and H are also upper hemicontinuous as linear
mappings of subgradients.

Then [CP82, Corollary 3.1] shows that the GVI problems (5.2) and (5.3) both admit a
solution on the finite dimensional convex compact X (A).

Before discussing the uniqueness of equilibria, let us recall some relevant definition of
monotonicity for correspondences:

Definition 5.4. A correspondence Γ : X ⇒ RT is:

i) monotone if for all x, y ∈ X , g ∈ Γ(x), h ∈ Γ(y):

∑n∈N 〈gn − hn, xn − yn〉 > 0 ; (5.4)

ii) strictly monotone if the equality in (5.4) holds iff x = y;

iii) aggregatively strictly monotone if the equality in (5.4) holds iff ∑n xn = ∑n yn;

iv) α-strongly monotone if α > 0 and, for all x, y ∈ X :

∑
n∈N
〈gn − hn, xn − yn〉>α‖x− y‖2, ∀g∈Γ(x), h∈Γ(y) ; (5.5)

v) β-aggregatively strongly monotone on X if β > 0 and, for all x, y ∈ X with X = 1
N ∑n xn,

Y = 1
N ∑n yn:

∑
n∈N
〈gn − hn, xn − yn〉>Nβ‖X − Y‖2, ∀g∈Γ(x), h∈Γ(y) . (5.6)

If T = 1, “monotone" corresponds to “increasing". Besides, (aggregatively) strict mono-
tonicity implies monotonicity, while strong (resp. aggregatively strong) monotonicity im-
plies strict (resp. aggregatively strict) monotonicity.

In Proposition 5.2 below, we recall some existing results concerning the uniqueness of
VNE and SVWE, according to the monotonicity of Ĥ and H:

Proposition 5.2 (Uniqueness of equilibria). Under Assumption 5.1:

i) if Ĥ (resp. H) is strictly monotone, then G(A) (resp. G(A)′) has a unique VNE (resp. SVWE);

ii) if Ĥ (resp. H) is aggregatively strictly monotone, then all VNE (resp. SVWE) of G(A) (resp.
G(A)′) have the same aggregate profile;

iii) in the absence of aggregative constraint, if Ĥ (resp. H) is aggregatively strictly monotone and,
for each n ∈ N , un(x) is strictly concave, then then G (resp. G ′) has a unique NE (resp. WE).
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Proof. We prove only the uniqueness of SVWE only as the proof for the uniqueness of VNE is
symmetric. Suppose that x, y ∈ X (A) are both SVWE, with X = 1

N ∑n xn and Y = 1
N ∑n yn.

According to the definition of SVWE, there is g ∈ H(x) an h ∈ H(y) such that:

∑n〈gn, yn − xn〉 > 0 and ∑n〈hn, xn − yn〉 > 0.

Adding up these two inequalities yields:

∑n〈gn − hn, yn − xn〉 > 0.

i) If H is strictly monotone, then ∑n〈gn − hn, xn − yn〉 = 0 and thus x = y.
ii-iii) If H is aggregatively strictly monotone, then ∑n〈gn− hn, xn− yn〉 = 0 and thus X = Y .
If there is no aggregative constraint and un is strictly concave, then xn (resp. yn) is the unique
minimizer of fn(·, X) (resp. fn(·, Y)). Since X = Y , one has xn = yn.

Proposition 5.3 below gives sufficient conditions for the (strong) monotonicity of H to
hold.

Proposition 5.3 (Monotonicity of H). Under Assumption 5.1,

i) H is monotone;

ii) if for each n∈N , un is αn-strongly concave, then H is α-strongly monotone with α def
= minn∈N αn;

iii) if for each t∈ T , ct is βt-strictly increasing, then H is β-aggregatively strongly monotone with
β def
= mint∈T βt.

Proof. See Section 5.B.

As opposed to the monotonicity of H shown in Proposition 5.3, Ĥ is rarely monotone
(except in some particular cases, e.g. with c linear [ORS93; RS07]): even in the case where c
is piece-wise linear, the Example 5.2 below shows that Ĥ can be non monotone.

Example 5.2. Let N = 2 and T = 1, X1 = X2 = [0, 4]. Consider the cost function c(X) = X
for X 6 4 and c(X) = 3X − 8 for X > 4. Assumption 5.1 holds. Consider the profiles
x1 = 3, x2 = 1 and y1 = 4, y2 = 0, then:

g def
= (c(4) + 3x1, c(4) + 3x2) ∈ Ĥ(x)

and h def
= (c(4) + y1, c(4) + y2) ∈ Ĥ(y) ,

but: ∑n∈{1,2}〈gn − hn, xn − yn〉 = −2 < 0 .

In view of Proposition 5.2, the absence of monotonicity of Ĥ can result in multiple VNEs:
we refer the reader to [Bha+09] for counter examples. In [Jac+19c], a particular case with
parallel arc network is shown to have a unique NE. In the next section, we shall prove that,
when the number of players is very large, even if we cannot ensure their uniqueness, all
VNEs are close to each other and, moreover, they are well approximated by an SVWE.

5.3 Approximating VNEs of a Large Game

5.3.1 Considering SVWE instead of VNE

The approximation of VNEs is done in two steps. The first step consists in replacing VNE by
SVWE. According to the second interpretation of SVWE, the SVWE should be close to the
VNEs in a large game. Now, let us formulate this idea and bound the distance between the
two.

Let us denote by X0 ⊂ RT
+ the convex closed hull of

⋃
n∈N Xn, and consider the radius:

R def
= max

x∈X0
max
t∈T
|xt| .
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Besides, let us denote the upper bound on the subgradients of c by:

C def
= sup{b ∈ R : b ∈ ∂ct(Xt), X ∈ X , t ∈ T } .

The first step of approximation is based upon the following theorem which gives an
upper bound on the distance between a VNE and an SVWE.

Theorem 5.1 (SVWE is close to VNE). Under Assumption 5.1, let x ∈ X (A) be a VNE of G(A)
and x∗ ∈ X (A) a SVWE of G(A)′, then:

i) if for each n ∈ N , un is a αn-strongly concave, then x∗ is unique and:

‖x− x∗‖ 6 RC
α

√
T
N

, with α def
= min

n∈N
αn; (5.7)

besides, 1
N ∑

n
‖xn − x∗n‖ 6 RC

α

√
T

N
and ‖X − X∗‖ 6 RC

α

√
T

N
; (5.8)

ii) if for each t ∈ T , ct is βt-strictly increasing, then X∗ is unique and:

‖X − X∗‖ 6 R
√

2TC
βN , with β def

= min
t∈T

βt . (5.9)

Proof. By (5.2), there are gn ∈ ∂1 f̂n(xn, X−n) and h∗n ∈ ∂1 fn(x∗n, X∗−n) for each n such that:

gn = c(X) + g′n + ( 1
N an,t xn,t)t and g def

= (gn)n ∈ Ĥ(x)

hn = c(X∗) + h′n and g def
= (gn)n ∈ H(x∗) ,

where g′n ∈ ∂(−un)(xn), h′n ∈ ∂(−un)(x∗n), an,t ∈ ∂ct(Xt) for all t, such that:〈
g, x∗ − x

〉
> 0 and

〈
h, x− x∗

〉
> 0 .

Summing up these two inequalities yields:

0 6 〈g− h, x∗ − x〉
=∑n〈c(X)− c(X∗), x∗n − xn〉+ ∑n〈g′n − h′n, x∗n − xn〉+ 1

N 〈(an,txn,t)n,t, x∗ − x〉 .

Therefore, rearranging the terms and using Cauchy-Schwartz inequality:

N〈c(X)− c(X∗), X − X∗〉+ ∑n〈g′n − h′n, xn − x∗n〉 6
∥∥∥ 1

N (an,txn,t)n,t

∥∥∥ ‖x∗ − x‖ . (5.10)

Besides, we have:∥∥∥ 1
N (an,txn,t)n,t

∥∥∥2
= 1

N2 ∑
n,t
(an,txn,t)

2 6 1
N2 NTC2R2 = 1

N TC2R2 (5.11)

i) Since c is monotone and so are ∂un’s because un’s are concave, we have:

〈c(X)− c(X∗), X − X∗〉 > 0 and ∑
n
〈g′n − h′n, xn − x∗n〉 > 0 .

If for each n, un’s are αn-strongly concave, then we obtain by using (5.10) and (5.11):

α ∑
n
‖xn − x∗n‖2 6∑

n
αn‖xn − x∗n‖2 6∑

n
〈g′n − h′n, xn − x∗n〉 6

√
T
N CR ‖x∗ − x‖
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so that we obtain the desired inequality ‖x − x∗‖ 6 RC
α

√
T
N . Besides, by Cauchy-Scharz

inequality, we have:

(∑
n
‖xn − x∗n‖)2 6 N ∑

n
‖xn − x∗n‖2 6 R2C2

α2 N
T
N

= R2C2

α2 T

which implies that 1
N ∑n ‖xn − x∗n‖ 6 RC

α

√
T

N . Similarly, we have:

N‖X − X∗‖ = ‖∑
n
(xn − x∗n)‖ 6

√
N‖x− x∗‖2 6 RC

α

√
T

hence ‖X − X∗‖ 6 RC
α

√
T

N .
ii) If for each t, ct is βt-strictly increasing, combining (5.10) and (5.11) and the bound ‖x−
x∗‖2 6 NT(2R)2, we obtain:

Nβ‖X − X∗‖2 6 N〈c(X)− c(X∗), X − X∗〉 6
√

T
N CR

√
NT(2R) = 2TCR2

thus ‖X − X∗‖ 6 R
√

2TC
Nβ .

Proposition 5.2 and Proposition 5.3 show that, in general, VNEs are not unique. However,
applying the triangle inequality to the results of Theorem 5.1, we can obtain upper bounds
on the distance between two VNEs when the set of players is large, as stated in Corollary 5.1
below.

Corollary 5.1 (VNEs are close to each other). Under Assumption 5.1, let x and y in X (A) be
two distinct VNEs of G(A). Then:

i) if for each n ∈ N , un is αn-strongly concave, then:

‖x− y‖ 6 2 RC
α

√
T
N

, with α def
= min

n∈N
αn;

besides, 1
N ∑

n
‖xn − yn‖ 6 2 RC

α

√
T

N
and ‖X − Y‖ 6 2 RC

α

√
T

N
;

ii) if for each t ∈ T , ct is βt-strictly increasing, then:

‖X − Y‖ 6 2R
√

2TC
βN , with β def

= min
t∈T

βt .

Theorem 5.1 shows that, if the number of players N is large, then the (aggregate) SVWE
will provide a good approximation of a (aggregate) VNE of G(A). Similar results are ob-
tained in [Pac+18] for the differentiable case. However, this does not reduce the dimension
of the GVI to resolve: the GVI characterizing the VNE and those characterizing the SVWE
have the same dimension. For this reason, the second step of approximation consists in
regrouping similar populations.

5.3.2 Classification of populations

In this subsection, we shall regroup the populations in G(A)′ with similar strategy sets Xn
and utility subgradients ∂(−un), into larger populations, endow them with a common strat-
egy set and a common utility function, so that the SVWE of this new population game ap-
proximates the SVWE of G(A)′. The similarity between sets is measured through the Haus-
dorff distance:

Definition 5.5. The Hausdorff distance between two sets X and Y is defined as:

dH(X ,Y) def
= max

(
max
x∈X

d(x,Y), max
y∈Y

d(y,X )
)

.
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At the SVWE of the new population game with a reduced dimension, all the nonatomic
players in the same population play the same action, by the definition of SVWE. Therefore,
in order for this new SVWE to well approximate the SVWE in G(A)′, we must ensure that
populations with similar characteristics in G(A)′ do play similar actions at the SVWE of
G(A)′. Proposition 5.4 formulates this results in the case without coupling constraint.

Let us define the compact set
M def

= [0, R + δ]T ,

where δ > maxn,m∈N dH(Xn,Xm). Without loss of generality, we assume that for each n ∈
N , un can be extended to a neighborhood ofM, and is bounded onM. Let us introduce the
notations for upper bounds:

Bun
def
= sup{‖g′n‖ : g′n ∈ ∂(−un)(xn), xn ∈ Xn}

and Bc
def
= sup{‖c(X)‖ : X ∈ X} .

Proposition 5.4. Under Assumption 5.1, let x∗ ∈ X be a SVWE of G ′(A) with A = RT (no
coupling constraint). For two populations n, m ∈ N , if un is αn-strongly concave, dH(Xn,Xm) 6 δ,
and supxm∈Xm

supg′m∈∂(−um)(xm) d(g′m, ∂(−un)(xm)) 6 d, then

‖x∗n − x∗m‖
2 6 1

αn

(
(Bun + Bum + 2Bc)d + 2δTR

)
.

Proof. : See Section 5.C.
In the case with coupling constraints, the proof for a similar result is more complicated,

and we leave it to Corollary 5.2.
Let us now present the regrouping procedure. Denote by G̃I (A) an auxiliary game, with

a set I of p populations. Each population i ∈ I corresponds to a subsetNi of populations in
the game G(A)′, such that

⋃
i∈I Ni = N and for any i, j ∈ I ,Ni ∩Nj = ∅, i.e (Ni)i∈I forms

a partition of N . Denote pi = |Ni| the number of original populations now included in i.
By abuse of notations, let i also denote the interval [0, pi], so that each nonatomic player in
population i is represented by a point θ ∈ [0, pi]. The common action set of each nonatomic
player in i is a compact convex subset of RT , denoted by Xi.

Each player θ in each population i having chosen action xθ , let

X def
=

1
N ∑

i∈I

∫
θ∈i

xθ dθ

denotes the aggregate action profile. The aggregate action-profile set in RT is then:

X I def
= { 1

N ∑i∈I
∫

θ∈i xθ dθ : xθ ∈ Xi, ∀θ ∈ i, ∀i ∈ I} .

The cost function of player θ in population i ∈ I is:

fi(xθ , X) def
= 〈xθ , c(X)〉 − ui(xθ),

where the common individual utility function ui for all the players in i is concave on a neigh-
borhood of Xi.

We are only interested in symmetric action profiles, i.e. where all the nonatomic players
in the same population i play the same action. Denote the set of symmetric action profiles
by X I = ∏i∈I Xi. Let us point out that a symmetric action profile happens as a specific
case in the non-cooperative game, without any coordination between the players within a
population. Besides, considering the coupling constraint X ∈ A, we define

X I (A) def
= {x ∈ X I : X = 1

N ∑
i∈I

pixi ∈ A} .

Let us introduce two indicators to “measure” the quality of the clustering of G̃I :
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• δ = maxi∈I δi, where
δi

def
= maxn∈Ni dH (Xn,Xi) , (5.12)

• d = maxi∈I di, where

di
def
= max

n∈Ni
sup
x∈Xi

dH (∂(−ui)(x), ∂(−un)(x)) . (5.13)

The quantity δi measures the heterogeneity in strategy sets of populations within the group
Ni, while di measures the heterogeneity in the subgradients in the group Ni.

Since the auxiliary game G̃I is to be used to compute an approximation of an equilibrium
of the large game G, the indicators δi and di should be minimized when defining G̃I . Thus,
we assume that (Xi)i and (ui)i are chosen such that the following holds:

Assumption 5.2. For each i ∈ I , we have:

i) Xi is in the convex hull of
⋃

n∈Ni
Xn, so that maxx∈Xi maxt∈T |xt| 6 R. Moreover, for each

n ∈ Ni, affXn ⊂ affXi, where aff S denotes the affine hull of set S;

ii) similarly, ui is such that ∂(−ui)(x) is contained in the convex hull of
⋃

n∈Ni
∂(−un)(x) for all

x ∈ Xi, so that ‖∂(−ui)‖∞ 6 maxn∈Ni Bun .

An interesting case in the perspective of minimizing the quantities δ and d is when N
can be divided into homogeneous populations, as in Example 5.3 below.

Example 5.3. The player set N can be divided into a small number p of subsets (Ni)16i6p,
with homogeneous players inside each subset Ni (i.e., for each i and n, m ∈ Ni, Xn = Xm
and un = um). In that case, consider an auxiliary game G̃I with i populations and, for each
i ∈ I and n ∈ Ni, Xi

def
= Xn and ui

def
= un. Then, δ = d = 0.

In order to approximate the SVWE of G(A)′ by the SVWE of an auxiliary game G̃I , let us
first state the following result on the geometry of the action sets for technical use.

Lemma 5.2. Under Assumption 5.1, there exists a strictly positive constant ρ and an action profile
z ∈ X (A) such that, d(zn, rbd Xn) > ρ for all n ∈ N , where rbd stands for the relative boundary.

Proof. See App. 5.D.

Lemma 5.2 ensures the existence of a profile z such that zn has uniform distance to the
relative boundary of Xn for all n and that z satisfies the coupling constraint.

Recall that we are only considering the symmetric action profiles in population games
G(A)′ and G̃I (A). Given a symmetric action profile xI ∈ X I (A) in the auxiliary game
G̃I (A), we can define a corresponding symmetric action profile of G(A)′ such that all the
nonatomic players in the populations regrouped inNi play the same action xIi . (It is allowed
that xIi be not in Xn. Recall that we can extend un to a neighborhood ofM such that un is
bounded onM). Formally, we define the map ψ : RpT → RNT :

∀xI∈RpT , ψ(xI )=(xn)n∈N where xn=xIi , ∀n ∈ Ni .

Conversely, for a symmetric action profile x in G(A)′, we define a corresponding symmetric
action profile in the auxiliary game G̃I (A) by the following map ψ : RNT → RpT :

∀x∈RNT , ψ(x)=(xIi )i∈I where xIi =
1
pi

∑n∈Ni
xn.

Theorem 5.2 below is the main result of this subsection. It gives an upper bound on the
distance between the SVWE of the population game G(A)′, which has the same dimension
as the original atomic game G(A), and that of an auxiliary game G̃I (A), which has a reduced
dimension.
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Theorem 5.2 (SVWE of G̃I (A) is close to SVWE of G(A)′). Under Assumptions 5.1 and 5.2, in
an auxiliary game G̃I (A), δ and d are defined by Equations (5.12) and (5.13), with δ < ρ

2 . Let x be
a SVWE of G̃I (A), and x∗ a SVWE of G(A)′. Then:

i) if H is strongly monotone with modulus α, then both x and x∗ are unique and

‖ψ(x)− x∗‖ 6
√

N
K(δ,d)

α ; (5.14)

besides 1
N ∑

n
‖ψn(x)− x∗n‖ 6

√
K(δ,d)

α and
∥∥∥X − X∗

∥∥∥ 6√K(δ,d)
α ; (5.15)

ii) if H is aggregatively strongly monotone with modulus β, then both X = 1
N ∑i∈I xi and X∗ =

1
N ∑n∈N x∗n are unique, and ∥∥∥X − X∗

∥∥∥ 6√K(δ,d)
β , (5.16)

where K(δ, d) −→
δ,d→0

0 is a quantity defined as:

K(δ, d) def
= 2TR

(
3 Lf

ρ δ + d
)

with Lf
def
= Bc + max

n∈N
Bun . (5.17)

Proof. See App. 5.E.

Remark 5.2. One can observe in Theorem 5.2 that the bound (5.14) given on the individual profiles
diverges with the number of players N. This is a consequence of the fact that individual errors,
‖xn − x∗i ‖ for each n within a population Ni, may accumulate, which is captured by the euclidean
norm, as ‖1N‖ =

√
N.

We have pointed out that the approximation error depends on how the populations are
clustered according to I , and is related to the heterogeneity of players inN rather than their
number. In particular, in the case of Example 5.3, Theorem 5.2 states that the (aggregate)
SVWE of the auxiliary game G̃I (A) is exactly equal to the (aggregate) SVWE of the large
game G(A)′.

A direct corollary of Theorem 5.2-(1) is that two populations in G(A)′ with similar char-
acteristics have similar behavior at a SVWE there. This is the extension of Proposition 5.4 in
the presence of coupling constraints.

Corollary 5.2. Let x∗ ∈ X be a SVWE of game G(A)′. Under Assumption 5.1, for two populations
n and m in N , if dH(Xn,Xm) 6 δ, supx∈M/p dH(∂(−um)(x), ∂(−un)(x)) 6 d, and un (resp.
um) is αn- (resp. αm-)strongly concave, then

‖x∗n − x∗m‖ 6
(

1√
αn

+ 1√
αm

)
K (δ, d)1/2 .

5.3.3 Combining the two steps to approximate a VNE of G(A)
The following theorem is the main result of the chapter, which is immediately obtained as
the combination of the two steps of approximation given in Theorem 5.1 and in Theorem 5.2
in the computation of a VNE of the original game G(A).

Corollary 5.3 (SVWE of G̃I (A) is close to VNEs of G(A)). Under Assumptions 5.1 and 5.2, in
an auxiliary game G̃I (A), δ and d are defined by Equations (6.12) and (6.13), with δ < ρ

2 . Let x∗

be a SVWE of G̃I (A), x̂ ∈ X (A) be a VNE of G(A), X∗ = 1
N ∑i∈I pix∗i , X∧ = 1

N ∑n∈N x̂n, and
K(δ, d) the constant given by (5.17).
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i) if un is αn-strongly concave for each n ∈ N , with α def
= minn αn, then x∗ is unique and

‖ψ(x∗)− x̂‖ 6 RC
α

√
T
N +

√
N

K(δ,d)
α

1
N ∑

n
‖ψn(x∗)− x̂n‖ 6 RC

α

√
T

N +

√
K(δ,d)

α ,

∥∥∥X∧ − X∗
∥∥∥ 6 RC

α

√
T

N +

√
K(δ,d)

α ;

ii) if ct is βt-strictly increasing for each t ∈ T , with β def
= mint βt, then X∧ is unique and

∥∥∥X∧ − X∗
∥∥∥ 6 R

√
2TC
Nβ +

√
K(δ,d)

β .

Given the large game G(A) and a certain p ∈ N∗, Corollary 5.3 suggests that we should
find the auxiliary game G̃I with I = {1, . . . , p} that minimizes K(δ, d) in order to have
the best possible approximation of the equilibria. This would correspond to a “clustering
problem” given as follows:

min
(Ni)i∈P p(N )

min
(Xi)i

min
(ui)i

K(δ, d), (5.18)

where P p(N ) denotes the set of all partitions of N of cardinal p, while (Xi)i and (ui)i are
chosen according to Assumption 5.2.

The value of the optimal solutions of problem (5.18), and thus of the quality of the ap-
proximation in Corollary 5.3, depends on the homogeneity of the N players in N in terms
of action sets and utility functions. The “ideal” case is given in Example 5.3 where N is
composed of a small number p of homogeneous populations and thus K(δ, d) = 0.

In general, solving (5.18) is a hard problem in itself. It is indeed a generalization of the
k-means clustering problem [Llo82] (with k = p and considering a function of Hausdorff
distances), which is itself NP-hard [GJW82]. In Section 5.4, we illustrate how we use directly
the k-means algorithm to compute efficiently an approximate solution (Ni,Xi, ui)i∈I in the
parametric case.

Finally, the number p in the definition of the auxiliary game should be chosen a priori as
a trade-off between the minimization of K(δ, d) and a sufficient minimization of the dimen-
sion. Indeed, with I = N , Xn = Xi and ui = un, we get d = δ = 0. However, the aim
of Corollary 5.3 is to find an auxiliary game G̃I with p � N so that the dimension of the
GVIs characterizing the equilibria (and thus the time needed to compute their solutions) is
significantly reduced, while ensuring a relatively small error, measured by d and δ.

5.4 Application to Demand Response and Electricity Flexi-
bilities

Demand response (DR) [IA09] refers to a set of techniques to influence, control or optimize
the electric consumption of agents in order to provide some services to the grid, e.g. reduce
production costs and CO2 emissions or avoid congestion [Jac+19c]. The increasing number
of electric vehicles (EV) offers a new source of flexibility in the optimization of the produc-
tion and demand, as electric vehicles require a huge amount of energy and present suffi-
ciently flexible charging schemes (the EV can be charged whenever it is parked). Because
of the privacy of each consumer or EV owner’s information and the decentralized aspects
of the DR problem, many relevant works adopt a game theoretical approach by considering
consumers as players minimizing a cost function and an utility [Saa+12].

In this section, we consider the consumption associated to electric vehicle charging on a
set of 24-hour time-periods T = {1, . . . , T}, with T = 24, indexing the hours from 10 PM to
9PM the day after (including the night time periods where EVs are usually parked at home).
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5.4.1 Price functions: block rates energy prices

As in the framework described in [Jac+19c], we consider a centralized entity, called the ag-
gregator, who manages the aggregate flexible consumption. The aggregator interacts with
the electricity market and energy producers, with his own objectives such as minimizing his
cost or achieving a target aggregate demand profile.

The aggregator imposes electricity prices on each time-period. We consider that prices
take the specific form of inclining block-rates tariffs (IBR tariffs, [WP17]), i.e. a piece-wise
affine function c(·) which depends on the aggregate demand at time period t, that is, Xt =
∑n∈N xn,t , and is defined as follows:

c(X) = 1 + 0.1X if X 6 500
c(X) = −49 + 0.2X if 500 6 X 6 1000
c(X) = −349 + 0.5X if 1000 6 X .

(5.19)

This function c is continuous and convex. Those price functions are transmitted by the ag-
gregator to each consumer or EV owner. Thus, each consumer n minimizes, with respect to
her decision variable xn, a cost function of the form (5.1) with an energy cost determined by
(5.19) and a utility function un defined below. An equilibrium gives a stable situation where
each consumer minimizes her objective and has no interest to deviate from her current con-
sumption profile.

5.4.2 Consumers’ constraints and parameters

We simulate the consumption of N = 2000 consumers who have demand constraints of the
form:

Xn
def
= {xn ∈ RT

+ : ∑t xn,t=En and xn,t 6 xn,t 6 xn,t} (5.20)

where En is the total energy needed by n, and xn,t, xn,t the (physical) bounds on the power
allowed to her at time t. The utility functions have the form

un(xn)
def
= −ωn ‖xn − yn‖

2 .

The parameters are chosen as follows:

• En is drawn uniformly between 1 and 30 kWh, which corresponds to a typical charge
of a residential electric vehicle.

• xn, xn: First, we generate, in two steps, a continual set of charging time-periods Tn =
{hn − τn

2 , . . . , hn +
τn
2 };

– the duration τn is uniformly drawn from {4, . . . , T};
– hn is then uniformly drawn from {1 + τn

2 , . . . , T − τn
2 }.

Next, for t /∈ Tn, let xn,t = xn,t = 0.
Finally, for t ∈ Tn, xn,t (resp. xn,t) is drawn uniformly from [0, En

τn
] (resp. [ En

τn
, En]).

• ωn is drawn uniformly from [1, 10].

• yn,t is taken equal to xn,t on the first time periods of Tn (first available time periods) un-
til reaching En (which corresponds to a profile “the sooner the better” or “plug and charge”).

5.4.3 Coupling constraints on capacities and limited variations

We consider the following coupling constraints on the aggregate demand X which are often
encountered in energy applications:

−50 6 XT − X1 6 50 (5.21)
Xt 6 1400, ∀t ∈ T (5.22)
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Here, constraint (5.21) imposes that the demand XT at the very end of the time horizon is
relatively close to the first aggregate X1, so that the demand response profiles computed for
the finite time set T can be applied on a day-to-day, periodical basis.

Constraint (5.22) is a capacity constraint, induced by the maximal capacity of the elec-
trical lines or by the generation capacities of electricity producers. These linear coupling
constraints can be written in the closed form:

AX 6 b , (5.23)

where A is a real matrix of size (T + 2)× T and b ∈ RT+2.

5.4.4 Computing populations with k-means

Since N is very large, determining an exact VNE is computationally demanding. Thus, we
apply the clustering procedure described in Section 5.3.2 to regroup the players.

We use the k-means algorithm [Llo82], where “k”= p is the number of populations
(groups) to replace the large set of N players. For each player n ∈ N , we define her para-
metric description vector:

vn = [ωn, yn, En, xn, xn] ∈ R3T+2 . (5.24)

Then, the k-means algorithm finds an approximate solution of finding a partition (Si)16i6p
of N into p clusters. The algorithm solves the combinatorial minimization problem:

min
S1,...,Sp

∑
16i6p

∑
v∈Si

∥∥ESi(v)− v
∥∥2

= min
S1,...,Sp

∑
16i6p
|Si|Var(Si),

where ESi (v) = 1
|Si | ∑n∈Si

vn denotes the average value of v over the set Si. These average
values are taken to be wi, yi, Ei, xi and xi.

The simulations are run with different population numbers, with p � N chosen among
{5, 10, 20, 50, 100}.

Since the k-means algorithm minimizes the squared distance of the average vector of
parameters in Si to the vectors of parameters of the points in Si, the clustered populations
obtained can be sub-optimal in terms of K(δ, d). As explained above, choosing the optimal
populations I , as formulated in problem (5.18), is a complex problem in itself which de-
serves further research. Our example shows that the k-means algorithm gives a practical
and efficient way to compute a heuristic solution in the case where un and Xn are parame-
terized.

5.4.5 Computation methods

We compute a VNE (Definition 5.2) with the original set of N players and the approximating
SVWE (Definition 5.3) as solutions of the associated GVI (5.2).

However, to our limited knowledge and outside of the strongly monotone case [Coh88]
and the maximal monotone case [AT09], there is no convergence result on a simple algorithm
that would find the solution of a monotone GVI.

For our example, we employ a projection descent algorithm, as exposed in [Pac+18, Algo.
2] in the differentiable case, adapted in Algorithm 5.1 to the subdifferentiable case. In partic-
ular, the fixed step τ used in [Pac+18] is replaced by a variable step τ(k) = 1/k, in the spirit
of subgradient algorithms (e.g. [Coh88; AT09]).

The principle of this algorithm is to relax the coupling constraint (5.23) and to consider
the Lagrangian multipliers λ ∈ RT+2

+ associated to these constraints as extra variables, and
to consider the extended operator T : X I ×RT+2

+ ⇒ RIT ×RT+2 defined as:

T(x, λ) =

((
∂1 fi(xi, X) + λ>A

)
i∈I

−(AX − b)

)
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on which we can apply a projected subgradient algorithm. The advantage is that we can
perform the projections on the sets (Xn)n∈N and on RT+2

+ as shown below:

Algorithm 5.1 Projected Descent Algorithm

Require: x(0), λ(0), stopping criterion
1: k← 0
2: while stopping criterion not true do
3: for i = 1 to p do
4: take g(k)i ∈ ∂1 fi(x(k)i , X(k))

5: x(k+1)
i ← PXi

(
x(k)i − τ(k)(g(k)i + λ(k)>A)

)
6: done
7: λ(k+1)←

(
λ(k)−τ(k)(b− 2AX(k+1) + AX(k))

)+
8: k← k + 1
9: done

The stopping criterion that we adopt here is the distance between two iterates: the al-
gorithm stops when ‖(λ(k+1), x(k+1))− (λ(k), x(k))‖2 6 10−3. Although the algorithm con-
verges for this criterion in practice in our numerical experiments, the general convergence of
Algorithm 5.1 is not proven theoretically. Proving the convergence of a projected subgradi-
ent algorithm for a general game, under Assumption 5.1 and assuming x 7→

(
∂1 fi(xi, X)

)
i∈I

to be (strongly) monotone, is out of the scope of this work, but would constitute an interest-
ing path for further research.

Due to the form of the strategy sets considered (5.20), the projection steps (Line 5) can
be computed efficiently and exactly in O(T) with the Brucker algorithm [Bru84]. However,
if we consider more general strategy sets (arbitrary convex sets), this projection step can be
costly: in that case, other algorithms such as [Fuk86] would be more efficient.

5.4.6 A trade-off between precision and computation time

FIGURE 5.1: Convergence of the aggregate SVWE profile of auxiliary games
to a VNE profile of the original game.

Simulations were run using Python on a single core Intel Xeon @3.4Ghz and 16GB of
RAM.

Figure 5.1 shows the different aggregate SVWE profiles X∗I obtained for sets I of differ-
ent sizes, as well as a VNE of the original game for comparison. Thanks to the specific form
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of the strategy sets (5.20)—which enables a fast projection—we are able to compute a VNE
(and the corresponding aggregate profile X∧) of the original game with N = 2000 players.

FIGURE 5.2: (a) Relative error to actual VNE ; (b) Time to compute SVWE.
The time needed to compute SVWE (b) increases roughly linearly with N, at a faster

rate than the error on the approximation of the VNE decreases (a).

Figure 5.2.a and Figure 5.2.b show the two main metrics to consider to choose a relevant
number of populations N: the precision of the SVWE approximating the equilibrium (mea-
sured by the relative distance of the aggregate SVWE profile X∗ to the aggregate VNE profile
X∧ computed along, ‖X∗ − X∧‖ / ‖X∗‖), and the CPU time needed to compute the SVWE.

First notice on Figure 5.2.a that the distance between the aggregate equilibrium profile
and its estimation decreases with N at a sublinear rate. This is partially explained in light of
Theorem 5.2 and in addition with the following remarks:

• the Hausdorff distance of two parameterized polyhedral sets is Lipschitz continuous
w.r.t their parameter vectors (see Theorem 5.3 in App. 5.F), which ensures that there is K > 0
s.t. for all n:

δIi = max
n∈Ni

dH

(
Xn,X Ii

)
6 K max

n∈Ni

∥∥∥∥∥∥
Ei

xi
xi

−
En

xn
xi

∥∥∥∥∥∥ ;

• similarly, as subgradients of utility functions are reduced to a point, one has, for all n:

di = max
n∈

max
x∈M

2 ‖ωi(x− yi)−ωn(x− yn)‖

= O
(

max
n∈Ni
|ωi −ωn|+ ‖yi − yn‖

)
.

Figure 5.2.b shows the CPU time needed to compute the SVWE with our stopping cri-
terion. Computing a solution of the clustering problem with the k-means algorithm takes,
for each value of N, less than ten seconds. This time is negligible in comparison to the time
needed for convergence of Algorithm 5.1.

As a reference time, to compute a VNE of the original game (observed on Figure 5.1) with
the same stopping criterion and the same CPU configuration, 3 hours and 26 minuteswe
were needed, more than six times as long as the CPU time to compute the SVWE with one
hundred populations.

On this figure, we see that the CPU time evolves linearly with the number of populations
p. This is explained by the structure of Algorithm 5.1, as each iteration k is executed in a
time proportional to p due to the for loop.
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Last, one observes from Figure 5.2.a that, in our example, the error between the aggregate
demand profile at equilibrium and its approximation is between 2% and 5%, which remains
significant. However, as pointed out in Section 5.3, the quality of the approximation depends
on the heterogeneity of the set of playersN . In the example of this section, as the parameters
are drawn uniformly (see Section 5.4.2), the set of playersN presents a large variance so that
it is a “worst” case (as opposed to the case of Example 5.3 which offers an optimal situation).

5.5 Conclusion

This chapter shows that equilibria in splittable congestion games with a very large number of
atomic players can be approximately computed with a Wardrop equilibrium of an auxiliary
population game of smaller dimension. Our results give explicit bounds on the distance of
this approximating equilibrium to the equilibria of the original large game. These theoretical
results can be used in practice to solve by an iterative method, complex nonconvex bilevel
programs where the lower level is the equilibrium of a large congestion game, for instance, to
optimize tariffs or tolls for the operator of a network. A detailed analysis of such a procedure
would constitute an interesting extension of the present work.

Appendix

5.A Proof of Lemma 5.1: Expressions of Subgradients

Recall that f̂n(xn, X−n)
def
= fn(xn, X−n +

1
N xn). According to [BC11, Proposition 16.6]:

∂ f̂n(xn, X−n) ⊂ {(IT , IT)g : g ∈ ∂ψn(xn)},

with IT the identity matrix of size T, and where ∂ψn(xn) is the subdifferential of ψn(·) def
=

fn(·, X−n +
1
N ·), at xn. On the other hand, according to [BC11, Proposition 16.7], ∂ψn(xn) is

a subset of: {
(gn,1, gn,2) :gn,1 ∈ ∂1 fn(wn, Y)|

wn=xn ,Y=X−n+
1
N xn

,

gn,2 ∈ ∂2 fn(wn, Y)|
wn=xn ,Y=X−n+

1
N xn

}
.

Therefore, ∂1 f̂n(xn, X−n) is a subset of:

{c(X)+g′n,1+ gn,2 : g′n,1∈∂(−un)(xn), gn,2∈∂2 fn(xn, X)}
= {c(X) + g′n,1 + ( 1

N an,t xn,t)t : g′n,1 ∈ ∂(−un)(xn), an,t ∈ ∂ct(Xt) ∀t ∈ T} .

By the definition of subdifferential, it is easy to show that:{
c(X) + g′n,1+ ( 1

N an,txn,t)t : g′n,1∈ ∂(−un)(xn), an,t∈ ∂ct(Xt) ∀t∈T
}
⊂ ∂1 f̂n(xn, X−n) .

The proof for ∂1 fn(xn, X) is similar.

5.B Proof of Proposition 5.3: monotonicity of H

i) Let x, y ∈ X and X = 1
N ∑n xn, Y = 1

N ∑n yn. Recall that

∂1 fn(xn, X) = {c(X) + gn : g ∈ ∂(−un)(xn)} ,

∂1 fn(yn, Y) = {c(Y) + hn : h ∈ ∂(−un)(yn)} .
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Let gn ∈ ∂(−un)(xn) and hn ∈ ∂(−un)(yn). One has 〈gn − hn, xn − yn〉 > 0 because un is
concave so that ∂(−un) is monotone on Xn. Then we get:

∑n〈(c(X) + gn)− (c(Y)− hn), xn − yn〉
=N〈c(X)− c(Y), X − Y〉+ ∑n〈gn(xn)− hn(yn), xn − yn〉 > 0

because c is monotone. Hence H is monotone.
ii) By the definition of αn-strong concavity:

∑n〈gn(xn)− hn(yn), xn − yn〉 > ∑n αn‖xn−yn‖2 > α‖x−y‖2 ,

hence H is α-strongly monotone.
iii) By the definition of βt-strictly increasing:

N〈c(X)− c(Y), X − Y〉 = N ∑t∈T 〈ct(Xt)− ct(Yt), Xt −Yt〉
> N ∑t βt‖Xt −Yt‖2 > Nβ‖X − Y‖2 ,

hence H is β-aggregatively strongly monotone.

5.C Proof of Proposition 5.4: SWE profiles for similar players

Let g′n(x∗n) ∈ ∂(−un)(x∗n) be s.t., for all xn ∈ Xn, 〈c(X∗) + g′n(x∗n), x∗n − xn〉 6 0. Let
h′n(x∗m) ∈ ∂(−un)(x∗m) be such that ‖h′n(x∗m)− g′m(x∗m)‖ 6 d. Then, by the strong concavity
of un:

αn ‖x∗n − x∗m‖
2 6 〈g′n(x∗n)− h′n(x∗m), x∗n − x∗m〉
=〈g′n(x∗n)− g′m(x∗m) + g′m(x∗m)− h′n(x∗m), x∗n − x∗m〉
6〈g′n(x∗n)− g′m(x∗m), x∗n − x∗m〉+ 2dTR .

Making use of the inequalities on g′n(x∗n) and g′m(x∗m), we obtain that this is equal to:

〈g′n(x∗n)+c(X∗), x∗n−x∗m〉+ 〈g′m(x∗m)+c(X∗), x∗m−x∗n〉+2dTR

=〈g′n(x∗n) + c(X∗), x∗n − Pn(x∗m) + Pn(x∗m)− x∗m〉
+ 〈g′m(x∗m) + c(X∗), x∗m − Pm(x∗n) + Pm(x∗n)− x∗n〉+ 2dTR

6〈g′n(x∗n) + c(X∗), Pn(x∗m)− x∗m〉+ 〈g′m(x∗m) + c(X∗), Pm(x∗n)− x∗n〉+ 2dTR
6(Bun + Bum + 2Bc)δ + 2dTR .

where Pn (resp. Pm) is the projector on Xn (resp. Xm).

5.D Proof of Lemma 5.2: Existence of interior profile

Let x̌ ∈ X be s.t. for all n, d(x̌n, rbd Xn) = maxx∈Xn d(x, rbd Xn)
def
= ηn. Denote ¯̌X =

1
N ∑n x̌n and η = minn ηn > 0.

Let y ∈ X (A) and Y = 1
N ∑n yn be such that

d(Y , rbd A) = maxX∈X∩A d(X, rbd A) .

Let us denote t = d(Y , rbd A)/3TR and let us define z = y− t(y− x̌) ∈ X and Z = 1
N ∑n zn.

We obtain:
‖Y − Z‖ = t‖Y − ¯̌X‖ 6 t2TR 6 2

3 d(Y , rbd A) ,
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hence Z ∈ X ∩ ri A, where ri means the relative interior. Besides, for any n, zn = yn −
t(yn − x̌n). Since d(x̌n, rbd Xn) > η, yn ∈ Xn, and Xn is convex, we have:

d(zn, rbd Xn) > ηt = η
3TR d(Y , rbd A) .

Finally, define ρ def
=

η
3TR d(Y , rbd A) to obtain the desired result.

5.E Proof of Theorem 5.2: approximation of SVWE

Lemma 5.3.

i) For each i ∈ I and x ∈ Xi, if d(x, rbd Xi) > δi, then x ∈ Xn for each n ∈ Ni.

ii) For each i ∈ I , n ∈ Ni and x ∈ Xn, if d(x, rbd Xn) > δi, then x ∈ Xi.

Proof of Lemma 5.3. i) Suppose x /∈ Xn. Let y def
= PXn(x) 6= x. As y ∈ affXn ⊂ affXi, then

x− y ∈ affXi. Let z def
= x + δi

x−y
‖x−y‖ . Then, z ∈ Xi because ‖z− x‖ 6 δi. By the convexity of

Xn and the definition of y, we have d(z,Xn) = d(x,Xn) + δi > δi, contradicting the fact that
δi > dH(Xn,Xi). The proof of ii) is symmetric.

Lemma 5.4. Under Assumption 5.1, if δ < ρ
2 , then:

i) for each x ∈ X I (A), there is w ∈ X (A) such that ‖wn − ψn(x)‖ 6 4TR δ
ρ for each n ∈ N ;

ii) for each x ∈ X (A), there is w ∈ X I (A) such that ‖wi − ψi(x)‖ 6 2TRNi
δ
ρ for each i ∈ I .

Proof of Lemma 5.4.
i) For x ∈ X I (A), define w ∈ X as follows: ∀i ∈ I , ∀n ∈ Ni, let wn

def
= xi + t(zn − xi) where

z is defined in Lemma 5.2, with t def
= 2δ/ρ < 1. On the one hand:

∀i ∈ I , ∀n ∈ Ni, d(zn, rbd Xi) > ρ− δ

implies d(wn, rbd Xi) > t(ρ− δ) > tρ/2 = δ ,

because each point in the ball with radius t(ρ− δ) centered at wn is on the segment linking
xi and some point in the ball with radius ρ− δ centered at zn which is contained in Xn.

Thus, wn ∈ Xn ∀n ∈ Ni according to Lemma 5.3.i). On the other hand, the linear map-
ping S : RIT 3 v 7→ 1

N ∑n∈N vn maps the segment linking ψ(x) and z inX (A) to a segment
linking X = 1

N ∑i Nixi and Z in the convex A. Hence, we get:

1
N ∑n∈N wn = tZ + (1− t)X ∈ A

as well. Therefore, w ∈ X (A). Finally, ‖wn − ψn(x)‖ = t‖zn − ψn(x)‖ 6 t2TR = 4TR δ
ρ .

ii) For x ∈ X (A), let y def
= x + t(z− x) with t def

=
δ
ρ . Then, by similar arguments as above,

d(yn, rbd Xn) > δ hence yn ∈ Xi and ψ(y) ∈ X I . Besides, from the convexity of A, we
have:

1
N ∑n yn = tZ + (1− t)( 1

N ∑n xn) ∈ A .

Hence w def
= ψ(y) ∈ X I (A). Finally, ‖wi − ψi(x)‖ = t‖∑n∈Ni

(zn − xn)‖ 6 2TRNi
δ
ρ .

Let w ∈ X (A) be s.t. ∀n ∈ N , ‖wn − ψn(x)‖ 6 4TRδ/ρ (cf. Lemma 5.4). Since x∗ is a
SVWE in G(A)′, for each n ∈ N there is g′n ∈ ∂(−un)(x∗n) s.t.:

∑n〈c(X∗) + g′n, x∗n −wn〉 6 0 .

Secondly, since x is a SVWE in G̃(A), then for each i ∈ I there is h′i ∈ ∂(−ui)(xi) s.t.:

∑i Ni〈c(X) + h′i, xi − yi〉 6 0 ,
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for all y ∈ X I (A). Thirdly, ∀i, ∀n ∈ Ni, by the definition of dn, there is r′n ∈ ∂(−un)(xi) such
that ‖r′n − h′i‖ 6 dn.

The above results and |x̂i,t| 6 R, ∀i, ∀t imply:

N〈c(X∗)− c(X), X∗ − X〉+ ∑n
〈
g′n − r′n, x∗n − xi

〉
= N〈c(X∗)− c(X), X∗ − X〉+ ∑i,n∈Ni

〈g′n − r′n, x∗n − xi〉

=∑i,n∈Ni

[
〈c(X∗)+g′n, x∗n−wn〉+〈c(X∗)+g′n, wn−xi〉

]
+ ∑i,n∈Ni

[
〈r′n−h′i, xi−x∗n〉+〈c(X)+h′i, xi−x∗n〉

]
6 0+∑i,n∈Ni

∥∥∥c(X∗) + g′n
∥∥∥ ‖wn−xi‖+ ∑i,n∈Ni

‖r′n−h′i‖ ‖xi−x∗n‖+ J

6 Lf 4TNR δ
ρ + 2TNRd + J (5.25)

where J def
= ∑i,n∈Ni

〈
c(X) + h′i, xi − x∗n

〉
. Next, for the SVWE x∗ ∈ X (A), let y ∈ X I (A) be

s.t. ∀i, ‖yi − ψi(x∗)‖I 6 2TRNiδ/ρ (cf. Lemma 5.4). Then we obtain:

J = ∑i∈I
〈
c(X) + h′i, xi − ψi(x∗)

〉
= ∑i∈I

〈
c(X) + h′i, xi − yi

〉
+ ∑i∈I

〈
c(X) + h′i, yi − ψi(x∗)

〉
6 0 + ∑i∈I Lf‖ψi(x∗)− yi‖

6 Lf 2 TNR δ
ρ , (5.26)

Let us summarize by combining (5.25) and (5.26), to get:

N〈c(X∗)− c(X), X∗ − X〉+ ∑n〈g′n − r′n, x∗n − xi〉 6 2TNR
(

3 Lf
ρ δ + d

)
.

Hence, if H is strongly monotone with modulus α, then

α ‖ψ(x)−x∗‖2 6 ∑n〈g′n − r′n, x∗n − xi〉 6 2TNR
(
3 Lf

ρ δ + d
)

;

and the other two inequalities can be proved as (5.8) and (5.9). If H is aggregatively strongly
monotone with modulus β, then

Nβ‖X̄ − X∗‖2 6 N〈c(X∗)− c(X), X∗ − X〉 6 2TNR
(
3 Lf

ρ δ + d
)

.

5.F Bounding the perturbation of parameterized polyhedra

Let us consider a parameterized family of polytopes (Λb)b∈B given by the generic form:

Λb , {x ∈ RT | Ax 6 b},

where A is a p× T real constant matrix, with p ∈N∗, T ∈N∗, and b ∈ B is a p-dimensional
real vector, and B ⊂ Rp is (possibly) infinite arbitrary set.

In particular, Λb is a convex and compact subset of RT .
This situation corresponds for instance to the heterogeneous action sets of atomic or non-

atomic players, decribed by the parameter b, as given in the example of electricity consumers
(6.22). In this example, b would represent the parameters of energy demand and lower and
upper bounds on the energy power needed at each time period.

Let us make the following practical assumption:
Assumption 5.3. The parameter vector b defining Λb lies in a compact set B such that Λθ is a
nonempty polytope, that is:

∀b ∈ B, Λ(b) def
= {x : Ax 6 b} 6= ∅ .
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When parameter vectors b and b′ ∈ B are close to each other, we expect that the corre-
sponding polytopes Λb, Λb′ not to differ too much. This appendix quantify and proves this
idea using the Hausdorff distance dH between sets, as stated in Theorem 5.3 given below.

Theorem 5.3. The Hausdorff distance between polyhedra Λb, b ∈ B, is linearly bounded: that is,
there exists a constant D > 0 such that:

∀b, b′ ∈ B, dH(Λb, Λb′) 6 D‖b− b′‖ .

Proof. The proof follows in several parts [Bat87], but we extend the result on the compact set
B, and drop the irredundance assumption made in [Bat87].

For each b ∈ B, let V(b) denotes the set of vertices of polyhedron Λb. Under Assump-
tion 5.3, V(b) is nonempty for any b ∈ B.

First, as Λb is a polyhedron, we have Λb = conv(V(b)) where conv(X ) is the convex
hull of a set X . As the function x 7→ d(x, Λb′) defined over Λb is continuous and convex, by
the maximum principle, its maximum over the polyhedron Λb is achieved on V(b). Thus,
we have:

dH(Λb, Λb′) = max[ max
x∈Λb

d(x, Λb′) , max
x∈Λb′

d(Λb, x)]

= max[ max
x∈V(b)

d(x, Λb′) , max
x∈V(b′)

d(Λb, x)]

6 max[ max
x∈V(b)

d(x, V(b′)) , max
x∈V(b′)

d(V(b), x)] = dH
(
V(b),V(b′)

)
.

For i ∈ {1, . . . , p}, let us consider the following hyperplane and associated half-spaces:

Hi(b)
def
= {x| Aix = bi}, H−i (b) def

= {x|Aix 6 bi}, H+
i (b) def

= {x|Aix > bi}.

Then, another definition of Λb is given as Λb =
⋂

i∈[1,p]H−i (b).
Now fix b0 ∈ B and consider v0 ∈ V(b0). By definition, v0 is the intersection of hy-

perplanes i.e. there exists K0 ⊂ {1, . . . , p}, maximal for the inclusion, such that {v0} =⋂
i∈K0
Hi(b0). We have k def

= card(K0) > n otherwise v is not a vertex.
For J ⊂ {1, . . . , p}, let AJ denote the submatrix of A obtained by considering the rows Aj

for j ∈ J.
More generally, for an aribitrary subset of rows K ⊂ {1, . . . , p} and a point b ∈ B, let us

define the sets of derived points of K as:

VK(b) def
= {x ∈ Rn ; ∃J ⊂ K ; AJ is invertible and x = A−1

J b} .

By definition, we have VK0(b0) = {v0} and, for any b ∈ B, VK(b) is a set of at most (k
n)

elements. For any b ∈ B and v′ def
= VK(b), there exists J ⊂ K such that v′ = A−1

J b such that
we have:

‖v0 − v′‖ = ‖A−1
J b0 − A−1

J b‖ 6 ‖A−1
J ‖ × ‖b0 − b‖ 6 α‖b0 − b‖ (5.27)

where α def
= max

AJ invertible
‖A−1

J ‖.

By definition of K maximal, we have η def
= minj∈[1,p]\K d

(
v0,H+

j (b0)
)
> 0. Moreover, as

for any j ∈ {1, . . . , p}, the function x 7→ d(x,H+
j (b0)) is continuous, and from (5.27) , there

exists δ > 0 such that:

‖b− b0‖ 6 δ =⇒ ∀v′ ∈ VK(b), min
j∈[1,p]\K

d
(

v′,H+
j (b)

)
> 0 .

We are going to show that, for b such that ‖b− b0‖ 6 δ, there exists v′ ∈ VK(b) ∩ V(b),
i.e. a derived point of K which is a vertex. We proceed by induction on k− n > 0.
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If k = n, then v = A−1
K b0 and for any b in the ball Sδ(b0), VK(b) = {A−1

K b}. Thus
v′ = A−1

K b verifies AKv′ = bK, and Ajv′ < bj for all j /∈ K, thus v′ belongs to V(b).
If k = n + t with t > 1, there exists j0 ∈ K such that with K′ = K \ {j0}, VK′(b0) = {v}.

Consider the polyhedronP =
⋂

i∈K′ H−i (b). By induction, there exists J ⊂ K′ such that A−1
J b

is a vertex of P . If it satisfies also Aj0 x 6 bj0 then it is an element of V(b). Else, consider a
vertex v′ of the polyhedronP ∩H−j0 (b) on the facet associated withHj0(b). Then, v′ ∈ VK(b)
and, as b ∈ Sδ(b0), it verifies Ajv′ < bj for all j /∈ K, thus v′ ∈ V(b), which terminates the
induction.

Thus, in any case and for b ∈ Sδ(b0), there exists v′ ∈ V(b) ∩ VK(b) such that:

d(v,V(b)) 6 ‖v− v′‖ 6 α‖b0 − b‖

and thus, finally, dH (V(b0),V(b)) 6 α‖b0 − b‖.
The collection

{
Sδb0

(b0)

}
b0∈B

defines a cover of open sets of the compact set B, thus

there exists a finite subcollection, of cardinal denoted by r, that also covers B, from wich we
deduce that there exists D 6 max(rα) such that:

∀b, b′ ∈ B, d
(
V(b′),V(b)

)
6 D‖b′ − b‖ ,

which terminates the proof.
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Chapter 6

Nonatomic Aggregative Games
with Infinitely Many Types

This chapter is based on the paper [JW19], submitted for publication. In this chapter, we consider
nonatomic aggregative games: the set of players is given as a continuum, as opposed to a finite set as
in Chapter 5. Here, there can be an infinite number of different players types, a player’s type being
defined by her action set and cost function. As in Chapter 5, we consider the presence of aggrega-
tive coupling constraints. After defining the notion of variational Wardrop equilibrium (VWE) we
show that a sequence of symmetric VWE associated to auxiliary games with a finite number of types,
converge to a VWE of the initial game.

6.1 Introduction

A motivating example Consider the example of an energy operator studying the flexibility
potential between peak and off-peak periods in a large population of energy consumers, for
instance all households in France.

The operator considers that each household n has a certain quantity of energy En that
can be balanced between consumption on peak period xP,n and consumption on off-peak
periods xO,n, such that xO,n + xP,n = En, depending on the cost (per unit of energy) cP(XP)
and cO(XO) associated with the peak and off peak periods. The total on-peak consumption
XP = ∑n xP,n and off-peak consumption XO = ∑n xO,n affect the prices on the energy market
and, therefore, change the costs cP(XP) and cO(XO) set by the operator.

The operator wants to compute an equilibrium of this game (for instance to design tar-
iffs). For practical and privacy reasons, it is impossible to have access to the flexibility po-
tential En of the thirty millions of French households. However, the operator may have an
easier access to a precise parametric, continuous distribution function of the flexibility po-
tential among the French households.

Then, using the inverse transform sampling method, the game is replicated by modeling
the population of households as a continuum Θ = [0, 1] and associating to each θ ∈ Θ
the flexible energy quantities Eθ = F−1

E (θ) from the inverse of the cumulative distribution
function FE. As the distribution is continuous, there is an infinity of different energy quantity
Eθ i.e. an infinity of players types in the obtained game, where a type refers to the definition
of a set of feasible actions and a payoff function. The operator has two questions: 1) how
to characterize an equilibrium of this nonatomic game with an infinity of players types ?
and 2) how to compute such an equilibrium ? This chapter provides answers to those two
questions.

The game described above belongs to the class of aggregative games. In such a game, a
player’s payoff is determined by her own action and the aggregate of all the players’ actions
[Cor94]. The setting of aggregative games is particularly relevant to the study of nonatomic
games [Sch73], i.e. games with a continuum of players. There, a player has an interaction
with the other players only via an aggregate-level profile of their actions, while she has no
interest or no way to know the behavior of any particular player or the identity of the player
making a certain choice.
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Nonatomic games are readily adapted to many situations in industrial engineering or
public sectors where a huge number of users, such as traffic commuters and electricity con-
sumers, are involved. These users have no direct interaction except through the aggregate
congestion or consumption to which they are contributing collectively. These situations can
often be modeled as a congestion game, a special class of aggregative games, both in non-
atomic version and finite-player version. The latter, called atomic congestion game, was for-
mally formulated by Rosenthal in 1973 [Ros73b], while related research work in transporta-
tion and traffic analysis, mostly in the nonatomic version, appeared much earlier [War52;
BMW56]. The theory of congestion games has also found numerous applications in telecom-
munications [ORS93], distributed computing [AKH02], energy management [Atz+13], and
so on.

Nonatomic games are mathematical tools adapted to the modeling of interactions be-
tween a very large number of agents. Practical cases exist where a nonatomic model is
intuitive and straightforward as when the modeler has an easier access to a description of
the population through a parametric distribution of the types, as illustrated in the example.

As many distributions used in practice (e.g. normal distribution) are continuous, this
implies that the nonatomic game obtained using these distributions will have an infinite
number of players’ types.

The concept of equilibrium in nonatomic games is captured by the so called Wardrop
equilibrium (WE) [War52]. A nonatomic player neglects the impact of her deviation on the
aggregate profile of the whole population’s actions, in contrast to a finite player.

For the computation of WE, existing results are limited to particular classes of nonatomic
games, such as population games [MS82; HS98; San11], where only a finite number of types
of players are considered, each type sharing the same finite number of pure actions and the
same payoff function.

The objective of this chapter is to provide a model of nonatomic aggregative games with
infinitely many compact convex pure-action sets and infinitely many payoff functions—in general a
specific action set and a specific payoff function for each nonatomic player— then introduce
a general form of coupling aggregative constraints into these games, define an appropri-
ate notion of equilibrium, study the properties such as existence and uniqueness of these
equilibria and, finally, their computation through an approximation.

Main results After defining a pure-action profile in a nonatomic game where players have
specific compact convex pure-action sets lying in RT , and specific cost functions, convex
in their own action variable, Theorem 6.1 characterizes a WE as a solution to an infinite-
dimensional variational inequality (IDVI).

Using the IDVI formulation, we extend this equilibrium notion to the case of a game with
coupling aggregative constraints, by defining variational Wardrop equilibrium (VWE). The-
orem 6.3 proves the existence of WE and VWE in monotone nonatomic games by showing
the existence of solutions to the characteristic IDVI.

In Theorem 6.4, we establish the uniqueness of WE and VWE in case of strictly monotone
or aggregatively strictly monotone games. The definition of monotone games is an extension
of the stable games [HS09], also called dissipative games [SW15], in population games with
a finite types of nonatomic players to the case with infinitely many types.

In the case where the nonatomic aggregative game has only a finite number of types of
players, we define the notion of symmetric action profiles and symmetric VWE (SVWE), de-
scribing situations where all players of the same type play the same action. Proposition 6.2
shows that SVWEs are characterized as solutions of a finite-dimensional VI. Besides, Propo-
sition 6.3 shows that, under monotonicity assumptions, there always exists an SVWE.

Theorem 6.5 is the main result of this chapter. It shows that, for a sequence of finite-type
approximating games, if the finite number of pure-action sets and cost functions converge
to those of the players of a monotone nonatomic aggregative game, and if the aggregative
constraint converges to the aggregative constraint of the infinite nonatomic game, then any
sequence of SVWE associated to the sequence of approximating games converges in pure-
action profile or in aggregate action profile to the VWE of the infinite-type game. We provide
an upper bound on the distance between the approximating SVWE and the VWE, specified
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as a function of the parameters of the approximating finite-type games and the initial infinite
nonatomic game.

This result allows the construction of a finite-type approximating game sequence and as-
sociated SVWEs so as to approximate the infinite-dimensional VWE in the special class of
strongly or aggregatively strongly monotone nonatomic aggregative games, with or without
aggregative constraints. Since finding solutions of finite-dimensional variational inequalities
—characterizing SVWEs—is a computationally tractable problem (see e.g. [FP07]), it follows
from our results that a VWE of a nonatomic game with infinitely many types can be approx-
imated with arbitrary precision.

Section 6.3.3 shows how to construct a finite-type approximating games sequence for
two general classes of nonatomic games. Appendix 6.A gives the main ideas to extend all
our results to the case where players have nonsmooth subdifferentiable cost functions: to
make the presentation of the key ideas easier, we focus on the smooth case in the body
of the chapter. Appendix 6.B explains how we can use the same arguments to show the
convergence of a sequence of Nash equilibria associated to atomic finite-player games (instead
of nonatomic finite-type games) to a VWE of a nonatomic game.

Related work Extensive research has been conducted on WE in nonatomic congestion
games via their formulation with variational inequalities [MP07]. In addition to their ex-
istence and uniqueness, the computational and dynamical aspects of equilibria as solutions
to variational inequalities have also been studied [Smi84a; ZM94; ZN97; CPP02]. However,
in most cases, the variational inequalities involved have finite dimensions, as opposed to
the case of WE in this chapter. Marcotte and Zhu [MZ97] consider nonatomic players with
continuous types (leading to a characterization of the WE as an IDVI) and studied the eq-
uilibrium in an aggregative game with nonatomic players differentiated through a linear
parameter in their cost function.

Convergence of some dynamical systems describing the evolution of pure-action dis-
tribution in the population of a nonatomic game has been established for some particular
equilibria in some particular classes such as linear games [TJ78], potential games [BMW56;
San01] and stable games [Smi84b; HS09]. Algorithms corresponding to discretized versions
of such dynamical systems for the computation of WE have been studied, in particular for
congestion games [Fri+94; ZN97].

In engineering applications of nonatomic games such as the management of traffic flow
or energy consumption, individual commuters or consumers often have specific choice sets
due to individual constraints, and specific payoff functions due to personal preferences.
Also, unlike for a transportation user who usually chooses a single path, an electricity con-
sumer as modeled in the example above faces a resource allocation problem where she has
to split the consumption of a certain quantity of energy over different time periods. Hence,
her pure-action set is no longer a finite, discrete set as a commuter but a compact convex set
in RT where T is the total number of time periods. Few results exist for the computation of
pure-action WE in the case where players have continuous action sets and in the case where
there are infinitely many different types (i.e. action sets and payoff functions) of players. For
example, [Sch73] shows the existence of equilibrium in nonatomic games with finite action
sets. Mas-Colell [MC84] and Carmona and Podzeck [CP09] consider compact strategy sets
and show the existence of mixed strategy equilibria, and do not consider the case of aggre-
gative games and pure-strategy equilibria. In their model, all players share the same actions
set. Besides, most of the existing work assumes smooth cost functions of players which is
somewhat restrictive in applications, as for instance electricity tariffs or tolls are usually not
continuous.

Similarly, the subject of nonatomic games involving (aggregative) coupling constraints
has only been partially adressed. Coupling constraints at an aggregative level are to be
considered in many of the above-mentioned applications, as also mentioned in [Gra17]: for
instance, when modeling the electricity consumption (see above example), some capacity
constraints of the network or ramping constraints on the variation of total energy consump-
tion between time periods are natural to consider from an engineering point of view. As seen
in this chapter, the presence of coupling constraints is not a simple artifact, as it adds non
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trivial difficulties in the analysis of WE and their computation. Indeed, an appropriate def-
inition of equilibrium is already not obvious. An analog to the so-called generalized Nash
equilibrium [Har91] for finite-player games does not exist for nonatomic games because a
nonatomic player’s behavior has no impact on the aggregate profile. Moreover, dynamical
systems and algorithms used to compute WE in population games cannot be straightfor-
wardly extended to this case. Indeed, in these dynamics and algorithms, players adapt their
strategies unilaterally in their respective strategy spaces, which can well lead to a new strat-
egy profile violating the coupling constraint.

Several works have quantified the relationship between Nash and Wardrop equilibria, a
subject close to the present work, as shown in Appendix 6.B. Haurie and Marcotte [HM85]
show that in a sequence of atomic splittable games where atomic splittable players are re-
placed by smaller and smaller equal-size players with constant total weight, Nash equilibria
converge to the WE of a nonatomic game. Their proof is based on the convergence of vari-
ational inequalities corresponding to the sequence of Nash equilibria, a technique similar to
the one used in the present work. Wan [Wan12a] generalizes this result to composite games
where nonatomic players and atomic splittable players coexist, by allowing the atomic play-
ers to replace themselves by players with heterogeneous sizes.

Gentile et al. [Pac+18] consider a specific class of finite-player aggregative games with
linear coupling constraints. They use the variational inequality formulations for the unique
generalized Nash equilibrium and the unique generalized Wardrop-type equilibrium (which
consists in letting each finite player act as if she was nonatomic) of the same finite-player
game to show that, when the number of players grows, the former can be approximated by
the latter. Their results are different from ours, as we consider nonatomic games with players
of infinitely-many different types instead of finite-player games. Consequently, we consider
VWE and symmetric VWE instead of generalized equilibria, which do not exist in nonatomic
games. In contrast to generalized equilibria, a variational equilibrium is not characterized by
a best reply condition for each of the finite or nonatomic players, as shown in Section 6.3. We
also consider a general form of coupling constraints, and extend our results to nonsmooth
cost functions, as shown in Appendix 6.A (we focus on the differentiable case in the body of
the chapter).

Milchtaich [Mil00] studies finite and nonatomic crowding games (similar to nonatomic
aggregative games), where players have finitely many pure actions, and shows that, if each
player in an n-person game is replaced by m identical replicas with constant total weight,
pure Nash equilibria generically converge to the unique equilibrium of the limit nonatomic
game as m goes to infinity. His proof is not based on a variational inequality formulation.

Structure The remaining of the chapter is organized as follows. Section 6.2 introduces
the definitions of nonatomic aggregative games with and without aggregative constraints.
After defining the WE and VWE notions in the case of an infinite number of players’ types,
we show, under monotonicity assumptions, the existence and uniqueness of equilibria via
generalized IDVIs. In the case of finite-type games, we define the notions of symmetric
profiles and SVWE and show their characterization through finite-dimensional VIs and their
existence. In Section 6.3, we give the definition of a sequence of finite-type approximating
games for a nonatomic aggregative game with or without coupling constraints, and present
the main theorem of the chapter on the convergence of the sequence of S(V)WE, associated
to the sequence of finite-type approximating games, to the (V)WE of the nonatomic game. In
Section 6.3.3, the construction of sequences of finite-type approximating games is shown for
two important classes of nonatomic aggregative games. In Section 6.4, we step back to the
flexible energy example given above, and derive our results to the computation of an SVWE
in this framework.

Last, in Appendix 6.A, we show how our results extend to the case of nonsmooth cost
functions and in Appendix 6.B, we show how the results can be adapted to prove the con-
vergence of Nash equilibria to a VWE of a nonatomic game.

Notation The closed ball in a metric space, centered at x and of radius η, is denoted by
Bη(x).
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For a nonempty convex set C in a Hilbert spaceH (over R),

• TC(x) = {y ∈ H : y = 0 or ∃(xk)k in C s.t. xk 6≡ x, xk → x, xk−x
‖xk−x‖ →

y
‖y‖} is the

tangent cone of C at x ∈ C;

• span C = {∑k
i=1 αixi : k ∈N, αi ∈ R, xi ∈ C} is the linear span of C;

• aff C = {∑k
i=1 αixi : k ∈N, αi ∈ R, ∑i αi = 1, xi ∈ C} is the affine hull of C;

• ri C = {x ∈ C : ∃η > 0 s.t. Bη(x) ∩ aff C ⊂ C} is the relative interior of C;

• rbd C is the relative boundary of C inH, i.e. the boundary of C in span C.

The inner product of two points x and y in any Euclidean space RT is denoted by 〈x, y〉 =
∑T

i=1 xiyi. The l2-norm of x is denoted by ‖x‖ def
= 〈x, x〉1/2.

We denote by L2([0, 1], RT) the Hilbert space of measurable functions from [0, 1] to RT

w.r.t. the Lebesgue measure µ and which are square integrable with respect to the Lebesgue
measure.

The inner product of two vector functions F and G in L2([0, 1], RT) is denoted by 〈F, G〉2 =∫ 1
0 〈F(θ), G(θ)〉dθ.

The Hilbert space L2([0, 1], RT) is endowed with L2-norm: ‖F‖2 = 〈F, F〉1/2
2 .

We denote dm(x,A) def
= infy∈A ‖x− y‖m the distance between a point x and a setA, where

m is omitted or is equal to 2, depending on whether we consider an Euclidean space or
L2([0, 1], RT).

Similarly, dH,m(A,B) denotes the Hausdorff distance between two sets A and B, which is
defined as

dH,m(A,B) def
= max{sup

x∈A
dm(x,B), sup

y∈B
dm(y,A)} .

For a function (x, X) 7→ f (x, X) of two explicit variables, convex in x, we denote by
∇1 f (x, X) the differential of function f (·, X) for any fixed X, except in Appendix 6.A in
which ∂ (resp. ∂1) is used to denote the (resp. partial) subdifferential.

6.2 Monotonicity, Coupling Constraints and Symmetric Eq-
uilibrium

6.2.1 Nonatomic aggregative games

In nonatomic aggregative games considered here, players have compact pure-action sets,
and heterogeneous pure-action sets as well as heterogeneous cost function. This model is in
line with Schmeidler’s seminal paper [Sch73]. It differs from most of the population games
studied in game theory [HS98; San11], in which nonatomic players are grouped into several
populations, with players in the same population having the same finite pure-action set and
the same cost function.

Definition 6.1 (Nonatomic aggregative game). A nonatomic aggregative game G is defined by:

i) a continuum of players represented by the points on the real interval Θ = [0, 1] en-
dowed with Lebesgue measure;

ii) a set of feasible pure actions Xθ ⊂ RT for each player θ ∈ Θ, with T ∈N∗ a constant;

iii) a cost function Xθ ×RT → R : (xθ , X) 7→ fθ(xθ , X) for each player θ, where X =

(Xt)T
t=1 and Xt

def
=
∫ 1

0 xθ′ ,t dθ′ refers to an aggregate-action profile, given the action profile
(xθ′)θ′∈Θ for the population Θ.

The set of feasible pure-action profiles is defined by:

X def
=
{

x ∈ L2([0, 1], RT) : ∀ θ ∈ Θ, xθ ∈ Xθ

}
.

Denote the game by G = (Θ,X , ( fθ)θ∈Θ).
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Remark 6.1. The definition of a nonatomic aggregative game asks the pure-action profile x to be a
measurable and integrable function on Θ instead of simply being a collection of xθ ∈ Xθ for θ ∈ Θ.
In other words, a coupling constraint is inherent in the definition of nonatomic aggregative games
and the notion of WE. This is in contrast with finite-player games.

The set of feasible aggregate actions is defined as:

X def
= {X ∈ RT : ∃ x ∈ X s.t.

∫ 1
0 xθ dθ = X} .

Further assumptions are needed for X to be nonempty and for the existence of an equilibr-
ium.

Assumption 6.1 (Nonatomic pure-action sets). The correspondence X : Θ ⇒ RT , θ 7→ Xθ has
nonempty, convex, compact values. Moreover, for all θ ∈ Θ, Xθ ⊂ BR(0), with R > 0 a constant.

Under Assumption 6.1, a sufficient condition for x to be in L2([0, 1], RT) is that x is mea-
surable.

Notation We denote byM = [0, R + 1]T the hypercube in RT of edge R + 1.

Assumption 6.2 (Measurability). The correspondence X : Θ ⇒ RT , θ 7→ Xθ has a measurable
graph GrX = {(θ, xθ) ∈ RT+1 : θ ∈ Θ, xθ ∈ Xθ}, i.e. GrX is a Borel subset of RT+1. The function
GrX → RT : (θ, xθ) 7→ fθ(xθ , Y) is measurable for each Y ∈ RT .

Assumption 6.3 (Nonatomic convex cost functions). For all θ, fθ is defined on (M′)2, where
M′ is a neighborhood ofM, and:

i) for each θ ∈ Θ, function fθ is continuous. In particular, fθ is bounded onM2;

ii) for each θ ∈ Θ and each aggregate profile Y ∈ M, x 7→ fθ(x, Y) is differentiable and convex
onM′;

iii) there is Lf > 0 such that ‖∇1 fθ(xθ , Y)‖ 6 Lf for each xθ ∈ M, each Y ∈ M, and each
θ ∈ Θ.

Remark 6.2. Assumption 6.3.iii) implies that fθ(·, ·)’s are Lipschitz in the first variable with a
uniform Lipschitz constant Lf onM2 for all θ.

We also need the continuity of the derivative of cost functions in the second (aggregate)
variable:

Assumption 6.4. For each θ ∈ Θ and each xθ ∈ M, the function Y 7→ ∇1 fθ(xθ , Y) is continuous
onM.

Wardrop equilibrium extends the notion of Nash equilibrium in the framework of non-
atomic games, where a single player of measure zero has a negligible impact on the others.

Definition 6.2 (Wardrop Equilibrium (WE), [War52]). A pure-action profile x∗ ∈ X is a pure
Wardrop equilibrium of nonatomic aggregative game G if we have, with X∗ =

∫
θ∈Θ x∗θ dθ:

fθ(x∗θ , X∗) 6 fθ(xθ , X∗), ∀xθ ∈ Xθ , ∀ a.e. θ ∈ Θ .

All the actions and equilibria in this chapter are pure, hence from now on, we no longer
emphasize it.

Before characterizing WE by infinite-dimensional VI (IDVI), we introduce some notions
and a technical assumption ensuring that the IDVI is well-defined.

Lemma 6.1. For all x ∈ L2([0, 1],M), the function gx defined from Θ to RT by

gx(θ)
def
= ∇1 fθ(xθ ,

∫
x) , ∀θ ∈ Θ , ∀x ∈ L2([0, 1],M) (6.1)

is measurable on Θ. Consequently, g· is a mapping from L2([0, 1],M) to L2([0, 1], RT).
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Proof of Lemma 6.1. For n ∈N large enough,

gx,n
def
= θ 7→ n

(
fθ(xθ +

1
n

,
∫

x)− fθ(xθ ,
∫

x)
)

is well defined. It is measurable according to Assumption 6.2. Thus gx = limn gx,n is also
measurable as a limit of measurable functions.

Theorem 6.1 (IDVI formulation of WE). Under Assumptions 6.1 to 6.3, x∗ ∈ X is a WE of
nonatomic aggregative game G if and only if either of the following two equivalent conditions is true:

∀ a.e. θ ∈ Θ, 〈∇1 fθ(x∗θ , X∗), xθ − x∗θ 〉 > 0 , ∀xθ ∈ Xθ , (6.2a)∫
Θ
〈gx∗(θ), xθ − x∗θ 〉dθ > 0 , ∀x ∈ X . (6.2b)

Proof of Theorem 6.1. Given X∗, (6.2a) is a necessary and sufficient condition for x∗θ to mini-
mize the convex function fθ(., X∗) on Xθ . Condition (6.2a) implies condition (6.2b) because
of Lemma 6.1.

For the converse, suppose that x∗ ∈ X satisfies condition (6.2b) but not (6.2a). Then there
must be a subset Θ′ of Θ with strictly positive measure such that:

∀θ ∈ Θ′, x∗θ /∈ Yθ
def
= arg min

Xθ

fθ(·, X∗) .

In particular, for any yθ ∈ Yθ :

〈gx∗(θ), yθ − x∗θ 〉 < fθ(yθ , X∗)− fθ(x∗θ , X∗) < 0 .

A consequence of Assumptions 6.2 and 6.3 is that the function Θ ×M → R : (θ, z) 7→
fθ(z, X∗) is a Carathéodory function, that is, (i) f·(z, X∗) is measurable on Θ for each z ∈ M,
and (ii) fθ(·, X∗) is continuous on M for each θ ∈ Θ. Thus, according to the measurable
maximum theorem [AB06, Thm. 18.19] applied to f·(·, X∗), there exists a selection yθ ∈
arg minXθ

fθ(·, X∗) for θ ∈ Θ′ such that Θ′ → RT : θ 7→ yθ is a measurable function. By
defining yθ = x∗θ for θ /∈ Θ′, one has Θ → RT : θ 7→ yθ is measurable and hence belongs to
X .

However, we have:∫
Θ
〈gx∗(θ), yθ − x∗θ 〉dθ =

∫
Θ′
〈gx∗(θ), yθ − x∗θ 〉dθ < 0 ,

contradicting (6.2b).

Remark 6.3. Condition (6.2a) is equivalent to 〈gx∗(θ), yθ〉 > 0 for all yθ ∈ TXθ
(x∗θ ) for each θ. It

means that no unilateral deviation is profitable. However, since each nonatomic player has measure
zero, when considering a deviation in the action profile, one must let players in a set of strictly
positive measure deviate: (6.2b) means that the collective deviation of players of any set of strictly
positive measure increases their cost.

The existence of WE is obtained by an equilibrium existence theorem for nonatomic
games.

Theorem 6.2 (Existence of a WE, [Rat92]). Under Assumption 6.1, Assumption 6.2 and Assump-
tion 6.3.i), if for all θ and all Y ∈ M, fθ(·, Y) is continuous onM, then the nonatomic aggregative
game G admits a WE.

Proof. The conditions required in Remark 8 in Rath’s 1992 paper [Rat92] on the existence of
WE in aggregate games are satisfied.

Remark 6.4. No convexity of fθ(·, Y)’s are needed for the existence.
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6.2.2 Monotone Nonatomic Aggregative Games

For the uniqueness of WE and the existence of equilibrium notion to be introduced in the
next subsection for the case with coupling constraints, we consider the different monotonicity
assumptions given Definition 6.3 below. One can observe the similarity with the monotonic-
ity notions defined in Definition 5.4 in Chapter 5 for the atomic case.

Monotonicity in nonatomic aggregative games, is also sometimes referred to as stability.

Definition 6.3. With notation gx(θ) = ∇1 fθ(xθ ,
∫

x), for any θ ∈ Θ and for any x, y ∈
L2([0, 1],M), we say that the nonatomic aggregative game G is

i) monotone if∫
Θ
〈gx(θ)− gy(θ), xθ − yθ〉dθ > 0, ∀x, y ∈ L2([0, 1],M) . (6.3)

ii) strictly monotone if the equality in (6.3) holds if and only if x = y almost everywhere.

iii) aggregatively strictly monotone if the equality in (6.3) holds if and only if
∫

x =
∫

y.

iv) strongly monotone with modulus α if∫
Θ
〈gx(θ)− gy(θ), xθ − yθ〉dθ > α‖x− y‖2

2, ∀x, y ∈ L2([0, 1],M) . (6.4)

v) aggregatively strongly monotone with modulus β if∫
Θ
〈gx(θ)− gy(θ), xθ − yθ〉dθ > β‖

∫
x−

∫
y‖2, ∀x, y ∈ L2([0, 1],M) . (6.5)

Remark 6.5. A recent paper of Hadikhanloo [Had17] generalizes the notion of stability in population
games [HS09] to monotonicity in anonymous games, an extension of population games with players
having heterogeneous compact action sets but the same payoff function. He defines the notion of
monotonicity directly on the distribution of actions among the players instead of action profile as
done here. The two approaches are compatible.

Example of public products games. An interesting example of aggregative games is given
by cost functions of the form:

fθ(xθ , X) = 〈xθ , c(X)〉 − uθ(xθ) , (6.6)

where c(X) specifies the per-unit cost (or negative of per-unit utility) of each of the T “pub-
lic products”, which is a function of the aggregative contribution X to each of the “public
products”. Player θ’s cost (resp. negative of utility) associated to these products is scaled by
her own contribution xθ . The function uθ(xθ) measures the private utility of player θ (resp.
negative of private cost) for the contribution xθ .

For instance, in a public goods game, −ct(Xt) is the common per-unit payoff for using
public good t, determined by the total contribution Xt, while −uθ(xθ) is player θ’s private
cost of supplying xθ to the public goods; in a Cournot competition, −ct(Xt) is the common
market price for product t, determined by its total supply Xt, while −uθ(xθ) is player θ’s
private cost of producing xθ,t unit of product t; in a congestion game, ct(Xt) is the common
per-unit cost for using arc t in a network, determined by the aggregate load Xt on arc t, while
uθ(xθ) is player θ’s private utility of her routing or energy consuming choice xθ .

Proposition 6.1. Under Assumptions 6.1 to 6.3, in a public products game G (i.e. with cost
functions of form (6.6)), assume that c is monotone onM and, for each θ, uθ is a concave function
onM. Then:

i) G is a monotone game.

ii) If uθ is strictly concave onM for all θ ∈ Θ, then G is a strictly monotone game.
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iii) If c is strictly monotone onM, then G is an aggregatively strictly monotone game.

iv) If uθ is strongly concave onM with modulus αθ for each θ ∈ Θ and infθ∈Θ αθ = α > 0, then
G is a strongly monotone game with modulus α.

v) If c is strongly monotone onM with β, then G is an aggregatively strongly monotone game with
modulus β.

Proof. The proof is symmetric to the atomic case given in Section 5.B.

In particular, if c(X) = (ct(Xt))t∈T , then c is monotone if functions ct, t ∈ T are all
nondecreasing, and c is strongly monotone if functions ct, t ∈ T are all strictly increasing.

6.2.3 Aggregate constraints and VWE

Let us consider the aggregative constraint in nonatomic aggregative game G:

X ∈ A ,

where A is a convex compact subset of RT such that A ∩ X 6= ∅. Let X (A) be a subset of
X defined by

X (A) def
= {x ∈ X : X =

∫
x ∈ A} .

Let us denote the nonatomic aggregative game with aggregative constraint X ∈ A by G(A).
A notion of generalized WE similar to the one of generalized Nash equilibrium in finitely-

many-player games—where each player does the best she can while not violating the cou-
pling constraints given the choices of the others [Har91]—is not well-defined in a nonatomic
game. Indeed, since the impact of a nonatomic player’s choice on the aggregate profile is
negligible, the feasible action set of a nonatomic player θ facing the choices of the others x−θ

in a game with coupling constraint is not a well-established notion: either
∫

x−θ ∈ A then
Xθ = X , or

∫
x−θ /∈ A then Xθ = ∅. Departing from an action profile in X (A), simulta-

neous unilateral deviations by the players can lead to any profile in X . If only profiles in
X (A) are allowed to be attained, then one lands on a notion similar to the so-called vari-
ational Nash equilibrium in finite-many-player games [Har91]. Indeed, the most natural
notion of equilibrium with the presence of aggregative constraint is the notion of variational
Wardrop equilibrium, where feasible deviations are defined on a collective basis.

Definition 6.4 (Variational Wardrop Equilibrium (VWE)). A solution to the following IDVI
problem:

Find x∗ ∈ X (A) s.t.
∫

Θ
〈gx∗(θ), xθ − x∗θ 〉dθ > 0, ∀x ∈ X (A), (6.7)

is called a variational Wardrop equilibrium of G(A).

Remark 6.6 (VWE in the literature). In the literature of congestion games, the equilibrium notion
characterized by VI of form (6.7) but in finite dimension and with smooth cost functions has long
been studied. For example, see [LP99; MNS04; CSSM04; Zho+11] and references therein.

The following facts are needed for later use.

Lemma 6.2. Under Assumptions 6.1 and 6.2:

i) X is a nonempty, convex, closed and bounded subset of L2([0, 1], RT);

ii) X (A) is a nonempty, convex and closed subset of X ;

iii) X and A∩X are nonempty, convex and compact subsets of RT .

We omit the proof and only point out that X and X are nonempty because of Assump-
tion 6.1 and the measurable selection theorem of Aumann [Aum69], while aggregate-action
set X is compact by [Aum65, Theorem 4].

Theorem 6.3 shows the existence of VWE via the VI approach.
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Theorem 6.3 (Existence of VWE). Under Assumptions 6.1 to 6.4, if a nonatomic aggregative game
with coupling constraint G(A) is monotone on X (A), then a VWE exists.

Proof. We can apply [DT96, Corollary 2.1] which shows that Equation (6.7) has a solution,
as:

• X (A) is bounded, closed and convex in L2([0, 1], RT);

• g. : L2([0, 1],M)⇒ L2([0, 1], RT) is a monotone correspondence which is upper hemi-
continuous from the line segments in X (A) to the weak* topology of L2([0, 1], RT). Notice
that g. has closed values. Let us do the proof in the general nonsmooth case.

Take x and y in X (A), consider sequence (x(k))k with x(k) ∈ [x, y] with x(k) → x, and
sequence (g(k))k such that g(k) ∈ gx(k) and g(k) ∗⇀ g∞ with g∞ ∈ L2([0, 1], RT). Let us show
that g∞ ∈ gx. We have X =

∫
x converging to X(k) =

∫
x(k) in l2-norm.

By definition of g. and convexity, for each z ∈ M and each θ, we have

fθ(zθ , X(k)
θ ) > fθ(x(k)θ , X(k)) + 〈g(k)

θ , zθ − x(k)θ 〉 .

Since fθ is continuous in both variables, we get:

fθ(zθ , X(k)) −→
k→∞

fθ(zθ , X) and fθ(x(k)θ , X(k)) −→
k→∞

fθ(xθ , X) . (6.8)

Besides, we have:

〈g(k)
θ , zθ − x(k)θ 〉 = 〈g

(k)
θ , zθ − xθ〉+ 〈g

(k)
θ , xθ − x(k)θ 〉 ,

and 〈g(k)
θ , zθ − xθ〉 → 〈g∞

θ , zθ − xθ〉 ,

because g(k) ∗⇀ g∞, while 〈g(k)
θ , xθ − x(k)θ 〉 → 0 because g(k)

θ ’s are uniformly bounded by Lf.
Therefore,

fθ(zθ , X) > fθ(x(k)θ , X) + 〈gθ , zθ − xθ〉 ,

so that g∞
θ ∈ ∂1 fθ(xθ , X). Since the limit of measurable functions is measurable, g is measur-

able. Hence g∞ ∈ gx (and g∞ = gx in the smooth case), which concludes.

Theorem 6.4 (Uniqueness of VWE). Under Assumptions 6.1 to 6.3:

i) if G(A) is strictly monotone on X (A), then it has at most one VWE;

ii) if G(A) is aggregatively strictly monotone on X (A), then all VWE of G(A) have the same
aggregative profile;

iii) if G (without aggregative constraint) is only aggregatively strictly monotone but, for each
θ ∈ Θ and all Y ∈ M, fθ(x, Y) is strictly convex in x, then there is at most one WE.

Proof. Suppose that x, y ∈ X (A) are both VWE. Let X =
∫

x and Y =
∫

y. According to
Theorem 6.1, we have

∫
Θ〈gx(θ), yθ − xθ〉dθ > 0 and

∫
Θ〈gy(θ), xθ − yθ〉dθ > 0. Adding up

these two inequalities yields
∫

Θ〈gx(θ)− gy(θ), yθ − xθ〉dθ > 0.
i) If G(A) is a strictly monotone game, then

∫
Θ〈gx(θ)− gy(θ), xθ − yθ〉dθ = 0 and thus

x = y almost everywhere.
ii)-iii) If G(A) is an aggregatively strictly monotone game, then we have:∫

Θ
〈gx(θ)− gy(θ), xθ − yθ〉dθ = 0 ,

and thus X = Y . If there is no aggregative constraint and fθ(·, Z) is strictly convex for all
Z ∈ M, then for all θ, xθ (resp. yθ) is the unique minimizer of fθ(·, X) (resp. fθ(·, Y)). Since
X = Y , one has xθ = yθ .
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6.2.4 Symmetric VWE with a finite number of types

A particular class of nonatomic aggregative games is those with only a finite number of types
of players, that is, when the sets {Xθ}θ and { fθ}θ are both finite. Consider a nonatomic
aggregative game with a set of I types I = {1, . . . , I}. The player set Θ is divided into I
measurable subsets Θ1, . . . , ΘI such that each nonatomic player belonging to Θi is of type i.
Let us denote the common action set of players in Θi by Xi and their common cost functions
by fi.

Let us consider a particular class of action profiles in these finite-type nonatomic aggre-
gative games, called symmetric action profiles:

Definition 6.5 (Symmetric action profile and symmetric variational Wardrop equilibrium
(SVWE)). The set of symmetric action profiles, denoted by X S, is the set of action profiles
where players of the same type play the same action:

X S
def
= {x ∈ X : xθ = xξ , ∀θ, ξ ∈ Θi, ∀i ∈ I}

The set of symmetric action profiles satisfying the aggregative constraint is denoted by

X S(A) def
= X S ∩X (A) . (6.9)

A symmetric variational Wardrop equilibrium is a VWE that is symmetric.

For any symmetric action profile x ∈ X S, let the common action of players of type i ∈ I
be denoted by xi, so that the action profile can be specified by (xi)i∈I . Obviously, for x ∈ X S,
for each type i ∈ I , gx(θ) = gx(ξ) = ∇1 fi(xi,

∫
x) for all θ, ξ ∈ I . Let us abusively denote

this quantity by gx(i).

Proposition 6.2. In a finite-type nonatomic aggregative game G(A) with an aggregative constraint,
a VWE is a symmetric one if and only if it is a solution to the following VI:

Find x̂ ∈ X S(A) s.t. ∑i∈I 〈gx̂(i), µixi − µi x̂i〉 > 0, ∀x ∈ X S(A) , (6.10)

where µi is the Lebesgue measure of Θi.

Proof. SinceX S(A) ⊂ X (A), it is clear that a SVWE, characterized as a solution to the IDVI
(6.7), is a solution to (6.10).

Conversely, suppose that x̂ is a solution to the VI problem (6.10), let us show that it also
solves the IDVI (6.7). Indeed, for all x ∈ X (A),∫

Θ
〈gx̂(θ), xθ − x̂θ〉dθ = ∑i∈I

∫
Θi
〈gx̂(θ), xθ − x̂θ〉dθ = ∑i∈I 〈gx̂(i),

∫
Θi

xθ − µi x̂i〉

= ∑i∈I 〈gx̂(i), µi

∫
Θi

xθ

µi
− µi x̂i〉 > 0

as for all θ ∈ Θi, xθ ∈ Xi which is convex, hence
∫

Θi
xθ

µi
∈ Xi, so that (6.10) can be applied.

Proposition 6.3 (Existence of SVWE). Under Assumptions 6.1, 6.3 and 6.4, a finite-type nonato-
mic aggregative game G(A) admits a SVWE.

Proof. First note that the VI problem (6.10) is equivalent to a finite dimension VI:

Find x̂ ∈ X S(A)′ s.t. ∑i∈I 〈∇1 fi(x̂i, ∑j∈I µj x̂j), µixi − µi x̂i〉 > 0, ∀x ∈ X S(A)′ , (6.11)

where X S(A)′ is the finite-dimensional set

X S(A)′ def
= {x ∈ RIT : x ∈ ∏i∈I Xi, ∑i∈I µixi ∈ A} .

As the mapping (xi)i∈I 7→
(
∇1 fi(xi, ∑j µj x̂j)

)
i∈I is continuous from Assumption 6.4,

then [HS66, Lemma 3.1] implies that the VI (6.11) has a solution on the finite dimensional
convex compact X S(A)′.
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In this chapter, only SVWE are considered for finite-type nonatomic aggregative games.
For such equilibria, the distribution of different types on Θ is not relevant, since the eq-
uilibrium behavior of each player is only determined by the finite dimensional VI (6.11).
Therefore, we shall specify a finite-type nonatomic aggregative game only by the tuple(
(µi)i∈I , (Xi)i∈I , ( fi)i∈I , A

)
. In particular, a symmetric action profile in such a game shall be

specified by a vector (xi)i∈I ∈ RIT , and the set of symmetric action profiles is nothing else
but X S(A)′.

6.3 Approximating Nonatomic Aggregative Games with an
Infinity of types

6.3.1 Finite-type approximating game sequence

After introducing (V)WE in nonatomic aggregative games and SVWE in finite-type non-
atomic aggregative games with coupling constraints, we study the relation between these
notions. As WE is a particular case of VWE when the aggregate constraint set is any subset
of RT containing X , we can only consider the case of VWE and SVWE.

This section shows the following result: considering a sequence of equilibria of “approx-
imating” finite-type nonatomic aggregative games (Gν(Aν))ν of a nonatomic aggregative
game G(A), where each type of players in Gν(Aν) corresponds to a collection of nonatomic
players who are similar in their types, a sequence of SVWE in (Gν(Aν))ν converges to the
VWE of G(A) when this one is (aggregatively) strongly monotone.

The particularity of SVWE is that it can be characterized by a finite dimensional VI. As
opposed to the case of infinite dimensional ones, there is a large literature on algorithms for
computing solutions of finite dimensional VI (e.g. [FP07] and references therein). Therefore,
the result stated above can be practically used to compute a VWE, solution of an IDVI, with
arbitrary precision.

In this section, we always suppose that Assumptions 6.1 to 6.4 hold.

Let us consider the following definition of an approximating game sequence, where the
indicators to measure the quality of approximation are similar to the ones introduced in
(5.12) and (5.13) in Chapter 5, Section 5.3.2.

Definition 6.6. Finite-type Approximating Games Sequence
A sequence of finite-type nonatomic aggregative games

{Gν(Aν) =
(
(µν

i )i∈Iν , (X ν
i )i∈Iν , ( f ν

i )i∈Iν ,Aν
)

: ν ∈N∗}

with aggregative constraints is a finite-type approximating game sequence for the nonatomic
aggregative game G(A) =

(
Θ,X , ( fθ)θ , A

)
with an aggregative constraint if, for each ν ∈

N∗, there exists a partition (Θν
0, Θν

1, . . . , Θν
Iν) of the set Θ, with Iν def

= {1, . . . , Iν}, such that
the Lebesgue measure of Θν

0 is µν
0 = 0, and if, for each i ∈ Iν, the Lebesgue measure of Θν

i is
µν

i while the collection of nonatomic players in Θν
i are getting close to the nonatomic players

of type i ∈ Iν in the sense that, as ν→ +∞:

i) δ
ν def
= maxi∈Iν δν

i −→ 0, where δν
i is the Hausdorff distance between the action sets of

nonatomic players in Θν
i in G(A) and the action set of nonatomic players of type i ∈ Iν in

Gν(Aν):
δν

i
def
= sup

θ∈Θν
i

dH (Xθ ,X ν
i ) , (6.12)

and span X ν
i = span Xθ , ∀θ ∈ Θν

i .

ii) d
ν def
= maxi∈Iν dν

i −→ 0, where dν
i measures the distance between the differential of non-

atomic players’ cost functions in G(A) and that of their corresponding players’ cost func-
tions in Gν(Aν):

dν
i

def
= sup

θ∈Θi

sup
(x,Y)∈M2

‖∇1 f ν
i (xi, Y)−∇1 fθ(xθ , Y)‖ . (6.13)
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iii) Dν −→ 0, where Dν def
= dH (Aν,A) is the Hausdorff distance between the aggregative

constraint set Aν ⊂ RT and the aggregative constraint set A ⊂ RT . Besides, span A =
span Aν for all ν ∈N∗.

Roughly speaking, along a sequence of finite-type approximating games, for each non-
atomic player θ in Θ, the difference between her type and her corresponding type i in the
approximating game Gν(A) (in the sense that θ ∈ Θν

i ) is disappearing as ν goes to infinity.
Also, the aggregate-profile constraint sets of the sequence of approximating games converge
to the one in G(A).

Note that, except the last condition on Dν, the other conditions are independent of the
constraint sets (Aν)ν and A.

Remark 6.7. The assumption span X ν
i = span Xθ , ∀θ ∈ Θν

i is needed for our proofs because of the
existence of coupling constraints. It implies in particular that the nonatomic infinite game considered
is such that {span Xθ}θ∈Θ has a finite number of elements. This assumption is natural as, in many
models, span Xθ will be the same for all θ ∈ Θ (see example of Section 6.4).

Remark 6.8. Without loss of generality, we assume ri (A ∩ X ) 6= ∅ in this section. Indeed, if the
nonempty convex compact set A ∩ X has an empty relative interior, then it is reduced to a point
hence the problem becomes trivial.

In Section 6.3.3, we will construct a sequence of finite-type approximating games for two
fairly general cases of nonatomic aggregative games.

In order to compare symmetric action profiles in the approximating games and action
profiles in the original game, we introduce the following linear mappings which define an
equivalent action profile for a symmetric action profile in an approximating game, and vice
versa.

First, define the set:

LI
ν

S
def
= {x ∈ L2([0, 1],M) : xθ = xξ , ∀θ, ξ ∈ Θi, ∀i ∈ Iν} ,

and the mapping ψν : L2([0, 1],M)→ LI
ν

S for each ν ∈N∗ by

∀x ∈ L2([0, 1],MT), ψν(x) =
(

ψν
θ (x)

)
θ∈Θ,

where ∀i ∈ Iν, ∀θ ∈ Θν
i , ψν

θ (x) =
∫

Θν
i

xξ dξ

µν
i

.
(6.14)

The interpretation of ψν is that a nonatomic player θ ∈ Θi (type i) adopts the average behav-
ior of players in Θν

i .

In the following, we assume that Assumptions 6.1, 6.3 and 6.4 also hold for each game
Gν of a sequence of finite-type approximating games: this appears naturally in many cases
if (Gν)ν is built from G, as seen in Section 6.3.3. Finally, let us make the following additional
assumption for this section.

Assumption 6.5. There is a strictly positive constant η and an action profile x̄ ∈ X such that, for
almost all θ ∈ Θ, d(x̄θ , rbd Xθ) > η.

It means that the action space of each player has an (aggregatively) nonempty relative
interior and that the relative interior is not vanishing along any sequence of players.

6.3.2 Convergence of equilibrium and aggregate equilibrium profiles

The following Theorem 6.5 gives the main result of this chapter. It shows that a VWE in a
strongly monotone nonatomic aggregative game can be approximated by SVWE of a finite-
type approximating games sequence, both in the case with and without aggregative con-
straints.

According to Theorem 6.4, a strongly monotone game is strictly monotone, hence the
VWE is unique, while an aggregatively strongly monotone game is aggregatively strictly
monotone, hence the aggregate-action profile at VWE is unique.
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Theorem 6.5 (Convergence of SVWE to VWE). Under Assumptions 6.1 to 6.5, let (Gν(Aν))ν

be a sequence of finite-type approximating games for the nonatomic aggregative game G(A) with an
aggregative constraintA. Let x∗ be the VWE of G(A), xν ∈ X ν(Aν) an SVWE of Gν(Aν) for each
ν ∈ N∗, and X∗, Xν their respective aggregate-action profiles. Then, there exists a constant ρ > 0
such that the following results hold with KA

def
=

R+1
ρ :

i) If G is aggregatively strongly monotone with modulus β, (Xν)ν converges to X∗: for all ν ∈
N∗ such that max(δ

ν
, Dν) < ρ,

‖Xν − X∗‖2 6
1
β

(
(4Lf + 1)KAmax(Dν, δ

ν
) + (2M + 1)d

ν
)

. (6.15)

ii) If G is strongly monotone with modulus α, then (hxxν)ν , converges to x∗ in L2-norm: for all
ν ∈N∗ such that max(δ

ν
, Dν) < ρ,

‖x− x∗‖2
2 6

1
α

(
(4Lf + 1)KAmax(Dν, δ

ν
) + (2M + 1)d

ν
)

. (6.16)

If there are no aggregate constraints, one can replace KA (resp. Dν) by 1
2 (resp. 0) in (6.15) and

(6.16), and Assumption 6.5 is no longer required.

Some notions and a series of lemmas are needed for the proof of Theorem 6.5.

Notation Let Pν
i (·) denote the (Euclidean) projection function onto X ν

i for i ∈ Iν and Pθ(·)
the projection function onto Xθ for θ ∈ Θ.

Let Pν denote the (Euclidean) projection function onto X ν
S(Aν) ⊂ LIν

S , and P the projec-
tion function onto X (A) ⊂ L2([0, 1], RT ; µ).

Since X ν
i ’s, Xθ’s, X (A) and X ν

S(Aν)’s (as defined by (6.9)) are all convex and closed in
their respective Hilbert spaces, the projection functions onto these sets are well defined.

The following Lemma 6.3 shows that the players become infinitesimal along a sequence
of finite-type approximating games.

Lemma 6.3. Under Assumption 6.1, for all ν ∈N∗, ‖xν‖2 6 δ
ν
+ R for all xν ∈ X ν

S.

Proof. Let xν
i ∈ X ν

i and θ ∈ Θν
i . By definition of δν

i ,∥∥xν
i − Pθ

(
xν

i
)∥∥ 6 δν

i ,

so that we have:
‖xν

i ‖ 6
(
δν

i +
∥∥Pθ(xν

i )
∥∥) 6 (δν

i + R) .

Then, ‖xν‖2
2 = ∑Iν

i=1
∫

Θi
‖xν

i ‖2 dθ = ∑Iν

i=1 µν
i ‖xν

i ‖2 6 ∑Iν

i=1 µν
i (δ

ν
i + R)2 6 (δ

ν
+ R)2.

The following lemma shows that the convergence of each type of action set in finite-type
game Gν to that of her corresponding nonatomic player in G, assumed by Equation (6.12),
implies the convergence of the product action sets in L2([0, 1],M).

Lemma 6.4 (Convergence of X ν
S to X ). Under Assumption 6.1, for all ν ∈N∗,

i) for each xν ∈ X ν
S, d2(xν,X ) 6 δ

ν;

ii) for each x ∈ X , d2(ψ
ν(x),X ν

S) 6 δ
ν;

iii) for each i ∈ Iν and each xν
i ∈ X ν

i , if d(xν
i , rbd X ν

i ) > δν
i , then xν

i ∈ Xθ for all θ ∈ Θν
i ;

iv) for each i ∈ Iν, each θ ∈ Θν
i , and each xθ ∈ Xθ , if d(xθ , rbd Xθ) > δν

i , then xθ ∈ X ν
i .
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Proof. i) Let xν ∈ X ν
S. For each i ∈ Iν and each θ ∈ Θν

i , define

yθ = Pθ(xν) ∈ Xθ so that ‖yθ − xν‖ 6 δν
i .

Let us show that y is measurable on each Θν
i , hence measurable on Θ so that y ∈ X . For that,

define κi on Θν
i ×MT by κi : (θ, w) 7→ ‖xν

i −w‖. Then, κi is a Carathéodory function. Since
the correspondence Θν

i 3 θ 7→ Xθ is measurable, according to the measurable maximum
theorem [AB06, Thm. 18.19], there is a measurable selection of xθ ∈ arg minXθ

κi(θ, ·). The
minimum of κi(θ, ·) on Xθ is unique and is just yθ , hence y is measurable on Θν

i .

Then, ‖xν − y‖2 6 δ
ν
, which shows that d2(xν,X ) 6 δ

ν
.

ii) Let x ∈ X . For each i ∈ Iν, θ ∈ Θν
i , ‖xθ − Pν

i (xθ)‖ 6 δν
i . Since X ν

i is a convex subset
in RT , 1

µν
i

∫
Θν

i
Pν

i (xθ)dθ ∈ X ν
i .

Define y ∈ X ν with, for each θ ∈ Θi, for i ∈ Iν
i :

yθ = yi
def
=

1
µν

i

∫
Θν

i

Pν
i (xθ)dθ ∈ X ν

i .

Then, from Cauchy-Schwartz inequality:

‖ψν(x)− y‖2
2 = ∑

i∈Iν

µν
i ‖ψν

i (x)− 1
µν

i

∫
Θν

i
Pν

i (xθ)dθ‖2

= ∑
i∈Iν

1
µν

i
‖
∫

Θν
i

(xθ − Pν
i (xθ))dθ‖2

6 ∑
i∈Iν

1
µν

i
µν

i

∫
Θi

‖xθ − Pν
i (xθ)‖2 dθ

= ∑
i∈Iν

∫
Θi

‖xθ − Pν
i (xθ)‖2 dθ 6 ∑

i∈Iν

µν
i (δ

ν
i )

2 6 (δ
ν
)2,

so that ‖ψν(x)− y‖2 6 δ
ν
. This concludes the proof.

iii) Fix ν ∈ N∗, i ∈ Iν and θ ∈ Θν
i . Consider xν

i ∈ X ν
i such that d(xν

i , rbd X ν
i ) > η for

some η > δν
i . Assume that xν

i /∈ Xθ i.e.
∥∥xν

i − PXθ
(xν

i )
∥∥ > 0 and define:

yν
i = xν

i + η
xν

i − PXθ
(xν

i )∥∥xν
i − PXθ

(xν
i )
∥∥ ∈ X ν

i ,

as span Xθ ⊂ span X ν
i .

Since X ν
i is convex, we have

d(yν
i ,Xθ) =

∥∥xν
i − PXθ

(xν
i )
∥∥+ ∥∥yν

i − xν
i
∥∥ > η > δν

i ,

which contradicts the fact that d(Xθ , xν
i ) 6 δν

i . Hence xν
i ∈ Xθ .

iv) The proof is similar to that of iii).

Note that, because of the convexity assumptions (Assumption 6.1), the sets of aggregate
action profiles in the finite-type game Gν(Aν), obtained by considering symmetric or by
considering non symmetric profiles are the same, that is:

X ν def
=
{ ∫

Θ xθ dθ |x ∈ X ν
}
=
{ ∫

Θ xθ dθ |x ∈ X ν
S

}
, (6.17)

and the same equality holds for X ν ∩Aν when considering aggregate constraint Aν.
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The sequence of sets of aggregate action profiles (X ν
)ν in games (Gν(Aν))ν with aggrega-

tive constraints, converges to the set of aggregate-action profiles of the nonatomic aggregative
game G(A) with an aggregative constraint, as the following lemma says.

Lemma 6.5. Under Assumption 6.1, for ν ∈N∗,

i) dH(X
ν
,X ) 6 δ

ν;

ii) for X ∈ ri X , if d(X, rbd X ) > δ
ν, then X ∈ X ν;

for Xν ∈ ri X ν, if d(X, rbd X ν
) > δ

ν, then X ∈ X ;

iii) for X ∈ ri A, if d(X, rbd A) > Dν, then X ∈ Aν;
for Xν ∈ ri Aν, if d(Xν, rbd Aν) > Dν, then Xν ∈ A;

iv) for X ∈ ri (X ∩A), if d(X, rbd (X ∩A)) > max(δ
ν
, Dν), then X ∈ X ν ∩Aν;

for Xν ∈ ri (X ν ∩Aν), if d(Xν, rbd (X ν ∩Aν)) > max(δ
ν
, Dν), then Xν ∈ X ∩A.

Proof. i) Fix x ∈ X . Consider y ∈ X ν
S such that ‖ψν(x)− y‖2 6 δ

ν
(cf. Lemma 6.4). Then,

from Cauchy-Schwarz inequality:

‖
∫

ψν(x)−
∫

y‖2 6 ‖ψν(x)− y‖2
2 6 (δ

ν
)2 .

Hence d(
∫

x,X ν
) 6 ‖

∫
ψν(x)−

∫
y‖ 6 δ

ν
.

On the other hand, let xν ∈ X ν
S, thus Xν def

=
∫

xν ∈ X ν
. For each i ∈ Iν and each θ ∈ Θν

i ,
define yθ = Pθ

(
xν

i
)
∈ Xθ , so that ‖xν

θ − yθ‖ 6 δν
i . Then, we get:

‖
∫

xν −
∫

y‖ 6
∫
‖xν

θ − yθ‖dθ 6 δ
ν

,

which shows that d
(
Xν,X

)
6 δ

ν
for all Xν ∈ X ν

.
ii-iii) The proof is similar to the one of Lemma 6.4.iii).
iv) These are corollaries of ii) and iii).

For the proof of the main theorem, we need to rely on nonatomic profiles that are away
from the boundary of the feasible domain, giving us some margin. The existence of such
profiles is ensured by the following lemma.

Lemma 6.6. Under Assumptions 6.1 and 6.5, there is a strictly positive constant ρ∗ and a nonatomic
action profile z ∈ X such that

∫
z ∈ ri (X ∩A) and, for almost all θ ∈ Θ, d(zθ , rbd Xθ) > 3ρ∗.

Proof. Take x̄ the nonatomic action profile in Assumption 6.5 and an arbitrary y ∈ X (A)
such that

∫
y ∈ ri (X ∩A).

Let us denote t def
=

d(
∫

y,rbd (X∩A))
3M and define the profile z ∈ X by z = y− t(y− x̄).

Firstly, we have:

‖
∫

y−
∫

z‖ = t‖
∫

y−
∫

x̄‖ 6 t2M 6 2
3 d(
∫

y, rbd (X ∩A)) ,

hence
∫

z ∈ ri (X ∩A).
Besides, for any θ, zθ = yθ − t(yθ − x̄θ). Since d(x̄θ , rbd Xθ) > η, yθ ∈ Xθ , and Xθ is

convex, we have:
d(zθ , rbd Xθ) > ηt =

η

3M
d(
∫

y, rbd (X ∩A)) .

One concludes by defining ρ∗ def
=

η
9M d(

∫
y, rbd (X ∩A)).
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{x|
∫

x ∈ Aν}

X ν
S

X ν
S(Aν)

xν

zν

wν
2ρ∗

Xν

Z

W ν
2ρ̄

2tρ
∫

=⇒

Aν

X ν

X ν ∩ Aν

FIGURE 6.1: Illustration of the mapping
∫

Θ(.) between X ν(Aν) and X ∩ A
used in Lemma 6.7

Notation Denote Z =
∫

z where z is the one in Lemma 6.6 and define

ρ̄ def
=

1
3

d(Z, rbd X ∩A) > 0

and the parameter ρ def
= min(ρ∗, ρ̄), appearing in the bounds of Theorem 6.5.

The following lemma shows that the space of symmetric action profiles in the finite-type
game with aggregative constraint, X ν

S(Aν), is converging to the space of action profiles in the
nonatomic aggregative game with aggregative constraint, X (A).

Lemma 6.7 (Convergence ofX ν
S(Aν) toX (A)). Under Assumptions 6.1 and 6.5, let KA = R+1

ρ .

Then, for all ν ∈N∗ such that max(δ
ν
, Dν) < ρ,

i) for each xν ∈ X ν
S(Aν), d2(xν,X (A)) 6 2KAmax(Dν, δ

ν
);

ii) for each x ∈ X (A), d2(ψ
ν(x),X ν

S(Aν)) 6 2KAmax(Dν, δ
ν
).

Proof. i) Consider xν ∈ X ν
S(Aν) and Xν =

∫
xν. Let zν def

= ψν(z) where z is defined in
Lemma 6.6. Since for each θ, d(zθ , rbd Xθ) > 3ρ > δ

ν
, one has zν ∈ X ν

S according to
Lemma 6.4.iv).

Define wν def
= xν + t(zν − xν) with t def

=
max(Dν ,δν

)
ρ < 1, then wν ∈ X ν

S from convexity and:

• we have:

‖wν − xν‖2 = max(Dν, δ
ν
)
‖zν − xν‖2

ρ

6max(Dν, δ
ν
)

2(R + 1)
ρ

6 2KAmax(Dν, δ
ν
) ;

• let us show that wν ∈ X : from Lemma 6.4.iii), it is sufficient to show that d(wν
i , rbd X ν

i ) >

δ
ν
i . For that, we show d(zν

i , rbd X ν
i ) > 2ρ which implies:

d(wν
i , rbd X ν

i ) > 2tρ > δ
ν

.

For any arbitrary yi ∈ B2ρ(zν
i ) ∩ span X ν

i , let yθ
def
= zθ + yi − zν

i for θ ∈ Θν
i . Then, yθ ∈

B2ρ(zθ) ∩ span Xθ as span Xθ = span X ν
i , and:

d(yθ , rbd Xθ) > d(zθ , rbd Xθ)− ‖zθ − yθ‖ > 3ρ− 2ρ = ρ > δ
ν

.

Hence, from Lemma 6.4.iv), one has yθ ∈ X ν
i and, from convexity, yi = 1

µν
i

∫
Θi

yθ ∈ X ν
i

which concludes;
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• let us show that Wν =
∫

wν ∈ A: from Lemma 6.5.iii), it is sufficient to show that Wν ∈
ri Aν and d(Wν, rbd Aν) > Dν. First, since max(δ

ν
, Dν) < ρ̄, one has:

d(Z, rbd (X ν ∩Aν)) > 3ρ̄−max(δ
ν
, Dν) > 2ρ̄ .

The linear mapping x 7→
∫

x maps the segment linking xν and zν in X ν(Aν) to a segment
linking Xν and Z = Zν in X ν ∩Aν. Hence, by the definition of wν, B2tρ(Wν) ∩ span (X ν ∩
Aν) ⊂ X ν ∩Aν, because each point in B2tρ(Wν)∩ span (X ν ∩Aν) is on the segment linking
Xν and some point in B2ρ(Z) ∩ span (X ν ∩Aν) ⊂ X ν ∩Aν. Finally we have:

d(Wν, rbd (X ν ∩Aν)) > 2tρ = 2 max(Dν, δ
ν
) > Dν ,

which concludes.

ii) The proof is similar and omitted.

X ν
S(Aν)

X (A)

x2

x1

X ν
1

X ν
S

X ν
2

X

{x|
∫

x∈A}
{x|

∫
x∈Aν}

xν PX (xν)

P(xν)

FIGURE 6.2: Difference between projections on X and on X (A). (Since it is
impossible to draw the graph of a L2 action-profile space with a continuum

of players, we illustrate the idea with two players.)

Remark 6.9 (Difference between unilateral projections of actions and collective projection of
the action profile). Lemma 6.7 shows that

d2(xν, P(xν)) 6 2KAmax(Dν, δ
ν
) and d2(ψ

ν(x), Pν(ψν(x))) 6 2KAmax(Dν, δ
ν
),

with P and Pν the projection functions onto X (A) and X ν(Aν). Lemma 6.7 is of first importance
for our proof of Theorem 6.5: without it, we only have the convergence of individual, i.e. unilateral
action spaces in the sequence of approximating games, to the unilateral action spaces in the nonatomic
aggregative game, as shown in Lemma 6.4. Without coupling constraints, this should be sufficient in
the proof of the convergence of a sequence of SVWE. However, in the presence of coupling aggregative
constraints, this convergence of unilateral action spaces is not enough. Given a profile in X ν

S(Aν),
unilateral projection of each type i player’s action onto the corresponding nonatomic player’s action
space in G(A), i.e. from X ν

i to Xθ , cannot guarantee that the resulting action profile is in X (A),
and vice versa. Lemma 6.7 shows that, for each action profile xν ∈ X ν

S(Aν), its projection on the
space of nonatomic action profiles in X (A) is close to xν, and vice versa.

We are finally ready to prove Theorem 6.5.

Proof of Theorem 6.5. Fix ν ∈ N∗, define ẑν def
= P(xν) ∈ L2([0, 1], RT). Then ẑν ∈ X (A) is

an action profile in nonatomic aggregative game G(A). By the definition of VWE (Defini-
tion 6.4), we have

∫ 1
0 〈gx∗(θ), x∗θ − ẑν

θ〉dθ 6 0.
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Secondly, by the definition of SVWE, we have
∫ 1

0 〈hxν(θ), xν
θ − zν

θ〉dθ 6 0 for any zν ∈
X ν(A), where hxν(θ) = ∇1 f ν

θ (xν
θ , Xν) = ∇1 f ν

i (xν
i , Xν) def

= hxν(i), for each θ ∈ Θν
i and each

type i ∈ Iν.
For all i ∈ Iν and θ ∈ Θν

i , we also have ‖hxν − gxν‖2 6 dν
i by the definition of dν

i (cf.
(6.13)).

Thirdly, ‖xν − ẑν‖2 6 2KAmax(Dν, δ
ν
) by Lemma 6.7.

With these two results, while noticing that xν
θ 6 R + δ

ν
for all θ by Lemma 6.3, one has:∫

Θ

〈
gx∗(θ)− gxν(θ), x∗θ − xν

θ

〉
dθ

=
∫

Θ
〈gx∗(θ), x∗θ − ẑν

θ〉 dθ +
∫

Θ
〈gx∗(θ), ẑν

θ − xν
θ〉 dθ

+
∫

Θ

〈
gxν(θ)− hxν(θ), xν

θ − x∗θ
〉

dθ +
∫

Θ

〈
hxν(θ), xν

θ−x∗θ
〉

dθ

6 0+ ‖gx∗‖2 ‖ẑ−xν‖2+ ‖gxν − hxν‖2 ‖x
ν − x∗‖2 + Jν

6 2Lf KAmax(Dν, δ
ν
) + (2M + δ

ν
)d

ν
+ Jν (6.18)

where Jν def
=
∫

Θ

〈
hxν(θ), xν

θ−x∗θ
〉

dθ = ∑i∈Iν

∫
Θν

i

〈
hxν(i), xν

θ − x∗θ
〉

dθ.

Next, for the VWE x∗ ∈ X (A), let y∗ν = ψ(x∗) ∈ L2([0, 1],M) and z∗ν def
= Pν(y∗ν) ∈

X ν(Aν), such that we have:

Jν = ∑
i∈Iν

〈
hxν(i),

∫
Θν

i

xν
θ − x∗θ dθ

〉
= ∑

i∈Iν

〈
hxν(i), µν

i (xν
i − y∗ν

i )
〉

= ∑
i∈Iν

〈
hxν(i), µν

i (xν
i − z∗ν

i )
〉
+ ∑

i∈Iν

〈
hxν(i), µν

i (z
∗ν

i − y∗ν
i )
〉

6 0 + (Lf + d
ν
)
∥∥z∗ν − y∗ν∥∥

2 6 (Lf + d
ν
)2KAmax(Dν, δ

ν
) , (6.19)

from the definition of SVWE for xν and Proposition 6.2, the definition of d
ν

and Lemma 6.7.i).
Let us summarize by combining (6.18) and (6.19), and considering ν large enough such

that d
ν
, δ

ν
6 1: ∫

Θ

〈
gx∗(θ)− hxν(θ), x∗θ − xν

θ

〉
dθ 6 Ων

with Ων def
= (4Lf + 1)KAmax(Dν, δ

ν
) + (2M + 1)d

ν
.

(6.20)

Last, using the monotonicity definitions (Definition 6.3):

• if G is strongly monotone with modulus α, then α ‖xν − x∗‖2
2 6 Ων;

• if G is aggregatively strongly monotone with modulus β, then β‖Xν − X∗‖2 6 Ων,

leading to the results announced in Theorem 6.5.

Remark 6.10. The strong monotonicity of the nonatomic aggregative game G, either with respect
to action profile or with respect to aggregate-action profile, is essential in this result. In contrast to
finite-player games (cf. [Wan12a]), strict monotonicity is not enough to obtain such results using
the same techniques. Indeed, since L2([0, 1],MT) is only weakly compact, one cannot ensure that∫

Θ〈gx∗(θ)− hxν(θ), x∗θ − xν
θ〉dθ tends to

∫
Θ〈gx∗(θ)− hẑ(θ), x∗θ − ẑθ〉dθ in (6.20), where ẑ is an

accumulation point of (xν)ν in the weak topology.

6.3.3 Construction of a sequence of finite-type approximating games

As seen in our previous results, a nonatomic player θ is characterized by two elements: her
action set Xθ , and her gradient ∇1 fθ defined fromM2 to RT : (x, Y) 7→ ∇1 fθ(x, Y).
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Note that it is the gradient of the cost function∇1 fθ , instead of the cost function fθ itself,
that characterizes a nonatomic player’s type. For example, two players θ and ξ withXθ = Xξ

and fθ(x, Y) ≡ fξ(x, Y) + C where C is a strictly positive constant can be seen as identical in
their behavior.

This section presents the construction of a sequence of finite-type approximating games
for a given nonatomic aggregative game G in two particular cases: 1) the player characteristic
profile θ 7→ (Xθ ,∇1 fθ) is piecewise continuous (cf. Definition 6.7) and, 2) {Xθ , θ ∈ Θ} and
{ fθ , θ ∈ Θ} are respectively polytopes and functions parameterized by a finite number of
real parameters. Those two cases are fairly general. As illustrated in Section 6.4, they emerge
naturally when the nonatomic game comes from the modeling of a population described by
parametric probability distributions, the main motivation for considering infinite nonatomic
games.

Case 1: Piecewise Continuous Characteristics – Uniform Splitting

Definition 6.7 (Continuity of nonatomic player characteristic profile). The player character-
istic profile θ 7→ (Xθ ,∇1 fθ) in nonatomic aggregative game G is continuous at θ ∈ Θ if, for
all ε > 0, there exists η > 0 such that: for each θ′ ∈ Θ

|θ − θ′| 6 η ⇒
{

dH(Xθ ,Xθ′) 6 ε

sup(x,Y)∈M×M ‖∇1 fθ(x, Y)−∇1 fθ′(x, Y)‖ 6 ε .
(6.21)

If (6.21) is true for all θ and θ′ on an interval Θ′ ⊂ Θ, then the player characteristic profile
is uniformly continuous on Θ′.

Assume that the player characteristic profile θ 7→ (Xθ ,∇1 fθ) of nonatomic aggregative
game G is piecewise continuous, with a finite number (K + 1) of discontinuity points σ0 =
0 6 σ1 < σ2 < · · · < σK−1 6 σK = 1, and that it is uniformly continuous on (σk, σk+1), for
each k ∈ {0, . . . , K− 1}. For ν ∈N∗, define an ordered set of Iν cutting points by

{υν
i , i = 0, . . . , Iν} :=

{
k
ν

}
06k6ν

∪ {σk}16k6K ,

and the corresponding partition (Θν
i )i∈Iν of Θ by:

Θν
i = [υν

i−1, υν
i ) for i ∈ {1, . . . , Iν − 1} ; Θν

Iν = [υν
Iν−1, 1].

Hence, µν
i = υν

i − υν
i−1. Denote ῡν

i =
υν

i−1+υν
i

2 .

Proposition 6.4. Let Assumptions 6.1 to 6.4 hold, and assume that {span Xθ}θ∈Θ has a finite
number of elements. For ν ∈ N∗, consider the finite-type game Gν(Aν) with aggregative constraint
Aν def

= A, set of types Iν def
= {1 . . . Iν}, where for each type i ∈ Iν:

X ν
i

def
= Xῡν

i
and f ν

i (x, Y) def
= fῡν

i

(
x, Y

)
, ∀(x, Y) ∈ M×M.

Then
(
Gν(A)

)
ν
=
(
Iν,X ν,A, ( f ν

i )i∈Iν

)
ν

is a sequence of finite-type approximating games of non-
atomic aggregative game G(A).

Proof. Let us show the three points required by Definition 6.6 as follows.
i) Given an arbitrary ε > 0, there is a common modulus of uniform continuity η such

that (6.21) holds for all the intervals (σk, σk+1). For ν large enough, one has, for each i ∈ Iν,
µν

i < η so that for all θ ∈ Θν
i , |ῡν

i − θ| < η; hence dH
(
Xθ ,X ν

i
)
= dH(Xθ ,Xῡν

i
) < ε.

ii) According to the continuity property, for all (x, Y) ∈ M2:∥∥∇1 f ν
i
(
µν

i x, Y
)
− ∇1 fθ(x, Y)

∥∥ =
∥∥∥∇1 fῡν

i

(
x, Y

)
− ∇1 fθ(x, Y)

∥∥∥ < ε.
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To be rigorous, one would we need to ensure span Xθ to be the same for all θ ∈ Θν
i : if

not, one can further divide Θν
i into a finite number of groups so that players in each group

have the same span Xθ . This is possible because {span Xθ}θ is finite.
iii) By definition, Dν = 0.

Case 2: Finite-dimensions Parameterized Characteristics – Meshgrid Approximation
Assume that the nonatomic aggregative game G satisfy two conditions:
(i) The feasible action sets are K-dimensional polytopes: there exists a constant real-

valued K × T matrix P, and a bounded mapping b : Θ → RK, such that for any θ, Xθ =
{x ∈ RT : Px 6 bθ}, which is a nonempty, bounded, closed and convex polytope in RT .

(ii) There is a bounded mapping s : Θ → Rl such that for any θ ∈ Θ, fθ(·, ·) = f (·, · ; sθ).
Furthermore, for all (x, Y) ∈ M2, ∇1 f (x, Y ; ·) is Lipschitz-continuous in s and with a Lips-
chitz constant L3, independent of x and Y .

Let us consider:

bk
def
= min

θ
bθ,k, bk

def
= max

θ
bθ,k, ∀k ∈ {1 . . . K}

and sk
def
= min

θ
sθ,k , sk

def
= max

θ
sθ,k, ∀k ∈ {1 . . . l} .

The characteristics of player θ are parameterized by a point (bθ , sθ) in

C def
= ∏K

k=1[bk, bk]×∏l
k=1[sk, sk] ,

a compact subset of RK+l .
Fix ν ∈N∗, consider a uniform partition of the compact set C , obtained by dividing each

dimension of this compact set into ν equal parts. Hence, the partition is composed of Iν def
=

νK+l equal-sized subsets of C. The cutting points of the partition are bk,nk
def
= bk +

nk
ν (bk − bk)

for k ∈ {1, . . . , K}, and sk,nk
def
= sk +

nk
ν (sk − sk) for k ∈ {1, . . . , l}, with nk ∈ {0, . . . , ν}. Let

the set of vectorial indices, indexing the partition, be denoted by:

Γν def
= {n = (nk)

K+l
k=1 ∈NK+l | nk ∈ {1, . . . , ν}} .

Define the corresponding partition of the interval Θ: Θ =
⋃̇

n∈Γν Θν
n, where:

Θν
n

def
=
{

θ ∈ Θ : bθ,k ∈ [bk,nk−1, bk,nk
) for 1 6 k 6 K; sθ,k ∈ [sk,nk−1, sk,nk

) for 1 6 k 6 l
}

.

To be rigorous, when bk,nk
= bk or sk,nk

= sk, the parameter interval is closed at the right.
Finally, define the set of players Iν as the elements n in Γν such that µ(Θν

n) > 0.

Proposition 6.5. For ν ∈ N∗, let the nonatomic finite-type game Gν(Aν) with an aggregative
constraint Aν def

= A, set of types Iν def
= {n ∈ Γν : µ(Θν

n) > 0} and, for each type n ∈ Iν,

X ν
n

def
= {x ∈ RT |Px 6

∫
Θν

n
bθ dθ} ,

f ν
n (x, Y) def

= µν
n f
( 1

µν
n

x, Y ; 1
µν

n

∫
Θν

n
sθ dθ

)
, ∀(x, Y) ∈ µν

iM×M.

Then, under Assumptions 6.1 to 6.4, (Gν(A))ν =
(
Iν,X ν,A, ( f ν

i )i∈Iν

)
ν

is a sequence of finite-
type approximating games of the nonatomic aggregative game G(A) with an aggregative constraint.

Proof. Let us show the three properties required by Definition 6.6 as follows.
i) For each n ∈ Iν, X ν

n =
{

x ∈ RT : Px 6 1
µν

n

∫
Θν

n
bθ dθ

}
. Then, from Theorem 5.3 in

Section 5.F, there is a constant C0 such that, for each θ′ ∈ Θν
n, we have:

dH (Xθ′ ,X ν
n ) 6 C0

∥∥∥∥bθ′ −
1

µν
n

∫
Θν

n

bθ dθ

∥∥∥∥ 6 C0

ν

∥∥∥b− b
∥∥∥ .
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Hence, δ
ν

tends to 0. Note that in this case, the assumption of {span Xθ}θ∈Θ being finite is
naturally satisfied.

ii) For each n ∈ Iν and each θ′ ∈ Θν
n, for all (x, Y) ∈ M2, one has:

‖∇1 f ν
n (x, Y) − ∇1 fθ′(x, Y)‖ =

∥∥∥∇1 f
(
x, Y ; 1

µν
n

∫
Θν

n
sθ dθ

)
− ∇1 f (x, Y ; sθ′)

∥∥∥
6 L3‖

1
µν

n

∫
Θν

n

sθ dθ − sθ′‖ 6
L3

ν
‖s− s‖ ,

by the Lipschitz continuity of ∇1 f (x, Y ; ·). Hence, d
ν

tends to 0.
iii) By definition, we have Dν = 0.

Remark 6.11. One can obtain similar results as Proposition 6.5 by considering the characteristics
(bθ , sθ) for an aribtrary θ ∈ Θν

n for each n, instead of the average values (
∫

Θν
n

bθ dθ,
∫

Θν
n

sθ dθ).

Remark 6.12. By construction, in both sequences above, the compacity and convexity of the feasi-
bility sets (Xi)i and the convexity and continuity of cost functions ( fi)i are naturally inherited from
the properties assumed on (Xθ)θ and ( fθ)θ . This should often be the case when building a sequence
of approximating games from a nonatomic game with an infinity of types.

6.4 Illustration on a Smart Grid Example

In this section the results are derived on a simple example for illustration, in the framework
stated in introduction. In this example, we will be able to compute explicitly the aggregate
equilibrium of the infinite-type nonatomic game.

We suppose that the energy operator has access to the probability distribution of the
amount of flexible energy in the N = 30 millions French households: let us assume that this
distribution is uniform on [0, Emax] with Emax = 20kWh (kiloWatthour), that is φE(E) = 1

Emax
for E ∈ [0, Emax].

Then the quantile function (or inverse cumulative distribution function), scaled by the
population size, is given by Eθ = F−1

E (θ) = θEmaxN, for each θ ∈ Θ = [0, 1]. In this case, the
action set mapping X. : Θ⇒ R2 is given by:

∀θ ∈ Θ, Xθ =
{

xθ = (xθ,O, xθ,P) ∈ R2
+ | xθ,O + xθ,P = Eθ

}
, (6.22)

which gives an infinity of different action sets. Let us consider, as said in the introduction,
that there are two prices:

cO(X) =
aO
N

XO and cP(X) =
aP
N

XP

for off peak and on peak periods, with aP > aO, that depend only on the aggregate energy
on off peak period XO (resp. on peak period XP), or rather on the average energy that
consumers ask on these periods. Thus, the cost function of each player θ is given, as in the
example of public products game given by (6.6):

∀xθ ∈ Xθ , fθ(xθ) = xθ,O × cO(X) + xθ,P × cP(X) = 〈xθ , c(X)〉,

where c = (c0, cP). Hence, all players have the same cost function: the infinite number of
types is only due to the infinite number of different action sets.

Owing to Proposition 6.1, the nonatomic game G obtained is aggregatively strongly
monotone with modulus β = aO

N . However, the game is not strongly monotone.
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It turns out that on this toy example, one can directly compute the aggregate profile of
the VWE, as the IDVI of Definition 6.4 asks to find x∗ ∈ X such that:∫

Θ
〈gx∗(θ), xθ − x∗θ 〉dθ > 0, ∀x ∈ X

⇐⇒
∫

Θ
〈c(X∗), xθ − x∗θ 〉dθ > 0, ∀x ∈ X

⇐⇒ 〈c(X∗), X − X∗〉 > 0, ∀X ∈ X . (6.23)

This simplification holds because, for each θ, gx∗(θ) depends only on the aggregate X∗

(which would not be the case for general nonlinear cost functions). As a result the VI ob-
tained is of finite dimension.

In this example, the aggregate action set X can also be characterized easily, although
this would not be the case for arbitrary sets (Xθ)θ . In fact, as the aggregate flexible energy
available is Etot

def
=
∫

Θ Eθ dθ = 1
2 NEmax, we obtain:

X =
{
(XO, XP) ∈ R2

+ | XO + XP = Etot

}
. (6.24)

Indeed, if XO + XP = Etot, then taking xθ = X Eθ
Etot

, we have x ∈ X and
∫

Θ xθ dθ = X. The
converse inclusion is clear. Consequently, we obtain from (6.23) that X∗ is the solution of the
quadratic program:

min
X

aO
N ×

1
2 X2

O + aP
N ×

1
2 X2

P

XO + XP = Etot

0 6 XO, XP

that is: X∗ = (X∗O, X∗P) = ( aP
aO+aP

Etot,
aO

aO+aP
Etot).

Now, let us define a sequence of finite-type approximating games Gν to approximate G,
with for each ν ∈N∗, Iν = ν. Let us drop the index ν for simplicity in the remaining. Let us
split up the population uniformly with Θν

i = [ i−1
I , i

I ], for each i ∈ I = {1, . . . , I}.
Because of the linearity of θ 7→ Eθ , considering the uniform approximation detailed in

Section 6.3.3 case 1, one will obtain directly X∗. For the example, let us rather consider the
approximating games defined with, for each i ∈ I :

Xi
def
= {xi ∈ R2

+ | xi,O + xi,P = Ei
def
=

i
I NEmax} . (6.25)

Besides, we naturally take fi
def
= fθ for each i (as the cost function is the same for each player).

One can observe that we get for each i, δi =
NEmax

I = 2Etot
I → 0, and of course di = 0.

On the other hand, computing the aggregate approximate equilibrium, similarly to (6.23),
one obtains:

X I =
(

aP
aO+aP

Etot(1 + 1
I ),

aO
aO+aP

Etot(1 + 1
I )
)
= (1 + 1

I )X∗ ,

and thus we have:

‖X I − X∗‖ = ‖X
∗‖

I
=

√
a2

O + a2
P

aO + aP
Etot ×

1
I

. (6.26)

However, from Theorem 6.5, as we can compute Lf = maxX∈X ‖c(X)‖ = aP
N Etot, we obtain

the more conservative convergence bound (we can replace (4Lf + 1) by 2Lf since Dν = d
ν
=

0):

‖X I − X∗‖2 6
1
β

2Lfδ
I
=

N
aO

2
aP
N

Etot ×
2Etot

I

⇐⇒ ‖X I − X∗‖ 6 2Etot

√
aP
aO
× 1√

I
.
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6.5 Conclusion

Theorem 6.5 provides a precise theoretical result for the use of symmetric finite-dimensional
(variational) Wardrop equilibria (S(V)WE) as an approximation of the (V)WE in a strongly
monotone or aggregatively strongly monotone nonatomic aggregative game with an infin-
ity of players types, with or without aggregative constraints. There are numerous research
themes related to this result and our topic in general.

First, one needs to find efficient algorithms for the computation of finite dimensional
variational inequalities arising as the characterization of SVWE. An extensive literature ex-
ists in this regard but our particular case of aggregative game with aggregative constraints
may lead to special methods or improvements on existing results [Gra17].

Then, the extension of evolutionary dynamics for population games and related algo-
rithms to nonatomic games with infinitely many classes of players can be non trivial. A
recent work [Had17] proposes online learning methods for population games with hetero-
geneous convex action sets. The presence of aggregate constraints adds two additional dif-
ficulties for considering evolutionary dynamics in population games, as those dynamics are
based on unilateral adaptations from players. On the one hand, in the presence of coupling
constraints, unilateral deviations by players may well lead to an action profile violating the
coupling constraint. On the other hand, a feasible deviation in the action profile cannot
always be decomposed into unilateral deviations of players.

Last, our results are limited to monotone games and the convergence result is limited to
strongly monotone games. The study of nonatomic aggregative games that are not mono-
tone needs probably other approaches. Indeed, even for population games where there are
only finitely many types of players, there exist much fewer results for games that are not
linear, potential or monotone. The question of whether or not it is possible to obtain sim-
ilar convergence results as those stated in Theorem 6.5 without monotonicity assumptions
constitutes an interesting path for future work.

Appendix

6.A Extension of results to the subdifferentiable case

In this section, we explain briefly how our results extend to the case of convex nonsmooth
cost functions, considering subdifferential instead of gradients of convex costs.

The essence of the proofs are roughly the same as in the smooth case, but considering
subdifferentials requires some additional technical arguments. The full proofs can be found
in [JW18a]. The authors decided to formulate the results in the smooth case so that the key
arguments and ideas appear clearly.

Recall that the subdifferential, i.e. set of subgradients of a convex function f at x ∈ RT in
its domain C, which is a convex set in RT , is denoted by ∂ f (x). Recall that g ∈ RT is a
subgradient of f at x, denoted g ∈ ∂ f (x), iff for all z ∈ C, f (z) > f (x) + 〈g, z− x〉.

One has to consider the correspondence H : L2([0, 1],M)⇒ L2([0, 1], RT) of the subdif-
ferentials, associating to each profile x ∈ L2([0, 1],M) and each player θ the set of subgradi-
ents of her cost functions:

H(x) def
= {g = (gθ)θ∈Θ | gθ ∈ ∂1 fθ(xθ ,

∫
x), ∀a.e.θ ∈ Θ} , ∀x ∈ L2([0, 1],M). (6.27)

In other words, H(x) is the collection of measurable (and integrable because of Assump-
tion 6.3.iii adapted to assume uniform boundedness of ∂1 fθ ) selections of a subgradient for
each xθ . Most of the chapter can be interpreted in the nonsmooth framework by

• replacing gx by an element ofH(x) in the equations;

• considering the Hausdorff distance dH between subdifferentials instead of the Eu-
clidean distance between two gradients (e.g. for d in Definition 6.6 of a sequence of finite-
type approximating games);
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• a direct implication is that we have to consider generalized variational inequalities
(GVI), finite or infinite-dimensional, instead of VIs.

For instance, 〈gx∗ , x∗ − x〉 6 0, ∀x ∈ X becomes ∃g ∈ H(x∗), 〈g, x∗ − x〉 6 0, ∀x ∈ X .

It is usefull to introduce the best-reply correspondence Br : X ⇒ X :

Br(Y) def
= {x ∈ X : xθ ∈ arg minXθ

fθ(·, Y), ∀θ ∈ Θ}, ∀Y ∈ X ,

and, for Y ∈ X and x ∈ Br(Y), the correspondence D(x, Y): Θ→ RT defined by:

D(x, Y)(θ) def
= {gθ ∈ ∂1 fθ(xθ , Y) | 〈gθ , zθ − xθ〉 > 0 , ∀zθ ∈ Xθ} ∀θ ∈ Θ

which is nonempty (by first order conditions) and closed-valued. To get similar results as in
the smooth case, we need to make the following additional assumption:

Assumption 6.6. For all Y ∈ X and all x ∈ Br(Y), D(x, Y) is a measurable correspondence.

One can show that H(.) and Br have nonempty values. Then, instead of Lemma 6.1,
we use the compact-valued selection theorem [Aum76] to obtain for each x ∈ Br(Y) the
existence of a measurable mapping θ 7→ gx(θ) such that ∀θ ∈ Θ, gx(θ) ∈ D(x, Y)(θ).

We can then obtain a characterization of WE similar to Theorem 6.1, where the differential
gx∗ is replaced by the existence of an element in H(x∗). The existence result in Theorem 6.2
is also valid in the subdifferentiable case.

The monotonicity of G is defined as in Definition 6.3, where the inequalities on gx and gy
now have to hold for each pair of elements of the correspondences (gx, gy) ∈ H(x)×H(y).
Properties characterizing monotonicity given in Proposition 6.1 follow with essentially the
same proof, having in mind that for any θ, ∂1 fθ(xθ , Y) = {c(Y) + g : g ∈ ∂(−uθ)(xθ)}.

In presence of coupling constraints, a VWE (Definition 6.4) is also defined by x∗ ∈ X (A)
and the existence of an element g ∈ H(x∗) satisfying the infinite dimensional GVI (6.7).

The existence of a VWE (similar to Theorem 6.3) can also be obtained in the nonsmooth
case, where continuity of the gradient is replaced by upper-hemicontinuity of the correspon-
denceH and applying results of [DT96, Corollary 2.1]. The uniqueness conditions associated
to monotonicity detailed in Theorem 6.4 follow as well with essentially the same proof as for
the smooth case.

The main result, Theorem 6.5, is obtained for the nonsmooth case with the same bounds
on the convergence rate.

6.B On the Relationship between Nash and Wardrop Equi-
libria

The objective of this chapter is to approximate the equilibrium of a nonatomic game with
an infinity of players types, by considering approximating games with a finite number of
players types.

A natural idea would also be to consider approximating games with a finite number of
players, this number of players growing to infinity to approximate the nonatomic population
game.

Indeed, we briefly explain in this appendix how we can obtain similar convergence re-
sults by adopting this approach considering finite-player atomic games. The approach is
fully developed in [JW18a].

The main difference and difficulty under this approach is that the equilibrium concept
to consider for finite-player games is no longer Wardrop Equilibrium, but Nash Equilibrium
(NE). As the number of players is finite, an individual action xi of a player i does have an
impact on the aggregate action X = ∑i xi.

As a result, the modified cost function f̂i : (xi, X−i) 7→ fi(xi, X−i + xi) naturally appears,
where the action of i is taken into account in the aggregate action.
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This modified cost function, and the impact of individual actions in general, have to be
considered both in the assumptions and in the definitions of the different concepts used in
this chapter.

Nash equilibrium are naturally characterized by finite-dimensional variational inequal-
ities under convexity hypotheses: in the atomic case, we need the additional following as-
sumption:
Assumption 6.7. For an atomic game G(A) = (I , ( fi)i, (Xi)i, A) with a finite set of players I and
cost functions ( fi)i, the associated functions

(
f̂i(., X)

)
i are convex.

Note that this convexity is not necessarily implied by the convexity of fi(., X). Under
this additional assumption, we obtain a GVI (where G stands for generalized in the nons-
mooth case, see Appendix 6.A) characterization of NE, similar to the one for SVWE given in
Proposition 6.2, and an existence result:

Definition 6.8 (Variational Nash Equilibrium (VNE), [Har91]). A variational Nash equilibr-
ium of atomic game G(A) is a solution to the following GVI problem:

Find x ∈ X (A) s.t. ∃ g ∈ Ĥ(x) s.t.
〈
g, x− x

〉
> 0, ∀x ∈ X (A). (6.28)

where the subgradients correspondence H : X ⇒ RIT is given as:

∀x ∈ X , Ĥ(x) def
= {(gi)i∈I ∈ RIT : gi ∈ ∂1 f̂i(xi, X−i), ∀i ∈ I} = ∏

i∈I
∂1 f̂i(xi, X−i) .

In particular, if X ⊂ A, a VNE is a NE .

Proposition 6.6 (Existence of VNE). Under Assumptions 6.1 and 6.3 (compacity and convexity)
on (Xi)i and Assumption 6.7, the atomic game G(A) = (I , ( fi)i, (Xi)i, A) admits a VNE.

To obtain a convergence result of the (V)NEs in a sequence of atomic games, we need
some stronger properties than for the sequence of finite-type approximating games. In ad-
dition to Definition 6.6, we assume that:

1. the number of players tends to infinity: Iν −→
ν→∞

∞;

2. each player becomes infinitesimal: µi = µ(Θi) −→
ν→∞

0 ;

3. in the gradient (or subdifferential) of a player, the impact of her own action on the ag-
gregate profile vanishes along the sequence, by considering the additional parameter
(given in the subdifferential case):

λν
i

def
= sup

(x,Y)∈M2
sup

g∈∂1 f̂ ν
i (µ

ν
i x,Y−µν

i x)
d (g, ∂1 f ν

i (µ
ν
i x, Y)) −→

ν→∞
0 (6.29)

Then one obtains similar convergence result as Theorem 6.5, with the only difference being
that:

• in the upper bound, d
ν

is replaced by (d
ν
+ λ

ν
), where λ

ν def
= maxi λν

i ),

• for the convergence in L2([0, 1],M), one has to consider a projection of the (V)NE on
L2([0, 1],M), where each θ ∈ Θi is associated to the action of i ∈ I .

Note that this approach has also another interest, as the convergence theorem that we
obtain in this case can be interpreted in the reverse way: under the right assumptions, in
a sequence of atomic games converging (in the sense given by the definition of finite-type
approximating games) to a nonatomic aggregative game, the sequence of Nash equilibria
converge to an equilibrium (the SVWE) of this limit nonatomic game.

In some particular cases where the continuous SVWE can be computed explicitly as a
function x : Θ→M (for instance in the example derived in Section 6.4), this would give an
approximation of a Nash equilibrium in the atomic (reality) aggregative game, as the finite
number of atomic players is very large.
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Part IV

Decentralized Energy Exchanges in
a Peer to Peer Framework
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The practical framework we considered in this Part IV differs slightly from the demand
response framework presented in the previous parts of the thesis, although the reader will
find some similarities in the mathematical tools and notions considered in the following
Chapter 7 (Generalized Nash Equilibrium, Price of Anarchy, etc.).

Part II presented the analysis and tools related to the management of flexibilities in a
decentralized context (local individual consumers optimizing a signal and interacting in a
non-cooperative game). In this context of demand response addressed in Part II, we consid-
ered the point of view of a global operator or aggregator in charge of the electric system.

The point of view adopted in this Part IV is different. We go one step further in the de-
centralization paradigm, and consider the possibility for individual energy consumers (or
prosumers i.e. consumers with a small local renewable production) to self-manage—without
the coordination of a central operator—their local energy community and engage in local
and direct trades with their neighbors or within a community of other consumers. This
is what we referred to as peer-to-peer electricity market, as opposed to conventional electric-
ity markets and the historical need for individual consumers to depend on an electricity
provider to obtain energy.

In the following Chapter 7, we consider a network of prosumers involved in peer-to-peer
energy exchanges, with differentiation price preferences on the trades with their neighbors,
and we analyze two market mechanisms:

(i) a centralized market which will be used as a benchmark, where a central operator
optimizes the flows (trades) between the nodes, local demand and flexibility activation to
maximize the system overall social welfare;

(ii) a distributed peer-to-peer market design where prosumers in local energy commu-
nities optimize selfishly their trades, demand, and flexibility activation. We first characterize
the solution of the peer-to-peer market as a Variational Equilibrium and prove that the set
of Variational Equilibria coincides with the set of social welfare optimal solutions of market
design (i).

We give several results that help understanding the structure of the trades at an equili-
brium or at the social welfare optimum. We characterize the impact of preferences on the
network lines congestion and renewable energy surplus under both designs.

We provide a reduced example for which we give the set of all possible generalized equi-
libria, which enables to give an approximation of the price of anarchy. We provide a more
realistic example which relies on the IEEE 14-bus network, for which we can simulate the
trades under different preference prices. Our analysis shows in particular that the prefer-
ences have a large impact on the structure of the trades, but that one equilibrium (varia-
tional) is socially optimal.

Chapter 7 is based on the journal paper [LC+19b], accepted for publication.
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Chapter 7

Peer-to-Peer Electricity Market
Analysis: from Variational to
Generalized Nash Equilibrium

This chapter is based on the paper [LC+19b], accepted for publication.

7.1 Introduction

New regulations are restructuring electricity markets in order to build the grid of the future.
Instead of a centralized market design where all the operations are managed by a global cen-
tral market operator [MVV18; Sch+13; Sto02], new decentralized models have emerged. These
models involve local energy communities which can trade energy, either by the intermediate
of a global market operator [LC18], or in a peer-to-peer setting [PS16; Sou+19]. Peer-to-peer
energy trading allows flexible energy trades between peers, where, for instance, local pro-
sumers exchange between them energy surplus from multiple small-scale distributed energy
resources (DERs) [Liu+17; Lon+17].

Significant value is brought to the power system by coordinating local renewable energy
source (RES)-based generators and DERs to satisfy the demand of local energy communi-
ties, since it decreases the need for investment in conventional generation and transmission
networks. Also, thanks to the decreasing feed-in-tariffs, using RES-based generations on site
(e.g., at household level, within the microgrid) is more attractive than feeding it into the grid,
because of the difference between electricity selling and buying prices [Lon+17]. Peer-to-
peer energy trading encourages the use of surplus energy within local energy communities,
resulting in significant cost savings even for communities with moderate penetration of RES
[Lon+17].

In practice, the radial structure of the distribution grid calls for hierarchical market de-
signs, involving transmission and distribution network operators [LCMP19]. Nevertheless,
various degrees of coordination can be envisaged: full coordination organized by a global
market operator (transmission system operator), bilateral contract networks [MTM18], fully
decentralized market designs allowing peer-to-peer energy trading between the prosumers
in a distributed fashion [Mor+18; SBP18] or, still, within and between coalitions of pro-
sumers, called community or hybrid peer-to-peer [MP18]. A community-based organiza-
tion involves a community manager which organizes trades among the community and is
in charge of the interactions with the rest of the market. A distributed market structure
exists when the decentralized elements explicitly share, in a peer-to-peer fashion, local in-
formation, resulting in a system in which all the elements may not have access to the same
level of information. This information asymmetry might create differences in valuations of
the traded resource (e.g., price arbitrage) and result in market imperfections, implying that
the prices associated with the bilateral trading of resource allocation between couples of
agents do not coincide. This price gap can be interpreted as a bid-ask spread due to a lack of
liquidity in the market [Ogg+12].

Energy exchange between production units and local demand of energy communities
are formulated as a symmetric assignment problem. Its solution relies on two main streams
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in the literature. The first stream deals with matching models which put in relation RES-
based generators and consumers by the intermediate of a platform, with various consumers
classes and different possible objective functions for the platform operator [Liu+17]. The
second stream combines multi-agent modeling, as well as classical distributed optimization
algorithms which are applied to solve the assignment problem in real-time [Mor+18; MM18;
SBP18]. Auctions theory can be used, in addition, to schedule the DER commitment in day-
ahead.

7.1.1 Matching Models for Peer-to-Peer Energy Trading

In the energy sector, peer-to-peer energy trading is a novel paradigm of power system oper-
ation. There, prosumers provide their own energy from solar panels, storage technologies,
demand response mechanisms, and they exchange energy with one another in a distributed
fashion. Zhang et al. provide in [Zha+17] an exhaustive list of projects and trails all around
the world, which build on new innovative approaches for peer-to-peer energy trading. A
large part of these projects rely on platforms, understood as two-sided markets, that match
RES-based generators and consumers according to their preferences and locality aspects (e.g.
Piclo in the UK, TransActive Grid in Brooklyn, US, Vandebron in the Netherlands, etc.). In the
same vein, cloud-based virtual market places, which deal with excess generation within
microgrids, are developed by PeerEnergyCloud and Smart Watts in Germany. Some other
projects rely on local community building for investment sharing in batteries, solar PV pan-
els, etc., in exchange for bill reduction or a certain level of autonomy with respect to the
global grid (e.g. Yeloha and Mosaic in the US, SonnenCommunity in Germany, etc.). How
other components of the platform’s design can influence the nature and the preference of
the prosumers involved is also studied in the literature. Typical elements of the platform’s
design are: the impact of pricing mechanism (e.g. setting one common market price versus
individual prices per transaction set—for instance through auction design—or per class of
prosumers), the platform’s objective (e.g. maximizing the social welfare versus maximizing
the platform’s benefit), the influence of the platform’s commission per transaction. For ex-
ample, in [Ben+18], the authors study the impact of the price of the goods exchanged on the
level of collaboration and also on the level of ownership among participants. In [FHW17],
the impact of different platform’s objective functions is analyzed considering a set of het-
erogeneous renters and owners. Dynamic pricing for operations of the platform based on
supply and demand ratio of shared RES-based generation is investigated in [Liu+17]. Peer-
to-peer organizations are also a way to enable small and flexible actors to enter markets by
lowering the entrance barrier [EFL16].

Platform design constitutes an active area of research in the literature on two-sided mar-
kets [EFL16; FHW17]. Three needs are identified for platform deployment. Firstly, it should
help buyers and sellers find each other, while taking into account the heterogeneity in their
preferences. This requires the platform to find a trade-off between low entry cost and in-
formation retrieval from big, heterogeneous and dynamic information flows. Buyers’ and
sellers’ search can be performed in a centralized (e.g. Amazon, Uber), effective decentralized
(e.g. Airbnb, eBay), or even fully distributed (OpenBazaar, Arcade City) manner. Secondly,
the platform must set prices that balance demand and supply, and ensure that prices are set
competitively in a decentralized fashion. Finally, the platform ought to maintain trust in the
market, relying on reputation and feedback mechanisms [FGV18]. Sometimes, supply might
be insufficient so that subsidies need to be designed to encourage sharing on the platform
[FHW17].

7.1.2 Distributed Optimization Approaches

Computational and communication bottlenecks have largely been alleviated by recent work
on distributed and peer-to-peer optimization of large-scale optimal power flow [EAD16;
Kra+14; PL14]. Mechanisms for the optimization of a common objective function by a
decentralized system are known as decomposition-coordination methods [PC06]. In such
methods, a centralized (large-scale) optimization problem is typically split into small-size
local optimization problems whose outputs are coordinated dynamically by a central agent
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(called “master”) so that the overall objective of the system becomes aligned (after a cer-
tain number of iterations) with the (large-scale) centralized optimization problem outcome.
Following this stream, a consensus-based Alternating Direction Method of Multipliers, or
ADMM algorithm, is implemented in [MM18; SBP18; Sma] to approximate the optimal so-
lution which maximizes the prosumers social welfare, in a peer-to-peer electricity market.
Similar approaches relying on dual decomposition, which iteratively solves the problem
in a distributed manner with limited information exchange, were implemented for energy
trading between islanded microgrids in [GM14; MGD12]. Two main drawbacks of these al-
gorithmic approaches are listed in [SBP18]: first, they do not take into account the strategic
behaviors of the prosumers; second, they are computationally limited, which might consti-
tute a blocking point when studying large-scale peer-to-peer networks. The latter issue is
overcome in [Mor+18] with an improved consensus algorithm.

In addition, these distributed-optimization approaches enable incorporating heteroge-
neous energy preferences of individual prosumers in network management. In [MM18], the
authors evaluate the added value of multi-class prosumer energy management in a distribu-
tion network that has a “green prosumer”, a “philanthropic prosumer” and a “low-income
household”. Three energy classes are introduced to account for the prosumers’ preferences:
“green energy”, “subsidized energy” and “grid energy”. A platform agent is introduced
to act as an auctioneer, allowing energy trading between the prosumers and the wholesale
electricity market. The platform agent sets the price of each energy class in the distribution
network. The tool of receding-horizon model predictive control is used to provide a real-
time implementation. Consumer preferences are also introduced in [SBP18] in the form of
product differentiation prices. They can either be pushed centrally as dynamic and specific
tax payments, or be used to better describe the utility of the consumers who are willing to
pay for certain characteristics of trades.

7.1.3 Privacy Issues

From the perspective of information and communication technology (ICT), a fully decen-
tralized market design provides a robust framework since, if one node in a local market is
attacked or in case of failures, the whole architecture should remain in place, while informa-
tion could find other paths to circulate from one point to another, avoiding malicious nodes
and corrupted paths.

From an algorithmic point of view, the implementation of a fully distributed market de-
sign might be challenging, since it has to deal with far more complex communication mecha-
nisms than the centralized market design. Efficient communication will allow collaboration
among prosumers, so that energy produced by one can be utilized by another in the net-
work. Multiple peer-to-peer communication architectures exist in the literature, including
structured, unstructured and hybrid ones. They are all based on common standards for the
communication network operation, which are measured through latency, throughput, relia-
bility and security [Jog+17]. In addition to the large size of the communication problem, pri-
vacy issues may also directly impact the market outcome. Indeed, if prosumers are allowed
to keep some private information, then they might not have access to the same level of infor-
mation, i.e. information asymmetry appears. Since the prosumers make decisions based on
the information at their disposal, such asymmetry can introduce bias in the market outcome.
To avoid or, at least, to limit bias introduced in the market outcome while guaranteeing the
optimum of the social welfare, various algorithms that preserve local market agents’ privacy
have been discussed in the literature. For example, the algorithms can require the agents to
update no more than their dual variables – e.g., local prices [EAD16; SBP18]. Of course, the
efficiency of these algorithms depends on the level of privacy defined by the agents as well
as which private information could be inferred from the released values.

7.1.4 Contributions

The peer-to-peer structure adopted in this work is different from the approaches involv-
ing decomposition-coordination methods. The latter approaches require for example to
exchange Lagrangian multipliers updated at each iteration of the decentralized clearing
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[MGD12; Mor+18; MP18; SBP18], that can be used by the coordinator to infer some in-
formation about the preferences of the peers. Such approaches have therefore two main
drawbacks at the market level: first, for each market clearing, it requires in general a large
number of iterations to reach an optimum—such latency in the clearing price computation
might be difficult to allow from the point of view of market operators. Besides, it offers
limited privacy guarantees as the market operator can infer private information from the
peers under repeated interactions. In this chapter, we assume that there is no central au-
thority coordinating the exchanges (in quantity, price and information) between the nodes.
Within this framework, strategic communication mechanisms can appear, and nodes have
the possibility to self-organize into coalitions or local energy communities, as reviewed in
[Tus+18]. With such strategic behaviors, the equilibrium of the peer-to-peer market design
might not coincide with the social welfare global optimum achieved with full coordination
of the nodes by a “master” controlling all the information and decisions, as in [Wan+14]
where the authors consider a noncooperative game involving storage units.

In this chapter, we first characterize the solution of a peer-to-peer electricity market as a
Variational Equilibrium, assuming that all the agents have equal valuation of the price as-
sociated with the traded resource. We prove that the set of Variational Equilibria coincides
with the set of social welfare optima. However, in a fully-distributed setting, it is very un-
likely that each couple of agents coordinate on their valuations of the trading price. As a
result, imperfections appear in the market, which we capture by considering Generalized
Nash Equilibrium solutions as possible outcomes. We characterize analytically the impact
of preferences on the network line congestion and energy surplus, both under centralized
and peer-to-peer market designs. Our results are illustrated in two test cases (a three node
network with arbitrage opportunity and the standard IEEE-14 bus network). We evaluate
the loss of efficiency caused by peer-to-peer market imperfections in the three nodes net-
work, with the Price of Anarchy as a performance measure. We also evaluate numerically
the impact of the differentiation prices by computing the equilibria of our 14 nodes network
under different price configurations.

For ease of reading, we also reference the link between the main results we obtain (sum-
marized through propositions in the course of the text) below:

• Under centralized market design, we derive in Proposition 7.1 analytical expressions for
the demand, flexibility activation and net import at the optimum, as linear functions of the
nodal prices, at each node of the network.

• By substitution of these results at the optimum in the balancing equation, we observe
that there might be energy surplus in the local energy community. We derive in Proposi-
tion 7.2 a necessary condition on technologies and RES generation to avoid energy surplus.

• This condition being not sufficient, we identify in Proposition 7.3 conditions on the
nodal prices and preferences such that no congestion, and then no energy surplus, appears in
the local distribution network. In Proposition 7.5, this result is extended by highlighting the
link between the possible line congestions and the occurrence of strictly positive or negative
cycles in the matrix of the differences of the trade preferences.

• In Proposition 7.4, we obtain analytical expressions of the nodal prices at the root node
and at each node of the distribution grid.

• Under decentralized market design, assuming a complete market, we prove in Propo-
sition 7.6 that the set of Variational Nash Equilibria (VNE), whose definition is recalled in
Definition 7.2 coincides with the set of social welfare optima solutions of the centralized
market clearing.

• However, there is no guarantee that there exists a market to determine the price sys-
tem associated with the bilateral trade reciprocity constraints. In case it does not exist, the
peer-to-peer market would become incomplete and the bilateral trade prices between any
couple of nodes might diverge. We reformulate the Generalized Nash Equilibrium (GNE)
problem (the notion of GNE being recalled in Definition 7.1) as an optimization problem
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applying a parametrized variational inequality approach, enabling the computation of Gen-
eralized Nash Equilibria via a sampling method and a standard optimization algorithm, in
Proposition 7.7.

• Making the parallel with the centralized market design results, we capture the impact
of the capacity of the lines, preferences and structure of the matrix of the preference reci-
procity gaps, on line congestion in Propositions 7.8, 7.9.

The chapter is organized as follows. In Section 7.2, we introduce the model of the gener-
alized noncooperative game we consider in this work, and we give our main assumptions.
In Section 7.3, the centralized market design (i) is formulated and its solutions characterized.
We introduce the peer-to-peer market design (ii) in Section 7.4; its solutions are characterized
in terms of VNE and GNE in the presence of market incompleteness. Congestion analysis
and performance measure based on the Price of Anarchy are also introduced. These solu-
tions concepts are then applied to two test cases in Section 7.5: a three node toy network and
the IEEE 14-bus network.

7.2 Prosumers and Local Communities

In this section, we define the generic framework of agent (prosumer) interactions, and a
stylized representation of the underlying (distribution) graph. We formulate the local sup-
ply and demand balancing constraint that holds in each node. To formalize the two market
designs (i) and (ii), we introduce the costs, utility functions, social welfare, private informa-
tion and main assumptions on which our model relies.

7.2.1 Generic Framework

Let N be a set of N nodes, each of them representing an agent (prosumer), except the root
node 0 which is assumed to contain only conventional generation. The root node belongs
to the set N . It can trade energy with any other node in N . Under this assumption, the
distribution network is a radial graph, with the root node being the interface between the
local energy communities and the transmission network. Figure 7.1 illustrates such a graph
structure.

FIGURE 7.1: Example of a radial network. The root node at the interface of
the distribution and transmission networks, can trade energy with any other
node in the distribution network. In the distribution network, prosumer
nodes organize in local energy communities, trading energy with neighbors

inside their local community.

Let Ωn be the set of neighbors of n, with the structure of a communication network (local
energy community). It does not necessarily reflect the grid constraints. As usual, we assume
that n ∈ Ωn, for all n ∈ N . In particular, Ω0

def
= N \ {0}.

In each node n, we introduce Xn
def
= {xn ∈ R+|xn 6 xn 6 xn} as agent n’s demand set,

with xn and xn being the lower and upper-bounds on demand capacity.
In parallel to the demand-side, we define the self-generation-side by letting Gn

def
= {Gn ∈

R+|Gn 6 Gn 6 Gn} be agent n’s flexibility activation set, where Gn and Gn are the lower
and upper-bounds on flexibility activation capacity.
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The decision variables of each prosumer n are her demand xn, flexibility activation Gn,
and the quantity exchanged between n and m in the direction from m to n, qmn, for all m ∈
Ωn \ {n}. If qmn > 0, then n buys qmn from m, otherwise (qmn < 0) n sells −qmn to m. We
impose an inequality on the trading reciprocity:

qmn + qnm 6 0 , (7.1)

which means that, in the case where qmn > 0, the quantity that n buys from m can not be
larger that the quantity qnm that m is willing to offer to n.

Remark 7.1. In the present work, we model the trade reciprocity constraint as the inequality (7.1).
Other works, as [SBP18], consider a different model with an equality qmn = −qnm, meaning that
the quantity proposed by agent n should be equal to the quantity the agent m wants. In our model,
with (7.1), those quantities do not necessarily correspond: n can be willing to offer more than the
quantity wanted by m. If the inequality is strict (for instance, n has too much to offer), then part of
her energy is produced in excess. Considering a model with an equality means that energy surplus is
not allowed.

Remark 7.2. Considering an equality constraint instead of (7.1) might be intuitive and does not raise
any problem when studying centralized solutions as in [SBP18], but this model becomes degenerated
when studying GNEs, which is one of the main objective of this chapter. Indeed, a profile is a GNE
if, by definition, it is optimal for each agent when considering the actions of the other agents fixed.
Thus, if we impose an equality in (7.1), any feasible solution (qn)n is a GNE as, for each player
n, the quantities (qmn)n are fixed by the others. This degenerated situation does not appear when
considering an inequality, as each agent n has a degree of freedom in her trade with other agents.

The difference between the sum of imports and the sum of exports in node n is defined
as the net import in that node: Qn

def
= ∑m∈Ωn qmn. Furthermore, each line is constrained in

capacity. Let κnm ∈ [0,+∞[ be the equivalent interconnection capacity between node n and
node m, such that qnm 6 κnm, κnm = κmn.

RES-based (solar PV panels) self-generation at each node n is modeled as a random vari-
able ∆Gn. Its realization is exogenous to our model.

7.2.2 Local Supply and Demand Balancing

Local supply and demand equilibrium leads to the following equality in each node n in N :

xn = Gn + ∆Gn + ∑
m∈Ωn

qmn,

= Gn + ∆Gn + Qn. (7.2)

Assuming perfect competition, a Market Operator (MO) maximizes the system social
welfare, defined as the sum of the utilities of all the agents in the system, under a set of
operational and power flow constraints, while checking that supply and demand balance each
other at each node of the network. In nodal markets, allocative market efficiency can be
achieved by setting (locational marginal) nodal price, λn, equal to the dual variable of the
local supply and demand balancing equation [She+82].

In the present work, we consider an innovative decentralized market clearing, by compari-
son with the classical centralized approach, which is used for example in nodal markets. For
that purpose, we introduce decentralization in agents’ decision-making. This decentraliza-
tion results firstly from the fact that demands, flexibility activation and trades are defined
selfishly by each prosumer in the nodes; secondly from the fact that all the information re-
garding preferences and private information on target demands and RES-based generations
is not available to all the nodes. The decentralized market clearing relies on a peer-to-peer
market design, where each agent n computes the Lagrangian variable associated with her
(local) supply and demand balancing equation, using the information at her disposal. Dual
variables λn are kept private to agent n and used to compute her bilateral trading prices.
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7.2.3 Cost and Usage Benefit Functions

Flexibility activation (production) cost in node n is modeled as a quadratic function of local
activated flexibility, using three positive parameters an, bn and dn:

Cn(Gn) =
1
2 anG2

n + bnGn + dn, (7.3)

with − bn
an
> Gn. We make the standard assumption that self-generation occurs at zero

marginal cost.
The usage benefit perceived by agent n is modeled as a strictly concave function of node

n demand [FHW17], using two positive parameters ãn, b̃n and a target demand defined
exogenously by agent n:

Un(xn) = −ãn(xn − x]n)2 + b̃n. (7.4)

The quantity −Un(.) can also be considered as the consumption cost of agent n [SBP18]. As
Un(.) captures a usage benefit, which is interpreted as the comfort perceived by agent n, we
impose that it always remains non-negative,that is:

xn −
√

b̃n
ãn
6 x]n 6 xn +

√
b̃n
ãn

.

The rational beneath this definition of usage benefit relates to the expected-utility theory
[Rab00]: Un(xn) represents the perceived comfort resulting from demand xn satisfaction.
The utility function is defined up to a positive affine transformation, and could be multi-
plied by a positive constant factor without changing the interpretation. The concavity of
the function captures the absolute risk aversion of agent n. This is the most general class of
utility functions that are often used because of their mathematical tractability. It is increas-
ing for xn 6 x]n (larger xns lead to higher usage benefits up to the maximum usage benefit),
and decreasing for xn > x]n (lower xns are better once the maximum usage benefit has been
reached).

At the point of maximum usage benefit xn = x]n gives Un(x]n) = b̃n. We consider that
usage benefit vanishes in case of zero demand, i.e., Un(0) = 0 ⇔ ãn = b̃n

(x]n)2
, ∀n ∈ N . This

means that under the assumption that zero demand implies zero usage benefit, an explicit
relation exists between the parameter ãn, the maximum usage benefit b̃n, and the target
demand x]n.

In this work, we consider that prosumers have preferences on the possible trades with
their neighbors. The preferences are modeled with (product) differentiation prices [SBP18]:
each agent n has a positive price cnm > 0 to buy energy to an agent m in her neighborhood
Ωn. The total trading cost function of agent n is denoted by:

C̃n(qn) = ∑
m∈Ωn ,m 6=n

cnmqmn. (7.5)

Parameters cnm can model taxes to encourage/refrain the development of certain technolo-
gies (micro-CHPs, storage, solar panels) in some nodes. They can also capture agents’ pref-
erences to pay regarding certain characteristics of trades (RES-based generation, location of
the prosumer, transport distance, size of the prosumer, etc.). If qmn > 0 (i.e., n buys qmn from
m) then n has to pay the cost cnmqmn > 0. Thus, the higher cnm is, the less interesting it is
for n to buy energy from m but the more interesting it is for n to sell energy to m. On the
other side, if qmn < 0, then n sends the energy −qmn and receives the value −cnmqmn > 0
even if m does not accept all this energy (i.e. qnm + qmn < 0). In that case the energy surplus
is bought by an aggregator and sold on the wholesale electricity market in exchange for a
compensation intended for the prosumers with energy surpluses. This mechanism will be
discussed in details in Section 7.3.
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7.2.4 Utility Function and Social Welfare

Agent n’s utility function is defined as the difference between the usage benefit resulting
from the consumption of xn energy unit and the sum of the flexibility activation and trading
costs. Formally, it takes the form:

fn(xn, Gn, qn) = Un(xn)− Cn(Gn)− C̃n(qn), (7.6)

where qn = (qmn)m∈Ωn ,m 6=n.
We introduce the social welfare as the sum of the utility functions of all the agents inN :

SW(x, G, q) = ∑
n∈N

fn(xn, Gn, qn). (7.7)

7.2.5 Private Information at the Nodes

There is private information at each node n that can be associated with:

• ∆Gn, local RES-based generation;

• x]n, target demand;

• Cn(.), flexibility activation cost function, more specifically parameters an, bn, dn;

• Un(.), usage benefit function, more specifically parameters ãn, b̃n;

• C̃n(.), bilateral trade cost function, more specifically parameters (cnm)m∈N\{n}.

In a centralized market design, all the private information is reported to the Market Op-
erator (MO). This means that the local target demands (x]n)n∈N and RES-based generations
(∆Gn)n∈N , are known by the MO. In contrast, in a peer-to-peer market design, x]n and ∆Gn
are known only by agent n.

7.3 Centralized Market Design

The centralized market design is inspired from the existing pool-based markets. The global
Market Operator (MO) maximizes the social welfare defined in Equation (7.7) under de-
mand capacity constraints (7.8a) and flexibility activation capacity constraints (7.8b) in each
node, capacity trading flow constraints for each couple of nodes (7.8c), trading reciprocity
constraint (7.8d) and supply-demand balancing (7.8e) in each node:

max
x,G,q

SW(x, G, q),

s.t. xn 6 xn 6 xn, ∀n ∈ N , (µ
n
, µn) (7.8a)

Gn 6 Gn 6 Gn, ∀n ∈ N , (νn, νn) (7.8b)
qmn 6 κmn, ∀m ∈ Ωn, m 6= n, ∀n ∈ N , (ξnm) (7.8c)
qmn 6 −qnm, ∀m ∈ Ωn, m > n, ∀n ∈ N , (ζnm) (7.8d)
xn = Gn + ∆Gn + Qn, ∀n ∈ N . (λn) (7.8e)

Remark 7.3. The constraint (7.8d) is indexed by m > n so that the constraint is considered only
once.

Dual variables are denoted in blue font between brackets at the right of the corresponding
constraints. Some of the dual variables can be interpreted as shadow prices, with classical
interpretations in the energy economics literature. In the remainder, ξnm will be interpreted
as the shadow price (congestion price) associated with capacity trading flow constraint (7.8c)
between nodes n and m; ζnm will be understood as the bilateral trade price offered by n
to m associated with the trading reciprocity constraint (7.8d); while λn is the nodal price
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associated with the supply and demand balancing constraint in node n (7.8e), as discussed
in Subsection 7.2.2.

The Social Welfare function is concave as the sum of concave functions defined on a
convex feasibility set. Indeed, the feasibility set is obtained as Cartesian product of convex
sets. We can compute the Lagrangian function associated with the standard constrained
optimization problem of social welfare maximization under constraints (7.8a)-(7.8e):

L(x, G,Q, µ, ν, ξ, ζ, λ) = ∑
n∈N
Ln(xn, Gn, qn, µn, νn, ξn, ζn, λn)

= − ∑
n∈N

fn(xn, Gn, qn) + ∑
n∈N

µ
n
(xn − xn)

+ ∑
n∈N

µn(xn − xn) + ∑
n∈N

νn(Gn − Gn) + ∑
n∈N

νn(Gn − Gn)

+ ∑
n∈N

∑
m∈Ωn ,m 6=n

ξnm(qmn − κmn) + ∑
n∈N

∑
m∈Ωn ,m>n

ζnm(qmn + qnm)

+ ∑
n∈N

λn

(
xn − Gn − ∆Gn −Qn

)
.

(7.9)

To determine the solution of the centralized market design optimization problem, we com-
pute KKT conditions associated with Lagrangian function (7.9). Taking the derivative of the
Lagrangian function (7.9) with respect to xn, Gn, qmn, for all n in N and all m ∈ Ωn, m 6= n,
the stationarity conditions write down as follows:

∂L
∂xn

= 0⇔ 2ãn(xn − x]n)− µ
n
+ µn + λn = 0 , ∀n ∈ N , (7.10a)

∂L
∂Gn

= 0⇔ anGn + bn − νn + νn − λn = 0 , ∀n ∈ N , (7.10b)

∂L
∂qmn

= 0⇔ cnm + ξnm + ζnm − λn = 0, ∀m ∈ Ωn, m 6= n, ∀n ∈ N , (7.10c)

where, for m < n, ζnm is defined as equal to ζmn.
From (7.10c), we infer that the nodal price at n can be expressed analytically as the sum of

the node product differentiation prices regarding the other prosumers in her neighborhood,
the congestion constraint dual variable from Equation (7.8c) and the bilateral trade prices:

λn = cnm + ξnm + ζnm, ∀m ∈ Ωn, m 6= n, ∀n ∈ N . (7.11)

The complementarity constraints take the following form:

0 6 µ
n
⊥ xn − xn > 0, ∀n ∈ N , (7.12a)

0 6 µn ⊥ xn − xn > 0, ∀n ∈ N , (7.12b)
0 6 νn ⊥ Gn − Gn > 0, ∀n ∈ N , (7.12c)

0 6 νn ⊥ Gn − Gn > 0, ∀n ∈ N , (7.12d)
0 6 ξnm ⊥ κmn − qmn > 0, ∀m ∈ Ωn, m 6= n, ∀n ∈ N , (7.12e)
0 6 ζnm ⊥ −qmn − qnm > 0, ∀m ∈ Ωn, m > n, ∀n ∈ N . (7.12f)

From (7.10c), we infer, for any couple of nodes n ∈ N , m ∈ Ωn, m > n, that:

ζnm = λn − cnm − ξnm = λm − cmn − ξmn , (7.13)

Subtracting those two last members in (7.13), we infer that:

cnm − cmn + ξnm − ξmn = λn − λm, ∀m ∈ Ωn, m 6= n, ∀n ∈ N . (7.14)
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From Equations (7.10a) and (7.10b), we infer that, at the optimum, for each node n:

xn =x]n −
1

2ãn

(
λn + (µn − µ

n
)
)

, (7.15)

Gn =− bn

an
+

1
an

(
λn − (νn − νn)

)
. (7.16)

Substituting Equations (7.15) and (7.16) in the local demand and in the supply balance Equa-
tion (7.8e), we infer that the net import at node n can be expressed as a linear function of the
nodal price:

Qn =
(

x]n −
1

2ãn
(µn − µ

n
) +

bn

an
+

1
an

(νn − νn)
)
−
(

1
2ãn

+
1
an

)
λn − ∆Gn . (7.17)

The results are summarized in the following proposition.

Proposition 7.1. In the quadratic model defined by equations (7.3-7.6), the optimal demands, flex-
ibility activations and net imports at each node n can be expressed as linear functions of the nodal
price at that node, given by Equations (7.15), (7.16), and (7.17).

The total sum of the net imports at all nodes should be negative or null, i.e., ∑n∈N Qn 6 0.
We observe from the supply-demand balancing (7.8e) that this is equivalent to ∑n∈N (xn −
Gn) 6 ∑n∈N ∆Gn. A strict inequality would lead to a situation of energy surplus, i.e., the
total energy generation is in excess compared to the total demand of the prosumers.

To deal with that energy surplus, we assume that a feed-in-tariff or feed-in-premium
applies. The root node (node 0) who makes the link between the transmission and the distri-
bution network could be a good candidate to manage the excess of generation. Indeed, she
should be able to inject it in the transmission network. However, due to the radial structure
of our network, all the distribution nodes are not directly connected to the root node. Rely-
ing on (7.11), this means that the bilateral trading prices between 0 and a node n ∈ N \ {0}
cannot be the same for all the nodes in the distribution network because the trade price also
depends on c0n and ξ0n which captures the congestion state of the path between 0 and n. As
a result, node 0 cannot apply a feed-in-tariff in case of energy surplus. However, it might be
possible to introduce another agent, such as an aggregator, having a very large demand and
no generation capacity, that would be connected to all nodes of the distribution network.
This aggregator would take care of the forecasting and bidding of the renewable generation
and self-generation surpluses, while paying to prosumers the amount of energy they actu-
ally produced in excess at a price defined in advance (for example, the feed-in-tariff price or
a premium). This compensation mechanism for the agents is similar to the purchase obliga-
tions or feed-in tariffs mechanism for renewable energy sources set in the European Union
[FJ08].

Constraints on the technologies could also be applied at the prosumer level, to limit the
RES-based generation and to choose large enough demand capacities. Note that the sizing
of the prosumers’ capacities and RES-based generation possible clipping strategies are out
of the scope of this work. This result is formalized in the proposition below.

Proposition 7.2. A necessary condition for no energy surplus is that there is at least one prosumer
n in N whose capacities and RES-based generation are such that xn − Gn > ∆Gn.

Proof. By combining (7.8a) and (7.8b), we obtain xn − Gn 6 xn − Gn 6 xn − Gn. Subtracting
∆Gn in each part of the inequalities and applying (7.8e), we get xn − Gn − ∆Gn 6 Qn 6
xn − Gn − ∆Gn. Then, xn − Gn − ∆Gn < 0 implies that Qn < 0, i.e., there are more exports
than imports from n. If xn − Gn − ∆Gn < 0, for all n ∈ N then, ∑n∈N Qn < 0. No energy
surplus is equivalent to ∑n∈N Qn = 0. For this equality to hold, it is necessary that there
exists at least one prosumer n in N such that xn − Gn > ∆Gn.

In practice, this means that prosumers should size their capacities such that the difference
between their upper-bound on demand capacity and lower-bound on flexibility activation
capacity is larger than their RES-based generation. However, the previous proposition is a
necessary condition.
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The following proposition gives a sufficient condition on the locational marginal prices
(λn)n for having no energy surplus at optimality. The latter condition ii) can be directly
inferred by the complementarity condition (7.12f) and (7.10c).

Proposition 7.3. Let n0 ∈ N and a neighboring node m0 ∈ Ωn0 . If there exists a node m ∈ N
such that there exists a non congested path (n0, n1, . . . , np = m) from n0 to m with λm > cn0,m0 −
∑

p−1
i=0 (cni ,ni+1 − cni+1,ni ), where λm is the optimal Lagrange multiplier (nodal price) defined in (7.8e),

then there is no energy surplus at n0 in the trade with m0 (that is, qn0,m0 + qm0,n0 = 0). In particular:

i) if all users have symmetric preferences cnm = cmn, there is no congestion and there exists
m ∈ N with nodal price λm > cn0,m0 , then there is no energy surplus at n0 in the trade with
m0;

ii) for m = n0, if the nodal price realizes λn0 > cn0,m0 , then there is no energy surplus at n0 in
the trade with m0.

Proof. Suppose on the contrary that there is some energy surplus at n0: there exists some
m0 such that qn0,m0 + qm0,n0 < 0 and qm0,n0 < 0 (i.e. n0 rejects energy). In the case where
Gm > Gm, Consider the infinitesimal transformation to the trades and production:

qni ,ni+1 ← qni ,ni+1 + ε, qni+1,ni ← qni+1,ni − ε, ∀i ∈ {0, . . . , p− 1},
qm0,n0 ← qm0,n0 + ε , Gm ← Gm − ε .

(7.18)

Then, for ε small enough, all constraints are still satisfied and the variations in SW has the
same sign as:

λm − cn0,m0 + ∑
p−1
i=0 (cni ,ni+1 − cni+1,ni ) > 0 .

Hence, we can strictly increase SW, which contradicts the optimality. In the case where
Gm = Gm, then we necessarily have xm < Dm (otherwise λn = −2ãn(Dn − x]n) − µn < 0
which is impossible from (7.10c)), and we can strictly increase xm instead of decreasing Gm
in (7.18), leading to the same contradiction.

Remark 7.4. From the previous proposition, we see that even if there is no excess in the renewable
production, i.e. ∑n ∆Gn < ∑n x]n, we can still have some energy surplus if the trades preference
prices (cnm)n,m are large enough.

Hence, assuming no energy surplus, the total sum of the net imports in all nodes should
vanish i.e. ∑n∈N Qn = 0, which implies the following relation, by using (7.17):

∑
n∈N

(
1

2ãn
+

1
an

)
λn = ∑

n∈N

(
x]n −

1
2ãn

(µn − µ
n
) +

bn

an
+

1
an

(νn − νn)− ∆Gn

)
. (7.19)

From Equation (7.14), we infer that the nodal price at node n is a linear function of the
nodal price at the root node, product differentiation and congestion prices with all the other
nodes in N :

λn = cn0 − c0n + ξn0 − ξ0n + λ0, ∀n ∈ Ω0 . (7.20)

Substituting Equation (7.20) in Equation (7.19), we infer the closed form expression of the
nodal price at the root node:

λ0 ∑
n∈N

(
1

2ãn
+

1
an

)
= ∑

n∈N

(
x]n −

1
2ãn

(µn − µ
n
) +

bn

an
+

1
an

(νn − νn)− ∆Gn

)
− ∑

n∈Ω0

(
1

2ãn
+

1
an

) (
cn0 − c0n + ξn0 − ξ0n

)
. (7.21)

From Equations (7.20) and (7.21), assuming that (cn0)n, (c0n)n, (ξn0)n, (ξ0n)n are known,
the MO can iteratively compute all the (λn)n∈N . Note that µ, µ and ν, ν are determined by
the MO when optimizing x and G. Once computed by the MO, the nodal prices are an-
nounced to all the agents n ∈ N . Then, to determine the optimal bilateral trading prices,
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each agent n has to refer to Equation (7.13), which gives the bilateral trading prices as lin-
ear functions of the nodal price and congestion price. The results are summarized in the
following proposition:

Proposition 7.4. Assuming no energy surplus and knowing (cn0)n, (c0n)n, (ξn0)n, (ξ0n)n, the MO
computes the nodal price at the root node by Equation (7.21). The nodal prices in all the other nodes
of the distribution network can be inferred from λ0 according to Equation (7.20). Then, for each node
n ∈ N , bilateral trading prices can be computed for any node m ∈ Ωn, n 6= m by Equation (7.13)
provided congestion price (ξnm)m>n,m∈Ωn is known1.

If all agents reveal their product differentiation prices (cn0)n to the MO and all the con-
gestion prices (ξn0)n, (ξ0n)n in the lines involving the root node are known (or rationally
anticipated), then the MO can compute all the nodal prices (λn)n∈N from λ0.

The result below shows a link between the market and the state of the distribution grid:
Proposition 7.5 shows that the distribution grid lines become congested if there are “cycles”
in the preferences as explained below.

Proposition 7.5. Suppose that the matrix C̃ def
= (cnm − cmn)nm has a strictly negative cycle of

length k > 2, i.e. there is a sequence of distinct indices (ni)16i6k such that ∑16i6k C̃ni ,ni+1 < 0,
where nk+1

def
= n1. Then, at an optimal centralized solution, there is a trade opposed to the cycle made

at full capacity, i.e. there exists i ∈ {1, . . . , k} such that qni+1,ni = κni+1,ni .
Symmetrically, if there is a strictly positive cycle (ni)16i6k such that ∑16i6k C̃ni ,ni+1 > 0, then

at an optimal centralized solution, there is a trade in the direction of the cycle made at full capacity,
i.e. there exists i ∈ {1, . . . , k} such that qni ,ni+1 = κni ,ni+1 .

Proof of Proposition 7.5. We prove the first part of the proposition as the second is symmetric.
Consider the trades (qnm)nm at an optimal solution and suppose on the contrary that

there is ε > 0 such that, for each i ∈ {1, . . . , k}, we have qni+1,ni 6 κni+1,ni − ε.
Then consider the same solution with trades (q̃nm)nm defined as follows: for each i ∈

{1, . . . , k}, let q̃ni+1,ni
def
= qni+1,ni + ε and q̃ni ,ni+1

def
= qni ,ni+1 − ε, while q̃nm = qnm otherwise.

Then all constraints are still feasible because, for each i, ∑m 6=ni
qm,ni = Qn − ε + ε = Qn.

Besides, by definition of q̃, we still have q̃mn = −q̃nm for any m > n. Moreover, if we denote
by SW the social welfare of the previous solution (qnm)nm, the social welfare of this new
solution is:

S̃W = SW + ∑
n

∑
m 6=n

cnm(qmn − q̃mn)

= SW + ∑
16i6k

(
cni ,ni+1(qni+1,ni − q̃ni+1,ni ) + cni ,ni−1(qni−1,ni − q̃ni−1,ni )

)
= SW + ∑

16i6k
ε
(
cni ,ni−1 − cni ,ni+1

)
= SW− ε ∑

16i6k
C̃ni ,ni+1 > SW ,

which contradicts the fact that SW is maximal.

Remark 7.5. The property stated by Proposition 7.5 shows that the lines become congested if there is
a strictly positive or negative cycle in the matrix C̃. In practice, a central MO should try to avoid such
an outcome, since the congested lines are unavailable in case of unplanned real need (outages, peak
demand). The existence of a positive cycle in C̃ means that there is an “arbitrage” opportunity in the
network. In other words, one can strictly increase the social welfare by doing an exchange of energy
quantities. We can make the assumption that this kind of opportunities do not exist in practice, since
they should vanish quickly in a liquid market.

From the point of view from mechanism design, we might also prevent this kind of cycling behavior
by adding a transaction fee (e.g. τ × |qmn| with τ > 0) on the trades, regardless they are positive or
negative.

1Two assumptions can be made on the determination of the congestion prices: first, they are determined exoge-
nously while checking the complementarity constraint (7.12e); second, they are determined through a market for
(distribution) capacity line transmission. This second assumption enables the MO to complete the market. It will
be discussed later in the chapter.
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Section 7.5.1 shows an example where there is a cycling trade that is purely due to arbi-
trage opportunities because of the preferences.

7.4 Peer-to-Peer Market Design

The centralized market design is used, in this section, as a benchmark against which we test
the performance of a fully distributed approach relying on peer-to-peer energy trading. We
first start by defining in Subsection 7.4.1 the solution concepts of GNE and VNE, that we will
use to analyze the outcome of the fully distributed market design. Then, various results are
introduced to characterize the relations between these sets of solutions. Congestion issues
and performance measures are discussed in Subsection 7.4.2.

7.4.1 Generalized Nash Equilibrium and Variational Equilibrium

In the peer-to-peer setting, each agent n ∈ N determines, by herself, her demand, flexibility
activation and bilateral trades with other agents in her local energy community under con-
straints on demand, flexibility activation and transmission capacity so as to maximize her
utility. A trade between two agents in a local energy community supposes that these two
have decided on a certain quantity to be sent from one side and received by the other side.
Therefore, there must be an “agreement” or trade constraint between each pair of agents
in a local community, which couples their respective decisions. As a result, although the
utility of a prosumer depends only on her own decisions, some of these decisions, such as
the quantity she agrees to trade with all the other prosumers in her neighborhood, have an
impact on the set of feasible actions of her neighbors. In the same way, her feasible actions
are determined by the actions of her neighbors.

Formally, each agent in node n ∈ N solves the following optimization problem:

max
xn ,Gn ,(qmn)m∈Ωn ,m 6=n

fn

(
xn, Gn, qn

)
, (7.22a)

s.t. xn 6 xn 6 xn, (µ
n
, µn) (7.22b)

Gn 6 Gn 6 Gn, (νn, νn) (7.22c)
qmn 6 κmn, ∀m ∈ Ωn, m 6= n, (ξnm) (7.22d)
qmn 6 −qnm, ∀m ∈ Ωn, m 6= n, (ζnm) (7.22e)
xn = Gn + ∆Gn + Qn, (λn) (7.22f)

where qn = (qmn)m∈Ωn are the trading decisions of agent n.
Hence, the peer-to-peer setting leads to N optimization problems, one for each agent

n ∈ N , with individual constraints on demand (7.22b), flexibility activation (7.22c), trade
capacity (7.22d), supply and demand balancing (7.22f); as well as coupling constraints (7.22e)
that ensure the reciprocity of the trades.

The Lagrangian function associated with optimization problem (7.22a) under constraints
(7.22b)-(7.22f), writes down as Ln defined in equation (7.9).

For each agent n, the first order stationarity conditions are the same as (7.10a)-(7.10c), and
the complementarity constraints are the same as (7.12a)-(7.12f), except that (7.12f) is indexed
by all (m, n) with m 6= n and that ζnm is not necessarily equal to ζmn. Let this condition
system be denoted by KKTn for each n ∈ N .

As the problem given by (7.22) is convex, KKTn are necessary and sufficient conditions
for a vector (xn, Gn, qn) to be an optimal solution of (7.22).

Remark 7.6. In Equation (7.22), fn depends on the variables of player n only, and not on the
variables of the other players. A consequence is that the social welfare function is decomposable:
SW(D, G, q) = ∑n fn

(
xn, Gn, qn

)
. Therefore, without the existence of the coupling transaction con-

straint (7.22e), the minimization of SW is equivalent to the minimization of each individual objective
function fn. We will see that this equivalence between social optimizer and equilibria also happens
for the so-called Variational Equilibria.
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The notion of Generalized Nash Equilibrium (GNE) [Har91], generalizing Nash Equili-
brium in the presence of coupling constraints has been commonly adopted:

Definition 7.1 (Generalized Nash Equilibrium [FK07]). A Generalized Nash Equilibrium
of the game defined by the maximization problems (7.22) with coupling constraints, is a
vector (xn, Gn, qn)n that solves the maximization problems (7.22) or, equivalently, a vector
(xn, Gn, qn)n such that (xn, Gn, qn) solves the system KKTn for each n.

The constraint (7.22e), qmn 6 −qnm, written both in the problem of n and in that of m 6= n
leads to the same inequality, but is associated to the multiplier ζnm in the problem of n and
to ζmn in the problem of m. In this chapter, we consider two scenarios for the allocation of
the resources represented in these coupling constraints:

Scenario (i) A market allocates the resources associated with (7.22e) through a single
price system, therefore leading to the determination of one price for each constraint:
ζnm = ζmn.

Scenario (ii) There does not exist any market to determine the price system associated
with (7.22e). Hence, two prosumers n, m might attribute different evaluations of the same
transaction qmn 6 −qnm or, equivalently, the same dual variables to the trade constraint
(7.22e) between n and m. This can lead to different prices ζnm 6= ζmn for agents n and m.

The two scenarios have implications on the market organization. Let us discuss them
one after another.

Scenario (i) corresponds to a complete market, where the common resources are shared
in an efficient way. It suggests that all constraints are traded at a single price, which reflects
the common valuation of each product from all agents. The associated solution concept is
that of Variational Nash Equilibrium (VNE) [Har91] defined below, a refinement of GNE,
where we ask for more symmetry: the Lagrangian multipliers associated to a constraint
shared by several players have to be equal from one player to another. Note that a natural
way to complete the market would be to introduce a market for (distribution) capacity line
transmission, enabling the determination of congestion prices (ξnm)n,m. A similar idea was
proposed by Oggioni et al. in [Ogg+12] at the transmission level for a subproblem of market
coupling.

Definition 7.2 (Variational Nash Equilibrium (VNE) [FK07]). A Variational Nash Equilibr-
ium (VNE) of the game defined by (7.22) is a solution (xn, Gn, qn)n that solves the maximiza-
tion problems (7.22) or, equivalently, a vector (xn, Gn, qn)n such that (xn, Gn, qn) solves the
system KKTn for each n and, in addition, such that the Lagrangian multipliers associated to
the coupling constraints (7.22e) are equal, i.e.:

ζnm = ζmn, ∀n ∈ N , ∀m ∈ Ωn, m 6= n . (7.23)

The term “variational” refers to the variational inequality problem associated to such an
equilibrium: indeed, if we define the set of admissible solutions as:

R def
= {x = (xn, Gn, qn)n |(7.22b)− (7.22f) hold for each n ∈ N} . (7.24)

then x̂ ∈ R is a VNE if, and only if, it is a solution of (cf. [FK07]):

〈∑
n
∇ fn(x̂n), x− x̂〉 6 0, ∀x ∈ R . (7.25)

A remarkable fact is that VNEs exist under mild conditions [Har91; Ros65], even if the addi-
tional equality conditions on the multipliers seems restrictive.

We can observe, following Remark 7.6, that VNEs are defined by exactly the same KKT
system than the social welfare maximizer (or equivalently as the solution of the same varia-
tional inequality (7.25)). Therefore, the following result is immediate:

Proposition 7.6. The set of VNEs (such that ζnm = ζmn for all n ∈ N and all m 6= n ∈ Ωn)
coincides with the set of social welfare optima.
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Scenario (ii) corresponds to the case of partial price coordination or a completely missing
market for some products. Agents with different willingness to pay for a certain resource
face a price gap due to the lack of arbitrage opportunities that prevent price convergence.
This imperfect coordination among agents relates to the notion of GNE, where nothing pre-
vents the multipliers ζnm and ζmn to be different.

Remark 7.7. A particular class of GNE is called restricted GNE [Fuk11]. It assumes that the dual
variables of the shared constraint (7.22e) belongs to a non empty cone of RN(N−1).

A particular class of restricted GNE, introduced by Rosen [Ros65], are the normalized equilibria.
There, the dual variables of the shared constraint (7.22e) are equal up to a constant (endogenous)
factor rn that depends on prosumer n, but not on constraints. Mathematically, it means rnζnm =
rmζmn, for all n ∈ N and all m ∈ Ωn, m 6= n.

From KKTn, we see that, as in the centralized case, λn = ζnm + cnm + ξnm, i.e., the per-unit
nodal price at n is the sum of the transaction price, the preference price and the congestion
price, all for getting one unit from m to n, for each neighbor of m. Besides,

ζnm = λn − cnm − ξnm, ∀m ∈ Ωn, m 6= n , (7.26)

which gives the transaction price for agent n or, in other words, her evaluation of the trade
qmn.

In order to derive some results on GNE and simplify notations, let us introduce the coef-
ficient rn as:

ζ0nrn = ζn0, ∀n ∈ N . (7.27)

Remark 7.8. We interpret this situation as one where there is an imperfect market for determining the
bilateral trade prices obtained as dual variables of the shared constraint (7.22e). Between any couple
of prosumer nodes, bilateral trade prices do tend to equalize (i.e., rn is close to 1 for any n ∈ Ω0 —
meaning that the GNE approaches the VNE), but there remains a gap due to insufficient liquidity or
differences in the price bids for the asked quantity [Ogg+12]. To some extent, rn can be interpreted as
a measure of the efficiency loss introduced by the GNE in comparison with the VNE.

Using Equation (7.26) for the node 0 and an arbitrary node n ∈ Ω0 and for an arbitrary
node n ∈ Ω0 and the node 0, and summing up both relations, we get:

λn = rnλ0 +
(
cn0 − rnc0n

)
+
(
ξn0 − rnξ0n

)
, ∀n ∈ Ω0. (7.28)

Similarly to the centralized market design case, since the total sum of the net imports in
all nodes should vanish under no RES-based generation surplus, i.e., ∑n∈N Qn = 0, we infer
the closed form expression of the nodal price at the root node, similar to the centralized case:

λ0 ∑
n∈N
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1

2ãn
+

1
an

)
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n∈N
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2ãn
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n
) +

bn
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1
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(νn − νn)− ∆Gn

)
− ∑

n∈Ω0

(
1

2ãn
+

1
an

) [
(cn0 − c0nrn) +

(
ξn0 − rnξ0n

)]
. (7.29)

Let us denote SOLGNEP the set of GNEs of the peer-to-peer non-cooperative game. GNEs
are not unique in general. It is relevant to study how efficient are those different outcomes
in comparison to the VNE outcome (where the bilateral trades would be settled down by a
MO).

Although there exist several standard methods to compute numerically a VNE in a gen-
eralized game (e.g. with variational inequalities methods [FP07]), it is in general harder to
compute numerically other GNEs or even the complete set of GNEs.

A possible method to evaluate the set of GNEs is to apply the parameterized variational
inequality approach [NTF11; Ogg+12] which enables to characterize each GNE as the solu-
tion of an optimization problem. Results based on a similar approach were also presented
by Gabriel et al. [Gab+12] through an extensive study of Nash-Cournot and other energy
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market models (some integrating market clearing conditions) that use mixed complemen-
tarity problems. However, peer-to-peer market design was not considered in this book, and
we would like to highlight in this chapter how such results also apply in fully distributed
markets. In our specific case, this leads to the optimization problem PGNE

ω , parameterized
by the coefficients ωnm > 0 corresponding to an additional value for user n for her trading
constraint with m:(

PGNE
ω

)
max
x,G,q

∑
n∈N

[
fn(xn, Gn, qn)− ∑

m∈Ωn ,m 6=n
ωnmqmn

]
, (7.30a)

s.t. xn 6 xn 6 xn, ∀n ∈ N , (µ
n
, µn) (7.30b)

Gn 6 Gn 6 Gn, ∀n ∈ N , (νn, νn) (7.30c)
qnm 6 κnm (ξnm) (7.30d)
qnm + qmn 6 0, ∀m ∈ Ωn, m > n, ∀n ∈ N . (ζnm) (7.30e)
xn = Gn + ∆Gn + Qn, ∀n ∈ N , (λn) . (7.30f)

From [NTF11, Cor 3.1] and [NTF11, Thm. 3.3], we can make a link between the set of GNEs
and the solutions of problem (7.30), as given in the following proposition:

Proposition 7.7. (i) All GNEs can be found from problem (7.30), that is:

SOLGNEP ⊂
⋃

(ωnm)∈R
∗N(N−1)
+

SOL
(
PGNE

ω

)
;

(ii) reciprocally, if (x, G, q, ζ) is a solution of PGNE
ω (where ζ are multipliers associated to (7.30e)),

then
(x, G, q, ζ) is a GNE ⇐⇒ ωnm(qnm + qmn) = 0, ∀n 6= m , (7.31)

and in that case the multipliers associated to (7.22e) in the GNE problem are defined by ζ̂nm =
ζnm + ωnm .

Proof. For (i), writing the KKT conditions verified by a solution (x, G, q) of the GNE problem
(7.22) with Lagrangian multipliers (ζ̂nm)n 6=m, it is easy to verify that (x, G, q) verifies the KKT
conditions of (7.30) PGNE

ζ̂
, where the parameters are taken to ω def

= ζ̂.
For (ii), we use the fact that problem (7.30) has linearly independent constraints, and

apply [NTF11, Thm. 3.3] directly.

Proposition 7.7 gives us a characterization of GNEs which enables their computation
via a sampling method on ω and the optimization of parameterized problems (7.30) (see
Section 7.5).

7.4.2 Dealing with Congestion

Let us first explicit the following fact on congested lines:

Lemma 7.1. For any couple of nodes n ∈ N , m ∈ Ωn, m 6= n, such that κnm > 0, κmn > 0,
qnm = κnm and qmn = κmn cannot hold simultaneously.

The proof is direct from the capacity and transaction constraints. Then, we obtain the
following sufficient condition for a line to be saturated:

Proposition 7.8. Suppose ξn0 = ξ0n = 0, ∀n ∈ Ω0, i.e., there are large line capacities from and
to node 0, cn0 = cm0, i.e., the nodes have the same preferences for node 0, and the node 0 has the
same preferences for any node, i.e., c0n = c0m. For any couple of nodes n ∈ N , m ∈ Ωn, m 6= n,
asymmetric preferences (such as cmn > cnm or cmn < cnm) imply that the node with the smaller
preference for the other saturates the line.



178 Chapter 7. A p2p Electricity Market Analysis based on Generalized Nash Equilibrium

Proof. For any n ∈ N , m ∈ Ωn, m 6= n, applying Equation (7.14) for the three couples of
nodes: (n, 0), (0, m), (m, n), we obtain:

cn0 − c0n + ξn0 − ξ0n =λn − λ0,
c0m − cm0 + ξ0m − ξm0 =λ0 − λm,
cmn − cnm + ξmn − ξnm =λm − λn.

Summing up the three equations, we get:

ξnm − ξmn = (c0m − c0n) + (cn0 − cm0) + (ξn0 − ξ0n) + (ξ0m − ξm0) + (cmn − cnm).

Under the assumptions of the proposition, the equation can be simplified to give:

ξnm − ξmn = cmn − cnm.

Then, two cases arise depending on the order of (n, m) preferences:

i) if cmn > cnm (meaning that m wants(buys) to sell to n more(less) than n wants to
sell(buy) to m), ξnm − ξmn > 0, which implies from Lemma 7.1 that ξnm > 0. Then, for the
complementarity constraint (7.12e) to hold we need to have qnm = κnm, i.e., m saturates the
line from m to n;

ii) if cnm > cmn (meaning that n wants(buys) to sell to m more(less) than m wants to
sell(buy) to n), ξnm − ξmn < 0, which implies from Lemma 7.1 that ξmn > 0. Then, for the
complementarity constraint (7.12e) to hold we need to have qmn = κmn, i.e., n saturates the
line from n to m.

The following proposition gives a sufficient condition for the distribution grid lines to
become congested along a cycle, analog to Proposition 7.5. The proof is similar and is omit-
ted.

Proposition 7.9. Suppose that there is a sequence of distinct indices (ni)16i6k such that C̃ni ,ni+1 −
C̃ni ,ni−1 < 0 for all i = 1, . . . , k, where nk+1

def
= n1. Then, at an equilibrium, there is a trade opposed

to the cycle made at full capacity i.e. there exists i ∈ {1, . . . , k} such that qni+1,ni = κni+1,ni .

Remark 7.9. Classically, the Price of Anarchy (PoA) is introduced as a performance measure to
assess the performance of the peer-to-peer market design by comparison to the centralized market
design. The PoA is defined as the ratio of the social welfare evaluated in the social welfare optimum to
the social welfare evaluated in the worst GNE in the set SOLGNEP. Formally, it is defined as follows:

PoA def
=

maxx,G,q SW(x, G, q)
minx,G,q∈SOLGNEP SW(x, G, q)

> 1. (7.32)

From Proposition 7.6, a VNE maximizes the social welfare SW, because a VNE coincides with the
optimum of the centralized social welfare optimization problem. However, the GNE set might contain
equilibria that do not coincide with the (social welfare) optimum solution of the centralized optimiza-
tion problem, and the PoA can be strictly greater than one.

7.5 Test Cases

7.5.1 A Three Nodes Network with Arbitrage Opportunity

In this section, we illustrate our results and the equilibria on a toy model with only three
nodes, indexed by N = {0, 1, 2}, with parameters detailed in Figure 7.2.

The root node 0 has only conventional generation (∆G0 = 0) with cost (a0, b0) = (4, 30)
and (G, G) = (0, 10). Nodes 1 and 2 are prosumers with RES-based generators (Gn = Gn = 0
and ∆Gn > 0 for n ∈ {1, 2}). Each node is a consumer (with (D, D) = (0, 10)) and generator



7.5. Test Cases 179

(RES or conventional), therefore producing energy that can be consumed locally to meet
demand xn and exported to the other nodes to meet the unsatisfied demand.

0

1 2

Nuclear
x]0 = 6.0
ã0 = 5.0
∆G0 = 0.0

RES
x]1 = 3.0
ã1 = 15.0
∆G1 = 3.0

RES
x]2 = 3.0
ã2 = 10.0
∆G2 = 5.0

κ 01
=

10
.0

κ
02 =

10.0
κ12 = 5.0

FIGURE 7.2: Three node network example.

Regarding the preferences (cnm)nm, nodes 1 and 2 both prefer to buy local and to RES-
based generators. Node 0 is assumed to be indifferent between buying energy from node 1
or node 2. Capacities are also defined larger from the source node 0 (κ0n = 10) than between
the prosumers nodes (κnm = 5).

cnm 0 1 2
0 – 1.0 1.0
1 3.0 – 1.0
2 2.0 1.0 –

cnm − cmn 0 1 2
0 – -2.0 -1.0
1 2.0 – 0.0
2 1.0 0.0 –

TABLE 7.1: Price differentiation parameters and matrix of differences.

0

1 2

λ0 = 9.34
x0 = 5.07
G0 = 2.17
Q0 = 2.9

λ1 = 11.34
x1 = 2.62
Q1 = −0.38

λ2 = 10.34
x2 = 2.48
Q2 = −2.52

q
02 =

2.48
ζ

02 =
8.34

ξ
20 =

0.0q 10
=

5.
38

ζ 10
=

8.
34

ξ 01
=

0.
0

q21 = 5.0
ζ21=9.34

ξ12 = 1.0

(A) Centralized solution (SW = 378.3)
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1 2

λ0 = 1.0
x0 = 5.9
G0 = 0
Q0 = 5.9

λ1 = 90.0
x1 = 0.0
Q1 = −3

λ2 = 18.0
x2 = 2.1
Q2 = −2.9

q 01
=

2

ζ 01
=

0,
ζ 10

=
87

ξ 10
=

0.
0

q12 = 5.0
ζ12=89, ζ21=17

ξ21 = 0.0

q
20 =

7.9
ζ

20 =
16, ζ

02 =
0

ξ
02 =

0.0

(B) One GNE (SW = 255.5)

FIGURE 7.3: Comparison of the optimal centralized solution (a) and a GNE
solution with low social welfare (b).

In Figure 7.3 (a), we illustrate the optimal solution of the centralized market design prob-
lem in which the global MO maximizes the social welfare under operational and power-flow
constraints (7.8a)-(7.8e).
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FIGURE 7.4: All existing GNEs in q-space. The set of GNEs is given as two
connected components, corresponding to the edge (1,2) saturated in one way and the

other.

We remark on this figure that the trade from node 1 to node 2 is at full capacity, which
is explained by Proposition 7.5. Indeed, we see from Table 7.1 that there is a “cycle” in
preferences C̃01 + C̃12 + C̃20 = −1 which explains why we obtain q10 = κ10 and q21 = κ21 in
the centralized solution (Figure 7.3).

On the contrary, we remark that, in the GNE solution depicted in Figure 7.3b, the same
edge is congested in the reverse way: Proposition 7.5 only applies in the case of a centralized
solution.

In the example above, the cycle comes from the fact that it is easier for node 2 to buy from
0 than node 1 to buy from 0: thus, the social welfare can be increased if 1 buys from 2 who
buys from 0. Changing the parameters to c10 = c20 = 3 removes the cycle in the optimal
solution of (qnm)nm.

In Figure 7.4, we show the different GNEs existing for this reduced problem in the three-
dimensional space of transactions. As one can see on this figure, an interesting property is
that, for any GNE, the edge from node 1 to node 2 is saturated in one way or the other.

Evaluating the GNE with the lowest social welfare is difficult because this task does not
correspond to a convex problem (in particular, the SW is a concave function). However, the
GNE depicted in Figure 7.3b is the worst GNE that we found with the sampling method
given by Proposition 7.7, using a sampling (ωnm)n>m ∈ {0, . . . , 100}3. Therefore, we can
have the following bound on the PoA:

PoA =
maxx,G,q SW(x, G, q)

minx,G,q∈SOLGNEP SW(x, G, q)
>

378.3
255.5

' 1.48 , (7.33)

which means that, in the peer-to-peer market, in the presence of market imperfections, the
resulting social welfare can be more than 50% smaller than the optimal social welfare (or, the
VE obtained in the absence of market imperfections).

7.5.2 IEEE 14-bus Network

Let us consider the IEEE 14-bus network system as introduced in [Sou+19]. Each bus of the
network corresponds to a prosumer in our model as described on Figure 7.5. The buses 3, 4,
5 and 9 to 14 contain only consumers without any production. Nodes 2 and 3 are prosumers
node (consumption and RES production) and also contain thermal production plants. The
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FIGURE 7.5: IEEE 14-bus network system

bus 6 is a prosumer with only intermittent solar energy production. Last, the bus 8 contains
only production, renewable and thermal.

The bus 1 corresponding to the grid connection is also able to provide power to the busses
linked to it.

Each pair of busses is able to trade with its neighboring busses, up to the capacity of the
edge linking the pair of busses.

For simplicity, we compute the trades and optimal productions and consumptions for
a particular unique time period. The renewable energy productions (∆Gn)n and the objec-
tive consumptions (D?

n)n for this time period are provided in Figure 7.5. Note that in this
particular example, we have the inequality:

28.39 = ∑
n∈N

∆Gn < ∑
n∈N

D?
n = 69.94 [GWh] ,

which explains partly why we do not have any energy surplus in the solutions depicted on
Figure 7.6.

For the trade differentiation prices (cnm)n,m, we consider four cases:

(a) uniform prices: cnm = 1 for each n and m, so that we ensure that there does not exist
any cycle in the matrix of price differences as described in Proposition 7.5;

(b) heterogeneous prices: for n 6= 1 and m 6= 1, cnm is chosen uniformly in [0, 1]. We
assume that agents have a preference for local trades so the price with the grid connection
bus cn1 is larger and chosen uniformly in [1, 2]. The grid connection bus has no preferences
so that c1n = 1 for each n neighboring bus 1.

(c) symmetric prices: (cnm)nm random and symmetric (for n < m, cnm is taken as in (b)).

(d) preferences for local trades with uniform prices: (cnm)nm = 1 if m 6= 1 and cn1 = 3.
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For each of theses cases, we compute the centralized solution (also corresponding to the
VNE). The solutions are illustrated in Figure 7.5: directions of trades are represented by ar-
rows, the width of each arrow is proportional to the quantity traded. Trades made at full
capacity (qnm = κnm) are represented by red arrows, while unsaturated trades are repre-
sented by green arrows. We observe that cases (c) and (d) give the same trade solutions
(qnm)nm at VNE as case (a).

1

2 3

45

6

7

89

101112

13 14

G

C G G C G G

C

C

G

G

C

C

C

GC

C

C

C

ζ=2.16

ζ=2.16

ζ=2.16

ζ=2.16

ζ=
2.1

6

ζ=2.16

ζ=2.16

ζ=
2.16

ζ=
2.16

ζ=2.16

ζ=
2.16

ζ=
2.16

ζ=
2.16

ζ=
2.16ζ=2.16

ζ=
2.16

ζ=2.16

ζ=
2.16

ζ=
2.16

ζ=
2.16

ζ=2.16
ζ=

2.16

ζ=2.16

λ1=3.16

λ2=3.16 λ3=3.16

λ4=3.16

λ5=3.16

λ6=3.16

λ
8=

3.
16

λ9=3.16

λ10=3.16

λ11=3.16

λ12=3.16

λ13=3.16 λ14=3.16

(A) with (cnm)nm = (1)nm uniform, SW = 395.28 M$

1

2 3

45

6

7

89

101112

13 14

G

C G G C G G

C

C

G

G

C

C

C

GC

C

C

C

ζ=1.49

ζ=1.49

ζ=1.49

ζ=1.49

ζ=
1.3

4

ζ=2.23

ζ=2.37

ζ=
2.08

ζ=
2.99

ζ=2.29

ζ=
2.35

ζ=
2.65

ζ=
2.33

ζ=
2.26ζ=2.71

ζ=
2.38

ζ=2.2

ζ=
2.74

ζ=
2.96

ζ=
2.53

ζ=2.19
ζ=

2.28

ζ=2.03

λ1=2.55

λ2=2.49 λ3=2.99

λ4=3.13

λ5=3.07

λ6=3.07

λ
8=

2.
98

λ9=2.33

λ10=3.44

λ11=3.93

λ12=2.51

λ13=2.74 λ14=3.04

(B) with (cnm)nm random, SW = 560.51 M$

FIGURE 7.6: Trades [$/MWh] at the VNE of the IEEE 14-bus network with
homogeneous differentiation prices (left) and heterogeneous differentiation
prices (right). With heterogeneous prices, the quantities traded are larger, and some
links become congested. In the homogenous case, marginal trade prices (ζnm)n,m are
all equal. In the case of heterogeneous prices (cnm)nm, marginal prices (ζnm)n,m are

also heterogeneous.

We see in Figure 7.6 that the differentiation prices (cnm)nm modify completely the solu-
tion. We observe that the quantities traded in case (b) are much larger. While some edges
are almost unused in case (a) and no edge is congested, ten of the twenty-two edges become
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congested in case (b) with heterogeneous prices. This effect can be explained by Propositions
7.5 and 7.8.

Also, we observe that marginal prices (ζnm)n,m are all equal to 2.16 $/MWh in case (a),
while they are heterogeneous in the case (b). In case (a), the equality is explained by both
the absence of congestion (ξnm = 0) and the equality of (cnm)nm among users (absence of
preferences).

As opposed to the reduced example with three nodes given in Section 7.5.1, it was not
possible to compute a GNE different from the VNE for this 14 nodes network. The approach
of Nabetani et al. [NTF11] that we used for the three node network is not possible here be-
cause of the dimension: to search for another GNE, we have to look on a space of dimension
22, e.g., the number of lines in the network. This observation also calls for the development
of algorithms not based on brute force approach, enabling an efficient approximation of the
GNEs. This could be the topic of future research.

7.6 Conclusion

We considered two market designs for a network of prosumers with differentiation price
preferences: (i) a centralized market design where a global operator optimizes the trades to
maximize the overall system social welfare, and (ii) a fully distributed peer-to-peer market
design where prosumers in local energy communities optimize selfishly the trades, demand,
and flexibility activation. We discussed the solution of the peer-to-peer market as a Varia-
tional Nash Equilibrium and prove that the set of Variational Equilibria coincides with the set
of social welfare optima solutions of market design (i). We also discussed the fact that other
solutions of the peer-to-peer market (ii) may exist as Generalized Nash Equilibria of the
problem. We characterized formally the impact of preferences on the network line conges-
tion and energy surplus under both designs. Our results were illustrated in two test cases (a
three nodes network and the IEEE 14-bus network). In the three nodes model, we provided
a numerical bound on the Price of Anarchy capturing the maximal loss of efficiency caused
by market imperfections, obtained at a generalized Nash equilibrium solution. Based on
these performance analysis and numerical results, we conclude that peer-to-peer market de-
sign gives rise to similar performance than the classical centralized market design, provided
market imperfections (resulting from the lack of coordination, insufficient market liquidity,
information asymmetry resulting from privacy) can be corrected, and constitutes a relevant
evolution for power system operation as it promises more robustness and resilience. Indeed,
as the information and decisions are not optimized by a central single entity, in case of fail-
ure or if one node is attacked, the power system can still rely on the other nodes. Besides, as
all prosumers are involved, they have the ability to adapt their actions to the state of grid.

Several extensions could be considered for further work. First, we could formally in-
clude the external aggregator in the study of the underlying economic system. In partic-
ular, instead of a premium or feed-in tariff—the sustainability of such mechanisms being
questionable—we could consider an external aggregator, seen as a strategic agent, who
charges the consumers for their energy surplus as done in [LC+19a; Rob+17]. Another pos-
sible extension of the proposed model would be to add taxes on the trades (either a constant
tax or a quadratic term), designed by the market operator and in order to regulate or opti-
mize the trades. Last, a different point of view than the one adopted in this chapter would
be to consider the framework of cooperative games, in order to study the possibility of pro-
sumers to form stable coalitions in which agents would share their locally produced energy
and engage in trades with other coalitions [WH16].
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Conclusion and Perspectives

This thesis addresses different problems in the context of decentralized electric systems,
through a game-theoretic and an optimization point of view.

In this work we obtained several theoretical results (theorems of existence and unique-
ness of equilibria in splittable congestion games, bounds on efficiency through the price of
anarchy, approximation results of the equilibria in large games or games with an infinity
of types), algorithmic methods (privacy-preserving disaggregation algorithm, distributed
computation of equilibria) and convergence results (convergence of Best Response, rate of
convergence of alternate projections) as well as modeling results (game-theoretic demand
response, peer-to-peer energy exchanges) and real data-based numerical results.

All these results can help electricity operators, as well as other actors of the grid, in better
understanding and assessing the potential of electricity consumption flexibilities, anticipat-
ing the effects and outcomes of incentive consumer-based mechanisms, and help in the prac-
tical implementation and the design of methods for an effective, efficient and decentralized
optimization of these flexibilities.

The decentralization of electric systems and the development of the smart grid call for
various considerations, and for many problems to be addressed by mathematicians and com-
puter scientists. This thesis focused on the issues related to the aggregation and distributed
optimization of consumption flexibilities, and several directions for further research on an
extended framework could be investigated.

First, the study of the optimization of price incentives (or of the billing mechanism) given to
consumers for demand response, would be a natural extension to Part II, where we analyzed
two particular billing mechanisms. This issue could be addressed through a model of bilevel
optimization, a mathematical framework that has not been considered in this thesis, see e.g.
[AMDC17].

In the works presented here, we argued that obtaining the equilibrium profiles for play-
ers (i.e. consumers) in a Demand Response game, could be achieved automatically through
electronic consumption schedulers. A different point of view, in line with Chapter 4 but not
developed in this thesis, is that players will adapt and learn their profiles through the rep-
etition of the game. To address these learning aspects, we could consider the framework of
dynamic games or repeated games [MSZ15], instead of the “one-shot” games considered in this
thesis.

Another natural extension of Part I and Part II we can think of, is to integrate in the model
the interactions of the aggregator (in charge of the flexibilities of a set of consumers) with the
electricity market or the other actors of the system. From a mathematical point of view, this
could also give rise to multi-level optimization considerations, or to “multi-level” games, for
instance Stackelberg games, see e.g. [Mah+13], [YH15].

Also, the works presented in this thesis adopt a deterministic point of view. As it is often
the case when modeling practical situations, one can think of various sources of stochastic-
ity. This is especially true in the context of decentralized electric systems: the intermittent
generation of renewable energy sources, the prices on a volatile and complex electricity mar-
ket and the unpredictable or unexpected actions of electricity consumers are all reasonable
sources of stochasticity to take into account. Considering stochasticity would make the anal-
ysis conducted here much more complex, but a possible framework to study these aspects
are stochastic games.

Another possible game framework to study demand response would be to consider a
mean field game model [GLL11], [DGG19a]. This would be a direct extension to Chapter 6
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where we considered the limit case of an infinite number of players N → ∞, and would en-
able to integrate some stochastic aspects (consumption, renewable production) in the model.
Mean field games found already some applications in the smart grid context, e.g. [Cou+12].

Besides, the work conducted in this thesis also calls for larger modeling considerations
on decentralized electric systems, enlarging the scope of the optimization of consumption
flexibilities.

In the questions to be addressed, an important issue for the future of the smart grid
is the impact of the new electricity usages (local renewables, flexibilities, electric vehicles)
on the physical network, in particular at the distribution level. One aspect of the value of
consumption flexibilities is to limit the investments on the network needed to cope with
these new usages. Network aspects are promptly discussed in Chapter 7, but considering a
realistic power flow model [PL16], [KDS16] in our analysis would be a meaningful extension.

Let us point out that, except in Chapter 1, we considered in this thesis a noncoopera-
tive game-theoretic setting. An interesting direction of research would be to consider the
framework of cooperative games, in order to study the possibility of consumers to form coali-
tions. This seems particularly relevant in the context of energy exchanges between con-
sumers (Chapter 7) and in the context of self shared local production of electricity or shared
storage [Cha+18].

Last, as already discussed in the introduction of this thesis, decentralized electric systems
involve multiple actors. Not only consumers (or prosumers), but also a multiplicity of elec-
tricity producers and electricity suppliers competing and interacting with each others. The
study and modeling of these competition aspects in a game theoretic environment would
also constitute an interesting extension.

Aside from these considerations on modeling aspects of decentralized electric systems,
this thesis led to several theoretical and algorithmic contributions in the fields of game theory
(in particular congestion games), combinatorial and continuous optimization. These contri-
butions also highlighted theoretical questions that remain open and which also constitute
interesting avenues for further research.

First, in Chapter 1, we generalized our privacy-preserving decomposition algorithm to
the case of arbitrary polyhedral constraints (Section 1.4). Additional results on the speed
of convergence of the algorithm in this case would be interesting. In particular, an open
question concerns the number of cuts added to the master problem: we did not prove that
this number is finite as in the transportation case. In addition, even in this latter case, the
upper bound on the number of cuts added remains exponential. In practice however, the
number of constraints to consider remains small: a thinner, polynomial, upper bound on the
number of cuts would constitute an interesting result.

Then, in Chapter 3, we obtained some convergence results on the Best Response (BR)
algorithm in specific cases. The extension of these convergence results to a more general
framework is still open, although it is observed numerically for a larger set of prices than
affine functions. It is conjectured that this convergence occurs for monotone congestion
games. This result would constitute an extension of [HS06] which shows that the continuous
Best Response converges in zero-sum games. Another avenue for further work in this chapter
is the improvement on our bound on the PoA: the bound we obtained for congestion games
with affine price functions could be improved to be tighter to the numerical results, and
generalized to a larger set of functions.

Another interesting direction for further research, from Chapter 5, is the development
of algorithmic methods to compute a generalized equilibrium for a congestion game in a
generic form and in the subdifferentiable case. The difficulty is that, due to the presence of
coupling constraints, and to the subdifferentiability of the price functions, the standard ap-
proaches to solve generalized monotone variational inequalities cannot be directly applied
to obtain an efficient and distributed method. However, one may need to exploit the spe-
cific structure of the operator, as a combination of monotone subgradients, appearing in the
variational characterization of a generalized equilibrium, in order to obtain ad-hoc results,
rather than focusing on general results for monotone generalized Variational Inequalities.

Last, Chapter 6 also highlighted the need for efficient algorithms for solving finite di-
mensional variational inequalities arising as the characterization of symmetric Variational
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Wardrop equilibria: some specific methods could be obtained for the case of aggregative
games with aggregative constraints.

Besides, the extension of evolutionary dynamics for population games and related al-
gorithms to nonatomic games with infinitely many classes of players is nontrivial but will
constitute interesting results. Aggregate constraints is a difficulty for considering evolu-
tionary dynamics in population games, as those dynamics are generally based on unilateral
adaptations from players. Another possible research direction in the spirit of Chapter 6 is
to consider the possibility of an infinity of heterogeneous players in the framework of Mean
Field Games, and obtain appropriate methods for the computation of equilibria.

Last, the results in this chapter are limited to monotone games and the convergence result
is limited to strongly monotone games. The extension of our results for non monotone games
remains an open question. However, this question is difficult as, even for population games
with finitely many types of players, there exist much fewer results on equilibria for games
that are not linear, potential or monotone.
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Appendix A

Acronyms and Abbreviations

BR Best Response

BRD Best Response Dynamics

DER Distributed Energy Resource

DR Demand Response

DSM Demand Side Management

ECS Electronic Consumption Scheduler

EV Electric Vehicle

GNE Generalized Nash Equilibrium

KKT Karush-Kuhn-Tucker (conditions of optimality)

NE Nash Equilibrium

PoA Price of Anarchy

SC Social Cost

SW Social Welfare

VI Variational Inequality

VNE Variational Nash Equilibrium

WE Wardrop Equilibrium
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Appendix B

Introduction (Français)

B.1 Système Électrique : du Centralisé vers le Décentralisé

Les innovations majeures et les nouvelles régulations apparues ces dernières années ont
transformé les systèmes électriques de par le monde.

Grâce aux avancées technologiques et à des projets novateurs—l’installation massive
de compteurs électriques intelligents [AY15] et les technologies de communication asso-
ciées, l’intégration des véhicules électriques au réseau [TRY16], accompagnée des projets
de recharge intelligente et des concepts vehicle-to-grid—de nouvelles perspectives se sont
ouvertes pour un système électrique moderne.

Par ailleurs, de nouvelles régulations—ouverture à la concurrence, nouveaux marchés
de l’électricité, possibilité de production renouvelable locale—émergeant des diverses in-
stitutions et législateurs en charge du système électrique (gouvernements, commission eu-
ropéenne de l’énergie, autorités de la concurrence) ont posé les bases d’un nouveau système
électrique décentralisé [AO16]. En France, l’ouverture à la concurrence pour la production
d’électricité et la fourniture de gros a débuté en 2000, après un monopole historique et une
gestion centralisée par un unique acteur, EDF. L’ouverture à la concurrence pour la fourni-
ture résidentielle a suivi, plus tard, en 2014. Depuis, le nombre de fournisseurs alternatifs
a augmenté chaque année, pour atteindre plus de trente en 2019. Le nombre d’installations
de production renouvelable a explosé, notamment du fait des faibles coûts des panneaux
photovoltaïques et des politiques publiques incitatives. En France en 2019, plus de 36500
sites de productions photovoltaïques sont référencés par RTE [Rte].

Les changements et les différentes innovations sont par ailleurs motivés par des objectifs
ambitieux de développement durable et de réduction d’émissions de gaz à effet de serre. Par
exemple, l’Union Européenne s’est engagée à atteindre un objectif de réduction de 40% de
ses émissions de gaz à effet de serre d’ici 2030 [Com19].

Parallèlement aux multiples actifs de productions d’énergie verte à petite échelle, dif-
férentes ressources énergétiques distribuées (DER, Distributed Energy Resources) comme les
actifs de stockage distribué ou les agrégateurs de flexibilités, nouveaux acteurs du système élec-
trique, viennent compléter ce paysage décentralisé.

Les agrégateurs de flexibilité [GKS13] agissent comme intermédiaires entre les consom-
mateurs (résidentiels ou commerciaux) et l’opérateur du système électrique, possiblement
via un marché dédié. Leur rôle est d’agréger un grand nombre de consommations poten-
tiellement flexibles offertes par les consommateurs d’électricité (provenant d’usages flexi-
bles tels que la charge de véhicule électrique, les équipements électroménagers connectés,
l’air conditionné, les ballons d’eau chaude, etc, voir Figure B.1). Ces flexibilités, individu-
ellement négligeables, peuvent, une fois agrégées, être valorisées comme un levier d’action
sur la demande électrique globale via le marché ou directement comme un service offert à
l’opérateur du système (voir Figure B.2).

Du point de vue de l’optimisation du système électrique et de l’équilibre production /
demande, ces perspectives changent la façon de voir la demande électrique. Celle-ci était
considérée comme un paramètre fixé dans le paradigme précédent, mais doit être consid-
érée dans ce nouveau contexte comme une variable sur laquelle l’opérateur peut exercer un
contrôle, bien que ce contrôle soit partiel et décentralisé.
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FIGURE B.1: Un consommateur flexible, équipé d’un compteur intelligent
et d’un planificateur de consommation relié à un ou plusieurs usages élec-
triques flexibles (véhicule électrique, air conditionné, machine à laver, etc.)

AGRÉGATEUR

1

2

N

OPÉRATEUR
DU SYSTÈME

MARCHÉS DE
L’ÉLECTRICITÉ

FIGURE B.2: Un agrégateur est en charge des flexibilités de nombreux
consommateurs d’électricité individuels, et valorise ensuite ces flexibilités

agrégées avec l’opérateur du système et sur les marchés de l’électricité.

Dans ce contexte, le concept de Demand Response (DR, qui pourrait être traduit par réponse
de la demande) réfère à l’ensemble des techniques utilisées pour exploiter les flexibilités de
consommations électriques, afin d’assurer l’équilibre production / demande ou des services
auxiliaires [Sia14; Saa+12].

L’exploitation des flexibilités de consommation est considérée comme un levier majeur
pour atteindre les objectifs de réductions d’émissions de carbone et augmenter de manière
significative la part des énergies renouvelables dans la production, mais également pour
limiter les investissements sur de nouvelles infrastructures [All11] et assurer la stabilité et la
résilience du réseau électrique [Sia14].

Dans cette thèse, nous nous intéressons aux problèmes soulevés par la gestion des flexi-
bilités de consommation, et développons une approche basée sur l’optimisation et la théorie
des jeux.

Ce sujet a attiré l’attention de plusieurs communautés scientifiques, dans les domaines
des systèmes électriques, des systèmes d’information, de l’optimisation et du contrôle, de
la théorie des jeux et de l’informatique : le lecteur pourra se référer à [Den+15], [Sia14] ou
[VZV15] pour des revues des travaux sur le sujet.

Fondamentalement, trois aspects rendent ce problème difficile. Tout d’abord, comme
nous modélisons les flexibilités de chaque consommateur électrique individuel, cela im-
plique un très grand nombre de variables. Ensuite, les informations concernant les con-
traintes des consommateurs ne sont pas complètement connues de l’opérateur central ou de
l’agrégateur, et restent au niveau local du consommateur. En effet, un opérateur ne saurait
avoir accès à l’ensemble de ces informations, d’une part du fait de la quantité et de la vari-
abilité des données que cela représente, et d’autre part pour des raisons de confidentialité :
les consommateurs sont en général réticents à fournir des informations à caractère privé,
comme les heures de présence à leur foyer. Enfin, le paradigme décentralisé suppose qu’un
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opérateur central possède seulement un contrôle partiel et indirect sur les profils de consom-
mation de consommateurs flexibles, par exemple par le biais d’incitations ou de signaux qui
peuvent être reçus localement par chaque consommateur, par un compteur communicant
relié à un dispositif de planification des consommations (Figure B.1).

Le cadre conceptuel que nous considérons, en particulier pour les chapitres I et II, est le
suivant : un opérateur central, par exemple l’opérateur d’un micro-réseau (microgrid) possé-
dant des actifs de production d’électricité (moyens de production, contrats de fournitures,
etc.) ou un agrégateur de flexibilités en interaction sur les marchés de l’électricité ou avec
d’autres acteurs (voir Figure B.2), est en charge des flexibilités d’un ensemble de consomma-
teurs. Dans un contexte de smart grid, chaque consommateur est équipé d’un planificateur
de consommation électrique (ECS, Energy Consumption Scheduler), intégré à un compteur in-
telligent. Cet ECS est connecté à l’opérateur central (via le réseau électrique ou un réseau de
communication ad-hoc), duquel il peut recevoir mais auquel il peut aussi transmettre des
signaux. Il est également relié localement à divers appareils électriques flexibles (véhicule
électrique, air conditionné, etc., voir Figure B.1), et dispose d’une petite capacité de calcul
permettant l’implémentation locale d’algorithmes pour planifier la consommation de ces
appareils.

B.2 Cadre Mathématique : de l’Optimisation aux Jeux

La transition d’un paradigme centralisé vers le paradigme décentralisé, tel que décrit dans la
section précédente, requiert de remplacer les outils d’optimisation utilisés classiquement par
des méthodes de théorie des jeux. Dans cette section, nous passons en revue les principales
notions mathématiques utilisées dans ce contexte.

B.2.1 Optimisation Distribuée pour un Problème Centralisé

Adoptons le point de vue d’un opérateur central faisant face à une fonction de coût p, x 7→
f (p, x), qui dépend de variables p ∈ P qu’il contrôle directement, mais, possède également
une dépendance en d’autres variables x def

= (xn)n∈N , où N dénote un ensemble d’acteurs
distincts de l’opérateur, par exemple un ensemble de consommateurs électriques flexibles.
Chaque variable individuelle xn (correspondant à l’agent n), est également soumise à des
contraintes locales xn ∈ Xn. Si les variables individuelles (xn)n sont contrôlées par l’ opéra-
teur , ce dernier fait face au problème d’optimisation centralisé suivant :

min
p,x

f (p, x) (B.1a)

s.c. p ∈ P (B.1b)
xn ∈ Xn, ∀n ∈ N , (B.1c)
h(p, x1, . . . , xN) 6 0, (B.1d)

où (B.1d) représente un couplage des variables de l’opérateur avec les variables des autres
agents. Ce couplage peut être simple (par exemple si p représente le profil agrégé de l’
ensemble des consommateurs N , i.e. p = ∑n xn) mais aussi très complexe (par exemple
pour modéliser les contraintes de flux du réseau électrique).

Une approche standard en optimisation pour résoudre les problèmes de type (1) d’une
manière distribuée est de s’appuyer sur des techniques de décomposition [Coh78], [BT89],
[BV04], en particulier sur les méthodes de décomposition lagrangienne [PC06], [XJB04],
telles que les méthodes de sous-gradients dual [Ber99, Chapter 6] ou ADMM [GM75]. Ces
approches ont notamment été appliquées dans le contexte des systèmes électriques décen-
tralisés et de DR [Sag12], [Mol+17], [CBK17], [Shi+14], [LCL11], [Den+15]. Le principal
inconvénient de ces méthodes est qu’elles s’appuient sur une hypothèse de convexité du
problème (B.1), ce qui est assez restrictif pour les cas d’applications : par exemple, les con-
traintes des actifs de productions d’électricité [CA06], ou encore les contraintes de réseau,
sont non-convexes. Dans le chapitre 1, nous proposons une méthode originale permettant la
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résolution de problèmes de type (B.1) d’une manière décentralisée, et pour laquelle la con-
vexité de la fonction f ou de l’ensemble P ne sont pas nécessaires. Notre méthode calcule
une solution du problème ci-dessus sans que l’opérateur ne soit informé des contraintes et
profils individuels des agents, garantissant ainsi la confidentialité des utilisateurs.

B.2.2 Modèles de Jeux pour la Gestion d’Énergie

Le problème centralisé (B.1) ne prend pas en compte le fait que les agents puissent être
stratégiques, au sens que ces agents choisissent des actions (l’agent n contrôle la variable
xn) et que ces actions influent sur des objectifs individuels (coût, facture d’énergie ou con-
fort) qui peuvent être en compétition les uns les autres, ou en compétition avec l’objectif
f de l’opérateur. Afin de modéliser ces aspects stratégiques, une large communauté de
chercheurs a modélisé le problème de Demand Response dans le cadre de la théorie des jeux,
e.g. [MR+10], [CK14], [Cha+14], [Saa+12], [Che+14], [Atz+13], [LCL11], [Bah+13].

Un cadre théorique différent—non sans liens avec les jeux—qui pourrait être consid-
éré pour aborder le problème (B.1) et prendre en compte des objectifs individuels pour les
agents, est l’optimisation bi-niveaux [CMS07]. Cependant, afin d’éviter la complexité de la
programmation bi-niveaux, nous nous intéressons dans cette thèse à des problèmes et des
modèles à un seul niveau dans les cadres de l’optimisation distribuée et de la théorie des jeux.

Un jeu [FT91] est une situation où un ensemble N d’agents stratégiques ou joueurs (par
exemple, des consommateurs flexibles) sont en interaction. Chacun des joueurs n ∈ N
choisit des actions dans un ensemble admissible, dénoté par Xn (e.g. l’ensemble des profils
de consommation électrique réalisables).

L’interaction entre les joueurs est modélisée par une fonction coût individuelle, pour
chaque joueur n ∈ N , (xn, x−n) 7→ fn(xn, x−n) ∈ R, qui dépend non seulement de sa propre
action xn mais aussi des actions des autres joueurs x−n

def
= (xm)m 6=n.

Dans le contexte DR, nous pouvons modéliser les interactions entre consommateurs dans
ce cadre, avec fn représentant une facture d’énergie que le consommateur n souhaite min-
imiser. La dépendance de fn aux profils de consommation des autres agents x−n résulte
du fait que l’opérateur central souhaite éviter la synchronisation des consommations. En
effet, la demande résultante de l’ensemble des consommateurs détermine les coûts d’ ap-
provisionnement : plus la demande est importante sur un créneau temporel, plus le prix
d’approvisionnement et de distribution d’électricité sera élevé, du fait des coûts de produc-
tion marginaux croissants et des phénomènes de congestion.

Dans ce cadre, nous pouvons écrire un problème d’optimisation pour chaque agent n,
étant données les actions des autres joueurs x−n :

min
xn

fn(xn, x−n) (B.2a)

s.c. xn ∈ Xn . (B.2b)

Dans le cadre des jeux non coopératifs, une notion fondamentale est donnée par le con-
cept d’équilibre de Nash (NE, Nash Equilibrium) [Nas50]. Cette notion a été retenue comme le
concept central de solution en théorie des jeux, avec des applications très diverses [Nis+07,
Sec.1.3.3].

Une situation d’équilibre de Nash correspond à des profils d’actions x̂ = (x̂n)n∈N tels
que chaque joueur n ∈ N , si il considère l’action des autres joueurs x̂−n comme fixe, n’a
pas intérêt à dévier de son action actuelle xn (le joueur résout le problème de minimisation
(B.2)). On a donc :

∀n ∈ N , ∀xn ∈ Xn, fn(x̂n, x̂−n) 6 fn(xn, x̂−n) .

L’équilibre de Nash capture la notion de solution stable, à partir de laquelle aucun joueur ne
peut décroître sa fonction de coût en changeant d’action. Lorsque les joueurs sont dans une
telle situation, il est dans l’intérêt de chacun d’eux de conserver l’action choisie.
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B.2.3 Jeux de Congestion

Dans le contexte de DR, la classe des jeux de congestion, introduite par Rosenthal [Ros73b],
s’avère particulièrement importante. Dans ces jeux, chaque joueur choisit un sous-ensemble
d’un ensemble partagé de ressources T . Chaque ressource t ∈ T possède un coût ct(·),
fonction croissante du nombre de joueurs sélectionnant cette ressource.

Dans le cas où l’action de chaque joueur n est réduite à la sélection de ressources, c’est-à-
dire donnée par un vecteur xn ∈ {0, 1}T , nous obtenons une classe de jeux nommée jeux de
congestion non-fractionnables (unsplittable en anglais). Lorsque chaque joueur n décide d’une
charge sur chacune des ressources de T , c’est-à-dire d’un profil xn ∈ RT+ , on parle d’un jeu
de congestion fractionnable (splittable) [ORS93], [Wan12b, Sec. 1.3.3]. Cette extension a trouvé
de premières applications dans les problèmes de routage sur des réseaux.

Ce cadre des jeux de congestion fractionnables est adapté à notre contexte. Si l’on con-
sidère que chaque agent choisit un profil de consommation xn = (xn,t)t∈T ∈ Xn sur un
ensemble de créneaux temporels T = {1, . . . , T}, et que sa fonction coût fn correspond
à une facture d’énergie avec, pour chaque période t ∈ T , un prix unitaire de l’électricité
Xt 7→ ct(Xt), fonction de la consommation agrégée Xt = ∑n∈N xn,t à cette période t, on
obtient une fonction de coût de type congestion donnée par :

fn(xn, x−n)
def
= ∑

t∈T
xn,tct

(
∑

m∈N
xm,t

)
. (B.3)

Ce cadre correspond bien à un jeu de congestion fractionnable, ou jeu de routage, décrit
par [ORS93], sur un réseau de T arcs parallèles représentant les T créneaux temporels, et
où chaque fonction coût ct(.) correspond à une fonction de latence sur chaque arc, comme
illustré en Figure 3.

O D

t = 1, c1

t = 2, c2
· · ·

t = T, cT

FIGURE B.3: Un jeu de congestion pour la consommation d’énergie sur T
périodes de temps peut s’interpréter comme un jeu de routage sur un réseau

de T arcs parallèles.

B.2.4 Efficacité des Équilibres

L’évaluation de l’efficacité d’un équilibre, ou plus généralement d’une issue d’un jeu, peut
suivre plusieurs critères selon la situation : par exemple, dans notre cadre, un opérateur du
système électrique s’intéresserait à l’évaluation des coûts totaux de production, ou bien des
émissions de CO2 associées aux profils de consommation. Par ailleurs, un critère standard,
largement adopté dans la littérature des jeux de congestion, est le coût social, notion qui réfère
simplement à la somme des coûts de tous les joueurs, c’est à dire SC(x) def

= ∑n∈N fn(x).
Basée sur ce critère, une mesure quantitative de l’efficacité des équilibres d’un jeu est

donnée par la notion de Prix de l’Anarchie (PoA, Price of Anarchy) [KP99], donné par le rapport
du coût social maximal atteignable à un équilibre (pire équilibre) et du coût social optimal
pouvant être atteint (cette situation optimale serait celle donnée par un opérateur central
optimisant le coût social et choisissant les actions de tous les joueurs), c’est-à-dire :

PoA =
maxx̂∈XNE SC(x̂)

minx∈X SC(x)
,
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où XNE désigne l’ensemble des NEs possibles du jeu. Un équilibre correspond à une situa-
tion localement stable mais à des choix individualistes et il n’y donc pas de raisons a priori
qu’une telle situation minimise le coût social. Ainsi le PoA est généralement supérieur à 1.
Différents travaux dans la littérature des jeux de congestion ont réussi à prouver des bornes
sur le PoA dans certains cas particuliers : par exemple [CBCS16] et [CB+17] ont montré
récemment que, dans les jeux de congestion sur réseaux, le PoA convergeait vers 1 dans la
limite de demandes infiniment grandes. Dans la littérature appliquée au contexte smart grid,
le PoA a aussi été adopté comme référence pour mesurer l’efficacité d’un système basé sur
un jeu (voir par exemple [CBK17], [Zhu+12], [CK14], [Saa+12], [NAC14], [HRD14]).

Comme annoncé précédemment, la théorie des jeux offre un cadre naturel pour aborder
les problèmes d’optimisation de façon distribuée et décentralisée [MRP13], [MS15] : un opé-
rateur central, en charge de plusieurs agents (par exemple des consommateurs d’électricité),
choisit les paramètres (incitations, tarifs, signaux) d’un jeu auquel les agents prennent part.

Dans ce contexte, un PoA faible caractérise l’efficience des incitations établies par l’ op-
érateur. Pour ces considérations de type mechanism design, introduisons une autre classe
importante de jeux, appelés jeux de potentiel (potential games) [MS96] : un jeu est un jeu de
potentiel exact si il existe une fonction “potentiel” Φ : (Xn)n∈N → R que tous les joueurs ont
intérêt à minimiser, ou plus exactement, qui vérifie :

∀n ∈ N , ∀x ∈ (Xm)m∈N , ∀x′n ∈ Xn, fn(xn, x−n)− fn(x′n, x−n) = Φ(xn, x−n)−Φ(x′n, x−n) .

En particulier, si un opérateur central établit un jeu qui possède un potentiel [LM13], les NEs
de ce jeu correspondent à des minima locaux de la fonction Φ. Si ce potentiel Φ est convexe,
les minima d’autre part seront facile à calculer. Plusieurs travaux, dans le contexte DR,
ont suivi une approche basée sur un jeu de potentiel, voir par exemple [Tus+18], [Wu+11],
[BW15], [YH16].

B.3 Organisation du Manuscrit

Cette thèse est organisée en quatre parties. Les travaux et modèles sont présentés dans un
ordre croissant de décentralisation et d’autonomie pour les consommateurs.

• La partie I aborde le problème de la gestion des flexibilités de consommation dans le
cadre d’optimisation distribuée. Le point de vue adopté dans cette partie est celui d’un opé-
rateur central en charge de ressources décentralisées (flexibilités) pour de nombreux agents,
et souhaitant optimiser ces ressources distribuées tout en respectant la confidentialité des
données des agents. Dans le chapitre 1, nous commençons par définir le cadre général d’un
problème distribué d’allocation de ressources—les ressources correspondant dans notre cas par-
ticulier à l’énergie allouée à chaque période de temps—auquel fait face l’opérateur central
en charge des agents. Chaque agent possède également des contraintes individuelles sur
les profils qui lui sont admissibles, et il souhaite garder ces contraintes confidentielles. Nous
proposons une méthode qui calcule une solution optimale de ce problème et qui garantit la
confidentialité des agents, et nous prouvons la validité et l’efficacité (nombre d’itérations de
l’algorithme) de cette méthode.

• La partie II considère le problème de la gestion des flexibilités de consommation (De-
mand Response), mais dans le cadre de la théorie des jeux. Dans les chapitres 2 et 3, les jeux
sont davantage utilisés comme un outil pour l’optimisation décentralisée : un mécanisme
de prix, défini par un opérateur, correspond à un signal de prix envoyé aux consomma-
teurs et à des incitations à atteindre un équilibre dans le jeu correspondant. Nous comparons
deux mécanismes de prix dans le chapitre 2 puis, dans le chapitre 3, nous nous focalisons
sur un mécanisme de prix “par heure”—correspondant à un jeu de congestion atomique
fractionnable—et sur les aspects de calcul d’équilibres dans ce jeu. Dans le chapitre 4, nous
modélisons la possibilité pour les consommateurs d’avoir des objectifs locaux et potentielle-
ment divergents : en plus de la “facture” donnée par l’opérateur, chaque consommateur
possède un profil de consommation préférentiel.
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• La partie III prouve des résultats théoriques sur l’approximation d’équilibres dans des
jeux de congestion avec un très grand nombre de joueurs. Ceci peut s’appliquer au cas où les
joueurs représentent des consommateurs électriques individuels, puisque l’on obtient ainsi
un jeu avec des centaines de milliers de joueurs. Dans le chapitre 5, nous considérons un
jeu de congestion avec un grand nombre de joueurs et la présence de contraintes couplantes
entre ces joueurs, et nous montrons qu’un équilibre de Nash (NE) de ce jeu peut être approx-
imé par un équilibre de Wardrop d’un jeu nonatomique (avec un continuum de joueurs), où les
joueurs similaires sont regroupés en populations homogènes. Dans le chapitre 6, nous nous
plaçons dans le cadre des jeux non atomiques agrégatifs généralisés avec une infinité de types
de joueurs. Cette situation modélise par exemple les interactions d’une population de con-
sommateurs, dont les caractéristiques (besoin en énergie, disponibilités temporelles) sont
décrites par une fonction de distribution paramétrique. Nous montrons que dans ce jeu,
un équilibre de Wardrop variationnel, une notion d’équilibre que nous définissons, peut être
approximé par un équilibre de Wardrop d’un jeu de population de plus petite dimension.

• La partie IV va plus loin en termes de décentralisation, en considérant une situation
sans opérateur central et où les consommateurs échangent de l’énergie directement dans des
transactions pair-à-pair. Dans le chapitre 7, nous proposons un modèle original basé sur un
jeu généralisé. Chaque joueur représente un consommateur flexible possédant une source de
production renouvelable locale et qui, en plus d’un objectif local, possède des préférences sur
les transactions qu’il peut engager avec ses pairs. Nous étudions les équilibres généralisés
de ce jeu et, en particulier, nous montrons que les équilibres variationnels correspondent aux
optima sociaux du jeu.

B.4 Contributions des Chapitres

Ce travail de thèse apporte des contributions de différentes natures : résultats théoriques et
algorithmiques, expérimentations numériques et aspects de modélisation.

En effet, cette thèse introduit et analyse différents modèles et outils dans le cadre de
l’optimisation d’un système électrique décentralisé, décrit en Section B.1, tout en appor-
tant plusieurs résultats théoriques dans les domaines de l’optimisation décentralisée et de
la théorie des jeux, en particulier dans le cadre des jeux de congestion fractionnables. Les
principales contributions sont données ci-dessous, suivant leur ordre d’apparition :

Chapitre 1. Nous proposons un algorithme original (Algorithme 1.4) permettant de cal-
culer un profil optimal agrégé d’allocation de ressources, solution d’un problème d’ opti-
misation possiblement non convexe, et correspondant à l’agrégation de profils admissibles
pour un ensemble d’agents ayant chacun des contraintes individuelles. Cet algorithme est
distribué et préserve la confidentialité, au sens que les calculs sont effectués sans que les
contraintes et profils individuels des agents ne soient révélés à un tiers, ni un autre agent, ni
l’opérateur central. En pratique, cet algorithme peut être utilisé par exemple pour optimiser
un profil de consommation électrique agrégé sur un ensemble de consommateurs flexibles,
en assurant la confidentialité des informations de chaque consommateur. L’application de
cette méthode dans ce contexte a fait l’objet d’un dépôt de brevet par EDF [Jac+18b].

Notre algorithme repose sur la méthode des projections alternées [VN50], [GPR67] sur
des polytopes de transport, et un résultat clef pour l’algorithme est prouvé dans ce chapitre 1 :
le théorème 1.3 montre que, lorsque les projections alternées ne convergent pas vers un
même point, nous pouvons construire une coupe polyhédrale, correspondant à une coupe
d’Hoffman [Hof60] dans le problème de flot associé à ce polytope de transport.

Enfin, le théorème 1.4, dont la preuve repose sur des arguments de théorie spectrale
des graphes [CG97], donne une borne explicite de la vitesse de convergence des projections
alternées sur des polytopes de transport. Ce résultat montre que la complexité temporelle
de la méthode proposée dans ce chapitre évolue de façon linéaire avec le nombre d’agents
considéré, et que cette méthode peut donc être utilisée à large échelle.

Chapitre 2. Nous considérons deux mécanismes de Demand Response, l’un basé sur un
jeu de potentiel (dénoté mécanisme Daily Proportional, [MR+10]) et l’autre basé sur un jeu de
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congestion fractionnable (dénoté mécanisme Hourly Proportional, [Bah+13]), et nous étudions
les équilibres de Nash de ces jeux, en particulier l’existence et l’unicité de ces équilibres. Le
théorème 2.1 donne une condition suffisante sur les dérivées des fonctions prix (correspon-
dant aux fonctions de latence dans un jeu de congestion) pour l’unicité d’un équilibre. Ce
résultat repose sur la condition standard de stricte monotonie [Ros65], explicitée en utilisant
un résultat d’algèbre linéaire (perturbation de spectre matriciel). Dans le même chapitre,
le théorème 2.2 établit une borne supérieure sur le prix de l’anarchie (défini en Section B.2)
pour cette classe de jeu, obtenue par la technique de (λ, µ)-régularité locale introduite par
[RS15].

Chapitre 3. Ce chapitre se focalise sur les aspects algorithmiques des jeux de conges-
tion. Tout d’abord, le théorème 3.2 étend le résultat [ORS93] d’unicité d’un NE à un con-
texte plus général. Nous donnons différents résultats sur la convergence de l’algorithme de
meilleure réponse (BR, Best Response, voir [GM91], [DG16], [DGG19b]), dans des cadres par-
ticuliers des jeux de congestion fractionnables. Le théorème 3.4 prouve la convergence de
l’algorithme de BR cyclique, dans le cas potentiel, tandis que le théorème 3.2 prouve la con-
vergence géométrique d’une version aléatoire de BR dans des cas spécifiques. Ces résultats
montrent la convergence de l’algorithme BR dans un cadre différent de celui considéré par
Mertzios [Mer08]. Nous étudions également une méthode de gradient projeté, et démontrons
(théorème 3.5) que, sous une hypothèse de forte monotonie, cette méthode converge à une
vitesse géométrique vers l’unique équilibre du jeu. En s’appuyant sur le même résultat de
perturbation spectrale utilisé au chapitre précédent, la proposition 3.1 donne une condition
suffisante sur les fonctions prix ct(.) (voir Section B.2) pour que la forte monotonie soit re-
spectée. Enfin, dans ce chapitre, nous proposons une procédure de demand response ”online”
avec horizons glissants (Algorithme 3.4), en commande prédictive [Wu+11], afin de prendre
en compte la mise à jour de prévisions dans un environnement stochastique. Le théorème
3.6 prouve que les profils de consommations calculés par cette procédure correspondent à
l’équilibre de Nash, sous l’hypothèse de prévisions parfaites ;

Chapitre 4. Nous étendons le modèle de jeu de flexibilités de consommations électriques
introduit au chapitre 2 en considérant des profils de consommation préférentiels pour les
consommateurs. Dans le cadre simplifié de deux créneaux temporels, nous établissons
plusieurs résultats théoriques sur l’impact de ces préférences sur l’équilibre du jeu, dans
les deux mécanismes introduits au chapitre 2. Nous comparons le prix de l’anarchie dans
les deux jeux correspondants ainsi que le prix de l’efficacité, un concept similaire au PoA
que nous introduisons pour mesurer l’efficacité des équilibres du point de vue des coûts de
l’opérateur du système. En particulier, le théorème 4.4 montre que les coûts du système pour
le mécanisme hourly proportional sont toujours inférieurs à ceux obtenus dans le mécanisme
daily proportional. Ce chapitre présente également des résultats numériques basés sur des
données de consommation réelles, provenant de la base de données PecanStreet [Pec].

Chapitre 5. Nous considérons dans ce chapitre le cadre des jeux de congestion frac-
tionnables avec contraintes couplantes [Har91], et avec un très grand nombre de joueurs,
hétérogènes par leurs contraintes individuelles ou leur fonction objectif. En utilisant le cadre
des inégalités variationnelles [FP07], nous montrons en théorème 5.1 que les équilibres de
Wardrop Variationnels (VWE) fournissent une bonne approximation des équilibres de Nash
Variationnels (VNE), et en théorème 5.2 que, en regroupant les joueurs similaires en popu-
lations homogènes, nous définissons un jeu approchant du jeu initial, et dont les équilibres
sont proches du jeu initial. Ces résultats étendent le travail [Pac+18], où les auteurs montrent
que les VNEs sont proches des VWEs dans les jeux agrégatifs atomiques avec un grand nom-
bre de joueurs : le chapitre 5 montre que, de plus, nous pouvons considérer un petit nombre
de populations dans le jeu approchant, et que le VWE obtenu reste proche d’un VNE du
jeu initial. Ces résultats d’approximations peuvent être utilisés pour calculer rapidement
un équilibre, puisque le problème caractérisant les équilibres dans le jeu approchant est de
dimension bien inférieure au problème initial.

Chapitre 6. Nous introduisons une nouvelle famille de jeux, les jeux agrégatifs non atom-
iques avec une infinité de types de joueurs (Definition 6.1), où le type d’un joueur est défini par
son ensemble d’actions admissibles et sa fonction objectif. Nous étendons ainsi la famille
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de jeux considérée par [MZ97]. Ces jeux émergent naturellement lorsque l’on considère une
population caractérisée par une fonction de distribution paramétrique. En présence de con-
traintes couplantes, nous définissons la notion d’équilibre de Wardrop Variationnel (VWE) pour
un jeu nonatomique avec une infinité de types (Definition 6.4), caractérisé par une inégal-
ité variationnelle de dimension infinie. Le théorème 6.5 prouve le résultat d’approximation
suivant : un VWE dans un jeu nonatomique peut être approximé par un équilibre de Wardrop
d’un jeu avec un nombre fini de populations homogènes, ce dernier équilibre étant symétr-
ique au sens que les joueurs au sein d’une même population jouent la même action. Ce
résultat présente également un fort intérêt numériquement, puisqu’il permet d’approcher
l’équilibre du jeu initial (de dimension infinie) en restant en petite dimension.

Chapitre 7. Nous introduisons un modèle original d’échanges d’énergie pair-à-pair (peer-
to-peer) au sein d’une communauté de consommateurs-producteurs d’électricité (prosumers).
Le modèle obtenu est un jeu généralisé [HP90], puisque les contraintes de réciprocité des
échanges définissent des contraintes couplantes entre chaque consommateur et ses voisins.
Ce modèle de jeu permet de prendre en compte le caractère stratégique des interactions entre
consommateurs, contrairement aux approches de décomposition et optimisation distribuée
qui ont été considérées pour ce problème [SBP18]. Un des résultats obtenus dans ce chapitre
est le suivant: la proposition 7.6 montre que les équilibres variationnels du jeu formulé cor-
respondent à des optima du coût social (voir Section B.2). Nous étudions numériquement
l’efficacité des équilibres, à travers le PoA, en calculant les équilibres généralisés du jeu sur
différents cas tests, et nous comparons les flux d’énergie obtenus aux équilibres avec les flux
obtenus lors de la solution centralisée, correspondant à l’optimum social.

Chacun des sept chapitres présentés dans cette thèse est basé soit sur un article accepté
et présenté à une conférence avec comité de lecture, soit sur un article de journal, publié ou
bien soumis pour publication:

• le chapitre 1 est basé sur l’article [Jac+19b] soumis pour publication à un journal, et sur
l’article [Jac+19a] présenté à 2019 IEEE 58th Conference on Decision and Control ;

• le chapitre 2 est basé sur l’article [Jac+17b] présenté à 2017 IEEE Conference on Innovative
Smart Grid Technologies (ISGT) ;

• le chapitre 3 est basé sur l’article de journal [Jac+19c], publié dans IEEE Transactions on
Smart Grid ;

• le chapitre 4 est basé sur l’article [Jac+17a] présenté à 2017 IEEE Conference on Smart
Grid Communications ;

• le chapitre 5 est basé sur l’article [Jac+18a] soumis pour publication ;

• le chapitre 6 est basé sur l’article [JW19] soumis pour publication, ainsi que sur la pré-
publication [JW18a] et l’article de conférence [JW18b], présenté à 2018 IEEE 57th Conference
on Decision and Control ;

• le chapitre 7 est basé sur l’article [LC+19b], accepté pour publication à European Journal
of Operational Research.
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Résumé : Dans le contexte de transition vers un système électrique décentralisé et intelligent, nous abordons le problème de la gestion
des flexibilités de consommation électriques. Nous développons différentes méthodes basées sur l’optimisation distribuée et la théorie
des jeux. Nous commençons par adopter le point de vue d’un opérateur central en charge de la gestion des flexibilités de plusieurs
agents. Nous présentons un algorithme distribué permettant le calcul des profils de consommations des agents optimaux pour l’opérateur.
Cet algorithme garantit la confidentialité des agents : les contraintes individuelles, ainsi que le profil individuel de consommation de
chaque agent, ne sont jamais révélés à l’opérateur ni aux autres agents. Ensuite, nous adoptons dans un second modèle une vision plus
décentralisée et considérons un cadre de théorie des jeux pour la gestion des flexibilités de consommation. Cette approche nous permet
en particulier de modéliser les comportements stratégiques des consommateurs. Dans ce cadre, une classe de jeux adéquate est donnée
par les jeux de congestion atomiques fractionnables. Nous obtenons plusieurs résultats théoriques concernant les équilibres de Nash
dans cette classe de jeux, et nous quantifions l’efficacité de ces équilibres en établissant des bornes supérieures sur le prix de l’anarchie.
Nous traitons la question du calcul décentralisé des équilibres de Nash dans ce contexte en étudiant les conditions et les vitesses de
convergence des algorithmes de meilleure réponse et de gradient projeté. En pratique un opérateur peut faire face à un très grand nombre
de joueurs, et calculer les équilibres d’un jeu de congestion dans ce cas est difficile. Afin de traiter ce problème, nous établissons des
résultats sur l’approximation d’un équilibre dans les jeux de congestion et jeux agrégatifs avec un très grand nombre de joueurs et en
présence de contraintes couplantes. Ces résultats, obtenus dans le cadre des inégalités variationnelles et sous certaines hypothèses de
monotonie, peuvent être utilisés pour calculer un équilibre approché comme solution d’un problème de petite dimension. Toujours
dans la perspective de modéliser un très grand nombre d’agents, nous considérons des jeux de congestion nonatomiques avec contraintes
couplantes et avec une infinité de joueurs hétérogènes : ce type de jeux apparaît lorsque les caractéristiques d’une population sont décrites
par une fonction de distribution paramétrique. Sous certaines hypothèses de monotonie, nous prouvons que les équilibres de Wardrop
de ces jeux, définis comme solutions d’une inégalité variationnelle de dimension infinie, peuvent être approchés par des équilibres de
Wardrop symétriques de jeux annexes, solutions d’inégalités variationnelles de petite dimension. Enfin, nous considérons un modèle de
jeu pour l’étude d’échanges d’électricité pair-à-pair au sein d’une communauté de consommateurs possédant des actifs de production
électrique renouvelable. Nous étudions les équilibres généralisés du jeu obtenu, qui caractérisent les échanges possibles d’énergie et les
consommations individuelles. Nous comparons ces équilibres avec la solution centralisée minimisant le coût social, et nous évaluons
l’efficacité des équilibres via la notion de prix de l’anarchie.

Title: Game theory and Optimization Methods for Decentralized Electric Systems
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Abstract: In the context of smart grid and in the transition to decentralized electric systems, we address the problem of the management
of distributed electric consumption flexibilities. We develop different methods based on distributed optimization and game theory ap-
proaches. We start by adopting the point of view of a centralized operator in charge of the management of flexibilities for several agents.
We provide a distributed and privacy-preserving algorithm to compute consumption profiles for agents that are optimal for the operator.
In the proposed method, the individual constraints as well as the individual consumption profile of each agent are never revealed to the
operator or the other agents. Then, in a second model, we adopt a more decentralized vision and consider a game theoretic framework
for the management of consumption flexibilities. This approach enables, in particular, to take into account the strategic behavior of con-
sumers. Individual objectives are determined by dynamic billing mechanisms, which is motivated by the modeling of congestion effects
occurring on time periods receiving a high electricity load from consumers. A relevant class of games in this framework is given by atomic
splittable congestion games. We obtain several theoretical results on Nash equilibria for this class of games, and we quantify the efficiency
of those equilibria by providing bounds on the price of anarchy. We address the question of the decentralized computation of equilibria
in this context by studying the conditions and rates of convergence of the best response and projected gradients algorithms. In practice
an operator may deal with a very large number of players, and evaluating the equilibria in a congestion game in this case will be difficult.
To address this issue, we give approximation results on the equilibria in congestion and aggregative games with a very large number
of players, in the presence of coupling constraints. These results, obtained in the framework of variational inequalities and under some
monotonicity conditions, can be used to compute an approximate equilibrium, solution of a small dimension problem. In line with the
idea of modeling large populations, we consider nonatomic congestion games with coupling constraints, with an infinity of heterogeneous
players: these games arise when the characteristics of a population are described by a parametric density function. Under monotonicity
hypotheses, we prove that Wardrop equilibria of such games, given as solutions of an infinite dimensional variational inequality, can be
approximated by symmetric Wardrop equilibria of auxiliary games, solutions of low dimension variational inequalities. Again, those
results can be the basis of tractable methods to compute an approximate Wardrop equilibrium in a nonatomic infinite-type congestion
game. Last, we consider a game model for the study of decentralized peer-to-peer energy exchanges between a community of consumers
with renewable production sources. We study the generalized equilibria in this game, which characterize the possible energy trades and
associated individual consumptions. We compare the equilibria with the centralized solution minimizing the social cost, and evaluate the
efficiency of equilibria through the price of anarchy.
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