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     Abstract

Active fluids comprise of self-propelled bodies which expend energy in the fluid to achieve self-propulsion. These
are commonly seen in nature - from macroscopic scales such as a group of fish or birds to microscopic scales such as
a suspension of swimming microorganisms. The particles, being self-propelled, are in a state of thermal equilibrium
and therefore exhibit an interesting collective behavior governed by an non-equilibrium statistical mechanics. Over
the past decade, with recent scientific advances, artificial micro-swimmers in the form of colloidal particles have
been  manufactured  which  rely  on  physico-chemical  mechanisms  for  self-propulsion.  Here,  we  will  study  the
collective interactions in the suspensions of a class of these active colloidal particles - called autophoretic particles -
which  "swim"  in  the  gradients  of  a  self-generated  solute  concentration  field  using  a  mechanism  called
diffusiophoresis. The surface property of colloids which allows it to respond mechanically to the external surface
concentration gradients of a certain species of chemical solute and to swim is called  mobility. These colloids also
have the capacity to catalyze chemical reactions on their surface; this gives them the ability to absorb or emit the
chemical solute, thus modifying the concentration field of the surrounding solute. This property is termed surface
activity. The combined surface properties of chemical activity and mobility can lead to self-propulsion of colloidal
particles. This mechanism is exploited by autophoretic particles, which are chemically active synthetic colloids, to
achieve self-propulsion. 

These particles influence each other's movements through chemical and hydrodynamic interactions and are therefore
known for their collective behavior. The modeling of these interactions has been the subject of intense research over
the past decades, both from a physical point of view to understand the precise mechanisms of interactions, and from
an experimental point of view to explain the observations of formation of large-scale coherent structures. However,
exact modeling of is difficult due to multi-body interactions and surface effects. Until now, most efforts have been
based on the superimposition of far field approximations for the signature of each particle, which are only valid
asymptotically within the limit of dilute suspension. A systematic and unified analytical framework based on the
classical  method of reflection (MoR) is developed here for Laplace and Stokes problems in order  to obtain the
multibody interactions and the resulting velocities of the phoretic particles, up to an order of precision of the radius
relative to the distance of the particles. 

A system comprising only chemically and geometrically isotropic autophoretic particles is then considered in detail.
We know that such isotropic particles cannot propel themselves; however, in the presence of other identical particles,
the symmetry of the concentration field is broken and the particles spontaneously form packed clusters. Remarkably,
these clusters self-propel according to their geometric arrangement. An argument for the origin of this self-propelling
behavior of the clusters is explained using the MoR. This result therefore identifies a new way to break the symmetry
for the concentration field and for self-propulsion, which is not based on an anisotropic design, but on the collective
interactions of identical and homogeneous active particles. In addition, using complete numerical simulations, we
characterize the statistical properties such as the maximum, average and most likely self-propelling speeds of the
system.

Keywords: Active  fluids,  self-propulsion,  chemo-hydrodynamic  interactions,  modeling  phoretic
suspension, collective dynamics



Résumé

Les  fluides  actifs  comprenant  des  corps  autopropulsés  qui  dépensent  de  l'énergie  dans  le  fluide  pour  réaliser
l'autopropulsion. Ceux-ci sont couramment observés dans la nature - des échelles macroscopiques comme un groupe
de poissons ou d'oiseaux aux échelles microscopiques telles qu'une suspension de micro-organismes nageant. Les
particules, étant auto-entraînées, sont dans un état d'équilibre thermique et donc présentent un comportement collectif
intéressant régi  par une mécanique statistique hors équilibre.  Au cours de la dernière décennie,  avec les progrès
scientifiques  récents,  des  micro-nageurs  artificiels  sous  forme  de  particules  colloïdales  ont  été  fabriqués  qui
s'appuient  sur  des  mécanismes  physico-chimiques  pour  l'auto-propulsion.  Ici,  nous  étudierons  les  interactions
collectives  dans  les  suspensions  d'une  classe  de  ces  particules  colloïdales  actives  -  appelées  particules
autophorétiques - qui «nagent» dans les gradients d'un champ de concentration de soluté auto-généré en utilisant un
mécanisme appelé diffusiophorèse. La propriété de surface des colloïdes qui lui permet de répondre mécaniquement
aux gradients de concentration de surface externe d'une certaine espèce de soluté chimique et de nager est appelée la
mobilité de la particule. Ces colloïdes possèdent en outre la capacité de catalyser des réactions chimiques à la surface
de leur surface; cela leur donne la capacité d'absorber ou d'émettre le soluté chimique, modifiant ainsi le champ de
concentration  du  soluté  environnant.  Cette  propriété  est  appelée  activité  de  surface.  Les  propriétés  de  surface
combinées  de  l'activité  chimique  et  de  la  mobilité  peuvent  donner  un  nouveau  souffle  à  l'autopropulsion  des
particules  colloïdales.  Ce  mécanisme  est  exploité  par  des  particules  autophorétiques,  qui  sont  des  colloıdes
synthétiques chimiquement actifs, pour réaliser une autopropulsion. Ces particules influencent les mouvements des
uns  et  des  autres  par  le  biais  d’interactions  chimiques  et  hydrodynamiques  et  sont  donc  connues  pour  leur
comportement collectif. 

La modélisation de ces interactions fait l'objet d'intenses recherches au cours des dernières décennies, tant d'un point
de vue physique pour comprendre les mécanismes précis des interactions, que d'un point de vue expérimental pour
expliquer  les  observations de formation de  structures  cohérentes  à  grande échelle.  Cependant,  une modélisation
exacte de est difficile en raison des interactions multi-corps et des effets de surface. Jusqu’a présent, la plupart des
efforts reposent sur la superposition d’approximations de champ lointain pour la signature de chaque particule, qui ne
sont valides que de maniére asymptotique dans la limite de suspension diluée. Un cadre analytique systématique et
unifié basé sur la methode classique de reflexion (MoR) est developpe ici pour les problémes de Laplace et de Stokes
afin d’obtenir les interactions multicorps et les vitesses résultantes des particules phorétiques, jusqu’a un ordre de
précision du rayon rapport à distance des particules . 

Un systéme comprenant uniquement des particules autophorétiques chimiquement et geometriquement isotropes est
ensuite considéré en détail. On sait que de telles particules isotropes ne peuvent se propulser seules; cependant, en
présence d’autres particules identiques, la symétrie du champ de concentration est brisée et les particules forment
spontanément  des  amas  tassés.  Remarquablement,  ces  grappes  s’auto-propulsent  en  fonction  de  leur  disposition
géométrique. Un argument pour l’origine de ce comportement auto-propulsif des grappes est bas ́e sur le MoR. Ce
résultat identifie donc une nouvelle voie pour briser la symétrie pour le champ de concentration et pour lˆaauto-
propulsion, qui ne repose pas sur une conception anisotrope, mais sur les interactions collectives de particules actives
identiques et homogénes.  De plus, en utilisant des simulations numériques complètes et un modèle théorique de
regroupement, nous caractérisons les propriétés statistiques telles que les vitesses maximales, moyennes et les plus
probables d'auto-propulsion du système.

Mots  clés: fluid  actifs,  autopropulsion,  interactions  chimiques  et  hydrodynamiques,  comportement
collectif
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1
Introduction

Motion of microorganisms such as bacteria or microtubules, or microscopic particles such
as active colloids produce an activity within a fluid; the microscopic interactions between
them can manifest in a macroscopic scale as collective motion and formation of large-scale
structures. With synthetic constituents such as autophoretic colloids, one has control over
the local interactions and can design these artificial swimmers for a specific task. The
objective of the present chapter is to introduce the fundamental physics behind self-propulsion
of autophoretic colloids, their collective dynamics dynamics observed in experiments and to
describe the current literature on modeling their dynamics in such active matter systems.

Figure: Dark-field image of a large population of colloidal rollers confined to a track. They
spontaneously form swarms that move in a unique direction. Source: Bricard et. al. 2013
[1]
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Active matter, as the name suggests, is a physical system in which the constituent elements
are in a state of continuous ”activity”. These include motion of fishes, birds, bees and even
human crowds. Their activity comes from their ability to utilise stored energy or convert
energy from the surrounding into motion. This broad definition would encapsulate a lot
of commonly seen examples in nature spanning multitude of scales. At microscopic scales,
bacterial colonies, microtubules and growing tissues display active behaviour. Recent ad-
vances in manufacturing of certain artificial self-propelling particles have lead to creation
of synthetic active matter with tunable physical properties. Such systems have also shown
immense potential for controlled transport at microscopic scales. These two properties make
synthetic active matter system attractive for potential engineering applications such as de-
velopment of meta-materials with desired properties as well as for systems with controlled
transport properties for biomedical and therapeutic applications. From a fundamental phys-
ical perspective, these systems form a class of internally activated thermodynamic system
which is well out of equilibrium.

1.1 A thermodynamic perspective

Thermodynamic equilibrium is a state in which the thermodynamic potential (i.e. the ca-
pacity of the system to do work) is minimized. The thermodynamic properties - mechanical,
chemical and thermal- of the system in equilibrium remain unchanged unless disturbed by
a thermodynamic operation. The operation, which involves injection of energy into the
system, pushes the system into an out-of-equilibrium state. Thus, a physical system is said
to be out-of-equilibrium if its thermodynamic properties vary over time and are also depen-
dent on the spatial location. The spatial difference in properties lead to transport of mass,
momentum and energy within the system. Some examples include diffusion, conduction of
heat or electricity, pressure/shear-driven flows etc.. The system would eventually decay into
a state of thermodynamic equilibrium, unless the source of energy is available. A simple
example is a case where the ends of a conducting material are kept in contact with bodies of
two different temperatures. The temperature difference drives a heat flux from the hotter to
the colder body until all the bodies reach an equilibrium temperature. However, to maintain
the non-equilibrium heat flux, external energy has to be supplied to sustain the temperature
difference.

In the above situation, the constituent elements of the system experience constant thermo-
dynamic forcing due to an external/ global energy supplied into the system in the form of
heat. In another kind of system, the energy consumption or dissipation can be local i.e.
the constituent particles are themselves responsible for input of energy into the system to
maintain the non-equilibrium nature. This is the defining feature of active matter systems.
Due to their continued state of motion, the particles, in low densities, can contribute to en-
hancing transport within the material [2]. For example, school of fishes swimming in water
constitutes an active system in which each creature exerts mechanical energy into the fluid
by deforming its body, and in return gets propelled by the fluid.

Non-equilibrium thermodynamic processes are irreversible in nature. The irreversible fluxes
are coupled to the thermodynamic forces and various physical models have been developed
to understand this coupling such as Fick’s laws for diffusion, Fourier’s laws for conduction
etc.. It has been observed that simple linear models suffice to explain these thermodynamic
processes accurately; non-linear effects are insignificant in most cases [3]. Additionally, since
each of the irreversible fluxes are coupled to all the thermodynamic forces, cross-effects can
also also exist theoretically; a classical example, observed experimentally as well, is that
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of transport of certain colloidal particles resulting from temperature gradients - known as
Soret effect / thermophoresis which belongs to a class of mechanism known as phoresis - or
drift through external gradients [4, 5].

1.1.1 Self-organizing properties

Systems out of thermodynamic equilibrium can exhibit pattern formation behaviour. The
local fluctuations in thermodynamic properties of the system, even at the microscopic scales,
get amplified due to interactions with the surrounding and lead to mechanical instabilities [4].
These instabilities, under certain circumstances, can develop large-scale coherent structures,
even of macroscopic scales. Classical examples of non-equilibrium pattern formation in
fluid dynamics are Rayleigh-Bernard convection cells formed due to thermal (convective)
instabilities, or shear-flow instabilities such as Kelvin-Helmholtz or Taylor-Couette etc..[6].
Even simple systems such as a mechanical vibrations of a granular media can produce a
variety of patterned structures [7]. These are some examples of systems displaying patterns
due to external mechanical or thermal excitation. In some processes, for example, Cross-
Hohenberg and Belosov-Zhabotinsky reactions(BZ reactions) internal chemical energy is
responsible for pattern formation and sustained oscillations [8]. In nature, the interactions
between living organisms within the system act as an input of energy to destabilize the
system. Commonly observed examples at microscopic scales include bacterial aggregates
[7] (figure 1.1d) , kensin-induced patterning of microtubules (figure 1.1c), and various bio-
chemical processes. Usually a dynamical systems approach is taken to study these symmetry-
breaking bifurcations of transition from equilibrium state and resulting pattern formation.

Systems in thermodynamic equilibrium exhibit time-reversal symmetry i.e. by reversing
time, the statistical properties of the equilibrium process remain exactly the same as that
when the system advances forward in time. However, the discerning feature of out-of-
equilibrium systems is the breakdown of this time-reversal symmetry: A classic example
is the case studied by Galajda et.al. wherein a preferential aggregation of bacteria were
observed in a segregated chamber [11]; reversal of time would cause motion in opposite
direction, which breaks the symmetry.

Besides the pattern formation and time irreversibility, there are additionally two features
that out-of-equilibrium systems can exhibit viz. (i) Phase separation and (ii) collective
directed motion: Many cases of patterning are observed during equilibrium phase transitions,
but these are accompanied by non-equilibrium processes. One such example is the formation
of dendrites of ice crystals which form regular and similar patterning. Another example is the
crystallization of active colloids due to attractive chemical interactions [12, 13, 14]. Secondly,
non-equilibrium systems which are internally-driven can exhibit the long-range correlations
and directional ordering. The constituent elements exhibit collective directed motion with
qualitative feature which are qualitatively quite distinct from individual dynamics. These
can be observed at multiple scales: from microscopic interactions between molecular motors
and actin filaments, collective migrations of tissue cells as well as bacterial and algal colonies,
to collective behaviour of schools of swimming fish, swarms of bees and birds in macroscopic
scale (see figure 1.1). By tuning the properties of certain active colloids, the interaction
between them can be appropriately controlled which automatically changes the physical
behaviour (and properties) of the macroscopic system.

1.1.2 Synthetic active matter

Synthetic active matter comprises of a system wherein the constituent elements have been
designed and manufactured to exhibit certain specific behaviour of motion. These elements
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Figure 1.1: Some examples of the two pattern-forming properties exhibited by out-of-
equilibrium systems viz. crystallization and long-range collective ordering: a,b) Collective
migration of birds (starlings) Daniel Biber c⃝ photography (www.worldphoto.org) and fishes
c) Actin filaments exhibiting non-equilibrium pattern formation [9] d) Swimming bacterial
colonies of bascilus subtilus showing strong polar ordering - Adapted from Zhang et. al.
[10]

are generally particles of microscopic size. They have been designed to accomplish guided
transport at these scales and can serve the purpose of providing a controlled setting to study
the physics of active matter such as their collective dynamics [14, 12] or interactions with
surroundings [15, 16, 17], as well as acting as engineered ”machines” for specific transport
applications [18]. There are generally two kinds of synthetic active matter based on the mode
of input of energy viz. i) External field driven and ii) driven by an internal mechanism.

1.1.2.1 Externally-driven

In experiments, a wide range of external fields, such as those of magnetic, electric, acoustic,
thermal and chemical nature, have been used to induce motion of microscopic particles in
a system. Such an external control has the advantage of having the ability to manipulate
the propulsion characteristics of the particles by varying the strength and direction of the
external field. One class of externally-driven particles propel due to direct forcing from an
external oscillating field and move in-sync with it and hence, have excellent tractability.
An example is that of a spherical colloid made of a ferromagnetic material (e.g. Nickel) of
a given magnetic moment, in an external alternating magnetic field; the colloid traces the
rotating field which leads to its rolling motion. Speeds of upto ∼ O(100)µm/s have been
achieved in this setup [19, 20, 21].

Another case is when the external (typically non-varying) field itself does not exert the
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propulsive force but rather induces the symmetry-breaking mechanism on the particle nec-
essary for its self-propulsion [22, 23, 24]. Although there is less control on the direction, the
speed of propulsion is however dependent on the strength of external field [25, 5]. For exam-
ple, spherical colloids made of dielectric material (such as PMMA) immersed in a conducting
fluid achieves self-propulsion in the presence of a constant (DC) electric field using a mech-
anism called Quincke rotation. The electric field induces differential charge on the surface
of the colloid; when the strength of the external field E0 becomes stronger than a threshold
value EQ, an infinitesimal perturbation is sufficient to drive the system out of equilibrium,
and leads to rotational motion of the particle with a velocity U ∝ ((E0/EQ)

2−1)1/2 [22, 26].
Particles driven by acoustic streaming is another example of this class and have been used
for separating particulate matter in a fluid [27].

1.1.2.2 Internally-driven

In certain particles, the symmetry-breaking propulsion is self-induced using internal mech-
anisms. They are completely self-driven in the sense that their direction and speed depend
on the forcing field that they produce by interacting with their immediate surrounding
medium. Their dynamics, being dependent only on the instantaneous properties of the
local surroundings, restricts the high degree of flexibility for controlled motion which was
available for particles driven by external fields.

Mechanically-driven particles which have moving parts that mimic biological swimmers are
difficult to manufacture in large numbers and are susceptible to fatigue failure. A popular
class of self-driven particles use a mechanism called autophoresis where their rigid surface
creates chemical/temperature gradients which provide the forcing. For example, silica (SiO2)
colloidal particle half-coated with platinum (Pt) decomposes hydrogen peroxide (H2O2) at
the platinum end, in its solution; the decreased local concentration of the fuel leads to
unbalanced phoretic forcing which drives the particle [28]. This mechanism shall form one
of the basis for the rest of the thesis and will be discussed in detail in the proceeding sections.
An additional indirect control (i.e. turning the activity ON or OFF or making the activity
sensitive to intensity of light) can be achieved by making the surface activity of particle
light-sensitive [12].

1.1.3 Why do we need to understand such systems?

Each active matter system is unique with system-specific dynamics prescribed by the self-
propulsion characteristics and their complex coupled interactions, both among themselves
and with the surrounding medium. The major goal of active matter research is to bring
all of these under a common umbrella; this field of research is still quite nascent and many
new discoveries are still underway [18]. A proper mathematical and physical foundation for
theory of active matter would not only help one to understand and predict the clustering
and pattern formation dynamics of non-living systems such as vibrated granular media,
self-propelling colloids etc.., but also allow one to distinguish quantitatively, the influence of
psychology, biology and physics in the collective behaviour of living active systems. From
a biological perspective, the knowledge of the interactions between the various elements of
active matter systems such as cells, microtubules, bacteria, algae etc.. would provide an
understanding of their growth and organization [29, 30]. Moreover, it provides information
regarding their response to environmental stimuli such as external forces. For example,
aggregation of biofilaments in cytoskeleton due to influence of motor proteins, growth of
human melanocyte cells and their nematic ordering [31] etc..

One of the most prominent engineering application is the use of the self-propelled motion of
the constituent elements for controlled transport and for doing work at micron scales. These
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active colloids/ catalytic nanomotors have immense potential for targeted drug delivery
and therapeutics [32, 18]. They have also been used for operating microscopic mechanical
systems such as pumps and ratcheted gears. Some specific examples of their application are
described in Section 1.4.3.

Thus, we see that active matter systems show rich dynamics which can be tapped for
many potential scientific and engineering applications. Our focus will be on modelling
the dynamics of synthetic swimmers; modeling such non-equilibrium systems can become
complex with multitude of coupled interactions. However, we shall distill the physics to
simple linear models to explain the phenomena. In the coming sections we shall summarize
the research on one class of synthetic swimmers that move using forcing from gradients of
an external field.

1.2 Motion through surface tension gradients

When a liquid interface is subject to surface tension (γ) gradients, the interface deforms due
to the imbalance of forces at the interface. This is the cause for climbing of liquid up a glass
of wine and subsequent formation of classical ”tears” as the liquid slides down [33]. When
the interface is of finite size, such as that of a droplet in emulsions, the droplets can achieve
persistent motion because the interface creates non-zero surface forces [34, 35]. Being in a
state of non-equilibrium, they form clusters in ordered hexagonal lattice arrangement [36]

If a spherical droplet drifts with a velocity U in a fluid medium of the same viscosity
(η), balance between viscous dissipation and the work done by surface tension gradients
gives U ∝ ∆γ/η. Here ∆γ is the average variation of surface tension around the drop.
In experiments, the viscosity of fluid generally considered is η ∼ 10−3. This shows that
even a small surface tension gradient ∼ 10−9 N/m2 is sufficient for motion with velocities
U ∼ 1 µm/s. Typically, velocities of tens of micro-meters a second is common [37].

For surfactant adsorption at the interface under thermodynamic equilibrium conditions, the
drift velocity of the droplet can be eventually expressed as [34, 33]

Um =
−akT
3η̄ + 2η

(
dγ

dC∞

)
T

∇C∞ (1.1)

where a is the drop size, η̄ and η are the viscosities of fluid within and outside the drop
respectively. Note that the direction of propulsion depends on the sign of dγ/dC. Generallly,
the presence of a surfactant reduces the local surface tension of the drop i.e. dγ/dC is
negative. Thus, by varying the surfactant concentration in the surrounding fluid, a drop
is forced towards a region of higher concentration of surfactant and in doing so, it lowers
its interfacial energy [38]. Note that the drift velocity is proportional to the size of the
droplet. Marangoni-driven motion has recently gained much attention due to advancements
in bio-compatible self-propelling droplets which undergo chemical reaction at the interface
to produce the surfactant gradients needed for propulsion.

In Eq. (1.1), when η̄ → ∞, i.e. the case where the drop is a solid, the drift velocity predicted
by equation (1.1) goes to zero, which is a result of the no-slip boundary condition acting
on a solid interface subject to internal forcing. However, experiments show that even solid
particles undergo drift due to external concentration gradients [39, 40]. But how can this
phenomenon be explained? This is what we shall seek to understand in the subsequent
sections.
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1.3 Phoretic drift of particles

In the current scenario, we try to understand the migratory behaviour of small solid colloidal
particles in the presence of external ionic as well as non-ionic compounds. Through only
a logical treatment of the problem in section 1.1, it was argued that a thermodynamic
forcing could be initiated on a body by any non-equilibrium flux. Thus, by this argument,
gradients of a given field could theoretically propel a solid body. The currently accepted
model which explains the dynamics was first introduced by Derjaguin et. al [41, 40]. They
considered the interface of the particle to be diffuse, within which osmotic flows are induced
due to local gradients in thermodynamic variables such as concentration / temperature field.
This mechanism was later termed as phoresis - the Greek word for ”bearing” or the act of
migrating from one place to another by means of an external agent. By considering only
linear phenomenon of interaction of the external field Y∞, all phoretic effects are seen to
induce a surface velocity,

ũ = M ∇Y∞ (1.2)

where M is termed as the phoretic mobility which is a surface property that determines
the behaviour of interaction between the driving field and the surface (also known as the
electrokinetic potential or ’Zeta potential’ of the surface in case of electrophoresis). It is to
be noted that even though this slip velocity in equation (1.2) resembles the Marangoni slip in
equation (1.1), it is however starkly different; a Marangoni-driven motion is characterized by
a continuous velocity and discontinuous stress across the interface while the phoretic motion
exhibits discontinuity in both surface stresses and velocity at the scale of the particle, but
are both continuous at the scale of the thickness of the diffuse layer.

Figure 1.2: Osmotic flow within a diffuse interface during electrophoresis. The velocity
field appears discontinuous at the scale of the particle with an effective slip velocity driving
the particle (left). However, in the inner region (within diffuse interface) the flow exhibits
boundary layer behaviour (right). Figure reproduced from [40]

Phoretic phenomenon is relatively rare in nature (compared to other non-equilibrium ther-
modynamic processes such as diffusion), but nonetheless present at microscopic scales. Cer-
tain bacteria Dictyostelium Discoidium exhibit chemotactic behaviour along with phoretic
drift [42]. Even enzymes such as catalase shows chemotatic behaviour through direct in-
teraction of its surface to gradients in external chemical field (here, hydrogen peroxide)
[43, 44]. In some cases, these natural ”motors” have been integrated with microfabricated
environment for controlled transport. For example, motor proteins such as Kensin transport
vesicles along micro-tubules (at speeds of O(1)µm/s) have been implemented in controlled
pick-up of cargo along artificial rails [45]. These cases inspire as well as emphasize the need
for creation of synthetic self-propelling materials that can be tuned and manufactured for
the appropriate task.

Over the last decade or more, experimentalists have taken the aid of the above proposed
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models for phoretic propulsion mechanism to advance our ability to design and manufacture
colloidal particles having controlled propulsion and on-demand transport [20]. Phoretic
mechanism is turning out to be one of the leading potential candidates for achieving this
and hence, has huge implications in therapeutics such as targeted drug delivery, chemical
sensing, cellular separation etc...[18]

1.3.1 Diffusiophoresis

The motion of rigid colloidal particles in a solution containing a concentration gradient
of some arbitrary solute is termed as diffusiophoresis [40]. The particle may drift either
towards or away from higher concentration depending on how its surface interacts with
the ionic/ non-ionic solute molecules. The attractive Vander Waals forces compete with
repulsive steric effects to decide whether the particle moves towards the higher or lower
concentration [40].

1.3.1.1 General mechanism within the double-layer

As mentioned, to explain the phoretic behaviour, the idea of a diffuse interface for the
colloid is maintained here; the flow features within this layer determines the macroscopic
flow around the particle. Derjaguin et. al. argued that the diffusiophoretic effect is a result
of differential hydrostatic pressure (exerted by the solute molecules on the surface) acting
tangentially along the solid surface within this interaction layer [41]. This results in an
osmotic flow within the layer. The interaction of the solute with the solid surface is through
i) excluded volume effect: where the solute occupies a finite volume and displaces the fluid
near the interface ii) Van der Waal’s forces and, iii) Dipole interactions (in the case of ionic
solute molecules). Thus, the interface effectively couples fluid mechanics and mass transfer.
This interaction is defined by an interaction potential, Φ. The force exerted on the colloid
due to absorption/ emission of solute on/from the surface is then, F = −C ∇Φ, where C
is the concentration of solute at the interface. Emission of solute occurs when Φ > 0 which
creates a fluid flow towards higher concentration of solute thereby creating a motion of the
particle to a lower concentration. Diffusiophoretic effect thus also has two different scales
of analysis: The flow within the interaction layer and, the flow created in the macroscopic
scale due to the interactions in the double-layer. The solute concentration within this layer
follows the steady-state diffusion equation

∇ · j = 0 where, the flux, j = −D
(
∇C +

C ∇Φ

kT

)
(1.3)

The thickness of the double-layer is considered to be extremely small compared to the size of
the particle δ/a≪ 1. Thus, one can think of using results of boundary layer theory within
this layer. The flow is thus considered to be parallel to the surface, but variable along y (see
figure 1.2). Note that even though the thickness is of O(10)Å, a continuum model is used to
understand the physical phenomenon within this double-layer. Additionally, the following
assumptions are also made for the analysis: (i) the solute-solute interactions are negligible.
This assumption however has to be modified in the case of high solute concentrations near
the interface (ii) C(x) varies slowly compared to the phoretic forcing F (x).(iii) There is
no kinetic barrier to absorption/ desorption of solute on the surface. (iv) There are no
polarization effects i.e. the interaction double-layer is so thin that it cannot accumulate any
non-zero flux of solute. This is expressed mathematically as

Dn ·
(
∇C +

C ∇Φ

kT

)⏐⏐⏐⏐
r=a

= 0, C

⏐⏐⏐⏐
r→∞

= C∞ (1.4)
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The flow field within this thin double-layer is dominated by viscous effects and hence, to
compute the velocity field within, one can use the Stokes equations

−∇p+ η∇2u− C ∇Φ = 0, ∇ · u = 0 (1.5)

with the no-slip boundary condition at the solid surface,

u

⏐⏐⏐⏐
r=a

= 0, and, u

⏐⏐⏐⏐
r→∞

= ũ (1.6)

It has been shown that the “slip” velocity formed at the boundary of the double-layer is
proportional to the local gradient of solute concentration along the surface [46, 41, 47],

ũ(x) = M
(
∂C(x)

∂x

)
(1.7)

where, as mentioned, M is the phoretic mobility, given by

M =
−kT
η

∫ ∞

0
(e−Φ(y)/kT − 1)y dy (1.8)

The above expression was derived using equilibrium thermodynamic relations of solute
molecules within the double-layer [40]. The mobility can be either positive or negative
depending on how the solute interacts with the solid. It is however not a directly measur-
able parameter from experiments as it requires detailed knowledge of the surface property
Φ(y). Molecular models have been developed to determine M in certain special cases such
as when the solid surface interacts with solute molecules that have a dipole moment, or the
case if we assume rigid solute molecule having steric exclusion [40].

1.3.1.2 Macroscopic flow

The inner region being extremely small behaves as a region where an effective slip velocity
is formed which propels the particle. However, within the inner region, the velocity field is
continuous but can be variable and satisfying the no-slip boundary condition on the solid.
The velocity thus appears discontinuous at the scale of the size of the particle.

Consider the colloid placed in an external concentration field C∞(x). The solute molecules
are assumed to diffuse (without advection), leading to the Laplace equation

∇ · j = 0 =⇒ −D∇2C∞ = 0 (1.9)

where, D is the diffusvity of the solute in the fluid. The diffuse interface S+ extends till
r = a. The interface, being thin (δ/a≪ 1), does not allow any flux into the surface, so that

n · ∇C∞

⏐⏐⏐⏐
r=a

= 0 (1.10)

One can additionally assume the interface to be flat in the scale of δ. At this scale, the
velocity and stresses appear discontinuous [40]. Thus, the interface creates an effective slip
velocity on the surface of the colloidal particle(from equation 1.7)

u

⏐⏐⏐⏐
r=a

(= ũ) = M ∇||C∞

⏐⏐⏐⏐
r=a

(1.11)

This slip velocity to the propulsion of the particle. Being in the low Reynolds number
regime, the flow field (in the reference frame of the particle) created by the particle obeys
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the Stokes equations

∇2u = ∇p and ∇ · u = 0 with, u

⏐⏐⏐⏐
r→∞

= −Uself −Ωself × r (1.12)

Additionally, the colloidal particle (within the diffuse interface S+) is both force- and torque-
free. This is because the force exerted by the solute gradients is balanced by the drag created
by the fluid on the surface of the particle.∫

S+

σ · n = 0,

∫
S+

x× (σ · n) = 0 (1.13)

The propulsion velocity of the colloid in an external concentration gradient was provided
by Smoluchowski in 1921 [40]. For uniform surface mobility,

Ud = M ∇C∞

⏐⏐⏐⏐
r=0

, Ωd = 0 (1.14)

The detailed derivation of this expression is provided in the next chapter. Note that for a
given colloid in a solute gradient, the propulsion velocity depends only on the gradient at
the center of the particle; it is independent of the shape or the size of the colloid! It needs
to be mentioned here that the surface mobility (and hence the slip velocity) is proportional
to the thickness of double-layer (δ). When the particles have variable surface mobility, the
propulsion velocity is given by [40]

Ud =

[
⟨M⟩I− 1

2
⟨M(3nn− I)⟩

]
· ∇C∞

⏐⏐⏐⏐
r=0

and, Ωd =
9

4a
⟨Mn⟩ × ∇C∞

⏐⏐⏐⏐
r=0

(1.15)

When the concentration gradients are uniform, the velocity field created by a particle of
uniform mobility is potential flow, decaying as O(r−3) [41, 48, 49]. However, when either
the gradients are not uniform or if the particle has variable mobility, the flow field created by
the particles decay as O(r−2). Both these fields decay faster that sedimenting particles. By
balancing the surface interaction versus the viscous diffusion of the solute, one can determine
the characteristic velocity scale as U∗ = kTδ2c∗/ηa, where c∗ is the characteristic scale for
the concentration field, which depends on the surface activity. If the surface emits a flux at
a rate A, then c∗ = Aa/D. Note that for a phoretic particle having constant rate of flux
at the surface, the characteristic velocity U∗ = kTδ2A/ηD is thus independent of the size
of the particle, but depends on the size of the interaction layer δ. However, for a two-stage
reaction model, the diffusiophoretic velocity is observed to decay with size of the particle
(for large particles), in accordance with experimental observations [50]. In Marangoni flows
we have seen the propulsion velocity is proportional to the size of the particle a (see equation
(1.1)). Thus, since δ ≪ a, one can conclude that diffusiophoretic drift velocities are marginal
compared to marangoni-driven drift.

1.3.1.3 Diffusiophoresis in electrolyte solutions

Consider an uncharged colloidal particle placed in an electrolyte solution. The surface of
the neutral colloid undergoes charge separation (and becomes either positvely or negatively
charged) with a cloud of counterions outside which balance the total surface charge. The
thickness of the double-layer (ion cloud) in this case is known apriori (known as ”Debye
screening length”) [49, 40]. In a non-uniform electrolyte solution, there are two mechanisms
coming into play within the double-layer that propel the charged colloidal particle: (i) the
osmotic pressure generated by solute molecules (as in the case of non-electrolyte solute).
Both species of solute - the coion and couterion - contribute to propulsion (ii) Force from
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an electric field that balances a diffusion current created by charge separation arising from
difference in diffusivities of the coion and the counterion in the electrolyte solution [51].
This field creates an electrophoretic propulsive behaviour. For an electrolyte solution, the
propulsion velocity,

Ud ∝ ∇ lnC∞

⏐⏐⏐⏐
r=0

(1.16)

1.3.2 Electrophoresis

Early experiments have observed the phenomenon of movement of ionic solute in the presence
of a charged interfaces [49]; some examples include motion of rubber latex particles in
electrolyte gradients [52, 53]. The charge on the colloid interface is balanced by counter-ion
cloud around it. This cloud is drifted to one direction due to the external electric field,
creating more negative charge on one side of the colloid compared to the other, giving rise
to spontaneous motion with velocity U = εζ/4πηE, where ϵ is the dielectric constant of the
particle, ζ is the zeta potential and E is the strength of the electric field [48]. Thus the diffuse
interface of the colloid actively contributes to structuring the macroscopic flow around it.
The interface is of an extremely small thickness within which the stresses and velocity are
continuous. Thickness of this region (δ) is much smaller than size of the particle, a (i.e.
δ/a≪ 1). Typically, in experiments, the measured double-layer thickness is δ ∼ O(10−9)m
for a particle of size O(10−6)m [49]. The colloid may have localized charge separation, but
it does not have any net positive or negative charge. Any stresses generated on the surface
of the particle from the interaction of electric field with the local surface charge is balanced
by the drag force created by the motion of the particle in surrounding fluid. It is thus
interesting to note that unlike sedimentation where the flow field around the sedimenting
particle (due to external body force acting on it by the gravitational field) decays as O(r−1),
the flow field around a particle moving due to an external electric field decays much more
rapidly as O(r−3) due to absence of any such body forces.

1.3.3 Thermophoresis

Themophoresis is the motion of solid particles in external temperature gradients. This is
similar to the phenomenon of Soret effect which is the thermal diffusion of fluid mixtures
in temperature gradients. Similar to other phoretic mechanisms, a direct microscopic in-
teraction between colloid and surrounding fluid is required to give rise to particle motion;
the mechanism of propulsion was proposed using the diffuse interface model by Derjaguin
et.al [41]. However compared to electrophoresis and diffusiophoresis, thermophoresis has
not gained as much popularity because of lack of flexibility and predictability in their dy-
namics. The propulsion velocity depends on the size of the particle and the solvation forces
due to the surrounding medium. Additionally, the effective mobility in thermophoresis is
found to be sensitive to the temperature; at high temperatures, the propulsion even reverses
direction! [54]. Nonetheless, knowledge of this effect is needed while considering electro-/
diffusiophoretic propulsion at high light intensities. Since we are focusing mainly on diffu-
siophoretic effects, the reader may consult the review article on thermophoresis in colloidal
suspensions by Piazza et. al [5] for an extensive review.

1.3.4 Early observations and applications of phoretic drift

In natural and industrial processes where significant gradients in concentration of solute are
formed, especially those involving boundary layer phenomena, the diffusiophoretic effects
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are expected to play important role. In natural processes, the migration of bacterial colonies
have been attributed to electrophoretic effects [49, 55]. The effect is also fairly common in
paint coating processes and in porous membrane flows. One such example is the case of
manufacture of gloves and other rubberized clothing from latex using coercive dipping/ ionic
deposition process [53, 40, 49]. In coating of carbon steel rod, the iron from the surface oxides
to form ionic solute that diffuses from the surface of the rod into the solution. This creates
migration of the latex particles on to the surface of the rod due to induced electric field as
well as diffusiophoretic effects [49]. This has lead to detailed experimental studies of both
electrophoretic and diffusiophoretic systems which were focused on measuring the diffusion
potential [39, 53], phoretic mobiliteis [39] as well as analysing the collective behaviour of
colloidal particles due to these effects [49, 40]. Over the past decade, the mechanism has
been heavily applied for controlled transport of colloids and droplets [56, 19].

1.4 Autophoretic self-propulsion

As we have seen in the previous section, a phoretic particle undergoes drift in external
gradients of either a scalar field such as concentration or temperature, or vector field like
electric or magnetic fields. An active phoretic particle has the additional ability to generate
their own fields through surface mediated processes; for example, catalytic colloids are a
class of active particles that promote chemical reaction at their surface which produces and
diffuses a solute around the particle. Moreover, if the colloid is appropriately designed so as
to create its own surface field gradients, then it can achieve propulsion through self-induced
phoretic forcing. Such self-propelling particles are termed as being autophoretic. A common
example, is the half coated SiO2 − Pt Janus colloid which propels in self-generated gradients
in concentration of hydrogen peroxide [28]. As the present thesis will be on understanding
the collective dynamics of such autophoretic colloids (that employ diffusiophoresis in par-
ticular), a theoretical foundation for physics of self-propulsion of individual particles is first
required, which shall be detailed in this section.

The solute concentration field created by an active phoretic particle obeys the advection-
diffusion equation,

∂c

∂t
= D ∇2c− u · ∇c with, c(r → ∞) = 0, n · ∇c|S = −A (1.17)

Here, A is the is the solute flux consumed/generated across the surface of the particle, termed
as the phoretic activity. Note that the reaction considered here is of constant rate-of-flux.
However, more complicated situation involving first-order kinetics as well as multiple solute
can be additionally incorporated [57]. In the purely diffusive limit, the solute concentration
field obeys the steady state diffusion equation,

∇2c = 0 with, c(r → ∞) = 0, D n · ∇c|S = −A (1.18)

Since advection of the solute by the fluid is neglected here, the solute dynamics is decoupled
from the fluid dynamics problem which can then be obtained in a second step using the
dimensionless Stokes flow equations.

∇2u = ∇p, and ∇ · u = 0 (1.19)

with boundary conditions in the laboratory frame of reference

u|S = Uself +Ωself × x+ ũ, ũ = M(I− nn) · ∇c, and u(r → ∞) → 0 (1.20)
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x is the position of the center of the particle, and Uself and Ωself are its translation and
rotation velocities. The latter quantities are determined uniquely by imposing that each
particle remains force- and torque-free

∀j,
∫
Sj

σ · ndS =

∫
Sj

(r−Rj)× (σ · n) dS = 0, (1.21)

With these boundary conditions for a phoretic particle, the self-propulsion velocity can be
shown to be dependent only on the surface properties and diffusivity of solute; for a particle
with uniform mobility M and only half of the surface active A, the self-propulsion velocity
can be computed to be [58],

Uself = AM/4D (1.22)

1.4.1 Symmetry-breaking propulsion mechanisms

The generation of surface slip velocity is essential for self-propulsion of the particle. Since
the slip velocity is linearly dependent on the gradient of the local surface concentration field,
a phoretic particle having homogeneous surface activity (and hence produces homogeneous
surface concentration field) does not self-propel. Additionally, since the propulsion velocity
depends on the surface average of the slip velocity, a symmetrically distributed field does
not induce propulsion either, unless the phoretic forcing symmetry is broken by variable
surface mobility. Taking these into consideration, some of the common mechanisms used to
design self-propelling autophoretic particles are detailed below.

1.4.1.1 Janus and dimer colloids

The most straightforward method to create surface concentration gradients is to spatially
vary the surface activity A, and the simplest way to do so is to have an axisymmetric
spherical particle having two distinct surface properties - known as the Janus particle - as
shown in figure 1.3. In experiments, Janus swimmers are usually created by using passive
silica bead coated with a reactive metallic cap on one end [58].

Figure 1.3: a) SEM image of SiO2 −Au Janus phoretic particle. : adapted from [59] b) The
concentration field created by the active surface is determined using diffusion equation for
a 1/2 active Janus particle whose polarity is given by t (white arrow): adapted from [57].

Using the governing equations for solute and fluid dynamics (equations (1.18),(1.20)),
the characteristic propulsion velocity of diffusiophoretic swimmers can be obtained as
U ∼ AM/D. For a true Janus particle (hemispherical surface coverage) with surface ac-
tivities A1 and A2, and mobilities M1 and M2 respectively, the propulsion velocity is
computed to be U self = (A1 − A2)(M1 + M2)/8D [58]. The interesting feature of such a
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propulsion mechanism is thus that the characteristic velocity is independent of the size of
the particle, and depends only on the surface patterning. For a particle with a uniform
surface mobility, the half-coated Janus particle shows the highest self-propulsion velocity
with U self = AM/4D; when solute advective effects are significant, slightly more surface
coverage is favoured for higher velocities [57]. Because of its relative ease to manufacture
and broader control of phoretic properties by tuning activity and mobility, Janus colloids are
considered as prime choice for testing dynamics in experiments. Additional to their flexibil-
ity to tune their swimming properties, their axisymmetric nature makes it more tractable
for theoretical and numerical computations.

One can also consider the situation where the (non-identical) particles are axisymmetric,
but non-spherical; an example is phoretic dimers. Dimers are combinations of two spheri-
cal particles with different surface activity (and/or mobility) held together either through
phoretic or short-range attractive forces [60]. The difference of near-field structuring of
solute concentration as well as flow field from that of Janus particles can create dramatic
differences in self-propulsion characteristics [61, 62].

1.4.1.2 Geometric asymmetry

An isotropic distribution of concentration field around a spherical particle having homoge-
neous surface activity can be modified by distorting the particle geometrically instead of
varying surface activity or mobility. The effect of geometric asymmetry can be tested by
considering a simple two-sphere system shown in figure 1.4. Both the spheres have uniform
surface activity and mobility and are connected by a thin inextensible rod that holds them
together.

Figure 1.4: Figure on left shows spheres, R1 = 1 and R2 = 0.5 at a contact distance dc = 0.5.
The propulsion velocity for the combination R2/R1 = 0.5 (in dark blue) and R2/R1 = 0.75
in red. Adapted from Michelin & Lauga, EPL, 2015 [61]

The propulsion velocity of such a system at large separation distances, d of the spheres is
[63]

U self =
AMa1a2(a2 − a1)

Dd2(a1 + a2)
(1.23)

Thus a non-zero propulsion velocity can be achieved as long as the geometrical symmetry
is broken (i.e. a2 ̸= a1). The maximum propulsion velocity was found to be near a2/a1 ≈
0.3−0.4 when the spheres are separated by a unit contact distance. Moreover, note that the
characteristic propulsion velocity in equation (1.23) is less than that of Janus particle. As a
generalisation, the propulsion velocity of a deformed active particle has also been computed
[61, 64].
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1.4.1.3 Instability from advection of solute

This is a special case where self-propulsion of the particle is achieved not by introducing
non-uniform surface properties, but by the non-linear advection properties of the solute. As
the size of the particle increases, the flow-field can create advective effects on the solute. The
competition of advection and diffusion is given by the Péclet number, Pe = AMa/D2. At
large Péclet numbers, the non-linear coupling between solute concentration and advection
induces an instability in the swimming mode that creates a fore-aft asymmetry in the solute
distribution, and hence induces phoretic propulsive force as shown in figure 1.5.

Figure 1.5: a) A spontaneously swimming isotropic active drop [36]. b)Steady-state propul-
sion velocities of isotropic phoretic particle at various Péclet numbers. The maximum steady
swimming velocity is acheived when Pe = 9. Figure is from Michelin et.al., Phys. Fluids,
2013 [65].

The particle exhibiting this instability is shown to have a far-field flow resembling a pusher
swimmer. This is a universal mechanism of self-propulsion and can be used to explain the
dynamics of self-propelling drops [36, 66, 67].

These are some of the mechanisms that have been commonly employed to design and develop
active colloids both for understanding the dynamics of active systems but also to open new
avenues for engineering applications.

1.4.2 Experiments in autophoretic colloids

The recent advancements in the precision and control over large-scale manufacturing of
microscopic phoretic colloids have attracted the attention of many engineers in designing
and developing artificial swimmers with characteristics suitable for a particular task [18, 32].
Together with improvements in tools for their visualisation, experimental physicists have
started looking into the detailed dynamics of these self-propelling particles in recent years.
Some of the active colloid systems have been seen to be more reliable in providing good
control of speed and directionality, and relatively better robustness in performance and
are slowly becoming a standard test subject for experiments. Some of the commonly used
phoretic systems are described below.

One of the early developments in autophoretic particle was on bimetallic cylinders in acid
solutions. Platinum-gold (Pt−Au) bimetallic rods in hydrogen peroxide (H2O2) exhibit
propulsion due to bipolar electrochemical reactions that induces an electric field within
the rod which is responsible for the propulsive force (see figure 1.6a). The concentration
gradients thus induce an electrophoretic effect on the rod which propels them at high speeds
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Figure 1.6: a) Trajectories of a bimetallic platinum-gold (Pt−Au) rod exhibits direction
motion in gradients of hydrogen peroxide (H2O2) in its solution through electrophoresis
[68]. b) An example (which propels even with very low concentration of fuel ∼ 10−5 %)
is silica-iridium (SiO2 − Ir) Janus particles in hydrazine (N2H4) solution. The particle
swims with speeds of approximately 20 body lengths per second [69]. c) Non-electrolyte
self-diffusiophoresis is silica-platinum (SiO2 − Pt) in H2O2 solution. The propulsive speed
depends on the amount of fuel (H2O2) in the solution [28].

of around 10 body lengths/sec [68]. An example of non-electrolyte self-diffusiophoresis is
polystyrene (PS− Pt) in H2O2 solution (see figure 1.6c). The platinum end catalyses the
chemical reaction that decomposes hydrogen peroxide at the surface of the particle; the
reduced availability of the fuel at this end creates local concentration gradients which induces
diffusiophoretic propulsion. Speeds upto a few diameters are achieved [19]. Electrolyte
diffusiophoresis can be observed in SiO2 − TiO2 Janus particles immersed in H2O2 solution
when the particles are illuminated with UV light [70]. The above experiments have partial
electrophoretic effects acting on the particle; a purely diffusiophoretic propulsion has only
been observed on polymerization driven self-propulsion [71].

The above mentioned setups consider colloids which are activated by a light source. A
special case of a thermally activated diffusiophoretic system is when one uses paramagnetic
SiO2 −Au in a binary mixture of water and 2,6-lutidine [72]. A homogeneous illumination
will locally heat the metallic half beyond the critical temperature causing local de-mixing.
This causes the water molecules to approach the hydrophilic (gold) cap. The mechanism
of propulsion is hence not due to thermophoresis but due to the differential adsorption of
water (or lutidine) and water-lutidine mixture which creates a diffusiophoretic forcing in
the diffuse interface of the particle [73]. The advantage of using the binary-mixture setup
is the need for only low intensities of light to propel the particle compared to that needed
for thermophoresis. Another advantage of such a system is that the binary-mixture does
not promote long-range chemical interactions between the particles thus, allowing one to
experimentally observe clustering dynamics resulting purely from mobility of the particles.
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Figure 1.7: a) Janus particle and their collective can be used for transport of passive colloids
such as silica [77]. b,d) Electrostatic interaction between Pt−Au nanomotors and charged
polystyrene colloids have been used to capture the passive colloids and, transport and deliver
it at a desired location [78, 68]. Such model swimmers have been used to attach themselves
to passive particles and transport cargo in a desired direction in a highly controlled fashion
[79] c) Swimming motion of artificial flagella mimicking spermatozoa is driven by an external
magnetic field and is used to transport cargo.

Additionally one can tune the approach length of these particles to control the particles
through complex environments [72].

1.4.3 Some applications

From a fundamental physical perspective, one of the primary applications for which such
phoretic systems have shown application for, is controlled and directed transport. This
property is much sought-after because of potential applications in therapeutic, and medicine.
Self-propelled particles such as Janus colloids create chemical and hydrodynamic fields as
they swim through the fluid. These fields (which are characteristic signature of the particle)
introduce long-range interactions which can be used for gathering certain cargo. One such
example is that of diffusiophoretic Janus particles which couple with passive particles can be
used for combined transport. Attractive magnetic interactions of Pt−Ni−Au micromotor
with colloids having a ferromagnetic core have also been used for similar purpose. Externally
driven particles such as magnetic micro and nano-swimmers can be used to mimic the motion
of biological swimmers like bacteria and spermatozoa [74, 75, 76] (see figure 1.7c). Some
examples of internally and externally driven particles particles displaying cargo transport is
shown in figure 1.7.

In thermal equilibrium, the passive particles exert equal forces regardless of the geometry of
the system it is acting on. However, for active systems, a clear preference can be observed for
clustering in confined regions - known as ”ratchet effect” [56, 80, 11]. From a thermodynamic
perspective, the observation implies that the pressure does not satisfy the equation of state
and depends on the interaction of bacteria with the walls; the excess pressure in confined
region, which when left unbalanced can lead to propulsion (see figure 1.8). This thus shows
that at a macroscopic scale, the internal energy possessed by a collection of these active self-
propelling particles in suspensions can be channelled to perform a macroscopic operation
collectively.

Another potential field of application is in active sensing and directional delivery using
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Figure 1.8: a) swimming bacteria can be used to power a ratchet geared assembly [81]. b,c)
Active matter suspensions comprising of light-activated colloids have been used to create
self-assembling rotating micro-motors; the asymmetric diffusiophoretic interactions create
net rotation of the motors with angular velocity ∼ O(0.1) rpm [82, 83]. Such engineering
feats show potential for developing controlled machines in micron scales;

the property of artificial chemotaxis. Particles which are driven using internal mechanism
such as autophoresis cannot maintain their direction of propulsion for long time; being in
microscopic scales, they are subject to thermal noise in the background causing them to
have a Brownian motion which reduces control over their directed motion [28]. However,
one can create external gradients of the activating field to create a chemotactic behaviour
[77]: the particle reorients itself to align parallel or anti-parallel to the local concentration
gradient [84, 85]. The mechanism is independent for phoresis in that chemotaxis is due to
differential diffusivities of the particle in the external field; the diffusivities could either be
enhanced or suppressed depending on the concentration of solute. Even in the absence of
external fields, the self-generated fields by surrounding particles can behave as local sources
of chemotaxis. This chemotactic property can be used for sensing and calibrating external
fields. Such systems also naturally display a variety of pattern-forming dynamics such as
schooling, waves and oscillatory behaviour of particles [84, 86, 87].

Stationary autophoretic boundaries act as osmotic pump at microscopic scales [70]. The
concentration gradients along the active walls of the micron-size pipe, created either from
asymmetrical chemical patterning or from asymmetrical geometry, create the phoretic forc-
ing and hence, transport of the fluid. [63, 88].

1.5 Collective dynamics of active particles

Elements of active matter display self-organisation and collective behaviour. Understanding
the fundamental mechanism of interactions is insightful in predicting this collective dynam-
ics. From an engineering perspective, the self-organisation of active mater can be useful for
tuning active materials.

1.5.1 Clustering through short-range interactions

For systems in thermodynamic equilibrium, the steady state is independent of kinematic
parameters and the particles obey equilibrium statistics. However, active particles are far-
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from-equilibrium systems. Even in the absence of any long-range interactions, self-propelling
particles still form dense clusters. The non-equilibrium nature of the system can be shown
through the collective clustering of active particles near wedges (obstacle) [56, 89]. For
an isotropic processes, the steady-state density of a particulate system is inversely related
to the velocity at that point. When the system is in thermodynamic equilibrium, the ve-
locity is a random distribution that is independent of the position (depends only on the
system temperature). However, for self-propelled particles, which are out-of-equilibrium,
the short-range steric interactions between particles reduce their swimming velocity, which
hence increases their packing density. This feedback loop creates an instability that leads
to local clustering, known as motility-induced phase separation (MIPS). Numerical simula-
tions of system of passive particles driven by a mobile point force creates crystallization of
the particles into ordered hexagonal lattices [90]. Such enhanced cluster formation purely
because of the non-equilibrium nature of the system is seen commonly in dense biological
suspensions [91].

1.5.2 Collective dynamics through long-range interactions in phoretic sus-
pensions

There are two main long-range interactions arising in phoretic suspensions: (i) chemical
interactions between particles due to self-generated concentration field gradients in the bulk
fluid and (ii) the hydrodynamic flow field created due to motion from the concentration
field gradients. Thus, there is a dynamical coupling between the chemical and hydrody-
namic fields, and the motion of the particles. In this section we shall look at some of
the instances where the chemical and hydrodynamic interactions play a crucial role in the
collective behaviour of active phoretic systems.

1.5.2.1 Effect of chemical interactions

Particles align towards or away from external concentration gradients. If the interactions
are attractive in nature, clusters are formed even in dilute suspensions. This gives rise to
Attractive K-S type interactions exist when particles align with the external concentration
gradient regardless of its mobility. These clusters vary in shape and size over time through
constant dynamic interactions with other clusters, and is hence termed ’dynamic clustering’
[87, 92]. Multiple experiments have shown the existence of long-range chemical (as well
as hydrodynamic) interactions between particles in a phoretic suspension. Theurkauff et.al.
compared the density of a suspension of sedimenting Au− Pt Janus colloids when they were
active and inactive [93]. When inactive, the particles formed a monolayer at the bottom of
the setup; however, when active, they observed that the collective chemotactic attraction
between the particles formed clusters of intermediate densities, creating a less dense system
(gel-like state). The mean cluster size was observed to be proportional to the particle
velocity (more precisely, to the particle Péclet number) [94, 12, 93, 95].

The steady-state concentration field created by a point source of chemical that purely diffuses
into a fluid decays as ∼ 1/r (r being the radial distance from the point source). The
chemotactic drift velocity created by phoretic interaction with the gradient (and proportional
to it) is thus expected to create velocities ∼ 1/r2. Exhibited in nature by Dictyostelium cells
which aggregate using a positive feedback loop of chemical generation and chemo-attraction;
the clustering allows them to survive long periods of starvation.

A Janus particle when exposed to external field responds to both the self-generated and
the external gradients. By properly tuning the surface mobilities of the particle, a group
of Janus particles can attain collective polarity (against random background reorientations)
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Figure 1.9: Clustering due to long-range interactions between active colloids: a) Janus col-
loid attracts passive colloids. b) Anti-ferromagnetic hematite cubes are chemically activated
under blue-violet light. When embedded in silica colloidal particle, the colloids are observed
to form clusters in an ordered lattice [12] c) Thermophoretic colloids (silica) in in glycerol-
water mixture is sensitive to temperature gradients and are spontaneously are attracted [96]
d) Chemotactic Janus colloids form clusters thus reducing of sedimenting Janus colloids [93]
e) When gold particles are immersed in H2O2, addition of N2H4 causes coagulation of the
gold particles [97]. This is attributed to the decomposition of N2H4 due to surface catalysis
which generates the necessary electrolyte gradients for phoresis.

and hence, can be guided towards a prescribed direction using external field such a laser light
intensity [98]. Janus colloids cluster even with a packing fraction of 3 − 10% [86, 87, 92];
for particles that are not chemically active, phase separtion purely due to their motility
requires a packing fraction > 30% [99]. In a binary mixture of active and passive particles,
the properties of clusters formed depend on the difference in motility of the colloids and,
their number ratio; more fraction of faster particles promote jamming and clustering. These
clusters are themselves active and can self-propel [62].

Complex swarming behaviour of Janus colloids can be observed by appropriately tuning
their translational and rotational response to external gradients. To be more precise, these
two responses are governed by the parameters: their chemotactic alignment rate and their
surface mobility. These two parameters decide the particle Péclet number − a small value
creates a chemotactic collapse of the particles to a single cluster; large values create gas-
like dynamic clusters [87, 86]. Using phenomenological models, Liebchen et.al. [87] showed
that repulsive interactions can also form loose clusters, but additionally, they also display
a wide range of complex dynamic patterns such as travelling waves in random directions
which collapse into intermediate clusters. If additional considerations such as that of first-
order reaction kinetics are made, at high solute concentrations, multiple diffusion-driven
instabilities including formation of asters, microphase separation etc.. are formed [84].
Recently, the long-term dynamics and properties of such a system, generalized for reactant-
solute driven propulsion, was computed using generalized Taylor dispersion theory [85].
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1.5.2.2 Effect of hydrodynamic interactions

In biological systems, which generally constitutes living organisms immersed in water, the
fluid medium plays a crucial role in long-range transfer of information; the consequence
being that the microscopic interactions extend over the macroscopic scale, creating large
swirling flows (such as in ’bacterial turbulence’) in suspensions [100]. These interactions
are essential for the collective transport of microfilaments and tubules in cytoskeletons [31].
Microswimmers in suspensions interact with each other using long-range hydrodynamic
interactions. The hydrodynamic effect created by each swimmer decays at infinity and
hence has little influence in dilute suspensions. Thus, in dilute suspensions a gas-like state
is formed with no long-lived clusters [90]. However, for denser suspensions, hydrodynamic
interactions play a crucial role in creating polar positional as well as orientational ordering
[101, 90, 102]. Far-field interactions are not sufficient in this case to predict polar ordering
[101]. It is observed that spherical puller swimmers have polar order that display time
periodic aggregation and band formation [102, 103, 104]. Spherical pushers however do not
form such ordered state. For self-propelled rods which have considerably different near-field
dynamics, polar order emerges for pushers rods instead. Simha & Ramaswamy [105] showed
using mean-field theory that nematic alignment is always unstable in long wavelengths and
hence creates orientational disorder. This is evident in experiments of pusher bacteria [100].
Detailed calculations using slender body theory has elucidated the mechanism of interaction
[106].

Figure 1.10: Flow -field around each micro-swimmer induces long-range hydrodynamic in-
teractions which can create macro-scale coherent structures a) PIV of hydrodynamic field
created by a swimming Volvox [107]. b) PIV of flow signature of a swimming E.coli bac-
terium near a bottom boundary [79] c) Large-scale structures observed in B. subtilis bacterial
suspension [108]. d) Destabilisation of a line of pusher swimmers. [109] e) Simulations of
collective dynamics of polar disks which display different clustering densities based on their
hydrodynamic signature. [90] f) Destabilisation of a line of bottom-heavy pullers which form
band-like structures. [102]
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Yoshinaga et.al. [101] were able to identify the formation of gel-like states of suspensions of
squirmers by additionally taking into account lubrication effects for short-range interactions
between the squirming particles. Moreover, denser suspensions show formation of clusters
which form and breaks apart periodically [110]. Large-scale polar alignment of active parti-
cles arising from hydrodynamic and magnetic interactions can be observed, which can create
unstable fronts at large particle velocities [1, 22, 23]. It is observed that by modeling without
the influence of hydrodynamic interactions, active particles accumulate at the boundaries.
However, in agreement with experiments, by including hydrodynamic effects, some swim-
mers are shown to avoid/ attract towards obstacles and boundaries [72, 111, 79, 112].

1.6 Modeling the collective dynamics of phoretic particles

Emergence of collective motion is arises from the velocity-alignment interactions between
self-propelled point particles and its extensions [113, 114, 115]. Viscek model takes into
account of these aligning interactions with neighbouring particles by using an alignment
potential; the dynamics of a particle i is given by [113],

ṙi = Uipi (1.24)

θ̇i =
K

πR2
i

∑
j ̸=i

fij +
√

2Dr ξr(t) (1.25)

where the alignment interaction between the particles j and i within a circular region of
radius Ri around particle i is of strength Γ and whose behaviour is defined by the function
fij ; generally, in the absence of any prescribed physical mechanism of interaction between
the particles, the function is often chosen as fij = sin(θj − θi) [113]. In the continuum limit,
the Viscek interactions form the basis of what is known as the Toner and Tu model [114]. A
salient feature of this non-equilibrium dynamics is the spontaneous formation of large-scale
structures.

1.6.1 Phenomenological models

1. Active Brownian Particle (ABP) model: The ratio of angular coupling strength to the
Brownian realignment is given by K/8πa2Dr [116]. If this ratio is small the alignment
interactions between particles are negligible, one obtains the ABP model. It does not
take into account interactions with any external field (besides thermal noise).

ṙ(t) = Up+
√
2D ξt(t) (1.26)

θ̇(t) =
√

2Dr ξr(t) (1.27)

One may add an interactive potential gradient between the particles in equation (1.26):
for example, this can be a simple short-range steric repulsion between the particles
to prevent inter-particle overlap in simulations [117]. These repulsive interactions
surprisingly contributes positively to the clustering [118, 119, 120].

2. Active Attractive Alignment (AAA) model: The particles, in isolation, translate with
a velocity U in the direction p. In the presence of a background chemical field c(r)
created by the surrounding particles as well as due to the thermal noise (given by
the Gaussian white noise of strength ξ) in the system. The particles have aligning
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interactions with the local chemical gradients. The dynamics of the particles is thus
modeled using the following equations

ṙ(t) = Up+ βt∇c(r, t) +
√
2D ξt(t) (1.28)

θ̇(t) = βrp×∇c(r, t) +
√

2Dr ξr(t) (1.29)

where βt and βr are the translational and rotational response to the external field
respectively. The ABP model predicts short lived clusters whose size distribution
decays exponentially with size; using AAA model, cluster size is found to decrease
more slowly (algebraically) as seen in experiments [121, 122].

3. Phoretic Brownian Particle(PBP) model: Setting βr = 0 gives isotropic attraction
model. Setting the translational drift, βt = 0 in equation (1.28) gives the PBP model.
It has been used to simulate the variety of pattern-forming dynamics of a large number
of phoretic particles [87, 116]. However, this model does not predict chemotactic
clustering of particles in dilute suspensions, as seen in experiments [12, 93].

Phenomenological models however do not capture the exact physics of the problem of inter-
acting phoretic particles.

1.6.2 Physical models

One class of modelling approach builds from known physical principles relevant to the prob-
lem. For example, the fundamental solutions to Stokes equations form the basis for mod-
elling swimming and hydrodynamic interactions at low Reynolds numbers. For phoretic
problems, physical principles of hydrodynamics, solute diffusion as well as their coupled in-
teractions with the solid active body are used to model the complex dynamics of the system.
In the case of modelling the collective dynamics of self-propelling phoretic particles, there
are two possibilities based on the desired resolution of the dynamics: i) Discrete particle
models where the microscopic interactions between discrete phoretic particles are used to
study their dynamics ii) Continuum models where continuum models based on microscopic
interactions approximate the physics at a much larger scale .

Hydrodynamic interactions have received far less attention than chemical interactions even
though they can be significant in any cases. The simplest physical model that takes into ac-
count both the chemical and hydrodynamic interactions at the leading order is the far-field
model. The far-field chemical (phoretic) interaction between particles create drift velocity
that scales as ∼ 1/r2. For half-active Janus particle with uniform mobility, the leading
order flow-field is a potential dipole which creates a hydrodynamic drift velocity that scales
as ∼ 1/r3; this approximation may also be made for Janus particles with slight asymmetry
in surface activity or mobility. But under strong asymmetry, the stresslet flow-field ∼ 1/r2

cannot be neglected [122]. the propulsion velocity created by both the chemical and hydro-
dynamic fields scale as a2/d2 (a being the size of the particle and d being the separation
between their centers with, a ≪ d) [112, 123]. The far-field model invariably considers
only pairwise interactions between particles; nonetheless, they have shed light on our un-
derstanding of their dynamics in dilute suspensions. [124, 112, 125, 36, 85, 84, 126, 123].
More accurate models have been obtained by extending the the far-field model to include
higher-order terms [127], or by considering additional near-field interactions [128, 129]. In
dense suspensions, the distance between particles are less than their characteristic size; the
interactions between the particles are thus, in the near-field. This requires one to take into
account the sharp gradients of solute created by wedge effect. Lubrication theory must be
employed to study the hydrodynamic interactions [101, 130].
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Continuum modelling/ mean field theory approach do not consider point particles individ-
ually, rather by considering their dynamics averaged over all degrees of freedom i.e. it gives
a statistical approximation of the exact dynamics. This allows one to avoid computing
multi-body dynamics of large populations of particles in a system as they can effectively
be expressed in one or two statistical quantities; such reduction is nonetheless valuable
to compute the stability of phoretic suspensions. The computational power can be used
for computing long-term dynamics of the system. However, the continuum approximation
comes at the expense of loss of accuracy.

The focus of this thesis will be on studying the microscopic interactions and collective
dynamics at the particle scale using discrete particle models.

1.6.3 Numerical simulations

The nature of motion of active particles in a fluid is obtained by solving the relevant govern-
ing equations along with the boundary conditions that impose fluid-structure interactions.
In many situations, for example in systems where multiple particles are present, exact
analytical solutions do not exist. A detailed and accurate description of the dynamics of
particles can be determined by solving for the spatially and temporally discretized governing
equations using various numerical techniques.

Certain class of simulations take a bottom-up approach where the fluid is itself considered to
be composed of discrete fluid elements which are modelled using molecular dynamics. These
discrete algorithms have shown to recover N-S equations in the continuum limit. Lattice
Boltzmann Methods (LBM) is one such example where the fluid is discretized into a regular
lattice [131]. Fluid density within each lattice is simulated using streaming and collision
processes which are governed by Boltzmann equations. Mass and momentum of fluid are
conserved within each lattice. However, LBM does not inherently account for thermal
fluctuations. Multi-particle Collision Dynamics (MPCD) model, on the other hand, the fluid
molecules maintain continuous phase-space and velocity [132, 133]. Hence, MPCD exhibits
good numerical stability. The spatial domain of fluid is discretized into ”cells” within
which multi-particle collisions happen. Mass and momentum are conserved in each cell.
MPCD models account for thermal fluctuations. Both MPCD and LBM have been shown
to provide accurate description of the dynamics of self-propelling particles and polymer
chains in fluid suspensions. Although they capture even the molecular description of fluid
dynamics, MPCD and LBM are suitable for parallel computational architecture and require
large computational resources.

In the continuum limit, the fluid dynamics is governed by Navier-Stokes equations. A
common approach is to ”immerse” the discretized solid in a stationary discretized fluid do-
main and then use Finite Element or Finite Volume methods to solve the fluid-structure
interactions. This computational technique is called Immersed Boundary Methods (IBM)
[134, 135, 136]. In IBM, the body-conforming grid has adequate local resolution of the
boundary with minimum grid points. However, the grid sizes may vary for both fluid and
solid domain and alignment issues can arise which create inaccuracies; thus, IBM are not
suitable for complex geometries. IBM has been used to solve for problems involving fluid-
structure interactions at low as well as high Reynolds numbers. An attractive alternative
for phoretic problems is using Boundary Element Methods (BEM). BEM is based on the
boundary integral representations of Stokes (for hydrodynamic field) and Laplace equations
(for solute concentration field). The velocity and pressure fields (concentration field respec-
tively) at any point in the domain can be computed by distributing point forces (chemical
sources respectively) on the discretized surface of the solid body. By having the boundary
conditions prescribed on the surface of the body, one can avoid computations in the bulk;
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this is of major advantage for solving phoretic problems which have surface chemical and
hydrodynamic boundary conditions. BEM has been used to model low Reynolds number
hydrodynamics in suspensions of squirmers, cilia, phoretic colloids etc.. [129, 137, 17, 138].
These simulations are however computationally expensive and hence are performed on a few
particles.

An alternative to full numerical simulations, with lesser computational cost at the expense
of accuracy, is Stokesian dynamics (SD) modified for mobility problems [102, 139]. SD uses
a truncated multipolar expansion about the center of each particle in the boundary integral
representation of the flow field. All interactions corresponding to a particular multipole
between all particles (i.e. infinite reflections) are taken into account [140]. FCM considers the
particles to be point particles of regularised force multipoles [141, 23] and their propulsion
velocities are obtained by averaging the computed flow velocity within this ’blob’ domain.
In recent works, Singh et. al [13, 142] have developed framework to compute iterative
corrections to surface slip velocity arising from multi-body interactions of active particles.
Although the above mentioned methods incorporate multi-body interactions, they do not
derive solution systematically to a desired order of accuracy.

1.7 Conclusions

Studies of active matter systems have focused on two important aspects viz. to study the
physical dynamics of out-of-equilibrium systems and, to design and implement the active
elements as agents for controlled transport which has potential for engineering and biomed-
ical applications. Phoretic Janus particles are a classic example of active colloids that use
phoresis - transport through self-generated chemical gradients - for controlled transport.
In a system containing multiple phoretic particles, the particles interact via chemical and
hydrodynamic fields created by each. We have seen in this chapter that both chemical and
hydrodynamic fields can have significant influenceon the collective dynamics of the particles.

The current physical modelling approach for dynamics of phoretic particles in suspensions
consider only the far-field interactions between the particles. This approach is valid only for
dilute suspensions (generally with particle densities < 0.5%) However in denser suspensions,
the higher-order interactions can become significant. Using numerical methods in such
situations can provide accurate solutions to the dynamics, however are computationally
intensive. What we search for is a theoretical modelling approach which can be used to
understand the multi-body dynamics of phoretic particles to a degree of accuracy beyond
the far-field models. Thus, such a model would take into account the and could predict or
explain some new physics, which are not captured by simply considering the leading-order
interactions. In the subsequent chapters we shall discuss the theoretical foundations that
are used to develop this method for phoretic problems.

In Chapter 2, a fluid mechanics perspective of swimming at microscopic scales is described.
Some commonly used mathematical tools for determining the flow velocities and stresses in
flows at low Reynolds numbers will be outlined. This gives insight into developing physical
modeling swimming of phoretic particles. We shall also detail the mathematical foundations
of the Boundary Integral formulation, which forms the backbone of a powerful numerical
technique for simulations of phoretic problems known as Boundary Element Methods (BEM).
In Chapter 3 we develop a generalized framework based on the classical Method of reflec-
tions(MoR) for modeling both the chemical and hydrodynamic interactions between Janus
phoretic colloids in their suspensions and, subsequently determine the multi-body dynam-
ics of the particles. The dynamics of a system comprising of isotropic phoretic particles is
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determined in Chapter 4. Full numerical simulations using BEM show that the individually-
non-swimming particles break each others’ concentration field symmetry to spontaneously
form clusters which can propel. We characterize the properties of this newly identified route
of self-propulsion arising from clustering. A summary as well as conclusions of this thesis are
drawn out in Chapter 5. An outlook into the possible applications of the MoR framework
developed here for modeling dynamics of phoretic particles is also provided.

26



2
Modeling transport at

microscopic scales

The resistance to motion for micro-swimmers is predominantly due to viscosity of the fluid.
In this chapter we shall describe the fundamental fluid mechanics principles governing mo-
tion in microscopic scales and how micro-swimmers, both organic and synthetic, achieve self-
propulsion. We shall detail useful mathematical tools and techniques which are commonly
used to evaluate the governing equations of motion as well as the hydrodynamic signature
of the moving body. Boundary integral formulation for the Stokes and Laplace equations are
presented which allows one to compute the stress and velocity fields (solute concentration
respectively) on the surface without evaluating the fields in the bulk.

Figure: Hydrodynamic flow field around a swimming E.coli bacterium predicted from theo-
retical models show good agreement with measurements made using PIV. Source: Drescher
et. al. 2011 [123]
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Active fluids are fluid suspensions containing microscopic self-propelled bodies. They form a
majority of living organisms such as bacterial suspensions, cells, spermatozoa, biofilaments in
cytoskeleton, actin filaments etc.. Many biological processes including reproduction, marine
life-cycle, growth of infections and so on rely on motility of these swimming organisms at
micron and sub-micron scales in a viscous fluid. In recent years, artificial miro-swimmers are
being developed for creating active fluids with desired physical properties and for transport
applications at microscopic scales. Figure 2.1 gives the readers a sense of the size and speed
of some common organic and artificial swimmers in active suspensions.
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Figure 2.1: The size and speed spectrum of active swimmers commonly found in nature
(shaded) as well as their synthetic counterparts commonly used in experiments. Janus
particle (Au− SiO2 colloid in H2O2) use diffusiophoresis mechanism to attain typical speeds
of for a few tens of body-lengths per second [19]; Helical/ chiral swimmers [143] and colloidal
rollers [22] use external magnetic field to transport goods; Active drops use gradients in
surfactant concentration to have Marangoni-driven propulsion [144]; In nature, bacteria such
as E.coli use flagella to achieve swim speeds of a few body lengths/ sec [145]. Spermatozoa
use flexible oar while green algae like Volvox use biflagellatic somatic cells on their surface
to swim at speeds orders of magnitude more than their body sizes [29]. Figure motivated
from [16].

To determine the origins of the mechanical and statistical properties of fluid suspensions of
these active particles, one requires a thorough understanding of their individual dynamics
and their interactions with the surrounding medium. The goal of this chapter is thus to lay
the foundations for physical modeling of transport at microscopic scales using the principles
of mechanics of motion in viscous fluids. This forms a bottom-up approach for modeling
collective dynamics of self-swimming particles. By capturing the nature of motion and
interactions of swimming micro-organisms, these modeling tools can aid in tailoring the
behaviour of synthetic suspensions, such as that of self-propelling colloids for controlled
transport or, for designing materials with tunable physical properties.

In Section 2.1, a description of the different methods of transport at microscopic scale is
provided. Section 2.2 details the fundamental mathematical framework derived from the
Navier-Stokes equations for motion of a body in a fluid where viscous effects dominate over
inertia (Stokes flow). In the process, we shall understand the consequences of motion in
the viscous-dominated regime such as time independence and reversibility. This framework
provides an insight into the hydrodynamic interactions between moving bodies in a fluid. In
Section 2.4, we use the principles to quantify how swimmers exploit fluid-surface interactions
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to produce net propulsive motion. As a special case, the propulsion of Janus phoretic colloid
is considered. And finally, in Section 2.5, the different mathematical representations of
the flow field created by the swimming body is detailed. This includes description of the
general spherical harmonic decomposition of the field as well as the Green’s function solution
for the Stokes flow problem. The Green’s function solution forms the basis of a powerful
numerical tool known as the Boundary Integral Methods (BIM) for computing the dynamics
of particles, which are governed entirely by the surface boundary conditions without need
for computations of the flow in the bulk. The mathematical foundations behind BIM for the
phoretic problem i.e. for both solute diffusion as well as Stokes flow are detailed in Section
2.6

2.1 Transport in fluids at microscopic scales

From a thermodynamic perspective transport process in a system is an irreversible process
involving displacement of thermodynamic properties within the system. When a system
is in a state of non-equilibrium, it tries to reach equilibrium through transport of mass,
momentum and energy. For example, chemical diffusion, fluid flow are examples of mass
and momentum transfer; heat transfer is an example of energy transport. We shall now
consider the various means of mass transport within fluids.

2.1.1 Advection-diffusion of molecules

At molecular scales, an imbalance in volume density of certain solute molecules of a sub-
stance between two systems which can exchange mass and momentum, leads to transport
of the solute from higher to a lower density. This process is known as diffusion. Diffusion
is one of the predominant modes of transport of material such as amino acids within cell
bodies [146]. The rate of transport was found to depend on the temperature, viscosity of
fluid and size of solute molecules; a continuum model for diffusion was proposed by Fick in
1855 to exlain this phenomenon [147]. The steady-state mass flux of the substance occurs
from a higher concentration to a lower one and the rate is proportional to the gradient of
the concentration field. If the solute molecules are large enough, the external motion of fluid
can advect the molecules along with the flow.

j = −D ∇c+ u c (2.1)

The constant of proportionality is known as the diffusivity (denoted here by D), and has the
units of m2/s. As an example, diffusivity of carbon dioxide in water at room temperature
is O(a0−9)m2/s. Note that the linear phenomenological model of equation (2.1) is observed
to agree well for a large range of experimental observations. Fick’s second law of diffusion
is the mass conservation equation, and is often called the advection-diffusion equation,

∂c

∂t
+∇ · j = 0 (2.2)

In dimensionless terms (denoted by ∗),

Pe

(
∂c∗

∂t∗
+ u∗ · ∇∗c∗

)
−∇∗2c = 0 (2.3)
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where Pe is known as the Péclet number defined as

Pe =
Diffusion time

Advection time
=
a2/D

a/U
=
aU

D
(2.4)

Low Péclet number (Pe ≪ 1) implies that the physics is diffusion dominated and the gov-
erning equation simplifies to Laplace equation for diffusion at steady-states,

∇2c = 0 (2.5)

Advective effects can be neglected when the solute molecules are extremely small so that
they diffuse through the system almost instantaneously.

2.1.2 Brownian diffusion

Diffusion within a fluid is observed even beyond molecular scales, where rigid micron-sized
bodies are subject to a variety of stochastic background processes such as thermal noise
which continuously alter their motion. Such an irregular motion was observed by the
botanist Robert Brown in experiments during 1827 of small pollen [148] and later observed
for small soot particles in air. A theoretical description relating this observed ”Brownian”
motion with kinetic theory of gases were given by W. Sutherland [149] in 1904, A. Einstein
in 1905 [150] and M. Smoluchowski in 1906 [151], all independently. The general form of
this constitutive relation is given in terms of an effective particle diffusivity,

Dp = µkT where, µ =
Drift velocity

Applied force
(2.6)

µ is known as the thermal mobility of the particle, k is the Boltzmann constant and T
is the absolute temperature. For a spherical particle, mobility can be determined by us-
ing the Stokes relation µ = 1/6πηa; a stationary bacteria in a fluid has as diffusivity of
Dp ∼ O(10−9) − O(10−10) m2/s. The Brownian diffusion times are much larger com-
pared to molecular diffusion time scales. The Brownian motion characterized by zero mean
displacement which is induced by random fluctuating forces exerted on the body by the
fluid, and can be described by Langevin dynamics viz. FB + F = 0, ⟨FB(t)⟩ = 0, and
⟨FB(t)FB(t

′) = 2kTRδ(t − t′)⟩, where R is the resistance tensor that determines the drag
force on the body due to its motion; it depends on the geometry of the body.

2.1.3 Self-propulsion

Unlike advection and diffusion, which are forms passive transport within fluids, swimming
requires expenditure of energy by the body into the fluid. At the scale of the size of a
human being, the dynamics of fluids are determined by inertia. This is why swimming
(or flying, when the fluid is air) in these fluids require thrust force generally through swift
motion of the body in water. However, at microscopic scales, viscous effects far outweigh
inertail effects. Let us consider the transport of fluid of viscosity η with a velocity U within
a characteristic length scale a. The strength of inertial and viscous forces can be compared
using a dimensionless parameter called the Reynolds number (denoted by Re):

Re =
Inertial force

Viscous force
=
ρU2/a

ηU/a2
=
ρUa

η
(2.7)

If we look at swimming bacteria or sperm, their size is of the order of a ∼ 10−6 m; these
organisms then swim at a velocity of a few body-lengths a second (U ∼ 10−5 m/s) in wa-
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ter (at 25 ◦C, ν = 8.9 × 10−7m2/s ≈ 10−6m2/s). Thus the Reynolds number associated
with the motion of fluid around these organisms (from equation 2.7) is Re ∼ O(10−5) ≪ 1.
This implies that the flow at microscopic scales are dominated by viscosity. The effect of
swimming would be equivalent to a human swimmer in a pool of honey. Due to the com-
pletely different physics at play, swimming at microscopic scales is contrastingly different;
the thrusting of fluid, commonly observed in swimmers at our scales are ineffective as the
inertial forces generated contribute negligibly to swimming at these scales.

2.2 Motion at low Reynolds numbers

As a body moves through a fluid, the displaced fluid conserves two physical properties:
Mass and momentum. In the continuum limit, which is the scale of analysis we shall employ
throughout, the mass balance for an incompressible fluid is given by the continuity equation

∇ · u = 0 (2.8)

Here, ρ is the density and u is the velocity of the fluid. Note that here we assume the fluid
to be Newtonian. We let σ be a second-order stress tensor that represents the normal and
shear stresses acting on a fluid element. In its dimensionless form,

σ = −pI+ 2ηE where, E =
1

2
(∇u+ (∇u)T ) (2.9)

where p is the magnitude of isotropic stress i.e. the pressure and E is a symmetric second-
order tensor known as the strain-rate tensor. Now let us consider a body of size a moving
steadily through the fluid (of viscosity η and density ρ) with a velocity U . The momentum
conservation law within a fluid is represented by the Cauchy’s momentum equation.

1

ρ
(∇ · σ) = ∂u

∂t
+ (u · ∇)u (2.10)

The body has to overcome the viscous dissipation to maintain its propulsive speed. By
non-dimensionalizing equation (2.9), using a and U as the characteristic length and velocity
scales respectively, one obtains the characteristic (viscous) stress as ηU/a. The characteristic
time scale for microscale swimming problem is a bit more complex; it depends on two
properties, diffusion of particle through the medium or its advection (through external or
internal forces). If the body was purely diffusing through the medium (Browian motion),
the characteristic time-scale would then be a2/D, with D being the diffusivity of the body in
the fluid. Since here we consider the self-propelling motion of the particle, the characteristic
time scale of the motion is a/U . Non-dimensionalizing the equation (2.10) using these
characteristic scales, we get

∇∗ · σ∗ = Re

(
∂u∗

∂t
+ (u∗ · ∇∗)u∗

)
, and, ∇∗ · u∗ = 0 (2.11)

where the ∗ denotes dimensionless parameters. We however drop the ∗ notation hereafter for
convenience. Using the above equation (2.9) (after non-dimensionalizing), one can rewrite
the equations in (2.11) at vanishing Reynolds number (Re → 0) as

−∇p+∇2u = 0 and, ∇ · u = 0 (2.12)

which forms the governing equation, known as the Stokes equations, for all bodies moving
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through an incompressible fluid at low Reynolds numbers.

In the absence of inertia at low Reynolds numbers, the swimmer is both force- and torque-
free. Thus, if a body is acted upon by an external force F (or torque T), the body moves
with a velocity such that the drag force (and torque) by the fluid on the body balances the
applied force. One can compute the hydrodynamic force and torques on the body from the
surface stress distribution using,

F =

∫
S
σ · n dS and, T =

∫
S
r× σ · n dS (2.13)

where r is the position vector on the surface S of the body.

There are a few properties of low Reynolds swimming that can be understood from equation
(2.11),

1. Time-independence of the equations. The pressure, viscous and the body forces acting
on a fluid element balance each other at all times even if the flow is unsteady. This
means that the instantaneous flow depends only on the boundary configuration as well
as the boundary conditions prescribing the flow, and not on the history of motion.
The absence of the unsteady term also implies that how fast or slow you change your
swimming configuration does not affect the flow field and hence your motion.

2. Kinematic reversibility : Replacing the pressure and velocity, u, p by −u and −p
would still satisfy the same equations i.e. any reversed flow is also a valid solution
and that by flipping the direction of velocity, the stresses are exactly reversed. This
property is called the kinematic reversibility of Stokes flows. By reversing the sequence
of motions, the streamlines (given by ψ = constant) remain the same, but the flow
direction is reversed. A popular testable experiment is when a blob of dye is placed
in a viscous fluid and slowly sheared. By retracing the motion, the dye that was
presumably mixed within the viscous fluid reforms into the blob.

Figure 2.2: (left) The lack of inertia at low Reynolds number prevents a scallop from swim-
ming using its quick reciprocal strokes. This is a result of the principle that a single-hinged
swimmer cannot propel; a reconfigurable combination with variable drag is necessary, such
as a minimal 2-hinged swimmer shown in the right. Figure reused from [152].

This property has some interesting consequences to the motion of bodies in the Stokes
limit. A swimmer exhibiting reciprocal swimming stroke would not be able to achieve
a net displacement: the forces in the forward stroke would be balanced by the forces
acting in the opposite direction in the reverse stroke. This property is popularly known
as the Scallop theorem [152]. This comes from the fact that a scallop that swims by
squirting out fluid though the back of its shell through oscillatory motion of its body
would find it difficult to swim in a highly viscous fluid because of the absence of inertia
and that any reciprocal movement of its body results in reciprocal motion with zero
net displacement.
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Figure 2.3: Figure from [145]. An example is the fact that a sphere moving parallel to a wall
should maintain its motion at the same distance from the wall [153, 154]. One can test this
reasoning by considering a sphere moving parallel to a wall being acted upon by a (upward
normal) force. By reversing the time, both the forces and velocity are are reversed. However,
in the mirror image, which also satisfies the Stokes equations, the velocity is reversed but
not the force. Since the boundary conditions are the same in both cases, it can only imply
that the net force on the sphere is zero. A similar argument based on the mismatch of
mirror image and time-reversed strokes can be made about the inability of an organism to
swim by a constant rotation of its tail in a conical fashion.

These examples show the need for symmetry-breaking for propulsion in low Reynolds
numbers. The simplest example is a Purcell type swimmer [152] which is a simple two-
hinged body that, two a series of non-reciprocal movements, can achieve locomotion.
In the biological world, the simplest example is bacteria like E.coli which have a
rotating helical tail; the chirality of the tail allows for symmetry-breaking when under
continuous rotation. Sperms have a flexible oar in its rear which create travelling
waves along its length that provides the net non-zero thrust [155]. Metachronal waves
along the flagella of certain algae and along the cilia of paramecium are generate a
net directional slip velocity on the surface that leads to effective propulsion [30, 156].
For a helical swimmer (or any swimmer with a chirality), the torques and velocities of
both the time-reversed and mirror image are exactly the same showing that the net
propulsion velocity for a given torque is non-zero. Autophoretic swimmers produce
local surface concentration gradients − through asymmetries in chemical patterning
or in their geometry − which provides them with the phoretic forcing necessary for
self-propulsion [58].

3. Linearity of the equations. The linearity of the Stokes equations extends to the linear
relation between the forces and the velocity on the body [154, 157][

F
T

]
= η

[
A B
B C

] [
U
Ω

]
(2.14)

where the square matrix is known as the resistance matrix. Note that the matrix
is symmetric, which is a consequence of the reciprocal theorem (discussed in next
section). The elements A, B and C are each second-order tensors and have the
characteristic dimensions (in powers of length) of a, a2 and a3 respectively. Thus, in
a given fluid, the drag on a rigid body swimming in the viscous regime depends only
on the shape and orientation of the body with regard to the flow, and the swimming
velocity. For an axisymmetric achiral body, the resistance matrix is diagonal; for
a sphere, A = 6πaI, B = 0 and, C = 8πa3I. The matrix is not known apriori
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for all geometries. For manufactured geometries, such as a helix of known weight,
sedimentation experiment can be performed to calculate the coefficients [152]. However
for more complex systems and biological organisms, these coefficients can only be
approximately estimated using theoretical methods such as slender body theory [158].

2.3 Hydrodynamic signature of a moving body

As a body moves through a viscous fluid, momentum is transmitted to the fluid and the
flow created is a characteristic of the kinematics of the body; Let the particles move along
the direction t. For ease of expression, we note µ = t · r/r with r = |r|.

2.3.1 Passive particles subject to body force

When a sphere subjected to a body force F along the direction t in a viscous fluid, the body
moves at a constant velocity U = F/6πηa t. The streamfunction of the flow created by the
moving sphere is given by [159],

Ψ(r, µ) = U(1− µ2)

(
3a

4r
− a3

4r3

)
(2.15)

where, µ = t · n. The velocity and pressure fields can then be derived as,

u = −U

4

(
3a

r
+
a3

r3

)
+

3U

4
·
(
−arr
r3

+
a3rr

r5

)
· (2.16)

p =
−3aηU · r

2r3
and so, σ · n|r=a =

3ηU

2a
(2.17)

This is the case of a sedimenting sphere where the body is subjected to a constant gravita-
tional force (see figure 2.4). The body force acting on the sphere by gravity is balanced by
the drag force created by the fluid.

F

U

Figure 2.4: a) Flow field created by a rigid sphere sedimenting at a fixed velocity. b) Flow
field created by a spherical swimmer with surface slip velocity. The parameters used here
(in equation 2.20) are α1 = 0.01, α2 = 0.5. c) PIV of Flow field produced by green algae
Chlamydomonas reinhardtii swimmig by generating surface veocity in a background flow-
adapted from [29].
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2.3.2 Axisymmetric squirmers

When a body expends energy to swim through the fluid at low Reynolds numbers, the parti-
cle however is force- and torque-free. A particular type of swimmer that uses only tangential
surface velocity to achieve self-propulsion is known as a squirmer. The streamfunction for
the flow created by an axisymmetric squirmer is classically given by Lighthill [160] and later
corrected by Blake [161],

Ψ(r, µ) =
∑
m≥1

2m+ 1

m(m+ 1)
αmψm(1− µ2)L′

m(µ) (2.18)

where Lm(µ) are the Legendre polynomials of order m,

ψ1 =
1− r3

3r
, ψm≥2 =

1

2

(
1

rn
− 1

rn−2

)
(2.19)

and, for all m ≥ 1,

αm =
1

2

∫ 1

−1

√
1− µ2 L′

m(µ) ũ · eθ dµ. (2.20)

The complete axisymmetric hydrodynamic flow field (in the reference frame of the swimmer)
is further obtained from the streamfunction solution as [161, 162, 57]:

u(r) =
α1

2r3

(
3rr

r2
− I

)
· t

−
∑
m≥2

(2m+ 1)αm

2m(m+ 1)

{(
m(m+ 1)Lm(µ)

[(a
r

)m+2
−
(a
r

)m]) r

r

+ L′
m(µ)

[
(m− 2)

(a
r

)m
−m

(a
r

)m+2
](

I− rr

r2

)
· t

}
(2.21)

2.3.3 Autophoretic particles

Chemically active particles have two signatures viz. their 1) chemical signature and 2) their
hydrodynamic signature. This axisymmetric particle is characterized by its orientation t
indicating the direction of its axis of symmetry, and along which self-propulsion occurs. The
activity of the particle is modeled as a spatially-dependent production (resp. consumption)
of solute with a fixed rate A(µ) > 0 (resp. A(µ) < 0) which may vary along the surface.
Denoting the characteristic surface activity, A∗, one can write the dimensionless surface
activity as A(µ) = A(µ)/A∗. The concentration field of the solute within the fluid is
governed by the steady-state diffusion equation (in dimensionless form),

∇2c = 0, (2.22)

with boundary conditions in the far-field and on the particle’s surface,

c(r → ∞, µ) = 0 and n · ∇c
⏐⏐⏐⏐
r=a

= −A(µ). (2.23)

The general solution to the Laplace problem in equations (2.22)–(2.23) is obtained as an
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harmonic series [58, 57, 138, 124],

c(r) =
∞∑

m=0

Am

m+ 1

(a
r

)m+1
Lm(µ) with Am =

2m+ 1

2

∫ 1

−1
A(µ) Lm(µ)dµ, (2.24)

The concentration field is thus decomposed into the superposition of an infinite number of
azimuthal modes of increasing order and spatial decay rate: m = 0 represents a point source
(∼ r−1), m = 1 a source dipole (∼ r−2), m = 2 a source quadrupole (∼ r−3) and so on. The
strength of each mode, Am, is obtained by a simple projection along Lm(µ) of the activity
distribution, Eq. (2.24). For a hemispheric Janus particle with A(µ) = 1 for µ ∈ [0, 1] and
A(µ) = 0 otherwise, the mode amplitudes Am can be obtained analytically as A0 = 1/2,
A1 = 3/4, A2 = 0, A3 = −7/16, etc..

Following the classical continuum framework [57, 58], the surface of the particle generates
an effective slip velocity in response to local concentration gradients along the surface.

ũ(r, µ) =M∇||c =M
√
1− µ2

∂c̃

∂µ
(2.25)

where c̃ represents the surface concentration.

Figure 2.5: Janus swimmer with 3/4th of its surface active with A = 1 (in white) a) Chemical
field b) Hydrodynamic field

This surface velocity creates the flow signature of the particle. Substituting the above
expression in equation (2.20) gives,

αm = −M
2

∫ 1

−1
(1− µ2)L′

m(µ)
∂c̃

∂µ
dµ. (2.26)

Integrating by parts,

αm =
M

2

∫ 1

−1
[(1− µ2)L′′

m(µ)− 2µL′
m(µ)] c̃ dµ = −M

2

∫ 1

−1
m(m+ 1)Lm(µ)c̃ dµ (2.27)

The above simplification was possible by utilizing the Legendre equation. Using equation
(2.24) to obtain c̃ = c(r = a) =

∑
n≥0AnLn(µ)/(n + 1), and substituting in the above
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equation and simplifying using the integral properties of Legendre polynomial,

αm =
−M
2

∑
n≥0

∫ 1

−1
m(m+ 1)

An

n+ 1
Ln(µ)Lm(µ) (2.28)

=⇒ αm = −mMAm

2m+ 1
(2.29)

Thus, we come to an important conclusion that for phoretic swimmers with uniform surface
mobility and a fixed rate of flux activity, one can establish a one-to-one relation between
the chemical and the hydrodynamic modes [57].

2.4 Propulsion through surface effects

Why is swimming difficult at microscopic scales? The absence of inertial forces to propel
the body makes it difficult to swim a microscopic scales; energy is continuously dissipated
by viscosity. By stopping the propulsion, the swimming body is thus brought to rest im-
mediately. And, by continuously balancing the viscous drag on the body creates very low
swimming efficiency ∼ O(1)% i.e. the scaling laws limit the maximum power obtainable
from the motor [152].

Figure 2.6: Paramecium swims through deformation of cilia on its surface to generate trans-
verse wave that create surface velocity. Figure adapted from [163].

Directed swimming is even more difficult: the swimming micro-organism is continuously
subjected to background thermal noise i.e. the external Brownian forces which reorient
their swimming trajectory. Thus, the swimmer not only has to exert constant propulsive
power, which in itself is less efficient, but also has to continuously modify its orientation to
reach its target.

In the previous section, we have seen that a body can propel within a fluid by implementing
effective velocities on their surface. Here, we shall mathematically provide the condition in
which these effective slip velocites on the surface lead to net motion of the body.

The linearity of the Stokes flows allows for interesting features relating the work done in a
fluid. In this section, a brief review of the formulation of Lorentz’s reciprocal theorem for
fluids in the Stokes limit is derived.

2.4.1 Reciprocal theorem for Stokes flows

Consider a fluid domain of volume V , enclosed within a surface S. Let a velocity and stress
field (given by u and σ) satisfy the Stokes equations. Let another field given by û and σ̂ also
satisfy the Stokes equations within the same fluid domain. The second solution, denoted by
the hat, is known as the auxillary flow field.
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We know that the stress in the fluid at any point in the domain is given by,

σ = −pI+ 2ηE where, E =
1

2
(∇u+ (∇u)T ) (2.30)

Note here that the strain-rate tensor E is fully symmetric and deviatoric in nature. Thus,
by implementing the reduction σ : Ê, we see that

σ : Ê = 2ηE : Ê (2.31)

In a similar fashion, one can show the identical result that σ̂ : E = 2ηE : Ê. Thus, we
obtain the relation,

σ : Ê = σ̂ : E (2.32)

Furthermore, by using the expansion for strain-rate tensor from equation (2.30), we can
derive the following result:

∇ · (σ · û) = ∇ · (σ̂ · u) (2.33)

Summing up the stresses in the bulk fluid gives,∫
V
∇ · (σ · û)dV =

∫
V
∇ · (σ̂ · u)dV (2.34)

Thus, by implementing the divergence theorem within the fluid domain, we have∫
S
n · (σ · û)dS −

∫
V
û · (∇ · σ)dV =

∫
S
n · (σ̂ · u)dS −

∫
V
u · (∇ · σ̂)dV. (2.35)

Stokes flows have zero divergence of stress, thus reducing the above equation to∫
S
n · (σ · û)dS =

∫
S
n · (σ̂ · u)dS (2.36)

The above equation thus relates the virtual work done by two flow fields. To consider
external flows, one can let the surface S to be composed of the region outside a surface S1

of a solid body and within S∞. But letting S∞ extend to infinity, where the flow velocity is
zero, one can apply the reciprocal theorem for the region outside a swimming body’s surface
S of any arbitrary shape. As it will be seen from the subsequent sections, this reciprocal
theorem is a powerful tool as it can be used to evaluate the kinematics of the swimmer
without computing the flow field in the bulk fluid.

2.4.1.1 Self-propulsion velocity of swimmers

We shall now utilise the Lorentz reciprocal theorem derived above to derive a simple ex-
pression for the swimming velocities of microscopic swimmers which propel through surface
distortions without the need for computing the bulk flow field. This powerful technique is
a way of obtaining ”something from nothing” [164]. The swimmer creates a surface distur-
bance flow ũ which exerts stresses on the fluid. The fluid, being inertialess, balances the
net force exerted on it by the body by creating a drag force on it; this is possible through a
relative motion between the body and fluid. If the body is pinned at its location, the fluid
is pumped on the surface to balance the force, or in case of the swimmer, the net force is
balanced by the motion of the swimmer in the fluid.

The flow around the swimmer obeys the Stokes equations given in equation (2.12). If we
consider the laboratory frame of reference for the flow field, we have, on the surface of the
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body,

u(t) = ũ+U+ a Ω× n (2.37)

where ũ represents the surface slip velocity, U the translational velocity of the swimmer
and Ω, its angular velocity. Far away from the body, the flow field decays to zero

u = 0 when r → ∞ (2.38)

The dual problem involves the field (û, σ̂) where the rigid body is being driven by an
external force F̂(t) and an external torque T̂(t) which creates a motion of the body with a
translational velocity Û(t) and rotational velocity Ω̂(t); if the body is spherical, then it is
well known that F̂ = 6πηaÛ and T̂ = 8πηa3Ω̂. Implementing the boundary condition of
equation 18 in the reciprocal theorem derived in equation 17,

Û ·
∫
S
σ · n dS =

∫
S
n · (σ̂ · ũ) dS + F̂ ·U (2.39)

The force-free boundary condition in the true (swimming) problem gives

− F̂ ·U =

∫
S
n · (σ̂ · ũ) dS =⇒ −6πηaÛ ·U =

∫
S

3ηÛ

2a
· ũ dS (2.40)

=⇒ U = − 1

4πa2

∫
S
ũ dS = −⟨ũ⟩ (2.41)

The angle brackets is just to represent the surface average. Thus, from the knowledge of
surface distribution of velocity, the propulsion velocity of the swimmer can be computed
by simply determining surface averages. Substituting the velocity field equation of (2.21)
(on the surface of the body, r = a) in the above equation (2.41), one can show that the
propulsion velocity simply depends only on the first mode and is given by,

U = −α1t (2.42)

In a similar manner, one can find the angular velocity due to surface distortions as,

−T̂ ·Ω =

∫
S
n · (σ̂ · ũ) dS =⇒ Ω = − 3

8πa3

∫
S
n× ũ dS = − 3

2a
⟨n× ũ⟩ (2.43)

For an axisymmetric Janus particle having a uniform surface mobility M , the intensity of
the first swimming mode α1 relates to the activity A1 using equation (2.29) and hence, the
self-propulsion velocity, computed using equation (2.41), turns out to be:

Uself = −α1t = −(MA1/3)t, Ωself = 0 (2.44)

The remaining modes for the non-swimming modes which contribute to the hydrodynamic
signature of the particle. For a hemispherically active Janus colloid uniform surface mobility
(M = 1), the first mode of surface activity A1 = 3/4; thus, the self-propulsion velocity
becomes Uself = −t/4.

2.4.1.2 Motion due to external flow-field: Faxen’s laws

Faxen’s laws determine the drift velocity created on a body resting in an external fluid flow
u∞. Let us consider a sphere within an external flow u∞. Let u+ be the net flow created due
to the presence of the particle in this background field. Thus, once can say the disturbance
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field,
u1 = u+ − u∞ (2.45)

Since the body moves at low Reynolds numbers, it does not experience any net force in
an external flow and simply and drifts along with the flow; thus, we shall denote the force
F1 = 0. Also note that the disturbance flow decays at infinity u1(r → ∞) = 0. We shall
define the case of a rigid sphere translating with a velocity U2 in a viscous fluid to be the
dual problem. The particle would create a flow field u2 and a stress σ2. Thus, using the
reciprocal theorem, one can write,∫

S
u1 · σ2 · n dS =

∫
S
u2 · σ1 · n dS (2.46)

=⇒ −3ηU2

a
·
∫
S
u1 dS = U2 ·

∫
S
σ1 · n dS (2.47)

The above evaluation is made using the property that the viscous stress on a rigid sphere
moving with a velocity U is σ ·n = 3ηU/a (as derived in equation 2.17). Applying equation
(2.45),

− 3ηU2

a
·
∫
S
(u+ − u∞) dS = U2 · F1 (2.48)

However, being in low Reynolds number regime, the body is force-free, F1 = 0. Additionally,
noting that the drift velocity of the body,

Ud = −⟨u+⟩ = − 1

4πa2

∫
S
u+ dS, (2.49)

the above equation (2.49) reduces to

Ud =
1

4πa2

∫
S
u∞ dS = ⟨u∞⟩ (2.50)

⟨⟩ represents surface average over the sphere. Now, expanding the surface velocity near the
center of the body using a Taylor series expansion,

u∞|r=a = u∞

⏐⏐⏐⏐
r=0

+ an · ∇u∞

⏐⏐⏐⏐
r=0

+
a2nn

2
: ∇∇u∞

⏐⏐⏐⏐
r=0

+ . . . (2.51)

The expansion in equation (2.51) is used in equation (2.50) and noting that odd modes
vanish,

Ud = u∞

⏐⏐⏐⏐
r=0

+∇∇u∞

⏐⏐⏐⏐
r=0

:
a2I

6
+∇∇∇∇u∞

⏐⏐⏐⏐
r=0

4
⊙ a4(II+ (II)T23 + (II)T24)

720
+ . . .

(2.52)

=

(
1 +

a2

6
∇2 +

a4

240
∇4 + . . .∇2nterms

)
u∞

⏐⏐⏐⏐
r=0

(2.53)

Since the pressure field satisfies ∇2p = 0, one can obtain from the Stokes equations that
∇2nu = 0 for all n ≥ 2. Thus, equation (2.53) reduces to

Ud =

(
1 +

a2

6
∇2

)
u∞

⏐⏐⏐⏐
r=0

(2.54)

Similar procedure may be followed for determining the angular drift velocity Ωd due to
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background flow.

Ωd =
1

2
∇× u∞

⏐⏐⏐⏐
r=0

. (2.55)

2.4.2 Influence of Brownian motion

As mentioned in Section 2.1, besides motion from self-swimming and drift from external
flows, bodies immersed in a fluid are subject to random collisions from surrounding fluid
molecules leading to Brownian diffusion which produces both translation as well as reori-
entation of the body. For bodies of microscopic sizes, these effects are non-negligible and
are evident in experiments involving swimming bacteria as well as active colloidal particles.
These active particles thus have a net displacement with continuous reorientation of the
direction of propulsion, thus exhibiting diffusive behaviour in long time scales [72, 25]. The
thermal reorientation time scale is τ = ηa3/kBT , where kB is the Boltzmann constant and
T is the temperature of the fluid in kelvin. This random reorientation is known to produce
effective diffusion of the particles in the fluid with a diffusivity, D = mKBT , where m is
the mobility of the body in the fluid; for a sphere, m = 1/6πηa. For a body swimming
with a given velocity U in the fluid, the diffusivity is effective diffusivity is enhanced due to
the motion, De = U2τ . For a bacteria swimming at U ∼ O(10−5), the enhanced diffusivity
De ∼ O(100). Such enhanced diffusion is surprisingly also observed in systems where the
particle undergoes reciprocal swimming motion [165].

The dynamics thus involves overdamped motion as well as their thermal reorientation [125,
25]. However, to reduce the complexity of converting the acting forces into velocity of the
particle, commonly employed minimal models, called Active Brownian Particles describe the
essential dynamics by imposing the fluctuations on the velocity of the body, thus assuming
the particles to be isotropic, and act independently from each other. In the absence of

inertia, the evolution of the position R
(b)
j (t) of a spherical particle j under the effect of

background noise is given by the overdamped Langevin equation:

dR
(b)
j (t)

dt
= Uj(t) + ξj(t), (2.56)

where Uj(t) is its deterministic velocity in tha absence of any background fluctuations. An
external Gaussian white noise, ξj(t), has

zero mean , ⟨ξi(t)⟩ = 0 (2.57)

and a variance , σ2I = ⟨ξi(t) ξj(t′)⟩ = 2Dδ(t− t′)δijI (2.58)

where D is the diffusivity of each particle in the fluid.

2.5 Other representations of flow-fields

Consider a spherical coordinate system where the zenith angle is denoted by θ and the
azimuthal angle by ϕ. We also denote the projection as µ = cos θ. Let a spherical particle
be represented by r = a in this coordinate system. The particle has a surface slip velocity ũ
and moves with a velocity U and angular velocity Ω. The surface velocity is then given by

u|r=a = ũ+U+ a Ω× n (2.59)
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2.5.1 Spherical harmonic decomposition

The flow field of an axisymmteric swimmer in a fluid is given by the Lamb’s general solution
[166] for Stokes equation. Since the pressure field obeys the Laplace equation, the general
solution for can be written as a harmonic series ,

p =

∞∑
n=−∞

pn, where pn =

n∑
m=0

rnLm
n (µ)(amn cosmϕ+ ãmn sinmϕ) (2.60)

where Lm
n (µ) is the nth order Legendre polynomial of degree m. Solving for the coefficients

amn and ãmn in the pressure field requires knowledge of the boundary conditions. In addition
to this particular solution, the flow field also comprises of the homogeneous solution to the
Stokes equations, given by

uH = ∇ϕ+∇× rχ (2.61)

where ϕn and χn are solid spherical harmonics i.e. ∇2ϕ = 0 and ∇2χ = 0. This implies
that,

ϕ =
∞∑

n=−∞
ϕn, where ϕn =

n∑
m=0

rnLm
n (µ)(bmn cosmϕ+ b̃mn sinmϕ) (2.62)

χ =
∞∑

n=−∞
χn where χn =

n∑
m=0

rnLm
n (µ)(cmn cosmϕ+ c̃mn sinmϕ) (2.63)

Using the above harmonic expansions, the general solution of the Stokes equations, at-
tributed to Lamb [166], can be written as,

u =
∞∑

n=−∞
n̸=−1

[
(n+ 3)r2∇pn

2η(n+ 1)(2n+ 3)
− nrpn
η(n+ 1)(2n+ 3)

]
+

∞∑
n=−∞

[∇ϕn +∇× (rχn)] (2.64)

The case n = −1 is not considered here because the flows correspond to sources (and sinks)
which violate the mass conservation for moving solid bodies in a fluid. The flow-field can
be thus decomposed into constituent physical parts such as 1) Potential flow contribution
from ϕ which decays as r−n−2 2) Rotational flow contribution from χ which decays as r−n−1

and 3) pressure driven flow contribution from p which decays as r−n. However, for solid
bodies moving through a fluid the pressure field decays at r → ∞; thus, only the negative
modes of the series expansion are valid solutions to the problem. Hence, the general solution
becomes,

u =

∞∑
n=1

[
−(n− 2)r2∇p−n−1 + 2(n+ 1)rp−n−1

2ηn(2n− 1)

]
+

∞∑
n=1

[∇ϕ−n−1 +∇× (rχ−n−1)] (2.65)

For axisymmetric swimmers, m = 0 in equations (B.5), (2.62) and (2.63). Thus, the coeffi-
cients in the above expansion become (for n ≥ 1),

p−n−1 = anr
−n−1Ln(µ), ϕ−n−1 = bnr

−n−1Ln(µ), χ−n−1 = cnr
−n−1Ln(µ) (2.66)

Here Ln are the Legendre polynomials of order n. We shall henceforth denote the coefficients
as n instead of (−n− 1) for ease of expression. Expansion of this form suggests the general
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expansion for the solution of Lapalce equation⎡⎣pnϕn
χn

⎤⎦ =

⎡⎣Pn

Φn

Xn

⎤⎦ n
⊙ r

n
⊗ r

r2n+1
(2.67)

where n, Φn and Xn are fully symmetric and deviatoric tensors of order n. If the velocity
boundary conditions u = ũ on a spherical surface r = a is given, then the coefficients can
be obtained using the following relation [157]⎡⎣pnϕn
χn

⎤⎦ =
1

n+ 1

⎡⎣−η(2n− 1)(n+ 2)/a −η(2n− 1)/a 0
a n/2 a/2 0
0 0 1/n

⎤⎦⎡⎣ Pn(ũ · n)
Pn(−a∇|| · ũ)

Pn(an · ∇|| × ũ)

⎤⎦+
⎡⎣3aηU · n/2 δn,1
a3U · n/4 δn,1
a3Ω · n δn,1

⎤⎦
(2.68)

Here ∇|| represents the surface gradients.

[Pq(f)]q is thus the unique set of fully symmetric and deviatoric tensors of order q such that
the expansion of scalar field f(x) into spherical harmonics at the surface of particle k writes
as

f(x)
⏐⏐⏐
r=a

=
∑
q≥0

Pq[f ]
q
⊙ [nk

q
⊙ nk]. (2.69)

In Eq. (2.67), each term corresponds to flow singularities of increasing order [161, 157,
154], namely (i) source/potential multipoles, (Φq), with a flow field decaying as 1/rq+2, (ii)
symmetric force multipoles (Pq), with a flow field decaying as 1/rq and (iii) rotlet (torque)
multipoles (Xq), with a flow field decaying as 1/rq+1. For instance, Φ1 corresponds to a
source dipole of intensity −4πΦ1 while P2 corresponds to a stresslet of intensity −4πP2/3.

2.5.2 Far-field description of a swimmer

The force and torque on a body moving through the fluid is given by [157]

F = −4π∇(r3p1) = −4πP1 (2.70)

T = −8πη∇(r3χ1) = −8πηX1 (2.71)

The first mode n = 1 contributes to the translation and rotation of the particle.

2.5.2.1 Translating passive sphere

For example consider a sphere of radius a moving with a velocity U along the direction ez.
The surface velocity on the sphere ũ = Uez. Using equation (2.68) with n = 1, we get⎡⎣p1ϕ1

χ1

⎤⎦ =

⎡⎣3aηU · n/2 δn,1
a3ηU · n/4 δn,1
a3Ω · n δn,1

⎤⎦ (2.72)

Thus, p1 = −3ηUez ·n/2a. Moreover, using equation (2.67), the first mode, p1 = P1 ·n/a2.
Equating these two terms give P1 = −3ηaUez/2. Using the expression for force on the
body (from equation (A.27)) force on the sphere, one retrieves the well known expression
F = −4πP1 = 6πηaUez.

One can compute the subsequent modes (n > 1), which are the non-swimming modes that
decide the flow signature of the particles. The slowest decaying non-swimming mode (n = 2)
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Figure 2.7: a) Potential dipole of strength Φ1 b) Stresslet of strength P2 and c) force
quadrupole (which includes a rotlet-dipole flow field)

is called the stresslet, which decays as 1/r2. This is the symmetric part of the flow created
by a force dipole; the flow is radial in nature. The direction of the applied forced dipole P2

decides the nature of flow and the stresses generated in the fluid: an inward force dipole is a
puller while an outward force-dipole is called a pusher. The leading order potential flow is a
point source dipole that decays as 1/r3. It’s strength depends on the magnitude of Φ term.
When the swimming particle is non-axisymmetric, the flow field created has a net vorticity.
The strength of the rotational flows, with leading order as 1/r3 i.e. a rotlet dipole, which is
the (anti-symmetric part of point force dipole) are determined by the magnitude of X term.

2.5.2.2 Phoretic swimmer

For phoretic swimmers, the surface velocity is related to the concentration gradients via
equation (2.25) i.e. ũ = M(I − nn) · ∇c. Note that here we consider the case where the
particle has a uniform surface mobility M . Thus, we have the following properties,

ũ · n = 0, −a∇s · ũ = −Mnn : ∇∇c and, an · ∇s × ũ = 0 (2.73)

Furthermore, one can expand the concentration field in terms of Legendre polynomials to
obtain,

− a∇s · ũ = −M
∑
m≥1

Ama
m+1

m+ 1
Lm(µ) (2.74)

where µ = t · n, with t being the axis of symmetry and defines the direction of propulsion.
Substituting in equation (2.68),⎡⎣pnΦn

χn

⎤⎦ = −M

⎡⎢⎣−
η(2n−1)(n+2)

a(n+1) −η(2n−1)
a(n+1) 0

an
2(n+1)

a
2(n+1) 0

0 0 1
n(n+1)

⎤⎥⎦
⎡⎣ 0

Anan+1

n+1 Ln(µ)

0

⎤⎦+

⎡⎣3Uaµ/2 δn,1Ua3µ/4 δn,1
0

⎤⎦
(2.75)

Since the particle is force-free and torque-free, p1, ϕ1 and χ1 zero. Thus, for n = 1, which
represents the mode contribution to self-propulsion,

−M

⎡⎣−3η/2a −η/2a 0
a/4 a/4 0
0 0 1/2

⎤⎦⎡⎣ 0
A1a

2/2
0

⎤⎦ =

⎡⎣3aηU/2Ua3/4
0

⎤⎦ (2.76)

from which one can deduce back the result obtained in equation (2.44): U = A1M/3.
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2.5.3 Green’s function solutions Stokes flows

Consider a point force F acting on a fluid at a fixed point x0. This, for example, is the case
of a point object settling in a viscous fluid under the effect of gravity. The Stokes equations
for the velocity and pressure at any point x in the fluid is then,

∇2u(x)−∇p(x) = −F δ(x,x0) and, ∇ · u(x) = 0 (2.77)

where δ(x,x0) is the delta function. Taking divergence of equation 2.77 gives an independent
expression for the pressure field,

∇2p(x) = ∇ · F. (2.78)

The velocity, pressure and stress fields being harmonic, are written in terms of the Green’s
functions as

u(x) =
1

8πη
S(x,x0) · F, p(x) =

1

8π
Q(x,x0) · F, and, σ(x) =

1

8π
T(x,x0) · F (2.79)

respectively. Here S, Q, and T are Green’s function tensors of order two, one and three
respectively. Note that these functions depend on both the point of disturbance x0 as well
as the point of observation x. By determining the expressions for these functions, one can
determine the properties of flow at any point x in the domain created by point forcing at
x0. Re-writing the Stokes equation (2.77) using equations (2.79), we get

1

8πη
∇2S(x,x0) · F− 1

8π
∇Q(x,x0) · F = −Fδ(x,x0). (2.80)

Now, let G(x) be the Green’s function solution of Laplace equation i.e.

∇2G(x− x0) = δ(x,x0) (2.81)

whose solution is well known to be

G(x− x0) = − 1

4π|x− x0|
(2.82)

By substituting equation (2.79) in equation (2.78), one obtains

1

8π
∇2Q(x,x0) · F = ∇ · F =⇒ Q(x,x0) = 8π∇G(x− x0) (2.83)

Using equation (2.82) in the above equation (2.83), we finally obtain

Q(x,x0) =
2r

r3
(2.84)

where r = x− x0 and r = |r|. Substituting equation (2.84) in equation (2.80) and solving,

S(x,x0) =
I

r
+

rr

r
(2.85)

The Green’s function in equation (2.85) is known as a Stokeslet. Substituting Eqs.(2.84)
and (2.85) in Eq. (2.79), one obtains the flow and pressure fields created by a point force F
as,

u(r) =
1

8πη

(
F

r
+

(F · r)r
r3

)
, p(r) =

F · r
4πr

(2.86)

Note that the Stokeslet flow field decays as 1/r and is the slowest decaying flow field. By
computing the stress field σ(x) from the velocity and pressure fields, one can subsequently
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deduce using equation (2.79) that

T(x,x0) =
−6rrr

r5
+

3(rI+ (rI)T12 + (rI)T13)

r3
(2.87)

Derivatives of the Green’s functions can be used to represent flows from higher-order modes
such as force and torque multipoles; because of the linearity of the Stokes equations, these
derivatives are also indeed solutions. Taking the derivative of Stokeslet, one obtains,

∇S(x,x0) =

(
−Ir+ (Ir)T23 + rI

r3
− 3rrr

r5

)
(2.88)

This is a fundamental singularity comprising of a symmetric as well as an anti-symmeteric
component. The fully symmetric and deviatoric part of this Green’s solution is known as
the Stresslet. If the strength of a point force dipole is considered to be Fd, then the the
stresslet flow field is,

u(x) =
1

8πη
Fd : ∇S (2.89)

For a d directed force dipole Fd, the gradient along d direction gives a stresslet flow field,

u(r) =
1

8πη

[
−(Fd · d)r

r3
+ 3

(Fd · r)(d · r)r
r5

]
(2.90)

The anti-symmetric part of the tensor is called a rotlet and physically describes the flow
field created by a point torque dipole. The flow-field of the rotlet is thus given by

R =
(d× F)× r

8πηr3
(2.91)

Note that both the stresslet and rotlet decay as 1/r2. For force and torque-free swimmers in
Stokes flow, the leading order decay of flow field is a stresslet. Taking subsequent gradients
give the higher order terms that represent force multipoles.

2.5.4 Flows due to point source and its derivatives

The flow field created by a point source of strength m is given by,

u(r) =
m

4π
H (2.92)

where H is the Green’s function solution, given by

H =
r

r3
(2.93)

For a swimmer in an incompressible fluid, there is no source of flow (m = 0. Thus, the
leading order contribution comes from a source dipole, (also known as a potential dipole).
For a given dipole strength D, one can compute the flow field by taking gradients of the
Green’s function solution i.e.,

u(r) = −D · ∇H

4π
=

1

4π
D ·

(
−I

r3
+

3rr

r5

)
(2.94)

Thus, the leading order decay of flow field for a micro-swimmer is 1/r3. Higher order
flows due point source multipoles may be computed by taking subsequent derivatives of the
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Green’s function.

2.6 Boundary integral formulation

The divergence-free nature of the flow as well as the stress field in the case of Stokes flows
allows one to express the flows as surface integrals. The idea of boundary integral formula-
tion is that, in the case of Stokes flow of incompressible fluids, one can Boundary element
methods are especially useful for phoretic problems because the boundary conditions are
described on the surface of the body. The computations for the flow field in the the bulk
are not necessary.

2.6.1 Boundary integral formulation for Stokes equations

Consider a body B immersed in a fluid and let (u,σ) represent the velocity and stress field
velocity and stress fields around this body. As an auxilliary problem, let us consider the
fluid containing a point forcing F∗ at a point x0 in the fluid domain. One can then write
equation (2.77) in its index notation as,

∂

∂rk
[u∗i (x)σik(x)− ui(x)σ

∗
ik(x)] = uj(x) F

∗
j δ(x,x0) (2.95)

Using the Green’s function solution for Stokes flow from equation (2.79) for the auxilliary
flow field, we obtain

∂

∂rk
[S∗

ij(x,x0)σik(x)− ηui(x) T
∗
ijk(x,x0)] = uj(x)δ(x,x0) (2.96)

Now, let us choose a control volume V in the exterior of the body B and extends spherically
outwards such that it completely encloses it. The volume integral of the above equation
gives ∫

V

∂

∂rk
[S∗

ij(x,x0)σik(x)− ηui(x) T
∗
ijk(x,x0)]dV =

∫
V
uj(x)δ(x,x0)dV (2.97)

which has singular kernals S∗ and T ∗. Using Gauss divergence theorem, the volume integral
can be converted into a surface integral over the closed surface ∂S. If the outer sphere
approaches infinity, the surface integral reduces only to the surface of the body B∫

∂B
[S∗

ij(x,x0)σik(x)− ηui(x)T
∗
ijk(x,x0)]nk(x) dS(x) =

∫
V
uj(x)δ(x,x0)dV (2.98)

which implies [153]

uj(x0) = − 1

8πη

∫
∂B
S∗
ij(x,x0) fi(x) dS(x) +

1

8π

∫
∂B
ui(x) T

∗
ijk(x,x0) nk(x)dS(x) (2.99)

where one can expresses the traction on the surface, σ ·n = f . The first term on the RHS of
equation (2.99) is known as the single layer potential whereas the second term is called the
double layer potential. In situation where the body is non-deformable, it can be shown that
there is no contribution from the double-layer potential in the expression equation (2.99)
[141, 167]. The equation 2.99 needs to be closed with the force- and torque-free boundary
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condition for bodies moving in the viscous regime, i.e.∫
∂B

f(x)dS = 0 and

∫
∂B

(x− xc)× f(x)dS = 0 (2.100)

These equations are sufficient to compute the velocity and traction on the surface of the
particle. In the need for estimating the flow velocity and stresses in the bulk fluid, one can
project from the known surface values of these quantities.

2.6.2 Boundary integral formulation for diffusion equation

Phoretic particles produce a solute concentration field in the fluid through surface chemical
reactions. Here, we assume a particle to emit/ absorb a certain solute at a constant rate from
the surface. The advective effects of the solute are taken to be negligible and, additionally,
we shall assume the solute to diffuse instantaneously into the fluid. This lets one consider a
quasi-steady state of diffusion process. Summing up briefly the diffusion equation and the
surface boundary conditions,

∇2c = 0, with,
∂c

∂n

⏐⏐⏐⏐
S
= −A and c→ 0 as r → ∞ (2.101)

The fundamental solutions to the Laplace equation (2.101) is given by the Green’s functions
representing a point sink and a point source dipole.

J(x,x0) = − 1

4πr
and K(x,x0) =

r

4πr3
(2.102)

The boundary integral equation for the concentration field in response to the flux forcing
on the active particles [137, 17]

λ c(x0) =

∫
S

[
c(x) K(x,x0) · n(x)−

∂c(x)

∂n
J(x,x0)

]
dS(x) (2.103)

where x is any point on the surface S of the particle with local normal n(x). Here, λ =
0, 1/2 or, 1 depending on whether the point of evaluation, x0 is inside, on or outside the
surface of the body.

2.7 Conclusions

In this chapter, we explain the physical features of mechanics of fluid flow at low Reynolds
numbers as well as its influence on rigid bodies immersed in the fluid. Beginning from the
fundamental Stokes equations, we have established the requirements of self-propulsion in
this regime. Due to lack of inertia the active bodies require spending continuous supply
of energy to maintain the drag-asymmetry needed for propulsion. For rigid bodies, their
propulsion velocities depend only on the distribution of instantaneous surface velocities;
biological organisms use appendages on their surface while artificial phoretic swimmers use
surface concentration gradients of a solute to generate the slip velocity. When subjected to
external flow field, the advective response of the bodies is determined using Faxen’s laws.
Additionally, Brownian dynamics is used to explain the random drift and reorientation of
bodies in the fluid.

The swimming bodies generate a flow field around them as the move through the fluid, the
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features of which are a characteristic of the surface forcing of the swimmer. This flow signa-
ture can be understood analytically for an axisymmetric swimmer through decomposition of
the field into its spherical harmonic components; these are essentially point force and source
multipoles. In a system with multiple particles, the field from each acts as a disturbance
on the others. The harmonic decomposition of the field however assumes the bodies to be-
have as point particles. To determine exact solution to bodies with finite volume, boundary
integral methods are introduced whereby the surface stresses and propulsion velocities of
the bodies can be determined by appropriate distribution of the singular Green’s functions
solutions on the surface of the body. Its numerical implementation, known as Boundary
Element Methods (BEM), is a powerful numerical technique for solving Stokes flow prob-
lems; the advantage being that the surface dynamics of the body can be determined without
computations of the flow-field in the bulk fluid.

in this chapter, we have laid the mathematical foundations needed to explain transport of
a single active or passive body in microscopic scales. In the rest of the thesis, we shall
implement the analytical as well as numerical methods (BEM) proposed here to develop
physical models to understand the interactions between multiple particles in a system and
to study their ensuing collective dynamics. We shall however restrict our attention to
phoretic micro-swimmers alone, where both chemical and hydrodynamic effects play a role
in the multi-particle interactions.
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3
Modeling chemical and

hydrodynamic interactions in
phoretic suspensions

Autophoretic colloids exploit local self-generated chemical gradients to achieve self-propulsion
at the microscopic scales. Understanding the collective dynamics of a large number of such
particles is currently the focus of intense research efforts. Thus far, most efforts for mod-
elling the dynamics rely on simple superposition of far-field approximations, which are only
valid asymptotically in the dilute suspension limit. A systematic and unified analytical frame-
work based on the classical Method of Reflections (MoR) is developed here for both Laplace
and Stokes’ problems to obtain the higher-order interactions and the resulting velocities of
multiple phoretic particles, up to any order of accuracy in the radius-to-distance ratio ε of
the particles. This model allows us to account for the generic chemo-hydrodynamic couplings
as well as N -particle interactions (N ≥ 3). The ε5-accurate interaction velocities are then
explicitly obtained and the resulting implementation of this MoR model is discussed and
validated quantitatively against exact solutions of a few canonical problems.

(a) (b) (c)

Figure: Three-body chemo-hydrodynamic interactions between janus phoretic particles using
Method of reflections: A chemical source field from particle 1 (a) creates a reflected source
quadrupole on particle 2 (b) which induces a hydrodynamic field that drifts the surrounding
particles (c).
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This chapter contains a modified version of article ”Modeling chemo-
hydrodynamic interactions of phoretic particles: a unified framework” by A.
Varma and S. Michelin, submitted to Physical Review Fluids.
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In this Chapter, we shall derive an analytical framework to compute the chemical and hydro-
dynamic fields created by phoretic particles in a suspension, and their resulting multi-body
dynamics. The method involves developing the spherical harmonic expansions of both the
chemical and hydrodynamic fields created by each particle as described in Chapter 2; the
presence of other similar chemically and hydrodynamically active particles in the system
modifies this field and hence their dynamics. For a particle with a finite volume, the chem-
ical and hydrodynamic flux boundary conditions on the surface are not met if one simply
superimposes the field created by the particles in isolation. This situation was encountered
by Smoluchowski (1911) while studying the dynamics of settling passive spheres [168]. The
technique he implemented involves an iterative procedure known as Method of reflections
wherein at each stage the spurious hydrodynamic field created by each particle is corrected
for by appropriate modification of the strength of field generated by the particle till the pre-
vious stage. Here, we shall implement this technique to determine the corrected propulsion
velocities of autophoretic particles due to chemical and hydrodynamic interactions between
them.

3.1 Swimming in external fields

To understand the chemical and hydrodynamic interactions created by the surrounding par-
ticles and their influence on the dynamics of a particular particle, a first step is to understand
how the particle responds to any arbitrary background concentration (and hydrodynamic)
field. The advective effects on the solute are considered negligible (Pe ≪ 1).

3.1.1 Phoretic drift in an external chemical field

We analyze here the drift generated on a spherical inert particle (A(r) = 0) placed in a
spatially non-uniform background concentration field c∞(r) of a solute. The diffusivity of
the solute is considered to be much larger than the particle, making the process quasi-static;
additionally, the solute dynamics is considered to be diffusion driven (advective effects are
negligible). Thus, due to the linearity of the chemical problem, the net concentration field
when the particle is present can be written as the superposition of (i) the background field
in the absence of the particle, c∞(r), and (ii) a perturbation c′(r) due to the presence of the
particle in the background field.

c(r) = c∞(r) + c′(r) (3.1)

To satisfy the no penetration boundary condition at the particle’s surface, the perturbation
field c′ must satisfy

∇2c′(r) = 0 with the boundary conditions, (3.2)

n · ∇c′
⏐⏐⏐⏐
r=a

= −n · ∇c∞
⏐⏐⏐⏐
r=a

and, c′(r → ∞) = 0, (3.3)

whose generic solution can be expressed uniquely as

c′(r) =
∑
q≥0

aq+1

r2q+1
Cq

q
⊙ r . . . r (3.4)
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where
q
⊙ denotes q successive tensor contractions and Cq is a tensor of order q which is fully

symmetric and deviatoric. Determining c′ is therefore equivalent to finding the set (Cq)q.

Near the particle, the background field c∞ can be expanded in Taylor series as,

c∞(r) =
∑
q≥0

1

q!

q

∇c∞
⏐⏐⏐⏐
r=0

q
⊙ r . . . r = c∞

⏐⏐⏐⏐
r=0

+ r · ∇c∞
⏐⏐⏐⏐
r=0

+
rr

2!
: ∇∇c∞

⏐⏐⏐⏐
r=0

+ . . . (3.5)

where
q

∇c denotes the q-th gradient of c. This background field creates a normal flux on the
surface of the particle,

n ·∇c∞
⏐⏐⏐⏐
r=a

=
∑
q≥1

aq−1

(q − 1)!

q−1

∇ c∞

⏐⏐⏐⏐
r=0

q
⊙n . . .n = n ·∇c∞

⏐⏐⏐⏐
r=0

+ann : ∇∇c∞
⏐⏐⏐⏐
r=0

+ . . . (3.6)

The perturbation field c′(r) must cancel out this spurious external surface flux exactly (as
described in equation (3.3)). Taking the gradient of Eq. (3.4), its normal component at the
surface is given by

n · ∇c′
⏐⏐⏐⏐
r=a

= −1

a

∑
q≥0

(q + 1)Cq

q
⊙ n . . .n = −C0

a
− 2C1

a
· n− 3C2 : nn

a
+ . . . (3.7)

Identification between equations (3.6) and (3.7) provides

Cq =
qaq

(q + 1)!

q

∇c∞
⏐⏐⏐⏐
r=0

. (3.8)

As a result, the concentration field due to the presence of a passive particle in an external
field is finally obtained as,

c′(r) + c∞(r) =
∑
q≥0

1

q!

(
q

∇c∞
⏐⏐⏐⏐
r=0

q
⊙ r . . . r

)[
1 +

q

q + 1

(a
r

)2q+1
]

= c∞

⏐⏐⏐⏐
r=0

+ r · ∇c∞
⏐⏐⏐⏐
r=0

(
1 +

a3

2r3

)
+

rr

2
: ∇∇c∞

⏐⏐⏐⏐
r=0

(
1 +

2a3

3r5

)
+ . . . (3.9)

Taking the tangential gradient of this field on the surface,

(I− nn) ·
[
∇c′(r) +∇c∞(r)

]
r=a

= (I− nn) ·
∑
q≥1

q(2q + 1)aq−1

(q + 1)!

(
q

∇c∞
⏐⏐⏐⏐
r=0

q−1
⊙ n . . .n

)

= (I− nn) ·

[
3

2
∇c∞

⏐⏐⏐⏐
rk=0

+
5a

3
∇∇c∞

⏐⏐⏐⏐
rk=0

· n . . .

]
.

(3.10)

The chemical drift velocities (Uχ,Ωχ), resulting from the presence of the particle in the
external field c∞, are then obtained using the reciprocal theorem for low-Re locomotion [169]:

Uχ = −
⟨
M(n)(I− nn) ·

[
∇c′(r) +∇c∞(r)

]
r=a

⟩
= −M ∇c∞

⏐⏐⏐⏐
r=0

(3.11)

Ωχ =
3

2a

⟨{
M(n)(I− nn) ·

[
∇c′(r) +∇c∞(r)

]
r=a

}
× n

⟩
= 0 (3.12)

where the last equality of each equation holds when the mobility of the particle, M(n)
is spatially uniform. Note that in the case of uniform surface mobility, the only non-zero
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surface average of slip velocity is the term with C1 (i.e. ∇c∞) and is the sole contribution for
the chemical drift of the particle. Note that when the particles have a uniform mobility, the
external fields do not contribute to any rotational effects; this is hence a reduced influence
on the chemotactic behaviour where particle aligns towards or away from the concentration
gradients.

3.1.2 Hydrodynamic drift of an inert particle

The last contribution to the active particle motion in external fields is the effect of an
external disturbance flow u∞, which is analyzed here by computing the hydrodynamic drift
on a rigid particle exposed to a non-uniform background hydrodynamic field u∞(r). This
is a classical Faxén’s laws [154] that were briefly derived in Chapter 2 (section 2.4.1.2).

Uh = u∞

⏐⏐⏐⏐
r=0

+
1

6
∇2u∞

⏐⏐⏐⏐
r=0

and Ωh =
1

2
∇× u∞

⏐⏐⏐⏐
r=0

. (3.13)

3.2 Far-field interactions

In this section we shall study the leading order interactions between active phoretic particles.
Note that here we shall examine the case of spherical phoretic particles having an axis of
symmetry of their surface activity; the surface activity (solute flux) is additionally considered
to be constant i.e. the reaction kinetics is first-order and is independent of the surrounding
concentration field. Thus the governing equations of the solute concentration field generated
by an arbitrary isolated phoretic particle j is summarized from Chapter 2 as,

∇2cj = 0, nj · ∇cj = −Aj(µj) and, cj(rj → ∞) = 0 (3.14)

where µj = tj · rj/rj . The general solution is given by equation (2.24) as

cj(rj) =
∞∑

m=0

Aj,m

m+ 1

(
aj
rj

)m+1

Lm(µj) with Aj,m =
2m+ 1

2

∫ 1

−1
Aj(µ) Lm(µ)dµ,

(3.15)

with the leading-order decay being a chemical source which decays as ∼ 1/r

cj =
Aj,0 aj
rj

(3.16)

Similarly, the hydrodynamic field produced by the particle j obeys the Stokes equations

∇ · uj = 0, ∇2uj = ∇pj (3.17)

with boundary conditions on the surface of the particle and at infinity,

uj

⏐⏐⏐⏐
rj=aj

= ũj +U+ a Ω× n and, uj(rj → ∞) = 0 (3.18)

The surface slip velocity is related to the concentration gradients as ũj =M(I−njnj) ·∇cj .
The general solution for a force- and torque-free particle in given by Blake (as described in
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Figure 3.1: Notations used for geometric description of the arrangement of any two Janus
particles j and k. The Janus particles comprise active (white) and inert (black) caps.

Chapter 2, equation (2.21)),

uj(rj) = −Aj,1Mj

6r3j

(
3rjrj
r2j

− I

)
· tj (3.19)

−
∑
m≥2

−MjAj,m

2(m+ 1)

{(
m(m+ 1)Lm(µj)

[(
aj
rj

)m+2

−
(
aj
rj

)m
])

rj
rj

+ L′
m(µj)

[
(m− 2)

(
aj
rj

)m

−m

(
aj
rj

)m+2
](

I− rjrj
r2j

)
· tj

}
(3.20)

with the leading-order field being a stresslet whose flow field (decaying as ∼ 1/r2) is obtained
as,

uj(rj) =
a2jMjAj,2

2
(3tjtj − I) :

(
rjrjrj
r5j

)
(3.21)

The interaction between multiple active particles may now be understood by considering
the particles to be immersed in a chemical and hydrodynamic field produced by the sur-
rounding particles. An approximation of the dynamics between particles can be made by
assuming only the far-field interactions between the particles. It assumes that the back-
ground concentration and hydrodynamic fields experienced by a given particle k results
from the superposition of the chemical and hydrodynamic signatures of each of its neigh-
bours (noted j ̸= k) as if these particles were themselves isolated. The far-field models
consider the particles to be point particles and thus neglect the presence and the influence
of the solid surface of the particles on the chemical and hydrodynamic fields they generate.
Further, in the dilute limit (i.e. when the particles are asymptotically far away from each
other), only the slowest decaying contribution to each signature is to be retained to obtain
the dominant chemical and hydrodynamic drifts.

The position of particle k is noted xk, its radius is ak, and its orientation is given by a unit
vector tk. For any two particles j and k, djk and ejk respectively denote their center-to-
center distance and the unit vector joining the centre of particles j to k, i.e. djkejk = xk−xj ,
as shown in figure 3.1. We further denote rj the position vector measured with respect to
particle j, i.e. rj = r− xj .

The concentration and hydrodynamic fields created by isolated particles (equations (3.15)
and (3.20) respt.) can be expanded as series of chemical and hydrodynamic singularities

56



whose effect on neighbouring particles scale like increasing powers of ε = a/d (where a
and d denote here the typical values of particle radius aj and interparticle distance djk,
respectively). When sufficiently far apart (i.e. ε ≪ 1), the phoretic particles behave, at
the leading order, as the slowest decaying chemical and hydrodynamic singularities, i.e. a
chemical point source and a hydrodynamic force-dipole.

As mentioned previously, each particle is considered isolated from the others. Thus, the
concentration field produced by each particle (say j) obeys equation (3.15). At the leading
order, each particle behaves as a chemical source (equation (3.16) ) and the net field produced
in the system is a simple superposition of the individual fields. Thus,

c(rj) =
∑
j

Aj,0aj
rj

(3.22)

When a particle k is placed in this field, the external concentration field c∞,k experienced
by particle k (and its gradient) at the particle’s center (rk = 0) are obtained as

c∞,k =
∑
j ̸=k

Aj,0aj
rj

⇒ ∇c∞,k

⏐⏐⏐⏐
rk=0

= −
∑
j ̸=k

Aj,0 a
2
j

d2jk
ejk. (3.23)

The drift velocity induced on a particle placed in an external concentration field c∞,k is thus
given by equation (3.11) as,

Uχ
k =Mk

∑
j ̸=k

Aj,0 a
2
j

d2jk
ejk, and Ωχ

k = 0. (3.24)

Each neighbouring particle j thus induces on particle k a chemical drift along their line of
centers (with an order of magnitude O(ε2)), but without any rotation (for uniform mobility).

Similarly, retaining only the leading-order flow field created by particle j (i.e. that of a
stresslet in equation (3.21)), the background hydrodynamic field experienced by particle k
is given by

u∞,k(r) =
∑
j ̸=k

a2jMjAj,2

2
(3tjtj − I) :

(
rjrjrj
r5j

)
, (3.25)

and the hydrodynamic drifts are obtained from Eqs. (3.13), keeping only leading order
contributions, as

Uh
k =

∑
j ̸=k

MjAj,2

2

(
aj
djk

)2

(3tjtj − I) : ejkejkejk, (3.26)

Ωh
k =

∑
j ̸=k

3a2jMjAj,2

2d3jk
(tj · ejk)(ejk × tj). (3.27)

In non-dimensional units, the self-propulsion velocity of the particles is O(1), while the
chemical and hydrodynamic drifts introduced by the presence of other particles, Eqs (3.11)
and (3.26)–(3.27) are both of the same order, O(ε2).

The resulting framework, termed far-field interaction model, is fundamentally based on
neglecting (i) higher order contributions to the chemical and hydrodynamic signatures of
individual particles which would contribute to O(ε3) or smaller drift velocities and, (ii)
modifications of the field production by each particle due to the presence of others. Note that
in the above analysis, by restricting to far-field modeling, we are able to obtain solutions that
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provide pairwise interaction between the particles. Additionally, to maintain consistency of
the asymptotics, far-field models must also ignore higher order corrections as the Laplacian
term in Faxen’s law (in equation (3.13)) which would contribute an O(ε4) to the particles’
velocities.

The higher-order interactions (O (an/dn) , n > 2) however become increasingly influential on
the dynamics when the separation d between particles decreases. This substantiates the need
for more accurate estimates of the propulsion velocities Uk and Ωk which requires taking
into account explicitly these faster-decaying terms. In doing so, multiple interdependent
interactions between the particles would be taken into account and this property is at the
heart of the classical Method of Reflections for both chemical and hydrodynamic problem,
which we exploit in the following section.

3.3 Method of Reflections (MoR)

The objective is to construct analytically consistent estimates of the velocities with increas-
ing order of accuracy.

3.3.1 MoR for chemical problem

The method is initiated by considering the superposition of the chemical field created by
isolated particles, noted c0k, which was obtained explicitly in equation (3.15). When isolated,
c0k satisfies the correct constant flux boundary condition on particle k, but, if it is introduced
to a system consisting of similar active particles, a spurious flux is introduced on its surface
from the diffuse flux created by others; the particle k itself would then create spurious
chemical flux on the surface of others. The objective of MoR is to sequentially eliminate
this spurious flux so that the correct boundary condition is closely reached.

At each subsequent stage (r ≥ 1), known as a ”reflection”, a correction crk to the concen-
tration field created by a particle k is introduced in order to correct the spurious normal
flux introduced on the boundary of particle k during the previous reflection at the other

particles (e.g. c1k must correct for the spurious flux introduced by
∑
j ̸=k

c0j ). c
r
k is therefore

the unique solution to the following Laplace problem

∇2crk = 0 for rk ≥ ak, nk · ∇crk
⏐⏐⏐⏐
rk=ak

= −
∑
j ̸=k

nk · ∇cr−1
j

⏐⏐⏐⏐
rk=ak

, crk(rk ≫ ak) −→ 0.

(3.28)

and can be written as

crk(rk) =
∑
q≥0

aq+1
k

r2q+1
k

Cr
k,q

q
⊙ [rk

q
⊗ rk], (3.29)

where (Cr
k,q)q is a unique set of qth order fully symmetric and deviatoric tensors. In the

previous equation rk
q
⊗rk denote the tensorial product of vector rk by itself repeated q times,

while A
q
⊙B denotes the q-fold contraction of tensors A and B. Expanding cr−1

j in Taylor
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series near the center of particle k,

cr−1
j (rj) =

∑
q≥0

1

q!

q

∇cr−1
j

⏐⏐⏐⏐
rk=0

q
⊙[rk

q
⊗rk] = cr−1

j

⏐⏐⏐⏐
rk=0

+rk·∇cr−1
j

⏐⏐⏐⏐
rk=0

+
rkrk
2!

: ∇∇cr−1
j

⏐⏐⏐⏐
rk=0

+. . . ,

(3.30)
the flux boundary condition in Eq. (3.28) together with Eqs. (3.29)–(3.30) imposes:

Cr
k,q =

∑
j ̸=k

qaqk
(q + 1)!

q

∇cr−1
j

⏐⏐⏐⏐
rk=0

. (3.31)

Substituting Eq. (3.29) for particle j at reflection r−1 into Eq. (3.31) provides the recursive
relation

Cr
k,q =

∑
j ̸=k

∑
s≥0

Cr−1
j,s

s
⊙Fχ

jk(q, s), with, (3.32)

Fχ
jk(q, s) =

qaqka
s+1
j

(q + 1)!

[
q

∇

(
rj

s
⊗ rj

r2s+1
j

)]
rk=0

= O(εq+s+1). (3.33)

Fχ
jk(q, s) is the transfer function, which is a tensor of order (q + s) that relates the qth

order tensor coefficient of particle k (Cr
k,q) with the sth order tensor coefficient of particle

j (Cr
j,s). Note that the formulation above corresponds to a parallel form of the method of

reflections (it relates the new concentration multipole on particle k to that of other particles
at the previous reflection). A sequential approach of the method (i.e. obtainingCr

k,q for each
particle k successively) would correspond to splitting the sum on j in Eq. (3.33) (respectively
for j < k and j > k) in order to exploit that for j < k, the new concentration multipole
Cr

j,s, being already available, would be used to compute Cr
k,q.

Also, it should be noted that Fχ
jk(q = 0, s) = 0 for all s; this implies that the reflections

induce no net source because the boundary condition to be met is a balance of the concen-
tration gradients. The isotropic mode (source term) do not contribute to generating directed
surface gradients. It is to be noted that only the fully symmetric and deviatoric part of the
transfer function Fχ

jk(q, s) with respect to its first s indices contribute since Cr−1
j,s is fully

symmetric and deviatoric. The lowest order transfer functions are thus obtained as:

Fχ
jk(1, 0) = −

ajak ejk
2d2jk

= O(ε2), (3.34)

Fχ
jk(2, 0) =

a2kaj(3ejkejk − I)

3d3jk
= O(ε3), (3.35)

Fχ
jk(3, 0) =

3a3kaj
8d4jk

(
Iejk + ejkI+ (Iejk)

T23 − 5ejkejkejk
)
) = O(ε4) (3.36)

Fχ
jk(1, 1) = −

aka
2
j (2ejkejk − I)

3d3jk
= O(ε3) (3.37)

Fχ
jk(2, 1) = −

a2ka
2
j

d4jk

(
Iejk + ejkI+ (Iejk)

T23 − 5ejkejkejk
)
) = O(ε4) (3.38)

Fχ
jk(1, 2) =

3aka
3
j

2d4jk

(
Iejk + ejkI+ (Iejk)

T23 − 5ejkejkejk
)
= O(ε4). (3.39)

The recursive relation in Eq. (3.33) is initiated by noting that the tensors C0
k,q are obtained
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from the activity distribution coefficients Ak,n (equation 3.15) of the individual particle as

C0
k,0 = Ak,0, C0

k,1 =
Ak,1 tk

2
, C0

k,q≥2 =
(2q − 1)!Ak,q

2q−1(q − 1)!× (q + 1)!
tk

q
⊗ tk, (3.40)

with B denoting the fully symmetric and deviatoric part of any given tensor B [127]. For
example, using the index notation, it can be shown that

titj =
1

2
(titj + tjti)−

1

3
tstsδij = titj − δij/3, (3.41)

titjtk =
1

6
(titjtk + titktj + tjtitk + tjtkti + tktitj + tktjti)

− 1

15
((tststi + tstits + titsts)δkj + (tststj + tstjts + tjtsts)δik + (tststk + tstkts + tktsts)δij)

(3.42)

= titjtk −
1

5
(tiδjk + tjδik + tkδij). (3.43)

It should be stressed here that the method is presented for axisymmetric particles (i.e. the
successive moments C0

k,q are function of the axis of the particle tk only), yet could easily be
extended to particles of arbitrary coverage [170] by modifying Eq. (3.40) accordingly.

The change in surface concentration of particle k introduced at reflection r ≥ 1, noted c̃rk,
is obtained within this framework as the sum of crk and of the contributions cr−1

j of all the
other particles (j ̸= k) evaluated at rk = ak:

c̃rk = crk

⏐⏐⏐⏐
rk=ak

+
∑
j ̸=k

cr−1
j

⏐⏐⏐⏐
rk=ak

=
∑
q≥1

2q + 1

q
Cr

k,q

q
⊙ [nk

q
⊗ nk]. (3.44)

For r = 0, the surface concentration is similarly obtained as

c̃0k = c0k

⏐⏐⏐⏐
rk=ak

=
∑
q≥0

C0
k,q

q
⊙ [nk

q
⊗ nk]. (3.45)

Equation (3.44) provides an interpretation of the tensorial coefficients Cr
k,q as the fully

symmetric and deviatoric moment of order q of the surface concentration introduced at
reflection r,

Cr
k,q =

q

2q + 1
⟨c̃rk nk

q
⊗ nk⟩. (3.46)

Finally, after all the desired reflections have been performed, the surface concentration c̃k
of particle k is obtained by superimposing all the different contributions c̃rk,

c̃k = C0
k,0 +

∑
q≥1

⎡⎣C0
k,q +

∑
r≥1

(2q + 1)

q
Cr

k,q

⎤⎦ q
⊙ [nk

q
⊗ nk]. (3.47)

3.3.2 MoR for hydrodynamic problem

A similar framework can be formulated for the hydrodynamic problem. At each stage p,
for a given particle k, we seek the unique solution of Stokes equation around particle k that
decays in the far-field,

∇2up
k = ∇ppk, ∇ · up

k = 0, up
k(rk ≫ ak) → 0, (3.48)
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and further satisfies the following Dirichlet condition on the particle’s surface

up
k

⏐⏐⏐⏐
rk=ak

= vp
k +Up

k +Ωp
k × nk, (3.49)

where Up
k and Ωp

k are the translation and rotation velocity corrections for particle k at
reflection p (determined by enforcing the linear and angular momentum balances on particle
k), and v0

k (initialization) corresponds to the phoretic slip resulting from the concentration
distribution at the particle’s surface, while vp

k with p ≥ 1 (subsequent reflections) balances
the spurious flow created at stage p− 1 by all the other particles.

As described in detail in Chapter 2 (Section 2.5.1), the general solution to Stokes equations
in (3.48) is clasically written in terms of three sets of spherical harmonics [157, 166],

up
k =

∞∑
q=1

[
∇ϕpk,q +∇×

(
χp
k,qrk

)
+

2(q + 1)ppk,qrk − (q − 2)r2k∇p
p
k,q

2q(2q − 1)

]
(3.50)

with, ⎡⎢⎣ ppk,q(rk)

ϕpk,q(rk)

χp
k,q(rk)

⎤⎥⎦ =

⎡⎢⎣ Pp
k,q

Φp
k,q

Xp
k,q

⎤⎥⎦ q
⊙

⎛⎝rk
q
⊗ rk

r2q+1
k

⎞⎠ , (3.51)

and (Φp
k,q)q, (P

p
k,q)q and (Xp

k,q)q are three sets of fully-symmetric and deviatoric tensors of
order q:

Φp
k,q =

aq+2
k

2(q + 1)

(
qPk

q [nk · vp
k] + Pk

q [−ak∇s · vp
k]
)
+
δq,1a

3
k

4
Up

k (3.52)

Pp
k,q =

(2q − 1)aqk
q + 1

(
(q + 2)Pk

q [nk · vp
k] + Pk

q [−ak∇s · vp
k]
)
+

3δq,1ak
2

Up
k (3.53)

Xp
k,q =

aq+1
k

q(q + 1)
Pk
q [aknk · (∇s × vp

k)] + δq,1a
3
kΩ

p
k, (3.54)

As detailed in Chapter 2, Pk
q [f(x)] represents the fully symmetric and deviatoric part of

the qth order tensor of the spherical harmonic decomposition of the scalar field f(x). The
conservation of linear and angular momentum for each particle imposes two further condi-
tions that uniquely determine Up

k and Ωp
k. For example, for force- and torque-free particles,

Xp
k,1 = Pp

k,1 = 0 (there is no rotlet or stokeslet contribution to particle k’s hydrodynamic
signature).

3.3.2.1 Initialization from the phoretic slip distribution (p = 0)

In the context of the present work, i.e. the collective dynamics of phoretic particles, the
hydrodynamic problem is initiated by considering the flow field generated by a single isolated
particle (p = 0) with a phoretic slip distribution v0

k at its surface. By definition, v0
k =

M(nk)∇sC is purely tangential. Also, aknk · (∇s × vp
k) = aknk · (∇sM × ∇sc̃k) which

is strictly zero for particles of uniform mobility. Finally, the surface divergence of v0
k is

obtained from the spherical harmonic decomposition of the surface concentration on that
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particle, Eq. (3.47). For particles of uniform mobility Mk, we finally obtain

nk · v0
k = 0, −ak∇s · v0

k =Mk

∑
q≥1

(q + 1)

⎡⎣qC0
k,q +

∑
r≥1

(2q + 1)Cr
k,q

⎤⎦ q
⊙ [nk

q
⊗ nk] and,

(3.55)

aknk · (∇s × vp
k) = 0. (3.56)

The last equation above imposes that X0
k,q = 0 for all q, so that there is no self-rotation

associated with phoretic slip for torque-free particles of uniform mobility. For force- and
torque-free particles of uniform mobility, we finally obtain

U0
k = −2Mk

3

⎡⎣C0
k,1 +

∑
r≥1

3Cr
k,1

⎤⎦ , Ω0
k = 0, Φ0

k,1 = −
a3kU

0
k

2
, (3.57)

Φ0
k,q≥2 =

a2kP
0
k,q

2(2q − 1)
=
aq+2
k Mk

2

⎡⎣qC0
k,q +

∑
r≥1

(2q + 1)Cr
k,q

⎤⎦ , X0
k,q≥1 = 0. (3.58)

For an isolated particle, one can use equations (3.58) and (3.40) to determine that U0
k =

2MkC
0
k,1/3 = −Ak,1Mk/3 as expected from equation (2.75).

It should be noted that the mobility distribution at the surface of the particles only impacts
the initialization of the hydrodynamic problem (p = 0), and not the recursive relations for
p ≥ 1 which are completely general. Although Eqs. (3.57)–(3.58) are only valid for particles
of uniform mobility, they can be generalized straightforwardly to particles of non-uniform
mobility (e.g. Janus particles with different activities and mobilities on both hemispheres),
by performing a tensor reduction process to rewrite the modified Eqs. (3.56) in terms of
fully-symmetric and deviatoric tensors. This would potentially introduce a non-zero surface
vorticity in Eq. (3.56).

3.3.2.2 Recursive relations for the hydrodynamic singularities (p ≥ 1)

When p ≥ 1, vp
k must exactly cancel the flow introduced at the surface of particle k by the

previous reflection at all the other particles j ̸= k; using a Taylor series expansion of those
flow fields near the center of particle k,

vp
k = −

∑
j ̸=k

up−1
j

⏐⏐⏐⏐
rk=ak

= −
∑
q≥1

⎡⎣∑
j ̸=k

aq−1
k

(q − 1)!

q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q−1
⊙ [nk

q−1
⊗ nk], (3.59)
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and the surface normal velocity, divergence and vorticity are obtained as

vp
k · nk = −

∑
q≥1

⎡⎣∑
j ̸=k

aq−1
k

(q − 1)!

(
1 +

a2k
2(2q + 3)

∇2

)
q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk],

(3.60)

−ak∇s · vp
k = −

∑
q≥1

⎡⎣∑
j ̸=k

aq−1
k

(q − 1)!

(
q − 1 +

(q + 1)a2k
2(2q + 3)

∇2

)
q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk],

(3.61)

aknk · [∇s × vp
k] = −

∑
q≥1

⎡⎣∑
j ̸=k

aqk
q!

q−1

∇ ωp−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk], (3.62)

where
q−1

∇ up−1
j denotes the fully symmetric and deviatoric part of the (q − 1)-th velocity

gradient. For force- and torque-free particles, Pp
k,1 = Xp

k,1 = 0,

Up
k =

∑
j ̸=k

(
1 +

a2k
6
∇2
)
up−1
j

⏐⏐⏐⏐
rk=0

, Ωp
k =

1

2

∑
j ̸=k

ωp−1
j

⏐⏐⏐⏐
rk=0

, Φp
k,1 = −

a5k
30

∑
j ̸=k

∇2up−1
j

⏐⏐⏐⏐
rk=0

,

(3.63)

which recovers Faxen’s laws exactly, and for q ≥ 2,

Φp
k,q = − 2q − 1

2(q + 1)

a2q+1
k

(q − 1)!

∑
j ̸=k

(
1 +

(2q + 1)a2k
2(2q − 1)(2q + 3)

∇2
) q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

, (3.64)

Pp
k,q = − 2q + 1

2(q + 1)

a2q−1
k

(q − 1)!

∑
j ̸=k

(
1 +

a2k
2(2q + 1)

∇2
) q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

, (3.65)

Xp
k,q = − 1

q(q + 1)

a2q+1
k

q!

∑
j ̸=k

q−1

∇ ωp−1
j

⏐⏐⏐⏐
rk=0

. (3.66)

Computing the required gradients at the center of particle k provides recursive definitions
of the flow singularities (Φp

k,q,P
p
k,q,X

p
k,q)q and particles’ velocities (Up

k,Ω
p
k) at reflection p

as linear functions of those at reflection p − 1, thus obtaining transfer functions that are
independent of p ≥ 1 (see Appendix D). For force- and torque-free particles, these write:

Up
k =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙F1

jk(1, s)−Xp−1
j,s

s
⊙F2

jk(1, s) +Pp−1
j,s

s
⊙
(
F3

jk(1, s) +
a2k
6
F1

jk(1, s)

)]
,

(3.67)

Ωp
k = −1

2

∑
j ̸=k

∑
s≥1

[
Pp−1

j,s

s
⊙F2

jk(1, s) + sXp−1
j,s

s
⊙F1

jk(1, s)
]
, (3.68)

Φp
j,1 = −

a5k
30

∑
j ̸=k

∑
s≥1

[
Pp−1

j,s

s
⊙F1

jk(1, s)
]
, (3.69)
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and for q ≥ 2:

Φp
k,q =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙FΦ→Φ

jk (q, s) +Pp−1
j,s

s
⊙FP→Φ

jk (q, s) +Xp−1
j,s

s
⊙FX→Φ

jk (q, s)
]
,

(3.70)

Pp
k,q =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙FΦ→P

jk (q, s) +Pp−1
j,s

s
⊙FP→P

jk (q, s) +Xp−1
j,s

s
⊙FX→P

jk (q, s)
]
,

(3.71)

Xp
k,q =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙FΦ→X

jk (q, s) +Pp−1
j,s

s
⊙FP→X

jk (q, s) +Xp−1
j,s

s
⊙FX→X

jk (q, s)
]
,

(3.72)

with FΦ→X
jk jk

(q, s) = 0 and the other transfer functions above defined in Eqs. (D.16)–

(D.25). Of utmost importance to truncate the reflection process at a fixed order in ε
consistently, they respectively scale as:

FP→Φ
jk (q, s) = O(εs+q−1), (3.73)

FP→P
jk (q, s) = (εs+q+1), (3.74)

FX→Φ
jk (q, s) = O(εs+q), (3.75)

FX→P
jk (q, s) = O(εs+q), (3.76)

FX→X
jk (q, s) = O(εs+q), (3.77)

FP→X
jk (q, s) = O(εs+q), (3.78)

FΦ→Φ
jk (q, s) = O(εs+q+1), (3.79)

FΦ→P
jk (q, s) = O(εs+q+1). (3.80)

As an example, using the results of Appendix D,

FP→P
jk (2, 2) = −

5a3k
12d3jk

[
(Iejkejk)

T24 + (Iejkejk)
T23 + (ejkIejk)

T34 + ejkIejk
2

+ ejkejkI− 5ejkejkejkejk

]
−

a5k
12d5jk

[
(II)T23 + (II)T24 + II

5
− Iejkejk − (Iejkejk)

T23 − (Iejkejk)
T24 − (ejkIejk)

T34

− ejkIejk − ejkejkI+ 7ejkejkejkejk

]
(3.81)

and the stresslet induced during reflection p on particle k by the stresslet signature of all
the other particles at the previous reflection is:

Pp
k,2 = −

∑
j ̸=k

5a3j
12d3jk

[
(Pp−1

j,2 · ejk)ejk + ejk(P
p−1
j,2 · ejk) + (Pp−1

j,2 : ejkejk)(I− 5ejkejk)

]
+O(ε5Pp−1

j,2 ).

(3.82)

The results above provide an explicit approach to obtain the successive reflections for the
hydrodynamic flow field and to truncate them to a required degree of approximation in ε.
Note that the method is completely general and could be applied formally to any low-Re
problem involving a suspension of spherical particles.
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3.3.3 Chemical vs. hydrodynamic vs. chemo-hydrodynamic interactions

Performing successive reflections as described in the previous sections then provides a sys-
tematic framework to obtain the velocity and rotation rate (Uk,Ωk) in terms of the position
and orientation of the different particles (Rk, tk) in the form of a series of terms in increasing
powers of O(ε). Truncating to a particular degree of accuracy provides a computationally-
efficient and asymptotically-consistent approach to determine the collective dynamics of N
particles.

This convenient framework also provides a clear understanding of the different interactions
routes between the particles, and an explicit way to analyse only certain components of
the coupling. Formally, we show below that the particles’ velocity includes four different
contributions [142]:

1. Self-propulsion velocity : velocity of the isolated particle in an unbounded fluid (no
chemical and no hydrodynamic reflections).

2. Chemical interactions: modification of the particle velocity resulting from the pertur-
bation of its own surface chemical concentration by the presence of the other particles
(i.e. chemical reflections with r ≥ 1 in Sec. 3.3.1) but solving for its swimming
velocity as if it was hydrodynamically-isolated (i.e. no hydrodynamic reflections).
At the leading-order for first reflection of concentration field is a source dipole of
strength O(ε2) (and hence propulsion velocity of O(ε2)). Using equation (3.33) it can
be shown that subsequent r reflections create source dipoles of strength O(ε3r). Thus,
the leading-order propulsion velocity resulting from gradients of field created after r
chemical reflections is O(ε3r+2).

3. Hydrodynamic interactions: modification of the particle velocity resulting from the
hydrodynamic influence of the other particles (i.e. performing hydrodynamic reflec-
tions with p ≥ 1 in Sec. 3.3.2.2) but neglecting any chemical influence of the other
particles (i.e. no chemical reflections). The leading-order hydrodynamic field is a
stresslet which creates a drift velocity of O(ε2). The strength of reflected stresslet is
known from equation (3.80) to be O(ε3p). Thus, after p hydrodynamic reflections, the
propulsion velocity due to drift of particles from the resulting flow field is of O(ε3p+2).

4. Chemo-hydrodynamic interactions: modification to the particle velocity resulting from
the hydrodynamic influence of the particles (hydrodynamic reflections with p ≥ 1) and
forced by the modification in surface concentration distribution due to the presence
of other particles (chemical reflections with r ≥ 1). Since chemo-hydrodynamic in-
teractions are a combination of effects from chemical and hydrodynamic effects, the
propulsion velocity expected after p chemo-hydrodynamic reflections is also O(ε3p+2).

In the present framework, it is therefore particularly easy to analyse the effect of one inter-
action route over another, by simply including or not any chemical and/or hydrodynamic
reflections of order r, p ≥ 1. It can be shown that by including the above mentioned interac-
tions in p reflections, one can compute the propulsion velocities to an accuracy of O(ε3p+2)
(i.e. within an error of O(ε3(p+1))).

It should also be noted that the classical view on phoretic particles’ interactions is that of two
distinct and independent routes, namely chemical and hydrodynamic couplings. While this
dichotomy may be relevant for far-field (dilute) interactions which essentially are limited
to two-particle interactions (i.e. the chemical or hydrodynamic influence of particle i on
particle j’s velocity), the present results emphasize that this does not hold in general and
instead reveal the more intricate nature of the particles’ coupling: in fact, a third coupling

65



occurs as a result of the dual influence of the chemical and hydrodynamic of particles on each
other. This third route, termed here “chemo-hydrodynamic” interactions, is fundamentally
a three-particle coupling as its simplest occurence involves the chemical influence of particle
i on particle j’s surface concentration, resulting in a modified flow field near particle k (note
that particles i and k may be identical). As a result such interactions only arise at higher
order of accuracy and are therefore sub-dominant in the far-field limit.

3.4 An ε5-accurate framework for phoretic particles

In this section, we apply the previous formalism explicitly and systematically determine the
particles’ velocity and rotation rate resulting from the different interaction routes described
in the previous section, up to an order of accuracy of ε5, i.e. with the largest asymptotic
errors for large distances scaling asO(ε6). This choice of truncature order is motivated by the
inclusion at that order of the dominant 3-particle interactions (i.e. the interaction between
two particles due to the presence of a third one) and chemo-hydrodynamic coupling. In
principle however, the framework of Section 3.3 can be repeated to any number of reflections
and hence, achieve any stated degree of accuracy.

3.4.1 Self-propulsion (p = 0)

The leading order contribution to the particles’ velocities corresponds to the self-generated
concentration gradients at its surface (i.e. self-propulsion). It is obtained by neglecting any
chemical or hydrodynamic interaction with other particles. Hence, no reflection should be
performed and using the results of Eqs. (3.57), the propulsion velocities are obtained as,

Usp
k = −2Mk

3
C0

k,1 = −A1Mk

3
tk and Ω0

k = 0. (3.83)

3.4.2 Chemical interactions between particles

As for self-propulsion, the hydrodynamic effect of other particles is neglected, hence no
hydrodynamic reflections are performed. The chemical interactions correspond to the con-
tributions in the surface concentration moments Cr

k,1 with r ≥ 1:

Uχ
k = −2Mk

∑
r≥1

Cr
k,1, Ωχ

k = 0, (3.84)

and C1
k,r with r ≥ 1 are obtained using the recursive relations, Eq. (3.33). Chemical reflec-

tions with r ≥ 3 (i.e. 4-particle interactions) do not contribute to the O(ε5) approximation
of the velocity and are therefore ignored. The contribution to the chemical interaction ve-
locity Uχ

k can therefore be decomposed into two main groups whether (i) they involve the
gradient of the concentration field near a given particle and created individually by all its
neighbours (2-particle interactions, r = 1) or (ii) they involve the gradient near the particle
of interest of the correction to the concentration field introduced by a second particle due
to the presence of a third one (3-particle interactions, r = 2).
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3.4.2.1 2-particle chemical interactions

We focus first on the contribution of r = 1 to Eq. (3.84), i.e. the concentration gradient
created directly by other particles, which is obtained from Eq. (3.33). The induced velocity
Uχ,r=1

k is of order O(εs+2) where, s ≥ 0 represents the sth chemical mode. Hence, truncating
terms smaller than ε5,

C1
k,1 =

∑
j ̸=k

[
C0
j,0F

χ
jk(1, 0) +C0

j,1 ·F
χ
jk(1, 1) +C0

j,2 : F
χ
jk(1, 2) +C0

j,3

3
⊙Fχ

jk(1, 3)

]
. (3.85)

Using the expression for the transfer function Fχ
jk(q, s) provided in Eq. (3.33), the resulting

chemical drift velocity is

Uχ,r=1
k =Mk

∑
j ̸=k

[
ajakC

0
j,0ejk

d2jk
+
aka

2
j (3ejkejk − I) ·C0

j,1

d3jk
+
aka

3
j

d4jk
(C0

j,2 · ejk) · (5ejkejk − 2I)

+
aka

4
j

d5jk
[C0

j,3 : (ejkejk)] · (−3I+ 7ejkejk)

]
, (3.86)

with C0
j,s given in terms of the particles’ orientation tj in Eq. (3.40). One recognizes the

successive contribution of the first four chemical singularities contributing to the signature
of particle j (monopole C0

j,0, dipole C
0
j,1, quadrupole C

0
j,2 and octopole C0

j,3) to the concen-
tration gradient near particle k and its resulting chemical drift. Also note that the leading
order term proportional to C0

j,0 is the velocity obtained from the far-field model (Section 3.2).

3.4.2.2 3-particle chemical interactions

Proceeding now with the second reflection (3-particle interactions), we note that the con-
centration moments satisfy C1

j,q = O(εq+1) (i.e. the velocity induced by 3-particle chemical

interactions are O(ε2q+s+3) with q ≥ 1 and s ≥ 0). This reflection is not necessary to be
computed as one can determine the drift velocity of remaining particles from the gradients
of the first reflected field at the center of each particle. Using the expression for the transfer
function Fχ

jk(q, s) given in Eq. (3.33), the gradient of concentration C2
k,1 near particle k

responsible for its chemical drift includes a single O(ε5)-contribution, namely

C2
k,1 =

∑
j ̸=k

C1
j,1 ·F

χ
jk(1, 1) =

∑
j ̸=k

∑
l ̸=j

C0
l,0F

χ
lj(1, 0) ·F

χ
jk(1, 1), (3.87)

and the resulting 3-particle chemical interaction drift velocity of particle k is obtained as

Uχ,r=2
k = −Mk

∑
l

∑
j ̸=(k,l)

C0
l,0

aka
3
jal(3ejkejk − I) · elj

2d2jld
3
jk

· (3.88)

Note that in the previous equation l = k is possible, i.e. this also provides the interaction
of particle k with itself due to the presence of a second particle j. The sole contribution to
the 3-particle chemical interaction drift is therefore the gradient of concentration generated
near particle k by the dipolar correction near particle j due to the source field (Figure 3.2).
The total velocity induced through purely chemical reflections is hence obtained from Eq.
(3.86) and Eq. (3.88).

Uχ
k = Uχ,r=1

k +Uχ,r=2
k . (3.89)
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Figure 3.2: Illustration of 3-particle chemical interactions arising from a single reflection of
the concentration field. The chemical source from particle 1 (left) induces a chemical dipole
(right) at the surface of particle 2. In turn, this corrected field and its gradient (arrows)
induce a drift of particles 1 and 3.

We further note from the considerations above that the leading 4-particle interactions (r = 3)
would be at most O(ε8) and all such 4-particle interactions are therefore ignored here.

3.4.3 Drift from purely hydrodynamic interactions

We turn now to the hydrodynamic drift of particles arising from the flow fields created by
their neighbours. For purely hydrodynamic interactions, the flow forcing applied by each
particle on the surrounding fluid is that resulting from its own chemical signature (i.e. no
chemical reflections): hydrodynamic reflections are thus initiated with Eqs. (3.57)–(3.58)
using Cq

k,0 defined in Eqs. (3.40), and recursive relations in Eqs. (4.29)–(3.72) are used to

obtain the hydrodynamic drifts Uh
k and Ωh

k :

Uh
k =

∑
p≥1

Up
k and, Ωh

k =
∑
p≥1

Ωp
k (3.90)

where Up
k an Ωp

k are defined in Eqs. (4.29)–(4.30); the transfer functions are given in Ap-
pendix D.

3.4.3.1 2-particle hydrodynamic interactions

For 2-particle interactions (p = 1), the correction to propulsion velocity induced by a force
multipole P0

j,s of order s is O(εs) for the translational velocity and of O(εs+1) for the angular
velocity (with s ≥ 2 in both cases). Similarly, the correction to propulsion velocity from a
potential multipole Φ0

j,s of order s is O(εs+2) (with s ≥ 1), and there are no rotlet multipoles

in the signature of an isolated phoretic particle of uniform mobility (X0
j,s = 0). Φ0

j,s and

P0
j,s are O(1) quantities, and using Eqs. (3.74)–(3.80), the drifts with p = 1 in Eq. (3.90)

68



are obtained by retaining terms that are O(ε5) or larger:

Uh,p=1
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j ̸=k
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j,1 ·F1
jk(1, 1) +Φ0

j,2 : F1
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6
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+Φ0
j,3

3
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jk(1, 3) +P0
j,3

3
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a2k
6
F1
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)
+P0

j,4

4
⊙F3

jk(1, 4) +P0
j,5

s
⊙F3

jk(1, 5)

]
, (3.91)

Ωh,p=1
k = −1

2

∑
j ̸=k

[
P0

j,2 : F2
jk(1, 2) +P0

j,3

3
⊙F2

jk(1, 3) +P0
j,4

3
⊙F2

jk(1, 4)

]
. (3.92)

As expected, only force multipoles contribute to the rotation of the particles (potential
flows do not create any vorticity). The strength of the different multipoles in the previous
equations are directly related to the multipoles of concentration using Eqs. (3.58) (e.g. Φ0

j,1 =

a3jMjC
0
j,1/3, P

0
j,2 = 6a2jMjC

0
j,2 and so on). Using the definition of the transfer functions

provided in Appendix D, the ε5-accurate 2-particle hydrodynamic interaction velocities are
finally obtained as

Uh,p=1
k =

∑
j ̸=k

[
Mja

3
j

3d3jk
C0

j,1 · (I− 3ejkejk) +Mj(C
0
j,2 · ejk) ·

(
3a2j
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a2j (a

2
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(2I− 5ejkejk)
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0
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3a3j
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2
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d5jk
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)
−

3a4jMj

d4jk
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3
⊙ ejkejkejk) · (I+ 4ejkejk)−

15a5jMj

2d5jk
(C0

j,5

4
⊙ ejkejkejkejk) · (I− 3ejkejk)

]
,

(3.93)

Ωh,p=1
k =

∑
j ̸=k

[
3a2jMj

d3jk

(
ejk × [C0

j,2 · ejk]
)
−
∑
j ̸=k

15a3jMj

2d4jk

(
ejk × [C0

j,3 : ejkejk]
)

−
14a4jMj

d5jk

(
ejk × [C0

j,4

3
⊙ ejkejkejk]

)]
. (3.94)

3.4.3.2 3-particle hydrodynamic interactions

The slowest decaying transfer function listed in Eqs. (3.74)–(3.80) corresponds to the
stresslet induced by a stresslet on another particle (equivalent to the transfer function
FP→P

lj(2, 2)) at the previous reflection and scales as ε3. The slowest-decaying 3-particle
interaction therefore corresponds to the hydrodynamic drift of particle k associated with
the stresslet induced by particle j after reflection of the flow field generated by the stresslet
of particle l (Figure 3.3), and its dominant contribution scales as ε5:

Uh,p=2
k = P1

j,2 : F3
jk(1, 2) =

∑
l ̸=j

(P0
l,2 : FP→P

lj(2, 2)) : F3
jk(1, 2), (3.95)
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Figure 3.3: Illustration of 3-particle hydrodynamic interactions resulting from a single hy-
drodynamic reflection: The stresslet induced by the self-propulsion of particle 1 (a) induces
a reflected stresslet at particle 2 (b). In turn, this modifies the hydrodynamic environment
of particle 1 and 3 and induces their hydrodynamic drift (red arrow). The velocity mag-
nitude (color) and direction (white arrow) are shown. Note that a rotation is also induced
but scales as O(ε6) and is neglected here.

Knowing FP→P
lj(2, 2) from equation 3.82 and remembering P0

l,2 = 6a2lMlC
0
l,2

Uh,p=2
k = −

∑
l

∑
j ̸=(k,l)

5a3ja
2
lMl

2d3ljd
2
jk

[
2(ejk ·C0

l,2 · elj)(ejk · elj) + (elj ·C0
l,2 · elj)(1− 5(elj · ejk)2)

]
ejk.

(3.96)

An illustration of the drift created by this 3 particle hydrodynamic interaction is shown in
figure 3.3. The induced rotation from 3-particle hydrodynamic interactions scales as O(ε6)
and is therefore ignored here. Indeed, rotational effects of the stresslet P1

j,2 considered above

is O(ε6). The only other singularity that can contribute to Ω2
k, namely the rotlet dipole X1

j,2,

has an O(ε3) intensity (see Eqs. (3.74)–(3.80)) and the associated rotation rate is therefore
O(ε7).

3.4.4 Drift from chemo-hydrodynamic interactions

A third type of interactions arise when accounting for reflections both in the hydrodynamic
and chemical problems between at least 3 particles. These are chemo-hydrodynamic inter-
actions, which are the hydrodynamic drifts generated by a given particle on its neighbors as
a result of their chemical signature. Such interactions are completely absent in the far-field
model (Section 3.2) as these frameworks solely focused on pairwise and direct interactions
of particles. They also correspond to higher-order corrections of the particles’ velocity and
therefore become particularly important in not-so-dilute regimes. In the following, we show
that the leading-order chemo-hydrodynamic interactions is O(ε5).

From a practical point of view, hydrodynamic reflections are initiated with Eqs. (3.57)–(3.58)
using Cr≥1

k,q (chemical reflections), and recursive relations in Eqs. (4.29)–(3.72) are used to

obtain the hydrodynamic drifts Uχh
k and Ωχh

k . The dominant such contribution involves
three particles (one chemical reflection, r = 1, and one hydrodynamic reflection, p = 1.
A force multipole of order q ≥ 2, P0

j,q, generated by the reflected O(εq+1) concentration

multipole C1
j,q, Eq. (3.58), results in a O(ε2q+1) drift velocity Uχh

k on a third particle.
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Figure 3.4: Illustration of one of the dominant chemo-hydrodynamic interactions resulting
from a single reflection of the concentration field: (a) the chemical source from particle 1
induces a quadrupolar correction of the concentration field near particle 2 (b). This source
quadrupole induces a hydrodynamic stresslet (c) which is responsible for the drift of particles
1 and 3 (red arrows). In (a) and (b), the concentration fields are shown, while (c) shows
the velocity magnitude (color) and direction (white arrows).

Similarly, a potential multipole of order q ≥ 1, Φ0
j,q, generated by the O(εq+1) reflected

concentration multipole C1
j,q, Eq. (3.58), results in a O(ε2q+3) drift velocity Uχh

k . The two

dominant interactions, which scale as O(ε5), therefore correspond to (i) the drift on particle
k induced by the potential dipole of particle j created by the chemical dipole of particle
l, and (ii) the drift on particle k induced by the stresslet of particle j resulting from the
chemical quadrupole of particle l (Figure 3.4), all other interactions being subdominant.
Using Eqs. (4.29), (3.69), (3.57) and (3.58), the dominant chemo-hydrodynamic drift is
obtained as

Uχh
k =

∑
j ̸=k

[
Φ0

j,1 ·F1
jk(1, 1) +P0

j,2 : F3
jk(1, 2)

]
, with Φ0

j,1 =Mja
3
jC

1
j,1, P0

j,2 = 15Mja
2
jC

1
j,2.

(3.97)

which is finally obtained explicitly using Eq. (3.33)

Uχh
k =

∑
l

∑
j ̸=(l,k)

MjC
0
l,0

[
ala

4
j

2d3jkd
2
lj

elj · [3(ejk · elj)ejk − elj ] +
5ala

4
j

2d2jkd
3
lj

[3(elj · ejk)2 − 1]ejk

]
.

(3.98)

It should be noted that any rotation induced by 3-particle chemo-hydrodynamic interactions
is at most O(ε6) and is therefore ignored.

Assembling the contributions to the interactions velocities provided in Eqs. (3.83) (self-
propulsion), Eqs. (3.86) and (3.88) (purely chemical interactions), Eqs. (3.93), (3.94) and
(3.96) (purely hydrodynamic interations and Eq. (3.98) (chemo-hydrodynamic interactions)
provide a consistent asymptotic approximation of the particles’ dynamics with a ε5 accuracy.
It should be noted that a similar approach can be used to obtain velocities with a prescribed
arbitrary accuracy of εn with n ≥ 6.
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3.5 Examples of dynamics of multiple Janus particles

In this section, the ε5-accurate framework based on the Method of Reflections proposed in
the previous section (thereafter referred to as MoR) is used to compute the dynamics of
multiple active Janus particles, and its predictions are compared with the exact solution
of the full interaction problem (obtained either analytically or numerically depending on
the problem’s symmetries) and simple far-field approximations (Section 3.2). This provides
both a validatation of these results as well as the opportunity to analyze the accuracy gained
in the description of the collective dynamics by accounting for higher-order interactions (in
particular, 3-particle and chemo-hydrodynamic interactions).

Note that the present framework, in its long-range asymptotic formulation, is expected
to be particularly accurate for large particle distances but does not include intrinsically a
description of the lubrication interactions of particles. Further, phoretic interactions may
be attractive in the near-range [171]. To prevent particles’ overlapping each other, steric
repulsion is accounted for by implementing an additional repulsive velocity between any pair
of particles (j, k),

u
rep
jk = −A

[
1− tanh

(dcjk
δrep

)]
, (3.99)

with dcjk = djk − aj − ak the contact distance between particles j and k. In the following,
we use A = 35 and δrep = 0.04, so that this repulsion velocity is sufficient to prevent the
particles’ overlap but is only significant when the particles’ surfaces are distant by less than
about a tenth of their radii [138].

3.5.1 Axisymmmetric relative translation of two Janus particles

e
z

2

1

Figure 3.5: Interactions of two aligned Janus particles: (left) flow velocity magnitude ob-
tained using BEM and (right) concentration field obtained analytically (Appendix A). Both
Janus particles have positive mobility (M = 1) and equal unit radius, with 3/4th of their
surface releasing solute at a fixed rate (A = 1, white region) while the rest of their surface
is inert (A = 0, black region). The particles have a contact distance dc = d − 2 = 0.5, and
swim toward their inert cap when isolated (i.e. along +ez).

We first consider the case of two Janus particles arranged axisymmetrically, both aligned
in the same direction as shown in Figure 3.5. Both particles have unit radius (a = 1)
and uniform and positive mobility (M = 1); 3/4-th of their surface is active (A = 1), the
rest being inert (A = 0). In isolation, each particle would hence swim with a velocity
Uself = 3/16 ez. A 3/4-th active Janus is chosen here so as to test the framework with the
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Figure 3.6: Translation of two aligned Janus particles (see Figure 3.5): (a) Swimming
velocities of particle 1 (blue) and particle 2 (red) as a function of their contact distance
dc = d − 2, as obtained analytically (solid) or using MoR (dashed) or far-field models

(dotted). The reference self-propulsion velocity of an isolated particle, U self = 0.1875 is also
shown (dot-dashed). (b) Error magnitude |∆U | in the velocity prediction of far-field and
MoR models with respect to the analytical solution.

most generic chemical and hydrodynamic reflections computed in Section 3.4 (hemispheric
Janus particles of uniform mobility have no intrinsic stresslet).

In this highly-symmetric setting, the chemical and hydrodynamic fields as well as the par-
ticles’ velocities can be obtained analytically for an arbitrary distance using bispherical co-
ordinates [61, 138] (Appendix A). The resulting flow and concentration fields are reported
on Figure 3.5. In the gap between the particles, the diffusion of the solute emitted from
particle 1’s active cap is limited by the confining effect of particle 2’s proximity, leading to
increased levels of concentration and modified slip velocity at the particles’ surface in this
region. The resulting hydrodynamic field is further modified by lubrication effects at close
contact.

Due to this confinement-induced modification of the concentration field, the contrast be-
tween the front and back of the leading particle 1 is enhanced, while it is reduced for the
trailing particle 2, leading to an increased velocity of the former and a reduced velocity for
the latter (see Figure 3.6). In fact, the trailing particle is brought to rest at contact dis-
tance dc = 0.27, and further reduction in contact distance leads to reversal in its swimming
direction. Moreover, since U2 ≤ U1 for all dc, particles drift away from each other.

As seen in Figure 3.6, the reduction (resp. enhancement) of the velocity of the trailing
particle (resp. leading particle) is captured by the far-field and MoR models. Moreover, both
underestimate the velocity of particle 1 and overestimate that of particle 2 when the particles
are close (dc < 1). The propulsion velocity predicted using only far-field model deviate from
analytical solution below contact distances of a few radii while that predicted using MoR
provides a good estimate even for contact distances slightly smaller than a particle radius.
Asymptotically, when ε = 1/d ≪ 1, the expected error scalings are observed, i.e. O(ε3) for
the far-field approximation and O(ε6) for the MoR model (Figure 3.6b).

The previous considerations focused on instantaneous velocity predictions (for a fixed ge-
ometry). We now evaluate the far-field and MoR models performance in predicting the
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Figure 3.7: Translation of two aligned Janus particles (see Figure 3.5): (a) Evolution in
time of the particles’ velocity for an initial separation distance dc = 0.5. The predictions
for MoR and far-field modes are computed at the relative positions described analytically.
(b) Trajectories of the particles. Positions of particles at t = 0 and t = 75 are shown.

long-term dynamics of two particles initially positioned at dc = 0.5 (Figure 3.7). The par-
ticles swim in the same direction but drift apart as U1 > U2. As time progresses, their
relative influence and resulting relative drift reduces, and both particles approach their self-
propulsion velocity asymptotically (Figure 3.7a). Even for small separation (e.g. dc = 0.5),
MoR-predicted propulsion velocities have a good accuracy (the error for particle 2 when

dc = 0.5 is

⏐⏐⏐⏐Umor
2 −Uanalytical

2

Uself
2 −Uanalytical

2

⏐⏐⏐⏐× 100 ≈ 15%), while errors introduced by the far-field model are

large (≈ 60%). The cumulated error in position over time (when the particles are far away
from each other) is essentially negligible for MoR, while it is of the order of the particle
radius for the far-field model (Figure 3.7b).

3.5.2 Co-planar translation and rotation of 2 Janus particles

We next focus on the coplanar and non-axisymmetric motion of two Janus particles. In
contrast with the previous highly-symmetric situation, a critical element for the prediction
of the particles’ trajectory lies in the correct estimation of their rotation velocities (which
arise from interactions with their neighbours as particles with homogeneous mobility do not
rotate when isolated). The axisymmetry of a pair of Janus particles is lost as soon as they
are not aligned with their relative position, and while a solution in bispherical coordinates
remains available in principle, it becomes rapidly cumbersome [172]. Instead, the particles’
velocities are obtained here numerically using the regularized Boundary Element Methods
framework for phoretic particles (regBEM), a versatile numerical technique developed by
Montenegro-Johnson et. al. [137, 138].

The long-term dynamics of a pair of Janus particles is considered, which are initially aligned
along ex, i.e. orthogonally to their relative distance which is along ez (Figure 3.8). The
particles have uniform mobility M = 1 and hemispherical activity distribution. When
isolated, these particles swim with a velocity Uself = ex/4 and are neutral squirmers (i.e.
A2 = 0, no stresslet signature).

In such an arrangement, the particle pair attract and contact in finite time [172], which is
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Figure 3.8: Co-planar trajectories of two Janus particles obtained using BEM (solid), MoR
(dashed) and far-field (dotted). The particles’ center-to-center distance is initially d = 4a.
Particles have uniform mobilityM = 1 and hemispherical activity with A = 1 on their active
half (black) and A = 0 on their inert cap (white). Particle locations and their orientations
as obtained from BEM simulations are also shown at equal intervals of time. Note that
y-axis is directed into the plane of the paper.

indeed observed in the trajectories obtained from BEM simulations (see figure 3.8), where
the particles, exhibiting mirror symmetrical motion, first drift apart while rotating to swim
toward each other at a later stage. The initial drift of the particles away from each other is
easily understood by their anti-chemotactic nature: they drift and swim down the concentra-
tion gradient created by the other particle. Their rotation solely results from hydrodynamic
and chemo-hydrodynamic interactions since purely chemical interaction cannot induce ro-
tation (for uniform mobility).

Instantaneous translational and angular velocities of particle 1 are shown in Figure 3.9. The
particles’ interaction results in a slight increase of their propulsion velocities (but only by a
few percent). Particle 1 monotonically rotates clockwise, with a sharp increase in angular
velocity arising before the particles contact. Once the particles form a cluster, they adopt
a fixed tilted orientation that balances chemical, hydrodynamic and chemo-hydrodynamic
interactions as well as steric repulsion; a steady co-propulsion velocity is achieved in this
case.

The far-field model predicts the translational velocities reasonably well when the particles
are a few radii apart but deviates strongly towards the final stages of clustering (when
dc < 1). It however does not predict any rotation as a result of the absence of a self-
generated stresslet and resulting hydrodynamic interactions for a hemispheric Janus particle
of uniform mobility. It should be emphasized here that even if the particles were to have non-
zero intrinsic stresslets (e.g. for non-hemispheric coverage), the angular velocities predicted
using the far-field model would still be zero in this highly-symmetric setting: this is the result
of the stresslet flow-field produced by each Janus particle having a plane of symmetry passing
through the center of the other particle, which creates no effective shear-induced rotation.
Thus, in this configuration, the force-quadrupole is the leading order term responsible for
the particles’ reorientation. As a result, the far-field model, limited to only a force dipole,
is unable to capture the qualitative trajectory (see figure 3.8), in particular to obtain the
long-term dynamics. On the other hand, Figure 3.9 demonstrates that the MoR model
provides very accurate estimates of the translation velocities throughout the dynamics; the
predicted angular velocities, accurate to O(ε5) are adequate, except for close contact where
higher order corrections are necessary to fully capture lubrication effects.

Thus, it is clearly seen from figure 3.8 that the trajectories predicted by MoR are much more
accurate than far-field models both quantitatively and qualitatively. MoR further provides
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Figure 3.9: (a) Horizontal, (b) vertical and (c) rotation velocity of Janus particle 1 for two
coplanar particles (see Fig 3.8), as obtained from BEM (solid), MoR(dashed) and the far-
field model. At each time, the comparison between the prediction of the different models
is performed for the same geometric configuration of the particles (i.e. that obtained from
BEM simulations). The translation velocity is scaled by the self-propulsion velocity of an
isolated Janus particle. Note that there is no angular velocity in the far-field model for
all separations. The corresponding velocities of particle 2 are obtained using the planar
symmetry of the problem with respect to z = 0.

a good compromise between accuracy and computational performance: while BEM simula-
tions took about 6 hours of computational time, the simulation using MoR approximation
was performed in milliseconds and still captured the dynamics within an error of a particle
radius.

Figure 3.10: Comparison of the effects of the different interactions on the trajectory of 2
co-planar particles using the ε5-accurate MoR model. The trajectories obtained with all
interactions (solid), purely chemical interactions only (dotted), purely hydrodynamic inter-
action only (dash-dotted) and chemical and hydrodynamic interactions (i.e. without chemo-
hydrodynamic interactions, dashed) are shown. Particles’ location and their orientation at
various instances of time are shown graphically.

Additionally, MoR clearly distinguishes chemical, hydrodynamic and chemo-hydrodynamic
interactions, thus allowing us to analyse their relative and respective role in the particles’
coupling by simply including or removing the appropriate interactions (Figure 3.10). This
conclusively shows that the chemical interactions are predominantly responsible for the lat-
eral drift. As expected, purely chemical interactions do not induce any particle reorientation
and the particles drift apart laterally down the chemical gradient created by their neighbor.
Hydrodynamic interactions, on the other hand, do no create any significant lateral drift but
play a crucial role in reorienting the self-propelling particles toward each other, thus induc-
ing their clustering. Chemo-hydrodynamic interactions, in the present case, are effectively
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repulsive but, their sharp asymptotic decay O(ε5) makes them almost non-influential in the
long-term dynamics here. It is thus the competing chemical and hydrodynamic interactions
that primarily gives rise to the unusual dynamics in this particular case.

3.5.3 Dynamics of randomly-arranged co-planar particles

In this section, we test the ability of the O(ε5)-accurate MoR model to predict the dynamics
of a larger number of particles (N > 2). For simplicity of analysis and visualization, we
consider here a system of 5 Janus particles initially distributed randomly in a plane (see
figure 3.11), in relatively close proximity (average contact distances of the order of a few
radii) . Due to the small density of particles, we restrict the choice of their random initial
orientations along the plane to only within a quadrant to favour their interactions as would
be expected in denser situations (i.e. with more particles). The exact dynamics are first
obtained using BEM simulations and then compared with the MoR and far-field models (fig-
ure 3.11). Using a coarse mesh, BEM simulations required around 12 hrs of computational
time while MoR results were obtained in 5 seconds.

Figure 3.11: Comparison of the trajectories of 5 Janus particles predicted by BEM (solid),
MoR (dashed) and far-field models (dotted). The initial positions (at t = 0) of the numbered
particles and their predicted positions at t = 117 are shown as well. Note that y-axis is
directed into the plane of the paper.

Each particle self-propels along a straight line when isolated. Any slight change of their
orientation has a drastic effect on their long-term positions. Yet, Figure 3.11 shows that
the MoR O(ε5)-accurate model is sufficient for estimating these long-term trajectories to
a reasonable accuracy and performs significantly better in that regard than the simpler
far-field model. Note that the particles do not come in contact at any point in time.

Focusing on the instantaneous dynamics of particles 2 and 5, the MoR model is seen to cap-
ture the qualitative trend of the velocities much more accurately than the far-field model
(Figure 3.12). Quantitatively, the magnitudes and the errors in estimation of the transla-
tional velocities by MoR model are quite comparable with far-field model. Hence, the net
displacement of the particles are of the same orders. However, the major advantage of the
MoR model over far-field models lies is in its ability to account accurately for the particles’
reorientation. Indeed, far-field models are unable to produce any change in orientation as
chemical interactions do not produce any rotational effects.
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Figure 3.12: Evolution of the particles’ velocities during the planar interactions of five Janus
particles (Figure 3.11): (a,d) Horizontal, (b,e) vertical and (c,f) rotation velocties of particles
2 (top) and 5 (bottom) predicted by BEM (solid), MoR(dashed) and far-field models. The
same particles’ positions (obtained from the BEM simulations) are considered for all three
models.

MoR model correctly predicts the transient peak in angular velocity and captures the dy-
namics generated by its hydrodynamic interaction with other particles (Figures 3.11 and
3.12). This is much less the case for particle 5, for which the prediction of MoR for its
angular velocity, while qualitatively correct, exhibits large errors that can be attributed to
strong lubrication effects from close contact with neighbouring particles (especially particles
3 and 4). For this particle, although the oscillatory trend in angular velocity is reproduced
by MoR, the performance in terms of position predictions is significantly reduced.

3.6 Conclusions

In this work, we propose a general framework based on the method of reflections (MoR) to
systematically determine the velocities of interacting autophoretic particles up to any order
of accuracy in the particle density, under the combined influence of their chemical and hy-
drodynamic signatures on their environment. The explicit implementation of this framework
with an ε5-accuracy demonstrated its ability to capture not only the instantaneous velocity
but also essential features of the long-term dynamics of phoretic particles. The performance
of the predictions are significantly better, qualitatively and quantitatively, than classical
far-field models which can be seen as ε2-truncations of the present framework. Such far-
field models are widely used due to their simplicity [122, 125, 124]; yet, as they focus solely
on pairwise particle interactions through the slowest-decaying hydrodynamic and chemi-
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cal signatures, they fundamentally overlook more complex chemo-hydrodynamic interaction
routes as well as many-body interactions. The analysis presented here demonstrate that
these models become fundamentally inaccurate in not-so-dilute suspensions where particles
are separated by a few radii or less. In contrast, the MoR model proposed here is observed
to correctly predict the particles’ velocities with a comparable computational cost, even
when the particles have contact distances of the order of a single particle radius. Further, it
is able to capture quantitatively the reorientation of the self-propelled particles, an element
that is critical to predict and understand their long-term trajectories and interactions. As
such, the MoR model offers a promising alternative to far-field models in order to analyse
dynamics of suspensions that are not asymptotically dilute. These predictions are further-
more obtained at a computational cost that is orders of magnitude smaller than a direct
numerical simulation using classical approaches such as Boundary Elements or Immersed
Boundary Methods.

The complete analytical framework was presented as well as a practical application to O(ε5)
accuracy for particles of uniform mobility. Yet, it could easily be extended to obtain more
precise estimates, by identifying which combination of reflections (both for the Laplace and
Stokes problems) lead to interactions of greater asymptotic order than the requested ac-
curacy. The chosen accuracy is motivated here as the smallest order at which 3-particle
interactions become significant and combine both chemical and hydrodynamic coupling, in
contrast with far-field models that simply superimpose pairwise interactions that involve
solely chemical or hydrodynamic effects. The uniformity of the particles’ mobility signifi-
cantly simplifies the final expression of the interaction velocities as there is a direct mapping
between the concentration multipole intensities and the velocity field singularities used for
initializing the hydrodynamic reflections. Yet the entire framework presented here is directly
applicable to particles of arbitrary mobility distribution, provided this initialization step is
modified by adding a tensorial reduction process as discussed in Section 3.3.2.2.

Besides its rapid convergence, the MoR method is also surprisingly accurate as it is able
to capture many of the particles’ dynamics and predict their velocity even for inter-particle
contact distances of the order of their radius.

The presentation of the framework followed here, for simplicity, is that of a parallel imple-
mentation of the method of reflections [173], i.e. a Jacobi-type iteration where corrections
near a given particle are based on the information from all the other particles at the previous
iteration. An alternative approach is the historical sequential approach [168, 174], for which
the newest correction near any particle is used as soon as it becomes available in a Gauss-
Seidel-type iteration (i.e. even during the same reflection near the subsequent particles).
The present framework can be straightforwardly implemented sequentially rather than in
parallel (see the discussion of Eq. (3.33)), and a similar remark holds for the hydrodynamic
reflection sequence, Eqs. (4.29)–(3.72). Mathematically, when truncating at a given number
of reflections, the sequential method is proved to converge exponentially for the mobility
problem considered here, where the forces on particles are prescribed [174] (it wouldn’t be
the case for a resistance problem where particles’ velocities are imposed [175]). In contrast,
mathematical convergence of the parallel implementation is still an open question. However,
this does not impact the implementation of the method proposed here, which is based on
a truncation of the series approximation based on a fixed maximum order of the different
terms in powers of ε = a/d rather than a fixed number of reflections: with this physically-
based approach, both the sequential and parallel methods then lead to retaining the same
contributions.

An important feature and fundamental interest of this approach, from a physical point
of view, is to clearly identify the physical mechanisms resulting in the different compo-
nents of the particles’ interaction velocities, as demonstrated in Section 3.4. The inter-
action of phoretic particles are indeed commonly and perhaps short-sightedly considered
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Figure 3.13: Collective dynamics of 25 Janus particles with uniform positive mobility and
hemispherical activity. A set of 10 particles (in red) are arranged on a circle of radius 10
units, aligned offset from the radial direction by an angle 0.05π and 15 particles (in blue)
are arranged on a circle of radius 15 units with the same angular offset from the radial
direction. Particles’ position computed using the MoR framework of Section 3.4 are shown
for various instances of time, t.

as the juxtaposition of two independent and fundamentally different physical mechanisms,
namely the effect of their non-uniform chemical signature and the hydrodynamic flow they
create while swimming, and the question of their relative weight is attracting much de-
bate [62, 122, 124, 125]. This picture, inherited implicitly from far-field models is mis-
leading: in essence, the only physical mechanism leading to the particles’ displacement is
hydrodynamics as particles do not have any direct chemical or physical interactions (i.e.
so-called chemical interactions are in fact due to the hydrodynamic slip generated by the
neighbouring particles’ chemical effect). It further overlooks the intricate coupling of the
hydrodynamic and chemical problems, and the most generic interactions are in fact chemo-
hydrodynamic and involve many particles, rather than being simply pairwise. The present
framework in fact provides a unique opportunity to analyse rigorously the relative weight
of different interaction routes, as each interaction type can be turned on or off easily in the
model (a feature that is much more difficult to implement on a full numerical simulation for
example).

The MoR model was implemented and tested here in the limit of a small number of parti-
cles, to enable quantitative comparisons with direct numerical simulations. However, it can
straightforwardly be applied to analyse complex dynamics of larger systems. As an illus-
tration, Figure 3.13 shows the interactions and scattering dynamics of 25 Janus particles
initially distributed regularly. Its low computational cost makes this method particularly
well-suited for analysing the dynamics of a very large number of particles and of suspen-
sions. For a large number of particles, N in the system, a O(N2)-computational cost makes
it a compelling candidate to obtain quantitative insights in the behavior of large active
suspensions.
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4
Self-propulsion induced by
clustering of isotropic
autophoretic particles

In isolation, a chemically- and geometrically-isotropic autophoretic particle cannot swim;
we show that it can however achieve self-propulsion through phoretic and hydrodynamic
interactions with other identical particles by spontaneously forming clusters. This result
thus identifies a new route to symmetry-breaking for the concentration field and to self-
propulsion, that is not based on an anisotropic design, but on the collective interactions
of identical and homogeneous active particles. Using full numerical simulations as well as
theoretical modelling of the clustering process, the statistical properties of the propulsion are
obtained. The robustness of these results to the effect of Brownian motion is also discussed.

Figure: Two different configurations of 6-particle clusters formed from isotropic autophoretic
particles, that can self-propel (translate/rotate) based on the asymmetry of cluster geometry.
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To achieve self-propulsion, autophoretic colloids must set the surrounding fluid into motion
which fundamentally requires an asymmetric distribution in the solute concentration at their
surface. So far, three different mechanisms have been identified to achieve such symmetry-
breaking of the concentration field: (i) an asymmetric chemical patterning of the surface
(e.g. Janus particles, [28, 58]) (ii) an asymmetric shape of the chemically-homogeneous
colloid [176, 177] and (iii) an instability resulting from the non-linear advective coupling
between the solute dynamics and the flow motion [65, 144]. The former two are fundamen-
tally associated with the particle design, and are built into its architecture. The latter, in
contrast, arises spontaneously from the destabilization of a non-motile isotropic state.

The purpose of the present chapter is to introduce and characterize a fourth route to
symmetry-breaking of the concentration field and self-propulsion, wherein geometrically-
and chemically-isotropic particles interacting with diffusive solutes do not propel on their
own but instead gain locomotion from forming asymmetric clusters. All particles are iden-
tical here, which is a fundamentally different situation from the assembly of chemically-
inhomogeneous molecules from a mixture of two different types of particles [62]. Identical
isotropic phoretic particles which can attract (for A and M of opposite signs) each other
because they generate radial concentration gradients which induce a phoretic drift on the
other particles. This phoretic attraction combined with steric constraints enable only a
discrete set of stable configurations that may display a geometric asymmetry, which is a
sufficient ingredient for self-propulsion of this assembly [61].

This collective self-propulsion is therefore intimately linked to the exact geometry of the
particle assembly, which itself results from the dynamic phoretic clustering of the particles.
An essential goal of the present work is therefore to characterize the statistical proper-
ties of the particle arrangement arising from the clustering process, and therefore requires
a careful modelling of this dynamics. Note that self-propulsion and collective dynamics of
chemically-isotropic and individually non-motile particles was also observed for colloidal par-
ticles trapped at a fluid-fluid interface [178]; then fluid motion resulted from the Marangoni
stresses at the free surface rather than a direct hydrodynamic forcing by each particle as
considered here.

A single geometrically- and chemically-isotropic particle is shown to be non-propelling in
Section 4.1. In Section 4.2, the collective dynamics of two identical isotropic particles
is considered in detail and their relative motion is computed analytically. Such analytic
solutions are not available for larger number of particles. A reduced-order model, validated
with full numerical solution using a regularized Boundary Element Method (BEM), is then
used in Appendix C to determine the statistics of formation of different clusters, their
velocity and the resulting mean properties and their evolution with N . Finally, Section 4.7
analyses the effect of noise and Brownian motion on these results and conclusions are finally
drawn in Section 4.8.

4.1 Single isotropic particle

A particle j with uniform surface activity (say, Aj) produces an isotropic concentration
field through diffusion. Since the steady-state field is symmetrical, no phoretic forcing is
expected, and so, the particle should not self-propel in the fluid at low Reynolds regime. To
put more formally, let us recapitulate the governing equations for the concentration field,

∇2c = 0 (4.1)

85



with the boundary conditions,

c(rj → ∞) = 0, and on the surface, nj · ∇c|rj=aj = −Aj (4.2)

The solution to the above Laplacian is simply,

c =
Ajaj
rj

(4.3)

The gradient of the field,

∇c = −
Aja

2
j

r3j
rj (4.4)

The slip velocity generated on the surface due to the local concentration gradients for a
particle of uniform mobility, M ,

ũj =Mj ∇||c|rj=aj =
−AjMj

aj
(I− njnj) · nj = 0 (4.5)

Thus, a homogeneously active spherical particle does not generate any flow field around
it. As a consequence of the zero surface slip velocity, the force- and torque-free particle
additionally does not achieve self-propulsion.

Uself
j = −⟨ũj⟩ = 0 and, Ωself

j = − 3

2aj
⟨nj × ũj⟩ = 0 (4.6)

Thus, it is formally shown that the homogeneously coated particle does not propel. But let
us now consider the situation where a similar particle is introduced in the system.

4.2 Dynamics of two isotropic particles

Let the position vector of any particle j be given by Rj . The distance between any two
particles j and k is denoted by d = |Rj −Rk|.

4.2.1 Far-field model

To first have an intuitive grasp of the dynamics, we analyse a simple far-field interaction
between the particles. The gradients of the field created by one particle creates a drift
velocity on the second. If the two particles are separated by a distance d, the drift velocity
of particle 2 due to particle 1 is given by,

U2 = −M2 ∇c1|r2=0 =
A1M2a

2
1

d2
e12 Ω2 = 0 (4.7)

If we let the two particles be identical spheres of radius a with activity A and mobility M ,
aligned along the axis ez as shown in figure 4.1, the propulsion velocities of the particles
can thus be written as,

U1 =
AMa2

d2
ez U2 = −AMa2

d2
ez (4.8)

The particles break each other’s symmetry of concentration field to create equal magnitude of
propulsion velocity but in opposite directions i.e. they exhibit an action-reaction symmetry.
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Figure 4.1: Relative concentration field around (a) a single isotropic phoretic particle and
(b) two identical isotropic phoretic particles (A = 1 and M = −1). In (a), the isotropic
concentration field leads to no fluid motion nor propulsion. In (b), the asymmetric concen-
tration field around each particle leads to a mutual attraction.

When the particles are sufficiently far apart a/d ≪ 1 they swim with velocities scaling as
a2/d2. The activity A and the mobilityM can be tuned to make the particles swim towards
or away from each other; in our analysis, we are interested in the case where the particles
cluster towards each other and thus, the particles need to satisfy the criteria: AM = −1.
Note that this is equivalent to chemotactic behaviour of the particles.

4.2.2 Exact solution for the dynamics

Note that, due to action-reaction symmetry, this mutual attraction/repulsion velocity U
depends only on the distance d between the particles. It is convenient to express the dis-
tance between the particles in terms of the separation between their surfaces along the line
joining their centers- known as the contact distance dc = d− 2a. The velocity is hence com-
puted at various separation, dc (using semi-analytical solution of the problem in bispherical
coordinates presented in Appendix A) and is plotted in Figure 4.2.

10−4 10−2 100 102

Separation, dc

0

0.2

0.4

0.6

0.8

1

V
el
o
ci
ty

Phoretic velocity (U)
Phoretic velocity with steric repulsion (Ua)

Figure 4.2: Clustering velocity of each particle as a function of the contact distance dc
between the two particles. A short-ranged repulsion potential is added to prevent overlap
of the particles given by equation (4.9) with C = 35, δ = 25 and d∗ = 1.95

87



4.2.3 Langevin dynamics of the system

When the particles are extremely close to each other, i.e. when dc/a ≪ 1, the short-range
repulsive interactions between the molecules on the surface of the two particles become sig-
nificant. These intermolecular repulsive forces prevent the overlap of the particles (steric
effect). To preserve the previous velocity formulation, this repulsive effect is therefore in-
cluded as an additional repulsive velocity to mimic this behaviour, in the form of a smoothed
step-function. The complete expression for the clustering velocity is hence given by

Ua(d) = U(d)− C (1− tanh(δ (d− d∗))), (4.9)

where C, δ and d∗ are chosen appropriately so that the particles have negligible separation
after clustering. For our simulations, we use C = 35, δ = 25 and d∗ = 1.95 and the velocity
function is shown in figure 4.2. This clustering velocity Ua is a function solely of the particles’
distance d, shown in Figure 4.2. The dynamics of the two particles can therefore be described
by an over-damped deterministic Langevin dynamics within an interaction potential:

dRj

dt
= − ∂E

∂Rj
, with E(R1,R2) = E2p(|R1 −R2|), (4.10)

and
∂E2p
∂d

= −Ua(d). (4.11)

This potential E2p is a measure of the stability of the two-particle cluster. In the absence of
any external noise in the system, the system evolves at each instant down the direction of
its steepest gradient. When the particles are spaced infinitely apart, they do not influence
each other (i.e. their velocities are zero); their interaction potential is zero. When spaced
at a finite distance, the system is in non-equilibrium and the potential of the system drops
over time as the particles approach each other. The potential is in a (minimal) stable
equilibrium when the particles are in contact i.e. when the steric repulsion balances the
phoretic attraction.
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Figure 4.3: Evolution of the interaction potential of the two particles during clustering. The
concentration field distribution and the relative velocities of both the particles are shown.
Three positions in particular, A- where particles are initially at d = 5a, B- at d = 3a
after which the cluster rapidly collapses and, in C when the particles are stationary held at
d = 2.04a.

Note that for two particles, hydrodynamic and phoretic interactions introduce an asymmetry

88



in the system that enables the motion of individual particles. Yet, the center of mass of
the arrangement remains stationary for identical particles due to action-reaction symmetry
that is present and, creates a final cluster (i.e. dimer) that is front-back symmetric. This
symmetry would exist only if the particles are identical and, so it would be broken if the
particles are of different sizes or activity, which would lead to net motion of the center of
mass.

4.3 Dynamics of N-particle system

An analytical solution can no longer be determined exactly for the phoretic and hydrody-
namic problem for N(≥ 2) particles.

4.3.1 Boundary element method

Boundary element methods (BEM), based on the classical boundary integral formulation of
Stokes flows provide accurate numerical solution to flow field. The computational technique
is shown to give good accuracy even when there exists strong near-field hydrodynamic
interactions between particles [179, 167]. Boundary Element Methods solve the Laplace
equation for the concentration field and Stokes equations for the flow-field outside a set of
rigid particles by using the fundamental integral representation of the solutions to these
harmonic and bi-harmonic equations, in terms of their values and normal gradients on the
bounding surfaces only. Such methods are therefore particularly well-suited for phoretic
problems in Stokes flows since the coupling of the concentration and velocity fields occurs
only on the particles’ surfaces. The details of the boundary integral formulation and their
discretisation into BEM scheme have been detailed in Chapter 2 and in Appendix C. We
validate the BEM for the mesh form described above, for the case of a two-sphere swimmer
that propels due to geometric asymmetry [61] in Appendix C. Using the above mentioned
meshing, an accuracy of about 1% was obtained on the swimming velocity of the cluster
even for particles near contact with dc = 0.01 and dc = 0.02 (about 10 times the local
element size in the adapted mesh).

4.3.2 Clustering dynamics

Under the effect of phoretic attractions, complex non-equilibrium clustering dynamics are
observed leading to the formation of a stable rigid planar assembly, held together by the bal-
ance between phoretic attraction and short-ranged repulsive forces. These clusters are stable
in the classical sense that any slight perturbation would return them back to their original
configuration. For a given number of particles in the system, multiple stable configurations
can be imagined. Since each particle attracts the other, the

We analyse the case where the particles are initially distributed in a plane. As mentioned,
this choice is simply for the ease of analysis of the different cluster configurations; the prob-
lem is solved however, for 3D solute and hydrodynamics and hence, the present formalism
can be readily applied to 3D clustering. As an example, let us consider a 5-particle sys-
tem where the particles are initially randomly distributed. The detailed kinematics of the
particles is marched in time using an adaptive two-step Adam-Bashforth method, where
the time step is determined on the smallest-separation between the particles. To prevent
particle overlap, a soft repulsive potential is introduced akin to that leading to the corrective
relative velocity for the two-particle system. A relatively coarse (512 nodes per sphere) is
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Figure 4.4: (Top) Clustering dynamics of 5 isotropic particles (A = 1,M = −1). The
velocity of each particle is shown by black arrows and the color indicates the concentration
field. The red cross indicates the position of the center of mass. (Bottom) Ratio of the
magnitude of the center of mass velocity to the average individual velocity magnitude of the
5 particles. A stable cluster is formed when there is no relative motion between the center
of mass and individual particles (green shade). The vertical dashed lines correspond to the
three snapshots above.

used here to compute the velocities of the particles. The computations for the clustering
phase for 5 particles in the described example took about 10 hrs of computational time.

The concentration field generated around each particle is asymmetric in nature due to
the influence of the fields created by the surrounding identical particles. This creates a
chemotactic drift of the particles towards each other. The general direction of each particle
hence tends to be towards the instantaneous geometric center of the assembly; the highest
attractive influence is however, towards their nearest neighbour because the concentration
field gradients that create the chemotatic drift decay quickly away from each particle. Up
until the particles form a rigid stable cluster, the velocity of the center of mass of the particles
is noticeably at least one order of magnitude smaller than the velocity of individual particles
(see Figure 4.4). It can be inferred from this that the center of mass of the system remains
effectively stationary during that phase. This is somewhat unsurprising given the opposite
(attractive) velocities induced by the particles on each other as observed in the 2-sphere
case.

Once a stable cluster is formed, the particles do not experience any relative motion as
the phoretic force binds them together. However, it is observed that the global velocity is
interestingly non-zero i.e. the particles begin to swim as a cluster! This transition clearly
decomposes the dynamics of N phoretic particles into two different regimes, that differ
fundamentally in the relative magnitude of the mean and relative velocities of the particles.
We can classify the entire process into two phases viz. (i) Phase I which is characterized
by a global velocity (i.e. velocity of their geometric center) that is negligible in front of
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individual motion and (ii) Phase II which has a significantly enhanced global velocity when
the particles are rigidly-bound in a cluster. This difference is expected to be attributed
to the fact that in the clustering phase (Phase I), the particles are individually force-free
hydrodynamically. In the self-propulsion phase (Phase II), they are rigidly-bound by the
balance of phoretic attraction and repulsive internal forces that prevent their overlap, and
the hydrodynamic force on each particle is now non-zero, although the cluster as a whole
is. As will be seen, this change in boundary condition profoundly modifies each particle’s
hydrodynamic signature.

4.3.3 Self-propulsion of clusters

Since it is observed that in stable clusters, the particles are arranged on a regular hexagonal
lattice, the computational accuracy of the cluster dynamics is expected to be improved
significantly by using a finer mesh of the nodes in regions of closest contact. Additional
mesh refinement is hence performed in the clustering plane near the positions of particles’
contact on hexagonal lattices (see figure 4.5). This meshing provides an efficient framework
to compute the translation and rotational velocities of clustered particles.

Figure 4.5: The accurate meshing used for computing the propulsion velocity of 5 particle
cluster. The cluster swims with a speed U = 8.5× 10−4 along its symmetry plane.

Numerically, the particle assembly is considered as rigid, and the resulting velocity of these
stable clusters is computed with inter-particle separation, dc = 0.01 and dc = 0.02; a Taylor
series expansion of the global swimming velocity of the cluster in terms of contact distance
around dc = 0 is then used to extrapolate the true self-propulsion velocities of clusters when
particles are in actual contact. To achieve sufficient accuracy on the global motion of the
cluster (in particular resolving properly the flow field around the particles in the lubrication
regions), a finer mesh is used with 1538 nodes and refinement near the regions of contact
as described previously. Computation of the cluster velocity for N = 13 yet requires ≈ 28
GB of allocated memory, but only two computations are performed for each cluster shape.
The simplest self-propelling cluster is of size N = 5; for N < 5, the clusters form symmetric
geometry which do not provide the effective phoretic forcing. A detailed mathematical
understanding of the origin of self-propulsion is made in the next section using the method
of reflections.

4.4 Origin of self-propulsion

The far-field model regards each phoretic particle a as point chemical source and point
stresslet. The interactions between these point particles are inherently pairwise in nature
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i.e. the multi-body interactions are omitted. Hence, by using the far-field model, the global
velocity of a system containing identical isotropic phoretic particles would be predicted to
be zero. However, we notice from BEM simulations (see figure 4.4) that the global velocity
is non-zero and exhibits complex behaviour even during the clustering phase. This can be
attributed to the fact that these simulations take into account surface effects of the particles
as well as the multi-body interactions between them. These two effects, at large particle
separations (ε = a/d≪ 1), can be accounted for in a theoretical model by implementing the
Method of Reflections (MoR) framework developed in chapter 3; our analysis is restricted
to within propulsion velocity of O(ε5) which include three-body chemical, hydrodynamic as
well as chemo-hydrodynamic interactions. Thus, by evaluating the global velocities of the
system of particles at asymptotically large distances between the particles in both clustering
and self-propulsion phases, we shall to rationalize the self-propulsion behaviour of clusters.

4.4.1 Chemical interactions

Let us consider an isotropic phoretic particle (say, j) having a uniform surface activity Aj

and a surface mobility Mj . As described in chapter 3, the concentration field around the
particle j can be decomposed into into spherical harmonics as,

cj =
∑
p≥1

aq+1
j

r2q+1
j

Cp
j,q

q
⊙ rj

q
⊗ rj (4.12)

Since the isotropic particle behaves as a point source of chemical solute, one can directly
obtain from equation (3.40),

C0
j,0 = Aj and, C0

j,q≥1 = 0 (4.13)

By using the expression for propulsion velocity resulting from concentration gradients given
by equation (3.59), we find that U0

j = −2MjC
0
j,1/3 = 0; this justifies the fact that an

isotropic particle, in isolation, does not self-propel due to zero concentration gradients of
the chemical solute that create phoretic forcing.
The spherical harmonic coefficients of the reflected concentration field on the surface of
particle k is obtained from equation (3.31) as an asymptotic expansion in ε = a/d,

Cr
k,q = Cr−1

j,s

s
⊙Fχ

jk(q, s) where, (4.14)

Fχ
jk(q, s) =

qaqka
s+1
j

(q + 1)!

[
q

∇

(
rj

s
⊗ rj

r2s+1
j

)]
= O(εs+q+1) (4.15)

The first few coefficients of the modes of the first reflection thus become,

C1
k,1 =

∑
j ̸=k

C0
j,0 F

χ
jk(1, 0) = −

∑
j ̸=k

Ajajak
2d2jk

ejk, (4.16)

C1
k,2 =

∑
j ̸=k

C0
j,0 F

χ
jk(2, 0) = −

∑
j ̸=k

Aja
2
kaj

3d3jk
(I− 3ejkejk) (4.17)

and so on. Note that the reflected source term, Cr
k,0 = 0 for all r ≥ 1. At the leading-

order, the reflected field is a source dipole (s = 1). The propulsion velocity arising only
from the concentration field of rth reflection on particle k (i.e. ignoring any hydrodynamic
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interactions presently) is given by equation(3.59),

Uχ,r
k = −2Mk

∑
r≥1

Cr
k,1 = −2Mk

∑
j ̸=k

∑
s

Cr
j,s

s
⊙Fχ

jk(1, s) (4.18)

Thus, the propulsion velocity of particle k from first reflection (r = 1) of the concentration
field is determined using equation (4.16) in (4.18),

Uχ,r=1
k = −2MkC

1
k,1 =Mk

∑
j ̸=k

Ajajak
d2jk

ejk (4.19)

The leading-order mode of second reflection is a source dipole (q = 1) created from the first
reflection of source dipole (equation (4.16)) induced by a chemical source. This is thus a
three-body chemical interaction with the coefficient of the leading-order mode,

C2
k,1 =

∑
j ̸=k

C1
k,1 ·F

χ
jk(1, 1) =

∑
j ̸=k

∑
l ̸=j

C0
l,0 F

χ
lj(1, 0) ·F

χ
jk(1, 1) (4.20)

= −
∑
j ̸=k

∑
l ̸=j

Alala
3
jak

4d2ljd
3
jk

elj · (I− 3ejkejk) (4.21)

Note that this coefficient is of magnitude O(ε5). The next order term would be a source
dipole (q = 1) created from a source quadrupole (q = 2) i.e. C2

k,1 =
∑

j ̸=k C
1
k,2 : Fχ

jk(1, 2)

which is of O(ε7). Since we limit our analysis to O(ε5), we shall neglect this as well as
reflection of subsequent modes. Thus, the leading-order propulsion velocity from second
reflection is,

Uχ,r=2
k = −2MkC

2
k,1 =Mk

∑
j ̸=k

∑
l ̸=j

Alala
3
jak

2d2ljd
3
jk

elj · (I− 3ejkejk) (4.22)

It should be noted here that the propulsion velocity is of O(ε5). The propulsion veloc-
ity, limited to O(ε5) accuracy, resulting from chemical drift can now be determined from
equations (4.19) and (4.22),

Uχ,free
k = Uχ,r=1

k +Uχ,r=2
k (4.23)

=Mk

∑
j ̸=k

⎛⎝Ajajak
d2jk

ejk +
∑
l ̸=j

Alala
3
jak

2d2ljd
3
jk

elj · (I− 3ejkejk)

⎞⎠+O(ε7) (4.24)

4.4.2 Chemo-hydrodynamic interactions: force-free particles

Similar to the chemical problem, the flow field produced by a particle can be decomposed
into its spherical harmonic parts, given by equation (D.8) as,

up
j =

∞∑
s=1

⎧⎨⎩Φp
j,s

s
⊙∇

(
rj

s
⊗ rj

r2s+1
j

)
−Xp

j,s

s
⊙

⎡⎣s
⎛⎝rj

s−1
⊗ rj

r2s+1
j

⎞⎠⊗ (ε · rj)

⎤⎦
+

Pp
j,s

2(2s− 1)

s
⊙

⎡⎣rj s−1
⊗ rj

r2s−1
j

⊗

(
(2s− 1)

rjrj
r2j

− (s− 2)I

)⎤⎦⎫⎬⎭ , (4.25)
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where, Pj,s, Φj,s and Xj,s represent symmetric force multipoles, potential multipoles and
rotlet multipoles respectively. Furthermore, as described in equations in (3.59), one can
determine a one-to-one relation between the chemical and hydrodynamic multipoles when
the particles have a uniform surface mobility.

Φ0
j,1 =

−2a3jMj

3
C0

j,1; Φ0
j,q≥2 =

qaq+2
j Mj

2
C0

j,q (4.26)

P0
j,q≥2 = q(2q − 1)aqjMjC

0
j,q and, (4.27)

X0
j,q≥1 = 0 (4.28)

Note that P0
j,1 = 0 and X0

j,1 = 0 because the particle is both force- and torque-free. At
reflection p, the drift velocity created by particle j on k is given by,

Up
k =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙F1

jk(1, s)−Xp−1
j,s

s
⊙F2

jk(1, s) +Pp−1
j,s

s
⊙
(
F3

jk(1, s) +
a2k
6
F1

jk(1, s)

)]
,

(4.29)

Ωp
k = −1

2

∑
j ̸=k

∑
s≥1

[
Pp−1

j,s

s
⊙F2

jk(1, s) + sXp−1
j,s

s
⊙F1

jk(1, s)
]
, (4.30)

where F1
jk, F3

jk are given in Appendix D and can be expressed to evaluate the propulsion
velocities as,

F1
jk(1, s) =

[
∇

(
rj

s
⊗ rj

r2s+1
j

)]
rk=0

= O(εs+2), F2
jk(1, s) = s

⎡⎣rj s−1
⊗ rj

r2s+1
j

⊗ (ε · rj)

⎤⎦
rk=0

= O(εs+1),

(4.31)

F3
jk(1, s) =

1

2(2s− 1)

⎡⎣rj s−1
⊗ rj

r2s−1
j

⊗

(
(2s− 1)

rjrj
r2j

− (s− 2)I

)⎤⎦
rk=0

= O(εs) (4.32)

4.4.2.1 Purely hydrodynamic interactions

If the particle is force-free, the mode corresponding to point force P0
k,1 = 0. Additionally,

since at the zeroth reflection C0
j,q≥1 = 0, the non-swimming modes, Φ0

k,q≥1 = P0
k,q≥2 =

X0
k,q≥1 = 0 i.e. the non-swimming modes are of zero strength. Thus, the particles does

not produce any flow field around them, and hence, there are no purely hydrodynamic
interactions between the particles.

4.4.2.2 Chemo-hydrodynamic interactions

Chemo-hydrodynamic interactions are multi-body interactions involving hydrodynamic in-
teractions resulting after multiple chemical reflections between particles. After r reflections
(r > 1), the relation between the modes of reflected chemical and hydrodynamic fields are
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expressed as (see equation (3.59)),

Φ0
j,1 = a3jMj

∑
r≥1

Cr
j,1; Φ0

j,q≥2 =
aq+2
j Mj

2

∑
r≥1

(2q + 1)Cr
j,q (4.33)

P0
j,q≥2 = aqj(2q − 1)Mj

∑
r≥1

(2q + 1)Cr
j,q (4.34)

X0
j,q≥1 = 0 (4.35)

The leading-order value of the hydrodynamic coefficients is a potential dipole created after
one reflection of chemical field and is given by,

Φ0
j,1 = a3jMjC

1
j,1 = a3jMj

∑
l ̸=j

C0
l,0 F

χ
lj(1, 0) = −Mj

∑
l ̸=j

Alala
4
jelj

2d2lj
; (4.36)

which is of strength O(ε2). Similarly, at the next order, a stresslet and potential quadrupole
are created from reflections of chemical source quadrupole which are of strengths O(ε3).

Φ0
j,2 =

5a4jMj

2
C1

j,2 =
−5a4jMj

6

∑
l ̸=j

Ala
2
jal

d3lj
(I− 3eljelj) (4.37)

P0
j,2 = 15a2jMjC

1
j,2 = −5a2jMj

∑
l ̸=j

Ala
2
jal

d3lj
(I− 3eljelj) (4.38)

As before, the swimming velocity after first reflection can be determined using equation
(4.29) as,

U1
k =

∑
j ̸=k

Φ0
j,1

O(ε2)

·F1
jk(1, 1)  
O(ε3)

+ Φ0
j,2

O(ε3)

·F1
jk(1, 2)  
O(ε4)

+ P0
j,2

O(ε3)

:

⎛⎜⎜⎝F3
jk(1, 2)  
O(ε2)

+
a2k
6
F1

jk(1, 2)  
O(ε4)

⎞⎟⎟⎠+O(ε8)

(4.39)
Limiting to accuracy O(ε5),

U1
k =

∑
j ̸=k

Φ0
j,1 ·F1

jk(1, 1) +P0
j,2 : F3

jk(1, 1) +O(ε7) (4.40)

Expanding using equations (4.32), the drift velocity of particle resulting from hydrodynamic
field can be expressed as,

U1,free
k =

∑
j ̸=k

∑
l ̸=j

−Mj

2

(
Alala

4
j

d2ljd
3
jk

elj · (I− 3ejkejk) +
5Ala

4
jal

d3ljd
2
jk

(I− 3eljelj) : ejkejkejk

)
+O(ε7)

(4.41)

Note that the hydrodynamic field is created by a first reflection of chemical field (and not self-
generated as explained earlier) and hence, is a three-particle interaction with contribution
of O(ε5).

Thus, the total propulsion velocity to O(ε5) from both chemical and hydrodynamic inter-
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actions can be obtained by summing equations (4.24) and (4.41),

Ufree
k =

∑
j ̸=k

MkAjajak
d2jk

ejk +
∑
j ̸=k

∑
l ̸=j

(
Ajala

3
j

2d2ljd
3
jk

(Mkak −Mjaj)elj · (I− 3ejkejk)

−
5MjAla

4
jal

2d3ljd
2
jk

(I− 3eljelj) : ejkejkejk

)
+O(ε7)

(4.42)

The global velocity of the system can be obtained from
∑N

k=1U
free
k . Noting that the first

term is a pair-interaction which cancels out when summing over all particles, we find that
the leading-order global velocity during the clustering phase is only O(ε5).

4.4.3 Hydrodynamic interactions: in a rigid cluster

Within a rigid cluster, the particles are not individually force-free; the cluster as a whole
however remains force-free because it is still in the low Reynolds number regime. The forces
originate from short-range steric interactions between the surfaces of the particles. The
flow-field from any particle j is a linear superposition of two viz. flow driven by surface
slip velocity on each particle and, flow-field due to external forcing Fj . The former was
evaluated in the previous section. Here we shall consider the case where the particles are
rigidly bound to each other, i.e, their separation remains fixed.

Let a force Fj act on a spherical particle j. The sphere moves with a velocity

U0,forced
j =

Fj

6πηaj
(4.43)

By satisfying the boundary condition on the surface of the particle, i.e. uj |rj=aj = Uj one
can write

u0
j =

Fj

8πηrj
·

(
I+

rjrj
r2j

)
+

Fja
2
j

24πηr3j
·

(
I− 3rjrj

r2j

)
(4.44)

which represents a Stokeslet and a potential dipole. Thus, by comparing equations (4.25)
and (4.44), we observe that the coefficients representing strengths of the fields,

P0
j,1 =

Fj

4πη
, Φ0

j,1 =
Fja

2
j

24πη
(4.45)

Note that the strength of Stokeslet P0
j,1 ̸= 0 in this case because the particles are not

individually force-free. The drift velocity created by this field on another particle k is given
by,

U1,forced
k =

∑
j ̸=k

Φ0
j,1 ·F1

jk(1, 1) +P0
j,1 ·

(
F3

jk(1, 1) +
a2k
6
F1

jk(1, 1)

)
(4.46)

=
Fj

6πηaj
+
∑
j ̸=k

a2jFj

24πηd3jk
· (I− 3ejkejk) +

Fj

8πηdjk
·

[
(I+ ejkejk) +

a2k
3d2jk

(I− 3ejkejk)

]
(4.47)
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The total propulsion velocity is hence obtained from equations (4.43) and (4.48),

Uforced
k =

Fj

6πηaj
+
∑
j ̸=k

Fj

8πηdjk
· (I+ ejkejk) +

(a2j + a2k)Fj

24πηd3jk
· (I− 3ejkejk) (4.48)

The chemical and chemo-hydrodynamic interactions create slip velocity on the surface (force-
free swimming) whereas purely hydrodynamic interactions result, in this case, due to parti-
cles being subjected to an external force

U+Ω×Rk = Ufree
k +Uforced

k (4.49)

which can be formally written as,

U+Ω×Rk = Ufree
k +

∑
j

Kjk · Fj where, (4.50)

Kjj =
I

6πηaj
and, (4.51)

Kjk =
(I+ ejkejk)

8πηdjk
+

(a2j + a2k)

24πηd3jk
(I− 3ejkejk) (4.52)

The above linear system of equations can be closed by implementing the force- and torque-
free boundary conditions on the cluster,∑

j

Fk =
∑
j

Rk × Fk = 0 (4.53)

Unlike the case of free particles, here we observe that the global velocity,
∑N

k=1U
forced
k is

O(ε3) which is two orders of magnitude larger. This increase in global velocity is attributed
to the forcing from steric interactions in the cluster.

4.4.4 Validation: Two homogeneous spheres of unequal radii

Consider two rigid spheres of unequal radii (a1 and a2 respt.), but identical surface activity
A and mobility M . The distance between the particles may be represented by d in the
direction e12 = −e21 = e. If the particles are considered to be force-free,

Ufree
1 =

−AMa22
d2

(
1 +

5a21a2
d3

)
e, Ufree

2 =
AMa21
d2

(
1 +

5a1a
2
2

d3

)
e (4.54)

K11 =
I

6πηa1
, K22 =

I

6πηa2
(4.55)

K12 = K21 =
I+ ee

8πηd
+
a21 + a22
24πηd3

(I− 3ee) (4.56)

The system is axisymmetric and therefore Ω = 0, and all vectors are parallel to e. The
previous system can therefore be simplified into,

U − AMa22
d2

(
1 +

5a21a2
d3

)
=

F1

6πηa1
+

(
1

4πηd
− a21 + a22

12πηd3

)
F2 (4.57)

U +
AMa21
d2

(
1 +

5a1a
2
2

d3

)
=

F2

6πηa2
+

(
1

4πηd
− a21 + a22

12πηd3

)
F1 (4.58)

F1 + F2 = 0 (4.59)
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Figure 4.6: A two-sphere system, with particles of size raion 1 : 2 and the two particles
are rigidly bound by an infinitely thin rod through their centers. The swimming velocity
is computed as a function of the distance d between the particles. (right) The error in
computing swimming velocity using MoR is checked against analytical solution.

4.4.5 Cluster of isotropic particles

For particles which are identical in size, activity and surface mobility, the equations simplify
to

U+Ω×Rk = Ufree
k +

∑
j

Kjk · Fj where, (4.60)

Ufree
k =

∑
j ̸=k

MAa2

d2jk
ejk −

∑
j ̸=k

∑
l ̸=j

(
5MAa5

2d3ljd
2
jk

(I− 3eljelj) : ejkejkejk

)
(4.61)

Kjj =
I

6πηa
and, Kjk =

(I+ ejkejk)

8πηdjk
+

a2

12πηd3jk
(I− 3ejkejk) (4.62)

along with the force-free condition on the cluster
∑

k Fk = 0. Comparison with BEM
simulations for a translating 6-particle cluster is shown in figure.

4.5 Reduced-order modeling of the clustering phase

It is observed that for a given N(> 5), the system can attain multiple final configurations
depending on the initial arrangement of the particles. Each of the configurations would have
a different global velocity due to difference in phoretic forcing. The type of configuration
formed depends on the clustering phase and thus, this phase indirectly conditions the collec-
tive propulsion property of the system. If one were to understand the statistical properties
of the system, i.e. the mean and most probable propulsion velocities, a good understanding
and modelling of the clustering phase is necessary. While BEM is well suited to compute
the dynamics accurately, it is prohibitively expensive for running thousands of simulations
of the full temporal dynamics as needed for obtaining the probabilities of different cluster
shapes starting from random initial positions. Motivated by the distinct features of the
clustering and propelling phases identified in the previous section, our approach is therefore
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Figure 4.7: Left: Propulsion velocity of a rigid, symmetric 6-particle cluster as a function
of the distance d between adjacent particles in a hexagonal lattice. MoR provides accurate
predictions only when particle surfaces are more than a radii apart. Right: Scaling of the
propulsion velocity of the cluster as d−3 when a/d≪ 1 as predicted by MoR (dashed line).
Red cross represents results from BEM simulations.

to split the problem into two distinct parts: (i) determine the distribution of probabilities
for the different cluster shapes using a reduced-order model of the clustering dynamics, and
(ii) compute the exact propulsion velocity of each final cluster using regularized BEM.

4.5.1 Stable configurations of an N-particle cluster

A starting point to determine the propulsion statistics is to understand the various possi-
ble hexagonal lattice configurations that can be created from a given number of particles.
This calculation can only be performed numerically. Restricting here our analysis to two-
dimensional clusters, particles are arranged on a regular hexagonal lattice in their final
configuration. For N ≤ 5 particles, a single stable shape is obtained (see Figure 4.5), while
for N > 5, the number of final distinct cluster configurations is finite but increases expo-
nentially with N ; for example: N = 6, N = 8 and N = 10 lead to 3, 9 and 35 distinct
configurations, respectively.

4.5.2 Pairwise interaction model

The reduced-order model of the clustering phase required for the first part must be suffi-
ciently accurate, both in the far-field and near-field limits, so that the final configuration
is the same as that predicted by BEM, yet be sufficiently inexpensive computationally to
be able to run a large number of simulations for each N . At leading order (i.e. far-field
approximation), the relative velocity of the particles is determined as the superposition of
symmetric interactions between pairs of particles. However, this method fails to provide
accurate solutions when the separations between particles are small (dc < a). The method
of reflections detailed in Chapter 3, which provides iterative approximations of increasing
accuracy, is an appealing alternative to full simulations as it can capture the multi-particle
dynamics, but it is fundamentally restricted to distances greater than the size of the particle
(a/d < 1) for numbers of reflections small enough for practical implementation.
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Turning back to the two-particle case, an exact solution for the Laplace and Stokes problems
was obtained in Section 4.2 which includes a full description of confinement and lubrication
effects. We exploit this solution here to account for far- and near-field dynamics properly,
by superimposing the pairwise phoretic drift velocities between the particles whilst retaining
the exact analytical solution in Eq. (4.9) Ua(djk) (including the repulsive interaction that
prevents particle overlap). In practice, the velocity of particle j is computed in this reduced-
order model as

dRj

dt
=
∑
k ̸=j

Ua(djk)ejk, (4.63)

Note that a fundamental restriction of this superposition assumption is its inability to predict
any collective propulsion: the velocity of the center of mass of the arrangement is identically
zero by definition. Yet, we observed in the full dynamics that such center of mass motion is
negligible during the clustering phase, so that this constraint has little physical implication
in practice. It should further be emphasized that this superposition of pairwise solutions
is not derived from first principles, but rather on its practical ability to capture correctly
the leading order interactions both for near- and far-field limits, and its practical ability to
match the BEM predictions with good accuracy.

The accuracy of this model needs to be checked in detail against BEM solutions. As test
cases we shall study two situations:

1. when there are N = 3 particles clustering and the instantaneous dynamics predicted
by the model are comparable to BEM

2. when N = 6 particles where we shall test if the system does in fact reproduce the
same cluster configuration even for small changes in cluster configurations.

Figure 4.8 illustrates the clustering dynamics of N = 3 particles starting from arbitrary
initial conditions and quantitatively compares the rate of change in relative distance at each
time as predicted by the reduced-order model to that obtained using full BEM simulations.
The model is observed to predict the clustering velocities with excellent accuracy except
for the final stages of clustering where particles are already in contact but for two of them,
and the final shape is already fully determined. A second validation of the ability of the
reduced-order model to predict the final configuration correctly is proposed in Figure 4.9
where the evolution in time of three different initial arrangements of six particles (N = 6)
are plotted.

Till the second panel, the interactions between particles are majorly far-field and it can be
observed that these positions are accurately captured by the model. The stages of clustering
where the particles transform into a particular configuration are set only once the particles
are in close contact with each other i.e. it is the near field interactions that determine the
final configuration. Thus, the model requires that these crucial near-field interactions be
captured accurately. The method of reflections fails in this regard as a large number of
reflections would be required to capture the confinement effects of the solute as well as the
lubrication effect due to confinement of flow. The current pairwise modelling takes into
account the confinement effects but with loss in accuracy because the multi-body influence
is neglected; however, as explained in the section on MoR, these are sub-dominant compared
to the pair interactions.

This reduced model is formally equivalent to the motion of N particles down the steepest
gradient of a pairwise interaction potential E :

dRj

dt
= − ∂E

∂Rj
, (4.64)
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Figure 4.8: Top: from right to left, snapshots of the phoretic clustering in a system of N = 3
particles obtained using BEM. For visualization purposes, (a) is zoomed out; the coloured
lines represent the distance between centers of different pairs of particles. Bottom: The rate
of change of separation (ḋc) between particles due to phoretic attraction predicted by the
reduced model (dashed lines) and BEM (solid lines). The positions of the particles at each
instant are set to that of the full BEM simulations. To avoid spurious repulsive velocities
arising from slight differences in the equilibrium distance in the reduced model and BEM
results and the stiffness of the repulsive model, the repulsive velocities in the reduced-order
model are removed once two particles are in contact. The stages of clustering (a) to (e) are
also shown (dashed-dotted lines).

with

E(R1, ...,Rn) =
∑
k>1

k∑
j=1

E2p(|Rj −Rk|), and
∂E2p
∂d

= −Ua(d). (4.65)

Such a formalism is possible only if the interactions between particles are pairwise and
hence rigorously holds only for the reduced order model and not for the full problem. The
exact solution is not a simple pairwise interaction as there exists a non-zero global velocity
(albeit small) during the clustering phase. Within the reduced-order model framework,
particles arrange to minimize E . As such, E can be understood as a measure of the cohesive
interactions within and stability of a particular cluster shape.

4.6 Phoretic propulsion characteristics

Using the reduced-order clustering model described in the previous section (Phase I), a large
number of simulations are performed, with random initial spatial arrangements of particles
in order to obtain the probability of formation of the different cluster configurations through
phoretic attractions. In a second step, the self-propulsion velocity of each cluster (Phase II)
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Figure 4.9: Comparison of the positions of the particles predicted by BEM (in black) and
reduced model (in red) at various instances. The three different initial distributions of the
particles, which differ only in the position of a single particle (in blue), lead to three different
cluster shape using BEM, all of which are correctly captured by the reduced-order model.

is computed accurately using BEM and hence, the self-propulsion statistics are obtained for
a given system of N particles. (i.e. maximum, mean and most probable velocities)

4.6.1 Probabilities of formation of stable rigid clusters

To distinguish one cluster from another we utilize the cluster potential, denoted by Eq for
any cluster configuration q. If the particles were in thermal equilibrium (motion through
purely stochastic process), the cluster formation would be driven solely by the stability
of the final shape and so, a Boltzmann distribution would therefore be expected with the
probability Pσ

q to obtain cluster q,

Pσ
q =

e−Eq/(2σ2)∑
m

e−Em/(2σ2)
, (4.66)

where σ2 characterizes the background noise in the system: σ = 0 leads to P0
q = 1 for the

most stable cluster (i.e. that with maximum Eq), and P0
q = 0 for all others, while σ = ∞

results in all cluster shapes having the same probability.

Since the system is in a continuous state of non-equilibrium due to phoretic forcing on
the particles, these statistics are expected to differ. To study the complete evolution of
clustering of an N -particle system from zero interaction potential to a final cluster potential
Eq, the particles have to ideally begin from an infinite separation. For the practical purpose
of simulations, the particles are initially distributed randomly within a large disk of radius
Rmax. It is ensured that Rmax is sufficiently large that it does not significantly affect the
probability statistics (Figure 4.10). For N = 6, which is the smallest value of N for which
multiple stable configurations are obtained, probability values converge for Rmax ≈ 20 (see
Figure 4.10), which corresponds to a density (area fraction of particles in the clustering
plane) of 1.5%. For all N ≤ 12, it is observed that this area fraction of 1.5% is sufficient to
give accurate probability statistics.
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Figure 4.10: Stable 6-particle and 7-particle clusters and their probabilities obtained from
2000 independent trials. Bar graph shows probabilities when particles begin at different
random locations within a circle of radius Rmax for each trial (Histogram shown for Rmax =
20 for 6-particle and Rmax = 22 for 7-particle system respectively). Measurements are made
for different Rmax to show its influence. Range bars represent 2 standard deviation limits
of probabilities computed from 50 such events.

The number of independent trials needed to determine the probabilities of configurations
accurately increases with N . We found that for N = 6 and N = 7, 2000 distinct runs are
sufficient and the resulting probability distributions and accuracy are shown in Figure 4.10.
Clusters are labelled by their effective interaction potential Eq, i.e. the most stable cluster is
on the left. Interestingly, Figure 4.10 shows that the most stable cluster (i.e. that with least
effective potential Eq in the reduced-order model) does not have the highest probability as
one would expect in a stochastic process. The phoretic clustering described by Eq. (4.65)
(i.e. down-gradient of the interaction potential) does not lead to an absolute but to a
local minimum, as it depends on the detailed route followed in the configuration phase
space during the clustering process. Less “stable” cluster shapes minimize the interaction
potential only locally but may be wider attractors in the (2N − 3)-dimensional phase space
that characterizes the clustering motion. Because of the intimate link of cluster shape and
velocity, this is expected to hold profound consequences on the collective self-propulsion
properties of the N particles.

Once formed, a cluster cannot transition to another configuration without additional forcing
(i.e. “energy” input). Even though the differences in the final potential between configura-
tions (∆Epq = |Ep − Eq|) are relatively small in comparison to |Eq| and |Ep| (i.e. the change
in potential from the initially-dispersed configuration to the final clustered shape), switch-
ing from one configuration to another requires overcoming a much larger potential barrier
(∆Ebarr

p→q). This is illustrated in Figure 4.11 in the case of N = 6 particles: changing the
position of a single particle around the rest of the cluster allows the arrangement to describe
all three possible stable configurations (identified as minima in effective potential E).

While the difference in effective potential of the three stable configurations is small ∆Epq ∼
O(0.01) ({p, q} ⊂ {A,B,C}) , transition from one configuration to another requires reaching
intermediate stages representing a potential barrier typically an order of magnitude larger,
∆Ebarr

p→q ∼ O(0.1). Note also that the difference in effective potential between the pre-
clustering state (ideally, E = 0) and final configuration is yet an order of magnitude larger
|Eq| ∼ O(1).
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Figure 4.11: Evolution of the assembly potential while rolling a single particle around the
cluster from an initial stable configuration A of potential EA = −6.94 in order to sample
all configurations. Clusters A, B and C represent local minima of the effective interaction
potential E . ∆Ebarr

A→B ≈ 0.4 represents the minimum gain in effective potential required to
transition from cluster A to cluster B, while the actual potential difference between clusters
is just ∆EAB ≈ 0.05. |EA| ≈ 7 is the change in effective potential between the initial stage
and final clustered configuration. The results for 180◦ ≤ θ ≤ 360◦ are obtained by symmetry.

4.6.2 Propulsion velocities of rigid clusters

Geometrically-asymmetric phoretic systems self-propel with a global translation and/or ro-
tation velocity determined only by the asymmetry of their geometric shape [177, 180]; in
particular, this velocity is independent of the particles’ size. As expected from symmetry
arguments, configurations with a single mirror plane of symmetry cannot undergo any rota-
tion. Configurations with rotational symmetry neither translate nor rotate (see Figure 4.10
for example).

As explained, in this clustered arrangement, the relative positions of the particles are fixed in
a regular hexagonal lattice. For each N -particle system, the regularised Boundary Element
Method detailed in Appendix C is used to compute the exact translational and angular
velocities of propulsion (Phase II) of all possible cluster configurations. A list of the fastest
propelling and rotating clusters, as well as the most probable ones are shown in Figure 4.12
for 9 ≤ N ≤ 12. By defining the normalised effective potential for shape q for fixed N as
Er = (Eq−Emin)/(Emax−Emin), we observe that the fastest propelling (translation or rotation)
clusters are some of the least stable clusters with respect to the large effective potential Er.
This is the result of their large geometric eccentricity, responsible for their larger propulsion
velocity through the larger concentration gradients at their surface it creates. In contrast,
the most probable clusters are characterized by their more compact and roughly symmetric
arrangement around their geometric center (see Figure 4.12).

4.6.3 Statistics of clustering-induced self-propulsion velocities

Combining the results of the previous sections, the statistical properties of the collective self-
propulsion of N isotropic particles resulting from their phoretic clustering are obtained here.
Figure 4.13 shows the mean and maximum velocities of N -particle clusters. In particular,
for a given N , noting Pq the probability and Uq the velocity magnitude (or equivalently,
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Figure 4.12: Fastest translating (top), fastest rotating (center) and most probable clusters
(bottom) for N = 9 to 12. The relative surface concentration is shown in color for each
cluster as well as its propulsion, stability and probability characteristics.

rotational velocity magnitude Ωq) of cluster shape q, the mean velocity is defined as

Umean(N) =
∑
q

PqUq, Ωmean(N) =
∑
q

PqΩq, (4.67)

with the sum carried out on all possible cluster shapes.

Because of the symmetry of the only existing final cluster, no self-propulsion is observed
for N ≤ 4. Note that for all N > 5, at least one non-propelling cluster (having rotational
symmetry) is found; and therefore the minimum velocity for all N > 5 is strictly zero. The
maximum propulsion velocity is observed to increase steadily with N as the larger number
of particles allows for more eccentric shapes and larger phoretic forcing. However, the mean
velocity Umean(N) is observed to saturate for larger values of N . Insight on this result as
well as other statistical properties of importance such as the most probable velocity and
the variance in propulsion velocities of large N -particle clusters is obtained by studying the
probability distribution of the propulsion velocities (Figure 4.14).

The probability distributions of translational velocities of clusters with N ≥ 10 show a
prominent peak near the mean value of the distribution (≈ 2×10−3) indicating that clusters
with this velocity are also the most likely to form. The most probable angular velocity,
however, is lower than the mean value (≈ 2.5×10−5). As the maximum velocity (translation
and rotation) increases with N , the graph spreads indicating an increase in variance of
velocities between the various configurations. However, the fastest propelling configurations,
which are also some of the most eccentric and elongated ones, have very low probability so
that such clusters are only seldom observed for large N , and hence their contribution to the
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Figure 4.13: Magnitudes of maximum (dashed) and mean (solid) translational and rotational
velocities of clusters obtained using BEM. The grey shading represents the mean velocity
obtained through an equilibrium distribution, Eq. (4.66) with the noise level σ2, increasing
from zero to infinity as the intensity of shading gets darker.

mean velocity is minimal. For N ≥ 10, most of the contribution to the mean properties
is brought by clusters with an intermediate velocity which remains relatively fixed with
N , leading to the saturation in the mean velocity as N grows. This can be qualitatively
understood from the most dominant features of the most probable clusters as depicted in
Figure 4.12: those clusters display more compact shapes with an asymmetry arising only
from a small number of particles.

It was already emphasized above that the probability of formation of a given shape in the
phoretic clustering process does not correlate with its effective potential E for the reduced-
order model, as would be expected in a classical system at thermodynamic equilibrium,
for which the probability of formation of various configurations follows a Boltzmann distri-
bution, Eq. (4.66). Not unexpectedly, this has consequences for the collective propulsion
properties: Figure 4.13 shows that the mean velocity resulting from phoretic interactions is
systematically larger than it would be under the sole constraint of minimizing the effective
interaction potential, regardless of the importance of noise in the process.

4.7 Effect of noise on clustering statistics

The previous sections focused on the clustering-induced collective dynamics of phoretic par-
ticles, in purely deterministic systems: for a given particles’ arrangement at time t, the
evolution of the particles’ position in time is fully determined. Yet, in practice, all such
systems which focus on microswimmers are subject to a variety of stochastic processes (in-
cluding thermal noise) which continuously alter their motion. In the presence of background
noise caused by temperature of the surrounding fluid, passive microscopic particles (or iso-
lated isotropic phoretic swimmers) undergo Brownian motion characterized by zero mean
displacement. Active particles however have a net displacement with continuous reorienta-
tion of the direction of propulsion, thus exhibiting diffusive behaviour in long time scales
[181, 25]. Commonly employed minimal models for these Active Brownian Particles de-
scribe the essential dynamics involving overdamped motion (Langevin dynamics) as well as
their thermal reorientation [182, 25].

Equivalently, in the case of isotropic phoretic particles, we describe the clustering process
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Figure 4.14: Probability distribution of (top) translational velocities U and (bottom) rota-
tional velocities Ω of N -particle clusters. The distribution mean is indicated by a dashed
red line for each N .

by its reduced-order model (see Section 4.5.2) rather than using the full BEM simulations
because of its versatility and reduced computational cost, as well as to maintain consistency
with the rest of the manuscript. Hence, the deterministic dynamics of the particles cor-
responds to a collective minimization of the effective interaction potential E as defined in
Eq. (4.65). The purpose of this section is therefore to provide some insight on the robustness
of these deterministic results, i.e. how the results of self-propulsion statistics obtained in
the previous sections are modified in the presence of background noise on the kinematics of
individual particles.

In the absence of inertia, the evolution of the position R
(b)
j (t) of particle j under the effect

of background noise is given by the overdamped Langevin equation:

dR
(b)
j (t)

dt
= Uj(t) + ξj(t), (4.68)

where its deterministic velocity, Uj(t) is given by Eq. (4.65), and ξj(t) is a external Gaussian
white noise, with zero mean and a variance, σ2I =< ξi(t) ξj(t

′) >= 2Dδ(t − t′)δijI, where
D is the diffusivity of each particle in the fluid. Thus, the instantaneous displacement of
particle j at any time t is

dR
(b)
j (t) = Uj(t)dt+ dWj , (4.69)

where Wj is a Weiner process with zero mean and variance σ2t δijI. Discretizing Eq. (4.69)
by using Euler-Mayurama method gives

R
(b)
j (t+∆t) = R

(b)
j (t) +Uj(t) ∆t+∆Wj , (4.70)

∆Wj is also a zero mean Weiner process with variance σ2∆t δijI. Equation (4.70) is solved
using an adaptive time stepping method.

A system of N = 6 particles is the smallest system that exhibits multiple clustered configura-
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Figure 4.15: Formation of different clusters from the same initial positions of particles in the
presence of noise of strength σ2 = 0.01. Variation in potential of system with time during
clustering for the cases shown.

tions, and for which the introduction of noise is expected to potentially introduce significant
modification in the collective dynamics; we shall henceforth consider N = 6 as an example
to illustrate the effect of noise on the clustering statistics and resulting propulsion proper-
ties. A direct result of the component of randomness in position of particle in Eq. (4.70), is
the formation of multiple configurations from the same initial conditions of the system. For
each set of initial conditions (typically a few hundreds), Eq. (4.70) is used to run about 100
simulations. If the strength of noise satisfies σ2 ∼ |Eq|, background fluctuations are suffi-
cient to break the formed clusters and redistribute the particles far apart. Hence, we restrict
ourselves to the case where σ2 is much smaller than the absolute cluster potential, |Eq| so
that phoretic effects are still dominant and clustering occurs. In the following, two different
behaviours are observed under the effect of noise, depending on its relative magnitude (σ2)
and the effective potential barrier ∆Ebarr

p→q from configurations p to q (see Figure 4.11).

4.7.1 Low noise

Low noise conditions are characterised by σ2 ≪ ∆Ebarr, which is not sufficient to change
the configuration of a stable cluster once formed. However, it can influence the clustering
dynamics by rearranging the particles as the system moves down the steepest gradient in
interaction potential, as seen in Figure 4.15.

Its influence is particularly important when particles are far apart, i.e. when differences in
E are small and of order σ2. For this reason, one may wrongly presume that noise would
change the probability statistics for the formation of cluster configurations. Instead, the
probability statistics remain identical to that in the absence of noise (see Figure 4.16).

This result can be explained as follows: although a low background noise is expected to
enable the system to explore neighboring routes in the configuration space to minimize
the system’s potential, E , during the clustering phase, it is only effective in the initial
stages where system has low E ; in the later stages, the magnitude of the noise becomes too
small in front of the deterministic velocity (determined by ∇RiE) to significantly alter the
particles’ trajectories. However, a lower potential during the initial stages does not ensure
a low potential of the cluster thus formed (as observed in Figure 4.15). Thus, the noise
just effectively redistributes the initial arrangement of the particles. But this randomness is
already taken into account in the probability of formation of different clusters by considering
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Figure 4.16: Comparison between probabilities of formation of 6 particle cluster configu-
rations in the absence of noise and with low noise shows no significant difference in the
statistics. The clustering was performed with Rmax = 16 in both cases. In the case of low
noise (σ2 = 0.025), probabilities are computed from 200 random initial arrangements of
particles with 100 trials per arrangement.

a large number of random initial positions. As a result the collective propulsion statistics
in Figure 4.13 remain unmodified in low-noise conditions.

4.7.2 High noise
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Figure 4.17: Formation of different cluster configurations by rearrangement of particles over
time due to high noise, σ2 = 0.1. Also shown is the probability distribution of various
cluster configurations which follow a Boltzmann distribution. Since the average separation
between particles are larger due to the continuous high noise, E takes larger values.

In the presence of sufficiently large noise, σ2 ∼ O(∆Ebarr
p→q), a cluster, once formed, continu-

ously transitions from one configuration to another without dislocating fully since the noise
intensity remains much smaller than |Eq|. This situation is in stark contrast with the low-
noise dynamics for two main reasons: (i) it is not possible anymore to define a fixed cluster
shape to the arrangement of the particles which continuously evolves in time and transi-
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tions between all the available configurations, and (ii) the clustering dynamics does not play
a significant role anymore. Indeed, since the particles’ arrangement can be reconfigured,
which cluster shape was reached in the first place is not relevant. Instead, how much time
the particles spend in a particular configuration is now the significant information. This can
be characterized as the probability to obtain a given configuration at any time, which is the
result of the equilibrium between the background noise and the phoretic attraction. Not
surprisingly, this probability now follows a Boltzmann distribution (Figure 4.17). However,
since multiple intermediate configurations (with the same potential) exist, the probability
of a particular stable configuration cannot be defined.

4.8 Conclusions

The results presented in this chapter therefore establish a fourth route to self-propulsion of
active colloids. Unlike previously-identified strategies which relied either on an asymmet-
ric design of the particle or the non-linear convective transport of solutes by the phoretic
flows, self-propulsion of individually non-motile yet active particles is achieved here by non-
symmetric interactions between multiple particles. Under the effect of attractive phoretic
attractions and steric constraints, particles form geometrically-asymmetric clusters that are
able to maintain the asymmetric concentration fields required for propulsion. The self-
propulsion velocities are much lower (by at least an order of magnitude) than typical active
Janus colloids, but lead nonetheless to a net migration of the particles.

Even though the governing dynamics of the particles (in the absence of external noise) are
completely deterministic, multiple particle arrangements can be reached depending on the
detailed dynamics of the cluster formation and balance between phoretic attraction and
steric repulsion. Slightly different initial positions of the different particles may therefore
lead in fundamentally different propulsion characteristics, thereby introducing an inherent
stochasticity in the system. Focusing for simplicity on two-dimensional arrangements of the
particles (the hydrodynamics and solute diffusion are three dimensional), the probability of
formation of the different cluster shapes was determined for increasing N using Monte-Carlo
simulations of the phoretic clustering for N particles with initially-random positions. These
simulations were performed using a reduced-order model of the clustering process obtained
by superimposing the velocity induced on a given particle by each of its neighbors as in a
two-particle system, for which an analytical solution was first obtained.

Using these probabilities and the velocity of the different clusters computed numerically us-
ing a regularized Boundary Element Method, the statistics of the collective self-propulsion
were obtained, namely the mean, maximum and most probable velocities, for both trans-
lation and rotation. The maximum attainable velocity was found to increase with N : for
larger clusters, a greater degree of asymmetry can be achieved leading to larger velocities.
The mean propulsion velocity on the other hand was found to saturate for increasing N : the
most eccentric clusters with large velocity also become less and less probable as N increases,
while the most probable clusters exhibit a more compact geometry with velocities close to
the mean value.

The particles are continuously in a state of non-equilibrium. The lack of external noise to
relax the system creates probability statistics of various configurations which are strikingly
different from equilibrium statistics. This difference directly affects the velocity statistics
and we observe a larger mean velocity compared to that expected from a purely equilibrium
process. Yet thermal noise and Brownian motion can become important for smaller particles,
and their impact on the present result was tested by introducing a Brownian component in
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the motion of the active particles in addition to their deterministic phoretic clustering. Two
different situations are observed depending on the magnitude of the noise with respect to
the phoretic forces maintaining the cohesion of the formed clusters. The cluster probability
and velocity statistics are found remarkably robust to low noise amplitude (i.e. thermal
fluctuations that are unable to break or reconfigure a given cluster): such noise levels essen-
tially redistribute the already random position of the particles in their initial state (before
clustering). In contrast, higher levels of thermal noise can lead to cluster break-up or recon-
figuration. In the latter, a given cluster undergoes continuous transition between different
configurations, and the probability to find a given shape follows an equilibrium probabil-
ity distribution. In that case, the group of N particles continuously reconfigure leading to
changes in its translational and rotational velocity. This provides it with a self-propelled
motion which is reminiscent in some regards to the run-and-tumble behaviour of bacteria
where self-propulsion in a given configuration is followed by a geometric reorganization that
modifies its swimming direction and velocity magnitude [183]. Although the process is quite
different here, in particular because the relative length of a run is significantly smaller than
for bacteria, it is expected to enhance transport by diffusion.
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5
Conclusions and perspectives

In this chapter, we shall draw some final conclusions of the thesis and also provide some per-
spective applications of the MoR framework for modeling dynamics of autophoretic particles
in complex environments and suspensions.

Dynamics of a mixture of active and passive spheres.

Contents

5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Future perspectives: Some applications of MoR framework . . . . 117

113



The goal of this thesis is, from a broad perspective, on modeling the physical interactions be-
tween active particles in a fluid suspension and, to study their resulting collective behaviour.
The active particles considered here are phoretic colloids which “swim” in a fluid through
gradients of a solute concentration field; the physico-chemical mechanism of propulsion is
known as diffusiophoresis. This concentration field is self-generated through catalysis of a
chemical reaction on the surface of each colloid. The particles influence each other through
long-range chemical and hydrodynamic interactions, and short-range steric effects.

The fundamental reason for the collective behaviour is the thermodynamic non-equilibrium
nature of the system which arises from continuous motion of the particles. Systems which
are far from equilibrium exhibit much richer fluctuations and, pattern-forming behaviour
than systems in equilibrium [7]. For example, in suspensions of active colloids, one can
observe spontaneous formation of wave fronts and ‘critters’ [87, 22, 23]. Active colloidal
suspensions also show non-equilibrium phase transitions due to collective interactions be-
tween the particles, such as complete coarsening, gas-like state, dynamic clusters, open-gel
states [101, 87, 121] etc.. Hence, from a physical perspective, understanding the effect of the
interactions between various active particles can give insight into these complex dynamics.
Moreover, by modeling a system where the physico-chemical properties of the active ele-
ments can be appropriately tuned, one can even make comparison with organic swimming
matter such as chemotactic bacteria to differentiate between the physical and psychological
nature of the interactions [85].

From an engineering perspective, active colloids entail potential for controlled transport at
microscopic scales for therapeutic and bio-medical applications [184]. The field of engineer-
ing at microscopic scales is still at a nascent stage, and characterizing the properties of
active colloidal suspensions are critical in the field of material science and chemical engi-
neering for development of active fluid suspensions with desired physical properties. Much
progress is also being made in development of micro-machines using active colloids; the
theoretical analysis presented in this thesis on the propulsion arising from spontaneous
clustering of autophoretic colloids forms the simplest case of self-assembled colloidal micro-
motors that were developed recently [83]. Experimental research on the collective dynamics
and interactions of these colloids with surroundings have gained immense attention over
the last few decades since the possibility of manufacturing colloids with precisely tailored
physico-chemical properties in very large numbers. A commonly used colloid is one which
is composed of two different materials - known as a Janus particle; one material (such as
Silica) forms the base colloid on which a reactive metal cap (such as Platinum) is added.

At the same time, theoretical investigations not only aim to aid in designing appropriate
phoretic particles for a specific engineering task, but also give insight into effect of various
physico-chemical interactions on the particles with itself and the surroundings which can
provide a fundamental understanding of active systems [20]. Determining the exact (ana-
lytical) solutions to the multi-body dynamics of phoretic particles is not possible, unless full
numerical simulations are performed using methods such as Boundary Element Methods, or
Immersed Boundary Methods. However, these numerical techniques are limited by the com-
putational cost involved, and more than a few tens of particles is the limit [137, 138, 130].
These are hence, currently not viable options for determining the dynamics of particles in
large suspensions. Developing efficient and accurate models, capable of handling systems
with a large number of particles, to predict their dynamics is a subject of intense research.
Current modeling approaches involving a large number of particles rely on phenomenologi-
cal models such as Phoretic Brownian Particle (PBP) model, or (Active Alingnment) AAA
models [87] which consider only the chemotactic interaction as the alignment interaction
between point particles. Physical models are currently restricted to far-field models which
consider the particles as point source (or sink) of a solute and, a hydrodynamic stresslet
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[185, 186, 124]. Such physical models are valid only in the dilute suspension limit. They
have been extended to model the dynamics in the continuum limit; however, this mean-
field approach cannot capture certain states of the system such as dynamical clustering
[121, 101, 185].

Accurate theoretical models can thus not only shed light on the different interactions be-
tween phoretic particles and their dynamics at microscopic scales, but can also contribute
significantly to understanding the macroscopic properties of their suspensions, which are
otherwise difficult to determine [187, 188]. With limitations on computational times, phys-
ical models are the best means of determining the dynamics in a suspension containing
large number of particles. Thus, there is currently a large body of scientific interest on
developing detailed models that can be used to study phoretic suspensions. This thesis
intends to contribute to this idea by using the classical Method of Reflections approach to
develop a framework that determines an asymptotically more detailed model to determine
the chemical and hydrodynamic interactions between the particles; a consequence of this
more detailed approach is the identification of a new route to self-propulsion arising from
spontaneous clustering of individually non-swimming isotropic phoretic colloids.

5.1 Summary and conclusions

The autophoretic particles have two physico-chemical properties: their surface activity and,
their surface mobility. Their activity is their ability to emit or consume certain solute
through chemical reactions on their surface. The gradients in solute concentration field
create an effective slip velocity on the surface of the phoretic particle which propels them.
The governing dynamics of the self-propulsion of these particles is thus based on physico-
chemical hydrodynamics. For ease of analysis, we have considered a constant flux model, and
in such a case, the velocity of the phoretic particle is independent of its size. Furthermore,
we have considered only the case where the particles have uniform surface mobility. This is
however not strictly the case in practical situations where a Janus particle, comprising of
two different materials, are expected to have different surface properties.

The chemical field created by the particles was taken to be purely diffusive in nature and
the flow field was considered to be viscous dominated (as is common in flows due to motion
at microscopic scales). In this setting, the current physical models in literature consider
only the far-field interactions i.e. these models consider the particles to be sufficiently far
apart (ε = a/d ≪ 1), they behave as point source of chemical and has a hydrodynamic
stresslet signature at the leading-order. Although the higher-order fields decay much faster,
at close ranges, which is expected in denser active suspensions, these interactions cannot
be neglected. Moreover, the far-field models become inaccurate at short distances between
particles because the non-zero size of the particles and the chemical patterning of surface
activity are omitted in the analysis. Thus, to improve the accuracy in determining the
interactions, one has to take into account both the higher-order chemical and hydrodynamic
fields as well as the effect of size and orientation of the phoretic particles.

To this end, we have developed a unified framework based on the Method of Reflections
(MoR) for both the chemical and hydrodynamic problems. The MoR framework is based on
the idea of asymptotically approaching the prescribed chemical and hydrodynamic boundary
conditions on the surface of the particles by compensating for the spurious effects created by
the surrounding particles. Thus, this framework goes beyond the far-field model, which con-
siders only point particles, by taking into account the non-zero surface area of the particles.
It however needs to be noted that the framework presented here is valid only for spherical
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particles. The chemical and hydrodynamic fields being harmonic in nature are decomposed
into its spherical harmonic modes. The strength of each of the modes are corrected for, in
powers of ε, at each reflection to satisfy the surface boundary conditions. Thus, MoR takes
into account of the higher-order chemical and hydrodynamic modes. Despite its asymptotic
nature and the fact that it is inherently not designed to represent near-contact dynamics
such as lubrication effects, the method converges rapidly: an accuracy of O(ε5) in propul-
sion velocities were obtained using just a single reflection for the hydrodynamic problem and
the chemical field. After p reflections, one can obtain an asymptotic order of accuracy of
O(ε3p+2). However, the possible combinations of reflected modes that need to be considered
increase exponentially with the number of reflections; these reflections being cumbersome
to compute from the general expressions provided in Chapter 3. Nonetheless, once an ana-
lytical expression is obtained, it is quite direct to be implemented. We have shown that the
MoR framework, restricted to O(ε5) is sufficient to predict the velocity of particles to high
accuracy even for inter-particle contact distances of the order of their radius.

The performance of the predictions using MoR are significantly better, qualitatively and
quantitatively, than classical far-field models because by taking into account multiple reflec-
tions, one includes multi-body interactions which are neglected in the latter. So, far-field
models can be seen as ε2-truncations of the present framework. Such far-field models are
widely used due to their simplicity [122, 125, 124]; yet, as they focus solely on pairwise
particle interactions through the slowest-decaying hydrodynamic and chemical signatures,
they fundamentally overlook more complex chemo-hydrodynamic interaction routes which
result from many-body interactions. Additionally, the present framework in fact provides a
unique opportunity to analyse rigorously the relative weight of different interaction routes,
as each interaction type can be turned on or off easily in the model (a feature that is much
more difficult to implement on a full numerical simulation for example). Furthermore, this
framework well-suited for analysing the dynamics of a very large number of particles and
of suspensions. with the number of particles N , with a O(N2)-computational cost for large
numbers of particles, which makes it a very compelling candidate to obtain quantitative
insights in the behavior of large active suspensions. The computational costs are in par or
better than current modeling approaches for low-Reynolds number swimmers [142, 189]

We have examined the collective dynamics in a special case of active fluid suspensions
where the system comprises only of phoretic particles with homogeneous surface activity
and mobility. In isolation, these particles do not self-propel from lack of phoretic forcing
due to isotropy of the surface concentration field. By introducing an additional particles in
the system, the symmetry of the field around each particle is broken by the external field
created by the other; this introduces a forcing that pulls the particles towards each other,
albeit with negligible global motion. However, remarkably, a global motion is observed once
the particles form a rigid cluster. The MoR framework reveals that this property of collective
self-propulsion of the system, arising from spontaneous clustering of the individually-non-
swimming particles, is due to a complex coupling between chemical, hydrodynamic and
steric interactions between them in the cluster.

This is the most fundamental example of what is now known as modular swimmers - those
artificial micro-swimmers that achieve self-propulsion or enhanced transport from sponta-
neous formation of clusters [190, 183]. Modular swimmers are gaining popularity as means
of tailoring micro-machines in-situ; this hence gives the flexibility of having their proper-
ties adjusted while in operation within the fluid [183, 83]. The simplest form of modular
swimmers are those formed spontaneously from isotropic particles; these do infact show the
versatility of creating clusters which can translate, rotate or both or neither depending on
the arrangement of the individual particles.

In a system comprising of N isotropic particles, the propulsion velocities of the resulting
cluster are stochastic in nature, not from any imposed background noise, but rather from
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inherent possibilities of the system to form multiple cluster configurations based on the ini-
tial arrangement of particles. It has to be thus noted that these probability statistics are
fundamentally different from equilibrium statistics. By computing the propulsion velocities
using full numerical simulations with Boundary Element Methods (BEM), we elucidated the
velocity statistics viz. the mean and maximum propulsion velocities in a system containing
N particles (till N = 12 particles). The maximum propulsion velocity is noted to increase
monotonically with increase in N while the mean velocity saturates to a value ≈ 2×10−3 for
large N . This is because the propulsion velocity is higher for oblong asymmetric clusters,
and while this aspect ratio can be increased with increase in size of the cluster, the proba-
bility of formation of such clusters from initial random arrangement of particles. Thus, by
identifying and characterising the clustering-induced self-propulsion of the isotropic phoretic
particles, we have established the features of a new route of self-propulsion, arising not from
individually tailored surface properties [58], or geometrical asymmetries [61], or from ad-
vective redistribution of solute [65], but rather from collective interactions. The swimming
velocity of clusters are however computed to be an order of magnitude smaller than a true
Janus particle. The velocity of clusters containing large number of particles are however yet
to be understood.

The velocity calculations for large N are restricted by the availability of computational re-
source. An approximate value could be computed using MoR for large N , but would be
accurate only when particles in the rigid cluster have large inter-particle surface separa-
tion. This is because solute confinement as well as hydrodynamic lubrication effects, which
are strong a close separations, play a major role in determining the propulsion velocity of
the cluster and these require a large number of reflections to be captured analytically. A
qualitative idea of the propulsion velocity statistics could nonetheless be obtained using
MoR.

5.2 Future perspectives: Some applications of MoR frame-
work

The MoR framework is a versatile tool to study the dynamics of particles beyond the dilute
limit in suspensions. The framework is generic in the sense that it is also applicable to
study systems containing particles regardless of their physico-chemical properties; the varied
properties of the colloids naturally lead to symmetry-breaking of the concentration field and
could lead to self-assembly and propulsion of the clusters [62, 191]. Direct experimental
evidence of the propulsion properties of self-assembled clusters within a mixture of active
and passive particles have been observed [192]. As we have seen, the MoR framework, could
be readily applied to predict this self-propulsion behaviour and also study the interaction
dynamics of such clusters in more detail. This opens up the avenue for studying dynamics
of dimer motors [193], suspension of particles with mixed activity and mobilities [191, 194].

To revel this perspective application, we shall hint on using the model to study the effect
of active particles in the diffusion of passive tracers in their suspension. It is well known
that passive particles immersed in an active fluid show enhanced diffusivities due to the
interactions with the active particles such as bacteria in the suspension [195, 196, 197].
But how is this modified in the presence of chemical interactions? The passive particles
considered here have no activity, but however posses a uniform surface mobility (M = 1)
which drifts them towards a region of lower solute concentration i.e the particles are chemo-
repulsive; the active particles are also assumed here to have the same surface mobility.
Situations involving interactions between active phoretic matter and their dynamics have
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been studied previously, however in the light of chemo-attractive nature which naturally
leads to their clustering [121]. Here, we seek to explore the effective diffusivity of the passive
particles due to chemical and hydrodynamic interactions with the phoretic swimmers.

To prevent the self-swimming Janus particles from escaping to infinity they are immersed
in a harmonic potential well; the passive particles are however not influenced by the well.
In experiments, such the potential well is usually established with the aid of light using a
mechanism known as optical trapping [198]. The focused laser beam creates the well, which
is assumed here to be parabolic in nature [16]. The potential field is hence defined as

V (r) =
1

2
kr2 (5.1)

where k is the stiffness of the well. For our simulations we use k = 0.25. For a Janus particle
of unit radius with hemispherical surface activity, the self-propulsion velocity U self = 0.25.
The MoR approach for is validated for O(ε5) accuracy by comparing with analytical solution
for the case of axisymmetrical configuration of a phoretic particle near a passive sphere (see
Appendix B).

To compare the effect of active particles on the diffusivity of passive spheres, a background
Brownian noise is added to the system. Their mean-squared displacement (MSD) in the
presence of active particles are compared. All the particles, being of the same size and shape,
have the same translational and rotational diffusivities (denoted by Dt and Dr respectively),
taken in our simulations to be Dt = 10−3 and Dr = 10−2.
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Figure 5.1: a) Trajectories of a system of active Janus particles occupying area fraction
ϕ = 2% and passive particles (in gray) of area fraction 2% over time t = 100. In isolation,
each particle diffuses with translational diffusivity Dt = 10−3 and rotational diffusivity
Dr = 10−2. The intensity of background colour is proportional to the magnitude of the
radially inward force F on Janus particles due to the potential well. b) Mean-squared
displacement of the passive particles as a function of time for various area fractions of Janus
particles (ϕ).

It is observed from figure 5.1(b) that the MSD, in the absence of active swimmers i.e.
ϕ = 0%, increases linearly with time as expected for a diffusive process. When the phoretic
particles are introduced, the mean-squared displacement of the passive particles increases;
this enhanced diffusivity is observed as the density of swimmers are increased. The nature
of transport beyond area fraction of ϕ = 2% however needs to be explored in detail as the
displacement appears to be ballistic, as in the case of Janus particles, instead of diffusive.
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Diffuivities when particles are distributed randomly in space, rather than initial restriction
to a plane, is a possible future outlook to study diffusivity in 3D.

By making the passive sphere stationary, it becomes an obstacle to the motion of the Janus
particle. Thus, the obstacle is not force- and torque-free and thus creates additional Stokeslet
and rotlet flow fields (see Appendix B.2). But it is seen that the solute confinement and
hydrodynamic effects from the wall play a major role in determining the dynamics of Janus
particle near the obstacle [199]. This is especially true when the obstacle size is large
compared to the particle (aobstacle/aparticle ≫ 1), and the wall effects by enforcing no slip
and no penetration at the wall capture the phoretic particle. In this situation, MoR, within
O(ε5) accuracy fails to predict the capture. It is expected that the method of images need
to be implemented to obtain the wall effects on the particle [200, 112, 201]. Figure 5.2
shows the dynamics of a Janus particle near an obstacle of twice its size for various surface
activity;the chemical and hydrodynamic interactions create a net change in the direction of
the Janus particle.

-5 0 5

-5

0

5

Figure 5.2: Trajectories of Janus particle (chemotactic with M = −1) with three different
surfac coverage 0.5 (dotted), 0.75 (dashed) and 0.95 (solid) respectively near an obstacle.
An example of the trajectories of three Janus particles which are chemo-repulsive (M = 1)
through a forest of spherical obstacles (in blue) is shown on right.

For small obstacles these surface effects are considerably smaller and MoR is suitable; how-
ever, the influence of obstacle would also be significantly small. Nonetheless, MoR could
be implemented to model motion of phoretic particles through complex environment like
porous media with low area fraction of obstacles and small obstacle sizes; By taking into
account the chemical and hydrodynamic interactions with the boundaries, MoR is expected
to provide better estimate of the dynamics of phoretic particles in complex environments
than ABP models which are being used currently [181, 25]. The above analyses was carried
out by having the Janus particles initially positioned and oriented along a plane, which
automatically restricts their dynamics to the said plane; the chemical and hydrodynamic
interactions were however considered to be fully three-dimensional. This condition was im-
posed simply for the ease of comprehension of their dynamics. Nonetheless, the model can
readily be applied for three-dimensional distributions and orientations (see figure 5.2 b).
This can give a more realistic modelling of the dynamics of phoretic particles in suspensions
and in porous media.

The current framework is based on the asymptotic a/d, a being the particle radius and being
the center-center distance between the particles. However, one can imagine the strength of
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each term to be quite small in the case of large boundaries, such as a wall, where d tends
to infinity. This could pose difficulty in determining the dynamics of particles near walls
accurately using the current framework as the convergence of the series would be slow i.e. a
large number of reflections would be necessary to compensate for the weak asymptotics. A
work-around can however be made by determining the appropriate images of the chemical
and hydrodynamic field (self and reflected) that satisfy the surface boundary conditions
exactly on the large boundary [202, 124, 200]

The simulations in the present thesis have only considered particles to have uniform surface
mobility. However, the same modelling framework can be easily extended to case where
there are particles of variable mobility. This would provide a more realistic modelling of
the phoretic suspensions usually implemented in experiments. The proposed framework can
nonetheless be immediately be applied to study a system with mixtures of spherical phoretic
particles regardless of their size and surface properties. Thus, the MoR framework presents
itself as a powerful tool to study the microscopic interactions and the long-term dynamics in
a suspension containing a zoo of phoretic particles. The chosen phoretic mechanism and the
modelling approach using MoR certainly explains the experimental observations of colloidal
clustering and propulsion qualitatively. However, it should be perceived that to make a
quantitative comparison to experimental observations, appropriate experimental conditions
need to be met in the model as well, such as effect of boundaries, detailed colloidal surface
properties and proper reaction kinetics need to be incorporated in the model.
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A
Analytical solution for
two-sphere axisymmetric

phoretic problem
An exact analytical solution can be obtained for the propulsion velocities of two moving
spherical particles. The particles can be represented by fixed coordinates in a bispherical
coordinate system. Here, we use this special coordinate system to compute the velocities
of two axisymmetric Janus particles aligned along their common axis of symmetry (see
Figure A.1). The analysis is presented here for two particles of identical radius a; even
though we restrict the current analysis to two spheres of equal size for simplicity, the analysis
using this coordinate system is flexible to evaluate both spheres of different sizes [61, 203].

In this coordinate system, the orthogonal coordinates (τ, ξ, ϕ) are related to the cylindrical
coordinates (ρ, θ, z) through

ρ =
κ
√
1− ξ2

cosh τ − ξ
, z =

κ sinh τ

cosh τ − ξ
· (A.1)

The surface of two S1 and S2 can be represented by τ isosurfaces; for two size spheres of
same radius a, one can describe their surfaces by τ = ±τ0 respectively . The radius, a and
the distance between their centers, d are then given in this coordinate system by,

a = κ/| sinh τ0| and, d = 2κ coth τ0 (A.2)

respectively. The expressions for radius and distance define κ and τ0 uniquely.

A.1 Generalization

On the surface of each sphere, ξ varies monotonically from ξ = −1 (at the pole facing the
other particle) to ξ = 1 (at the pole facing away from the other particle). Let ξ = ξci
demarcate the region of activity on the surface of a Janus particle i (i.e. let us suppose for
our evaluation, the active regions are [−1, ξc1] for particle 1, and [ξc2, 1] for particle 2 shown
in figure A.1 by white region).

Noting Sc
i the fraction of the particle surface that is chemically-active (e.g. coated with a

catalyst):

ξc1 =
1 + (2Sc

i − 1) cosh τ0
cosh τ0 + (2Sc

1 − 1)
and, (A.3)

ξc2 =
1− (2Sc

i − 1) cosh τ0
cosh τ0 − (2Sc

2 − 1)
(A.4)
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Figure A.1: Bispherical coordinate system with spheres ±τ0 representing two particles of
equal size. The two Janus particles have an active and passive parts demarcated by the
coordinates ξc1 and ξc2 respectively. Although there is no inherent bias for shading, the
shaded region is nonetheless regarded as the passive part for current analysis.

Sc
i = 1/2 represents a Janus particle with hemispherical surface activity. Because of the par-

ticle structure of the bispherical coordinate system, ξci is also a function of the instantaneous
distance between the particles.

The solute concentration field produced by the particles obeys the diffusion equation, equa-
tion (2.22), in bispherical coordinates,

∂

∂τ

(
1

cosh τ − ξ

∂c

∂τ

)
+

∂

∂ξ

(
1− ξ2

cosh τ − ξ

∂c

∂ξ

)
= 0 (A.5)

whose general far-field decaying solution is given by [204, 61]:

c(τ, ξ) =
√

cosh τ − ξ
∞∑
n=0

cn(τ)Ln(ξ) with, (A.6)

cn(τ) = an exp((n+ 1/2)(τ − τ0)) + bn exp((n+ 1/2)(τ + τ0)). (A.7)

The normal flux boundary condition on the surface two particles,

eτ · ∇c = ±cosh τ − ξ

κ

∂c

∂τ

⏐⏐⏐⏐
τ=±τ0

= ±A H(ξ, ξci=1,2) where, (A.8)

H(ξ, ξci=1,2) =

{
1 l1 < ξ ≤ l2

0 otherwise
, (A.9)

with, l1 = −1 and l2 = ξc1 for particle 1 and l1 = ξc2 and l2 = 1 for particle 2. Equations
(A.7)–(A.9) provide after projection along Ln(ξ):

cn(±τ0) sinh(τ0)
2(2n+ 1)

+
c′n(±τ0) cosh(±τ0)

2n+ 1
−

(n+ 1)c′n+1(±τ0)
(2n+ 1)(2n+ 3)

−
nc′n−1(±τ0)

(2n+ 1)(2n− 1)

= ±
∫ l2

l1

A| sinh τ0|Ln(ξ)dξ

2
√
cosh τ0 − ξ

· (A.10)
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Equations. (A.7) and (A.10) together provide a linear system for (an, bn) whose solution
determines the concentration field.

The surface concentration gradients induce an effective slip velocity along eξ,

ũξ(±τ0, ξ) =
M
√

1− ξ2

κ
(cosh τ0 − ξ)

∂c

∂ξ

⏐⏐⏐⏐
τ=±τ0

· (A.11)

To obtain the particles’ velocities, the common strategy employed in low Reynolds hydrody-
namics is to develop an auxiliary problem whose solution is known or can be computed easily
(e.g. rigid body dynamics) and thereafter, use Lorentz reciprocal theorem to obtain veloc-
ity or forces of the original problem [169]. We consider here an auxiliary problem (u∗,σ∗)
corresponding to the flow field around the same particles considered here, with particle i
translating rigidly with velocity Ui = Uiez with a net hydrodynamic force Fi = Fiez. It
satisfies

∇2u∗ = ∇p∗, ∇ · u∗ = 0, u∗(r → ∞) → 0, (A.12)

and u = U∗
i and

∫
Si
σ∗ · ndS = F∗

i on particle i. Applying Lorentz reciprocal theorem to
this auxiliary problem and to the dynamics of the two Janus particles provide that for any
(F ∗

1 , F
∗
2 )

F ∗
1U1 + F ∗

2U2 = −
∫
S1,S2

ũ · σ∗ · ndS. (A.13)

Applying this result for the particular choice of auxiliary problem with F ∗
1 = F ∗

2 (resp.
F ∗
2 = −F ∗

1 ) provides the global velocity U1 +U2 (resp. relative velocity U1 −U2) and hence
reconstruct the individual velocities of the particles.

In each case, the relation between the translation velocity of each sphere U∗
i , the total

hydrodynamic force F ∗
i and corresponding fluid stress tensor σ∗ is well known [204], and we

therefore only briefly summarize the main results. The auxiliary problem is axisymmetric
and can be formulated in terms of a streamfunction ψ∗

ψ∗(τ, ξ) = (cosh τ − ξ)−3/2
∞∑
n=1

(1− ξ2)L′
n(ξ) Vn(τ) where (A.14)

Vn(τ) = αn cosh

(
n+

3

2

)
τ + βn sinh

(
n+

3

2

)
τ + γn cosh

(
n− 1

2

)
τ + δn sinh

(
n− 1

2

)
τ.

(A.15)

The coefficients αn, βn, γn, and δn are computed from the no-slip boundary condition on
the spheres, i.e u∗ = U∗

i ez on particle i (i.e. τ = ±τ0) [204]. Once the coefficients are
determined, one can evaluate the surface shear stress,

σ∗τ,ξ(±τ0, ξ) =
√
1− ξ2

κ

⎡⎣∑
n≥1

L′
n(ξ)Sn − cosh τ0 +

sinh2 τ0
2(cosh τ0 − ξ)

⎤⎦ with, (A.16)

Sn = −(cosh τ0 − ξ)3/2V ′′
n (±τ0) +

√
cosh τ0 − ξ

2
(±V ′

n(±τ0) sinh τ0 + 3Vn(±τ0) cosh τ0),
(A.17)

and the total hydrodynamic force on each sphere is then obtained as [204],

F ∗
1 =

2π
√
2

κ

∑
n≥1

n(n+1)(αn+βn+γn+δn) and F ∗
2 =

2π
√
2

κ

∑
n≥1

n(n+1)(αn−βn+γn−δn).

(A.18)
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A.2 Special case: Isotropic particles

For isotropic particles Sc
i=1,2 = 1 which gives ξci=1,2 = ±1. Since the particles are isotropic,

each τ isosurface representing the particle has identical surface concentration for a given ξ,

cn(τ0) = cn(−τ0) which implies, an = bn(= Cn/2, say) (A.19)

Thus, the coefficient cn for the case of isotropic particles can be expressed simply as,

cn(τ) = Cn cosh

[(
n+

1

2

)
τ

]
(A.20)

The integral in equation (A.10) is computed numerically. For isotropic particles, however,
ξc1 = 1 and ξc2 = −1. Thus, the boundary condition in equation (A.9) has H = 1 ∀ − 1 ≤
ξ ≤ 1. The integral limits are hence always between -1 and 1, and the above expression in
equation (A.10) simplifies to:

sinh τ0
2

cn(τ0) + c′n(τ0) cosh(τ0)−
n+ 1

2n+ 3
c′n+1(τ0)−

n

2n− 1
c′n−1(τ0) = κA

√
2 e−(n+1/2)τ0

(A.21)

Since we are interested in analysing the dynamics of clustering i.e. when U1 = −U2(= U),
the dual problem that one should consider is when both the spheres are subjected to equal
and opposite force F ∗ towards each other. Thus equation (A.13) becomes,

U =
1

2F ∗

∫
S1,S2

ũ · σ∗ · ndS (A.22)

The auxillary flow field for two spheres moving towards each other can be expressed as, with
the streamfunction ψ∗ given by [204, 61]

ψ∗(τ, µ)

U∗ = (cosh τ − µ)−3/2
∞∑
n=1

(1− µ2)L′
n(µ)Vn(τ) where, (A.23)

Vn(τ) = βn sinh

[(
n+

3

2

)
τ

]
+ δn sinh

[(
n− 1

2

)
τ

]
. (A.24)

Note that two of the coefficients (αn, γn) in the general equation (A.15) are zero due to the
planar symmetry of the system. The no-slip boundary conditions on the spheres’ surface
write as

ψ∗(τ0, µ) = −α2U∗(1− µ2)

(cosh τ0 − µ)2
,

∂ψ∗

∂τ
(τ0, µ) =

α2U∗(1− µ2) sinh τ0
(cosh τ0 − µ)3

, (A.25)

and appropriate projections on the Legendre polynomials provide an explicit determination
for βn and δn. The shear stress distribution on the surface is then determined as [177]

σ∗τµ(τ, µ) =
1

α3
√

1− µ2
∂

∂τ

[
(cosh τ − µ)3

∂ψ∗

∂τ

]
−
√
1− µ2

α3

∂

∂µ

[
(cosh τ − µ)3

∂ψ∗

∂µ

]
,

(A.26)
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and the hydrodynamic force on each sphere is obtained directly as [204, 61]

F ∗ =
2π

√
2

α

∞∑
n=1

n(n+ 1)(βn + δn). (A.27)

Two other special cases involving combination of active and passive particles is described in
Appendix B
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B
Mixture of active and passive

particles
In this section we briefly describe the method of reflections approach applied to system
comprising of active an passive particles. We shall consider two specific cases (i) where the
passive particles have a uniform non-zero surface mobility and are free to move (ii) where the
passive spheres are fixed and hence, behave as obstacle of motion of the active particle. The
former case is considered to study the enhanced transport of passive phoretic spheres due to
presence of self-propelling (active) phoretic particles. The latter case, where active particles
move through a jungle of spherical passive obstacles, physically represents a situation of
swimming through porous media.

B.1 Janus particle and passive tracer

The MoR framework described in Chapter 3 can directly be applied for particles with differ-
ent surface activities. However, since we wish to study the long term influence of the particles
on the transport of passive particles, we confined the Janus particles within a potential well.
Thus, the active particle is no longer force- or torque-free. Additional interactions arise
because of the point forcing exerted by the potential well on the Janus particle i.e. the
spherical particle being dragged by an external force creates a stokeslet and a potential-
dipole flow field which decays as 1/r and 1/r3 respectively. It has to be emphasized here
that there are no additional chemical interactions (besides that detailed in Section 3.3.1 of
Chapter 3) needed to be considered here; however, one has to take into account the addi-
tional hydrodynamic reflections arising from the stokeslet and potential dipole signature of
each particle. Moreover, by restricting the computation of propulsion velocities to accuracy
O(ε5), we observe that besides the drift from this stokeslet as well as the potential dipole, a
first reflection of the stokeslet produces a reflected stresslet which creates a hydrodynamic
drift of O(ε5) magnitude. Firstly, the flow field created by a spherical particle j subjected
to a point force F at its center is given by

uj(rj) =
Fj

8πη
·

(
I

rj
+

rjrj
r3j

)
+

Fja
2
j

24πη
·

(
I

r3j
− 3rjrj

r5j

)
(B.1)

which is a combination of a Stokeslet and a source dipole. This can be expressed in the
form,

uj(rj) =
P0

j,1

2
·

(
I+

rjrj
r3j

)
+Φ0

j,1 ·

(
I

r3j
− 3rjrj

r5j

)

where, P0
j,1 = Fj/4πη represents the strength of the Stokeslet and Potential dipole respec-

tively. The drift velocity produced by this field is obtained using Faxén’s laws and is given
by
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Figure B.1: Analytical solution for the solute concentration field created by two different
configurations of Janus particles near an passive sphere determined using the Bispherical
coordinate system approach in Section A.

Uh,r=1
k =

∑
j ̸=k

1

8π

∑
j ̸=k

Fj

djk
· (I+ ejkejk) +

(a2j + a2k)Fj

3d3jk
· (I− 3ejkejk) (B.2)

Ωh,r=1
k = −1

2

(
∇× uj(rj)

)
rk=0

(B.3)

To maintain the accuracy of O(ε5) for the computed propulsion velocities, one has to include
additional higher-order interactions that arise from hydrodynamic reflections of the Stokeslet
and additional contribution to the source dipole. By listing out the various first reflections
of the hydrodyanicm field,one can conclude that the only interaction that contributes to the
drift velocity within an O(ε5) is that when the Stokelst produces a stresslet on the second
particle which thereby influences the dynamics of the surrounding particles.

Stokeslet(P0
l,1)

O(ε2)−−−→ Stresslet(P1
j,2)

O(ε2),O(ε3)−−−−−−−→Drift velocity Uk O(ε4)

Drift angular velocity Ωk O(ε5) (B.4)

The strength of this stresslet is given by,

P1
j,2 =

∑
l ̸=j

P0
l,1 ·FP→P

lj (2, 1) =
−5a2j
6

∑
l ̸=j

P0
l,1 ·

⎡⎢⎣F3
lj(2, 1)  
O(ε2)

+
a2j
10

F1
lj(2, 1)  
O(ε4)

⎤⎥⎦ (B.5)

As the O(ε4) term in the above expression creates a drift of O(ε6) (in equation B.4), we
shall exclude it from the analysis.

F3
lj(1, 2) =

1

2

⎡⎣∇( I

rl
+

rlrl
r3l

)⎤⎦
rj=0

=
1

2d2lj
[eljI+ (eljI)

T12 + (eljI)
T13 − 5eljeljelj ] (B.6)

The overbracket symbolizes the matrix which is symmetric and deviatoric with respect to
the last two indices. Substituting the above equation in equation (B.5), the strength of the
stresslet that is created at the first reflection
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P1
j,2 =

∑
l ̸=j

−5a2j
48πηd2lj

[(Fl · elj)(I− 5eljelj) + (Flelj)
T + (Flelj)] (B.7)

The drift produced by this reflected stresslet from a particle j on a particle k,

Uh,r=2
k =

∑
j ̸=k

P1
j,2 : F3

jk(1, 2) =
∑
j ̸=k

P1
j,2 :

ejkejkejk
2d2jk

(B.8)

=
−5

96π

∑
j ̸=k

∑
l ̸=j

a2ja
2
l

d2ljd
2
jk

[(Fl · elj)(I− 5eljelj) + (Flelj)
T + (Flelj)] : ejkejkejk (B.9)

Ωh,r=2
k = −1

2

∑
j ̸=k

P1
j,2 : F2

jk(1, 2) (B.10)

Note that the stresslet produced by the potential dipole component is of O(ε6) is is neglected.

B.2 Janus particle near an obstacle

An obstacle is considered here to be a stationary spherical passive particle. Here we shall
however not consider any potential well that restricts the Janus particle. Thus, the phoretic
particle is individually force- and torque-free.

In the development using MoR, we find that here again, there are no additional chemical
interactions (besides that detailed in Section 3.3.1 of Chapter 3) to be considered. There
is however an additional contribution to the drift velocity of the particle arising from the
immobile nature of the obstacle; the obstacle resists drifting due to external flow field in
the form of a point force at its center. This creates a stokeslet flow-field which interacts
with the active particle. This interaction is a 3-particle hydrodynamic interaction and the
drift velocities created by them are O(ε5). If the obstacle were to have a non-zero uniform
mobility, additional chemo-hydrodynamic interactions would have to be included.

If a force prevents the drift of an obstacle j (with a velocity Uj) due to disturbance flow
from the phoreticparticle, the stokeslet flow field is given by

ustk
j =

−3aj
4rj

Uj ·

(
I+

rjrj
r2j

)
(B.11)

This apparent drift velocity Uj of the obstacle is due to force dipole, force quadrupole and
force octupole (scales as ε2, ε3, ε4 respt.) created by the phoretic particle. The obstacle
creates a point force of strength 6πηUj that prevents the drift of the obstacle. The flow field
created by this point force on the obstacle produces a stokeslet flow field, which creates a
drift on the neighbouring phoretic particles. This drift velocity is obtained from Faxén’s law

Uk =
∑
j ̸=k

Uj · (I+ ejkejk) +
a3jUj

2d3jk
(B.12)

At the leading order, Uj is the drift due to a stresslet which scales as O(ε2). A rotlet
flow-field due to a point torque L is given by

urot
j =

−1

8πηr3j
Lj · (I× rj) (B.13)
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Figure B.2: Analytically determined propulsion velocity of the acitve particle (left) as a
function of separation distance with the obstacle. (right) ε6 scaling of error obtained from
MoR calculations. The bispherical coordinate system used here is exactly the same as that
mentioned in the above section B.1. The two configurations are as shown in figure B.1.
Note that lubrication and solute confinement effects play a major role in determining the
velocities of the Janus particles.

The drift velocity induced by the rotlet from the obstacle on the surrounding particles is
similarly obtained as

Uk =
∑
j ̸=k

a2j
d2jk

ejk ×Ωj (B.14)

where Ωj is the angular velocity of the obstacle that is prevented by the torque Lj . At the
leading order Ωj is of O(ε3) and comes from the stresslet produced by the phoretic particles;
the translational drift on the phoretic particle is thus O(ε5). However, for an apparent drift
velocity Uj prevented by the obstacle, the contribution to rotational velocity Ωk of the
phoretic particles comes from both stresslet and force quadrupole.

Ωk =
∑
j ̸=k

−3a2k
8d2jk

ejk ×Uj (B.15)

Note that the rotlet needed to prevent rotation of the obstacle creates only translation and
no rotation of the phoretic particle within the O(ε5) accuracy.
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C
Regularized Boundary Element

Method
C.1 Regularized boundary integral formulation

Since the Green’s functions for both the chemical and hydrodynamic problem scales as 1/r
(for Stokeslet as well as point chemical source), both the velocity and the concentration
field on a planar surface in 3-dimensions (and points in 2 dimensions) are integrable over
the surface and are bounded. Nonetheless, the classical Boundary Integral formulation
for Laplace and Stokes problems (discussed in Section 2.6) involve singular kernels which
require a separate analytical treatment of the singular contributions and precise quadrature
techniques. To avoid the singular nature of the kernals, one can smoothen the function by
replacing it with a approximated blob function. Such a regularization has been found useful
in multiple applications of Stokes flows [179, 167]. The commonly used blob function in
literature is [179, 167, 137, 205],

ϕϵ(x,x0) =
15ϵ4

8πr7ϵ
(C.1)

where r2ϵ = r2 + ϵ2 and r = |x− x0|. The associated kernels are then given by,

J ϵ(x,x0) = −(2r2 + 3ϵ2)

8πr3ϵ
, Kϵ

j (x,x0) = rj
2r2 + 5ϵ2

8πr5ϵ
, (C.2)

Using the above regularized kernals to develop the integrals equations as described in Section
(2.6), we obtain a regularized form of the boundary integral formulations [179, 205]. Here,
we shall simply list out some of the important expressions for determining the surface
concentration and velocities on the phoretic particle. The regularized boundary integral
equation for the concentration field (equivalent to the singular integral equation (C.3)) in
response to the flux forcing on the active particles [137]

λϵc(x0) =

∫
S

[
c(x) Kϵ(x,x0) · n(x)−

∂c(x)

∂n
J ϵ(x,x0)

]
dSx (C.3)

where, on the surface of the particle, one can determine [137, 138]

λϵ =

(
1

2
+
ϵκ

4

)
+
ϵ

4

∂c

∂n
(x0) +O(ϵ2) (C.4)

with κ the mean local curvature of the particle surface (κ = 1 for spherical particles).
O(ϵ) thus accounts for the the regularization with i) the local curvature of the surface and
ii) the gradient of c. Once the surface concentration field has been obtained, the surface
slip velocity, ũ, is computed from the particle’s phoretic mobility property. The boundary
integral formulation of the Stokes flow problem and force- and torque-free condition on each
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particle is then solved for the flow traction and translation and rotation velocities Uj and
Ωj of the different particles using [179, 137]

λϵuj(x0) =
1

8π

∫
S

[
Gϵ

ij(x,x0) fi(x)− ui(x) T
ϵ
ijk(x,x0) nk(x)

]
dSx

where f is the surface traction. The regularized Greeen’s functions in the above equation
are given by

Gϵ
ij(x,x0) =

(r2 + 2ϵ2)δij + rirj
r3ϵ

, (C.5)

T ϵ
ijk(x,x0) =

−6rirjrk − 3ϵ2(riδjk + rjδik + rkδij)

r5ϵ
· (C.6)

Substituting the flow velocity at the surface, u = ũ+U+Ω×x in the above equation gives,

λϵũj(x0) +

∫
S
ũi(x0)T

ϵ
ijk(x,x0)nk(x)dSx =

∫
S

[
Gϵ

ij(x,x0) fi(x)

− [Ui(x) + Ω× (x0 − xc)] T
ϵ
ijk(x,x0) nk(x)

]
dSx

(C.7)

The surface slip velocity ũ is determined from the local surface concentration gradient

ũj(x0) =M(δij − ninj)
∂

∂xi
c(x0) (C.8)

And finally, the matrix set of equations are closed using the force and torque-free boundary
conditions ∫

S
f(x)dSx = 0 and

∫
S
(x− xc)× f(x)dSx = 0 (C.9)

The surface distribution of concentration and velocity may be used to compute their bulk
distribution, using the fundamental integral representations. The regularization parameter
ϵ must be chosen small enough to approach the true solution but large enough to avoid a
singular behaviour of the integral equation; a value of 0.005 and 0.01 is typically used.

There are only a few special cases where the boundary integrals have a closed form solutions;
these are not applicable in most cases of practical importance where the bodies have complex
shapes and/or boundary conditions. A numerical scheme for the integrals are known as the
Boundary Element Methods (BEM), where the velocities and forces are discretized over the
surface of the body. We follow the computational framework of regularised BEM developed
for phoretic problems by Montenegro-Johnson et al. [137] to generate mesh and quadrature
routines for evaluation of surface integrals. In general, the Boundary Element Methods
(BEM) traces the listed steps.

C.2 Details of simulation using BEM

Boundary Element Method (BEM) is the discretized version of the boundary integral formu-
lation described in the previous section. Method of Regularized Stokeslet has been used for
determining the dynamic of micro-organisms swimming in low Reynolds number [205, 129].
We follow the same spirit in modeling the dynamics of artificial phoretic swimmers. An ap-
proximation of the surface of the particle is first generated by discretizing the surface profile
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using nodes. Normally, a planar surface discretization is sufficient; however, to capture the
curved surface of the particles, a quadratic representation is used here; this allows one to
create the spherical geometry of the particles with less elements [137]. For our problem,
two discretizations, depending on the desired accuracy are used: i) A rough mesh, with 512
elements and 2) a fine mesh with 2048 elements. The surface unknowns (i.e. solute concen-
tration, flow velocities and traction) on the surface of the body are expanded as truncated
polynomial series about each node. The coefficient of each term in the series is known as
the local basis function [153]. In most BEM simulations in literature, the values of surface
unknowns are kept constant within each element. However, for phoretic problems, since the
prediction of the propulsion velocity depends on the accuracy in prediction of concentration
gradients, one also has to include the linear variation of the fields within each element. In
considering the linear variation, compared to the case of constant element method where
each point is dependent on the three neighbouring values, here, each node is shared by
six others, thus reducing the size of the linear system by a factor 1/8. The local expan-
sion is substituted in the integral equations to obtain the coefficients of expansion of single
and double layer potential. The integration is performed on quadrature points which are
projected from planar elements to quadratic elements; this is separate from element-based
discretization of the field. Thus, in this manner, one decouples this solution space from the
quadrature space used to evaluate surface integrals. A Fekete quadrature routine is then im-
plemented on the quadrature points to evaluate the surface integral of the Green’s functions
[137]. For the simulations of phoretic particles in our simulations, 1026 quadratic nodes
for rough mesh and 4098 nodes for a fine mesh were used. The system of linear equations
one obtains is finally solved for using Gauss elimination, which is suitable for large linear
systems.
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Figure C.1: Regularized mesh (rough mesh with 512 elements) for determining clustering
velocity of each of the 2 identical isotropic phoretic particles due to mutual symmetry-
breaking of concentration field. (right) Comparison of clustering velocity computed using
BEM with that of analytical solution derived in Chapter 4, Section 4.2.2

The solutions to boundary integral equations have been shown to exhibit regular behaviour,
except in situations such as sharp corners or singular points (such as near a contact line),
where the solutions can display oscillatory behaviour and slow convergence. The accuracy of
BEM also depends on the shape of the distribution of elements and the order of the approxi-
mation function. In general, there are two types of errors one can expect in using regularized
BEM: 1) Regularization error 2) Discretization error [205]. The discretization error can be
reduced by reducing the size of the elements; the quadratic surface approximation used here
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Figure C.2: The possible cluster configurations of 6-particle system of isotropic particles
is shown. The computed propulsion velocities are (a) U = 2.8 × 10−4, Ω = 0 and (b)
U = 10−13, Ω = 10−11 and (c)U = 10−13, Ω = 1.46× 10−5.

Figure C.3: Meshing for computing propulsion velocity of Janus particle. The computed
velocity of an isolated Janus particle, having half of its surface active, was found to be
accurate to 10−8.

also reduces the discretization error as it represents the curved geometry more faithfully.
Additionally, for phoretic problems the accuracy of the computed propulsion velocities de-
pend on the surface concentration gradients and so, the computation of gradients require
finer meshing as well. For example: To compute the propulsion velocity of Janus particle
one has to make finer discretization near the sharp region where the surface transitions from
active to passive. Another example is the case for computing the propulsion velocities of
clusters of phoretic particles; In this case, the region where the particles are closest to each
other (at the expected contact points of particles in the cluster) require much finer mesh to
capture the sharp gradients created by the curved interfaces.

The BEM framework that we use for our simulations were validated in Montenegro-Johnson
et.al. for both isotropic as well as Janus particles [137]. In Chapter 4, where we study the
dynamics of isotropic particles, full numerical simulations for 5 particles were performed
using this framework. For the clustering phase which requires time-stepping computations,
a regular meshing comprising of 512 elements per particle (i.e. the rough mesh) was found
to be sufficient. An example of this mesh is shown in figure C.1.

However for computing the propulsion velocities of clusters, a higher precision is required.
In addition to using the fine mesh with 2048 elements, additional refinement of the mesh is
made near contact points with other particles. Since the particles are known to form a cluster
within a hexagonal lattice, the refinement is made at these hexagonal locations. Example
of this meshing for 6 particle is shown in figure C.2. The zero propulsion velocities of the
symmetric configuration validates the form of mesh used for computing the translational
and rotational velocities of clusters.

For Janus particles, a regular mesh with refinement at the equator was necessary to capture
sharp concentration gradients in this region. For simulating the dynamics of multiple Janus
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particles, the mesh had to be reconstructed at each time step to align with the orientation
of the particle.
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D
Solution of the hydrodynamic

reflection problem
D.1 Spherical harmonics decomposition

The first step in solving the hydrodynamic reflection problem (i.e. finding the flow field up
k

for p ≥ 1) is to determine the intensity of the flow singularities involved in equation (3.51)
as a function of the velocity gradients generated near particle k at the previous reflection.
To this end, using the expression for the surface velocity vp

k, equation (3.59), the normal
velocity, surface divergence and surface vorticity are first obtained as

vp
k · nk = −

∑
q≥1

⎡⎣∑
j ̸=k

aq−1
k

(q − 1)!

q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk] (D.1)

−ak∇s · vp
k = −

∑
q≥1

(q − 1)

⎡⎣∑
j ̸=k

aq−1
k

(q − 1)!

q−1

∇ up−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk] (D.2)

aknk · [∇s × vp
k] = −

∑
q≥1

⎡⎣∑
j ̸=k

aqk
q!

q−1

∇ ωp−1
j

⏐⏐⏐⏐
rk=0

⎤⎦ q
⊙ [nk

q
⊗ nk] (D.3)

Identifying the singularities’ intensity using Eqs. (3.52)–(3.54) requires decomposing these
three functions into spherical harmonics along the particle’s surface as in equation (2.69).
The (q − 1)-th gradient of the flow field can first be decomposed by isolating its symmetric
part with respect to all indices:

q−1

∇ up−1
j =

1

q

q∑
s=1

(
q−1

∇ up−1
j )T1s +

[q−1

∇ up−1
j − 1

q

q∑
s=1

(
q−1

∇ up−1
j )T1s

]
, (D.4)

where the terms in bracket do not contribute to equation (D.1), where it is contracted

with a fully-symmetric tensor, nk

q
⊗ nk. Here, A

T1s corresponds to the transpose of A with
respect to indices 1 and s. When q ≥ 3, the first part (i.e. the symmetric part) is not
necessarily trace-free with respect to any pair of the last q − 1 indices and must therefore
be further decomposed as

1

q

q∑
s=1

(
q−1

∇ up−1
j )T1s =

q−1

∇ up−1
j  

1

q

q∑
s=1

(
q−1

∇ up−1
j )T1s − q − 2

q(2q − 1)

∑
1≤l<m≤q

[
q−3

∇ (I⊗∇2up−1
j )

]T1l,T2m

+
q − 2

q(2q − 1)

∑
1≤l<m≤q

[
I⊗

q−3

∇ (∇2up−1
j )

]T1l,T2m

, (D.5)
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and the first part is the fully symmetric and deviatoric part of
q−1

∇ up−1
j . Then, noting that

the last terms includes q(q − 1)/2 different terms contributing identically once contracted

with nk

q
⊗ nk,

∑
q≥1

[
aq−1
k

(q − 1)!

q−1

∇ up−1
j

]
q
⊙ [nk

q
⊗ nk] =

∑
q≥1

⎡⎣ aq−1
k

(q − 1)!

q−1

∇ up−1
j

⎤⎦ q
⊙ [nk

q
⊗ nk]+ (D.6)

∑
q≥3

1

2(2q − 1)

aq−1
k

(q − 3)!

q−3

∇
(
∇2up−1

j

) q−2
⊙ [nk

q−2
⊗ nk]

=
∑
q≥1

⎡⎣ aq−1
k

(q − 1)!

(
1 +

a2k
2(2q + 3)

∇2
) q−1

∇ up−1
j

⎤⎦ q
⊙ [nk

q
⊗ nk]

(D.7)

since
q−1

∇
(
∇2up−1

j

)
is traceless with respect to any pair of its indices. equations (D.2) and

(D.3) can be decomposed similarly, noting that
q−1

∇ ωp−1
j is already fully deviatoric, and lead

to equations (3.60)–(3.62).

D.2 Recursive relations

From Eqs. (3.64)–(3.66), obtaining recursive relations in p between the three sets of tensors

Φp
k,q, P

p
k,q and Xp

k,q therefore requires determining
q−1

∇ up−1
j ,

q−1

∇ ωp−1
j and ∇2(

q−1

∇ up−1
j ) =

q

∇pp−1
j associated with each singularity at reflection p−1 at the center of particle k. Rewrit-

ing equation (3.51) in terms of the set of tensors Φp
k,q, P

p
k,q and Xp

k,q:

up−1
j =

∞∑
s=1

⎧⎨⎩Φp−1
j,s

s
⊙∇

(
rj

s
⊗ rj

r2s+1
j

)
−Xp−1

j,s

s
⊙

⎡⎣s
⎛⎝rj

s−1
⊗ rj

r2s+1
j

⎞⎠⊗ (ε · rj)

⎤⎦
+

Pp−1
j,s

2(2s− 1)

s
⊙

⎡⎣rj s−1
⊗ rj

r2s−1
j

⊗

(
(2s− 1)

rjrj
r2j

− (s− 2)I

)⎤⎦⎫⎬⎭ , (D.8)

the required gradients are computed as
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q−1

∇ up−1
j =

∞∑
s=1

⎧⎨⎩Φp−1
j,s

s
⊙

q

∇

(
rj

s
⊗ rj

r2s+1
j

)
−Xp−1

j,s

s
⊙

q−1

∇

⎡⎣s
⎛⎝rj

s−1
⊗ rj

r2s+1
j

⎞⎠⊗ (ε · rj)

⎤⎦
+

Pp−1
j,s

2(2s− 1)

s
⊙

q−1

∇

⎡⎣rj s−1
⊗ rj

r2s−1
j

⊗

(
(2s− 1)

rjrj
r2j

− (s− 2)I

)⎤⎦⎫⎬⎭ , (D.9)

q−1

∇ ωp−1
j =

∞∑
s=1

q−1

∇
(
−s∇χp−1

j,s +
1

s
∇pp−1

j,s × rj

)

=
∞∑
s=1

⎧⎨⎩−sXp−1
j,s

s
⊙

q

∇

[
rj

s
⊗ rj

r2s+1
j

]
−Pp−1

j,s

s
⊙

q−1

∇

⎡⎣rj s−1
⊗ rj

r2s+1
j

⊗ (ε · rj)

⎤⎦⎫⎬⎭ (D.10)

∇2(
q−1

∇ up−1
j ) =

∞∑
s=1

Pp−1
j,s

s
⊙

q

∇

[
rj

s
⊗ rj

r2s+1
j

]
(D.11)

Using these results, the transfer functions between two successive orders of reflections are
obtained as

Up
k =

∑
j ̸=k

∑
s≥1

[
Φp−1

j,s

s
⊙F1

jk(1, s)−Xp−1
j,s

s
⊙F2

jk(1, s) +Pp−1
j,s

s
⊙
(
F3

jk(1, s) +
a2k
6
F1

jk(1, s)

)]
,

(D.12)

Ωp
k = −1

2

∑
j ̸=k

∑
s≥1

[
Pp−1

j,s

s
⊙F2

jk(1, s) + sXp−1
j,s

s
⊙F1

jk(1, s)
]
, (D.13)

Φp
j,1 = −

a5k
30

∑
j ̸=k

∑
s≥1

[
Pp−1

j,s

s
⊙F1

jk(1, s)
]

(D.14)

with

FΦ→Φ
jk (q, s) = −

(2q − 1)a2q+1
k

2(q + 1)(q − 1)!
Fjk

1
jk(q, s), (D.15)

FX→Φ
jk (q, s) =

(2q − 1)a2q+1
k

2(q + 1)(q − 1)!
F2

jk(q, s) (D.16)

FP→Φ
jk (q, s) = −

(2q − 1)a2q+1
k

2(q + 1)(q − 1)!

[
F3

jk(q, s) +
(2q + 1)a2k

2(2q − 1)(2q + 3)
F1

jk(q, s)

]
(D.17)

FΦ→P
jk (q, s) = −

(2q + 1)a2q−1
k

2(q + 1)(q − 1)!
F1

jk(q, s), (D.18)

FX→P
jk (q, s) =

(2q + 1)a2q−1
k s

2(q + 1)(q − 1)!
F2

jk(q, s) (D.19)

FP→P
jk (q, s) = −

(2q + 1)a2q−1
k

2(q + 1)(q − 1)!

[
F3

jk(q, s) +
a2k

2(2q + 1)
F1

jk(q, s)

]
(D.20)

FΦ→X
jk (q, s) = 0, FP→X

jk (q, s) =
a2q+1
k

q(q + 1)× q!
F2

jk(q, s), (D.21)

FX→X
jk (q, s) =

a2q+1
k s

q(q + 1)× q!
F1

jk(q, s) (D.22)

where the following (q + s)-order tensors, which are fully-symmetric and deviatoric with
respect to their last q indices, have been defined (with their respective order in ε = a/d
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shown):

F1
jk(q, s) =

[
q

∇

(
rj

s
⊗ rj

r2s+1
j

)]
rk=0

= O(εs+q+1), (D.23)

F2
jk(q, s) = s

⎡⎢⎢⎢⎢⎣
q

q−1

∇

⎛⎝rj
s−1
⊗ rj

r2s+1
j

⊗ (ε · rj)

⎞⎠
⎤⎥⎥⎥⎥⎦
rk=0

= O(εs+q), (D.24)

F3
jk(q, s) =

1

2(2s− 1)
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q

q−1

∇

⎛⎝rj
s−1
⊗ rj

r2s−1
j

⊗

(
(2s− 1)

rjrj
r2j

− (s− 2)I

)⎞⎠
⎤⎥⎥⎥⎥⎦
rk=0

= O(εs+q−1)

(D.25)
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[65] Sébastien Michelin, Eric Lauga, and Denis Bartolo. Spontaneous autophoretic motion
of isotropic particles. Physics of Fluids, 25(6):061701, 2013.

[66] Ziane Izri, Marjolein N. van der Linden, Sébastien Michelin, and Olivier Dauchot.
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[67] Matvey Morozov and Sébastien Michelin. Nonlinear dynamics of a chemically-active
drop: From steady to chaotic self-propulsion. The Journal of Chemical Physics,
150(4):044110, 2019.

[68] Wei Wang, Wentao Duan, Suzanne Ahmed, Ayusman Sen, and Thomas E. Mal-
louk. From one to many: Dynamic assembly and collective behavior of self-propelled
colloidal motors. Accounts of Chemical Research, 48(7):1938–1946, 2015. PMID:
26057233.

152



[69] Wei Gao, Allen Pei, Renfeng Dong, and Joseph Wang. Catalytic iridium-based janus
micromotors powered by ultralow levels of chemical fuels. Journal of the American
Chemical Society, 136(6):2276–2279, 2014. PMID: 24475997.

[70] Yiying Hong, Misael Diaz, Ubaldo M. Córdova-Fteueroa, and Ayusman Sen. Light-
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[157] S. Kim and S. J. Karrila. Microhydrodynamics: Principles and Selected Applications.
Butterworth-Heinemann, 1991.

[158] Yi Man, Lyndon Koens, and Eric Lauga. Hydrodynamic interactions between nearby
slender filaments. EPL (Europhysics Letters), 116(2):24002, oct 2016.

[159] Batchelor G. K. An Introduction to Fluid Dynamics ). Springer, 2015.

[160] M. J. Lighthill. On the squirming motion of nearly spherical deformable bodies through
liquids at very small reynolds numbers. Communications on Pure and Applied Math-
ematics, 5(2):109–118, 1952.

[161] J. R. Blake. A spherical envelope approach to ciliary propulsion. J. Fluid Mech.,
46(1):199–208, 1971.

[162] O. S. Pak and E. Lauga. Generalized squirming motion of a sphere. J. Eng. Math.,
88(1):1–28, 2014.
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tions of Brownian tracer transport in squirmer suspensions. IMA Journal of Applied
Mathematics, 83(4):680–699, 07 2018.
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Titre : Fluides actifs - Interactions et dynamiques collectives dans les suspensions phorétique
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Résumé : La  phorése  est  un  mécanisme  physico-
chimique par lequel certains collo ̈ıdes microscopiques
dérivent  à  travers  les  gradients  d’un  champ  de
concentration de soluté dans un fluide. Ce mécanisme
est exploité par des particules autophorétiques, qui sont
des collo  ̈ıdes synthétiques chimiquement actifs,  pour
réaliser une autopropulsion. Ces particules influencent
les  mouvements  des  uns  et  des  autres  par  le  biais
d’interactions  chimiques  et  hydrodynamiques  et  sont
donc  connues  pour  leur  comportement  collectif.  La
modélisation de ces interactions a fait l’objet d’intenses
recherches au cours des derniéres décennies, à la fois
d’un  point  de  vue  physique  pour  comprendre  les
mécanismes précis des interactions, et  pour expliquer
les  observations  de  la  formation  de  structures
cohérentes  à  grande  échelle.  Cependant,  une
modélisation  exacte  de  est  difficile  en  raison  des
interactions multi-corps et des effets de surface. Jusqu’a
présent,  la  plupart  des  efforts  reposent  sur  la
superposition d’approximations de champ lointain pour
la signature de chaque particule, qui ne sont valides que
de maniére asymptotique dans la limite de suspension
diluée. Un cadre analytique systématique et unifié basé 

sur la methode classique de reflexion (MoR) est deve-
loppe ici pour les problémes de Laplace et de Stokes
afin d’obtenir les interactions multicorps et les vitesses
résultantes des particules phorétiques, jusqu’a un ordre
de précision du rayon rapport à distance des particules
ε . Un systéme comprenant uniquement des particu-

les autophorétiques chimiquement et geometriquement
isotropes est ensuite considéré en détail. On sait que de
telles particules isotropes ne peuvent se propulser seu-
les;  cependant,  en présence d’autres particules  identi-
ques, la symétrie du champ de concentration est brisée
et les particules forment spontanément des amas tassés.
Remarquablement,  ces  grappes  s’auto-propulsent  en
fonction  de  leur  disposition  géométrique.  Ce  résultat
identifie donc une nouvelle voie pour briser la symétrie
pour le champ de concentration et pour lˆaauto-propul-
sion, qui ne repose pas sur une conception anisotrope,
mais sur les interactions collectives de particules acti-
ves identiques et homogénes.  De plus, en utilisant des
simulations numériques complétes et un modéle théori-
que pour la  classification,  nous caractérisons les  pro-
priétés statistiques de  l’autopropulsion du systéme.

Title : Active fluids  - Interactions and collective dynamics in phoretic suspensions

Keywords : Active fluids, self-propulsion, chemo-hydrodynamic interactions, modeling phoretic 
suspension, collective dynamics

Abstract  : Diffusiophoresis is  a  physico-chemical
mechanism by which certain microscopic colloids drift
in gradients of a solute concentration field in a fluid.
This mechanism is exploited by autophoretic particles,
which  are  chemically  active  synthetic  colloids,  to
achieve self-propulsion. These particles influence each
others'  motion  through  chemical  and  hydrodynamic
interactions and are hence known to exhibit collective
behaviour. Modeling these interactions is a subject of
intense research over  the past  decades to  understand
the precise mechanisms of the interactions, as well as
to explain the observations of formation of  coherent
large-scale structures. However, an exact modelling of
is difficult due to multi-body interactions. Most efforts
so  far  rely  on  the  superposition  of  far-field
approximations for each particle's signature, which are
only  valid  asymptotically  in  the  dilute  suspension
limit.  A systematic  and unified analytical  framework
based on the classical Method of Reflections (MoR) is
developed here for  both Laplace and Stokes'

problems to obtain the multi-body interactions and the
resulting  velocities  of  phoretic  particles,  up  to  any
order of accuracy in the radius-to-distance ratio ε
of the particles.  A system comprising only of chemi-
cally-  and  geometrically-isotropic  autophoretic  parti-
cles is then considered in detail. It is known that such
isotropic  particles  cannot  self-propel  in  isolation;
however, in the presence of  other identical  particles,
the symmetry of the concentration field is broken and
the particles spontaneously form close packed clusters.
Remarkably, these clusters are observed to self-propel
based on their geometric arrangement. This result thus
identifies  a  new route  to  symmetry-breaking  for  the
concentration field and to self-propulsion, that  is  not
based on an anisotropic design, but on the collective
interactions of identical and homogeneous active parti-
cles. Furthermore, using full numerical simulations and
theoretical  model  for  clustering,  we  characterize  the
statistical properties of self-propulsion of the system.
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