
HAL Id: tel-02445482
https://theses.hal.science/tel-02445482

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient lattice-based zero-knowledge proofs and
applications
Rafaël Del Pino

To cite this version:
Rafaël Del Pino. Efficient lattice-based zero-knowledge proofs and applications. Cryptography and
Security [cs.CR]. Université Paris sciences et lettres, 2018. English. �NNT : 2018PSLEE055�. �tel-
02445482�

https://theses.hal.science/tel-02445482
https://hal.archives-ouvertes.fr


	

	
	

 
 
 
 

 
 
 
 
 
 
 
 
 
  

COMPOSITION DU JURY : 
 
Mme . AGRAWAL Shweta 
IIT Madras 
Examinatrice 
 
M. FOUQUE Pierre-Alain 
Université Rennes 1 
Rapporteur, examinateur  
 
M. LYUBASHEVSKY Vadim 
IBM Research Zurich 
Directeur de thèse 
 
M. POINTCHEVAL David 
CNRS, École normale supérieure 
Directeur de thèse 
 
M. STEHLÉ Damien 
École normale supérieure de Lyon 
Président du jury 
 
M. WEE Hoeteck 
CNRS, École normale supérieure 
Examinateur 
 
M. BRAKERSKI Zvika 
Weizmann Institute of Science 
Rapporteur (absent du jury) 
 
 
 
 

Soutenue par 
Rafaël del PINO 
le 1er juin 2018h 
 

THÈSE DE DOCTORAT 
 

de l’Université de recherche Paris Sciences et Lettres   
PSL Research University 

 
 
 

Préparée à l’École normale supérieure 

 

Dirigée par 
Vadim LYUBASHEVSKY 
et David POINTCHEVAL 

Ecole doctorale n°386 
Sciences Mathématiques de Paris Centre 

 
Spécial ité   Informatique  

Efficient Lattice-Based Zero-Knowledge Proofs 
and Applications 
 
 
 
 
 





Efficient Lattice-Based Zero-Knowledge
Proofs and Applications

Rafaël del Pino

Thèse de doctorat dirigée par
Vadim Lyubashevsky et David Pointcheval





Résumé
Le chiffrement à base de réseaux euclidiens a connu un grand essor durant les vingt dernières
années. Autant grâce à l’apparition de nouvelles primitives telles que le chiffrement complète-
ment homomorphe, que grâce à l’amélioration des primitives existantes, comme le chiffrement
á clef publique ou les signatures digitales, qui commencent désormais à rivaliser avec leurs
homologues fondés sur la théorie des nombres. Cela dit les preuves à divulgation nulle de
connaissance, bien qu’elles représentent un des piliers des protocols de confidentialité, n’ont
pas autant progressé, que ce soit au niveau de leur expressivité que de leur efficacité.

Cette thèse s’attelle dans un premier temps à améliorer l’état de l’art en matière de preuves
à divulgation nulle de connaissance. Nous construisons une preuve d’appartenance à un sous
ensemble dont la taille est indépendante de l’ensemble en question. Nous construisons de
même une preuve de connaissance amortie qui est plus efficace et plus simple que toutes les
constructions qui la précèdent.
Notre second propos est d’utiliser ces preuves à divulgation nulle de connaissance pour

construire de nouvelles primitives cryptographiques. Nous concevons une signature de groupe
dont la taille est indépendante du groupe en question, ainsi qu’un schéma de vote électronique
hautement efficace, y compris pour des élections à grand échelle.
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Abstract
Lattice based cryptography has developed greatly in the last two decades, both with new
and stimulating results such as fully-homomorphic encryption, and with great progress in
the efficiency of existing cryptographic primitives like encryption and signatures which are
becoming competitive with their number theoretic counterparts. On the other hand, even
though they are a crucial part of many privacy-based protocols, zero-knowledge proofs of
knowledge are still lagging behind in expressiveness and efficiency.

The first goal of this thesis is to improve the quality of lattice-based proofs of knowledge.
We construct new zero-knowledge proofs of knowledge such as a subset membership proof
with size independent of the subset. We also work towards making zero-knowledge proofs
more practical, by introducing a new amortized proof of knowledge that subsumes all previous
results.
Our second objective will be to use the proofs of knowledge we designed to construct

novel and efficient cryptographic primitives. We build a group signature whose size does
not depend on the size of the group, as well as a practical and highly scalable lattice-based
e-voting scheme.
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Chapter 1
Introduction
From its genesis to less than a century ago, cryptography has been a tool of war. Encrypting
messages so they would not fall into enemy hands was done using the now famous Caesar
cipher in ancient Rome, and using the state of the art Enigma machines during World War
II. A common point between these two cryptosystems, and all the ones that came in-between,
is their use of symmetric key cryptography: they allow secure communication between two
parties who share a common secret information.
In fact, different types of cryptography were not even conceived before 1970 when James

H. Ellis surmised the possibility of “non-secret” encryption, which would allow two parties
to communicate securely without prior agreement on a common secret. The first concrete
example of public-key cryptography comes from a 1974 work of Ralph C.Merkle who devised
a protocol in which two parties can exchange a secret key through an insecure channel without
needing to know any common secret information.

Since then cryptography has grown at an impressive rate, with a plethora of new concepts
such as identification schemes, which allow an individual to prove his identity via the
knowledge of a secret without revealing it, fine-grained public key infrastructures, in which
one gets to choose who should be able to decrypt which part of a message, and many more...
This boom is due to a change of paradigm in regard to the purpose of cryptography: the
emergence of information technology and in particular the internet has created a need for
efficient and novel cryptographic tools.
Zero-knowledge proofs of knowledge (ZKPoK) are an important primitive in privacy

preserving schemes. A ZKPoK is a two-party protocol in which a prover, Alice, wants to
convince a verifier, Bob, that she knows a secret information "x" without revealing any other
information about "x". Such proofs are ubiquitous in privacy protocols, they are used to
construct digital signatures, authentication schemes, and they gained renewed interest with
the rapid expansion of blockchain and cryptocurrencies.

1.1 Lattice-Based Cryptography

“When will large scale quantum computers exist?” Ask ten people and you will receive ten
different answers. However, the fact remains that tremendous work is being put towards the
construction of quantum computers and it is becoming apparent that the existence of large
scale quantum computers is really a matter of “when” and not “if”. Once such computers
are built number theoretic cryptography, which is by and large the only cryptography that

— 1 —



2 Chapter 1 Introduction

is currently being used in practice, will collapse. In the last few years a lot of progress has
been made towards constructing post-quantum cryptography, i.e. cryptography that relies on
computational assumptions which are believed to resist quantum computers, as is evidenced
by the NIST call for “Post-Quantum Cryptography Standardization”, and lattice-based
cryptography is one of the most promising candidates.

Intuitively a lattice can be seen as a periodic grid in Rn, it is formally defined as the set of
all integer-valued linear combinations of some basis vectors (b1, . . . ,bk).
Cryptography on lattices started with the seminal work of Ajtai[Ajt96] in which he

introduces the Short Integer Solution (SIS) problem and proves that this problem is on
average as hard as some worst-case well-known problems on lattices. In parallel Jeffrey
Hoffstein, Jill Pipher, and Joseph Silverman developed the NTRU encryption scheme [HPS98]
based on polynomial rings. While this scheme did not enjoy a theoretical security proof, it
has still resisted 20 years of cryptanalysis. In 2005, Regev [Reg05] introduced the Learning
With Errors (LWE) problem and proved it to be as hard as standard lattice problems. The
LWE problem was a breakthrough in lattice-based cryptography allowing for more efficient
schemes and new cryptographic primitives such as fully-homomorphic encryption 1.

Schemes based on LWE and SIS suffer from one major caveat when compared to schemes
based on number theoretic assumptions: they have substantially larger key and ciphertext
sizes. To remedy this issue ring variants of these problems R-LWE and R-SIS were introduced
respectively by Lyubashevsky, Peikert and Regev [LPR10], and Micciancio [Mic02]. These
new problems use polynomials instead of matrices, effectively reducing parameters by up to a
square root factor. This increased efficiency comes at a price in security since these problem
can only be reduced to standard problems on ideal lattices which are more structured lattices.
It is however worth noting that, except for marginal cases, attacks on ideal lattices do not
perform better than attacks on standard lattices.

1.1.1 Lattice-Based Zero-Knowledge
The security of lattice-based cryptographic primitives is based on the hardness of recovering
a short vector s when given a matrix A and t = As as inputs, this problem is known as
the Inhomogeneous Short Integer Solution (ISIS) problem. The operations are performed
over some ring R, which most commonly is either Za or a polynomial ring Z [X] /Xd + 1.2
Depending on the primitive, s can represent the secret key, the randomness used during
encryption, the signature of a message, or anything else that one should not be able to obtain
just by knowing A and t. In many cryptographic protocols, someone announcing the value t
would also need to be able to prove the knowledge of a short pre-image s̄ (the pre-image may
not be unique) of t satisfying

A · s̄ = t (1.1)

The first approach developed for constructing such a zero-knowledge proof is using Stern-
type proofs for codes [Ste94] adapted to the lattice setting [KTX08; LNSW13]. The main
downside of this technique is that it has rather long proofs. Each run of the protocol has
soundness error 2/3, thus requiring over 200 repetitions for 128 bits of security and over 400
repetitions if one would like to have 128 bits of quantum security in the resulting NIZK proof

1Though the original FHE construction of Gentry [Gen09] did not use the LWE problem, all the more recent
constructions do.

2We will use this polynomial ring throughout our paper as it is the one that is almost exclusively used in
practice. Instantiations with other monic polynomials are also possible.
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constructed via the Fiat-Shamir technique. Even the most basic application, such as proving
the knowledge of a solution to a hash function (e.g. the one in [LMPR08]), would require
around 1KB for every round, thus making the total proof size approximately 400 KB. More
complicated applications, as well as those in which the inputs are not taken from {0, 1}k,
quickly push such proofs to the order of Megabytes.
Another technique for creating zero-knowledge proofs is the “Fiat-Shamir with Aborts”

approach which allows to create a proof of knowledge of a vector s̄ with small coefficients
(though larger than those in s) and a ring element c̄ with very small coefficients satisfying
As̄ = c̄t [Lyu09; Lyu12]. As long as the ring R has many elements with small coefficients,
such proofs are very efficient, producing soundness of 1− 2−128 with just one iteration. While
these proofs are good enough for constructing practical digital signatures (e.g. [GLP12;
DDLL13; BG14]), commitment schemes with proofs of knowledge [BKLP15; BDOP16], and
certain variants of verifiable encryption schemes [LN17], they prove less than what the honest
prover knows. In many applications where zero-knowledge proofs are used, in particular
those that need to take advantage of additive homomorphisms, the presence of the element c̄
makes these kinds of “approximate” proofs too weak to be useful. As of today, we do not
have any truly practical zero-knowledge proof systems that give a proof of Equation (1.1).
The situation is considerably more promising when one considers amortized proofs, and

the increased efficiency of such proofs has already been exploited in practical multi-party
computation [DPSZ12]. A series of works [DPSZ12; BDLN16; CDXY17] have considered how
to obtain efficient exact proofs with overwhelming soundness when proving many equations
at the same time, resulting in [PL17] in proofs with constant overhead and small slack. These
proofs can however only be use when amortized over thousands of equations like (1.1), making
them inapplicable in many scenarios.

1.2 Personal Contributions

1.2.1 Contributions in this Thesis

[PLNS17] In this paper we propose a lattice-based electronic voting scheme, EVOLVE
(Electronic Voting from Lattices with Verification), which is conjectured to resist
attacks by quantum computers. Our protocol involves a number of voting authorities so
that vote privacy is maintained as long as at least one of the authorities is honest, while
the integrity of the result is guaranteed even when all authorities collude. Furthermore,
the result of the vote can be independently computed by any observer. At the core of
the protocol is the utilization of a homomorphic commitment scheme with strategically
orchestrated zero-knowledge proofs: voters use approximate but efficient “Fiat-Shamir
with Aborts” proofs to show the validity of their vote, while the authorities use amortized
exact proofs to show that the commitments are well-formed. We also present a novel
efficient zero-knowledge proof that one of two lattice-based statements is true (so-called
OR proof) and a new mechanism to control the size of the randomness when applying
the homomorphism to commitments.

[PLS18] In this paper we present a new lattice-based zero-knowledge proof system for proving
that a committed value belongs to a particular set of small size. The sets for which
our proofs are applicable are exactly those that contain elements that remain stable
under Galois automorphisms of the underlying cyclotomic number field of our protocol.
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An application of our new proofs is that they allow the use of the selectively-secure
signature scheme (i.e. a signature scheme in which the adversary declares the forgery
message before seeing the public key) of Agrawal et al. [ABB10] for constructing lattice-
based privacy protocols. For selectively-secure schemes to be meaningfully converted
to standard signature schemes, it is crucial that the size of the message space is small.
Using our zero-knowledge proofs, we can strategically pick sets for which we can provide
efficient zero-knowledge proofs of membership.

[BBC+18] In this paper we present a surprisingly simple zero-knowledge proof for pre-
images of linear relations whose amortized communication complexity depends only
logarithmically on the number of relations being proved. This latter protocol is a
substantial improvement, both theoretically and in practice, over the previous results
in this line of research of Damgård et al. [DPSZ12], Baum et al. [BDLN16], Cramer et
al. [CDXY17] and del Pino and Lyubashevsky [PL17].

1.2.2 Other Contributions

[BPMW16] In this paper we study the circuit privacy of fully homomorphic encryption
(FHE). We carefully analysis of the noise growth in the FHE scheme of Alperin-Sheriff
and Peiker[AP14] and prove that the addition of a small well-chosen noise to the output
of computations is sufficient to ensure circuit privacy.

[PLP16] In this paper, we show that by simultaneously considering the secrecy and au-
thenticity requirements of an authenticated key exchange (AKE), we can construct a
scheme that is more secure and with smaller communication complexity than a scheme
created by a generic combination of a key encapsulation mechanism (KEM) with a
signature scheme. We first observe that relaxing the correctness property of the KEM
so that it is no longer overwhelming allows for better parameters at virtually no impact
in security. Our second improvement is showing that certain hash-and-sign lattice
signatures can be used in “message-recovery” mode. In this mode, the signature size is
doubled but this longer signature is enough to recover an even longer message – thus
the signature is longer but the message does not need to be sent. This is advantageous
when signing relatively long messages, such as the public keys and ciphertexts generated
by a lattice-based KEM.

[PL17] In this paper we present an amortized zero-knowledge proof of knowledge for lattice-
based one-way functions. This work is an improvement of a paper by Cramer et
al. [CDXY17] and reduces the number of equations needed for amortization by a
parameter ∼ log2 α at a cost in running time of α. For example, increasing the running
time by a factor of 8 allows us to decrease the required number of samples from 69000
to 4500 (a factor of 15).

1.3 Organization of this Thesis

In Chapter 2 we define the notations that will be used throughout this thesis, we recall basic
notions on lattices and Gaussians, and we give formal definitions as well as lattice-based
instantiations of the cryptographic building blocks we will use.
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In chapter 3 we define Σ′-protocols, and give constructions of proofs of knowledge for: one-
way function preimages, commitment openings, disjunction of NP-languages, and subset
membership. We also give an amortized proof of knowledge for one-way function preimages.
In chapter 4 we construct a group signature using the proof of subset membership of Chapter 3.
We give concrete parameters as well as the resulting signature size.
In chapter 5 we describe a security model for e-voting and use the proof for disjunctions as
well as the amortized proof of Chapter 3 to build an e-voting scheme. We fix parameters and
present the size and timings obtained from our proof-of-concept implementation.
Finally, we conclude in Chapter 6 and present some open questions.
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Chapter 2
Preliminaries
In this chapter we present the notations that will be used throughout this thesis. Then we
we give some properties on the invertibility of small polynomials in the ring Zq [X] /Xd + 1,
which will be useful for the proofs of knowledge of Chapter 3. We give some background
on lattices and Gaussian sampling, and we give a succinct overview on the cryptanalysis of
lattice problems, which we will use to set the parameters of the schemes presented in this
thesis. Finally we give formal definitions, security models and lattice-based constructions
for commitments and public key cryptography which we will use in the constructions of
Chapters 4 and 5.
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2.1 Notations

Sets, Integers. We denote by Z the set of integers, by N the set of non-negative integers,
and by R the set of real numbers. For two integers a, b ∈ Z such that a ≤ b, we denote by
{a, . . . , b} the set of all integers c ∈ Z such that a ≤ c ≤ b. For a ∈ N such that a > 0, the
notation [a] is equivalent to {1, . . . , a}. We denote the size of a finite set S by |S|. For a
positive integer q we denote by Zq the ring of integers modulo q for which we will consider
the set of representatives

{
−
⌊
q−1

2

⌋
, . . . ,

⌈
q−1

2

⌉}
.

Rings, Vectors, Matrices. We will consider vectors and matrices over a ring R which
will be either R = Z or R = Z [X] /f(X) for some polynomial f . Elements in R as well as
Rq = R/qR will be written in lower case (e.g. c ∈ R). Vectors will be in bold lower case (e.g.
y ∈ Rm) and will be column vectors. Matrices will be in bold upper case (e.g. A ∈ Rn×m).
Vector norms. Polynomials will be identified as the vector of their coefficients for the
purposes of norms, i.e. for g = ∑d−1

0 giX
i and a positive integer p, the `p norm is defined as

‖g‖p =
(
d−1∑

1
|gi|p

) 1
p

.

Norms are extended to vectors and matrices over R in the natural way, i.e. for v =
(v1, . . . , vm) ∈ Rm, ‖v‖p =

(∑m−1
1 ‖vi‖pp

) 1
p and for V = (v1, . . . ,vm) ∈ Rn×m, ‖V‖p =(∑m−1

1 ‖vi‖pp
) 1
p . Since we will mostly consider the euclidean norm of vectors we will abbre-

viate the notation ‖·‖2 as ‖·‖.
The operator norm of a matrix A ∈ Rn×m is defined as

s1(A) = max
x∈Rm\{0}

(‖Ax‖
‖x‖

)
,

we also define a matrix norm that will be useful for the amortized zero-knowledge proofs of
Chapter 3 which we call "max norm": for A = (a1, . . . ,am) ∈ Rn×m,

‖A‖max = max
j∈[m]

(‖aj‖) .

2.2 Polynomial Rings
For the rest of this thesis we will consider R to be the ring Z [X] /Xd + 1 for d a power of
two, in the case d = 1 we will simply identify R with Z. For many of our protocols we will
require that "small" polynomials are invertible. The following lemmata guarantee such a
properties for well chosen power-of-two cyclotomics.

Lemma 2.2.1 (Inverse of differences of monomials[BCK+14] ). Let d be a power of 2, let
a, b ∈ {±Xi : i ≥ 0}∪ {0}. Then 2(a− b)−1 mod Xd + 1 only has coefficients in {−1, 0, 1}.

Lemma 2.2.2 (Invertibility of small polynomials [LS17]). Let d ≥ k > 1 be powers of 2 and
q a prime such that Xd + 1 splits into k different irreducible polynomials modulo q. Then
any c in Zq[X]/(Xd + 1) such that 0 < ‖c‖ < q1/k has an inverse in the ring.
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For this lemma to be meaningful we need to know how Xd + 1 splits modulo q, this is
specified in [LS17, Corollary 1.2].

Lemma 2.2.3 (Factors of Xd + 1). Let d ≥ k > 1 be powers of 2 and q = 2k + 1 mod 4k
be a prime. Then the polynomial Xd + 1 factors as

Xd + 1 =
k∏
j=1

(Xn/k − rj) mod q

For distinct rj ∈ Z∗q where Xn/k − rj are irreducible in the ring Zq [X].

Polynomial and matrix products. Products of polynomials in R (and Rq) can be
represented by matrix/vector products in Z (and Zq). For a polynomial a = ∑

aiX
i ∈ R we

will define the rotation matrix of a as

Rot(a) :=
[
a | aX | aX2 | . . . | aXd−1

]
=



a0 −ad−1 . . . −a1

a1
. . . . . . ...

... . . . . . . −ad−1

ad−1 . . . a1 a0


It is apparent that if we write as b ∈ Zd the coefficients of b ∈ R then Rot(a) · b ∈ Zd is
the vector that contains the coefficients of a · b ∈ R. Similarly for A ∈ Rn×m, we will write
Rot(A) ∈ Zdn×dm as the matrix in which we have applied Rot component-wise.

2.3 Lattices
2.3.1 Definitions and Properties
An n-dimensional lattice L is a discrete subgroup of Rn. Any lattice can be expressed as the
set of linear combinations of some linearly independent vectors B = (b1, . . . ,bk), i.e.

L = L(B) :=
{

k∑
i=1

xibi | xi ∈ Z
}

= BZk

B is a called a basis of L and its number of columns k is the rank of the lattice. Since L is a
subgroup of Rn, we can consider the quotient group Rn/L of cosets. For c ∈ Rn the coset of
c is

c + L = {c + x | x ∈ L}

Definition 2.3.1 (Successive minima). Let L ⊂ Rn be a lattice of rank k. For i ∈ [k] the
i-th successive minimum of L is defined as

λi(L) := inf
{
r | dim

(
Span(L ∩ B̄(0, r)

)
≥ i
}

Definition 2.3.2 (Determinant of a lattice). Let L = L(B). The determinant, or volume,
of L is defined as

Vol(L) := det(L) :=
√

det(BTB)
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The notion of volume will be useful to estimate the first minimum of a lattice. The
Gaussian heuristic surmises that the number of lattice point in a convex body S(we will
usually consider a ball) is equal to the volume of S divided by the volume of the lattice.

|L ∩ S| ≈ Vol(S)/Vol(L).

Using this heuristic with a sphere of radius λ1(L) gives the following approximation:

λ1(L) ≈
√

n

2πeVol(L)1/n

Definition 2.3.3 (Dual Lattice). Let L ⊂ Rn be a lattice. The dual of L is the lattice defined
as

L∗ := {y ∈ Span(L) | ∀x ∈ L, 〈x,y〉 ∈ Z}

Gram Schmidt orthogonalization. The Gram-Schmidt orthogonalization (GSO) is an
algorithm that takes as input a basis B of a vector space and outputs an orthogonal basis
B̃ of the same vector space. The GSO is useful both in cryptography as it is for example
used in the sampling of Gaussians over lattice in the GPV sampler of Section 2.3.5, and in
cryptanalysis where it is an important component of lattice reduction algorithms.

Definition 2.3.4 (Gram-Schmidt orthogonalization). Let B :=
[
b1 | . . . | bn

]
∈ Rn×n be

a basis of Rn. The Gram-Schmidt orthogonalization of B is the matrix B̃ defined as follows:

b̃1 := b1

b̃i := Proj⊥b1,...,bi−1(bi)

Q-ary lattices. In most lattice-based crypto applications we will consider lattices of a very
specific form that comes from the SIS problems. For a matrix A ∈ Rn×mq , we define the
q-ary lattice associated with A as:

L(A)⊥q := {x ∈ Rm : Ax = 0 mod q} .

It is easy to see that L(A)⊥q is indeed a lattice, and that it is of dimension dm over R (this
lattice can be interpreted over R as L(Rot(A))⊥q ). It is also of rank dm, a simple proof of this
being that the vectors of the form (0, . . . , 0, qXi, 0, . . . , 0) ∈ Rm ' (0, . . . , 0, q, 0, . . . , 0) ∈ Zdm

are in L(A)⊥q and there are dm independent such vectors. For A $← Rn×mq , with n ≤ m, the
lattice L(A)⊥q will have with high probability volume

Vol(L(A)⊥q ) = qdn.

To show this first write
[
A1 | A2

]
:= Rot(A) ,where A1 ∈ Zdn×dnq . With high probability

A1 will have an inverse and it is easy to notice that[
qIdn A−1

1 A2
0 Id(m−n)

]

is a basis of L(Rot(A))⊥q and has determinant qnd.



Ch
ap

te
r 2

2.3 Lattices 11

2.3.2 Gaussians.

Continuous and discrete Gaussians.
For any integer n ≥ 1 and real σ > 0, the n-dimensional spherical Gaussian function
ρσ : Rn → (0, 1] is defined as1:

ρσ(x) := exp
(
−‖x‖

2

2σ2

)

We define the discrete Gaussian over the coset c + L of L ⊂ Rn, with standard deviation σ
via the following probability density function:

∀x ∈ c + L; Dc+L,σ(x) = ρσ(x)
ρσ(c + L)

where ρσ(c +L) = ∑
u∈L ρσ(c + u). When L = Z and c = 0 we will ignore the corresponding

subscript, we will also write x ← Dn
σ as an alternative to x ← DZn,σ as sampling the n

coefficients of x independently results in the same distribution. For a polynomial ring R we
will write x← DR,σ to denote that all the coefficients of x ∈ R are taken according to Dσ.
Norm Bounds. Using the tail bounds for the 0-centered discrete Gaussian distribution, we
can show that for any σ > 0, x← Dσ is likely to be close to σ.

Lemma 2.3.5 (Gaussian tails). For any k > 0

Pr
x←Dσ

[|x| > kσ] ≤ 2e−k2/2, (2.1)

and when x is drawn from Dn
σ , we have

Pr
x←Dnσ

[‖x‖ >
√

2n · σ] < 2−n/4. (2.2)

Rejection Sampling. We give an important lemma on rejection sampling which will
guarantee that the responses used in our zero-knowledge protocols do not leak information.

Algorithm 1 Rej(Z,B, σ)
u← [0, 1)
if u > 1

3 exp
(
−2〈Z,B〉+‖B‖2

2σ2

)
then return 0

else return 1

Lemma 2.3.6 ([Lyu12]). Let V be a subset of Rn×m with elements of norm less than T, let
h be a distribution over V, and B← h. Consider a procedure that samples Y← Dn×m

R,σ and
then returns the output of Rej(Z := Y + B,B, σ) where σ ≥ 11‖B‖. The probability that this
procedure outputs 1 is within 2−100 of 1/3. The distribution of Z, conditioned on the output
being 1, is within statistical distance 2−100 of Dn×m

R,σ .
1Multiple works define the Gaussian function as ρσ(x) := exp

(
−π‖x‖

2

σ2

)
which is a dilation of the function

we use. We choose our definition because it entails that the discrete Gaussian we obtain from it will have
standard deviation σ which is conceptually simpler.
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2.3.3 Hard Problems on Lattices.
We define some of the computational problems defined on lattice. We will only consider the
the problems which will be useful for the security analysis of Section 2.3.4.

Definition 2.3.7 (SVP - Shortest vector problem). Given an n-dimensional lattice L, find
a lattice vector v ∈ L such that ‖v‖ = λ1(L).

Definition 2.3.8 (SVPγ - Approximate shortest vector problem). Given an n-dimensional
lattice L and γ(n) ≥ 1, find a non-zero lattice vector v ∈ L such that ‖v‖ ≤ γ(n)λ1(L).

Definition 2.3.9 (BDDγ - Bounded distance decoding problem). Given an n-dimensional
lattice L, γ(n) ≥ 1, and a target point t ∈ Rn with the guarantee that dist(L, t) < d =
λ1(L)/2γ(n), find the unique lattice vector v ∈ L such that ‖v− t‖ ≤ d.
Definition 2.3.10 (uSVPγ - Unique shortest vector problem). Given an n-dimensional
lattice L and γ(n) ≥ 1 with the guarantee that λ2(L) ≥ γ(n)λ1(L), find a non-zero lattice
vector v ∈ L such that ‖v‖ ≤ γ(n)λ1(L).

Cryptographic Problems. We now consider two problems on which the security of most
lattice-based schemes rely: SIS and LWE. The SIS problem was introduced by Ajtai [Ajt96] and
the LWE problem by Regev [Reg05]. These problems were extended to consider polynomial
rings respectively by by Micciancio [Mic02] (and then revisited and proven secure in [LM06;
PR06]) and Lyubashevsky et al [LPR10]. In a recent work Langlois and Stelhé [LS15] defined
a module variant of the SIS and LWE problems which encompasses the previous definitions.
Remark that these problems can be defined for modules over any polynomial ring R but
using rings other than Z [X] /Xd + 1 makes the definitions rather cumbersome and will not
be necessary here.

Definition 2.3.11 (M-SISq,n,m,β - Module Short Integer Solution [LS15]). For integers
q, n,m > 0, real β > 0, given A $← Rn×mq , find z ∈ Rm such that Az = 0 mod q and
0 < ‖z‖ ≤ β.
Definition 2.3.12 (M-LWEq,n,σ - Module Learning With Errors adapted from [LS15]). For
integers q, n > 0, real σ > 0, and s← Dn

R,σ, let Aq,s,σ be the distribution obtained by sampling
a $← Rnq , e← DR,σ and outputting (a, 〈a, s〉+ e) ∈ Rnq ×Rq. Given s← Dn

R,σ, distinguish
between Aq,s,σ and

(
U(Rnq ),U(Rq)

)
.

Both of these problems are shown to be as hard as some standard module-lattice problems
in [LS15]2. It is worth noting that these definition of M-SIS and M-LWE collapse to the
aforementioned problems SIS and LWE when d = 1, and to R-SIS and R-LWE when n = 1.

Definition 2.3.13 (NTRUq,σ). For an integer q > 0, a real σ > 0. Let Nq,σ be the
distribution obtained by sampling f, g ← DR,σ conditioned on g being invertible in Rq and
outputting h = f/g ∈ Rq. Distinguish between Nq,σ and U(Rq).

The NTRU problem was only shown to be hard for σ = Ω(d√q) with a reduction to R-LWE
by Stelhé and Steinfield [SS11]. However slightly smaller parameters such as σ = Ω(√q) are
not known to have more efficient cryptanalysis that R-LWE instances of comparable standard
deviation.

2In fact M-LWE is only shown to be hard in its decision variant for slightly non-spherical Gaussians but all
practical applications consider spherical nonetheless.
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2.3.4 Cryptanalysis
In this section we succinctly introduce the cryptanalytic tools from which we can evaluate
the hardness of M-LWE and M-SIS.
Lattice reduction algorithms. First introduced by Lenstra, Lenstra, and Lovász [LLL82]
lattice reduction algorithms aim at outputting a “short” basis of a lattice. Many improvements
to the original LLL algorithm have been designed with various tradeoffs between running
times and quality of output. We will be interested in the BKZ-β algorithm [Sch87] which is
in practice the best available lattice reduction algorithm. The BKZ-β algorithm depends
on a parameter called the block size β and uses as a subroutine an algorithm that solves
the SV P problem exactly in dimension β, it has running time poly(|B|) · T where B is the
input basis and T is the running time of the SVP solving subroutine. Since solving SVP
exactly takes exponential time, we usually equate the running time of BKZ-β with the one
of the exact solver, different parameters β offer trade offs between the running time of the
algorithm and the quality of the output. The BKZ-β algorithm, when run on a lattice L of
dimension n, guarantees that the first basis vector it outputs will be b1 such that:

‖b1‖ ≤ δn0 ·Vol(L)1/n

with δ0 the root Hermite factor:

δ0 =
(

(πβ)1/ββ

2πe

) 1
2(β−1)

.

The BKZ-β algorithm can therefore be used to find “somewhat” short vectors by setting δ0
to be sufficiently small and using the corresponding block size. However this approach will
not work when the lattice L has abnormally short vectors (which will typically be true when
attacking LWE). Luckily Alkim et al. [ADPS16] have observed that in the presence of a
very small vector the BKZ-β algorithm will not behave as expected and as a result the short
vector will be detected. The basis B output by BKZ-β is usually (e.g. for random lattices)
expected to follow the geometric series assumption:∥∥∥b̃i∥∥∥ = αi−1 ‖b1‖ , for α = δ

−2n/(n−1)
0 .

On the other hand an invariant of the BKZ-β algorithm guarantees that the vector bn−β+1

will be such that
∥∥∥b̃n−β+1

∥∥∥ is the norm of the shortest vector in the lattice obtained by
projecting L orthogonally to b1, . . . ,bn−β . Suppose L contains a very short vector v and that
v is taken uniformly on the sphere of radius ‖v‖, then the expected norm of the projection
of v against b1, . . . ,bn−β will be

√
β
n ‖v‖, while the geometric series assumption gives∥∥∥b̃n−β+1

∥∥∥ = δ
n
n−1 (2β−n−1)
0 Vol(L)1/n ≈ δ2β−n

0 Vol(L)1/n.

Which entails that the geometric series assumption will be broken when√
β

n
‖v‖ < δ2β−n

0 Vol(L)1/n.

It has been observed in practice that the BKZ-β detects such cases and that the full vector v
can be recovered.
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Solving M-SIS and M-LWE. To solve M-SISq,n,m,B , given A← Rn×mq we want to find a
vector z ∈ Rm of norm B such that Az = 0 mod q, i.e. we want to find a short vector in the
lattice L(A)⊥q which is a dm-dimensional lattice of volume qdn. This problem becomes harder
when it gets closer to an instance of SVP (without approximation), i.e. when B is the size of
the expected smallest vector in L(A)⊥q , i.e. B ≈

√
dm
2πeq

n/m. If B is larger, meaning we have
an approximate-SVP instance, we will simply compute the root Hermite factor necessary for
solving M-SISq,n,m,B as

δ0 =
(
Bq−n/m

)1/dm
,

find the corresponding block size β and apply BKZ-β to find a short vector z3.
When B is smaller than the expected value of the shortest vector, meaning we have a
unique-SVP instance, we will rely on the other approach we have described. i.e. we will solve√

β

dm
B = δ2β−dm

0 qn/m

for β (by using the equation between δ0 and β) and then use BKZ-β.
To solve M-LWEq,n,σ, notice that for a matrix A ∈ Rm×nq and a sample b := As + e with
s← Dn

R,σ and e← Dm
R,σ, we have:

Mz = 0 mod q, where M =
[
A | Idm | −b

]
∈ Zdm×d(m+n)+1

q and z =

s
e
1

 ∈ Zd(m+n)+1

We are thus looking for a vector of norm
√
d(n+m)σ2 + 1 ≈

√
d(n+m)σ in the lattice

L(M)⊥q of volume qm/(n+m). In all “interesting” instances of M-LWE this vector will be much
shorter than the expected shortest vector of L(M)⊥q and we will thus search for it by setting
δ0 such that: √

βσ = δ
2β−d(n+m)
0 qm/(n+m)

Solving SVP. Since the BKZ-β algorithm relies on a subroutine that solves the shortest
vector problem exactly in dimension β, it will be crucial to optimize this solver. There are
two main approaches to solving SVP exactly. The first one is enumeration, which is in essence
an exhaustive search algorithm. Enumeration algorithms run in constant space but they
have worst case complexity 2O(β2). Due to multiple heuristic optimizations (such as pruning
[GN08]) enumeration tends to be the most efficient algorithms for “feasible” blocksizes such
as β = 40 or 50, however the super exponential behaviour of these algorithms quickly make
them unusable for larger block sizes. We thus use sieving algorithms to obtain estimate the
complexity of BKZ-β for large block sizes. Sieving algorithms proceed by first sampling
an exponential number of lattice vectors, and then obtain increasingly shorter vectors by
computing differences of vectors that are close to one another. Since these algorithms
start by sampling exponentially many vectors they all require exponential space, on the
other hand they also achieve (simply) exponential complexity. The best known sieving

3This approach can be slightly improved by noticing that we can ignore columns of A by setting the
corresponding coefficient of z to 0 and reduce the problem to solving a M-SISq,n,m′,B instance for m′ ≤ m,
we can then optimize over the value of m′. We find that m′ =

√
n log q
log δ0

gives the best result.
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algorithms [BDGL16; Laa15] have a heuristic time complexity of 20.292β which can be reduced
to a quantum complexity of 20.265β [ADPS16] by using Grover’s quantum search algorithm.
Both algorithms have a space complexity of 20.2075β.

2.3.5 Trapdoors.
Informally a trapdoored one-way function is a function that is hard invert except when given
access to a secret "trapdoor". In the context of lattices the one-way functions we consider are
of the form

fA : {x ∈ Rm | ‖x‖ ≤ β} → Rn
x 7→ Ax

one can observe that the set of elements x s.t. Ax = 0 forms a lattice and that solutions
to fA(x) = t are small elements in a coset of this lattice. As such the purpose of a lattice
trapdoor will be enable one to sample small vectors in a lattice. Gentry et al. [GPV08]
present an algorithm which takes as input a basis B of a lattice L and outputs a sample from
Dc+L,σ for any coset c + L and for a standard deviation σ which depends on the size of B.

Theorem 2.3.14 (GPV sampler [GPV08]). Let ε > 0. There is a PPT algorithm Sample
such that, for a basis B of a lattice L ⊂ Zn, a vector c ∈ Rn, and a standard deviation
σ ≥ 1

π

√
1
2 log

(
2n(1 + 1

ε )
)
‖B̃‖max. The output of Sample(B, σ, c) is statistically close to

Dc+L,σ, i.e.
∆ (Sample(B, σ, c), Dc+L,σ) ≤ ε

GPV Trapdoor. To use this theorem one needs to know a short basis of L. While this is a
hard problem for a random lattice, a series of work [Ajt99; Pei10; MP12] have tackled the issue
of generating a trapdoored-lattice (i.e. with a known small basis) that is induistinguishable
from a random lattice for anyone who does not know the trapdoor. We succintly present the
result of [MP12] which uses "gadget"-based trapdoors for q-ary lattices.

Definition 2.3.15 (Gadget matrix [GPV08]). For a modulus q and a base B, let ` :=
dlogB(q)e. The gadget vector g ∈ R` is defined as

g :=
(
1, 2, 4, . . . , 2`−1

)
The gadget matrix of dimension n is defined as

G := In ⊗ g =

g
. . .

g

 ∈ Rn×n`

Theorem 2.3.16 ([MP12] trapdoor). Let σ > 0, Ā $← Rn×2n
q , let R ← D2n×n`

R,σ , and
H ∈ Rn×nq with H invertible in Rn×nq . Let m = n(`+ 2), and

A :=
[
Ā | ĀR −HG

]
The matrix A is indistinguishable from uniform under the M -LWEq,n,σ assumption, and the
lattice L⊥q (A) has an efficiently computable basis B such that ‖B̃‖max ≤ (s1(R) + 1)

√
B2 + 1
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From theorems 2.3.14 and 2.3.16, one can sample a matrix A ∈ Rn×n(`+2)
q indistin-

guishable from uniform, and a trapdoor B for the lattice L⊥q (A). For any t ∈ Rnq , and
σ ≥ 1

π

√
1
2 log

(
2n(1 + 1

ε

)
)(s1(R) + 1)

√
B2 + 1, one can then sample v← D

n(`+2)
R,σ such that

Av = t mod q

by using Sample(B, σ, c) for any c ∈ Rn(`+2)
q such that Ac = t mod q.

NTRU Trapdoors. A simple construction for trapdoored lattices is through the NTRU

assumption. Consider the matrix A =
[
1 h

]
, for h = f/g ← Nq,σ as per definition 2.3.13. It

is shown in [DLP14] that by choosing a standard deviation σ = 1.17
√

q
2d for the coefficients

of f and g, one can efficiently compute a basis B of L⊥q (A) such that ‖B̃‖max ≤ 1.17√q.
While such a standard deviation is not sufficient to argue that the NTRU assumption is as
hard as the R-LWE assumption, there is no known distinguishing attack that exploits the
NTRU structure of A for these parameters.

2.4 Basic Cryptographic Primitives
2.4.1 Commitments
Definition 2.4.1 (Commitment scheme). A commitment scheme is a tuple of three proba-
bilistic polynomial time algorithms (CSetup,Com,Open) such that:

• CSetup(1λ) 7→ CK generates the public commitment key.

• ComCK(m) 7→ (c, d) generates a commitment c for the message m under the key CK,
and an opening d to this commitment.

• OpenCK(c, d) 7→ m̃ opens the commitment c using the opening d. If the commitment
is not valid then m̃ = ⊥.

For completeness opening any well formed commitment/opening tuple should recover the
original message with overwhelming probability, i.e. for any CK ← CSetup(1λ) and any
message m: OpenCK(ComCK(m)) = m with overwhelming probability over the random
coins of ComCK . For security the commitment should be binding, meaning that a com-
mitment c should be "openable" to at most one message, and hiding, meaning that one
should not be able to distinguish commitments to two different messages. Both the binding
and the hiding property can be either statistical or computational, we will only consider
commitment schemes that are computationally binding and hiding as we aim to obtain
efficient constructions.

Definition 2.4.2 (Security). A valid commitment scheme should achieve the following
properties:

• (Computational) Hiding. It is hard for any PPT adversary A to generate to messages
m0 6= m1 such that A can distinguish between Com(m1) and Com(m2). Formally:

Pr
[
b = b′

CK ← CSetup(1λ), (m0,m1, St)← A(CK), b $← {0, 1}
(c, d)← ComCK(mb), b′ ← A(c, St)

]
≤ 1

2 + negl(λ)
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• (Computational) Binding. It is hard for any PPT adversary A to come up with a
tuple (c, d, d′) such that Open(c, d) = m 6= ⊥, Open(c, d′) = m′ 6= ⊥ and m 6= m′.
Formally:

Pr
[
m 6= m′ ∧m,m′ 6= ⊥ CK ← CSetup(1λ), (c, d, d′)← A(CK)

m← OpenCK(c, d),m′ ← OpenCK(c, d′)

]
≤ negl(λ)

In most applications the commitment key CK will be clear from the context and we will
thus omit it when referring to the algorithms Com and Open.
Lattice-Based Commitments. We consider a commitment scheme with message space
Rlq.
CSetup(1λ) :

• Generate public parameters pp := (q, n,m, l, σ,BCom, C̄)

• Sample A′1
$← Rn×(n−m)

q , set A1 =
[
In A′1

]
∈ Rn×mq

• Sample A′2
$← Rl×(m−n−l)

q , set A2 =
[
0l×n Il A′2

]
∈ Rl×mq

• Set A :=
[
A1
A2

]

• Output (pp,A)

Com(m ∈ Rlq)

• Sample r← Dm
R,σ

• Output
(

Ar +
[

0
m

]
, r
)

Open(t ∈ Rn+l
q , r ∈ Rm, c̄ ∈ C̄)

• Parse t as
[
t1
t2

]
with t1 ∈ Rnq and t2 ∈ Rlq

• If c̄t1 −A1r 6= 0, or ‖r‖ > BCom, or c̄ /∈ C̄, output ⊥

• Else, output t2 − c̄−1A2r

We could consider an opening algorithm that does not include the c̄ term. However defining
Open like this will be useful for Chapter 3, where the knowledge extractor of our proofs
of knowledge will only be able to exctract c̄t for some small polynomial c̄. In practice the
set C̄ will be the set of difference of challenges of our proofs (except 0) and we will always
ensure that all the elements in C̄ are small and invertible. For ease of presentation we will
sometimes write t := Com(m; r) to denote the commitment of m with the randomness r.

Lemma 2.4.3 (Correctness). Let BCom >
√

2dmσ then (CSetup,Com,Open) is correct
with overwhelming probability.
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Proof. For correctness we will need that well formed commitments can be opened with
overwhelming probability. Let (t, r) := Com(m), if ‖r‖ ≤ BCom then it is clear that
Open(t, r, 1) = m. We know by Lemma 2.3.5 that ‖r‖ ≤

√
2dmσ ≤ BCom with overwhelming

probability.

Lemma 2.4.4 (Hiding). For any m,m′ ∈ Rlq, if there is an adversary A who can distinguish
between Com(m) and Com(m′) with advantage ε, then there exists an algorithm A′ who
runs in the same time and breaks M -LWEq,m−n−l,σ with probability ε/2.

Proof. Given an instance (B,y) ∈ R(n+l)×(m−n−l)
q ×Rn+l

q of M -LWEq,m−n−l,σ, A′ samples
R $← Rn×lq and sets:

A :=
[

In R
0l×n Il

]
·
[
In+l B

]
A′ sends A to the adversary A and receives messages m0,m1 ∈ Rlq such that m0 6= m1. A′
samples b $← {0, 1}, computes:

t =
[

In R
0l×n Il

]
y +

[
0

mb

]

and sends t to A. When A returns b′, A′ returns 1 if b′ = b and 0 otherwise.
We first show that the public commitment matrix A is taken according to the correct

distribution. Rewrite B as
[
B1
B2

]
with B1 ∈ Rn×(m−n−l)

q , and B2 ∈ Rl×(m−n−l)
q . Then we

have:
A =

[
In R B1 + RB2

0l×n Il B2

]
Since R,B1, and B2 are uniform and independent, the distribution of A is identical to the
one output by CSetup.
If y is uniform in Rn+l

q then t is uniform in Rn+l
q and b′ = b with probability exactly 1/2.

However if y =
[
In+l B

]
r, then :

t = Ar +
[

0
mb

]

and A will output b′ = b with probability 1/2 + ε. A′ therefore has advantage ε/2 in the
M -LWEq,m−n−l,ψ problem.

Lemma 2.4.5 (Binding). Let BC ≥ max
c∈C

(‖c‖1). If there is an adversary A who can output
a commitment t with two valid openings (m, r, c) and (m′, r′, c′) such that m 6= m′ with
probability ε, then there is an algorithm A′ who can break M-SISq,m,4BCBCom in the same
time and with advantage ε.

Proof. Given an instance A1 =
[
In A′1

]
Rn×mq of M -SISq,m,2BCBCom . A′ samples A2 :=[

0l×n Il A′2
]
as per CSetup and outputs A =

[
A1
A2

]
. When A comes up with a commit-

ment t such that Open(t, r, c) = m 6= ⊥, Open(t, r′, c′) = m′ 6= ⊥, and m 6= m′. We have
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m = t2 − c−1A2r and m′ = t2 − c′−1A2r′, which implies cc′(m−m′) = A2(cr′ − c′r), and
since m 6= m′ we get:

cr′ − c′r 6= 0

Additionally the verification equations of the opening entail that A1r = ct1 and A1r′ = c′t1,
and thus:

A1(c′r− cr′) = 0

We also know that ‖r‖ , ‖r′‖ ≤ BCom, and ‖c‖1 , ‖c′‖1 ≤ 2BC, from which we obtain
‖cr′ − c′r‖ ≤ 4BComBC .

Commitments with different moduli.We present a commitment scheme identical to the
previous one except for the fact that the n first rows of the commitment will be taken modulo
q1, and the l last rows will be taken modulo q2. In most applications using different moduli
does not give better parameters or security, but we will see in Chapter 4 that it can be of use
in our group signature scheme.
CSetup(1λ) :

• Generate public parameters pp := (q1, q2, n,m, l, σ,BCom, C)

• Sample A′1
$← Rn×(m−n)

q1 , set A1 =
[
In A′1

]
∈ Rn×mq1

• Sample A′2
$← Rl×(m−n−l)

q2 , set A2 =
[
0l×n Il A′2

]
∈ Rl×mq2

• Set A :=
[
A1
A2

]

• Output (pp,A)

For the hiding property to hold we will need to artificially modify the distribution of the
randomness in the commitment. Let σ′ :=

√
q1
q2
σ + 1 + 2d(m− n− l)σ2.

Com(m ∈ Rlq2)

• Sample r← Dn
R,σ′ ×Dm−n

R,σ

• Output
(

Ar +
[

0
m

]
, r
)

The fact that the randomness is skewed is an artefact of the modulus switching we use in the
proof of hiding. In practice we will use spherical gaussians as it is very unlikely that different
moduli would help in attacking the scheme. Open(t ∈ Rnq1 ×Rlq2 , r ∈ Rm, c̄ ∈ C̄)

• Parse t as
[
t1
t2

]
with t1 ∈ Rnq1 and t2 ∈ Rlq2

• If c̄t1 −A1r 6= 0, or ‖r‖ > BCom, or c̄ /∈ C̄, output ⊥

• Else, output t2 − c̄−1A2r

Lemma 2.4.6 (Correctness). Let BCom >
√

2dmσ then (CSetup,Com,Open) is correct
with overwhelming probability.
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Proof. For correctness we will need that well formed commitments can be opened with
overwhelming probability. Let (t, r) := Com(m), if ‖r‖ ≤ BCom then it is clear that
Open(t, r, 1) = m. We know by Lemma 2.3.5 that ‖r‖ ≤

√
2dmσ ≤ BCom with overwhelming

probability.

Lemma 2.4.7 (Binding). Let BC ≥ max
c∈C

(‖c‖1). If there is an adversary A who can output
a commitment t with two valid openings (m, r, c) and (m′, r′, c′) such that m 6= m′ with
probability ε, then there is an algorithm A′ who can break M -SISq1,m,4BCBCom in the same
time and with advantage ε.

Proof. The proof is identical to the one with a single modulus.

Lemma 2.4.8 (Hiding). For any m,m′ ∈ Rlq2 , if there is an adversary A who can distinguish
between Com(m) and Com(m′) with advantage ε, then there exists an algorithm A′ who
runs in the same time and breaks M -LWEq2,m−n−l,σ with probability ε/2.

Proof. Given an instance (B,y) ∈ R(n+l)×(m−n−l)
q2 × Rn+l

q2 of M-LWEq2,m−n−l,σ, parse B

and y as
[
B1
B2

]
and

[
y1
y2

]
. Let ρ : R → Z be a randomized rounding function which maps

x ∈ R to ρ(x)← bxc+Bx−bxc, where Bx−bxc is a Bernouilli variable which outputs 1 with
probability x− bxc. Remark that for q1 ≤ q2, ρ

(
U( q1

q2
Zq2)

)
= U(Zq1). Let B′1 := ρ

(
q1
q2

B1
)

and y′1 := ρ( q1
q2

y1). A′ samples R $← Rn×lq1 and sets:

A :=
[

In R
0l×n Il

]
·
[

In 0n×l B′1
0l×n Il B2

]

where the products are done over the integers and then taken modulo q1 for the top part
and modulo q2 for the bottom part. A′ sends A to the adversary A and receives messages
m0,m1 ∈ Rlq2 such that m0 6= m1. A′ samples b $← {0, 1}, computes:

t =
[

In R
0l×n Il

] [
y′1
y2

]
+
[

0
mb

]

where the products are done over the integers and then taken modulo q1 for the top part and
modulo q2 for the bottom part, and sends t to A. When A returns b′, A′ returns 1 if b′ = b
and 0 otherwise.
We first show that the public commitment matrix A is taken according to the correct
distribution. We have:

A =
[

In R B′1 + RB2
0l×n Il B2

]
Since B′1 is uniform modulo q1 and independent from R and B2, B′1 + RB2 mod q1 is
uniform modulo q1. Since R and B2 are also uniform, the distribution of A is identical to
the one output by CSetup.
If y is uniform in Rn+l

q2 then y′1 is uniform in Rnq1 and t is uniform in Rn+l
q1 and b′ = b with

probability exactly 1/2. However if y =
[
In+l B

]
r, write r as

r1
r2
r3

, with r1 ∈ Rn, r2 ∈ Rl,
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and r3 ∈ Rm−n−l. Applying ρ component-wise to q1
q2

(B1,B1r3 + r1) we get:(
q1
q2

B1 + ∆, q1
q2
B1r3 + q1

q2
r1 + δ

)
=
(
q1
q2

B1 + ∆,
(
q1
q2
B1 + ∆

)
r3 + q1

q2
r1 + δ −∆r3

)
=
(

B′1,B′1r3 + q1
q2

r1 + δ −∆r3

)
=
(
B′1,B′1r3 + r′1

)
where r′1 is subgaussian with parameter

√
q1
q2
α+ 1 + ‖r3‖2 ≤ σ′. Setting r′ =

r′1
r2
r3

 we have

that
t = Ar′ +

[
0

mb

]
is distributed according to Com(mb), and A will output b′ = b with probability 1/2 + ε. A′
therefore has advantage ε/2 in the M-LWEq2,m−n−l,σ problem.

2.4.2 Public Key Encryption
Definition 2.4.9 (Public Key Encryption). A public key encryption scheme is a tuple of
three probabilistic polynomial time algorithms (PKESetup,Enc,Dec) such that:

• PKESetup(1λ) 7→ (sk, pk) Generates the secret key and the public key.

• Enc(pk,m) 7→ ct outputs a ciphertext ct which encrypts the message m under the public
key pk.

• Dec(sk, ct) 7→ m̃ Decrypts the ciphertext ct to a message m using the secret key sk.
Outputs the error symbol ⊥ if decryption fails.

For completeness decrypting any well formed ciphertext should recover the original message
with overwhelming probability, i.e. for any (pk, sk)← PKESetup(1λ) and any message m:
Dec(sk,Enc(pk,m)) = m with overwhelming probability over the random coins of Enc.

Expind−cpa−b(A, λ) :
(sk, pk)← PKESetup(1λ)
(m0,m1, st)← A(pk)
ct∗ ← Enc(pk,mb)
b′ ← A(ct∗, st)
Return b′

Figure 2.1: Experiment for IND-CPA security

Definition 2.4.10 (Indistinguishability under chosen-plaintext attack). For a PKE scheme
(PKESetup,Enc,Dec), we define security against chosen-plaintext attacks (IND-CPA) with
adversary A via the experiment of Figure 2.1. The advantage of A is:

Advind−cpa(A, λ) :=

∣∣∣∣∣∣ Pr
b

$←{0,1}

[
Expind−cpa−b(A, λ) = b

]
− 1

2

∣∣∣∣∣∣
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The scheme is secure if this advantage is negligible in λ for any PPT adversary A.

Expind−cca−b(A, λ) :
S ← Empty list
(sk, pk)← PKESetup(1λ)
(m0,m1, st)← AODec(pk)
ct∗ ← Enc(pk,mb)
b′ ← AODec(ct∗, st)
If ct∗ ∈ S return ⊥
Else return b′

ODec(ct) :
S ← S

⋃ {ct}
Return Dec(ct)

Figure 2.2: Experiment for IND-CPA security

Definition 2.4.11 (Indistinguishability under chosen-ciphertext attack). For a PKE scheme
(PKESetup,Enc,Dec), we define security against chosen-ciphertext attacks (IND-CCA-2)
with adversary A via the experiment of Figure 2.2. The advantage of A is:

Advind−cca(A, λ) :=

∣∣∣∣∣∣ Pr
b

$←{0,1}

[
Expind−cca−b(A, λ) = b

]
− 1

2

∣∣∣∣∣∣
The scheme is secure if this advantage is negligible in λ for any PPT adversary A.

Lattice-Based PKE. Lyubashevsky introduced in [LPR13] a ring variant of the seminal
CPA-secure LWE encryption scheme of Regev [Reg05]. We present an adaptation of this
scheme to module lattices, we also modify the scheme to accommodate for larger message
spaces.
PKESetup(1λ):

• Generate public parameters pp := (q, p, n, l, σ)

• Sample A $← Rn×nq

• Sample S,E← Dn×l
R,σ

• Set B := AS + E

• Output (s, (pp,A,B))

Enc((pp,A ∈ Rn×nq ,B ∈ Rn×lq ),m ∈ Rlq):

• Sample r, e1 ← Dn
R,σ

• Sample e2 ← Dl
R,σ

• Set u := p(AT r + e1)
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• Set v := p(BT r + e2) + m

• Output (u,v)

Dec(S ∈ Rn×lq , (u ∈ Rnq ,v ∈ Rlq)):

• Output v− STu mod p

Lemma 2.4.12 (Correctness). Let the modulus q be such that:

q > 64pnd
√

2σ2

then the scheme (PKESetup,Enc,Dec) has overwhelming correctness.

Proof. Decryption will be correct if v−STu = v−STu mod q, indeed in that case we have:

v− STu = p(ET r + e2 − STe1) + m

and v− STu = m mod p. Decryption will thus be correct if∥∥∥p(ET r + e2 − STe1) + m
∥∥∥
∞
≤ q/2p.

Let e, s← Dn
R,σ be the first column of E and S, by applying a union bound it is apparent

that proving
∥∥∥p(eT r + e2 − sTe1) + m

∥∥∥
∞
≤ q/2p with overwhelming probability is sufficient.

Let x, y ← DR,σ, we have ‖xy‖∞ ≤ ‖x‖1 ‖y‖∞ ≤
√
d ‖x‖ ‖y‖∞.

By union bound

Pr
[
‖xy‖∞ > 14d

√
2σ2

]
≤ Pr

[
‖x‖ >

√
2dσ

]
+ Pr [‖y‖∞ > 14σ]

≤ 2−d/4 + d2e−98

Since e← Dn
R,σ, we have

∥∥∥eT s
∥∥∥
∞
≤∑ ‖eisi‖∞ ≤ 14nd

√
2σ2 with overwhelming probability.

The same argument can be applied to
∥∥∥sTe1

∥∥∥. Since m ∈ Znp and e2 ← Dk
R,σ, we have:∥∥∥p(eT r + e2 − sTe1) + m

∥∥∥
∞
≤ 64pnd

√
2σ2

Lemma 2.4.13 (IND-CPA Security). For any PPT adversary A, there exists a PPT
adversary B for the M-LWEq,n,σ such that:

Advind−cca(A, λ) ≤ (k + 1)AdvM-LWEq,n,σ(B)

Proof. Let A be an adversary for the IND-CPA security of our scheme. We use a succession
of games.
Game G0 : In this game we sample b $← {0, 1} run experiment Expind−cpa−b(A, λ).
Game G1,0<i≤k : This game is identical to the previous one except for the fact the the ith
column of B is now taken uniformly in Rnq . Note that we had bi := Asi + ei in the previous
game. The advantage of A in distinguishing this game from the previous is thus:∣∣∣AdvG1,i

A − AdvG1,i−1
A

∣∣∣ ≤ AdvM-LWEq,n,σ(A)
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Game G2 : In this game we replace u,v by uniformly random vector. Note that since
B $← Rn×kq in Game G1,k−1, we had

[
A | B

]
$← Rn×(n+k)

q and
[

u
v−m

]
:=
[
AT

BT

]
r +

[
e1
e2

]

was a M-LWEq,n,σ sample. The advantage of distinguishing this game from the previous one
is thus: ∣∣∣AdvG2

A − AdvG1,k−1
A

∣∣∣ ≤ AdvM-LWEq,n,σ(A)

Since v is uniform in Rkq in Game G2, A has no advantage in guessing b:

AdvG2
A = 0

By summing the successive inequalities we obtain the desired result.



Ch
ap

te
r3

Chapter 3
Lattice-Based Zero-Knowledge
In this chapter we define zero-knowledge proofs of knowledge over lattices through the notion
of Σ′-protocol introduced in [BCK+14]. We then present the basic “Fiat-Shamir with aborts”
from [Lyu09] and give two variants: an “exact” protocol and an “approximate” protocol. We
then show how to use this Σ′-protocol to prove knowledge of openings of commitments and
linear relations on openings, we also construct a proof for the disjunction of statements. We
present a proof that the opening of a message belongs to a subset of R that is fixed by a set
of automorphisms.
Finally we present an exact proof with constant overhead for lattice-based one-way functions,
this proof is amortized and requires O(λ) equations to be efficient.
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3.1 Definitions

P V

(t, s) ∈ R t

(w, St)← Commit(t, s) w -

c� c $← C

z ← Respond(t, s, w, c, St) z - b← V erify(t, w, c, z)

Figure 3.1: Three round form of a Σ-protocol.

A zero-knowledge proof of knowledge, abbreviated as ZKPoK, is an interactive protocol
in which a prover P must convince a verifier V that a statement is true without revealing
any other information about the statement. Consider a binary relation R associated to an
NP language L, i.e. for any statement t ∈ L there exists a witness s such that (t, s) ∈ R. A
ZKPoK for R should achieve the following properties.

Completeness: A prover with witness s for t ∈ L can convince the verifier.

Soundness: A prover cannot convince the verifier when t /∈ L.

Zero-knowledge: The interaction should not reveal anything to the verifier except that t ∈ L.
In particular, it should not reveal the prover’s witness s.

Sigma’ Protocols. Σ-protocols (introduced by Cramer in [Cra97]) are three round inter-
active proofs of knowledge between a prover P who knows (t, s) ∈ R and a verifier V who
knows t, c.f. Figure 3.1. In this thesis we will consider Σ′-protocols, introduced in [BCK+14],
which are an adaptation of Σ-protocols to the context of lattice-based cryptography.

Definition 3.1.1 (Σ′-Protocol). Let R ⊂ R′ be two binary relations, let (P,V) be a two-party
protocol where V is PPT. (P,V) is a Σ′-protocol for R,R′ with challenge set C, public input
t and private input s, if:

• Three-move form: (P,V) is of the form described in Figure 3.1

• Completeness: There is a constant α > 0 such that whenever (t, s) ∈ R, the verifier
accepts with probability at least α.

• Special soundness: There exists a PPT algorithm E, called knowledge extractor, who on
input two accepting transcripts, (w, c, z) and (w, c′, z′) such that c 6= c′, outputs s̄ such
that (t, s̄) ∈ R′.

• Special honest-verifier zero-knowledge: There exists a PPT algorithm S, called simulator,
who on input y ∈ L(R) and c ∈ C, outputs (w, s) such that (w, c, s) is indistinguishable
from an accepting transcript generated by (P,V).
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This definition differs from that of Σ-protocols in two ways. The completeness property
has been relaxed from overwhelming to constant, that is to accommodate the use of rejection
sampling, in which the prover will only send the reply z with some probability that depends
on (s, t, w, c) and abort the protocol otherwise. This step is necessary to ensure that the
reply z is independent of the witness s and can be simulated for zero-knowledge, we will
ensure that the probability that the protocol does not abort is overwhelmingly close to a
constant (which we will take to be 1/3 for simplicity). The second difference is that the
soundness extractor does not recover a witness from R but a slightly larger relation R′, we
will need this relaxation to accommodate the soundness slack that comes with lattice-based
zero-knowledge proofs (i.e. the fact that extracted witness s̄ will be “larger” than s) and
because some of the Σ′-protocols we present will be “approximate” (c.f. Section 3.2).

The special soundness property achieved by Σ-protocol is a stronger variant of the knowledge
soundness introduced by Bellare and Goldreich [BG93]. We recall this definition as some of
our protocols do not achieve special soundness (we will still call such protocols Σ′-protocols
for ease of presentation).

Definition 3.1.2 (Knowledge soundness). Let κ : {0, 1}∗ → [0, 1], let E be a PPT extractor
who gets an input t ∈ R and black box access to a prover P∗. (P,V) is κ-knowledge sound
(or has soundness error κ) if for any prover P∗ who has probability ε(t) of convincing V on
input t, there exists a constant c such that if ε(t) > κ(t) then E can output a witness s̄ such
that (t, s̄) ∈ R′ in expected time at most

|t|c
ε(t)− κ(t)

where access to P ∗ counts as a single step.

Lemma 3.1.3 ([Dam10] Theorem 1). Let (P,V) be a Σ′-protocol with challenge space C. If
(P,V) achieves special soundness then it has soundness error 1/ |C|.

Non-interactive proofs. The Fiat-Shamir transform was originally introduced in [FS87]
to transform a three move proof of knowledge into a digital signature scheme. Using the Fiat-
Shamir transform we can obtain a non-interactive proof of knowledge from a Σ′-protocol. We
will define the non-interactive variant of (P,V) as the pair of algorithms Π(t; s),Verify(t, c, z)
given in Algorithm 2 and Algorithm 3, where H is a collision resistant random oracle.

Algorithm 2 Π(t, s)
Require: Public information: t. Private information: s such that (t, s) ∈ R
1: (w, St)← Commit(t, s)
2: c← H(t, w, c)
3: z ← Respond(t, s, w, c, St)
4: return (w, c, z)
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Algorithm 3 Verify(t, c, z)
Require: Public information: t ∈ L(R), (w, c, z)← Π(t; s).
1: if c = H(t, w, c) then
2: return V erify(t, w, c, z)
3: elsereturn 0

3.2 Exact and Approximate ZKPoKs
3.2.1 Σ′-Protocol for one way functions
Our first ZKPoK will consist in proving knowledge of a small preimage s ∈ Rm for an image
t ∈ Rnq of the one-way function defined by a random matrix A ∈ Rn×mq . We present in
Figure 3.1 a basic Σ′-protocol for the following relations:

R =
{

(t, s, 1) ∈ Rnq ×Rm ×R | As = t, ‖s‖ ≤ B
}

R′ =
{

(t, s, c̄) ∈ Rnq ×Rm ×R | As = tc̄, ‖s‖ ≤ 2B′, c̄ ∈ C̄
}

where C̄ is the set of differences of elements of C except for 0. If R is taken to be Z then
the challenge set we bill fixed to C = {0, 1} (and thus C̄ = {1}) resulting in a protocol
with soundness 1/2. If R is a polynomial ring then one can chose C to be a larger set (e.g.
polynomials of small norm) to obtain soundness 1/ |C|, this comes at a cost since the set C̄
will also be large.

P V

A ∈ Rn×mq , s ∈ Rm, t ∈ Rnq A, t
s.t As = t

y← Dm
R,σ

w := Ay w -

c $← C
c�

z := sc+ y
Abort if Rej(z, sc, σ) = 0 z - Check:

‖z‖ ≤ B′
Az = tc+ w

Figure 3.2: Generic ZKPoK for lattice-based one-way functions.

Theorem 3.2.1. Let A $← Rn×mq and s ∈ Rm such that t := As and ‖s‖ ≤ B. Let
BC ≥ max

c∈C
(‖c‖1), σ ≥ 11BCB, and B′ ≥

√
2mdσ. The protocol ΠOWF (A, t; s) of Figure 3.1

is a Σ′-protocol for relations R and R′ with success probability 1/3 and soundness error 1/ |C|.
Proof.
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Correctness: Using lemma 2.3.6 we know that since σ ≥ 11BCB ≥ 11 ‖sc‖ the rejection
step will accept with probability overwhelmingly close to 1/3 and the vector z output
will be statistically close to Dm

R,σ. By lemma 2.3.5 we have ‖z‖ ≤
√

2mdσ ≤ B′

with overwhelming probability. It is clear that in the honest protocol the response is
computed in such a way that the verification equation Az = tc+ w stands.

Special Soundness: Let w, c, z and w, c′, z′ be two accepting transcripts with c 6= c′. Let
z̄ = z− z′ and c̄ = c− c′, by correctness we have Az̄ = tc̄, with c̄ ∈ C̄ and ‖z̄‖ ≤ 2B′.

Honest Verifier Zero-Knowledge: We only prove that accepting transcripts do not leak
information. The reason for this is that all concrete instantiations of the proofs of
knowledge described in this section will be made non-interactive via the Fiat-Shamir
transform, in which case only accepting transcripts will matter since aborting runs
of the protocol will not output anything. Moreover the protocol of Figure 3.2 can be
made zero-knowledge even for non-accepting transcripts by sending B(w) , where B is
a commitment, instead of w and then sending the opening of that commitment in the
response flow.
Let S(A, t) be the following PPT algorithm:
• Sample c $← C
• Sample z← Dm

R,σ

• Set w = Az− tc
• Output (w, c, z)

It is clear that z verifies with overwhelming probability. We already showed in the
proof of correctness that in the real protocol when no abort occurs the distribution
of z is within statistical distance 2−100 of Dm

R,σ. Since w is completely determined by
A, t, z and c, the distribution of (w, c, z) output by S is within distance 2−100 of the
distribution of these variables in the actual protocol.

Multiple criteria come into play when considering the efficiency of a ZKPoK. The main
concern will be the communication overhead (or proof size for the non-interactive variant)
which we will consider to be |z| / |s|1. The soundness error heavily influences the communica-
tion overhead of the proof, as a protocol with soundness error C will need to be repeated
λ/ log(1/C) times to achieve overwhelming soundness and will thus multiply the overhead by
the same amount. Another important attribute of lattice-based zero-knowledge will be the
slack of the protocol, defined as ‖z‖ / ‖s‖. The slack of the proof of knowledge will affect
how we set parameters, for example when proving knowledge of a preimage for the one way
function defined by A ∈ Rn×mq we will of course want this function to be hard to invert for s
but also for z, otherwise the solution extracted by the knowledge extractor would be vacuous.
Hence a large slack will imply larger parameters and in turn larger overhead. Finally the
computation complexity of the protocol can be of importance (though it is often a smaller
concern), most of the computational complexity comes from one-way function evaluations
(which are matrix/vector products) and discrete Gaussian sampling. As discrete Gaussians

1We do not consider |w| and |c| because w will not be output in non-interactive proofs (as it can be recovered
from A, z, t, c) and |c| is usually negligible.
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can be computationally intensive to sample some applications will forego Gaussians in favor
of uniform or other simpler distributions, at a cost in parameters.
ZKPoKs over the integers. Here we consider the ring R = Z. In this case the challenge
space will be C = {0, 1}, we could consider larger challenge space for better soundness but the
slack of the protocol depends on the bound BC on the norm of the challenges which would
grow linearly with the size of the challenge space. These parameters result in an "exact"
proof of knowledge (since C̄ = {1}) with soundness 1/2 and slack 11

√
2dm. The main issue

here is the constant soundness, meaning that the ZKPoK will need to be repeated λ times to
achieve overwhelming soundness, resulting in impractically large proofs.
ZKPoKs over polynomial rings. If we consider a ring of dimension larger than one
we can obtain new tradeoffs. Let R = Z [X] /Xd + 1, for d a power of two. We consider
the challenge set C = {c ∈ R | ‖c‖1 = κ, ‖c‖∞ = 1}. Using such a challenge set results in

an "approximate" proof of knowledge with soundness error 1/ |C| =
(
d
κ

)−1

2−κ and slack

11κ
√

2md, the bound κ will be chosen so that the protocol achieves overwhelming soundness.
Using this challenge set we obtain a proof of knowledge with roughly equivalent slack and
without any need for repetition. The downside being that it is no longer clear exactly what
this "approximate" proof really proves as the knowledge extractor can only extract z̄ such
that Az̄ = tc̄ for some c̄ ∈ C̄. Lyubashevsky shows in [Lyu08] that such a ZKPoK can be
used for digital signatures, we will also use "approximate" proofs in Chapters 4 and 5 to
construct a group signature and an e-voting scheme.
ZKPoKs with monomial challenges. In this paragraph we will also consider the ring
Z [X] /Xd + 1 but with the challenge space C = {0}⋃{±Xj

}
j<d. While this challenge set

is only of size 2d + 1 it has the property that elements c̄ ∈ C̄ have inverses in Rq such
that

∥∥2c̄−1∥∥
1 ≤ d (cf. lemma 2.2.1). Meaning that we can consider ZKPoKs which extract

witnesses from the relation

R′′ =
{

(t, s, 2) ∈ Rnq ×Rm ×R | As = 2t, ‖s‖ ≤ 2dB′
}

which is such that R′ ⊂ R′′ as one can map (t, s, c̄) ∈ R′ to (t, 2sc̄−1, 2) ∈ R′′. Using
this challenge set we obtain a proof with soundness error 1/(2d + 1) and slack 11d

√
2dm,

resulting in proofs that are log(2d+ 1) times smaller but with d times more slack than for
C = {0, 1}. Once again the proof is “approximate” since extraction recovers a preimage of 2t
rather than t but this “fixed” approximation can be better than the solution of the previous
paragraph. For example extracted values can be summed, i.e. if As1 = 2t1 and As2 = 2t2
then A(s1 + s2) = 2(t1 + t2), such a property does not hold for elements in R′, this will come
in handy when we construct our e-voting scheme in Chapter 5.

3.2.2 Applications to Commitments

Proof of Opening. We consider a commitment t defined as in Section 2.4.1, i.e. of the
form

t =
[
t1
t2

]
=
[
A1
A2

]
r +

[
0
m

]
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One can prove knowledge of an opening simply by using the protocol of Figure 3.1 to prove
knowledge of a preimage of t1. Consider the corresponding binary relations:

R =
{

(t1, r, 1) ∈ Rnq ×Rm ×R | A1s = t, ‖r‖ ≤ B
}

R′ =
{

(t1, r, c̄) ∈ Rnq ×Rm ×R | A1r = t1c̄, ‖r‖ ≤ 2B′, c̄ ∈ C̄
}

The soundness extractor of the protocol ΠOWF (A1, t1; r) will extract a tuple (t1, r̄, c̄) ∈ R′.
By definition of the opening of a commitment it is clear that r̄, c̄ is a valid opening for the
message t2c̄−A2r̄ as long as ‖r̄‖ ≤ 2B′ ≤ BCom. Similarly one can prove knowledge of an

opening to a specific message m by proving knowledge of a preimage of t −
[

0
m

]
for the

matrix A, i.e. from the proof ΠOWF

(
A, t−

[
0
m

]
; r
)

one can extract r̄, c̄ such that

tc̄ = Ar̄ + c̄

[
0
m

]

Proofs of Linear Relations. We now consider how to prove that the messages of two
commitments verify a certain linear relation. Formally for some public u, v ∈ R, t =
Com(m; r) and t′ = Com(m′; r′) we want a proof that um + vm′ = 0. We thus consider
the following relations:

R =
{

(t, t′, r, r′,m,m′, 1) ∈ Rn+l
q ×Rn+l

q ×Rm ×Rm ×Rl ×Rl ×R
s.t. t = Com(m; r), t′ = Com(m′, r′), ‖r‖ ≤ B, ‖r′‖ ≤ B, um + vm′ = 0

}

R′ =
{

(t, t′, r, r′,m,m′, c̄) ∈ Rn+l
q ×Rn+l

q ×Rm ×Rm ×Rl ×Rl ×R
s.t. c̄t = Com(c̄m; r), c̄t′ = Com(c̄m′, r′), ‖r‖ ≤ 2B′, ‖r′‖ ≤ 2B′, um + vm′ = 0

}

Such a proof can be obtained by applying the proof for one-way functions to a well chosen
matrix. Let B be the following matrix

B =

 A1 0
0 A1
uA2 vA2


observe that if our commitment scheme is binding for randomnesses of norm less than B,
then

(t, t′, r, r′,m,m′, 1) ∈ R⇔ B
[

r
r′

]
=

 t1
t′1

ut2 + vt′2

 ∧ ‖r‖ ≤ B ∧ ∥∥r′∥∥ ≤ B

The protocol ΠOWF

B,

 t1
t′1

ut2 + vt′2

 ;
[

r
r′

] is therefore a valid ZKPoK with knowledge

extractor in R′.
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P V

t1, . . . , t` ∈ Rnq A, t1, . . . , t`
i ∈ [`] , s ∈ Rm
s.t. ti = As

For j 6= i :
cj

$← C
zj ← Dm

R,σ
wj := Azj − tj · cj

yi ← Dm
σ

wi := Ayi w1, . . . ,w`-
c� c $← C

ci = c	⊕j 6=i cj
zi = sci + yi
Abort if Rej(zi, sici, σ) = 0 z1, . . . , zk-

c1, . . . , ck
Check:
∀j ∈ [`] , ‖zj‖ ≤ B′
∀j ∈ [`] , Azj = tjcj + wj

c = ⊕k
1 cj

Figure 3.3: Proof of knowledge of a preimage s of one of ` vectors tj .

3.3 OR-Proofs
Given Σ-protocols for two relations R0 and R1, one can prove that he knows a witness for
either t0 ∈ L(R0) or t1 ∈ L(R1) without revealing which is the case. Let b ∈ {0, 1} be such
that P knows sb with (tb, sb) ∈ Rb, the prover first computes a transcript using the simulator
of the relation for which he does not have a witness, and then uses c− c1−b as a challenge for
the relation for the relation for which he knows the witness, where c1−b is the challenge used
in the simulator and c a challenge sent by the verifier. This protocol (given in e.g. [Dam10])
assumes that the challenges form a group as the verifier should not be able to distinguish
whether the prover computed c0 = c − c1 or c1 = c − c0. The challenge space we used in
lattice based ZKPoK typically do not have this property, to remedy this we will endow C with
an ad-hoc group law. For any ` ≥ 2 we describe in Figure 3.3 an or-proof for the relations

ROR =
{

(t1, . . . , t`, s, 1) ∈
(
Rnq
)`
×Rm ×R | ∃i,As = ti, ‖s‖ ≤ B

}
R′OR =

{
(t1, . . . , t`, s, c̄) ∈

(
Rnq
)`
×Rm ×R | ∃i,As = tic̄, ‖s‖ ≤ 2B′, c̄ ∈ C̄

}
We will consider ⊕ to be an efficiently computable group law over the challenge space, we
will show how to obtain such a group law.

Lemma 3.3.1. Let A ∈ Rn×mq , t1, . . . , t` ∈ Rnq , s ∈ Rmq , and i ∈ [`] such that ti :=
As and ‖s‖ ≤ B. Let BC ≥ max

c∈C
(‖c‖1), σ ≥ 11BCB, and B′ ≥

√
2mdσ. The protocol

ΠOR (A, t, . . . , t`; s) of Figure 3.3 is a Σ′-protocol for relations ROR and R′OR with success
probability 1/3 and soundness 1/ |C|.
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Proof.

Correctness: Using lemma 2.3.6 we know that since σ ≥ 11BCB ≥ ‖sci‖ the rejection step
will accept with probability overwhelmingly close to 1/3 and the vector zi output
will be statistically close to Dm

σ , for i 6= j the vector zj comes exactly from Dm
σ . By

lemma 2.3.5 we have for all j ∈ [`] , ‖zj‖ ≤
√

2mdσ ≤ B′ with overwhelming probability.
It is clear that in the honest protocol the response is computed in such a way that the
verification equations stand.

Special Soundness: Consider two accepting transcripts (w1, . . . ,w`, c, z1, . . . , z`, c1, . . . , c`)
and (w1, . . . ,w`, c, z′1, . . . , z′`, c′1, . . . , c′`) with c 6= c′. Since c 6= c′, there exists i ∈ [`]
such that ci 6= c′i. Let z̄i = zi − z′i and c̄i = ci − c′i, by correctness we have Az̄i = tic̄i,
with c̄i ∈ C̄ and ‖z̄i‖ ≤ 2B′.

Honest Verifier Zero-Knowledge: We only prove that accepting transcripts do not leak
information. Let S(A, t1, . . . , t`) be the following PPT algorithm:
• Sample c $← C
• Sample cj $← C for j < `, and set c` = c	⊕j 6=` cj

• Set wj = Azj − tjcj for j ≤ `
• Output (w1, . . . ,w`, c, z1, . . . , z`, c1, . . . , c`)

It is clear that the transcript output by the simulator verifies with overwhelming
probability. We already showed in the proof of correctness that in the real protocol
when no abort occurs the distribution of zj is within statistical distance 2−100 of Dm

σ for
all j ∈ [`]. Since C is a group for ⊕ the vector (c1, . . . , cl) is sampled uniformly over C`
conditioned on⊕ cj = c in both the simulator and the real protocol. Since (w1, . . . ,w`)
is completely determined by A, t, . . . , tl, z1, . . . , zl, c1, . . . , cl and c, the distribution of
the transcript output by S is within distance 2−100 of the distribution of the one in the
actual protocol.

Endowing C with a group structure. If C = {0, 1} or C = {0}⋃{±Xj
}
j<d then adding

a group law to the challenge space is straightforward, we will thus focus on the case where
C = {c ∈ R | ‖c‖1 = κ, ‖c‖∞ = 1}. One can obtain a group law ⊕ by defining a bijection φ
from C to Z|C| and setting x⊕ y := φ−1(φ(x) + φ(y)), to do so we will need both φ and φ−1

to be efficiently computable. Recall that we have fixed C = {c ∈ R | ‖c‖1 = κ, ‖c‖∞ = 1}
which is of size |C| = 2κ

(d
κ

)
(one can think of choosing c ∈ C as first choosing the κ non-zero

coefficients and then choosing their sign). If we define C′ =
{
c ∈ {0, 1}d , ‖c‖1 = κ

}
then any

element c ∈ C can be directly decomposed as a pair (a, b) ∈ C′ × Zκ2 where a is the "absolute
value" of c and bi = 1 iff the ith non-zero coefficient of c is 1. It is clear that finding an
efficient bijection φ′ : C′ → Z(dκ) is sufficient.
For c ∈ C′ let ind(c) ∈ Zκd be such that ind(c)i for 0 ≤ i < κ is the index of the ith non-zero
coefficient of c, then we define φ′ as follows:

φ′(c) =
κ−1∑

0

(
ind(c)i
i+ 1

)
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where
(a
b

)
= 0 if b > a. This bijection in fact corresponds to ordering C′ in lexicographic

order and can be computed in time O(κd). φ′−1 is somewhat more complicated to compute
as there is no convenient closed-form expression but the following algorithm was shown in
[Ste88] to compute φ′−1 in quadratic time:

Algorithm 4 φ′−1
(
x ∈ Z(dκ)

)
i := d
j := x
k :=

( i
κ

)
while i > 0 do

k′ := k · i−κi
if j ≤ k′ then

output 0
k := k′

else
output 1
j := j − k′
k := k · κi

i := i− 1

3.4 Subset Membership Proofs
The goal of this section will be to prove that the message m of a commitment t := Com(m)
is in a certain fixed subset S ⊂ Rlq. A simple approach that works for any set S is to use the
OR-proof of Section 3.3 on each element of S, of course such a technique quickly becomes
unpractical since the size of the proof would grow linearly with the size of S.
A different approach would be to prove that the message belongs to a subring Sq of Rq by
using the Chinese remainder theorem, for example suppose that Xd+1 split into Xd+1 = fg
mod q then we could take Sq = fRq = {fx : x ∈ Rq} and prove that t commits to m ∈ Sq
by proving that mg = 0 mod q. This can be done with a proof size independent of |Sq| by
using the linearity proof of Section 3.2.2. A caveat of this solution is that by definition of Sq
its element will not have an inverse in Rq, which is an often important property, e.g. for the
group signature of Section 4.2.
We will thus prove that the message m ∈ Rq is in a subring Sq of Rq with invertible elements,
to do so we will use the automorphisms of R.
Galois Group Structure of Cyclotomic Rings. We will only state the results that are
useful in constructing our proof of subset membership, for a more in-depth approach to the
Galois group structure of cyclotomic rings we refer the reader to [PLS18].
Consider the following functions for 0 ≤ i < 2d:

ξi : R → R
u(X) 7→ u(Xi)

the set Γ := {ξi : i ∈ Z∗2d} is the so-called Galois group of R2. Γ is a group for composition
2The definition of the Galois group is in fact more intricate as it is only defined for field extensions. If we
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Degree k Galois group H Generator α
1 〈ξ−1, ξ5〉 1
2 〈ξ−1, ξ2

5〉 X3072 −X1024

4 〈ξ−1, ξ4
5〉 X3584 −X512

8 〈ξ−1, ξ8
5〉 X3849 −X256

Table 3.1: Subrings of Rq, for d = 4096, of degree at most 8 with generators for the corre-
sponding Galois group H, and generators of the subring.

and the only subset of R that is fixed by Γ is Z (i.e. the polynomials of degree 0)

R/Γ ' Z.

As a group Γ is isomorph to Z∗2d ' Z2 × Zd/2 and is therefore generated by two elements,
these elements are ξ−1 : X 7→ X2d−1 = X−1 and ξ5 : X 7→ X5. From this we know that the
only elements of R fixed by both ξ−1 and ξ5 are the constant polynomials. To obtain a larger
subring we can consider the elements that are fixed by a subgroup of Γ, for any power of two
k < d we have:

R/
〈
ξ−1, ξ

k
5
〉
' Zk.

We can thus obtain subrings of R of dimension k for any power of two less than d. However
while this is true for R it is not trivial for Rq, the set Γ will still be a group of automorphism
of Rq but it might be possible that, for example, there exists u ∈ Rq that is fixed by both
ξ−1, and ξ5 but is not a constant. Fortunately we prove in [PLS18] that for a well chosen
modulus q there are no such problems, i.e.:

Rq/
〈
ξ−1, ξ

k
5
〉
' Zkq .

We can now prove that a message is in a subring of dimension k by proving that it is fixed
by ξ−1 and ξ5. Moreover such subrings only contain invertible elements, and have a Zq-basis
that consists of the power of an efficiently computable polynomial α ∈ Rq, i.e.

R/
〈
ξ−1, ξ

k
5
〉

=
{
c0 + c1α+ . . . ,+ck−1α

k−1 : ci ∈ Zq
}

Theorem 3.4.1 ([PLS18] Theorem 3.2). Let d > k ≥ 1 be powers of 2, let q be a prime
congruent to 3 or 5 modulo 8. Let H = 〈ξ−1, ξk5 〉. The subring

Rq/
〈
ξ−1, ξ

k
5
〉

is of dimension k (and thus size qk), is generated by α = Xd− d
2k −X d

2k , and all of its elements
are invertible in Rq.

We give in Table 3.1 a few example of subrings of Rq and their generators.

Proving Stability Under Automorphisms. We present in this section a proof of knowl-
edge that a commitment opens to a message m ∈ Rlq that is invariant under a certain set of
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P V

A :=
[
A1
A2

]
, r,m, A, t1, t2, (ξj)j∈S⊂Z∗m

t1, t2, (ξj)j∈S⊂Z∗m
s.t
[
t1
t2

]
= Com(m; r)

and ∀j ∈ S,m = ξj(m)

y← Dm
R,σAut

∀j ∈ S,yj ← Dm
R,σAut

w1 := A1y
w1,j := ξj (A1) yj
w2,j = A2y− ξj (A2) yj w1 -w1,j ,w2,j

c
$← C

c�

z := rc+ y
zj := ξj (r) c+ yj
If Rej ((z, (zj)), (rc, ξj (r) c), σAut) = 0

Then Abort z, (zj)j∈S-
Check:
‖z‖ ≤ B′Aut
∀j ∈ S, ‖zj‖ ≤ B′Aut
A1z = t1c+ w1
∀j ∈ S, ξj (A1) zj = ξj (t1) c+ w1,j
∀j ∈ S, A2z− ξj (A2) zj =

(t2 − ξj (t2)) c+ w2,j

Figure 3.4: Proof that the opening of a commitment is invariant under a set of automorphisms
(ξj)j∈S

automorphisms (ξj)j∈S⊂Z∗m , as a special case we can show that m ∈ Zlq by proving that it is
invariant under two automorphisms (specifically ξ−1 and ξ5).

RAuto =
{

(t, r,m, 1) ∈ Rn+l
q ×Rm ×Rl ×R

s.t. t = Com(m; r), ‖r‖ ≤ BAut, ∀j ∈ S, ξj(m) = m

}

R′Auto =
{

(t, r,m, c̄) ∈ Rn+l
q ×Rm ×Rl ×R

s.t. c̄t = Com(c̄m; r), ‖r‖ ≤ 2B′Aut, ∀j ∈ S, ξj(m) = m

}

Theorem 3.4.2. Let ‖r‖ ≤ BAut. Let S be a set of automorphisms of size |S|. Let
σ ≥ 11BCBAut

√
|S|+ 1 and B′Aut ≥

√
2mdσAut. If Bcom ≥ 2B′Aut, then the protocol

consider K := Q(ζ), where ζ is a complex root of Xd + 1 then the Galois group Gal(K/Q) is the set of all
automorphisms of K that fix Q. This set is exactly

{
ξi : ζ → ζi : i ∈ Z∗2d

}
.
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ΠAuto (A, t, S; s,m) of Figure 3.4 is a Σ′-protocol for relations RAuto and R′Auto with success
probability 1/3 and soundness 1/ |C|.

Proof. The arguments for correctness and zero-knowledge are identical to the ones of Theo-
rem 3.2.1, we will focus on special soundness.
Let (w1,w1,j ,w2,j , c, z, zj)j∈S and

(
w1,w1,j ,w2,j , c′, z′, z′j

)
j∈S

be two accepting transcripts.
We will prove that there exists a message m̄ such that (z− z′, m̄, c− c′) is a valid opening of[

t1
t2

]
and ∀j ∈ S, ξj(m̄) = m̄. For a fixed j ∈ S, let z̄ = z− z′, z̄j = zj − z′j , and c̄ = c− c′.

By taking the difference of the verification equations for both transcripts we obtain:

A1z̄ = t1c̄ (3.1)
ξj (A1) z̄j = ξj (t1) c̄ (3.2)
A2z̄− ξj (A2) z̄j = (t2 − ξj (t2))c̄ (3.3)

If we apply the automorphism ξ−1
j to equation 3.2 we have A1ξ

−1
j (z̄j) = t1ξ

−1
j (c̄), we can

then multiply this equation by c̄ and equation 3.1 by ξ−1
j (c̄) and take the difference to get:

A1
(
ξ−1
j (z̄j)c̄− z̄ξ−1

j (c̄)
)

= 0

Using verification we know that ‖z̄‖ ≤ 2B′Aut and ‖z̄j‖ ≤ 2B′Aut, which implies∥∥∥ξ−1
j (z̄j)c̄− z̄ξ−1

j (c̄)
∥∥∥ ≤ 4BCB′Aut.

By the binding property of our commitment scheme we obtain that ξ−1
j (z̄j)c̄ = zξ−1

j (c̄), or
equivalently z̄jξj(c̄) = ξj(z̄)c̄. We multiply equation 3.3 by ξj(c̄) and use the previous equality
to obtain:

A2z̄ξj(c̄)− ξj (A2) ξj(z̄)c̄ = (t2 − ξj (t2))c̄ξj(c̄) (3.4)

Since c̄ has an inverse in Rq we can define m̄ ∈ Rlq such that c̄t2 = A2z̄ + c̄m̄. By replacing
c̄t2 in equation 3.4 we have:

m̄ = ξj(m̄)

In conclusion we have extracted z̄, m̄, and c̄ such that:[
A1
A2

]
z̄ +

[
0
c̄m̄

]
= c̄

[
t1
t2

]

with ‖z̄‖ ≤ 2B′Aut and m̄ = ξj(m̄). The same argument can be applied for the other
j ∈ S.

3.5 Amortized Zero-Knowledge
In section 3.2 we present a simple protocol to prove knowledge of a preimage for lattice-based
one-way functions. i.e. Given a matrix A and a target vector t = As for a small secret s we
describe a proof of knowledge of a vector s̄ with small coefficients (though larger than those in
s) and a ring element c̄ with very small coefficients satisfying As̄ = c̄t. As long as the ring R
has many elements with small coefficients, such proofs are very efficient, producing soundness
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of 1 − 2−128 with just one iteration. While these proofs are good enough for constructing
practical digital signatures (e.g. [GLP12; DDLL13; BG14]), commitment schemes with proofs
of knowledge [BKLP15; BDOP16], and certain variants of verifiable encryption schemes
[LN17], they prove less than what the honest prover knows. In many applications where
zero-knowledge proofs are used, in particular those that need to take advantage of additive
homomorphisms, the presence of the element c̄ makes these kinds of “approximate” proofs
too weak to be useful. As of today, we do not have any truly practical zero-knowledge proof
systems that give a proof of knowledge for a single preimage.
Previous approaches. The situation is considerably more promising when one considers
amortized proofs, in which one wants to simultaneously prove knowledge of s1, . . . , s` such
that tj = Asj , ∀j ∈ [`]. The amortized proof given in [DPSZ12] using the protocol from
[CD09] showed that a prover only needs to generate λ+ ` vectors to prove the knowledge of
` equations, which gives an overhead of 1 + λ/`. The main downside of this protocol is that
the slack is exponential in `.

The works of [BDLN16] and [CDXY17] gave a novel protocol, still using the Fiat-Shamir
with Aborts with 0/1 challenges idea, in which the overhead was constant (down to 2), while
the slack could be bounded by a small polynomial in the security parameter (To be precise,
only by a super-polynomial factor in the first work). The main downside of these protocols is
that they require the number of equations to be fairly large before amortization kicks in. In
particular one needs to have more than k = 4λ2 equations. Thus scenarios where one does
not have too many (around λ as in [DPSZ12]) equations to prove would not benefit from the
protocol.

The work of [PL17] showed that one could decrease the number of equations in the above
protocol by a factor of log2 α by increasing the running time of the proof by a factor of α. It
also gave a protocol requiring even fewer equations when the functions are over polynomial
rings of dimension d by using the monomial challenge space C = {0}⋃{±Xj

}
j<d presented in

Section 3.2.1. This further reduces the required number of equations by a factor approximately
log d. Nevertheless, one still needs at least a few thousand of them in order to be able to use
amortization in a practical manner.
Our construction. We present a surprisingly simple zero-knowledge proof for proving the
knowledge of ` preimages. Formally we consider a Σ′-protocol for the following relations

RAmo =
{

(T,S) ∈ Rn×`q ×Rm×` | AS = T, s1 (S) ≤ B
}

R′Amo =
{

(T,S) ∈ Rn×`q ×Rm×` | AS = T, ‖S‖max ≤ 2B′
}

We first give a useful lemma for knowledge extraction. In essence this lemma will be used
to show that a prover who can output a verifying output for a challenge c1, . . . , c` has a high
probability of also being able to answer a challenge c′1, c2, . . . , c` in which only c′1 6= c1.

Lemma 3.5.1 ([Dam10]). Let H ∈ {0, 1}l×k for some k, l > 1, such that a fraction ε of the
inputs of H are 1. We say that a row of H is "heavy" if it contains a fraction at least ε/2 of
ones. Then more than half of the ones in H are located in heavy rows.

We describe our proof in Figure 3.5. Our first instantiation will be with the challenge
set C`×k for C = {0, 1}, this solution allows the extractor of the protocol to obtain exact



Ch
ap

te
r3

3.5 Amortized Zero-Knowledge 39

P V

A ∈ Rn×mq ,S ∈ Rm×`,T ∈ Rn×`q A,T
s.t AS = T

Y← Dm×k
σ

W = AY W -

C $← C`×k
C�

Z := SC + Y
Abort if Rej(Z,SC, σ) = 0 Z -

Check:
{
‖Z‖max ≤ B′
AZ = TC + W

Figure 3.5: Amortized proof for ` equations. The ring R can be either Z or Z [X] /Xd + 1,
the challenge set will be respectively {0, 1} or {0}⋃{±Xj

}
j<d

preimages of the ti and requires k ≥ λ + 2. This ensures that communication only grows
linearly in λ regardless of the size of ` (since Z ∈ Zm×λq ).

Theorem 3.5.2. Let C = {0, 1}, and k ≥ λ + 2. Let s1(S) ≤ B, σ ≥ 11B
√
`k, and

B′ ≥
√

2mdσ. The protocol ΠAmo1 (A,T; S) of Figure 3.5 is a Σ′-protocol for relations RAmo

and R′Amo with success probability 1/3 and soundness error less than 2−λ.

Proof.

Correctness: Using lemma 2.3.6 we know that since σ ≥ 11B
√
`k ≥ ‖SC‖ the rejection

step will accept with probability overwhelmingly close to 1/3 and the vector Z output
will be statistically close to Dm×λ

R,σ . By lemma 2.3.5 we have ‖Z‖max ≤
√

2mdσ ≤ B′

with overwhelming probability. It is clear that in the honest protocol the response is
computed in such a way that the verification equation AZ = TC + W stands.

Honest Verifier Zero-Knowledge: We only prove that accepting transcripts do not leak
information. Let S(A,T) be the following PPT algorithm:
• Sample C $← C`×k

• Sample Z← Dm×λ
σ

• Set W = AZ−TC
• Output (W,C,Z)

It is clear that Z verifies with overwhelming probability. We already showed in the
proof of correctness that in the real protocol when no abort occurs the distribution of
Z is within statistical distance 2−100 of Dm×λ

σ . Since W is completely determined by
A,T,Z and C, the distribution of (W,C,Z) output by S is within distance 2−100 of
the distribution of these variables in the actual protocol.
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Soundness: We defer the proof of soundness to lemma 3.5.3, the proof is somewhat more
complicated than for the protocols of section 3.2 as we cannot argue special soundness.

Lemma 3.5.3 (Soundness). For any prover P∗ who succeeds with probability ε > 2−λ (i.e. ≥
2−k+2) over his random tape χ ∈ {0, 1}x and the challenge choice C $← C`×k, there exists
a knowledge extractor E running in expected time poly(λ)/ε who can extract a witness
S′ ∈ Rm×`, such that AS′ = T, and ‖S′‖max ≤ 2B′.

Proof. For i ∈ [`], let ti ∈ Rn be the ith column of T, and cTi ∈ R1×k be the ith row of
C (note that cTi are not the transpose of the columns of C but really its rows). Note that
ticTi ∈ Rn×k and TC = ∑`

i=1 ticTi . For any fixed i, we describe an extractor Ei who can
extract a preimage of ti of norm less than 2B′ in expected time O(1/ε), and the full result
follows by running each extractor (of which there are ` = poly(λ)).
Consider a matrix Hi ∈ {0, 1}2k(`−1)+x×2k whose rows are indexed by the value of

(χ, cT1 , . . . , cTi−1, cTi+1, . . . , cT` )

and whose columns are indexed by the value of cTi . An entry of Hi will be 1 if P∗ succeeds
for the corresponding randomness and challenge (i.e. produces an accepting Z). We will say
that a row of Hi is "heavy" if it contains a fraction of at least ε/2 ones, i.e. if it contains
more than 2k ∗ ε/2 > 2 ones. The extractor Ei will proceed as follow:

1. Run P∗ on random (χ′,C′) until it succeeds, and obtains Z′ that verifies. This takes
expected time 1/ε.

2. Run P∗ on random (χ′′,C′′) where χ′′ = χ′, ∀j 6= i, c′′Tj = c′Tj , and c′′Ti is freshly
sampled. If after λ/ε attempts P∗ has not output a valid response, Z′′ abort.

The extractor Ei runs in expected time poly(λ)/ε, and aborts with probability less than
1/2 + 2−λ. The running time is clear from the definition of Ei. To compute the abort
probability note that in step 2 all the challenges (χ′′,C′′) considered are in the same row of
Hi as (χ′,C′), if we call Abort the event where Ei aborts and Heavy the event that (χ′,C′)
is in a heavy row of Hi, we have:

Pr [Abort ] = Pr
[
Abort Heavy

]
Pr [Heavy ] + Pr

[
Abort ¬Heavy

]
Pr [¬Heavy ]

According to Lemma 3.5.1, Pr [¬Heavy ] < 1/2. On the other hand if the row is heavy
then for a random sample, different from (χ′,C′), in this row P∗ has probability at least
ε/2 − 2−k > ε/4 of outputting a valid answer (the probability is ε/2 − 2−k and not ε/2
because we want a reply for a challenge different from (χ′,C′)). Which entails that the
probability that P∗ does not succeed on any of the λ/ε challenges C′′ is:

Pr
[
Abort Heavy

]
< (1− ε/4)λε < e−4λ < 2−λ

From this we get:
Pr [Abort ] < 1/2 + 2−λ
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By running Ei O(λ) times we obtain an extractor that runs in expected time poly(λ)/ε and
outputs two valid pairs C′,Z′ and C′′,Z′′ such that ∀j 6= i, c′Tj = c′′Tj , and c′Ti 6= c′′Ti .
Since both transcripts verify we know:

AZ′ = TC′ + W =
n∑
j=1

tjc′Tj + W

AZ′′ = TC′′ + W =
n∑
j=1

tjc′′Tj + W

Which implies:

A(Z′ − Z′′) =
∑̀
j=1

tj(c′Tj − c′′Tj ) = ti(c′Ti − c′′Ti )

If we consider an index l ∈ [`] such that c′Ti [l] 6= c′′Ti [l], and assume w.l.o.g that c′Ti [l]−c′′Ti [l] =
1, then by only considering the lth column of the previous equation we obtain:

A(z′l − z′′l ) = ti

where ‖z′l − z′′l ‖ ≤ 2B′.

Our second instantiation uses R = Z [X] /Xd+1 and C = {0}⋃{±Xj
}
j<d, in this protocol

the extractor will only obtain preimages of 2ti but the number of columns in the response
matrix Z can be reduced by a factor of log(2d+ 1) as the soundness now only requires that
k log(2d+ 1) ≥ λ+ 2. It is worth noting that in this protocol the values of n and m would
typically be chosen to be around d times smaller than in the instantiation with R = Z, that
is because A will be a matrix of polynomials of degree d. In this context the language RAmo

is unchanged but the language R′Amo is somewhat larger.

R′Amo =
{

(T,S) ∈ Rn×`q ×Rm×` | AS = 2T, ‖S‖max ≤ 2dB′
}

Theorem 3.5.4. Let R = Z [X] /Xd+ 1, C = {0}⋃{±Xj
}
j<d, and k ≥ (λ+ 2)/ log(2d+ 1).

Let s1(S) ≤ B, σ ≥ 11B
√
`k, and B′ ≥

√
2mdσ. The protocol ΠAmo2 (A,T; S) of Figure 3.5

is a Σ′-protocol for relations RAmo and R′Amo with success probability 1/3 and soundness
error less than 2−λ.

Proof. The proofs for correctness and zero-knowledge are nearly identical to the ones of
Theorem 3.5.2. We will prove soundness in Lemma 3.5.5.

Lemma 3.5.5 (Soundness). For any prover P∗ who succeeds with probability ε > 2−λ(≥
2−k log(2d+1)+2) over his random tape χ ∈ {0, 1}x and the challenge choice C← C`×k there
exists a knowledge extractor E who can extract a witness S′ ∈ Rm×`, such that AS′ = 2T,
and S′max ≤ 2dB, in expected time poly(λ)/ε.

Proof. The first part of the proof (obtaining C′,Z′ and C′′,Z′′) is identical to the one
of Lemma 3.5.3 except for the fact that the matrix Hi has different dimensions. Let
δ = log(2d + 1). Since for each j ∈ [`], cTj is sampled from a set of size 2kδ, we have
Hi ∈ {0, 1}2kδ(`−1)+x×2kδ . The heavy rows of Hi will contain 2kδε/2 > 2 ones, and the
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extractor can proceed as in the proof of Lemma 3.5.3.
Assume that Ei has extracted C′,Z” and C′′,Z′′ such that ∀j 6= i, c′Tj = c′′Tj , and c′Ti 6= c′′Ti .
As previously we have:

A(Z′ − Z′′) =
∑̀
j=1

tj(c′Tj − c′′Tj ) = ti(c′Ti − c′′Ti )

If we consider an index l ∈ [`] such that c′Ti [l] 6= c′′Ti [l], since C = {0}⋃{±Xj
}

0≤j≤d−1, we
have according to Lemma 2.2.1 that there exists a g ∈ R such that 2−1(c′Ti [l]− c′′Ti [l])g = 1
and ‖g‖ 81 ≤ d. Hence:

A(z′l − z′′l )g = 2ti · 2−1(c′Ti [l]− c′′Ti [l])g = 2ti

With ‖(z′l − z′′l )g‖ ≤ 2dB′.
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Chapter 4
Group Signature
In this chapter we will show how to use the proofs of knowledge from Chapter 3, specifically
the proof of subset membership, to construct efficient group signatures.
For ease of comprehension we first describe a group signature without the traceability property
and then show how to use the verifiable encryption of [LN17] to obtain a group signature
with full traceability. We give formal proofs for the anonymity and traceability of our scheme,
and derive parameters as well as the corresponding signature size.
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4.1 Introduction

4.1.1 Our Contribution

One application of our new proof system presented in section 3.4 is towards constructing more
practical lattice-based privacy protocols. In this chapter we will use the specific example of
group signatures. A group signature scheme consists of three parties – the group manager,
the opener, and group members. The group manager has a public key and generates secret
keys for all the group members. Using their secret keys, the group members can sign messages
in a way that anyone can verify that a message was signed by a member of the group, but the
identity of the signer remains secret (one should not even be able to tell that two messages
were signed by the same member) to everyone except for the opener. The opener should be
able to recover the identity of any signer.

A common way of constructing group signatures is via the sign-and-encrypt approach. The
group manager’s public key is the public key to some signature scheme, and the secret key of
a user with identity i is a signature of i. To sign a message, the group member produces a
non-interactive ZKPoK that he has the manager’s signature of some identity i.1 Furthermore,
the group member encrypts his identity i using the opener’s public key, and gives another
ZKPoK of the fact that the encryption is of the same identity as was used in the proof.

To create a practical scheme using the above approach, one typically needs to have a very
efficient standard model signature scheme that is used by the group manager to sign user
identities.2 While there exist efficient standard model signature schemes based on classical
assumptions (e.g. [CL03]) which can be used for constructions of fairly compact group
signatures, the non-existence of such signatures based on lattice assumptions is the main
culprit in the fact that the only “efficiency” lattice-based group signatures have is asymptotic.

Lattice-based signature schemes in the standard model are built based on Boyen’s framework
[Boy10]. There have been efficiency improvements to this scheme (e.g. [DM15; KY16]) that
used polynomial lattices, but they still appear to be unsuitable for producing practical (group)
signatures. In fact, the only group signature that we’re aware of that actually proposes
concrete parameters uses different techniques, and the signatures in it are on the order of
50MB [LLNW16].

While lattice-based signatures in the standard model are inefficient, there is a much more
efficient selectively-secure lattice-based digital signature scheme that is implicit from the
works of [ABB10; Boy10]. A selectively-secure signature scheme is one in which the adversary
declares the message that he will forge on prior to seeing the public key. A scheme like this
can be converted to a regular signature scheme with a reduction loss of 1/|S|, where S is the
message space simply by guessing the message that the Adversary will forge on. Thus for
small message spaces, this becomes a signature scheme with a meaningful reduction from
hard lattice problems.

There have been several works that utilized the above-mentioned selectively secure scheme
for group signatures and related applications [NZZ15; BCN17]. In those papers, proving
that the identity i is in a particular set resulted in either a significant increase in the proof

1The ZKPoK is a Fiat-Shamir transformation of a Σ-protocol, and so the message that the group member
signs is simply added into the random oracle input.

2The reason that signature schemes using cryptographic hash functions (and proved secure in the random
oracle model) are not suitable is that their lack of algebraic structure makes it very difficult to construct
efficient proofs of knowledge that prove something about the identity i when it is an input to the random
oracle.
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size, restrictions on the challenge space, and/or a very noticeable loss in the tightness of the
proof. For example, in [NZZ15], the identity space was all polynomials with only a constant
coefficient (i.e. of degree zero). But to prove this fact, the size of the proof of knowledge
significantly increased due to the fact that one needed to map integers to a space with small
coefficients. In [BCN17], which used a similar high-level idea with polynomial rings, the
message space of the selectively-secure signature scheme was a polynomial in a subfield of
Rq. The degree of the subfield could not be too small because the soundness error of the
ZKPoK inversely depends on the degree of the subfield, and the degree cannot be too large
because it would make the security reduction meaningless. Further complicating matters is
that the messages have to have small coefficients, yet the proof of knowledge only proves that
the coefficients are in a significantly larger space causing an additional loss in the reduction.

In the present work we show how our new proofs for stability under automorphisms gives
rise to a fairly straight-forward group signature scheme. In particular, the set of identities
will be exactly those elements in Rq that are preserved under some set of automorphisms.
The size of these sets can be small (as small as q), and so we will only lose a factor of
the group size in the reduction. The idea for the ZKPoK will then be to do the proof of
knowledge with the commitments of i rather than with i (thus not revealing the identity)
and prove that our commitments are to elements in the appropriate set of identities. The
only other property that we use from our commitment scheme is that if i · s = u, then

Com(i; r) · s =
[

0
u

]
+ Com(0; r′). The encryption to the opener can be done using the

main idea from the verifiable encryption scheme from [LN17]. A point of note is that the
selectively-secure signature scheme requires that the messages come from a set S such that
the difference of any two elements from the set is invertible. This is compatible with our
definition of sets because they turn out to be subfields of the original ring Rq.
Instantiating our scheme with concrete parameters gives group signatures of around 580

KB, which is almost a 2 order of magnitude reduction from [LLNW16]. Our main technique
should also applicable to a variety of other privacy applications that require similar proofs
of knowledge. For example, one should be able to apply these techniques in a very similar
manner to the constructions of anonymous credentials as in [BCN17].

4.1.2 Overview of our Construction

We will use a particular instantiation of the commitment scheme from Section 2.4.1 where
the common reference string public key is[

aT1
aT2

]
=
[
1 a1 a2
0 1 a3

]
∈ R2×3

q (4.1)

The master public key of the group manager will be a public key for the selectively secure
signature scheme from [ABB10] adapted to polynomial rings:

[ aT | bT ], u = aT s′1 + bT s′2 + aT2 s′3 (4.2)

where aT = [a a′] for a uniformly-random a, a′ ∈ Rq and b = [b1 b2] = aT
[
r1 r2
e1 e2

]
where

ri, ei are polynomials in R with small coefficients such that (a, b1, b2) are indistinguishable
from random based on the hardness of the R-LWE problem. The group member identities
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are polynomials i ∈ S ⊆ Rq where the set S is preserved under some set of automorphisms
of Rq. The secret key of a user with identity i consists of vectors s1, s2, s3 that are generated

by the group manager using his secret trapdoor key R =
[
r1 r2
e1 e2

]
. The group manager first

picks a short vector s3 from a particular distribution, and then “pre-image samples” short
vectors s1, s2 such that

[ aT | bT + i · [ 1 √q] ] ·
[
s1
s2

]
= u+ aT2 s3. (4.3)

The matrix [ 1 √q ]3 is the “gadget matrix” defined in Section 2.3.5 that allows for efficient
pre-image sampling of short vectors s1, s2 as in Equation (4.3) for all i 6= 0. When i = 0,
the group manager can output s′1, s′2,−s′3 as the key.4 The purpose of the aT2 s3 part of
the construction is only necessary for the proof – it’s unclear if it truly serves any security
purpose. In the security proof, because b is only computationally-indistinguishable from
random (rather than statistically), one needs a “double trap-door” for switching between
games and a2 serves that purpose. Normally, this would decrease the efficiency of the scheme
because one would need to include the extra term a2 · s3 in the security proof. But in our
case, we use the a2 that appears as the common reference string in our commitment scheme,
and this term anyway appears in our proof below. The only downside is that in practice one
needs to do the extra sampling of s3 and multiplication by a2 in the key generation, and that
the size of the solution to the Ring-SIS problem in the security proof is a small (virtually
inconsequential) additive factor larger.

Signing. The high level idea for signing is for the user with identity i to prove knowledge of
s1, s2, s3 that satisfies Equation (4.3). If the proof of knowledge is a Σ-protocol, then it can
be converted into a non-interactive proof using the Fiat-Shamir heuristic, which turns the
Σ-protocol into a signature scheme if one inputs the message into the random oracle. The
main difficulty lies in doing this proof without revealing i.

To hide i in our proof, the signer will commit to i and i√q using the commitment scheme
from Section 2.4.1 and publish his commitments as part of the signature. The main observation
is that

[[
0

aT

]
|
[

0
bT

]
+ [Com(i; r) Com(i√q; r′)]

]
·
[
s1
s2

]
=
[

0
u+ aT2 s3

]
+
[
aT1
aT2

]
· r̃. (4.4)

The signer will give an approximate ZKPoK of the short randomnesses r, r′ that open the
commitments to i, i√q and also that i ∈ S.5 In other words, he’ll prove knowledge of

3We write √q instead of d√qc for readability.
4For i 6= 0, the group manager is able to output many possible valid s1, s2, s3 using his trapdoor and the
gadget matrix. For i = 0, however, the gadget matrix disappears and so the group manager is only able
to return one s′1, s′2,−s3 that he “planted” when creating u in Equation (4.2). For the security proof, it
will be necessary that the distribution for all i is the same, and so for this reason, we make the pre-image
sampling procedure for all i deterministic. In other words, the randomness used in the sampling will be
derived by the group manager using a keyed PRF whose input depends on i.

5Due to the slack in our zero-knowledge protocols, the proofs will be for larger values of r, r′ than those used
in the commitments. But for simplicity of exposition in the introduction of this paper, we will use the
same notation.
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[
aT1
aT2

]
· [r r′] +

[
0 0
ci ci

√
q

]
= c ·

[
t
(1)
1 t

(2)
1

t
(1)
2 t

(2)
2

]
. (4.5)

In parallel, the signer will also prove that

[
aT | bT + [t(1)

2 t
(2)
2 ]
]
·
[
s1
s2

]
= cu+ aT2 r′′.6 (4.6)

Multiplying Equation (4.6) by c and combining with Equation (4.5) produces the equation

[
aT | cbT + aT2 · [r r′] + c · [i i√q]

]
·
[
cs1
s2

]
= c2u+ caT2 r′′. (4.7)

We can then show that if an Adversary can produce polynomial vectors r, r′, s1, s2, r′′, c
with small coefficients that satisfy the above equation, then he is able to solve the Ring-SIS
problem. The proof is very similar to the proof of selective security for the signature scheme
of [ABB10] . Intuitively, suppose that the Adversary in the impersonation game produces a
solution (i.e. the extracted values from the PoK) for Equation (4.7) for i = 0. Then, using
the fact that bT = aTR and u = aT s′1 + bT s′2 + aT2 s′3 and writing R′ = [r r′], Equation (4.7)
can be rewritten as

aT
(
cs1 + cRs2 − c2s′1 − c2Rs′2

)
+ aT2

(
R′s2 − cr′′ − c2s′3

)
= 0, (4.8)

which is a solution to the Ring-SIS problem because the coefficients of all the terms in
parentheses are small relative to q.
Of course, the Adversary is not guaranteed to impersonate on identity i = 0, but may

choose an arbitrary i′ ∈ S. To handle this, we use the standard “puncturing” technique.
In the security proof we would not choose bT = aTR as part of the public key, but we
rather pick a uniformly-random “guess” i′ ∈ S, and set bT = aTR − [i′ i′√q] as part of the
public key. It’s not hard to see that if the Adversary produces a solution for Equation (4.7)
with i = i′, then one again obtains the same Ring-SIS solution as in Equation (4.8). If the
Adversary cannot tell how b was constructed, even after querying for preimages s1, s2, s3,
then there is exactly a 1/|S| chance that i = i′. Therefore there is a 1/|S| loss in the tightness
of the security reduction. We give a first set of parameters which does not take this loss in
tightness into account, there are multiple reason we consider such parameters. First the loss
in tightness does not correspond to a practical attack, if we consider how to concretely attack
the scheme it is not clear what advantage this reduction from a selective signature would
give. The second reason being that the best cryptanalytic algorithms (c.f Section 2.3.4) run
in exponential space which would arguably not be affected by a loss in tightness, for our
parameters polynomial space algorithms would guarantee much more than 128 bits of security
regardless of any complexity leveraging. Finally we include a second set of parameters in
Table 4.2 (and the corresponding signature size in Table 4.1) which obtain more than 128
bits of post-quantum security even when accounting for the loss in tightness.

For the purposes of allowing opening, the signer will also create a Ring-LWE encryption of
the three polynomials comprising the vector r used in the commitment of i in Equation (4.5)

6Notice that we combined the a2 · s3 term with a2 · r̃ term to obtain a2 · r′′. This was the reason that we
used exactly a2 from the commitment scheme in the key generation in Equation (4.3).
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using the one-shot verifiable encryption / proof of plaintext knowledge from [LN17] combined
with the proofs of knowledge for Equation (4.5). The reason that we encrypt r rather than
i is that the coefficients in r are small, whereas i comes from a set that is stable under
some automorphism, and such sets contain elements with large coefficients. Once the opener
decrypted the r, he knows from Equation (4.5) that aT1 r = c · t(1)

1 , and so he can recover c.
Then using this c, he can recover i from the equality aT2 r + ci = c · t(1)

2 .
Reducing the Commitment Size. To reduce the size of the signature, we can slightly
modify the commitment so that it works over two different moduli, one for the top and
another for the bottom part (call them q1 and q2 respectively). In our group signature scheme,
the value of q2 needs to be large due to the fact that the Ring-SIS solution in Equation (4.8)
is fairly large itself. The value of q1, on the other hand, only needs to be set so that the
commitments to i and i

√
q in Equation (4.5) are binding and hiding. Since a smaller q1

will result in smaller sizes of t(1)
1 , t

(2)
1 in the commitment, it is sensible to set it as small as

possible. We show that our proofs of automorphism stability still work if the two moduli are
different.

4.2 Our Group Signature
4.2.1 Commitment Scheme
We will use the commitment scheme of Section 2.4.1 for messages in Rq2 . For the purpose of
this scheme it will be advantageous to use two different moduli for the “top” and “bottom”
part of the commitment. The security of our group signature will rely on the hardness of
finding collisions on the bottom part of the commitment matrix (while the binding property of
the commitment scheme only needs the top part to be collision resistant), this is why taking
a larger modulo q2 for the bottom part makes sense. While we prove that the hiding property
of the scheme when taking two moduli can be reduced to M-LWE if the randomness is taken
from a skewed distribution, here we will take r← Sk1 where S1 = U ({x ∈ R : ‖x‖∞ = 1}).
As argued in Section 2.4.1 the fact that the distribution of the randomness is skewed in
the commitment with different moduli is mostly an artefact of the reduction. Moreover we
chose to take a small uniform distribution rather than Gaussian for simplicity, for a bounded
number of samples the cryptanalysis of Section 2.3.4 still represents the best known attacks
for such a distribution.

• CSetup(1λ) outputs a commitment matrix A :=
[
aT1
aT2

]
with a1 ∈ R3

q1 and a2 ∈ R3
q2 .

• Com(m ∈ Rq2) outputs the commitment t := Ar +
[

0
m

]
, and randomness r← S3

1 .

• Open(t, r, c) checks that the commitment is valid and outputs m̃ := t2− c−1aT2 r ∈ Rq2 .

We have fixed the dimensions of A to 2× 3 this entails that the scheme relies on the R-LWE
problem for hiding and R-SIS problem for binding.
ZKPoKs with different moduli. The proofs of knowledge presented in Chapter 3 only
consider one modulus q, they can however be seamlessly adapted to two moduli. We will
use the proof for linear relations of Section 3.2.2 to prove that two commitments t1 and
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Full
signature Commitment Ciphertext Proof Secret key

Without
Complexity
Leveraging

581 KB 113 KB 123 KB 345 KB 146 KB

With
Complexity
Leveraging

1173 KB 204 KB 254 KB 715 KB 292 KB

Table 4.1: Size of a signature

t2 open to messages m1,m2 ∈ Rq2 such that m2 = √qm1, and the proof of automorphism
stability to prove that a commitment t opens to a message m ∈ Zq2 . We do not recall these
ZKPoKs as they are identical to the ones of Section 3.2, we however formally describe the
proof output by the signature of a group member in Section 4.2.5. This proof will contain
the two aforementioned proofs as well as a proof of verifiable encryption and will be used as
a signature using the Fiat-Shamir transform.

4.2.2 Definitions
We first recall the definitions and security model of group signatures. A group signature
scheme consists of a tuple of four algorithms (GSetup,Sign,Verify,Open):

• GSetup(1λ, 1N ):Takes as input the security parameter λ as well as the maximum
number of identities N . Outputs the group public key gpk, the group manager secret
key gmsk, and the secret keys of each identity sk1, . . . , skN .

• Sign(ski,M) : Takes as input a user secret key ski and a messageM ∈ {0, 1}∗. Outputs
a signature z of M .

• Verify(gpk,M, z) : Takes as input the group public key gpk, a message M , and a
signature z. Outputs 1 if z is a valid signature of M and 0 otherwise.

• Open(gmsk,M, z) : Takes as input the group manager secret key gmsk, a message M ,
and a valid signature z of M . Outputs an identity id ∈ [N ] or ⊥.

For correctness, we want that for any (gpk, gmsk, sk1, . . . , skn)← GSetup(1λ), any j ∈ [N ],
any M ∈ {0, 1}∗, and any z ← Sign(gpk, skj ,M), with overwhelming probability:

Verify(gpk,M, z) = 1, and Open(gpk, gmsk,M, z) = j

The security of the group signature is captured by two notions: anonymity and traceability
[BMW03]. For anonymity we consider a PPT adversary A who has access to all the signing
keys sk1, . . . , skN but not the manager key gmsk. A chooses a message M and two identities
i0 and i1, his goal is to distinguish between signatures of M under these identities. There are
multiple flavors of anonymity depending on whether A can access an opening oracle (full
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anonymity) or not (weak anonymity), intuitively full anonymity will be achieved when the
PKE used in the opening is CCA-secure while weak anonymity corresponds to a CPA-secure
encryption scheme. In this paper we present a weakly anonymous group signature. The
verifiable encryption scheme we use [LN17] can achieve CCA security but this comes at a
cost in efficiency, moreover it is likely that in real implementations access to the tracing
functionality of the scheme will be restricted, in which case weak anonymity seems to be an
appropriate notion.

Expanon−b(A, λ,N) :
(gpk, gmsk, sk1, . . . , skN )← GSetup(1λ, 1N )
(i0, i1,M, St)← A(gpk, sk1, . . . , skN )
z∗ ← Sign(gpk, skib ,M∗)
b′ ← A(z∗, St) Return b’

Figure 4.1: Experiment for weak anonymity

Definition 4.2.1 (Weak anonymity). For a group signature (GSetup,Sign,Verify,Open),
we define weak anonymity with adversary A via the experiment of Figure 4.1. The advantage
of A is:

Advanon(A, λ,N) := |Pr
[

Expanon−1(A, λ,N) = 1
]
− Pr

[
Expanon−0(A, λ,N) = 1

]
|

In full-traceability the adversary A has access to the signing keys (ski)i∈S for any arbitrary
set S ⊂ [N ] (possible S = [N ]) as well as the manager secret key gmsk, his goal is to produce
a valid signature z of some message M (i.e. which passes verification) such that either
Open(gpk, gmsk,M, z) = j /∈ S or Open(gpk, gmsk,M, z) = ⊥. Full-traceability captures
the notion that all signatures, even when computed by a collusion of users and the group
manager, should trace to a member of the forging coalition.

Definition 4.2.2 (Weak anonymity). For a group signature (GSetup,Sign,Verify,Open),
we define full traceability with adversary A via the experiment of Figure 4.2. The advantage
of A is:

Advtrace(A, λ,N) := Pr
[

Exptrace(A, λ,N) = 1
]

4.2.3 The Scheme

The group signature we present in this section will be for fixed parameters as per Table 4.2,
for which the signatures will be of size 581 KB, as described in appendix 4.3. In particular we
consider the power-of-two cyclotomic ring R = Z [X] /X4096 + 1, and identity set [N ] = Zq2 .
This entails that user identities are exactly the elements x ∈ Rq2 that are left invariant under
the automorphisms ξ−1 : X → X−1 = −Xd−1 and ξ5 : X → X5. We also use commitments
that rely on R-LWE and R-SIS (which can be seen as specific instances of the module variant
of the corresponding problems for modules of dimension 1). Using other cyclotomic rings
can result in smaller signatures (especially since for some of them only one automorphism is
needed to prove that elements belong to Zq2), and using higher dimension commitments that
rely on the module variants of LWE and SIS would allow for more fine-tuned parameters.
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Exptrace−b(A, λ,N) :
S ← Empty List
(gpk, gmsk, sk1, . . . , skN )← GSetup(1λ, 1N )
(M∗, z∗)← AOSign,OCorrupt(gpk, gmsk)
If Verify(gpk,M∗, z∗) = 0 return 0
If Open(gmsk,M∗, z∗) = ⊥ return 1
If Open(gmsk,M∗, z∗) = j∗ ∈ [N ]
and j∗ /∈ C
and (j∗,M∗) /∈ S

Then return 1
Else return 0

OSign(i,M) :
S ← S ∪ {(i,M)}
Return Sign(ski,M)

OCorrupt(i) :
C ← C ∪ i
Return ski

Figure 4.2: Experiment for full traceability

We have chosen the parameters in this section as such for easier presentation and because
they allow for simpler implementations.
We will first present in this section a group signature scheme without opening, and show in
section 4.2.4 how to add an opening.
Let δ =

⌈√
q2
⌉
, and gT be the gadget matrix

[
1 δ

]
∈ R1×2

q2 , we will consider the set of
identities Id = Zq2 .
GSetup(1λ):

• Sample A :=
[
aT1
aT2

]
← CSetup(1λ), with a1 ∈ R3

q1 , and a2 ∈ R3
q2 .

• Sample a $← R2
q2 .

• Sample R $← S2×2
1 and set bT = aTR ∈ R1×2

q2 .

• Sample (s01 , s02 , s03)← DR,s ×DR,s ×DR,r

• Set u :=
[
aT | bT | aT2

] s01

s02

s03


• Set gpk := (A,a,b, u)

• For i ∈ Z∗q2 , sample si3 ← D3
R,r
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Parameter Notation Value Value with
complexity leveraging

Ring dimension d 4096 8192
Commitment modulus (“Top”) q1 ∼ 230 ∼ 220

Commitment modulus (“Bottom”) q2 ∼ 280 ∼ 280

Commitment row dimension (“Top”) n 1 1
Commitment message dimension l 1 1

Verifiable encryption plaintext module p ∼ 227 ∼ 227

Verifiable encryption ciphertext module Q ∼ 260 ∼ 262

Bound on the challenge space BC = κ 26 24
Standard deviation of the GPV trapdoor s ∼ 249 ∼ 250

Standard deviation of the NTRU trapdoor r ∼ 242 ∼ 242

Table 4.2: Concrete parameters for our Group signature

• For i ∈ Z∗q2 , sample (si1 , si2) ∈ R4 s.t
[
aT | bT + igT

] [si1
si2

]
= u − aT2 si3 , and

(si1 , si2)← D4
R,s

• For i ∈ Zq2 , set ski := si := (si1 , si2 , si3)

Intuitively user i could sign a message M ∈ {0, 1}∗ by doing a non-interactive proof that he
knows a small s ∈ R6 such that

[
aT | bT + igT | aT2

]
s = u in which the message is part

of the hash that generates the challenge. However doing so would reveal his identity, indeed a
verifier would need to know the matrix

[
aT | bT + igT | aT2

]
to verify the signature and

since a, a2, b, and g are public he could recover the identity of the signer. As explained in
section 4.1.2 we circumvent this issue by committing to the part of the matrix that depends
on i (that is igT ) and proving that the previous equation still stands but for a commitment
of u rather than u itself.
Sign(M, si):

• Set t :=
[
t1
t2

]
= Com(i, r) ∈ Rq1 ×Rq2 , where r← S3

1 .

• Set t′ :=
[
t′1
t′2

]
= Com(iδ, r′), where r′ ← S3

1 .

• Set vT :=
[
aT | bT +

[
t2 t′2

]
| aT2

]
∈ R1×7

q2 , and s′ =

 si1
si2

si3 −
[
r r′

]
si2

R7,

observe that vT s′ = u

• Compute Π1 = Πlin (t, t′, δ; r, r′, i, iδ)

• Compute Π2 = Πauto (t, (ξ−1, ξ5); r, i)
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• Compute Π3 = ΠOWF (v; s′)

• Output the signature z = (t, t′,Π1,Π2,Π3)

The proofs Π1,2,3 will use the Fiat-Shamir heuristic to transform interactive proofs into
non-interactive proofs in the random oracle model, we will also include the message M in the
random oracle call to obtain a signature. For unforgeability we will need all of these proofs to
be executed with the same challenge, i.e. the signer will run all three proofs in parallel and
compute a common challenge for all three as a hash of all relevant information. We describe
the full non-interactive proof, including the opening, in more details in Section 4.2.5.
To verify a signature one simply verifies the proofs Π1,2,3.
Verify(t, t′,Π1,Π2,Π3):

• Let
[
t1
t2

]
:= t

• Let
[
t′1
t′2

]
:= t′

• Let vT =
[
aT | bT +

[
t2 t′2

]
| aT2

]
• Verify Π1 using t, t′, δ

• Verify Π2 using t, ξ−1, ξ5

• Verify Π3 using v

4.2.4 Adding the Opening
To be able to open the group signature scheme of Section 4.2.3 we will add a verifiable
encryption to the signature. In essence we want the signer to encrypt his identity, using
a public key associated to a decryption key that the group manager possesses, and prove
that this encryption is indeed of his identity. To do so we will encrypt the randomness r of
t = Com(id; r) and prove that aT1 r = t1, note that encrypting id directly would result in a
smaller ciphertext but a very large proof since id itself is not small. We use the verifiable
encryption of [LN17] which consists in a R-LWE encryption and a proof of knowledge. We
let p be the modulus of the plaintext space of our encryption scheme (which we only need
large enough to accommodate the decryption slack, see [LN17]) and Q the modulus of the
ciphertext.
PKESetup(1λ):

• Sample a $← RQ
• Sample s, e← S3

1

• Set b := as + e ∈ R3
Q

• Output (s, (a,b))

Encryption will consist in creating a standard R-LWE encryption and a proof that the
message r encrypted is the randomness in t = Com(id; r).
Enc((a,b), r, t1):
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• Sample r, e1 ← S1

• Sample e2 ← S3
1

• Set u := p(ar + e1)

• Set v := p(br + e2) + m

• Set M1 :=


pa p 0 0 0 0 0 0
pb1 0 p 0 0 1 0 0
pb2 0 0 p 0 0 1 0
pb3 0 0 0 p 0 0 1

 ∈ R4×8
Q

• Set M2 :=
[
01×5 aT1

]
∈ R1×8

q1

• Set M :=
[
M1
M2

]

• Set x :=


r
e1
e2
r

 ∈ R8

• Set y :=

uv
t1

 ∈ R4
Q ×Rq1

• Set Π := ΠOWF (M,y; x)

• Output (u,v,Π)

To verify an encryption one simply verifies the proof Π.
Verify((u,v,Π), t1) :

• Set M1 :=


pa p 0 0 0 0 0 0
pb1 0 p 0 0 1 0 0
pb2 0 0 p 0 0 1 0
pb3 0 0 0 p 0 0 1

 ∈ R4×8
Q

• Set M2 :=
[
01×5 aT1

]
∈ R1×8

q1

• Set M :=
[
M1
M2

]

• Set y :=

uv
t1

 ∈ R4
Q ×Rq1

• Output VerifyOWF (Π,M,y)
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Decryption is not as simple as standard R-LWE decryption. By completeness we know that
honestly generated ciphertexts can be decrypted but soundness should guarantee that as long
as the proof verifies one should be able to decrypt. This is not clear since the proof Π does
not imply that (u,v) is a valid ciphertext but that there exists some c̄ ∈ C̄ such that (c̄u, c̄v)
is a valid ciphertext and we do not know which one. In [LN17] the authors show that in fact
trying random c̄ is a valid approach and will take as many attempts as the number of oracle
calls that were needed to generate the proof (in particular only one attempt is necessary if
the prover is honest). This will be sufficient for our scheme.
Dec((u,v,Π), s) :

• If Verify((u,v,Π), t1) = 1, Let c be the challenge used in Π

• Loop:

• c′ ← C

• c̄ := c− c′

• r̄ := (v− us)c̄ mod Q

• If ‖r̄‖∞ ≤ Q/8BC then:

• r̄ := r̄ mod q

• return (r̄, c̄)

The following lemma shows that if decryption succeeds then the decrypted value (r̄, c̄) will
essentially be a preimage for the zero-knowledge proof.

Lemma 4.2.3 ([LN17] Lemma 3.1). Let sk = s, and e be the error in b = as + e. If for
given

(u,v, t1) ∈ R4
Q ×Rq1

there exists r̄M := (r̄, ē1, ē2, r̄ ∈ R8, and c̄ ∈ R such that :

MrB =

u mod Q
v mod Q
t1 mod q1


and

‖p(ūe + ē2 − ēs) + r̄‖∞ ≤ Q/4BC (4.9)
Then for (r̄′, c̄′) = Dec(u,v,Π, t1), we have:

r̄
c̄

mod p = r̄′
c̄′

mod p

Once we have verifiable encryption adding traceability to our group signature is straight-
forward. During key generation we will create (pk, sk) ← PKESetup(1λ), add pk to the
group public key and set gmsk = sk. When signing a user will compute an encryption v
of his randomness r, which is such that aT1 r = t1 mod q1, and add v to the signature. For
verification one only needs to check the extra proof Π. We consider how to open a signature,
this is not completely straightforward because soundness only guarantees that a verifying
signature will open to c̄r for some c̄ ∈ C̄.
Open(msk, z) :
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• Parse z as (t, t′,Π1,Π2,Π3, v)

• Let (r̄, c̄) =Dec(msk, t1, z)

• Set id := c̄−1(t2 − aT2 r̄) ∈ Rq2

• If id ∈ Zq2 then output id, otherwise output ⊥
Note that if decryption succeeds then the proof Π verifies, which entails that there exists

r̄′, c̄′ such that aT1 r̄′ = c̄′t1 mod q1 and by lemma 4.2.3 we know that:
r̄
c̄

mod p = r̄′
c̄′

mod p

if we multiply this equation by c̄ and c̄′ we have that r̄′c̄ = r̄c̄′ mod p, and since both sides
are smaller than p this equation will be true over the integer. From which we get:

aT1 r̄ = c̄t1 mod q1

which entails that if t = (t1, t2) is a well formed commitment the identity returned by the
Open algorithm will be its message.

4.2.5 The Full Non-Interactive Proof
We give the full non-interactive zero-knowledge proof that the signer will output. We only
consider the parameter choice made in section 4.3. The user i ∈ Zq2 will use the following
elements for his proof:

t :=
[
t1
t2

]
= Ar +

[
0
i

]
∈ Rq1 ×Rq2

t′ :=
[
t′1
t′2

]
= Ar′ +

[
0
iδ

]
∈ Rq1 ×Rq2

vT =
[
aT | bT +

[
t2 t′2

]
| aT2

]
∈ R1×7

q2

s′ =

 si1
si2

si3 −
[
r r′

]
si2

 ∈ R7

We first note that since aT2 =
[
0 1 a′2

]
, we can ignore the 5th coefficient of vT (corresponding

to 0) in vT s′ = u and thus consider vT ∈ R1×6
q2 and s′ ∈ R6 such that vT s′ = u. The gain in

proof size obtained by discarding one element of this equation may seems negligible at first
but it is in fact rather important because the last three coefficients of s′ will be much larger
than the other four. We also recall the matrices needed for the proof of verifiable encryption:

M1 =


pa p 0 0 0 0 0 0
pb1 0 p 0 0 1 0 0
pb2 0 0 p 0 0 1 0
pb3 0 0 0 p 0 0 1

 ∈ R4×8
Q

M2 =
[
01×5 aT1

]
∈ R1×8

q1

M =
[
M1
M2

]
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Which are such that :

MrM =


u mod Q
v1 mod Q
v2 mod Q
v3 mod Q
t1 mod q1

 , for rM =


r
e1
e2
r


Rather than just computing all the proofs simultaneously one can optimize the proof. Remark
that since the first reply in both Πlin and Πaut is the same z = rc+ y, we will only to need
to send it once. An important point for proof size will be rejection sampling. After doing
rejection sampling Rej(z,a, σ) on a vector z we know by lemma 2.3.6 that all of its coefficients
will be statistically close to Dσ with σ ≥ 11 ‖a‖, meaning that for very imbalanced vectors it
would be worthwhile to do rejection sampling multiple times. For example if a = (a1,a2)
with ‖a2‖ >> ‖a1‖ then by doing two rejection samplings Rej(z1,a1, σ1) and Rej(z2,a2, σ2)
one obtains a smaller vector z = (z1, z2) at the cost of having acceptation probability 1/27,
since the proof is non-interactive aborts have a minimal impact and this approach can help
reduce the proof size significantly. We will use two rejection samplings for s′ ∈ R6 in which
the last two coefficients will be much larger than the other four (because they correspond
to a product of si and r, r′). We will thus write s′ as s′ = (s′1, s′2) ∈ R4 ×R2. We can now
write the full zero-knowledge proof of the verifier.

Lemma 4.2.4. Let r, r′ ← S3
1 , let si1 , si2 ← D2

R,s, let si3 ← D3
R,r, let u, v1, v2, v3 ← S1.

Let t, t′,v, s′,M, rM be defined as previously. Let σ ≥ 11BC
√

20d, σ1 ≥ 11BC
√

8ds, σ2 ≥
11BC(d

√
24s +

√
2dr) and B ≥ 2

√
10dσ, B1 ≥ 2

√
2dσ1, B2 ≥ 2

√
dσ2. If Bcom ≥ 2B, then

the algorithm Πsign achieves the following properties:

• Correctness: The prover restarts with probability at most 1/27 + 2−100, and if he does
not abort the verifier accepts with overwhelming probability.

• Honest-Verifier Zero-Knowledge: Signatures can be simulated with statistically indis-
tinguishable distribution.

• Special Soundness: Given two accepting transcripts one can extract z̄ ∈ R3, īd ∈ Zq2,
z̄′ ∈ R3, z̄s ∈ R7, z̄B ∈ R8, c̄ ∈ C̄ such that:

c̄t = Com(c̄īd; z̄)
c̄t′ = Com(c̄īdδ; z̄′)

c̄


u
v1
v2
v3
t1

 = Mz̄M

c̄u = vT z̄s

such that ‖(z̄, z̄′, z̄B)‖ ≤ 2B ∧ ‖z̄s1‖ ≤ 2B1 ∧ ‖z̄s2‖ ≤ 2B2.

Proof. The proof is simply a combination of the proofs for Theorems 3.2.1 and 3.4.2.
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Algorithm 5 ΠSign

Require: Message M ∈ {0, 1}∗. Public information: t, t′,vT ,B, δ =
⌊√
q
⌉
, ξ−1, ξ5. Private

information: r, r′, i, s′, rB
1: y,y′,y−1,y5 ← D3

R,σ
2: yM ← D8

R,σ
3: ys1 ← D4

R,σ1

4: ys2 ← D2
R,σ2

5: ys = (ys1 ,ys2)
6: w1 := aT1 y
7: w′1 := aT1 y′
8: w1,−1 := aT1 y−1
9: w1,5 := aT1 y5

10: w2 := δaT2 y− aT2 y′
11: w2,−1 := aT2 y− ξ−1(a2)y−1
12: w2,5 := aT2 y− ξ5(a2)y5
13: ws := vTys
14: wB := ByB
15: c := H(t, t′,v,B, δ, ξ−1, ξ5,w1,w′1,w1,−1,w1,5,w2,w2,−1,w2,5,ws,wB,M)
16: z := rc+ y
17: z′ := r′c+ y′
18: z−1 := ξ−1(r)c+ y−1
19: z5 := ξ5(r)c+ y5
20: zs1 := s′1c+ ys1

21: zs2 := s′2c+ ys2

22: zM := rMc+ yM
23: if Rej((z, z′, z−1, z5, zM ), (rc, r′c, ξ−1(r)c, ξ5(r)c, rMc), σ) = 1∧ Rej(zs1 , s′1c, σ1) =

1∧Rej(zs2 , s′2c, σ2) = 1 then
24: Output z = (z, z′, z−1, z5, zs1 , zs2 , zM , c)
25: else
26: Restart
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Algorithm 6 Verify
Require: Message M ∈ {0, 1}∗. Signature Π = (z, z′, z−1, z5, zs1 , zs2 , zM ).Public informa-

tion: t, t′,vT ,M, δ =
⌊√
q
⌉
, ξ−1, ξ5.

1: w1 := aT1 z− t1c
2: w′1 := aT1 z′ − t′1c
3: w1,−1 := ξ−1(aT1 )z−1 − ξ−1(t1)c
4: w1,5 := ξ5(aT1 )z5 − ξ5(t1)c
5: w2 := δaT2 z− aT2 z′ − (δt2 − t′2) c
6: w2,−1 := aT2 z− ξ−1(aT2 )z−1 − (t2 − ξ−1(t2)) c
7: w2,5 := aT2 z− ξ5(aT2 )z5 − (t2 − ξ5(t2)) c
8: ws := vT zs − uc
9: wM := BzB − (v, v1, v2, v3, t1)c ∈ R4

Q ×Rq1

10: if ‖(z, z′, z−1, z5, zB)‖ ≤ B ∧ ‖zs1‖ ≤ B1 ∧ ‖zs2‖ ≤ B2
11: and c = H(t, t′,v,M, δ, ξ−1, ξ5,w1,w′1,w1,−1,w1,5,w2,w2,−1,w2,5,ws,wM ) then
12: Output 1
13: else
14: Output 0

4.3 Fixing the Parameters

We will set the parameters as per Table 4.2. In this section we discuss the bounds that must
be verified by these parameters and the resulting security guarantees. We will consider the
security of our scheme in terms of "root-hermite factor" δ0.
First we fix the dimension to d = 4096, we use this dimension as anything smaller does

not allow the existence of parameters that make our scheme secure. For this dimension
the challenge set {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1} will be of size greater than 2256 if we fix
BC = κ = 26.
The standard deviations s and r are fixed by the quality of our trapdoors to s = 6

√
dq2

and r = 1.17√q2.
We will need for the hiding property of our commitment that R-LWE is hard for dimension

d, errors sampled in S1 and both modulus q1 and q2. We do not use the reduction of
Section 2.4.1 for commitments with multiple moduli as in practice the best attack will be to
either solve R-LWE modulo q1 or modulo q2. Since we will have q2 > q1 and the hardness of
R-LWE decreases as the modulus increases, we will only consider q2 as being relevant here.
The analysis of Section 5.6 shows that for the parameters in table 4.2 we have δ0 = 1.0036
for R-LWE with modulo q2.
To fix q1 we consider the requirements on the binding property of our commitment, from
section 4.2 we have that the M-SISq1,1,3,4BCB problem has to be for vectors of norm 4BCB =
88 · κ2 ·

√
200d, for q1 ≈ 230, as in table 4.2, we obtain δ0 = 1.0036.

To fix q2 we will need the M-SISq2,1,4,BS for BS as per lemma 4.4.3 to be hard. We can
compute that BS = ‖z̃− s∗‖ ≈ 180224 ·

√
2 · d2 · √q2 for q2 ≈ 280 as in table 4.2 the root-

hermite factor of this problem will be δ0 = 1.0036.
The only constraint we have on p the plaintext modulus of our verifiable encryption scheme
is that if r̄c̃ = r̃c̄ mod p for some r̄, c̄, r̃, c̃ extracted in ΠSign then this equation should
hold over the integers, i.e. ‖z̄c̃− z̃c̄‖∞ ≤ p/2. Since the vector z output in ΠSign will have
coefficients distributed according to Dσ, we will have with overwhelming probability that
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‖z‖∞ ≤ 12σ (we can add this as an explicit check in the verification algorithm), in which
case we will require p ≥ 4 · κ · 12σ ≥ 226.5.
The ciphertext modulus Q will be fixed by equation 4.9 which gives:

Q ≥ 264
√

34κpd3/2 ≥ 259.5

All the parameters were set to achieve the same root Hermite factor of 1.0036 which corre-
sponds to a block size of β = 450. Resulting in a security of 93 bits in space, 131 bits in time,
and 119 bits in time for post-quantum security.
We consider the proof size that results from this parameter choice. The secret key will
consist in 4 polynomials of standard deviation s and two polynomials of standard deviation r
resulting in a size of 4d log(12s) + 2d log(12r) = 154KB. The signature itself will consist of
two commitments, one ciphertext and one zero-knowledge proof, which are respectively of
size:

2d log q1 + 2d log q2 = 113KB
4d logQ = 123KB

13d log(12σ) + 4d log(12σ1) + 2d log(12σ2) = 345KB

4.3.1 Accounting For Complexity Leveraging

The proof for full-traceability of Section 4.4 reduces the security of our group signature to
that of a selectively secure signature by guessing the identity of the forgery, we thus lose
a factor of q2 in the reduction. If we want to account for this security loss when setting
the parameters we will need to target a security of 128 + log q2 bits for the M-SISq2,1,3,BS
problem. The dimension d = 4096 is no longer enough to reach such a security and we will
thus be forced to set d = 8192. For this dimension the M-SISq2,1,3,BS has a root hermite
factor of δ0 = 1.002, corresponding to a block size β = 1000 and thus a a security of 207 bits
in space, 292 bits in time, and 262 bits in time for post-quantum security. This is enough to
tolerate a loss of log q2 = 80 bits of security. The R-LWE problem in dimension d = 8192 has
a block size of more than β = 1200 resulting in more than 300 bits of security, similarly the
M-SISq1,1,3,4BCB becomes harder with a higher dimension and q1 can be reduced accordingly.
The rest of the parameters will be changed to the values given in Table 4.2, resulting in a
signature size of (c.f. Table 4.1).

4.4 Security of the Scheme
Lemma 4.4.1 (Anonymity). Let A be a PPT adversary. Let AdvHidA (λ) be the advantage of
A over the Hiding property of the commitment scheme. Let Advind−cpaA (λ) be the advantage
of A over the IND-CPA property of the encryption scheme. The advantage of A against the
CPA-anonymity of our group signature is at most:

AdvanonA (λ) ≤ 2AdvHidA (λ) + Advind−cpaA (λ) + 2−λ

Proof. We use a succession of games.
Game G0 : In this game the challenger runs GSetup honestly and gives (gpk, sk1, . . . , skN )
to A. A outputs a message M∗ and two identities i0, i1 ∈ [N ]. The challenger chooses a bit
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b $← {0, 1} and computes z∗ := (t, t′, e, π)← Sign(M∗, skib)
Game G1 : In this the challenger uses the simulator of the proof ΠSign when queried
for Sign(M∗, skib). This game is statistically indistinguishable from the previous by the
zero-knowledge of ΠSign. ∣∣∣AdvG1

A − AdvG0
A

∣∣∣ ≤ 2−λ

Game G2 : In this the challenger replaces the commitment t by a commitment of 0 when
answering the query Sign(M∗, skib). The proof ΠSign can still be used since it uses the
simulator, and this game is indistinguishable from the previous one by the hiding property of
the commitment. ∣∣∣AdvG2

A − AdvG1
A

∣∣∣ ≤ AdvHidA (λ)

Game G3 : In this the challenger replaces the commitment t′ by a commitment of 0 when
answering the query Sign(M∗, skib). This game is indistinguishable from the previous one
by the hiding property of the commitment.∣∣∣AdvG3

A − AdvG2
A

∣∣∣ ≤ AdvHidA (λ)

Game G4 : In this the challenger replaces the commitment ciphertext e with an encryption
of 0. Since the proof ΠSign uses the simulator it is independent of the decryption of e. This
game is indistinguishable from the previous one by the IND-CPA property of the encryption
scheme. ∣∣∣AdvG4

A − AdvG3
A

∣∣∣ ≤ Advind−cpaA (λ)

The signature (t, t′, e, π) output in Game G3 is independent of ib and the adversary has
thus probability 1/2 of outputting b′ = b. We obtain the desired result by summing the
advantages.

We will prove traceability in two steps. We will first prove that an adversary A cannot
distinguish between the regular traceability game and the traceability game in which the setup
algorithm has been replaced by GSetup∗ which we define below. We will then prove that a
challenger B can extract an M-SIS solution from an adversary who succeeds in producing a
forgery in the traceability game with GSetup∗.
GSetup∗(1λ):

• Sample i∗ $← Zq2

• Sample A :=
[
aT1
aT2

]
← CSetup(1λ), with a1 ∈ R3

q1 , and a2 ∈ R3
q2 .

• Sample a $← R2
q2 .

• Sample R $← S2×2
1 and set bT = aTR ∈ R1×2

q2 .

• Sample (si∗1 , si∗2 , si∗3)← DR,s ×DR,s ×DR,r

• Set u :=
[
aT | bT | aT2

] si∗1
si∗2
si∗3


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• Set gpk :=
(
A,a,b− i∗gT , u

)
• For i ∈ Zq2 \ {i∗}, sample si3 ← D3

R,r

• For i ∈ Zq2 \{i∗}, sample (si1 , si2) ∈ R4 s.t
[
aT | bT + (i− i∗)gT

] [si1
si2

]
= u−aT2 si3 ,

and (si1 , si2)← D4
R,s

• For i ∈ Zq2 , set ski := si := (si1 , si2 , si3)

We consider the following advantages for an adversary A

• AdvtraceA (λ) the advantage of A in the traceability game.

• Advtrace∗A (λ) the advantage of A in the traceability game where GSetup is replaced
with GSetup∗.

• AdvNTRUA (λ) the advantage of A in solving the NTRUq,r problem.

• AdvMLWE
A (λ) the advantage of A in solving the M-LWEq,1,s problem.

Lemma 4.4.2. The advantage of any PPT adversary A against the traceability game of the
group signature is at most:

AdvtraceA (λ) ≤ 2(AdvNTRUA (λ) + AdvMLWE
A (λ)) + Advtrace∗A (λ)

Proof. We use a succession of games.
Game G0: The challenger B runs the Group signature protocol honestly. He gives (ski)i∈S
as well as gmsk to A who has advantage ε in the traceability game.

AdvG0
A = AdvtraceA

Game G1: B samples aT2 as [0 | 1 | f/g] where f, g ∈← DR,r are taken as in Section 2.3.5.
G2 is indistinguishable from G1 under the NTRUq,r assumption.∣∣∣AdvG1

A − AdvG0
A

∣∣∣ ≤ AdvNTRUA

Game G2: B sets bT $← R1×2
q2 . Note that if bT 6= aTR, B can no longer use the GPV

trapdoor of
[
aT | bT + igT

]
to sample secret keys for user i. To generate keys for i he will

instead sample si1 , si2 ← D2
s and use his NTRU trapdoor on a2 to sample si3 . This game

will be indistinguishable from the previous one by the hardness of M-LWEq,1,s (since aTR is
two M-LWEq,1,s samples). ∣∣∣AdvG2

A − AdvG1
A

∣∣∣ ≤ AdvMLWE
A

Game G3: B replaces bT with b∗T := bT − i∗gT . Since bT is uniform this game is identical
to the previous one.

AdvG3
A = AdvG2

A

Game G4: B sets b∗T := aTR− i∗gT . This game is indistinguishable from the previous one
under M-LWEq,1,s. ∣∣∣AdvG4

A − AdvG3
A

∣∣∣ ≤ AdvMLWE
A
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Game G5: B sets aT2 as [0 | 1 | a2], with a2
$← Rq2 and uses the GPV trapdoor of[

aT | bT + (i− i∗)gT
]
to sample secret keys for user i. This game is indistinguishable

from the previous one under the NTRUq,r assumption.∣∣∣AdvG5
A − AdvG4

A

∣∣∣ ≤ AdvNTRUA

Note thatGame G5 is exactly the traceability game that uses GSetup∗ (simply by renaming
s0 to si∗), the result follows.

Lemma 4.4.3. Let A be a PPT algorithm with advantage ε in the traceability game with
GSetup∗. Let h be a bound on the number of hash queries made by A. Let BS ≥ 4BCB1 +
12BC

√
dB1 + 2BCB2 + 6

√
dσB1 +B2

C(1 + 3
√
d)2
√
ds+B2

C
√

6ds. There exists B a challenger
for the M-SISq,1,4,BS such that:

AdvMSIS
B (λ) ≥ ε

q2

(
ε

h
− 2−λ

)

Proof. Formally B is given a matrix xT :=
[
x1, x2, x3, x4

]
∈ R4

q2 and must output y s.t
xTy = 0 mod q2 and ‖y‖ ≤ BS , w.l.o.g we consider x =

[
x1, x2, x3, 1

]
instead since with

high probability one of the xi will have an inverse.
B will set a := (x1, x2) and aT2 := (0, 1, x3) during setup, since x1, x2, x3 are uniform in
Rq2 this does not change the distribution of GSetup∗. When asked signing queries, B runs
the signing algorithm honestly, when asked corrupt queries B outputs the corresponding
secret key. Suppose the adversary A outputs a forgery z := (t, t′,Π, (u,v)) by programming
the random oracle with two different challenges B will be able to extract z̄ ∈ R3, īd ∈ Zq2 ,
z̄′ ∈ R3, z̄s ∈ R7, z̄B ∈ R8, c̄ ∈ C̄ such that:

c̄t = Com(c̄īd; z̄)
c̄t′ = Com(c̄īdδ; z̄′)

c̄

uv
t1

 = Bz̄B

c̄u = vT z̄s

such that ‖(z̄, z̄′, z̄B)‖ ≤ 2B ∧ ‖z̄1, z̄2‖ ≤ 2B1 ∧ ‖z̄3‖ ≤ 2B2, with (z̄1, z̄2, z̄3) := z̄. Using the
forking lemma of [BN06], B will be able to do this with probability at least ε

(
ε
h − 2−λ

)
.

Let (r̃, c̃) :=Dec(u, v), the parameters set in section 4.3 are such that, by soundness of the
verifiable encryption scheme, with overwhelming probability r̃c̄ = z̄c̃ over the integers, which
implies that Open(z) ∈ Zq2 i.e. the forgery opens to an identity in Zq2 and not ⊥.
Since i∗ is taken uniformly at random in GSetup∗, z will open to this identity with probability
1/q2. Suppose that z opens to i∗. Then

c̄t2 = aT2 z̄ + c̄i∗

c̄t′2 = aT2 z̄′ + c̄i∗δ[
aT | bT + [t2 | t′2]− i∗gT | aT2

]
z̄s = c̄u
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If we multiply the third equation by c̄ and replace c̄[t2 | t′2] we get:[
c̄aT | c̄bT + [aT2 z̄ | aT2 z̄′] | c̄āT2

]
z̄s = c̄2u

Let

z̃ =
[

c̄z̄1 + Rc̄z̄2

c̄z̄3 −
[
z̄ z̄′

]
z̄2

]
Then [

aT | āT2
]

z̃ = c̄2u

Since A has to output a valid forgery this means that he has never obtained the key
ski∗ , we can thus consider that si∗ was sampled after receiving the forgery, conditioned on[
aT | b | aT2

]
si∗ = u. Let s∗ :=

[
si∗1 + Rsi∗2 | si∗3

]
, the probability that c̄s∗ = z̃ is

negligible. Finally we have a solution z̃− c̄s∗ to the M-SIS problem defined by
[
aT | aT2

]
.

Using the bounds on the extracted values and the distribution of s∗ we have the following
bound on the norm of the solution:

‖z̃− c̄s∗‖ ≤ ‖z̃‖+ 2BC ‖s∗‖
≤ 2BC ‖z1‖+ 6BC

√
d ‖z̄2‖+BC ‖z̄3‖+ 3

√
dσ ‖z̄2‖

+B2
C(1 + 3

√
d)(2
√
ds) +B2

C
√

6ds
≤ 4BCB1 + 12BC

√
dB1 + 2BCB2 + 6

√
dσB1 +B2

C(1 + 3
√
d)2
√
ds+B2

C
√

6ds

The largest terms in this solution are by far 2BCB2 and 6
√
dσB1 which we will consider when

setting the parameters in section 4.3.
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Chapter 5
E-Voting
In this chapter we present an e-voting scheme for multiple candidates with multiple tallying
authorities.
We define a security model, adapted from the one of [BCG+15], in which privacy is guaranteed
as long as one of the tallying authorities is honest and unforgeability is guaranteed even if
they are all corrupt.
After recalling the building blocks we use from Chapters 2 and 3 we present a first variant of
our voting scheme in which the parameters grow with the number of voters.
We then show how to modify this scheme so that the parameters remain independent of the
number of voters at virtually no cost.
Finally we give concrete parameters as well as ballot sizes and a formal proof of security.
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5.1 Introduction

Given how information technology has penetrated almost every aspect of our world, one could
be surprised at the primitive state of technology used in the process that most influences
society: elections. Electronic voting machines, which required voters to physically turn up at
polling stations to cast their ballots on dedicated machines, saw a brief rise in popularity
until the early 2000s, but many countries have since then gone back to paper-and-pencil
voting amidst worries about security and reliability.

These are definitely genuine concerns. Researchers discovered serious security flaws in
several models of voting machines that were used in elections in the US, the Netherlands, and
Germany [FHF07; GH07]. Recent news reports on massive security breaches and suspicions
of foreign meddling in national elections have only aggravated those concerns.

Nevertheless, many countries are warming up to the idea of online voting, in which voters
cast their ballots using their personal devices from the comfort of their couch. A handful of
countries, including Estonia, Switzerland, and Australia, are already using online voting for
local and national elections, and it is quite a common tool among private organizations to
elect officers and board members.

There are of course many aspects to securing an online voting system, but the underlying
cryptographic protocol is obviously an important ingredient. All of the currently deployed
electronic voting systems (e.g., Helios [Adi08], the Swiss voting system [RD17], and the
Estonian one) are based on cryptographic primitives that rely on the hardness of factoring or
discrete logarithms for their security. Both of these assumptions are well-known to succumb
to attacks by quantum computers, meaning that, as soon as sufficiently powerful quantum
computers become available, an adversary could use them to break the vote secrecy of a past
election, or to tamper with the result of an ongoing one. The threat of foreign meddling
in elections gives additional reason for concern: powerful nation states may very well be
the first to build quantum computers, and they may not be particularly vocal about their
achievement.
Fortunately, we do have some cryptographic problems that resist attacks by quantum

computers. Lattices are the most prominent one, offering a good trade-off between efficiency
and security for basic primitives such as signatures and encryption. For more advanced
protocols, such as those required for electronic voting, lattices tend to, however, suffer from
extremely high bandwidth requirements.
The main difficulty in constructing practical lattice-based privacy schemes is the lack

of efficient zero-knowledge proofs, which is an important tool in electronic voting schemes
to let voters prove that they cast a valid ballot. Most lattice-based zero-knowledge proofs
are either Fiat-Shamir proofs with single-bit challenges or Stern-type proofs [Ste94] with
soundness error 2/3, which have to be repeated many times to reduce the soundness error.
Amortization techniques [BDLN16; CDXY17; PL17] exist when performing thousands of
proofs in parallel, but these are not very useful when each voter must prove correctness of his
own vote. Lyubashevsky’s “Fiat-Shamir with Aborts” technique [Lyu12] yields much more
efficient proofs with large challenges, but only allows to prove correctness of the statement
up to a small multiple of the witnesses, which could be quite detrimental in the context of
voting, as it may allow an attacker to inflate the weight of this vote.

The only quantum-safe voting protocol that we are aware of [CGGI16] therefore shuns
zero-knowledge proofs completely and uses fully-homomorphic encryption [Gen09] instead.
The paper doesn’t give any implementation details or concrete parameter choices, so it’s
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Voter Auth/Voter Total Size / Voter
Time 10ms 3ms
Size 28KB 2KB 30KB

Table 5.1: Time and space complexity of the voting scheme with 4 authorities. Using the
parameters of Section 5.5, each voter ouputs one OR-Proof and four commitments (one
per authority), while each authority outputs one proof per voter.

hard to make statements about efficiency, but due to the “heavy machinery” being utilized,
chances are that the protocol is not efficient enough for medium to large-scale elections.

5.1.1 Our Contributions

We present a new lattice-based electronic voting scheme that does use zero-knowledge proofs,
but overcomes their inefficiencies by re-organizing the proofs so that the voting authorities
assist the voters by performing amortized proofs. Our protocol provably guarantees vote
privacy as long as one of a number of voting authorities is honest, and guarantees consistency
(i.e., that honest votes are correctly counted) even if all voting authorities are corrupt, all under
standard lattice-based assumptions in the random-oracle model. We suggest concrete choices
for the security parameters and implement a prototype of our protocol. Our experimental
results (Table 5.1) show that voters need less than 10ms to cast a vote and a complete
bulletin (including all commitments and votes) is of size 30KB, which we think is well within
practical bounds for a large-scale election. To better understand the technical hurdles to
obtain this result, we briefly sketch a voting protocol by Cramer et al. [CFSY96] on which
our protocol is based. Let’s say there are NV voters and NA voting authorities that assist
in a binary election, i.e., where each voter votes zero or one and the result is the sum of
the votes. Let’s also say that there is a public bulletin board where voters can post their
ballots. The authorities jointly compute the tally and post the result of the election, together
with a proof of correctness. The goal is to obtain vote privacy, meaning that as long as
one authority is honest, the adversary does not learn anything more about the votes of
honest voters than what is already implied by the result, as well as consistency and universal
verifiability, meaning that anyone can check that all honest votes were counted correctly,
even if all authorities collude to rig the election.

The protocol of Cramer et al. [CFSY96] begins by letting each voter secret-share his vote
among the NA authorities and commit to each of the shares. The voter sends the share
and the opening information to each authority, and performs an OR-proof [CDS94] to show
that he secret-shared a zero-or-one vote by exploiting a homomorphism in the commitment
scheme. When the voting phase closes, all servers check the openings of the commitments
they received. Each authority then publishes the sum of all the shares it received together
with valid opening information, again using the homomorphism in the commitments. The
result of the election is the sum of all these partial sums.

There are a number of hurdles to overcome when translating this approach into lattice-based
primitives. The first is that, as discussed above, lattice-based zero-knowledge proofs are
either inefficient or approximate, while amortization doesn’t help for proofs by individual
voters. The second is that commitments typically use short vectors as randomness (i.e.,
opening information), but applying homomorphisms accumulates the size of this randomness,
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which must be compensated for by choosing larger parameters, which comes at a big cost in
efficiency. The third problem is that the typical OR-proof technique [CDS94] of XOR-ing
challenge values doesn’t work for lattices, because challenges are polynomials with small
coefficients in a ring, but do not form a group among them.

We address the first problem by strategically splitting up the burden of the proofs between
voters and authorities. Namely, we let voters prove that they secret-shared a zero-or-one
vote using approximate proofs, but we let the authorities prove that the commitment they
received is well-formed, i.e., has short opening information. The authorities do so for all
voters simultaneously, so they can use the more efficient amortized proofs which we designed
in Section 3.5.

The second problem we address by letting authorities re-commit to the sum of batches of
votes, and by letting them prove in zero knowledge that the new commitment indeed contains
the sum of all votes in the batch. By repetitively applying this technique, each authority can
keep the randomness growth within bounds, so that it eventually ends up with a commitment
to the sum of all received shares with short randomness.
Finally, we solve the problem with the OR proofs by interpreting the challenge space of

our zero-knowledge proofs as a group, using the techniques described in Section 3.3.
The proofs outlined above are constructed using quantum-secure building blocks via the

Fiat-Shamir transform. While there is a known classical reduction from hard lattice problems
to schemes constructed in this manner, there is no quantum reduction known. The underlying
reason as to why a general proof is unlikely to come is due to the fact that classically-secure
computationally binding commitments are not known to be binding for a quantum committer
(c.f. [DFS04]). Nevertheless, there are known quantum security proofs in the QROM for
Fiat-Shamir schemes of the same form as ours, but in which the parameters are set differently
[Unr17]. Furthermore, there are currently no known natural counter-examples of Fiat-Shamir
zero-knowledge proofs (nor of commitment schemes) which are based on quantum-hard
problems via classical reductions, but are broken by quantum adversaries. It therefore seems
reasonable to assume that such Fiat-Shamir schemes are secure. If one would like to have a
reduction that is in the QROM, one could instantiate the schemes as in [AFLT12] and then
use the reduction in [Unr17]. This would, however, lead to a noticeable increase in the size of
the proofs and public keys.

5.1.2 Overview of the Construction

We will make the convention that the voters (and information pertaining to the voters)
are numbered 1 through NV using a subscript, whereas the information pertaining to the
authorities is numbered 1 through NA and is labeled using a parenthesized superscript. In

particular, for elements x(j)
i , we will define xi =

NA∑
j=1

x
(j)
i , x(j) =

NV∑
i=1

x
(j)
i , and x =

NV∑
i=1

NA∑
j=1

x
(j)
i =

NA∑
j=1

NV∑
i=1

x
(j)
i .

We consider an election for NC candidates in which votes will be vectors in {0, 1}NC and
the tally will be the sum of all votes. Since voters will commit to values in Rq, we assume
there exists a ring R′ and an isomorphism φ : Rq → R′NC , and we define the set of valid
votes as

{
v ∈ Rq : φ(v) ∈ {0, 1}NC

}
.

A voter i who wishes to cast a vote vi (which is such that φ(vi) ∈ {0, 1}NC ), first splits vi
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into NA parts v(j)
i where the first NA − 1 of them are chosen uniformly in Rq and the last

share v(NA)
i is chosen such that

NA∑
j=1

v
(j)
i = vi mod q. The voter i then uses the commitment

scheme to commit to each share v(j)
i as

t(j)
i := Com(v(j)

i ; r(j)
i ). (5.1)

All the commitments are published to the bulletin board. Note that because the commitment
scheme is additively homomorphic, we have

NA∑
j=1

t(j)
i = ti = Com(vi; ri),

which is a valid commitment to vi (but with slightly larger randomness ri). Voter i now
creates a zero-knowledge OR-proof that he has knowledge of a vector r̄i with small coefficients
and a ring element c̄i with very small coefficients such that

c̄iti = Com(vic̄i, r̄i), and φ(vi) ∈ {0, 1}NC . (5.2)

This proof πVi also gets posted to the bulletin board.
Each voter now sends to authority j the encryption (under authority j’s public key) of the

share v(j)
i and the randomness under which this share was committed r(j)

i from Equation (5.1)
(one can alternatively think that the voters simply post this encryption to the bulletin
board). Upon receiving all such encryptions from every voter, authority j needs to create a
proof of knowledge that the r(j)

i all have small coefficients. He uses the Amortized Exact
Zero-Knowledge proof to create proofs πAi,j that prove the knowledge of r̂(j)

i and v̂(j)
i that

satisfy
t(j)
i = Com(v̂(j)

i ; r̂(j)
i ). (5.3)

If all NA authorities provide proofs of the above statement, then using the additive ho-
momorphism of the commitment scheme, we obtain a proof of knowledge of an r̂i such
that

ti =
NA∑
j=1

t(j)
i =

NA∑
j=1

Com(v̂(j)
i , r̂(j)

i ) = Com(v̂i, r̂i). (5.4)

Combining this with Equation (5.2) gives two valid openings of the commitment ti. Based on
the binding property of Com, this implies that r̄i = c̄ir̂i. One can then rewrite Equation (5.2)
as

c̄iti = Com(c̄ivi, c̄ir̂i),

and since we choose the challenge set such that c̄i is invertible in Rq, we can divide by c̄i to
finally obtain

ti = Com(vi, r̂i), , and φ(vi) ∈ {0, 1}NC . (5.5)

Because there is no longer the factor c̄i which could be distinct for every voter, the
commitment in Equation (5.5) is additively homomorphic. In particular, if we compute

NV∑
i=1

ti = Com(
NV∑
i=1

vi; r̂), and φ(vi) ∈ {0, 1}NC , (5.6)
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and r̂ is a vector with small coefficients, then the quantity

NV∑
i=1

ti

is a commitment to the sum of the votes that have been cast. If there are many voters, then
r̂ = ∑

i r̄i is not small, but we show how to handle this issue later.
For universal verifiability, we therefore would like the value of r̂ to be publicly computable.

For this to happen, each authority simply computes
NV∑
i=1

r(j)
i = r(j) and reveals it by publishing

it to the bulletin board. Any verifier can simply check that r(j) is a valid opening of t(j), i.e.
that there exists some message m(j) such that

t(j) = Com(m(j), r(j)). (5.7)

We now claim that it must be that

r =
NA∑
j=1

r(j) = r̂.

From Equation (5.3), we know that

t(j) =
NV∑
i=1

Com(v̂(j)
i ; r̂(j)

i ) = Com(v̂(j); r̂(j))

Combining this with Equation (5.7) gives two openings of t(j). Which implies that r̂(j) = r(j),
and then we have

r̂ =
NA∑
j=1

r̂(j) =
NA∑
j=1

r(j) = r.

Plugging the above into Equation (5.6) implies that

t =
NV∑
i=1

ti = Com(
NV∑
i=1

vi; r), and φ(vi) ∈ {0, 1}NC . (5.8)

If r is small enough, then the above implies that t is a commitment to the full vote tally
NV∑
i=1

vi, and one can obtain this tally by computing Open(t, r, 1). As long as there are fewer

than q voters, we can exactly recover φ(
NV∑
i=1

vi) over the integers.

5.1.2.1 Reducing the Randomness

An issue that we still need to deal with is how to make sure that the randomness, when
summed over all the voters, does not grow too much. This is crucial in order for the final
commitment in Equation (5.6) to be meaningful. A trivial way to accomplish this is to simply
set the parameters large enough so that a large set of voters can be accommodated. This is
an extremely impractical solution that we would like to avoid.
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The way that we can overcome this issue is by making the Authorities create votes of partial
sums of the vote shares they have, using randomness that is close to the randomnesses used
by the individual voters. For example, if voters 1, . . . , l whose commitments to Authority j
are t(j)

1 , . . . , t(j)
l of values v(j)

1 , . . . , v
(j)
l , under randomnesses r(j)

1 , . . . , r(j)
l , then the Authority

can create a commitment t of ∑l
i=1 v

(j)
i using a fresh randomness r. The Authority would

then publish the “vote” t, proves that there exists some r̂′,m′ such that

t = Com(m′, r′), (5.9)

and also prove that there exists a slightly larger r̂ such that

t +
∑
i

t(j)
i = Com(0; r̂) (5.10)

The proof in Equation (5.9) can be “amortized-in” with the proofs πAi,j because the size of the
randomness is the same. The proof of Equation (5.10), however, contains larger randomness,
and so such proofs should be amortized only among themselves.1

Notice that because the randomness of commitment t = Com(∑l
i=1 v

(j)
i , r) is as small as

in one voter commitment, we have effectively reduced the size of the sum of the randomness
in l voter commitments to that of one commitment. If we do this for every block of l voters,
then we effectively reduced the sum of the randomness by a factor of l.

It is easy to see that this procedure is repeatable. Once every l blocks of votes have small
randomness, we can consider repeating this procedure by summing over l such blocks. This
will effectively reduce the total sum of the randomnesses by another factor of l. If we continue
this procedure, then we will be effectively adding 2(NV /l+NV /l

2 + . . .) ≈ 2NV /(l− 1) extra
proofs. The advantage will be that we now only need to worry about the randomness growing
by a factor l for the proof in Equation (5.10). We set our parameters so that l = 30.

One can also think of the above procedure as the authority summing up 30 votes, recom-
mitting to the sum using fresh, small randomness, and then giving a proof that he correctly
recommitted to the sum of the votes. In particular, proving that the difference between his
new commitment and the sum of the 30 commitments is a commitment to 0.

5.2 Our E-Voting Scheme

5.3 Building Blocks

5.3.1 The Commitment Scheme

We will use the commitment scheme of Section 2.4.1 for messages in Rq. We briefly recall
the CSetup, Com and Open algorithms.

• CSetup(1λ) outputs a commitment matrix A ∈ R(n+1)×(2n+1)
q .

• Com(m ∈ Rq) outputs the commitment t := Ar +
[
0n
m

]
, and randomness r← D2n+1

R,σ .

1It is also possible to do these proofs in a non-amortized fashion and only get an approximate proof. In this
case, depending on the value of l, the parameters may have to be increased.
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• Open(t, r, c) checks that the commitment is valid and outputs m̃ := t2− c−1A2r ∈ Rq.
We have fixed the dimensions of A to n×(2n+1) which implies that the hiding property of our
commitment relies on M-LWEq,n,σ and the binding property relies on M-SISq,2n+1,4BC ,BCom
we discuss how to fix q, σ,BC , BCom in Section 5.5.
Embedding votes as polynomials. We will consider elections for multiple candidates in
which voters output a {0, 1} vote for each candidate, i.e. if NC is the number of candidates,
a vote will be of the form (b1, . . . , bNC ) with bi ∈ {0, 1}. As the voters will commit to their
vote we will have to embed such vectors as elements of Rq (we could consider commitments
with message space RNCq but that would be very inefficient). Additionally each voter will
have to output a proof that his vote is well formed, that is to say that each of the bi is either
0 or 1, we will need an embedding that allows such proofs to go through.
To do so we will consider the splitting properties of Xd + 1 given in Lemma 2.2.3. Suppose
there are NC ≤ d candidates with NC a power of two. We can choose a modulus q such that
Xd + 1 splits into exactly NC irreducible factors modulo q, let f1, . . . , fNC be these factors.
By the Chinese remainder theorem we know that:

Z [X] /Xd + 1 ' Z [X] /f1(X)× . . .× Z [X] /fNC (X)

with the isomorphism:

φ : Z [X] /Xd + 1 → Z [X] /f1(X)× . . .× Z [X] /fNC (X)
h 7→ (h mod f1, . . . , h mod fNC )

Using the extended Euclidean algorithm one can efficiently obtain polynomials g1, . . . , gNC
such that φ(gi) = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the ith coordinate. To embed a vector
(b1, . . . , bNC ) ∈ {0, 1}NC in Rq a voter will compute the polynomial m := ∑

bigi, by linearity
of φ this polynomial is such that φ(m) = (b1, . . . , bNC ).

5.3.2 Proof of Correct Vote
We now consider how to prove that a commitment commits to a message m ∈ Rq such that
φ(m) ∈ {0, 1}NC . Let φ(m) = (m1, . . . ,mNC ) we want to prove that ∀i ∈ [NC ] ,mi ∈ {0, 1}.
We will construct a proof that for a fixed i ∈ [NC ] ,mi ∈ {0, 1}, running this proof NC times
will give the desired proof of knowledge.
Fix i ∈ [NC ], observe that mi = 1⇔ φ(mgi) = (0, . . . , 0, 1, 0, . . . , 0) = φ(gi)⇔ mgi = gi and
similarly mi = 0⇔ mgi = 0, which is to say:

mi ∈ {0, 1} ⇔ mgi ∈ {0, gi}

Let t := Com(m; r), we will use OR-Proof of section 3.3 to prove that either mgi = 0 or

mgi = gi. Let A′i :=
[

A1
giA2

]
and t′i =

[
t1
git2

]
, we have that

A′ir = t′i ⇔ mgi = 0

A′ir = t′i −
[
0n
gi

]
⇔ mgi = gi
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Which implies that ΠOR(A′i, t′i, t′i −
[
0n
gi

]
; r) is a Σ′-Protocol from which we can extract

z̄ ∈ R2n+1, c̄ ∈ C̄, mi ∈ Rq such that z̄ ≤ 2BOR, c̄t = Com(c̄mi; z̄), and mgi ∈ {0, gi}.
Finally by simultaneously running this proof for all A′i and t′i we obtain a proof that
φ(m) ∈ {0, 1}NC .
We formally present the proof computed by the voter in Algorithm 7 and its verification

algorithm in Algorithm 8. If σV ≥ 11BCBV and B′V ≥
√

2d(2n+ 1)σV , then this proof of
knowledge is a Σ′-Protocol for the following languages:

R′V ote =
{

(t, r, 1)∈Rn+1
q ×R2n+1×R |∃v∈Rq, t = Com(v; r), ‖r‖ ≤ 2B′V , φ(v) ∈ {0, 1}NC

}
R′V ote =

{
(t, r, c̄)∈Rn+1

q ×R2n+1×R |∃v∈Rq, c̄t = Com(c̄v; r), ‖r‖ ≤ 2B′V , φ(v) ∈ {0, 1}NC
}

Algorithm 7 ΠV ote

Require: Public information: A, t. Private information: r ∈ R, v ∈ Rq, s.t t = Com(v; r)
and (v1, . . . , vNC := φ(v) ∈ {0, 1}NC

1:

[
A1
A2

]
:= A;

[
t1
t2

]
:= t

2: for i ∈ [NC ] do

3: A′i :=
[

A1
giA2

]
; t′i :=

[
t1
git2

]
4: ci,1−vi

$← C
5: zi,1−vi ← D2n+1

R,σV

6: wi,1−vi := A′izi,1−vi − ci,1−vit′i + ci,1−vi

[
0n

(1− vi)gi

]
7: yi,vi ← D2n+1

R,σV
8: wi,vi := A′iyi,vi
9: c := H(A, t,w1,0, . . . ,wNC ,0,w1,1, . . . ,wNC ,1)

10: for i ∈ [NC ] do
11: ci,vi := c	 ci,1−vi
12: zi,vi := rci,vi + yi,vi
13: if Rej(zi,vi , rci,vi , σV ) = 0 then
14: Restart
15: return (ci,0, ci,1, zi,0, zi,1)i∈[NC ]

5.3.3 Amortized Exact Zero-Knowledge Proofs
The authorities Aj will use amortized zero knowledge proofs for two purpose. The first will
be to prove that the shares of the commitment they receive from each voter are correctly

formed. Let A =
[
A1
A2

]
be the commitment matrix, say Aj has the commitments t1, . . . , tNV

with opening r1, . . . , rNA . If we rewrite
[
ti,1
ti,2

]
:= ti, T1 :=

[
t1,1 | . . . | tNV ,1

]
, and R :=[

r1 | . . . | rNV
]
, then the protocol ΠAmo2(A1,T1; R) is a proof that each commitment is well
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Algorithm 8 VerifyV ote
Require: Public information: A, t, (ci,0, ci,1, zi,0, zi,1)i∈[NC ]
1: V := 1
2:

[
A1
A2

]
:= A;

[
t1
t2

]
:= t

3: for i ∈ [NC ] do

4: A′i :=
[

A1
giA2

]
; t′i :=

[
t1
git2

]
5: wi,0 := A′izi,0 − ci,0t′i
6: wi,1 := A′izi,1 − ci,1t′i + ci,1

[
0n
gi

]
7: c := H(A, t,w1,0, . . . ,wNC ,0,w1,1, . . . ,wNC ,1)
8: for i ∈ [NC ] do
9: if c 6= ci,0 ⊕ ci,1 ∨ ‖zi,0‖ > B′V ∨ ‖zi,1‖ > B′V then

10: V ← 0
11: return V

formed. The second proof of knowledge will be used during bucketing (c.f. Section 5.4.3) to
prove that differences of commitments commit to zero. Say Aj has the commitments t1, . . . , t`
which commit to 0 with opening r1, . . . , r`. Let T :=

[
t1 | . . . | t`

]
, and R :=

[
r1 | . . . | r`

]
,

then the protocol ΠAmo2(A,T; R) is a proof that each commitment is well formed and
commits to 0.

We formally present the proof computed by the authorities in Algorithms 9 and 10, and their
verification algorithms in Algorithms 11 and 12. If k ≥ (λ+ 2)/ log(2d+ 1), σA1 ≥ 11BA1

√
lk

and B′A1 ≥
√

2d(2n+ 1)σA1, then the protocol ΠAuth,1 is a Σ′-Protocol for the following
languages:

RAuth,1 =

 (t1, . . . , t`, r1, . . . , rl) ∈ R(n+1)×`
q ×R(2n+1)×`

s.t. ∃(v1, . . . , v`) ∈ R`q; ∀i ∈ [`] , ti = Com(vi, ri), s1
([

r1 | . . . | r`
])
≤ BA1


R′Auth,1 =

{
(t1, . . . , t`, r1, . . . , rl) ∈ R(n+1)×`

q ×R(2n+1)×`

s.t. ∃(v1, . . . , v`) ∈ R`q; ∀i ∈ [`] , ti = Com(vi, ri), ‖ri‖ ≤ 2B′A1

}

If k ≥ (λ+2)/ log(2d+1), σA2 ≥ 11BA2
√
lk and B′A2 ≥

√
2d(2n+ 1)σA2, then the protocol

ΠAuth,2 is a Σ′-Protocol for the following languages:

RAuth,2 =

 (t1, . . . , t`, r1, . . . , rl) ∈ R(n+1)×`
q ×R(2n+1)×`

s.t. ∀i ∈ [`] , ti = Com(0, ri), s1
([

r1 | . . . | r`
])
≤ BA2


R′Auth,2 =

{
(t1, . . . , t`, r1, . . . , rl) ∈ R(n+1)×`

q ×R(2n+1)×`

s.t. ∀i ∈ [`] , ti = Com(0, ri), ‖ri‖ ≤ 2B′A2

}
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Algorithm 9 ΠAuth,1
Require: Public information: A, t1, . . . , t`. Private information: r1, . . . , r` ∈ R, s.t
∃(m1, . . . ,m`) ∈ R`q, ti = Com(vi; ri).

1:

[
A1
A2

]
:= A

2: for i ∈ [NC ] do

3:

[
ti,1
ti,2

]
:= ti

4: T1 :=
[
t1,1 | . . . | t`,1

]
5: R :=

[
r1 | . . . | r`

]
6: Y← D

(2n+1)×k
R,σA1

7: W = A1Y
8: C := H(A1,T1,W) ∈ {0, 1}`×k
9: Z := RC + Y

10: if Rej(Z,RC, σA1) = 0 then
11: Restart
12: return (Z,C)

Algorithm 10 ΠAuth,2
Require: Public information: A, t1, . . . , t`. Private information: r1, . . . , r` ∈ R, s.t ti =

Com(0; ri).
1: T :=

[
t1 | . . . | t`

]
2: R :=

[
r1 | . . . | r`

]
3: Y← D

(2n+1)×k
R,σA2

4: W = AY
5: C := H(A,T,W) ∈ {0, 1}`×k
6: Z := RC + Y
7: if Rej(Z,RC, σA2) = 0 then
8: Restart
9: return (Z,C)

Algorithm 11 VerifyAuth,1
Require: Public information: A, t1, . . . , t`,Z,C.
1: T :=

[
t1 | . . . | t`

]
2: W := AZ−TC
3: if C 6= H(A,T,W) ∨ ‖Z‖max > B′A2 then
4: return 0
5: return 1
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Algorithm 12 VerifyAuth,2
Require: Public information: A, t1, . . . , t`,Z,C.

1:

[
A1
A2

]
:= A

2: for i ∈ [NC ] do

3:

[
ti,1
ti,2

]
:= ti

4: T1 :=
[
t1,1 | . . . | t`,1

]
5: W := AZ−T1C
6: if C 6= H(A1,T1,W) ∨ ‖Z‖max > B′A1 then
7: return 0
8: return 1

5.4 Our E-Voting Scheme

5.4.1 Definitions

We base our syntax and security definitions of one-pass electronic voting schemes on that
of Bernhard et al. [BCG+15], but there are some differences. First, we explicitly model a
multi-authority setting where each authority independently generates its own keys. Second,
ballot testing in our scheme must be performed by the authorities, who use their secret key
in the process. Verification of the entire election can still be done publicly, though. As ballot
testing, tallying, and verification do not require interaction with the voters, the authorities
do not need to be online for the first part of the election and only need to run the ballot
testing and tallying algorithms once all the ballots have been cast.

A multi-authority electronic voting scheme EV is a tuple (Setup,ASetup,Vote,TestB,
Tally,Verify) of algorithms and protocols that are used by authorities A1, . . . ,ANA and
voters with identities id ∈ I as follows. We consider binary elections for NC candidates where
each voter id ∈ I casts a vote vid ∈ {0, 1}NC and the result of the election is r = ∑

id∈I vid .
We assume that all voters and authorities have read access and authenticated append-only
write access to a public bulletin board BB, meaning that entries can only be appended to the
board and entries are authenticated (e.g., signed) under the writer’s identity. Moreover, each
voter can only write once to the bulletin board; authorities can write as often as they want.

• Setup(1λ) generates trusted common parameters par .

• ASetup(par) is used by authority Aj to generate a public key pkj and corresponding
secret key skj .

• Vote(par , pk1, . . . , pkNA , id, v) is used by voter id ∈ I to cast his vote v ∈ {0, 1}NC . It
returns a ballot b that the voter posts on the bulletin board BB.

• TestB(par , pk1, . . . , pkNA , skj , b) allows authority Aj to test whether ballot b is valid
or not by returning 1 or 0, respectively. The ballot is only considered valid after all NA

authorities confirm its validity on the bulletin board BB. This check can be performed
as the votes come in, or only after the voting phase has ended. The tallying authorities
therefore do not have to be online during the voting phase: rather than interacting
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directly with the voters, the tallying authorities can obtain the ballots from the bulletin
board after voting has ended and discard invalid ballots if needed.

• Tally(par , pk1, . . . , pkNA ,BB, skj) is an interactive protocol run among the authorities
Aj , j = 1, . . . , NA, at the end of which they announce the tally r and proof Π.

• Verify(par , pk1, . . . , pkNA ,BB, r,Π) can be run by anyone to check the correctness of
the election result.

Correctness. Correctness guarantees that, when all parties behave honestly, all bal-
lots are deemed valid and the result of the election is correct. Let id1, . . . , idNV ∈ I be
voter identities and v1, . . . , vNV be their respective votes. Let par $← Setup(1λ); and
(pkj , skj)

$← ASetup(par) for j = 1, . . . , NA. For i = 1, . . . , NV and j = 1, . . . , NA let
bi

$← Vote(par , pk1, . . . , pkNA , idi, vi), BB[i]← bi, and let (r,Π) be the outcome of the pro-
tocol when each authority Aj runs Tally(par , pk1, . . . , pkNA ,BB, skj), j = 1, . . . , NA. The
scheme is correct if for all i = 1, . . . , NV and j = 1, . . . , NA, the following conditions hold
with overwhelming probability: r = ∑NV

i=1 vi, TestB(par , pk1, . . . , pkNA , skj , bi) = 1, and
Verify(par , pk1, . . . , pkNA ,BB, r,Π) = 1.
Privacy. Privacy requires that an adversary who corrupts NA − 1 authorities and an

Exppriv,b
A (λ):
par ← Setup(1λ) ; pk1 ← ASetup(par) ; HV := ∅
(pk2, . . . , pkNA , st)← A(par , pk1)
b′ ← AO,BB(st)
HV ′ := {(id, v0, v1, b) ∈ HV :
∀j ∈ {1, . . . , NA} : "Aj approves b"∈ BB}

V0 := ∑
(id,v0,v1,b)∈HV ′ v0 ; V1 := ∑

(id,v0,v1,b)∈HV ′ v1
If V0 6= V1 then return ⊥ else return b′

OVote(id, v0, v1):
b← Vote(par , pk1, . . . , pkNA , id, vb)
HV ← HV ∪ {(id, v0, v1, b)}
BB ← BB‖"id casts b"
If TestB(par , pk1, . . . , pkNA , sk1, b) = 1

then BB ← BB‖"A1 approves b"
else BB ← BB‖"A1 rejects b"

OCast(id, b):
If "id casts b" ∈ BB and TestB(par , pk1, . . . , pkNA , sk1, b) = 1

then BB ← BB‖"A1 approves b"
else BB ← BB‖"A1 rejects b"

OTally:
Run Tally(par , pk1, . . . , pkNA ,BB, sk1) with A to obtain (r,Π)
Return (r,Π)

Figure 5.1: Experiment for privacy

arbitrary number of voters does not learn anything more about the votes of honest voters
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than what is revealed by the election result. The single-authority BPRIV notion of Bernhard
et al. [BCG+15] defines this by requiring that the adversary cannot tell a bulletin board for
a first set of votes with the real election result and proof from a bulletin board for a second
set of votes with the same result and a simulated proof. The BPRIV notion is not easily
adapted to the multi-authority setting, because the corrupt authorities would have to be
involved in computing the tally for both bulletin boards. We therefore adapt the notion to
require that the adversary cannot distinguish between the bulletin boards of two different
sets of votes, as long as both sets of votes yield the same election result. The advantage of an
adversary A in breaking the privacy of the electronic voting scheme EV is defined through
the experiment of Figure 5.1 as

Advpriv
A (λ) =

∣∣∣ Pr[Exppriv,0
A (λ) = 1]− Pr[Exppriv,1

A (λ) = 1]
∣∣∣ ,

where A is given access to all oracles in the set O = {OVote,OCast,OTally} as well as
read and append-only write access to the bulletin board BB. The OVote and OCast oracles
can be queried as many times as A wants, but the OTally oracle can only be queried once.

Expcons
A (λ):
par $← Setup(1λ) ; HV ← ∅
(pk1, . . . , pkNA , st)

$← A(par)
(r,Π) $← AOVote,BB(st)
HV ′ := {(id, v, b) ∈ HV :
∀j ∈ {1, . . . , NA} : "Aj approves b"∈ BB}

∀k ∈ {1, . . . , NC}, h0,k := |{(id, v, b) ∈ HV ′ : v [k] = 0}|
∀k ∈ {1, . . . , NC}, h1,k := |{(id, v, b) ∈ HV ′ : v [k] = 1}|
t ← |{b : ∀j ∈ {1, . . . , NA} : "Aj approves b"∈ BB}|
If Verify(par , pk1, . . . , pkNA ,BB, r,Π) = 1

and (∃k ∈ {1, . . . , NC}, r [k] < h1,k or r [k] > t − h0,k)
then return 1 else return 0

OVote(id, v):
b

$← Vote(par , pk1, . . . , pkNA , id, v)
HV ← HV ∪ (id, v, b)
BB ← BB‖"id casts b"

Figure 5.2: Experiment for consistency

Consistency. Consistency requires that the election result is correct with respect to the
votes cast by voters. Bernhard et al.’s notion of strong consistency [BCG+15] requires that
individual ballots can be extracted online. We relax this notion by requiring that, if an
election finishes successfully, the result must be “realistic” with respect to the honestly cast
votes. Meaning that for each candidate, the result must be at least the number of honest
one-votes and at most the total number of votes cast minus the number of honest zero-votes.
We strengthen the notion, however, by requiring that this property holds even against corrupt
election authorities. Intuitively, our notion is similar to the quantitative verifiability goal of
Cortier et al. [CGK+16].
Formally, the advantage of an adversary A in breaking the consistency of EV is defined
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through the consistency experiment of Figure 5.2 as

Advcons
A (λ) = Pr[Expcons

A (λ) = 1] .

5.4.2 The Scheme
We instantiate our voting scheme according to the definition given in Section 5.4.1. We split the
tallying algorithm in two parts, this algorithm in our E-Voting definition is interactive between
authorities A1, . . . ,ANA . In our instantiation there is no need for interaction, each authority
Aj can run an algorithm Tallyj(par, pk1, . . . , pkNV ,BB, skj) and publish on the bulletin board
its partial tally t(j) and proof πA,(j), anyone can then run Tally(par, pk1, . . . , pkNV ,BB) to
compute the total tally and final proof.
Setup(1λ) :

• generate parameters n, q, d, σ.

• A :=
[
A1
A2

]
← CSetup(1λ), with A ∈ R(n+1)×(2n+1)

q .

• output par := n, q, d, σ,A

Let
(
KGen(1λ),Enc,Dec

)
be a CCA-Secure public key encryption scheme, which the

authorities will use to obtain the shares of the randomness of each voter.
ASetupj(par) :

• (pkj , skj)← KGen(1λ)

• Give skj to Aj
• output pkj

To cast a bulletin, voter i will share his vote into NA additive shares and compute a
commitment t(j)

i for each of them. He proves that the sum of these commitments is a
commitment to vi such thatφ(vi) ∈ {0, 1}NC and then encrypts the randomness r(j)

i under
the public key pkj so that each authority can open one share of the vote. He finally posts his
vote, proof, commitments, and encryptions on the bulletin board along with a signature.
Votei(par, pk1, . . . , pkNA , idi, vi) :

• v(j)
i

$← Rq s.t. vi = ∑NA
j=1 v

(j)
i

• r(j)
i ← D2n+1

R,σ

• t(j)
i := Com

(
v

(j)
i ; r(j)

i

)
• ri := ∑NA

j=1 r(j)
i

• ti := ∑NA
j=1 t(j)

i

• πVi = ΠV ote(A, ti; ri, vi)
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• e(j)
i = Enc(r(j)

i , pkj)

• bi =
(
idi, π

V
i , (t

(j)
i , e(j)

i )j∈[NA]
)

• Sign and publish bi on the bulletin board

Before tallying the votes each authority Aj will check whether the bulletins have been properly
cast. i.e. for each bulletin bi, Aj checks the signature on bi, the proof that φ(vi) ∈ {0, 1}NC
and that the encryption of r(j)

i under his public key decrypts to a valid randomness.
TestBi,j(par, pk1, . . . , pkNA , skj , bi) :

•
(
idi, π

V
i , t

(1)
i , e(1)

i , . . . , t(NA)
i , e(NA)

i

)
:= bi

• Check that bi was signed by voter idi

• Verify(A, ti, πVi )

• r(j)
i := Dec(e(j)

i , skj)

• Check
∥∥∥r(j)
i

∥∥∥ ≤ √2d(2n+ 1)σ

Each authority Aj will compute its share t(j) of the total tally as well as a proof that t(j)

has been computed correctly. To do so Aj first decrypts e(j)
i for each bulletin bi to recover

randomness r(j)
i . He then proves that for each voter i, r(j)

i is a valid opening of t(j)
i and

finally outputs r(j), the sum over i of all r(j)
i (the share t(j) of the final tally can be obtained

by opening t(j) the sum of the t(j)
i using the r(j) output by Aj) as well as the proofs he

computed. Note that w.l.o.g we will consider in all the following algorithms that all the
bulletins on the bulletin board were tested and accepted by all the authorities (otherwise we
can just discard the rejected bulletins and adjust NV to the number of remaining bulletins).
Tallyj(par, pk1, . . . , pkNA ,BB, skj)

•
(
idi, π

V
i , t

(1)
i , e(1)

i , . . . , t(NA)
i , e(NA)

i

)
:= bi, For (bi)i∈NV ∈ BB

• ∀i, r(j)
i := Dec(e(j)

i , skj)

• πA,(j) =
(
πA1 , . . . , π

A
NV

)
= ΠAuth1

(
A, t(j)

1 , . . . , t(j)
NV
, r(j)

1 , . . . , r(j)
NV

)
• r(j) = ∑NV

i=1 r(j)
i

• Sign and publish πA,(j), r(j) on the bulletin board

To compute the total tally, anyone can simply recover the randomnesses r(j) published by
each authority Aj , compute the corresponding commitment t(j) = ∑ t(j)

i and open it to the
partial tally t(j). The total tally is then the sum of the partial tallies.
Tally(par, pk1, . . . , pkNA ,BB)

• For each authority Aj , j ∈ [NA] recover r(j) on BB
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• ∀j, t(j) := ∑NV
i=1 t(j)

i

• ∀j, t(j) := Open(t(j), r(j), 1)

• t := ∑NA
1 t(j)

• publish t

The verification algorithm can be run by anyone to check that the final tally is correct (i.e.
the voting scheme is publicly verifiable). To do so one simply verifies all the proofs output
by the voters and authorities and checks that the opening of the total tally has been done
correctly (by computing it again).
Verify(par, pk1, . . . , pkNA ,BB, t)

• For each i ∈ [NV ] , j ∈ [NA], recover t(j)
i , πVi , π

A
i,j on BB.

• ∀i, verify πVi
• ∀i, j, verify πAi,j

• ∀j, t(j) := ∑NV
i=1 t(j)

i

• ∀j, t(j) := Open(t(j), r(j), 1)

• Check that t = ∑NA
1 t(j)

For correctness we need all the proofs to verify correctly, which will be true with overwhelming
probability for appropriate parameters (cf. Section 5.5), we also need the test on the norm of
r(j)
i to succeed, which will be true with overwhelming probability by using Lemma 2.3.5, and

we need for the commitment of the partial tallies to open correctly, i.e. we need
∥∥∥r(j)

∥∥∥ ≤ BCom.
We can fix the parameters so that this condition is verified, however the norm of r(j) grows
linearly with the number of voters which, as we discuss in the next section, heavily impacts
the efficiency of this scheme.
Dealing with Misbehaving Authorities. A malicious authority could prevent a voter
from casting his vote by claiming that the voter’s ballot is invalid. Since the TestB algorithm
requires the secret key of the authority, the authority’s claim cannot be publicly verified. This
situation can be improved by letting voters store the randomness used in the encryption of e(j)

i

and, in case their ballot is incorrectly claimed to be invalid, reveal r(j)
i and the randomness

to show that the authority is at fault.

5.4.3 Improved Voting Scheme
A major caveat in the scheme presented in Section 5.4.2 is that parameters grow linearly in
the number of voters. Indeed for correctness a verifier needs to be able to open the sum over
all voters of the commitments of the vote shares, this implies that the bound BCom on the
size of correct openings grows linearly in the number of voters. Increasing this bound heavily
impacts the parameters of the scheme, e.g. if we fix d = 256 and q ' 231, then for ∼ 100 bits
of security we require a dimension n = 7 for 100 voters and n = 12 for 100 000 voters. This
nearly doubles the commitment size, proof size and communication cost per voter (another
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Com(v1,2; r1,2)
Π(r1,2 small)

Π(v1,2 = v1,1+v2,1)

Com(v1,1; r1,1)
Π(r1,1 small)

Π(v1,1 = v1 + v2)

Com(v1; r1)
Π(r1 small)

Com(v2; r2)
Π(r2 small)

Com(v2,1; r2,1)
Π(r2,1 small)

Π(v2,1 = v3 + v4)

Com(v3; r3)
Π(r3 small)

Com(v4; r4)
Π(r4 small)

Figure 5.3: Example of the improved tallying for an authority. At each level s fresh randomnesses
ru,s are sampled and the authority commits to the sum of the votes of the previous level.
The authority computes a proof that each new randomness is small and that it commits
to the right value. Finally the authority publishes all the commitments and proofs as
well as the opening, here r1,2, of the top level commitment which opens to the sum of
the votes (i.e. v1,2 = v1 + v2 + v3 + v4).

issue with the previous scheme is that privacy is nontrivial, indeed revealing the sum of the
randomnesses used makes it so that the privacy cannot be easily proven). We avoid this
problem by using the fact that the authorities know the shares of many commitments and can
thus create new commitments for the sum of their associated messages (this is the solution
discussed in Section 5.1.2.1). e.g. Imagine authority Aj has received the commitments
and openings t(j)

i = Com(v(j)
i ; r(j)

i ) from voters 1 to NV , Aj can choose l << NV and
compute new commitments t(j)

1,1, . . . , t
(j)
NV /l,1, where t(j)

i,1 = Com(∑lk
i′=l(k−1)+1 v

(j)
i′ ; r(j)

i,1 ) with
fresh randomnesses r(j)

i,1 and publish these commitments on the bulletin board. Notice that
t(j) = ∑NV

i=1 t(j)
i opens to the same message as t(j)′ = ∑NV /l

i=1 t(j)
i,1 (assuming both sums are

valid commitments). However the randomness in the commitment t(j)′ will be approximately
l times smaller than the one in t(j) which means that t(j)′ can be a valid commitment even if
t(j) is not. By proving in zero knowledge that for i ≤ NV /l the commitment t(j)

i,1 is valid and
opens to the same value as ∑li

i′=l(i−1)+1 t(j)
i′ we can ensure that the scheme remains secure

even if parameters are only set so that t(j)′ is valid and not t(j). This effectively allows us to
reduce BCom by a factor l. This process can be iterated by summing the t(j)

i,1 by buckets of l
and outputting new commitments t(j)

i,2 to the sum of the corresponding messages with fresh
randomnesses, once again accompanied by a proof that each commitment is valid and opens
to the same value as a sum of t(j)

i,1 (an example of such summations with buckets of size l = 2
is given in Figure 5.3).
Each authority can repeat this process until there are less than l commitments to be summed,
resulting in a bound BCom that grows linearly in l but remains independent of the number
of voters. On the other hand this new protocol will output an overhead of ∼ NV /(l − 1)
commitments (more precisely NV /l+NV /l

2 + . . . extra commitments) and 2 additional proofs
(which can be amortized over) for each new commitment.
Tallyj(par, pk1, . . . , pkNA ,BB, skj)

•
(
idi, π

V
i , t

(j)
1 , e(j)

1 , . . . , t(j)
NV
, e(j)
NV

)
:= bi, For (bi)i∈NV ∈ BB
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• ∀i ∈ [NV ] , r(j)
i,0 := Dec(e(j)

i , skj)

• ∀i ∈ [NV ] , v(j)
i,0 := Open(t(j)

i , r(j)
i , 1)

• For s ∈ (1, . . . , dlogl(NV )e):
– For u ∈ (1, . . . , dNV /l

se):
∗ r(j)

u,s ← D2n+1
R,σ

∗ r(j)
u,s
′
:= r(j)

u,s −
ul∑

x=(u−1)l+1
r(j)
x,s−1

∗ v(j)
u,s :=

ul∑
x=(u−1)l+1

v
(j)
x,s−1

∗ t(j)
u,s := Com

(
v

(j)
u,s; r(j)

u,s

)
∗ t(j)

u,s
′
:= t(j)

u,s −
ul∑

x=(u−1)l+1
t(j)
x,s−1

• πA,(j) = ΠAuth1
(
A, t(j)

u,s; r(j)
u,s

){
s ∈ (0, . . . , dlogl(NV )e)
u ∈ (1, . . . , dNV /l

se)

• πA,(j)′ = ΠAuth2

(
A, t(j)

u,s
′
, r(j)
u,s
′
){

s ∈ (1, . . . , dlogl(NV )e)
u ∈ (1, . . . , dNV /l

se)

• t(j)
Tot =

(
t(j)
u,s

){
s ∈ (1, . . . , dlogl(NV )e)
u ∈ (1, . . . , dNV /l

se)

• Sign and publish πA,(j), πA,(j)′, t(j)
Tot, r

(j)
1,dlogl(NV )e on the bulletin board

To compute the total tally one only needs to open the commitments t(j)
1,dlogl(NV )e for each

j ∈ [NA] as these are commitments to the partial tallies of each authority.
Tally(par, pk1, . . . , pkNA ,BB)

• For j ∈ [NA] recover t(j)
1,dlogl(NV )e and r(j)

1,dlogl(NV )e on BB

• ∀j ∈ [NA] , t(j) := Open(t(j)
1,dlogl(NV )e, r

(j)
1,dlogl(NV )e, 1)

• t := ∑NA
1 t(j)

• publish t

To verify the election one needs to verify the proof of each user, the proof of correct opening
of each t(j)

u,s, and the proof that t(j)
u,s
′
opens to zero. The verifier can then recompute the tally

and check that it has been done correctly.
Verify(par, pk1, . . . , pkNA ,BB, t)
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• For each i ∈ [NV ], recover πVi on BB.

• ∀i, verify πVi

• ∀j ∈ [NA] , ∀(s, u) ∈ (1, . . . , dlogl(NV )e) × (1, . . . , dNV /l
se) recover πA,(j)u,s and πA,(j)u,s

′

from BB

• ∀j, u, s verify πA,(j)u,s and πA,(j)u,s
′

• For j ∈ [NA] recover t(j)
1,dlogl(NV )e and r(j)

1,dlogl(NV )e on BB

• ∀j ∈ [NA] , t(j) := Open(t(j)
1,dlogl(NV )e, r

(j)
1,dlogl(NV )e, 1)

• Check that t = ∑NA
1 t(j)

We prove privacy and consistency in Section 5.6 and we discuss how to set the parameters in
Section 5.5.

5.5 Parameters

In this section we review the bounds imposed on the parameters of our scheme by the
correctness and security of the vote, and we propose concrete parameters in Table 5.2 as well
as benchmarks from our implementation of the scheme.
The correctness and security of our scheme impose the following bounds on the parameters:

• Overwhelming soundness of πV :
(
d
BC

)
2BC > 2256

• Correctness of πV : BV ≥ NA

√
2d(2n+ 1)σ

• Zero-knowledge of πV : B′V ≥ 11BC
√

2d(2n+ 1)BV

• Amortization of πA and πA′ : k > (λ+ 2)/ log(2d+ 1)

• Correctness of πA: BA1 ≥ (
√

2d(2n+ 1) +
√
`)σ

• Zero-knowledge of πA: B′A1 ≥ 11
√

2d`k(2n+ 1)BA1

• Correctness of πA′: BA2 ≥ (l + 1)(
√

2d(2n+ 1) +
√
`)σ

• Zero-knowledge of πA′: B′A2 ≥ 11
√

2d`k(2n+ 1)BA2

• Consistency of the vote (equation (1)): 2B′V ≤ BCom

• Consistency of the vote (equation (4)): 2BCNAB
′
A1 ≤ BCom

• Consistency of the vote (equation (7)): 2d(l + 1)B′A1 ≤ BCom

• Consistency of the vote (equation (8)): 2dB′A2 ≤ BCom



Ch
ap

te
r5

5.6 Security Analysis of the Voting Scheme 85

Parameter Notation Value
Ring dimension d 256

Modulus q 231 − 27 − 25 + 1
Module size n 5

Commitment std deviation σ 1
Number of voters NV arbitrary

Number of authorities NA 4
Number of candidates NC 2

"Bucket" size l 10
Amortization ` 1000

Table 5.2: A possible set of parameters for our E-Voting scheme. These parameters achieve a
post-quantum security of 119 bits in time and 93 bits in space.

Using the security analysis of Section 5.6, and the cryptanalysis of 2.3.4 to assess the hardness
of M-LWEq,n,σ and M-SISq,2n+1n,BCom we set our parameters as in Table 5.2 (we arbitrarily
fix the number of authorities to 4, anything larger than 2 is enough for security and this
does not impact performance significantly). For this set of parameters both the M-LWE and
M-SIS achieve a block size of β = 450 which corresponds to a security of 93 bits in space, 131
bits in time, and 119 bits in time for post-quantum security. Due to the improved E-voting
scheme of Section 5.4.3, the number of voters does not affect the security at all and can thus
be taken arbitrarily large.

We have implemented the complete voting scheme in C. The main computational problems
in the scheme are the sampling of discrete Gaussian vectors and multiplication of polynomials
in Rq. For the sampling we have implemented a two-stage Knuth-Yao sampler. We have
taken great care to ensure that the statistical distance between the sampled vectors and the
exact discrete distribution is below 2−100. This required computing the probabilities and the
lookup table for the sampler with a multiprecision library. We used pari [PAR16] for this task.
For the fastest possible multiplication in rings of the given form, one usually chooses the prime
q in such a way that Zq contains a 2d-th root of unity. This then implies that the modulus
Xd + 1 splits into linear factors over Zq and allows for using an NTT-based multiplication
algorithm. Unfortunately, the security requirements of our scheme prevent q from being
chosen in this way. Instead of completely resorting to a general algorithm that works for
multiplication modulo arbitrary polynomials, we have exploited the fact that for our prime
q, Xn + 1 does in fact split into 16 factors. This allowed us to use a general multiplication
algorithm only after 4 stages of NTT. We have used our own NTT implementation and the
highly optimized FLINT library [HJP13] for the base case multiplication. FLINT uses a
variant of Kronecker substitution for this task.

5.6 Security Analysis of the Voting Scheme

In this section we prove the privacy and consistency of our E-voting scheme as defined in
Section 5.2. For privacy we consider the following advantages for an adversary A:

• AdvCCAA (λ) the advantage of A in the CCA security game of the encryption scheme.
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• AdvHidA (λ) the advantage of A over the Hiding property of the commitment scheme.

Since the zero-knowledge of both the OR-Proof and the amortized proof are statistical, the
probability of distinguishing between the simulator and the actual proof is less than 2−λ.

Theorem 5.6.1. The advantage of any PPT adversary A over the privacy of our E-voting
scheme is at most:

AdvprivA (λ) ≤ NV

(
2AdvCCAA (λ) + l

l − 1AdvHidA (λ) + 2−λ+1
)

+ 2−λ+2

Proof. We use a game based proof:
Game G0 : In this game we run Exppriv,0A as defined in Section 5.4.1. The voting, casting
and tallying oracle are run honestly by the simulator using choice bit β = 0 and thus votes
v0,i for i ∈ [NV ].
Game G1,i≤NV : In this game we modify the honest voting oracle OVote(id, v0, v1) so that
when it runs Vote(par, pk1, . . . , pkNA , idi, v0), the OR-proof for ti = Com(vi; ri) is not done
honestly but simulated. Note that when simulated the proof is independent of the randomness
ri and vote v0,i. The advantage of the adversary in distinguishing between Game G1,i−1
and Game G1,i (where we consider Game G0 as Game G1,−1) is zero if Vote is never
called on idi (i.e. idi corresponds to a corrupted voter) and 2−λ otherwise.∣∣∣AdvG1,i

A − AdvG1,i−1
A

∣∣∣ ≤ 2−λ

Game G2 : In this game we modify the tallying oracle of the first authority (the honest
one) to make πA,(1) independent of the decrypted randomnesses (r(1)

i )i∈[NV ]. i.e. we modify
the Tally1(par, pk1, . . . , pkNA , BB, sk1) oracle so that the proof πA,(1) is computed using the
simulator of the amortized proof.∣∣∣∣AdvG2

A − AdvG1,NV
A

∣∣∣∣ ≤ 2−λ

Game G3 : In this game we modify the Tally1(par, pk1, . . . , pkNA , BB, sk1) oracle so that
the proof πA,(1)′ is computed using the simulator of the amortized proof.∣∣∣AdvG3

A − AdvG2
A

∣∣∣ ≤ 2−λ

Game G4,i≤NV : In this game we modify the voting oracle for identity idi so that it outputs
the encryption e(1)

i := Enc(0, pk1) instead of e(1)
i := Enc(r(1)

i , pk1). The simulator also
modifies the Tally1 oracle so that it uses r(1)

i without decrypting e(1)
i .∣∣∣AdvG4,i

A − AdvG4,i−1
A

∣∣∣ ≤ AdvCCAA (λ)

Game G5,i≤NV At this point all the values published by the oracles OVote and OTally1
are independent of the votes (v0,i)i∈[NV ] except for the commitments output by OVote. We
would like to use the hiding property of the commitment to change t(1)

i = Com(v(1)
i , r(1)

i ) to
t(1)
i = Com(v(1)

i + v1,i − v0,i, r(1)
i ). Doing so implies that the commitment t(1)

u,s
′
for u = di/le

and s = 1 will no longer be a commitment of zero but a commitment of v1,i − v0,i. This does
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not matter since the proof πA,(1)′ is now simulated and thus independent of the existence of
a witness that t(1)

u,s
′
commits to zero.∣∣∣AdvG5,i

A − AdvG5,i−1
A

∣∣∣ ≤ AdvHidA (λ)

Game G6,1≤s≤dlogl(NV )e−1,1≤u≤dNV /lse : Now that the votes have been changed from v0,i
to v1,i we need to change the values of the commitments of the partial sums in order for
t(1)
u,s
′
to be commitments to zero, this will be needed to change πA,(1)′ back to an honest

proof. To do so we let v0,u,s =
ul∑

x=(u−1)l+1
v

(j)
0,x,s−1 and v1,u,s =

ul∑
x=(u−1)l+1

v
(j)
1,x,s−1 (where

v0,i,0 = v0,i and v1,i,0 = v1,i). We can now change the commitments t(j)
u,s = Com

(
v

(j)
u,s; r(j)

u,s

)
to t(j)

u,s = Com
(
v

(j)
u,s + v1,u,s − v0,u,s; r(j)

u,s

)
and the partial sums are verified.∣∣∣AdvG6,i

A − AdvG6,i−1
A

∣∣∣ ≤ AdvHidA (λ)

Game G7,i≤NV : We revert the randomness encryptions to e(1)
i = Enc(r(1)

i ), this modification
is consistent with the tallying scheme as the randomness used have not been modified.∣∣∣AdvG7,i

A − AdvG7,i−1
A

∣∣∣ ≤ AdvCCAA (λ)

Game G8 : We compute the proof πA,(1)′ honestly. This is possible because all commitments
t(1)
u,s
′
are commitments of zero made with the appropriate randomnesses.∣∣∣∣AdvG8

A − AdvG7,NV
A

∣∣∣∣ ≤ 2−λ

Game G9 : Similarly we compute the proof πA,(1) honestly.∣∣∣AdvG9
A − AdvG8

A

∣∣∣ ≤ 2−λ

Game G10,i≤NV : We compute the proof πi honestly. This is possible because ti is still a
commitment to either zero or one with the same randomness as before.∣∣∣AdvG10,i

A − AdvG10,i−1
A

∣∣∣ ≤ 2−λ

Game G11 We run Exppriv,1A , this game is identical to Game G10,NV .

AdvG11
A = AdvG10,NV

A

We now consider the consistency of our voting scheme. For a tighter security proof we will
assume a slight modification on the algorithm Tallyj : Rather than using only the hash of
the corresponding commitments to compute the challenges for the proofs πA,(j) and πA,(j)′,
the authorities will hash the whole bulletin board (which among other things contains the
relevant commitments). Let H(BB) = (chl1, . . . , chlNA) and H ′(BB) = (chl′1, . . . , chl′NA) be
these hashes, the jth authority will then use chlj and chl′j as challenges for his proofs πA,(j)

and πA,(j)′. In doing so we guarantee that we can extract witnesses for all NA proofs πA,(j)
in one rewinding of the random oracle OH .
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Theorem 5.6.2. Let A be an adversary with non negligible advantage AdvconsA (λ) = ε in
experiment ExpconsA (λ). Using A we construct an extractor E who breaks the binding property
of Com in expected time 1/ε+ negl(λ)

Proof. We will assume that when A succeeds in ExpconsA (λ) all the bulletins on BB were
accepted by all the authorities, we can make this assumption because any bulletin that was
not accepted is effectively discarded (the authorities do not include it in their amortized
proofs nor in the final tally). We can thus use NV as the number of accepted tallies. E
starts by running A until it succeeds in ExpconsA (λ), i.e. until it outputs a bulletin board BB
that verifies correctly and such that ∃k ∈ NC , r[k] < h1,k or r[k] > NV − h0,k. Using the
soundness of the proofs πA,(j), E rewinds A and obtains witnesses r̂(j)

i and messages v̂(j)
i , for

i ≤ NV and j ≤ NA, such that:

t(j)
i = Com(v̂(j)

i ; r̂(j)
i ) (1)

Suppose there exists i ≤ NV such that v̂i := ∑NA
j=1 v̂

(j)
i mod q is such that φ(v̂i) /∈ {0, 1}NC ,

E runs the soundness extractor for πVi and obtains r̄i, c̄ ∈ R and v̄i ∈ {0, 1} such that:

c̄ti = Com(c̄v̄i, r̄i) (2)

By summing equations (1) over j ∈ [NA] and multiplying them by c̄, we obtain the following:

c̄ti = Com(c̄v̂i; c̄
NA∑
j=1

r̂(j)
i ) (4)

Since we assumed that φ(v̂i) /∈ {0, 1}NC and we know φ(v̄i) ∈ {0, 1}NC , if we have ‖r̄i‖ ≤ BCom
and

∥∥∥c̄∑NA
j=1 r̂(j)

i

∥∥∥ ≤ BCom (which we will ensure in Section 5.5), then E has successfully
opened c̄ti to two different messages and thus broken the binding property of Com.
We can now assume that for every i ≤ NV , φ(v̂i) ∈ {0, 1}NC . For s ∈ [dloglNV e], u ∈
[dNV /l

se] and j ∈ [NA], let v̂(j)
u,s =

ul∑
x=(u−1)l+1

v̂
(j)
x,s−1 (where v̂(j)

u,0 := v̂
(j)
u ), let t(j) ′

u,s = t(j)
u,s −

ul∑
x=(u−1)l+1

t(j)
x,s−1. E runs the soundness extractor for πA,(j)′ and obtains r̂(j) ′

u,s such that

t(j) ′
u,s = Com(0, r̂(j) ′

u,s ).
Using the extraction for πA,(j) we already have r̂(j)

u,s and messages m(j)
u,s such that:

t(j)
u,s = Com(m(j)

u,s; r̂(j)
u,s) (5)

Now suppose that for all u, s, j we have m(j)
u,s = v̂

(j)
u,s this implies that the ciphertext t(j)

1,dloglNV ehas an extraction:
t(j)

1,dloglNV e
= Com(v̂(j)

1,dloglNV e
; r̂(j)

1,dloglNV e
) (6)

By construction of v̂(j)
u,s we have v̂(j)

1,dloglNV e
= ∑NV

i=1 v̂
(j)
i . Since the bulletin board verifies

correctly we know that t(j)
1,dloglNV e

opens to plaintext v(j) such that r = ∑NV
j=1 v

(j) by the
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binding property of Com we have that v(j) = ∑NV
i=1 v̂

(j)
i and thus:

r =
∑
j

v(j)

=
∑
j

∑
i

v̂
(j)
i

=
∑
i

v̂i

=
∑

i∈HV ′
vi +

∑
i∈CV ′

v̂i

= h1 +
∑
i∈CV ′

v̂i

Since we have shown that for all i ≤ NV , φ(v̂i) ∈ {0, 1}NC this implies that h1,k ≤ r[k] ≤
NV −h0,k which contradicts the fact that A wins experiment Expcons

A (λ). We have thus shown
that there exist u, v, j such that m(j)

u,s 6= v̂
(j)
u,s, i.e. one of the partial sum does not commit to

the proper value.
Fix a j ≤ NA for which there exist such a commitment and let u, s be the smallest such triple
(in lexicographic order). In particular this implies that s ≥ 1 (as we have proven that all t(j)

i

open to v̂(j)
i ) and that for x ∈ ((u− 1)l + 1, ul) we have the following witness extracted from

πA,(j):
t(j)
x,s−1 = Com(v̂(j)

x,s−1, r̂
(j)
x,s−1) (7)

By summing equation (7) over x ∈ ((u− 1)l + 1, ul) and subtracting the extraction for t(j)
u,s

we obtain:

t(j)
u,s

′ = t(j)
u,s −

ul∑
x=(u−1)l+1

t(j)
x,s−1

= Com

m(j)
u,s − v̂(j)

u,s; r̂(j)
u,s −

ul∑
x=(u−1)l+1

r̂(j)
x,s−1

 (8)

From the extraction of πA,(j)′ we had t(j)
u,s
′

= Com(0, r̂(j) ′
u,s ). We know that m(j)

u,s 6= v̂
(j)
u,s,

which implies that if
∥∥∥∥∥r̂(j)
u,s −

ul∑
x=(u−1)l+1

r̂(j)
x,s−1

∥∥∥∥∥ ≤ BCom and
∥∥∥r̂(j) ′
u,s

∥∥∥ ≤ BCom (which we ensure

in Section 5.5) then we have found two distinct openings for t(j)
u,s
′
and broken the binding

property of Com.
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Chapter 6
Conclusion and Open Questions

6.1 Conclusion

Throughout this thesis we have studied the “Fiat-Shamir with Aborts” technique for construct-
ing lattice-based zero-knowledge proofs of knowledge. We have put forward new constructions
which increase the expressiveness as well as the practicality of proofs of knowledge. We have
used these protocols as building blocks to create efficient lattice-based privacy protocols.

We proposed proofs of knowledge for the disjunction of NP Languages over lattices, bridging
the gap with similar number theoretic constructions. To do so we observed that well chosen
challenge spaces can be endowed with an “ad-hoc” group law, allowing for generic OR-Proofs
constructions to be applied.
We constructed proofs of knowledge for subset membership for commitments, i.e. proofs

that a commitment opens to a message in a fixed subset of the message space. To do so we
studied the properties of the automorphisms of polynomial rings and have shown that the
so-called Galois automorphisms can be used in conjunction with zero-knowledge proofs in
order to show that committed message belong to subrings of variable dimensions. Through
this use of the structure of polynomial rings we obtained proofs of subset membership with
constant proof size, and maybe more importantly for privacy-preserving applications: these
proofs use subsets containing messages that have inverse in the ring.

Another approach taken was to improve the state of the art in amortized zero-knowledge.
While previous works already achieved exact amortized zero-knowledge proofs with constant
overhead and polynomial slack, they required either to be amortized over more than thousands
of equations or were very intensive in running time both for the prover and verifier. We
presented a new amortized proof that has substantially the same overhead and slack but can
be used with as few as 12 equations. Surprisingly the protocol we presented was conceptually
much simpler than previous works.

Building upon our proofs for subset membership we constructed a group signature with size
independent of the group size. While such a result already existed, previous constructions
were not practical as they required the repetition of a proof of knowledge with constant
soundness. In contrast our construction focuses on efficiency and obtains signatures that are
barely larger than 500KB.

Lastly we proposed what is to our knowledge the first efficient lattice-based e-voting scheme.
Building upon our OR-proofs and amortized proofs we constructed a voting scheme that
boasts small ballot size, around 30KB, and very efficient complexity with algorithms that

— 91 —



92 Chapter 6 Conclusion and Open Questions

run in a matter of milliseconds.

6.2 Open Questions
Question 6.1. Can we obtain exact proofs of knowledge with overwhelming soundness without
any repetition or amortization?

Such a proof of knowledge would be the holy grail of lattice-based zero knowledge. However
obtaining overwhelming soundness requires a large challenge space, and it is difficult to
imagine how to obtain such a challenge space without either increasing the number of
equations proven or obtaining a knowledge extractor whose output depends on the challenges.

Question 6.2. Can we obtain proofs without slack?

While the presence of polynomial slack in lattice-based zero knowledge is not terribly
inconvenient, having proofs without slack would allow for smaller parameters and more
efficient constructions. An idea towards this goal would be the following: Given As = t with
s a binary vector, compute a regular lattice based zero-knowledge proof (possible approximate
or amortized) with polynomial slack, and add an extra proof that that s is binary. Taking
inspiration from proofs for arithmetic circuits on could sample a random vector v and prove
that 〈v ◦ s,1− s〉 = 0

Question 6.3. Can we obtain smaller group sizes for our group signature?

The way we construct the group in our group signature inherently forces the group size to
be at least q2. We could maybe obtain a smaller group size if on top of showing that id is
invariant under a set of automorphism we also showed that it+is small.

Question 6.4. How can we adapt our e-voting scheme to different types of election?

For now our e-voting scheme computes the result of an election as the sum of votes in
{0, 1}NC , however we could consider different types or votes or tallies. For example we could
prove that voter voted for exactly one candidate by doing an or proof over the possible
votes (1, 0, . . . , 0), (0, 1, 0, . . . , 0), etc... However if we want elections where voters vote for
exactly two candidates the same method will give proofs of size quadratic in the number of
candidates. We could search for better ways to encode votes or prove properties about them.



Notation
General Mathematical Notations
:= “Is defined as”
N The set of natural numbers
Z The set of integers
Q The set of rationals
R The set of reals
log Base 2 logarithm
v A (column) vector
M A matrix
R The ring Z [X] /Xd + 1
〈·, ·〉 The inner-product
b·e The rounding function
|S| Size of a set
‖· · ·‖p,∞,max Norms
s(M) The matrix operator norm
DR,σ A discrete gaussian
o,O, ω,Ω Asymptotic notations
σ A standard deviation
ξ An automorphism of R
δ0 The root-Hermite Factor
β A block-size
C A challenge set
C̄ Set of differences (excluding 0) of C
q A prime modulus
λ The security parameter
Notations Specific to Chapter 2
ρσ A continuous Gaussian
L A lattice
λi(L) The ith minimum of L
det(L) The determinant of L
Vol(L) The volume of L
B̄ A closed ball
Notations Specific to Chapter 3
P A prover
V A verifier
R A binary relation
L An NP Language

— 93 —





Abbreviations

Primitives
AKE Authenticated Key Exchange
KEM Key Encapsulation Mechanism
PKE Public Key Encryption
ZKPoK Zero-Knowledge Proof of Knowledge
Algorithms
BKZ Block Korkin-Zolotarev
GPV Gentry-Peikert-Vaikuntanathan
GSO Gram-Schmidt Orthogonalization
LLL Lenstra-Lenstra-Lovász
Computational Problems
BDD Bounded Distance Decoding
CVP Closest Vector Problem
ISIS Inhomogeneous Short Integer Solution
LWE Learning With Errors
SVP Shortest Vector Problem
SIS Short Integer Solution
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Résumé
Le chiffrement à base de réseaux euclidiens a connu un
grand essor durant les vingt dernières années. Autant
grâce à l’apparition de nouvelles primitives telles que
le chiffrement complètement homomorphe, que grâce
à l’amélioration des primitives existantes, comme le
chiffrement á clef publique ou les signatures digitales,
qui commencent désormais à rivaliser avec leurs ho-
mologues fondés sur la théorie des nombres. Cela dit
les preuves à divulgation nulle de connaissance, bien
qu’elles représentent un des piliers des protocols de
confidentialité, n’ont pas autant progressé, que ce soit
au niveau de leur expressivité que de leur efficacité.

Cette thèse s’attelle dans un premier temps à
améliorer l’état de l’art en matière de preuves à di-
vulgation nulle de connaissance. Nous construisons
une preuve d’appartenance à un sous ensemble dont
la taille est indépendante de l’ensemble en question.
Nous construisons de même une preuve de connais-
sance amortie qui est plus efficace et plus simple que
toutes les constructions qui la précèdent.

Notre second propos est d’utiliser ces preuves à divul-
gation nulle de connaissance pour construire de nou-
velles primitives cryptographiques. Nous concevons
une signature de groupe dont la taille est indépen-
dante du groupe en question, ainsi qu’un schéma de
vote électronique hautement efficace, y compris pour
des élections à grand échelle.

Mots Clés
cryptographie, réseaux euclidiens, preuves de connais-
sance, signatures de groupe, vote électronique.

Abstract
Lattice based cryptography has developed greatly in
the last two decades, both with new and stimulat-
ing results such as fully-homomorphic encryption, and
with great progress in the efficiency of existing cryp-
tographic primitives like encryption and signatures
which are becoming competitive with their number
theoretic counterparts. On the other hand, even
though they are a crucial part of many privacy-based
protocols, zero-knowledge proofs of knowledge are still
lagging behind in expressiveness and efficiency.

The first goal of this thesis is to improve the quality of
lattice-based proofs of knowledge. We construct new
zero-knowledge proofs of knowledge such as a subset
membership proof with size independent of the subset.
We also work towards making zero-knowledge proofs
more practical, by introducing a new amortized proof
of knowledge that subsumes all previous results.

Our second objective will be to use the proofs of
knowledge we designed to construct novel and efficient
cryptographic primitives. We build a group signature
whose size does not depend on the size of the group,
as well as a practical and highly scalable lattice-based
e-voting scheme.

Keywords
cryptography, lattices, zero knowledge, group signa-
tures, e-voting.
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