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Abstract

Porous materials are strategically important in chemical engineering, e.g.,
sustainable developments based on new clean energies, capturing Greenhouse gas, etc.
The development and application of porous materials involve studies of the
thermodynamics and dynamics of fluids in porous materials. In last decades, plenty of
experimental and theoretical studies have been reported. However, due to the variety of
porous materials, and thermodynamic properties of confined fluid are affected by so
many materials and fluid properties, e.g., pore size distribution, pore connectivity, etc.,
studies are still on a case-by-case way. The case-by-case study is hard to offer neither
the control variables of confined fluid nor the common relation among the different
confined fluids. The development of thermodynamic theories that can accurately
describe the thermodynamic properties of confined fluids becomes more and more
important. This thesis investigates the relation between confined fluid and the
corresponding bulk fluid, interfacial properties of fluids at a curved surface, the general
equation of state for confined fluids, and quench effect. This thesis is composed of
following several parts:

(1) With the help of scaled particle theory (SPT) and molecular simulation, we
studied the thermodynamic properties of the confined fluid, e.g., pressure, chemical
potential. A general scale relation has been found, which links the chemical potential,
free energy density, and the pressure, from the confined fluids to that of the fluid in the
homogeneous phase. This scale relation shows that the difference in thermodynamic
properties between a confined fluid and a homogeneous fluid can be described solely
by the porosity, the excess adsorption amount. The intrinsic relation between scaling
relation and Gibbs adsorption theory is also revealed. This scaling relation provides a
new method to measure the thermodynamic properties of confined fluid that are
experimentally difficult to measure directly.

(2) By introducing a higher order curvature term into the SPT theory, we have
developed a new, fully analytical approach called ASPT (augmented scaled particle
theory). ASPT significantly improves the accuracy of SPT and gives excellent results
for both the homogeneous phase and the surface tension of fluids at a spherical surface.

(3) Although morphological thermodynamics is supposed to be a general approach

for studying confined fluids, it has never been tested in complicated systems, such as
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fluids in porous materials. We proposed an equation of state based on morphological
thermodynamics for fluids confined in various situations. It turns out that this approach
makes it possible to obtain excellent results for the thermodynamics of these confined
fluids.

(4) The size of a medium is described by the chemical potential to insert a new
particle. Using SPT theory and Monte-Carlo simulations, we have demonstrated that a
quench-annealed system is more congested than a system without such disorders (e.g.,
binary mixture).

With the help of theoretical study and molecular simulation, this thesis studies the
thermodynamic properties of confined fluids, clarifies the control variables of confined
fluids, and discovers the common law of thermodynamics properties among different
confined fluids. A scaling relation and two new equations of state were reported, they
will deepen the understanding of confined fluid, and will advance the development of
the thermodynamics for confined fluids.

Keywords: confined fluids; porous materials; statistical thermodynamics; adsorption;

morphological thermodynamics
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Résumé

Les matériaux poreux ont une importance stratégique dans de nombreux domaines,
par exemple, des développements durables basés sur de nouvelles énergies propres, des
capteurs des gaz a effet de serre. Le développement et I'application de matériaux poreux
impliquent des études sur la thermodynamique et la dynamique des fluides adsorbés
dans des matériaux poreux. Au cours des dernieres décennies, de nombreuses études
expérimentales et théoriques ont été effectuées. Cependant, en raison de la diversité des
matériaux poreux, les propriétés thermodynamiques des fluides confinés peuvent étre
affectées par de nombreux parameétres caractérisant les matériaux poreux, tels que la
distribution de la taille des pores, la connectivité des pores, les interactions fluide-
matériau, etc. Jusqu’a présent, les études théoriques des fluides confinés ont ét¢ menées
au cas par cas. Cette situation ne permet pas de voir clairement les caractéristiques
communes des fluides confinés, encore moins les éventuels liens entre les fluides
confinés et ceux en phase homogene. Lors de cette thése, nous avons mené des études
sur les quatre problémes suivants :

(1) Nous avons étudié les propriétés thermodynamiques (potentiel chimique et la
pression) d’un nombre important de fluides confinés dans divers milieux poreux. Une
relation d'échelle générale a été trouvée, qui relie le potentiel chimique ainsi que la
pression, des fluides confinés au celui du fluide en phase homogene. Cette relation
d'échelle montre que la différence de propriétés thermodynamiques entre un fluide
confiné et un fluide homogene peut étre décrite uniquement par la porosité, la quantité
d'adsorption en exces. Cette relation d'échelle a avancé significativement notre
compréhension de la thermodynamique des fluides confinés et ouvre des perspectives
trés intéressantes pour déterminer les propriétés thermodynamiques de fluides confinés
a partir des celles des fluides homogenes.

(2) En introduisant un terme de courbure d'ordre supérieur dans la théorie SPT,
nous avons développé une nouvelle approche totalement analytique, baptisée ASPT
(augmented scaled particle theory). ASPT améliore significativement la précision de la
SPT et donne des excellents résultats a la fois pour la phase homogene et pour les la
tension superficielle au voisinage d’une surface sphérique.

(3) Bien que la thermodynamique morphologique est sensée d’étre une approche
générale pour traiter des systemes hétérogéne dans lesquels une interface
morphologiquement complique est présente, elle n’a jamais été testée dans des

systémes compliqués, comme par exemple des fluides confinés en milieux poreux.



Nous avons mis au point une approche basée sur la thermodynamique morphologique
pour des fluides confinés dans de diverses situations. Il s’aveére que cette approche
permet d’obtenir d’excellents résultats pour la thermodynamique de ces fluides
confinés.

(4) L’encombrement d’un milieu est décrit par le potentiel chimique pour insérer
une nouvelle particule. A I’aide de la théorie SPT et des simulations Monter-Carlo, nous
avons démontré que un systéme avec des désordres figés (« quench-annealed » systee)
est plus encombré qu’un systéme sans tels désordres (par exemple, mélange binaire).

A travers les études décrites ci-dessus, nous avons réussi, a la fois, a développer
certaines nouvelles méthodes théoriques pour des fluides confinés et a apporter des
nouveaux ¢léments de réponse a quelques questions fondamentales qui étaient ouvertes

auparavant.

Mots clés: fluides confinés; matériaux poreux; thermodynamique statistique;

adsorption; thermodynamique morphologique
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1. Introduction

1.1 Porous material and its application

High-performance functionalized materials have strategic importance for many
societal issues, e.g., sustainable developments based on new clean energies. Hydrogen
is one of possible future clean energies. Scientific research has been actively undertaken
to find a viable material for hydrogen storage !. In the late 1990s, carbon nanotubes
generated excitement for hydrogen storage while it turned out later that they do not
attain the viable adsorption capacity, (more than 6% of the system’s total weight).
Currently, the searching of such a storage system is directed toward new synthetic
porous materials. 2

Besides fluid storage, porous materials also have many other important
applications. Various zeolites have been used as molecular sieves and catalysts. Due to
the specific pore size and topology, high selectivity is imparted to the zeolite-based
catalysts. Such selectivity is extensively exploited in various chemical processes, e.g.,
catalytic cracking in the oil industry. When chiral building blocks are used for
elaborating porous materials, the selectivity can be pushed to a higher level and thus
enantioselective porous materials have been synthesized®, which can have important
applications in pharmaceutical industry.

Now, material engineering allows for bestowing various interesting properties on
porous materials. For example, magnetic porous materials have been synthesized # and
some can have the transition temperature well above room temperature’. One attractive
feature offered by the porous magnetic materials is their module ability. On one hand,
the magnetic property can be modulated by choosing the appropriate building blocks
for the synthesis. On the other hand, it can also be tuned, even after the materials being
fabricated, by guest molecules adsorbed in the pores®. There is also considerable interest
in the optical properties of some porous materials on account of their tunability and the
possibility to incorporate a wide range of metal ions and organic ligand chromophores.

1



Such materials are of potential application as phosphors or fluorescent probes,
particularly in chemical sensors’. Another very interesting example is aerogel. Aerogels
are synthesized by using a gas to replace the liquid in the pores of gel. Aerogels have
many interesting properties, such as very large surface area, low density, large porosity,
and very low thermal conductivity. Thus, the aerogel is an ideal thermal insulation
material and has a potential application in aeronautics and astronautics. 371° Due to the
large porosity and the very large surface area, aerogels are also wildly used in
catalysis.!!"!3 The aerogel is a typically random porous material. With the development
of synthesis technique, the ordered porous material such as Metal-organic frameworks
(MOFs) and Zeolite imidazolate frameworks (ZIFs) have attracted more and more
attention in both fundamental study and industry applications. For instance, MOFs is a
coordination compound with a three-dimensional pore structure: organic struts link
metal-containing clusters. MOFs were first synthesized in the late 1990s. Young'4,
Fujita!®, Venkataraman'¢ reported the applications of MOFs in catalysis of coordination
polymers and gas adsorption. MOFs have many attractive properties i.e., low density,
high solid-liquid interface area, and the controllable functionality.'’”!* The most
interesting property of MOF is its flexibility.?’> Normally, the supramolecular host-
guest interaction leads to the flexibility of porous material. However, recent study found
that the framework flexibility is also presented without the guest molecule and the
phenomenon of adsorption or desorption. The framework flexibility of MOFs may be
caused by some external stimulus in general (by guests and external force fields i.e.,
mechanical stress, photoresponse, thermoresponsivity, host-guest interaction, electrical
and magnetic interaction). Due to the framework flexibility of MOFs, it has potential
application in many industrial fields, such as gas separation, biomedical application,
catalysis, and sensor. The MOFs sensor is based on the framework flexibility can cause
a reversible color change. For instance, DUT-8(Ni) changes its color from yellow to
green during the adsorption of CO», n-butane, N, etc.?> Another example is based on

the host-guest interactions, Yanai et al. were proposed that the composite material



DSB@)][Znz(bdc).dabco], (DSB — distyrylbenzene) can be used to detect CO, and
CoHo. ™

Another very important application of porous materials is controlled releasing
process of drugs.?>*¢ Considerable efforts devoted to developing methods for controlled
drug-release to satisfy the ever-increasing demand for prolonged and better control of
drug administration. The capability of continuous drug delivery over a specific period
can assure an optimized therapeutic efficiency and a better patient’s comfort for various
chronic diseases, e.g., diabetes, cancers, AIDS, etc. A long release time requires a large
capacity to store drug molecules. The controlled delivery necessitates some adaptability
of the porous materials according to the drug content inside. New hybrid flexible porous
materials opened some attractive perspectives for controlled drug delivery.

Above examples showed the strategic roles played by porous materials in a large
variety of domains ranging from catalysis, separation, sensor technology to the
pharmaceutical industry. It is estimated that porous solids represent more than 20% of
the Gross Domestic Product of the industrial countries for the applications they imply

directly or indirectly.?’

1.2 Experimental study on porous material

Since the porous materials have been used in many new areas, more precise control
over the pore geometric properties is required. The templating-fabrication strategy is
the most popular technique for control the pore size distribution and creates a variety
of porous networks with a wide range of pore sizes from the micropore to macropore.?®
33 In this method, Organic-bases molecules, polymer, and emulsion are normally
considered as template species. The template species will be removed by heat treatment
(soft template), acid or alkali solution (hard template) than the controllable pore scales
can match the needs of different applications. Templating-fabrication strategy has
widely used to synthesize ordered microporous material, such as MCM-48 and SBA-

16, ordered mesoporous materials like MCM-41. Those materials are widely considered



as catalysis, sensor, and capacitor. Another very interesting new synthesis technique is
Pekala’s method. In this method, a gas replaced the liquid in the pores of gel. Hence,
aerogels have a network structure of interconnected nanosized primary particles and
have a wide range pore size from micropores, which are related to the intra-particle
structure, to macropores, which are produced by the inter-particle structure. Those two
synthesis methods introduce how to control the pore structure, now, how to characterize
the pore structure of random porous material will be introduced.

To characterize and reconstruct the morphologies of porous material, the statistical
geometric properties obtained from two-dimensional images of microstructure, i.e.
porosity, interfacial surface area, and the two-point correlation function are widely
used.’* More recently the chord length distribution’ has been employed in the
generation of 3D microstructural models.*%3” These methods have been very instructive
in understanding the general properties of complex media, however, direct prediction
of transport properties**-° from reconstructed samples have been in only fair agreement
with experimental data. These standard methods base characterization and
reconstruction primarily on geometrical information; there is no attempt to match the
genesis of the material. Understanding how morphologies of porous material influence
the properties of fluids in the porous material is important not only for a fundamental
point of view but also for conceiving innovative and sustainable industrial processes.
Unfortunately, some thermodynamic properties of fluid in porous material still can not
be obtained from the experiment, such as pressure and the free energy of the confined
fluid. Hence, the theoretical study of the properties of fluids in porous material is still

needed. In next section, some theoretical models will be introduced.

1.3 Theoretical Model

Although a large literature exists on the study of confined fluids by both
experimental and theoretical methods.**~!”> Today, we do not have yet a precise idea

about the respective roles played by pore-connectivity, pore-size distribution, the



morphologies of pore space, or quench disorder. The confined fluid particles feel not
only the interaction with other fluid particles but also from solid ones. The interaction
between fluid particles and porous materials can also make the confined fluid behave
very differently from the bulk one. In this section, the models of pair potential and the

models for porous material are introduced.

A. Models of the pair potential

Generally, the pair potential can be divided into two parts, the short-range repulsive
part, which is derived from the overlap of outer electron shells, and the long-range
attractive part, which comes from the spontaneous fluctuations of the electronic charge
distribution. Due to the harsh repulsive part built the short-range order of fluid, which
lead to the structure of fluid, the repulsive part is the most important property of the
fluid. Hence, the first interaction model only considered the repulsion between fluid
particles and the attraction is ignored, which is hard sphere potential. The pair potential,

v(r), of hard sphere model is

v(r)z{oo’ e (1.1)

0, r>c’
where o is the diameter of the fluid particle, and  is the distance between two fluid
particles. Since only the repulsive part is considered in this model, which means the
fluid only has one fluid phase, the vapor-liquid phase transition cannot be found in hard
sphere fluid. And the freezing transition can be found in hard sphere fluid at high fluid
density, po® =~0.945. If the diameter, d, is equal to zero, the ideal gas model is
obtained. In ideal gas model, the pair interaction is ignored, this model can be used to
study the dilute system. Although this model is very simple, it still can offer many
important features of confined fluid, as presented by Dong.!”® A simple pair potential
model that can be used to describe the vapor-liquid phase transition can be proposed

based on hard sphere model with an additional attraction, named square-well potential,



o0, r<o
v(r): g, o<r<d, (1.2)
0 r>d

where ¢ is the depth of the well, and d is the width of the well. Since the attractive
part is from the spontaneous fluctuation, which means it should have a very smooth

form. The Lennard-Jones potential offers a continuous function to describe the pair

o(r)= 4.{(%) —(%” (13)

where o is the collective diameter, ¢ is the depth of the well. This model is widely

potential,

used in molecular simulation. One should mention that this potential has a very long
tail. To accelerate molecular simulation, a cut-off technique is widely used. To keep the

continuity of the Lennard-Jones potential, it can be rewritten as

v(r)=4a{(%jn —(%jé:l—v(rc). (1.4)

And the Lennard-Jones potential always is divided by a reference hard sphere part and

¢ and Barker-Henderson

an attractive part, as Weeks-Chandler-Andersen theory!’
theory!””. From the above models of pair potential, one can found that the pair potential
can always separate into two parts. This idea is from Van der Waals. In addition,

perturbation theories, which is formed based on this idea, is a powerful tool for studying

thermodynamic properties of fluids.

B. Models of porous material

Generally, the porous material can be divided into two parts, the ordered porous
medium, and the disordered porous medium. The ordered porous medium like MOF or
ZIF can be described by a repeatable unit cell. The disordered porous medium, random
porous medium, are always built with the help of fixed particles. However, recent
studies found that the structure of porous material might have changed, during the fluid

adsorbed in, such as swelling, or contracting.!”1%22178-192 In some cases, this behavior



cannot be ignored like in MOF or ZIF.!%182.186 Most of models of disordered porous
medium assumed that the structure of porous medium is a rigid one, which will not be
modified by the behavior of fluid. This assumption makes the porous material can be
considered as an external potential field, which is very convenient for theoretical
approaches, such as, integral equations and density functional theory (DFT), and
computer simulation. Although the structural change of porous medium is ignored, the
description of the disorder of random porous material is still very complicated. The
properties of fluid in random porous material must be taken two ensemble average. The
first ensemble average is over all fluid configurations. And the second ensemble
average is over all material configuration. Although the structure of random porous
medium is a disordered and inhomogeneous one, after the ensemble average, it can be
considered as an isotropic one. This concept is the fundamental basis of theoretical
studies of Madden-Glandt model such as, Ornstein-Zernike equation!!4!4%157.163,
Density Functional Theory®®!3L16LI67172 "and Scaled Particle Theory©!:66:84.193-202,

The first random porous medium model was proposed by W. G. Madden and E. D.
Glandt in 1988.%" In this model, the porous medium, also called matrix, is generated by
fixing an equilibrium fluid, and the matrix particles are considered as an obstacle. The
void among matrix particles is considered as pore. The interaction between matrix
particles can be ideal gas potential or the hard sphere potential. And the porous medium
is called an overlapping hard sphere (OHS) matrix and hard sphere (HS) matrix,
respectively. And the interaction between fluid and matrix can be any pairwise additive
potential. During the fluid adsorbed in porous medium, the fluid-matrix interaction will
not modify the matrix structure. The matrix particle distribution is same as an
equilibrium fluid distribution. With powerful theoretical tools, such as Ornstein-Zernike
equation, density functional theory, numerous studies of confined fluid are carried out.
The behavior of fluids confined in random porous medium, such as, phase

59,80,145-147,150

behavior , adsorption’6-82104105.110.124 " qi ffsivity*® 198 were systematically

studied.



However, many works of confined fluid are based on Madden-Glandt model, some
fundamental questions are still unsolved. For instance, how to calculate the pressure of
fluids in Madden-Glandt matrix is still questioned. Rosinberg et al. used a replica
technique to calculate the pressure of fluid confined in Madden-Glandt matrix.>® And a
complicated Virial expression for pressure was obtained. To obtain a simple expression
of pressure in Madden-Glandt matrix, Dong also reported a simple expression of
pressure which was obtained by considering the mechanic equilibrium.?’ In this same
year, Kierlik et al. also proposed a so-called thermodynamics pressure, and found that
this pressure and mechanical pressure are not identical.”> In Kierlik’s work, the
Madden-Glandt matrix was obtained from Grand canonical ensemble. It should be
mentioned that only mechanical pressure can be used in molecular simulation. In 2005,
Dong and Chen first proposed a Virial equation for the thermodynamic pressure which
can be used in molecular simulation and an exact relation between the pressure of fluids
confined in porous material and the pressure of the corresponding bulk fluid.'®* This
relation provides, for the first time, the basis of an experimental method for measuring
the fluid pressure inside a random porous material. Also, the definition of the system
volume may cause the difference among those pressure results. From an ideal gas
system, one can find that if the system volume contains the volume occupied by matrix
particle, the pressure equilibrium between the confined system and the corresponding
bulk system will be broken. Hence, choosing the accessible volume as system volume
seems more reasonable. However, the accessible volume is difficult to measure in
experiment.

The morphology of some real porous materials like MCM-41 are sponge-like?®,

which is significantly different from the Madden-Glandt matrix. Hence, Zhao et al.!”!
proposed a new matrix model, named hard sponge matrix model. In this model, the
matrix particle is considered as the pore, which is not like the previous model where

the matrix particle is considered as obstacle. This model can be considered as the

opposite of overlapping hard sphere matrix. The Ornstein-Zernike equations of fluids



confined in hard sponge model were proposed by Zhao et al. by using both diagram
expansion and replica method. An analytical equation of state of fluid confined in hard
sponge matrix was reported by Holovko et al.”” In this work, the strict derivation of this
equation of state is leaked. Here, it should be noted that, in Madden-Glandt model, from
the viewpoint of fluid, the interface between fluid and matrix is a concave one, in hard
sponge model, the interface between them is a convex one. How this difference will
change the thermodynamic properties of confined fluid will be discussed in Chapter 4.
Based on this model, Dong et al. *¢ developed a new random porous model, called soft-
sponge model, and the only difference from hard sponge model is when the fluid
particle overlapped with material the interaction potential does not tend to be infinity,
but finite positive value.

Above two porous medium models can describe some fundamental features of
fluids in porous medium, such as disorder effect, the pore size distribution, and pore
connectivity. In experiment, the templating-fabrication strategy skill is widely used in
the synthesis of porous materials for controlling the pore size distribution. The template
components are removed by heat treatment, acid or alkali solution. The pore size of this
kind of material can be from micropore to macropore, two models cannot describe. The
first templated matrices model is reported by Van Tassel. The Van Tassel matrix model
is generated by fixing a two-component equilibrium fluid one component is considered
as matrix species and the other component is the template species. After fixing, the
template component will be removed. The pores in this model are generated from two
parts, the first one is the voids between matrix particles, the primitive one, and the
second one is from the removed template species. This model is very similar to the
process of fabricating the templated porous material in experiments. However, this
process is hard to describe in theoretical study. Even for an ideal gas fluid in Van Tassel
matrix model, the expressions of the thermodynamics properties are not entirely
analytically.!”® Zhao et al. also reported a templated porous medium.!”> In Zhao’s

template matrix model, the template pore is generated by piercing some cavities in the



Madden-Glandt matrix. This process can simplify the description of the structure of
templated porous materials. The Ornstein-Zernike equations of fluids confined in
Zhao’s template matrix model were proposed by Zhao et al. by using both diagram
expansion and replica method. Normally, there are two methods for studying the
properties and the behavior of fluid confined in porous medium, simulation, and

theoretical approach.

1.4 Theoretical approach

Many interesting studies of the properties and phase behavior of confined fluids
are based on some numerical methods, i.e., molecular simulation, density functional
theory, and Ornstein-Zernike equations. In this section, two general methods which
have potential to offer totally analytical results of fluids confined in different porous
materials will be introduced in next two subsections. Some numerical methods for

confined fluid will be also introduced in the last subsection.

A. SPT for confined fluid

Scaled particle theory (SPT) was first reported by Reiss et al.?*#?% in more than a
half century ago. It provides a powerful tool to determine the equation of state of a bulk
hard sphere (HS) fluid. SPT is not just limited to calculating the thermodynamical
properties, i.e, pressure, chemical potential. It can also provide many surface and
structural properties, i.e. surface tension, Tolman length, and radial distribution function.
Many extensions and applications have been reported, e.g. Dong and his coworkers
66,193,195 extend SPT to HS fluids confined in some random porous matrices.

Patsahan et al. first extended SPT to fluids confined in Madden-Glandt matrix
model and obtained an accurate analytical equation of state. The basic idea of SPT is to
insert an additional scaled particle into a fluid, this is equivalent to creating a spherical
cavity. The excess chemical potential of inserting a point scaled particle can be obtained

exactly. And a thermodynamical consideration can be used to describe the work of

creating a finite size spherical cavity. Patsahan et al. introduced the exact analytical
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results of a point scaled particle in hard sphere or overlapping hard sphere matrix, and
the first equation of state for confined fluids, SPT1, was carried out. However, in SPT1,
when the matrix density tends to zero and the matrix size tends to infinity, the
expression of SPT1 cannot reduce to the original bulk SPT result. Later, with the help
of a new formulation of SPT, this inconsistency was eliminated in SPT2. In this
formulation, the morphology of porous materials is only presented by four parameters,

packing fraction of matrix species, the ratio of the radio of fluid particle to matrix

particle, and two porosities. The first porosity (geometrical porosity, ¢,) is only about

the geometry of porous materials which the probing particle is a point scaled particle.
The second porosity (probe particle porosity, ¢ ) measures the accessible volume of the
center of fluid, and the probing particle is a fluid particle. The SPT2b shows a great
agreement with the molecular simulation results. However, a divergence was found in
SPT2b when the packing fraction of fluid is higher than the value of probe particle
porosity. Based on the study of one-dimensional hard rod fluid in random porous
materials’’, an expansion of the term which contains probe particle porosity was used
in SPT2bl1 to eliminate this divergence. This expansion also improved the accuracy of
the SPT prediction. However, it was found that when the fluid particle size is larger
than matrix particle size, all versions of SPT significantly overestimated the
thermodynamics properties of confined fluids even in fluid with a low density.
Comparing the expressions of SPT2, SPT2b, and SPT2b1, one can find that probe fluid
particle porosity leads to this overestimation. The essence of those improvements of
SPT is to reduce the influence of probe fluid particle porosity. Also, if we just use
geometry porosity to replace probe particle porosity as SPT2a, the prediction of SPT
will significantly underestimate the properties of confined fluid. Hence, find a more
suitable porosity to describe the accessible volume of fluid is the key point to improve
SPT. It should be mentioned that only four parameters are used for describing the porous
material in SPT. We can assume that once those four parameters of porous material are

obtained, the SPT can be used for describing the thermodynamic properties of fluid
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confined in such porous material. Based on this, the SPT can be easily extended to other
random porous materials, such as hard sponge matrices, and hard convex body
matrices.!?%29 Later, the SPT was extended to study the thermodynamic properties and
phase behavior of the hard-convex body fluid in random porous materials.!*%2%¢ With
the help of perturbation method, the phase behavior of network-forming fluid and ionic
fluid.'”*?°! Hence, the SPT can be considered as a general framework for fluids

confined in different porous materials.

B. Morphological thermodynamics

Here, I introduce another general framework for confined fluid, morphological
thermodynamics, which was proposed by Mecke and his co-works.?’2!% This method

211212 Tt ig not

is from a beautiful mathematics theorem, Hadwiger’s volume theorem.
only a beautiful mathematics theorem but also offers a very powerful way to study
confined fluid. Initially, Mecke and Wagner used this theorem to analyze the spatial

patterns of galaxy distribution.?!*> And then they found that this method can also be

214,215 207,208

contributed to studies in microemulsions , composite media , complex
molecule?!®. They named this method as morphological thermodynamics. In 2003, Bryk
217 derived an analytical equation to calculate the surface tension of a hard sphere fluid
close to curved substrates by morphological thermodynamics. The result showed that
the expression of surface tension of fluid close to arbitrary convex substrates does not
include a logarithmic term of curvature. In 2004, Konig?” derived a morphological
thermodynamic form grand potential expression. This grand potential expression is

used to calculate the solvation free energy of a cylindrical or a spherical hard sphere

particle solute in hard sphere fluid.

F

sol

=pV+o0dA+xC+r,X (1.5)
where p isthe pressure and o is the interfacial tension near a planar wall, x, and

x, are the properties of the fluid. the volume, V7, the surface area, A, the integrated

2

mean curvature, C, and the Euler characteristic, X, are the geometric properties of
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solute. The result obtained from the equation above has a good agreement with the

1218 calculated the

result from Rosenfeld's fundamental measure theory. In 2009, Oette
depletion potential between two hard sphere particles among the small hard sphere
solvent using morphological thermodynamics and density functional theory (DFT). The
result showed that morphological thermodynamics is invalidated when the distance
between two hard sphere particles is greater than one solvent particle's diameter and
smaller than a few of solvent particle's diameters, since the additivity restriction of
Hadwiger's volume theorem is broken down in this situation. In 2012, Jin?!” studied the
shape effect on solvation using morphological thermodynamics and DFT, the solvation
free energy of solute with different shapes was calculated. Comparing with DFT result,
it showed that when the solvent correlation length is smaller than the solute particle
diameter, morphological thermodynamics is valid.

220-224

Recently, some studies showed that the morphological thermodynamics is an

d223

approximate method but an exact one. Lair used molecular dynamics simulation

(MD) to calculate the interfacial tension, y, between spherical or cylindrical particle
and hard sphere fluid. They fitted the MD result to determine a polynomial of 1/ R.
This result showed that the morphological thermodynamics is valid in low packing
fraction (77 < 0.42), while in a high packing fraction, the first non-Hadwiger coefficient
showed a significant increase. Hansen-Goos??! used Virial expansion to determine an
exact surface tension expression, and this expression implied the existence of non-
Hadwiger coefficient. To quantify the first non-Hadwiger coefficient, some simulations
were carried out, the numerous results showed that the first non-Hadwiger coefficient
is smaller than the smallest morphological thermodynamics coefficient in one order of
magnitude. In those articles, they did not prove that the non-Hadwiger term coefficients
with higher order are always in the same sign. In this case, the sum of non-Hadwiger
terms may be equal to zero. In fact, their studies considered a fluid near spherical or
cylindrical particle, it means that the interface between fluid and the obstacle particle is

concave from fluid view, while the Hadwiger's volume theorem is only valid in the
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convex interface. Although morphological is questioned recently, it is still considered
as a potential tool for building a general framework for describing the fluid confined in

different porous materials.

C. Other theoretical approaches

The Ornstein-Zernike equations and density functional theory are also the very
popular theoretical methods for studying the thermodynamic properties of confined
fluids. The two-body correlation functions are the basic quantities of Ornstein-Zernike
equations. Since the replica Ornstein-Zernike equations of fluids in Madden-Gladnt
random porous medium were reported by Given and Stell,” substantial effort has been
focused on the study of the properties of a fluid confined in random porous materials
using replica Ornstein-Zernike equations theory. For instance, Kierlik!* used replica
Ornstein-Zernike equations to investigate the phase diagrams of fluids in the random
porous material, they found, in most cases, vapor-liquid coexistence curve of fluids in
the random porous material is similar to the bulk ones, although it is narrowed. With
the help of replica method, Zhao et. al. also proposed the Ornstein-Zernike equations
for Hard-sponge and Templated random porous medium. However, the suitable closer
for those Ornstein-Zernike equations is still not clear. Density functional theory is also
a classical theoretical method for studying the inhomogeneous fluids, the porous
material is generally considered as an external potential. For ordered porous material,

1.225 used density

density functional theory is widely used. For instance, Liu et. a
functional theory to predict the behavior of H» adsorbed in different kinds of MOFs.
They found that the saturated pressure increases along with temperature in the low
temperature region but a decrease in the high temperature region. For random porous
material, if the material is still treated as an external potential, lots of configurations of
material must be included in averaging procedure and the computation cost must be
very expensive. Recently, Schmidt et al.">!'®7 treated the random porous material on

the level of one-body density distribution rather than as an external field and derived a

so-called replica density functional theory.
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1.5 Simulation method

Molecular simulation is a powerful and robust statistical mechanics method for
confined fluid.??°2?% The basic idea of molecular simulation is to attain a set of
configurations distributed according to some statistical distribution function, or
statistical ensemble. There are two classical molecular simulation approaches for
confined fluid: Monte Carlo method and molecular dynamics method. The molecular
dynamics is based on the classical equations of motion or Langevin equation. Therefore,
molecular dynamics can be used to study the time-dependent processes like diffusivity.
The Monte Carlo method is an essential stochastic method, where the configurations
are generated by moving or inserting and removing particles. Therefore, to study the
static properties of confined fluid, the Monte Carlo method will be more efficient. Many
interesting studies of confined fluid are based on molecular simulation. For instance,

the chemical reaction in porous medium, Turner??°-23

used Reaction ensemble Monte
Carlo method to study reactions confined in porous material, they found the
confinement effect is significantly improved the chemical reaction yield which almost
cannot be observed in bulk system. Another interesting example is about phase
transitions of fluids adsorbed in random porous material. Many experimental evidences
support that the confinement effect can influence the liquid-vapor phase transitions.
Such as comparing with the bulk vapor-liquid coexistence curve, the vapor-liquid
coexistence curve of confined fluid is remarkably narrowed, and the critical temperature
and density are lower. Since the properties of confined fluid are affected by many
characteristics of porous material, such as porosity, pore size distribution, pore
connectivity, how those characteristics of porous material will affect phase behavior
had carried out a series of simulation studies. To accelerate the efficiency of the
simulation of confined fluid, two powerful simulation techniques, the Gibbs-ensemble
method, and the Gibbs-Duhem integration, were adapted by Brennan and Dong!3.

In molecular simulation, the ordered porous medium like MOF and ZIF can be

described by a repeatable unit cell. Since the disordered porous medium is always built
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with the help of fixed particles, for describing the structure of disordered porous
material, lots of configurations (usually, about 5-20) of disordered porous medium are
generated from the canonical ensemble Monte Carlo simulation, and the average over
the material configurations was taken. Hence, the computation cost of computer
simulation is expensive. In porous material, the pores can be divided into two parts, the
open pores, and the closed (dead) pores. The open pores mean the fluid particle can
access via diffusion process, while the dead pores are isolated from the outside fluid. In
Monte Carlo simulation, the fluid particle can appear in closed pores via the random

inserting operation, or via a large displacement operation.

1.6 Current problem and the objective of the present work

Although a large number of experimental and theoretical investigations have been
made during the last decades, our understanding of confined fluids is still incomplete.
Currently, we do not really know which extend thermodynamics can be applied at the
scale of nanopores. Different aspects of confined fluids are being studied in a case-by-
case way. In Chapter 2, we first time presented a general scaling relation between the
confined fluid and bulk one-component fluid, which allows for connecting some
thermodynamic properties of a confined fluid to bulk ones. Upon rescaling adsorbed
fluid density, the adsorption-isotherms for many different confining environments
collapse to the corresponding bulk curve. We also revealed the intimate connection of
the reported scaling relation to Gibbs theory of inhomogeneous fluids.

As we mentioned before, morphological thermodynamics are questioned recently.
The existence of non-Hadwiger term has been confirmed by both theoretical study and
molecular simulation. In the scaled particle theory, the formulation of the work for
creating a spherical cavity in a fluid is identical to the morphological thermodynamics,
and the scaled particle theory for the bulk system is not as accurate as other equation of
state such as Carnahan-Staring equation of state. This indicated that the scaled particle

theory can be improved by adding a non-Hadwiger term. In Chapter 3, we set up two
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new versions of SPT. The first one contains an adjustable parameter. The second one
uses two Laurent series to describe the chemical potential for inserting a scaled particle.
Both new versions of SPT significantly improved the accuracy of not only
thermodynamic properties, i.e. pressure and chemical potential, but also surface
properties, i.e. surface tension and Tolman length. We also first time obtained a self-
consistency expression of non-Hadwiger term. Moreover, the same idea can be used to
treat the multi-components system, and the improvement is significant.

Morphological thermodynamics offered a tool for building a general framework to
describe the thermodynamic properties of fluids confined in different porous materials.
However, how to use this tool is still unclear. In Chapter 4, by considering the chemical
potential as the independent variable, we derived, for first time, a new general equation
of state by using morphological thermodynamic. In this equation of state, the porous
material is described by only four geometric properties, i.e., the geometry porosity,
fluid-solid interface area, integrated Gaussian curvature, and integrated mean curvature.
To our best knowledge, this is the first equation of state for confined fluid which is
irrelevant to the model of porous medium. Our new equation of state has a great
agreement with molecular simulation results in a large range.

Madden-Glandt model is the first model of random porous material. In this model,
the disordered porous material is mimicked by random matrix configuration that can be
generated by fixing a relevant fluid system at its equilibrium state. Thus, the quenched
“fluid” particles constitute the matrix (thereafter called matrix particles), and the voids
among them are pores. In Chapter 5, we proposed a quantitative measure of quench
effect for the adsorption of fluids in random porous materials. With the help of scaled
particle theory and molecular simulation, we find when matrix particles are larger than
fluid particles, the confined fluid shows the same behavior, i.e., chemical potential, as

the binary mixture bulk system.
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2. A confinement-adsorption scaling relation

2.1 Introduction

Accompanying the elaboration of high-performance functionalized nanoporous
materials, a large number of experimental and theoretical investigations have been
made during the last decades. Nevertheless, our understanding of confined fluids is still
incomplete. Currently, we do not really know to which extent thermodynamics can be
still applied at the scale of nanopores. Different aspects of confined fluids are being
studied in a case-by-case way. It can be readily admitted that the fluid-solid interface
and the fluid inhomogeneity near it have to be taken into account. For fluid adsorption
in the real porous material, the fluid-solid interfaces are generally curved ones. It might
appear surprising that the thermodynamics for dealing with curved interfaces is not so
well established although early investigations go back to Tolman.?** Mecke and co-
workers have made efforts to develop a general framework, named as morphological

thermodynamics, to account for more complex surface morphology.???-210:217:220.234

The foundation of morphological thermodynamics has been questioned recently.??!-24
To our best knowledge, no experimental measurement has ever been made to determine
the bending rigidity coefficients needed in morphological thermodynamics method for
any fluid-solid interface.

Alarge literature exists on the study of confined fluids by theoretical and simulation
methods. Models with simple pore geometry (e.g., slit or cylinder) are widely studied.
In such models, the pore-size distribution and connectivity among pores are neglected.
Fluid adsorption and diffusion in ordered porous material, e.g. zeolites, have been
studied by simulations. To account for the quenched disorder, models for random
porous media have been proposed also, e.g., Madden-Glandt model and various

variants.-83:108.136 Degpite these considerable efforts, it is unfortunate to note that no

unifying picture of various confined fluids has emerged. Today, we do not have yet a

19



precise idea about the respective roles played by pore-connectivity, pore-size
distribution, pore morphology, or quenched disorder. In a bulk fluid, a molecule is
surrounded by other fluid molecules while in a fluid adsorbed in a porous solid, a large
number of fluid molecules are located near a fluid-solid interface. These molecules feel
the interaction with both fluid and solid molecules. The nature of fluid-solid interaction
can vary significantly, from repulsive to attractive ones. This additional interaction can
make the confined fluid behave very differently from the bulk one. Although a confined
fluid appears complicated due to the complex confining environment of adsorbent, one
can wonder if there is any connection between confined and bulk fluids. Currently, we
know quite a few about this. Acquiring such knowledge does not only advance our
understanding of these complex systems but also can have important applications. In
this chapter, we report several relations which allow for connecting some properties of
a confined fluid to those of a bulk one. By rescaling the density of a confined fluid, the
adsorption isotherms (also free energy or grand potential per particle) of fluids in a large

variety of confining environments can collapse to the corresponding bulk ones.

2.2 Model and method

We investigated the thermodynamic properties (chemical potential, Helmholtz free
energy, and grand potential) of confined fluids by considering a large variety of models
(hard-sphere or Lenard-Jones fluids in slit-pores, ordered or disordered porous
matrices). Simulations were carried out with the help of Monte-Carlo methods (in

grand-canonical or canonical ensembles).

A. Model

A-1. HS fluid confined in various porous environments

In the present work, we consider only one-component fluid (denoted as species 1).

The fluid-fluid interaction between hard spheres of radius, R,, is given by
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0 ‘1’1.—r“<2R1
J

(e, —r,[) = @.1)

0 |r-r|>=2R
where 1, and r; are the position vectors of the ith and jth fluid particle respectively.

Various confining environments are considered. For Madden-Glandt model of random

porous matrices (denoted as species 0), the following fluid-matrix interaction is given

by
0 ‘r—qj‘<R0+R1
uo(jr-a,|)=1g R,+R <|r-q,|<R+R~+d, 2.2)
0 R0+Rl+d£‘r—qj‘

where R, is matrix particle radius, q; the position vector of the jth matrix particle,

g, and d are respectively the potential-well depth and width. In the case of &, =0

and d =0, we have a hard sphere (HS) matrix. The configurations of an HS matrix
are generated from an equilibrium system with the following interaction,

o0 ‘qi _qj‘<2R0

tty (|0, —a,]) = 2.3)

0 ‘qi _qj‘ 2 2RO
For an overlapping hard sphere (OHS) matrix, matrix particles are placed totally

randomly, i.e., U, (‘qi -q, D = 0. We considered also a slit pore with the width of L

and the interaction between fluid and the pore wall is given by

0 |zi|2(L—0'1)/2
w(z)=1¢, L[2-d<|z]<(L-0,)/2, (2.4)
0 |z|<L/2-d

where o, =2R, and z, is the coordinate along the coordinate axis perpendicular to

the slit walls (note that the origin of the coordinate system is placed at the middle of the

slit pore). In the case of &, =0 and d =0, we have the simple case of a slit pore

with two hard walls. For slit pores, we calculate the fluid density by using the physical

volume, i.e., V' = AL ( A: surface area) but not the volume accessible to the centers
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of fluid particles.
A-2. LJ fluid confined in various porous environments

To demonstrate the validity of the scaling relation when an attractive fluid-fluid
interaction is also present, a Lenard-Jones fluid with the following interaction is

considered as Well,
— — ¢ — < p€
‘) ug (6 =) —uy (K5) n-—r| <5

; (2.5)
0 ‘rl. —rj‘ >n

Uy (‘rz —-r;

12 6
u, (r)=4z,| (a/r) ~(a1/r) ], (2.6)
where 7| =10R,, o, =2R, and ¢, is the potential well depth. When this LJ fluid is
confined in an LJ matrix, the fluid-matrix is given by

c c
uLJ(‘rz‘ _qj‘)_“u(rlo) ‘ri_qj‘srlo

; 2.7)
0 ‘ri_qj‘>r1((;

Uy (‘rl _qj‘)z

uy, () =42 (10/7)” =(030/7)" | 2.8)
Where 7, = S(R] -I-RO), and cross parameters (o,,, &,) can be calculated with the

Lorentz-Berthelot (LB) mixing ruler

£y =€) » (2.9)

., =%. (2.10)

where o, =2R,, &, is the potential-well depth for matrix-matrix interaction. In LJ

matrix systems, we have chosen g, is from 0.7 to 5.25¢. And the matrix-matrix

interaction is

B. Method

Canonical-ensemble Monte Carlo (CEMC) simulations are carried out for
generating matrix configurations and those of a fluid confined in a particular matrix

configuration. A cubic simulation box of volume, V", is used with periodic boundary
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condition in three space directions when a fluid confined in a matrix is considered. For
slit pores, the simulation box is made with two square walls separated by a distance
equal to L and the periodic boundary condition is applied only in the two space
directions parallel to the walls. For each simulation, about 2 X 10° - 1 X 106 trial moves
for each fluid particle are performed. Since finite-size matrices are used, any observable
quantity fluctuates with matrix realizations and an average made typically with about

10 matrix realizations leads to converged results. The excess chemical potential of the

fluid, ", is calculated for different density, p, (p, =N,/V, N,: the number of

fluid particles), by using Widom’s test particle method.??® Then, Helmholtz free energy

is determined by a thermodynamic integration, i.e.,

F 1 ¢n
%:m(plAf)-H—jo” Bu (p)p, (2.11)
1 P

where A, is the thermal wavelength of fluid particles and in this work, we set A, = o,.

Finally, we obtain readily compressibility factor from the following thermodynamic

relation,

ﬂ—Q:—ﬂwﬂ—F. (2.12)

Nl NI

C. Conditions of considered systems

The computational conditions of all the considered systems are summarized in
Table 2.1. The confining environments considered in this work can be classified into
two big categories: 1) porous matrices and ii) slit pores. According to their different
morphologies of pore space, we can divide porous matrices into four different types.
Disordered porous matrices are generated by quenching an equilibrium system
according to the procedure proposed by Madden and Glandt*’ and denoted, in Table
2.1,as HSM_d if matrix-matrix interaction is HS one or LJIM_d when the matrix-matrix
interaction is LJ one. In contrast, ordered porous matrices can be generated by arranging

matrix particle into an ordered structure. In this work, we studied only the case that
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matrix particles are places on a simple cubic lattice and the acronyms used for such
matrices are HSM_o (HS for fluid-matrix interaction) and LIM_o (LJ for fluid-matrix
interaction. The third type of matrices we considered, is templated matrix. Following
the procedure proposed by Van Tassel et al,'%13¢ a templated quenching an equilibrium
binary system and removing its one component after quenching. We considered only
templated HS matrix, denoted by THSM in Table 2.1, with the same number of
template and matrix particles and moreover they have the same size. The fourth type of
matrices is the hard sponge one,”!”! denoted as HSG in Table 2.1.

The meaning of the title labels in Table 2.1 is the following,
f-s: fluid-solid interaction (here the word “solid” is used to denote either hard wall or
matrix particles);
f-f: fluid-fluid interaction;

1: fluid matrix particle size ratio, o,/ oy

T": temperature, T~ =k,T/ &, (e, : reference energy unit, all the well-depth
parameters for square-well or LJ potentials, e.g., g,, &,, are defined with respect to

this reference unit);

Symbol: symbols used for curves plotted in different figures of the paper.

The definitions of all the other reduced parameters given in Table 2.1 are given

below as well.

Slitwidth: L' = L/oy;

SW(d", &,"): square-well potential with width, d" =d / o, and depth, 80* =8y / €,

ref

LJ(&,"): LT potential with depth, 81* =g /¢, o4

p, : matrix density, p," = p,0,> (p, =N, /V,N,: number of matrix particles).

Table 2.1. Computation parameters for canonical or grand-canonical ensemble

Monte-Carlo simulations
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Pore f-s f-f T T Symbol

Slit (width: 5) HW HS - - @
Slit (width: 5) SW(1,-1) HS - 1

Slit (width: 5) SW(1,1)  HS - 1

Slit (width: 3.5) HW HS - ; Py
Slit (width: 7) HW HS - ; @
HSM_d(p,=0.2)  HS HS 0.5 - o
HSM d (p,=0.55) HS HS 0.2 _ o
HSM d (p,=025) SW(l.-1) HS 0.2 1

HSM d (p,=025) SW(L1) ~ HS 0.2 1 PPN

HSM d(p,=0.5)  SW(l-1) HS 0.1 1

HSM d(p,=0.5)  SW(LDL) ~ HS 0.1 1

HSM o( p,=0.578) SW(1,-2) HS 0.1 1 d
HSM o (p,=0.578) SW(L.2)  HS 0.1 1 o

HSM o (p,=0.125) HS HS 0.2 - o

HSM o (p,=0.75) HS HS 0.1 o

THSM (p,=0.2) HS HS 0.5 -

THSM (p,=0.15)  HS HS 0.2 -

THSM ( p,=0.5) HS HS 0.1 -

HSG (p,=1.172) HSG HS 0.1 - Y
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Slit (width: 5)
LIM d (p,=0.25)
LIM d (p,=0.5)
LIM o (p,=0.5)
LIM d (p,=0.5)
LIM_d (p,=0.5)
LIM _d (p,=0.5)
LIM d (p,=0.5)

LIM d (p,=0.5)

HW

LI (1)

LI (1)

LI (1)

LJ (1.75)

LJ (0.7)

LI (3.5)

LI (7)

LJ (5.25)

LI (1)

LI (1)

LI (1)

LI (1)

LI (1)

LI (1)

LI (1)

LI (1)

LJ (1)

0.2

0.1

0.2

0.2

0.2

0.2

0.2

0.2

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

© ¢
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2.3 Results and discussion

Inspired by the exact and analytical results for some models (ideal gas in a variety
of confining environments) and scrutinizing our simulation results for many more

complex confined fluids with interactions, we found the following scaling relation:

pu(zo.T)=pu""* (p.T). (2.13)
Bf (x0.T)= 51" (p.T). (2.14)
~po(xp.T)=2"" (p.T), (2.15)

bulk

where p=1/(k,T) (k,: Boltzmann constant, 7 temperature), ¢ and g are

respectively chemical potential of confined and bulk fluid, o the number density of
the bulk fluid in equilibrium with the confined one (p=N/V', V :volume), f and

P are respectively free-energy per particle of confined and bulk fluid, i.e.,
f=F/N“", =tk N (N : particle number of confined fluid), @
grand-potential per particle of a confined fluid, Z” is the compressibility factor in
the bulk, ie., Z"*=pp"*/p, ( P™ : bulk fluid pressure, note that the

compressibility factor is simply the negative of grand-potential per particle). The

scaling factor is given by:
1 =0, +TA/(BP™V), (2.16)
where ¢, is geometric porosity of the porous adsorbent under consideration (see 7 for

definition), I' adsorption per unit surface area, and 4 area of the fluid-solid

interface of the confined fluid. T'4 can be calculated simply from:

TA=(p“" —$,p)V, (2.17)
where p = N“? /. It is to note that only I'4 is needed but not I' and A4

separately and I'4 can be measured experimentally. When the second term on the right
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hand side of eq. (2.16) is dropped out, we have immediately:

pu(p.T)=pu"" (p.T); (2.18)
ﬂf(%poT) :/beulk (paT); (2.19)
~Bo(,p,.T)=Z""(p.T). (2.20)

We name this as pure-confinement scaling which holds rigorously for an ideal gas in
hard matrices, e.g., a hard-sphere (HS), an overlapping HS (OHS) or a hard-sponge

matrix. From scaled particle theory,6!:66:79-84.193.195

we can show that the pure-
confinement scaling holds also for HS fluids confined in HS and OHS matrices when
the size ratio of matrix to fluid particle is large.!'*?

The simulation results presented below demonstrate the validity of the scaling
relation given in eq.(2.13)—(2.16), named as confinement-adsorption scaling, for a large
variety of confined fluids under broad conditions. To show the general and robust
character of this scaling relation, we considered virtually all types of confined fluids,
i.e., in various porous environments like isolated slit pores, connected ordered or
random porous matrices including sponge-like ones and different types of fluid-fluid
and fluid-solid interactions. Fig. 2.1(a) shows the collapse of adsorption isotherms of
an HS fluid confined in 19 different environments to the bulk 4 ~ p isotherm after
scaling according to eq. (2.18) while in Fig. 2.1(b), the results before scaling are
presented. The robustness of the scaling relation is demonstrated by the large diversity
of the considered confining environments, from isolated slit pores to random porous
matrices with pure repulsive or repulsive plus attractive fluid-solid interactions. To
establish the general validity of the scaling relation, we carried out also simulations

with a Lennard-Jones (LJ) fluid (see results in Fig. 2.2). These results show the general

character of the scaling relation which holds also for fluids with attractive interaction.
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* * % %
pc!ts Po Do Ph

Figure 2.1. Monte-Carlo simulation results for an HS fluid confined in 19 different

confining environments: a) Chemical potential, fBu, as a function of scaled density
p. l x(p  =p“ o’ o: HS diameter); b) Chemical potential, Su, as a function of

bulk _

non scaled density p_". The full line is the bulk Su p, isotherm from Carnahan-

Starling equation of state. Subscripts, b and ¢, denote respectively bulk and confined

fluids.

6 N N 1 N 1 N N
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2.2. Monte-Carlo simulation results for an LJ fluid confined at 7" =3.5 in 4

different confining environments: Chemical potential, [/ as function of scaled

conf

density, p."/ y (p,"=p“’c’, o: LJ size parameter). The full line is the bulk

*
IBlub”lk ~ ), isotherm from the equation of state given in **.

The scaling relation holds not only for the adsorption isotherms but also for some
other thermodynamic quantities, e.g., free-energy per particle and grand-potential per
particle. Fig. 2.3 shows the collapse of S f and —pfw for different confined HS
fluids to the corresponding bulk curves. The same scaling relation holding for chemical
potential, free-energy per particle and grand-potential per particle implies immediately
that S f and —fw collapse to the corresponding bulk curves if they are expressed

as a function of chemical potential, i.e.:

Bf(1.T)=Bf"" (uT); 2.21)

~po(1,T)=2"" (1.T). (2.22)

This invariance is remarkably illustrated in Fig. 2.4. One obvious importance of such
invariance relations is that they allow for determining some thermodynamic functions
of a confined fluid from the corresponding bulk ones. It is well known that the
experimental measurement of thermodynamic properties of confined fluids is much
more difficult or impossible currently. To our best knowledge, no direct experimental
determination of pressure and free energy has ever been made for fluids confined in

nanoporous materials.
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1 1 1 0 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
% * */ *
P Pb PclXs Pb

Figure 2.3. Monte-Carlo simulation results for an HS fluid confined in 19 different
confining environments: a) Free energy per particle, £ f', as function of scaled density

conf _3

p. ly (p =p“c’, o:HS diameter); b) Minus grand-potential per particle,
— P, as a function of non scaled density p,". Full lines are respectively corresponding

bulk Bf"* ~ p, and Z"™* ~ p, curves from Carnahan-Starling equation of state.

8 T T T T T T T T T
() 7 (b)
0F ol
—
5 N &
= ] f
8r 2
a: J
12 0 1 1 L
-8 4 0 4 8 12 -8 -4 0 4 8
Bu Bu

Figure 2.4. Monte-Carlo simulation results for an HS fluid confined in 19 different
confining environments: a) Free-energy per particle, [ f, as function of chemical
potential, Su; b) Minus grand-potential per particle, —fw, as function of chemical

bulk

potential, Ay . Full lines are respectively corresponding bulk Sf" " ~ [ and

Z bulke ,B,u curves from Carnahan-Starling equation of state.

Although the simulation results presented above establish the validity of the
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confinement-adsorption scaling and the invariance described by egs. (2.21) and (2.22),
a derivation of these relations from first-principles is currently lacking. Nevertheless,
the confinement-adsorption scaling has some intimate connection with Gibbs theory for

236,237

interfacial systems and the morphological thermodynamics advocated by Mecke

et al 20%-210.217.220.238 Tpy fact, Gibbs theory can be derived from the scaling relation given

in eq. (2.13). We start from the following equivalent form of eq. (2.13),
pconf
ﬂﬂ(pwnf,T):,Bﬂbulk —,T . (2'23)
V4

Expanding the RHS of this equation to the first order around p /¢, , we obtain,

bulk (eonf
ﬂ#(p""”’”,T)=ﬂﬂ"””‘[%,T}{p Tp f]a[ﬂ” (o™ /0.T)

o X % 0 (pwnf /¢o )
_ p, bulk ~ Tj ( _p j a[ﬂ’ubm (pmf/% ’Tﬂ (2.24)
g ( R M G (o™ )

= B (Pw"f ’TJ 14 a[ﬂﬂbulk (pmf /¢o ) T)]
4 s (e /)

Eq. (2.17) was used when going to the last equality of eq.(2.24). Integrating both sides
of the above equation with respect to p“? leads to,

F(N“",V,T :
ﬂ ( ; )ZJ.ﬂ/u(pconf’T)dpcnn/

) IBFbulk (Ncwz/" Vi, T) _J_E 0 :,B,Ubulk (,Ow"f/% ’T)

0

_ d(pconf/¢o) (225)

v, oo a(p /g)
~ ﬁFbulk (NCOW',V¢05T)+,B}/A
s V', v

where y is the surface tension at fluid-solid interface and A4 the surface area of the

pore space boundary used for calculation the porosity, ¢,. Gibbs adsorption equation

was used when going to the last equality in the above equation. Eq. (2.25) is nothing
else but the free energy of the inhomogeneous system expressed as the bulk contribution

plus the surface term following Gibbs theory, i.e.,
F(Nconf, V,T) — Fbulk (Ncargf’ V¢0,T) + ]/A (2.26)
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Subtracting 4N from both sides of the above equation, we obtain also:
Q(u,V,T)="" (1, 4,,T)+74 (2.27)

where Q, Q“” denote respectively the grand potential of confined or bulk fluid.
According to morphological thermodynamics, the grand potential of an inhomogeneous
fluid is written as the sum of a bulk term and a surface term with the surface tension
including three contributions (flat surface term plus two curvature terms). 28-32 Although
not appearing explicitly in our scaling relation, the surface tension is embodied in it.
The above demonstration reveals this unambiguously and thus evidences an intimate
connection between our scaling relation and the general theoretical frameworks like
Gibbs theory and morphological thermodynamics. At first sight, it may appear
surprising that rescaling alone fluid density can account for various fluid-solid
interaction. In fact, this interaction is taken into account through the adsorption term,
ie., I'A [seeeq.(2.16)]. The discussion just given above shows further and explicitly
that the interface contribution to the free energy is indeed included in our scaling
relation.

Scaling relations have been found previously for some dynamic properties, e.g.,
entropy scaling for the diffusion coefficient of an HS fluid confined in slit pores!68:239:240

241

or an LJ fluid in a zeolite,**" or for the relaxation time of a glass-making liquid in slit

pores.?#> Mittal, Errington, and Truskett found that the D ~s* (D : diffusion

coefficient; s“: excess entropy per particle) curves of an HS fluid confined in various
slit pores collapse to the bulk curve when the fluid density is calculated with the total

volume instead of that accessible to the particle centers.!®

This way to obtain curve-
collapse is, in fact, a particular case of the general scaling reported in the present work.
First, the situation considered by these authors corresponds to what we called pure-
confinement regime, i.e., without the second term of the scaling factor given in eq.

(2.16). Our investigations show that the general scaling relation holds under wider

conditions. Second, applying eq.(2.16) to the particular case of slit pores under the pure-
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confinement regime consists simply in calculating the fluid density by using the total
volume as did Mittal, Errington, and Truskett.!®® In a later study, Mittal showed that
data collapse to the bulk curve can be obtained also if the diffusion coefficient is plotted
as a function of compressibility factor.’*> Our finding reported here provides the
thermodynamics foundation for this. It is to note that in the case of an HS fluid, the

reduced free energy per particle, [ f, is equal to the reduced entropy per particle,
s/ky,. So, our results are perfectly consistent with those of Mittal et al.'0%23%.240

Moreover, in light of our finding, we can make an immediate prediction that D ~ u

curves for confined fluids collapse also to the corresponding bulk one.

2.4 Conclusion

Our simulation results establish the validity of a scaling relation for several
thermodynamic functions which connects confined and bulk fluids. The invariance with
respect to confining environments is discovered for Helmholtz free energy and grand-
potential per particle if they are expressed as a function of chemical potential. This
confers a particular significance to the use of chemical potential as an independent
variable in the study of confined fluids or inhomogeneous fluids. The invariance
described by eqs. (2.21) and (2.22) holds rigorously for an ideal gas confined in
various pores under all the allowed thermodynamics conditions. It is really surprising
that such invariance holds also when fluid-fluid interaction is present. Fig. 2.4b shows
pretty good data-collapse in the density region where the compressibility factor deviates
largely from its value for an ideal gas. It is very intriguing that confined fluids can bear
perfectly a hallmark of an ideal gas far beyond the low-density region. Although a
derivation of the scaling relation from first-principles is currently unavailable, we have
revealed its intimate connection with general theoretical frameworks like Gibbs theory
or morphological thermodynamics for inhomogeneous fluids. We believe this is why
the scaling relation works so well under wide conditions and for a large variety of

confining environments. The most significant message conveyed by our results is that
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the apparently disconnected behaviors of confined fluids are not so disparate but can be
nicely organized via scaling. The scaling relation shows clearly that the porosity (space
accessibility) and fluid-solid interaction (through the adsorption term) is of primary
importance for determining the thermodynamics of confined fluids. The other
characteristics, like pore-connectivity, pore-shape, pore-size distribution, etc., play a
less significant role. As an immediate and interesting application, our finding allows for
circumventing some experimental difficulty for direct determination of some
thermodynamic properties of confined fluids. A challenge in perspective is to see if the
scaling relation holds also for the fluid adsorption in flexible porous materials, e.g.,

metal-organic frameworks (MOFs) or to find the modifications needed if necessary.
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3. Development of augmented scaled particle theory

3.1 Introduction

Worked out by H. Reiss, H. L. Frisch and J. L. Lebowitz in 195920424 scaled
particle theory (SPT) has become one of the most successful theories in liquid physics
with widespread applications. Since then, there have been continuous efforts to extend

and improve it (see, e.g. 66,77,79,84,195,243-254

, which is by no means an exhaustive list of
the very large number of papers on SPT in the literature). The original motivation for
SPT is to derive a simple equation of state (EOS) for a bulk hard sphere (HS) fluid.
Then, it was recognized that SPT provides not only the thermodynamic properties of an
HS fluid in bulk but also the surface tension of an HS fluid near a spherical hard wall.
Within the framework of SPT, this surface tension contains three terms, i.e., the surface
tension at a flat hard wall and two contributions due to surface curvatures (mean and
Gaussian curvatures). Investigations of more and more complex inhomogeneous
systems, e.g., fluids adsorbed in various porous materials, arouse increasing interests in

interfacial properties. Although early investigations go back to Tolman,?*

it might
appear surprising that our knowledge about curved interfaces is still quite limited.

However, the accuracy of its predictions is not as high as other recent equation of
state like Carnahan-Starling (CS).2>> To obtain an equation of state from SPT, a form of
the reversible work of inserting a large hard sphere potential or a form of the central
function G must be presumed. Normally, the reversible work is presented by a Laurent
series,

N
,BW(RS):ﬂPgﬂRf +> oR, (3.1)

i=0
where P is the pressure of the hard sphere fluid, «, is the coefficientand R, is the

radius of the inserted particle. In original work, N =2 in Laurent series and three exact
conditions of the reversible work was used to solve those three coefficients, the pressure
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is solved by using the Gibbs-Duhem equation. In 1975, Mandell and Reiss** made N
=5 and used five exact conditions to obtain an improved equation of state. However,
the accuracy of this version is still limited, particularly at high densities. Recently, Corti
and his co-workers**® made N = 7 and used five exact conditions and two approximate
conditions to modified SPT. However, since an integral equation contained in those
conditions, this improved SPT does not have an analytical expression. They found that
increasing the number of conditions does not lead to improvement of the predictive
accuracy of the fluid properties by itself.

Mecke and co-workers have made efforts to develop a general framework, named
as morphological thermodynamics, to account for more complex surface

211212 i integral geometry, the

morphology.?8-210.224.257 According to Hadwiger theorem
morphological thermodynamics postulates that the thermodynamic potential of an
inhomogeneous system is determined only by four terms, i.e., one bulk contribution
proportional to system’s volume and three surface contributions proportional
respectively to surface area, mean and Gaussian curvatures of the interface. It is to be
pointed out that in SPT, the chemical potential for creating a spherical cavity inside a
fluid is assumed to have this form. The foundation of morphological thermodynamics
has been questioned recently.??°2>* From molecular dynamics simulations, B.B. Laird
et al found that contributions from the terms beyond the four Hadwiger’s terms are not
negligible.??* By examining the diagrammatic expansion of surface tension, I. Urrutia?*

and H. Hansen-Goos?*! revealed also non vanishing contribution from a non Hadwiger

term, and this expression implied that the non-Hadwiger coefficient only occurs when
R >R (2/ \/§ —1), where R, is the radius of the fluid particle. This work implies that
the form of the reversible work should be presented by using multiple Laurent series in

different range of R . It should be noted that this idea proves the basis of previous

Work249,250,256,258

about improved SPT, however, the result of non Hadwiger term from
theoretical work does not have a good agreement with simulation result. In Corti’s
work?>®, they used a set of Laurent series to describe the reversible work. The result
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improved the predictive accuracy of both thermodynamical properties and surface
properties, however, this improved SPT cannot offer an analytical equation of state,
since an integral equation is contained.

From these recent advances, it is clear now that the thermodynamic expression for
chemical potential in the original SPT does not account for the contribution from non
Hadwiger terms. One can raise naturally the following questions. Is it possible to
include some non Hadwiger terms in SPT? How this can be carried out in a simple way,
e.g., obtaining still analytic and improved results? We address these issues in the present

work.

3.2 Original SPT

Abriefrecall of SPT is given first to introduce some notations and formulas needed

in the following section. For the chemical potential to insert a hard scaled particle with

aradius, R, (a variable one), into a fluid of hard spheres of radius, R, the following

exact but formal result is well known,>**

~Inp,(R)) (3.2)

(S NARR,R)+1
ﬂus(RS)—ln[A NoR, R+ J

where A is the thermal wavelength, B =1/kT (k: Boltzmann constant, 7 :

temperature), V is the system volume, and N is the number of hard spheres. We
consider here the case that the scaled particle has the same mass as the HS particles

already in the system and so they have the same thermal wavelength. The scaled particle

becomes indistinguishable from the other fluid particles only when R =R. In eq.

(3.2), we account for this indistinguishability by

1 R =R

; 33
0 R #R 3)

A(R,,R) ={

Ineq.(3.2), p,(R,) is the insertion probability and the following exact expression

holds,
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p(R)=1+Y F(R) (3.4)

n=l1

with

F(R) :#Jdrsj‘drlIdrz...jdrnp(")(rl,rz,...,rn)ﬁf( r, —r,.|) (3.5)
. i=l1

where p(”)(rl,rz,...,rn) is the distribution function of » particles located

respectively at r,,r,,...,r, and

f(, —r=e e (3.6)

and

r,—r|<R +R

_ o0
uv(rv_rz|)_ O |rS—I'I|ZRS+R

(3.7)

A property of key importance of eq.(3.4) is that the higher order terms appear only

successively when the radius of the scaled particle increases. For example, we have

3
Fl(RS)=—77(1+1;€'j R >-R, (3.8)

0 -R<R <0

F R — 2R+2R , 3'9
RI=15, [ drp? (0, (rR) R =0 G-)
2R

F(R)=0 n>3 -R<R <R(2-3)/\3, (3.10)
where n=47pR’ /3 is the packing fraction of hard spheres (p=N/V: density) and
Q(|r1 —r2|) is the volume of the overlapping region of two spheres having a radius of

R + R and separated by a distance of |rl -,

, which is given by

2
Q2(|r1—r2|)=2?ﬁ(Rs+R—@] {2(&_+R)+@}, 0<[r, 1| <2(R,+R). (3.11)

Although egs.(3.2) and (3.3) indicate a possible road for obtaining chemical potential,

one encounters quickly several major obstacles on this road. First, eq. (3.4) is an
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infinite series and we do not know how it converges for an arbitrary value of R .
Moreover, only F(R,) has an analytical expression and it is more and more difficult

to determine the other higher order terms. For F,(R ), we only know its first three

derivatives are continuous at R =R (2 - \/g ) / \/5 )

The strategy used for deriving the original SPT is to use the above exact result in a

limited range of R, i.e.,

A RY
ﬂ,uS(RS):ln(—j—ln 1—77(1+—“J -R<R <0. (3.12)
V R
For larger values of R, the following thermodynamic expression is proposed,

4zR’pP

,BW(RS)zln(M %MJ+WO+WIRY+%W2RS2+ R >0, (3.13)

Where P is the pressure of the HS fluid and the terms involving lower powers of R
account for the surface tension around the scaled particle with 1y, being related to the

flat surface contributionand w;, w, to the respective contributions from the mean and

Gaussian curvatures. In eq. (3.13), there is not non Hadwiger terms, i.e., terms
proportional to (I/Rs )n (n=1,2,3,..). Matching eqgs. (3.12) and (3.13) at R =0, i.e.,

requiring the continuity of the function and the two first derivatives, one obtains,

w, =—In(1-7), (3.14)
w=1 L (3.15)
l-n R
w, =[5, 31 iz (3.16)
l-n l1-n)R

The chemical potential, u, and the pressure, P, can be obtained from,
B =pW (R, =R), (3.17)
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and Gibbs-Duhem equation, i.e.,

o(pP) _ a(Bu)
. =p — (3.18)

Finally, one obtains,

,BPSPT :l+77+772

L, (3.19)
P (1-n)

2
6n 9( n pP
T =In(Ap)—In(1-n)+ += + , 3.20
Bu ( ,0) (1-7) —7 Z(I—UJ n - (3.20)

for the pressure and chemical potential of a bulk HS fluid. Moreover, one obtains

also the following dimensionless result for the surface tension of an HS fluid on a

spherical hard wall of radius, R,

s

2
P ) =amr T ()< (] 6
where ]/OSPT is the SPT result for the surface tension of an HS fluid on a flat hard wall,
s R’
7T = W R™ 3n e 3n , (3.22)
2 2 (1 — 77) -7

and y_, y_, account for respectively the contributions to the surface tension from

mean and Gaussian curvatures which have the following expressions within the

framework of SPT,

a =W1R=3—", (3.23)
75 =w,=—In(1-n). (3.24)
3.3 Augmented SPT

A. Single-point matching formulation

A conceptually simple strategy for including the leading non Hadwiger term in an
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SPT type theory is to add a term proportional to 1/R, into eq.(3.13). However, the

immediate difficulty one meets here is that the divergence of this term at R =0 makes

the usual matching procedure impossible at this point. One possible way to circumvent

3
_Rj/é) /Rs with 0 being a positive constant

this difficulty is to replace 1/R, by (I-e
to be determined later, and 7 can be considered form one to four. This additional term

will change the formulation of other terms, @, (i =0, 1, 2) and P. And the influence

will be decreased with the increasing of n. If n is equal to one, all results of @, (i=0,

1, 2) and P will be modified. If 7 is equal to four, only results of P will be changed.
Here, only the version of n = 3, which has the best prediction of non-Hadwiger term,

will be introduced here, the detail results of other versions will be presented in

Appendix A. The convergence factor removes the singularity at R =0 and keeps the

correct asymptotic form of the non Hadwiger term for large values of R . So, we

propose the following expression for the chemical potential to insert a scaled particle

with a radius of R, (R >0),

. (3.25)

|—e R0
ﬂ@(&)ﬂn(ﬁNA(RSV’R)”W]( R )+¢0+¢1R§+§¢2Rﬁ+

s

47R’BP
3

To determine the parameters, ¢ (n=-1,0,1,2), we following a procedure similar to

that used in SPT, i.e., matching eq.(3.24) with eq.(3.1) at R =0" as follows,

B, (R, =0")=BD(R, =07), (3.26)
fus (R, =0)=p0'(R =07). (3.27)
Bi (R, =0")=pD"(R =0"), (3.28)
Bl(R, =0")=pO"(R =0"), (3.29)

where
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Bu, (R, =0")==In(1-7), (3.30)

(p ) L 30
P (R =07)= im0 (331)
il )12 o
R (1-n)

and the third derivatives is equal to,

oo on(1+Tn+n’) op(z-1)
Bul(R, =0")= P T (3.33)

where Z = f3P/p 1is the compressibility. From this matching, we obtain,

¢, =w, =—In(1-17), (3.34)
13
szlzﬁﬁ, (3.35)
4 :W—2¢l(£j3i=i 3n 24 3n _2¢1(£]3 (3.36)
> 2 R\S)R R|1-n 1-n) RrR\5)] '
ﬁ_(éjét 77(5—277)£_77(577+8772+5773) (3.37)
R \R)| 3(1-n) p 3(1-n) | |

From egs. (3.25), (3.34)-(3.37), we obtain the following expression for the chemical

potential,

3 6 9 ? P
Bu= PO (R, =R)=1n(A p)—ln(l—n)+£+5[£J +77ﬂ7

Sl (]

Substituting eq.(3.37) into eq.(3.38) leads to an equation involving chemical potential,

(3.38)

4, and pressure, P. With the help of Gibbs-Duhem equation, one can eliminate either
4 or P and obtain a first order differential equation for P or u. Because this is a
differential equation with non-constant coefficients, it is not possible to solve it
analytically. Nevertheless, this difficulty can be circumvented by an iterative procedure
to obtain successively analytic results for chemical potential and pressure. One can start
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the iteration by substituting the SPT result for the pressure into the right-hand side (RHS)

of eqs.(3.37) and (3.38), which leads to the following results after the first iteration

and we name it as ASPT1,
ﬁ:(éj [Lj [2+3_77], (3.39)
R \R)\1-79 1-7
Py ﬂ,,sﬂ_a((s)(ﬁj (2 13_—”77} (3.40)
where
N\ _(1_wsy () 3.41
(j{l (1- )[RH’ (3.41)

Substituting then the result for chemical potential given in eq.(3.40) into Gibbs-Duhem

equation and integrating the latter, we obtain the following ASPT1 result for pressure,

3n } (3.42)

ASPT1 SPT 3 2
LGy iy VL S A T O 2 O B
P P 21-n|\1-n) 31-n
—l—lln(l—n)}
n
The surface tension near a spherical hard wall is given by
2
~ASPT1 R _4 RZ ASPT1 R _ ~ASPT1 ~ASPT1 5 ~ASPT1 5
7 (R) = 4R By (R )= 1 AT S
\ ’ L, (343)
+77_A35PT1 [ﬂ} (1_671;\,/5 )3
where
N ) S RY
}/:SPTI — ¢22 — y(fPT _}/:43SPT1 (E] , (344)
7_,41$PT1 — ¢1R — ?ffT’ (345)
7R =g =75, (3.46)
o3\ (sY
~ ASPTI :ﬁ:[1 n j [2+ l—nnj(_j ) (3.47)

V3 R _n
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In the results given above, there remains a parameter, i.e., 0, to be determined. We
will propose, in Section 3.3, a pragmatic recipe for this and discuss in more details the
accuracy of ASPT1.

The same idea can be used to treat the multi-components system. As presented in

previous work,!”® the excess chemical potential for inserting a scaled particle with a

radius, R , into a n-component system is

1 (R)=-In[ p,(R)], (3.48)
where p, ( RS) is the probability of finding a spherical cavity with radius equal to
R +min {R1 ;R } , and the exact result for this insertion probability of a small scaled
particle is

pO(RS):l—Zn:nl(1+RS/Rl)3, —min{R,--,R,} <R <0, (3.49)
A=1

where 7, is the packing fraction of species A. Then the chemical potential and its

first three derivatives when R =0" can be derived as following,

B (R =0")=-In(1-&), (3.50)
i Nt _ 662
B (R, =0 )_1_53, (3.51)
" — + — §1 §22 3
Bul (R, =0") 241_§3+36(1_§3)2, (3.52)

m + 50 51 52 523 (Z — 1) 50
"(R =0")=48 9 ——9 72 . (3.53)
AR =)= (1-&)  (-&)  I-s

where Z = ﬁP/ z; p, is the compressibility, and ¢, =%Z ,0_].(2R_1.)l . Then the

j=l
expression of the chemical potential to insert a scaled particle with aradius R (R, >0)

is same with the one for one-component system, i.e., eq.(3.25). To determine the
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parameters, ¢, , the following four conditions are used,

S(R 0+) (R 0+), (3.54)
B (R =0")= B0’ (R =0"), (3.55)
"(R,=0")=pD"(R =0"), (3.56)
B(R, =07)=pO" (R =0"). (3.57)

Then the four unknown parameters, ¢, (n=-1, 0, 1, 2), are obtained as following,

¢1_54{ﬂ S 148 & +48 gléz)} 54250(40 & ], (3.58)

Slmb(1-a) (-4 1-&,
2

¢, =12|2 d +3 & > —2¢3‘1, (3.59)

=& (1-&) ] 9

S
=6——, 3.60
h=67"% (3.60)
¢ =—In(1-¢). (3.61)
By using the same iterative procedure, the chemical potential of i-component equals to
RS\

pu =—In(1-&)+ 4R + 2 R +8£, 27K =) g6
H; = n( é3)+¢1,-+2 i+§0 i+¢—l R > ( )

where Z%" is the compressibility of original SPT, then by using Gibbs-Duhem
equation, the compressibility of ASPT1 for multi-component system can be expressed

as

S +3 5152 +3 & ) (3.63)

Z-=
“e ey e

Here, I would like to mention that if the number of components is equal to one, all
above results will be reduced to the corresponding ones of a one-component system,
automatically.

B. Double-point matching formulation

ASPT1 presented above is not an entirely self-contained theory in the sense that it
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contains an adjustable parameter, i.e., 0. In the followings, we will show it is also
possible to develop an augmented scaled particle theory without any adjustable

parameter. To circumvent the difficulty due to the divergence of the leading non

Hadwiger term, 1/R ,at R =0, we propose to extrapolate the exact result for a small

scaled particle, i.e., eq.(3.12), to a thermodynamics expression for a large scaled particle

in two steps instead of one used for SPT or ASPT1. The first extrapolation is carried
out for a scaled particle with a radius in the region of 0< R <d = (2 NG —I)R (note

that R+d is the radius of a sphere which can contain at most three hard spheres of
radius, R ). We propose the following expression for the chemical potential of the

scaled particle with a radius in this region,

3

3
PUR) =In (A?] +u, +u R+ %qusz LATRPR

: 0<R <d (3.64)

Since the non Hadwiger term, 1/R_, is not included here, there is no singularity at

R =0, we can make the matching of egs. (3.2) and (3.64) without any problem, i.e.,

Bu (R =0")=pU(R, =0"), (3.65)

B (R =0")=BU'(R =0"), (3.66)

Bi (R, =0")=BU"(R =0"), (3.67)

B(R, =0")=BU"(R, =0") (3.68)

From this matching, we obtain,

uozwoz—ln(l—n)%, (3.69)

u=w :13__7777%’ (3.70)

u2=w2=13_—7777(2+13_—7777j%, (3.71)
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—~ -7 —~ 6(1-n) |R’
: (3.72)
2
L/ /A (/A IO L €
1-n 1-7 1-7 20 p R
where
FR =0")=167"p’(2R) g(2R") =1§—§7[ﬁ—1} (3.73)
o,

and g(2R+) is the contact radial distribution function and the Virial equation for the

pressure of an HS fluid was used when going to the last equality in eq.(3.72). It is to

note that eq.(3.72) yields immediately an expression for the pressure, i.e.,

pR__ U B, (3.74)
p 1-2n/5 51-n l1-n

At this stage, the above equation of state can be considered as the result of a new variant

of scaled particle theory. As we will show in Section 3 that eq.(3.74) underestimates
the pressure and gives less accurate results that the original SPT. It is emphasized that
we will use eq.(3.64) and the coefficients given in eqs.(3.69)-(3.71) and (3.74) as the

results of a first extrapolation of the chemical potential to insert a larger scaled particle
with a radius in the region of 0SSR <d = (2 / \/g—l)R.

For a scaled particle with a radius larger than d, we use the following expression

for its chemical potential including the leading non Hadwiger term,

W (R,)= m(As Mj

+W_1Ri+w0+wl(Rs —d)

‘*3 R >d, (3.75)
47 (R,—d) BP

3

+lw2 (R, —d)2 +
2
The coefficients in eq.(3.75) (w,,n =—1,0,1,2,) are determined by matching egs.
(3.64) and (3.75) at R =d,i.e,

BW (R =d)=pU (R =d), (3.76)
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PW'(R =d)=pU'(R =d), (3.77)

PW"(R =d)=pU"(R =d), (3.78)
pW" (R =d)=pU"(R =d). (3.79)
We obtain then,
2 2 3
w0=u0+Ruli+M(ij +nﬁ(ij R (3.80)
R 2 \R p\R) R d
d . pP(dY w, (RY
Rw, = Ru, + R*u, —+3n 1| = +—1(—j, (3.81)
R p\R) R\d
3
Row, = Rou, +6n PR L 2V (ﬁj , (3.82)
p R R \d
4
P-P
&:(ij ,PL-R) (3.83)
R R Yo,
Now, we find readily the following result for chemical potential,
Pu=pW(R =R)
2
=1n(A3p)+nﬁ—1n(1—q)+6—’7+2 /N (3.84)
o, l-n 2\1-7p

i

Taking derivative with respect to density on both sides of eq.(3.84) and using Gibbs-
Duhem equation, i.e., eq.(3.18), allow for obtaining a first order differential equation
either for the chemical potential or for the pressure. Again, the resulting differential
equation does not have constant coefficients and this prevents us from solving it
analytically. By adopting the same iterative procedure as for ASPT1 [i.e., using the SPT
value for pressure on the RHS of eq.(3.84), we obtain the following results (named as

ASPT?2) for chemical potential and pressure after the first iteration,

2 3
BT = BT 4l 5 n_ 25 2n/5 _3( n J +3[L] , (3.85)
1-n 2 1-21/5 1-7n 1-n
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ﬂPASPTZ _ ﬁPSPT _A{2O|:1+llﬂ(1_77):|_%(LJ +3£1LJ

1— _
p p 7 n 1) as6)
-5 1+ In(1-25/5)+ 25 _ _n
2 2n 1-2n/5 1-n
where
A:w_ (3.87)

From eq.(3.75), we obtain the following ASPT2 result for the surface tension
(dimensionless one) of an HS fluid against a spherical hard wall,

7ASPT2 (R ) — 47Z'R2ﬂ]/ASPT2 (RS)

s

2 3
) ) r rY R (3.88)
— }/:SPT2 + yjtlSPTZ RTS + 7:428137-2 [R_SJ + 7/:43SPT2 (RTSJ
where
3 3
77(;4SPT2 — 7768‘PT _477_/13SPT2 (2\/5_3j , (3.89)
3 2
s etk (.90
~ASPT2 _ ~SPT _ 4 ~ASPT2 3 (3.91)

Yo =V V3 2\/5_3’

3 1 25 opss |(243-3)
pivrs | 1 s 30 o m )| 25 20/ = (392
=" 1= =) | 2 25 [l 3

The same idea can be used to treat the multi-component system. The expression of

chemical potential for a multi-component system can be expressed as following,
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ln{l—inl(l+R§,/Rﬂ)3}, ~R <R, <0

-1
AnRBR,

1
P (RS ) = u, +u, R + EMZRSZ + 3

, 0<R <d , (3.93)

W—IRL+WO +w (R, —a’)+%w2 (Rs—d)2

LA (R ~d)’ ppP
3 9

where ¢ :(2/ NE) _1) R, represents the radius of i-component fluid particle. One

should be noted that R should present, in principle, the radius of the smallest fluid
particle. However, this restriction is not used in this paper. Egs. (3.65)-(3.68) and (3.76)

-(3.79) are used to solve the parameters, W,. Then W, is obtained as following,

4 5 SPT 4 860 144 5162/5 144 523/5
,=8BR'Z>" &, - BR: ~|, (3.94
" - [1—2@/5+(1—2@/5)(1—@)++<1—253/5)(1—¢3) .

woz—ln(1—§3)—4(3+2\/§)%, (3.95)
6%, W,
=29 L 1g(74443) 2
Wt (7+ \/_)Rf’ (3.96)
28, 3522 W,
~12 _24(45+2643) 2L, 3.97
" [1_§3+(1—§3)2:| ( ' \/_) R} 27

where B = (97 ~56\3 ) / 9. Then, the excess chemical potential equals to

Bus =—In(1-&)+wR, + %Rf +8, 7R + %. (3.98)

Same with the APST1 for multi-component system, the above results also can be
reduced to the corresponding ones of a one-component system. Also, same with the
original SPT, the above results can be obtained by considering a simple mixing rule

from the one-component system.!*?
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3.4 Results and discussion

In this section, we are going to assess the accuracy of our two ASPT. Our new
results will be compared with molecular simulation and previous works, i.e. SPT7y; 2%,
original SPT?94243 CS-SPT?¥, CS-SPTy >*¢, and MFMT?*. One should note SPT5y,
does not have an analytical expression, we only compare with SPT7m in chemical
potential and surface tension. MFMT, CS-SPT, and CS-SPTy are obtained by using
Carnahan-Starling equation of state as an input which means the expressions of pressure
and chemical potential from those two versions are same with Carnahan-Starling

equation of state.

A. Determination of the adjustable parameter in ASPTI

Before ASPTI can be used in practice, we still need to determine parameter, 0.
An appealing recipe for this is to adjust ¢ in such a way that the pressure given by
eq.(3.41) is as close as that of Carnahan-Starling equation, which has the following

expression,

ﬁPCS :'BPSPT _( n j ' (3'99)
p P 1-7n

Since P¥" is different from P only at high fluid densities, requiring
PASPTl

=P% at a high fluid density (with 7=0.5 being chosen here) should allow for

obtaining accurate values of pressure from ASPT1. This leads to the following equation

for determining 0,

Sl (Y, wsv| 1
E{l_(Ej (1=e") }4(31n2—1)' (5.100)

From eqs.(3.40) and (3.41), we see that any positive root of eq.(3.100) smaller than

R/3 can decrease the pressure given by SPT so that P*"' becomes possibly close to

P% . Solving eq.(3.100), we find only one positive root in the considered region,

§/R=0234499. Alternatively, if we require P = P> at =05, we obtain the
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following equation for ¢,

3
9 1_(§J (1-e*) |= 25673 - 439 (123+1251n5—1651n2j (3.101)
R| (R 576(3m2-1)\ 8 = 2

From this equation, we find §/R=0.181952. The two values for J give essentially the

same results for pressure (see Fig. 3.1) and in the following discussions, we will use

5/R=0.234499 for ASPTI.

15 —————
O CS
12+ —— dR=0.234499
L —— J/R=0.181952
T ‘
Sl _
3 » .
O . 1 . 1 . 1 . 1 .
0.0 0.1 0.2 0.3 0.4 0.5

n

Figure 3.1. Comparison of pressure of a hard sphere fluid. The CS results are presented

by black squares, the red line is ASPT1 with §/R=0.234499, and the blue line is ASPT1

with §/R=0.181952.

B. Pressure

Fig. 3.2 shows the comparison of the pressure, BP/p, obtained by ASPT1 and
ASPT?2 with the results of molecular simulation and previous work, i.e. SPT7u, CS, and
SPT3. Our results are much closer to simulation values than original SPT. In fact,
ASPT1 and ASPT2 are nearly indistinguishable from the simulation and Carnahan-

Starling equation of state on the scale of the plot. Unquestionably, the additional term,
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/R, , significantly improve the accuracy of pressure. This can be considered as

evidence of morphological thermodynamic is only a good approximation. Fig. 3.2 also

shows ASPT2 slightly overestimated the pressure at high packing fraction.

15

PP/p,

O A
0.0 0.1 0.2 0.3 0.4

Figure 3.2. Comparison of pressure of a hard sphere fluid. The simulation results are

0.5

presented by black squares, the red circle is SPTy, the green line CS, the blue line

SPTj;, the black line ASPT1, the red line ASPT2.

In Table 3.1 we compare the first 10 Virial coefficients obtained from ASPT1 and
ASPT2 with the prediction from original SPT, Carnahan-Starling equation of state, and
the exact values. One unanticipated finding is that the prediction of Virial coefficients
from ASPT2 is more accurate than all other versions, while ASPT2 was found to slightly
overestimate the pressure in Fig. 3.1. From Table 3.1, it shows that all equations of
state can offer exact first three Virial coefficients, all equations of state overestimate the
Virial coefficients but the ASPT1 underestimate it. The choice of the parameter, &, is

the reason, and if we decrease &, the prediction will be closer to the exact ones,
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however, the prediction of pressure and surface tension becomes worse. Carnahan-
Starling equation of state still has the best accuracy among those equations of state. The
prediction from ASPT and ASPT2 are better than original SPT, especially ASPT2
almost has the same accuracy with Carnahan-Starling equation of state. One should
note that all SPT results always overestimate or underestimate the Virial coefficients,
but the prediction of Carnahan-Starling equation of state underestimates the fourth and

fifth Virial coefficients and overestimates the others.

Table 3.1. Virial coefficients for hard sphere fluid

n  Exact SPT CS  ASPTI  ASPT2
2 4 4 4 4 4
310 10 10 10 10

4 183647 19 18 18.6526  18.5595

5 28.2245(10) 31 28 293325  29.1675
6 39.81545(15) 46 40 41.368 41.5656
7 53.3418(15) 64 54 54.0742  55.631

8 68.534(88) 85 70 66.7614  71.3043
9 85.805(58) 109 88 78.7375  88.5556
10 105.8(4) 136 108 89.3093 107.369

C. Surface tension

Now, we proceed to assess the accuracy of ASPT1 and ASPT2. SPT does not only
provide the expression of some thermodynamic properties but also provides the
expressions of some surface properties, such as surface tension and Tolman length. Fig.
3.2 plots the planar surface tension of hard sphere fluid obtained from CS-SPT, CS-
SPTM, original SPT, MFMT, molecular simulation, and two new ASPT. From Fig. 3.2,

it shows all versions of SPT have the same trend with molecular simulation but the CS-
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SPT. CS-SPT appears a different trend with molecular simulation results in the high
packing fraction. The original SPT overestimates the surface tension. Except CS-SPT
and original SPT, all equations of state are nearly indistinguishable from the simulation

results on the scale of the plot.

6.0

=
)

—
N
T

L

0'0 . 1 : 1 . 1 . 1
0.0 0.1 0.2 0.3 0.4

n

Fig. 3.2. Comparison of surface tension of a hard sphere fluid. The simulation results
are presented by black squares, the green line MFMT, the blue line SPT, the black line
SPTS, the red line ASPT2, the yellow line CS-SPT, the magenta line CS-SPTM

224

In most recent work, Urrutia“=* reported the first four exact Virial coefficients of

planar surface tension as following,
~ 759
Vo =3n+—n +—773+O(174) (3.102)

Table 3.2 shows the comparison of the Virial coefficients obtained from MFMT,
CS-SPT, CS-SPTw, original SPT, ASPT1, and ASPT2 with exact values. Table 3.2
shows that all equations of state can offer the exact first two Virial coefficients of planar

surface. For fourth Virial coefficient, the result from CS-SPTw is slightly better than
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any other equations of state result. ASPT1 and ASPT2 improve the prediction of fourth
Virial coefficient compare with original SPT. Although CS-SPT does not have the same
trend with molecular simulation result in high packing fraction, the first four virial
coefficients are more accurate than original SPT, which means in the high packing

fraction, the planar surface tension is dominant under the higher Virial coefficients.

Table 3.2: Virial coefficients of planar surface tension

n Exact CS-SPT CS-SPTwm SPT MFMT ASPT1 ASPT2

2 3 3 3 3 3 3 3
3 7.5 7.5 7.5 7.5 7.5 7.5 7.5
4 10.842 11.667 10.854 12 10.333 11.531 11.257

When a hard sphere fluid in contact with a curved surface, the surface tension
should be written as following,
R RY
Y=Vot+¥. E+7_2 (?] , (3.103)

where R is the radius of a spherical wall, 7 , =6,Ry,, 7, =0,Ry, is the Tolman

length and 7 ,/4x is the bending rigidity. Since the prediction of 7, and 7, from
ASPTI1 are identical with original SPT, in the following discussion, we will only
consider original SPT. Fig. 3.3 plots the prediction of 7 , from MFMT, original SPT,
CS-SPT, CS-SPTwm, ASPT2, and molecular simulation results. Fig. 3.3 shows that all
equations of state have a good agreement with simulation results but the CS-SPT.
Compare CS-SPT and CS-SPTw, one can find that using two Laurent series to describe

the reversible work will significantly improve the predictive accuracy of surface

properties. Compare with original SPT, MFMT, and ASPT2 slightly improve the

prediction of 7 , . One should be noted that CS-SPTw has a different trend with the

other equation of state. In moderate packing fraction, the prediction of CS-SPTw is
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lower than simulation results. In high packing fraction, the prediction of CS-SPTw is
higher than the results from other equation of state. Because lack of simulation result,
we do not know which result is correct in high packing fraction, it means that the future

study is needed.

3.0
2.5
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n

Figure 3.3. Comparison of 7 , of a hard sphere fluid. The simulation results are

presented by black squares, the green line MFMT, the blue line SPT, the red line ASPT2,

the yellow line CS-SPT, the magenta line CS-SPTwm

The first four Virial coefficients of 7, was provided by Urrutia***, the expression

is given as following,

5 8 27V3) , )
=3n|1+n+| —+ +0 . 3.104
7 7{ 7 (35 e ]77 ] (7*) (3.104)

Table 3.3 shows that all equation of state can provide exact first three Virial coefficients

of 7 ,. The prediction of the fourth Virial coefficient from CS-SPT has a different sign
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with the exact result, this can explain why the prediction of 7, from CS-SPT is bad.

The prediction from CS-SPTM is also away from the exact one, but much better than
CS-SPT. The prediction from ASPT?2 is closer to the exact value than original SPT. One

unanticipated finding was that the prediction from MFMT is more accurate, while the

prediction of y  is not good.

Table 3.3: Virial coefficients of 7 |

n  Exact  CS-SPT  CS-SPTwm SPT  MFMT  ASPT2

2 3 3 3 3 3 3
3 3 3 3 3 3 3
4 3477 -3.333 0.903 3 3.333 3.172

In the final part of this section, 7, are considered. Since the prediction of 7,

from CS-SPT and CS-SPT5w are terrible, we will not compare them here. Fig. 3.4 plots

the prediction of 7, from MFMT, ASPT2, and molecular simulation. As shown in Fig.

3.4, except for ASPT2, all equation of state has the same accuracy in 7 ,. The

prediction from ASPT2 slightly improves the original SPT’s result. As previous part,

224

here, the Virial coefficients of 7 , will be considered. Urrutia=** also reported the first

four Virial coefficients as following,

7 :n{nln{w—@]nz}o(n“). (3.105)

2 167z 105

Numerical results of Virial coefficients are shown in Table 3.4. It shows that all

equations of state can provide exact first three Virial coefficients, and all equations of

state overestimate the fourth virial coefficients. Hence, the future study in y , is

necessary.

Table 3.4: Virial coefficients of 7 ,
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n Exact SPT MFMT ASPT2

2 1 1 1 1
3 0.5 0.5 0.5 0.5
4 0.03872  0.3333 0.3333 0.31556
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T
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7

Figure 3.4. Comparison of 7, of a hard sphere fluid. The simulation results are

presented by black squares, the green line MFMT, the blue line original SPT, the red

line ASPT?2.

Above discussion show that we cannot say an equation of state has a good accuracy
just because the prediction of Virial coefficients has a great agreement with the exact
value. When an equation of state has good accuracy, it means the prediction of Virial
coefficients also has good accuracy. However, if the equation of state can accurately

provide the first a few of virial coefficients, it does not mean this equation of state has
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good accuracy.
D. Non-Hadwiger coefticient

As said at the beginning of this paper, we want to build a simple analytical equation
of state that can provide an acceptable prediction of Non-Hadwiger coefficient. In this
part, the non-Hadwiger obtained from different equation of state are considered.

Hansen-Goos??! has reported a very accurate expression of Non-Hadwiger
coefficient, however, his theory, SFMT, need planar surface tension and Tolman length
as input. Fig. 3.5 shows the prediction of non-Hadwiger coefficient from CS-SPT, CS-
SPTwm, ASPT1, ASPT2, SFMT, and molecular simulation. As it shows, the prediction
from SFMT has the best accuracy. Except for SFMT, only ASPT1’s prediction has the
same magnitude with simulation result. ASPT2 significantly underestimates the Non-
Hadwiger coefficient. Although the prediction from ASPT1 and ASPT2 have the same
shape with simulation, the value of non-Hadwiger coefficient is larger than simulation

results at least two orders of magnitude.
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Figure 3.5. Comparison of non-Hadwiger coefficient of a hard sphere fluid. The
simulation results are presented by black squares, the blue line SFMT, the red line

ASPT2, the black line ASPT1, the yellow line CS-SPT, the magenta line CS-SPTwm

E. Multi-component system

Now, the accuracy of the two ASPT for the multi-component system is considered.
The comparison of the prediction of excess chemical potential from our two new ASPT,
original SPT, and BMCSL equation of state’° are shown in Fig. 3.6. It shows that
ASPT1 and ASPT2 strongly improve the prediction from original SPT for both big
particle component and small particle component, and the results are nearly
indistinguishable from the BMCSL equation of state on the scale of the plot. In original
SPT, if the number of components is reduced to one, all results will reduce to the
corresponding ones of a one-component system. It can be readily checked that ASPT1
and ASPT?2 also have this property. Also, ASPT1 and ASPT2 can be obtained by using

some simple mixing rules, just like showed in 3. All results above show our two new
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methods are reasonable and consistent.
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Figure 3.6. Comparison of the excess chemical potential of a binary mixture system.

The BMSL results are presented by the green line, the black line is ASPT1, the red line
ASPT2, and the blue line original SPT.

3.5 Concluding remarks

In the present work, we found the original expression of the chemical potential is
not completed. Based on previous works on SPT and morphological thermodynamic,
we reported two new ways to present the chemical potential. The first one contains an
arbitrary parameter. The second one uses two Laurent series to describe the chemical
potential. Both of them do not only significantly improve the accuracy of
thermodynamic properties, i.e. pressure and chemical potential, but also improve the
accuracy of surface properties, i.e. surface tension and Tolman length. Also, the same
idea can be used to treat the multi-components hard sphere fluids system, and the
improvement is significant.

The success of ASPT1 and ASPT2 indicates that the morphological
thermodynamic is not an exact theory, it is only a very good approximation. However,

ASPT1 can only provide an acceptable result of Non-Hadwiger coefficient, which
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means we still need future study in this term. Since the original expression of the

reversible work is not completed and when we add an additional term, 1/R , the

accuracy has significantly improved. It is natural to ask a question if the more terms,
1/R* and 1/R’, are added, the higher accuracy of SPT will be obtained?

Unfortunately, since lack of the understanding of reversible work of inserting a
scaled particle, eq.(3.4), we do not have enough conditions to build a new SPT that

contains more term.
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4. A general equation of state for confined fluid:

morphological thermodynamics

4.1 Introduction

In theoretical studies, for describing the porous material, many models are
introduced, i.e., hard sphere matrix model, overlapping hard sphere matrix, hard sponge
matrix, and Slit pore, as shown in Fig. 4.1. The models of disordered porous medium
are always built with the help of some fixed particles. Although all three models for
random porous medium introduced above has analytical equation of state obtained from
SPT, the derivation of all those equations of state is very complex and depends on the
model of porous medium. So, it still remains a great challenge to build a general
framework to understand the behavior of fluid confined in different porous medium.
Although all three models for random porous medium introduced above has analytical
equation of state obtained from SPT, the derivation of all those equations of state is very
complex and depends on the model of porous medium. So, it still remains a great
challenge to build a general framework to understand the behavior of fluid confined in
different porous medium.

In recent, Mecke and his co-workers proposed a general framework, named as
morphological thermodynamics.??7-29%210234 Thijs framework gives us some hope to
build a general theory for different confined fluid. This method is from a beautiful
mathematics theorem, Hadwiger’s volume theorem.?!!:2!2 Tt is not only a beautiful

mathematics theorem but also offers a very powerful way to study confined fluid.
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Figure 4.1. Schematic presentation of the different models of porous medium: (a) HS
matrix, (b) OHS matrix, (c) sponge matrix, (d) ordered matrix, (e) slit pore. Matrix
particles are presented as large gray circles and fluid particles as blue small circles with

an arrow.

Recently, some studies???222:224261 showed that the morphological thermodynamics

is an approximate method but an exact one. Laird**?

used molecular dynamics
simulation (MD) to calculate the interfacial tension, y , between spherical or
cylindrical particle and hard sphere fluid. They fitted the MD result to determine a

polynomial of 1/R. Hansen-Goos®*!

used Virial expansion to determine an exact
surface tension expression, and this expression implied the existence of non-Hadwiger
coefficient. To quantify the first non-Hadwiger coefficient, some simulations were
carried out, the numerous results showed that the first non-Hadwiger coefficient is
smaller than the smallest morphological thermodynamics coefficient in one order of
magnitude. In those articles, they did not prove that the non-Hadwiger term coefficients

with higher order are always in the same sign. In this case, the sum of non-Hadwiger
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terms may be equal to zero. In fact, their studies considered a fluid near spherical or
cylindrical particle, it means that the interface between fluid and the obstacle particle is
concave from fluid view, while the Hadwiger's volume theorem is only valid in convex
interface.

The remaining Chapter is organized as follows. A brief introduction of
morphological thermodynamics and a general equation of state for different confined
fluid will be presented in the next section. Then the accuracy of the general equation of

state in different confinement systems will be assessed in Section 4.3.

4.2 Theory

A. A brief introduction of Morphological thermodynamics
Hadwiger's volume theorem is one of the most important and beautiful theorems in

geometric convexity.?''1? It says if there exists a mapping ( u: k* — R) from a convex

set (k) onto a real number (R), and this mapping satisfies three restrictions: (I)
Continuity. (II) Motion invariance. (III) Additivity. Then the mapping function can be

rewritten as following:
d
u(K)= ZC}Vi(K)’ (4.1)
i=0

¢, is constant. For three dimensional system V, isvolume, V, isthe surface area,

V. is the integrated mean curvature, and ¥ is the Euler characteristic. Imitate this

theorem, a similar expression of the grand potential of a confined fluid, Q, can be

obtained,
Q=-plVg +ocA+xC+x,X, 4.2)
where V' is the system volume, ¢, is the geometric porosity’”®, A4 is the surface

area of the matrix, C and X are the integrated mean curvature and the Euler

characteristic of the matrix component, respectively. p, o, k;, and k, are the
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coefficients only about the fluid property. It means that the grand potential of confined
fluid can be expressed as a linear combination of four geometric properties of matrix,
and the four coefficients can be obtained from bulk system. However, for now, we do
not know how to obtain those four coefficients from bulk fluid. Here, a simple confined
system of ideal gas fluid will be introduced to explain this expression of grand potential
of confined fluid, the model as introduced in Fig. 4.2. Some clues of how to obtain

those four coefficients from bulk system can be also obtained from this toy model.

~ )

Figure 4.2. Schematic presentation of an ideal gas fluid around a spherical matrix

particle with a square well potential.

Consider an ideal gas fluid around a spherical matrix particle, and the interaction

between fluid and matrix particle is square well potential,

o, |r|<R,
u,(r,)=4¢e, R,<r|<R,+d, (4.3)
0, |r|<R,+d

where r is the position of fluid particle 7, assume the matrix particle is in the original
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of the coordinate. R, is the radius of the matrix particle. In this work, 0 is used to

denote matrix component, & is the well depth and d is the width of the well. Then
the grand partition function is
o N N
= z_oﬁ“.exp[—ﬂulo (r)]dr} = exp[zI exp(—pLu,, )dr], (4.4)

[1]

where z=exp(fu) is the activity, x is the chemical potential. The grand potential

is equal to
M=—InE=—z j exp[—fu,, (r)]dr (4.5)

The integration in the equation above, [ = _[ exp[—pu,,(r)]dr, can be derived as
I= (V —%ﬁRg ) +(e” - l)(47zR§d +47R,d’ +§7rd3j (4.6)

The four geometric properties of this matrix particle are

4
¢ = I—WﬂRS, (4.7)
A=4nR;, (4.8)
C=4rR,, (4.9)
X =4r. (4.10)

Then the grand potential can be rearranged as following,

PQ=—zV@ +0A+KxC+Kr,X, (4.11)
where
o=—z(e” —1)d, (4.12)
K =—z(e” —1)d>, (4.13)
K, = —g(e-ﬂg ~1d’. (4.14)

Hence, we find the expression of grand potential for an ideal gas fluid around a spherical
matrix particle satisfies morphological thermodynamics expression, and the four

coefficients are obtained. In different situations, such as ideal gas fluid confined in a
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spherical container, ideal gas fluid around or confined in a cylinder, the same results
can be also obtained. Since the details of the calculation are similar to this example, we
will not show them here. We also found in some cases this expression is not established,
such as, when fluid around two big spheres and there is a region that fluid suffered
interaction from both two big spheres. (see Appendix B). It should be mentioned that,
z 1is equal to the pressure of the equilibrated bulk system. Maybe those four
coefficients can be obtained from the equilibrated bulk system, instead of the bulk
system has the same fluid density as in Chapter 2. One should note that, normally, the

surface area of the matrix particle has two different definitions??°, the first is equal to

4z R; which called solid surface area, the second is 47z (R,+R,)* which called

reference surface area, where R, is the radius of fluid particle. When the fluid is ideal

gas fluid, those two definitions are equivalent. In the following work, we will use the
first definition. Hadwiger's volume theorem is about a mapping from a convex set to a
number, however, in above example, the interface between fluid and matrix particle is
concave from the fluid's view, and in Hansen-Goos' work??!, he also considered a fluid
around a spherical particle. This situation does not satisfy the Hadwiger's volume
theorem, so we also calculated the fluid confined in a spherical container, we found the
non-Hadwiger term still exists. We have to say the morphological thermodynamic is

only a very accurate approximation.

B. A new general equation of state

In this section, a new general equation of state for a hard sphere fluid confined in
different porous medium will be introduced. In morphological thermodynamics

expression, the grand potential of a confined fluid is equal to

PQL=—p(u, TV ¢ +o(u,T)A+ (1, T)C+ 1, (1, T) X (4.15)
here, the independent variables are chemical potential, 4, and temperature, 7, which

means we assume those four coefficients can be obtained from the equilibrated bulk

system. Compare the grand potential, we are more interested in adsorption amount, with
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the help of thermodynamic relation,

N = _oK , (4.16)
opu
the relation between chemical potential and confined fluid density, p_, is
ou ou vV ou vV ou vV

Since the relation between the chemical potential and fluid density for bulk system is

already known. With the help of chain rule, the equation above can be rearranged as

p :ap(pbaT) apb ¢ _aa(pbsT) 610}; é

©  8p, ou "  op, ouV
_0x,(py,T) 0p, C 0K, (py,T) Opy, X
op, ouVv op, ouv

(4.18)

The well-known Gibbs-Duhem relation is

| _ |k 4.19
(6pb]T pb(apb]T. ( )

The relation between confined fluid density and bulk fluid density is equal to

_ 0o(p,,T) op, A 0k, (py,T) Op, c 0K, (py,T) Op, {
op, ouVvV op, ouv op, ouv

P. = Py (4.20)

The relation between those three coefficients and bulk fluid density can be obtained

from scaled particle theory'®>.

1 31,2+n,)

o= : 421
o= R 20—,y (.20)
pre, =—— (4.22)
4rR 1-n,

1
P, =——In(1-7,). (4.23)

dr

147, — 1352 +57

Bu=1In(p,A*)~In(1—7, )+ —2o > T T, (4.24)

2(1- 7717)3

where 7, =4zp,R’ /3 is the packing fraction of bulk fluid, and A is the fluid
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thermal wavelength.
Now, we obtained a general relation between confined fluid density and

equilibrated bulk fluid density. Combine eq. (4.20) to eq. (4.24), the relation between

confined fluid density, p_ , and chemical potential, x , can be obtained. This

derivation is irrelevant with the model of porous medium, so we can use this model to
study different confined fluid. It should be mentioned that scaled particle theory can
also offer an accurate equation of state for different kinds of confined fluid like showed
in previous works’. The derivation of our new general equation of state is easier to
scaled particle theory, while the final expression is more complex than scaled particle

theory.

4.3 Results and discussion

In this section, we are going to assess the accuracy of our new general equation of state
in the different porous medium, i.e., Madden-Glandt model, sponge-like models, slit
pore model. Our new results will be compared with molecular simulation and scaled

particle theory”. We will start from the disordered porous medium.

A. Madden Glandt disorder porous medium

Here, we consider two kinds of Madden-Glandt models, the hard sphere one (HS) which
the interaction between matrix particles are hard sphere potential and overlapping hard
sphere one (OHS) which has no interaction between matrix particles. For the HS matrix,

the expressions for four geometric properties are

4
¢ =1 —WﬂpORS : (4.25)
A=4rp R}V, (4.26)
C =4np,R,V , (4.27)
X =4np)V, (4.28)

where p, is the density of matrix component. For the overlapping HS matrix, the
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expression of four geometric properties are

g =em", (4.29)

AV =4mpe ™R, (4.30)

C/V =4np,(1-3n,/2)e ™R, (4.31)
XV =4mp,(1-97, +91; / 2)e™™ (4.32)

Fig. 4.3 (a)-(c) plots the prediction of chemical potential for an HS matrix from our new
equation of state, SPT2bl, and molecular simulation results in different matrix
properties. Both our equation of state and SPT2bl have a good agreement with
simulation results in different matrix radius and different matrix density. Fig. 4.3 (d)-
(e) shows the results of our new equation of state, SPT2b1, and molecular simulation
results for an OHS matrix. Same with the results for HS matrix, our new equation of
state and SPT2b1 are nearly indistinguishable from the simulation results on the scale
of the plot. Unquestionable, the morphological thermodynamic is a very accurate

approximation.

75



gt

GF

(d)

& 3 6113 £,0 = 0.1590
0t 0r
HS matrix OHS matrix
3t o/o=2 3t 7 m ]:n\
00 01 02 ‘0"3 0405 00 01 02 03 04 05
PO, Pi
12 12
ot (b) o (€)
6F 6r )
& Al £,0, = 0.005T473 ‘23::‘: 3 py0, = 0.031328 "
: £,0, = 0.0044210 I
0 0 £,0, = 0.020683
30 (T","(r‘ 5 -3 I ‘Tn"b: 3
0.0 0.1 0.2 . 0.3 0.4 0.5 0.0 {)tl (]t2 . (],l3 Ut4 0.5
A0 P9,
12 12
of ot (f)
6f 6r .
&, & 5[ pol-oo00sn A '
o or £,0 = 0.006128
3P /=3 -3 oy, =35
0.0 0.1 0.2 s 0.3 0.4 0.5 0.0 0.1 02 03 04 0.5

/9

Figure 4.3. Comparison of the new general equation of state with SPT2bl and
simulation, the simulation results are presented by black square, the red dash lines are
new general EOS, the blue solid lines are SPT2b1: (1) HS fluid in HS matrices (left

panel); (2) HS fluid in OHS matrices (right panel).

B. Hard sponge disordered porous medium

In this section, our new equation of state will be applied to describe hard sphere
fluid confined in a hard sponge matrix. This model can be considered as an opposite
system of the OHS matrix. Not like OHS matrix, in this model, the material particles

are considered as cavity. It should be noted that the interface between the matrix and
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fluid is a convex surface in this model, while in OHS matrix, it is a concave surface.

The four geometric properties of hard sponge model are

gy=1-e", (4.33)

AlV =4mpe ™R;, (4.34)

C/V =4mp,(1-3n,/2)e ™R, (4.35)
XV =4mp,(1-97,+91. / 2)e™. (4.36)

Fig. 4.4 shows the prediction of chemical potential for a hard sponge matrix in different
porosity. As in the previous section, both our new equation of state and SPT2b1 have a
great agreement with simulation results. In should be noted that when porosity is small,
our new equation of state slightly underestimated the chemical potential in the high
fluid density region. Compare Fig. 4.3 and Fig. 4.4, one can find that the pore shape is

not important.
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Figure 4.4. Comparison of the new general equation of state with SPT2bl and
simulation of HS fluid in hard sponge matrices, the simulation results are presented by

black squares, red dash lines are new general EOS, and blue solid lines are SPT2b].
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C. Ordered porous medium

In the previous section, we considered our new equation of state for different kinds
of disordered porous medium. In this section, the ordered porous medium will be
considered. Here, we use a cubic lattice model to describe the ordered porous medium,
the matrix particles placed in the lattice points. The four geometric properties are same
with HS matrix. Fig. 4.5 shows the comparison of the chemical potential, s, obtained
by our new equation of state with the results of molecular simulation. Our results are
very close to the simulation values even in a high matrix density. The accuracy of our
new equation of state will decrease while the increasing matrix density and the
decreasing radius of the matrix particle. In high fluid density, our new equation of state
is overestimating the chemical potential. Compare this result with the HS matrix one,
we found when matrix particle is larger than the fluid particle, the disorder effect is not

important.

3k 0,/0,= 5, pUO'S =0.125

o,/0,= 10, p,0, = 0.57804

_ A
%.O 0.1 02 03 04 05 06
P 1 O-l
Figure 4.5. Comparison of the new general equation of state with simulation of HS
fluid in the ordered porous medium, the simulation results are presented by black

squares, the red dash lines are new general EOS.
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D. Slit pore system

All models we considered in the previous section have a curved surface, a simple porous

medium model, slit pore, which has a planar interface between fluid and porous medium,

will be considered this section. In this model, the porosity, ¢, , is equal to one, and the

surface area per unit volume equals

AlV =2/ H, (4.37)
where H 1is the distance between two solid surfaces. Two curvatures, C and X, are
equal to zero. Since this model is simpler than previous models, we consider if we can
use a simpler equation to describe this system. Here, the fluid density and temperature

are considered as independent variables. Then from morphological thermodynamics,

the free energy, [SF,, of a hard sphere fluid confined in a slit pore can be given by:
BF, = PF, + fy24, (4.38)

where [F, is the free energy of bulk system which has the same fluid density with

confined system, and Sy is the surface tension of a hard sphere fluid near a planar

wall, since there are two planar walls in this system, the surface area of solid-fluid

interfaceis 24. AF, and SyA can be offered by SPT:
1 n n Y

= 6 +| 3 , 4.39

Pr SﬁRZ{ -7 ( l—nj} (339)

ﬂzpln(p/v—1)+p{—1n(1—n)+3(ij+§ (Lj } (4.40)
V 1-7 -7

2

where 7 is the packing fraction, and R 1is the radius of fluid particle. Then the

chemical potential of fluid confined in slit pore can be obtained as following,

OBF, 1V 0O2ByAlV 20
= it + by :ﬁﬂb+_ﬂ,
op op L op

P (4.41)

where L is the distance between two planar walls.
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Py _0Pyon_ 1 601424 i o 1+27 (442)

dp on op 8xR: (1-3)° 3 (1-m*

14n-13n" +51° Lo 1+27
2(1-n)’ L(1-n)"

where o is the diameter of fluid particle. Here, we obtain an equation of state for a

Bu, =In(pA*)—In(1-n)+ (4.43)

hard sphere fluid confined in a hard wall system. However, in this system, we are more
interested in a fluid confined in a square well wall system. To determine this equation

of state, we use first order perturbation theory to calculate the equation of state for this

system. The interaction between fluid and wall, u,,, is

o, |h|>L/2
uo (hy=4e, L/2—-d<h|<L/2, (4.44)
0, |hi<L/2-d

where d is the width of fluid-wall potential, & is the depth of fluid-well potential.
Here, the reference system is the system that £ =0 which is the hard wall system.
Hence, the interaction between fluid and wall can be divided into two parts, the

reference part, and the perturbation part,

u,,(h,A)= ulrgf (h)+ Auly" (h), (4.45)
where
0, |h|>L/2
ul(h)y=4¢, L/2—d<h|<L/2, (4.46)
0, |hl<xL/2-d
Then the free energy is
BF,,, = BE, + BWo1)o> (4.47)

where F, is the free energy of a hard sphere fluid confined in a hard wall system,

N
Wy, :Zu(ff’ (h), and (---), is the ensemble average of reference system, which
i=1

means the perturbation part will not change the fluid density profile. The ensemble
average can be rewritten as
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wdo = A P (hyufy” ()dh. (4.48)

Now, once we know the density profile of the reference system, the free energy can
be obtained. We assume the excess adsorption is adsorbed in the region where the
interaction between solid surface and fluid is equation to &, and in the remaining

region, the fluid density is equal to the fluid density of the equilibrated bulk system,

p, - The density distribution is

0, |h|>L/2
P (h)y=3p,, L/I2—-d<|h|<L/2 (4.49)
p., |hi<L/2—d

For the reference system, the bulk density can be solved from the Gibbs adsorption

equation,

(aﬂJ =T,, (4.50)
opu ),

where I', is the excess adsorption amount per unit area at the interface. It can be

obtained as

A 1
Cy=5 [P =pdh=—(p,x2d-p,x2d)=d(p.=p,),  (45D)
2
pr=p=—=, (4.52)
1 2
=p+| ——= 1T, 4.53

where p is the average density. Then the ensemble average of w,, is equal to

(Wop)o = Ap.Pe2d = ZdAﬂg{p+(§—%jFN}. (4.54)
Since,
RN
opu ), \ on ).\ opu),

As we known,
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877 — 277(1_77)4 , (456)
opu  (1+2n) +on(5+4n)/ L

opy 3 1+2n

= ) 4.57
on  4zR (1-n) (#37)
Hence, the excess adsorption amount is
3 1+2n)(1-
P (J; md=-mn (4.58)
AzR” (1+2n) +on(5+4n)/ L
The dimensionless excess adsorption amount is
. 4rR’
I ==2=T,. (459)

Then the free energy of this system can be obtained,

PBE, _ ﬁ_F 1 ﬂF 2dﬁg 1 2
” I <01>o I {p—i_(d LJFN} (4.60)

and the chemical potential is

pu, = LEtV gy, o 12 2dfely (1 200 )| (46
op L(1-n) L d L on

From the equation above, one can find that the first term is the bulk chemical potential,
the second term denotes the interaction between a hard sphere fluid and a hard wall,
and the last term denotes the interaction between a hard sphere fluid and the square well
interaction. To verify this eq. (4.61), the molecular simulation for a hard sphere fluid
confined in slit pore were performed. In Fig. 4.6, one can find eq. (4.61) has great
accuracy in different conditions, even in a high fluid density. To our best knowledge,
for this moment the results presented in our study provide the most accurate theoretical
description of the thermodynamic properties of a hard sphere fluid confined in a slit
pore.

Fig. 4.6 shows the comparison of the chemical potential, , obtained by our new
equation of state with the results of molecular simulation. Fig. 4.6 a) shows the results

of a hard sphere fluid confined in a hard wall system, it shows the results are nearly
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indistinguishable from the molecular simulation results on the scale of the plot in
different pore width. Fig. 6 b) and c) shows the results of a hard sphere confined in a
square well pore with different width of potential and different depth of potential. Those
results indicate our new equation of state works well for fluid confined in slit pore
system with different parameters. Compare these results and the results for previous
models, one should find that the pore size distribution and pore connectivity are not

very important.
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Figure 4.6. Comparison of the new general equation of state with the simulation of HS

fluid in slit pore.
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4.4 Concluding remarks

In the present section, we introduced the morphological thermodynamic with the
help of ideal gas fluid, we present even for an ideal gas fluid, in some cases, the
morphological thermodynamic still does not hold. A new general equation of state is
obtained from morphological thermodynamic. To our best knowledge, for now, this is
the first equation of state for confined fluid that is irrelevant with the model of porous
medium. In a large range, our new equation of state works well.

Since this new equation of state provides an accurate theoretical description of the
thermodynamic properties of a hard sphere fluid confined in the different porous
medium. Our new equation of state indicates that porosity and other geometric
properties play primary roles for the thermodynamic of confined fluid. All the other
parameters, i.e., pore shape, pore connectivity, pore size distribution, disorder effect,

are much less important.
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5. Quench effect on the chemical potential

5.1 Introduction

In 1988, Madden and Glandt proposed an interesting model for random porous
material and developed a statistical-mechanics for investigating the structure and
thermodynamics of fluids confined in random porous media.*® In this model, the
disordered porous material is mimicked by a random matrix that can be generated from
quenching a fluid system at its equilibrium state. Thus, the quenched “fluid” particles
constitute the matrix (thereafter called matrix particles), and the voids among them are
pores. This simple model successfully characterizes the main features of disordered
porous materials, e.g., pore connectivity, pore size distribution, etc., and thus have been
widely applied in both molecular simulations and theoretical studies of fluid confined
in random porous media. Since the fluid species are mobile within the matrix
configuration, this model is also called as quench-annealed mixture with quenched
species referring to the matrix and annealed species referring to the confined fluid. It is
to point out also that the way for constructing such a porous matrix mimics the spinodal-
decomposition procedure for fabricating some porous materials experimentally.

Although many investigations have been devoted to study fluids confined in
random porous media since Madden-Glandt model was proposed, no precise measure
has ever been proposed to describe quantitatively the quench effect for the adsorption
of a fluid in a random porous material. We propose to measure such an effect by the
difference of free energy to insert a fluid particle into a quench-annealed system or into
the corresponding equilibrium binary mixture. It can appear perplexing that there are
still quite some fundamental questions related to quench effect that we cannot answer
straightforwardly. Without attempting to be exhaustive, we can list the following ones:

1) What is the consequence of quenching?

2) Does a quench-annealed system or its corresponding equilibrium binary
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mixture appear more crowded? Crowdedness means here more difficult to
insert another fluid particle, i.e., with high chemical potential.
3) When the quench effect becomes significant?
4) Inthe case of a large quench effect, which are the dominant factors contributing
to the considerable increase of chemical potential?
In this chapter, we will address these issues by studying some simple model systems.
In the next section, we present first the considered model and the methods we used for
carrying out our investigation. In Section 5.3, the obtained results are presented,
analyzed and discussed. The insights gained from this study are summarized in the last
section and we point out also the implications useful for designing new functionalized

porous materials, e.g., for high-capacity gas adsorbents, etc.

5.2 Model and methods

A. Model

In the present work, we consider a hard sphere (HS) fluid (denoted as species 1)
of N1 particles confined in a quenched HS matrix (denoted as species 0) of N0

particles. The interactions between the particles of the different species are described

by,
o0 r,—r,|<2R
wir—rp =1 L_;LM‘, (5.1
i jl= 1
o0 ‘rl.—qj‘<R1+R0
—a = , 2
u(r, —q;)) 0 eafRiR (5.2)
q; —q; <2R0
(9, -, = }q q‘]}>2Ro’ (5.3)
i Jl =

where R, and Ro are respectively the radius of fluid and matrix particles, I) and T;
are respectively the position vectors of the ith and the jth fluid particles while (; and

(; are those of matrix particles.
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B. Theory

The fact that the matrix particles in a quench-annealed system are immobile has
some consequences on both structural and thermodynamic properties. In the present
work, we focus on the quench effect on thermodynamics only and examine in particular
such effect on the chemical potential in order to learn how quenching affects the
insertion of a fluid particle. The difference between the chemical potential for inserting
a fluid particle into a quench-annealed system and that for inserting the same particle
into the corresponding equilibrium binary mixture appears to be a natural measure for

quantifying the quench effect, i.e.,
P, = P = P (5.4)
where =1/ (kBT ) (kp: Boltzmann constant; 7% temperature). In the followings, we

call SAy, quench chemical potential. Now, we point out first that the measure defined

in eq.(5.4) has an exact diagrammatic expansion. Following the work of Madden and
Glandt* and that of Morita and Hiroike?¢*2%4, one obtains readily the following

expansions,

B " =1n (A13 o ) — {sum of all topologically distinct, simple, connected
graphs which are composed of one white fluid point, some or no
black fluid points, weighted by p,, black matrix points, weighted
by p,, some or no f;, bonds between pairs of fluid points, some , 5.5
or no f,, bonds between pairs of matrix points, some or no f,,
bonds between pairs of matrix and fluid points, and which have

no articulation points}

and
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B =In (A13 o) ) — {sum of all topologically distinct, simple, connected
graphs which are composed of one white fluid point, some or no
black fluid points, weighted by p,, black matrix points, weighted
by p,, some or no f;, bonds between pairs of fluid points, some , (5.6)
or no f,, bonds between pairs of matrix points, some or no f,
bonds between pairs of matrix and fluid points, and which have

no articulation points, no shielding set}

where p, and p, are the density of species 1 and 0 respectively, A, is the thermal

wave-length of fluid particles and the various Mayer functions are defined as,

—Pugo (4,4, )
fiolla, —aqy=e el 1, (5.7)
—Bugi (9, -1;))
forllg = p=eolrh oy, (5.8)
Sl —xh=e Py, (5.9)

Eqgs.(5.5) and (5.6) yield straightforwardly,

LA, = {sum of all the graphs in eq.(5.5) with shielding set}, (5.10)

0T BB BB

where circles denote fluid points and squares denote matrix points. Due to its
diagrammatic characteristics described in eq.(5.10), we call sometimes SAy,
shielding chemical potential as well (an interchangeable name with quench chemical
potential). We will discuss in the next section how some interesting information about
quench effect can be deduced from the formal results presented here.

C. Application of scaled particle theory

It is also well-known that even for simple models like HS, it is not possible to
calculate exactly and analytically the sum of graphs like that in eq.(5.10). Nevertheless,
various approaches, some being even analytic, exist for calculating chemical potential
in both an equilibrium binary system and a quench-annealed system. In particular,

scaled particle theory (SPT) is a well-known and successful approach which allows for
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calculating analytically the thermodynamic properties of various bulk HS systems and
has been extended recently to quench-annealed systems as well. In this Chapter, we will
apply SPT to determine the chemical potential of an HS fluid in an HS matrix and that
of the corresponding binary HS mixture in order to assess quench effect. Previous
investigations have shown that the variant called SPT2bl gives very accurate results
for the chemical potential of an HS fluid in an HS matrix.” This is why for our study
here we use SPT2b1 and its expression for the chemical potential of an HS fluid in an

HS matrix is given by,

2
ﬂﬂfx(QA)ﬁ'ﬂff1n(1771/¢0)+[7+3r(4+r)—1 T +912(177° ] +¢°_¢]><
M 0

2 2
/e 1 15+3r(10+7)i+1872( To j ( U } (5.11)
1_771/¢0 2 1_770 1_770 1_771/¢0

2 3
+3(1+ 2770 j ( 771/¢0 )
1-n, 1-n,/4,

where But-% = pu® —ln(Al3 ol ), n,=4zR’p, /3 (i=0, 1) is the packing fraction,

=R, /R, is the ratio of the radius of fluid particle to matrix particle, ¢ =1-7, is

the geometric porosity, and [y is the chemical potential to insert one fluid particle

into an empty matrix which is given by

2 3
37(3+2
Bu =—In(1—n,)+7(3+30+72) T [Br2)( m | 3 ) (s
1 0
1-n, 2 1-n, 1—7,

and ¢ ineq. (5.11) is the matrix porosity measured with a fluid particle as the probe
(note that ¢0 is the porosity measured with a point particle),
p=e", (5.13)

In order to facilitate comparison, we cast the expression of chemical potential of the

corresponding binary mixture in a form similar to that given in eq.(5.11), i.e.,
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2
B = Bty ~In(1-7, /¢o)+l7+’(l5+6f”2)1 o7 (3+f)[1ij
—1 —M

3
+9T3£1770 J} m/ +l{15+3r(7+z’)i+3rz(15+22’)><
0

-1 1-n/¢ 1-7,
2 3 2 3 3
( Mo ]+18T3( un j [ n/ 4, j+3(1+ 4 j( n/ @, j
1-n, 1-n, 1-n,/¢, 1-n, 1-n,/4¢,
(5.14)

The two first terms on the right-hand side of both eqs.(5.11) and (5.14) are identical.

The rest of the RHS of egs. (5.11) and (5.14) is a third order polynomial of /L
1-n,/4¢,

but with different coefficients for gy~-¢* or pu=*. So, the quench effect shows up
through these coefficients.

D. Simulation

In order to check the validity of the prediction about the quench effect given by
SPT, we carried out a series of Monte Carlo (MC) simulations*?®2%° of an HS fluid in
an HS matrix. A cubic simulation box was used with periodic boundary conditions.
Each simulation run is performed with a particular matrix realization and the fluid
particles can move in the volume which is not occupied by matrix particles. The matrix
configurations are generated by using canonical ensemble Monte-Carlo simulations
(CEMC). Since matrices of finite size are used in the simulation, any observable
quantity fluctuates with matrix realizations and hence an average over matrix
realizations should be taken also. In the present work, we generated matrix realizations
of sizes ranging from 200 to a few thousands matrix particles. The average over matrix
configurations is calculated with typically 20 realizations. For each matrix realization,
a GCEMC simulation about 10000 trial moves per particle is performed during which

the average fluid density is calculated. For all the numerical results presented below,

we use the diameter of fluid particle, i.e., o, = 2R,, as the unit of length. Matrices with

different particle radii ( R, =0.5—-2.50,) as well as of different porosities were
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considered.

To determine the quench effect, it is necessary to calculate the chemical potential
of an equilibrium HS binary mixture corresponding to the quench-annealed system. To
facilitate the comparison between the two systems, we performed CEMC simulations
for the equilibrium HS binary mixture so that the densities of the two components can
be prescribed. The chemical potential is calculated by using Widom’s test particle

method?%8.

5.3 Results and discussion

In this section, we will show successively in which cases there is no quench effect at
all, when it starts to manifest itself and the situations in which the quench effect

becomes strong.

A. Strictly vanishing quench effect

Although the results given in egs. (5.6) and (5.10) are quite formal ones, they can

provide already some interesting information about the quench effect. Eq. (5.10) shows

immediately that there is no quench effect at the order of p, since all the diagrams in

the sum given in eq.(5.10) are of an order equal or higher than p02. Moreover, if all

the diagrams in the sum given in eq.(5.6) have only one fluid point (it is necessarily the
white one), none of these diagrams contains any shielding set. Hence, the quench effect
vanishes in this case as well. This corresponds to the situation that there is only one
particle of species 1. So, insertion of a fluid particle into an empty matrix (no fluid
particle inside the matrix) or into a bulk fluid of species 0 (not quenched but mobile
particles) costs exactly the same amount of energy. The above discussion shows that
the quench effect appears only when some fluid-fluid and matrix-matrix interactions
exist at the same time, i.e., beyond the case of a single fluid particle and beyond the
linear order of matrix density.

In the case of a single particle of species 1, it is possible to calculate the excess
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chemical potential exactly and analytically under some conditions, e.g., a point particle

in an HS matrix (see Fig. 5.1 for a sketch). In this case, the interaction potentials become,

—q.|[<R

ulo(\r,»—q_,-\)= }:—EJLR} (5.15)
i Vi
—q.l<2

(g, —q,) = a:-a< o (5.16)
‘qf_q‘/‘zzRo

For this case, we obtain straightforwardly the following exact and analytical result,

3
ﬂﬂlex(QA) _ ﬂﬂleX(Equﬂ) =—In [1 _ %j . (5. 1 7)

® o ¢ ¢
000 goo

0.0 ¢ 0.
® o [

Figure 5.1. Sketch of a single point fluid particle (red point) in a hard sphere matrix

(black spheres) and the corresponding equilibrium binary mixture with both species
being mobile: the particles with an arrow are mobile while those without arrow are

quenched in position.

The explicit result given in eq.(5.17) confirms the general conclusion that no quench

effect in the case of one fluid particle in an empty matrix. It is to be pointed out that if

the point particles have a finite density (i.e., an ideal gas with density p, in an HS
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matrix with density p, ), the results given in eq.(5.17) hold as well. It is worth to note

also that in the limit of R, — 0, the SPT results given in eqs.(5.11) and (5.14) reduce

both to that of eq.(5.17).

In the case of one HS of radius, R,, in a matrix of point particles (see Fig. 5.2 for

a sketch), i.e., the interaction potential being,
00 ‘rA —-q ‘ <R
(1, —q,)) = A (5.18)
0
the excess chemical potential can be also calculated exactly and analytically and we
obtain,

47TR13p0

ex(04) _ ex(Equil) __
By = fu ~ T3

(5.19)

Once again, this explicit calculation confirms the conclusion obtained from the
diagrammatic expansion, i.e., no quench effect at the level of a single fluid particle.

Moreover, eq.(5.19) shows that the excess chemical potential is of the linear order of

p, and this result confirms also another conclusion from the diagrammatic expansion,

i.e., the quench effect manifesting itself at the order equal or higher than poz. In this

case, SPT results, i.e., egs.(5.11) and (5.14) reduce again to the exact one of eq.(5.19).

Here, one can raise naturally the question whether the SPT results given in
eqs.(5.11) and (5.14) are consistent with the exact result that the quench chemical
potential vanishes at the linear order of matrix density. From eqgs.(5.11) and (5.14), we

obtain the following expression for the quench chemical potential,
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,BA i = ﬂﬂfx(QA) _ ﬁﬂlex(Equﬂ)

:!%fj—r(%r%Jrrz) To

1-n,

—l[3T(4+2r) o
2 1-n,

2
-3 +272(—77° ] +r3(
1-n, 1=, 1

—7 (9+6f)(1i]2

2 3
+3T2(9+2r)(Lj +1813[ T j (
1 1-n, 1=n,/4,

—1

n/ 4

3
1-n, 1=n,/4,

n/é

’ /¢ 3
1-n,/4,

T (5.20)
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Figure 5.2. Sketch of a single hard sphere (red sphere) in a matrix of point particles
(black points) and the corresponding equilibrium binary mixture with both species
being mobile: the particles with an arrow are mobile ones while those without arrow

are quenched in position.

Calculating the contribution to Ay, from the linear term in 7, yields,

2 3
— 3r(4+2
1im%=[umw—r(3+3r+rz)} m__3( 7)( U ]—3r(ij (5.21)
=0 o =0 ¢770 1_771 2 1_771 1_771

From eqs.(5.12) and(5.13), we obtain,

hmmzr(3+3r+r2).

(5.22)
w0 P,
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Substituting eq.(5.22) into eq.(5.21), we see that the first term on the right-hand side of

€q.(5.21) vanishes. So, at the order of p p,, the quench chemical potential is strictly

zero. It is known that SPT for a bulk binary mixture is exact to this order while, to our

best knowledge, no calculation of any Virial coefficient has been calculated for a

confined fluid. The vanishing quench chemical potential at the order of p, p, implies

that our SPT for confined fluid is also exact to this order. The non-vanishing part in
eq.(5.21) comes only from the contributions of the higher order terms for which SPT
does not give exact results. So, to the orders for which SPT is exact, the result for quench
chemical potential from SPT is consistent with the exact result, i.e., vanishing quench
effect at the linear order of matrix density. It is quite reassuring to see, from the above
discussions, that SPT either reproduces the exact results in some particular cases or is
consistent with the general conclusion for vanishing quench effect.

In a more general situation, i.e., finite fluid and matrix densities, SPT results in
eqs.(5.11) and (5.14) show that quench effect vanishes also in the limitto z — 0, i.e.,

2 3
B = B _ _lnh _p )+ T/ ¢, +1_5( m/ ¢ ] +3( /¢ j (5.23)
I=m /¢ 2\1=m/4 1=1,/¢,

The vanishing quench effect in this limit of very large matrix particle cannot be deduced
by a straightforward inspection of the diagrams in eq.(5.10). We have not succeeded in
finding a formal proof. Therefore, we consider this prediction of SPT for vanish quench
effect in case of very large matrix particles as a conjecture and this deserves certainly

further investigations.

Finally, it is worth to note also that R, appears in eq.(5.23) only in the form of

RO3 but no linear term in R, neither terms involving RO2 are present. This implies

that in the limit of 7z — 0, the surface free energy between the fluid and the matrix

does not contribute to the chemical potential.

B. Small quench effect

At the end of the last subsection, we have just seen that quench effect vanishes
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when the matrix particles are much larger than the fluid particles, i.e., =R /R, >0.

The extensive numerical calculations we have carried out show that for all the cases

with matrix particles larger than fluid particles, i.e., R, > R, the quench effect remains

always quite moderate. The results for 7 =0.5 are presented in Fig. 5.3. For the two
matrix densities considered, the chemical potential of the confined fluid and that of the
corresponding equilibrium mixture are nearly the same even at high fluid densities. The
mathematical reason for the moderate values of the quench chemical potential in the
regionof 0<r7 <1 becomes clear by examining eq.(5.20). We see readily that no value

of 7 in this region can induce large variations of the quench chemical potential for

physically meaningful values of matrix and fluid densities (0 < p,” <0.5,0 < p,” <0.5). It

is to note also that for both densities, it is slightly more difficult to insert a particle of
species 1 into the equilibrium binary mixture than into a matrix at high fluid density,

ie, " > uf". We carried out also MC simulations under the same conditions and

the results are plotted also in Fig. 5.3 along with the SPT ones. We see that there is a
very good agreement between SPT and MC results for both quench-annealed and

equilibrium binary systems.
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Figure 5.3. Comparison of the excess chemical potential as a function of fluid density
[ = p,(2R,)*] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles)
to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares)

with =R /R, =0.5 and matrix densities: a) p," = p, (2R, )3 =0.2 (the four lower

curves, overlapped together); b) p,” = 0.5 (the four upper curves, overlapped together).

C. Turning point for the change from small to large quench effects
The results for the case that the size of fluid and matrix particles is the same, i.e.,
v =1, are presented in Fig. 5.4. When the matrix density is relatively low (p, =0.2),

the quench effect remains small over the whole range of the considered fluid densities.

Nevertheless, it is to note that the chemical potential of the quench-annealed system is

higher than that of the corresponding equilibrium binary mixture, i.e., g2 > g™
(opposite to what is found for 7z =0.5). The new feature shown by Fig.5.4 is that at

=1, the quench effect becomes significant when the matrix density is higher
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(p, =0.5) and again one observes x°' > 1", We will see in the next subsection

that the quench effect becomes stronger in the region of z>1.So, 7z =1 is the turning

point for the quench effect becoming significant and also the point at which the quench

Equil
1

chemical potential changes sign, i.e., from 2" > 4% to u®' > p"*".In Fig.5.4, the

MC simulation results are also presented. For the equilibrium binary mixture, SPT gives
always results in good agreement with the MC ones while it overestimates the fluid
chemical potential of the quench-annealed system when the quench effect becomes

significant.

000 005 010 015 020 025
P

Figure 5.4. Comparison of the excess chemical potential as a function of fluid density

* 3
[P =P (2R) ] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles)

to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares)
* 3
with T=R/Re=1 514 matrix densities: a) Po = Fo (2R,) =02 (the four lower

curves, overlapped together); b) ~o = 0.5 (the four upper curves).
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D. Strong quench effect
Now, we consider the case that matrix particles are smaller than the fluid particles,

i.e., 7>1.Theresults for =2 and three matrix densities ( p,: 0.05, 0.2 and 0.3) are

presented in Fig. 5.5. At very low matrix density ( o, = 0.05), the quench effect remains

small (see Fig. 5.5a). As the matrix density increases, the quench effect becomes
significant and increases with the fluid density (see Fig. 5.5b and Sc¢). At high fluid

Equil

densities, x°' is larger than """ (note that for 0<z <1, £ > 4" at high

fluid densities). From Fig. 5.5b and 5c, we see that the fluid chemical potential of the
quench-annealed system is overestimated by SPT compared the MC simulation results.
Nevertheless, the trend for the variation of the quench effect described by SPT is in
agreement with that from MC simulations. It is to be pointed out that the accuracy of
SPT for confined HS fluids has been checked previously only in the case of 7 <1, i.e.,
the fluid particles being not smaller than the matrix particles. The present work confirms
the good accuracy of SPT in this case but reveals that in the case of fluid particle smaller
than the matrix particle, the accuracy of SPT deteriorates when fluid and matrix

densities increase.
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Figure 5.5. Comparison of the excess chemical potential as a function of fluid density
[ = p,(2R,)*] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles)
to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares)
with 7=R /R, =2 and matrix densities: a) p," = p, (2R, )’ =0.05; b) p, =0.2; ¢)

*

p, =0.3.

In Fig. 5.6, the results for =35 and two matrix densities ( p,: 0.0384 and 0.05)
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are presented. These results show that the quench effect becomes stronger when the size

ratio of the fluid particle to the matrix particle increases.
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Figure 5.6. Comparison of the excess chemical potential as a function of fluid density

[ = p,(2R,)*] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles)
to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares)

with =R /R, =5 and matrix densities: a) p, = p, (2R0 )3 =0.0384; b) p,” =0.05.

In order to understand the large quench effect found here, we consider the case of

a matrix with point particles, i.e., R, =0. Noting that in the limit R, >0 (7 —>©),

only 7’7, survive for the terms involving 7 in egs.(5.11), (5.12), and (5.14), we
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obtain,

3 47[R13/)0
ﬂfx(QA)=—47”§1p"—ln(l—m){”e ’ —ILL
2 3
+£ 771 +3 771
2(1-n 1-n,

) 4 3 3
o = —”1;1 20 In(l—n,)+ {7 + 4”1;1 2o } 1 T

-1
2 3 :
+1_5 i +3 L
2 1_771 1_771

We see now that 42 and " are different only by the third terms on the RHS of

: (5.24)

and

(5.25)

eqs.(5.24) and (5.25). This third term for 42! increases exponentially with the matrix

Equil

X increases linearly. This explains why the difference

density while that for u

Equil

X increases very quickly with the matrix density. The

between 2! and u

exponentially-increasing term comes from the term (¢, —¢)/¢ in eq.(5.11).

Numerical results for finite values of 7 in the region of 1<z <o show that the

dominant contribution to quench chemical potential comes always from the term

(4 —9)/ 9.
Moreover, it is worthwhile to note that eqs.(5.24) and (5.25) lead to a quite simple

expression for the quench chemical potential, i.e.,

47rR13p0 3
pa =| e > —1-3RA | (5.26)
3 1-n,

In the case of very large matrix particles, i.e., 7 — o, the quench chemical potential

varies linearly with 7, / (1—771) with a slope depending only on the matrix density,

P, and the fluid particle size, R,.Itis also to note that the RHS of eq.(5.26) does not

contain the contribution of the linear term in matrix density and this is in perfect
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agreement with the general prediction from the diagrammatic expansion of quench

chemical potential pointed out in section 5.3A.

5.4 Concluding remarks

In the present section, we studied in details the quench effect on the chemical
potential of a hard-sphere fluid confined in a hard-sphere matrix. A quantitative measure
is introduced which is the difference between the chemical potential of the confined
fluid and that of the corresponding equilibrium binary mixture. From the diagrammatic
expansion of quench chemical potential, we see that there is no quench effect at the
linear order of matrix density. In some cases, e.g., one point fluid particle in an HS
matrix or one finite size HS fluid particle in a matrix of point particles, both the
chemical potential of the quench-annealed system and that of the corresponding
equilibrium counterpart can be calculated exactly and analytically. In these cases of one
single fluid particle, the quench effect vanishes strictly as well. Hence, the quench effect
shows up only when fluid-fluid and matrix-matrix correlations are both present. Under
more general conditions, we applied scaled particle theory for calculating the chemical
potential of the quench-annealed system and that of its equilibrium counterpart.
Thorough numerical investigations and analytical analysis allowed us to identify the
parameter which controls the appearance of quench effect for the system considered
here. When matrix particles are larger than fluid particles, quench effect is small for
physically meaningful matrix and fluid densities and the equilibrium binary mixture

appears slightly more crowded than the quench-annealed system. SPT predicts that in

the limit of extremely large matrix particles, i.e., =R /R, — 0, the quench effect

vanishes. In the case of matrix particles smaller than fluid ones, the quench effect can
become strong as matrix and fluid densities increase. In this case, the quench-annealed
system can appear more crowded than the corresponding equilibrium binary mixture
even when the density of each species is strictly the same in both systems respectively.

The comparison between SPT and MC results show that the fluid chemical potential of
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the quench-annealed system can be significantly overestimated by SPT in the case of
fluid particles larger than the matrix particles. This is in sharp contrast with the excellent
accuracy of SPT for confined HS fluid when the fluid particle is not larger than the
matrix particle. For the moment, the origin of this inaccuracy does not appear clear and
deserves certainly further investigations. Nevertheless, the trend for the variation of
quench effect predicted by SPT is in agreement with that found from MC simulations.
Although the conclusions given above are obtained from the study of a simple
model with only repulsions between hard cores, they should be general since the size
effect exists for any real fluid and porous materials. Moreover, our results provide also
some useful insights for the design of functionalized porous materials. For highly
divided porous materials, i.e., those with its tiny solid constituents evenly distributed in
space (e.g., aerogels), the quench effect is large and it can be hard to adsorb large fluid
particles into such materials even when the porosity is high. For example, such a thumb
rule can be useful for elaborating porous membrane for separation. Moreover, the
findings of the present work should be useful also for assessing the quench effect on
diffusion since the thermodynamics factor in an experimentally measured activity-

t266

based diffusion coefficient?® is directly related to chemical potential®®’. Nevertheless,

a detailed discussion of this interesting topic is far beyond the scope of the present work.
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6. Final remarks

Porous materials have important applications in both fundamental research and
chemical industry, such as oil exploitation, catalysis, capturing Greenhouse gas, energy
storage devices, and design of sensors. For instance, Aerogels with their highly
macroscopic operability, extremely surface area, and recoverability, are widely used in
photocatalysis. Many of those applications are based on the behavior of fluid adsorption
in porous materials, such as the drug release, and gas separation. Thus a thorough
understanding of the behavior of fluid confined in porous materials is necessary.

During the last few decades, a large number of theoretical and experimental
investigations of fluids confined in different kinds of porous material had been made.
The properties of confined fluid can be affected by the geometry of porous material,
i.e., porosity, pore-connectivity, pore size distribution, pore shape, and disorder effect.
Unfortunately, we still do not know the respective roles played by those geometric
properties. Different from the bulk fluid, while the fluid particles adsorbed in porous
material, the fluid particles feel not only the interaction from the surrounding fluid
particles but also that from solid ones. This additional solid-fluid interaction can vary
from very repulsive to very attractive ones. The different solid-fluid interaction can
make the confined fluid exhibit very different behavior even materials with same
geometry. Although confined fluid appears more complicated due to the presence of
complex confining environment of adsorbent, one can wonder if there is any connection
between confined and bulk fluids. To answer this question, in Chapter 2, we derived a
general scaling relation between the confined fluid and the corresponding bulk one-
component fluid, which allows for connecting some thermodynamic properties of a
confined fluid, i.e. chemical potential, Helmholtz free energy per particle, and grand
potential per particle, to the bulk ones. The validity of this scaling relation is established
with the help of a large number of simulation results, in a wide range of confining
environments, from single isolated pore to random porous medium, and the fluid-fluid
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and fluid-matrix pair interaction, from pure repulsive to repulsive plus attractive
interaction. Since this scaling relation holds for chemical potential, Helmholtz free
energy per particle, and grand potential per particle, one can immediately find that if
Helmbholtz free energy per particle and grand potential per particle are expressed as a
function of chemical potential, the confined fluid will show the same behavior with the
corresponding bulk one. This invariance implies the chemical potential should be
considered as independent variable instead of fluid density, in the study of the confined
or inhomogeneous fluids. Although a derivation of the scaling relation from the first-
principles is currently unavailable, we have revealed its intimate connection with
general theoretical frameworks like Gibbs theory for inhomogeneous fluids and
morphological thermodynamics. We believe this is why the scaling relation works so
well under wide conditions and for a large variety of confining environments. The
scaling relation shows clearly that the porosity (space accessibility) and fluid-solid
interaction (through the adsorption term) is of primary importance for determining the
thermodynamics of confined fluids. The other characteristics, like pore-connectivity,
pore-shape, pore-size distribution, etc., play less significant role. One potential
application of our scaling relation is circumventing some experimental difficulty for
direct measurement of some thermodynamic properties of confined fluid. In this work,
the scaling relation was only used to study some thermodynamics properties of confined
fluid. One nature extension is to see the scaling relation still holds for dynamics
properties, such as diffusion coefficient. Another intuitive extension is to consider if the
scaling relation holds also for the fluid adsorption in flexible porous materials, e.g.
metal-organic frameworks (MOFs) or to find the modifications needed if necessary.
For fluid adsorption in a real porous material, the fluid-solid interfaces are
generally curved ones. It might appear surprising that the thermodynamics for dealing
with curved interfaces is not so well established although early investigations go back
to Tolman. Thus a thorough understanding of the interfacial properties is necessary.

Scaled particle theory is a powerful tool for studying the properties of fluid near to a
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curved wall. The original motivation for scaled particle theory is to derive a simple
equation of state for a bulk hard sphere fluid. Then, it was recognized that scaled particle
theory provides not only the thermodynamic properties of a hard sphere fluid in bulk
but also the surface tension of a hard sphere fluid near a spherical hard wall. However,
the accuracy of its predictions is not as high as other recent equation of state like
Carnahan-Starling equation of state. Mecke and co-workers have made efforts to
develop a general framework, named as morphological thermodynamics, to account for
more complex surface morphology. According to Hadwiger theorem in the integral
geometry, the morphological thermodynamics assumes that the thermodynamic
potential of an inhomogeneous system can be expressed as a linear combination, which
only contains four terms, i.e., one bulk contribution proportional to system’s volume
and three surface contributions proportional respectively to surface area, mean and
Gaussian curvatures of the interface. It is to be pointed out that in scaled particle theory,
the chemical potential for creating a spherical cavity inside a fluid is assumed to have
this form. The foundation of this method has been questioned recently. The contribution
from the terms beyond the four Hadwiger’s terms has been revealed from both
diagrammatic expansion approach and molecular simulation. It is natural to ask that is
it possible to include non-Hadwiger terms in scaled particle theory? To answer this
question, in Chapter 3, two augmented scaled particle theory were proposed. The first
one contains an adjustable parameter, and the second one uses two matching processes
to circumvent the adjustable parameter. Both of them have simple analytical
expressions. Also, both of them do not only significantly improve the accuracy of
thermodynamic properties, i.e., pressure and chemical potential, but also improve the
accuracy of surface properties, i.e., planar surface tension and Tolman length. Also, the
same idea can be used to treat the multi-component hard sphere fluid system, and the
improvement is significant. The success of our two augmented scaled particle theory
indicates that the morphological thermodynamic is not an exact theory, it is only a very

good approximation. One intuitive extension of this work is to consider if the more non-
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Hadwiger terms are considered, will the higher accuracy of scaled particle be obtained?

For description of porous medium, many theoretical models for porous medium
were carried out. Models with simple pore geometry, such as slit, cylinder pore, are
widely studied. In such models, the pore-size distribution and pore connectivity are
neglected. For ordered porous materials like MOF and ZIF, have been studied by
molecular simulation and density functional theory. To consider the quench disorder
effect, some random porous medium models have been carried out, i.e., Madden-Glandt
matrix model, Van Tassel’s templated matrix model, and hard sponge matrix model.
The equation of state for confined fluid strongly depends on the model of porous
medium. So, is it possible to derive a general equation of state which is irrelevant with
the model of porous medium? In Chapter 4, we derived a new general equation of state
for describing the thermodynamic properties of fluids confined in different porous
medium. To our best knowledge, this is the first equation of state for confined fluid that
is irrelevant to the model of porous medium. In this general equation of state, the
chemical potential is considered as the independent variable. In a large range, our new
equation of state works well. Our new equation of state indicates that the porosity and
other three geometric properties play the primary roles for the thermodynamic of
confined fluid. All the other parameters, i.e., pore shape, pore connectivity, pore size
distribution, and disorder effect, are much less important, which is similar to the results
from our scaling relation. We also reported that even for an ideal gas fluid, in some
cases, the morphological thermodynamic still does not hold, which means the
morphological thermodynamics is only a good approximation. In this work, we only
consider the hard sphere fluid. One nature extension of this work is to see if this
equation of state still holds for other fluid, such as square-well fluid and Lennard-Jones
fluid. An interesting application of this work is to consider if this equation of state can
be used to describe the flexible porous materials.

The Madden-Glandt model is also called as a quench-annealed mixture with

quenched species referring to the matrix and annealed species referring to the confined
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fluid. Although many investigations have been devoted to study fluids confined in the
random porous medium since Madden-Glandt model was proposed, no precise measure
has ever been proposed to describe quantitatively the quench effect for the adsorption
of a fluid in a random porous material. In Chapter 5, we introduced a quantitative
measure of quench effect which is the difference between the chemical potential of the
confined fluid and that of the corresponding equilibrium binary mixture. With the help
of diagrammatic expansion, we revealed that this is no quench effect at the linear order
of matrix density. Hence, the quench effect shows up only when fluid-fluid and matrix-
matrix correlations are both present. With the help of scaled particle theory for confined
fluid and the molecular simulation, we found that when matrix particles are larger than
fluid particles, quench effect can be ignored. When the fluid particles are larger than
matrix particles, the quench-annealed system can appear more crowded than the
corresponding equilibrium binary mixture even when the density of each species is
strictly the same in both systems. This indicates that the ratio of the radius of fluid
particles to that of matrix ones plays the primary role for the quench effect. The
comparison between scaled particle theory and molecular simulation results show that
the fluid chemical potential of the quench-annealed system can be significantly
overestimated by scaled particle theory in the case of fluid particles larger than the
matrix particles. This is in sharp contrast with the excellent accuracy of scaled particle
theory for confined hard sphere fluid when the fluid particle is not larger than the matrix
particle. In my opinion, this is caused by the definition of porosity of porous materials.
There are two porosities, geometric porosity, and probe particle porosity, in the scaled
particle. By analyzing the contribution of each term, one can find that this overestimate
comes from the probe particle porosity term. It means the probe particle porosity
underestimated the fluid particle accessible volume of porous medium. If only the
geometric porosity is used in scaled particle theory, SPT2a, the fluid chemical potential
of the quench-annealed system will be underestimated. This can be explained by a

simple example, consider fluids confined in a cubic lattice matrix which the distance
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between two matrix particles is smaller than the diameter of fluid particle, in this system
the fluid chemical potential is approach to infinity, but the prediction of chemical
potential from SPT2a is same as the corresponding the bulk ones. This means the
geometric porosity overestimated the fluid accessible volume of porous medium. Hence,
how to find an appropriate porosity is the key to improve the accuracy of scaled particle
theory for confined system. Our results provide some useful insights for the design of
functionalized porous materials. For highly divided porous materials, i.e., those with its
tiny solid constituents evenly distributed in space (e.g., aerogels), the quench effect is
large and it can be hard to adsorb large fluid particles into such materials even when the
porosity is high. For example, such a thumb rule can be useful for elaborating porous
membrane for separation.

As a final remark, we would emphasize that with the help of theoretical approach
and molecular simulation, this thesis studies the thermodynamics properties of confined
fluid, clarifies the control variables of confined fluids, and discovers the common law
of thermodynamics properties among different confined fluids. A scaling relation and
two new equations of state were reported, they deepened the understanding of confined

fluid, and advanced the development of the thermodynamics for confined fluid.
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Appendix A. Some results for other versions of ASPT1

A.1. Single-point matching formulation with n =1

Here we present the results of ASPT1 with a one order adjustable parameter. The

excess chemical potential is described by a piecewise function,

~In|1-5(1+R/R) | “R<R <0
Bu’(R) = |— e R0 3 . (A1)
¢—lu+¢0+¢1Rs+l¢2Rsz+M O<Rs
R 2 3
With the help of the following four conditions,
B (R, =0")==In(1-7)=Bu (R, =0"), (A2)
oPu; _ 1 3n _opuw ’ (A.3)
OR, |,_, Rl-m OR |, _.
2 ex 2 ex
0 ﬁ/;s :%377(24_727) _ 0" B ’ (A.4)
aRs R,=0" R (1 - 77) aRSz ‘R5 =0"
o L on(Tnen) o on(pRlp-) pur|
8R3 R.=0" R’ (1_77)3 R (1_77)3 GR‘S ‘RS:O* '
The four unknown ¢ (i=-1,0, 1, 2) can be obtained as following.
¢, R
=—In(1-n)-—=—, A.6
d==In(1-n)-"~ (A.6)
1] 3 RY
h=—| " ﬁ(—j , (A.7)
R|1-n 2R\oO
.
¢2=L2 (o4 I —ﬁ(ﬁj , (A.8)
R |1-n l1-n) 3R\0
¢ s\'\n(5-2n) pP__ 5y n ) _of n )
—1:24(—j —_ - —9( —9(—j . (A9
R R 2(1-n) p  2(1-7n) 1-7n 1-7n

From eqgs.(A.1)-(A.5), we obtain the following expression for the chemical potential,
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By using the same iterative procedure as presented in Chapter 3, the results of

(A.10)

chemical potential and pressure can be obtained, named as ASPT11

3
ﬂ,uASPTll:ﬂ,uSPT_a(é‘) n 2+3_77 ’ (A.11)
1-n 1-n
where
65|, 36 (8Y (&Y
5 1-==+6|—| 6] = | (1= A.12
o(0)- 212 (o] o 2 (e (a2
By considering Gibbs-Duhem equation, the result for pressure is
ASPT11 SPT 3 2
pr___ AP —6“(5){%177 [(177 ]’L%(ln ]+%177 _1}
P P n n n n (A13)
1
—1-—In 1—77}
Lin(1-1)

The surface tension near a spherical hard wall is given by

2
7ASPT11 (RY) — 47Z'R2ﬂ7/ASPT“ (R ) 7/(;18PT11 yjllSPTll 5 + 7:42.S‘PT11 [ﬂj

R, R,
’ ‘ (A.14)
R 3
~aspTi1| L% _ R/
+75 (RS] (1 e )
where
2 ~ASPT11
S ASPT11 _ $,R S 7 R A.15
7o 2 (5 j .
o 1, ~ASPT11 R
AT _ g p 5 (Ej (A.16)

-2

FAPTN 2 g = ST _ AP g’ (A.17)
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R 1-n 1-n )\ R

By using the same way as presented in Chapter 3, the adjustable parameter is
obtained as /R =0.0438954. Then we presented the numerical results of APST11
below. Following Figures show that ASPT11 significantly improved the accuracy of
both bulk properties and interfacial properties. However, for non-Hadwiger term, the

prediction of ASPT11 underestimated it.
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Figure A.1. Comparison of pressure of a hard sphere fluid. The simulation results are

presented by the blue line, the black line is original SPT, and the red line is ASPT11
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Figure A.2. Comparison of surface tension of a hard sphere fluid. The simulation results

are presented by red circles, the blue line is original SPT, and the orange line is ASPT11
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Figure A.3. Comparison of 7 of a hard sphere fluid. The simulation results are
presented by red circles, the blue line is original SPT, and the orange line is ASPT11
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Figure A.4. Comparison of 7 , of a hard sphere fluid. The simulation results are

presented by red circles, the blue line is original SPT, and the orange line is ASPT11
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Figure A.5. Comparison of 7 . of a hard sphere fluid. The simulation results are

presented by red circles, and the blue line is ASPT11

A.2. Single-point matching formulation with n =2

Here we present the results of ASPT1 with a two order adjustable parameter. The

excess chemical potential is described by a piecewise function,

—1n[1—77(1+RS/R)3] “R<R <0
“(R)= RS\ , (A.19
ﬂ/’ls ( s) (l_e R:/g) 1 5 47Z_RS3ﬂP ( )

¢_1R—S+¢O+¢1R‘Y+E¢2RS “‘T 0<R,

With the help of egs.(A.2)-(A.5), the four parameters ¢ (i=-1,0, 1, 2) are

¢ =—In(1-7) (A.20)
2
g =13 _ﬁ(ﬁ , (A21)
R|1-n R\O

¢, =L{ 37 (2+ 31 j+2¢-1 (EJ } (A22)
R |1-n l-n R \ o
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It should be noted that the sign of ¢ is different from the ones when 7 is an odd

number and ¢, is same as the original SPT ones. From eqs.(A.20)-(A.23), we obtain

the following expression for the chemical potential,

3 6 9 ’ P
Bu=pO(R, :R)zln(A p)—ln(l—n)+&+5(ﬁj +77ﬂ7

+%{(1 vl ‘@ ' (?M

By using the same iterative procedure as presented in Chapter 3, the results of

(A.24)

chemical potential and pressure can be obtained, named as ASPT12

ButST2 = By SPT _a(5)(ﬁj (2_,_13__7777)’ (A.25)

where

a(8)= 18 5{1—é+(£j3(1—e”5)2}. (A.26)

7Rl R \R

By considering Gibbs-Duhem equation, the result for pressure is

ASPT12 SPT 3 2
pr—_ AP 60(5){%177 [(177 ]%(ln j%ln 1}
P P n n n n L (A27)
1
—1-—In 1—77}
Lin(1-1)

The surface tension near a spherical hard wall is given by

2
7ASPT12 (RS) — 47Z'R2ﬂ}/ASPT12 (Rs) — 77(;45PT12 + 77ASPT12 £+ 77ASPT12 (REJ

-1 R -2
3
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where
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2 5
R 2
FAPTE _ g R = 5T e (Ej (A30)
7o =, =757, (A31)
’ 3 )Y
s =2 36 1| [ 24 2L —j . (A32)
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By using the same way as presented in Chapter 3, the adjustable parameter is

obtained as /R =0.0499796. Then we presented the numerical results of APST12

below. Since the results of ¢ in ASPT12 is same as the original ones, we only

presented the numerical results of P and 7, (i =0, -1, -3). One interesting find is the

prediction of the non-Hadwiger term has a different sign with the result with an odd ».

This indicates a potential form for describing non-Hadwiger terms, i.e.,
1 2
(l—e_ﬁ‘/ R) +(1—e"52/ R) . With the suitable parameters, &, and &,, the prediction of

non-Hadwiger term might have the same trend as the ones form molecular simulation.
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Figure A.6. Comparison of pressure of a hard sphere fluid. The simulation results are

presented by the blue line, the black line is original SPT, and the red line is ASPT12
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Figure A.7. Comparison of surface tension of a hard sphere fluid. The simulation results

are presented by red circles, the blue line is original SPT, and the orange line is ASPT12
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Figure A.8. Comparison of 7 of a hard sphere fluid. The simulation results are

presented by red circles, the blue line is original SPT, and the orange line is ASPT12.
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Figure A.9. Comparison of 7 . of a hard sphere fluid. The simulation results are

presented by red circles, and the blue line is ASPT12
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Appendix B. Invalidation of morphological

thermodynamics

B.1. Fluid around two spherical solutes

Here, we consider an ideal gas fluid around two spherical solutes, as illustrated in
Fig. B.1. The interaction between fluid and solutes is square well potential and the
distance between two solutes is smaller than 2d, which means some fluid particles

suffered interaction from both two solutes. The grand partition function is

= i % J- exp[—/Lu,, (r)]dr, (B.1)

N
The integrate above can be divided into two parts. Part 1 is the region suffered
interaction from both two solutes, and part 2 is the remaining region. The integrate of

part 1 is
3
(R 2 o2y, 4 3 27 2, 2m( L
Vl_zju2 AR, +d)’ =r*Jdr =2 7Ry +d)' == (Ry+d)Y L+ 2| — |, (B2)
and the integrate of part 2 is
87 3 .y & 3 87 3
v, = V—?(R0+d) +V |+e ?(R0+d) —?RO—2V1 . (B.3)
where ¥ is system volume, and the grand potential is equal to
_ _8 N P 87 2, BN P
PQ=—z|V EHRO z(e l)?(3R0d+3R0d +d’)—z(e Dyv,. (B.4)

From morphological thermodynamic, the grand potential of this system can be
expressed as eq. (4.11) with same parameters, which all same as expression above but
the last term. The last term of expression above denotes the contribution of the region
suffered interaction from both two solutes. This calculation proves morphological
thermodynamic cannot use for when such overlapping part appears. The future study of

morphological thermodynamic and Hadwiger's volume theorem is still needed.

123



Figure B.1. Schematic presentation of an ideal gas fluid around two spherical matrix

particles with square well potential.

B.2 Non-Hadwiger term

A. A brief review of Hansen-Goos’ work
Firstly, we will quickly recall Hansen-Goos' work, the system in his work is a hard
sphere fluid around a big hard sphere spherical solute. The interfacial tension and

solvation free energy can be obtained from following equations:

}/:_Q_p(Vtot_V), (B.5)
A
F, = Q_j Vi ) (B.6)

where Q is the grand potential, p is the solvent pressure, , and V' are the

system and solute volume respectively. So, the interfacial tension can be calculated

from solvation free energy,

! [ p] 7
= _sor - . B.
( )

The solvation free energy F, , canbe obtained from the so-called binary mixture route.
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Consider a binary mixture system, / and 0 are used to represent two components. p,

and p, are the density of component 0 and component /. p, and R, are the density
and radius of component i (i =0,1), the solvation free energy can be obtained as the

excess chemical potential ™ in the limit p, — 0, i.e.,

ex a
pr, - pu = L2

0

: (B.8)

Po—0

where @ is the excess free energy density of the bulk binary mixture, and

S =1/(k,T) (k, isthe Boltzmann constant, T is the temperature). As we know O

can be written as a Virial expansion:

N 1 h i ’ n—j _j
<I>=ZZ—[ .]B,E](R )PPy (B.9)
o n—1{J
opdD :i n B[l]pn—l
ap n:2n_1 "
0 1p—0 , (B.10)

3 4
=2B)'p + 533[]]:012 + EBAEI],OE +0(p))

B is the Virial coefficient, R'=(R, +R,)/R,. So far, the solvation free energy is

obtained, and the solvent pressure is given as following:

@:1+23ip{-‘. (B.11)
P i—2

Now, the solute-solvent interfacial tension is given as a series of p,:

ﬁj/exact :ZCiplz' (Blz)
i=1

Since exact B! for n<4 are known from previous work. For a low-density

fluid, the first third terms in eq. (B.12) can be given as

PY exaer _ e, (R, +¢, (R +007), (B.13)
PR

where
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X =arctan(Q), (B.16)
_ Q
y = —3arctan rak (B.17)

0=3R"-4, (B.18)

where 7, is the solvent packing fraction 7, =4zp,R’ /3 and from eq. 1, the solute-

solvent interfacial tension can be given as a series of R’

y=(F,-pV)A=oc+KkC/ A+k,

(B.19)

i=1

From the Hadwiger's theorem, x, should be equal to 0 for /> 2. It means that if

c,(R") is expanded in powersof 1/R", 1/ R” and higher orders terms will not exist.

The expansion of ¢,(R") as following,

+0 B.20
*R" 16 |R 126 R” 2o7zR’3 (R'Sj( )

It is found that the 1/R” and higher order terms still exist. This proves that

(R = ic3,: 447 [+27\/§J 109 1 331

morphological thermodynamics is not an exact method and can only serve as an
approximation. It should be pointed out that the interface between fluid and the solute
particle is a concave interface from fluid view in Hansen-Goos' work, and from
Hadwiger's theorem, the interface must be a convex one. In the follow section, we will

study a system in which the interface is a convex one from fluid view.
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B. Non-Hadwiger coefficient in convex system

The system is a hard sphere fluid confined in a spherical hard sphere cavity, and

the interaction potentials in this system are described as following,

_Jo 6 -r K2R, B
m(6=0=10 " |y _p 52R’ (B.21)
b i j_
ug(t—q, )= TR, (B22)
1wl —4q, o, |r,-—q0|ZR1+R0’ .

where R and R, are the radius of fluid particles and cavity. » and r, are the

position vectors of the ith and the jth particle. ¢, is the position vectors of the cavity,

it is fixed in the center of this system.

We start from the usual Gibbs adsorption equation

o) _
[Gﬂl =T,, (B.23)

where T, is the excess interfacial number of particles per unit area at the interface. It

can be obtained as

1
r. =
N 4xR?

0

[*" Lo - pO)azrar (B.24)

From diagrammatic expansion p(r) and p(0) can be given as:

p(r)=Z{sum of all the connected diagrams which are composed of one
white fluid point, some or no black fluid point, wighted by Z,
one white cavity point connect with each fluid point, some or , (B.25)
no f;, bonds between pairs of fluid points, some f,, bonds

between pairs of cavity and fluid points }

p(0) = Z{sum of all the connected diagrams which are composed of one
white fluid point, some or no black fluid point, wighted by Z, , (B.26)

some or no f,, bonds between pairs of fluid points}

where Z is the activity of fluid
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e—ﬁﬂl

Z=",
A

(B.27)

where 4 is the bulk chemical potential, A, is the thermal wave-length of fluid

1

particles and Mayer functions are defined as,

fulr =, =01, (B.28)

Sio(lx =g )= et (B.29)

The T, is obtained as following:

T

2 3
: (7418549570t — A g7 T U+9)
S

zZ O, e —
zst T 43267 , (B.30)
(s°+6s° +15s* —4s> =30s5* =125 —164)z°c] +O(z
1

FN:3

where
72'20'19 2 8 7 6
A= [-18(3s” +65+8)X +(s+1)(5s” +40s" +104s
2240
+64s° —85s* —20s’ +90s° —36s+144)Y+%(30s6 , (B.31)
+180s° +279s* —84s® —210s> +228s + 745)]
with
X =arctan(Q), (B.32)
Y =arctan (gj, (B.33)
s+1

O=+3s>+6s-1, (B.34)

s=20 (B.35)

0,
where o, and o, are the diameter of fluid particles and cavity. The interfacial
tension can be obtained as following,
— _ P _
ﬂy—IFNdﬂyl _era—Z_j—rN/Zdz, (B.36)
By =C,(s)Z°c! +Cy(s)Z°c] +O(Z"), (B.37)
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where

/4

Ca(s)= 72s*

(7+18s5+9s%), (B.38)

2 1 3 4A
TUES) (61655 +155% — 45’ 305> —125—164) + —2_ (B.39)

12965> 3ns’c)’

C(s)=—

For large s, C,(s) can be expanded in powers of's, it can be obtained as,

s’ 7t 2SS Ixtst it st 13x7%s
+ + - - + +
4536 504 1260 540 90 18 54
2 2
214377 3J§n+12737z i2+ P +O(_4j
5040 128 11340 )s> 160435 s

Clearly, the non-Hadwiger terms (1/s> and higher orders) still exist in this convex

G(s)=
(B.40)

system. This proves that morphological thermodynamics is not an exact method and
can only serve as a good approximation. This result shows that we still don't understand
Hadwiger's volume theorem, we need come back to the theorem and find out where is

the morphological thermodynamics violate the restriction of this theorem.
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Appendix C. The summary of dissertation in Chinese

e PERETH BEPERBIAE 2 Rtk o 1) b L S PR VR, B, 2T s
THREUR A AT RFSE A . S — PR RTFTE BEIR, RMIBHART L QeSS TR
JER SERIREEARL Lo £E 20 2RI, BRIVKEMRUEOY 1 — Rl 2R 5] 7 104k
SARPEE SRITE SR BT U R, AR AT I8 W] T P s (AR B g
(i S I R G R 6%). HET, 31X Fh 2 SRS R 2L e
WG MR L 2 B T HAAIRY, AR A E 2 R
BRI I N AR SR 8, NS TS T o BT 2 LM R R E (1
FLARK/INFIRF IR B3N 254 2T AR I AT 3 A R e (e e - I
Pl FEVE AL I IZ R T2 R Dl A . Bl i AL P A 22
P S B TC N IR 2 SLAPRHN, CREEFEVEHER 13 KT, R TR R
WeREE 2 AUMRE XA RHE S 25 Tl h BA EERNH] 3. HATA R LRE fovr
PAEZ LR I & A A BB R L. Bitn, HATCaa Mt 7 RGN 2
FURPRE 4, o — 28 2 SUARL ] DU AR 10 3 AR v T = . th T el
FIRIRTE DL B N B M e B T A HLBC AR A G BT T RERE, X — 222 SLATRHK
JEEETE AR A R o IXEEATRL AT REAE N 2O BRSO IRET N, Rl 2
FEAL AR IR A T o ZALRPRHE 55— N RH B E RN AR 0 RHE 2, B DR
SENS T 2R JRURS TR) AN 25 R HERE OB SR NI AN T I I, 5 5 A 20 42 1 245 4
FERGBT RO T T FUI o EEERRE (N 29I 1A RE T AERF € 1 DL N ml i RIA T
RER, IFRESE ST B SR, Bl WK, AR, SORWEE. K
I [RIE SRR E B 29I RE T 5 22— Mo L I R R B8R R A2 200 1 AR,
AR ZPOPRETBCE SRR S 25 W) & AL o 2 AU R AT Btk . H AT, BB &
UMY REAR SR L T8 IR A% . 2423814 75 2R YE A BRI 25 W) 5 B0 2 LA R
BEAT — BeE N BT RIS 2 AL Y 2 42 2 I SR T A1 T AL
piile

ERBT R T 2 MR, 0B, AR BRG] 25 b 5 2 R Ak
HH BIEC R S AE o B AT, 5 2 SRR 5C 0 0ol o 9 1R K P A L 20%
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CAE 270 HAT, %12 FLMDR) A 52 BRI A TR #8122 1 R PRI 7K 22 B0 SR AR AT 9T
T BRI T V& 5, Rl K 2 Sl 5 BB I 78 40 2 B SRR RE 2 ARk
B, o T AT AR — PP @ AR A 7 R i B0 v] AR, FHFEAN IR 2 FLA k) B3R
AT AN RN o

TARAE 2 SUMP R AR ARG AN P R (R [ S THD, 330 T 2 BRIV IR )5 v LA
REF I X TR AR . ARTE 2 SUM R R B AT g2 — AN KA LR I 17
R Z TN, e, dES . B ERJLHER, RERSR A
A TAEWT I T 1E 2 AU R AR R IR AT 9 DA S & PR 5P o (B T 2 9L
MR R TS, 52 BRI A 32 FLAR /N FLBR A AR S5 0k a] AR AR F
TARE R EE . ERSEE 2R R, HIX R 3 2 A AE A BOCHE, Rit
H AT 52 BRI AR IR BB T ATI IR AL T 1B 20 HT (case-by-case) 515 . TERFIT
TARTE Z AU B I BT, MY TR 2% B R i JE I S0k, kS Z AL kR
2 B AR ERNET S EE, N TELSRAM S, MEZRT 25k
I, H5Z AU R B AT A — A2 3R, T TRt AE 25 it SR
VE BT 2 B T H AT R AR R G BRI — [ A BT 7 AT LU ) F)
Tolman ] T1F 23,

AR, K&K T 52 BRI 130 2 14 ) S50 AR 18 TAE R . A2 AL
AR 2 (MR S0 FUSZ R T, FE AR, FLAR A0 A A L-FL oG ER
W R o oy TR R S FURARTE R 7 2 UM R 8. D TR 2 AL
BHA TG e X T iR 52 m, VF 2 RR BENL 2 FLA RS R 4R e, il
Madden-Glandt #5574 & FASFHE . FESIAIGLA T, S AAoRL 7k FC R Bl i oAt gt 4
R B 8o SR MR 2 BR 5 2 FLARLES, KB RARR T = A T A 5 2 4L
AL T I 5 1 [ 80 57 1 ) BB o 3 o AN 52 3 Jo) FEDRE 1 RROAH LR, [ 32
B Z AU LR T FL AR o A5 A 8] AR EAE AR AR K, BERT A2 R
S (I HE A FH AR AT DR AR SR I 5 A o XA [TBAH B AR FH AT DA 52 SR F 2R
55 S5 AR AR SR AN (R R AR ) AT R o SRV A 2 10 52 BB 58 AT DS 37 7 0 S A
[ (TR T, B A FRATT IR SR A 08 2 75 52 PR AL A 5 B M U A 2 ) 5 A7 1
KEF, A2 RAA 8] BAFE RN OCHE . R K E T 52 BRI AR I B b
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ez, SR H ATX T S PR AE S A 2 LA R 3 @ A 28 i AN B i

e —md, s B BRI R RO, i, BRAER R AZIR
T2 RS2 IR, H22% BATA R AR BRAREA R 2 LR RIS R
FAFR T LR fxs RS S

Bu(xp.T)=pu"™* (p.T), (C.1)
Bf (xo.T)=pB""(p.T), (C.2)
Bf (xp.T)= B (p.T). (C.3)

Hobt B Uk T (ks BURERIET, T: WD, w2 55 R ZRA
52 ER ST EES, o RTINS T AR, £ R £ RS

BRUEAAALIARFAR) Helmholtz H HBEH L. o ZZIRFAESHKLE. 2" 2L
HRAR R AN 7o BT

x=¢,+T4/BPV, (C4)
Horb g N Z AIMBHE LT LI, TR AR AN R &, A [R5

(IR T AR . B2 SR Wb BE e FRAE & AR [F) 261 P B IRIF I R (B0
B 2.1-2.3)0 BT A SR FIE P T 0 52 SRR A4 1) 22 by 2 e i, 6%
%, BHE N, Helmholtz H A, W LA H R ARMIA NI FK: Helmholtz H
F B %5 2 Je 34 2 o R A S A R R A, 52 BRIAUMACRE 23 R I HE 5 35 A IRt 4 A I
178 (S K 2.4) . ZMAYER R TR 052 BRI 3R 51K, AH
LT BT A R, GRS B AR M S BRI, BAAH
AT A LR S 1255 25 S B 01 A B — P S L R R ST AR R, FRATTA T
2N A SR — 2 H FTAE AR (S B AE SR L, TR ST AR Gibbs 2
WUARIEE T (Morphological Thermdoynamic) < [A] I 5CHE, 1XEESCHEAT DL
PR A AR Xk 7 25 JiR B G0 e K P Y0 B P A0 P o B S 2R 2 I LB R AN 4 - [
AR B8] R AH AR FE R R 52 BRIEAR R 2 MR B e R R . MR, Hofhf— i
ASEE G, FL-FLZ B OCHRTE, FLITRAR, FLAR A0 45 R 30t T 32 BRI (K #4027
e LMV /N o 6T T P2 T AR 1) — ANV T P 1 P T SR 8 — RS 7 S 56 v i LA
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SE M55, 10 Helmoltz H FHBERIE A% 5 . TEA TAE, AR RN
T FESZ BRI AR B — BT M T o BRI R R BN T — 285l Jy A il
HUREL, WSAROL H AT ATE R, 1% 855 EAEASKREAT HE— Dt . 54—
M DG 0 1) R0 o TR AR — e g i ] AR ) s e 2 AL RE, B, & J@ A bl
HEZE (MOFs) MR BT g2 75 A5 SR T AR PR FE S R G K

ST HSERG, WS 2 UL 8] 1 T — oS iR . SR H b
ik, AT TARTE S i T 1 R P R AR D o DR TR AR E
R T R G TR T . EARRL T B 205298 (Scaled
Particle Theory, SPT) & —MWFFTHARTE S M R0 )1 B A T 107
AIFEH SPT MEIHL2R T3 — M RATENE R0, A BLH kAR 5 AH A Bk
(Hard Sphere, HS) WARNPREFE. Z 5 FEENTRZRE] SPT JEAMUL AT LA
FI T SR AR BEER AR I ) A I, 38 R H R R R AR AE — N BB R
GRS T RIA . SR SPT FAE B2 HEA N — LS fe il 5 H (1) L R BRAS T
FEfIGN, Carnahan-Starling IR FE. K, Mecke MIHAEHKE T —A0]
DLFH Sk 3 3R AR AE B A R 1 AT NI EHESE, I dn 2 AR SR TI %
(Morphological Thermodynamic) 209210, F&-FF1 JLf[ 1) Hadwiger & #, &
BTN NI T Z BRI AR AT VS R — MU E A 4 T2k & |,
— NI TTRR IR DR R AR, v, DAR =SSR STIR I A A Tk R R
KW, 4, FERERETFHIE, ©, UERERRE PSR, X, X
AR TR,

Q=PV+0Ad+KkC+K,X . (C.5)

R RN B TR H IR S SPT dot T i — AN BRE S s i
Th R 5e 4 —5. R, Mecke % NFZ TR HT R 20 Ai 0 25 (KR ) o
ZJEVEINERCRIAT U TR, EamkL, S8R0 THRRNTTR. MG
AR B SO E S M R IR K ), AR E BRE, T 77% (potential
mean force, PMF). SUr AT 2 BERBE 12 i 5E o Laird® (5> 731 715
B (Molecular Dynamics simulation, MD) 15 1 {44 78 BRI FN 5 A5 FE2 3% THI 14 36 T
5K 7. A A 2 A MD 25 SRR IAUAEER(C.5) I IY I, 3847 % T
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1/ RIAHIAFAE s
Q=PV+O'A+K]C+K2X+K3%. (C.6)

g5 2R B 2R R AL T — M5 RS BRI S8R 2 (Packing fraction, 77)/NT- 0.42 B,

AR E RN R T EmEEEWT, £—DEIERER1 % S8
3K . Hansen-Goos?! 55 A\ f# HI 4t B J&£ JT(Virial Expansion) ) /7 VA £ 2] 7 —/Mif
HrRim sk REX, FZRE XA T ISR FTNAFIE. Laird K&
AR B — I EES R %28 BUELRRY, BB ERI1%5
SR FZ RPN — TN — DN E S [EAE R R T,
A IATUE B Y AR RS RIS HUR 5 . ERXMENL T, JEIBSRI I 0 T
AT e T- %, BEARXMIE DU T REMEIE S /N Fok b, X SLHF 5T TAEH
R e — AN ARTERR L 83 AR R, XK T SLbs L NRAARIAERE, Ak
A f) T e — AN VIR, 1 Hadwiger 5 BEAUANAE (MR T I RO R4 E AR
i SR AT AFRE H LR ;2 A5 ] LU IR non-Hadwiger JWOIIA 2] SPT B if Ak
Bt — BTt SPT PR HIRE L ? & 75 v LA4R B — AN fi] 810 7 ¥R N non-
Hadwiger 35T, KAEA SPT (1145 RAT5HR BAT 56 4l bf AL AT fa] B ik U 1 i 2

RS =2, Rt TP SPT S A (Augmented Scaled Particle Theory,
ASPT). 7E ASPT1 H, A& T —AMA[HSE, HAK T =S PRE TR
RN IER:

~In[1-n(1+R /R)] R<R <0

Bus(R) = orm . (@©7)
(k)= fﬁﬁpﬁ+@R%wg +%+¢11e 0<R

S

Hrp s IS4, l i R 2 3 R AT = S HE R = 04L&, RiIW]

KA ASPT1. {E ASPT2 w1, Oy J i GuiX —rl i 24, JEI A ki 5Ok
RARAKL T IS,
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~In[1-7(1+R /R)] R<R <0

Bu(R,)= égﬁPR}Hij+%&+ﬂo 0<R <d, (C.8)

s

TPRR AR HR 1o d<R

S d = (2/NB-1)R. EIBERMFLAE S R = SHAER, = 0FIR, =d

AbFEESEE, BPWSRAE ASPT2. ASPTI Al ASPT2 (45 AR EA Wik IR L.
KPR IEAMLRER K = SPT ST AHIARME R an, Ah2F34, RS T
AGRE, T HX TR0 A [ T PR M s 8 G, ST ) SR T 7K 79 A1 Tolman K fE 4
RTINS P2 R A5 31 7 025 (T o R PR AR AR 92 FH T A B 22 4 R BRI A A
#, JEHERIRE T SPT X TRAWIRITINRERE . X MR SGdhi SPT )4
T TSRS FHA R — A TR ST ER IR, (5 AT DR Ay — R LS5 (i
o AR TARARIE T FRATR TR E Lt R v 1 BEAR . (EAR TAEPRATHEIE T
MA—TEHEE SR TORSE T SPT HIASRE, 42 E ) LU I 2 119k
T2 BURIR T SPT KA L ?

N T IR TR Z AR BOEE BT, B A SRR BB R . Oy T IR
FLAEE P JUART M 0T A A e 5 11 S ) — S IS LI B AL 5, P A T AR AS R R T
FLERE B T2 N TR S . 5 7 2 fL EHEI a0 MOF 1 ZIF W] LUt
Foh 3R B 70 55 K 0 S0 320 R S A SR A 23 T REIHEAT B A 9 T R BE AL 2 SLA R
HTE I, 1R 2 B AR Y S ARG o BEALZ AL R B B — M A B 5o
—EERARRL T BE A 2 AL R BRSO S o B B — MR B 2 LA R
7& Madden A1 Glandt 7£ 1988 SEHZ ) 40, fEX MR R, FEHLZ FLA R H
I R G — AL TS B AR AT B o AZ AL AR TR 2 FUA RO A
BHEERE, TR 2 18 B 23 (AT R LI . 22 LA R 3 R 2 TR (R AH ELAE
F] DU B SR B RS o SR AR N TE 2 FUM BRI, AR 2 FUA R
IR AR LA AN 2 2088 2 FLAE R R B o PRI AR o 2 AL A RDRL 1 B A FIF
1 45 B I ARIRC AR R (R A28 170 20 A BRI 4F 5K, Holovko 28 A3 H T — AN & T SPT
HEAL (AR AT AR S T FE SR AR R A4 7E Madden-Glandt FE7 v (B4 Sy 2 i 06195,
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ST e B 2 LR RMEI I, MCMA41, HALE M A . KRS
#A4FH Madden-Glandt BAUHATHIIA, T2 Zhao F NFRH T — M H A BEHL
ZAMRORERL, BEEARAEAL, R IZASE AL AP R R AL 5 A PR 2 R 2
(ITTVERAE ALIE, A2 BRI 2 s O ECR 2 0% 26, RIAT IR Bide 22 1 i 4 3
fLi& "', 5 Madden-Glandt 8 HH [, 7EIZARIY rhift A 5 2 FLA BEZ A1 B A2
My, T 7E Madden-Glandt £ 8 H HOY M . 242K, Holovko 58 A 7 45
TN RIFEEE T SPT FIR MM AT IR A 7 R SRtk I A LE g 4 A A v i A )
FAERT, SRR TR TT R A& HE T H ATIPR R k. BARVF 252 T Rk iy
(1) 90T 52 BRI #4722 P ot RO ATE SRR TE , (E2 FRATT0S 32 BRI A () B g 75 4k T
BRI (case-by-case) I B, T LAGENL—AN 0] LARSIR IR LEA [F 2 FLIA R
AR S —HESE H T2 — k. 78 SRR BRI #0715 9
Tt 52 SR I & R AR A T — M TEMAELL  FESE DY h R it T — &
FRPIRAS 77 R R AR 32 FRAR I A ) 5 PR BT o 2B T IR 5, BRI )
WK 52 BRI (¥ 34 234 AT LU T G R 3Rk 2R ik -

p==p(uTVVe+y(u,T)A+x (16T)C+r,(1,T)X, (C.9)
7 R AR ROA LS SRR Y, MIZEZORA T REh, BATE L 338 N
AR R AR AT CAE— R A 2 VR AR &, Hoh i DU S 50T LUdEid SPT
35, {58 Gibbs WA, 5735 32 BRAR IO AT LR R Ak,

)= ap (1, T) . 80‘(;1,T)é_6(;1,T)£_8(IU,T)£.

ou ou V.o ou V. o ou V

FERIRAR R, AR AR R R DA IRARIWE ST, A B8 U
Gibbs-Duhem J5 2, P A5 3 5¢ T 52 BRGLAR I %5 BT 5 2 P47 I A AR 3 2
ARG R . I SEEE R EG, KIZ & IR A 77 78 mTAR & (1) 3k i A4 78
Madden-Glandt 8, BEFARIEAL, 7 Fp 2 FLIF RV AT BSOS b (R 30 22 PR
TR B — AR T 2 FU RS B PR 52 o %07 PR B TE R A
TEZAUMPRE R RIS M, FLBR S K = AR Z LM BRI R 2 & 1 3
SAEA, MHARR R R, fLAR0 A, FL-FLRHME DL S AL IR R A T 32 BRI AR 1)
SO AN K o [N, 255 DY rh R I B A BEAR SR IR AR AE — B L N IR TA

(C.10)
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TIEEATIRAS GRS (R R H AT 12247, Ui T IS I A0 — MO i
VAU VE T HEAE— AR I B0 o 7E 28 DU & A 18 T R LA, X T AR
—> BRI R R R I8 2 ARES U7 R R 1 1T LA e B — ST G Ak gl G, iy B
(Square well) /&A1 LT (Lennard-Jones) ifk. 7EARFRM TAESF, ATHHEE
FOIX — G IRAS 7 22 75 1T DL SR A IR U A TE S T R 4 2 FLADRE R R ) 2
EA
BT 7E Madden-Glandt f 7%, AR 2 LA R S PIA IR A+
SYFABL, ME— X B AE Madden-Glandt #5R4rh, ZA MBI B “VREET T,
R 3K bR 45 RS 23 AR s R LA R S5 2 BUAR K& X T~ Madden-Glandt £
BRI A TR R . SR E AT A a8 K AR YR A4 7E Madden-Glandt 42
TR A RS AN 2 o FE58 T, A AR A TE Madden-Glandt 574 1
T 22508 I R 2L 53 B AR AR P A 27 35 2 22 SRt VR 2 2880
P, = pAR = BAp " (C.11)
BT EIF (Diagrammatic expansion), & FLAERZ RN I EEIF ., R34
LM R B R T — B B, DRI, VR A 08 A AR AR - IR 22 FLA -
Z A BIOCERARAEAE I I tE I . B T 32 BRUAR ) SPT A4y FHUNL, K ILY
EZI p S AR RN RN G AR L IR ORI L R VTR A RN e I b
FiF I8, 52 BRI AR 23 2 I H A SoF I ) 257 AH U0 4 B S5 B 3 G RIS 3 7 ok 2% v
B B MR . Bt SPT AIA:- A0 1 45 JLmT LUKk B 24 iAok 1
KT ZFUBRRL T, SPT 5 @il 1 78 2 FLAPR AR (4L 5 35 o SR 24
FLF /N T ZAUMEDRL T, SPT I8 SR 45 R v URLF W) & o SPT fE LA
R KT 2 AL BERL I Al T 52 SRR AL 35 P RE 2 H T T 2 FLA R
LB 5 FAEE —E M. 76 SPT Al T A FLER 2R 43 i A L AT FL S
B REPRL T O EAE A AEREHFLER A (IREPRL T O 7). I 73 B 7E
SPT 4 — T TTER, T RARILRZE R B T8 AR AL, 1245 Rt
TREHFLBRARARAL TH 2 AL BRI 1 B B AR o RAAAE ) LT L B e
SPT2a, 2PN FK S ARAY, R U LT AL R £ m il ik
TEZ SR B AR BRI B — AN 538 (R FLBR 26 58 SR ot 52 FRIAL 4 SPT
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IE o RS L E R AW SOy it DhRetE 2 UM R L T — 23 WAk . X+ T
LT IR & BRI AR L P AR AR S [RE I (B An <R »
FEGMIE RS, WRERARE R, I HRRR IR AR I 2 2 fLA R R, B2
FURPRERATIROC A FLRR A o 12 ol AN T80 AR B R 2 LA R

BTS2, BT AR TR TR, AT 1 S IR AR AT 5
VERT, WIEA 1 S2 BRAR B ORBEAR B, R T ANIR B2 BRIEAR ST A 1 i 2 TRV
SERIBUAEE, BT, SR T A RIS BT AN IRES T R, IR TR 2 BRI
PREVERE, HEBE T SZPRIEA BT IE N R
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