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Abstract 

Porous materials are strategically important in chemical engineering, e.g., 

sustainable developments based on new clean energies, capturing Greenhouse gas, etc. 

The development and application of porous materials involve studies of the 

thermodynamics and dynamics of fluids in porous materials. In last decades, plenty of 

experimental and theoretical studies have been reported. However, due to the variety of 

porous materials, and thermodynamic properties of confined fluid are affected by so 

many materials and fluid properties, e.g., pore size distribution, pore connectivity, etc., 

studies are still on a case-by-case way. The case-by-case study is hard to offer neither 

the control variables of confined fluid nor the common relation among the different 

confined fluids. The development of thermodynamic theories that can accurately 

describe the thermodynamic properties of confined fluids becomes more and more 

important. This thesis investigates the relation between confined fluid and the 

corresponding bulk fluid, interfacial properties of fluids at a curved surface, the general 

equation of state for confined fluids, and quench effect. This thesis is composed of 

following several parts: 

(1) With the help of scaled particle theory (SPT) and molecular simulation, we 

studied the thermodynamic properties of the confined fluid, e.g., pressure, chemical 

potential. A general scale relation has been found, which links the chemical potential, 

free energy density, and the pressure, from the confined fluids to that of the fluid in the 

homogeneous phase. This scale relation shows that the difference in thermodynamic 

properties between a confined fluid and a homogeneous fluid can be described solely 

by the porosity, the excess adsorption amount. The intrinsic relation between scaling 

relation and Gibbs adsorption theory is also revealed. This scaling relation provides a 

new method to measure the thermodynamic properties of confined fluid that are 

experimentally difficult to measure directly. 

(2) By introducing a higher order curvature term into the SPT theory, we have 

developed a new, fully analytical approach called ASPT (augmented scaled particle 

theory). ASPT significantly improves the accuracy of SPT and gives excellent results 

for both the homogeneous phase and the surface tension of fluids at a spherical surface. 

(3) Although morphological thermodynamics is supposed to be a general approach 

for studying confined fluids, it has never been tested in complicated systems, such as 
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fluids in porous materials. We proposed an equation of state based on morphological 

thermodynamics for fluids confined in various situations. It turns out that this approach 

makes it possible to obtain excellent results for the thermodynamics of these confined 

fluids. 

(4) The size of a medium is described by the chemical potential to insert a new 

particle. Using SPT theory and Monte-Carlo simulations, we have demonstrated that a 

quench-annealed system is more congested than a system without such disorders (e.g., 

binary mixture). 

With the help of theoretical study and molecular simulation, this thesis studies the 

thermodynamic properties of confined fluids, clarifies the control variables of confined 

fluids, and discovers the common law of thermodynamics properties among different 

confined fluids. A scaling relation and two new equations of state were reported, they 

will deepen the understanding of confined fluid, and will advance the development of 

the thermodynamics for confined fluids. 

Keywords: confined fluids; porous materials; statistical thermodynamics; adsorption; 

morphological thermodynamics 
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Résumé 

Les matériaux poreux ont une importance stratégique dans de nombreux domaines, 
par exemple, des développements durables basés sur de nouvelles énergies propres, des 
capteurs des gaz à effet de serre. Le développement et l'application de matériaux poreux 
impliquent des études sur la thermodynamique et la dynamique des fluides adsorbés 
dans des matériaux poreux. Au cours des dernières décennies, de nombreuses études 
expérimentales et théoriques ont été effectuées. Cependant, en raison de la diversité des 
matériaux poreux, les propriétés thermodynamiques des fluides confinés peuvent être 
affectées par de nombreux paramètres caractérisant les matériaux poreux, tels que la 
distribution de la taille des pores, la connectivité des pores, les interactions fluide-
matériau, etc. Jusqu’à présent, les études théoriques des fluides confinés ont été menées 
au cas par cas. Cette situation ne permet pas de voir clairement les caractéristiques 
communes des fluides confinés, encore moins les éventuels liens entre les fluides 
confinés et ceux en phase homogène. Lors de cette thèse, nous avons mené des études 
sur les quatre problèmes suivants : 

 (1) Nous avons étudié les propriétés thermodynamiques (potentiel chimique et la 
pression) d’un nombre important de fluides confinés dans divers milieux poreux. Une 
relation d'échelle générale a été trouvée, qui relie le potentiel chimique ainsi que la 
pression, des fluides confinés au celui du fluide en phase homogène. Cette relation 
d'échelle montre que la différence de propriétés thermodynamiques entre un fluide 
confiné et un fluide homogène peut être décrite uniquement par la porosité, la quantité 
d'adsorption en excès. Cette relation d'échelle a avancé significativement notre 
compréhension de la thermodynamique des fluides confinés et ouvre des perspectives 
très intéressantes pour déterminer les propriétés thermodynamiques de fluides confinés 
à partir des celles des fluides homogènes. 

(2) En introduisant un terme de courbure d'ordre supérieur dans la théorie SPT, 
nous avons développé une nouvelle approche totalement analytique, baptisée ASPT 
(augmented scaled particle theory). ASPT améliore significativement la précision de la 
SPT et donne des excellents résultats à la fois pour la phase homogène et pour les la 
tension superficielle au voisinage d’une surface sphérique. 

(3) Bien que la thermodynamique morphologique est sensée d’être une approche 
générale pour traiter des systèmes hétérogène dans lesquels une interface 
morphologiquement complique est présente, elle n’a jamais été testée dans des 
systèmes compliqués, comme par exemple des fluides confinés en milieux poreux. 
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Nous avons mis au point une approche basée sur la thermodynamique morphologique 
pour des fluides confinés dans de diverses situations. Il s’avère que cette approche 
permet d’obtenir d’excellents résultats pour la thermodynamique de ces fluides 
confinés. 

(4) L’encombrement d’un milieu est décrit par le potentiel chimique pour insérer 
une nouvelle particule. A l’aide de la théorie SPT et des simulations Monter-Carlo, nous 
avons démontré que un système avec des désordres figés (« quench-annealed » systèe) 
est plus encombré qu’un système sans tels désordres (par exemple, mélange binaire).  

À travers les études décrites ci-dessus, nous avons réussi, à la fois, à développer 
certaines nouvelles méthodes théoriques pour des fluides confinés et à apporter des 
nouveaux éléments de réponse à quelques questions fondamentales qui étaient ouvertes 
auparavant. 

Mots clés: fluides confinés; matériaux poreux; thermodynamique statistique; 

adsorption; thermodynamique morphologique 
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摘  要 

多孔材料在化学工程多个领域有着重要应用，如新能源电极材料，温室气体

的捕集，混合物分离与提纯，高效催化，传感器设计等。多孔材料的开发与应用

涉及到流体在多孔材料中的热力学与动力学性质研究。在过去几十年中，针对受

限流体的性质开展了大量实验和理论研究工作。但由于多孔材料种类丰富，受限

流体性质还受孔径大小、孔隙率、流体与材料的相互作用、流体密度、温度、压

强等诸多因素影响，且这些因素之间往往还相互关联，因此统计力学方法如分子

模拟、经典密度泛函理论等常常只能对受限流体性质进行逐案分析（case-by-case 

study）。这种逐案分析既难以给出某类受限流体性质的关键调控变量从而提供调

控思路，也不能分析不同受限流体热力学性质之间的关联及共同规律。基于此，

面向受限流体的普适规律研究，发展能够准确描述受限流体性质的热力学理论显

得日益迫切。本论文围绕受限流体与体相流体关联，流体在弯曲表面的界面性质，

普适受限流体状态方程和冻结效应的影响开展了研究，主要内容包括以下几方面： 

（1）以受限流体的化学势，压强等热力学性质为对象，通过结合定标粒子

理论(Scaled Particle Theory, SPT)和分子模拟，研究了受限流体与体相流体直接

的关联。发现了一个普适的对应态原理，表明仅使用孔隙率，过剩吸附量和与之

平衡的均相流体压强即可描述受限流体与均相流体热力学性质的区别。揭示了与

吉布斯吸附理论的内在关系。该发现加深了对受限流体的理解，也为实验提供了

测量难以直接测量的受限流体热力学性质的新方法。 

（2）以探究流体在弯曲表面的界面性质为目标，通过结合形态热力学

（Morphological Thermodynamics）与研究均相流体的 SPT，提出了一个改进的 SPT

理论。该理论首次将 SPT 与形态热力学相结合，通过引入高阶曲率项的方法给出

了更为精确的描述流体在球形表面界面张力的表达式，该表达式具有相比于现有

理论更高的精度及简洁的表达式。同时，也给出了具有高精度的描述均相流体的

状态方程。将加深对于流体在弯曲表面界面性质的理解。 

（3）以构建适用于不同受限流体的普适状态方程为目标，通过结合形态热

力学与 SPT，探究了影响受限流体热力学的变量。通过将多孔材料的孔隙率，表



VIII 

面积和两个曲率项作为关键变量，以化学势为自变量，提出了第一个不依赖于多

孔材料结构的受限流体状态方程，其结果在不同条件下均与分子模拟相符。为工

业中分析流体状态提供了理论基础。 

（4）流体进入多孔材料的阻力跟其化学势相关，通过 SPT 和分子模拟研究

了流体密度，孔隙率等受限条件对化学势的影响。结果表明降低孔隙率，提高流

体密度及增大固液界面，均会导致化学势增加，即流体阻力的增大。为工业应用

中减小流体阻力提供了思路。 

本文通过理论研究和分子模拟的结合，分析了受限流体的热力学性质，明确

了调控受限流体的关键变量，发现了不同受限流体热力学性质之间的共同规律，

基于此，提出了一个对应态原理和两个状态方程，加深了对于受限流体的理解，

将推动受限流体热力学的发展。 

关键字：受限流体，多孔材料，统计热力学，吸附，形态热力学 
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1. Introduction 

1.1 Porous material and its application 

High-performance functionalized materials have strategic importance for many 

societal issues, e.g., sustainable developments based on new clean energies. Hydrogen 

is one of possible future clean energies. Scientific research has been actively undertaken 

to find a viable material for hydrogen storage 1. In the late 1990s, carbon nanotubes 

generated excitement for hydrogen storage while it turned out later that they do not 

attain the viable adsorption capacity, (more than 6% of the system’s total weight). 

Currently, the searching of such a storage system is directed toward new synthetic 

porous materials. 2  

Besides fluid storage, porous materials also have many other important 

applications. Various zeolites have been used as molecular sieves and catalysts. Due to 

the specific pore size and topology, high selectivity is imparted to the zeolite-based 

catalysts. Such selectivity is extensively exploited in various chemical processes, e.g., 

catalytic cracking in the oil industry. When chiral building blocks are used for 

elaborating porous materials, the selectivity can be pushed to a higher level and thus 

enantioselective porous materials have been synthesized3, which can have important 

applications in pharmaceutical industry.  

Now, material engineering allows for bestowing various interesting properties on 

porous materials. For example, magnetic porous materials have been synthesized 4 and 

some can have the transition temperature well above room temperature5. One attractive 

feature offered by the porous magnetic materials is their module ability. On one hand, 

the magnetic property can be modulated by choosing the appropriate building blocks 

for the synthesis. On the other hand, it can also be tuned, even after the materials being 

fabricated, by guest molecules adsorbed in the pores6. There is also considerable interest 

in the optical properties of some porous materials on account of their tunability and the 

possibility to incorporate a wide range of metal ions and organic ligand chromophores. 
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Such materials are of potential application as phosphors or fluorescent probes, 

particularly in chemical sensors7. Another very interesting example is aerogel. Aerogels 

are synthesized by using a gas to replace the liquid in the pores of gel. Aerogels have 

many interesting properties, such as very large surface area, low density, large porosity, 

and very low thermal conductivity. Thus, the aerogel is an ideal thermal insulation 

material and has a potential application in aeronautics and astronautics. 8–10 Due to the 

large porosity and the very large surface area, aerogels are also wildly used in 

catalysis.11–13 The aerogel is a typically random porous material. With the development 

of synthesis technique, the ordered porous material such as Metal-organic frameworks 

(MOFs) and Zeolite imidazolate frameworks (ZIFs) have attracted more and more 

attention in both fundamental study and industry applications. For instance, MOFs is a 

coordination compound with a three-dimensional pore structure: organic struts link 

metal-containing clusters. MOFs were first synthesized in the late 1990s. Young14, 

Fujita15, Venkataraman16 reported the applications of MOFs in catalysis of coordination 

polymers and gas adsorption. MOFs have many attractive properties i.e., low density, 

high solid-liquid interface area, and the controllable functionality.17–19 The most 

interesting property of MOF is its flexibility.20–22 Normally, the supramolecular host-

guest interaction leads to the flexibility of porous material. However, recent study found 

that the framework flexibility is also presented without the guest molecule and the 

phenomenon of adsorption or desorption. The framework flexibility of MOFs may be 

caused by some external stimulus in general (by guests and external force fields i.e., 

mechanical stress, photoresponse, thermoresponsivity, host-guest interaction, electrical 

and magnetic interaction). Due to the framework flexibility of MOFs, it has potential 

application in many industrial fields, such as gas separation, biomedical application, 

catalysis, and sensor. The MOFs sensor is based on the framework flexibility can cause 

a reversible color change. For instance, DUT-8(Ni) changes its color from yellow to 

green during the adsorption of CO2, n-butane, N2, etc.23 Another example is based on 

the host-guest interactions, Yanai et al. were proposed that the composite material 
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DSB@[Zn2(bdc)2dabco]n (DSB – distyrylbenzene) can be used to detect CO2 and 

C2H2.24  

Another very important application of porous materials is controlled releasing 

process of drugs.25,26 Considerable efforts devoted to developing methods for controlled 

drug-release to satisfy the ever-increasing demand for prolonged and better control of 

drug administration. The capability of continuous drug delivery over a specific period 

can assure an optimized therapeutic efficiency and a better patient’s comfort for various 

chronic diseases, e.g., diabetes, cancers, AIDS, etc. A long release time requires a large 

capacity to store drug molecules. The controlled delivery necessitates some adaptability 

of the porous materials according to the drug content inside. New hybrid flexible porous 

materials opened some attractive perspectives for controlled drug delivery. 

Above examples showed the strategic roles played by porous materials in a large 

variety of domains ranging from catalysis, separation, sensor technology to the 

pharmaceutical industry. It is estimated that porous solids represent more than 20% of 

the Gross Domestic Product of the industrial countries for the applications they imply 

directly or indirectly.27  

1.2 Experimental study on porous material 

Since the porous materials have been used in many new areas, more precise control 

over the pore geometric properties is required. The templating-fabrication strategy is 

the most popular technique for control the pore size distribution and creates a variety 

of porous networks with a wide range of pore sizes from the micropore to macropore.28–

33 In this method, Organic-bases molecules, polymer, and emulsion are normally 

considered as template species. The template species will be removed by heat treatment 

(soft template), acid or alkali solution (hard template) than the controllable pore scales 

can match the needs of different applications. Templating-fabrication strategy has 

widely used to synthesize ordered microporous material, such as MCM-48 and SBA-

16, ordered mesoporous materials like MCM-41. Those materials are widely considered 
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as catalysis, sensor, and capacitor. Another very interesting new synthesis technique is 

Pekala’s method. In this method, a gas replaced the liquid in the pores of gel. Hence, 

aerogels have a network structure of interconnected nanosized primary particles and 

have a wide range pore size from micropores, which are related to the intra-particle 

structure, to macropores, which are produced by the inter-particle structure. Those two 

synthesis methods introduce how to control the pore structure, now, how to characterize 

the pore structure of random porous material will be introduced.  

To characterize and reconstruct the morphologies of porous material, the statistical 

geometric properties obtained from two-dimensional images of microstructure, i.e. 

porosity, interfacial surface area, and the two-point correlation function are widely 

used.34 More recently the chord length distribution35 has been employed in the 

generation of 3D microstructural models.36,37 These methods have been very instructive 

in understanding the general properties of complex media, however, direct prediction 

of transport properties38,39 from reconstructed samples have been in only fair agreement 

with experimental data. These standard methods base characterization and 

reconstruction primarily on geometrical information; there is no attempt to match the 

genesis of the material. Understanding how morphologies of porous material influence 

the properties of fluids in the porous material is important not only for a fundamental 

point of view but also for conceiving innovative and sustainable industrial processes. 

Unfortunately, some thermodynamic properties of fluid in porous material still can not 

be obtained from the experiment, such as pressure and the free energy of the confined 

fluid. Hence, the theoretical study of the properties of fluids in porous material is still 

needed. In next section, some theoretical models will be introduced.  

1.3 Theoretical Model 

Although a large literature exists on the study of confined fluids by both 

experimental and theoretical methods.40–175 Today, we do not have yet a precise idea 

about the respective roles played by pore-connectivity, pore-size distribution, the 



5 

morphologies of pore space, or quench disorder. The confined fluid particles feel not 

only the interaction with other fluid particles but also from solid ones. The interaction 

between fluid particles and porous materials can also make the confined fluid behave 

very differently from the bulk one. In this section, the models of pair potential and the 

models for porous material are introduced. 

A. Models of the pair potential  

Generally, the pair potential can be divided into two parts, the short-range repulsive 

part, which is derived from the overlap of outer electron shells, and the long-range 

attractive part, which comes from the spontaneous fluctuations of the electronic charge 

distribution. Due to the harsh repulsive part built the short-range order of fluid, which 

lead to the structure of fluid, the repulsive part is the most important property of the 

fluid. Hence, the first interaction model only considered the repulsion between fluid 

particles and the attraction is ignored, which is hard sphere potential. The pair potential, 

v(r), of hard sphere model is 

    (1.1) 

where  is the diameter of the fluid particle, and r is the distance between two fluid 

particles. Since only the repulsive part is considered in this model, which means the 

fluid only has one fluid phase, the vapor-liquid phase transition cannot be found in hard 

sphere fluid. And the freezing transition can be found in hard sphere fluid at high fluid 

density, . If the diameter, d, is equal to zero, the ideal gas model is 

obtained. In ideal gas model, the pair interaction is ignored, this model can be used to 

study the dilute system. Although this model is very simple, it still can offer many 

important features of confined fluid, as presented by Dong.173 A simple pair potential 

model that can be used to describe the vapor-liquid phase transition can be proposed 

based on hard sphere model with an additional attraction, named square-well potential,  
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   (1.2) 

where  is the depth of the well, and  is the width of the well. Since the attractive 

part is from the spontaneous fluctuation, which means it should have a very smooth 

form. The Lennard-Jones potential offers a continuous function to describe the pair 

potential, 

 ,  (1.3) 

where  is the collective diameter,  is the depth of the well. This model is widely 

used in molecular simulation. One should mention that this potential has a very long 

tail. To accelerate molecular simulation, a cut-off technique is widely used. To keep the 

continuity of the Lennard-Jones potential, it can be rewritten as 

 .  (1.4) 

And the Lennard-Jones potential always is divided by a reference hard sphere part and 

an attractive part, as Weeks-Chandler-Andersen theory176 and Barker-Henderson 

theory177. From the above models of pair potential, one can found that the pair potential 

can always separate into two parts. This idea is from Van der Waals. In addition, 

perturbation theories, which is formed based on this idea, is a powerful tool for studying 

thermodynamic properties of fluids.  

B. Models of porous material 

Generally, the porous material can be divided into two parts, the ordered porous 

medium, and the disordered porous medium. The ordered porous medium like MOF or 

ZIF can be described by a repeatable unit cell. The disordered porous medium, random 

porous medium, are always built with the help of fixed particles. However, recent 

studies found that the structure of porous material might have changed, during the fluid 

adsorbed in, such as swelling, or contracting.17–19,22,178–192 In some cases, this behavior 
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cannot be ignored like in MOF or ZIF.18,182,186 Most of models of disordered porous 

medium assumed that the structure of porous medium is a rigid one, which will not be 

modified by the behavior of fluid. This assumption makes the porous material can be 

considered as an external potential field, which is very convenient for theoretical 

approaches, such as, integral equations and density functional theory (DFT), and 

computer simulation. Although the structural change of porous medium is ignored, the 

description of the disorder of random porous material is still very complicated. The 

properties of fluid in random porous material must be taken two ensemble average. The 

first ensemble average is over all fluid configurations. And the second ensemble 

average is over all material configuration. Although the structure of random porous 

medium is a disordered and inhomogeneous one, after the ensemble average, it can be 

considered as an isotropic one. This concept is the fundamental basis of theoretical 

studies of Madden-Glandt model such as, Ornstein-Zernike equation114,149,157,163, 

Density Functional Theory60,151,161,167,172, and Scaled Particle Theory61,66,84,193–202.  

The first random porous medium model was proposed by W. G. Madden and E. D. 

Glandt in 1988.40 In this model, the porous medium, also called matrix, is generated by 

fixing an equilibrium fluid, and the matrix particles are considered as an obstacle. The 

void among matrix particles is considered as pore. The interaction between matrix 

particles can be ideal gas potential or the hard sphere potential. And the porous medium 

is called an overlapping hard sphere (OHS) matrix and hard sphere (HS) matrix, 

respectively. And the interaction between fluid and matrix can be any pairwise additive 

potential. During the fluid adsorbed in porous medium, the fluid-matrix interaction will 

not modify the matrix structure. The matrix particle distribution is same as an 

equilibrium fluid distribution. With powerful theoretical tools, such as Ornstein-Zernike 

equation, density functional theory, numerous studies of confined fluid are carried out. 

The behavior of fluids confined in random porous medium, such as, phase 

behavior59,80,145–147,150, adsorption76,82,104,105,110,124, diffusivity48,158, were systematically 

studied.  
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However, many works of confined fluid are based on Madden-Glandt model, some 

fundamental questions are still unsolved. For instance, how to calculate the pressure of 

fluids in Madden-Glandt matrix is still questioned. Rosinberg et al. used a replica 

technique to calculate the pressure of fluid confined in Madden-Glandt matrix.53 And a 

complicated Virial expression for pressure was obtained. To obtain a simple expression 

of pressure in Madden-Glandt matrix, Dong also reported a simple expression of 

pressure which was obtained by considering the mechanic equilibrium.89 In this same 

year, Kierlik et al. also proposed a so-called thermodynamics pressure, and found that 

this pressure and mechanical pressure are not identical.95 In Kierlik’s work, the 

Madden-Glandt matrix was obtained from Grand canonical ensemble. It should be 

mentioned that only mechanical pressure can be used in molecular simulation. In 2005, 

Dong and Chen first proposed a Virial equation for the thermodynamic pressure which 

can be used in molecular simulation and an exact relation between the pressure of fluids 

confined in porous material and the pressure of the corresponding bulk fluid.164 This 

relation provides, for the first time, the basis of an experimental method for measuring 

the fluid pressure inside a random porous material. Also, the definition of the system 

volume may cause the difference among those pressure results. From an ideal gas 

system, one can find that if the system volume contains the volume occupied by matrix 

particle, the pressure equilibrium between the confined system and the corresponding 

bulk system will be broken. Hence, choosing the accessible volume as system volume 

seems more reasonable. However, the accessible volume is difficult to measure in 

experiment.  

The morphology of some real porous materials like MCM-41 are sponge-like203, 

which is significantly different from the Madden-Glandt matrix. Hence, Zhao et al.171 

proposed a new matrix model, named hard sponge matrix model. In this model, the 

matrix particle is considered as the pore, which is not like the previous model where 

the matrix particle is considered as obstacle. This model can be considered as the 

opposite of overlapping hard sphere matrix. The Ornstein-Zernike equations of fluids 
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confined in hard sponge model were proposed by Zhao et al. by using both diagram 

expansion and replica method. An analytical equation of state of fluid confined in hard 

sponge matrix was reported by Holovko et al.79 In this work, the strict derivation of this 

equation of state is leaked. Here, it should be noted that, in Madden-Glandt model, from 

the viewpoint of fluid, the interface between fluid and matrix is a concave one, in hard 

sponge model, the interface between them is a convex one. How this difference will 

change the thermodynamic properties of confined fluid will be discussed in Chapter 4. 

Based on this model, Dong et al. 46 developed a new random porous model, called soft-

sponge model, and the only difference from hard sponge model is when the fluid 

particle overlapped with material the interaction potential does not tend to be infinity, 

but finite positive value.  

Above two porous medium models can describe some fundamental features of 

fluids in porous medium, such as disorder effect, the pore size distribution, and pore 

connectivity. In experiment, the templating-fabrication strategy skill is widely used in 

the synthesis of porous materials for controlling the pore size distribution. The template 

components are removed by heat treatment, acid or alkali solution. The pore size of this 

kind of material can be from micropore to macropore, two models cannot describe. The 

first templated matrices model is reported by Van Tassel. The Van Tassel matrix model 

is generated by fixing a two-component equilibrium fluid one component is considered 

as matrix species and the other component is the template species. After fixing, the 

template component will be removed. The pores in this model are generated from two 

parts, the first one is the voids between matrix particles, the primitive one, and the 

second one is from the removed template species. This model is very similar to the 

process of fabricating the templated porous material in experiments. However, this 

process is hard to describe in theoretical study. Even for an ideal gas fluid in Van Tassel 

matrix model, the expressions of the thermodynamics properties are not entirely 

analytically.173 Zhao et al. also reported a templated porous medium.175 In Zhao’s 

template matrix model, the template pore is generated by piercing some cavities in the 
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Madden-Glandt matrix. This process can simplify the description of the structure of 

templated porous materials. The Ornstein-Zernike equations of fluids confined in 

Zhao’s template matrix model were proposed by Zhao et al. by using both diagram 

expansion and replica method. Normally, there are two methods for studying the 

properties and the behavior of fluid confined in porous medium, simulation, and 

theoretical approach.  

1.4 Theoretical approach 

Many interesting studies of the properties and phase behavior of confined fluids 

are based on some numerical methods, i.e., molecular simulation, density functional 

theory, and Ornstein-Zernike equations. In this section, two general methods which 

have potential to offer totally analytical results of fluids confined in different porous 

materials will be introduced in next two subsections. Some numerical methods for 

confined fluid will be also introduced in the last subsection. 

A. SPT for confined fluid 

 Scaled particle theory (SPT) was first reported by Reiss et al.204,205 in more than a 

half century ago. It provides a powerful tool to determine the equation of state of a bulk 

hard sphere (HS) fluid. SPT is not just limited to calculating the thermodynamical 

properties, i.e, pressure, chemical potential. It can also provide many surface and 

structural properties, i.e. surface tension, Tolman length, and radial distribution function. 

Many extensions and applications have been reported, e.g. Dong and his coworkers 

66,193,195 extend SPT to HS fluids confined in some random porous matrices. 

 Patsahan et al. first extended SPT to fluids confined in Madden-Glandt matrix 

model and obtained an accurate analytical equation of state. The basic idea of SPT is to 

insert an additional scaled particle into a fluid, this is equivalent to creating a spherical 

cavity. The excess chemical potential of inserting a point scaled particle can be obtained 

exactly. And a thermodynamical consideration can be used to describe the work of 

creating a finite size spherical cavity. Patsahan et al. introduced the exact analytical 
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results of a point scaled particle in hard sphere or overlapping hard sphere matrix, and 

the first equation of state for confined fluids, SPT1, was carried out. However, in SPT1, 

when the matrix density tends to zero and the matrix size tends to infinity, the 

expression of SPT1 cannot reduce to the original bulk SPT result. Later, with the help 

of a new formulation of SPT, this inconsistency was eliminated in SPT2. In this 

formulation, the morphology of porous materials is only presented by four parameters, 

packing fraction of matrix species, the ratio of the radio of fluid particle to matrix 

particle, and two porosities. The first porosity (geometrical porosity, ) is only about 

the geometry of porous materials which the probing particle is a point scaled particle. 

The second porosity (probe particle porosity, ) measures the accessible volume of the 

center of fluid, and the probing particle is a fluid particle. The SPT2b shows a great 

agreement with the molecular simulation results. However, a divergence was found in 

SPT2b when the packing fraction of fluid is higher than the value of probe particle 

porosity. Based on the study of one-dimensional hard rod fluid in random porous 

materials77, an expansion of the term which contains probe particle porosity was used 

in SPT2b1 to eliminate this divergence. This expansion also improved the accuracy of 

the SPT prediction. However, it was found that when the fluid particle size is larger 

than matrix particle size, all versions of SPT significantly overestimated the 

thermodynamics properties of confined fluids even in fluid with a low density. 

Comparing the expressions of SPT2, SPT2b, and SPT2b1, one can find that probe fluid 

particle porosity leads to this overestimation. The essence of those improvements of 

SPT is to reduce the influence of probe fluid particle porosity. Also, if we just use 

geometry porosity to replace probe particle porosity as SPT2a, the prediction of SPT 

will significantly underestimate the properties of confined fluid. Hence, find a more 

suitable porosity to describe the accessible volume of fluid is the key point to improve 

SPT. It should be mentioned that only four parameters are used for describing the porous 

material in SPT. We can assume that once those four parameters of porous material are 

obtained, the SPT can be used for describing the thermodynamic properties of fluid 

0f
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confined in such porous material. Based on this, the SPT can be easily extended to other 

random porous materials, such as hard sponge matrices, and hard convex body 

matrices.196,202 Later, the SPT was extended to study the thermodynamic properties and 

phase behavior of the hard-convex body fluid in random porous materials.196,206 With 

the help of perturbation method, the phase behavior of network-forming fluid and ionic 

fluid.194,201 Hence, the SPT can be considered as a general framework for fluids 

confined in different porous materials. 

B. Morphological thermodynamics 

 Here, I introduce another general framework for confined fluid, morphological 

thermodynamics, which was proposed by Mecke and his co-works.207–210 This method 

is from a beautiful mathematics theorem, Hadwiger’s volume theorem.211,212 It is not 

only a beautiful mathematics theorem but also offers a very powerful way to study 

confined fluid. Initially, Mecke and Wagner used this theorem to analyze the spatial 

patterns of galaxy distribution.213 And then they found that this method can also be 

contributed to studies in microemulsions214,215, composite media207,208, complex 

molecule216. They named this method as morphological thermodynamics. In 2003, Bryk 

217 derived an analytical equation to calculate the surface tension of a hard sphere fluid 

close to curved substrates by morphological thermodynamics. The result showed that 

the expression of surface tension of fluid close to arbitrary convex substrates does not 

include a logarithmic term of curvature. In 2004, König209 derived a morphological 

thermodynamic form grand potential expression. This grand potential expression is 

used to calculate the solvation free energy of a cylindrical or a spherical hard sphere 

particle solute in hard sphere fluid. 

   (1.5) 

where  is the pressure and  is the interfacial tension near a planar wall,  and 

 are the properties of the fluid. the volume, , the surface area, , the integrated 

mean curvature, , and the Euler characteristic, , are the geometric properties of 
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solute. The result obtained from the equation above has a good agreement with the 

result from Rosenfeld's fundamental measure theory. In 2009, Oettel218 calculated the 

depletion potential between two hard sphere particles among the small hard sphere 

solvent using morphological thermodynamics and density functional theory (DFT). The 

result showed that morphological thermodynamics is invalidated when the distance 

between two hard sphere particles is greater than one solvent particle's diameter and 

smaller than a few of solvent particle's diameters, since the additivity restriction of 

Hadwiger's volume theorem is broken down in this situation. In 2012, Jin219 studied the 

shape effect on solvation using morphological thermodynamics and DFT, the solvation 

free energy of solute with different shapes was calculated. Comparing with DFT result, 

it showed that when the solvent correlation length is smaller than the solute particle 

diameter, morphological thermodynamics is valid. 

Recently, some studies220–224 showed that the morphological thermodynamics is an 

approximate method but an exact one. Laird223 used molecular dynamics simulation 

(MD) to calculate the interfacial tension, , between spherical or cylindrical particle 

and hard sphere fluid. They fitted the MD result to determine a polynomial of . 

This result showed that the morphological thermodynamics is valid in low packing 

fraction ( ), while in a high packing fraction, the first non-Hadwiger coefficient 

showed a significant increase. Hansen-Goos221 used Virial expansion to determine an 

exact surface tension expression, and this expression implied the existence of non-

Hadwiger coefficient. To quantify the first non-Hadwiger coefficient, some simulations 

were carried out, the numerous results showed that the first non-Hadwiger coefficient 

is smaller than the smallest morphological thermodynamics coefficient in one order of 

magnitude. In those articles, they did not prove that the non-Hadwiger term coefficients 

with higher order are always in the same sign. In this case, the sum of non-Hadwiger 

terms may be equal to zero. In fact, their studies considered a fluid near spherical or 

cylindrical particle, it means that the interface between fluid and the obstacle particle is 

concave from fluid view, while the Hadwiger's volume theorem is only valid in the 

g
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convex interface. Although morphological is questioned recently, it is still considered 

as a potential tool for building a general framework for describing the fluid confined in 

different porous materials. 

C. Other theoretical approaches 

The Ornstein-Zernike equations and density functional theory are also the very 

popular theoretical methods for studying the thermodynamic properties of confined 

fluids. The two-body correlation functions are the basic quantities of Ornstein-Zernike 

equations. Since the replica Ornstein-Zernike equations of fluids in Madden-Gladnt 

random porous medium were reported by Given and Stell,75 substantial effort has been 

focused on the study of the properties of a fluid confined in random porous materials 

using replica Ornstein-Zernike equations theory. For instance, Kierlik106 used replica 

Ornstein-Zernike equations to investigate the phase diagrams of fluids in the random 

porous material, they found, in most cases, vapor-liquid coexistence curve of fluids in 

the random porous material is similar to the bulk ones, although it is narrowed. With 

the help of replica method, Zhao et. al. also proposed the Ornstein-Zernike equations 

for Hard-sponge and Templated random porous medium. However, the suitable closer 

for those Ornstein-Zernike equations is still not clear. Density functional theory is also 

a classical theoretical method for studying the inhomogeneous fluids, the porous 

material is generally considered as an external potential. For ordered porous material, 

density functional theory is widely used. For instance, Liu et. al.225 used density 

functional theory to predict the behavior of H2 adsorbed in different kinds of MOFs. 

They found that the saturated pressure increases along with temperature in the low 

temperature region but a decrease in the high temperature region. For random porous 

material, if the material is still treated as an external potential, lots of configurations of 

material must be included in averaging procedure and the computation cost must be 

very expensive. Recently, Schmidt et al.151,167 treated the random porous material on 

the level of one-body density distribution rather than as an external field and derived a 

so-called replica density functional theory. 
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1.5 Simulation method 

Molecular simulation is a powerful and robust statistical mechanics method for 

confined fluid.226–228 The basic idea of molecular simulation is to attain a set of 

configurations distributed according to some statistical distribution function, or 

statistical ensemble. There are two classical molecular simulation approaches for 

confined fluid: Monte Carlo method and molecular dynamics method. The molecular 

dynamics is based on the classical equations of motion or Langevin equation. Therefore, 

molecular dynamics can be used to study the time-dependent processes like diffusivity. 

The Monte Carlo method is an essential stochastic method, where the configurations 

are generated by moving or inserting and removing particles. Therefore, to study the 

static properties of confined fluid, the Monte Carlo method will be more efficient. Many 

interesting studies of confined fluid are based on molecular simulation. For instance, 

the chemical reaction in porous medium, Turner229–232 used Reaction ensemble Monte 

Carlo method to study reactions confined in porous material, they found the 

confinement effect is significantly improved the chemical reaction yield which almost 

cannot be observed in bulk system. Another interesting example is about phase 

transitions of fluids adsorbed in random porous material. Many experimental evidences 

support that the confinement effect can influence the liquid-vapor phase transitions. 

Such as comparing with the bulk vapor-liquid coexistence curve, the vapor-liquid 

coexistence curve of confined fluid is remarkably narrowed, and the critical temperature 

and density are lower. Since the properties of confined fluid are affected by many 

characteristics of porous material, such as porosity, pore size distribution, pore 

connectivity, how those characteristics of porous material will affect phase behavior 

had carried out a series of simulation studies. To accelerate the efficiency of the 

simulation of confined fluid, two powerful simulation techniques, the Gibbs-ensemble 

method, and the Gibbs-Duhem integration, were adapted by Brennan and Dong153.  

In molecular simulation, the ordered porous medium like MOF and ZIF can be 

described by a repeatable unit cell. Since the disordered porous medium is always built 
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with the help of fixed particles, for describing the structure of disordered porous 

material, lots of configurations (usually, about 5-20) of disordered porous medium are 

generated from the canonical ensemble Monte Carlo simulation, and the average over 

the material configurations was taken. Hence, the computation cost of computer 

simulation is expensive. In porous material, the pores can be divided into two parts, the 

open pores, and the closed (dead) pores. The open pores mean the fluid particle can 

access via diffusion process, while the dead pores are isolated from the outside fluid. In 

Monte Carlo simulation, the fluid particle can appear in closed pores via the random 

inserting operation, or via a large displacement operation.  

1.6 Current problem and the objective of the present work 

Although a large number of experimental and theoretical investigations have been 

made during the last decades, our understanding of confined fluids is still incomplete. 

Currently, we do not really know which extend thermodynamics can be applied at the 

scale of nanopores. Different aspects of confined fluids are being studied in a case-by-

case way. In Chapter 2, we first time presented a general scaling relation between the 

confined fluid and bulk one-component fluid, which allows for connecting some 

thermodynamic properties of a confined fluid to bulk ones. Upon rescaling adsorbed 

fluid density, the adsorption-isotherms for many different confining environments 

collapse to the corresponding bulk curve. We also revealed the intimate connection of 

the reported scaling relation to Gibbs theory of inhomogeneous fluids.  

 As we mentioned before, morphological thermodynamics are questioned recently. 

The existence of non-Hadwiger term has been confirmed by both theoretical study and 

molecular simulation. In the scaled particle theory, the formulation of the work for 

creating a spherical cavity in a fluid is identical to the morphological thermodynamics, 

and the scaled particle theory for the bulk system is not as accurate as other equation of 

state such as Carnahan-Staring equation of state. This indicated that the scaled particle 

theory can be improved by adding a non-Hadwiger term. In Chapter 3, we set up two 
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new versions of SPT. The first one contains an adjustable parameter. The second one 

uses two Laurent series to describe the chemical potential for inserting a scaled particle. 

Both new versions of SPT significantly improved the accuracy of not only 

thermodynamic properties, i.e. pressure and chemical potential, but also surface 

properties, i.e. surface tension and Tolman length. We also first time obtained a self-

consistency expression of non-Hadwiger term. Moreover, the same idea can be used to 

treat the multi-components system, and the improvement is significant.  

Morphological thermodynamics offered a tool for building a general framework to 

describe the thermodynamic properties of fluids confined in different porous materials. 

However, how to use this tool is still unclear. In Chapter 4, by considering the chemical 

potential as the independent variable, we derived, for first time, a new general equation 

of state by using morphological thermodynamic. In this equation of state, the porous 

material is described by only four geometric properties, i.e., the geometry porosity, 

fluid-solid interface area, integrated Gaussian curvature, and integrated mean curvature. 

To our best knowledge, this is the first equation of state for confined fluid which is 

irrelevant to the model of porous medium. Our new equation of state has a great 

agreement with molecular simulation results in a large range.  

Madden-Glandt model is the first model of random porous material. In this model, 

the disordered porous material is mimicked by random matrix configuration that can be 

generated by fixing a relevant fluid system at its equilibrium state. Thus, the quenched 

“fluid” particles constitute the matrix (thereafter called matrix particles), and the voids 

among them are pores. In Chapter 5, we proposed a quantitative measure of quench 

effect for the adsorption of fluids in random porous materials. With the help of scaled 

particle theory and molecular simulation, we find when matrix particles are larger than 

fluid particles, the confined fluid shows the same behavior, i.e., chemical potential, as 

the binary mixture bulk system.  
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2. A confinement-adsorption scaling relation 

2.1 Introduction 

Accompanying the elaboration of high-performance functionalized nanoporous 

materials, a large number of experimental and theoretical investigations have been 

made during the last decades. Nevertheless, our understanding of confined fluids is still 

incomplete. Currently, we do not really know to which extent thermodynamics can be 

still applied at the scale of nanopores. Different aspects of confined fluids are being 

studied in a case-by-case way. It can be readily admitted that the fluid-solid interface 

and the fluid inhomogeneity near it have to be taken into account. For fluid adsorption 

in the real porous material, the fluid-solid interfaces are generally curved ones. It might 

appear surprising that the thermodynamics for dealing with curved interfaces is not so 

well established although early investigations go back to Tolman.233 Mecke and co-

workers have made efforts to develop a general framework, named as morphological 

thermodynamics, to account for more complex surface morphology.209,210,217,220,234  

The foundation of morphological thermodynamics has been questioned recently.221–224  

To our best knowledge, no experimental measurement has ever been made to determine 

the bending rigidity coefficients needed in morphological thermodynamics method for 

any fluid-solid interface.  

A large literature exists on the study of confined fluids by theoretical and simulation 

methods. Models with simple pore geometry (e.g., slit or cylinder) are widely studied. 

In such models, the pore-size distribution and connectivity among pores are neglected. 

Fluid adsorption and diffusion in ordered porous material, e.g. zeolites, have been 

studied by simulations. To account for the quenched disorder, models for random 

porous media have been proposed also, e.g., Madden-Glandt model and various 

variants.40,85,108,136 Despite these considerable efforts, it is unfortunate to note that no 

unifying picture of various confined fluids has emerged. Today, we do not have yet a 
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precise idea about the respective roles played by pore-connectivity, pore-size 

distribution, pore morphology, or quenched disorder. In a bulk fluid, a molecule is 

surrounded by other fluid molecules while in a fluid adsorbed in a porous solid, a large 

number of fluid molecules are located near a fluid-solid interface. These molecules feel 

the interaction with both fluid and solid molecules. The nature of fluid-solid interaction 

can vary significantly, from repulsive to attractive ones. This additional interaction can 

make the confined fluid behave very differently from the bulk one. Although a confined 

fluid appears complicated due to the complex confining environment of adsorbent, one 

can wonder if there is any connection between confined and bulk fluids. Currently, we 

know quite a few about this. Acquiring such knowledge does not only advance our 

understanding of these complex systems but also can have important applications. In 

this chapter, we report several relations which allow for connecting some properties of 

a confined fluid to those of a bulk one. By rescaling the density of a confined fluid, the 

adsorption isotherms (also free energy or grand potential per particle) of fluids in a large 

variety of confining environments can collapse to the corresponding bulk ones. 

2.2 Model and method 

We investigated the thermodynamic properties (chemical potential, Helmholtz free 

energy, and grand potential) of confined fluids by considering a large variety of models 

(hard-sphere or Lenard-Jones fluids in slit-pores, ordered or disordered porous 

matrices). Simulations were carried out with the help of Monte-Carlo methods (in 

grand-canonical or canonical ensembles). 

A. Model 

A-1. HS fluid confined in various porous environments 

In the present work, we consider only one-component fluid (denoted as species 1). 

The fluid-fluid interaction between hard spheres of radius, , is given by 1R
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 .  (2.1) 

where  and  are the position vectors of the ith and jth fluid particle respectively. 

Various confining environments are considered. For Madden-Glandt model of random 

porous matrices (denoted as species 0), the following fluid-matrix interaction is given 

by 

   (2.2) 

where  is matrix particle radius,  the position vector of the jth matrix particle, 

 and  are respectively the potential-well depth and width. In the case of  

and , we have a hard sphere (HS) matrix. The configurations of an HS matrix 

are generated from an equilibrium system with the following interaction, 

 .  (2.3) 

For an overlapping hard sphere (OHS) matrix, matrix particles are placed totally 

randomly, i.e., . We considered also a slit pore with the width of  

and the interaction between fluid and the pore wall is given by 

 ,  (2.4) 

where  and  is the coordinate along the coordinate axis perpendicular to 

the slit walls (note that the origin of the coordinate system is placed at the middle of the 

slit pore). In the case of  and , we have the simple case of a slit pore 

with two hard walls. For slit pores, we calculate the fluid density by using the physical 

volume, i.e.,  ( : surface area) but not the volume accessible to the centers 
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of fluid particles. 

A-2. LJ fluid confined in various porous environments 

To demonstrate the validity of the scaling relation when an attractive fluid-fluid 

interaction is also present, a Lenard-Jones fluid with the following interaction is 

considered as well, 

   (2.5) 

   (2.6) 

where ,  and  is the potential well depth. When this LJ fluid is 

confined in an LJ matrix, the fluid-matrix is given by 

   (2.7) 

   (2.8) 

Where , and cross parameters ( , ) can be calculated with the 

Lorentz-Berthelot (LB) mixing ruler 

   (2.9) 

   (2.10) 

where ,  is the potential-well depth for matrix-matrix interaction. In LJ 

matrix systems, we have chosen  is from  to . And the matrix-matrix 

interaction is 

B. Method 

Canonical-ensemble Monte Carlo (CEMC) simulations are carried out for 

generating matrix configurations and those of a fluid confined in a particular matrix 

configuration. A cubic simulation box of volume, , is used with periodic boundary 
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condition in three space directions when a fluid confined in a matrix is considered. For 

slit pores, the simulation box is made with two square walls separated by a distance 

equal to  and the periodic boundary condition is applied only in the two space 

directions parallel to the walls. For each simulation, about 2Í105 - 1Í106 trial moves 

for each fluid particle are performed. Since finite-size matrices are used, any observable 

quantity fluctuates with matrix realizations and an average made typically with about 

10 matrix realizations leads to converged results. The excess chemical potential of the 

fluid, , is calculated for different density,  ( , : the number of 

fluid particles), by using Widom’s test particle method.226 Then, Helmholtz free energy 

is determined by a thermodynamic integration, i.e., 

   (2.11) 

where  is the thermal wavelength of fluid particles and in this work, we set . 

Finally, we obtain readily compressibility factor from the following thermodynamic 

relation, 

   (2.12) 

C. Conditions of considered systems 

The computational conditions of all the considered systems are summarized in 

Table 2.1. The confining environments considered in this work can be classified into 

two big categories: i) porous matrices and ii) slit pores. According to their different 

morphologies of pore space, we can divide porous matrices into four different types. 

Disordered porous matrices are generated by quenching an equilibrium system 

according to the procedure proposed by Madden and Glandt40 and denoted, in Table 

2.1, as HSM_d if matrix-matrix interaction is HS one or LJM_d when the matrix-matrix 

interaction is LJ one. In contrast, ordered porous matrices can be generated by arranging 

matrix particle into an ordered structure. In this work, we studied only the case that 
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matrix particles are places on a simple cubic lattice and the acronyms used for such 

matrices are HSM_o (HS for fluid-matrix interaction) and LJM_o (LJ for fluid-matrix 

interaction. The third type of matrices we considered, is templated matrix. Following 

the procedure proposed by Van Tassel et al,108,136 a templated quenching an equilibrium 

binary system and removing its one component after quenching. We considered only 

templated HS matrix, denoted by THSM in Table 2.1, with the same number of 

template and matrix particles and moreover they have the same size. The fourth type of 

matrices is the hard sponge one,79,171 denoted as HSG in Table 2.1. 

The meaning of the title labels in Table 2.1 is the following, 

f-s: fluid-solid interaction (here the word “solid” is used to denote either hard wall or 

matrix particles); 

f-f: fluid-fluid interaction; 

τ: fluid matrix particle size ratio, ; 

: temperature,  ( : reference energy unit, all the well-depth 

parameters for square-well or LJ potentials, e.g., , , are defined with respect to 

this reference unit); 

Symbol: symbols used for curves plotted in different figures of the paper. 

 

The definitions of all the other reduced parameters given in Table 2.1 are given 

below as well. 

Slit width: ; 

SW( , ): square-well potential with width, , and depth, ; 

LJ( ): LJ potential with depth, ; 

: matrix density,  ( , : number of matrix particles). 

Table 2.1. Computation parameters for canonical or grand-canonical ensemble 

Monte-Carlo simulations 
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Pore f-s f-f τ T* Symbol 

Slit (width: 5) HW HS - -  

Slit (width: 5)  SW(1,-1) HS - 1   

Slit (width: 5) SW(1,1) HS - 1   

Slit (width: 3.5) HW HS - -  

Slit (width: 7) HW HS - -  

HSM_d ( ) HS HS 0.5 -   

HSM_d ( ) HS HS 0.2 -   

HSM_d ( ) SW(1,-1) HS 0.2 1   

HSM_d ( ) SW(1,1) HS 0.2 1   

HSM_d ( ) SW(1,-1) HS 0.1 1   

HSM_d ( ) SW(1,1) HS 0.1 1   

HSM_o( ) SW(1,-2) HS 0.1 1   

HSM_o ( ) SW(1,2) HS 0.1 1   

HSM_o ( ) HS HS 0.2 -   

HSM_o ( ) HS HS 0.1    

THSM ( ) HS HS 0.5 -   

THSM ( ) HS HS 0.2 -   

THSM ( ) HS HS 0.1 -   

HSG ( ) HSG HS 0.1 -    

*
0 =0.2r

*
0 =0.55r

*
0 =0.25r

*
0 =0.25r

*
0 =0.5r

*
0 =0.5r

*
0 =0.578r

*
0 =0.578r

*
0 =0.125r

*
0 =0.75r

*
0 =0.2r

*
0 =0.15r

*
0 =0.5r

*
0 1= .172r



26 

Slit (width: 5) HW LJ (1) - 3.5  

LJM_d ( ) LJ (1) LJ (1) 0.2 3.5   

LJM_d ( ) LJ (1) LJ (1) 0.1 3.5  

LJM_o ( ) LJ (1) LJ (1) 0.2 3.5   

LJM_d ( ) LJ (1.75) LJ (1) 0.2 3.5  

LJM_d ( ) LJ (0.7) LJ (1) 0.2 3.5  

LJM_d ( ) LJ (3.5) LJ (1) 0.2 3.5  

LJM_d ( ) LJ (7) LJ (1) 0.2 3.5  

LJM_d ( ) LJ (5.25) LJ (1) 0.2 3.5  

 

  

*
0 =0.25r

*
0 =0.5r

*
0 =0.5r

*
0 =0.5r

*
0 =0.5r

*
0 =0.5r

*
0 =0.5r

*
0 =0.5r
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2.3 Results and discussion 

Inspired by the exact and analytical results for some models (ideal gas in a variety 

of confining environments) and scrutinizing our simulation results for many more 

complex confined fluids with interactions, we found the following scaling relation: 

 ,  (2.13) 

 ,  (2.14) 

 ,  (2.15) 

where  ( : Boltzmann constant, T: temperature),  and  are 

respectively chemical potential of confined and bulk fluid,  the number density of 

the bulk fluid in equilibrium with the confined one ( , : volume),  and 

  are respectively free-energy per particle of confined and bulk fluid, i.e., 

,  ( : particle number of confined fluid),  

grand-potential per particle of a confined fluid,  is the compressibility factor in 

the bulk, i.e., , ( : bulk fluid pressure, note that the 

compressibility factor is simply the negative of grand-potential per particle). The 

scaling factor is given by: 

 ,  (2.16) 

where  is geometric porosity of the porous adsorbent under consideration (see 79 for 

definition),  adsorption per unit surface area, and  area of the fluid-solid 

interface of the confined fluid.  can be calculated simply from: 

 ,  (2.17) 

where . It is to note that only  is needed but not  and  

separately and  can be measured experimentally. When the second term on the right 
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hand side of eq. (2.16) is dropped out, we have immediately: 

 ;  (2.18) 

 ;  (2.19) 

 .  (2.20) 

We name this as pure-confinement scaling which holds rigorously for an ideal gas in 

hard matrices, e.g., a hard-sphere (HS), an overlapping HS (OHS) or a hard-sponge 

matrix. From scaled particle theory,61,66,79,84,193,195 we can show that the pure-

confinement scaling holds also for HS fluids confined in HS and OHS matrices when 

the size ratio of matrix to fluid particle is large.193 

 The simulation results presented below demonstrate the validity of the scaling 

relation given in eq.(2.13)–(2.16), named as confinement-adsorption scaling, for a large 

variety of confined fluids under broad conditions. To show the general and robust 

character of this scaling relation, we considered virtually all types of confined fluids, 

i.e., in various porous environments like isolated slit pores, connected ordered or 

random porous matrices including sponge-like ones and different types of fluid-fluid 

and fluid-solid interactions. Fig. 2.1(a) shows the collapse of adsorption isotherms of 

an HS fluid confined in 19 different environments to the bulk  isotherm after 

scaling according to eq. (2.18) while in Fig. 2.1(b), the results before scaling are 

presented. The robustness of the scaling relation is demonstrated by the large diversity 

of the considered confining environments, from isolated slit pores to random porous 

matrices with pure repulsive or repulsive plus attractive fluid-solid interactions. To 

establish the general validity of the scaling relation, we carried out also simulations 

with a Lennard-Jones (LJ) fluid (see results in Fig. 2.2). These results show the general 

character of the scaling relation which holds also for fluids with attractive interaction. 

( ) ( )0 , ,bulkT Tbµ f r bµ r=
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Figure 2.1. Monte-Carlo simulation results for an HS fluid confined in 19 different 

confining environments: a) Chemical potential, , as a function of scaled density 

( , : HS diameter); b) Chemical potential, , as a function of 

non scaled density . The full line is the bulk  isotherm from Carnahan-

Starling equation of state. Subscripts, b and c, denote respectively bulk and confined 

fluids. 
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Figure 2.2. Monte-Carlo simulation results for an LJ fluid confined at  in 4 

different confining environments: Chemical potential,  as function of scaled 

density,  ( , : LJ size parameter). The full line is the bulk 

 isotherm from the equation of state given in 235. 

 

The scaling relation holds not only for the adsorption isotherms but also for some 

other thermodynamic quantities, e.g., free-energy per particle and grand-potential per 

particle. Fig. 2.3 shows the collapse of  and  for different confined HS 

fluids to the corresponding bulk curves. The same scaling relation holding for chemical 

potential, free-energy per particle and grand-potential per particle implies immediately 

that  and  collapse to the corresponding bulk curves if they are expressed 

as a function of chemical potential, i.e.: 

 ;  (2.21) 

 .  (2.22) 

This invariance is remarkably illustrated in Fig. 2.4. One obvious importance of such 

invariance relations is that they allow for determining some thermodynamic functions 

of a confined fluid from the corresponding bulk ones. It is well known that the 

experimental measurement of thermodynamic properties of confined fluids is much 

more difficult or impossible currently. To our best knowledge, no direct experimental 

determination of pressure and free energy has ever been made for fluids confined in 

nanoporous materials. 
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Figure 2.3. Monte-Carlo simulation results for an HS fluid confined in 19 different 

confining environments: a) Free energy per particle, , as function of scaled density 

 ( , : HS diameter); b) Minus grand-potential per particle, 

, as a function of non scaled density . Full lines are respectively corresponding 

bulk  and  curves from Carnahan-Starling equation of state.  

 

Figure 2.4. Monte-Carlo simulation results for an HS fluid confined in 19 different 

confining environments: a) Free-energy per particle, , as function of chemical 

potential, ; b) Minus grand-potential per particle, , as function of chemical 

potential, . Full lines are respectively corresponding bulk and 

 curves from Carnahan-Starling equation of state. 
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confinement-adsorption scaling and the invariance described by eqs. (2.21) and (2.22), 

a derivation of these relations from first-principles is currently lacking. Nevertheless, 

the confinement-adsorption scaling has some intimate connection with Gibbs theory for 

interfacial systems236,237 and the morphological thermodynamics advocated by Mecke 

et al.209,210,217,220,238 In fact, Gibbs theory can be derived from the scaling relation given 

in eq. (2.13). We start from the following equivalent form of eq. (2.13), 

 .  (2.23) 

Expanding the RHS of this equation to the first order around , we obtain, 

  (2.24) 

Eq. (2.17) was used when going to the last equality of eq.(2.24). Integrating both sides 

of the above equation with respect to  leads to, 

  (2.25) 

where  is the surface tension at fluid-solid interface and  the surface area of the 

pore space boundary used for calculation the porosity, . Gibbs adsorption equation 

was used when going to the last equality in the above equation. Eq. (2.25) is nothing 

else but the free energy of the inhomogeneous system expressed as the bulk contribution 

plus the surface term following Gibbs theory, i.e., 

   (2.26) 
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Subtracting  from both sides of the above equation, we obtain also: 

   (2.27) 

where ,  denote respectively the grand potential of confined or bulk fluid. 

According to morphological thermodynamics, the grand potential of an inhomogeneous 

fluid is written as the sum of a bulk term and a surface term with the surface tension 

including three contributions (flat surface term plus two curvature terms). 28-32 Although 

not appearing explicitly in our scaling relation, the surface tension is embodied in it. 

The above demonstration reveals this unambiguously and thus evidences an intimate 

connection between our scaling relation and the general theoretical frameworks like 

Gibbs theory and morphological thermodynamics. At first sight, it may appear 

surprising that rescaling alone fluid density can account for various fluid-solid 

interaction. In fact, this interaction is taken into account through the adsorption term, 

i.e.,  [see eq.(2.16)]. The discussion just given above shows further and explicitly 

that the interface contribution to the free energy is indeed included in our scaling 

relation. 

Scaling relations have been found previously for some dynamic properties, e.g., 

entropy scaling for the diffusion coefficient of an HS fluid confined in slit pores168,239,240 

or an LJ fluid in a zeolite,241 or for the relaxation time of a glass-making liquid in slit 

pores.242 Mittal, Errington, and Truskett found that the  ( : diffusion 

coefficient; : excess entropy per particle) curves of an HS fluid confined in various 

slit pores collapse to the bulk curve when the fluid density is calculated with the total 

volume instead of that accessible to the particle centers.168 This way to obtain curve-

collapse is, in fact, a particular case of the general scaling reported in the present work. 

First, the situation considered by these authors corresponds to what we called pure-

confinement regime, i.e., without the second term of the scaling factor given in eq. 

(2.16). Our investigations show that the general scaling relation holds under wider 

conditions. Second, applying eq.(2.16) to the particular case of slit pores under the pure-
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confinement regime consists simply in calculating the fluid density by using the total 

volume as did Mittal, Errington, and Truskett.168 In a later study, Mittal showed that 

data collapse to the bulk curve can be obtained also if the diffusion coefficient is plotted 

as a function of compressibility factor.242 Our finding reported here provides the 

thermodynamics foundation for this. It is to note that in the case of an HS fluid, the 

reduced free energy per particle, , is equal to the reduced entropy per particle, 

. So, our results are perfectly consistent with those of Mittal et al.168,239,240 

Moreover, in light of our finding, we can make an immediate prediction that  

curves for confined fluids collapse also to the corresponding bulk one. 

2.4 Conclusion 

Our simulation results establish the validity of a scaling relation for several 

thermodynamic functions which connects confined and bulk fluids. The invariance with 

respect to confining environments is discovered for Helmholtz free energy and grand-

potential per particle if they are expressed as a function of chemical potential. This 

confers a particular significance to the use of chemical potential as an independent 

variable in the study of confined fluids or inhomogeneous fluids. The invariance 

described by eqs. (2.21) and (2.22) holds rigorously for an ideal gas confined in 

various pores under all the allowed thermodynamics conditions. It is really surprising 

that such invariance holds also when fluid-fluid interaction is present. Fig. 2.4b shows 

pretty good data-collapse in the density region where the compressibility factor deviates 

largely from its value for an ideal gas. It is very intriguing that confined fluids can bear 

perfectly a hallmark of an ideal gas far beyond the low-density region. Although a 

derivation of the scaling relation from first-principles is currently unavailable, we have 

revealed its intimate connection with general theoretical frameworks like Gibbs theory 

or morphological thermodynamics for inhomogeneous fluids. We believe this is why 

the scaling relation works so well under wide conditions and for a large variety of 

confining environments. The most significant message conveyed by our results is that 

fb
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the apparently disconnected behaviors of confined fluids are not so disparate but can be 

nicely organized via scaling. The scaling relation shows clearly that the porosity (space 

accessibility) and fluid-solid interaction (through the adsorption term) is of primary 

importance for determining the thermodynamics of confined fluids. The other 

characteristics, like pore-connectivity, pore-shape, pore-size distribution, etc., play a 

less significant role. As an immediate and interesting application, our finding allows for 

circumventing some experimental difficulty for direct determination of some 

thermodynamic properties of confined fluids. A challenge in perspective is to see if the 

scaling relation holds also for the fluid adsorption in flexible porous materials, e.g., 

metal-organic frameworks (MOFs) or to find the modifications needed if necessary. 
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3. Development of augmented scaled particle theory 

3.1 Introduction 

Worked out by H. Reiss, H. L. Frisch and J. L. Lebowitz in 1959,204,243 scaled 

particle theory (SPT) has become one of the most successful theories in liquid physics 

with widespread applications. Since then, there have been continuous efforts to extend 

and improve it (see, e.g. 66,77,79,84,195,243–254, which is by no means an exhaustive list of 

the very large number of papers on SPT in the literature). The original motivation for 

SPT is to derive a simple equation of state (EOS) for a bulk hard sphere (HS) fluid. 

Then, it was recognized that SPT provides not only the thermodynamic properties of an 

HS fluid in bulk but also the surface tension of an HS fluid near a spherical hard wall. 

Within the framework of SPT, this surface tension contains three terms, i.e., the surface 

tension at a flat hard wall and two contributions due to surface curvatures (mean and 

Gaussian curvatures). Investigations of more and more complex inhomogeneous 

systems, e.g., fluids adsorbed in various porous materials, arouse increasing interests in 

interfacial properties. Although early investigations go back to Tolman,233 it might 

appear surprising that our knowledge about curved interfaces is still quite limited.  

However, the accuracy of its predictions is not as high as other recent equation of 

state like Carnahan-Starling (CS).255 To obtain an equation of state from SPT, a form of 

the reversible work of inserting a large hard sphere potential or a form of the central 

function G must be presumed. Normally, the reversible work is presented by a Laurent 

series,  

 ,  (3.1) 

where  is the pressure of the hard sphere fluid,  is the coefficient and  is the 

radius of the inserted particle. In original work, N = 2 in Laurent series and three exact 

conditions of the reversible work was used to solve those three coefficients, the pressure 

( ) 3 2

0

4
3

N
i

s s i s
i

W R P R Rb b p w -

=

= +å

P iw sR



38 

is solved by using the Gibbs-Duhem equation. In 1975, Mandell and Reiss249 made N 

= 5 and used five exact conditions to obtain an improved equation of state. However, 

the accuracy of this version is still limited, particularly at high densities. Recently, Corti 

and his co-workers256 made N = 7 and used five exact conditions and two approximate 

conditions to modified SPT. However, since an integral equation contained in those 

conditions, this improved SPT does not have an analytical expression. They found that 

increasing the number of conditions does not lead to improvement of the predictive 

accuracy of the fluid properties by itself.  

Mecke and co-workers have made efforts to develop a general framework, named 

as morphological thermodynamics, to account for more complex surface 

morphology.208–210,224,257 According to Hadwiger theorem211,212 in integral geometry, the 

morphological thermodynamics postulates that the thermodynamic potential of an 

inhomogeneous system is determined only by four terms, i.e., one bulk contribution 

proportional to system’s volume and three surface contributions proportional 

respectively to surface area, mean and Gaussian curvatures of the interface. It is to be 

pointed out that in SPT, the chemical potential for creating a spherical cavity inside a 

fluid is assumed to have this form. The foundation of morphological thermodynamics 

has been questioned recently.220–224 From molecular dynamics simulations, B.B. Laird 

et al found that contributions from the terms beyond the four Hadwiger’s terms are not 

negligible.223 By examining the diagrammatic expansion of surface tension, I. Urrutia224 

and H. Hansen-Goos221 revealed also non vanishing contribution from a non Hadwiger 

term, and this expression implied that the non-Hadwiger coefficient only occurs when 

, where  is the radius of the fluid particle. This work implies that 

the form of the reversible work should be presented by using multiple Laurent series in 

different range of . It should be noted that this idea proves the basis of previous 

work249,250,256,258 about improved SPT, however, the result of non Hadwiger term from 

theoretical work does not have a good agreement with simulation result. In Corti’s 

work256, they used a set of Laurent series to describe the reversible work. The result 
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improved the predictive accuracy of both thermodynamical properties and surface 

properties, however, this improved SPT cannot offer an analytical equation of state, 

since an integral equation is contained. 

From these recent advances, it is clear now that the thermodynamic expression for 

chemical potential in the original SPT does not account for the contribution from non 

Hadwiger terms. One can raise naturally the following questions. Is it possible to 

include some non Hadwiger terms in SPT? How this can be carried out in a simple way, 

e.g., obtaining still analytic and improved results? We address these issues in the present 

work.  

3.2 Original SPT 

A brief recall of SPT is given first to introduce some notations and formulas needed 

in the following section. For the chemical potential to insert a hard scaled particle with 

a radius,  (a variable one), into a fluid of hard spheres of radius, , the following 

exact but formal result is well known,204  

   (3.2) 

where  is the thermal wavelength,  ( : Boltzmann constant, : 

temperature), is the system volume, and is the number of hard spheres. We 

consider here the case that the scaled particle has the same mass as the HS particles 

already in the system and so they have the same thermal wavelength. The scaled particle 

becomes indistinguishable from the other fluid particles only when . In eq. 

(3.2), we account for this indistinguishability by 

 ,  (3.3) 

In eq.(3.2),  is the insertion probability and the following exact expression 

holds, 
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   (3.4) 

with  

   (3.5) 

where  is the distribution function of  particles located 

respectively at  and 

 ,  (3.6) 

and 

 .  (3.7) 

A property of key importance of eq.(3.4) is that the higher order terms appear only 

successively when the radius of the scaled particle increases. For example, we have 

 ,  (3.8) 

 ,  (3.9) 

 ,  (3.10) 

where  is the packing fraction of hard spheres ( : density) and 

 is the volume of the overlapping region of two spheres having a radius of 

 and separated by a distance of , which is given by  

.  (3.11) 

Although eqs.(3.2) and (3.3) indicate a possible road for obtaining chemical potential, 

one encounters quickly several major obstacles on this road. First, eq. (3.4) is an 

0
1

( ) 1 ( )s n s
n

p R F R
¥

=

= +å

( )( )
1 2 1 2

1

1( ) ... ( , ,..., )
!

n
n

n s s n n s i
i

F R d d d d f
n V

r
=

= -Õò ò ò òr r r r r r r r r

( )
1 2( , ,..., )n

nr r r r n

1 2, ,..., nr r r

( )( ) 1s s iu
s if e b- -- = -r rr r

( )
0

s i s
s s i

s i s

R R
u

R R
ì¥ - < +ï- = í - ³ +ïî

r r
r r

r r

3

1( ) 1 s
s s

RF R R R
R

h æ ö= - + > -ç ÷
è ø

( )
2 2

2 2 (2)
2

2

0 0
( )

2 ( ) , 0
s

s
R R

s
s s

R

R R
F R

drr r r R Rp r
+

- < <ì
ï= í

W ³ï
î

ò

( )( ) 0 3 2 3 3n s sF R n R R R= ³ - < £ -

34 / 3Rh pr= /N Vr =

( )1 2W -r r

sR R+ 1 2-r r

( ) ( )
2

1 2 1 2
2 1 2 1 2

2( ) 2 , 0 2
3 2 2s s sR R R R R Rp æ - ö é - ù

W - = + - + + < - £ +ç ÷ ê ú
è ø ë û

r r r r
r r r r



41 

infinite series and we do not know how it converges for an arbitrary value of . 

Moreover, only  has an analytical expression and it is more and more difficult 

to determine the other higher order terms. For , we only know its first three 

derivatives are continuous at . 

The strategy used for deriving the original SPT is to use the above exact result in a 

limited range of , i.e., 

 .  (3.12) 

For larger values of , the following thermodynamic expression is proposed, 

 , (3.13) 

Where P is the pressure of the HS fluid and the terms involving lower powers of  

account for the surface tension around the scaled particle with  being related to the 

flat surface contribution and ,  to the respective contributions from the mean and 

Gaussian curvatures. In eq. (3.13), there is not non Hadwiger terms, i.e., terms 

proportional to  ( ). Matching eqs. (3.12) and (3.13) at , i.e., 

requiring the continuity of the function and the two first derivatives, one obtains, 

 ,  (3.14) 

 ,  (3.15) 

 .  (3.16) 

The chemical potential, , and the pressure, , can be obtained from, 

 ,  (3.17) 
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and Gibbs-Duhem equation, i.e., 

 .  (3.18) 

Finally, one obtains, 

 ,  (3.19) 

 ,  (3.20) 

for the pressure and chemical potential of a bulk HS fluid. Moreover, one obtains 

also the following dimensionless result for the surface tension of an HS fluid on a 

spherical hard wall of radius, , 

 ,  (3.21) 

where  is the SPT result for the surface tension of an HS fluid on a flat hard wall, 

 ,  (3.22) 

and ,  account for respectively the contributions to the surface tension from 

mean and Gaussian curvatures which have the following expressions within the 

framework of SPT,  

 ,  (3.23) 

 .  (3.24) 

3.3 Augmented SPT 

A. Single-point matching formulation 

A conceptually simple strategy for including the leading non Hadwiger term in an 
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SPT type theory is to add a term proportional to  into eq.(3.13). However, the 

immediate difficulty one meets here is that the divergence of this term at  makes 

the usual matching procedure impossible at this point. One possible way to circumvent 

this difficulty is to replace  by  with  being a positive constant 

to be determined later, and n can be considered form one to four. This additional term 

will change the formulation of other terms,  (i = 0, 1, 2) and P. And the influence 

will be decreased with the increasing of n. If n is equal to one, all results of  (i = 0, 

1, 2) and P will be modified. If n is equal to four, only results of P will be changed. 

Here, only the version of n = 3, which has the best prediction of non-Hadwiger term, 

will be introduced here, the detail results of other versions will be presented in 

Appendix A. The convergence factor removes the singularity at  and keeps the 

correct asymptotic form of the non Hadwiger term for large values of . So, we 

propose the following expression for the chemical potential to insert a scaled particle 

with a radius of  ( ), 

.  (3.25) 

To determine the parameters,  ( ), we following a procedure similar to 

that used in SPT, i.e., matching eq.(3.24) with eq.(3.1) at  as follows, 
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 ,  (3.30) 

 ,  (3.31) 

 ,  (3.32) 

and the third derivatives is equal to,   

   (3.33) 

where  is the compressibility. From this matching, we obtain, 

 ,  (3.34) 

 ,  (3.35) 

 ,  (3.36) 

 .  (3.37) 

From eqs. (3.25), (3.34)-(3.37), we obtain the following expression for the chemical 

potential,  

 .  (3.38) 

Substituting eq.(3.37) into eq.(3.38) leads to an equation involving chemical potential,

, and pressure, P. With the help of Gibbs-Duhem equation, one can eliminate either 

 or  and obtain a first order differential equation for P or . Because this is a 

differential equation with non-constant coefficients, it is not possible to solve it 

analytically. Nevertheless, this difficulty can be circumvented by an iterative procedure 

to obtain successively analytic results for chemical potential and pressure. One can start 
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the iteration by substituting the SPT result for the pressure into the right-hand side (RHS) 

of eqs.(3.37) and (3.38), which leads to the following results after the first iteration 

and we name it as ASPT1, 

 ,  (3.39) 

 ,  (3.40) 

where 

 ,  (3.41) 

Substituting then the result for chemical potential given in eq.(3.40) into Gibbs-Duhem 

equation and integrating the latter, we obtain the following ASPT1 result for pressure, 

 ,  (3.42) 

The surface tension near a spherical hard wall is given by 

 ,  (3.43) 

where 

 ,  (3.44) 

 ,  (3.45) 

 ,  (3.46) 

 ,  (3.47) 
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In the results given above, there remains a parameter, i.e., , to be determined. We 

will propose, in Section 3.3, a pragmatic recipe for this and discuss in more details the 

accuracy of ASPT1. 

The same idea can be used to treat the multi-components system. As presented in 

previous work,193 the excess chemical potential for inserting a scaled particle with a 

radius, , into a n-component system is 

   (3.48) 

where  is the probability of finding a spherical cavity with radius equal to 

, and the exact result for this insertion probability of a small scaled 

particle is 

 ,  (3.49) 

where  is the packing fraction of species . Then the chemical potential and its 

first three derivatives when  can be derived as following,  

   (3.50) 

   (3.51) 

   (3.52) 

   (3.53) 

where  is the compressibility, and . Then the 

expression of the chemical potential to insert a scaled particle with a radius  ( ) 

is same with the one for one-component system, i.e., eq.(3.25). To determine the 
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parameters, , the following four conditions are used,  

 ,  (3.54) 

 ,  (3.55) 

 ,  (3.56) 

 .  (3.57) 

Then the four unknown parameters,  ( ), are obtained as following, 

 , (3.58) 

 ,  (3.59) 

 ,  (3.60) 

 .  (3.61) 

By using the same iterative procedure, the chemical potential of i-component equals to  

 ,  (3.62) 

where  is the compressibility of original SPT, then by using Gibbs-Duhem 

equation, the compressibility of ASPT1 for multi-component system can be expressed 

as  

 .  (3.63) 

Here, I would like to mention that if the number of components is equal to one, all 

above results will be reduced to the corresponding ones of a one-component system, 

automatically. 
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contains an adjustable parameter, i.e., . In the followings, we will show it is also 

possible to develop an augmented scaled particle theory without any adjustable 

parameter. To circumvent the difficulty due to the divergence of the leading non 

Hadwiger term, , at , we propose to extrapolate the exact result for a small 

scaled particle, i.e., eq.(3.12), to a thermodynamics expression for a large scaled particle 

in two steps instead of one used for SPT or ASPT1. The first extrapolation is carried 

out for a scaled particle with a radius in the region of  (note 

that  is the radius of a sphere which can contain at most three hard spheres of 

radius, ). We propose the following expression for the chemical potential of the 

scaled particle with a radius in this region, 

   (3.64) 

Since the non Hadwiger term, , is not included here, there is no singularity at 

, we can make the matching of eqs. (3.2) and (3.64) without any problem, i.e., 

 ,  (3.65) 

 ,  (3.66) 

   (3.67) 

   (3.68) 

From this matching, we obtain, 
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 ,  (3.72) 

where 

 ,  (3.73) 

and  is the contact radial distribution function and the Virial equation for the 

pressure of an HS fluid was used when going to the last equality in eq.(3.72). It is to 

note that eq.(3.72) yields immediately an expression for the pressure, i.e., 

   (3.74) 

At this stage, the above equation of state can be considered as the result of a new variant 

of scaled particle theory. As we will show in Section 3 that eq.(3.74) underestimates 

the pressure and gives less accurate results that the original SPT. It is emphasized that 

we will use eq.(3.64) and the coefficients given in eqs.(3.69)-(3.71) and (3.74) as the 

results of a first extrapolation of the chemical potential to insert a larger scaled particle 

with a radius in the region of .   

For a scaled particle with a radius larger than , we use the following expression 

for its chemical potential including the leading non Hadwiger term, 

 ,  (3.75) 

The coefficients in eq.(3.75) ( , ) are determined by matching eqs. 

(3.64) and (3.75) at , i.e., 
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   (3.77) 

   (3.78) 

   (3.79) 

We obtain then, 

   (3.80) 

 ,  (3.81) 

   (3.82) 

 .  (3.83) 

Now, we find readily the following result for chemical potential,  

 .  (3.84) 

Taking derivative with respect to density on both sides of eq.(3.84) and using Gibbs-

Duhem equation, i.e., eq.(3.18), allow for obtaining a first order differential equation 

either for the chemical potential or for the pressure. Again, the resulting differential 

equation does not have constant coefficients and this prevents us from solving it 

analytically. By adopting the same iterative procedure as for ASPT1 [i.e., using the SPT 

value for pressure on the RHS of eq.(3.84), we obtain the following results (named as 

ASPT2) for chemical potential and pressure after the first iteration, 

 ,  (3.85) 
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 ,  (3.86) 

where 

 .  (3.87) 

From eq.(3.75), we obtain the following ASPT2 result for the surface tension 

(dimensionless one) of an HS fluid against a spherical hard wall, 

 ,  (3.88) 

where 

 ,  (3.89) 

 ,  (3.90) 

 ,  (3.91) 

 .  (3.92) 

The same idea can be used to treat the multi-component system. The expression of 

chemical potential for a multi-component system can be expressed as following, 
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 ,  (3.93) 

where  represents the radius of i-component fluid particle. One 

should be noted that  should present, in principle, the radius of the smallest fluid 

particle. However, this restriction is not used in this paper. Eqs. (3.65)-(3.68) and (3.76)

-(3.79) are used to solve the parameters, . Then  is obtained as following,  

,  (3.94) 

 ,  (3.95) 

   (3.96) 

   (3.97) 

where . Then, the excess chemical potential equals to  

 .  (3.98) 

Same with the APST1 for multi-component system, the above results also can be 

reduced to the corresponding ones of a one-component system. Also, same with the 

original SPT, the above results can be obtained by considering a simple mixing rule 

from the one-component system.193  
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3.4 Results and discussion 

In this section, we are going to assess the accuracy of our two ASPT. Our new 

results will be compared with molecular simulation and previous works, i.e. SPT7M 
256, 

original SPT204,243, CS-SPT258, CS-SPTM 
246, and MFMT259. One should note SPT7M 

does not have an analytical expression, we only compare with SPT7M in chemical 

potential and surface tension. MFMT, CS-SPT, and CS-SPTM are obtained by using 

Carnahan-Starling equation of state as an input which means the expressions of pressure 

and chemical potential from those two versions are same with Carnahan-Starling 

equation of state. 

A. Determination of the adjustable parameter in ASPT1 

Before ASPT1 can be used in practice, we still need to determine parameter, . 

An appealing recipe for this is to adjust  in such a way that the pressure given by 

eq.(3.41) is as close as that of Carnahan-Starling equation, which has the following 

expression, 

   (3.99) 

Since  is different from  only at high fluid densities, requiring 

 at a high fluid density (with  being chosen here) should allow for 

obtaining accurate values of pressure from ASPT1. This leads to the following equation 

for determining , 

 .  (3.100) 

From eqs.(3.40) and (3.41), we see that any positive root of eq.(3.100) smaller than 

 can decrease the pressure given by SPT so that  becomes possibly close to 

. Solving eq.(3.100), we find only one positive root in the considered region, 

. Alternatively, if we require  at , we obtain the 
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following equation for , 

   (3.101) 

From this equation, we find . The two values for  give essentially the 

same results for pressure (see Fig. 3.1) and in the following discussions, we will use 

 for ASPT1. 

 

Figure 3.1. Comparison of pressure of a hard sphere fluid. The CS results are presented 

by black squares, the red line is ASPT1 with , and the blue line is ASPT1 

with .  

B. Pressure 

Fig. 3.2 shows the comparison of the pressure, , obtained by ASPT1 and 

ASPT2 with the results of molecular simulation and previous work, i.e. SPT7M, CS, and 

SPT3. Our results are much closer to simulation values than original SPT. In fact, 

ASPT1 and ASPT2 are nearly indistinguishable from the simulation and Carnahan-

Starling equation of state on the scale of the plot. Unquestionably, the additional term, 

d

( ) ( )

3
3 256 3 439 123 1251 1 ln5 165ln 2

576 3ln 2 1 8 2
Re

R R
dd d -

é ù -æ ö æ ö- - = + -ê úç ÷ ç ÷-è ø è øê úë û

0.181952Rd = d

0.234499Rd =

0.234499Rd =

0.181952Rd =

Pb r



55 

, significantly improve the accuracy of pressure. This can be considered as 

evidence of morphological thermodynamic is only a good approximation. Fig. 3.2 also 

shows ASPT2 slightly overestimated the pressure at high packing fraction. 

 

Figure 3.2. Comparison of pressure of a hard sphere fluid. The simulation results are 

presented by black squares, the red circle is SPT7M, the green line CS, the blue line 

SPT3, the black line ASPT1, the red line ASPT2. 

 

In Table 3.1 we compare the first 10 Virial coefficients obtained from ASPT1 and 

ASPT2 with the prediction from original SPT, Carnahan-Starling equation of state, and 

the exact values. One unanticipated finding is that the prediction of Virial coefficients 

from ASPT2 is more accurate than all other versions, while ASPT2 was found to slightly 

overestimate the pressure in Fig. 3.1. From Table 3.1, it shows that all equations of 

state can offer exact first three Virial coefficients, all equations of state overestimate the 

Virial coefficients but the ASPT1 underestimate it. The choice of the parameter, , is 

the reason, and if we decrease , the prediction will be closer to the exact ones, 

1 sR

d

d
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however, the prediction of pressure and surface tension becomes worse. Carnahan-

Starling equation of state still has the best accuracy among those equations of state. The 

prediction from ASPT and ASPT2 are better than original SPT, especially ASPT2 

almost has the same accuracy with Carnahan-Starling equation of state. One should 

note that all SPT results always overestimate or underestimate the Virial coefficients, 

but the prediction of Carnahan-Starling equation of state underestimates the fourth and 

fifth Virial coefficients and overestimates the others.  

 

Table 3.1. Virial coefficients for hard sphere fluid 

n Exact SPT CS ASPT1 ASPT2 

2 4 4 4 4 4 

3 10 10 10 10 10 

4 18.3647 19 18 18.6526 18.5595 

5 28.2245(10) 31 28 29.3325 29.1675 

6 39.81545(15) 46 40 41.368 41.5656 

7 53.3418(15) 64 54 54.0742 55.631 

8 68.534(88) 85 70 66.7614 71.3043 

9 85.805(58) 109 88 78.7375 88.5556 

10 105.8(4) 136 108 89.3093 107.369 

 

C. Surface tension 

Now, we proceed to assess the accuracy of ASPT1 and ASPT2. SPT does not only 

provide the expression of some thermodynamic properties but also provides the 

expressions of some surface properties, such as surface tension and Tolman length. Fig. 

3.2 plots the planar surface tension of hard sphere fluid obtained from CS-SPT, CS-

SPTM, original SPT, MFMT, molecular simulation, and two new ASPT. From Fig. 3.2, 

it shows all versions of SPT have the same trend with molecular simulation but the CS-
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SPT. CS-SPT appears a different trend with molecular simulation results in the high 

packing fraction. The original SPT overestimates the surface tension. Except CS-SPT 

and original SPT, all equations of state are nearly indistinguishable from the simulation 

results on the scale of the plot.  

 

Fig. 3.2. Comparison of surface tension of a hard sphere fluid. The simulation results 

are presented by black squares, the green line MFMT, the blue line SPT, the black line 

SPT5, the red line ASPT2, the yellow line CS-SPT, the magenta line CS-SPTM 

 

In most recent work, Urrutia224 reported the first four exact Virial coefficients of 

planar surface tension as following,  

   (3.102) 

Table 3.2 shows the comparison of the Virial coefficients obtained from MFMT, 

CS-SPT, CS-SPTM, original SPT, ASPT1, and ASPT2 with exact values. Table 3.2 

shows that all equations of state can offer the exact first two Virial coefficients of planar 

surface. For fourth Virial coefficient, the result from CS-SPTM is slightly better than 
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any other equations of state result. ASPT1 and ASPT2 improve the prediction of fourth 

Virial coefficient compare with original SPT. Although CS-SPT does not have the same 

trend with molecular simulation result in high packing fraction, the first four virial 

coefficients are more accurate than original SPT, which means in the high packing 

fraction, the planar surface tension is dominant under the higher Virial coefficients.  

Table 3.2: Virial coefficients of planar surface tension 

n Exact CS-SPT CS-SPTM SPT MFMT ASPT1 ASPT2 

2 3 3 3 3 3 3 3 

3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

4 10.842 11.667 10.854 12 10.333 11.531 11.257 

 

When a hard sphere fluid in contact with a curved surface, the surface tension 

should be written as following, 

 ,  (3.103) 

where  is the radius of a spherical wall, ,  is the Tolman 

length and  is the bending rigidity. Since the prediction of  and  from 

ASPT1 are identical with original SPT, in the following discussion, we will only 

consider original SPT. Fig. 3.3 plots the prediction of  from MFMT, original SPT, 

CS-SPT, CS-SPTM, ASPT2, and molecular simulation results. Fig. 3.3 shows that all 

equations of state have a good agreement with simulation results but the CS-SPT. 

Compare CS-SPT and CS-SPTM, one can find that using two Laurent series to describe 

the reversible work will significantly improve the predictive accuracy of surface 

properties. Compare with original SPT, MFMT, and ASPT2 slightly improve the 

prediction of  . One should be noted that CS-SPTM has a different trend with the 

other equation of state. In moderate packing fraction, the prediction of CS-SPTM is 
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lower than simulation results. In high packing fraction, the prediction of CS-SPTM is 

higher than the results from other equation of state. Because lack of simulation result, 

we do not know which result is correct in high packing fraction, it means that the future 

study is needed.  

 

Figure 3.3. Comparison of  of a hard sphere fluid. The simulation results are 

presented by black squares, the green line MFMT, the blue line SPT, the red line ASPT2, 

the yellow line CS-SPT, the magenta line CS-SPTM 

 

The first four Virial coefficients of  was provided by Urrutia224, the expression 

is given as following,  

 .  (3.104) 

Table 3.3 shows that all equation of state can provide exact first three Virial coefficients 

of . The prediction of the fourth Virial coefficient from CS-SPT has a different sign 
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with the exact result, this can explain why the prediction of  from CS-SPT is bad. 

The prediction from CS-SPTM is also away from the exact one, but much better than 

CS-SPT. The prediction from ASPT2 is closer to the exact value than original SPT. One 

unanticipated finding was that the prediction from MFMT is more accurate, while the 

prediction of  is not good. 

Table 3.3: Virial coefficients of   

n Exact CS-SPT CS-SPTM SPT MFMT ASPT2 

2 3 3 3 3 3 3 

3 3 3 3 3 3 3 

4 3.477 -3.333 0.903 3 3.333 3.172 

In the final part of this section,  are considered. Since the prediction of   

from CS-SPT and CS-SPT5M are terrible, we will not compare them here. Fig. 3.4 plots 

the prediction of  from MFMT, ASPT2, and molecular simulation. As shown in Fig. 

3.4, except for ASPT2, all equation of state has the same accuracy in . The 

prediction from ASPT2 slightly improves the original SPT’s result. As previous part, 

here, the Virial coefficients of  will be considered. Urrutia224 also reported the first 

four Virial coefficients as following, 

 .  (3.105) 

Numerical results of Virial coefficients are shown in Table 3.4. It shows that all 

equations of state can provide exact first three Virial coefficients, and all equations of 

state overestimate the fourth virial coefficients. Hence, the future study in  is 

necessary. 

 

Table 3.4: Virial coefficients of   
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n Exact SPT MFMT ASPT2 

2 1 1 1 1 

3 0.5 0.5 0.5 0.5 

4 0.03872 0.3333 0.3333 0.31556 

 

 

 

Figure 3.4. Comparison of  of a hard sphere fluid. The simulation results are 

presented by black squares, the green line MFMT, the blue line original SPT, the red 

line ASPT2. 

 

Above discussion show that we cannot say an equation of state has a good accuracy 

just because the prediction of Virial coefficients has a great agreement with the exact 

value. When an equation of state has good accuracy, it means the prediction of Virial 

coefficients also has good accuracy. However, if the equation of state can accurately 

provide the first a few of virial coefficients, it does not mean this equation of state has 

2g -!
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good accuracy.  

D. Non-Hadwiger coefficient 

As said at the beginning of this paper, we want to build a simple analytical equation 

of state that can provide an acceptable prediction of Non-Hadwiger coefficient. In this 

part, the non-Hadwiger obtained from different equation of state are considered. 

Hansen-Goos221 has reported a very accurate expression of Non-Hadwiger 

coefficient, however, his theory, SFMT, need planar surface tension and Tolman length 

as input. Fig. 3.5 shows the prediction of non-Hadwiger coefficient from CS-SPT, CS-

SPTM, ASPT1, ASPT2, SFMT, and molecular simulation. As it shows, the prediction 

from SFMT has the best accuracy. Except for SFMT, only ASPT1’s prediction has the 

same magnitude with simulation result. ASPT2 significantly underestimates the Non-

Hadwiger coefficient. Although the prediction from ASPT1 and ASPT2 have the same 

shape with simulation, the value of non-Hadwiger coefficient is larger than simulation 

results at least two orders of magnitude. 
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Figure 3.5. Comparison of non-Hadwiger coefficient of a hard sphere fluid. The 

simulation results are presented by black squares, the blue line SFMT, the red line 

ASPT2, the black line ASPT1, the yellow line CS-SPT, the magenta line CS-SPTM 

 

E. Multi-component system 

Now, the accuracy of the two ASPT for the multi-component system is considered. 

The comparison of the prediction of excess chemical potential from our two new ASPT, 

original SPT, and BMCSL equation of state260 are shown in Fig. 3.6. It shows that 

ASPT1 and ASPT2 strongly improve the prediction from original SPT for both big 

particle component and small particle component, and the results are nearly 

indistinguishable from the BMCSL equation of state on the scale of the plot. In original 

SPT, if the number of components is reduced to one, all results will reduce to the 

corresponding ones of a one-component system. It can be readily checked that ASPT1 

and ASPT2 also have this property. Also, ASPT1 and ASPT2 can be obtained by using 

some simple mixing rules, just like showed in 193. All results above show our two new 
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methods are reasonable and consistent. 

 

Figure 3.6. Comparison of the excess chemical potential of a binary mixture system. 

The BMSL results are presented by the green line, the black line is ASPT1, the red line 

ASPT2, and the blue line original SPT.  

3.5 Concluding remarks 

In the present work, we found the original expression of the chemical potential is 

not completed. Based on previous works on SPT and morphological thermodynamic, 

we reported two new ways to present the chemical potential. The first one contains an 

arbitrary parameter. The second one uses two Laurent series to describe the chemical 

potential. Both of them do not only significantly improve the accuracy of 

thermodynamic properties, i.e. pressure and chemical potential, but also improve the 

accuracy of surface properties, i.e. surface tension and Tolman length. Also, the same 

idea can be used to treat the multi-components hard sphere fluids system, and the 

improvement is significant. 

The success of ASPT1 and ASPT2 indicates that the morphological 

thermodynamic is not an exact theory, it is only a very good approximation. However, 

ASPT1 can only provide an acceptable result of Non-Hadwiger coefficient, which 
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means we still need future study in this term. Since the original expression of the 

reversible work is not completed and when we add an additional term,  , the 

accuracy has significantly improved. It is natural to ask a question if the more terms, 

 and , are added, the higher accuracy of SPT will be obtained? 

Unfortunately, since lack of the understanding of reversible work of inserting a 

scaled particle, eq.(3.4), we do not have enough conditions to build a new SPT that 

contains more term. 

1 R

21 R 31 R
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4. A general equation of state for confined fluid: 

morphological thermodynamics 

4.1 Introduction 

In theoretical studies, for describing the porous material, many models are 

introduced, i.e., hard sphere matrix model, overlapping hard sphere matrix, hard sponge 

matrix, and Slit pore, as shown in Fig. 4.1. The models of disordered porous medium 

are always built with the help of some fixed particles. Although all three models for 

random porous medium introduced above has analytical equation of state obtained from 

SPT, the derivation of all those equations of state is very complex and depends on the 

model of porous medium. So, it still remains a great challenge to build a general 

framework to understand the behavior of fluid confined in different porous medium. 

Although all three models for random porous medium introduced above has analytical 

equation of state obtained from SPT, the derivation of all those equations of state is very 

complex and depends on the model of porous medium. So, it still remains a great 

challenge to build a general framework to understand the behavior of fluid confined in 

different porous medium. 

In recent, Mecke and his co-workers proposed a general framework, named as 

morphological thermodynamics.207,209,210,234 This framework gives us some hope to 

build a general theory for different confined fluid. This method is from a beautiful 

mathematics theorem, Hadwiger’s volume theorem.211,212 It is not only a beautiful 

mathematics theorem but also offers a very powerful way to study confined fluid.  
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terms may be equal to zero. In fact, their studies considered a fluid near spherical or 

cylindrical particle, it means that the interface between fluid and the obstacle particle is 

concave from fluid view, while the Hadwiger's volume theorem is only valid in convex 

interface. 

The remaining Chapter is organized as follows. A brief introduction of 

morphological thermodynamics and a general equation of state for different confined 

fluid will be presented in the next section. Then the accuracy of the general equation of 

state in different confinement systems will be assessed in Section 4.3. 

4.2 Theory 

A. A brief introduction of Morphological thermodynamics 

Hadwiger's volume theorem is one of the most important and beautiful theorems in 

geometric convexity.211,212 It says if there exists a mapping ( ) from a convex 

set ( ) onto a real number ( ), and this mapping satisfies three restrictions: (I) 

Continuity. (II) Motion invariance. (III) Additivity. Then the mapping function can be 

rewritten as following:  

 ,  (4.1) 

 is constant. For three dimensional system  is volume,  is the surface area, 

 is the integrated mean curvature, and  is the Euler characteristic. Imitate this 

theorem, a similar expression of the grand potential of a confined fluid, , can be 

obtained, 

 ,  (4.2) 

where  is the system volume,  is the geometric porosity79,  is the surface 

area of the matrix,  and  are the integrated mean curvature and the Euler 

characteristic of the matrix component, respectively. , ,  and  are the 
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of the coordinate.  is the radius of the matrix particle. In this work,  is used to 

denote matrix component,  is the well depth and  is the width of the well. Then 

the grand partition function is 

 ,  (4.4) 

where  is the activity,  is the chemical potential. The grand potential 

is equal to 

   (4.5) 

The integration in the equation above, , can be derived as  

   (4.6) 

The four geometric properties of this matrix particle are 

 ,  (4.7) 

 ,  (4.8) 

 ,  (4.9) 

 .  (4.10) 

Then the grand potential can be rearranged as following, 

 ,  (4.11) 

where 

 ,  (4.12) 

 ,  (4.13) 

 .  (4.14) 

Hence, we find the expression of grand potential for an ideal gas fluid around a spherical 

matrix particle satisfies morphological thermodynamics expression, and the four 

coefficients are obtained. In different situations, such as ideal gas fluid confined in a 
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spherical container, ideal gas fluid around or confined in a cylinder, the same results 

can be also obtained. Since the details of the calculation are similar to this example, we 

will not show them here. We also found in some cases this expression is not established, 

such as, when fluid around two big spheres and there is a region that fluid suffered 

interaction from both two big spheres. (see Appendix B). It should be mentioned that, 

 is equal to the pressure of the equilibrated bulk system. Maybe those four 

coefficients can be obtained from the equilibrated bulk system, instead of the bulk 

system has the same fluid density as in Chapter 2. One should note that, normally, the 

surface area of the matrix particle has two different definitions220, the first is equal to 

 which called solid surface area, the second is  which called 

reference surface area, where  is the radius of fluid particle. When the fluid is ideal 

gas fluid, those two definitions are equivalent. In the following work, we will use the 

first definition. Hadwiger's volume theorem is about a mapping from a convex set to a 

number, however, in above example, the interface between fluid and matrix particle is 

concave from the fluid's view, and in Hansen-Goos' work221, he also considered a fluid 

around a spherical particle. This situation does not satisfy the Hadwiger's volume 

theorem, so we also calculated the fluid confined in a spherical container, we found the 

non-Hadwiger term still exists. We have to say the morphological thermodynamic is 

only a very accurate approximation. 

B. A new general equation of state 

In this section, a new general equation of state for a hard sphere fluid confined in 

different porous medium will be introduced. In morphological thermodynamics 

expression, the grand potential of a confined fluid is equal to 

 ,  (4.15) 

here, the independent variables are chemical potential, , and temperature, T, which 

means we assume those four coefficients can be obtained from the equilibrated bulk 

system. Compare the grand potential, we are more interested in adsorption amount, with 
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the help of thermodynamic relation, 

   (4.16) 

the relation between chemical potential and confined fluid density, , is 

 .  (4.17) 

Since the relation between the chemical potential and fluid density for bulk system is 

already known. With the help of chain rule, the equation above can be rearranged as 

   (4.18) 

The well-known Gibbs-Duhem relation is 

 .  (4.19) 

The relation between confined fluid density and bulk fluid density is equal to 

 .  (4.20) 

The relation between those three coefficients and bulk fluid density can be obtained 

from scaled particle theory193. 

   (4.21) 

 ,  (4.22) 

 ,  (4.23) 

   (4.24) 
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thermal wavelength. 

Now, we obtained a general relation between confined fluid density and 

equilibrated bulk fluid density. Combine eq. (4.20) to eq. (4.24), the relation between 

confined fluid density, , and chemical potential, , can be obtained. This 

derivation is irrelevant with the model of porous medium, so we can use this model to 

study different confined fluid. It should be mentioned that scaled particle theory can 

also offer an accurate equation of state for different kinds of confined fluid like showed 

in previous works79. The derivation of our new general equation of state is easier to 

scaled particle theory, while the final expression is more complex than scaled particle 

theory. 

4.3 Results and discussion 

In this section, we are going to assess the accuracy of our new general equation of state 

in the different porous medium, i.e., Madden-Glandt model, sponge-like models, slit 

pore model. Our new results will be compared with molecular simulation and scaled 

particle theory79. We will start from the disordered porous medium. 

A. Madden Glandt disorder porous medium 

Here, we consider two kinds of Madden-Glandt models, the hard sphere one (HS) which 

the interaction between matrix particles are hard sphere potential and overlapping hard 

sphere one (OHS) which has no interaction between matrix particles. For the HS matrix, 

the expressions for four geometric properties are 

   (4.25) 

   (4.26) 

 ,  (4.27) 

 ,  (4.28) 

where  is the density of matrix component. For the overlapping HS matrix, the 
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expression of four geometric properties are 

 ,  (4.29) 

   (4.30) 

   (4.31) 

   (4.32) 

Fig. 4.3 (a)-(c) plots the prediction of chemical potential for an HS matrix from our new 

equation of state, SPT2b1, and molecular simulation results in different matrix 

properties. Both our equation of state and SPT2b1 have a good agreement with 

simulation results in different matrix radius and different matrix density. Fig. 4.3 (d)-

(e) shows the results of our new equation of state, SPT2b1, and molecular simulation 

results for an OHS matrix. Same with the results for HS matrix, our new equation of 

state and SPT2b1 are nearly indistinguishable from the simulation results on the scale 

of the plot. Unquestionable, the morphological thermodynamic is a very accurate 

approximation. 
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Figure 4.3. Comparison of the new general equation of state with SPT2b1 and 

simulation, the simulation results are presented by black square, the red dash lines are 

new general EOS, the blue solid lines are SPT2b1: (1) HS fluid in HS matrices (left 

panel); (2) HS fluid in OHS matrices (right panel). 

 

B. Hard sponge disordered porous medium 

In this section, our new equation of state will be applied to describe hard sphere 

fluid confined in a hard sponge matrix. This model can be considered as an opposite 

system of the OHS matrix. Not like OHS matrix, in this model, the material particles 

are considered as cavity. It should be noted that the interface between the matrix and 
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fluid is a convex surface in this model, while in OHS matrix, it is a concave surface. 

The four geometric properties of hard sponge model are 

 ,  (4.33) 

 ,  (4.34) 

 ,  (4.35) 

   (4.36) 

Fig. 4.4 shows the prediction of chemical potential for a hard sponge matrix in different 

porosity. As in the previous section, both our new equation of state and SPT2b1 have a 

great agreement with simulation results. In should be noted that when porosity is small, 

our new equation of state slightly underestimated the chemical potential in the high 

fluid density region. Compare Fig. 4.3 and Fig. 4.4, one can find that the pore shape is 

not important. 
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Figure 4.4. Comparison of the new general equation of state with SPT2b1 and 

simulation of HS fluid in hard sponge matrices, the simulation results are presented by 

black squares, red dash lines are new general EOS, and blue solid lines are SPT2b1. 
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C. Ordered porous medium 

In the previous section, we considered our new equation of state for different kinds 

of disordered porous medium. In this section, the ordered porous medium will be 

considered. Here, we use a cubic lattice model to describe the ordered porous medium, 

the matrix particles placed in the lattice points. The four geometric properties are same 

with HS matrix. Fig. 4.5 shows the comparison of the chemical potential, , obtained 

by our new equation of state with the results of molecular simulation. Our results are 

very close to the simulation values even in a high matrix density. The accuracy of our 

new equation of state will decrease while the increasing matrix density and the 

decreasing radius of the matrix particle. In high fluid density, our new equation of state 

is overestimating the chemical potential. Compare this result with the HS matrix one, 

we found when matrix particle is larger than the fluid particle, the disorder effect is not 

important. 

 
Figure 4.5. Comparison of the new general equation of state with simulation of HS 

fluid in the ordered porous medium, the simulation results are presented by black 

squares, the red dash lines are new general EOS. 

µ
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D. Slit pore system 

All models we considered in the previous section have a curved surface, a simple porous 

medium model, slit pore, which has a planar interface between fluid and porous medium, 

will be considered this section. In this model, the porosity, , is equal to one, and the 

surface area per unit volume equals 

 ,  (4.37) 

where  is the distance between two solid surfaces. Two curvatures,  and , are 

equal to zero. Since this model is simpler than previous models, we consider if we can 

use a simpler equation to describe this system. Here, the fluid density and temperature 

are considered as independent variables. Then from morphological thermodynamics, 

the free energy, , of a hard sphere fluid confined in a slit pore can be given by: 

 ,  (4.38) 

where  is the free energy of bulk system which has the same fluid density with 

confined system, and  is the surface tension of a hard sphere fluid near a planar 

wall, since there are two planar walls in this system, the surface area of solid-fluid 

interface is .  and  can be offered by SPT: 

 ,  (4.39) 

   (4.40) 

where  is the packing fraction, and  is the radius of fluid particle. Then the 

chemical potential of fluid confined in slit pore can be obtained as following, 

   (4.41) 

where  is the distance between two planar walls. 
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   (4.42) 

   (4.43) 

where  is the diameter of fluid particle. Here, we obtain an equation of state for a 

hard sphere fluid confined in a hard wall system. However, in this system, we are more 

interested in a fluid confined in a square well wall system. To determine this equation 

of state, we use first order perturbation theory to calculate the equation of state for this 

system. The interaction between fluid and wall, , is 

 ,  (4.44) 

where  is the width of fluid-wall potential,  is the depth of fluid-well potential. 

Here, the reference system is the system that  which is the hard wall system. 

Hence, the interaction between fluid and wall can be divided into two parts, the 

reference part, and the perturbation part, 

 ,  (4.45) 

where 

 ,  (4.46) 

Then the free energy is 

 ,  (4.47) 

where  is the free energy of a hard sphere fluid confined in a hard wall system, 

, and  is the ensemble average of reference system, which 

means the perturbation part will not change the fluid density profile. The ensemble 

average can be rewritten as 
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 .  (4.48) 

Now, once we know the density profile of the reference system, the free energy can 

be obtained. We assume the excess adsorption is adsorbed in the region where the 

interaction between solid surface and fluid is equation to , and in the remaining 

region, the fluid density is equal to the fluid density of the equilibrated bulk system, 

. The density distribution is  

   (4.49) 

For the reference system, the bulk density can be solved from the Gibbs adsorption 

equation, 

 ,  (4.50) 

where  is the excess adsorption amount per unit area at the interface. It can be 

obtained as 

 ,  (4.51) 

 ,  (4.52) 

 ,  (4.53) 

where  is the average density. Then the ensemble average of  is equal to 

 .  (4.54) 

Since, 

 .  (4.55) 
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 ,  (4.56) 

 .  (4.57) 

Hence, the excess adsorption amount is 

   (4.58) 

The dimensionless excess adsorption amount is  

 .  (4.59) 

Then the free energy of this system can be obtained, 

 ,  (4.60) 

and the chemical potential is 

 .  (4.61) 

From the equation above, one can find that the first term is the bulk chemical potential, 

the second term denotes the interaction between a hard sphere fluid and a hard wall, 

and the last term denotes the interaction between a hard sphere fluid and the square well 

interaction. To verify this eq. (4.61), the molecular simulation for a hard sphere fluid 

confined in slit pore were performed. In Fig. 4.6, one can find eq. (4.61) has great 

accuracy in different conditions, even in a high fluid density. To our best knowledge, 

for this moment the results presented in our study provide the most accurate theoretical 

description of the thermodynamic properties of a hard sphere fluid confined in a slit 

pore. 

Fig. 4.6 shows the comparison of the chemical potential, , obtained by our new 

equation of state with the results of molecular simulation. Fig. 4.6 a) shows the results 

of a hard sphere fluid confined in a hard wall system, it shows the results are nearly 
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indistinguishable from the molecular simulation results on the scale of the plot in 

different pore width. Fig. 6 b) and c) shows the results of a hard sphere confined in a 

square well pore with different width of potential and different depth of potential. Those 

results indicate our new equation of state works well for fluid confined in slit pore 

system with different parameters. Compare these results and the results for previous 

models, one should find that the pore size distribution and pore connectivity are not 

very important. 
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4.4 Concluding remarks 

In the present section, we introduced the morphological thermodynamic with the 

help of ideal gas fluid, we present even for an ideal gas fluid, in some cases, the 

morphological thermodynamic still does not hold. A new general equation of state is 

obtained from morphological thermodynamic. To our best knowledge, for now, this is 

the first equation of state for confined fluid that is irrelevant with the model of porous 

medium. In a large range, our new equation of state works well. 

Since this new equation of state provides an accurate theoretical description of the 

thermodynamic properties of a hard sphere fluid confined in the different porous 

medium. Our new equation of state indicates that porosity and other geometric 

properties play primary roles for the thermodynamic of confined fluid. All the other 

parameters, i.e., pore shape, pore connectivity, pore size distribution, disorder effect, 

are much less important. 
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5. Quench effect on the chemical potential 

5.1 Introduction 

In 1988, Madden and Glandt proposed an interesting model for random porous 

material and developed a statistical-mechanics for investigating the structure and 

thermodynamics of fluids confined in random porous media.40 In this model, the 

disordered porous material is mimicked by a random matrix that can be generated from 

quenching a fluid system at its equilibrium state. Thus, the quenched “fluid” particles 

constitute the matrix (thereafter called matrix particles), and the voids among them are 

pores. This simple model successfully characterizes the main features of disordered 

porous materials, e.g., pore connectivity, pore size distribution, etc., and thus have been 

widely applied in both molecular simulations and theoretical studies of fluid confined 

in random porous media. Since the fluid species are mobile within the matrix 

configuration, this model is also called as quench-annealed mixture with quenched 

species referring to the matrix and annealed species referring to the confined fluid. It is 

to point out also that the way for constructing such a porous matrix mimics the spinodal-

decomposition procedure for fabricating some porous materials experimentally.   

Although many investigations have been devoted to study fluids confined in 

random porous media since Madden-Glandt model was proposed, no precise measure 

has ever been proposed to describe quantitatively the quench effect for the adsorption 

of a fluid in a random porous material. We propose to measure such an effect by the 

difference of free energy to insert a fluid particle into a quench-annealed system or into 

the corresponding equilibrium binary mixture. It can appear perplexing that there are 

still quite some fundamental questions related to quench effect that we cannot answer 

straightforwardly. Without attempting to be exhaustive, we can list the following ones:  

1) What is the consequence of quenching? 

2) Does a quench-annealed system or its corresponding equilibrium binary 
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mixture appear more crowded? Crowdedness means here more difficult to 

insert another fluid particle, i.e., with high chemical potential. 

3) When the quench effect becomes significant? 

4) In the case of a large quench effect, which are the dominant factors contributing 

to the considerable increase of chemical potential? 

In this chapter, we will address these issues by studying some simple model systems. 

In the next section, we present first the considered model and the methods we used for 

carrying out our investigation. In Section 5.3, the obtained results are presented, 

analyzed and discussed. The insights gained from this study are summarized in the last 

section and we point out also the implications useful for designing new functionalized 

porous materials, e.g., for high-capacity gas adsorbents, etc. 

5.2 Model and methods 

A. Model 

In the present work, we consider a hard sphere (HS) fluid (denoted as species 1) 

of  particles confined in a quenched HS matrix (denoted as species 0) of  

particles. The interactions between the particles of the different species are described 

by, 

 ,  (5.1) 

 ,  (5.2) 

 ,  (5.3) 

where  and  are respectively the radius of fluid and matrix particles,  and  

are respectively the position vectors of the ith and the jth fluid particles while  and 

 are those of matrix particles. 

1N 0N

1

11

1

2
( )

0 2

i j

i j

i j

R
u

R

ì¥ - <ï- = í
- ³ïî

r r
r r

r r

1 0

10

1 0

( )
0

i j

i j

i j

R R
u

R R

ì¥ - < +ï- = í
- ³ +ïî

r q
r q

r q

0

00

0

2
( )

0 2

i j

i j

i j

R
u

R

ì¥ - <ï- = í
- ³ïî

q q
q q

q q

1R 0R ir jr

iq

jq



89 

B. Theory 

The fact that the matrix particles in a quench-annealed system are immobile has 

some consequences on both structural and thermodynamic properties. In the present 

work, we focus on the quench effect on thermodynamics only and examine in particular 

such effect on the chemical potential in order to learn how quenching affects the 

insertion of a fluid particle. The difference between the chemical potential for inserting 

a fluid particle into a quench-annealed system and that for inserting the same particle 

into the corresponding equilibrium binary mixture appears to be a natural measure for 

quantifying the quench effect, i.e., 

 .  (5.4) 

where  (kB: Boltzmann constant; T: temperature). In the followings, we 

call  quench chemical potential. Now, we point out first that the measure defined 

in eq.(5.4) has an exact diagrammatic expansion. Following the work of Madden and 

Glandt40 and that of Morita and Hiroike262–264, one obtains readily the following 

expansions, 
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 , (5.6) 

where  and  are the density of species 1 and 0 respectively,  is the thermal 

wave-length of fluid particles and the various Mayer functions are defined as, 

 ,  (5.7) 

 ,  (5.8) 

 .  (5.9) 

Eqs.(5.5) and (5.6) yield straightforwardly, 

 ,  (5.10) 

 

where circles denote fluid points and squares denote matrix points. Due to its 

diagrammatic characteristics described in eq.(5.10), we call sometimes  

shielding chemical potential as well (an interchangeable name with quench chemical 

potential). We will discuss in the next section how some interesting information about 

quench effect can be deduced from the formal results presented here. 

C. Application of scaled particle theory 

It is also well-known that even for simple models like HS, it is not possible to 

calculate exactly and analytically the sum of graphs like that in eq.(5.10). Nevertheless, 

various approaches, some being even analytic, exist for calculating chemical potential 

in both an equilibrium binary system and a quench-annealed system. In particular, 

scaled particle theory (SPT) is a well-known and successful approach which allows for 
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calculating analytically the thermodynamic properties of various bulk HS systems and 

has been extended recently to quench-annealed systems as well. In this Chapter, we will 

apply SPT to determine the chemical potential of an HS fluid in an HS matrix and that 

of the corresponding binary HS mixture in order to assess quench effect. Previous 

investigations have shown that the variant called SPT2b1 gives very accurate results 

for the chemical potential of an HS fluid in an HS matrix.79 This is why for our study 

here we use SPT2b1 and its expression for the chemical potential of an HS fluid in an 

HS matrix is given by, 

  (5.11) 

where ,  (i = 0, 1) is the packing fraction, 

 is the ratio of the radius of fluid particle to matrix particle,  is 

the geometric porosity, and  is the chemical potential to insert one fluid particle 

into an empty matrix which is given by 

 (5.12) 

and  in eq. (5.11) is the matrix porosity measured with a fluid particle as the probe 

(note that  is the porosity measured with a point particle), 

 .  (5.13) 

In order to facilitate comparison, we cast the expression of chemical potential of the 

corresponding binary mixture in a form similar to that given in eq.(5.11), i.e., 
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 (5.14) 

The two first terms on the right-hand side of both eqs.(5.11) and (5.14) are identical. 

The rest of the RHS of eqs. (5.11) and (5.14) is a third order polynomial of  

but with different coefficients for  or . So, the quench effect shows up 

through these coefficients. 

D. Simulation 

In order to check the validity of the prediction about the quench effect given by 

SPT, we carried out a series of Monte Carlo (MC) simulations226,265 of an HS fluid in 

an HS matrix. A cubic simulation box was used with periodic boundary conditions. 

Each simulation run is performed with a particular matrix realization and the fluid 

particles can move in the volume which is not occupied by matrix particles. The matrix 

configurations are generated by using canonical ensemble Monte-Carlo simulations 

(CEMC). Since matrices of finite size are used in the simulation, any observable 

quantity fluctuates with matrix realizations and hence an average over matrix 

realizations should be taken also. In the present work, we generated matrix realizations 

of sizes ranging from 200 to a few thousands matrix particles. The average over matrix 

configurations is calculated with typically 20 realizations. For each matrix realization, 

a GCEMC simulation about 10000 trial moves per particle is performed during which 

the average fluid density is calculated. For all the numerical results presented below, 

we use the diameter of fluid particle, i.e., , as the unit of length. Matrices with 

different particle radii ( ) as well as of different porosities were 

( ) ( )

( ) ( )

2
( ) 2 2

1 1 1 0

3
3 21 0

1

0 0

0 0

0 0

0 0

0 0

0 0

0

2 3
3 1 0

1 0

ln(1 / ) 7 15 6 6 3
1 1

/               9 15 3 7 3 15 2
1 1 / 2 1

/18
1 1

1

1 /

ex Equil ex
I

h hbµ bµ h f t t t t t
h h

h h f ht t t t t
h h f h

h h h ft
h h h f

é æ ö
ê= - - + + + + + + ç ÷- -ê è øë

ùæ ö é
ú+ + + + + + ´ç ÷ ê- - -úè ø ëû

ùæ ö æ ö æ
ú+ç ÷ ç ÷- - -úè ø è ø èû

0

2 3 3

1 00

1 0/3 1
1 1 /
th h f
h h f

ö æ ö æ ö
+ +ç ÷ ç ÷ ç ÷- -ø è ø è ø

1 0

1 0

/
1 /
h f
h f-

_
1
ex QAbµ _

1
ex Equilbµ

1 12Rs =

0 10.5 2.5R s= -



93 

considered. 

To determine the quench effect, it is necessary to calculate the chemical potential 

of an equilibrium HS binary mixture corresponding to the quench-annealed system. To 

facilitate the comparison between the two systems, we performed CEMC simulations 

for the equilibrium HS binary mixture so that the densities of the two components can 

be prescribed. The chemical potential is calculated by using Widom’s test particle 

method228.  

5.3 Results and discussion 

In this section, we will show successively in which cases there is no quench effect at 

all, when it starts to manifest itself and the situations in which the quench effect 

becomes strong. 

A. Strictly vanishing quench effect 

Although the results given in eqs. (5.6) and (5.10) are quite formal ones, they can 

provide already some interesting information about the quench effect. Eq. (5.10) shows 

immediately that there is no quench effect at the order of  since all the diagrams in 

the sum given in eq.(5.10) are of an order equal or higher than . Moreover, if all 

the diagrams in the sum given in eq.(5.6) have only one fluid point (it is necessarily the 

white one), none of these diagrams contains any shielding set. Hence, the quench effect 

vanishes in this case as well. This corresponds to the situation that there is only one 

particle of species 1. So, insertion of a fluid particle into an empty matrix (no fluid 

particle inside the matrix) or into a bulk fluid of species 0 (not quenched but mobile 

particles) costs exactly the same amount of energy. The above discussion shows that 

the quench effect appears only when some fluid-fluid and matrix-matrix interactions 

exist at the same time, i.e., beyond the case of a single fluid particle and beyond the 

linear order of matrix density. 

In the case of a single particle of species 1, it is possible to calculate the excess 
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matrix with density ), the results given in eq.(5.17) hold as well. It is worth to note 

also that in the limit of , the SPT results given in eqs.(5.11) and (5.14) reduce 

both to that of eq.(5.17). 

In the case of one HS of radius, , in a matrix of point particles (see Fig. 5.2 for 

a sketch), i.e., the interaction potential being, 

 ,  (5.18) 

the excess chemical potential can be also calculated exactly and analytically and we 

obtain, 

 .  (5.19) 

Once again, this explicit calculation confirms the conclusion obtained from the 

diagrammatic expansion, i.e., no quench effect at the level of a single fluid particle. 

Moreover, eq.(5.19) shows that the excess chemical potential is of the linear order of 

 and this result confirms also another conclusion from the diagrammatic expansion, 

i.e., the quench effect manifesting itself at the order equal or higher than . In this 

case, SPT results, i.e., eqs.(5.11) and (5.14) reduce again to the exact one of eq.(5.19). 

Here, one can raise naturally the question whether the SPT results given in 

eqs.(5.11) and (5.14) are consistent with the exact result that the quench chemical 

potential vanishes at the linear order of matrix density. From eqs.(5.11) and (5.14), we 

obtain the following expression for the quench chemical potential, 
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Substituting eq.(5.22) into eq.(5.21), we see that the first term on the right-hand side of 

eq.(5.21) vanishes. So, at the order of , the quench chemical potential is strictly 

zero. It is known that SPT for a bulk binary mixture is exact to this order while, to our 

best knowledge, no calculation of any Virial coefficient has been calculated for a 

confined fluid. The vanishing quench chemical potential at the order of  implies 

that our SPT for confined fluid is also exact to this order. The non-vanishing part in 

eq.(5.21) comes only from the contributions of the higher order terms for which SPT 

does not give exact results. So, to the orders for which SPT is exact, the result for quench 

chemical potential from SPT is consistent with the exact result, i.e., vanishing quench 

effect at the linear order of matrix density. It is quite reassuring to see, from the above 

discussions, that SPT either reproduces the exact results in some particular cases or is 

consistent with the general conclusion for vanishing quench effect. 

In a more general situation, i.e., finite fluid and matrix densities, SPT results in 

eqs.(5.11) and (5.14) show that quench effect vanishes also in the limit to , i.e., 

 (5.23) 

The vanishing quench effect in this limit of very large matrix particle cannot be deduced 

by a straightforward inspection of the diagrams in eq.(5.10). We have not succeeded in 

finding a formal proof. Therefore, we consider this prediction of SPT for vanish quench 

effect in case of very large matrix particles as a conjecture and this deserves certainly 

further investigations.  

Finally, it is worth to note also that  appears in eq.(5.23) only in the form of 

 but no linear term in  neither terms involving  are present. This implies 

that in the limit of , the surface free energy between the fluid and the matrix 

does not contribute to the chemical potential. 

B. Small quench effect 

At the end of the last subsection, we have just seen that quench effect vanishes 
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when the matrix particles are much larger than the fluid particles, i.e., . 

The extensive numerical calculations we have carried out show that for all the cases 

with matrix particles larger than fluid particles, i.e., , the quench effect remains 

always quite moderate. The results for  are presented in Fig. 5.3. For the two 

matrix densities considered, the chemical potential of the confined fluid and that of the 

corresponding equilibrium mixture are nearly the same even at high fluid densities. The 

mathematical reason for the moderate values of the quench chemical potential in the 

region of  becomes clear by examining eq.(5.20). We see readily that no value 

of  in this region can induce large variations of the quench chemical potential for 

physically meaningful values of matrix and fluid densities ( , ). It 

is to note also that for both densities, it is slightly more difficult to insert a particle of 

species 1 into the equilibrium binary mixture than into a matrix at high fluid density, 

i.e, . We carried out also MC simulations under the same conditions and 

the results are plotted also in Fig. 5.3 along with the SPT ones. We see that there is a 

very good agreement between SPT and MC results for both quench-annealed and 

equilibrium binary systems. 
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Figure 5.3. Comparison of the excess chemical potential as a function of fluid density 

[ ] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles) 

to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares) 

with  and matrix densities: a)  (the four lower 

curves, overlapped together); b)  (the four upper curves, overlapped together). 

 

C. Turning point for the change from small to large quench effects 

The results for the case that the size of fluid and matrix particles is the same, i.e., 

, are presented in Fig. 5.4. When the matrix density is relatively low ( ), 

the quench effect remains small over the whole range of the considered fluid densities. 

Nevertheless, it is to note that the chemical potential of the quench-annealed system is 

higher than that of the corresponding equilibrium binary mixture, i.e.,  

(opposite to what is found for ). The new feature shown by Fig.5.4 is that at 
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( ) and again one observes ,  We will see in the next subsection 

that the quench effect becomes stronger in the region of . So,  is the turning 

point for the quench effect becoming significant and also the point at which the quench 

chemical potential changes sign, i.e., from  to . In Fig.5.4, the 

MC simulation results are also presented. For the equilibrium binary mixture, SPT gives 

always results in good agreement with the MC ones while it overestimates the fluid 

chemical potential of the quench-annealed system when the quench effect becomes 

significant. 

 

 
Figure 5.4. Comparison of the excess chemical potential as a function of fluid density 

[ ] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles) 

to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares) 

with  and matrix densities: a)  (the four lower 

curves, overlapped together); b)  (the four upper curves). 
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D. Strong quench effect 

Now, we consider the case that matrix particles are smaller than the fluid particles, 

i.e., . The results for  and three matrix densities ( : 0.05, 0.2 and 0.3) are 

presented in Fig. 5.5. At very low matrix density ( ), the quench effect remains 

small (see Fig. 5.5a). As the matrix density increases, the quench effect becomes 

significant and increases with the fluid density (see Fig. 5.5b and 5c). At high fluid 

densities,  is larger than  (note that for ,  at high 

fluid densities). From Fig. 5.5b and 5c, we see that the fluid chemical potential of the 

quench-annealed system is overestimated by SPT compared the MC simulation results. 

Nevertheless, the trend for the variation of the quench effect described by SPT is in 

agreement with that from MC simulations. It is to be pointed out that the accuracy of 

SPT for confined HS fluids has been checked previously only in the case of , i.e., 

the fluid particles being not smaller than the matrix particles. The present work confirms 

the good accuracy of SPT in this case but reveals that in the case of fluid particle smaller 

than the matrix particle, the accuracy of SPT deteriorates when fluid and matrix 

densities increase. 
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Figure 5.5. Comparison of the excess chemical potential as a function of fluid density 

[ ] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles) 

to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares) 

with  and matrix densities: a) ; b) ; c)

. 

 

In Fig. 5.6, the results for  and two matrix densities ( : 0.0384 and 0.05) 
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are presented. These results show that the quench effect becomes stronger when the size 

ratio of the fluid particle to the matrix particle increases. 

 

Figure 5.6. Comparison of the excess chemical potential as a function of fluid density 

[ ] for a HS fluid in a HS matrix (SPT: curves with full line; MC: triangles) 

to that of a corresponding equilibrium system (SPT: curves with dash line; MC: squares) 

with  and matrix densities: a) ; b) . 
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obtain,  

 ,  (5.24) 

and 

 .  (5.25) 

We see now that  and  are different only by the third terms on the RHS of 

eqs.(5.24) and (5.25). This third term for  increases exponentially with the matrix 

density while that for  increases linearly. This explains why the difference 

between  and  increases very quickly with the matrix density. The 

exponentially-increasing term comes from the term  in eq.(5.11). 

Numerical results for finite values of  in the region of  show that the 

dominant contribution to quench chemical potential comes always from the term 

. 

 Moreover, it is worthwhile to note that eqs.(5.24) and (5.25) lead to a quite simple 

expression for the quench chemical potential, i.e., 

 .  (5.26) 

In the case of very large matrix particles, i.e., , the quench chemical potential 

varies linearly with  with a slope depending only on the matrix density, 

, and the fluid particle size, . It is also to note that the RHS of eq.(5.26) does not 

contain the contribution of the linear term in matrix density and this is in perfect 
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agreement with the general prediction from the diagrammatic expansion of quench 

chemical potential pointed out in section 5.3A. 

5.4 Concluding remarks 

In the present section, we studied in details the quench effect on the chemical 

potential of a hard-sphere fluid confined in a hard-sphere matrix. A quantitative measure 

is introduced which is the difference between the chemical potential of the confined 

fluid and that of the corresponding equilibrium binary mixture. From the diagrammatic 

expansion of quench chemical potential, we see that there is no quench effect at the 

linear order of matrix density. In some cases, e.g., one point fluid particle in an HS 

matrix or one finite size HS fluid particle in a matrix of point particles, both the 

chemical potential of the quench-annealed system and that of the corresponding 

equilibrium counterpart can be calculated exactly and analytically. In these cases of one 

single fluid particle, the quench effect vanishes strictly as well. Hence, the quench effect 

shows up only when fluid-fluid and matrix-matrix correlations are both present. Under 

more general conditions, we applied scaled particle theory for calculating the chemical 

potential of the quench-annealed system and that of its equilibrium counterpart. 

Thorough numerical investigations and analytical analysis allowed us to identify the 

parameter which controls the appearance of quench effect for the system considered 

here. When matrix particles are larger than fluid particles, quench effect is small for 

physically meaningful matrix and fluid densities and the equilibrium binary mixture 

appears slightly more crowded than the quench-annealed system. SPT predicts that in 

the limit of extremely large matrix particles, i.e., , the quench effect 

vanishes. In the case of matrix particles smaller than fluid ones, the quench effect can 

become strong as matrix and fluid densities increase. In this case, the quench-annealed 

system can appear more crowded than the corresponding equilibrium binary mixture 

even when the density of each species is strictly the same in both systems respectively. 

The comparison between SPT and MC results show that the fluid chemical potential of 

1 0/ 0R Rt = ®
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the quench-annealed system can be significantly overestimated by SPT in the case of 

fluid particles larger than the matrix particles. This is in sharp contrast with the excellent 

accuracy of SPT for confined HS fluid when the fluid particle is not larger than the 

matrix particle. For the moment, the origin of this inaccuracy does not appear clear and 

deserves certainly further investigations. Nevertheless, the trend for the variation of 

quench effect predicted by SPT is in agreement with that found from MC simulations.  

Although the conclusions given above are obtained from the study of a simple 

model with only repulsions between hard cores, they should be general since the size 

effect exists for any real fluid and porous materials. Moreover, our results provide also 

some useful insights for the design of functionalized porous materials. For highly 

divided porous materials, i.e., those with its tiny solid constituents evenly distributed in 

space (e.g., aerogels), the quench effect is large and it can be hard to adsorb large fluid 

particles into such materials even when the porosity is high. For example, such a thumb 

rule can be useful for elaborating porous membrane for separation. Moreover, the 

findings of the present work should be useful also for assessing the quench effect on 

diffusion since the thermodynamics factor in an experimentally measured activity-

based diffusion coefficient266 is directly related to chemical potential267. Nevertheless, 

a detailed discussion of this interesting topic is far beyond the scope of the present work. 
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6. Final remarks 

Porous materials have important applications in both fundamental research and 

chemical industry, such as oil exploitation, catalysis, capturing Greenhouse gas, energy 

storage devices, and design of sensors. For instance, Aerogels with their highly 

macroscopic operability, extremely surface area, and recoverability, are widely used in 

photocatalysis. Many of those applications are based on the behavior of fluid adsorption 

in porous materials, such as the drug release, and gas separation. Thus a thorough 

understanding of the behavior of fluid confined in porous materials is necessary.  

During the last few decades, a large number of theoretical and experimental 

investigations of fluids confined in different kinds of porous material had been made. 

The properties of confined fluid can be affected by the geometry of porous material, 

i.e., porosity, pore-connectivity, pore size distribution, pore shape, and disorder effect. 

Unfortunately, we still do not know the respective roles played by those geometric 

properties. Different from the bulk fluid, while the fluid particles adsorbed in porous 

material, the fluid particles feel not only the interaction from the surrounding fluid 

particles but also that from solid ones. This additional solid-fluid interaction can vary 

from very repulsive to very attractive ones. The different solid-fluid interaction can 

make the confined fluid exhibit very different behavior even materials with same 

geometry. Although confined fluid appears more complicated due to the presence of 

complex confining environment of adsorbent, one can wonder if there is any connection 

between confined and bulk fluids. To answer this question, in Chapter 2, we derived a 

general scaling relation between the confined fluid and the corresponding bulk one-

component fluid, which allows for connecting some thermodynamic properties of a 

confined fluid, i.e. chemical potential, Helmholtz free energy per particle, and grand 

potential per particle, to the bulk ones. The validity of this scaling relation is established 

with the help of a large number of simulation results, in a wide range of confining 

environments, from single isolated pore to random porous medium, and the fluid-fluid 
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and fluid-matrix pair interaction, from pure repulsive to repulsive plus attractive 

interaction. Since this scaling relation holds for chemical potential, Helmholtz free 

energy per particle, and grand potential per particle, one can immediately find that if 

Helmholtz free energy per particle and grand potential per particle are expressed as a 

function of chemical potential, the confined fluid will show the same behavior with the 

corresponding bulk one. This invariance implies the chemical potential should be 

considered as independent variable instead of fluid density, in the study of the confined 

or inhomogeneous fluids. Although a derivation of the scaling relation from the first-

principles is currently unavailable, we have revealed its intimate connection with 

general theoretical frameworks like Gibbs theory for inhomogeneous fluids and 

morphological thermodynamics. We believe this is why the scaling relation works so 

well under wide conditions and for a large variety of confining environments. The 

scaling relation shows clearly that the porosity (space accessibility) and fluid-solid 

interaction (through the adsorption term) is of primary importance for determining the 

thermodynamics of confined fluids. The other characteristics, like pore-connectivity, 

pore-shape, pore-size distribution, etc., play less significant role. One potential 

application of our scaling relation is circumventing some experimental difficulty for 

direct measurement of some thermodynamic properties of confined fluid. In this work, 

the scaling relation was only used to study some thermodynamics properties of confined 

fluid. One nature extension is to see the scaling relation still holds for dynamics 

properties, such as diffusion coefficient. Another intuitive extension is to consider if the 

scaling relation holds also for the fluid adsorption in flexible porous materials, e.g. 

metal-organic frameworks (MOFs) or to find the modifications needed if necessary.  

For fluid adsorption in a real porous material, the fluid-solid interfaces are 

generally curved ones. It might appear surprising that the thermodynamics for dealing 

with curved interfaces is not so well established although early investigations go back 

to Tolman. Thus a thorough understanding of the interfacial properties is necessary. 

Scaled particle theory is a powerful tool for studying the properties of fluid near to a 
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curved wall. The original motivation for scaled particle theory is to derive a simple 

equation of state for a bulk hard sphere fluid. Then, it was recognized that scaled particle 

theory provides not only the thermodynamic properties of a hard sphere fluid in bulk 

but also the surface tension of a hard sphere fluid near a spherical hard wall. However, 

the accuracy of its predictions is not as high as other recent equation of state like 

Carnahan-Starling equation of state. Mecke and co-workers have made efforts to 

develop a general framework, named as morphological thermodynamics, to account for 

more complex surface morphology. According to Hadwiger theorem in the integral 

geometry, the morphological thermodynamics assumes that the thermodynamic 

potential of an inhomogeneous system can be expressed as a linear combination, which 

only contains four terms, i.e., one bulk contribution proportional to system’s volume 

and three surface contributions proportional respectively to surface area, mean and 

Gaussian curvatures of the interface. It is to be pointed out that in scaled particle theory, 

the chemical potential for creating a spherical cavity inside a fluid is assumed to have 

this form. The foundation of this method has been questioned recently. The contribution 

from the terms beyond the four Hadwiger’s terms has been revealed from both 

diagrammatic expansion approach and molecular simulation. It is natural to ask that is 

it possible to include non-Hadwiger terms in scaled particle theory? To answer this 

question, in Chapter 3, two augmented scaled particle theory were proposed. The first 

one contains an adjustable parameter, and the second one uses two matching processes 

to circumvent the adjustable parameter. Both of them have simple analytical 

expressions. Also, both of them do not only significantly improve the accuracy of 

thermodynamic properties, i.e., pressure and chemical potential, but also improve the 

accuracy of surface properties, i.e., planar surface tension and Tolman length. Also, the 

same idea can be used to treat the multi-component hard sphere fluid system, and the 

improvement is significant. The success of our two augmented scaled particle theory 

indicates that the morphological thermodynamic is not an exact theory, it is only a very 

good approximation. One intuitive extension of this work is to consider if the more non-
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Hadwiger terms are considered, will the higher accuracy of scaled particle be obtained? 

For description of porous medium, many theoretical models for porous medium 

were carried out. Models with simple pore geometry, such as slit, cylinder pore, are 

widely studied. In such models, the pore-size distribution and pore connectivity are 

neglected. For ordered porous materials like MOF and ZIF, have been studied by 

molecular simulation and density functional theory. To consider the quench disorder 

effect, some random porous medium models have been carried out, i.e., Madden-Glandt 

matrix model, Van Tassel’s templated matrix model, and hard sponge matrix model. 

The equation of state for confined fluid strongly depends on the model of porous 

medium. So, is it possible to derive a general equation of state which is irrelevant with 

the model of porous medium? In Chapter 4, we derived a new general equation of state 

for describing the thermodynamic properties of fluids confined in different porous 

medium. To our best knowledge, this is the first equation of state for confined fluid that 

is irrelevant to the model of porous medium. In this general equation of state, the 

chemical potential is considered as the independent variable. In a large range, our new 

equation of state works well. Our new equation of state indicates that the porosity and 

other three geometric properties play the primary roles for the thermodynamic of 

confined fluid. All the other parameters, i.e., pore shape, pore connectivity, pore size 

distribution, and disorder effect, are much less important, which is similar to the results 

from our scaling relation. We also reported that even for an ideal gas fluid, in some 

cases, the morphological thermodynamic still does not hold, which means the 

morphological thermodynamics is only a good approximation. In this work, we only 

consider the hard sphere fluid. One nature extension of this work is to see if this 

equation of state still holds for other fluid, such as square-well fluid and Lennard-Jones 

fluid. An interesting application of this work is to consider if this equation of state can 

be used to describe the flexible porous materials. 

The Madden-Glandt model is also called as a quench-annealed mixture with 

quenched species referring to the matrix and annealed species referring to the confined 
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fluid. Although many investigations have been devoted to study fluids confined in the 

random porous medium since Madden-Glandt model was proposed, no precise measure 

has ever been proposed to describe quantitatively the quench effect for the adsorption 

of a fluid in a random porous material. In Chapter 5, we introduced a quantitative 

measure of quench effect which is the difference between the chemical potential of the 

confined fluid and that of the corresponding equilibrium binary mixture. With the help 

of diagrammatic expansion, we revealed that this is no quench effect at the linear order 

of matrix density. Hence, the quench effect shows up only when fluid-fluid and matrix-

matrix correlations are both present. With the help of scaled particle theory for confined 

fluid and the molecular simulation, we found that when matrix particles are larger than 

fluid particles, quench effect can be ignored. When the fluid particles are larger than 

matrix particles, the quench-annealed system can appear more crowded than the 

corresponding equilibrium binary mixture even when the density of each species is 

strictly the same in both systems. This indicates that the ratio of the radius of fluid 

particles to that of matrix ones plays the primary role for the quench effect. The 

comparison between scaled particle theory and molecular simulation results show that 

the fluid chemical potential of the quench-annealed system can be significantly 

overestimated by scaled particle theory in the case of fluid particles larger than the 

matrix particles. This is in sharp contrast with the excellent accuracy of scaled particle 

theory for confined hard sphere fluid when the fluid particle is not larger than the matrix 

particle. In my opinion, this is caused by the definition of porosity of porous materials. 

There are two porosities, geometric porosity, and probe particle porosity, in the scaled 

particle. By analyzing the contribution of each term, one can find that this overestimate 

comes from the probe particle porosity term. It means the probe particle porosity 

underestimated the fluid particle accessible volume of porous medium. If only the 

geometric porosity is used in scaled particle theory, SPT2a, the fluid chemical potential 

of the quench-annealed system will be underestimated. This can be explained by a 

simple example, consider fluids confined in a cubic lattice matrix which the distance 
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between two matrix particles is smaller than the diameter of fluid particle, in this system 

the fluid chemical potential is approach to infinity, but the prediction of chemical 

potential from SPT2a is same as the corresponding the bulk ones. This means the 

geometric porosity overestimated the fluid accessible volume of porous medium. Hence, 

how to find an appropriate porosity is the key to improve the accuracy of scaled particle 

theory for confined system. Our results provide some useful insights for the design of 

functionalized porous materials. For highly divided porous materials, i.e., those with its 

tiny solid constituents evenly distributed in space (e.g., aerogels), the quench effect is 

large and it can be hard to adsorb large fluid particles into such materials even when the 

porosity is high. For example, such a thumb rule can be useful for elaborating porous 

membrane for separation.  

As a final remark, we would emphasize that with the help of theoretical approach 

and molecular simulation, this thesis studies the thermodynamics properties of confined 

fluid, clarifies the control variables of confined fluids, and discovers the common law 

of thermodynamics properties among different confined fluids. A scaling relation and 

two new equations of state were reported, they deepened the understanding of confined 

fluid, and advanced the development of the thermodynamics for confined fluid.  
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Appendix A. Some results for other versions of ASPT1  

A.1. Single-point matching formulation with n = 1 

Here we present the results of ASPT1 with a one order adjustable parameter. The 

excess chemical potential is described by a piecewise function,  

 . (A.1) 

With the help of the following four conditions,  

 ,  (A.2) 

 ,  (A.3) 

 ,  (A.4) 

 .  (A.5) 

The four unknown  (i = -1, 0, 1, 2) can be obtained as following.  

 ,  (A.6) 

 ,  (A.7) 

 ,  (A.8) 

 .  (A.9) 

From eqs.(A.1)-(A.5), we obtain the following expression for the chemical potential, 
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 .  (A.10) 

By using the same iterative procedure as presented in Chapter 3, the results of 

chemical potential and pressure can be obtained, named as ASPT11 

 ,  (A.11) 

where 

 .  (A.12) 

By considering Gibbs-Duhem equation, the result for pressure is 

 . (A.13) 

The surface tension near a spherical hard wall is given by  

 ,  (A.14) 

where  

 ,  (A.15) 

 ,  (A.16) 

 ,  (A.17) 
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   (A.18) 

By using the same way as presented in Chapter 3, the adjustable parameter is 

obtained as . Then we presented the numerical results of APST11 

below. Following Figures show that ASPT11 significantly improved the accuracy of 

both bulk properties and interfacial properties. However, for non-Hadwiger term, the 

prediction of ASPT11 underestimated it. 

 
Figure A.1. Comparison of pressure of a hard sphere fluid. The simulation results are 

presented by the blue line, the black line is original SPT, and the red line is ASPT11 
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Figure A.2. Comparison of surface tension of a hard sphere fluid. The simulation results 

are presented by red circles, the blue line is original SPT, and the orange line is ASPT11 

 

Figure A.3. Comparison of  of a hard sphere fluid. The simulation results are 

presented by red circles, the blue line is original SPT, and the orange line is ASPT11 

 

Figure A.4. Comparison of  of a hard sphere fluid. The simulation results are 

presented by red circles, the blue line is original SPT, and the orange line is ASPT11 

1g -!

2g -!



117 

 

Figure A.5. Comparison of  of a hard sphere fluid. The simulation results are 

presented by red circles, and the blue line is ASPT11 

A.2. Single-point matching formulation with n = 2 

Here we present the results of ASPT1 with a two order adjustable parameter. The 

excess chemical potential is described by a piecewise function,  

,  (A.19) 

With the help of eqs.(A.2)-(A.5), the four parameters  (i = -1, 0, 1, 2) are 

   (A.20) 

 ,  (A.21) 

 ,  (A.22) 

3g -!

( )

( )

3

2/ 3
2

1 0 1 2

ln 1 1 0

( ) 1 41 0
2 3

s

s s

ex
Rs s

s
s s s

s

R R R R

R e R PR R R
R

d

h

bµ
p bf f f f

-

-

ì é ù- - + - < £ë ûïï= í -ï + + + + <
ïî

if

( )0 ln 1f h= - -

2
1

1
1 3
1

R
R R

fhf
h d

-
é ùæ ö= -ê úç ÷- è øê úë û

3
1

2 2
21 3 32

1 1
R

R R
fh hf

h h d
-

é ùæ ö æ ö= + +ê úç ÷ ç ÷- - è øè øê úë û



118 

 .  (A.23) 

It should be noted that the sign of  is different from the ones when n is an odd 

number and  is same as the original SPT ones. From eqs.(A.20)-(A.23), we obtain 

the following expression for the chemical potential, 

 .  (A.24) 

By using the same iterative procedure as presented in Chapter 3, the results of 

chemical potential and pressure can be obtained, named as ASPT12 

 ,  (A.25) 

where 

 .  (A.26) 

By considering Gibbs-Duhem equation, the result for pressure is 

 . (A.27) 

The surface tension near a spherical hard wall is given by  

 ,  (A.28) 

where  
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 ,  (A.29) 

 ,  (A.30) 

 ,  (A.31) 

   (A.32) 

By using the same way as presented in Chapter 3, the adjustable parameter is 

obtained as . Then we presented the numerical results of APST12 

below. Since the results of  in ASPT12 is same as the original ones, we only 

presented the numerical results of P and  (i = 0, -1, -3). One interesting find is the 

prediction of the non-Hadwiger term has a different sign with the result with an odd n. 

This indicates a potential form for describing non-Hadwiger terms, i.e., 

. With the suitable parameters,  and , the prediction of 

non-Hadwiger term might have the same trend as the ones form molecular simulation.  

 

 
Figure A.6. Comparison of pressure of a hard sphere fluid. The simulation results are 

presented by the blue line, the black line is original SPT, and the red line is ASPT12 
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Figure A.7. Comparison of surface tension of a hard sphere fluid. The simulation results 

are presented by red circles, the blue line is original SPT, and the orange line is ASPT12 

 

 

Figure A.8. Comparison of  of a hard sphere fluid. The simulation results are 

presented by red circles, the blue line is original SPT, and the orange line is ASPT12. 
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Figure A.9. Comparison of  of a hard sphere fluid. The simulation results are 

presented by red circles, and the blue line is ASPT12 
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Appendix B. Invalidation of morphological 

thermodynamics 

B.1. Fluid around two spherical solutes 

Here, we consider an ideal gas fluid around two spherical solutes, as illustrated in 

Fig. B.1. The interaction between fluid and solutes is square well potential and the 

distance between two solutes is smaller than 2d, which means some fluid particles 

suffered interaction from both two solutes. The grand partition function is 

 ,  (B.1) 

The integrate above can be divided into two parts. Part 1 is the region suffered 

interaction from both two solutes, and part 2 is the remaining region. The integrate of 

part 1 is 

 ,  (B.2) 

and the integrate of part 2 is  

 .  (B.3) 

where  is system volume, and the grand potential is equal to 

 .  (B.4) 

From morphological thermodynamic, the grand potential of this system can be 

expressed as eq. (4.11) with same parameters, which all same as expression above but 

the last term. The last term of expression above denotes the contribution of the region 

suffered interaction from both two solutes. This calculation proves morphological 

thermodynamic cannot use for when such overlapping part appears. The future study of 

morphological thermodynamic and Hadwiger's volume theorem is still needed. 
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Consider a binary mixture system, 1 and 0 are used to represent two components.  

and  are the density of component 0 and component 1.  and  are the density 

and radius of component  ( ), the solvation free energy can be obtained as the 

excess chemical potential  in the limit , i.e., 

 ,  (B.8) 

where  is the excess free energy density of the bulk binary mixture, and 

 (  is the Boltzmann constant,  is the temperature). As we know  

can be written as a Virial expansion: 

 ,  (B.9) 

 ,  (B.10) 

 is the Virial coefficient, . So far, the solvation free energy is 

obtained, and the solvent pressure is given as following: 

 .  (B.11) 

Now, the solute-solvent interfacial tension is given as a series of : 

 .  (B.12) 

Since exact  for  are known from previous work. For a low-density 

fluid, the first third terms in eq. (B.12) can be given as 

 ,  (B.13) 
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 ,  (B.14) 

 ,  (B.15) 

with 

 ,  (B.16) 

 ,  (B.17) 

 ,  (B.18) 

where  is the solvent packing fraction  and from eq. 1, the solute-

solvent interfacial tension can be given as a series of   

 .  (B.19) 

From the Hadwiger's theorem,  should be equal to  for . It means that if 

 is expanded in powers of ,  and higher orders terms will not exist. 

The expansion of  as following, 

 , (B.20) 

It is found that the  and higher order terms still exist. This proves that 

morphological thermodynamics is not an exact method and can only serve as an 

approximation. It should be pointed out that the interface between fluid and the solute 

particle is a concave interface from fluid view in Hansen-Goos' work, and from 

Hadwiger's theorem, the interface must be a convex one. In the follow section, we will 

study a system in which the interface is a convex one from fluid view. 
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B. Non-Hadwiger coefficient in convex system 

The system is a hard sphere fluid confined in a spherical hard sphere cavity, and 

the interaction potentials in this system are described as following, 

 ,  (B.21) 

 ,  (B.22) 

where  and  are the radius of fluid particles and cavity.  and  are the 

position vectors of the ith and the jth particle.  is the position vectors of the cavity, 

it is fixed in the center of this system. 

We start from the usual Gibbs adsorption equation 

 ,  (B.23) 

where  is the excess interfacial number of particles per unit area at the interface. It 

can be obtained as 

 .  (B.24) 

From diagrammatic expansion  and  can be given as: 
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 ,  (B.27) 

where  is the bulk chemical potential,  is the thermal wave-length of fluid 

particles and Mayer functions are defined as, 

 ,  (B.28) 

 .  (B.29) 

The  is obtained as following: 

 ,  (B.30) 

where 

 ,  (B.31) 

with 

 ,  (B.32) 

 ,  (B.33) 

 ,  (B.34) 

 ,  (B.35) 

where  and  are the diameter of fluid particles and cavity. The interfacial 

tension can be obtained as following, 

 ,  (B.36) 

 ,  (B.37) 
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where 

 ,  (B.38) 

 ,  (B.39) 

For large s,  can be expanded in powers of s, it can be obtained as, 

 .  (B.40) 

Clearly, the non-Hadwiger terms (  and higher orders) still exist in this convex 

system. This proves that morphological thermodynamics is not an exact method and 

can only serve as a good approximation. This result shows that we still don't understand 

Hadwiger's volume theorem, we need come back to the theorem and find out where is 

the morphological thermodynamics violate the restriction of this theorem. 
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Appendix C. The summary of dissertation in Chinese 

高性能功能性材料在多种社会问题中起着战略性的作用，例如，基于新型清

洁能源的可持续性发展。氢是一种未来清洁能源，近来的科学研究已经在努力发

展可靠的储氢材料 1。在 20 世纪末期，碳纳米管材料成为了一种最具吸引力的储

氢材料。然而在后续研究中发现，该材料仍没有达到可工业应用所需的吸附能力

（储氢质量超过系统总质量的 6%）。目前，对于这种多孔材料的搜索主要集中在

新的合成多孔材料上 2。除了流体吸附，多孔材料也在其他方面有着广泛应用。

沸石材料被广泛的应用在气体分离，反应催化等方面。由于多孔材料具有特定的

孔径大小和特殊的拓扑结构，基于沸石材料的催化剂通常具有极高的选择性。这

种高选择性催化剂被广泛的应用于各种化工过程。例如石油化工中的催化裂解。

当手性结构单元应用在多孔材料时，将选择性推向了更高水平，因此合成了对映

选择性多孔材料，这种材料在制药工业中具有重要的应用 3。目前材料工程允许

我们在多孔材料上赋予各种有趣的特性。例如，目前已经合成出了具有磁性的多

孔材料 4，其中一些磁性多孔材料可以使得流体的转变温度高于室温 5。由于它们

的可调性以及掺入各种金属离子和有机配体发色团的可能性，对一些多孔材料的

光学性质也有相当大的兴趣。这些材料可能作为荧光粉或荧光探针应用，特别是

在化学传感器中。多孔材料的另一个非常重要的应用是药物释控 25。随着现代医

学对于药物释放时间和药物精准释放要求的不断增加，开发更有效的控制药物释

控的新方法成为了研究热点。连续稳定的药物递送能力在特定情况下可确保治疗

效率，并大幅提高慢性病患者的生活质量，例如，糖尿病，癌症，艾滋病等。长

时间连续稳定的药物递送能力需要一种新型的大容量载体去储存药物分子，同时，

可控药物释放要求根据药物含量和性质对多孔材料进行改性。目前，新的混合多

孔材料为药物释控提供了新途径。受控递送需要根据内部的药物含量对多孔材料

进行一些适应性。新的混合柔性多孔材料为受控药物输送提供了有吸引力的新视

角。 

上述例子显示了多孔材料在催化，分离，传感器技术和制药工业等多种领域

中所起的战略作用。据估计，与多孔材料相关的工业占据国家国内生产总值的 20%
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以上 27。目前，对于多孔材料中受限流体的热力学性质的研究大多数是实验研究，

而理论研究远远落后，特别是大多数的模拟与理论研究都是具有某种特定的材料

模型，对于是否存在一种普适的状态方程或者理论可以应用在不同多孔材料上我

们仍不知晓。 

流体在多孔材料中存在着不可忽略的固液界面，导致了受限流体的性质可以

显著的区别于均相流体。流体在多孔材料中的吸附行为是一个长期存在的问题，

该问题具广泛的工业应用，如催化，过滤等。在过去的几十年里，大量的实验和

理论工作研究了在多孔材料中流体的吸附行为以及各种热力学性质。但由于多孔

材料种类丰富，受限流体性质还受孔径大小、孔隙率、流体与材料间的相互作用、

流体密度、温度、压强等诸多因素影响，且这些因素之间往往还相互关联，因此

目前对于受限流体的理论研究仍然处于逐案分析 (case-by-case) 的方法。在研究

流体在多孔材料中的性质时，不仅需要考虑流体的非均匀性，流体与多孔材料表

面之间的相互作用同样十分重要。对于真实系统而言，当流体受限于多孔材料中

时，其与多孔材料所形成的界面往往是一个弯曲表面，而对于流体在弯曲表面的

性质的热力学性质研究目前仍然非常有限，尽管这一问题的研究可以追溯到

Tolman 的工作 233。  

近年来，大量关于受限流体的热力学性质的实验和理论工作被报道。孤立孔

道模型被广泛的应用与研究受限流体性质，在该模型中，孔径分布和孔-孔关联

被忽略。分子模拟被应用与研究流体在有序多孔材料中的扩散。为了研究多孔材

料的无序性对于流体性质的影响，许多描述随机多孔材料模型被提出，例如，

Madden-Glandt 模型及其变种类。在均相流体中，流体粒子被其周围的其他流体

粒子所围绕。然而当流体受限与多孔材料时，大量的流体粒子是处于液体与多孔

材料所形成的固液界面周围。这些粒子不仅受到周围粒子的相互作用，同时也受

到多孔材料表面对其的影响。流体与固体之间的相互作用变化很大，既可以是极

强的排斥作用也可以是极强的吸引作用。这个固液相互作用可以使受限流体展现

出与均相流体截然不同的热力学行为。尽管复杂的受限环境可以使流体展现出不

同的热力学性质，但是我们依然希望知道是否受限流体与均相流体之间是否存在

关系，不同的受限流体之间是否存在某种关联。尽管大量关于受限流体的研究被
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报导，然而目前对于受限流体在各种多孔材料中的普适规律仍然尚不明确。 

在第二章中，通过分析一些具有严格解析结果的模型，例如，理想气体受限

于多种受限环境，并参考具有不同相互作用的流体在不同多孔材料中的模拟结果。

我们提出了以下的对应态原理， 

 ,  (C.1) 

 ,  (C.2) 

 .  (C.3) 

其中 （ ：玻尔兹曼因子，T`：温度）， 和 分别表示受限流体和

与之平衡的均相流体的化学势， 是平衡时均相流体的数密度， 和 分别受受

限流体和均相流体的 Helmholtz 自由能密度。 是受限流体巨势密度。 是均

相流体的压缩因子。标度因子为 

 ,  (C.4) 

其中 为多孔材料的几何孔隙率， 表示单位表面积上的吸附量， 为固液界面

的表面积。模拟结果表明该标度定律在各种不同条件下均具有很好的结果（参见

图 2.1-2.3）。由于该对应态原理适用于描述受限流体的多种热力学性质如，化学

势，巨势密度，Helmholtz 自由能密度，可以自然而然地认为如果将 Helmholtz 自

由能密度及巨势密度表示为化学势的函数，受限流体将会表现出与均相流体相同

的行为（参见图 2.4）。该种不变性暗示了在研究受限流体或者非均匀流体时，相

比于目前广泛使用的密度，选择化学势作为自变量是一种更合理的选择。虽然目

前为止对于该对应态原理的从第一性原理出发的理论推导仍然缺失，我们给出了

该对应态原理和一些目前存在的普适理论框架例如，对于非均匀流体的 Gibbs 理

论以及形态热力学（Morphological Thermdoynamic）之间的关联。这些关联可以

解释为何对应态原理在如此大的范围内均适用。标度关系表明孔隙率和流体-固

体间的相互作用是影响受限流体热力学性质的首要因素。相比之下，其他的一些

变量如，孔-孔之间的关联性，孔的形状，孔径分布等因素对于受限流体的热力学

性质影响较小。对于标度定律的一个潜在的应用是用来测量一些在实验中难以测
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定的热力学量，例如 Helmoltz 自由能和巨势密度。在本工作中，标度关系仅被用

于研究受限流体的一些热力学性质。标度关系是否对于一些动力学性质例如，扩

散系数，仍然成立目前仍未清楚，该问题需要在未来进行进一步的研究。另外一

个值得关注的问题是对于流体在一些结构可变的弹性多孔材料，例如，金属有机

框架（MOFs）的吸附行为是否仍然可以用该种标度定律来关联。 

 对于真实系统，流体与多孔材料之间的固液界面一般为弯曲表面。然而目前

为止，我们对于流体在弯曲表面的热力学性质然而所知甚少。因此对于流体在弯

曲表面热力学性质的系统研究仍然是十分重要的。定标粒子理论 205,268（Scaled 

Particle Theory，SPT）是一个研究流体在弯曲表面热力学性质的强有力的方法。

最初提出 SPT 的动机是为了提出一个具有简洁形式的，可以用来描述均相硬球

（Hard Sphere，HS）流体的状态方程。之后研究者们意识到 SPT 并不仅仅可以

用于提供均相硬球流体的热力学性质，还能提供描述硬球流体在一个球形表面的

界面张力的解析表达式。然而 SPT 的精度并不如一些最近提出的半经验状态方

程例如，Carnahan-Starling 状态方程。近年来，Mecke 和其合作者发展了一个可

以用来描述流体在复杂表面热力学行为的普适框架，并命名为形态热力学

（Morphological Thermodynamic）209,210。基于积分几何中的 Hadwiger 定理，形

态热力学认为对于受限流体的热力学势可以写成一个仅含有 4 项的线性组合即，

一个流体均相贡献项乘以体系的体积， ，以及三个表面贡献项分别于体系固液

表面积， ，固液表面的平均曲率， ，以及固液表面的高斯曲率， ，其形式

可描述如下， 

 .  (C.5) 

需要注意的是上式中对于热力学势的描述与 SPT 中对于创造一个球型空腔所需

做功的描述完全一致。在最初，Mecke 等人用该方法分析星系分布的空间格局。

之后该方法被发现可以用于微乳液，复合材料，复杂分子体系的研究。而后该方

法被推广到研究流体在弯曲表面的表面张力，溶解自由能，平均力势（potential 

mean force，PMF）。最近形态热力学的基础被广泛质疑。Laird223 使用分子动力学

模拟(Molecular Dynamics simulation, MD)计算了流体在球形和圆柱形表面的表面

张力。通过使用多项式拟合 MD 结果发现不仅仅存在式(C.5)中的四项，还有关于

V

A C X
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项的存在， 

 .  (C.6) 

结果表明当体系处于一个低密度状态即敛集率(Packing fraction， )小于 0.42 时，

形态热力学给出的结果十分精确。在高密度情况下，第一项非形态热力学参数明

显增大。Hansen-Goos221 等人使用维里展开(Virial Expansion)的方法得到了一个准

确的表面张力表达式，该表达式明确了非形态热力学项的存在。Laird 使用大量

的模拟来量化第一阶非形态热力学参数。数值结果表明，第一阶非形态热力学参

数比形态热力学参数中最小的一项小一个数量级。值得注意的是在这些文章中，

他们没有证明高阶的非形态热力学参数同号。在这种情况下，非形态热力学的所

有项加和可能等于零，虽然这种情况的可能性非常小。事实上，这些研究工作都

是考虑一个流体在球形或者圆柱表面，这表明了实际上从流体的角度来看，流体

和固体的界面是一个凹表面，而 Hadwiger 定理仅仅在凸表面时成立。那么自然

而然可以提出以下问题：是否可以通过将 non-Hadwiger 项加入到 SPT 理论中来

进一步提升 SPT 理论的精度？是否可以找到一个简单的方法来加入 non-

Hadwiger 项，来使得 SPT 的结果仍然具有完全解析和具有简单表达式的性质？ 

 在第三章中，提出了两种 SPT 的改进版本（Augmented Scaled Particle Theory, 

ASPT）。在 ASPT1 中，包含了一个可调参数，插入粒子化学势的表达式可以表

示为如下形式： 

 ,  (C.7) 

其中 时可调参数，通过过剩化学势及其前三阶导数在 处的连续性，即可

求解 ASPT1。在 ASPT2 中，为了避免这一可调参数，通过使用如下表达式来描

述插入粒子的化学势， 
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 ,  (C.8) 

其中 。通过考虑过剩化学势及其前三阶导数在 和 两

处的连续性，即可求解 ASPT2。ASPT1 和 ASPT2 的结果都具有简洁的表达式。

这两种方法不仅能极大的提高 SPT 对于均相流体性质如，化学势，压强的预测

精度，而且对于流体在固液表面的性质例如，平面的表面张力和 Tolman 长度等

的预测精度也得到了显著的提升。同样的想法也被应用于处理多组分硬球流体体

系，并明显的提高了 SPT 对于混合物的预测精度。这两种改进版 SPT 的成功指

出了形态热力学并不是一个严格成立的理论，但可以将其视为一种优秀的近似方

法。本工作促进了我们对于流体在弯曲表面性质的理解。在本工作中我们考虑了

加入一项非形态热力学项来提升 SPT 的精度，那么是否可以通过加入更多的非

形态热力学项来提升 SPT 的精度？ 

为了描述流体在多孔材料中的性质，各种各样的理论模型被提出。为了描述

孔道的几何性质对于流体性质的影响一些孤立孔道模型例如，平行板模型和柱形

孔道模型被广泛的应用在理论研究中。有序多孔材料例如 MOF 和 ZIF 可以通过

描述单元结构和周期边界条件来使用分子模拟进行研究。为了描述随机多孔材料

中的无序性，很多理论模型最近被报道。随机多孔材料的理论模型一般借助与将

一些流体粒子设定为多孔材料中的障碍物来实现。最早的一个随机多孔材料模型

是 Madden 和 Glandt 在 1988 年提出的 40，在这个模型中，随机多孔材料的构型

是通过冻结一个处于平衡态的流体得到的。该组分流体粒子被视为多孔材料的材

料结构，而粒子之间的空间被认为是孔道。多孔材料组分的粒子之间的相互作用

势可以为理想气体或者硬球势。当流体被吸附在多孔材料中时，流体和多孔材料

之间的相互作用不会改变多孔材料的构型。在这个模型中多孔材料粒子具有和平

衡态的均相流体相同的径向分布函数。近年来，Holovko 等人提出了一个基于 SPT

理论的解析的状态方程来描述流体在 Madden-Glandt 模型中的热力学性质 66,195。
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对于一些真实的多孔材料例如，MCM41，其孔道为类海绵结构。其几何形态无

法使用 Madden-Glandt 模型进行描述，于是 Zhao 等人提出了一个新的描述随机

多孔材料的模型，硬海绵模型，在该模型中通过在连续介质中使用挖取球形空腔

的方法来生成孔道，当挖取的球形空腔的数量足够多时，即可形成连续的海绵型

孔道 171。与 Madden-Glandt 模型相反，在该模型中流体与多孔材料之间形成的是

凸曲面，而在 Madden-Glandt 模型中其为凹曲面。近年来，Holovko 等人 79 给出

了一个同样基于 SPT 理论的解析的状态方程来描述流体在硬海绵模型中的热力

学性质，然而对于该状态方程的严格推导目前仍然欠缺。虽然许多基于上述模型

的关于受限流体热力学性质的研究被报道，但是我们对于受限流体的理解仍处于

逐案研究（case-by-case）的阶段。所以建立一个可以描述流体在不同多孔材料中

热力学性质的统一框架目前仍是一个挑战。在上文中提到的形态热力学方法为研

究受限流体的普适规律提供了一个潜在的框架。在第四章中提出了一个新的普适

的状态方程来描述受限流体的热力学性质。该模型基于形态热力学，形态热力学

认为对于受限流体的热力学势可以使用如下表达式来描述： 

 ,  (C.9) 

在上式中的自变量为化学势和温度，即在该状态方程中，我们选择化学势作为自

变量而非像之前的工作一样选用密度作为自变量，其中的四个参数可以通过 SPT

得到。借助 Gibbs 吸附方程，化学势和受限流体的密度可以表示为下式， 

 .  (C.10) 

在均相体系中，流体化学势和密度的关系已经有深入的研究，借助于链式规则和

Gibbs-Duhem 方程，可以得到关于受限流体的密度于与之平衡的均相流体密度之

间的关系。通过与模拟结果对比，发现该普适状态方程可很好的描述流体在

Madden-Glandt 模型，硬海绵模型，有序多孔材料和平行板模型中的热力学性质。

该方程是第一个不依赖于多孔材料理论模型的状态方程。该方程表明在描述流体

在多孔材料中的热力学性质时，孔隙率及三个描述多孔材料表面性质的参量其主

导作用，而其他的因素如，孔径分布，孔-孔关联性以及孔的形状对于受限流体的

影响并不大。同时，在第四章中发现即使对于理想气体流体在一些情况下形态热
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力学仍然不能精确的描述其热力学行为，说明了形态热力学仅为一种较为精确的

近似方法而并非一个严格的理论。在第四章中仅考虑了硬球流体，对于该工作的

一个自然的拓展是检验该状态方程是否可以拓展到一些更复杂流体中例如，方阱

（Square well）流体和 LJ（Lennard-Jones）流体。在未来的工作中，我们希望探

究这一普适状态方程是否可以用来描述流体在弹性可压缩多孔材料中的热力学

性质。 

 由于在 Madden-Glandt 模型中，流体和多孔材料组分与均相两组分混合物十

分相似，唯一的区别是在 Madden-Glandt 模型中，多孔材料组分被“冻结”了，

那么这种冻结效应会如何影响流体热力学性质？虽然大量对于Madden-Glandt模

型的热力学研究被报道。然而目前对于如何定量的描述流体在 Madden-Glandt 模

型中的冻结效应仍不清楚。在第五章中，我们使用流体在 Madden-Glandt 模型中

和与之对应的两组分均相流体中化学势之差来描述冻结效应。 

   (C.11) 

借助于图展开（Diagrammatic expansion），发现在冻结效应的图展开中，只有当

多孔材料的密度大于一阶时出现。因此，冻结效应只有在流体-流体和多孔材料-

多孔材料关联都存在的时候出现。借助于受限流体的 SPT 和分子模拟，发现当

多孔材料粒子大于流体粒子时，冻结效应可以被忽略。当流体粒子大于多孔材料

粒子时，受限流体会表现出比相对应的均相流体更拥挤的现象即使这两种体系中

各组分具有相同的密度。通过对比 SPT 和分子模拟的结果可以发现当流体粒子

大于多孔材料粒子时，SPT 严重高估了在多孔材料中流体的化学势。然而当流体

粒子小于多孔材料粒子时，SPT 的结果和模拟结果可以很好的吻合。SPT 在流体

粒子大于多孔材料粒子时高估了受限流体的化学势可能是由于对于多孔材料中

孔隙率的定义存在着一定的问题。在 SPT 中使用了两种孔隙率分别为几何孔隙

率（探针粒子为理想气体）和探针孔隙率（探针粒子为流体粒子）。通过分析在

SPT 中每一项的贡献，可以发现误差来自于含有探针孔隙率的项中，该结果说明

了探针孔隙率低估计多孔材料中粒子的自由体积。如果仅仅使用几何孔隙率如

SPT2a，受限流体的化学势将会被低估，也就是说仅使用几何孔隙率会高估流体

在多孔材料中的自由体积。因此找到一个合适的孔隙率定义是改进受限流体 SPT

1 1 1
QA Equilb µ b µ b µD = D - D
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的重点。在第五章中我们的研究为设计功能性多孔材料提供了一些新见解。对于

高度分散的体系，即细小的固体组分平均在分布在空间范围内（例如气凝胶），

在该种体系中，冻结效应非常大，并且流体粒子很难吸附到多孔材料中，即使多

孔材料具有极大的孔隙率。该规律可以应用于设计用于气体分离的新型多孔材料。 

总而言之，借助于理论方法和分子模拟方法，本文分析了受限流体的热力学

性质，明确了调控受限流体的关键变量，发现了不同受限流体热力学性质之间的

共同规律，基于此，提出了一个对应态原理和两个状态方程，加深了对于受限流

体的理解，推进了受限流体热力学的发展。 
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