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Résumé long de la these

Les méthodes d’inférence statistique les plus courantes se basent bien souvent sur
le calcul de la fonction de vraisemblance associée aux données observées. C’est par
exemple le cas du maximum de vraisemblance ou encore de stratégies bayésiennes.
Cependant, la complexité grandissante des modeéles statistiques peut donner lieu a
une vraisemblance incalculable. En effet, pour de nombreux domaines d’application,
la modélisation de structures de données complexes nécessite 1’utilisation de modéles
pour lesquels I'expression de la vraisemblance n’est pas forcément disponible sous
forme analytique, ou bien son évaluation n’est pas faisable en un temps raisonnable.
Les méthodes classiques sont alors inutilisables.

Etant donné un modéle paramétré par un vecteur 6, il y a deux situations no-
tables pour lesquelles la vraisemblance f(y | 6) est non disponible.
La premieére survient lorsque le modeéle contient des données non-observées, il s’agit
de variables latentes u. Il est alors nécessaire d’'intégrer sur toutes ses valeurs pos-
sibles pour obtenir f(y | ), ce qui peut étre infaisable lorsque u est de grande
dimension. Ce cas arrive par exemple pour des problémes de génétique des popula-
tions, sous le modéle de coalescence de Kingman (1982a), ot les données génétiques
au temps présent dépendent de I'histoire non-observée des individus échantillonnés.
La deuxiéme situation que l'on peut évoquer est lorsque la vraisemblance f(y | 0)
nécessite le calcul d’une constante de normalisation qui est incalculable. En effet,
la grande dimension de y peut rendre son calcul difficile car il est nécessaire d’in-
tégrer/sommer sur toutes ses valeurs possibles. Cela arrive par exemple lorsque des
données de réseaux sont modélisées par un modéle de graphe aléatoire exponentiel,
ou encore pour les champs aléatoires de Markov. Durant cette thése, nous nous
concentrons sur le premier cas de figure, avec des applications a la génétique des
populations.

De nombreuses stratégies ont été développées en réponse au probléme de vraisem-
blance incalculable. On retrouve par exemple I'algorithme Espérance-Maximisation
(EM, Dempster et al., 1977), les méthodes de vraisemblances composites (Lindsay,
1988 ; Varin et al., 2011), d’inférence indirectes (Gourieroux et al., 1993; Smith,
1993) ou encore les approches de Calcul Bayésien Approché (ABC, Beaumont,
Zhang et al., 2002 ; Marin, Pudlo, Robert et al., 2012; Sisson, Fan et Beaumont,
2018). Cette these s’intéresse a cette derniére solution qui est trés flexible car elle
contourne le calcul de la vraisemblance en utilisant uniquement des simulations selon
le modele considéré. En effet, bien que 'expression de f(y | ) soit non calculable



ou difficile a approximer, il est souvent plus aisé de générer des données selon le
modéle, conditionnellement & des valeurs de paramétres fixées. Pour cette raison, un
tel modeéle est aussi mentionné sous le terme “génératif”.

C’est a travers les travaux de Tavaré et al. (1997), Weiss et von Haeseler (1998),
Pritchard et al. (1999) et Beaumont, Zhang et al. (2002) que ’ABC est apparu. Ini-
tialement développé pour des problémes de génétique des populations, il est mainte-
nant utilisé dans de nombreux autres domaines tels que 1’épidémiologie (Rodrigues,
Francis et al., 2018), I'écologie (Fasiolo et Wood, 2018), la médecine (Fan et al.,
2018). L’ABC se base sur la comparaison entre données simulées et observées. Dans
un premier temps, un parameétre ¢’ est simulé selon une loi a priori. Conditionnel-
lement & @', une pseudo-donnée x est générée selon le modeéle génératif, et compa-
rée a lobservation y. Si la distance entre x et y est assez faible, le paramétre 6’
est conservé. Ce processus de simulation-comparaison est répété un grand nombre
de fois. Alors que 'objectif de nombreuses stratégies bayésiennes est d’obtenir un
échantillon selon la loi a posteriori w(6 | y), ’ABC génére un échantillon selon une
approximation de celle-ci, et ce pour deux raisons. Tout d’abord, pour faciliter leurs
comparaisons, les données sont projetées dans un espace de plus faible dimension au
travers d’un ensemble de résumés statistiques, qui ne sont pas forcément exhaustifs.
Ensuite, un seuil de tolérance est utilisé pour spécifier si oui ou non la distance
entre les résumés simulés et observés est suffisamment faible. Ainsi, la majorité des
méthodes ABC dépend du choix judicieux d’une distance, d’un seuil de similarité et
d’un ensemble de résumés statistiques.

Une grande partie de la littérature s’intéresse a ces choix, en particulier concer-
nant les résumés statistiques qui doivent étre peu nombreux tout en étant suffi-
samment informatifs, dans le but d’éviter le fléau de la dimension. De nombreux
efforts ont été fournis face a cette difficulté (voir par exemple Blum, Nunes et al.,
2013 ; Prangle, 2018). De plus, des approches ABC ont été développées dans le but
de pallier ces problémes de réglage. On retrouve notamment les méthodes d’ajuste-
ment par régression ot les valeurs de parameétres simulés sont corrigées pour réduire
I'influence du seuil d’acceptation (Beaumont, Zhang et al., 2002 ; Blum et Frangois,
2010), ainsi que des approches ABC itératives pour pouvoir considérer des seuils
plus faibles comparées a la version de base, sans altérer leurs performances (Mar-
joram et al., 2003 ; Beaumont, Cornuet et al., 2009 ; Sisson, Fan et Tanaka, 2009 ;
Del Moral et al., 2012).

Des développements récents se basent sur 1’association de simulations selon le
modéle génératif et 'entrainement d’algorithmes d’apprentissage automatique. On
retrouve des stratégies utilisant des réseaux de neurones profonds qui présentent
des qualités prédictives notables (Sheehan et Song, 2016 ; Papamakarios et Murray,
2016 ; Lueckmann et al., 2017). Dans cette idée, pour des problémes de choix de
modéle, une approche intéressante introduite par Pudlo et al. (2016) est basée sur
les foréts aléatoires de Breiman (2001).

L’algorithme des foréts aléatoires est un outil d’apprentissage automatique su-
pervisé, constitué d’'un ensemble d’arbres CART (Breiman, Friedman et al., 1984)
construits a partir d’échantillons bootstrap dont I'entrainement est randomisé. Une
forét aléatoire présente de nombreux atouts. Tout d’abord, sa performance est
assez remarquable en ne nécessitant quasiment aucun réglage (voir par exemple
Fernandez-Delgado et al., 2014). De plus, bien que disponibles sous certaines sim-
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plifications, les foréts bénéficient de résultats de convergence (Biau, 2012 ; Scornet
et al., 2015), soulignant le fait que la vitesse de convergence des estimateurs associés
dépend du nombre de variables explicatives pertinentes et non du nombre total de
covariables. Une forét se montre ainsi trés robuste face aux variables de bruit et tend
a utiliser lors de sa construction majoritairement les variables informatives. De plus,
elle fournit des outils interprétatifs comme des mesures d’importance des variables.
Enfin, il est possible d’obtenir une mesure de la qualité de la forét en termes de
prédictions, sans forcément nécessiter de données de test additionnelles, en utilisant
I'information out-of-bag. Ces avantages justifient bien 1'utilisation de foréts en as-
sociation avec des tables d’entrainement simulées par ABC. En effet, elles évitent
une étape de présélection des résumés statistiques, réduisent I'impact du fléau de
la dimension, et il n’y a ni distance, ni seuil de tolérance a spécifier. Une partie de
ce manuscrit est ainsi consacrée a I’adaptation de I'approche de Pudlo et al. (2016)
pour des problémes d’inférence de paramétres. Dans la suite, ce genre de stratégies
meélant ABC et foréts aléatoires est dénoté par ABC-RF (pour approzimate Bayesian
computation - random forest).

Nous proposons ainsi une approche ABC basée sur les foréts aléatoires dans un
contexte de régression. Dans un premier temps, nous générons une table de réfé-
rence de taille N par ABC, c’est-a-dire un ensemble de parameétres simulés selon la
loi a priori, pour lesquels des données sont produites via le modéle génératif puis
résumées. Nous créons ainsi artificiellement une table d’entrainement constituée de
parameétres 6 et de résumés statistiques associés. Le principe de notre approche est
d’entrainer une forét en régression par dimension de 'espace des paramétres, ainsi
nous ne visons pas toute la distribution a posterior: mais seulement les dimensions
d’intérét. Par exemple, si 6; nous intéresse, une forét en régression va étre construite

avec comme variable réponse le vecteur des valeurs simulées 0](-1), e 0](-N), et comme
variables explicatives les résumés statistiques. Inspirés par les travaux de Meinshau-
sen (2006), a partir de cette forét, nous déduisons un vecteur de poids associé a
y, Wy = (wg,l), e ,w§,N)), et proposons différentes stratégies dans le but d’estimer
les quantités a posteriori telles que 'espérance, la variance et des quantiles. Nous
nous intéressons de plus a l’estimation de covariances a posteriori grace a 1'utilisa-
tion de plusieurs foréts et des informations out-of-bag résultantes. Selon les cibles a

posteriori & estimer, les stratégies sont les suivantes.

e Espérance : somme pondérée des ¢; par wy,.
e Variance : utilisation de wy, et des erreurs out-of-bag au carré.
¢ Quantiles : estimer la fonction de répartition grace aux poids wy,.

e Covariance : construction d’une nouvelle forét utilisant le produit des erreurs
out-of-bag.

Sur des exemples simulés ou réels, comparée a des approches classiques ABC (par
ajustement ou itératives) ainsi qu’aux derniers développements adaptatifs, notre
approche montre des résultats convaincants pour un nombre de simulations égal.
On observe un bon compromis entre la qualité des estimations de paramétres et
celle des intervalles de crédibilités, ainsi qu’une insensibilité relative a I'ajout de
variables de bruits, ce qui permet l'incorporation de nombreux résumés statistiques




sans avoir a les présélectionner. Les résultats pour I'estimation de covariances sont
encourageants mais nécessitent de plus amples améliorations. Ces stratégies pour
I'inférence de paramétres ont été implémentées dans la libraire R abcrf.

Les méthodologies ABC-RF pour le choix de modéle et I'inférence de parameétres
(Pudlo et al., 2016; Raynal et al., 2019, respectivement), et de maniére plus gé-
nérale les foréts sous-jacentes, permettent d’obtenir des prédictions dans tout 1'es-
pace des variables explicatives, peu importe la donnée a prédire. Dans le contexte
ABC, nous disposons généralement d’une seule donnée a prédire, la donnée observée,
et les approches ABC tirent particuliérement bien profit d’approches dites locales,
c’est-a-dire qui utilisent I'information fournie par cette observation. C’est le cas de
I’algorithme ABC de base qui peut étre vu comme une méthode de k plus proches
voisins (Biau, Cérou et al., 2015), ou encore des méthodes ABC par ajustements
qui peuvent tirer profit de régression locales (Beaumont, Zhang et al., 2002). Il est
ainsi naturel de se demander s’il est possible de construire une forét qui tire profit
de la donnée observée pour obtenir une meilleure prédiction associée a celle-ci. Cela
pourrait étre particuliérement bénéfique pour les récents développements par ABC-
RF, ou méme mener a d’éventuelles approches de réajustement par foréts. En nous
écartant du cadre de I’ABC, nous nous intéressons donc au probléme plus général
de la construction de ce type de foréts, que I’on mentionne comme “locales”, dans
un contexte de classification. Nous passons en revue les méthodes d’arbres/foréts
locaux existants, et proposons de nouvelles approches.

Les foréts aléatoires présentent plusieurs particularités sur lesquelles il est pos-
sible d’agir dans le but de prendre en compte la donnée observée. La plus natu-
relle concerne le critére de coupure des arbres permettant de partitionner 'espace
des covariables. Dans un contexte de classification, nous proposons ainsi d’utiliser
un critére prenant en compte 'observation cible au travers de noyaux (unidimen-
sionnels ou multidimensionnels), donnant ainsi plus de poids aux données voisines.
Rappelons que chaque arbre est entrainé sur un échantillon bootstrap, ce qui nous
donne un deuxiéme champs d’action possible, qui a été abordé notamment au tra-
vers des travaux de Fulton et al. (1996) ou encore Xu et al. (2016). L'idée est ainsi
d’effectuer un tirage des données d’entrainement (avec remise ou non) pondéré par
leur proximité avec I'observation d’intérét. Alors que ces approches se basent sur la
pondération d’individus, nous en proposons une se basant sur la pondération des
variables explicatives. Grace aux résultats d’une premiére forét aléatoire, nous dé-
terminons une importance des variables propre a l'observation, que nous utilisons
lors de la construction des arbres. Enfin, une forét en classification agrége un en-
semble d’arbres et utilise comme prédiction finale les votes fournis par chacun. Une
derniére optique est donc d’agir sur ces votes, dans le but de donner plus de poids
aux arbres capables de prédire correctement les données similaires a celle qui nous
intéresse (voir par exemple Robnik-Sikonja, 2004).

Grace a plusieurs exemples pour lesquels des stratégies locales peuvent présenter
un avantage face a l’algorithme classique de Breiman, nous comparons un ensemble
d’adaptations locales. Bien que notre proposition d’approche par importance de
variables locales présente de bons résultats dans certains cas, il n’y a pas de consensus
qui se dégage en terme de qualité de prédiction quant a la meilleure approche.
De plus, alors que ces nouvelles stratégies dépendent bien souvent d’un paramétre
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additionnel de réglage dirigeant leur caractére local (nombre de voisins, fenétres de
noyaux...), les foréts classiques restent trés difficiles a surpasser.

Cette these s’intéresse majoritairement & des applications en génétique des po-
pulations. A partir d’informations génétiques obtenues au temps présent, un objectif
est de reconstruire I'histoire de populations naturelles, dans le but de mieux com-
prendre les forces évolutives expliquant la présente diversité. Cela peut permettre,
par exemple, de lutter plus efficacement contre certaines espéces invasives et ainsi
faciliter la préservation d’autres espéces.

Un modéle fréquemment utilisé est le coalescent de Kingman (1982a). Il permet
de reconstruire 'histoire d’échantillons, du présent vers le passé, en générant dans
un premier temps une généalogie sur laquelle sont ensuite ajoutées des mutations.
Lorsqu’un scénario évolutif liant des populations est considéré, c’est-a-dire qu'un
ensemble d’événements démographiques doit étre respecté pour refléter la réalité,
le coalescent s’adapte facilement. Le coalescent est un parfait exemple de modéle
pour lequel la vraisemblance est incalculable & cause des variables latentes. En effet,
I’histoire de I’échantillon est non-observée, la vraisemblance s’écrit alors

flyl9) :/f<y,H | 0)dH.

En d’autres termes, son calcul nécessite d’'intégrer sur toutes les histoires possibles
H menant a ’observation y, ce qui est difficilement faisable en grande dimension
car un trés grand nombre d’histoires est envisageable. Cependant, il est trés facile
de générer des histoires et données possibles selon ce modéle, ainsi les méthodes
ABC sont particulierement bien appropriées pour traiter des données de génétique
des populations sous un modeéle de coalescent. Il existe notamment un large choix
de programmes de simulation de données génétiques tels que ms (Hudson, 2002)
ou encore DIYABC (Cornuet, Pudlo et al., 2014) que nous employons en plusieurs
occasions.

Deux collaborations avec les biologistes Arnaud Estoup et Marie-Pierre Chapuis,
ont mené a 'amélioration des méthodes ABC-RF pour le choix de modéles et 'in-
férence de parameétres, et par la méme occasion de la librairie R abcrf. Les deux
nouveautés introduites respectivement dans Estoup, Raynal et al. (2018) et Chapuis,
Raynal et al. (2019) sont mentionnées ci-dessous.

Face a un probléme de choix de modéles, plus particulierement de sélection de
scénarios évolutifs en génétique des populations, il est parfois difficile de discerner
avec forte certitude si un événement démographique (par exemple un changement
de taille de population, un mélange de populations,...) est important ou non. Pour
pallier ce probléme, nous proposons de former des groupes de scénarios selon la
présence ou non de I’événement en question. Le choix de modéle par ABC-RF est
ainsi effectué sur ces groupements. Une telle approche permet d’évaluer la difficulté
avec laquelle est identifié chaque événement et ainsi de mieux comprendre le scénario
final sélectionné.

Pour l'estimation des paramétres, les foréts permettent d’obtenir des erreurs
out-of-bag, donnant ainsi une mesure globale de sa qualité de prédiction (sur tout
'espace des covariables). Cependant cette mesure d’erreur n’est pas liée a 1'observa-
tion d’intérét, alors que la qualité de prédiction peut dépendre de la zone ou elle se
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RESUME LONG DE LA THESE

situe. Nous proposons ainsi des mesures d’erreurs a posteriori, évaluées exactement
au point d’intérét, c’est-a-dire conditionnellement & l'observation. Nous calculons
ces erreurs grace aux foréts aléatoires, en faisant usage des poids associés a y déja
évoqués dans le développement ABC-RF pour l'inférence de paramétres.

Ces deux améliorations ont bénéficié & deux études de cas. La premiére porte
sur un probléme de choix de modéles pour sélectionner le meilleur scénario évolutif
liant des populations Pygmées d’Afrique a leurs voisines non-Pygmées. La seconde
étude s’intéresse a la reconstruction de I'histoire évolutive de deux sous-espéces de
criquets pélerins au nord et sud de UAfrique (Schistocerca gregaria). Cette analyse
tire profit de toutes les méthodes ABC-RF développées jusqu’a présent, pour le
choix de modéle et 'inférence de paramétres, et emploie les deux améliorations
mentionnées ci-dessus. Cette analyse souligne un temps de divergence tres récent
entre les deux sous-espéces et une colonisation du nord vers le sud par un faible
nombre d’individus. Cela est mis en relation avec des événements passés connus
pouvant l'expliquer, notamment des migrations de trés longue distance ou encore
I’expansion de certaines populations humaines et avec elles de terrains propices a la
vie du criquet.

Plan de la thése

Cette thése porte ainsi sur le développement de méthodologies ABC par foréts aléa-
toires, avec des applications a la génétique des populations. Nous nous intéressons
de plus a I'élaboration d’algorithmes de foréts aléatoires locales dans un contexte de
classification.

Les trois premiers chapitres sont consacrés a des rappels.
Le Chapitre 1 donne un apercu de méthodes existantes face au probléme de vrai-
semblance incalculable, et plus particuliérement des méthodes ABC. Le Chapitre 2
décrit I'algorithme des foréts aléatoires de Breiman ainsi que les avantages qu’elles
peuvent présenter pour ’ABC. Le Chapitre 3 expose les bases du coalescent et pré-
sente des résumeés statistiques communément utilisés.

Les trois derniers chapitres sont les contributions de cette thése.
Le Chapitre 4 présente la méthodologie ABC-RF pour 'estimation des paramétres
ainsi que de nombreuses comparaisons aux approches existantes. Le Chapitre 5 étu-
die le potentiel d’approches locales par foréts aléatoires pour la classification. Enfin,
le Chapitre 6 introduit des améliorations pour les approches ABC par foréts aléa-
toires et expose deux études de cas, en génétique des populations, les mettant en
oeuvre.
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Introduction

Most statistical methods rely on the computation of the likelihood. This is the case
of maximum likelihood analyses or some Bayesian strategies for example. However,
as statistical models and data structures get increasingly complex, managing the
likelihood function becomes a more and more frequent issue. In various application
fields, we now face many fully parametric situations where the likelihood function
cannot be computed in a reasonable time or simply is unavailable analytically. As
a result, while the corresponding parametric model is well-defined, with unknown
parameter 6, standard solutions based on the density function f(y | ) are prohib-
itive to implement.

There are two common situations for which the likelihood is intractable.
The first one occurs when the model contains some unobserved information, a.k.a.
latent variables u. Recovering the likelihood f(y | #) thus implies integrating over
all possible u values, but this may not be possible, especially when u is of high
dimension. This is typically the case for population genetics problems, when the
Kingman (1982a)’s coalescent model is used, and genetic data are observed at the
present time.
The second situation arises when the likelihood f(y | €) is expressed depending on a
normalising constant which is difficult to calculate. Indeed, the high dimensionality
of y might prevent its evaluation as it requires to integrate over all possible values of
y. It happens for many data structures, of which Markov random fields and network
data under an exponential random graph model are good examples.
In both cases, handling a high dimensional integral is at the core of the likelihood
intractability. This thesis focuses on the first situation, and is interested in applic-
ations to population genetics.

To bypass this hurdle, the last decades witnessed different inferential strategies,
among which composite likelihoods (Lindsay, 1988; Varin et al., 2011), indirect in-
ference (Gourieroux et al., 1993; Smith, 1993) and likelihood-free methods such as
approximate Bayesian computation (ABC, Beaumont, Zhang et al., 2002; Marin,
Pudlo, Robert et al., 2012; Sisson, Fan and Beaumont, 2018) became popular op-
tions. Here, we focus on ABC approaches, which are very flexible as they circum-
vent the likelihood computation by solely relying on simulations generated from the
model. Indeed, even though the likelihood is unavailable or cannot be evaluated
in a reasonable time, it is often simpler to simulate data according to the model
for a given parameter value. For this reason such a model is also mentioned as
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“generative” model.

ABC methods appeared thanks to the work of Tavaré et al. (1997), Weiss and von
Haeseler (1998), Pritchard et al. (1999) and Beaumont, Zhang et al. (2002). Initially
for population genetics problems, it is now widely used in many application fields
such as epidemiology (Rodrigues, Francis et al., 2018), ecology (Fasiolo and Wood,
2018), nuclear imaging (Fan et al., 2018). Its principle is very simple and based
on comparisons between observed and simulated data. It consists in generating a
simulated parameter value ¢’ from a prior distribution. Then, conditionally on &', an
artificial data x is simulated according to the generative model, which is compared
to the observation of interest y. Provided that the distance between x and y is
low enough, the initial #" value is stored. This simulation-comparison process is
repeated a large number of times. While the objective of Bayesian strategies is
often to recover a sample from the posterior distribution 7(6 | y), the basic ABC
approach obtains a sample from an approximation of it, for two reasons. First,
raw data are projected in a lower dimensional space thanks to a set of summary
statistics, which are not necessarily sufficient. Then, a threshold is used to indicate
whether or not the distance between the summarised simulated and observed data
is small enough. Thus, most ABC approaches depend heavily on the careful choice
of a distance, a similarity threshold and a set of summary statistics.

A large part of the literature addresses these choices, especially concerning the
set of summary statistics that should be few in number but still informative to avoid
the curse of dimensionality. This difficulty can be handled thanks to selection pro-
cedures in a predefined set of statistics (e.g. Joyce and Marjoram, 2008; Nunes and
Balding, 2010), using projection techniques (e.g. Wegmann et al., 2009; Fearnhead
and Prangle, 2012) or even by means of regularisation approaches (e.g. Blum, Nunes
et al., 2013; Saulnier et al., 2017). Blum, Nunes et al. (2013) and Prangle (2018)
review strategies regarding this subject. Moreover, many ABC approaches were de-
veloped to lower the influence of this tuning issue. Let us mention the regression
adjustment methods that aim at correcting the discrepancy between the simulated
and observed data, lowering the threshold influence (Beaumont, Zhang et al., 2002;
Blum and Frangois, 2010), or again some iterative schemes allow the use of a smal-
ler value without compromising the algorithm efficiency (Marjoram et al., 2003;
Beaumont, Cornuet et al., 2009; Del Moral et al., 2012).

Some recent developments are based on the association of ABC simulations and
machine learning algorithms. Neural networks are being used more and more, often
under the term “deep learning”, and when properly calibrated they can achieve great
performance. It motivates their use with ABC simulations (Sheehan and Song, 2016;
Mondal et al., 2019), and more sophisticated schemes are possible (Papamakarios
and Murray, 2016; Lueckmann et al., 2017). In this framework, for model choice
problems a recent combination based on Breiman (2001)’s random forests has been
proposed by Pudlo et al. (2016), that avoids some tuning parameters mentioned
above thanks to the random forest assets.

A random forest is a supervised ensemble learning algorithm made of trees
(CARTs, Breiman, Friedman et al., 1984) whose construction is randomised and
performed on bootstrap samples. It presents several advantages that could bene-
fit to ABC strategies. Firstly, its performance is quite good when no tuning is
performed (e.g. Ferndndez-Delgado et al., 2014). Moreover, while available under
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simplifying assumptions, some convergence results exist (Biau, 2012; Scornet et al.,
2015) highlighting convergence rates for the associated estimators depending only
on the number of relevant explanatory variables. Thus, a forest is robust toward
noise variables and aims at using covariates useful for the problem at hand during
its construction. It provides interesting interpretative tools as variable importance
measures that can be computed during the training phase. Finally, its quality in
terms of prediction accuracy can be assessed without requiring any additional test
data, thanks to the so called out-of-bag errors. These perks motivate the use of
forests trained on reference tables generated with the generative model. Indeed, a
preliminary selection of a small number of summary statistics is not needed, they
reduce the influence of the curse of dimensionality, and no distance or acceptance
threshold needs to be specified.

ABC-RF for parameter inference

A large part of this manuscript is devoted to extending the model choice approach
of Pudlo et al. (2016) to the parameter inference framework. In the following this
type of strategy combining ABC and random forests is mentioned as ABC-RF (for
approximate Bayesian computation - random forest). We propose to generate a
reference table of large size, i.e. a set of parameters generated from a prior distribu-
tion for which data are simulated from the generative model and summarised. This
table is used as an artificial training set for some regression random forests, aiming
at learning the relationship between parameters and summary statistics. Because
the whole posterior distribution of 6 is difficult to approximate, while only some
few parameters might be of interest, our proposal consists in training a regression
forest per dimension of the parameter space to deduce posterior quantities of in-
terest. Based on the work of Meinshausen (2006), we propose different strategies
to approximate posterior expectation, variance, quantiles and we make use of ad-
ditional forests when covariances need to be estimated. On simulated and applied
examples, we compare our ABC-RF approach with a set of earlier ABC methods
including regression adjustment and last adaptive developments. Our proposal is
described in Raynal et al. (2019) and implemented in the R package abcrf.

Local random forest

The ABC-RF methodologies for model choice and parameter inference (Pudlo et al.,
2016; Raynal et al., 2019, respectively), and more generally the underlying random
forests, are an eager algorithm in the sense that predictions on the whole space of
explanatory variables can be recovered, no matter the data we would like to predict.
This is done through a separate training and prediction phase. However, in the ABC
framework, in most cases only one observation y is of interest for prediction, and
ABC approaches use this data through local techniques. For example, this is the
case of the basic ABC algorithm that can be perceived as a k-nearest neighbours
method (Biau, Cérou et al., 2015), or regression adjustment ABC that takes profit
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of local regression (Beaumont, Zhang et al., 2002). This is why, in the second part
of this thesis, we are interested in random forests strategies that take into account
the additional information provided by this observed data y. This could be useful
to improve the ABC-RF strategies but also lead to regression adjustment techniques
by means of forest. We therefore deviate from the ABC framework, for the more
general development of some so-called “local” forests. For classification problems we
review some existing strategies and propose new ones.

A random forest presents different characteristics on which we can act to take
into account the observed data. The most intuitive is the splitting criterion in-
volved in the tree construction to partition the predictor space. In the classification
framework, we take into account the observation thanks to kernels (unidimensional
or multidimensional), to propose a weighted Gini index that gives more weights to
training data close y. Moreover, each tree is built on a bootstrap sample, this is the
second action field. This was tackled in the work of Fulton et al. (1996) or more
recently Xu et al. (2016). The idea is to perform data sampling according to their
proximity with the observed data. While this is based on weighting individuals,
we propose a weighting scheme of the explanatory variables instead. Because some
explanatory variables might be more or less important depending on the data to
predict, we compute some local importance measures that we use in the covariate
sampling scheme of the forest. Finally, a usual classification forest uses a set of
tree votes to provide a prediction. The last strategy consists in weighting the tree

votes depending on how well they are able to predict data similar to y (see e.g.
Robnik-Sikonja, 2004).

Applications in population genetics

This manuscript mainly focuses on applications to population genetics. Thanks to
genetic data obtained on individuals in natural populations at the present time, an
objective is to reconstruct the evolutionary history of the sampled genes, in order
to understand the evolutionary forces explaining the present diversity. It can, for
instance, help to control invasive species.

A statistical model commonly used in population genetics is the Kingman’s co-
alescent (Kingman, 1982a). It allows the reconstruction of the sample history, from
the present to the past, by first generating a genealogy on which are added muta-
tions in a second step. This construction is constrained by an evolutionary scenario,
i.e. a set of time ordered demographic events linking populations, and the coales-
cent process can easily mimic most of them. This model is a perfect example of
intractable likelihood due to latent variables. Indeed, the gene history is a latent
variable and the density is hence expressed as

f(Y|9):/f(y,H|6)d”H.

In other terms, to recover the likelihood function we need to integrate over all pos-
sible histories ‘H that can lead to the observation y, this is rarely possible especially
when y is high dimensional as too many histories can lead to y. However, it is fairly
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simple to generate data thanks to the coalescent model, making ABC methods well
suited to analyse population genetics data. Many simulators exist to generate them,

the most known is probably ms (Hudson, 2002). In our experiments we employ the
DIYABC software (Cornuet, Pudlo et al., 2014) for this task.

Two collaborations with the population geneticists Arnaud Estoup and Marie-
Pierre Chapuis led to some improvements on the ABC-RF methodologies for model
choice and parameter inference, as well as the R package abcrf. Two novelties are
introduced in Estoup, Raynal et al. (2018), Chapuis, Raynal et al. (2019) and in
this manuscript.

In the model choice framework, more precisely to select the best evolutionary
scenario using present genetic information, it can be difficult to disentangle with
trust whether or not a demographic event (as a change of population size, an ad-
mixture between populations,...) is important or not. This statement becomes even
more true when a high number of populations and events are considered. To better
understand the scenario events, we propose to study groups of scenarios depending
on the presence or the absence of some key events. It allows to identify and quantify
which events are hard to discriminate and which ones are not.

For parameter estimation, the random forest algorithm provides some out-of-bag
error measurements, giving insights regarding its predictive performance (over the
entire covariate space). However, this type of error is not related to the observation
we are interested in, when the prediction accuracy may depend on the area of the
predictor space it is located in. For this reason, we propose some posterior measures
of error computed conditionally on the observed data to predict, thanks to regression
random forests.

These improvements are introduced in the papers Estoup, Raynal et al. (2018)
and Chapuis, Raynal et al. (2019), on which two population genetics case studies
are displayed. The first one is a model choice problem to select the best scenario
linking African Pygmy populations to their non-Pygmy neighbours. The second
study aims at reconstructing the past of two desert locust sub-species (Schistocerca
gregaria) in North and South Africa. It takes profit of all the ABC-RF approaches,
for model choice and parameter inference, as well as the model grouping strategy
and the computation of posterior measures of error.
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Thesis outline

This thesis focuses on the development of ABC random forest methodologies, with
some applications to population genetics. Moreover, we are also interested in the
creation of local random forests in a classification setting.

The first three chapters are reminders.
Chapter 1 gives an overview of existing inferential techniques when the likelihood
is intractable due to latent variables, we especially insist on the ABC methodolo-
gies. Chapter 2 describes Breiman’s random forest algorithm and its advantages for
ABC. Chapter 3 presents the basis of the coalescent model and gives some common
associated summary statistics.

The last three chapters are the contributions of this thesis.
Chapter 4 introduces the ABC-RF methodology for parameter inference as well
as various comparisons with earlier ABC approaches. Chapter 5 studies how to
construct local random forests in a classification setting. Finally, Chapter 6 proposes
two improvements for the ABC-RF methodologies, which are successfully applied in
two population genetics case studies.
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CHAPTER 1. LIKELIHOOD-FREE INFERENCE

1.1 Introduction

We consider an observed data y € ), whose generation process can be described
by a statistical model, M, parameterized by an unknown vector § € © C RP. The
likelihood of the observation is denoted f(y | ).

To find the best suited # value for y, the most known frequentist solution is the
maximum likelihood estimator (MLE), which consists in finding 6 that provides the
maximal likelihood value for y:

Orpp € argmax [y 0).
0o

Bayesian paradigm The Bayesian paradigm introduces prior knowledge on para-
meters thanks to a prior distribution denoted m(#). This prior is updated by the
observed data y through its likelihood f(y | 8). A Bayesian analysis hence relies on
the posterior distribution 7(6 | y), derived from the Bayes’ theorem

Sy [ 0)m(6)
J £y | 0)m(0)do

(0 |y) = o f(y | O)m(6).

The posterior distribution is the probability distribution of 6 given y. It provides all
the necessary information for parameter inference: posterior expectations, variances
and credible sets. When its expression is explicitly available, an estimator of 6
analogous to the MLE, is the maximum a posteriori (MAP):

Onrap € argmax (0 | y) = argmax f(y | 0)x(0).
0o 9o

Note that when the prior is uniform on the support of 6, the MAP is equal to
the MLE. Moreover, the MAP is not associated to any loss function for continuous
parameter values. When the L»-loss is considered, the Bayesian estimator is the
posterior expectation

§—F@|y) = /97?(9 | y)db.

The exact expression of 7(6 | y) is rarely available and some strategies to sample
from the posterior are used. The class of Markov chain Monte Carlo methods
(MCMC, Robert and Casella, 2005) are very common. The Metropolis-Hastings
and the Gibbs algorithms are well known MCMC methods, to obtain realisations
according to the posterior distribution. The former, for example, creates a Markov
chain of /) values with stationary distribution 7(6 | y), a new state 60+Y is sampled
according to a suited proposal distribution (- | ) and accepted with probability

. {1 £y 1 66+9) (6| 04+)) m(6U+D) } | )

fy [69) q(0¢+) [60) 7 (61)

The acceptance rate is expressed as the ratio of the product between the target
(m(0 | y) here) and the proposal.
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1.1. INTRODUCTION

Intractable likelihood

As statistical models and data structures get increasingly complex, managing the
likelihood function becomes a more and more frequent issue. We now face many real-
istic fully parametric situations where the likelihood function cannot be computed
in a reasonable time or simply is unavailable. In this case, the above mentioned
strategies that rely on the likelihood are not directly appliable. There are two main
reasons that can explain such intractability of the likelihood, we describe them be-
low.

Latent variables The first reason is the presence of latent variables u € U, so
that the likelihood expression is deduced by integrating (or summing for discrete u)
the completed likelihood f(y,u | #) over all possible u values:

fiy 10) = /f(y,u | 0)du. (1.2)

There are two types of missing information. The first one is the case of missing data,
when random variables are unobserved even though they should be. For example
when people refuse to answer questions in surveys. The second case is when import-
ant random variables for the model are never observed, referred as hidden/latent
variables (or again auxiliary variables when they are introduced artificially). Ex-
amples are state-space models or coalescent models. We present the latter in Chapter
3, for which u is the unobserved gene trees that lead to the present observed genetic
information y. When u is of high dimension, the calculation of the integral (1.2)
becomes difficult or even impossible.

Normalising constant The second source of intractability is the presence of an
intractable normalising constant. In this case, the likelihood of the model is written

as ~
[y |0)
fiy 18) = 20)
where f(y | 6) is the unnormalised likelihood, and Z(6) = i fly | 0)dy its normal-
ising constant. This value Z(0) is hard to calculate when the dimension of y is very
large. Hence, a very high dimensional integral is again at the core of the likelihood
intractability. The Ising model, in Markov random field, presents such an issue, as
well as the exponential random graph model for network data (Robins et al., 2007).
In both of them, we have Z(f) = 3" exp(0S5(y)), where S() is a set of sufficient
statistics. This sum operates over all possible values of y. For networks with n
nodes, this sum is made of 2(»~1/2 terms, which cannot be computed easily when
n is large.

Some models can present a normalising constant and latent variables at the same
time, this is a case of doubly-intractable likelihood. In the remaining we focus on
the intractability issue due to latent variables, so that the likelihood is expressed as
the integral of the completed f(y,u | 0) (Equation (1.2)).

Moreover, in this thesis, the main application field of interest is population ge-
netics, when the model is the Kingman’s coalescent, (see Chapter 3). In brief, the
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data y is the genetic information observed at the present time, and the unobserved
data u is the associated past gene history (denoted H). In this case, # are demo-
graphic, historical or mutational parameters, and performing simulations from u | 6
is feasible and presented in Chapter 3. Note that the likelihood of y is intractable
but it is possible to evaluate y | u, 0 (Felsenstein, 1981; RoyChoudhury, Felsenstein
et al., 2008). In this application framework, it is common to have y that is a very
high dimensional vector.

In general, we hence make the assumption that even though the likelihood is
intractable, performing simulations according to the generative model is easier. In
other terms, for a given 6 value, artificial data y can be generated (which often rely
on a preliminary simulation of u | ).

Furthermore, a major problem we face is that the analytical expression of the
density f(u|y,0) is unknown (because it would be equivalent to the knowledge of
the likelihood), and it is not possible to simulate from it either (at least for large
y). These constraints prevent the use of most strategies as we will see below.

We provide in the next section a non-exhaustive overview of solutions and we es-
pecially develop the case of Approximate Bayesian Computation techniques (ABC),
at the core of this thesis. Next section is divided in three parts depending on how the
parameter inference is performed: by either maximising an approximated likelihood,
circumventing the calculation of likelihood, or relying on the posterior distribution.

1.2 Intractable likelihood solutions

1.2.1 Approximating the likelihood

A very natural strategy to perform parameter inference when the likelihood expres-
sion is not available consists in approximating the likelihood for a fixed value of 6,
and then choosing the parameter value that provides the maximal approximated
likelihood. We present below some existing strategies for this purpose.

1.2.1.1 Monte Carlo estimators

By examining the likelihood expression (Equation (1.2)), an intuitive approach
would be to approximate the likelihood thanks to simulations, using a Monte-
Carlo estimator. From the completed likelihood decomposition

f(y16) = / f(y.u | 6)du = / F(y | w,60)F(u | 6)du = By [f(y | u,0)],

we can independently generate N latent variables u™, ..., u®™ from f(- | 6), and
derive the estimated likelihood

fly | u®,

||Mz

fylo) =

Unfortunately, when u is of high dimension, simulating u® without taking into
account y, leads in most cases to probability f(y | u®,) = 0. That is to say, the
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observed data cannot be retrieved with the simulated configuration of the latent
variable, y and u®” are incompatible. The corresponding estimator has very high
variance, and the number of simulations N should be extremely large to counter-
balance this issue, which is computational unfeasible in practice.

An alternative to prevent this issue, and approximating the likelihood, is to use
importance sampling (IS). When considering an IS proposal distribution ¢(- | #) on
u, such that {u:¢(u|0) >0} D {u: f(u]|d) > 0}, from

9 0
F510)= [ syl o)in /fy’“' !6>du=Eq<uw){%],

we have the importance sampling estimate

fy, @1 9)
fy16)= Z )||9 , (1.3)

where the u” values are drawn from ¢(- | #). This distribution must be chosen so
that the importance weights f(y,u®” | #)/q(u® | §) have small variance, to achieve
small variance estimator. Its optimal choice for the proposal is f(u | y,0). Indeed,
from basic calculations we have:

fly,ulb) _ fly,ulf)  fluly,0)f(y|0)
gal0)  fluly,0) flaly, )

and the importance sampling estimator is a zero variance estimator. Unfortunately,
f(u | y,0) is unknown. Indeed, outside of the importance sampling aspect, if
f(u]y,0) is known in addition of f(y,u | ), this is equivalent to the knowledge
of the likelihood. Thus, the main drawback of this estimator lies in the choice of
g(u | 0), which is very challenging. Usually, it must be chosen with a dependence
on y, to always produce latent variables consistent with the observation, that is to
say f(y,u® | §) # 0. However, when the dimension of u grows, the variance of the
weights and thus the importance sampling estimator can be very large, leading to
poor likelihood approximations. For a large review of efficient importance sampling
techniques we recommend Owen (2000) and Liu (2004).

For the coalescent setting, Griffiths and Tavaré (1994a) obtained a Monte Carlo
approximation of the likelihood thanks to Markov chain recursion. This was then
largely applied and extended by Griffiths and Tavaré (1994b,c), Nielsen (1997),
Griffiths and Tavaré (1999) and Bahlo and Griffiths (2000). It was then pointed out
by Felsenstein et al. (1999) that the Griffiths and Tavaré’s approach is a version of IS
with a particular proposal distribution. Importance sampling is thus largely used to
approximate the likelihood of genetic samples, improvements and adaptation of the
proposal is recurrent, for example, Stephens and Donnelly (2000) use as importance
distribution an approximation of the optimal choice f(u | y,6). See also De lorio
and Griffiths (2004a,b), De lorio, Griffiths et al. (2005), Merle et al. (2017) and
Rousset et al. (2018). These methods can be very computer intensive because of
the large state space of the genealogies. Note that Cornuet, Marin et al. (2012)
proposed the AMIS algorithm which reuses the importance weights to decrease the
computational cost. In parallel of Griffiths and Tavaré’s work, from a more MCMC
perspective, Kuhner et al. (1995, 1998) propose to construct a Metropolis-Hastings

= f(y190),
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algorithm with stationary distribution f(u | y,#), for a fixed 6 value, in order to
approximate a relative likelihood surface.

Moreover, adaptive/sequential importance sampling or population/sequential
Monte-Carlo (PMC/SMC) are more evolved techniques to approximate the like-
lihood, but also computationally more expensive, see e.g. Cappé et al. (2004) and
Del Moral et al. (2006) or the recent survey paper of Bugallo et al. (2017).

The Monte-Carlo estimators of the likelihood presented here are unbiased, in the
sense that their expectations yield the exact likelihood. For this reason, they are
often used in pair with MCMC algorithms, as we will see below.

1.2.1.2 Approximated model

Another strategy to estimate the likelihood is to relax the assumptions on the data.
When the likelihood computation for the whole data is intractable, but still feasible
on subsets, some composite likelihood (Lindsay, 1988) (or pseudolikelihood, Be-
sag, 1974, 1975) approaches can be useful. The principle of composite likelihood is
to split the observed data y = (v1,...,¥s) in subsets, on which a likelihood (mar-
ginal or conditional) can be calculated for each of them. Then, these likelihoods are
multiplied to form the composite likelihood, as if the subsets were independent. For
example, the pairwise composite likelihood compute the marginal likelihood of pair
data, and is hence expressed as

N— N
fpazry|6 H H yl7y] ’9

For the coalescent model, the pairwise version has for example been used by Hudson
(2001), and Fearnhead and Donnelly (2002) when non-overlapping segments of data
are assumed independent. Note that the site/allele frequency spectrum computed
on genomic data sets are often used in order to determine an associated composite
likelihood estimator (see e.g. Gutenkunst et al., 2009; Excoffier, Dupanloup et al.,
2013). In a more general context, a large amount of composite likelihood versions
exists. See the review papers of Varin (2008) and Varin et al. (2011) for a large
overview of these methods, and Larribe and Fearnhead (2011) for a special focus on
genetic applications.

Another approach is the PAC-likelihood introduced by Li and Stephens (2003),
it assumes that the likelihood of y = (y1, ..., y,) can be decomposed into a so called
product of approximate conditionals (PAC). Hence, it uses the decomposition

Ty 10)=Ffn10)f(ye |y, 0) ... flyn | v, yn-1,0).

All the conditional likelihoods on the right-hand side are then approximated and
multiplied to produce the PAC version. Even though, this likelihood is approxim-
ated, it can achieve good performance on genetic problems (Smith and Fearnhead,
2005; RoyChoudhury and Stephens, 2007; Cornuet and Beaumont, 2007).
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1.2.2 Frequentist solutions to circumvent the likelihood

Another strategy consists in bypassing the likelihood calculation, by using moments
or auxiliary models.

1.2.2.1 Expectation-Maximisation

To find the MLE in presence of latent variables, the most popular approach is
probably the expectation-maximisation algorithm (EM, Dempster et al., 1977). Its
principle consists in building a sequence of parameter values %), so that the log-
likelihood increases through the algorithm iterations. Given an initial parameter
value, this algorithm is divided in two steps:

e The E-step (for expectation) consists in computing the conditional expectation
Ef(u\yﬁ(i)) [1Og(f(Y7 u | 0))} :

e The M-step (for maximisation) maximises the previous expectation with re-
spect to 6, to obtain the next iteration 90+,

This is repeated until a convergence criterion is reached. Dempster et al. (1977)
prove that each algorithm iteration increases the log-likelihood value. However, the
final #) might be a local optimum. Moreover, this algorithm requires the knowledge
of the distribution of u given y and ), at the current iteration. The calculation of
the expectation can be replaced by stochastic approximations, see for example the
SEM (Celeux and Diebolt, 1985), the SAEM (Delyon et al., 1999) or the MCEM (Wei
and Tanner, 1990). For the coalescent model, f(u |y, #) is unknown and performing
simulations according to it is very difficult. Moreover, exploring efficiently the high
dimensional latent space (the gene histories) is also a complicated task, for these
reasons these EM algorithms are not appropriate.

1.2.2.2 Indirect inference

When the likelihood of the model is not available in closed form, a solution is to
use a simpler one, with a tractable likelihood, able to capture information about
the observation y. This auxiliary model is parameterized by ¢ € ®, and fu.u.(y | ¢)
denotes its likelihood. In this section we present the indirect inference introduced
by Gourieroux et al. (1993) and Smith (1993), which relies on such an artificial
model. Its principle is to deduce the relationship between the original and auxiliary
models, thanks to their respective parameters 6 and ¢. The idea is (1) to compute
an estimate ¢y associated to y, (2) to deduce the link between ¢ and 6, (3) in order
to find the value of 6 that produced ggy. When the link between ¢ and 6 is known,
this task is easy. Indeed, this relationship is described in the literature through the
so called binding or mapping function: ¢(-), providing the value of ¢ given a value
of 8. When this function is known and injective, its inverse, denoted (), provides
the estimate = (¢y) we are looking for.
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The estimate ngﬁy is deduced thanks to an estimating function, Q(y; ), for ex-
ample the log-likelihood of the auxiliary model. Hence

¢y € argmax Q(y; ¢).
ped

When the binding function is unknown, we assume that simulations thanks to the
original model can still be performed. Hence, for a given parameter value 6, indirect
inference uses a set of simulated data of equal dimension to y: {yi,...,yn}, gener-
ated from the generative model f(- | #). The auxiliary parameter for each of these
artificial data is deduced as

ngz' (9> € arg max Q(Yi; ¢)v
Pped

~

and an estimate of the binding function ¢y () is expressed as:

by (6)-

M =

1
¢N(9) = N
=1

The final step to obtain an approximation of 0 proposed by Gourieroux et al. (1993)
consists in selecting the parameter 6 that generates the closest ¢n () value to ¢y

Ox € argmin { (6x(6) — dy) W (6(6) = dy)

0cO

where the superscript " designates the transpose function and W a positive definite
weight matrix. Some discussions concerning the optimal choice of W can be found
in Gourieroux et al. (1993) and Monfardini (1998).

Other alternatives exists for this final step, for example the simulated quasi-
maximum likelihood estimator, proposed by Smith (1993), consists in maximising
the auxiliary likelihood of the observation:

éN € argmax fauz(y | d)N(Q))
(2SC)

More improvements followed, Gallant and Tauchen (1996), Monfardini (1998) and
Heggland and Frigessi (2004) are examples. This auxiliary model strategy is also
encountered in approximate Bayesian computation (Section 1.3.2), it justifies the
extensive details provided in this part.

1.2.2.3 Moment based methods

Other methods relies on moment conditions m(y | ). These are statements in-
volving the observed data and the parameters, with respect that Ey 9 (m(y | 6%)) =
0, where #* is the parameter value we are searching for. In our likelihood based in-
ference framework, as this expectation is not available in closed form, a Monte-Carlo
estimator can be used for a given value of #. The generalized method of moments
(GMM, Hansen, 1982; Hansen and Singleton, 1982) searches for the parameter value
that provides the approximated moments as close to zero as possible (in the sense
of a weighted quadratic distance). When no closed form for the moment conditions

32



1.2. INTRACTABLE LIKELIHOOD SOLUTIONS

exists, difference between simulated and observed summary statistics can be used as
moments. This simulated method of moments (SMM, McFadden, 1989) searches for
the parameter value # minimising the quadratic distance between the summaries.
Let us mention that it can be seen as a special case of indirect inference (Heggland
and Frigessi, 2004).

1.2.2.4 (Gaussian assumptions

Finally, assumptions on data summary statistics can be considered, which lead to
the synthetic likelihood approach proposed by Wood (2010). Its proposal does
not try to replace the likelihood of y, but the likelihood of a set of informative
summary statistics s = s(y). For a fixed 6 value, the key assumption on which
is built the synthetic likelihood is that, conditional to 8, the summary statistics s
follow a multivariate normal distribution, with mean vector and covariance matrix
parameters, respectively p(f) and o(6). These parameters are estimated through N
simulations from the generative model. We thus have

In(s10) =N(s | pn(0),0n(0)),

where A is the density of the multivariate normal distribution and px (), on(6) the
estimated parameters. Synthetic likelihood approaches can also be seen as a specific
case of indirect inference, where the auxiliary model used is multivariate Gaussian,
the estimating function its likelihood, and focusing on summary statistics instead of
raw data. Some Bayesian improvements exists, see Drovandi, Pettitt and Lee (2015)
and Price et al. (2018) for more information.

1.2.3 Bayesian inference

Finally, in the Bayesian framework, some strategies exist to deal with latent vari-
ables.

Metropolis-Hastings As we noticed earlier, a Metropolis-Hastings algorithm
with stationary distribution 7(f | y) cannot be implemented as it requires the in-
tractable likelihood expression twice. Toward this issue, many Metropolis-Hastings
adaptations developed.

Even though the likelihood f(y | 6) is unavailable, the completed likelihood
f(y,u | 0) is often easier to compute. As a result, a version of Metropolis-Hastings
whose target distribution is 7(f,u | y) emerged (see Wilson and Balding, 1998;
Beaumont, 1999, for coalescent context). Algorithm 1.1 presents this strategy, which
yields MCMC samples from the joint 7(6,u | y), discarding the unwanted dimen-
sions results in marginalising over them, and an approximation of the posterior can

be deduced.

The main drawback of Algorithm 1.1 is its low effectiveness when the joint dis-
tribution is hard to explore due to its high dimension, as well as the specification
of the transition distribution. For the coalescent model, choosing a proposal on u,
(i.e. on the gene history), implies performing small modifications on the current
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Algorithm 1.1 : Metropolis-Hastings with target m(0,u | y)

Input : A starting value u") and 6™, the number of iterations N
14 1;

while : < N do

Generate 0,0 from a proposal distribution ¢(-,- | u®®,®);
Compute the acceptance ratio

oy [0) q(u®.69 | w.0) =(@)
7y u® [ 600) g{u’. 6" [u®,90) 7(90)

9

A:min{

Set #0FD) «+— ¢ and ul*Y « o’ with probability A,
otherwise 0+ < 6@ and ul+) + u®;

141+ 1;

end

state. Too small changes involve slow exploration of the history space, and bigger
changes results in low acceptance rate, (see Wilson and Balding, 1998; Beerli and
Felsenstein, 1999; Felsenstein et al., 1999; Beaumont, 1999; Nielsen, 2000, for more
information).

Another natural idea consists in using the usual Metropolis-Hastings algorithm
with target (6 | y), for which the intractable likelihoods are estimated and plugged-
into each acceptance ratio (1.1). When the importance sampling estimator of the
likelihood is used (Equation (1.3)), such a strategy is referred as Monte Carlo within
Metropolis (O’Ryan et al., 1998; O’Neill et al., 2000; Chikhi et al., 2001; Berthier et
al., 2002; Beaumont, 2003). For each iteration of the Metropolis-Hastings algorithm,
two new independent likelihood estimates are required and the resulting samples
do not come from 7(# | y), but from an approximation of it. Beaumont (2003)
proposed to keep track of the likelihood estimates from one iteration to the next.
Called the grouped independent Metropolis-Hastings, his algorithm uses an unbiased
estimator of the likelihood (Equation (1.3)) and proved to converge toward the
exact posterior 7(6 | y). This idea was then extended and generalised by Andrieu
and Roberts (2009), under the well known pseudo-marginal Metropolis-Hastings
(PMMH) methods. Recent adaptations are the blockwise PMMH (Tran, Kohn et
al., 2017a) and the correlated PMMH (Deligiannidis et al., 2018).

(Metropolis-within-)Gibbs Another class of MCMC algorithm to sample from
the posterior distribution is the Gibbs sampler. A basic two stage Gibbs sampler
can be used to draw samples from the joint posterior distribution (6, u | y). Suc-
cessive sampling from the distributions of 6 | u,y and u | 6,y are performed.
This strategy was initially proposed by Tanner and Wong (1987) under the name
data augmentation, outside of the Gibbs framework. Sampling from the conditional
(0 | u,y) is usually easy, however from f(u | 6,y) is difficult and it limits this
approach, especially when the dimension of u is large. To solve this problem, one
might think about a Metropolis-within-Gibbs algorithm —i.e. obtaining a simulation
from f(u|d,y) by building a Metropolis-Hastings chain targeting this distribution
— but its expression is unknown, preventing such approach.
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Importance sampling squared An unbiased estimator of the likelihood can
also be used to make feasible an importance sampling strategy to approximate the
posterior distribution. Indeed, a classic importance sampling method can be used
to approximate any posterior expectation for some function of parameters h(0):

B00) |y) = [ o) | y)a0 = [ o) X" g

x /h(@)f(y | 0)m(0)do, (1.4)

where Z is the normalising constant [ f(y | #)m(0)df. Considering an importance
distribution ¢(#) to generate N independent and identically distributed (i.i.d.) @
values, we have the respective approximations for Equation (1.4) and Z:

N N

1 . . 1 . 4
Nzw(ew)h(e@) and Nzw(ew), where w(#%) = f
=1 =1

y | 0@)m(6)
q(6)

The resulting approximated posterior expectation is

N

. w(f®
BO0)19) = Y e

However, the importance weights cannot be computed due to the presence of the
intractable likelihood expression. To circumvent this issue, Tran, Scharth et al.
(2013) propose to replace its expression by an unbiased estimation, thanks to im-
portance sampling. They name this approach “importance sampling squared” (ISQ)
due to the double use of importance sampling. Unfortunately, the difficulties to
approximate the likelihood mentioned in Section 1.2.1 still remain, (due to the high
dimensionality of u).

h(0®).

Variational inference To approximate the posterior distribution 7(6 | y) one
deterministic approach is the variation inference (a.k.a. variational Bayes in this
setting) (Attias, 2000; Bishop, 2006). Its principle is to use a set of tractable distri-
butions on 6, denoted ¢ (0), to approximate the posterior of interest. ¢, (6) is the so
called variational distribution, and v its variational parameters. To determine the
closest distribution to (6 | y), the Kullback-Leiber (KL) divergence between gy (0)
and 7(0 | y) is minimised:

KL(qy(0) || 7(60 | y)) = — / 2v(6) log Wc(&’e?)

== [ a0 wa + [ auto)togav(0)as

_ / 0 (6)log f(y | 0)m(6)d0 + / 4v(0) log g (0)d0 + log f(y)

db

Note that the logarithm of the evidence, log f(y), is not involved in the minimisation
toward ¢y (f), moreover, the two left hand terms are in fact the negation of the
evidence lower bound (denoted ELBO in the literature). The likelihood expression
is again required, preventing such an approach. An alternative is to target the joint
posterior distribution (6, u | y). In this case, the mean-field variational inference
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can be used and the variational function is decomposed into ¢, (6, u) = q(6)g(u).
This mean-field variational Bayes method alternates between optimisation according
to u and 6, to finally consider the optimal ¢(#) as an approximation of the posterior
7(0 | y). The dependence between 6 and u is hence broken. Again relying on
an unbiased estimator of the likelihood, Tran, Kohn et al. (2017b) and Gunawan
et al. (2017) recently extended the variational Bayes approach to approximate the
posterior on § when the likelihood is intractable. Still in the approximate Bayesian
setting, let finally mention the integrated nested Laplace approximation method
(INLA, Rue et al., 2009), that is increasingly used for Bayesian inference.

The above presented strategies are usually hard to apply due to the large data
dimension we are facing (observed or latent): MCMC have difficulties to explore
such a high dimensional space, IS techniques suffer from the high dimensionality of
the latent space inducing a large variance for its weights, and both can be compu-
tationally intensive. Moreover, mean-field variational inference can produce under-
estimated posterior variances (Consonni and Marin, 2007). In a general manner, a
limited range of model structures is allowed, and simplifying assumptions might be
required.

1.3 Approximate Bayesian Computation

The solution we focus on to face the intractability of the likelihood, is called ap-
proximate Bayesian computation (ABC). ABC relies on the assumption that, for a
given parameter value, even if the likelihood cannot be evaluated, it is still possible
to generate artificial data from the model. It is a likelihood-free method relying
only on simulations and is thus very flexible. Initially introduced in population ge-
netics problems (Weiss and von Haeseler, 1998; Pritchard et al., 1999; Beaumont,
Zhang et al., 2002), ABC methods have been used in an ever increasing range of
applications, corresponding to different types of complex models in diverse scientific
fields as epidemiology (e.g. Rodrigues, Francis et al., 2018), systems biology (e.g.
Liepe and Stumpf, 2018), climatism (e.g. Holden et al., 2018), ecology (e.g. Fasiolo
and Wood, 2018), nuclear imaging (e.g. Fan et al., 2018), population linguistics (e.g.
Thouzeau et al., 2017).

In the following, we focus on ABC methods to perform parameter inference: we
present the basics of ABC, emphasise the tuning aspects involved in ABC, and intro-
duce the methods used in the following chapters. We do not present the asymptotic
and theoretical properties of ABC, see Fernhead (2018) for a recent review.

1.3.1 Foundation of ABC

As in many Bayesian techniques, the goal of ABC is to obtain simulations from the
posterior distribution 7(6 | y). To do so, the idea is to generate a parameter value
¢ from the prior 7(:), and to accept it as coming from the posterior if a data x
simulated from the generative model f(- | #’), is similar enough to the observation
y. As y is a high dimensional vector, projections in a simpler space are required to
ease comparisons, and one of the main questions of ABC is the meaning of “similar”.
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The earliest precursor of ABC is Rubin (1984). Outside of the intractability
problem we are facing, but simply to illustrate the concept of posterior distribu-
tion in an intuitive way, Rubin (1984), proposed the rejection sampling algorithm
described in Algorithm 1.2. It generates an N sample of parameter values from
exactly w(0 | y), by iteratively drawing a parameter value from m(f), generating a
pseudo-data x from the generative model conditioned on this parameter, and ac-
cepting the simulated parameters if there is an exact match between x and y. This

Algorithm 1.2 : Basic rejection sampling

for i+ 1to N do
repeat
Simulate 0@ ~ 7(-);
Simulate x® ~ f(- | §®);
until x = y:
Accept 6):
end

rejection sampler is likelihood-free but only efficient when y is a low dimensional
discrete vector. In the opposite case, simulating a pseudo-data x exactly equal to y
is a zero probability event.

To avoid this issue, a solution that emerged is to project y into a lower di-
mensional space, thanks to a set of summary statistics 7(-) € & C R?, where d
is the number of summary statistics. For convenience, we denote in this chapter
nx = n(x). Tavaré et al. (1997) proposed a method to estimate the time of the
most recent common ancestor in a coalescent tree, where raw data are summarised.
The final acceptance probability of their rejection algorithm depends on a probab-
ility proportional to the likelihood of the summarised observation, thus this is still
not a likelihood-free algorithm.

Independently of Rubin’s work, Weiss and von Haeseler (1998) introduce a sim-
ilar algorithm. Based on a grid of parameter values, and not on prior simulations
(even though a uniform grid can be seen as a uniform prior), they propose to approx-
imate the likelihood for each grid coordinate, by the proportion of times simulated
summaries are close enough to the observed ones, in the sense that their distance
being lower than a threshold. This way of comparing data is a cornerstone of most
ABC methods.

The incorporation of prior and of what will later be called basic ABC algorithm
(Algorithm 1.3) is achieved by Pritchard et al. (1999). The terms “approximate
Bayesian computation” are given by Beaumont, Zhang et al. (2002). The similarity
between the simulated and observed data is evaluated thanks to a distance p, a
threshold parameter ¢, also called tolerance, and a set of summary statistics 7.

The approximation aspects of ABC are twofold (outside the standard Monte-
Carlo approximation):

e the data are projected into a lower dimensional space thanks to a set of sum-
mary statistics. Unless these are sufficient, an approximation occurs as the
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Algorithm 1.3 : Basic ABC rejection sampling
for 1 <+ 1 to N do
repeat
Simulate 0% ~ 7(-);
Simulate x® ~ f(- | 0®);
Compute n,¢);
until p(neo,1y) < €
Accept (09, n.));
end

target posterior is thus 7(6 | y). This posterior is often mentioned as partial
posterior distribution,

e the similarity is measured thanks to a well chosen distance p(-, -) and its asso-
ciated tolerance level €, leading to an approximated posterior 7, (6 | ny).

The sampling procedure described in Algorithm 1.3 draws (6,7x) values from the
joint posterior

Tpe(0,0x | 1y) o< T{p(ne,my) < €} f(nx | 0)7(0), (1.5)

where 1{-} denotes the indicator function, f(nx | 0) is the likelihood of a summarised
data, and intuitively sampling from it consists in generating x from the model, and
computing 7. Note also that the proportional symbol stands for the omission of
the normalisation constant Z = [ [ 1{p(nx,ny) < €} f(nx | 0)m(0)dOdny.

The joint empirical measure from such an N sample is given by

N

1

i=1
where § denotes the Dirac measure.

When integrating over 7y it returns N parameter values drawn not from the
exact posterior 7(6 | y), but from the approximated distribution

Tpe(8 | 1) o / 1 {p(may) < €} £ | 0)7(6)dns.

Intuitively, if statistics are sufficient and € = 0, we retrieve Algorithm 1.2 as well as
the exact posterior. However, summary statistics are rarely sufficient in practice, and
the threshold value should be as small as possible without rendering the algorithm
computationally unfeasible. We can also remark that if € — co, we get simulations
from the prior.

Let mention that instead of sampling from the joint posterior distribution (1.5),
one can choose to sample from

Tpe (0, Mx(1:3) | 1ly) o (le{pnx  Tly) Se}) (anxw!@) m(0), (1.6)
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where 7).(1.p) denotes the quantities 7y(1),...,7x). These are obtained by drawing
data B times from the generative model using a fixed value of . Equation (1.6)
still admits as marginal in 6 the desired posterior 7, (6 | 7y), moreover we retrieve
(1.5) if B = 1. This more costly version is notably used in importance sampling
ABC strategies to reduce the importance weight variance, or again in sequential
approaches to lower the variance of the Metropolis-Hastings ratio (see e.g. Toni et
al., 2009; Del Moral et al., 2012).

ABC rejection in practice In practice, Algorithm 1.3 can be extremely ex-
pensive in time if the threshold is too small. A more practical generalisation
was proposed by Beaumont, Zhang et al. (2002) and presented in Algorithm 1.4.
It consists in generating an N sample according to f(nx | €)m(f) and assign-
ing to each simulated couple (0© 7,) a weight w® oc K.(p(new,ny)), where
K (-) is a unidimensional smoothing kernel with bandwidth parameter ¢, such that
K.(-) = K(-/e)/e. This kernel gives higher weight to simulated data closer to y,
and vice-versa. This formulation has the advantage to retrieve the regular ABC
acceptance condition when considering a uniform kernel with bandwidth ¢, so that
K (p(new,ny)) o< T{p(nxw,ny) < €}. Moreover, smoother weights can be used, as
the Gaussian or Epanechnikov kernel, this latter gives zero weights to data in its
tails, and smooth weights otherwise. The choice of K presents little influence on
final inference and the Epanechnikov kernel is often used for smooth weighting. In
practice, the bandwidth € is taken so that a proportion p, of the simulations carries
a non-zero weight, which is equivalent to choosing a uniform kernel with bandwidth
equal to the p.-quantile of the distances {p(nxw,ny)}iz1,...n. The weighted sample
is used to obtain an estimator of the posterior distribution, and € can be seen as a
trade-off parameter between bias and variance of the estimator: a large value of €
results in larger sample size, reducing the estimator variance at the cost of a higher
bias, and small € leads to less bias (as p(nx,ny) are small), at the price of a higher
estimator variance.

Algorithm 1.4 : Weighted ABC sampler
for 1 <+ 1 to N do
Simulate 8@ ~ 7(-);
Simulate x®) ~ f(- | 8®));
Compute 1) and p(nxa), 7y );
Assign to (09, n.m) a weight w® oc K (p(nx,ny));
end

Curse of dimensionality One important phenomenon that affects most ABC
methods is the curse of dimensionality, in the sense that the number of summary
statistics d greatly deteriorates the ABC algorithms performances as it gets larger.
Indeed, the basic ABC rejection sampling (Algorithm 1.3) tends to reject more and
more simulations as the dimension of 7 increases, and it quickly gets computationally
inefficient because the number of artificial data generated must be extremely large
to achieve decent performances, (see the discussion in Beaumont, 2010). Algorithm
1.4 is not spared by this problem as the kernel weights are directly influenced by d.
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More precisely, in a non-parametric perspective, an estimate of the posterior density
at @ can be obtained, using the weighted sample and a (Nadaraya—Watson) kernel
density estimation, it results

. S K (09 — 0) K (p(nec . 1y))
(6 = = , .
@l) S Kooy ) 4

where K, is a density-estimation kernel with bandwidth b, usually different from
K., (Beaumont, Zhang et al., 2002; Blum, 2010). Blum (2010) showed that the
mean squared error of such estimator directly depends on the number of summary
statistics, and the larger it is the slower this error decreases toward zero. Similar
results have been deduced by Fearnhead and Prangle (2012), Barber et al. (2015)
and Biau, Cérou et al. (2015). It highlights the importance of the summary statistics
choice.

ABC interpretations As noticed in Equation (1.5), a weighted sample is drawn
from the joint distribution

Ke(p(n; 1y)) f (11 | 0)7(0).

The retained 6 are hence drawn from the approximate (ABC) posterior distribution

T8 ] 1) o / K (0 1) f (e | 0)(8) e,

which becomes exact as € tends to zero. As the above integrate does not depend on
0, we have

T8 | 1) o / K (pries 1)) f (0 | ©) i m(6),

J/

-~

fABc('f?y | 0)

and ABC can be interpreted as approximating a likelihood fapc(ny | ), which is
used to perform regular Bayesian analysis.

As we mentioned earlier, the number of accepted particles can be pre-defined
as a percentile of simulated distances. In this way, Algorithm 1.4 can be seen as a
ky-nearest neighbours algorithm (when K, is uniform), in which choosing ¢ means
choosing the number of neighbours. This is the viewpoint provided by Biau, Cérou
et al. (2015), for which they studied properties, and provided a posterior density
estimate similar to (1.7).

Another insight, highlighted by Wilkinson (2013) is that the basic ABC Al-
gorithm 1.3 (without consideration of summary statistics) provides exact draws
from 7(6 | y) under the assumption of model error. Indeed, it assumes that the
observation y cannot be exactly retrieved by a realisation of the considered model
f(-10), due to either model and/or data measurement errors. In this way, the error
assumption is

y =X+,

where x is a realisation from f(- | #), and § is the error term. When § follows a
uniform distribution U{x : p(x,y) < €} Algorithm 1.3 is exact. Considering such a
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uniform distribution on ¢ means the error (of the model or data) is 1 in a ball of
radius €, centred in y, and 0 otherwise. Wilkinson (2013) provides a more general
perspective of ABC, and depending on the density of §, multiples ABC strategies
can be retrieved.

1.3.2 Tuning in ABC

The main drawback of classical ABC algorithm is its tuning aspects. It requires to
specify a distance p, summary statistics 7, tolerance/bandwidth e. Radical differ-
ences can be observed depending on their choices. In this section we present some
of the approaches and results to facilitate the tuning of ABC.

1.3.2.1 Summary statistics

As mentioned earlier, in order to make feasible the comparison between artificial
data and the observation, their dimension is reduced using a set of d summary stat-
istics. These are pivotal to ensure good performance of the ABC algorithm, and
in practice they must capture enough information from the observed and simulated
data, without being too numerous (and ideally sufficient), as the ABC suffers from
the curse of dimensionality. Indeed, among the many visions of ABC, one of them is
seeing ABC as a nearest neighbour approach, however finding neighbours for a data
when the space is extremely large is a quite complicated task. We present below
a brief overview of existing solutions for this choice, and we recommend Beaumont
(2010), Blum, Nunes et al. (2013) and Prangle (2018) for more information concern-
ing this subject.

Selection The first strategy to determine a set of summary statistics consists in
performing selection among a set of d user-prespecified statistics. When 6 is univari-
ate, Joyce and Marjoram (2008) use a stepwise selection scheme to deduce whether
a summary is important or not for the posterior estimation. This approach relies
on scoring the inclusion of a summary statistic 1y r+1 among a set 7y.1,...,7y to
access whether or not 7y 41 is informative for the approximation of the posterior.
This is done by measuring the difference between the ratio of approximated pos-
teriors T, (60 | Ny 1, - Ny k—1:My k) /Tpe(@ | My, Myk—1) and 1, for inferring that
Ny is informative if the difference is greater than a threshold 7°(f). The proposal
of Nunes and Balding (2010) is to select the subset of the summary statistics that
minimises the entropy of the approximated posterior. In the frame of a regression
explaining a dimension of ¢ thanks to the statistics, Sedki and Pudlo (2012) and
Blum, Nunes et al. (2013) suggested the use of variable selection thanks to Akaike
information criterion (AIC) or Bayesian information criterion (BIC). An approach
based on the Kullback-Leibler divergence is proposed by Barnes et al. (2012) and
Filippi et al. (2012) to assess of the sufficiency of statistics.

The principle of selection is very advantageous in terms of interpretability, as
summary statistics are usually chosen by practitioners with in mind the meaning
associated to each summary. However, this advantage also becomes its defect when
the informative summaries are not in the proposed set. Moreover, greedy search of
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the best set quickly becomes unfeasible when d gets large, and less effective stepwise
methods must be used.

Projection The relevant summary statistics might be combinations of existent
ones. Wegmann et al. (2009) propose to use the partial least squares (PLS) com-
ponents which are linear combinations of statistics, decorrelated, that maximise the
covariance with the response 6. This approach is advantageous because it can deal
with collinearity and dependence between statistics. These are trained on a set of
pilot ABC simulations, and the number of components retained is usually chosen by
cross-validation. Some regression adjustment techniques (Section 1.3.3) make use of
feed-forward neural networks as they internally perform projection of the statistics
on a lower dimensional space (the number of hidden units of the multilayer per-
ceptron, see Blum and Frangois, 2010). Fearnhead and Prangle (2012) proved that
the optimal choice for the summary statistics should be the posterior expectation
E(0 | y), thus n should have the same dimension as the parameters. This expecta-
tion is unknown and Fearnhead and Prangle (2012) propose to use its approximation
as summary statistics. To do so, thanks to ABC simulations, for each parameter
0; they fit a linear regression explaining ¢; thanks to a set of preliminary summary
statistics, and use the approximated posterior means as new summary statistics for
a classic ABC run. Finally, Aeschbacher et al. (2012) develop an approach based
on boosting for choosing summary statistics. The disadvantage of these two last
strategies is their lack of interpretability.

Indirect inference summaries A major strategy to choose the summary stat-
istics, is to rely on a simpler and more tractable likelihood in order to extract
information and statistics. This is related to the indirect inference method we de-
tailed in Section 1.2.2. Under this idea, Drovandi and Pettitt (2011) propose to
use as summary statistics for an ABC analysis, the estimated parameter values of
the tractable auxiliary model, for the observed data y and each generated x from
f(- ] 0). The new summaries are thus the estimates gzgy and ¢,. This approach —
later called ABC-IP by Gleim and Pigorsch (2013) (for indirect parameter) — uses
as distance a weighted quadratic one. Gleim and Pigorsch (2013) propose to replace
this distance by the log-likelihood difference:

108 | Faua (3 | )] = 108 | faus(y | 8]

giving the so called ABC-IL (for indirect likelihood). Another proposal of Gleim and
Pigorsch (2013) is the ABC-IS (for indirect score), in which the summary statistics
of a data x are the scores

(3 10g [ fauz (X | 0)] D108 [ fauz (x | )] )
96, T Oddimie) ’

evaluated at the estimate QASy. Comparisons between these ABC indirect inference
approaches (ABC-II) can be found in Drovandi, Pettitt and Lee (2015). Here,
the choice of summary statistics for the generative model is transformed into the
choice of an auxiliary model able to provide information on the first one. For a
discussion and large review of indirect inference for ABC we suggest the book chapter
of Drovandi (2018).
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Regularisation In the frame of regression adjustment techniques, regularization
is an approach proposed by Blum, Nunes et al. (2013) and Saulnier et al. (2017),
(see Section 1.3.3).

1.3.2.2 Distance choice

The distance p to measure the discrepancy between the observed and simulated
summary statistics is critical too. Because the components of 7 can present different
spread as well as correlations, scaling weights should be used for p to avoid that the
most variable statistics dominate in the distance calculation. A common choice is
to use a weighted Euclidean distance, normalised by the empirical mean absolute
deviation (Csilléry et al., 2012) or standard deviation (Beaumont, Zhang et al.,
2002) of each summary, (these are Mehalanobis distance, Vo et al., 2015), i.e.

d N — Ny 2 %
p(nx>77y): [Z (%)] )

=1

where 7. ; denotes the i-th dimension of 1. and the o; are the scaling quantities, which
are often deduced thanks to a pilot ABC run. Prangle (2017) largely addresses this
question and proposes an adaptive distance for sequential ABC methods (see section
1.3.4), as these quantities might vary through iterations of such techniques. In his
paper, the distance is updated at each step of the algorithm. Very recently, instead of
relying on summary statistics, Bernton et al. (2017) proposed to use the Wasserstein
distance to compare empirical distributions of raw data.

1.3.2.3 Threshold

The threshold specification depends on the considered ABC approach. For example,
regarding the basic rejection ABC (Algorithm 1.3), € controls the trade-off between
precision of the algorithm, and computational cost. As we mentioned earlier, the
lower the better in terms of accuracy, however the computational cost is drastically
increased when e gets close to zero, because artificial data are rejected more and
more. This parameter is chosen depending on how long the user is willing to wait
before obtaining some results and of the desired quality. Moreover, a preliminary
ABC run is usually necessary to obtain some insights concerting the e value to
use. For the ABC version of Beaumont, Zhang et al. (2002) (Algorithm 1.4), in
practice, a pre-specified percentage of the simulations providing the lowest distances
are retained with a non-zero weight (Beaumont, Zhang et al., 2002).

Some strategies specifically developed to either reduce the influence of €, or
either allow the use of a smaller € value without compromising the efficiency of the
algorithm. The first situation refers to regression adjustment methods we present in
Section 1.3.3, the second one is a reference, for example, to ABC-MCMC (Marjoram
et al., 2003) or even ABC-PMC and ABC-SMC we present in Section 1.3.4.
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1.3.3 Regression adjustment

Once a set of parameters has been simulated and weighted (Algorithm 1.4), some
post-treatment can be achieved on them to reduce the discrepancy between sim-
ulated and observed summary statistics. Hence, another valuable idea initiated
by Beaumont, Zhang et al. (2002) is the so called regression adjustment we present
here. The idea is to assume a certain relationship between parameters and summary
statistics, in order to recalibrate simulations toward the observed data.

Linear adjustment For more simplicity, we consider in this part that 6 is uni-
variate. Beaumont, Zhang et al. (2002) assumed that the relation between the
parameters #) and the summary statistics 7, can be modelled by a local linear
regression:

09 =a+ (o —ny) B+CY, i=1,... N, (1.8)
where « is the intercept, 3 is a vector of regression coefficients, and ¢ are the
i.i.d. residuals with zero mean and common variance. The conditional expectation
is E(0 | new) = @+ (ne@ —ny) " 8. When evaluated at 1, we have

0=oa+C(. (1.9)

The idea of adjustment is to obtain an empirical distribution for the residuals, that
can be plugged into Equation (1.9) and correct the parameter values toward y.

The unknowns a and ( are obtained by minimising the weighted least squares

criterion
N

Zw(i) (9“) —a— (Ngw) — ny)Tﬁ)z : (1.10)

i=1
The empirical distribution provided by ¢®’s is then plugged into Equation (1.9), to
obtain corrected 0@ values, denoted 6%

00 = a4 ¢D
=a+ (09 — & — (ngw —ny) ")
=09 — (newy —ny) "B

These 6" values, weighted by w®, with i = 1,..., N, yield a sample from the
approximated posterior distribution. Note that these corrected values might end
outside of the prior limits, to prevent this issue transformations can be necessary (it
holds for adjustment methods in general).

When @ is multivariate, a linear adjustment can be performed on each component
separately, or a multivariate regression can be adopted. This approach is valid when
the assumed relationship (1.8) is exact. However, § and 7, rarely present a linear
relation, and the homoscedastic assumption is often violated. In response to this
issue more complicated relationships can be assumed.

Non-linear adjustment Blum and Francois (2010) proposed the more flexible
non-linear conditional heteroscedastic model

0" = p(new) + o (new)C?, i=1,...,N,
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where 11(ny ) is the conditional expectation E(6 | n.i)), 02(nxm ) is the conditional
variance V(0 | n. ), and ¢ is the residual, still i.i.d. centred with common vari-
ance. These posterior quantities are estimated thanks to neural networks (Blum and
Francois, 2010) (or thanks to another regression approach taking benefit of w(®).
Once /1 and ¢ are deduced, the adjustment is done as follow

egi) = ﬂ(ny) + &(ny)é(i)

fi(ny) + & (1y) {

09— ain

G (Nyci)) (© M(me))} '

This non-linear adjustment presents great performance, and is even less sensitive
to the proportion of accepted simulations (i.e. with non-zero weight) compared
to linear approaches. This is particularly advantageous when the cost to obtain
a pseudo-data is high, as it reduces the importance of the threshold choice e. In
addition, the main motivation to the use of neural networks is their ability to reduce
the summary statistics space internally thanks to projection on a lower dimensional
one, this technique hence lowers the importance of the choice of summary statistics.

Many more correction methods were developed assuming different regression
models. A quadratic one was proposed by Blum (2010) or again a generalised linear
one (Leuenberger and Wegmann, 2010). Still assuming a linear relationship, regu-
larised regression techniques have been studied as ridge (Blum, Nunes et al., 2013)
or LASSO (Saulnier et al., 2017). Instead of the criterion (1.10), the regularised
weighted least squares is used:

N

S w® (09 — o — (neo —ny)TB)" + MBI,

i=1

where A is the positive regularisation parameter, ||5|| is either the Ly norm for ridge
or Ly for LASSO. These regularisation techniques have the advantage of decreasing
the importance of the summary statistics choice, as they shrink the regression coef-
ficients toward zero it reduces the contribution of uninformative summary statistics.
They also prevent singularity problems that can occur when o and 3 are estimated
using the classical least squares. The R package abc (Csilléry et al., 2012) offers the
implementations of local linear, neural networks or ridge adjustments that we will
encounter in Chapter 4.

Finally, note that the posterior density estimation recalled in (1.7), can be applied
with adjusted parameters, by replacing 0% with G,EZ).

1.3.4 TIterative improvements

In this section we present some existing improvements of ABC, through iterat-
ive techniques, called population Monte Carlo (PMC) and sequential Monte Carlo
(SMC). Both are special cases of sequential importance sampling (SIS) (Liu, 2004,
Chapter 2). The motivation behind these approaches is to sample from a smarter
distribution than the prior, a distribution closer to the shape of the posterior. This
is also the goal of MCMC-ABC techniques not presented here (Marjoram et al.,
2003).
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1.3.4.1 ABC importance sampling

As mentioned earlier, the basic ABC rejection approach (Algorithm 1.3) draws
(0, 1) values from the target joint distribution

Toc(0: x| 1ly) = T{p(nx, 1y) < €} fnx | 0)m(0)/2, (1.11)
where 7 is the normalising constant.

This algorithm can be redesigned into a rejection IS one, thanks to the introduc-
tion of an importance distribution ¢(é,7x). A practical choice is ¢(0,7x) = f(nx |
0)q(0), so that it only requires to choose a proposal on the parameters ¢(f), and an
(unnormalised) importance weight simplifies as follows:

o Lplh0. 1) < ) o |09)n(69) 1 {plngo,ny) < ¢} w(69)
Fngw | 0@)q(0®) q(69)
The resulting ABC rejection IS adaptation is presented in Algorithm 1.5. We can
notice that an accepted simulation verifies p(7.,7y) < €, resulting in the omission
of the indicator function in the importance weights.

Algorithm 1.5 : Basic ABC rejection importance sampling
for i < 1 to N do
repeat
Simulate 0% ~ q(-);
Simulate x® ~ f(- | 0®);
Compute n,¢);
until p(n,o,ny) <€

Compute the weight w® = ;r((g_((;))) :
Accept (0%, n,) and weight w®;

end

Note that the normalising constant Z can be approximated by the average of the
w® weights. The normalised version of the weights, denoted W® = w(®/ Zjvzl w9,
leads to an approximation of 7, (6, nx | ny) which is

7Tp7 97]X|7]y ZW 5(0()77())

In the remaining of this section, w denotes the unnormalised weight, and W its
normalised version.

The main drawback of importance sampling is again the choice of the importance
distribution ¢(6, 1) (or q(6) here), from which we must be able to sample in high
density regions of the target.

1.3.4.2 Sequential importance sampling

Sequential importance sampling (SIS) addresses this problem. Its principle is to
consider a sequence of T intermediate distributions

fi(z), - fr(2),
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and perform IS for each of them starting from 1 to 7, in such a way that fr(z) is the
final target distribution we would like to sample from. Here, z denotes the target
variables, for which value is called a particle and is denoted, at time t, by z;.

To extend SIS to ABC, the natural target density at time ¢ is

ft(z) = 71-p,et(9777x | 773’)

oc L{p(n1ty) < €} f(ne | O)7(8) = fil2),
where z = (6,7x) and f; denotes the unnormalised version of f,. Moreover, a
decreasing sequence of tolerance levels €; > ... > er must be considered to specify

all the intermediate distributions, in such a way that ey = € to retrieve Equation
(1.11) as final target. A main problem of iterative ABC methods concerns the
specification of this sequence. Note that we could also consider the augmented
target 7, (0, 7x1:8) | Ny) (Equation (1.6)), however for convenience we only focus
on the intuitive one with B = 1.

At each iteration ¢, the idea consists in performing IS to obtain a set of N
weighted particles that provides an empirical distribution for the corresponding tar-
get f;. The specificity of SIS is that the importance distribution ¢(z) depends on
the past particles. The intuition is that if there is only few changes between two
successive targets f;_; and f;, then a correct proposal at time ¢ can be obtained by
small changes in the particles at time t — 1.

The specification of the proposal (or importance) distribution is pivotal, and in
the following we present two ABC iterative Monte Carlo approaches: the ABC-PMC
(Beaumont, Cornuet et al., 2009) and ABC-SMC (Del Moral et al., 2012). These
are two methods we compare to in Chapter 4 and both rely on different importance
proposal distributions.

1.3.4.3 Population Monte Carlo ABC

The ABC-PMC method is introduced by Beaumont, Cornuet et al. (2009) and is
based on the population Monte Carlo approach (Cappé et al., 2004). Algorithm 1.6
presents the ABC-PMC. Its structure is very similar to the previously derived ABC
rejection IS (Algorithm 1.5) and we describe and explain below its principle.

The first iteration of the ABC-PMC algorithm is a classic importance sampling
step as described in Section 1.3.4.1, for which the importance distribution on 6 is
the prior m(0).

For t > 1, ABC-PMC performs importance sampling at each algorithm iteration
in order to approximate the corresponding target where the importance distribution
is derived from the previous particle layer. Indeed, at iteration ¢, a parameter value
is sampled in the previous particle population with probability proportional to its
weight. The drawn 6,_; value is then perturbed into #; thanks to a transition kernel
K0, | 6,_1). An associated summary statistics is then simulated from the generative

model using this disrupted parameter value. It means the proposal distribution used
by ABC-PMC on (6, 1y,) is

qt(eta nxt) = f(77><t | et)Qt(gt)v
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Algorithm 1.6 : ABC-PMC

t < 1;
for i < 1 to N do
repeat

Simulate 01‘@ ~(e);

Simulate x\” ~ f(- ] 99) and compute UMOE
until p(nxgi),ny) < e l
Assign a weight wt(i) =1

Accept (Qt(i), nxgi)) and weight wt(i);

end

t+—1t+1;

while ¢t < T do

for 1 < 1 to N do

repeat

Sample Ggi) from the empirical importance density

N

wﬂ)l - ()
w()=Y" SR (| 07));

N U
j=1 Zj:l Wi

Simulate x!” ~ f 05“) and compute 7_q);
t

until p(nxgn,ny) < €&;

Compute w;” = 7(6;")/a:(6;");

Accept (99, n.) and weight wf);

end
t+—t+1;
end
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where
N )

0(6,) = ZZ“’—KM 107). (112)

This proposal provides as unnormalised importance weight for an accepted particle:

Jilbinx) _ 1{p(, 1y) < e} Fb, | 0)7(6)  7(6r)
qe (0, 1, ) f(nx, | 0)ae(6:) q:(6:)’

which is again likelihood-free.

W ‘= wt(et,nxt) =

In Beaumont, Cornuet et al. (2009), the transition kernel K,(6; | 6;_,) is taken
as a Gaussian density with mean 6;,_; and variance-covariance matrix twice the
empirical one computed using the values {0,57;)1}1»:1

777777777 N
normalised. The covariance matrix is hence updated after each iteration.
As a final remark, let us point that the proposal density on 6, is in fact
//ft—l(et—17UXt1>Kt<0t | 0r—1)db;—1dnx, (1.13)

and its emplrlcal version is used when needed. Indeed, as the weighted samples
{(912Z 1,n£ s Wt(zl}, 1.~ provide an empirical distribution for f,_;, we retrieve
¢:(0;) (Equation (1.12)). In other terms, ABC-PMC aims at building a proposal
thanks to the previous target f;_; which is slightly transformed by the transition
kernel Kt(ﬁt | 6;_1). The resulting importance weights are hence deduced condition-

ally on the whole past particles.

Very similar algorithms exist (Sisson, Fan and Tanaka, 2007; Sisson, Fan and
Tanaka, 2009; Toni et al., 2009), and overcome some improvements, in particular
concerning the thresholds specification €y, ..., ey which are hard to select without a
preliminary ABC run. An adaptive version was proposed by Drovandi and Pettitt
(2011), by using for iteration ¢ the a-quantile of the previous accepted distances.
This version requires a stopping rule, for example a total number of simulations or
a final € below which the algorithm stops. Still for iterative ABC methods, Prangle
(2017) proposed two adaptive updates of the distance p. When a weighted Euclidean
distance is used, one of the proposition made by Prangle is to update the scaling
weights thanks to some accepted and discarded simulations of the previous iteration.

1.3.4.4 Sequential Monte Carlo ABC

While ABC-PMC is fully based on IS reasoning, the ABC-SMC approach we present
now, from Del Moral et al. (2012), is based on the sequential Monte Carlo sampler
(Del Moral et al., 2006) and involves MCMC elements. Algorithm 1.7 describes the
full method.

The original ABC-SMC algorithm of Del Moral et al. (2012) considers as sequence
of distributions the posterior joints 7, (0, 7x@1:5) | 7y), however, in the remaining
we consider the simplifying case where B = 1, so that ABC-PMC and ABC-SMC
have the same target.

As we noticed before, the ABC-PMC recovers some importance weights condi-
tionally on the past particles. These weights are computed thanks to an empirical
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version of the proposal, this can be expensive and increase the algorithmic time. Del
Moral et al. (2006) introduce the SMC sampler to circumvent this approximation
thanks to an artificial backward kernel L;(z; | z;41), which needs to be specified.
Indeed, this kernel aims at increasing the dimension of the target, to keep track of
all the past of a particle. The target f; can thus be expressed in terms of the whole
sequence of past particles z1, ..., z; and has the expression:

—1
k(ze | 2k11) o fi(z12),

fi(z

where 21, = (z1,...,2), and Z; is the normalising constant.

In this way, the unnormalised importance weight is a joint weight on the whole
path of the particles and is expressed as

t
——=, where Qt(let) = Q1(Z1) HKk(Zk | Zk—l).
k=2

When a transition kernel K; is used to move the particles from iteration ¢ — 1 to
iteration ¢, weights can be more practically expressed by the update:

ft(zt)Lt 1(Zt 1 ’ Zt)
ft 1(Zt 1)Kt(2t ‘ Zt— 1)

wt(let) = wt(Zl (t— 1))

where the ratio is called the unnormalised incremental weight (Liu, 2004, chapter 3).
The ABC-SMC approach of Del Moral et al. (2012) is based on this representation.
They consider for backward kernel, the reversal kernel defined by

ﬁ(zt—l){(t(zt | Zt—l).
ft(zt)

Lt—l(zt—l | Zt) =

In this way the incremental weight simplifies into fy(z_1)/fi—1(z—1). Combined
with the target expression, it leads to the weight update present in Algorithm 1.7.

Contrary to PMC where a weighted resampling of the particles is performed at
each iteration, this ABC-SMC approach uses an MCMC step to determine the next
value of each particle. So the transition kernel used here is an MCMC kernel of
invariant density f;(z1.4). Each particle zﬁ)l, for which weight Wt(i)l is non-zero,
overcomes an MCMC transition step in the following way:

(1) propose a potential parameter value 6, using a transition kernel &, (- | 01@1);
(2) simulate x; using the generative model f(- | #;) and compute 7/
(3) accept (0, 1x) with probability

(e, my) < e} Ko (07, | 6)7(6})
Hp(nge ny) < e} Ki6; | 027 (61,)

min < 1

(1.14)

50



1.3. APPROXIMATE BAYESIAN COMPUTATION

The first two steps indicate that a potential particle (6},7y;) is generated from
K (0,1 | 021 m,0 ) = K(0; 1021 f (g | 67).

The acceptance rate (1.14) is derived from the usual Metropolis-Hastings one, after
simplification of the likelihoods. As for Algorithm 1.6, the transition kernel K, can
be an adaptive Gaussian distribution with a variance-covariance matrix updated
after each iteration.

The main point that distinguishes the ABC-PMC and ABC-SMC approach
is their importance distributions. ABC-PMC builds its proposal on the previous
particle layer thanks to importance sampling arguments, resulting in conditional
weights wy(z;), while ABC-SMC builds its proposal on the whole past of the particles
and its importance weights stand for this complete past, w;(21.).

Particle degeneracy A major problem of sequential importance sampling is the
particle degeneracy issue. It refers to the situation where a small number of particles
carry very high weights and the remaining very low weights. Strategies to reduce the
weights variance must be used. ABC-PMC avoids this issue thanks to the resampling
that occurs at each iteration, so that low weighted particles are discarded. To control
this degeneracy, the ABC-SMC (Algorithm 1.7) relies on the effective sample size
(ESS) to measure the degeneracy (Liu, 2004). For a weighted sample of size N, the
ESS is equal to ESS({W® Y,y n) = (L (W®)2)~1 € [1, N], and can be seen
as the amount of information contained in the weighted sample, in the sense that
making an inference using the weighted sample is equivalent to making inference
using ESS({W®},_, _n) particles truly sampled from the target. The strategy
used by Del Moral et al. (2012) is to resample the particles if the ESS falls below
a threshold Np, after what the weights are all set to 1/N. This mechanism has its
roots in particle filter (or bootstrap filter, Gordon et al., 1993).

Moreover, Algorithm 1.7 does not rely on a pre-specified sequence of thresholds.
Instead, from one iteration to the next, it deduces the next value so that the ESS —
that depends on the corresponding threshold value — is decreased approximately by
a factor @ €]0,1[. And the Algorithm stops when the threshold value drops below
a final € value. This “quality index” o determines how fast we move toward the
final target, if « is close to one, the distributions are slowly moving toward it, and
vice-versa for « close to zero.

As we mentioned earlier, the iterative ABC techniques have evolved to include
adaptive distances, thresholds, perturbation kernels. One of the remaining adaptive
improvements lies into the population size /N, which should usually be quite large to
ensure a sufficient degree of reliability. With this goal, Klinger and Hasenauer (2017)
propose such an adaptation based on the uncertainty of kernel density estimates to
automatise the number of particles during the algorithm iterations. This approach
is available in the recent Python module pyABC (Klinger, Rickert et al., 2018).
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Algorithm 1.7 : ABC-SMC

t <+ 1
for i <1 to N do
Simulate 6" ~ 7(+);

Simulate xgi) ~ f(-| ef’) and compute 71_c);
t

Set W + 1/N;
end

t+—t+1;
while ¢;,_; > ¢ do

,,,,,,,,,

X Wi ;
' ' 1]1{/0(77)(@1777y) <€}

-----

Resample N particles with probability proportional to Wt(i);
W « 1/N for i + 1 to N;

end

for i+ 1to N do

if W” > 0 then
‘ Sample (le), 1) from the MCMC kernel Ki(-, - | Hgl_)l,nxm );

end

end
end
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1.4 Machine learning and reference table

An increasing number of methods are based on the use of machine learning tools
on a training set produced in an ABC style, in the sense that Bayesian framework
allows an easy way to generate artificial data, on which a machine learning algorithm
can be trained and then used to provide prediction for the observed data y.

A training set for such approaches can be generated by sampling from the joint
distribution 7(6) f(nx | ). Algorithm 1.8 presents how to generate a set of N data,
which is called reference table in the following (Pudlo et al., 2016).

Algorithm 1.8 : Generation of a reference table of size N
for 1 < 1 to N do
Simulate @) ~ 7(-);
Simulate x® ~ f(- | 8®));
Compute 7yi);
end

Neural networks are being used more and more, often under the term “deep
learning”. We can mention the work of Mondal et al. (2019) or again Sheehan
and Song (2016). This latter makes use of multilayer neural networks learned to
explain population genetics parameters of interest, thanks to hundreds of correlated
summary statistics. However, neural networks are often not tuning-free and require
meticulous calibrations.

An interesting approach has been provided by Papamakarios and Murray (2016)
that we describe here. Its goal is to directly approximate the posterior distribution
7(6 | ny) thanks to a family of conditional densities ¢y (6 | 7y ), parameterized by
v. They proposed to use ¢, as a mixture density network (Bishop, 1994): ¢, is a
mixture of K Gaussian distributions, i.e.

K
(O [m0) =Y N (O | e, Tn),
k=1

where g, pr and X5 are respectively the mixing coefficients, means and covariance
matrices, and these parameters are calculated by a feed-forward neural network.
The parameters v are in fact the networks parameters.

Two elements are required to obtain the approximation of the posterior distribu-
tion, denoted (6 | ny). The first is the generation of a reference table of size N from
the joint distribution 7(6)f(ny | #), where 7(0) is a so called “proposal prior”. The
second element is the property demonstrated in Papamakarios and Murray (2016),
saying that the quantity

N

1 .

N E log CIV(Q(Z) | D)) (1.15)
=1

is maximised with respect to v, if and only if, (when N — o0),

(0] 1) %ww o).

53



CHAPTER 1. LIKELIHOOD-FREE INFERENCE

Using this relationship and the reference table of {8 n, )} values, three key steps
are performed:

(1) find v maximising Equation (1.15),
(2) evaluate the trained gy at ny,

(3) reweight ¢y (6 | ny) by 7(6)/7(f) and normalise it to recover the desired pos-
terior distribution expression.

Moreover, in the spirit of sequential ABC techniques, they propose to iteratively
learn as proposal prior 7() a distribution that gets closer and closer to the posterior
thanks to the generation of small training data set.

The major drawback of this approach is that 7(6)gq, (6 | ny)/7(6) must be easy
to evaluate and to normalise, in order to retrieve the expression of the approximated
posterior 7(6 | ny). This limits the choice of possible prior distributions to normal
or uniform priors. Based on this work and to overcome this difficulty, Lueckmann
et al. (2017) consider a similar criterion to approximate the posterior 7(6 | y). By
including the importance weights inside the criterion to maximise, w.r.t. v, the

expression

1 SN (6D

N ; (00)
where K. is a kernel of bandwidth e, the posterior density ¢, (0 | ny) directly ap-
proximates the desired posterior.

K (p(ne,my)) 1og qv (09 | myen),

N

1.5 ABC model choice

ABC can be adapted for model choice problems. This is widely used in population
genetics, to select the best evolutionary scenario among a set of competing ones.
To fit such a problem into the ABC framework, the unknown model index M is
considered as an additional parameter, with a prior distribution. As for parameter
inference, the standard ABC-model choice procedure can be again perceived as a
kn-nearest neighbors algorithm, in which a set of N artificial data is simulated in
three steps:

1. simulate m from the model prior,
2. simulate 6,, from m,,(+),

3. simulate x from f,,(- | 6,,) and compute 7.

The distances with the observation are computed, then the ky lowest distances
indicate the simulations to retain, and the selected model index values provide an
approximate sample from the model posterior probability. The frequencies of model
index can be used to obtain their approximate posterior probabilities (Grelaud et
al., 2009; Toni et al., 2009). Another solution consists in using some local logistic
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regression techniques (Fagundes et al., 2007; Cornuet, Ravigné et al., 2010) or more
evolved strategies as expectation propagation ABC (Barthelmé and Chopin, 2014).

Finally, a methodology used for model choice by Pudlo et al. (2016), relies on
random forests (RF, Breiman, 2001) trained on a reference table for model choice.
This ABC-RF model choice idea predicts the model index and also derives the
posterior probability of the selected model thanks to RFs. The two very profitable
advantages of RFs are their robustness toward noise variables and the very few
tuning parameters required (see Chapter 2).

1.6 Conclusion

In this chapter we gave a brief overview of likelihood-free techniques, especially ABC,
their main disadvantage being the tuning parameters that need to be calibrated by
the user, (distance to compare summary statistics, threshold of acceptance, set of
pertinent summary statistics). As we exposed in Section 1.3.2 a large panel of
strategies have been developed to guide these choices. The methods with regression
adjustment (Section 1.3.3) are designed to reduce the impact of tuning in ABC.
The iterative ABC techniques (Section 1.3.4) also improved to be as automatised
as possible. Furthermore, the union between ABC and machine learning is growing,
mainly for the high performances they can provide but also to lower the calibration
required for ABC.

Our first contribution lies into this framework. We extend the ABC-RF model
choice approach of Pudlo et al. (2016) to perform parameter inference, and provide
easy to use tools for practitioners (Chapter 4) thanks to the R package abcrf. The
next chapter is a reminder on the random forest algorithm, its principle and focus
on its benefits for ABC methods.
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CHAPTER 2. RANDOM FOREST

2.1 Introduction

In this chapter we present the principle of Breiman (2001)’s random forests (RF) for
regression and classification. We especially emphasise on their well known properties
that can be beneficial to ABC analysis, namely their robustness to noise variables,
their good performances, the practical information they offer and their quasi-absence
of tuning parameters.

In a general manner, a decision tree here refers to a binary tree structure made of
allocation rules with the aim of taking a decision regarding a problem at hand after
following these different rules. In our case, we are either interested in classification
or regression tasks and we would like to provide a prediction for an observed data.
Briefly, a decision forest can be seen as an ensemble of decision trees that tries to
improve the prediction accuracy by aggregating the tree predictions.

More precisely, a random forest is a non-parametric ensemble learning technique
(Dietterich, 2000) for which a base learner is a random tree, i.e. a decision tree
for which randomness has been introduced during its construction. The version of
Breiman (2001) is at the core of this chapter. As presented below, its base tree
structure is a CART (for classification and regression tree, Breiman, Friedman et
al., 1984) and each one is different thanks to randomisation on data and covariates
incorporated for the tree construction.

For this chapter we denote by Y the response variable, and X = (Xi,..., Xy)
the associated set of d explanatory variables. We assume that we have a set of NV
independent and identically distributed response-predictors data {(y®, @) },—; _ n,
which are used as training data set. We would like to predict the response variable
for a test explanatory variable x*. In regression, the response Y is continuous and
the forest provides an approximation of E(Y | X = z*), while in classification Y is
categorical with K modalities.

2.2 Classification and regression tree (CART)

Principle The cornerstone of a random forest is the CART algorithm (Breiman,
Friedman et al., 1984). A CART (or simply tree when there is no possible confusion),
is a machine learning algorithm whose principle is to partition the predictor space
into disjoint subspaces, in an iterative manner, and each one is assigned a prediction
value which will be used for test data falling in this subspace.

A binary tree starts from the complete predictor space, a binary rule then divides
it in two parts. Each resulting subspace is divided in two by a different condition
and so on until a certain stopping rule is reached. A split involves a covariate j and
a splitting value s. Such an iterative process can be visualised by a binary tree, see
Figure 2.1 for an example, where each subspace is a tree node.

A tree is thus a structure made of internal nodes and terminal nodes. FEach
internal node carries a condition to partition the predictor space in a binary fashion.
The first internal node, for which the predictor space is untouched, is the root. A
terminal node is called a leaf, after which the subspace is not developed anymore.
Each one carries a prediction value.
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Xy < 59

S4 1
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Figure 2.1 — An example of CART and the associated disjoint partition of the two
dimensional predictor space. Each splitting condition takes the form X; < s and
the prediction at a leaf is denoted g,.

Splitting criterion The way the space is partitioned is pivotal for a tree al-
gorithm. For continuous covariates, at each internal node, the splitting condition
takes the form X, < s, where the pair (j, s) has to be determined. Data verifying
this condition fall in the left resulting node, the right one otherwise. The subspace
is hence partitioned according to the binary rule {X; < s} versus {X; > s}. For
each covariate X; and possible bound s a non-negative gain criterion is calculated,
j and s are selected has providing the maximal gain. This is done for each internal
node, and the same covariate may be used for the choice of j at different levels of
the tree construction.

Because of the shape of a split condition, it can be noticed that affine trans-
formations on numeric covariates do not alter the criterion value and thus the tree
construction. Moreover, a tree can handle categorical predictors, in this case the
split concerns the belonging or not to a subset of its modalities. For the remaining
we focus on numeric ones, to avoid switching between notations, even though the
principles presented below holds for the categorical case.

The gain criterion can be seen as the decrease of information /(-) measured at
the mother node ¢ (before split) and at the two resulting left and right daughter
nodes t;, and tg (after split) weighted by the proportion of instances they contain:

G, ) = (1) - (%m) T %m)) , (2.1)

where # designates the number of data at the corresponding node.

e For regression, the node information is measured using the empirical Lo loss
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of the response variable
1 N
1) = 7 > W —m)
i et

where 7, is the mean response value at the node t.

e For classification, the node purity is measured thanks to the Gini index

K
1(t) =) pea(l = pay),
k=1

where py; refers to the proportion of instances with class k& in node ¢. The
entropy measure is also often encountered and its expression is

K
I(t) = = prslog(prs)-
k=1

Both, Gini and entropy, are alike and provide similar results.

In practice not all s values are tried for potential split values, but only the middle
of consecutive points. The criterion performs a greedy search to find the best sub-
optimal partition. Sub-optimal is in the sense that a tree is built sequentially, and
that the search for the best split is done for each node without taking into account
the past unselected possible splits. Moreover, let us mention that splits near the root
of the tree are often the more informative (higher decrease of information) compared
to splits near the leaves, because based on more data.

A tree is built recursively until either

e all individuals of the data set at a given node have the same response value
(the node is pure);

e all individuals have the same covariate values;

e an internal node has less than N,;, instances, it then becomes a leaf. N,
is an user-defined integer value, typically set to 1 for classification and 5 for
regression.

Other conditions can be encountered such as a maximal tree depth, or getting below
an information gain threshold. Usually, the tree is built as deep as possible in order
to perform pruning in a second step (see below).

Prediction During a tree construction, the internal node encountering a terminal
condition becomes a leaf. A value is assigned to each leaf, corresponding to the
prediction provided to data falling in it.

e For regression, the assigned value is the average of the training data responses
at the leaf (denoted t):
1 )
— @, 2.2
i oy (2.2)

izt
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e For classification, the prediction for a tree is performed by majority voting.
Each leaf carries the majority class of the training instances in this subspace,
that is to say:

arg max Z 1{y"¥ = k). (2.3)

1<k<K
ix(@et

For a given observed data, that corresponds to a new covariate X = x*, predicting
the associated value of the response implies following the path of the binary rules.
For a tree, the outcome of the prediction is the allocated value of the leaf where this
data set ends after following this path.

Pruning Building a single CART whose purpose is to provide predictions, usually
consists in two steps: (1) a maximal tree is trained, where each leaf contains a
small number of instances, (2) then a pruning step is performed, where the optimal
intermediate tree is searched among all possible sub-trees of the maximal one, by
cutting its branches. Indeed, the maximal tree is a predictor with very low bias
but high variance (subject to over-fitting), in contrast to the minimal tree (i.e. only
the root) that gives an estimator with high bias but low variance as its prediction
is a constant (subject to under-fitting) (Dietterich and Kong, 1995). The goal of
pruning is to find the intermediate tree T' that provides the lowest penalised error,
where the regularisation term depends on the number of leaves |T'| of the tree. The
penalised error criterion is hence

err(T) + AT,

where err(T) is either the average quadratic error or the misclassification error over
all leaves, and X is the penalisation parameter. A high value of A provides more
penalisation toward deep trees (with large |T'|). It is usually selected by cross-
validation. We do not detail pruning further as no pruning is done when training
random forest.

Pros and cons of CART A single CART is naturally easily interpretable, in the
sense that examining the splitting conditions provide useful information concerning
the link between the response and covariates. In addition, the intrinsic splitting
procedure — covariates after covariates — makes it suitable for high dimensional
problems, where the number of covariates is much larger than the sample size.
Nevertheless, to achieve good performance it requires pruning which implies cross-
validation procedures. But its major drawback is its instability. Indeed, a small
perturbation in the training data set can lead to totally different tree structures. This
instability is however beneficial for random forests and justifies their development.

2.3 Random forest construction

Constructing a Breiman’s random forest consists in aggregating an ensemble of
CARTs whose learning phase contains two additional random aspects detailed in
this section.
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From a more general point of view, a random forest is composed of an ensemble
of B random trees. Each tree is a predictor h(-,9), where ¥ is a random variable
modelling the random aspect of the tree construction. Given a set of B trees,
h(-,91),...,h(-,9p), where ¥y, ...,Up areii.d., a random forest predictor is deduced
in the following way:

e for regression, the random forest predictor is taken as the average of the ran-
dom tree predictors:

e () = 3 S A ). (2.4

e for classification, it corresponds to the majority class:

B
hip(-) = argmax > 1{h(-, 1) = k}.
1<k<K 4
Note that h(z*,4,) refers to the prediction associated to z* provided by the b-th
tree (Equation 2.2 or 2.3) built with the randomisation aspects described below.

Randomisation As we mentioned above, a random tree is subject to instability.
Ensemble learning aims at aggregating a large amount of unstable base learners
(trees here), to reduce the final predictor variance and obtain better predictions. A
random forest is hence an ensemble learning algorithm. The variability of a CART
is strengthen in two ways:

1. each tree is trained on a bootstrap sample (sampling with replacement) of the
training set. This approach was originally proposed by Breiman (1996) under
the name bagging (for bootstrap aggregating);

2. during a tree construction, at each internal node, a set of my,, covariates is
uniformly drawn among the d available without replacement, and the splitting
criterion (2.1) is maximised using these my,, covariates.

In this case, the 1J; variables encapsulate the alea in the bootstrap and random
sampling of covariates.

Diversity and precision According to Breiman (2001) there are two key ingredi-
ents to make a useful random forest: tree diversity, and tree precision. Indeed, when
B grows, Breiman deduced an upper bound for the generalisation error of the forest,
that depends on the correlation between tree errors (residuals for regression, or mar-
gin for classification) and the variance of an individual tree. Thus the error is small
when the correlation between the trees is low, which is induced by the tree diversity,
and when the predictive performance of each tree is good. Moreover, Hastie, Tib-
shirani et al. (2009) express the variance of the random forest as the product of the
correlations between any pair of trees and individual tree variance. Building a forest
thus consists in decorrelating trees without increasing their individual variance too
much, in order to obtain a forest with low variance. This is the purpose of using
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randomised CART, randomness increases the tree diversity. The parameter my,y
has for effect to reduce the correlation between trees, so has the bootstrap. Earlier
randomisation strategies can be found in the literature, see for example Ho (1998),
Dietterich (2000) or again Breiman (2000).

2.4 Performance and convergence

2.4.1 Out-of-bag information

Because each tree is trained on a different bootstrap sample, per tree there is about
37% of the data that remain unused. These left aside data are called out-of-bag data
(or out-of-bootstrap), OOB for short, and form a free test sample. In this way, each
data can be used as test instance on the trees for which it is OOB. The OOB forest
prediction Qc(fo)b for a data z(® is hence provided by aggregating all the trees in which
it was OOB. An OOB error can hence be computed using these OOB predictions,
and in consequence the RF provides a direct measure of its quality.

2.4.2 Tuning in random forests

Some RF parameters values are often considered as default. For my,, it is d/3 for
regression and v/d for classification problems. The number of trees, Niyee, is 500, and
the general rule of thumb is: the higher, the better. The minimal number of data
per leaf N, is 5 for regression and 1 for classification. These parameters achieve
very satisfying results in practice (e.g. Fernandez-Delgado et al., 2014), however we
provide below some comments on their tuning if it is of interest.

Number of trees The number of trees n... should be as high as possible, and its
choice is a trade-off between computational time and gain in accuracy. In practice
the OOB error can be used to plot this error depending on the number of trees. nyee
should be chosen as the value after which the error remains steady, (or a negligible
improvement is observed). According to Breiman (2001), increasing the number of
trees does not over-fit as the generalised error tends to a limiting value.

Covariate sampling Empirically, mq,, should not be very large (Breiman, 2001),
as its purpose is to reduce the trees correlation, which is accentuated for low val-
ues. Genuer, Poggi and Tuleau-Malot (2008) empirically study the influence of this
parameter for regression and classification in standard setting (n >> p) and high
dimensional (n << p). The default parameters seem to be better suited for high
dimensional problems, even though in classification better results can sometime be
obtained for higher my,, values.

Minimal number of observations N,,;, should be low, 5 is very close to build
maximal tree and should not influence much the prediction quality (Breiman, 2001;
Genuer, Poggi and Tuleau-Malot, 2008).
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2.4.3 Convergence

Unfortunately, there are very few theoretical results on the Breiman’s RF, especially
because the random variable ) implied in a tree construction depends on the original
training data, making demonstrations a lot harder. This is why demonstrations are
often provided on simpler tree structures, for which ¥ is independent of the training
sample. For example, Biau (2012) demonstrates the consistency of the centred forest
(a simplified version of regression RF). Nevertheless, the major breakthrough, in an
additive regression setting, brought by Scornet et al. (2015) is the Ly consistency of
the random forest algorithm when subsampling (without replacement) is assumed
instead of bootstrap, maximal trees (each leaf has one data) and certain hypothesis.
Moreover, both Biau (2012) and Scornet et al. (2015) show that the convergence
rates of the associated estimators only depend on the number of strong covariates
and not on the total dimension of the covariate space. This makes RF particularly
relevant in sparse settings. By sparse we refer to the situation where a large number
of covariates (summary statistics for ABC) are considered, without true knowledge
of which one are important, but only few are really useful in terms of prediction
accuracy. Still assuming subsampling instead of bootstrap the asymptotic normality
of forest predictions (when N — oo) has been shown by Wager and Athey (2018)
and Mentch and Hooker (2016), for simplified versions of RF, respectively when
B — oo or not. For a larger theoretical-oriented review of the random forests, we
suggest the well known paper Biau and Scornet (2016).

2.5 Robustness

A valuable characteristic of random forest is its robustness to noise covariates, and
its capacity to detect relevant ones. This can be especially useful in the ABC
framework.

Detection of relevant variables By construction, a RF sequentially searches
for the best covariate to cut the predictor space. It is thus natural to think that
irrelevant covariates are ignored, making RF especially well suited for sparse prob-
lems. This is supported by Biau (2012), for centred forest, that demonstrates that
the convergence rate only depends on relevant variables, and by Scornet et al. (2015)
for a slightly modified version of Breiman’s algorithm with my,, = d (i.e. bagged
trees), showing that splits are selected mostly along informative predictors.

End-cut preference Another useful feature of random forests is the so called
end-cut preference of the splitting criterion used for CART construction (Breiman,
Friedman et al., 1984). It states that during a tree construction, the best split value
(above denoted s) associated to a non-informative explanatory variable is likely to
be near its edges. That is to say, s is located near one of the two boundaries of
the explanatory variable values. According to Ishwaran (2015), this property is
beneficial for random forest. Indeed, when the random sampling of covariates only
draws uninformative ones, splitting at an edge reduces the importance of this "bad*
split. Moreover, this is also beneficial when an informative variable is selected but
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not necessary pertinent in this subspace to explain the response. Splitting near an
edge will ensure that the resulting branch with few instances quickly becomes a leaf,
allowing the RF to recover from this bad split. It reinforces the robustness of RF
to noise variables.

The above comments and the inherent way of maximising the gain criterion make
RF able to deal with high dimensional problems, where n << d. Moreover, RF is
easily parallelizable as the trees are built independently of each other.

2.6 Variable importance

Another attractive feature of RF is the fact that it provides covariate measures of
importance of the variables, with respect to the prediction of the response variable.
Indeed, it is possible to retrieve for each covariate X; a measure of its importance
giving useful insights concerning their use to explain the response, and even allows
the implementation of variable selection methods. There is two commonly used
measures: the mean decreased impurity and the mean decreased accuracy.

Mean decreased impurity (MDI) Given the information gain described in
equation (2.1), a natural variable importance measure for a given covariate Xj, is to
count the decrease of impurity induced by a split using this covariate, weighted by
the fraction of the total data at the mother node (#t/N). The variable importance
(VI) resulting is hence

B
7t ;
VIvpi(X;) = ZZW (s s"),
=1 Tb
£=J
where T;, refers to the b-th tree, and j; the optimal covariate selected for the node
t, with s* the associated split value. In the extreme case where a covariate is
never selected across all trees, its importance is zero. This is lowest achievable
variable importance, because the gain is always non-negative. The MDI measure
was originally proposed by Breiman (2001), and a CART version can be obtained.

For forests based on totally randomised trees, (an alternative version of CART),
Louppe et al. (2013) provide some theoretical results concerning the MDI. In the
simplifying case of categorical response and covariates, they derive a decomposition
of this measure and pointed out that the importance of a covariate is exactly zero if
and only if it is irrelevant. However, this property does not extend to the Breiman’s
random forest.

Mean decreased accuracy (MDA) Another VI measure is the so called mean
decreased accuracy, also known as permutation importance. For a covariate X;, the
idea is to quantify the impact on prediction error when random permutations are
performed on the covariate values. The objective is to break the link between X;
and Y and measure its effect. Note that it also breaks the link with other covariates.
In this vein, the OOB error is computed for each tree and compared to the OOB
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error for the randomised sample, the error differences are then averaged over the B
trees. If the covariate is useful, the differences should be large. The MDA has for
expression

B
1
VIMDA = E errb] — errb
b:l

where err;, and erry, ; refer respectively to the OOB error for the b-th tree before and
after permutations. Again, if a covariate is never used for data partitioning across
all the trees, its importance is zero. Note that this importance measure can very
rarely be negative when err, ; < err,, meaning that the random permutations have
no negative effect and thus that the variable j does not have a role in the prediction.

In general, variable importance measures are affected by the random forest para-
meters. Naturally, my,, has the most impact, as it increases the diversity of VI
compared to bagging. When my,, is low, greater importance is provided to not
necessary important covariates, and when my,, increases, a masking effect appears
where important covariates are often used and less important ones see their im-
portance decreased (Louppe et al., 2013). A higher number of trees ensures less VI
variance from one forest to another.

Variable importance measures were analysed mostly from an empirical point of
view, especially the effect of correlated covariates on them. From a theoretical point
of view and on simplified models (Gaussian), Gregorutti et al. (2017) highlighted
the influence of correlated covariates on the MDA measure. Correlation between
covariates is important, as well as the size of the correlated group. They showed
that their importance decreases when their correlation increases, the same holds
for the size of the group. In this way, a highly correlated informative covariate
might present similar importance with a less informative but also not correlated
one. This was previously noticed by Archer and Kimes (2008), Auret and Aldrich
(2011), Strobl, Boulesteix, Kneib et al. (2008) and Genuer, Poggi and Tuleau-Malot
(2010) and especially Tolosi and Lengauer (2011). The two former also relate similar
behaviours for MDI. Moreover, Strobl, Boulesteix, Zeileis et al. (2007) pointed out
that MDI can be biased when categorical covariates are considered.

Finally, in a regression setting, Ishwaran (2007) aims at providing theoretical
results regarding the MDA criterion, thanks to a similar but also simpler variable
importance measure, in which prediction of permuted covariates is replaced with
noise in the trees (random left-right daughter node assignment).

Note that the MDA is of course more costly than the MDI, moreover this latter is
less sensitive to data perturbations compared to the MDA (Calle and Urrea, 2011).
Note also that correlation between covariates influences the importance measure,
not the predictive performance. Strobl, Boulesteix, Kneib et al. (2008) proposed a
variable importance measure avoiding this correlation issues.

Variable selection Let us finally mention that variable importance measures ob-
tained from RF can be used to perform selection of covariates. There are two aims
for variable selection: interpretability, by searching the most correlated covariates
with the response; prediction, by selecting a small amount of covariates providing
the best performance in terms of prediction accuracy. A large battery of approaches
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developed, see for example Hapfelmeier and Ulm (2013), Diaz-Uriarte and Alvarez
de Andrés (2006), Genuer, Poggi and Tuleau-Malot (2010), Gregorutti et al. (2017),
Janitza et al. (2018) and Nembrini et al. (2018) and references therein for more
information.

2.7 Implementations

There are many implementations of Breiman’s random forest. The original code of
Leo Breiman and Adele Cutler was written in the Fortran language, and is freely
available at www.stat.berkeley.edu/ breiman/RandomForests/. In the following
we mostly focus on R versions.

The most known is the R package randomForest, adapted from the mentioned
Fortran code, by Liaw and Wiener (Liaw and Wiener, 2002). A large panel of pack-
ages now exist, for example Rborist (Seligman, 2019), randomForestSRC (Ishwaran
and Kogalur, 2019) or again ranger (Wright and Ziegler, 2017). This latter is based
on C++ and also provides a standalone version in this language. ranger is very fast
compared to other packages, as shown in the comparison paper Wright and Ziegler
(2017). It notably uses two different strategies to determine the best decision rule,
depending on the node size, during a tree construction to avoid runtime bottleneck
and memory overflow. Moreover, it provides all the usual information returned by
randomForest and is continuously optimised and updated with new features. In the
remaining when forest training and predictions are needed, we rely on ranger for
this task.

2.8 Conclusion

Random forest is a very efficient machine learning tool to solve classification and re-
gression problems, and it tends more and more to lose its black-box flavor. Moreover,
its scope goes much wider than regression and classification settings. Indeed, it can
be used to deal with missing data thanks to proximities between instances computed
by RF (Breiman and Cutler, 2003), but also survival analysis (Ishwaran, Kogalur
et al., 2008), multivariate regression (Kocev et al., 2007; Segal and Xiao, 2011),
quantile computation (Meinshausen, 2006) or handle unbalanced classes (Chen et
al., 2004). Recently, Athey et al. (2019) developed the R package grf to approx-
imate any solution of a local moment condition thanks to RF. Finally, toward the
treatment of “Big Data”, in their survey paper, Genuer, Poggi, Tuleau-Malot and
Villa-Vialaneix (2017) present different approaches to scale RF to the increasing
amount of data. These rely on bootstrap alternatives, subsampling, data partition-
ing or again parallel computation.

In this chapter we gave a presentation of the RF algorithm, with an emphasised
on its qualities, namely its performance with very few tuning parameters, their
robustness to irrelevant covariates and their interpretability tools thanks to variable
importance measure. These advantages can be greatly beneficial for approximate
Bayesian computation approaches as they require tuning parameters and suffer from
the curse of dimensionality. This was pointed out in the classification setting by
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Pudlo et al. (2016) and successful results were provided. One of our contribution,
presented in Chapter 4, is the extension to perform parameter inference.
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CHAPTER 3. POPULATION GENETICS

3.1 Introduction

The main application field of this thesis is population genetics, which is concerned
with the study of the genetic diversity in populations, their causes and effects.
The transmission and evolution of genes over time are of prime interest as they
provide insights regarding the evolutionary mechanisms involved. The main goal
of population genetics is hence to recover some elements concerning the history of
populations. This history is described by a succession of time-ordered inter- or intra-
demographic events, called evolutionary scenario. It thus summarises the evolution
of an ancestral population until the distribution we today observe.

From present genetic information we would like to fit a model that explains
the generating process of such data, while being constrained to a scenario. Gene
transmission trees are particularly well suited for this task. In this chapter we
especially focus on the Kingman’s coalescent (Kingman, 1982a,b,c).

We are working under two assumptions that ease the model construction. We
assume that the observed genetic diversity is only the result of mutations, i.e.
random modifications in the DNA sequence (insertion, deletion —indel- or substi-
tution of nucleotides), that can occur from one generation to another at very low
rate. Furthermore, we are working under the hypothesis of neutrality, it means
a mutation has no effect on the survival of an individual, in other terms there is
no selection. Under these hypotheses, the genealogy of genes is independent of the
mutational process. It means the construction of a model can be decomposed into
two steps. First, build the ancestor-descendent relationships (genealogy) between
genes through time, then, add mutations on the genealogy thanks to a mutational
process.

Recombination between gene locations (a.k.a. loci) is an important factor that
impacts the genealogy of multiple loci. Indeed, when there is no recombination
between two loci we can consider they share the same genealogy. When their rate of
recombination is very large, their genealogies can be considered as independent and
we can build one genealogy per locus. The intermediate case, which is the difficult
one, considers that genealogies are correlated (Hudson, 1991). In the remaining we
assume that all loci are far apart from each other on the genome so that the loci
are considered independent, in this case each locus has its own genealogy.

This chapter aims at introducing basic notions for genetic data modelling and
simulation, thanks to the Kingman’s coalescent, when constrained to an evolution-
ary scenario. We first give some information regarding the genetic data and scenario
linking natural populations (Section 3.2). We explain how to generate genealogies
thanks to the coalescent process in an isolated population (Section 3.3), and how
it extends when constrained to demographic events (Section 3.4). We then detail
the mutational process involved in the derivation of genetic data (Section 3.5) and
highlight the inferential difficulties brought by the coalescent, that make it particu-
larly well suited for ABC analysis (Section 3.6). We end by presenting some of the
summary statistics that must be computed in the ABC setting for our applications
during this manuscript (Section 3.7).
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3.2 Data and scenario

3.2.1 Data

For the study of species populations, the data we observe are composed of genetic
information obtained from individuals in the populations, at the present time. In
each population 7, a number n; of individuals are sampled in the total population size
N;. Each is genotyped to determine its allelic states at some very specific identifiable
DNA locations, called DNA markers. A large common set of highly polymorphic
markers is of interest to characterise the genetic diversity in populations. Many
types of genetic markers exist, during this chapter we focus on microsatellite and
single nucleotide polymorphism (SNP, pronounced snip).

Microsatellite or Short Tandem Repeats (STRs) Short tandem repeated
sequences consisting of 2-5 base pairs can be observed on DNA sequences. We are
interested in the number of repeated motifs, that is called a microsatellite marker.
As this number may fluctuate depending on individuals, it exists as many alleles as
the number of observable repetitions. It is thus a good indicator of genetic diversity.

Single Nucleotide Polymorphism A SNP is a location on the genome where
the nucleotide type change depending on individuals. The DNA sequence of two
individuals might differ at some very specific positions in terms of nucleotide, by
one base. When more than 1% of the population present the same variation at a
given location, this can be considered as a SNP. For haploid individuals, a SNP is
encoded by a 0 or a 1 depending on whether or not the allelic state we observe differs
from the ancestral one.

Mutational models associated to such types of data are detailed in Section 3.5.2.
The data we study thus comes from observations of a large number of DNA markers
on individuals. When diploid populations are of interest, each individual carries
genes from two parents. For more simplicity, we assimilate a diploid individual to
two haploid individuals. A population of N diploids is thus treated as a population
of 2N haploids.

3.2.2 Evolutionary scenario

The populations we study are linked by their common unknown history we would
like to reconstruct. More precisely, some evolutionary scenarios are formulated to
summarise the succession of possible demographic events that affected the common
ancestral population and led to the present distribution of individuals. An example
of scenario involving four present populations (Asian, European, Afro-American and
African) is illustrated in Figure 3.1.

We introduce below three types of demographic events we later encounter, all
these are occurring instantaneously and more detailed in Section 3.4.
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Figure 3.1 — An evolutionary scenario shared by four present populations: Asian,
See Chapter 4 where this

European, Americans of African ancestry and African.
scenario is studied for more information.

e Change of population size: the population size
time.

e Divergence: an ancestral population divides into (at least) two more recent

sub-populations.

e Admixture: two distantly related populations merge together in some pro-
portions r and 1 — r to form a new one. r is called the admixture rate.

Given a set of formulated scenarios and corresponding genetic data, there are

changes suddenly at a given

two main biological problems we would like to deal with:

— model choice problems, for which we determine the most likely scenario

able to explain the present genetic diversity;

— parameter inference problems, for which we

vergence times, admixture rates, population sizes,.

The modelling of the observation must be constrained to reproduce the past
demographic events at the proper times, in other terms it must respect the con-
sidered evolutionary scenario. As mentioned in the introduction, the first step of
the model construction is the generation of a locus genealogy. We explain in the
following section how this is done on the simplifying case of an isolated population,

estimate parameters as di-

we then present how it spreads to mimic the scenario events.

3.3 Genealogy sampling and coalescent

A genealogy is represented by a dendrogram that depicts

the evolution of the sample
most recent common ancestor (MRCA), through time, until the present. Figure 3.2
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Figure 3.2 — Example of a genealogy for a sample of 5 genes. “MRCA” denotes the
most recent common ancestor of the total sample, and the numbers at the bottom

of the tree indicate the gene labels. T} denotes the time to switch from k lineages
to k — 1.

displays an example of genealogy for a sample of 5 genes. Each branch is a gene
lineage that can split in two, meaning the gene is duplicated and transmitted to the
corresponding offsprings. This perspective from past to present is often mentioned
as time-forward, in contrast to the time-backward perspective where the dendrogram
is read from present up to the past, until the MRCA. In this case, the event where
two lineages find their common ancestor and merge is called a coalescence, and we
can notice that a genealogy of an n-sample is made of n — 1 coalescent events. Note
that the genealogy does not carry any information concerning the allelic states. This
is explained by the neutral assumption we made, where genetic variations (allelic
states) do not impact the survival of the lineage or the number of offsprings, and
thus the genealogy structure.

We consider an n-sample, drawn from an haploid population of effective size N,
without any geographical or social structure. The effective population size is the
number of individuals that effectively participates in producing the next generation.
Usually, NV is very large compared to n, in the following we assume that this is the
case.

Wright-Fisher model The most known model to generate a genealogy is the
Wright-Fisher model, (Wright, 1931; Fisher, 1930). It is built on the following
assumptions. First, it assumes that time is measured in terms of non-overlapping
generations, so that at each generation all individuals in the population die and are
replaced by their offsprings. Moreover, the population of size N is constant and
finite over generations. Finally, all individuals reproduce at random (the population
is panmictic), so that some can produce multiple offsprings, while others can have
none. In a time-forward perspective, the whole population evolution is simulated
starting from the past. Each new generation is obtained by copying genes from
the previous one, a number of times equal to their number of descendants. Then,
the genealogy of n genes is obtained by drawing them in the most recent simulated
generation, and by going back in time to retrieve their most recent common ancestors
(in a backward perspective).
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Coalescent model Based on the same assumptions as the Wright-Fisher model,
a very simple time-backward approach is given by the coalescent theory (Kingman,
1982a,b,c). The Kingman’s coalescent model reconstructs the genes genealogy from
the present sample back to the MRCA. It thus consists in generating coalescent
events between pairs of lineages, to obtain the wanted dendrogram. We denote
T}, the length of time during which we have k lineages, i.e. the waiting time of a
coalescence when k lineages are observed.

The probability distribution of the genealogy for n genes is characterised by the
choice of the lineages to coalesce and the distribution of the time between coalescent
events Ty, ..., Ts. To derive the waiting time between two coalescences, we start at
n lineages and, under the Wright-Fisher assumptions, we investigate the probability
to observe a coalescent event in the previous generation. Note that more than two
lineages can coalesce one generation in the past under the Wright-Fisher model. Let
us denote F;; the probability that ¢ lineages are descended from j ancestors one
generation ago (with ¢ > j). Then P,, is the probability of non-coalescence, i.e.
the probability that the n lineages have distinct ancestors one generation in the past
among the N of the population. The first lineage finds its ancestor with probability
1, the second lineage has N — 1 out of N changes to have an ancestor different from
the first one. The third, has N — 2 out of N changes to have an ancestor different
from the first two, and so on. From such basic reasoning it results that

e (R () - (4
(R0

S-S ivo(m) - Wio ().

where (,f,) is the binomial coefficient, equal to — k/),k/, if £ > k', and 0 otherwise.
Similarly, we can calculate the probability to obtain one coalescence between two
lineages, P, ,—1. There is (g) possible pairs that can coalesce one generation ago,
which choose its ancestor among N possible ones. From this, the third lineage has
N — 1 possibilities out of N to have a different ancestor from the two first, and so
on. The resulting probability is

P’n,n—l — (2)

WS¥)...(_N—53—2>)
VI3 -Frelw)

From the P,, and P, ,_1 expressions, we deduce that the sum of the remaining
probabilities P, x with & < n—1 (i.e. the probabilities of more than one coalescence
in one generation) is equal to O(ﬁ) Thus, when N is large, we can suppose
that observing more that one coalescence in the direct previous generation is a zero
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probability event. It results that observing a coalescence in the previous generation

can be perceived as a Bernoulli trial with success probability (g) %

Under the above approximation, and because coalescent events are independent
at each generation, a geometric distribution with parameter (g)% describes the
waiting time before a coalescence event for an n-sample:

T, ~ Geo ((Z) %) .
This time is given in number of generations. However, a standard practice is to
consider the coalescent time in continuous units, that we denote below by T)¢. Still
under the assumption that N is very large, because T;, ~ Geo ((Z)%) we have the
approximation that 7){ = % ~ Exp((g) ). In this way, one unit of continuous time is
equal to N generations. For more simplicity, we consider the unit of time for which

one unit of continuous time is equal to one generation. It results from a change of

variable that
n\ 1
T ~ K — .
e ((5)5)

In the remaining only the continuous coalescent process is used and we discard the
c exponent. We can remark that the expected time of coalescence when n genes are
studied is equal to n(iﬁ - Thus, the higher N, the longer the time of coalescence.
Moreover, the smaller n, the longer the coalescence time. This explains why a

genealogy presents longer branches near its root.

Algorithm 3.1 : Genealogy generation for a single population
Input : the sample size n, the effective population size N

k < n;

while £ > 1 do

Simulate the coalescence time T}, from Exp ((g) %),
Increase all lineage branches of length Tj;

Coalesce a random pair of lineages among the (’;) possible pairs;

Decrease the number of lineages k by one: k « k — 1;

end

Algorithm 3.1 describes the generation of a genealogy for n lineages. Branches
are increased time-backward by lengths equal to the simulate waiting time of co-

alescence, and a random pair of lineages coalesce. This is repeated until the sample
MRCA.

3.4 Coalescent under demographic events

A species can present demographic structures (geographical or social), different sub-
populations with different effective sizes over time, as well as interactions between
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Figure 3.3 — The four principal demographic events: migration, bottleneck, diver-
gence, admixture. m,;; denotes the mutation rate from population 7 toward j. N
and N’ are effective population sizes and r is the admixture rate.

them. The coalescent process must take this into account and be modified accord-
ingly to reflect the evolutionary scenario it represents. We consider as possible
events: a stepwise change in effective population size, an asymmetric admixture
and a divergence illustrated in Figure 3.3, and explain how to generate genealogies
mimicking them. These are instantaneous events, and we assume they occur at
time t'. Continuous gene flow can also occur, as migration or introgression, where
populations give or receive genes over a fixed time period, but we do not present
them. Note that an instantaneous introgression event can be seen as a special case
of an admixture event, where a population receives a certain percentage of genes
from another one.

Change of population size (bottleneck) A natural population, due to a cli-
mate disaster or the apparition of a disease in a population (for example), might see
its effective population size drop very quickly, barely instantaneously, from a size
N’ to N. As we mentioned earlier, the smaller the size, the higher the coalescence
rate because lineages are more likely to find their common ancestors when they are
few of them. This stepwise change of population size hence drives the shape of the
genealogy. More evolved approaches consider that the size is changing over time,
however we do not present them in this chapter.

Divergence The phenomenon where an ancestral population divides itself into
two more recent sub-populations is named divergence. It can model in particular a
colonisation, where a small number of individuals leave the main population. This
event is often coupled with a bottleneck event. In a time backward perspective, at
time t' two populations fuse to generate an ancestral one. Divergence can of course
involve more that two populations.

Admixture Two distantly-related populations can merge together in some pro-
portions and form a new one. This gene flow between distant populations is called
admixture. A recent genetic admixture example is the African-Americans which
result from a mixture between African and Europeans. From present to past, the
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new born population is made of a certain percentage r of the first population and
1 — r of the second, where r is the admixture rate.

When considering only instantaneous demographic events, without continuous
gene flux (migration/introgression) between populations, introducing such events in
the genealogy construction first requires to build independent genealogies for each
population, until time #'. This is done similarly to Algorithm 3.1, for which the
genealogy construction is interrupted before ¢’ is exceeded, in this case all branches
are increased to this event time. Then the instantaneous event is applied in the
following way.

e Change of population size The effective population size N is replaced by
N’, and the subsequent coalescent times are generating using this new size.

e Divergence If population ¢ diverged from population j, then move all lineages
from population ¢ toward j.

e Admixture If population ¢ resulted from an admixture of populations j and
k with respective rates » and 1 — r, each lineage in deme 7 is moved with
probability » and 1 — r toward population 5 and k respectively.

This is repeated until all scenario events are met and one lineage is obtained (the
sample MRCA).

Finally, if continuous migration between populations is of interest, it consists in
moving lineages from one population to another over a fixed period of time. In this
case, coalescence and migration are competing events, both exponentially distrib-
uted. Generating a genealogy under migration consists in simulating exponential
realisations corresponding to each event. The shortest simulated time determines
which event occurs first. Figure 3.4 illustrates the genealogy shared by 10 genes
sampled in two populations in presence of migration. Two migrations events oc-
curred and are represented by horizontal dashed lines.

3.5 Mutational process and data derivation

We now are interested in adding mutations according to a mutational process on
the previously simulated genealogy. To derive the genotypes of a sample at a given
locus, the MRCA genotype is modified along the genealogy when it encounters a
mutation.

3.5.1 Mutation location

Let p be the rate of mutation of a gene per generation and per locus, i.e. a given
gene can overcome a mutation with probability x4 in a time period of one generation.
This mutation event can be taken into account during the genealogy construction.
However, as mutations are considered neutral, we can toss mutations on the genea-
logy branches depending on their length. To do so, instead of focusing on the dates
of mutations, we focus on the number of mutations M arising in a time period
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Figure 3.4 — An example of coalescent with migration for two populations. Five genes
are samples in each population and migration events are represented by horizontal

dashed lines.

of L units of time, that is a branch of length L. Because mutations on different
lineages and at different generations arise independently, the Poisson distribution is
tailored to model M} and My ~ Poisson(Lu). For each branch we can therefore
draw the number of mutations from this distribution and then uniformly distribute
them along the branch. This describes a Poisson point process of rate p.

3.5.2 Mutation model

The effect of a mutation depends on the mutational model that is considered for
the different DNA markers we study. We present the case of microsatellite and SNP
markers (introduced in Section 3.2.1), and how is chosen the ancestral allelic state.

Microsatellite or Short Tandem Repeats (STRs) There are many models to
explain how a mutation acts on a microsatellite locus. The simplest is the stepwise
mutation model (SMM, Ohta and Kimura, 1973), in which one repeat unit is either
gained or lost with equal probability. A generalisation is the generalised mutation
model (GSM, Estoup, Jarne et al., 2002). Under this model, a mutation increases or
decreases (still with equal probability) the repeated motif number according to a geo-
metric distribution of parameter P. This model better reflects reality as mutations
have been observed to change the repeat length by more than one unit. The DIYABC
software (Cornuet, Pudlo et al., 2014), sample the ancestral allelic state at random
into the allelic range of the observation (or user-specified bounds). Moreover, DIY-
ABC also allows the consideration of an additional mutational process that inserts
or deletes a single nucleotide in the microsatellite sequence with equal probability,
depending on a mutation parameter denoted ugny (see Cornuet, Pudlo et al., 2014).
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Single-Nucleotide Polymorphism (SNP) For haploid populations, a SNP da-
ta is arbitrary coded by 0 for the ancestral allelic state, which is changed into a
1, for derived state, after a mutation is met. Even though the mutation location
can be added to the genealogy as mentioned in Section 3.5.1, the DIYABC software
bends this approach a little (following the ms algorithm of Hudson (2002)). As a
SNP is assumed to always be polymorphic (if not the SNP is discarded from the
data) and as only two allelic states are possible (ancestral and derived), it assumes
only one mutation occurs in the SNP locus genealogy. The branch carrying the
mutation is drawn with probability proportional to its length, the longer it is, the
more likely it carries a mutation. Thus this mutational model for SNP does not
require parameterisation. This has the advantage of being fast in terms of data
generation. However, adding a single mutation on every generated genealogy can be
discussed. Indeed, as mentioned in Cornuet, Pudlo et al. (2014) (Appendix S1), a
genealogy carrying a mutation should have longer branches compared to one without,
hence the genealogy generation should be performed conditionally on having a single
mutation on it (by keeping the usual Poisson point process and retaining genealogies
for which only one mutation is generated).

3.5.3 Data-derivation

Once a genealogy has been constructed for the sample thanks to the coalescent
process, and the mutations have been simulated, the final step of the data-generating
process is the deduction of the associated present data. The ancestral allelic state

corresponding to the genotype of the MRCA in the genealogy is sampled (if needed),
and then passed through the tree until the leaves:

e if a mutation is met, it is applied on the sequence, modifying it according to
the mutational process,

e if a coalescence is met, the genotype is duplicated and passed to the two
daughter branches.

The simulated sample is observed at the present time. Figure 3.5 illustrates the
generation of data for a sample of five lineages and one SNP marker.

3.6 Inferential difficulties

An essential biological interest is to characterise the parameters, denoted 6. From
the previous sections we can distinguish three types of parameters:

e historical (admixture times, divergence times,...);
e demographic (admixture rates, effective population sizes,...);

e genetic (mutation rate,...).
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Figure 3.5 — The data-generating process of present genetic data divided in three
steps: (1) the construction of a genealogy (left), (2) the addition of mutations on
the genealogy (middle), (3) the derivation of the present sample allelic states thanks
to the ancestral one (right). This example includes one SNP marker common to five
individuals, with a unique mutation on the genealogy.

The objective is to infer such parameters from a polymorphic data observed at the
present time, denoted y.

Unfortunately, the likelihood of the coalescent model cannot be computed easily,
especially for large sample size. This is due to the presence of latent variables which
are the unknown histories that produced the observation. Indeed, let H be an
history, the likelihood is thus expressed by

f(y]6) = / f(y. M| ),

and the likelihood calculation requires an integration over all possible histories yield-
ing y.
More precisely, we worked under the assumption of loci independence, and for

each locus ¢, a genealogy is built on which mutations are added. The likelihood of
the observed data can thus be rewritten as

110) =T[5 1) =TT [ [ £l MosGe | 03001
l V4

where y;, Gy and M, denote respectively the observations, the genealogy and muta-
tion setting at locus /. It means that for each locus ¢, we need to integrate over all
possible genealogies (configurations and branch length) and for each one we need
to integrate over all possible mutation placements and natures. For large data sets
this is unfeasible as there are too many possibilities that can lead to y.

As mentioned in Chapter 1, simulation techniques have been developed to deal
with this intractable likelihood issue, in particular approximate Bayesian computa-
tion (ABC). We end this chapter with some details on two key elements for ABC:
simulators to generate pseudo-data and summary statistics used to reduce the sample
size.
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3.7 Simulators and summary statistics

3.7.1 Data simulators

A large choice of softwares and packages exists to simulate genetic data from the
coalescent process. The most known is probably the ms software of Hudson (2002). It
generates DNA segments from the coalescent model, constrained to a large variety of
demographic events, in particular migrations and continuous change of population
size, even for loci subject to recombination. A recent reimplementation of ms is
msprime (Kelleher et al., 2016) which is more efficient and easier to use thanks to
its Python interface.

In the remaining of this manuscript we focus on the DIYABC software (ver-
sion 2.1.0, Cornuet, Pudlo et al., 2014). It is freely available with a detailed
user-manual and example projects for academic and teaching purposes at wwwl.
montpellier.inra.fr/CBGP/diyabc. Cornuet, Santos et al. (2008), Cornuet, Rav-
igné et al. (2010) and Cornuet, Pudlo et al. (2014) developed DIYABC to provide
a user-friendly interface, which allows biologists with little background in program-
ming to perform ABC model choice and parameter inference studies. DIYABC is a
coalescent-based program which can consider complex population histories through
instantaneous demographic events including any number of divergence, admixture
(i.e. punctual genetic introgression), and population size variation events. Continu-
ous gene flow (introgression/migration of genes) are not implemented but an in-
stantaneous version can be treated by seeing it has a special case of admixture. The
software accepts various types of molecular data (microsatellites, DNA sequences,
and SNP) evolving under various mutation models and located on various chromo-
some types (autosomal, X or Y chromosomes, and mitochondrial DNA). DIYABC
also provides a large amount of summary statistics specific to each marker type, we
now describe some of them.

3.7.2 Summary statistics computed by DIYABC

We here present some summary statistics for microsatellite and SNP markers, re-
turned by the software DIYABC. These are proposed by biologist experts and com-
puted for a single, a pair or a trio of population samples to allow a rough description
of their allelic spectrum. Tables 3.1 and 3.2 provide the complete list of summary
statistics with their associated acronyms and references.

Single population Let us describe some summaries of allele diversity in a single
population sample. A common measure is the Nei’s gene diversity (a.k.a. hetero-
zygosity, Nei, 1987). It represents the probability that two randomly drawn alleles
are non-identical.

For microsatellite markers, the gene diversity is averaged over all loci (HET), so
is the number of alleles (NAL), as well as their size variance (VAR). The M index
at a locus (Garza and Williamson, 2001; Excoffier, Estoup et al., 2005) is computed
to characterise a drop in population size. It is the number of alleles divided by the
microsatellite range (the difference between the maximal and minimal microsatellite

81


www1.montpellier.inra.fr/CBGP/diyabc
www1.montpellier.inra.fr/CBGP/diyabc

CHAPTER 3. POPULATION GENETICS

size). This index is averaged over all loci in the population sample (MWG).

For SNP, the proportion of monomorphic loci is also employed as a summary
statistic (HPO0), in addition to the mean and variance of heterozygosity across poly-
morphic loci (HM1 and HV1 respectively).

Two populations When two populations ¢ and j are studied, treating the two
populations as one allows to use single population summaries on this joint popula-
tion. This is the case of the average number of alleles (N2P) or mean gene diversity
(H2P), for example. However, genetic distances between two populations are more
commonly used to measure the degree of genetic difference between two populations.

For microsatellite, a distance returned by DIYABC (among others) is the so
called shared allele distance between the two population samples (DAS, Jin and
Chakraborty, 1994). It is expressed as

2
o
Nowi + Ny
where n,; and n;, denote respectively the average number of alleles shared by pairs
of individuals within the same population sample k£ or two distinct populations. It
is one if there is no common allele between the two population samples and zero if
(nwi + nwj)/2 = Np.

For SNP markers, some DIYABC summary statistics involve the computation
of the Nei’s distance (Nei, 1972) between two populations ¢ and j at a locus (NPO,
NMI, NV1 and NMO).

A common dissimilarity measure for both types of markers at a given locus is
the Fsr (involved in the statistics FST, FP0O, FM1, FV1, FMO). Denoted 6 in Weir
and Cockerham (1984), it quantifies the degree of genetic diversity due to difference
of allele frequencies between populations.

Three populations Finally, to characterise an admixture event including three
populations, the admixture rate can be estimated and used as summary statistics
(Choisy et al., 2004). Indeed, let us consider that a population i results from an
admixture between populations j and k in proportions » and 1 — r. To infer this
admixture rate r, it is possible to compute the likelihood of the genotypes of the ad-
mixed samples. This likelihood results from the relationship between the proportion
of alleles u, (p,), in the three populations, and the admixture rate:

Puji = TPu,j + (1 - T)pu,k"

From this equation, the likelihood of an hybrid individual genotype at a locus /¢
can be derived. If loci are independent, their product provides the likelihood for a
multilocus genotype. The likelihood for the whole hybrid sample is then deduced
by the product of the individual ones. DIYABC returns the admixture MLE for all
possible combinations of three populations admixture event (AML) or is involved in
other summary statistics computation (AP0, AM1, AV1, AMO).

Note that DIYABC allows the consideration of groups of loci, to define different
mutational process for each one. The loci group is hence introduced in the summary
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Type of statistics Summary statistics Acronym | References
Single sample statistics | Mean number of alleles NAL
across loci Mean gene diversity HET Nei, 1987
Mean allele size variance VAR
Mean M index MWG Garza and Williamson, 2001,

Excoffier, Estoup et al., 2005

Two sample statistics Mean number of alleles N2P

across loci Mean gene diversity H2P

pooling two samples Mean allele size variance V2P

Two sample statistics Fst between two samples FST Weir and Cockerham, 1984
Mean index of classification | LIK Rannala and Mountain, 1997,

Pascual et al., 2007

Shared allele distance DAS Jin and Chakraborty, 1994
(6p)? distance DM2 Goldstein et al., 1995

Three sample statistics | Maximum likelihood AML Choisy et al., 2004

coefficient of admixture

Table 3.1 — Summary statistics available in the DIYABC software for microsatellite
markers, computed on one, two or three population samples, with the corresponding
acronym and references.

statistic acronym (Tables 3.1 and 3.2). For instance, for group 1, the maximum
likelihood coefficient of admixture, when population i comes from an admixture
event between populations j and k, is denoted AML 1 4.5.k. In the following, no
more than 1 group is studied. To get an idea of the number of summary statistics
computed by DIYABC, when five populations are studied, for microsatellite markers
a total of 130 summary statistics can be obtained, compared to 220 for SNP markers.

3.8 Conclusion

To handle genetic data and resolve population genetics problems, the Kingman’s
coalescent is widely used. In this chapter we presented its principle and how to
constrain it to respect an evolutionary scenario. While direct inferences by means
of the likelihood are unfeasible in much cases, simulations can be performed easily
and ABC methods are a more suitable solution.

The content of this chapter is essential for the better understanding of the ex-
amples, displayed in the different chapters of this manuscript. Indeed, population
genetics applications are a major part of our work. The data simulation process
thanks to the Kingman’s coalescent and how to summarise the information are im-
portant aspects.

Chapter 4 contains parameter inference analyses performed using 50, 000 SNP mark-
ers genotyped in four human populations (African, East Asian, European, North
American, The 1000 genomes project consortium, 2012). In Chapter 6, we present
two improvements for the ABC random forest methodologies, both are supported
by complex case-studies using sets of microsatellite markers. The first one concerns
a scenario choice problem, involving four African Pygmy populations and their non-
Pygmy neighbours (Estoup, Raynal et al., 2018). The second study is about the
reconstruction of the evolutionary past of two desert locust subspecies (Schistocerca
gregaria). It displays ABC-RF scenario choice and parameter inference analyses,
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Type of statistics | Summary statistics Acronym | References
Single sample Proportion of monomorphic loci HPO
statistics Mean gene diversity HM1 Nei, 1987
across loci (on polymorphic loci)

Variance of gene diversity HV1

(on polymorphic loci)

Mean gene diversity HMO
Two sample Proportion of loci with FPO Weir and Cockerham, 1984
statistics null Fgr distances
across loci Mean of non null Fgr distances FM1

Variance of non null Fgr distances FV1

Mean of Fgr distances FMO

Proportion of loci with NPO Nei, 1972

null Nei’s distances

Mean of non null Nei’s distances NM1

Variance of non null Nei’s distances NV1

Mean of Nei’s distances NMO
Three sample Proportion of loci with APO Choisy et al., 2004
statistics null admixture estimates
across loci Mean of non null admixture estimates AM1

Variance of non null admixture estimates | AV1

Mean of admixture estimates AMO

Table 3.2 — Summary statistics available in the DIYABC software for SNP markers,
computed on one, two or three population samples, with the corresponding acronym

and references.

results regarding the two subsequent developments, to finally propose interesting
hypothesis linking our results to known past events (Chapuis, Raynal et al., 2019).
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Chapter

ABC random forests for Bayesian
parameter inference

This chapter is based on our article Raynal et al. (2019), published in Bioinformatics.
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CHAPTER 4. ABC-RF FOR PARAMETER INFERENCE

4.1 Introduction

Posterior distributions are the cornerstone of any Bayesian analysis as they con-
stitute both a sufficient summary of the data and a means to deliver all aspects of
inference, from point estimators to predictions and uncertainty quantification. How-
ever, it is rather common that practitioners and users of Bayesian inference are not
directly interested in the posterior distribution per se, but rather in some summary
aspects, like posterior mean, posterior variance or posterior quantiles, since these
are easier to interpret and report. With this motivation, we consider a version of
ABC focusing on the approximation of unidimensional transforms of interest like
the above, instead of resorting to the classical ABC approach that aims at approx-
imating the entire posterior distribution and then handling it as in regular Bayesian
inference. The approach we study here is based on random forests (RF, Breiman,
2001), which produces non-parametric regressions on an arbitrary set of potential
regressors. We recall that the calibration side of RF (i.e. the choice of the RF para-
meters: typically the number of trees and the number of summary statistics sampled
at each node) was successfully exploited in Pudlo et al. (2016) for conducting ABC
model choice.

Let {f(y | 0):y € Y,0 € ©}, Y CR", 0§ C RP p,n > 1 be a parametric
statistical model and 7(f) be a prior distribution on the parameter #. Given an
observation (or sample) y issued from this model, Bayesian parameter inference is
based on the posterior distribution 7(6 | y) o w(0)f(y | #). The computational
difficulty addressed by ABC techniques is that a numerical evaluation of the density
(a.k.a., likelihood) f(y | 6) is impossible or at least very costly, hence preventing
the derivation of the posterior 7(f | y), even by techniques like MCMC (Marin and
Robert, 2014).

In Chapter 1 we exposed the basic ABC principles, and the calibration aspects
these methods require, as well as the random forest algorithms and its advantages
in Chapter 2. We now explain how to fuse both methodologies towards Bayesian
inference about parameters of interest. We then illustrate the performance of our
proposal and compare it with earlier ABC methods on a normal toy example and a
population genetics example dealing with human population evolution.

We first recall in Algorithm 4.1 how a reference table is generated. 7 still denotes
the set of d summary statistics and x* is a data simulated from the generative model.
Such a reference table will later be used as a training data set for the different RF
methods explained below.

Algorithm 4.1 : Generation of a reference table of size N
for i + 1 to N do
Simulate 0% ~ 7(-);
Simulate x@ ~ f (- | §©);
Compute 7,4 = {T]x(i)J, . 777x(i),d}§
end
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4.2. ABC PARAMETER INFERENCE USING RF

4.2 ABC parameter inference using random forest

4.2.1 Motivations and main principles

The particular choice of RF as a (non-parametric) estimation method in a regression
setting is justified by the robustness of both random forests to “noise”, that is, to
the presence of irrelevant predictors, even when the proportion of such covariates
amongst the entire set of proposed predictors is substantial (Marin, Pudlo, Estoup
et al., 2018). By comparison, the method of k-nearest neighbour classifiers lacks
such characteristics (Biau, Cérou et al., 2015). In the setting of building an ABC
algorithm without preliminary selection of some summary statistics, our conjecture
is that RF allows for the inclusion of an arbitrary and potentially large number
of summary statistics in the derivation of the forest and therefore that it does not
require the usual preliminary selection of summary statistics. When implementing
this approach, we hence bypass the selection of summary statistics and include a
large collection of summary statistics, some or many of which being potentially
poorly informative if not irrelevant for the regression.

A regression RF produces an expected predicted value for an arbitrary transform
of #, conditional on an observed data set. This prediction is the output of a piece-
wise constant function of the summary statistics. RF aggregates trees, partitions the
feature space (here the space of summary statistics) in a way tuned to the forecast of
a scalar output, i.e. a one dimensional functional of the parameter. This partition
and prediction are done without requiring the definition of a particular distance
on the feature space and is hence not dependant of any type of tolerance level.
From an ABC perspective, each tree of a RF provides a partition of the covariate
space, in our case the d-dimensional space of summary statistics, adapted for the
forecasting of the response variable, corresponding to a scalar transformation h(6)
of the parameter 6. In the following section we present how to compute quantities
of interest in a context of parameter inference, thanks to the calculation of weights.

4.2.2 Calculation of weights and approximation of the pos-
terior expectation

Assume we have now grown a RF made of B trees that predicts 7 = h(6) € R using
the summarised observed data set 7, and the training sample {(T(Z’),Tlx(i))}izl,m’]\/',
where 70 = h(6%). In the examples below, we will consider the case where h is
the projection on a given coordinate of §. To sum up, we are training a RF using
simulated data sets from the reference table, where the covariates are the summary
statistics and the response variable is a unidimensional parameter of interest. Each
of these B trees produces a partition of the space of summary statistics, with a
constant prediction of the expected value of 7 on each set of the partition. More
precisely, given the b-th tree in the forest, let us denote n,(f) the number of times the
pair (7%, n, ) is repeated in the bootstrap sample that is used for building the b-th
tree. Note that nl(f) is equal to zero when the pair does not belong to the bootstrap
sample. These pairs form the out-of-bag sample of the b-th tree. Now, let Ly(ny)
denote the leaf reached after following the path of binary choices given by the tree,
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which depends on the value of 7,. The number of items of the bootstrap sample
that fall in that leaf is

|Lu(ny)| = > n" 1 {nor € Lu(ny)}

=1

where 1 denotes the indicator function, and the mean value of 7 of that leaf of the
b-th tree is

an 1 {neo € Ly(ny)} 7.

‘Lb(ny i=1

Averaging these B predictions of 7 leads to an approximation of the posterior ex-
pected value of 7, also denoted mean value of 7, which can be written as follows:

B N
1 i t
Blrhn) = 50 gt e € B =
y

b=1 =1

This is the classic random forest prediction in the regression setting (Chapter 2,
Equation 2.4).

As exhibited by Meinshausen (2006), the above can be seen as a weighted average
of 7 along the whole training sample of size N made by the reference table. In fact,
the weight of the i-th pair (7, 7.) given n, is

Z nbi)]l {nx@ € Ly(ny)}-
T

4.2.3 Approximation of the posterior quantile and variance

The weights w;(ny) provide an approximation of the posterior cumulative distribu-
tion function (c.d.f.) of 7 given 7, as

N

F(r|ny) =Y win)1 {79 < 7}}.

=1

Posterior quantiles, and hence credible intervals, are then derived by inverting this
empirical c.d.f., that is by plugging F' in the regular quantile definition

@a(7|ny):inf{7:ﬁ(r|ny)Za},

This derivation of a quantile approximation is implemented in the R package
quantregForest and the consistency of F' is established in Meinshausen (2006).

An approximation of V(7 | y) can be derived in a natural way from F , leading

to
N 2
e I ny) zwi 77y< —zwu<ny>7<u>).
u=1
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4.2.4 Alternative variance approximation

Regarding the specific case of the posterior variance of 7, we propose a slightly more
involved albeit manageable version of a variance estimate. Recall that, in any given
tree b, some entries from the reference table are not included since each tree relies
on a bootstrap sample of the training data set. The out-of-bag simulations, i.e.
unused in a bootstrap sam%)le can be exploited toward returning an approximation
of E(7 | nxw), denoted Toob Indeed, given a vector of summary statistics 7,
of the training data set, passing this vector down the ensemble of trees where it
has not been used and mean averaging the associated predictions provide such an

approximation. Since

V(7 |ny) =E ([r —E(7 | ny)]* | ny)

we advocate applying the original RF weights w;(ny) to the out-of-bag square resid-

uals (7 — 29012 which results in the alternative approximation

V(7 | ny) sz ny) (T — Tch)b>2'

Indeed, as presented below in Section 4.3.1.1, an estimator of the posterior variance
can be obtained by training a new forest on the out-of-bag squared residuals, res-
ulting into a weighted sum of these quantities. This estimator consists in replacing
these new weights by the one from the first forest, assuming these are good enough
to approximate any posterior expectations: E(g(6;) | ny), where g is a function
of §;. A comparison between different variance estimators is detailed in Section
4.3.1.1. Owing to the results of this comparative study, we choose to use the above
alternative variance estimator when presenting the results from two examples.

4.2.5 Approximation of posterior covariances

We are here interested in another estimate that is frequently produced in a Bayesian
analysis, that is the posterior covariance between two univariate transforms of the
parameter, 7 = h(f) and o = g(0), say Cov(7,0 | ny). Since we cannot derive this
quantity from the approximations to the marginal posteriors of 7 and o, we propose
to construct a specific RF for this purpose. We denote approximations of posterior
expectations for 7 and o, produced by out-of-bag information, by ()b and Oo)b
We use the product of out of ba% errors for 7 and o in the empirical covariance,
and consider (70 — ) as the response variable. With the previously

introduced notations, the correspondmg RF estimator is
C _ @) (@) _ 20,0 _ 50
OV<T o | 77y }L | U (T 7_oob)( 00b>'
b i) €Lv(ny)

This posterior covariance approximation requires a total of three regression RFs:
one for each parameters and one for the covariance approximation.
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4.2.6 A new R package for conducting parameter inferences
using ABC-RF

When several parameters are jointly of interest, our recommended global strategy
consists in constructing one independent RF for each parameter of interest and es-
timate from each RF several summary measurements of the posterior distribution
(i.e. posterior expectation, quantiles and variance) of each parameter. However, if
one is interested in estimating the posterior covariance between pair of paramet-
ers, an additional RF is required. Our R library abcrf was initially developed for
Bayesian model choice using ABC-RF as in Pudlo et al. (2016). The version 1.7.1
of abcrf includes all the methods proposed in this chapter to estimate posterior
expectations, quantiles, variances (and covariances) of parameter(s). abcrf version
1.7.1 is available on CRAN. We provide in Appendix A.1, a commented R code that
will allow non-expert users to run random forest inferences about parameters using
the abcrf package.

4.3 Results

We illustrate the performances of our ABC-RF method for Bayesian parameter in-
ference on a normal toy example and on a realistic population genetics example. In
the first case, approximations of posterior quantities can be compared with their
exact counterpart. For both examples, we further compare the performances of
our methodology with those of earlier ABC methods based on solely rejection, ad-
justed local linear (Beaumont, Zhang et al., 2002), ridge regression (Blum, Nunes
et al., 2013), adjusted neural networks (Blum and Frangois, 2010), and adaptive
PMC (ABC-PMC, Beaumont, Cornuet et al., 2009; Prangle, 2017). Moreover, we
carried out additional comparisons between ABC-RF, adaptive ABC-PMC (Beau-
mont, Cornuet et al., 2009; Prangle, 2017), ABC-SMC (Del Moral et al., 2012)
and adaptive ABC-SMC (Klinger and Hasenauer, 2017) methods for various tuning
parameters. Due to excessive computational heaviness and in agreement with the
content of the results obtained on the normal toy example, we did not extended the
latter comparisons to the population genetics example. Normalised mean absolute
errors (NMAE) are used to measure performance on test data sets, the normalisa-
tion being done by dividing the absolute error by the true value of the target, these
are then averaged to provide the NMAE. A normalised version offers the advantage
of being hardly impacted when only a few observations get poorly predicted.

For both illustrations, RFs were trained based on the functions of the R pack-
age ranger (Wright and Ziegler, 2017) with forests made of B = 500 trees, with
My = d/3 selected covariates (i.e. summary statistics) for split-point selection at
each node, and with a minimum node size equals to 5 (Breiman, 2001, and see Sec-
tion 4.3.3, Practical recommendations regarding the implementation of the ABC-RF
algorithm). The other ABC methods in the comparison were based on the same ref-
erence tables, calling the corresponding functions in the R package abc (Csilléry et
al., 2012; Nunes and Prangle, 2015) with its default parameters. ABC with neural
network adjustment uses one hidden layer, but multiples networks are trained so
that the final prediction is the median of the neural networks predictions, their
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number is here equal to 10, the default value in the R package abc. A correction
for heteroscedasticity is applied by default when considering regression adjustment
approaches. Note that regression corrections are univariate for local linear and ridge
regression as well as for RF, whereas neural network — by construction — performs
multivariate corrections.

4.3.1 Normal toy example

We consider the hierarchical normal mean model

Yj | 91792 ~ -/\/’(91,‘92),
01 ‘ 92 ~ N(O,GQ),
6y ~ 1G(4,3),

where IG(k, A) denotes an inverse Gamma distribution with shape parameter x and
scale parameter A\. Let y = (y1,...,¥,) be a n-sample from the above model. Given
these conjugate distributions, the marginal posterior distributions of the parameters
0, and 6, are closed-forms:

ny 2(3+s%/2+ny?/(2n+ 2))
0 ~ 8
vy T(“ Pk (n+ D(n+8)
n 52 ny?
0 ~IG|-+4 —
2 |y Q<2+,3+2+2n+2),

where ¥ is the sample mean and s? = Z;L:l(yj —y)? the sum of squared deviations.
T (v,a,b) denotes the general ¢ distribution with v degrees of freedom (Marin and
Robert, 2014).

From the above expressions and for a given sample y, it is straightforward to
derive the exact values of E(0; | y), V(0; | y), E(0s | y), V(62 | y) and posterior
quantiles for the two parameters. This provides us with a benchmark on which
to assess the performances of ABC-RF. For the present simulation study, we op-
ted for a reference table made of N = 10* replicates of a sample of size n = 10
and d = 61 summary statistics. Those statistics included the sample mean, the
sample variance, the sample median absolute deviation (MAD), all possible sums
and products with these three elements resulting in eight new summary statistics
and 50 additional independent (pure) noise variables that were generated from a
uniform Ujo,;; distribution. The performances of our method were evaluated on an
independent test table of size Npeq = 100, produced in the same way as the refer-
ence table. Current ABC methods (rejection, adjusted local linear, ridge and neural
network) all depend on the choice of a tolerance level p. corresponding to the pro-
portion of selected simulated parameters with lowest distances between simulated
and observed summary statistics. On this example we consider a tolerance level of
pe = 0.01 for ABC with rejection, and p. = 0.1 for the ABC methods with adjust-
ment. We also compare estimation results obtained from the adaptive ABC-PMC
algorithm described in Prangle (2017) (Algorithm 5 of his paper). We implement
two designs of this scheme with both 2,000 simulated particles per iteration, 1,000
accepted particles, schemes iterate until we get approximately 10* (a-PMC-1) and
10° (a-PMC-2) simulated particles. Finally, we carry out additional comparisons
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with two sequential ABC methods: ABC-PMC based on the algorithm of Beau-
mont, Cornuet et al. (2009) and ABC-SMC based on the algorithm of Del Moral
et al. (2012) (both presented in Chapter 1). Two different implementations of ABC-
PMC (named PMC-1 and PMC-2) are considered. PMC-1 and PMC-2 include
1,000 and 100 simulated particles per iteration, 100 and 10 accepted particles and
10 and 100 iterations, respectively, resulting in 10* simulated particles. Two dif-
ferent implementations of ABC-SMC (named SMC-1 and SMC-2) are considered.
Both SMC-1 and SMC-2 include 1,000 simulated particles per iteration and a stop-
ping rule based on two pre-computed quantiles of the distances between the observed
summary statistics and simulated ones. For SMC-1, we use a quantile of 10% and for
SMC-2 a quantile of 1%. At the end, we simulate approximately 40, 000 particles for
SMC-1 and 360,000 for SMC-2. Furthermore, we also compare with an ABC-SMC
scheme (named py-SMC-1 and py-SMC-2) using adaptive population sizes described
in Klinger and Hasenauer (2017), using the pyABC Python module (Klinger, Rickert
et al., 2018). An initial population size equal to 1,000 is used and two different
values of a target density variation. An additional version of ABC-PMC (named
py-PMC-1 and py-PMC-2) is implemented using this module to mimic the PMC-
1 and PMC-2 designs. In some comparisons, we consider two different situations
by including or not a large number of noise variables (50 or 500 noise variables
drawn into uniform distributions on [0;1]) as explanatory variables. The R codes
are available at https://github.com/jmm34/abc-rf-param.

Figure 4.1 compares the exact values ¥1(y) = E(0; | y), va(y) = E(62 | ¥),
P3(y) = V(6 | y) and 4(y) = V(0 | y) with the estimates obtained from the ABC-
RF approach. It shows that the proposed estimators have good overall performances
for both 1 (y) and 12(y). Our estimators perform less satisfactorily for both 5(y)
and 14(y) but remain acceptable. Figure 4.2 shows furthermore that the quantile
estimation are good for #; if less accurate for 6,.

We then run an experiment to evaluate the precision of the marginal posterior
approximation provided by ABC-RF for the parameter 0, using two different test
data sets and 40 independent reference tables. As exhibited in Figure 4.3, results
are mixed. For one data set, the fit is quite satisfactory, with the RF approximation
showing only slightly fatter tails than the true posterior density distribution function
(Figure 4.3; upper panel). For the other data set, we obtain stronger divergence both
in location and precision of the posterior density distribution function (Figure 4.3;
lower panel).

Using the same reference table, we now compare our ABC-RF results with a set of
five earlier ABC methods, namely, ABC methods based on straightforward rejection,
adjusted local linear, ridge regression, adjusted neural networks and adaptive ABC-
PMC. Table 4.1 shows that the ABC-RF approach leads to results better than
all other ABC methods for all quantities of interest. Expectations and quantiles
are noticeably more accurately predicted. Figure 4.4 compares differences between
estimated and true values of the posterior variances ¥3(y), ¥4(y). It shows the global
underestimation associated with rejection and ABC methods with adjustment, when
compared to ABC-RF, the latter only slightly overestimating the posterior variance.
The adaptive ABC-SMC method performs very decently for 14(y), however highly
overestimates 13(y). Finally, by looking at the width of the boxplots of Figure 4.4,
we deduce that our ABC-RF estimations exhibit a lower estimation variability.
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Figure 4.1 — Scatterplot of the theoretical values ¥ (y) = E(61 | y), ¢¥2(y) = E(6; |
y), ¥3(y) = V(6, | y) and 14(y) = V(s | y) for the normal model with their corres-
ponding estimates 7;51, 7;52, Jg, QZ4 obtained using ABC-RF. Variances are represented
on a log scale.
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Figure 4.2 — Scatterplot of the theoretical values of 2.5% and 97.5% posterior
quantiles for 6; and 6s, for the normal model with their corresponding estimates
obtained using ABC-RF.
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Density

Density

Figure 4.3 — Comparisons of the true posterior density distribution function of 6,
in the normal model with a sample of 40 ABC-RF approximations of the posterior
density (using RF weights), based on 40 independent reference tables and for two
different test data sets (upper and lower panels). True posterior densities are rep-
resented by red lines.
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RF  Reject ALL ARR ANN py-SMC-1

Ui(y) =E(6; [y) 0.18 032 034 031 042 0.24
Uoly) =E(6, |y) 0.05 010 0.14 017 0.17 0.09
Us(y) =V(6 |y) 0.25 221 070 069 0.48 0.79
ba(y) =V(6,|y) 0.25 043 0.66 0.70 0.97 0.55
Qo.025(02]y) 0.04 0.13 034 055 0.80 0.17
Qoors(fi]ly)  0.25 135 053 0.70 0.60 0.45
Qoors(fa]ly)  0.10 014 020 020 0.42 0.21

Table 4.1 — Comparison of normalised mean absolute errors (NMAE) of estimated
quantities of interest obtained with ABC-RF and other ABC methodologies. RF,
Reject, ALL, ARR, ANN and py-SMC-1 stand for random forest (ABC-RF), re-
jection, adjusted local linear, adjusted ridge regression, adjusted neural network
methods and ABC-SMC with adaptive population size from Klinger and Hasenauer
(2017), respectively. The smallest NMAE values are in bold characters.
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Figure 4.4 — Boxplot comparison of the differences between our predictions for V(6; |
y) and V(6 | y) and the corresponding true values, using ABC-RF and other ABC
methods. (RF, ALL, ARR and ANN notations as in the legend of Table 4.1). py-
SMC-1 refers to the adaptive ABC-SMC algorithm of Klinger and Hasenauer (2017)
with the same tuning parameters as in Table 4.1. The closer to the y = 0 axis,
the better the predictions. Boxplots above this axis imply overestimation of the
predictions and below underestimation.
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RF a-PMC-1a-PMC-2 PMC-1 PMC-2 SMC-1 SMC-2 py-PMC-1 py-PMC-2 py-SMC-1 py-SMC-2

E(6; |y) 0.18 0.53 034 050 096 0.63 047 0.6 0.32 0.24 0.24
E(6; |y) 0.05 0.14 0.10 013 014 013 011 0.1 0.09 0.09 0.08
V(6 |y) 0.25 3.50 2.11 292 243 3.00 155  2.04 2.11 0.79 1.23
V(62 |y) 0.25 0.36 0.28 039 048 033 043  0.52 0.44 0.55 0.50
Qo.025(01]y) 0.34  2.82 177 272 130 265 158  1.71 1.62 0.36 1.03
Qo.025(2]y) 0.04  0.21 0.16 0.14 025 0.18 0.13  0.16 0.13 0.17 0.13
Qo.075(01]y) 0.25  2.19 128 154 1.04 1.75 1.03  1.32 1.41 0.45 0.75
Qo.075(02]y) 0.10  0.14 0.11 014 026 015 017  0.21 0.18 0.21 0.18

Table 4.2 — Comparison of Normalised Mean Absolute Errors (NMAE) obtained
with ABC-RF, adaptive ABC-PMC and sequential ABC methods for various tun-
ing parameters based on 100 test data sets. RF stands for the ABC-RF scheme
on a reference table of size 10*. a-PMC-1 and a-PMC-2 stand for two designs of
the adaptive ABC-PMC method of Prangle (2017) (Algorithm 5) with 2,000 simu-
lated particles per iteration, 1,000 accepted particles, schemes iterate until we get
approximately 10* (a-PMC-1) and 10° (a-PMC-2) simulated particles, respectively.
PMC-1 and PMC-2 stand for two designs of the sequential ABC-PMC algorithm
of Beaumont, Cornuet et al. (2009): PMC-1 and PMC-2 include 1,000 and 100
simulated particles per iteration, 100 and 10 accepted particles during 10 and 100
iterations, respectively. For PMC-1 and PMC-2, we simulate 10* particles. SMC-
1 and SMC-2 stand for two designs of the sequential ABC-SMC algorithm of Del
Moral et al. (2012). Both SMC-1 and SMC-2 include 1,000 simulated particles per
iteration and a stopping rule based on two pre-computed quantiles of the distances
between the observed summary statistics and simulated ones. For SMC-1, we use
a quantile of 10% and for SMC-2 a quantile of 1%. We also use the pyABC Python
module (Klinger, Rickert et al., 2018) to mimic the PMC algorithm as well as a
full adaptive SMC method described in Klinger and Hasenauer (2017). The main
drawback of this module is the absence of a stopping rule concerning the maximal
number of simulations, thus the total number of simulations is higher than 10, 000
(number of simulations used for ABC-RF). py-PMC-1 and py-PMC-2 is a PMC ad-
aptation obtained thanks to this module, using respectively 100 and 1,000 accepted
particles per iteration and a stopping rule based on a 1% pre-computed quantile of
the distances between observed and simulated data, (13,000 and 132,000 simula-
tions are respectively needed in average). py-SMC-1 and py-SMC-2 designate the
pyABC all adaptive version of ABC-SMC, including an adaptive population size, with
a target density variation parameter respectively equal to 0.15 and 0.1 (see Klinger
and Hasenauer (2017) for more details), and with 7 and 5 maximal iterations as
stopping rule.
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RF a-PMC-1a-PMC-2 PMC-1 PMC-2 SMC-1 SMC-2 py-PMC-1 py-PMC-2 py-SMC-1 py-SMC-2

E(6, |y) 0.14 0.78 068 0.64 128 081 081  0.72 0.57 0.45 0.45
E(6> |y) 0.05 0.21 0.18 018 0.19 0.18 0.16  0.15 0.13 0.12 0.13
V(6 |y) 0.22 6.42 531  5.06 534 476 3.42  4.17 4.37 2.26 2.82
V(6 |y) 0.28 0.71 059 053 054 059 053  0.43 0.37 0.46 0.38
Qo.025(01]y) 0.30  4.82 410 448 311 350 235 280 3.20 1.60 2.19
Qo.025(6]y) 0.05  0.25 024 023 031 022 020  0.16 0.15 0.14 0.15
Qo.o75(01]y) 0.23  3.49 3.03 267 137 285 196  2.37 2.65 1.50 1.83
Qo.075(62]y) 0.10  0.23 0.19 018 024 022 020 021 0.18 0.20 0.18

Table 4.3 — Same as Table 4.2, except that 500 independent noise summary statistics
were added as explanatory variables instead of 50. Noise variables were simulated by
randomly drawing into uniform distributions on [0; 1]. There are thus 114500 = 511
summary statistics in total (versus 61 summary statistics in Table 4.2).

We provide further comparisons obtained using ABC-RF, adaptive ABC-PMC
and sequential ABC methods for various tuning parameters (Tables 4.2 and 4.3).
We considered two different situations by including 50 (Table 4.2) or 500 (Table
4.3) noise variables (drawn into uniform distributions on [0; 1]) as explanatory vari-
ables. We found that the ABC-RF algorithm outperforms all adaptive and sequen-
tial methods (and designs) considered, and this adding or not a high amount of
noise variables. Note that, in contrast to other methods, ABC-RF was only weakly
affected by the presence of a large number of noise variables.

Details on tuning parameters used for ABC sequential methods:

e For all non-adaptive ABC methods, we use an Euclidean distance normal-
ised by the MAD calculated on a precomputed reference table of size 10, 000.
For adaptive methods, a similar distance is used where the standardisation is
performed with iteratively updated MAD values.

e Concerning the transition kernel, a Gaussian distribution is considered. The
variance-covariance matrix is taken as the weighted empirical one computed
on the accepted parameters of the previous algorithm iteration, multiplied by
2 for the methods we implemented (a-PMC, PMC and SMC) and multiplied
by a scaling factor involving the Silverman’s rule of thumb (see Klinger and
Hasenauer (2017) and Klinger, Rickert et al. (2018) for more details) for the
remaining ones using pyABC.

e For the ABC-SMC algorithm of Del Moral et al. (2012), we do not change the
tuning parameters described in the original paper (i.e. a = 0.90, Ny = N/2
where N is the population size.)

e The adaptive ABC-SMC algorithm of Prangle (2017) requires a value (also
denoted «) indicating the proportion of accepted simulations per iteration,
here chosen at 0.5.

e To mimic the ABC-PMC strategy we use pyABC with an adaptive threshold
equal to the median of the previous iteration distances, with a constant pop-
ulation size (100 or 1,000) and with a minimum threshold value equal to the
1% quantile of a precomputed reference table of size 10, 000.
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e Finally, for the full adaptive method of Klinger and Hasenauer (2017), we use
an adaptive population size depending on a desired target density variation
value (E,,) equal to 0.15 or 0.1 in our experimentations and an initial popula-
tion size equal to 1,000. Note that the default value 0.05 induced a change in
the population size from 1,000 to 10,000 in only one iteration, hence that is
not relevant in our comparison with ABC-RF due to its high simulation cost.
The threshold is taken as the median of the previous iteration distances (as in
Klinger and Hasenauer, 2017). We do not use a minimum threshold value but
a maximal number of iteration equal to 7 and 5 respectively. Note that this
method requires about 24, 000 and 30, 000 simulations when 50 noise summary
statistics are considered, and about 39,000 and 41,000 when 500 is added.

4.3.1.1 Comparing three methods of variance estimation of parameters

Finally, for this normal example, we here compare three methods to estimate pos-
terior variance of a parameter transformation of interest 7 using ABC-RF. Two of
them have already been explained in Section 4.2 (i.e. methods 1 and 3 below).

e Method 1: One reuses the original random forest (RF) weights w;(ny) to the

out-of-bag square residuals (7 — 7 )2

oob)”s giving the variance estimator

N
V(T [ny) =Y wilny)(r® — 7192,
=1

e Method 2: A similar estimator can be obtained by building a new RF thanks
to the training sample

{((T(i) — éo)b) T ))} L resulting in the estimator

geeey

N
VAT | ny) = > @ilny) (7D = 70))%,
=1

where w;(ny ) is the computed weights of this newly trained RF. This estimator
is based on the expression of the posterior variance as a conditional expecta-
tion:
2
V(r [ ny) =E ([t —E(7 | ny)]" | ny)
and the fact that such a RF is able to estimate this posterior expectation.
This approach is more expensive due to the additional RF requirement.

o Method 3: The variance estimator is based on the cumulative distribution
function (c.d.f.) approximation,

N 2
Tr | my) = zwz ) ( —zwu<ny>7<u>) |
u=1

We here compare these three estimators on the normal toy example detailed
above with h the projection on both coordinates of the parameter vector 6. We
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Figure 4.5 — Boxplot comparison of differences between our predictions for V(6; | y)
and the true values with the three methods of variance estimation: by reusing
weights (method 1, boxplot 1), by building a new RF on square residuals (method
2, boxplot 2) and by using the estimation of the cumulative distribution function

(method 3, boxplot 3).

Method 1 2 3
V(6 |y) 0.25 0.28 0.30
V(b |y) 0.25 0.47 0.25

Table 4.4 — Comparison of normalised mean absolute errors (NMAE) of estimate
variances when using three methods, (see legend of Figure 4.5). The smallest NMAE

values are in bold characters.

find that the three estimators behave similarly: boxplots are alike and all tend to
overestimate posterior variances (Figure 4.5). Results summarised in Table 4.4 also
support this similarity in NMAE terms. Because the estimator 1 appears to show
slightly lower errors for both parameter #; and 5, we decided to use it in the normal
and human population genetics examples.
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4.3.2 Human population genetics example

We illustrate our methodological findings with the study of a population genetics
data set including 50,000 single nucleotide polymorphic (SNP) markers genotyped
in four human population samples (The 1000 genomes project consortium, 2012; see
details in Pudlo et al., 2016). The four populations include Yoruba (Africa; YRI),
Han (East Asia; CHB), British (Europe; GBR) and American individuals of African
ancestry (North America; ASW). The considered evolutionary model is represented
in Figure 4.6. It includes a single out-of-Africa event with a secondarily split into
one European and one East Asian population lineage and a recent genetic admixture
of Afro-Americans with their African ancestors and with Europeans. The model was
robustly chosen as most appropriate among a set of eight evolutionary models, when
compared using ABC-RF for model choice in Pudlo et al. (2016).

We here focused our investigations on two parameters of interest in this model:
(i) the admixture rate ra (i.e. the proportion of genes with a non-African origin) that
describes the genetic admixture between individual of British and African ancestry
in Afro-Americans individuals; and (ii) the ratio N2/Na between the ancestral effect-
ive population size Na and African N2 (in number of diploid individuals), roughly
describing the increase of African population size in the past. Considering ratios of
effective population sizes allows preventing identifiability issues of the model.

We used the software DIYABC v.2.1.0 (Cornuet, Santos et al., 2008; Cornuet,
Pudlo et al., 2014) to generate a reference table of size 200,000, with N = 199,000
data sets being used as training data set and Npeq = 1,000 remaining as test data
sets. RFs are built in the same way as for our normal example and make use of
the d = 112 summary statistics provided for SNP markers by DIYABC, (see Pudlo
et al. (2016), and Chapter 3, Table 3.2).

Due to the complexity of this model, the exact calculation of any posterior quant-
ity of interest is unfeasible. To bypass this difficulty we compute NMAE using simu-
lated parameters from the test table, rather than targeted posterior expectations; in
this case the normalisation is performed by dividing by simulated parameter values.
Here, 95% credible intervals (CI) are deduced from posterior quantile estimate of
order 2.5% and 97.5%. Performances are measured via mean range and coverage,
with coverage corresponding to the percentage of rightly bounded parameters. For
example a 95% CI should provide coverage equal to 95% of the test table.

Figure 4.7, Figure 4.8 and Table 4.5 illustrate the quality of the ABC-RF method
when compared with ABC with either rejection, local linear, ridge or neural network
adjustment (with logit transforms of the parameters for non rejection methods) using
different tolerance levels (i.e., with tolerance proportion ranging from 0.005 to 1).
We recall that considering the ABC rejection method with a tolerance equals to 1
is equivalent to work with the prior. Note that, due to memory allocation issues
when using ABC method with adjusted ridge regression and a tolerance level of 1
on large reference table, we did not manage to recover results in this specific case.

Interesting methodological features can be observed in association with this ex-
ample. ABC with rejection performs poorly in terms of NMAE and provides con-
servative and hence wide CIs (i.e., with coverage higher than the formal level). For
ABC with adjustment, the lower the tolerance the lower the error (Table 4.5). The
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Figure 4.6 — Evolutionary model of four human populations considered for Bayesian
parameter inference using ABC-RF. The prior distributions of the demographic
and historical parameters used to simulate SNP data sets are as followed: Uniform
Urioo;0,000 for the split times t2 and t3 (in number of generations), U3 for the
admixture time t1, Uo.05,0.05 for the admixture rate ra (proportion of genes with a
non-African origin), U1 oo0;100,000) for the stable effective population sizes N1, N2, N3,
N4 and N34 (in number of diploid individuals), Us509 for the bottleneck effective
population sizes Nbn3, Nbn4, and Nbn34, U550 for the bottleneck durations d3,
d4, and d34, Uj100;10,000 for both the ancestral effective population size Na and t4 the
time of change to Na. Conditions on time events were t4>t3>t2. See Pudlo et al.
(2016) for details. Regarding the genetic model, we simulated biallelic polymorphic
SNP data sets using the algorithm proposed by Hudson (2002) (cf “-s 1”7 option
in the program ms associated to Hudson (2002)). This coalescent-based algorithm
provides the simulation efficiency and speed necessary in the context of ABC, where
large numbers of simulated data sets including numerous (statistically independent)
SNP loci have to be generated (see Supplementary Appendix S1 of Cornuet, Pudlo
et al. (2014) for additional comments on Hudson’s algorithm).
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Figure 4.7 — Range and coverage comparison of approximate 95% credible intervals
on the admixture parameter ra (Figure 4.6) obtained with ABC-RF (RF) and with
earlier ABC methods: rejection (Reject), adjusted local linear (ALL) or ridge re-
gression (ARR) or neural network (ANN) with various tolerance levels for Reject,
ALL, ARR and ANN. Coverage values are specified by bar colours and superim-
posed values. Heights indicate CI mean lengths. Results for ALL, Reject and RF
are presented in the left figure whereas those for ANN, ARR and RF are in the right
figure. RF* refers to results obtained using ABC-RF when adding 20 additional
independent noise variables generated from a uniform Uy,; distribution. RF refers
to results without noise variables.
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Figure 4.8 — Range and coverage comparison of approximate 95% credible intervals
on the ratio N2/Na of the Human population genetics example, obtained with ABC-
RF (RF) and with earlier ABC methods: rejection (Reject), adjusted local linear
(ALL) or ridge regression (ARR) or neural network (ANN) with various tolerance
levels for Reject, ALL, ARR and ANN. Coverage values are specified by bar colours
and superimposed values. Heights indicate CI mean lengths. Results for ALL,
Reject and RF are presented in the left figure whereas those for ANN, ARR and
RF are in the right figure. Na is the ancestral African effective population size
before the population size change event and N2 the African effective population
size after the population size change event (going backward in time). RF* refers
to results obtained using ABC-RF when adding 20 additional independent noise
variables generated from a uniform Uj,;; distribution. RF refers to results without
noise variables.
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Method Tolerance level ra NMAE N2/Na NMAE
RF NA 0.018 0.053
RF* NA 0.019 0.053
Reject 0.005 0.151 0.355
Reject 0.01 0.178 0.454
Reject 0.1 0.322 1.223
Reject 0.4 0.574 2.025
Reject 1 0.856 4.108
ALL 0.005 0.028 0.166
ALL 0.01 0.028 0.249
ALL 0.1 0.035 0.139
ALL 0.4 0.044 0.170
ALL 1 0.062 0.209
ARR 0.005 0.027 0.220
ARR 0.01 0.027 0.317
ARR 0.1 0.035 0.140
ARR 0.4 0.044 0.163
ARR 1 — -
ANN 0.005 0.007 0.037
ANN 0.01 0.007 0.038
ANN 0.1 0.013 0.064
ANN 0.4 0.016 0.123
ANN 1 0.025 0.095

Table 4.5 — Comparison of normalised mean absolute errors (NMAE) for the estim-
ation of the parameters ra and N2/Na using ABC-RF (RF) and ABC with rejection
(Reject), adjusted local linear (ALL) or ridge regression (ARR) or neural network
(ANN) with various tolerance levels for Reject, ALL, ARR and ANN. NA stands
for not appropriate. The smallest NMAE values are in bold characters. NA stands
for not appropriate. RF* refers to results obtained using ABC-RF when adding 20
additional independent noise variables generated from a uniform Ujg,;; distribution.
RF refers to results without noise variables.
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CI quality however highly suffers from low tolerance, with underestimated coverage
(Figures 4.7 and 4.8). The smaller the tolerance value, the narrower the CI. Results
for the ABC method with adjusted ridge regression seems however to be unstable
for the parameter N2/Na depending on the considered level of tolerance. The ABC
method using neural network and a tolerance level of 0.005 provides the lowest
NMAE for both parameters of interest. The corresponding coverages are however
underestimated, equal to 87.2% for ra and 81.6% for N2/Na, when 95% is expected
(second part of Figures 4.7 and 4.8). Note that results with this method can be very
time consuming to obtain when the tolerance level and the number of repetitions
are large. The ABC-RF method provides an appealing trade-off between parameter
estimation quality (ABC-RF is the method with the second lowest NMAE values
in Table 4.5) and slightly conservative Cls (Figures 4.7 and 4.8). Similar results
and methodological features were observed when focusing on the 90% CI (results
not shown). It is also worth stressing that not any calibration of any kind of a
tolerance level parameter are needed with ABC-RF, which is an important plus for
this method. On the opposite, earlier ABC methods require calibration to optimise
their use, such calibration being time consuming when different levels of tolerance
are used.

For the observed data set used in this study, posterior expectations and quantiles
of the parameters of interest ra and N2/Na are reported in Tables 4.6 and 4.7. Ex-
pectation and CI values substantially vary for both parameters, depending on the
method used. The impact of the tolerance levels is noteworthy for both the rejec-
tion and local linear adjustment ABC methods. The posterior expectation of ra
obtained using ABC-RF was equal to 0.221 with a relatively narrow associated 95%
CI of [0.112;0.287]. The latter estimation lays well within previous estimates of
the mean proportion of genes of European ancestry within African-American indi-
viduals, which typically ranged from 0.070 to 0.270 — with most estimates around
0.200 —, depending on individual exclusions, the population samples and sets of ge-
netic markers considered, as well as the evolutionary models assumed and inferential
methods used (reviewed in Bryc et al., 2015). Interestingly, a recent genomic ana-
lysis using a conditional random field parameterized by random forests trained on
reference panels (Maples et al., 2013) and 500,000 SNPs provided a similar expect-
ation value of ra for the same African American population ASW (i.e. ra = 0.213),
with a somewhat smaller 95% CI (i.e. [0.195;0.232]), probably due to the ten times
larger number of SNPs in their data set (Baharian et al., 2016).

The posterior expectation of N2/Na obtained using ABC-RF was equal to 4.508
with a narrow associated 95% CI of [3.831;5.424]. Such values point to the occur-
rence of the substantial ancestral demographic and geographic expansion that is
widely illustrated in previous Human population genetics studies, including African
populations (e.g. Henn et al., 2012). Although our modelling setting assumes a naive
abrupt change in effective population sizes in the ancestral African population, the
equivalent of N2/Na values inferred from different methods and modelling settings
fit rather well with our own posterior expectations and quantiles for this parameter

(e.g. Schiffels and Durbin, 2014).

In contrast to earlier ABC methods, the RF approach is deemed to be mostly
insensitive to the presence of covariates whose the distributions does not depend on
the parameter values (i.e. ancillary covariates) (e.g. Breiman, 2001; Marin, Pudlo,
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ra
Method Tol. level Expectation Q0_025 Q0.05 @0.95 Q0.975

RF NA 0.221 0.112 0.134 0.279 0.287
RF* NA 0.225 0.112 0.142 0.282 0.290
Reject 0.005 0.223 0.061 0.069 0.364 0.389
Reject 0.01 0.220 0.060 0.070 0.389 0.418
Reject 0.1 0.276 0.062 0.074 0.511 0.543
Reject 0.4 0.388 0.068 0.086 0.739 0.791
Reject 1 0.502 0.073 0.095 0.906 0.928
ALL 0.005 0.278 0.219 0.229 0.322 0.337
ALL 0.01 0.257 0.232 0.238 0.274 0.278
ALL 0.1 0.207 0.170 0.171 0.233 0.237
ALL 0.4 0.194 0.144 0.152 0.233 0.241
ALL 1 0.196 0.115 0.126 0.278 0.299
ARR 0.005 0.260 0.252 0.254 0.265 0.266
ARR 0.01 0.252 0.239 0.242 0.260 0.262
ARR 0.1 0.211 0.171 0.178 0.239 0.244
ARR 0.4 0.196 0.140 0.149 0.241 0.251
ARR 1 — — — — —

ANN 0.005 0.227 0.221 0.223 0.232 0.234
ANN 0.01 0.226 0.219 0.221 0.231 0.233
ANN 0.1 0.228 0.217 0.220 0.236 0.239
ANN 0.4 0.232 0.216 0.221 0.242 0.248
ANN 1 0.206 0.183 0.187 0.227 0.233

Table 4.6 — Estimation of the parameter ra and N2/Na for the observed human
population genetics data set using ABC-RF (RF), and ABC with rejection (Reject),
adjusted local linear (ALL) or ridge regression (ARR) or neural network (ANN) with
various tolerance levels (Tol. level) for Reject, ALL, ARR and ANN. NA stands for
not appropriate. RF* refers to results obtained using ABC-RF when adding 20
additional independent noise variables generated from a uniform U)o,;; distribution.
RF refers to results without noise variables.

Robert et al., 2012). To illustrate this feature, we have added 20 additional inde-
pendent noise variables generated from a uniform U, distribution (results desig-
nated by RF*) in the reference table generated for the present Human population
genetics example. We found that the presence of such noise covariates do not impact
the results in terms of NMAE, coverage and only slightly on parameter estimation
for the observed data set (Tables 4.5, 4.6 and 4.7, and Figures 4.7 and 4.8). For the
rest of this chapter, no noise variables were used.

109



CHAPTER 4. ABC-RF FOR PARAMETER INFERENCE

N2/Na

Method Tol. level Expectation Q0.0QB Q0.05 @0.95 Q0.975
RF NA 4.508 3.831  3.959  5.153 5.424
RF* NA 4.594 3.821  3.910 5.241 6.552
Reject 0.005 6.282 2937 3.223 10.086 11.337
Reject 0.01 6.542 2.746  3.116 10.837 11.852
Reject 0.1 8.001 2.131 2574 15.690 18.531
Reject 0.4 11.605 1.795 2331 28.011 38.532
Reject 1 23.483 0.672 1.185 84.649 147.657
ALL 0.005 30.041 1.256  1.879 83.369 174.340
ALL 0.01 9.289 3.946  4.586 16.686 20.361
ALL 0.1 8.235 0.736  5.995 11.573 12.719
ALL 0.4 10.752 4.588 4.996 21.656 27.300
ALL 1 7.222 2.684  5.829 9.631 10475
ARR 0.005 10.528 4.395  5.677 19.224  22.722
ARR 0.01 8.264 5.020  5.485 12,544 13.313
ARR 0.1 8.394 0.643  5.948 12.075 13.313
ARR 0.4 10.802 6.113  6.505 17.487 20.511
ARR 1 — — — — —
ANN 0.005 5.746 5.512 5563  5.937  5.982
ANN 0.01 6.148 0.883  5.934  6.353 6.420
ANN 0.1 25.921 23.857 24.250 27.672 28.133
ANN 0.4 8.515 7.652 7.810 9.147  9.436
ANN 1 7.021 5.692  5.856  8.677  9.370

Table 4.7 — Same as Table 4.6 for the parameter N2/Na.
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4.3.2.1 Contribution of summary statistics in ABC-RF estimation of
the parameters ra and N2 /Na of the Human population genetics
example

In the same spirit than in Pudlo et al. (2016), a by-product of our ABC-RF-based
approach is to automatically determine the (most) relevant statistics for the estim-
ation of each parameter by computing a criterion of variable importance (here a

variable is a summary statistic). We consider here the mean decrease of impurity
(Chapter 2).

Figure 4.9 shows the contributions of the 30 most important summary statistics
(among the 112 statistics proposed by DIYABC) for the ABC-RF estimation of the
parameters ra and N2/Na of the Human population genetics example. The most
informative summary statistics are clearly different depending on the parameter of
interest. For the admixture rate between two sources populations (ra), all ten most
informative statistics correspond to statistics characterising a pair or a trio of pop-
ulations (e.g. AV1 or FMO statistics; see Chapter 3, Table 3.2). Moreover, all
those “best” statistics include the populations ASW, GBP and YRI which corres-
pond to the target and the two source populations respectively. On the contrary, for
the effective population size ratio N2/Na, seven of the ten most most informative
statistics correspond to statistics characterising within population genetic variation
(e.g. HV1 or HMO; see Chapter 3, Table 3.2). In this case, all those “best” statistics
include the African population, which makes sense since N2 is the effective popu-
lation size in the studied African population and Na in the population ancestral to
all studied populations. It is worth stressing that, although the most informative
summary statistics make sense in relation to the studied parameters it was difficult
if not impossible to a priori and objectively select those statistics. This is not an
issue when using the ABC-RF approach as the method automatically extracts the
maximum of information from the entire set of proposed statistics.
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ra N2/Na
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Figure 4.9 — Contributions of the 30 most important summary statistics for the
ABC-RF estimation of the parameters ra and N2/Na of the Human population
genetics example. The contribution of each statistic is evaluated the mean decrease
of impurity, for each of the 112 used summary statistics provided for SNP markers by
DIYABC. The higher the variable importance the more informative the statistics.
The population index(s) is indicated at the end of each statistic. 1 = pop ASW
(Americans of African ancestry), 2 = pop YRI (Yoruba, Africa), 3 = pop CHB
(Han, Asia) and 4 = pop GBP (British, Europe). For instance FMO 1 2.4 =
mean across loci of Fgr distance between the populations 2 and 4, the 1 corresponds
to the first loci group (in our study there is only one group). See also Chapter 3,
Table 3.2. Note the difference of scale for the importance criterion for parameters ra
and N2/Na. This difference can be explained by the difference of scale in parameter
values. Indeed, it directly influences the residual sum of squares. The parameter ra
being bounded in [0; 1] contrary to N2/Na, a higher decrease can be expected for

the ratio N2/Na than ra.
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Method Tol. level CPU time (in minutes)

RF NA 16.64
Reject 0.005 7.54
Reject 0.01 7.54
Reject 0.1 7.78
Reject 0.4 7.98
Reject 1 9.14
ALL 0.005 7.66
ALL 0.01 7.70
ALL 0.1 8.81
ALL 0.4 9.21
ALL 1 11.32
ARR 0.005 6.71
ARR 0.01 6.97
ARR 0.1 40.57
ARR 0.4 560.39
ARR 1 —
ANN 0.005 22.31
ANN 0.01 33.60
ANN 0.1 216.61
ANN 0.4 1160.67
ANN 1 4028.63

Table 4.8 — Comparison of the computation time (in minutes) required — after the
generation of the reference table — for the estimation of the parameter of interest ra
on a data set test table, using ABC-RF (RF), ABC with rejection (Reject), adjusted
local linear (ALL), ridge regression (ARR) and neural network (ANN), with various
tolerance levels for Reject, ALL, ARR and ANN. The test table included 1,000
pseudo-observed data sets and the reference table included 199, 000 simulated data
sets summarised with 112 statistics. Results were computed on a cluster with 28
CPU cores of 2.4 GHz. NA stands for not appropriate.

4.3.2.2 Computation times required by the statistical treatments of the
studied methods processed following the generation of the ref-
erence table

We here present a comparison of the computation time requirement for the differ-
ent methods studied in this chapter, when predicting estimations of the admixture
rate ra in the human population genetics example. ABC methods with rejection
or adjusted with local linear regression provide the best results in terms of CPU
time even when the tolerance level is equal to 1. The ABC-RF strategy requires
moderately higher computing time. The calculation of the RF weights is the most
expensive computation part (i.e. 3/4 of computation time). ABC methods using
ridge regression or neural network correction become very time consuming when the
tolerance level is high.
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4.3.3 Practical recommendations regarding the implementa-
tion of the ABC-RF algorithm

We mainly consider in this section two important practical issues, namely the choice
of the number of simulations (V) in the reference table and of the number of trees
(B) in the random forest. For sake of simplicity and concision, we focus our recom-
mendations on the above human population genetics example (Section 4.3.2). We
stress here that, although not generic, our recommendations fit well with other ex-
amples of complex model settings that we have analysed so far (results not shown).
We also stress that for simpler model settings substantially smaller N and B values
were sufficient to obtain good results. Finally, we provide practical comments about
the main sources of variabilities in inferences typical of the ABC-RF methodology.

Reference table size — We consider a reference table made of N = 199,000
simulated data sets. However, Table 4.9 shows a negligible decrease of NMAE when
using N = 100,000 to N = 199,000 data sets. Table 4.10 also exhibits small
variations between predictions on the observed data set, especially for N > 75, 000.
The level of variation thus seems to be compatible with the random variability of
the RF themselves. Altogether, using a reference table including 100,000 data sets
seems to be a reasonable default choice. It is worth stressing that the out-of-bag
mean squared error can be easily retrieved without requiring the simulation of a
(small size) secondary test table. It provides a good indicator of the quality of the
RF at a low computational cost (Tables 4.9 and 4.11).

Number of trees — A forest including 500 trees is a default choice when building
RFs, as this provides a good trade-off between computation efficiency and statistical
precision (Breiman, 2001; Pudlo et al., 2016). To evaluate whether or not this
number is sufficient, we recommend to compute the out-of-bag mean squared error
(or another type of error) depending on the number of trees in the forest for a
given reference table. If 500 trees is a satisfactory calibration, one should observe a
stabilisation of the error around this value. Figure 4.10 illustrates this representation
on the human population genetics example and points to a negligible decrease of the
error after 500 trees. This graphical representation is produced via our R package
abcrf.

Minimum node size (maximum leaf size) — We recall that splitting events
during a tree construction stop when a node has less than N,,;, observations, in that
case, the node becomes a leaf. Note that the higher N,,;, the quicker RF treatments.
In all RF treatments presented here, we used the default size N;, = 5. Table 4.11
illustrates the influence of N, on the human population genetics example and
highlights a negligible decrease of the error for Ny, lower than 5.

Finally, we see no reason to change the number of summary statistics sampled
at each split my,, within a tree, which is traditionally chosen as d/3 for regression
when d is the total number of predictors (Breiman, 2001).
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NMAE
N (x10%) 10 25 20 75 100 150 199
ra 0.028 0.023 0.021 0.020 0.019 0.018 0.018
N2/Na 0.080 0.067 0.059 0.057 0.055 0.053 0.053
OOB MSE
N (x10%) 10 25 20 ) 100 150 199

ra (x107%) 1.670 1.176 0.914 0.823 0.745 0.695 0.664
N2/Na (x10%) 0.194 0.179 0.143 0.125 0.115 0.111 0.110

Table 4.9 — Comparison of normalised mean absolute errors (NMAE) and out-of-
bag mean squared errors (OOB MSE) for the estimation of the parameters ra and
N2/Na obtained with ABC-RF, using different reference table sizes (N). We use
the test table mentioned in Section 4.3.3. The number of trees in the RF is 500.

N (x10%) 10 25 50 75 100 150 199
ra expectation 0.231 0222 0.224 0.223 0222 0.223 0.221
ra Qo025 0.097 0.095 0.102 0.104 0.106 0.109 0.112
ra Qo 975 0.317 0.309 0.305 0.305 0.289 0.292 (.287
N2/Na expectation 4.538 4.588 4.652 4.530 4.475 4.483 4.508
N2/Na Q.25 3.651 3.679 3.782 3.802 3.751 3.840 3.831
N2/Na Qqo7s 6.621 6.221 6.621 5.611 5555 5.315 5.424

Table 4.10 — Estimation of the parameters ra and N2/Na for the observed popula-
tion genetics data set with ABC-RF, using different reference table sizes (N). The
number of trees in the RF is 500.

Variability in the ABC-RF methodology — The ABC-RF methodology is
associated with different sources of variabilities the user should be aware of. Using a
simulated reference table is the main source, RF being the second. Indeed, predicting
quantities of interest for the same test data set with two different reference tables
of equal size N will result in slightly different estimates. This variation has been
previously highlighted in Figure 4.3 dealing with the analysis of the normal toy
example. We recall that RFs are composed of trees trained on bootstrap samples,
each one considering my,, covariates randomly selected amongst the d available at
each split. This random aspects of RF results in variability. In practice, a good user
habit should be to run ABC-RF more than once on different training data sets to
ensure that the previously mentioned variabilities are negligible. If this variability
is significant, we recommend considering a reference table of higher size.
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NMAE
Nmin 1 2 3 4 5 10 20 50 100 200 500
ra 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.021 0.023 0.027 0.033
N2/Na 0.054 0.055 0.054 0.055 0.055 0.055 0.055 0.058 0.062 0.068 0.082
OOB MSE
Niin 1 2 3 4 5 10 20 50 100 200 500

ra (x107%) 0.745 0.739 0.744 0.739 0.745 0.760 0.783 0.925 1.129 1.480 2.280
N2/Na (x10?%) 0.114 0.116 0.115 0.115 0.115 0.116 0.119 0.131 0.153 0.183 0.252

Table 4.11 — Comparison of normalised mean absolute errors (NMAE) and out-of-
bag mean squared errors (OOB MSE) for the estimation of the parameters ra and
N2/Na obtained with ABC-RF, using different minimum node sizes (Nyin). We use
the reference table of size N = 100,000 and the test table mentioned in Section
4.3.3. The number of trees in the RF is 500.

5e-04

out-of-bag mean squared error
3e-04

le-04

I I I I I
0 200 400 600 800 1000
Number of trees

Figure 4.10 — Relations between the number of trees in the forest and the ABC-RF
out-of-bag mean squared errors, for a reference table of size N = 100,000 in the
human population genetics example, for the parameter ra.
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4.3.4 Study of covariances of parameters using random
forests on a regression toy example

Finally, we now apply our RF methodology to a toy regression example for which
its non-zero covariance between parameters is the main quantity of interest, hence
we consider the case where g and h (see Section 4.2.5) are the projections on a
given coordinate of the parameter vector 6. For a simulated n x 2 design matrix
X = [z1;x5], we consider the Zellner’s hierarchical model (Marin and Robert, 2014,
chapter 3):

(ylu s 7yn) | ﬁl?/BQ)O-Q NNn(Xﬁao-Qld)a
51752 | 02 NN2(07n02(XTX)_1)7
o? ~ 1G(4,3),

where N (1, X) denotes the multivariate normal distribution of dimension k with
mean vector p and covariance matrix 3, and /G (k, A) an inverse Gamma distribution
with shape parameter x and scale parameter A. Provided XX is invertible, this
conjugate model leads to closed-form marginal posteriors (Marin and Robert, 2014)

n

~ XTxX)txT
B1762|y 75(”‘}‘1( ) Yy,
34y (ld—X(XTX)'XT)y/2 n o]
XX
4+ n/2 i X) ’8+”>’
1
oy ~1IG (4 + g 3+ in(Id — X(XTX)le)y) ,

where T, (1, X, v) is the multivariate Student distribution of dimension &, with loc-
ation parameter y, scale matrix ¥ and degree of freedom v.

In our simulation experiment, we concentrate on the non zero covariance of the
posterior distribution namely Cov(8i, 82 | y). A reference table of N = 10,000
replicates of a n-sample with n = 100 is generated. We then create d = 60 sum-
mary statistics: the maximum likelihood estimates of i, (2, the residual sum of
squares, the empirical covariance and correlation between y and x;, covariance and
correlation between y and x5, the sample mean, the sample variance, the sample
median, and 50 independent noise variables simulated from a uniform distribution
Ujp;1- These noise variables were introduced to be in a sparse context.

Similarly to the normal example, we assess the performance of our approach
using an independent (Monte Carlo) test data set of size Npeq = 100 and compare
estimation accuracy with the ABC-RF approach from the ones with adjusted ridge
regression and neural network ABC methodologies. RF are once again built with
B = 500 trees, myy = d/3 and minimum node size equals to 5 and ABC meth-
ods rely on the R package abc with a tolerance parameter equals to 0.1 for ABC
methods with adjustment. ABC with neural network adjustment again makes use
of 10 independent runs of the neural network. For local linear or ridge regression
the corrections are univariate. That is not the case for neural networks which, by
construction, perform multivariate correction.

Covariance estimation is a novel feature in this example, Table 4.12 shows that
the ABC-RF approach does better in NMAE terms. As exhibited in Figure 4.11,
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RF ARR ANN
COV(BhﬁQ | y) 0.26 0.85 0.64

Table 4.12 — Comparison of normalised mean absolute errors (NMAE) of estimate
posterior covariances between 5 and (s using random forest (RF), adjusted ridge
regression (ARR) and adjusted neural network (ANN) ABC methods. The smallest
NMAE value is in bold characters.
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Figure 4.11 — Boxplot comparison of differences between prediction and true values
for Cov(B1, B2 | y) using random forest (RF), adjusted ridge regression (ARR) and
adjusted neural network (ANN) ABC methods.

ABC-RF overestimates covariances when earlier ABC methods underestimate it.
Results are quite encouraging even though we believe the method might still be
improved.

4.4 Conclusion

This chapter introduces a novel approach to parameter estimation in likelihood-
free problems, relying on the machine-learning tool of regression RF to automate
the inclusion of summary statistics in ABC algorithms. Our simulation experi-
ments demonstrate several advantages of our methodological proposal compared
with earlier ABC methods.

When using the same reference table and test data set for all compared methods,
our RF approach appears to be more accurate than previous ABC solutions. Ap-
proximations of expectations are quite accurate, while posterior variances are only
slightly overestimated, which is an improvement compared with other approaches
that typically underestimate these posterior variances. The performances for cov-
ariance approximation are quite encouraging as well, although the method is still
incomplete and need further developments on this particular point. We found that
quantile estimations depend on the corresponding probability and we believe this
must be related to the approximation error of the posterior cumulative function
F(x | ny). More specifically, we observed that upper quantiles may be overestim-
ated, whereas lower quantiles may be underestimated (Figure 4.2), indicating fatter
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tails in the approximation. Hence, credible intervals produced by the RF solution
may be larger than the exact ones. However from a risk assessment point of view,
this overestimation aspect clearly presents less drawbacks than underestimation of
credible intervals. Altogether, owing to the various models and data sets we ana-
lysed, we argue that ABC-RF provides a good trade-off in terms of quality between
parameter estimation of point estimators (e.g. expectation, median or variance) and
credible interval coverage, and its computing time is also very decent.

Throughout our experiments, we found that, contrary to earlier ABC methods,
the RF approach is mostly insensitive to the presence of covariates whose the distri-
butions do not depend on the parameter values (ancillary covariates). Therefore, we
argue that the RF method can deal with a very large number of summary statistics,
bypassing any form of pre-selection of those summaries. Interestingly, the property
of ABC-RF to extract and adaptively weight information carried by each of the
numerous summary statistics proposed as explanatory variables can be represen-
ted by graphs, showing the relative contribution of summary statistics in ABC-RF
estimation for each studied parameter.

In population genetics, which historically corresponds to the field of introduction
of ABC methods, next generation sequencing technologies result in large genome-
wide data sets that can be quite informative about the demographic history of the
genotyped populations. Several recently developed inferential methods relying on
the observed site frequency spectrum appear particularly well suited to accurately
characterising the complex evolutionary history of invasive populations (Gutenkunst
et al., 2009; Excoffier, Dupanloup et al., 2013). Because of the reduced computa-
tional resources demanded by ABC-RF and the above-mentioned properties of the
method, we believe that ABC-RF can efficiently contribute to the analysis of massive
SNP data sets, including both model choice (Pudlo et al., 2016) and Bayesian infer-
ence about parameters of interest. We present in Chapter 6 two applications of the
ABC-RF methodologies on population genetics case studies, and we introduce at
the same time some improvements to this ABC-RF approach for model choice and
parameter inference. More generally, the method should appeal to all scientific fields
in which large data sets and complex models are analysed using simulation-based
methods such as ABC (e.g. Beaumont, 2010; Sisson, Fan and Beaumont, 2018).

119



CHAPTER 4. ABC-RF FOR PARAMETER INFERENCE

120



Chapter

Local tree-based methods for classification

This chapter is based on a survey paper we wrote, dealing with local tree-based
methods. We plan to submit it to the Machine Learning journal.
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CHAPTER 5. LOCAL TREE-BASED METHODS FOR CLASSIFICATION

5.1 Introduction

The machine learning field of local/lazy /instance-based /case-specific learning (Aha
et al., 1991) aims at taking into account a particular instance z* to produce a
prediction thanks to its similarity to the training data set. It is opposed to eager
learning, where the prediction is divided in two parts: a training phase where a
global model is fitted and then a prediction phase. The local approach, in contrast,
fits a model taking into account the information provided by z*.

Two closely related learning fields need to be mentioned: semi-supervised learn-
ing (Chapelle et al., 2010) and transductive learning (Gammerman et al., 1998).
Semi-supervised learning introduces unlabelled data (whose response is unknown)
in addition to labelled ones to build a general model within the training phase.
Then, in the testing phase this model is used to predict the response value of a
new unlabelled data (different from the first ones). Transductive learning takes
profit of a set of labelled and unlabelled data to avoid the construction of a general
model and directly predicts the response values of those same unlabelled data. To
our knowledge, semi-supervised and transductive learning require a high number of
test/unlabelled instances. In our case only one is provided, making those approaches
unsuitable.

The main drawback of local learning approaches is their high computational cost,
because for each new test data a model has to be constructed. However, it can be
very useful in domains where only one test instance is provided.

As presented in Chapter 1, when the likelihood is intractable, a statistical ap-
proach was developed: the approximate Bayesian computation (ABC, Weiss and von
Haeseler, 1998; Pritchard et al., 1999). This strategy relies on simulations according
to Bayesian hierarchical models to generate pseudo-data. These artificial data are
then compared to the test/observed one. The most basic algorithm is based on
nearest neighbours (NN). Recently, in what we name ABC-RF, Breiman’s machine
learning algorithm of random forests (RF) proved to bring a meaningful improve-
ment to the ABC paradigm in both a context of model choice (Pudlo et al., 2016)
and parameter inference (Raynal et al., 2019, Chapter 4). Here, we focus on the
model choice problem and thus the classification setting. Unlike some ABC tech-
niques that take advantage of local methods, such as local adjustment (Beaumont,
Zhang et al., 2002; Blum and Frangois, 2010; Blum, Nunes et al., 2013), ABC-RF
trains an eager RF to predict, later on, the observed data. It seems sub-optimal
because in the ABC framework only the observed data is of interest for prediction.
The ABC-RF strategy might therefore greatly benefit from local versions of RF.

Here, we focus on reviewing and proposing tree-based method to predict at best a
specific data of interest. We start with some reminders on Breiman’s RF' algorithm.
We then study local tree-based approaches depending on the way the localisation
process is performed. In Section 5.3, we present/introduce internal modifications of
the RF concerning the splitting rule. Then, we take an interest on modifying the
random aspects of RF to turn them into local ones. We focus on modifying the
sampling of individuals in Section 5.4, and the sampling of predictors in Section 5.5.
Local weighting of votes is finally presented in Section 5.6. We empirically compare
these strategies with the original, eager one in three examples where a local approach
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might be of interest.

5.2 Reminders on Breiman’s random forest

In the following we consider a classification problem. We use a set of d explanatory
variables X = (Xj,..., Xy) to predict the categorical/discrete response Y.

The training data set is composed of N realisations {(y@, z®)} _ . We

consider Breiman’s random forest as the reference method we try to improve.

A classification RF is a set of randomised trees (Breiman, Friedman et al., 1984),
each one partitioning the covariates space thanks to a series of allocation rules and
assigning a class label as prediction to each partition. A binary tree is composed
of internal and terminal nodes (a.k.a. leaves). For each internal node, a splitting
rule on an explanatory variable is determined by maximising an information gain,
dividing the training set in two parts. This process is recursively iterated until a
stopping rule is achieved. The internal node encountering a stopping rule becomes
terminal. For continuous covariates, a splitting rule compares a covariate X; to a
bound s, allocating to the left branch the data verifying the rule X; < s, and to the
right all others. For categorical covariates, the splitting rule is chosen among all the
possible two way splits of the covariate categories.

The covariate index j and the bound s are chosen to maximise the decrease
of impurity between the mother, denoted ¢, and the two resulting left and right
daughter nodes, denoted t;, and tg, (weighted by the number of data at each node).
This gain associated to a covariate j and split value s is always non negative and is
written as

613:5) =700 - (z(00) + B 20w, (5.1)
where # refers to the number of data in the associated node, and Z(-) is the impurity.
The impurity, i.e. the heterogeneity at a given node, is measured with either the
Gini index or the entropy. The objective is to select the allocation rule that reduces
the impurity the most, in other terms that produces the highest gain.

Splitting events stop when one of the three following situation is reached:

e all individuals of the data set at a given node have the same response value
(the node is pure),

e all individuals have the same covariate values,

e a node has less than N, instances, Ny, being an user-defined integer value,
typically set to 1 for classification.

Once the tree construction is complete, each leaf predicts a model index, corres-
ponding to the majority class of its instances. For a new set of explanatory variables
x*, predicting its model index implies passing x* through the tree, following the path
of binary rules, and the predicted value is the value associated to the leaf where it

falls.
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The RF method consists in bootstrap aggregating (bagging, Breiman, 1996)
randomised (classification) trees. A large number of trees is trained on bootstrap
samples of the training data set and my,y covariates are randomly selected at each
internal node, on which the splitting rule will be defined. my,, is usually set at
|V/d], where |-] denotes the floor function. The predicted value for a data z* is
the majority vote across all tree predictions. RF methods have some theoretical
guarantees for sparse problems (Biau, 2012; Scornet et al., 2015). Moreover, it is
well-known that their performances are quite good even when no tuning is made.

5.3 Local splitting rules

A first option to localise the tree construction is to change the information gain to
the benefit of a local one. The idea is to use the test instance z* to drive the splits
and thus the tree construction.

Indeed, because the best split is selected on average, an eager tree may lead
to many irrelevant splits to predict x*, potentially putting aside interesting data.
This behaviour results from data fragmentation (Fulton et al., 1996), i.e. from
the recursive partitioning of the explanatory variables space to achieve good global
performances. In the following we mention this phenomenon as the fragmentation
problem. The very simple 2-class classification problem presented in Figure 5.1
illustrates this issue. The distribution of the training data set will induce, when
possible, an initial cut for the tree construction in X; ~ 0.5, however, the unlabelled
instance (represented by a black star) is in a region where a lot of relevant instances
will be discarded after this first data split. A more pertinent first cut should occur in
X5 =2 0.25. This problem, called fragmentation problem, also leads to less significant
splitting rules at deeper levels of the tree construction since based on fewer instances.
It is thus interesting to consider a local approach taking x* into account.

It is interesting to note that building a local tree by modifying its internal con-
struction results in building a path. Indeed, once a splitting rule is determined, this
recursive process is only applied on the branch where x* falls. Thus, a local ran-
dom forest might be much faster for its construction compared to the eager version,
especially if only one instance is of interest.

In this section we present the approach of Friedman et al. (1997) to build local
decision trees, called lazy decision trees, and expand it for RF. We also present our
attempts at using unidimensional or multidimensional kernels to give more weights
to training samples closer to z*.

5.3.1 Lazy decision trees

The lazy decision tree algorithm (LazyDT) is introduced in Friedman et al. (1997).
Its objective is to take into account x* during the tree construction. To do so, the
information gain — depending on j and s — to maximise at each node is modified
compared to criterion (5.1). Only the difference of impurity between the mother
node t and the daughter node where z* ends, denoted t*, is considered. The resulting
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Figure 5.1 — An illustrative classification problem with 2 classes (red and green),
containing two covariates describing four distinguishable regions (delimited by or-
ange dashed lines) and an unlabelled data to classify (black star). This case will
give rise to a fragmentation problem.

local information gain is defined by
Guw(j,s) =TLy(t) — T,(t"), (5.2)

where Z,, is the information gain computed with data at the node, weighted by
a weight vector w = (w®, ..., w™)) (described below). Note the absence of the
proportion of individuals #ty /#t or #tr/#t compared to gain (5.1).

To ensure that this gain is always non-negative, to each instance (y®,z®) is
assigned a weight w = nkLK when y® = k and where n; is the number of data
labelled k at the mother node. Indeed, this weight ensures that all the weighted class
frequencies are equal at the mother node, hence the weighted mother node impurity
Z,(t) is maximal and the resulting gain always non-negative. The value of Z,,(t) is
equal to £=1 for the Gini index, and to log(K) for the entropy. Due to this constant
value, the maximisation of (5.2) is equivalent to the minimisation of Z,,(t*). Note
that the weights used at ¢* and t are the same (limited to the sub-sample induced
by the potential cut depending on j and s for ¢*), but are recomputed after each
accepted tree partition.

Moreover, those weights also avoid the problem that the impurity measures only
use the classes proportions, without distinction of their associated class labels. In-
deed, let us take the example of a two-class classification problem (1 and 2), where
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the mother node contains 80% of data labelled 1 and 20% labelled 2. A splitting rule
computed on unweighted data might induce, at the daughter node where x* falls,
20% and 80% as proportions of 1 and 2, respectively. In this way, the non-weighted
gain (5.2) would be zero, even though the discriminatory power of this cut is clearly
non-null.

LazyDT provides three other major features: the use of discretised explanatory
variables, the use of options and a condition on allowed split events.

e This algorithm only handles discretised explanatory variables. A preliminary
discretisation is thus necessary, using for example the minimum description
length principle (Fayyad and Irani, 1995). This was initially introduced to
enhance the algorithm speed. According to our experiments this might also be
useful when noise variables are considered as features. Indeed, for continuous
covariates the construction might stop early due to some noise variables. For
example, for a given covariate j, 2 can unfortunately be localised on one of
the two covariate borders with few data all carrying some identical labels. The
next splitting rule will isolate them with x} because the resulting node will be
pure and hence provide the maximum gain even though highly uninformative.
The discretisation will be an asset in such situations since pure noise variables
are more likely to be discretised into a unique category.

e The use of options is introduced. Indeed, because features can induce very
similar information gains, Friedman et al. (1997) advise to develop all the
paths — induced by splitting rules — achieving at least 90% of the maximal
possible gain. The prediction associated to a tree for x* becomes the pre-
diction of the leaf with the maximal number of individuals in its majority
class. We tried values different from 90% and it did not provide better results.
Moreover, we studied an alternative to this method of prediction: because each
option provides a prediction for x*, we considered taking as final prediction
the majority vote of these option predictions, but again results were not more
conclusive.

e Finally, LazyDT only considers split values exactly equal to the values of z*
as potential cuts.

The LazyDT algorithm has undergone some developments. First, a bagged ver-
sion to deduce class probabilities is presented in Margineantu and Dietterich (2003).
A boosted version is then introduced in Fern and Brodley (2003), (however we will
not compare to this one because an implementation is hard to find). Friedman et
al. (1997) mention as main drawback for this method its inability to allow prun-
ing. Fern and Brodley (2003) propose a heuristic to overcome this drawback, but
their algorithm is not guaranteed to improve the classifier accuracy. Considering
trees-ensemble overcomes this weakness, this is why in the following we consider a
randomised bootstrapped LazyDT version (denoted LazyDRF).
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5.3.2 Unidimensional kernel approach

Most local methods are based on weights depending on the proximity to z*. This
is the case of locally weighted regression (Cleveland, 1979; Cleveland and Devlin,
1988; Fan, 1993; Hastie and Loader, 1993). There are different ways to use weights
in the context of tree methods. One can think of taking into account these weights
to define the training sets on which trees are built. Such type of strategy is described
in Section 5.4. In this section, we examine the possibility of using the weights during
the tree construction, inside the tree splitting criterion.

In the wake of locally weighted regression, we set to each training individual and
per covariate j, a weight depending on its proximity to x7j: the closer the higher. To
do so, we consider for each covariate j a Gaussian kernel centred in z}, providing
weights

Khj(x(-i) — ), for ie{l,...,N}.

We focus on a Gaussian kernel due to its smoothness and to avoid giving exactly
zero weights to some individuals.

The choice of the bandwidth h; is tricky. We consider as bandwidth value h;
the quantile of order «, Q, <| :z:;-i) — izt N). The parameter a determines the

shape of the kernel. For low « values, a higher weight is given to data close to z*,
and vice-versa. In our numerical experiments, we clearly observed that low values
of o again result in cuts too close to z;. We set @ = 1. Moreover, the bandwidth
can eventually be recalculated at each 1nterna1 node or kept constant during the
tree construction. We observed very few differences and h; is set as constant in the
following.

For a given class label k, at the mother node ¢, this approach transforms the
usual class frequencies (giving uniform weights among data) into some weighted
class frequencies in the following way:

Zi:z(i)et ]l{y(i) =k} = pp= Zi:x<i)€t ]l{y(i) = k}Khj(xg'Z) — x;)
k — ’

¢ *
7t Zz:m“)et K, (xg - xj)

where 1{-} is the indicator function. Moreover, the proportion of individuals, for
example, at the left daughter node ¢;, implied by a cut X; < s is transformed from

Pr =

#tL . Zi:x(i)et ]l{xgl) < S}

#t #t
into - @ @
#ir _ Zi:x@)et]l{afj < S}Khj(xj - 95;) (5.3)
#t ZZ:w("»)et Kh]‘ (1‘150 - x;k)

The information gain to maximise (based on the Gini index) thus becomes

Zpk 1 —pg) <#tLZpkL (1= pr.z) +_Zka1_ka)> (5.4)

Z(t) Z(te) Z(tr)
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where py ; and pj r are the weighted proportions of class k at the left and right

daughter nodes, respectively. The first term 7 (t) is important and cannot be omitted
contrary to the eager version, because it depends on the covariate index.

We use this local Gini index during the tree construction and do not modify the
default values for the RF parameters my,, and Npyin. For each tree, the associated
prediction is the usual majority vote at the leaf.

Our local slitting rule is similar to the one used in the recent method of Armano
and Tamponi (2018). In this work, an improvement to RF is introduced by using
an ensemble of local trees. Each tree is trained giving more weights to training
data around a centroid, which is sampled among the training instances, and differ-
ent centroids are considered to map the whole predictor space. Although using a
local Gini index, this approach is more of an eager one than a local one. Indeed,
no test instance is involved during the forest construction. Moreover, per tree a
multidimensional kernel is used.

5.3.3 Multidimensional kernel approach

In the spirit of Armano and Tamponi (2018), it is natural to extend the approach
introduced in Section 5.3.2 with a multidimensional kernel centred in x*. We assign
to each data (y®, (") a weight

Ky (z® — 2%) = exp (——(a:(i) — ")V (2® — :13*)),

where V' is a scaling matrix of the Gaussian kernel. Similarly to Section 5.3.2 we
consider for V' the diagonal matrix made of the a quantiles, i.e.

V= diag (Qa {| $§i) - ff |i:1,...,N} oo Qg {| fES) - xfl |z‘:1,_..,N}> .

As for the unidimensional kernel approach, using extensive numerical experiments,
we observed that low values of « result in cuts too close to z; and we set o = 1.
Also, the weights are fixed during the tree construction.

The weighted frequency for a given class label & becomes

Dr = Ziil ]l{y(i) = k}KV(x(i) — %)
Sy Ky (20 — 2) .

The weighted proportions of individual at the node (5.3) are transformed in the
same way, resulting in a gain criterion analogous to (5.4).

The major benefit of such weights is that they do not depend on the covariate
index, thus the usual tree prediction, i.e. the majority class at the leaf where z*
falls, can be replaced by a more coherent strategy with the tree construction, using
as prediction the class with the maximal weighted class proportion at the leaf. Thus,
the prediction for x* provided by the b-th tree is

U, = argmax py.
1<k<K

The forest prediction for x* is the usual majority vote of the tree predictions.
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5.4 Local weighting of individuals

To avoid the fragmentation problem, instead of modifying the way the predictor
space is partitioned, one can consider directly targeting the region of interest, i.e.
samples similar to x*. In this part, we focus on strategies acting on the individuals
sampling schemes involved at the first step of a tree construction, replacing the usual
bootstrap sampling with a local one.

5.4.1 Weighted bootstrap

Xu et al. (2016) propose to perform weighted bootstrap sampling, where a measure
of proximity between z* and the training data is used to compute the weights. This
algorithm is entitled Case-Specific Random Forest (CSRF, Algorithm 5.1).

An individual closer to 2* will have higher weight and will more likely be picked in
the bootstrap sampling. However, such weights depend heavily on the choice of the
proximity measure, especially in a high dimensional setting and with many irrelevant
explanatory variables. This is why in this framework the proximity measure will be
automatically computed thanks to a bagged tree-ensemble (i.e. with my,, = d).

Indeed, for a given tree, z* ends in a leaf with some training data. For each z(®,
counting the number of trees where z* and 2 end in the same leaf allows to compute
the contribution of 2 to predict z*, denoted w® in Algorithm 5.1. The deduced
weights are then used to perform weighted bootstrap sampling during the training
of a new RF. This process can be seen as a nearest neighbours strategy: per tree, a
leaf provides a certain amount of neighbours to x*, those are then accumulated over
all the trees to deduce instance weights.

This algorithm highly depends on the depth of the first RF trees, hence a pivotal
parameter for this strategy is N, the minimal number of observations at an in-
ternal node. The higher the N.;,, the shallower the trees will be. Hence, low
values of Ny, result in putting more weights on the closest individuals to x*, and
vice-versa. We tried various values of N, in our experiments.

Algorithm 5.1 : CSRF — local weighting of individuals

1 Grow B; bootstrapped trees with m,, = d and a given Ny, value;

2 For each training data (y®,z®), count ¢ the number of times z(¥ and z*
ends in the same leaf;
3 Compute the resampling probability of the training individual i relative to z*

7 c(®) -
as w(® = SN fori e {1,...,N};
4 Train a usual RF of size By with bootstrap resampling probabilities
w®, . w™N) and deduce the prediction for z*.

5.4.2 Nearest neighbours: 0/1 weights

A more intuitive idea is based on the deduction of x nearest neighbours to z*,
which are then used to train a RF. Fulton et al. (1996) propose several methods
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to extract data local to x* — the best one being based on NN — in order to build
decision trees on this restricted training set. Galvan et al. (2009) also mention the
possibility of pre-selecting closest observations to x* (possibly with replicates) at
first and applying any machine learning algorithm on these data set. This kind of
strategy is more recently applied in a text classification framework by Salles et al.
(2018), and shows good improvements in terms of classification errors compared to
RF (and other ones).

Those approaches are closely related to CSRF (Section 5.4.1) since considering
NN during a preliminary step is equivalent to giving 0/1 sampling weights (with or
without replacement).

In Section 5.7, we compare the use of a preliminary selection of nearest neigh-
bours to x* followed by a usual RF training, this strategy is denoted in the re-
maining by NN-RF, for nearest neighbours - random forest. The main issue of such
approaches (and local ones in general) is the difficulty to choose this neighbourhood.

5.5 Local weighting of covariates

Instead of acting on the bootstrap resampling of RF, we propose to operate on the
covariates subsampling which occurs at each internal node. In the wake of Section
5.4.1 we propose to weight covariates during the RF trees construction depending
on their importance to predict x*. In the following we mention it as LVI-RF (for
local variable importance - random forest).

We study the influence of considering sampling probability weights on explan-
atory variables. The principle is detailed in Algorithm 5.2 and is very similar to
Algorithm 5.1.

We take profit of a first RF construction with default parameters to deduce
covariate importance to predict x*: in a very intuitive way we pass x* through
each tree of the RF, and count the number of times each covariate is involved in
a splitting rule to allocate x*. We can then easily deduce some predictor weights,
and we propose to introduce them into the usual RF covariate sampling, so that a
covariate with high weight is more likely to be drawn in the my,,-sample.

Our thought is that using such weights might improve the prediction accuracy
of the RF, especially in a sparse framework, by avoiding useless data fragmentation
according to irrelevant predictors and potential loss of useful training data for the
prediction of x*. Moreover, a different set of explanatory variables might be useful to
predict different test instances, thus thanks to a local measure of variable importance
we also try to ensure that interesting covariates are more likely to be sampled during
the tree construction. Finally, in the case of a huge number of noise covariates, even
though RF can handle a large number of features, useful ones are very unlikely to
be drawn during the tree construction, deteriorating the algorithm performance. In
counterpart, weighted covariate sampling might increase the prediction correlation
between the RF trees and alter the performance of the global tree ensemble.

Some approaches dealing with covariate weighting have been studied in a non-
local framework. Amaratunga et al. (2008) propose the enriched random forests
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Algorithm 5.2 : Local weighting of covariates

1 Grow Bj randomised trees with my,, = L\/EJ and Ny, = 1;

2 For each covariate j € {1,...,d}, count v; the number of times X; has been
used during the paths followed by x*;

3 Compute the resampling probability of the covariate j relative to x* as

L= Yj . )
Pi = ) for j € {1,...,d};

4 Train a usual RF of size By with covariate resampling probabilities py, ..., pqg
at each internal node and deduce the prediction for x*.

in an extremely noisy feature space, where covariate sampling is modified using
global weights. Maudes et al. (2012), with their random feature weights approach,
investigate the use of non-uniform sampling of covariates, changing for each tree.

5.6 Local weighting of votes

The final prediction of a classical RF is the majority vote of all trees, hence they
all have equal weight. However a given tree might provide very good predictions
on some test instances, but perform very poorly on others. This is why a strategy
for building local random forests is based on weighting tree predictions depending
on their ability to correctly predict instances similar to x*. Majority vote is hence
replaced with locally weighted vote.

In the instance-based framework, Robnik-Sikonja (2004), Tsymbal et al. (2006)
and then Zhang et al. (2013) investigate this idea. Given a test instance x*, x
neighbours are selected based on the proximity measure introduced in Breiman
(2001), (i.e. the average number of times two data end in the same leaf) to compute
a per-tree error score. These scores are further used to select and weight trees and
to provide a final weighted-vote prediction.

5.6.1 Dynamic voting and selection

This section describes the methodology of Tsymbal et al. (2006), called Dynamic
Voting with Selection Random Forest (DVSRF). A first RF is trained thanks to
which k nearest neighbours to x* are selected. The quality of the b-th tree toward
x* is then evaluated as the average margins of the out-of-bag x instances, weighted
by proximities, i.e.

Zle ]l{x(z) S OOB(,} O'(x*7 x(’)) mrb<x(i))
2’2:1 ]I{I(E) € OOBb} U(:p*) q;(@) ?

wy(z*) = (5.5)

where OOBy, is the set of out-of-bag data for the b-th tree, o(z*, 2(¥)) is the proximity
measure provided by the RF, to the power of 3, and the margin function mr,(z®)
is equal to 1 if the b-th tree predicts y® correctly, —1 otherwise. Weights (5.5) are
then normalised to be positive and to sum to one. Finally, the prediction for z* is
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computed using the majority class of the weighted tree vote proportions

Y

A~k
Y = argmaxppvsk where  ppvsy = B
1<k<K D o=y we(T)

where y; denotes the original prediction of the b-th tree for z*.

A predefined number of trees denoted Bi (usually half of B), carrying the highest
weights, can be selected and used for the final prediction, modifying weighted pre-
dictions (5.6) accordingly.

5.6.2 Kernel weighted voting

In the same spirit, we investigate the use of a multidimensional kernel as similarity
measure (presented in Section 5.3.3) and we replace the margin function by the
simpler alternative ]l{gjéi) =y} indicating whether the b-th tree prediction for (¥,
denoted géi), is correct or not.

Using the same notations as above, the b-th tree weight is hence computed in
the following way:

SV 1{z® € O0OB,} Ky (2@ — 2%) 1{p" =y}

N (5.7)
S H{z® € OOB,} Ky (x® — z*)

wy(z*) =

All N labelled data are used for the weight computation, their importance being
measured by the kernel. « is again set to 1 and tree selection is not performed. In
the following this proposal is denoted as KV-RF (for kernel voting - random forest).

5.7 Numerical experiments

In this section, we compare the previously presented methods — summarised in Table
5.1 — on three examples: two Gaussian mixtures and a population genetics example.

Acronym Method Section
LazyDRF Lazy decision RF 5.3.1
UK-RF Unidimentional kernel RF 5.3.2
MK-RF Multidimentional kernel RF 5.3.3
CSRF Case-specific RF 5.4.1
NN-RF Nearest-neighbours RF 5.4.2
LVI-RF Local variable importance RF 5.5
DVSRF Dynamic voting with selection RF | 5.6.1
KV-RF Kernel voting RF 5.6.2

Table 5.1 — Summary of the compared methods, as well as their acronyms and the
sections where they are presented.

Methods are run ten times on the same test data set. The average and standard
deviation of the ten resulting misclassification error rates, per method, are reported
as a measure of performance. Note that in order to recover the predictions for the
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whole test table, each local algorithm is reapplied to each test data. The two first
Gaussian examples have the advantage of being simple enough to compute the Bayes
classifier which gives the optimal error rate.

When not specified, the random forests are built using the default parameters, i.e.
trees are maximal (N, = 1), and the covariate sampling parameter is my,, = L\/c_lj
Moreover, each forest is made of 100 trees, meaning CSRF and LVI-RF use a total
of 200 trees. Additional/different tuning parameters are specified in the displayed
result tables.

The methods involving classic RF (CSRF, NN-RF, LVI-RF, DVSRF, KV-RF)
use the R package ranger for their construction. The remaining were programmed
by myself from scratch. The R codes for the different algorithms and how to run
the examples presented below are available at https://github.com/LouisRaynal/
local-rf.

5.7.1 Balanced Gaussian mixture example

We consider 40-dimensional data from four classes (1,2,3,4). The classes have
equal prior probabilities: p; = ps = p3 = py = 1/4. The data are generated from
20-dimensional Gaussian distributions and 20 noise explanatory variables are added,
simulated according to a uniform distribution Ug;10,000]-

The training data set is of size 3, 000 and sampled among the 4 classes with equal
probabilities. 500 simulations are used as testing data set, also sampled equally
among the 4 models.

The parameters associated to the 20-multidimensional Gaussian distribution are

p=(0.8,3,1,2.5,...,1,25)" s = (3.2,3,2.5,2.5,...,2.5,25)"
ps = (2,1,2,2.3,...,2,23)", g =(2,0,2,1.8,...,2,18)"

¥ = diag(3,3,3,1,...,3,1), ¥, = diag(3,3,3,5,...,3,5),

Sy = diag(4,1,4,1,...,4,1), 2, = diag(2.5,1,2.5,1,...,2.5,1).

The two first dimensions, represented in Figure 5.2, are the most relevant for
discriminating between the four classes. Indeed, although the remaining ones can
provide information to identify the class labels, they are more overlapping with each
others and hence less informative.
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X2

X1

Figure 5.2 — First Gaussian example: two first explanatory variables X; and X, ;
colours indicate the class labels (1-orange, 2-cyan, 3-purple, 4-green).
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Setting Error rate (standard deviation)

Bayes classifier 12.6

Bagged CARTSs 27.02 (0.936)
Random forest 22.52 (0.648)
LazyDRF 24.64 (0.821)
UK-RF 23.8 (0.706)
MK-RF 22.32 (0.880)
CSRF Npin = 5 (in 1st forest) 24.62 (1.680)
CSRF Npin = 10 (in 1st forest) 25.42 (1.397)
CSRF Npin = 50 (in 1st forest) 23.72 (1.259)
CSRF Nuin = 150 (in st forest) 23.7 (1.055)
CSRF Nin = 250 (in 1st forest) 23.12 (0.527)
CSRF Nuin = 350 (in st forest) 23.8 (0.693)
NN-RF Kk = 1,000 23.14 (1.170)
NN-RF K = 1,500 93.42 (0.643)
NN-RF Kk = 2,500 22.84 (1.028)
LVI-RF My = d (in 1st forest) 27.68 (0.985)
LVI-RF My = [Vd] (in 1st forest) 23.76 (0.997)
DVSRF % = 3,000, By = 100 93.02 (1.047)
DVSRF k = 3,000, By = 50 23.48 (1.297)
KV-RF 22.8 (0.947)

Table 5.2 — First Gaussian example: prediction error rate (in %) ; the four lowest
errors are displayed in bold characters.

The results are presented in Table 5.2. The optimal Bayes classifier provides
an error rate of 12.6%, all tree-based methods studied here are very far from such
performance. The method that provides the lowest error rate is the local splitting
rule based on a multidimensional kernel. The kernel weighted voting strategy also
provides low error rate. However, the results obtained with local methods are very
similar to the ones obtained with a standard RF.

5.7.2 Unbalanced Gaussian mixture example

We introduce some modifications to the previous Gaussian example.

We still consider four classes but their model prior probabilities are p; = ps = 0.4
and p3 = ps = 0.1. The training data set is made of 3,000 samples drawn among
the four classes according to these probabilities. The testing set considers 500 data
equally sampled among the two classes 3 and 4, the least frequent ones. In this
example we therefore measure the prediction accuracy of low-frequency data.

The two first covariates, represented in Figure 5.3, are still the most important
ones, however we slightly modified the Gaussian parameters (the two first diagonal
terms for ¥; and ¥, are now 2 and 1) to induce as best split rule for a CART:
X, =~ 2. This example hence becomes an illustration of the fragmentation problem
we mentioned earlier (Figure 5.1). Indeed, the first cut produced by the eager RF
algorithm — if this covariate is sampled — will split the elements labelled 3 and 4 in
half (at X; &~ 2). It implies the loss of some potentially relevant training data to
predict those two classes. We hope local approaches can handle such an example
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Figure 5.3 — Second Gaussian example: two first explanatory variables X; and X5 ;
colours indicate the classes (1-orange, 2-cyan, 3-purple, 4-green).

which also contains very unbalanced classes proportions.

The results are presented in Table 5.3. As for the previous example, all tree-
based methods studied here are very far from the performance of the optimal Bayes
classifier. The method that provides the lowest error rate is the local weighting of
covariates. The nearest neighbour strategy also provides low error rate. However,
conditionally to the fact that this example was chosen to favour them, the results
obtained with local methods are disappointing and not significantly better than
those obtained with eager strategies.

5.7.3 Population genetics example

We now compare a set of local strategies on a basic population genetics example
introduced in Pudlo et al. (2016). The historical link between three populations of a
given species is of interest. More precisely, we are interested in studying whether a
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Setting Error rate (standard deviation)

Bayes classifier 25
Bagged CARTs 45 (1.215)
Random forest 46.16 (0.826)
LazyDRF 75.4 (0.894)
UK-RF 48.18 (0.877)
MK-RF 48 (0.800)
CSRF Npin = 5 (in 1st forest) 47.84 (0.923)
CSRF Npin = 10 (in 1st forest) 47.44 (1.173)
CSRF Npin = 50 (in 1st forest) 45.9 (1.300)
CSRF Nuin = 150 (in st forest) 45.92 (1.700)
CSRF Nin = 250 (in 1st forest) 46.3 (1.175)
CSRF Nuin = 350 (in st forest) 47.68 (1.612)
NN-RF % = 1,000 44.56 (1.336)
NN-RF k =1,500 43.96 (1.289)
NN-RF K = 2,500 46.56 (0.913)
LVI-RF My = d (in 1st forest) 43.02 (1.291)
LVI-RF My = [Vd] (in 1st forest) 41.66 (0.833)
DVSRF % = 3,000, By = 100 46.34 (1.340)
DVSRF k= 3,000, Bge = 50 47.02 (0.791)
KV-RF 45.7 (0.976)

Table 5.3 — Second Gaussian example: prediction error rate (in %) ; the four lowest
errors are displayed in bold characters.

third population emerged from a first or a second population, or whether it emerged
from a mixture between the two first ones. This problem is hence a three classes
classification question. The data is made of 1,000 autosomal single-nucleotide poly-
morphisms (SNPs). We assume that the distances between these loci on the genome
are large enough to neglect linkage disequilibrium, we hence consider them as having
independent ancestral genealogies.

The data is summarised thanks to d = 48 summary statistics available within
the DIYABC software for SNP markers (Cornuet, Pudlo et al., 2014), which is also
used to simulate training and test sets respectively of size 10,000 and 500, equally
distributed among the three scenarios. Moreover, the data are constrained to be
drawn in the [—1;1]? square on the LDA axes projections graph, which is a region
where scenarios are hard to discriminate, see Figure 5.4.

We compare on this example the RF method, and some local approaches: CSRF,
NN-RF, LVI-RF and KV-RF.

In the example, again, RF does not provide better results than bagging. Using
local covariates importance with a first bagged RF results (my,, = d) allows an
improvement of the error, its standard deviation is notably reduced. However, the
local methods do not outperform the bagging approach.
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Figure 5.4 — Population genetics example: projections on the LDA axes of the 10, 000
training instances ; colours represent scenario indices: red for model 1, blue for model
2 and blue for model 3 ; the hard to discriminate [—1;1]? region is represented by
black dashed lines.
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Setting Error rate (standard deviation)

Bagged CARTSs 38.86 (0.985)
Random forest 40.40 (0.806)
CSRF Npin = 5 (in 1st forest) 42.28 (1.248)
CSRF Npin = 10 (in 1st forest) 42.62 (1.565)
CSRF Npin = 50 (in 1st forest) 41.18 (1.216)
CSRF Npin = 150 (in 1st forest) 41.12 (1.163)
CSRF Nunin = 250 (in 1st forest) 40.40 (1.020)
CSRF Npin = 350 (in 1st forest) 41.14 (1.458)
NN-RF x =1,000 42.34 (0.844)
NN-RF K = 1,500 41.6 (0.838)

NN-RF k= 2,500 41.3 (1.042)

LVI-RF My = d (in 1st forest) 38.88 (0.620)
LVL-RF Mury = [V/d] (in 1st forest) 40.94 (0.989)
KV-RF 10.64 (1.184)

Table 5.4 — Population genetics example: prediction error rate (in %) ; the four
lowest errors are displayed in bold characters.

5.8 Conclusion

In this chapter, we review, discuss and propose local tree-based methods, strategies
taking into account a specific test data during the learning process. We focus on
classification problems. The results are not up to our expectations. We considered
three examples where local methods seemed useful but we did not obtained conclus-
ive results.

Our proposal to introduce weights in the splitting criterion is problematic. Put-
ting too high weights around x* results in irrelevant cut-points, closer to * compared
to RF. It induces large correlations between the trees in the forest, and the quality
of prediction is impacted negatively. This is why a = 1 is preferred. With this
choice, even if it localised the trees, we obtained results very similar to the ones of
RF. This is also the case of the kernel voting RF strategy.

The CSRF of Xu et al., 2016, the nearest neighbour weights and the local weight-
ing of covariates strategies can give good performance but depend on tuning para-
meters. For instance, the CSRF brings better performance when the tree depth is
low, i.e. high N,;,. However, generally, results provided by these local methods are
very similar to eager ones, and no great benefit is observed on our three examples.
When looking at the very small benefits in terms of prediction error rate compared
to the non-local approaches, we can say that local strategies are clearly not worth
the additional computational cost. Especially since most of them require the choice
of a tuning parameter, characterising the weights given to instances surrounding

T*.
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Chapter

Applications in population genetics

This chapter is based on two collaborative papers in the field of population genetics.
The first one is Estoup, Raynal et al. (2018) published in Journal de la Société
Francaise de Statistique, the second one is Chapuis, Raynal et al. (2019) submitted to
PCI Evol Biol. My main contributions in these papers were to develop the required
methodological and statistical elements, and of course to participate in their writing.
We provided the statistical methodologies as well as the computational tools, thanks
to the abcrf R package we developed and improved accordingly.
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6.1 Introduction

This chapter focuses on population genetics applications of the ABC-RF methodolo-
gies: for model choice introduced by Pudlo et al. (2016) and for parameter inference
presented in Chapter 4 and in Raynal et al. (2019). Moreover, we propose some
improvements to these ABC-RF methodologies which are available in our R package
abcrf.

e In the model choice setting, more precisely to select the best evolutionary
scenario using present genetic information, it can be difficult to disentangle
with trust whether or not a demographic event (as a change of population size,
an admixture between populations,...) is important or not. This statement
becomes even more true when a high number of populations and events are
considered. To obtain a better understanding of the scenario and identifying
which events are hard to discriminate and which ones are not, we add to the
ABC-RF model choice strategy (Pudlo et al., 2016) the possibility to study
groups of scenarios instead of individuals ones.

e For parameter estimation, the random forest algorithm provides some out-of-
bag error measurements, giving insights regarding its predictive performance
(over the entire covariate space). However, this type of error is not related
to the observation we are interested in, when the prediction accuracy may
depend on the area of the predictor space it is located in. For this reason
we propose some posterior measures of error (computed conditionally on the
observed data to predict) thanks to regression random forests. These errors
are computed and compared in Section 6.4 for the time of divergence between
two desert locust populations in Africa, which include or not some informed
mutational prior distributions.

In Section 6.2 we recall the ABC-RF approach for model choice (Pudlo et al.,
2016), to present the grouping strategy as well as posterior measures of error. We
then present in Sections 6.3 and 6.4 two applications for population genetics prob-
lems. The first one focuses only on model choice, the second exposes for the first
time a full ABC-RF analysis, including model choice and parameter inference.

6.2 Statistical improvements in the ABC-RF
methodologies

6.2.1 ABC-RF model choice on groups of models

We here start by bringing some recalls on the ABC-RF strategy for model choice,
to then introduce the model grouping approach.

6.2.1.1 Recalls on ABC-RF model choice

Let us consider M Bayesian parametric models. For a given model index m €
{1,..., M}, a prior probability P(M = m) is defined, with 6, its associated para-

142



6.2. STATISTICAL IMPROVEMENTS IN ABC-RF

meters and f,,(y | 6,,) its likelihood for the observation. Our targets are the model
posterior probabilities

POM =11 | ) o< B = 1) [ £ (5| 0) (000

Considering the standard 0-1 symmetric loss function, the selected model is the one
with the maximum of the model posterior probabilities

arg max {IP’(M —m) / il | em)wmwm)dem} |
1<m<M
The likelihood expressions f,,(y | 6,,) are not available for each model in compet-
ition, therefore it is not possible to calculate [ f.(y | 0m)7m(0m)d0,. To avoid
these difficulties, Grelaud et al. (2009) have introduced a model choice version of
the nearest-neighbours ABC scheme, see Algorithm 6.1. The problem is viewed as

Algorithm 6.1 : Nearest-neighbours ABC model choice scheme
for i <1 to N do
Generate m¥ from the prior P(M = m);
Generate ¢ ) from the prior 7, (-);

Generate x from the model f, (- | 0 )
Caleulate p = p(yc0, 1 );
end
Order the distances p(, ..., p®)
Select the model using the majority rule among the k-smallest distances

index set;

)

a classification question and is solved using nearest-neighbours classifiers. Due to
the curse of dimensionality, the methodology associated to Algorithm 6.1 has major
difficulties. Typically, to ensure reliability of the method, the number of simulations
should be large and the number of summary statistics small.

However, exploiting a large number of summary statistics is not an issue for some
machine learning methods. The idea of Pudlo et al. (2016) is to train random forests
(Breiman, 2001) on a set of simulated data, called reference table. The use of random
forests is motivated by some theoretical guarantees for sparse problems they exhibit
(Biau, 2012; Scornet et al., 2015) as well as other advantages described in Chapter
2. The generation process of a reference table made of N elements is recalled in
Algorithm 6.2. The output takes the form of a matrix containing simulated model
indexes, parameters and summary statistics, as below:

1

mY 0 N g - Tk
2

m( ) em@) Nx@1 Tx@2 --- "x@4
N

m() 0m<N) Nx(N 1 Tk 2 -+ Tx(V) g

The ABC-RF strategy for model choice is described in Algorithm 6.3. The output
is the affectation of y to a model (scenario), this decision being made based on the
majority class of the RF tree votes.
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Algorithm 6.2 : Generation of a reference table with N elements
for i < 1 to N do
Generate m from the prior P(M = m);
Generate 0, from the prior 7, (+);

Generate x from the model f,, ) (- | 6,,»);

Compute 7,6y = {T}xu),l, e ,77x<i>,d}5
end

Algorithm 6.3 : ABC-RF model choice
Input : a reference table used as learning set, made of N elements, each

one composed of a model index m® and d summary statistics. A
possibly large collection of summary statistics can be used,
including some obtained by machine-learning techniques, but
also by scientific theory and practitioner knowledge

Learning : construct a classification random forest m(+) to infer model
indexes

Output : apply the random forest classifier to the observed data 7, to

obtain m(ny)

For the observed data y, the random forest classifier predicts the MAP model
index. The predictor is good enough to select the most likely model but not to
derive directly the associated posterior probabilities. Indeed, the frequency of trees
associated with the majority model is not a proper substitute to the true posterior
probability.

However, we have

P(M = m(ﬁy) | 77y> =1-E(I{M # m(ny)} | 77y)-

Therefore, as explained in Pudlo et al. (2016), this justifies using a second ran-
dom forest in regression to estimate the posterior probability of the selected model
(Algorithm 6.4). Thus, in addition to the majority vote, this posterior probability
provides a confidence measure of the previous prediction at the point of interest 7.
This probability is approximated thanks to a regression random forest for which the
explanatory variables are the summary statistics of the reference table, and the re-
sponse is the vector of the indicator values 1{m(® # m°°(n,)}. These values use
the out-of-bag predictions of the training data set, hereafter denoted by the “oob”
exponent. Predicting the observed data thanks to this forest allows the derivation
of the posterior probability of the selected model (as described in Algorithm 6.4).
Note that using the out-of-bag classifiers prevents over-fitting issues and is compu-
tationally parsimonious as it avoids the generation of a second reference table for
the regression random forest training.

6.2.1.2 Grouped model choice

A very useful development for ABC-RF, we implemented in our R package abcrf
(version 1.7.1), is the model grouping approach, where pre-defined (disjoint) groups
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Algorithm 6.4 : ABC-RF computation of the posterior probability of the
selected scenario
Input : the values of 1{m® # m°°(n, )} for the trained random forest
and corresponding summary statistics of the reference table,
using the out-of-bag classifiers
Learning : construct a regression random forest E() to infer

E (L{M # m(ny)} | ny)
Output : an estimate of the posterior probability of the selected model

m(ny)

@<M = 1 (ny) | 77y) =1- E(]l M # m(ny)} | Ty)

of models (scenarios) are analysed instead of individual ones thanks to Algorithms
6.3 and 6.4. The model indexes used in input are modified in a preliminary step
to match the corresponding groups, which are then used during the learning phase.
When appropriate, unused models are discarded from the reference table. Actually,
this strategy considers deterministic mixture models. Each model index is drawn
from a prior distribution, and a mixture results from the formation of a group. In
population genetics, this improvement is particularly useful when a high number of
individual scenarios are considered and have been formalised through the absence or
presence of some key demographic events (e.g. admixture, bottleneck, ...). Groups
of scenarios are therefore formed depending on the inclusion or not of a certain
evolutionary event, and the model choice procedure aims at deciphering whether or
not this event needs to be considered. Thanks to associated errors, it can be used
to assess the strength with which an event is properly identified and which ones
are easy/hard to discriminate using the chosen method and data. This approach is
applied in Sections 6.3 and 6.4 in two applications.

6.2.2 ABC-RF prior vs posterior errors

In this section, we present how to compute posterior measures of error for parameter
inference, i.e. errors computed conditionally on the observed summaries 7,. We
oppose it with prior errors which are computed on training data simulated from the
prior distribution (a training data is an ABC reference table element). Hereafter,
we also denote this prior error as “global”, and the posterior error as “local” as it is
measured at exactly one point, the desired observation.

What we present in the following is mostly based on the ABC-RF strategy for
parameter inference (Chapter 4). Algorithm 6.5 recalls its principle. For a fixed
model, we try to infer on the k-th dimension of #, denoted 0, thanks to a newly
generated reference table. The idea is to train a regression random forest per di-
mension of the parameter space of interest. The output of the algorithm is a vector
of weights w(ny) that can be used to compute posterior quantities of interest such
as expectation, variance and quantiles. w(ny) provides an empirical posteriori dis-
tribution for 6.
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Algorithm 6.5 : ABC-RF for parameter estimation

Input : a vector of (9,(;) values and d summary statistics
Learning : construct a regression random forest to infer parameter values
Output : apply the random forest to the observed data 7y, to deduce a
vector of weights w(ny) = {w1(ny), ..., wn(ny)}, which provides
an empirical posterior distribution for 6.
w(ny) is used to compute the estimators of the mean, the
variance and the quantiles of the parameter of interest:

E@ [ ny), V(O | ny), Qalbr | ny)

Global prior errors

In both contexts, model choice or parameter inference, a global quality of the pre-
dictor can be computed, which does not take the observed data y into account.
Indeed, a random forest makes possible the computation of errors on the training
reference table, using the out-of-bag predictions (see Chapter 2).

For model choice, this type of error is called the prior error rate, which is the
misclassification error rate computed over the entire prior space. It is expressed as

1 & N
N > 1 {m® #m* ()}
=1

For parameter estimation, the equivalent is the prior mean squared error
(MSE) or the normalised mean absolute error (NMAE) for example, the latter being
less sensitive to extreme values. These errors are computed as

1 () poob,(i)\ >
MSE:NZ(Hk — o)

1=

1 N 0](;) - ézob,(i)
NMAE = — -5
v

They can be perceived as a Monte Carlo approximation of expectations with respect
to the prior distribution. This type of error does not take into account y and we
introduce below the posterior analogues.

Local posterior errors

We propose some posterior versions of error, that target the quality of prediction
with respect to the posterior distribution.

For model choice, the posterior probability provided by Algorithm 6.4 is a
confidence measure of the selected scenario given the observation. Therefore

1- ]@(M =m(ny) | ny)
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directly yields the posterior error associated to 7y: P (M + m(ny) | ny).

For parameter estimation, when trying to infer on 0, a point-wise analogous
measure of a local error can be computed as the posterior expectations

E ((ek - ék)Q | ny) and E ( | ny> . (6.1)

We approximate these expectations by
(z) B 900b i)

sz (1) ( gyt (”) and sz (1y) T

We again use the out-of-bag information to compute QA,(f), hence avoiding the (time
consuming) production of a second reference table, and we assume that the weights
w(ny) from the regression random forest (Algorithm 6.5) are good enough to ap-
proximate any posterior expectations: E(g(6x) | ny)-

0, — 0,
O

Another more expensive strategy to evaluate the posterior expectations (6.1) is to
construct a new regression random forest using for response variable the out-of-bag
vector of values o
9](:) _ onb,(l)

6,
depending on the targeted error. The observation 7y is then given to the forest to
provide the approximation of the wanted expectation (6.1).

. N AN\ 2
<0](€7,) _ 020b,(z)> or

)

Note that the 9 " values in the prev1ous formulas can be replaced by either the

approximated posterior expectations E( | ny) or the posterior medians @50%( e |
1y ), still using the out-of-bag 1nformat10n, to compute the local posterior errors. We
found in the present chapter (Section 6.4) that the posterior median provides a better
accuracy of parameter estimation than the posterior expectation (a.k.a. posterior
mean). This trend also holds for global prior errors that can be computed using
either the mean or the median as point estimates.

As a final comment, it is worth noting that so far a common practice consisted
in evaluating the quality of prediction (for model choice or parameter estimation)
in the neighbourhood of the observed data, that is around 7, and not exactly ny.
For model choice, in Estoup, Raynal et al. (2018) prior to the above posterior error
development, we use the so called posterior predictive error rate which is an error
of this type. In this case, some simulated data sets of the reference table close
to the observation are selected thanks to an Euclidean distance, then new data
(also denoted pseudo-observed data in the applications below) are simulated using
similar parameters, on which is computed the error (see also Lippens et al., 2017,
for a similar approach in a standard ABC framework). However, the main problem
of processing this way is the difficulty to specify the size of the area around the
observation, especially when the number of summary statistics is large. Even though
we still report it in Section 6.3, we therefore do not recommend the use of such
a “neighborhood” error anymore but rather to compute the local posterior errors
detailed above as they measure prediction quality exactly at the position of interest

Ny
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We finish this chapter with the presentation of the two population genetics ap-
plications.

6.3 ABC-RF grouped model choice: genetic history
of Pygmy human populations

6.3.1 Problem

In this study, we present a set of statistical analyses using ABC-RF applied on
a molecular (DNA) data set obtained from Western Central African Pygmy and
non-Pygmy populations. Central Africa and the Congo Basin are currently peopled
by the largest group of forest hunter-gatherer populations worldwide, which have
been historically called “Pygmies” in reference to the mythical population of short
stature described by the ancient Greek poet Homer (Hewlett, 2014). Each Central
African Pygmy group is in the neighbourhood of several sedentary agricultural popu-
lations (hereafter called “non-Pygmies”) with whom they share complex sociocultural
and economic relationships, including social rules regulating intermarriages between
communities (Verdu, Becker et al., 2013; Hewlett, 2014). Due to the lack of ancient
human remains in the equatorial forest, the origins of Pygmies and neighbouring
non-Pygmies remain largely unknown (Cavalli-Sforza, Menozzi et al., 1994; Cavalli-
Sforza and Feldman, 2003). Moreover, Western colonisers from the 19th century
somewhat arbitrarily collapsed into a single “Pygmy” group more than 20 popula-
tions that were, and still are, culturally and geographically isolated in reality, which
further clouded our understanding of evolutionary relationships among these popu-
lations. Thus, the questions of (i) whether all Central African Pygmy populations
have a common or an independent origin, and (ii) whether they exchange genes
through introgression/migration among one another and from neighbouring non-
Pygmies, were still largely debated in the anthropology and ethnology communities
(Cavalli-Sforza, 1986; Hewlett, 2014; Verdu, Austerlitz et al., 2009).

To tackle these questions, Verdu, Austerlitz et al. (2009) genotype strongly vari-
able genetic markers (namely microsatellite DNA loci; Estoup, Jarne et al., 2002)
in a dense sample of non-Pygmy and neighbouring Pygmy populations from West-
ern Central Africa, and use standard ABC methods (Beaumont, Zhang et al., 2002;
Estoup, Lombaert et al., 2012) to make statistical inferences. In the present study,
we consider the data set of Verdu, Austerlitz et al. (2009) and reanalyse it using
ABC-RF. A noticeable novelty of the statistical analyses presented here includes the
application of ABC-RF algorithms to make scenario choice on predefined groups of
models (i.e. on deterministic mixture models), in addition to standard analyses on
the whole set of (separated) scenarios to be compared. As a matter of fact, genetic
markers such as microsatellites are informative for deciphering key evolutionary
events that shape genetic variation in natural populations, such as a common or an
independent origin of a given set of populations, the presence or absence of genetic
introgression /migration among populations, as well as major changes in effective
population size, the latter feature being strongly suspected in non-Pygmy African
populations (e.g. Lombaert et al., 2010; Verdu, Austerlitz et al., 2009). Under an
ABC framework, such events can be modelled explicitly hence defining different
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scenarios that can be grouped based on the type(s) of evolutionary events that have
been incorporated into them. We show here that groups of scenarios (for instance
scenarios including a common origin of Pygmy populations versus scenarios includ-
ing an independent origin of those populations) can be formally and advantageously
compared using ABC-RF, in addition of considering all scenarios separately. Such
grouping approach in scenario choice is useful to identify main evolutionary events
characterising the history of natural populations, and to determine the strength with
which each one is discriminated by the considered method and data.

6.3.2 Inferential setting
6.3.2.1 Observed data set

The analysed data set includes the genotyping at 28 microsatellite loci of 400 unre-
lated individuals from four Pygmy groups (i.e. the Baka, Bezan, Kola and Koya; 29
to 32 individuals per group), neighbouring non-Pygmy individuals (194 individuals)
from Cameroon and Gabon (Western Central Africa) (see Figure 1 and Table S1 in
Verdu, Austerlitz et al., 2009, for details about geographic location of population
samples and their genetic grouping). The exact data set used in the present study is
available upon request to Paul Verdu or Arnaud Estoup, following ethical, informed
consent and IRB appropriateness.

6.3.2.2 Models, groups of models, and parameters

We consider the same set of eight complex evolutionary scenarios, as in Verdu, Aus-
terlitz et al. (2009). These scenarios with their historical and demographic paramet-
ers are represented in Figure 6.1, following the notation of Verdu, Austerlitz et al.
(2009). See also Appendix B.1 for a detailed description of the model parameters
and their prior distributions.

These eight scenarios include different combinations of three main types of evol-
utionary events debated in the anthropology community, and groups of scenarios
are formed depending on on their presence or absence.

First evolutionary event: The scenario group G1A (scenarios 1, 2, 3 and 4;
labelled noIND) corresponds to a common origin of Pygmy populations that diver-
sified from a single ancestral Pygmy population at time t,. The ancestral Pygmy
population itself diverged at time ¢,,, from the non-Pygmy African population. The
group G1B (scenarios 5, 6, 7 and 8; labelled IND) describes an independent origin of
Pygmy groups that independently diverged from the non-Pygmy African population
at times ?,,,;. For this group, divergence times are drawn independently for each
Pygmy lineage and thus, the order in which these lineages split is not predefined.

Second evolutionary event: the group G2A (scenarios 1, 3, 5 and 7; labelled
MIG) includes both a recent and an ancient event of introgression/migration (cf.
parameters tr; and ;) from the non-Pygmy African population into each Pygmy
lineage independently. It was already suggested by previous anthropological and
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Figure 6.1 — Eight complex competing scenarios of origin and diversification of
Pygmy populations from Western Central Africa.

150



6.3. GROUPED ABC-RF: PYGMY HUMAN POPULATIONS

genetic studies (e.g. Cavalli-Sforza, 1986; Hewlett, 1996; Destro-Bisol et al., 2004).
The group G2B (scenarios 2, 4, 6 and 8; labelled noMIG) excludes this event by
setting all introgression rates (r;) to zero.

Third evolutionary event: the scenario group G3A (scenarios 1, 2, 5 and 6;
labelled V) includes a potential stepwise change of effective population size that

occurred in the non-Pygmy African population at time ¢4, while not considered in
G3B (scenarios 3, 4, 7 and 8; labelled noV).

For all scenarios, NV; corresponds to the effective population size of population
1. It is worth stressing that there is obviously a number of other possible scenarios
that might possibly fit the data, just as well as if not better than the best scenario
found among the present finite set of compared scenarios.

6.3.2.3 Priors

We choose an equiprobable prior for the compared scenarios. Similarly to Verdu,
Austerlitz et al. (2009) and references therein, we use flat prior distributions for
all demographic parameters specified in Figure 6.1 (see Appendix B.1 for details):
uniform distributions bounded between 100 and 10,000 diploid individuals for all
Pygmy populations and ancestral population sizes (N;, Ngp, Ngi, and Ny, with 4
between 1 and 4), between 1, 000 and 100, 000 for the African non-Pygmy population
(Nyp). Prior values are drawn from uniform distributions between 1 and 5,000
generations for all divergence times (t,, tynp, tpnpi, With ¢ between 1 and 4), for the
population size variation times (t,;, with ¢ between 1 and 4) and for the times of
“ancient” introgression of non-Pygmy genes into ancestral Pygmy lineages (tr,, and
trqy;, with i between 1 and 4). For the time of change in effective population size
in the non-Pygmy population (¢4), considered only in the scenario group G3A (i.e.
scenarios 1, 2, 5 and 6), we sample our prior values thanks to a uniform distribution
bounded between 1 and 10,000 generations. For the “recent” introgression times
from non-Pygmies into the Pygmy lineages, (tr,, and tr,;, with i between 1 and 4),
we use log-uniform prior distributions bounded between 1 and 5,000 generations.
For genetic markers (i.e. microsatellite loci), the parameters and associated prior
distributions of mutation models and rates are the same as in Verdu, Austerlitz et al.
(2009) and Estoup, Verdu et al. (2018).

6.3.2.4 ABC-RF: analyses conducted on the observed data set

Following Pudlo et al. (2016), ABC-RF treatments are processed on a reference
table including 100,000 simulated data sets (i.e. 12,500 per scenario). Data sets
are summarised using the whole set of summary statistics proposed by DIYABC
(Cornuet, Pudlo et al., 2014) for microsatellite markers, describing genetic variation
per population (e.g. number of alleles), per pair (e.g. genetic distance), or per
triplet (e.g. coefficient of admixture) of populations, averaged over the 26 loci (see
Chapter 3, Table 3.1 for details about such statistics), plus the linear discriminant
analysis (LDA) axes as additional summary statistics. The total number of sum-
mary statistics is 130 plus a single discriminant (LDA) axis when analysing pairwise
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groups of scenarios or seven LDA axes when analysing the eight models considered
separately, as additional summary statistics. We checked that the number of sim-
ulated data sets of the reference table was sufficient by evaluating the stability of
prior error rates (i.e. misclassification error computed when drawing model index
and parameter values into priors) and posterior probabilities estimations on 80, 000,
90,000 and 100,000 simulated data sets (results not shown). The number of trees
in the constructed random forests is fixed to B = 1,000; see Appendix B.2 for a
justification of choosing such a number of trees per forest.

For each ABC-RF analysis, we predict the best group of scenarios or individual
scenario (based on the number of votes), estimate its posterior probabilities, but
also the prior error rate as well as a proximal measure of the posterior predictive
error rate. Both types of error are computed from 10, 000 simulated pseudo-observed
data sets (pods), for which the true scenario identity (ID) is known. The proximal
measure of the posterior predictive error rate is determined conditionally on the
observed data set by selecting the ID model and the evolutionary parameter val-
ues within the 100 best simulations (i.e. those closest to the observed data set as
deduced by computing standardised Euclidean distances between the vectors of ob-
served and simulated summary statistics) among a total of 800,000 simulated data
sets generated from priors. Using the parameters associated to the closest data to
the observation, we generate 10,000 simulated data on which the misclassification
error rate is computed. It is worth stressing, that when pods are drawn randomly
into prior distributions for both the scenario ID and the parameter values, one es-
timates global error levels computed over the whole (and usually huge) data space
defined by the prior distributions. The levels of error may be substantially different
depending on the location of an observed or pseudo-observed data set in the prior
data space. Indeed, some peculiar combination of parameter values may correspond
to situations of strong (weak) discrimination among the compared scenarios. Aside
from their use to select the best classifier and set of summary statistics, prior-based
indicators are hence relatively poorly relevant since, for a given data set, the only
point of importance in the data space is the observed data set itself. Computing
error indicators conditionally on the observed data set (i.e., focusing around the
observed data set by using a posterior distribution) is hence clearly more relevant
than blindly computing indicators over the whole prior data space.

6.3.2.5 Computer programs and computer times

For the simulation of data following the above model-prior design, we use the soft-
ware DIYABC v.2.1.0 (Cornuet, Pudlo et al., 2014). Regarding ABC-RF treatments
which follow the generation of the reference table using DIYABC, computations are
performed with the R package aberf (version 1.7.1) available on CRAN.

In the present study, all analyses were processed on a 16 cores Intel Xeon E5-
2650 computer (Linux Debian platform, 64 bits system, with a maximum of 20 Gb
of RAM used for the heaviest treatments). The production of a reference table
including 100,000 simulated data sets (and summary statistics) took 40 minutes
with 30% of the running time devoted to the computation of the 130 summary
statistics for each simulated data set. ABC-RF treatments, following the generation
of the reference table and based on the R package abcrf, took four and eight minutes
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for scenarios grouping and individual scenarios configurations, respectively.

6.3.3 Results

We first conduct ABC-RF treatments to make model choice on predefined groups
of scenarios (group G1A vs group G1B; group G2A vs. group G2B; and group G3A
vs. group G3B). We then carry out ABC-RF treatments on the eight scenarios
considered separately.

The projection of the microsatellite population data sets from the reference table
on a single (when analysing pairwise groups of scenarios) or on the first two LDA
axes (when analysing the eight scenarios considered separately) provides a first visual
indication about our capacity to discriminate among the compared scenarios (Fig-
ure 6.2). Simulations under the different pairwise groups of scenarios weakly overlap
indicating a strong power to discriminate among the pairwise groups interest. When
considering the whole set of eight scenarios individually, the projected points sub-
stantially overlap for at least some of the scenarios suggesting an overall lower power
to discriminate among scenarios considered separately than when considering pair-
wise groups of scenarios. As a first inferential clue, one can note that the location
of the observed data set (indicated by vertical line or a star symbol in Figure 6.2)
suggests, albeit without any formal quantification, a marked association with the
scenario groups G1A, G2A and G3A, and, to a lower extent with the scenario 1.

A quantitative measure of the power to discriminate among groups of scenarios
(scenarios) is obtained by estimating the probability to choose a wrong group of
scenarios (scenario) when drawing index and parameter values of group of scenarios
(scenario) into priors (i.e. prior error rates). Table 6.1 indicates substantially lower
prior error rates when discriminating among groups of scenarios (i.e. 8.85% for
G1A vs. GI1B, 2.65% for G2A vs. G2B, and 10.54% for G3A vs. G3B) than
among scenarios considered individually (prior error rate equal to 20.67%). This
is very interesting although not surprising because the grouping strategy simplifies
the classification problem by reducing the number of models to discriminate to
only two. Because for a given data set, the only point of importance in the data
space is the observed data set, we conduct a second quantitative estimation of error
rates corresponding to a proximal measure of the posterior predictive error rate
computed conditionally on the observed data set (Table 6.1). We observe that
posterior predictive error rates are substantially lower than prior error rates (i.e.
posterior predictive error rates equal to 4.99 % for G1A vs. G1B, 0.91 % for G2A vs.
G2B, 0.20 % for G3A vs. G3B, and 6.17 % for the scenarios considered separately),
indicating that the observed data set belongs to a region of the data space where
the power to discriminate among groups of scenarios (individual scenarios) is higher
than the global power computed over the whole prior data space.

Figure 6.3 shows that RF analysis is able to automatically determine the (most)
relevant statistics for model comparison. A typical feature of ABC-RF analysis is
that LDA axes always correspond to the most informative statistics, which makes
sense knowing their intrinsic construction structure. Interestingly, many of the most
informative population genetics summary statistics are not selected by the experts
in Verdu, Austerlitz et al. (2009), especially some crude estimates of admixture
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Figure 6.2 — Projection of the reference table and the observed data on a single
(when analysing pairwise groups of scenarios) or on the first two LDA axes (when
analysing the eight scenarios considered separately). The location of the observed
data is indicated by a vertical line in panels A, B and C, and a large black star in
panel D. Curves in A-C are estimated kernel densities.
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Groups of scenarios Individual
scenarios
G1A vs. G1B|G2A vs. G2B|G3A vs. G3B
Prior error rate 8.85% 2.65% 10.54% 20.67%
Posterior predictive error rate [4.99% 0.91% 0.20% 6.17%
Posterior probability of
the selected group of scenarios|0.923 0.987 0.955 0.851
or scenario (G1A) (G2A) (G3A) (Scenario 1)

Table 6.1 — Error rates on scenario group (individual scenarios) choice and pos-
terior probabilities of the selected scenario group (scenario) when discriminating

among evolutionary scenario groups (scenarios) of Pygmy human populations using
Algorithms 6.3 and 6.4.

rates based on population triplets (i.e. AML statistics; see Chapter 3, Table 3.1). A
possible explanation is that experts in population genetics are biased towards choos-
ing summary statistics that are informative for parameter estimation under a given
model. However, according to our own experience on this issue, the most inform-
ative statistics for model choice are often different than those that are informative
for parameter estimation (Raynal et al., 2019; Robert, Cornuet et al., 2011). It is
worth stressing that the most informative statistics differ depending on the model
choice design. AML, FST and LIK statistics are among the most informative when
discriminating among groups of scenarios dealing with independence/dependence
of divergence events (G1A-B and individual scenarios) and introgresion/migration
events (G2A-B and individual scenarios), whereas intra-population statistics such
as VAR, V2P and MWG; see Chapter 3, Table 3.1) are the most informative ones
when discriminating among groups of scenarios dealing with population size vari-
ation events (G3A-B). These differences are easy to interpret intuitively as diver-
gence and introgression/migration events strongly impact the branching pattern of
the tree topology summarising the relationships among populations, which are in-
formed by two and three sample statistics measuring the amount of genetic variation
shared between populations (e.g. AML and FST), whereas population size variation
events mainly impact the level of genetic variation within populations, which cor-
responds to the type of variation targeted by single sample statistics (e.g. VAR,
V2P and MWG). Thus, the model grouping strategy also allows to determine the
relevant summary statistics to identify the presence or absence of a specific event.

The outcome of the first step of the ABC-RF statistical treatment applied to a
given target data set is a classification vote for each scenario groups (or individual
scenarios) which represents the number of times a given scenario group (or single
scenario) is selected in a forest of B trees. The group of scenarios (or single scenario)
with the highest classification vote corresponds to the (set of) model(s) best suited
to the target data set among the set of compared groups of scenarios or individual
scenarios. In our case study, the classification vote estimated for the observed human
microsatellite data set is by far the highest for the scenario group G1A (i.e. ensemble
of scenarios in which the four Pygmy populations originate non-independently from a
common ancestral Pygmy population; cf. 940 of the B = 1,000 RF-trees selected the
scenario group G1A), the scenario group G2A (i.e. scenarios including asymmetrical
introgression /migration events between each Pygmy population and the non-Pygmy
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one; cf. 984 of the 1,000 trees), and the scenario group G3A (i.e. scenarios including
a change of population size in the non-Pygmy African population; cf. 959 of the
1,000 trees). When considering the eight scenarios separately, the classification
vote estimated for the observed human microsatellite data set is the highest for the
scenario 1 which congruently includes all three above-selected evolutionary events
(877 of the 1,000 trees).

It is worth stressing that there is no direct connection between the frequencies
of the allocation of the data of the groups of scenarios (or individual scenarios)
among the tree classifiers (i.e. the classification vote) and the posterior probabil-
ities of the competing groups of scenarios (individual scenarios) (see Figure S2 in
Pudlo et al., 2016). We therefore conduct the second RF analytical step corres-
ponding to the algorithm 3 in Pudlo et al. (2016) (recalled in Algorithm 6.4) to
obtain a reliable estimation of posterior probability of the best group of scenarios
(or individual scenario) (Table 6.1). The high posterior probability value provides
a strong confidence in selecting the scenario groups G1A, G2A and G3A (probab-
ility equal to 0.923, 0.987 and 0.955, respectively). When considering all scenarios
separately, the selected scenario 1 is associated to a moderately high posterior value
(at least lower compared to those for groups of scenarios) of 0.851. We notice that
the introgression /migration event is selected with the highest posterior probability.

As for any Bayesian inference, the shape of the priors used for data set simulations
may affect both the posterior probabilities of scenarios and the posterior parameter
estimation under ABC inference (e.g. Sunnaker et al., 2013). To empirically evaluate
the influence of prior shape on our inferences, we conducted all ABC-RF analyses
assuming a set of alternative non-flat priors for the simulations corresponding to
the prior set 2 in Verdu, Austerlitz et al. (2009). We found that such alternative
statistical treatment did not change model choice results and that error rates and
posterior probabilities were only moderately affected (results not shown).

6.3.4 Practical recommendations regarding the implementa-
tion of the random forests algorithms

We develop here several points, formalised as questions, which should help users
seeking to apply our methodology on their data set for statistical model choice.

Are my models and/or associated priors compatible with the observed
data set?

This question is of prime interest and applies to any type of ABC treatment, includ-
ing both standard ABC treatments and treatments based on ABC-RF. This issue is
particularly crucial knowing that with complex models and high dimensional data
sets (i.e. big an hence very informative data sets), as more and more encountered
in population genomics, “all models are wrong...”. Basically, if none of the proposed
model - prior combinations produces some simulated data sets in a reasonable vicin-
ity of the observed data set, this is a signal of incompatibility, and we consider that
it is then useless to attempt model choice inference. In such situations, we strongly
advise reformulating the compared models and /or the associated prior distributions
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in order to achieve some compatibility in the above sense. We propose here a visual
way to address this issue, namely through the simultaneous projection of the simu-
lated reference table data sets and of the observed data set on the first LDA axes.
Such a graphical assessment can be achieved using our R package abcrf version
1.7.1. In the LDA projection, the observed data set has to be located reasonably
within the clouds of simulated data sets (see Figure 6.2 as an illustration). Note that
visual representations of a similar type (although based on PCA) as well as com-
putation for each summary statistics and for each model of the probabilities of the
observed values in the prior distributions have been proposed by Cornuet, Ravigné
et al. (2010) and are already automatically provided by the DIYABC software.

Frazier et al. (2018) very recently analysed the behaviour of approximate Baye-
sian computation (ABC) when the model generating the simulated data differs from
the actual data generating process; i.e., when the data simulator in ABC is mis-
specified. They demonstrate that when the model is misspecified different versions
of ABC can lead to substantially different results and they suggest approaches to
diagnose model misspecification in ABC.

Did I simulate enough data sets for my reference table?

A rule of thumb is to simulate between 5, 000 and 20, 000 data sets per model among
those compared. In the present example we simulated 12,500 data sets for each of
the eight compared scenarios (for a total of 100,000 data sets in the reference table).
To evaluate whether or not this number is sufficient for random forests analysis, we
recommend to compute global prior error rates from both the entire reference table
and a subset of the reference table (for instance from a subset of 80,000 simulated
data sets if the reference table includes a total of 100,000 simulated data sets). If
the prior error rate value obtained from the subset of the reference table is similar,
or only slightly higher, than the value obtained from the entire reference table,
one can consider that the reference table contains enough simulated data sets. If
a substantial difference is observed between both values, then we recommend an
increase in the number of data sets in the reference table.

Did my forest grow enough trees?

According to our experience, a forest made of 500 trees often constitutes an inter-
esting trade-off between computation efficiency and statistical precision (Breiman,
2001). To evaluate whether or not this number is sufficient, we recommend plotting
the estimated values of the prior error rate and/or the posterior probability of the
best model as a function of the number of trees in the forest. The shapes of the
curves provide a visual diagnostic of whether such key quantities stabilise when the
number of trees tends to a given value (1,000 trees in the present study).We provide
illustrations of such procedure and visual representations in the case of inferences
about Human Pygmy population history (see Appendix B.2 in which graphical rep-
resentation have been produced by our R package abcrf version 1.7.1).
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6.3.5 Conclusion

Choosing among a group of models (individual scenarios) is a crucial inferential issue
as it allows the identification of major historical and evolutionary events formalised
into a set of compared scenarios formalised as a combination of such evolutionary
events. We illustrate this issue through ABC-RF analyses to make inferences about
the genetic history of Pygmy human populations. The eight formalised complex
scenarios incorporate (or not) three main evolutionary events: (i) whether there is
an independent or non-independent origin of Pygmy groups, (ii) the possibility of in-
trogression /migration events between Pygmy and non-Pygmy African populations,
and (iii) the possibility of a change in effective size in the past in the non-Pygmy
African population. We found that our scenario grouping approach allows to identify
with confidence (i.e. low error rates and high posterior probabilities) the different
events in the scenario, and it emphasises that the event of introgression/migration
is discriminated with the most accuracy. The final selected scenario (when compar-
ing all eight scenarios separately) corresponds to a common origin of all Western
Central African Pygmy groups considered, with the ancestral Pygmy populations
having diverged from the non-Pygmy African population in a more remote past. Fur-
thermore, it encompasses both recent and ancient asymmetrical introgression events
from the non-Pygmy African gene-pool into each Pygmy population considered, and
a change of population size in the non-Pygmy African population. Our ABC-RF
analyses confirm and strengthen the initial historical interpretation of Verdu, Aus-
terlitz et al. (2009). We inferred a probable common origin of all Western Central
African populations categorised as Pygmies by Western explorers, despite the vast
cultural, morphological, and genetic diversity observed today among these popula-
tions (Hewlett, 2014). We also confirmed recent asymmetrical and heterogeneous
genetic introgressions from non-Pygmies into each Pygmy population. Altogether,
these results are in agreement with the ethno-historical scenario proposed by Verdu,
Austerlitz et al. (2009) in which the relatively recent expansion of non-Pygmy ag-
riculturalist populations in Western Central Africa which occurred 2,000 — 5,000
years before present may have modified the pre-existing social relationships in the
ancestral Pygmy population, in turn resulting in its fragmentation into isolated
groups. Since then, enhanced genetic drift in isolated populations with small effect-
ive sizes, and different levels of genetic introgression from non-Pygmies into each
Pygmy population led to the rapid genetic diversification of the various Western
Central African Pygmy populations observed today.

6.4 Full ABC-RF analysis: reconstructing the evol-
utionary past of the desert locust

6.4.1 Problem

This section presents some ABC-RF analyses carried on an African insect species:
the desert locust, also known as Schistocerca gregaria (S. g. for short). This desert
locust can be found in arid grasslands and deserts in both northern and southern
Africa (Figure 6.4A). In its northern range, the desert locust is one of the most wide-
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spread and harmful pest species with a huge potential outbreaking area, spanning
from West Africa to Southwest Asia. The desert locust is also present in the south-
western arid zone (SWA) of Africa, which includes South-Africa, Namibia, Botswana
and south-western Angola (Figure 6.4A). The southern populations of the desert lo-
cust are termed S. g. flaviventris and are geographically separated by nearly 2,500
km from the northern Africa populations, S. ¢. gregaria.

Interestingly, the desert locust can exist as two phases: solitarious or gregarious.
The first one traduces by lone-living, while the second by swarming. The phase can
be switched depending on the locust density, and this phenomenon is mentioned as
density-dependent phase polyphenism. However, S. g. flaviventris appears to lack,
at least partly, the capacity to mount some of the phase polyphenism responses
associated with swarming (reviewed in Chapuis, Foucart et al., 2017).

Such differential evolution of traits associated with density-dependent phase
polyphenism between populations of closely related subspecies offers a hypotheses-
driven framework to understand phase polyphenism, and identify candidate genes
for this trait.

A promising investigation axis to reveal molecular determinants under phase
polyphenism inheritance in the desert locust is to identify key genes (or transcripts)
using comparative genomics (or transcriptomics) approaches between highly poly-
phenetic S. g. gregaria populations and less polyphenetic S. ¢. flaviventris popu-
lations. In particular, genomics studies based on genome scans (reviewed in Vitti
et al., 2013) use population samples to measure genetic diversity and differentiation
at many loci, with the goal of detecting loci under divergent selection. Genome scan
data can lead to misleading signals of selection if the global effect of the demographic
forces (e.g. genetic drift since divergence) is not accounted for.

Hence, for an accurate estimation of the local effect of selection, future genomic
studies of the desert locust would require historical knowledge on the considered
populations and in particular on the time scale of the processes that led to their
phenotypic differences. The independent evolutionary history of S. g. flaviventris
and S. g. gregaria subspecies was recently confirmed, by distinctive mitochondrial
DNA haplotypes and male genitalia morphologies (Chapuis, Bazalet et al., 2016).
Yet, the historical events, and their timing, related to the divergence of the two
desert locust lineages remain unknown.

The main objective of the present study is to unravel the historical and evolu-
tionary processes that have shaped the present disjoint geographical distribution of
the desert locust and their genetic variation. To this aim, we first employ paleo-
vegetation maps to construct evolutionary scenarios relevant to the desert locust.
We then use molecular data obtained from microsatellite markers for which we could
obtain independent information on allele size constraints and evolutionary rates in
the species of interest from direct observation of germline mutations (Chapuis, Plan-
tamp, Streiff et al., 2015). We apply the ABC-RF methodologies for both model
choice and parameter inference, on microsatellite data set to compare a set of evolu-
tionary scenarios and estimate the divergence time between S. g. gregaria and S. g.
flaviventris under the most likely of our scenarios. Finally, we interpret the results
in the light of the paleo-vegetation information we compiled and various biological
features of the desert locust. This study contains model grouping analysis, meas-
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ures of performance thanks to prior and posterior errors, and also comparisons when
using previous mutational information for specification of prior distributions or not.

6.4.2 Formalisation of evolutionary scenarios

To help formalising the evolutionary scenarios to be compared, we rely on maps of
vegetation cover in Africa from the Quaternary Environment Network Atlas (Adams
and Faure, 1997), considering more specifically the periods representative of arid
maximums (LGM and YD; Figures 6.4E and 6.4F), humid maximums (HCO; Figure
6.4D) and present-day arid conditions (see Figure 6.4C). Desert and xeric shrubland
covers fit well with the present-day species range (Figures 6.4A and 6.4B) during
remission periods. Tropical and Mediterranean grasslands were added separately to
the desert locust predicted range since the species inhabits such environments during
outbreak periods only. The coherence between present maps of species distribution
(Figure 6.4A) and of open vegetation habitats (Figure 6.4C) suggests that vegetation
maps for more ancient periods could be considered as good approximations of the
potential range of the desert locust in the past. Maps of vegetation cover for ice
ages (Figures 6.4E and 6.4F) show an expansion of open vegetation habitats (i.e.
grasslands in the tropics and deserts in both the North and South of Africa) sufficient
to make the potential range of the species continuous from the Horn of Africa in
North-West to the Cape of Good Hope in the South. Based on the above climatic and
paleo-vegetation map reconstructions, we consider a set of alternative bio-geographic
hypotheses formulated into different types of evolutionary scenarios.

First, we consider scenarios involving a more or less continuous colonisation of
southern Africa by the ancestral population from a northern origin. In such type
of scenarios, effective population sizes are allowed to change after the divergence
event, without requiring any bottleneck event (i.e. without any abrupt and strong
reduction of population size) right after divergence.

Second, we consider the situation where colonisation of Southern Africa occurred
through a single (or a few) long-distance migration event(s) of a small fraction
of the ancestral population. This situation is formalised through scenarios which
differ from the former by the occurrence of a bottleneck event in the newly
founded population. The bottleneck event occurs into S. g. flaviventris right
after divergence and is modelled through a limited number of founders during a
short period.

Because the last Quaternary cycle includes several arid climatic periods, in-
cluding the intense punctuation of the Younger Dryas (YD) and the Last Glacial
Maximum (LGM), we also consider scenarios that incorporate the possibility of sec-
ondary contact with asymmetrical genetic admixture from S. g. gregaria
into S. g. flaviventris. Since previous tests based on simulated data showed a
poor power to discriminate between a single versus several admixture events (results
not shown), we consider only models including a single admixture event.

Finally, at interglacial humid maximums, the map of vegetation cover shows a
severe contraction of deserts. It was nearly completely vegetated with annual grasses
and shrubs and supported numerous perennial lakes (see Figure 6.4D; deMenocal
et al., 2000). We thus envisage the possibility that climatic-induced contractions
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of population sizes have pre-dated the separation of the two subspecies. Hence,
whereas so far scenarios involved a constant effective population size in the ances-
tral population, we formalise alternative scenarios in which we assume that a long
population size contraction event occurred into the ancestral population
at a time t.,, with an effective population size N¢, during a duration dc,.

The three above-mentioned key evolutionary events (a bottleneck in S. ¢. flavi-
ventris, an asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris,
and a population size contraction in the ancestral population) define a total of eight
scenarios that we compare using ABC-RF. The eight scenarios with their historical
and demographic parameters are graphically depicted in Figure 6.5. All scenarios
assume a northern origin for the common ancestor of the two subspecies and a sub-
sequent southern colonisation of Africa. This assumption is supported by recent
mitochondrial DNA data presented in Chapuis, Bazalet et al. (2016).

All scenarios consider three populations of current effective population sizes Ny
for S. g. flaviventris, N, for S. g. gregaria, and N, for the ancestral population, with
S. g. flaviventris and S. g. gregaria diverging t4, generations ago from the ancestral
population. The bottleneck event which potentially occurred into S. g. flaviventris
is modelled through a limited number of founders Nb; during a short period dby.
The potential population size contraction event occurs into the ancestral population
at a time t.,, with an effective population size N¢, during a duration dc,. The
potential asymmetrical genetic admixture from S. ¢g. gregaria into S. g. flaviventris
occurs at a time t,., with an effective population size N¢, and a proportion r, of
genes of S. g. gregaria origin.

Note for Figure 6.4: (A-B) The distribution range are adapted from Sword
et al. (2010). Winds (black arrows) are adapted from Nicholson (1996)
with dotted lines representing the intertropical convergence zone (ITCZ). In
northern Africa, at least since 2.7 Ky, the strong northeast trade winds bring
desert locust swarms equatorward in the moist ITCZ (Kropelin et al., 2008).
Most transports are westward, with records of windborne locusts in the At-
lantic Ocean during plague events, including the exceptional trans-Atlantic
crossing from West Africa to the Caribbean in 1988 (Lorenz, 2009). Nev-
ertheless, at least in northern winter (January), easterly winds flow more
parallel to the eastern coast of Africa. (C-F) Vegetation habitats are adap-
ted from Adams and Faure (1997). Open vegetation habitats suitable for the
desert locust correspond to deserts (light orange), wzeric shrublands (dark
orange) and tropical - Mediterranean grasslands (pink). Other unsuitable
habitat classes (white) are forests, woodlands and temperate shrublands and
savannas.

6.4.3 Inferential setting

6.4.3.1 Observed data set

We carry out our statistical inferences on the microsatellite data sets previously
published in Chapuis, Bazalet et al. (2016). The 23 microsatellite loci genotyped in
such data sets are derived from either genomic DNA (14 loci) or messenger RNA (9
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Figure 6.4 — Present time distribution range of Schistocerca gregaria in Africa under
remission periods with winds in August (A) and January (B), and vegetation hab-
itats suitable for the species during the present period (C), the Holocene Climatic
Optimum (HCO, 9 to 6 Ky ago) (D), the Younger Dryas (YD, 12.9 to 11.7 Ky ago)
(E) and the Last Glacial Maximum (LGM, 26 to 14.8 Ky ago) (F).
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Scenario 8 Evolutionary event
Na
Scenario C, b scC
1 no no no
2 no yes no
3 yes no no
4 yes yes no
tdiv
5 no no yes
6 no yes yes
7 yes no yes
8 yes yes yes

Figure 6.5 — The eight formulated evolutionary scenarios. The subscripts g, f and
a indicate the subspecies S. g. gregaria, S. g. flaviventris and their unsampled
common ancestor, respectively.

loci) resources, and are hereafter referred to as untranscribed and transcribed mi-
crosatellite markers. These microsatellites are shown to be genetically independent,
free of null alleles (i.e. alleles are functional) and at selective neutrality (Chapuis,
Bazalet et al., 2016). This observed data is obtained from 170 genotypes individuals
(80 and 90 individuals for S. g. gregaria and S. g. flaviventris, respectively).

6.4.3.2 Priors on demographic parameters

Prior values for time periods between sampling and secondary contact, divergence
and /or ancestral population size contraction events (t.q, 4, and ., respectively) are
drawn from log-uniform distributions bounded between 100 and 500, 000 generations,
with t.q > tgiy, > tse. Assuming an average of three generations per year (Roffey and
Magor, 2003), this prior setting corresponds to a time period that goes back to the
second-to-latest glacial maximum (150 Ky ago).

We use uniform prior distributions bounded between 10* and 106 diploid indi-
viduals for effective population sizes N (Chapuis, Plantamp, Blondin et al., 2014).
The admixture rate (r,; i.e. the proportion of S. g. gregaria genes entering into the
S. g. flaviventris population), is sampled from a uniform prior distribution bounded
between 0.05 and 0.5. We use uniform prior distributions bounded between 2 and
100 for both the numbers of founders (in diploid individuals) and duration of bot-
tleneck events (in number of generations). For the contraction event, we consider
uniform prior distributions bounded between 100 and 10,000 for both population
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size (in diploid individuals) and duration (in number of generations). Assuming an
average of three generations per year (Roffey and Magor, 2003), such prior choice
allows a reduction in population size for a short to a relatively long period, similar
for instance to the whole duration of the HCO (from 9 to 5.5 Ky ago) which was
characterised by a severe contraction of deserts.

6.4.3.3 Priors on mutational parameters

Mutations occurring in the repeat region of each microsatellite locus are assumed to
follow a symmetric generalised stepwise mutation model (GSM, Estoup, Jarne et al.,
2002). Prior values for any mutation model settings are drawn independently for
untranscribed and transcribed microsatellites in specific distributions. The informed
mutational setting is defined as follows. Because allele size constraints exist at mi-
crosatellite markers, we inform for each microsatellite locus their lower and upper
allele size bounds using values estimated in Chapuis, Plantamp, Streiff et al. (2015).
Prior values for the mean mutation rates (ugr) are set to the empirical estimates
inferred from observation of germline mutations in Chapuis, Plantamp, Streiff et al.
(2015), i.e. 2.8 x 107* and 9.1 x 107 for untranscribed and transcribed microsatel-
lites, respectively. Because each microsatellite locus can have its own mutation rate,
we sample each one from a gamma distribution with mean parameter ug and a shape
parameter equal to 0.7 for both types of microsatellites. For each locus, the number
of added or deleted microsatellite motifs induced by a mutation is drawn from a
geometric distribution with parameter P, where P follows a gamma distribution
with mean parameter P and a shape parameter equal to 2. This P is set to the
proportions of multistep germline mutations observed in Chapuis, Plantamp, Streiff
et al. (2015), i.e. 0.14 and 0.67 for untranscribed and transcribed microsatellites,
respectively. We also consider mutations that insert or delete a single nucleotide to
the microsatellite sequence. To model this mutational feature, we use the DIYABC
default setting values, i.e. a uniform distribution bounded between [1078, 1077] for
the mean parameter ugny, and a gamma distribution (mean equal to pugnr and shape
equal to 2) for individual loci parameters (see Cornuet, Ravigné et al., 2010).

We evaluate how the incorporation of independent information on prior distribu-
tions for mutational parameters affect both the posterior probabilities of scenarios
and the posterior parameter estimation under our inferential framework. To this
aim, we re-process our inferences using a naive mutational setting as prior, often
used in many ABC microsatellite studies (e.g. Estoup, Jarne et al., 2002). In this
case, prior values for mean mutation parameters are drawn from uniform distribu-
tions instead of being set to a fixed value as in the informed mutational setting. For
each set of untranscribed or transcribed microsatellites, all loci are free of allele size
constraints (i.e. allele size bounds are fixed to very different values such as 2 and 500
for the lower and upper bounds, respectively). Prior values for ur are drawn from
a uniform distribution bounded between 107> and 1073. P values are sampled in a
uniform distribution bounded between 0.1 and 0.3. Finally, the mean rate of single
nucleotide indel mutations and all parameters for individual loci are set to the DIY-
ABC default values (Chapuis, Plantamp, Blondin et al., 2014; Chapuis, Plantamp,
Streiff et al., 2015).
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6.4.3.4 ABC-RF model choice setting

We use the software DIYABC v.2.1.0 (Cornuet, Pudlo et al., 2014) to simulate data
sets constituting the reference tables. ABC-RF statistical analysis are performed
using a new version of the R library abcrf (version 1.8) available on CRAN. This
version includes all ABC-RF strategies, as well as new posterior error measurements
for parameter inference detailed in Section 6.2. Observed and simulated data are
summarised thanks to a set of 32 summary statistics available from one and two
population samples (Chapter 3, Table 3.1) and the one LDA axis or the seven
LDA axes (i.e. number of scenarios minus 1, Pudlo et al., 2016) computed when
considering pairwise groups of scenarios or individual scenarios, respectively. We
process ABC-RF treatments on reference tables including 100, 000 simulated data
sets (i.e. 12,500 per scenario). The number of trees in the constructed random
forests is fixed to B = 3, 000.

We predict the best scenario/group of scenarios and estimate its posterior prob-
ability over ten replicate analyses based on ten different reference tables, that we
average. In order to understand and decipher the main evolutionary events that
occurred during the evolutionary history of the two desert locust subspecies, we
performed an ABC-RF analysis thanks to the model grouping strategy, on three
pairwise groups of scenarios (with four scenarios per group):

e groups of scenarios with versus without a bottleneck in S. g. flaviventris,

e groups with versus without a population size contraction in the ancestral pop-
ulation,

e groups with versus without a secondary contact with asymmetrical genetic
admixture from S. g. gregaria into S. g. flaviventris.

We also conduct ABC-RF treatments on the eight individual scenarios considered
separately.

6.4.3.5 ABC-RF parameter inference setting

For parameter estimation, we also construct ten independent replicate ABC-RF
treatments based on ten different reference tables to infer the time since divergence
between the two subspecies (Raynal et al., 2019, and Chapter 4). For each RF, we
simulate a total of 100,000 data sets for the selected scenario (drawing parameter
values into the prior distributions described in Sections 6.4.3.2, 6.4.3.3 and using
the same 32 summary statistics). The number of trees in the constructed random
forests is fixed to B = 2,000. We estimate the parameter posterior median as
well as 5% and 95% quantiles of the posterior distributions thanks to ABC-RF.
Accuracy of time divergence estimation is measured using out-of-bag predictions
and the normalised mean absolute error (NMAE). NMAE values are computed and
averaged over the ten different replicate analyses. It is worth noting that we focus
all over this work on posterior medians rather than posterior expectations as point
estimates. More accurate estimations were indeed obtained (according to out-of-bag
predictions) when using median rather than mean values.
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6.4.4 Results
6.4.4.1 Model choice

We now report the results regarding the model choice procedure thanks to ABC-RF
when analysing groups of scenarios or individuals ones. For the informed mutational
setting, Table 6.2 indicates lower prior error rates of ABC-RF treatments when
discriminating among groups of scenarios (i.e. mean of prior error rates, over the ten
replicate runs, lower than 25%) than among the eight scenarios considered separately
(47.9%).

ABC-RF analyses support the same best scenario or group of scenarios for all ten
replicate analyses. The classification vote for the observed desert locust microsatel-
lite data set is the highest for the group of scenarios in which (i) S. g. flaviventris
was subject to a bottleneck event at the time of the split (average of 2,890 votes
out of 3,000 RF-trees), (ii) the ancestral population experienced a population size
contraction (average of 2,245 votes out of 3,000 RF-trees), and (iii) not any admix-
ture event occurred between populations after the split (average of 2,370 votes out
of 3,000 RF-trees). When considering the eight scenarios separately, the highest
classification vote concerns the scenario 4, which congruently excludes secondary
contact and includes a population size contraction in the ancestral population and
a bottleneck event at the time of divergence in the S. g. flaviventris subspecies
(average of 1,777 votes out of 3,000 RF-trees). The other scenarios that obtained
at least 5% of the votes are: a scenario including only a single bottleneck event in
S. g. flaviventris (scenario 2; average of 537 votes) and a scenario with a bottleneck
event in S. g. flaviventris, a population size contraction in the ancestral population
and a secondary contact with admixture from S. g. gregaria into S. g. flaviventris
(scenario 8; mean of 380 votes). All other scenarios obtained less than 5% of the
votes and are hence even more weakly supported. The scenario 4 also obtained the
highest number of votes for analyses based on a naive mutational setting (results
not shown here but available in the complete paper Chapuis, Raynal et al., 2019).

Posterior error rates (i.e. 1 minus the posterior probabilities) are lower than prior
error rates for the group of scenarios based on the presence (or not) of a bottleneck in
S. g. flaviventris (i.e. 3.5% versus 10.2%) and for the scenarios considered separately
(i.e. 41.6% versus 47.9%), while, for other groups of scenarios, the discrimination
power is similar at both global and local scales (i.e. from 23.5% to 25.8%, Table
6.2). Altogether, these results indicate that the observed data set belongs to a region
of the data space where the power to discriminate among scenarios is higher than
the global power computed over the whole prior data space, and that the presence
or absence of a bottleneck in S. g. flaviventris is the demographic event the best
predicted by our ABC-RF treatments. Posterior probability values for the scenario 4
and for the best groups of scenarios are slightly lower when using a naive mutational
setting, except for the group without any admixture event (Table 6.2).

6.4.4.2 Parameter inference

Table 6.3 reports point estimates with 90% credible intervals for the divergence time
between the two subspecies under the best supported scenario 4, as well as prior and
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Analyses of groups of scenarios Analysis of
gl=noc, | gl =nob | gl =no sc scenarios
vs g2 =c¢, | vsg2=">b| vsg2=sc separately

Informed mutational prior
Prior error rate 24.9% 10.2% 23.5% 47.9%
Posterior probability 0.746 (c,) | 0.965 (b) | 0.742 (no sc) 0.584
(scenario 4)

Naive mutational prior
Prior error rate 26.7% 11.1% 24.4% 50.2%
Posterior probability 0.704 (¢,) | 0.950 (b) | 0.775 (no sc) 0.547
(scenario 4)

Table 6.2 — Scenario choice prior error rates and posterior probabilities (averaged
over ten replicate analyses). The groups are formed depending on the presence
(or not) of a bottleneck (b) in S. g. flaviventris, a population size contraction in
ancestor (¢,) and a secondary contact with asymmetrical genetic admixture from S.
g. gregaria into S. g. flaviventris (sc).

Informed mutational prior | Naive mutational prior
prior NMAE 0.359 0.542
posterior NMAE 0.369 0.571
taw (G) 7,723 5,235
90% CI [2,785;19, 708] [1,224; 23, 845]

Table 6.3 — Prior and posterior errors for divergence time estimation, as well as
divergence time estimations and 90% credible intervals (averaged over then replic-
ate ABC-RF analyses), under the best supported scenario (scenario 4). Time is
measured in terms of generations (G).

posterior NMAE. Our estimations point to a young age of subspecies divergence,
with a median divergence time of 2.6 Ky and a 90% credible interval of 0.9 to 6.6 Ky
using informed mutational priors. The naive mutational setting leads to a median
estimate of 1.7 Ky with a 90% credible interval of 0.4 to 7.9 Ky.

The computed prediction errors highlight that the incorporation of independent
information into prior distributions of mutational parameters allows a more accurate
estimation of the median divergence time, with about 35% lower prior and posterior
normalised mean absolute errors (Table 6.3).

Moreover, for both mutational setting, when comparing prior and posterior
NMAE, we observe that the posterior error is slightly higher than the prior ver-
sion (0.369 compared to 0.359 or 0.571 compared to 0.542). It means the observed
data lies in a region of the summary statistics space where the predictive power to
infer the divergence time t4, is lower compared to the global power achieved when
computing the error on all prior values (i.e. prior NMAE).

168



6.4. FULL ABC-RF ANALYSIS: DESERT LOCUST

6.4.5 Interpretations
A young age of subspecific divergence in the desert locust

With a 90% credible interval of the posterior density distribution of the divergence
time of 0.9 to 6.6 Ky, our ABC-RF analyses clearly point to a divergence of the two
desert locust subspecies occurring during the present Holocene geological epoch (0
to 11.7 Ky ago). The posterior median estimate (2.6 Ky) and interquartile range
(1.8 to 3.7 Ky) postdated the middle-late Holocene boundary (4.2 Ky). Two possible
reasons where proposed to explain this early divergence time, that we now describe.

Recent geological and palynological research has shown that a brief fragmenta-
tion of the African primary forest occurred during the Holocene interglacial period
from 2.5 Ky to 2.0 Ky ago (reviewed in Maley et al., 2018). This forest fragment-
ation event is characterised by relatively warm temperatures and a lengthening of
the dry season rather than an arid climate. Although this period does not cor-
respond to a phase of general expansion of savannas and grasslands, with Poaceae
pollen never exceeding 40% of the total pollen count, it led to the opening of the
Sangha River Interval (SRI). The SRI corresponds to a 400 km wide (14 — 18° E)
open strip composed of savannas and grassland passing through the rainforest in a
North-South direction. The SRI corridor is thought to have facilitated the southern
migration of Bantu-speaking pastoralists, along with cultivation of the semi-arid
sub-Saharan cereal, pearl millet, Pennisetum glaucum (Schwartz, 1992; Bostoen et
al., 2015). The Bantu expansion took place between approximately 5 and 1.5 Ky
ago and reached the southern range of the desert locust, including northern Namibia
for the Western Bantu branch and southern Botswana and eastern South Africa for
the Eastern Bantu branch (Vansina, 1995). Therefore, we cannot exclude that the
recent, subspecific distribution of the desert locust can have been mediated by this
recent climatic disturbance associated with a north-south corridor of open ve-
getation habitats and the diffusion of agricultural landscapes through the Bantu
expansion. The progressive reappearance of forest vegetation 2 Ky ago would have
then led to the present-day isolation and subsequent genetic differentiation of such
new southern populations from the more northern parental populations. Our ABC-
RF results also indicated that a severe bottleneck (i.e. a strong transitory reduction
of effective population size) occurred in the nascent southern subspecies of the desert
locust. The very high posterior probability value (96.5%) and the low posterior error
rate (3.5%) show that this evolutionary event was inferred with strong confidence.
This result can be explained by the above mentioned colonisation hypothesis if the
proportion of suitable habitats for the desert locust in the SRI corridor was low,
strongly limiting the carrying capacity during the time for range expansion.

Alternatively, the bottleneck event in S. g. flaviventris can be explained by a
southern colonisation of Africa through a long-distance migration event. Long-
distance migrations are possible in the gregarious phase of the desert locust, with
swarms of winged adults that regularly travel up to 100 km in a day (Roffey and
Magor, 2003). However, since effective displacements are mostly downwind in this
species, the likelihood of a southwestern transport of locusts depends on the dynam-
ics of winds and pressure over Africa (Nicholson, 1996; Waloff and Pedgley, 1986).
Because in southern Africa, winds blow mostly from the north-east toward the ex-
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tant south-western distribution of the desert locust (at least in southern winter, i.e.
August; Figure 6.4A), only exceptional conditions of a major plague event may have
brought a single or a few swarm(s) in East Africa (see Figure 6.4B) and sourced the
colonisation of south-western Africa. In agreement with this, rare southward move-
ments of desert locus have been documented along the eastern coast of Africa, for
instance in Mozambique in January 1945 during the peak of the major plague of
1941 — 1947 (Waloff, 1966).

Gain in statistical inferences when incorporating independent informa-
tion into the mutational prior setting

The mutational rate and spectrum at molecular markers are critical parameters for
model-based population genetics inferences. We found that the specification into
prior distributions of previous estimations of microsatellite mutation rates and allele
size constraints improved the accuracy of the divergence time estimation. Using
the naive mutational prior setting, the credible interval was larger. It is worth
stressing, however, that the latter credible interval did not nevertheless include
another transition to a dry climatic period, such as the Younger Dryas (YD, 12.9 to
11.7 Ky) or the Last Glacial Maximum (LGM, 21.1 to 17.2 Ky), two periods with
a more continuous potential ecological range for the desert locust. It also resulted
in a downward bias in median estimate, which could have altered our historical
interpretations. This down-biased estimate (1.7 Ky) agrees less with the timing of
the aridification associated with the SRI opening, from 2.5 Ky to 2 Ky. For scenario
choice, the inferential gain in incorporating independent information in mutational
prior setting was much more moderate, with error rates decreasing by only a few
tens of percent. This highlights, once again, the well-known potential impact of
the prior settings assumed in Bayesian analyses, and calls for processing various
error and accuracy analyses using different prior settings as realised in the present
study. It is therefore natural to question the influence of the demographic priors
for which a prior sensitivity analysis should be performed. Some first attempts
were carried out by Marie-Pierre Chapuis regarding the use of uniform priors on
temporal parameters, instead of log-uniform. A bias and larger credible intervals
were observed, similarly to the use of the naive mutational priors.

Implications for the evolution of phase polyphenism

The recent divergence time between populations of S. g. gregaria and S. g. fla-
viventris give some insights concerning the evolutionary mechanism responsible for
the relative loss of phase polyphenism in the southern subspecies. Given that the S.
g. flaviventris subspecies arose about 7.7 K generations ago, it seems unlikely that
recent mutations are responsible for its phenotypic divergence.

It is more likely that selection explains such a rapid evolution. This requires
that alleles associated with the reduction of phase polyphenism in S. g. flaviventris
were present in past S. ¢g. gregaria populations at relatively high frequencies, which
may have been favoured through prior adaptation. The southern colonisation was
preceded by a prolonged and severe contraction of northern deserts, providing eco-
logical conditions favourable for the evolution of a solitarious phase in the native
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environment that may have facilitated adaptation in the novel southern range of
the species. Genetic drift might also explain the spread of the reduction in phase
polyphenism among S. g. flaviventris, intensified by its small effective population
size.
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Conclusion and perspectives

Most ABC methods require the choice of a distance, a threshold and a set of low
dimensional summary statistics, choices which can be difficult and impact the al-
gorithm performances. To address these tuning issues we introduced an ABC ap-
proach mixed with Breiman’s regression random forests, denoted ABC-RF, in order
to infer parameters of interest. This method achieves good prediction accuracy
while being mostly tuning-free and suffers less of the curse of dimensionality com-
pared to earlier ABC approaches. Indeed, the robustness of forests toward noise
variables allows the inclusion of a large number of explanatory variables and avoids
the preliminary selection of a small set of summary statistics. However, some of the
summary statistics should still be informative for the task at hand. Furthermore,
the forests provide useful interpretability tools as prior measures of errors, as well
as summary statistics importance. Note that other random forest benefits could be
incorporated, such as variable selection, and could be the subject of future works.

Based on the work of Pudlo et al. (2016) on ABC-RF for model choice, we
included the possibility to study groups of models instead of individual ones. On
two population genetics case studies (Estoup, Raynal et al., 2018; Chapuis, Raynal
et al., 2019), this grouped models strategy gives some insights regarding the difficulty
to discriminate a specific evolutionary event thanks to the considered method and
data. This is therefore a good complementary approach to the usual analyses of
individual models/scenarios, especially when the formation of groups is justified.

In a parameter inference framework, to assess the prediction accuracy of ABC-
RF for a specific observation, we proposed to compute some posterior measures of
error. Contrary to the out-of-bag prior measures of error returned by ABC-RF, this
error describes the prediction accuracy at the observed data of interest by estimating
a posterior expectation for it.

ABC-RF methodologies for parameter inference and model choice, as well as
the above mentioned developments, are unified in the R package abcrf. It has been
updated to take advantage of the fast random forest implementation offered by the R
package ranger (Wright and Ziegler, 2017). For greater ease of use, we plan to write
a documentation vignette for our library, and an analogous software to DIYABC is
currently under development.

Most ABC frameworks rely only on one observed data. However, the random
forests involved in the ABC-RF strategies do not take into account this unique data
we would like to infer on. From this statement, we proposed an overview of existing
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local random forest methods in the classification setting, as well as new proposals.
We compared different strategies to take profit of the observation during the tree
construction. There are four main ideas to localise the forest, either by modifying the
tree splitting rule, tree aggregation scheme (i.e. how the trees vote), by acting on the
sampling of individuals or explanatory variables. Our proposal relying on the local
variable importance scheme seems to provide an advantage in terms of prediction,
however at least for classification and on the studied examples, we concluded that
such local approaches hardly outperform the original forest algorithm. Moreover,
their implementations require additional tuning parameters driving the local nature
of the methods. For these reasons, the local strategies turned out less relevant than
we expected, at least in the classification setting. However, as mentioned below, in a
regression framework some leads could be provided by the recent work of Friedberg
et al. (2018).

The ABC-RF method we proposed for parameter inference is based on regression
random forests built on each dimension of the parameter space. A significant future
development would be to extend it to the multivariate case, without breaking the
dependence between parameters. Prior to our work, some first attempts were car-
ried by Jean-Michel Marin to use multivariate random forests (Kocev et al., 2007
Segal and Xiao, 2011) coupled with ABC simulations. While unfruitful, we think
smarter adaptations need to be investigated, starting with two dimensional paramet-
ers. An alternative approach could be based on using the random forest strategies to
approximate some conditional distributions, in order to recover the joint posterior
using either a Gibbs sampler (based on approximated full conditionals) or Russian
rule decompositions to which a product of embedded full conditionals is associated.
Very recently, two Gibbs algorithms were independently proposed by Rodrigues,
Nott et al. (2019) and Clarté et al. (2019) where each intractable full conditional
distribution is approximated thanks to ABC. The first approach fits a regression
model on ABC simulations and samples from it. The second employs a classic ABC
algorithm and provides some theoretical guaranties.

ABC-RF strategies can now be applied for model choice and parameter inference
problems, however a development is still missing, namely a model checking strategy.
Indeed, if an inferred model fits the data, then replicated data generated from it
should look similar to the observation. In other terms, data generated thanks to
the posterior predictive distribution are compared to the observation. This is usu-
ally done thanks to statistical tests on data summary statistics (Gelman et al.,
2013; Cornuet, Ravigné et al., 2010). Drawing parameters from the whole posterior
distribution is thus required to sample from the posterior predictive. Here, some
multivariate ABC-RF strategies could be very profitable. However, this checking
process implies using the same observed data twice, which is subject to criticism.
Some alternatives avoiding this issue could be valuable and interesting leads of re-
search.

So far, the reference tables for the training of ABC-RF methods are simulated
from simple prior distributions. As mentioned many times in Chapter 1, ABC
sequential methods aim at generating parameters from a distribution closer to the
desired posterior. An important aspect that could be beneficial for ABC-RF is the
possibility to generate samples from a smarter proposal, in a sequential fashion.
A strategy could be to use some preliminary ABC-RF runs to build the reference
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table more efficiently, for example by determining the support of the parameter of
interest, similarly to the iterated importance sampling strategy of Blum (2010).

Another perspective falls into the frame of regression adjustment methods, presen-
ted in Chapter 1. Because a random forest does not take into account y during its
construction, (in other terms it is not local), using it to approximate the desired
posterior expectations, and naively introducing them into a regression adjustment
technique, will not work. For this reason, a random forest in a regression setting,
designed to specifically predict y would help for this task. Related to this subject
but outside the ABC framework, Bloniarz et al. (2016) propose to fit a weighted
local linear regression, where weights are deduced thanks to a random forest (instead
of using K.(p(nxw,ny))), and showed improvements in terms of prediction accuracy
compared to the classical random forest method, in addition to the consistency
demonstration. This approach could be used to perform local linear adjustment
in the same way as presented in Chapter 1, while avoiding the specification of a
kernel and distance p. Finally, let us mention that Friedberg et al. (2018) propose a
similar strategy to the one of Bloniarz et al. (2016). Instead of the usual weighted
least squares, they employ the Lo-regularised version. Moreover, the random forest
splitting criterion is modified to take into account the fact that a local linear regres-
sion will be fitted in a second step. Note that it involves the inclusion of additional
tuning parameters, that need to be selected by cross-validation. This work could
also give some insights concerning a possible local adaptation of random forests in
the regression setting.
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Appendix

Supplementary material for Chapter 4

A.1 A basic R code to use the abcrf package version
1.7.1

We provide some basic R lines of code to use the R package abcrf and conduct RF
inference about parameters. There are two possibilities to read simulated data: the
user wants to use a reference table simulated from the software DIYABC v.2.1.0
(Cornuet, Pudlo et al., 2014) recorded within a .bin file associated with its .txt
header file, or the simulated reference table is only contained within a .txt file
Of course if the model is simple enough, the user can simulate the reference table
himself using its own simulator program. In the following, we assume 6 is a vector
of p parameters and k summary statistics are considered. The # symbol means the
text on its right is a comment and ignored by R. We here focus on a single parameter
of interest labelled “poi”.

Installing and loading the R package abcrf

install.packages("abcrf") # To install the abcrf package (v. 1.7.1)
library(abcrf) # To load the package.

Reading data: option 1 - using a .bin and .text files obtained
using DIYABC

We assume the reference table is recorded within the reftable.bin file and its
corresponding header in the header.txt file. The function readRefTable is used
to recover the data.

data <- readRefTable(filename = "reftable.bin",

header = "header.txt")
# data is a list containing the scenarios (or models) indices,
# the matrix with the parameters, the summary statistics and
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# other information.

# We are here interested in the simulated data of the scenario 1.
indexl <- data$scenarios == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest

# poi and the summary statistics of the scenario 1.

data.poi <- data.frame(poi = data$params[indexl, "poi"],
data$stats[indexl, 1)

Reading data: option 2 - using a .txt file

We assume that the reference table is recorded within yourTxtFile.txt file, com-
posed of a first column corresponding to the scenario indices, p columns of para-
meters and k columns of summary statistics, the first row is the column labels. The
field separator character being a white space.

data <- read.table(file = "youTxtFile.txt", header = TRUE, sep = "")
# data is a matrix. The first column is the model indices, the next
# p are the parameters, the last k are the summary statistics.

indexl <- datal , 1] == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest
# poi and the summary statistics of model 1.
# p and k have to be defined.
data.poi <- data.frame(poi = datalindexl, "poi"],
datal[index1l, (p+2):(p+k+1)])

Subsetting your data set

If required, subsetting your data sets stored in data.poi can be easily done with
the following line.

data.poi <- data.poil[1:10000, ]
# If you are interest in the 10,000 first data sets.

Training a random forest

The random forest of the ABC-RF method is built thanks to the regAbcrf function,
its principle arguments being a R formula and the corresponding data frame as
training data set. Additional arguments are available, especially the number of trees
(ntree, with default values ntree = 500), the minimum node size (min.node.size,
with default value min.node.size = 5), and the number of covariates randomly
considered at each split (mtry). See the reghAbcrf help for further details.
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model.poi <- regAbcrf(formula = poi~., data = data.poi, ntree = 500,
min.node.size = 5, paral = TRUE)

# The used formula means that we are interested in explaining the

# parameter poi thanks to all the remaining columns of data.poi

# (i.e. all the summary statistics).

# The paral argument determines if parallel computing will be

# activated or not.
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Appendix B

Supplementary material for Chapter 6

B.1 Description of the historical and demographic
model-parameters and their prior distributions,
for the eight competing scenarios considered for
the origin and diversification of Pygmy popu-
lations from Western Africa

The eight scenarios with their historical and demographic parameters are represented
in Chapter 6, Figure 6.1. The column “Scenarios” indicates in which scenario each
model parameter appears. The column “Group” indicates in which group of scen-
arios each model parameter appears when processing a model-grouping approach.
The index i indicated for some parameters corresponds to population index (1 -

= Pygmy populations and 5 = non-Pygmy African population). Scenarios and

associated model parameters follow the same notation as in Verdu, Austerlitz et al.
(2009).
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Parameter type Parameter name | Prior Scenarios | Group
distribution
Divergence tonp; tp U[1;5,000] 1,2, 3,4 Gl1A
times (a) ﬁpnpia Z/{[l;g,’ooo] 57 67 7, 8 G1B
with i € {1,...,4}
Admixture trq U[1;5,000] 1,2,3,4 Gl1A
times (®) tr, Log-U1.5,000] 1,2,3,4 Gl1A
t?"ai, Z/[[l;g,’ooo] 57 6, 7, 8 G1B
with i € {1,...,4}
tTm', LOg—Z/{[l;570001 57 67 7, 8 G1B
with ¢ € {1,...,4}
Times of tA u[l;l0,000] 1, 2, 5, 6 G3A
effective population | no t4 3,4,7,8 G3B
size changes (@) theis U[1:5,000) 56,7,8 G1B
with i € {1,...,4}
Admixture Tai Tais Tri U1 1,3,5,7 G2A
rates with i € {1,...,4}
T Taii Tris 0 (no admixture) | 2, 4, 6, 8 G2B
with i € {1,...,4}
Effective NA u[lOO;l0,000] 17 27 5, 6 G3A
population sizes ) [ no N4 3,4,7,8 G3B
Nap u[lOO;l0,000] 1,234 G1A
Nai, U[100:10,000] 5,6,7,8 G1B
with i € {1,...,4}
Nip U[1,000:100,000] 1,2,3,4, | GIA, GIB,
5,6,7,8 G2A, G2B,
G3A, G3B
Ni U[100;107000] ].7 27 3, 4, G].A.7 C;r].]_))7
with i € {1,...,4} 5,6,7,8 G2A, G2B,
G3A, G3B

(@) Tn number of generations (assuming a generation time of 25 years, Verdu,
Austerlitz et al., 2009)

®) In number of (reproductively effective) diploid individuals
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B.2. OUT-OF-BAG ERROR EVOLUTION ON THE PYGMY STUDY

B.2 Evolution of ABC-RF prior error rates with re-
spect to the number of trees in the forest

The following graphs represent the decrease of the ABC-RF prior error rate with the
number of trees in the forest for the four RF analyses conducted using a reference
table including 100, 000 simulated data sets. For all analyses the gain of increasing
the number of trees becomes limited for a number of trees greater than 800, hence
our final choice of building forests from 1,000 trees.

A Scenario groups G1A = noIND vs. G2A = IND B Scenario groups G2A=MIG vs. G2B=noMIG
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1 I I
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I I

Prior error rate
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1
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Résumé. Dans un processus d’inférence statistique, lorsque le calcul de la fonction de vraisemblance
associée aux données observées n’est pas possible, il est nécessaire de recourir & des approximations.
C’est un cas que 'on rencontre trés fréquemment dans certains champs d’application, notamment pour
des modéles de génétique des populations. Face a cette difficulté, nous nous intéressons aux méthodes
de calcul bayésien approché (ABC, Approzimate Bayesian Computation) qui se basent uniquement
sur la simulation de données, qui sont ensuite résumées et comparées aux données observées. Ces
comparaisons nécessitent le choix judicieux d’une distance, d’un seuil de similarité et d’un ensemble
de résumés statistiques pertinents et de faible dimension.

Dans un contexte d’inférence de paramétres, nous proposons une approche mélant des simulations
ABC et les méthodes d’apprentissage automatique que sont les foréts aléatoires. Nous utilisons diverses
stratégies pour approximer des quantités a posteriori d’intéréts sur les paramétres. Notre proposition
permet d’éviter les problémes de réglage liés 4 I’ ABC, tout en fournissant de bons résultats ainsi que des
outils d’interprétation pour les praticiens. Nous introduisons de plus des mesures d’erreurs de prédiction
a posteriori (c’est-a-dire conditionnellement & la donnée observée d’intérét) calculées grace aux foréts.
Pour des problémes de choix de modéles, nous présentons une stratégie basée sur des groupements
de modeéles qui permet, en génétique des populations, de déterminer dans un scénario évolutif les
événements plus ou moins bien identifiés le constituant. Toutes ces approches sont implémentées dans
la bibliothéque R abcrf. Par ailleurs, nous explorons des maniéres de construire des foréts aléatoires
dites locales, qui prennent en compte 1’observation a prédire lors de leur phase d’entrainement pour
fournir une meilleure prédiction. Enfin, nous présentons deux études de cas ayant bénéficié de nos
développements, portant sur la reconstruction de ’histoire évolutive de population pygmeées, ainsi que
de deux sous-espéces du criquet pélerin Schistocerca gregaria.

Mots clés. Calcul bayésien approché, foréts aléatoires, inférence bayésienne, génétique des popula-
tions, méthodes locales.

Abstract. In a statistical inferential process, when the calculation of the likelihood function is
not possible, approximations need to be used. This is a fairly common case in some application fields,
especially for population genetics models. Toward this issue, we are interested in approximate Bayesian
computation (ABC) methods. These are solely based on simulated data, which are then summarised and
compared to the observed ones. The comparisons are performed depending on a distance, a similarity
threshold and a set of low dimensional summary statistics, which must be carefully chosen.

In a parameter inference framework, we propose an approach combining ABC simulations and the
random forest machine learning algorithm. We use different strategies depending on the parameter
posterior quantity we would like to approximate. Our proposal avoids the usual ABC difficulties in
terms of tuning, while providing good results and interpretation tools for practitioners. In addition, we
introduce posterior measures of error (i.e., conditionally on the observed data of interest) computed
by means of forests. In a model choice setting, we present a strategy based on groups of models
to determine, in population genetics, which events of an evolutionary scenario are more or less well
identified. All these approaches are implemented in the R package abcrf. In addition, we investigate
how to build local random forests, taking into account the observation to predict during their learning
phase to improve the prediction accuracy. Finally, using our previous developments, we present two
case studies dealing with the reconstruction of the evolutionary history of Pygmy populations, as well
as of two subspecies of the desert locust Schistocerca gregaria.

Keywords. Approximate Bayesian computation, random forests, Bayesian inference, population
genetics, local methods.
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