
HAL Id: tel-02446150
https://theses.hal.science/tel-02446150v1
Submitted on 20 Jan 2020 (v1), last revised 20 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of mechanisms for filtering and isolations of
industrial protocols

Peter Rouget

To cite this version:
Peter Rouget. Design of mechanisms for filtering and isolations of industrial protocols. Micro and
nanotechnologies/Microelectronics. Université Montpellier, 2019. English. �NNT : 2019MONTS027�.
�tel-02446150v1�

https://theses.hal.science/tel-02446150v1
https://hal.archives-ouvertes.fr

SS

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En : Génie Informatique, Automatique et Traitement du signal

École doctorale : Information, Structures, Systèmes

Unité de recherche : Systèmes Automatiques et Microélectroniques

Présentée par Peter ROUGET
Le 29 août 2019

Sous la direction de Lionel TORRES
et Pascal BENOIT

 Devant le jury présidé par

Sébastien PILLEMENT, Professeur, Université de Nantes Examinateur

 Et composé de

David HELY, Maître de Conférence HDR, Grenoble INP

Guy GOGNIAT, Professeur, Université Bretagne Sud

Lionel TORRES, Professeur, Université de Montpellier

Pascal BENOIT, Maître de Conférence HDR, Université de Montpellier

Benoît BADRIGNANS, Directeur Technique, Seclab

Rapporteur

Rapporteur

Directeur de Thèse

Directeur de Thèse

Examinateur

!

Étude et conception de mécanismes de rupture et de
f i l t rage de protocoles industr iels

0

Abstract

With the rise of Industry 4.0, many infrastructures were forced to open their networks

to the Internet, mainly to meet the growing need for supervision and remote control. But

where these infrastructures were previously isolated, spared from external threats, their

opening has caused the emergence of new threats, particularly network ones, which were

not addressed and present serious risks.

Network cybersecurity solutions, like Firewalls, Intrusion Detection Systems or Intru-

sion Protection Systems are commonly used to address the concern of industrial infras-

tructures cybersecurity. However the trend of relying on software-based systems to en-

sure network protection brought to light the vulnerabilities of these systems, due to their

inherent software implementation. Furthermore, the industry is tied to its own speci-

ficities (low-latency, support of specific network protocols), which are rarely covered by

common IT solutions.

The main goal of this thesis is to study the use of FPGA-based devices applied to cy-

bersecurity for industrial networks. Either as support for software-based security appli-

cations, or to perform critical network analysis operations. First it presents the industrial

context, with control systems, their architectures, needs, implementation rules, specific

protocols and also gives two examples of control systems as they can be found in the

industry. Then it highlights the security problematic, with a description of the most com-

mon threats, case studies about their applications and impact in a control system, and

discussions on the state of the art counter-measures available on the market. Through

the establishment of a security target, it points the vulnerability of software elements and

operating systems as well as the lack of process state aware security analysis.

To address these issues, we propose, through a first contribution, to enforce the se-

curity of the software system by taking advantage of existing FPGA’s protection mecha-

nisms. Finally, to answer specific application threats, we introduce an implementation of

a patterns matching architecture with time and operational-process awareness, on FPGA.

This thesis was conducted in collaboration between the Montpellier computer science,

robotic and microelectronic laboratory (LIRMM) and the SECLAB company.

1

Résumé

Avec l’essor de l’Industrie 4.0, de nombreuses infrastructures ont été contraintes d’ouvrir

leurs réseaux à Internet, principalement pour répondre au besoin croissant de supervi-

sion et de contrôle à distance. Mais là où ces infrastructures étaient auparavant isolées,

épargnées par les menaces extérieures, leur ouverture a provoqué l’émergence de nou-

veaux risques, en particulier à travers le réseau, potentiellement sérieux et qui ne sont pas

couverts.

Les solutions de cybersécurité, comme les pare-feux, les systèmes dedétectiond’intrusion

ou les systèmes de protection contre les intrusions, sont couramment utilisés pour répon-

dre aux préoccupations liées à la cybersécurité des infrastructures industrielles. Cepen-

dant, la tendance à se fier aux systèmes logiciels pour assurer la protection du réseau

a mis en lumière les vulnérabilités de ces systèmes, en raison de leurs implémentations

logicielles inhérentes. En outre, l’industrie est liée à ses propres spécificités (faible latence,

support de protocoles réseaux spécifiques), qui sont rarement couvertes par les solutions

informatiques communes.

L’objectif principal de cette thèse est d’étudier l’utilisation de dispositifs FPGA ap-

pliqués à la cybersécurité pour les réseaux industriels, soit comme support pour des

applications de sécurité logicielle, soit pour effectuer des opérations critiques d’analyse

réseau. Ce travail présente d’abord le contexte industriel, avec les systèmes de contrôle,

leurs architectures, leurs besoins, les règles demise enœuvre, les protocoles spécifiques et

donne également deux exemples de systèmes de contrôle comme on peut en trouver dans

l’industrie. Il met ensuite en lumière les problèmes de sécurité, avec une description des

menaces les plus courantes, des études de cas sur leurs applications et leurs impacts dans

un système de contrôle, et des discussions sur les contre-mesures de pointe disponibles

sur le marché. Suite à l’établissement d’une cible de sécurité, nous mettrons en évidence

la vulnérabilité des éléments logiciels et des systèmes d’exploitation. Nous verrons aussi

comment l’absence d’analyse de sécurité tenant compte de l’état des processus peutmener

à certaines vulnérabilités.

Pour pallier à ces problèmes, nous proposons, par une première contribution, de ren-

forcer la sécurité des systèmes logiciels en tirant parti des mécanismes de protection ex-

istants du FPGA. Enfin, pour répondre à des menaces applicatives spécifiques, nous pro-

posons lamise enœuvre d’une architecture de reconnaissance demotifs, sur FPGA, prenant

en considération le cadre temporel et l’état du procédé industriel. Cette thèse a été réalisée

en collaboration avec le Laboratoire d’Informatique, de Robotique et deMicroélectronique

de Montpellier (LIRMM) et la société SECLAB.

2

Acknowledgements

First of all, I would like to thanks my advisors, Pascal Benoit and Lionel Torres for

their support and guidance throughout this Ph.D. I have learned a lot from conducting

researches as from giving presentations. Thanks to Benoît Badrignans for his accompani-

ment during this research work and his help on many technical problems.

I thank all my coworkers who believed in me and all those who did not believe it, thank

you for this warm atmosphere that allowed me to stay motivated.

Finally, I thank my family: my beloved wife Melody, my parents Christine and Daniel,

my step mother Lina for their unfailing love and encouragements, and my friends: Loic,

Guillaume, Yohan, Geoffroy and Mathieu for all these good moments of laughter.

This thesis was brought and supported by SECLAB whom I thank for this opportunity

and for the resources they put at my disposal.

Contents

1 Introduction 1

2 Industrial Networks 3
2.1 Definitions . 5

2.1.1 Information Technology (IT) versus Operational Technology (OT) 5
2.1.2 Critical Network . 12

2.2 Industrial Communication Protocols . 14
2.2.1 ModBus . 15
2.2.2 S7 . 17
2.2.3 BacNet . 19
2.2.4 OPC-UA . 21
2.2.5 Profinet . 21
2.2.6 Synthesis . 22

2.3 Threats . 23
2.3.1 Incident Scenarios . 26

2.4 Case Study . 28
2.4.1 Electric Post . 28
2.4.2 Bottle filling line . 32

2.5 Protections . 35
2.5.1 Isolation . 35
2.5.2 Firewall . 36
2.5.3 IPS / IDS . 37

2.6 Threat Model and Security Target . 38
2.6.1 Denelis . 41

2.7 Problematic . 46
2.7.1 Secure Boot . 47
2.7.2 Application Filtering . 48

3 Secure Boot 49
3.1 Operating system boot on FPGA . 50
3.2 Threat Model . 52
3.3 Related Works . 53

3.3.1 Operating System Security . 53
3.3.2 Bitstream Security . 54

3.4 SecBoot - Secure boot using embedded boot parts 54

5

3.4.1 Concept . 54
3.4.2 Architecture . 55
3.4.3 Results . 56

3.5 Discussion . 58

4 Versatile patterns matching for application analysis 60
4.1 Industrial Protocol Common Model and Protocol Breakage 61
4.2 Operational-Process Aware Filtering . 64

4.2.1 Network Dimensioning . 66
4.3 Hardware Pattern matching . 66

4.3.1 Content Addressable Memory . 67
4.3.2 Bloom Filter . 70
4.3.3 State Automaton . 72
4.3.4 Synthesis . 74

4.4 Versatile Operational-Process Aware pattern matching 74
4.4.1 Concept . 75
4.4.2 Architecture . 82
4.4.3 Experimentation . 89
4.4.4 Results . 96
4.4.5 Discussion . 99

5 Conclusion 101

6 Publications relative to the study 106
6.1 International Conferences . 106

6

List of Figures

2.1 Industrial Network Architecture . 8
2.2 Purdue Model . 10
2.3 OSI Model . 15
2.4 Chronology of major Industrial Protocols release 16
2.5 ModBus TCP Application Data Unit . 17
2.6 S7 TCP Application Data Unit . 19
2.7 Bacnet IP packet structure . 21
2.8 Example of an electrical Post . 29
2.9 Example of Bottle Filling Line . 33
2.10 DENELIS integration in the network architecture 42
2.11 DENELIS high level Architecture . 42
2.12 Research Platform high level Architecture 45

3.1 Boot chain of a FPGA based System on Chip 51
3.2 Threat Model . 53
3.3 FPGA boot elements locations . 55
3.4 Secure Boot Chain with FPGA reconfiguration and kernel verification . . . 57

4.1 Information Sorting in Industrial Protocols 64
4.2 Typical Architecture of a Content Addressable Memory 68
4.3 Logic Resources Usage for one pattern in accord to the CAM words size . 69
4.4 Memory Resources Usage according to the CAM words size 70
4.5 k and p function of m and n . 71
4.6 Patterns storage and representation in RAM 77
4.7 TAGs definition and usage . 79
4.8 Network Architecture with distributed security devices 82
4.9 Post processor set-up in accord with pattern type 83
4.10 Overview of the research platform with the application analysis 84
4.11 Operational-Process Aware Pattern Matching System 85
4.12 Architecture of a Operational-Process Aware Pattern Matching Module . . 86
4.13 Comparison between the standard MDIO packet and the custom payload

used . 87
4.14 Architecture of the TAGs handling Process 88
4.15 Patterns Update mechanism . 89
4.16 Chronogram of matching for simple patterns 93
4.17 TAG request chronogram . 95

7

4.18 FPGA requirement of the distributed security analysis in accord with the
patterns distribution . 99

8

List of Tables

2.1 ModBus TCP Function Codes . 18
2.2 Industrial protocols specifications synthesis 23
2.3 Table of Threats and Vulnerabilities . 24
2.4 ModBus Control Table of the Electric Post 31
2.5 ModBus Control Table of the Bottle filling line 34
2.6 Sensitive assets synthesis . 39
2.7 Security features coverage over identified threats 44

3.1 Resource Usage Summarize . 57
3.2 Related Works Comparison . 59

4.1 Resource cost of FSM implementations for one 1024 bytes pattern 76
4.2 Resource cost of a versatile pattern matching module 90
4.3 Resource cost of the TAGs handling database and the custom MDIO bus

arbitrator . 91
4.4 Total cost of the pattern matching engine with only one versatile pattern

matching module . 92
4.5 Latencies summary . 96
4.6 Patterns scaling in function of the FPGA size and available resources . . . 97
4.7 Realistic Patterns scaling in the research architecture 98

9

Chapter 1

Chapter 1

Introduction

Nowadays, industry needs a high level of automation and control, whether in produc-

tion environments but also in transport, energy, all require fast and reliable exchanges to

perform their duties. Dedicated networks which achieve these needs are referred as in-

dustrial networks and even if they share common features with IT networks, their needs

and goals are very different. The main problematic of industrial networks is availability

above all, the worst nightmare of an industrial is losing control of its own process or being

unable to access a specific equipment. In consequence those networks generally focus on

availability, with low latency exchanges and a strong deterministic requirement. All these

constraints make industrial networks a delicate environment where safety is the keyword

in order to allow a smooth operating.

With the increased connectivity of industrial control systems, numerous threats and

vulnerabilities which were unknown to these systems appeared. Their criticality but also

the potential consequences made them targets of choice for a wide variety of criminal or-

ganizations. Threats are generally addressed using common IT counter-measures which,

although effective, lack the application or operational intelligence. In 2015 the Trojan

BlackEnergy [38] plunged hundreds of thousands of Ukrainians into the dark for sev-

eral hours. The attackers used spearfishing to introduce the trojan into the company net-

work and then spread it until getting a remote control access to the industrial process

and cutting the power. In addition to highlighting a lack of staff’s awareness about com-

mon network threats, this attack showed that the industrial process was not ready to face

application threat. The fact that a remote order asking to shut down circuit breakers, po-

tentially leading to power failure, was not detected nor considered suspicious shows a

vital need for operational oriented security devices. In this context, dedicated solutions

came on the market to address this concern, but even so it is still badly addressed. Fur-

thermore, most of the solutions are pure software applications which present flaws and

vulnerabilities inherited from the software components. The aim of my work, during this

1

thesis, was to enforce the security of industrial control system against operational threats,

through extensive usage of hardware resources. We plan to increase the security of exist-

ing network devices through boot chain protection and suggest the appeal of a dedicated

hardware patterns matching to harden the security process.

This work is structured around two major contributions:

• First, it addresses protection against persistent threats for network security software

application. Through usage of FPGAs, a chain of verification of each boot element

by the previous one ensures that the running software application is authentic and

not compromised.

• Secondly, a hardware process-oriented patterns matching engine on FPGA is pro-

posed, instead of securing software security application, we replace it by a hardware

one. It allows to perform security operations on the application level, similar to ded-

icated solutions of the market, but with enforced security offered by pure hardware.

Chapter 2 introduces the industrial context by describing the industrial network, its

components, architecture and problematic followed by case studies. Then, this chap-

ter addresses the security problematic with vulnerabilities, threats and attacks as well

as the possible consequences through examples. We then speak of the existing counter-

measures, with their advantages and disadvantages, before building the security target

that we intend to address. Chapter 3 is about the first contribution, we discuss the boot

process of an Linux operating system on a System on Chip FPGA’s platform, with se-

curity issues and existing counter-measures. And then we introduce the contribution in

two steps, with its basic concept, architecture and with a second optimized proposition

as well as the results of experiments. Chapter 4 addresses the second contribution, about

hardware patterns matching, firstly by discussing on industrial protocols breakage then

on hardware patterns matching implementation recommendations. Then a versatile pat-

terns matching solution is suggested, in both concept and architecture, before implemen-

tation experiments and results. Finally, we conclude this thesis through discussions about

further works.

2

Chapter 2

Chapter 2

Industrial Networks

2.1 Definitions . 5

2.1.1 Information Technology (IT) versus Operational Technology (OT) 5

2.1.2 Critical Network . 12

2.2 Industrial Communication Protocols . 14

2.2.1 ModBus . 15

2.2.2 S7 . 17

2.2.3 BacNet . 19

2.2.4 OPC-UA . 21

2.2.5 Profinet . 21

2.2.6 Synthesis . 22

2.3 Threats . 23

2.3.1 Incident Scenarios . 26

2.4 Case Study . 28

2.4.1 Electric Post . 28

2.4.2 Bottle filling line . 32

2.5 Protections . 35

2.5.1 Isolation . 35

2.5.2 Firewall . 36

2.5.3 IPS / IDS . 37

2.6 Threat Model and Security Target . 38

2.6.1 Denelis . 41

2.7 Problematic . 46

2.7.1 Secure Boot . 47

2.7.2 Application Filtering . 48

3

4

Chapter 2 2.1. Definitions

Historically Industry has always attracted malicious intents as it presents important

economic and human stakes. Where industrial infrastructures were isolated, separated

from others, and so hard to access and attack, today needs for remote control and su-

pervision [24] have required the opening of their networks to the Internet along with

the appearance of new problematic and threats. The emergence of connected objects is

one of many reasons these infrastructures "open their network access". But as these net-

works have specific needs and peculiarities which differ from Information Technology’s

standard, network cybersecurity solutions are rarely sufficient to answer to these emerg-

ing threats. In order to understand these needs and to propose adequate solutions, it is

necessary to understand what is an Industrial network.

2.1 Definitions

Industrial Network is a common term used to qualify a network whose usage is dedicated

toward industrial purposes [2]. It is generally architected in 3 levels, the SCADA ensures

supervision and remote control over automatons which control the operating field level.

The manufacturing process is automated, then controlled and supervised through Con-

trol Systems, which may be potentially geographically distant. The following sections

highlight and discuss the peculiarities of this type of network, whether in terms of equip-

ments, traffic, architecture and implementation or in terms of vulnerabilities and protec-

tion.

2.1.1 Information Technology (IT) versus Operational Technology (OT)

It exists a wide variety of industrial contexts for use of industrial networks, but they are

generally used when machinery needs monitoring, remote control or automation. De-

spite this diversity and different sets of requirements, great implementation principles

stay unchanged. Resources and devices must stay available, industrial environment im-

poses a strict control to ensure no failures or accidents because their severity is far more

serious. Furthermore, industrial networks are real time, so communications must respect

fixed delays, with deterministic answer times. These needs are reflected by a network ar-

chitecture different of common IT one. The followingwork describes inmore details these

specificities, from the network architecture, traffic and its components, to implementation

problematic and failures severity.

Components and Devices

Industrial networks are made of specific devices whose functions are centered around

the application needs and the manufacturing process. It is to ensure the communication

5

2.1. Definitions

between and toward these equipments that is built the industrial network. Following is a

list of the primary devices which constitutes these networks, with their functions, while

Figure 2.1 locates them according to the levels of the control system.

Human-Machine Interface (HMI) is a hardware and software element allowing hu-

man operators to visualize and control a process through modifying settings, objectives,

sending requests, override automatic controls, emergency stops. It is the primary com-

munication interface between a human and the automated process. The control engineer

can access process information, status and historic as well as directly querying controllers.

HMIs are generally set up on the application or supervision layer of the network, on var-

ious platforms, like laptops, dedicated desktops, browsers and even through Internet.

Exchanges between equipments, part of the industrial system, are not made to be under-

standable by humans. On the fieldbus level, they are logical values (1 or 0) and electrical

levels, and the more it goes up in the architecture, the more they become addresses and

values. It would require tremendous knowledge about the network architecture, devices

configurations and characteristics to be able to understand these exchanges. The HMI

gives the necessary amount of information to the user with graphical representations and

allows him to simply act on the process.

DataHistorian stores process information, operations and logs of the control network.

It is a databasewhich collects and stores information through the network. These data can

be used for statistical analysis about the control process as well as production planning.

In case of attacks or failures, stored logs are precious for diagnostics and upgrades.

Programmable Logic Controllers (PLCs) are small industrial computers running cus-

tom and dedicated Operation Systems. It is one of the primary controller resources of in-

dustrial networks with the ability to control complex and automated processes. It is very

versatile as it offers numeric and analog I/Os, time control, digital interfaces. It controls

actuators, sensors and the field process. PLCs are configurable devices, programmable

through a dedicated interface, located on engineeringworkstations of the Local Area Net-

work (LAN). Users will implement specific functions, stored in the user-space memory

of the devices, while backed up on Data Historians.

Remote Terminal Unit (RTU) is a data acquisition and control field device whose

purpose is to support SCADA remote stations. It is basically a PLC designed for spe-

cific control applications. It is generally deployed in low connectivity environments, with

wireless or radio communications, both being features rarely present on industrial equip-

ments unless specific cases.

Intelligent Electronic Devices (IEDs) are "smart" field devices able to perform data

acquisition, network communications and local processing. It is intended to be relatively

autonomous, to perform simple processing based on acquired data, without the need of

6

Chapter 2 2.1. Definitions

a PLC, and to refer directly to Control Servers. These devices are generally close to the

field process if not in it.

Supervisory control and data acquisition (SCADA) is a control system, used by in-

dustrial processes, which uses network data and HMI for high level supervision, as well

as PLC, RTU and IED to interface with the process. It is a privileged solution to inter-

face devices from different manufacturers allowing access through standard automation

protocols. It is one of the most commonly-used type of industrial control system, used

in power plants, railways, water distribution, gas and oil as well as in variety of factories.

SCADAs are designed to abstract communications and data collect, from the fieldbus and

other controllable devices, and to display it understandably (graphically or textually) to

the operators. It allows, as well, actions, operations, modifications of the process through

its interface. It is a mixed solution made of software applications and hardware compo-

nents. Generally speaking, a Master Terminal Unit collects and stores information from

Control Centers, while PLCs and RTUs control andmonitor devices on the field bus. IEDs

directly converse with the SCADA master unit. The combination of software and hard-

ware allows data exchanges back and forth between the SCADA, PLCs and RTUs with a

control over the permitted actions (allowed operations, data ranges, values). The SCADA

acts as a high level understandable representation of a whole system, potentially geo-

graphically extensive, for supervision and punctual actions, while the regular industrial

process is automated by PLCs, RTUs and IEDs.

Distributed Control System (DCS) is a control system for industrial process, with

autonomous controllers distributed along the system and a central operator supervisory

control. It is very similar to SCADA but more focused on continuous process control with

local control instances. DCSs are made for control systems within the same geographical

location, they are made for continuous control and supervision, through usage of similar

devices to the SCADA (PLC,RTU,IED) but with lesser automation.

Control Server hosts SCADA and DCS applications. It is basically a medium to ac-

cess low level fieldbus devices as well as subordinates control modules and other devices

inside the control system.

Furthermore common network devices are present into the industrial environment,

such as routers and modems for interconnection and routing in the network, firewalls for

security purpose, access points for wireless data exchanges and servers for data storage

and calculation.

Industrial networks rely on specific devices on each level for its control system, while

the key cores of the automated process are PLC, RTU and IED. The environment made

of server, data historian, HMI and DCS allows to make a complete remote controlled and

supervised process. But this is the specificities of all these equipments and their needs, in

7

2.1. Definitions

��� ��� ��	

�
��

��
��
��

����

������
�

��� �
��

��
��
��

�
�

����

����

�����

�

����

�
��

�

����
����
�

��	

���

��
�����

	����
����

���

Figure 2.1: Industrial Network Architecture

terms of control andproximity to the field, thatwill influence the network architecture and

explain the differences compared to common IT architectures. And as this architecture

differ, the attacks methods and associated vulnerabilities evolve accordingly.

Network Architecture

Industrial control network architectures are much more hierarchical that common Com-

mercial networks. Organized in layers, generally 3 or 4, each corresponding to one process

level, they are interconnected through gateways, routers andmodems. The connection be-

tween instruments, actuators and controllers is made on the lower layer, then controllers

interconnections, followed by HMIs and control commands and finally the upper layer

for Supervision and remote control. Unlike Commercial Networks which are more flat-

tened and made of interconnected LANs. This difference is explained by the multiple

8

Chapter 2 2.1. Definitions

connections and communication mediums of devices in the industrial control system.

Field devices generally discuss through serial protocols or raw analog data exchanges,

they are rarely directly connected to the network (except for IEDs). Instead, they are con-

nected to PLCs and RTUs which are able to use common network protocols (TCP/UDP

over Ethernet for example). Furthermore Control systems and supervision are commonly

geographically distant and it is not uncommon that they are connected through the inter-

net.

To give a representation of the complete company network, with interconnections be-

tween Industrial and IT networks, the most common standard is the Purdue Enterprise

Reference Architecture or PurdueModel [81]. This is a reference architecture which gives

a model of the network through multiple layers and stages. In Figure 2.2 we give an ex-

ample of a classical Purdue Model for a company which owns an administrative network

and an industrial control network.

The levels 5 and 4 are dedicated to the Enterprise zone with Intranet, emails and Internet

connection while the lower levels are for Industrial purposes.

We find in layer 0 the field level, the level 1 is dedicated to automated control, with PLCs

and RTUs, while the level 2 is the first layer of process control, with control command and

HMIs.

The layer 3 is for supervision, it hosts themanufacturing process of the company. Both net-

works (industrial and IT) are generally connected, through firewalls, to a Demilitarized

Zone (DMZ) which allows communication and embedded most application servers and

services of the company.

But beyond a dedicated network architecture, Industrial networks are characterized

by specific implementation problematic which prioritizes theQuality of Service over the

security. Security devices will need to take account these constraints, as they will face

network architectures which were purposely not made taking the security into account.

Implementation

Industrial process requires good reactivity due to being in direct contact with physical

equipments, as well as it needs to take decisions and send control in real time. These

requirements resulted in changing the primary needs of the network while the Quality

of Service (QoS) became dedicated on availability. [50] presents several requirements of

industrial networks in comparison with IT networks, but following are what we consider

as the two major implementation rules of these networks.

Availability is one, if not the first, implementation rule of industrial networks, the con-

cept of security is predominantly associated to safety operating. It means that resources

9

2.1. Definitions

�����
������	

����

������	

�����
������	

��������
������	

����������
�������

������	

����������
�������

������	

�����
������	

���	�������

�����

�������
�������

�����

�����������
�����������

������
������		������	��

����	�

����	�!

����	�"

����	�#

����	�$

%���&�		

%���&�		

�����������'��&���

����	(�)�������(�*** �����������+�����������	������'��&���

�,-

����������
-���

,������������
-���

��		.����
-���

������	 ������	 ��������� ��/���	

0�������
)��������

��������
�����������

���	�������

�����

���	�������
,�����

1������	

�������

��/

�������
0���������

�����
,���������

�2

�����

Figure 2.2: Purdue Model

must stay available, remain controllable and observable. Being unable to access a de-

vice or to properly monitor the process, may lead to failures. Due to the fact that indus-

trial control networks are directly interfaced with physical devices, the failures severity is

far more greater. Availability in an industrial control system means devices availability,

equipments must be robust and keep working in any cases. If a hardware or software

failure occurs, the device is not available for configuration, maintenance as well as for the

process. That is why, Industrials often store spare equipments to be able to quickly restore

availability.

The network, its architecture and state, may also impact and degrade the availability.

A ill-conceived network architecture or overloader networkwill cause increasing latencies

and congestion, while dedicated attacks, such as denial of services ([82]), can completely

sever accesses to devices. But resorting to high availability architectureswith redundancy,

loadbalancing methods and adequate security allow to reduce the impact of these prob-

lematics on the network availability.

• For the process to be deterministic means that devices state must be predictable

10

Chapter 2 2.1. Definitions

based on their Inputs and Outputs, operations and behaviors must be consistent

under the same conditions. It is a criteria of good construction and operation of

the industrial control system, the typical working flow should stay predictable and

must not present inconsistencies.

• Regarding the network, Industrial control systems are real time, so it must have

bounded latencies and low variances. The time between a transmission and its re-

ply should be low and predictable. Furthermore, where IT networks accept high

data loss and retransmissions, it must not occur inside industrial networks as it will

greatly degrade the determinism.

As QoS principles fundamentally differ from IT networks, network exchanges need to

be adapted for this purpose with priority to short messages with high efficiency.

Network Traffic

In order to satisfy availability and determinism needs, data exchanges inside an indus-

trial network prevail efficiency and low latencies. The physical medium is, in many case,

common Ethernet, in accordance with widely used transport protocols such as TCP and

UDP, but serial line as well as industrial Ethernet, and in some uncommon cases wireless,

are also in used. Beyond those layers, and focusingmore particularly over TCP/UDP over

Ethernet, data are expressed through specific communication protocols which consist of

small messages, only a few bytes long. Such transmissions are often single binary value,

up to one or to bytes registers, the lower in the network architecture, the smaller packets

are. It is in complete opposition with network exchanges within IT networks which are

far bigger with regularly kilobytes of data sent.

The common network traffic of an Industrial System is deterministic, it consists of

commands or periodically sampled data. But one particularity of these networks is the

existence of aperiodic events such as alerts, failures or production rushes which cause

sudden changes in the network traffic. It is called an "avalanche" and is characterized by

a sudden and very intensive network traffic with maximum priority. When it happens,

the availability of the network and the devices is more than ever critical. Even if unusual,

these events are to be taken in account when dimensioning the industrial process and

control system as it is fundamental for network equipments to support it, even with aging

technologies.

Failure

In common ITnetworks, failures (criminal or accidental) can induce various consequences,

from network or resources unavailability, devices compromise, data leakages. It usually

11

2.1. Definitions

results on financial losses but rarely material or human. For industrial control systems,

this remains true, but, as the network is closely linked to the industrial process, any fail-

ure directly impacts devices underneath. It is translated by heavy material and potential

human losses, and in some uncommon cases industrial disaster.

Taking as example a power plant, a failure can mean malfunction of a relay or a power

coupling device, locally speaking it causes material losses. But when taking into account

the power shortage ensuing, it implies tremendous financial consequences, potential hu-

man losses, operating losses for surrounding companies, traffic accidents and more.

Environment

Industrials devices and machineries working conditions are very harsh as it can include

high temperatures, high humidity, vibrations, dust or electromagnetic waves. Networks

devices integrated in these environments need tomatchdrasticworking constraints. Whether

in the design (welding, components choice) or in integration (protection against fluids,

dust), it contrasts strongly to commercial networks which are located in clean, tempera-

ture controlled environments.

In fact industrial and IT networks are fundamentally different, as devices and QoS

priorities differ the whole network communications are mend to adapt to these needs.

Furthermore industry imposes very uncommon and harsh conditions, on the contrary to

the well known air-conditioned network rooms. Among the multiplicity of domains and

industrial applicationswhich require the use of industrial control systems, a small number

of infrastructures presents a critical risk for the security of a country. These infrastructures

are referred as "Critical infrastructures" and their control systems are referred as "Critical

networks".

2.1.2 Critical Network

The term "Critical infrastructure" is evolving but it was used for the first time in terms of

National Security (President of the US 1996). One of the definition given by the Commis-

sion of the European Communities (European Union 2008) is : " An asset, system of part

thereof located in Member States which are essential for the maintenance of vital societal functions,

health, safety, security, economic or social well-being of people, and the disruption or destruction

of which would have a significant impact in a Member State as a result of the failure to maintain

those functions". Among existing networks, European critical infrastructures classification

includes (Commission of the European Communities 2004):

• Energy: It addresses all the infrastructures that produce energy, whether it is elec-

tricity, oil or natural gas. This category includes for example coal centrals, nuclear

12

Chapter 2 2.1. Definitions

plants, dams, as well as drilling wells and oil platforms. But in addition to primary

production sites it also covers processing and distribution infrastructures. All the

other sectors depend on the energy one, as they virtually all need electricity, thus

making the energy a key point of all critical infrastructures.

• Communications and information: This sector is central to the economy, academia,

security, health and many others. In the era of the "All Connected" where more

andmore services rely on communication infrastructures this sector criticality never

ceased to increase.

• Finance: The challenges of this sector are easily judged as it covers all economic

assets, publics and privates.

• Health care: It covers a nation’s healthcare and public health infrastructures such

as public and private clinics, pharmaceutical companies, and distribution circuits.

This sector protects all others from hazards but as most of its assets are owned by

private parties it requires great collaboration and information sharing.

• Food: Food distribution and production is a vital asset for the well being and health

of a population. Associated infrastructures come from agricultural sector but also

transformation and distribution assets such as factories, shops and group catering

companies.

• Water: Drinkable water is one of the first necessity goods, if not more important

than food, but this sector addresses as well wastewater storage and treatment as it

is vital for diseases prevention.

• Transport: The transportation sector includes aviation, freight and passenger rails,

maritime transport, postal and road infrastructures. It presents an huge economic

stake as well as a convenience of use for the population.

• Production, storage and transport of dangerous goods: Many sectors such a Energy

andHealth care reject dangerouswastes that need to be handlewith caution to avoid

potential dangers to the population and the environment. This sector covers mostly

infrastructures needed for the transportation and storage of these wastes.

• Government: And finally one of the most obvious critical sector addresses govern-

mental assets, whether it is military infrastructures, administrative buildings and

schools.

Despite multiple other definitions, Critical infrastructures play an essential role in all

main functions of modern society, [3] provides further information and researches on

13

2.2. Industrial Communication Protocols

these infrastructures. Most of it relies on an automated control process which inherited

the criticality of the infrastructure, in this case we speak of Critical networks. These net-

works answer to the same problematic and specificities as defined previously but with a

criticality level way higher which justifies a greater interest in safety. This work focuses

mainly on these particular networks as they require stronger security measures.

As industrial networks fundamental principles target availability and determinism,

communications and data exchanges between network devices are designed to promote

these needs, hence the use of dedicated network communication protocols. But like in IT’s

context, the communication protocol is another risk factor in a network and to measure

this risk it is necessary to understand how these protocols are constructed and how do

they work.

2.2 Industrial Communication Protocols

Communication protocols are sets of rules and syntax used by interlocutors to standard-

ize information exchanges. Today communication systems use well-defined protocols, in

network communications based on Ethernet, which is the physical medium, we found the

physical layer (MAC) then in most cases IP and TCP (or UDP) both being well known

communication standards. In the industrial context, networks rely on dedicated commu-

nication protocols, either above the TCP layer or using completely different standards and

medium.

To communicate, equipments of the industrial network use industrial protocols. They

are communicationprotocolswhichwere created and specified to address industrial needs.

It exists industrial protocols over serial line, Ethernet, TCP, UDP or virtually over any layer

of the OSI model (Figure 2.3), but in the field of this work we will center the study over

TCP/UDP protocols. Figure 2.4 shows a timeline of release of the main industrial proto-

cols still used in the industry. Looking at the OSI Model Figure 2.3, industrial protocols to

which we will be interested take place on the upper layers (Session, Presentation, Appli-

cation), among these some are proprietary (generally made by PLC vendors) and other

are open source. As years go by, numerous industrial protocols were introduced, but in

the field of this work we will present four of them, presented below, ModBus, S7, BacNet

and OPC-UA, with a major focus of the first two.

We chose those Modbus and S7 because they are both very common in the industry

and have no concern about security. Even so they are old and tend to be replaced bymore

recent ones, in newlymade industrial networks, existing networks which use those proto-

cols are mend to last for many years before being updated. One major point of industrial

networks, and more particularly for critical one, is "if it still works there is no reasons to

14

Chapter 2 2.2. Industrial Communication Protocols

Figure 2.3: OSI Model

change it", whichmeans equipmentswill not be changed as they are still working and even

so there is always some identical spare equipments for quick replacement. For an indus-

trial replacing its equipments by different or newer models is a complex and expensive

operation. It would require, in prior, months of test on a simulation network which emu-

lates the real one. Then it would be necessary to stop a part or the totality of the industrial

process to perform the change. Those problems are even more true on critical industrial

processes. For these reasons it is important to address the security of existing industrial

protocols without systematically resorting to changes for newer and more secure ones.

2.2.1 ModBus

ModBus [39] is a communication protocol created in 1979 by Modicon, to address com-

munication between industrial equipments, such as PLC and DCS, over serial lines. Due

to its simplicity yet efficiency it became the de-facto standard for automated industry, but

at the time it was designed, security and networks interconnectionwere not existing prob-

lematics. It allows a master to communicate with many slaves (up to 240 devices in the

ModBus system), the master initiates the connection then performs a request and the tar-

geted slave answers. ModBus allows variety of medium such as serial line, wireless but

the most common types are :

15

2.2. Industrial Communication Protocols

�
�
�
�

�
�
�
�
�
	

�
�
�

�
�
��
�

�
�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�
�
�
�

�
�

�
��
�
�

�
�
��
�
�

�
�
�
�

�
�
�

��
�
��
�
�
�
�

�
!"
��
�
�
�

�
"#
�
�"�
$�
�

�
�
�
%

�
�
�
�

��
�
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�&
�
'�
�
(

�
�
�)
"*
+

�
�
�

Figure 2.4: Chronology of major Industrial Protocols release

• ModBus ASCII, messages are coded in hexadecimal, using 4-bit ASCII characters.

It is the slowest of the modBus protocols, each byte of information needing two

communication bytes. Therefore it is privileged for wireless communication, such

as Radio (RF) or telephone modems, because it allows rather long time intervals

between characters wihtout causing errors.

• ModBus RTU is theModBus standard for serial line, twisted pair links, and themore

popular of the ModBus protocols. The most common speeds are 9,600 and 19,200

baud.

• ModBus TCP is simply ModBus over Ethernet using TCP/IP standard, the data is

encapsulated inside a TCP/IP packet. Any Ethernet network is able to support this

ModBus standardmaking it very popular amongmore recent industrial control sys-

tems where the Ethernet norm became standard. For these reasons the following

work is focused over ModBus TCP but remains true in some part for all modBus

standard as the Memory model and principle are shared by all.

Over TCP the addressing between equipment is done using the Ethernet and TCP/IP,

throughMACAddress and IP address, the default communication port should always be

the 502. TheUnit identifier present in theModBus packet is not always used, as it was nec-

essary for serial communication, depending of the device some use it as supplementary

check for addressing. The modBus Application Data Unit (ADU) is maximum 260 Bytes

long, it consists of 253 bytes ofModbus protocol data and 7 bytes specific forModbus TCP

addressing. Figure 2.5 shows the complete ModBus ADU which contains the following

fields :

• Transaction Identifier serves for synchronization purpose, the request and the answer

share the same transaction identifier allowing the master to match both.

16

Chapter 2 2.2. Industrial Communication Protocols

���������	�
��
�	�	�	�
�� ������ ����
�� ������	�
�	�� ����

�	����
���������	�
����
����

�	����
������
�	����

�	�	�	�
����
����

Figure 2.5: ModBus TCP Application Data Unit

• Protocol Identifier is a field set to 0, unused in ModBus TCP.

• Length indicates the number of remaining bytes in the modBus message. It is a com-

mon type of field in network protocols, allowing devices to know how many bytes

they must expect in the frame.

• Unit Identifier, natively ModBus TCP devices ignore this field, setting it to 255. But

in some cases of composite equipments (ModBus TCP to ModBus RTU gateway) it

is used to give the slave address of the targeted device.

• Function Code is a one byte hexadecimal value from 0x01 to 0x02B which codes the

operation related to the modBus message. The basic operations, read and write, are

performed over single or multiple elements, and followed by the address, and even-

tually a data in case of writing. The corresponding answer, from the slave, uses the

same function code with the requested information or acknowledgement. ModBus

allows exception code for return, differentiated by an offset of 0x80, supplementary

to the function code, used to indicate a processing error or a unknown request. Fur-

ther functions are available (Figure 2.1) mainly for management, control, update,

and unused function codes are reserved to the user for specific needs.

The ModBus memory model consists on 4 basic types of data which are : Coil (single

bit, read-write), Holding Register (16-bit word, read-write), Input Register (16-bit word,

read-only) and Discret Input (single bit, read-only). Generally a device has 4 memory

spaces known as Blocks which work as memory pages, each one managing one type of

data. Internal data (coil, register, input) accessible by their address, are either directly

mapped to the PLC I/O or used to perform combinatorial operations as expected in the

automaton program.

2.2.2 S7

S7 is a proprietary protocol, over TCP, belonging to Siemens. Similar to Modbus, it is a

request/reply protocol with one master and multiple slaves. One of its specificity is that

17

2.2. Industrial Communication Protocols

Function Code (hex) Operation
01 Read Coils
02 Read Discrete Inputs
03 Read Holding Registers
04 Read Input Register
05 Write Single Coil
06 Write Single Register
07 Read Exception Status
08 Diagnostic
0B Get Com Event Counter
0C Get Com Event Log
0F Write Multiple Coils
10 Write Multiple Registers
11 Report Server ID
14 Read File Record
15 Write File Record
16 Mask Write Register
17 Read/Write Multiple Registers
18 Read FIFO Queue
2B Read Device Identification

Table 2.1: ModBus TCP Function Codes

multiple motherboards can be installed in the same device (PLC). It requires supplemen-

tary routing information, in the form of rack and slot numbers, to address the correct

target. Considering that it is the standard protocol for Siemens PLCs, it is widely used.

More recent PLCs now use S7+ which is an upgraded version of S7 including security

features. S7 ADU consists in a S7 PDU wrapped in TPKT [46] and ISO-COTP protocol

which is define in RFC1006 [44], based on the ISO8073 protocol [45]. The S7 PDU 2.6 is

made of:

• Header which contains protocol constants and references as well a length informa-

tion.

• Parameters are supplementary data necessary for the correct application of the oper-

ation, such as addresses.

• Data carries the data relative to the operation and parameters, typically memory

values, firmware, memory blocks.

The Header is 10 to 12 bytes long and embeds :

• Protocol Identifier, constant always set to 0x32.

18

Chapter 2 2.2. Industrial Communication Protocols

���� ���� ���	�
 ��
�����

 ��
�����

����� ����

����
����������������

������������������������

�		��������������������

Figure 2.6: S7 TCP Application Data Unit

• Message Type is a first indication of the requested operation, combined with the Pa-

rameters it forms the complete operation identifier.

• Reserved, data always set to 0 and probably ignored or reserved for future use.

• PDU Reference works as a tracking number used by the master to link the request

and the answer.

• Parameter Length is the length of the Parameter field.

• Data Length is the length of the Data field.

Additionally, the header may contain Error Code and Class in case of failure, this field

is notmandatory. The rest of the S7message, Data and Parameters, content depend on the

Message Type. The S7 memory model works using Db (for database), those are memory

pages which data are addressed inside either individually (through address) or multiple,

up to the whole page. This protocol shares many common points with ModBus, in the

header many fields have similar functions or meaning, and in the way of addressing data.

2.2.3 BacNet

BacNet [41] is a communication protocol for Building Automation and Control, sup-

ported andmaintained by theAmerican Society ofHeating, Refrigerating andAir-Conditioning

Engineers (ASHRAE). It is a very popular ISO standard, especially in America and Eu-

rope. BacNet was designed to allow communication of building automation and control

systems for applications such as heating, ventilating, and air-conditioning, lighting con-

trol, access control and fire detection systems and their associated equipments. A BacNet

equipment is defined by an Object identifier composed of an object type and an instance

number. In the same way, a bacnet equipment possesses a number of object defined by

object name and identifier, while those objects possess parameters. The ANSI/ASHRAE

135-2016 defines 60 standard object types among which are Calendar, Lift and many oth-

ers, but it also allows the user to define its own. In short, a bacnet equipment is like a

19

2.2. Industrial Communication Protocols

meta-structure embedding a number a lower structures, each onemade of multiple fields.

One of the consequences of this construction is that the protocol is very verbose and re-

quires lots of text strings to ask for an operation. Due to its use, often confined to building

automation, Bacnet has very low concern toward security.

The BacNet network has its own representation made of interconnected devices, it

leans on the following concepts:

• The segment is made of devices connected, eventually through repeaters, under the

same physical layer.

• The network is made of connected segments, homogeneous of the bonding layer.

• The internetwork is made of connected BacNet network, through routers, with no

constraints over physical and bonding layers.

The addressing in the BacNet protocol appeals a number of mechanisms:

• On the physical layer, it depends of the specified technology.

• On the network layer, it uses a combination of MAC address and network identifier.

Multiple devices inside the same BacNet network must share the address domain,

else they must be divided between multiple networks with different network iden-

tifiers.

• On the application layer, the addressing uses the common addressing mechanism

of the BacNet protocol, the Object Identifier.

Bacnet is a more recent protocol and, unlike Modbus and S7, its data model departs

from a proximity to the material to a more abstract representation with complex objects

having multiple properties. This difference is also felt in the message construction, data

is intended to cross multiple bacnet networks or internetworkswith a wider variety of func-

tions, which explains amore complex protocol structure. Figure 2.7 shows the representa-

tion of a typical bacnet packet, it does not cover all possible cases but gives a solid example

of how are organized the fields in the bacnet message. The Bacnet Virtual Link Control

helps to identify the type of Bacnet protocol we are using (Bacnet IP for example) and

gives a first indication on the message type. It is in the NPDU that are found most of the

routing data, with the Control field that indicated which data will appear in the remain-

ing NPDU. And in the APDUwe find the remainingmessage type indicator while the rest

of the follow-up differs in function of this type.

20

Chapter 2 2.2. Industrial Communication Protocols

���� ���� 	���

�
��
�������
��������������
� ���
�
� ��������
� ������
����

�
��
������
� �
������
� �������

���� �!��"�������
���
 � �� �!�#
�
�$
%
 � �� �!��
����
�����"�
��&�
�
 ��� �!�#
�
�$
%
� ����!�"����
�"�
��&�
�
� � � �!�'(�
�������
���
� � � �!��
�)������������
� � ��!��
�)������������

� �
����
������
�)����	%%�
��
� �
����
�����*	���
�
��	%%�
����
����
� �
����
�����*	���
�
��	%%�
��
� ���
���
�)����%
����
�����*	���
�
��
%%�
��
� +�����
�������
��
�)������,-
�
� +�����
��*	���
�
��	%%�
����
����
� +�����
��*	���
�
��	%%�
��
� +�����
���
�)����%
����
�����*	���
�
��
%%�
��
� .��������

�
��
��	���
� 	�������

� �
�
�

Figure 2.7: Bacnet IP packet structure

2.2.4 OPC-UA

OPC-UA [42] is a machine to machine communication protocol for industrial automa-

tion developed by the OPC Foundation and released in 2006. It was designed to be the

new generation of industrial protocols, including multi platforms support, security fea-

tures, flexibility and scalability toward the network architecture and devices. OPC-UA

uses concepts from recent object oriented programming, it works with a so-called Full

Mesh Network using nodes: a node is an entity embedding any kind of data or meta-

data, it can be data, attributes (Read access), as well as complex commands or events. It

allows OPC-UA devices to manipulate abstract objects but it also allows more complex

operations than in most of the common industrial protocols. Devices can perform basic

operations as well as Subscription to an object, discovery, heartbeats. Its versatility makes

it a privileged choice for new industrial standards, it is usable in nearly all industrial con-

texts (energy, transport, manufacturing) as it addresses needs from the managing level

to the lower level of the operational process.

2.2.5 Profinet

Even if it will not be discussed in this work, it is interesting to mention Profinet [40] as it

is one of the most popular protocol, the most used in the automotive sector. It is an open

21

2.2. Industrial Communication Protocols

communication standard for industrial automaton, created by PROFIBUS and PROFINET

in 2001, and designed to address tight time constraints in data delivery. It is optimal

over industrial Ethernet with support of TCP/IP, while its versatility allows integration of

variety of devices from operating to management layer. Profinet leans on three protocol

levels :

• TCP/IP for non-critical data with moderate time constraints.

• Real Time with Profinet IO for short time constraints.

• Isochronous Real Time with Profinet IO is the fastest protocol level for very tight

time constraints.

Profinet relies on a combination of MAC address, IP address and device station name

for addressing while the connection establishment is made using UDP.

2.2.6 Synthesis

According to [48], among existing industrial protocols, ModBus is one of the most popu-

lar, 42% of usage, it is well known and easy to use, making it a standard adopted by most

industrial controllers. Profinet follows with 29% of usage and Bacnet is a bit less popular

with 9% of usage, because it is mainly used for building automating and not much else.

S7 is not represented in the study, this proprietary protocol is fairly discrete in its informa-

tion disclosure, but because it is a standard for most of the Siemens PLCs, we can assume

that it is quite common. Today with the emergence of new protocols, more versatile and

secure, the old ones are destined to be replaced but it will take time.

In terms of security it appears unsurprisingly that older protocols, such as ModBus

and BacNet, do very little or no state of security. In fact these protocols were designed

at a time when the cybersecurity context was almost nonexistent and as a result they are

particularly exposed to cyber attacks. Today most recent industrial protocols make good

progress in order to integrate many security features such as encryption and authenti-

cation mechanisms. Among them we can find OPC-UA which is the most famous and

others like S7+ which is a newly and more secured version of the Siemens’s protocol.

These protocols, although still not widespread, are much more resistant to attacks. Table

2.2 summarize the specificities of each industrial protocol previously addressed.

Industrial protocols listed before are examples of what can be find in today industrial

networks, it is not exhaustive, as it exists numerous other ones. In the field of this work

we will focus on S7, Modbus and will keep in mind Bacnet and OPC-UA for extensible

parts of the study.

22

Chapter 2 2.3. Threats

Industrial
Protocols

Security Flexibility Interoperability

ModBus Null, modbus inte-
grates no concepts
toward Authentica-
tion and Confiden-
tiality.

The protocol is
closely linked to
the memory model
and information
must match one
of the basic data
types.

It does not handle
interoperability
with other proto-
cols or network
types.

S7 Null, asmodbus, S7
takes no account of
Authentication and
Confidentiality.

The protocol is
closely linked to
the memory model
and information
must match one
of the basic data
types.

It does not handle
interoperability
with other proto-
cols or network
types.

BacNet This protocol takes
not care toward
Authentication and
Confidentiality.

It offers possibility
for the user to de-
fine its own object
types and labels,
through string,
even beyond exist-
ing specifications.

It does not handle
interoperability
with other proto-
cols or network
types.

OPC-UA It offers many
features toward se-
curity with encryp-
tion and challenge
responses.

OPC-UA’s data
model is fully
customizable by
the user, allowing
to declare its own
data types.

This protocol
was design to be
compatible with
administrative net-
works and many
data represen-
tation standards
(XML,JYSON).

Table 2.2: Industrial protocols specifications synthesis

2.3 Threats

The target of this thesis is to study the threats and risks which can affect an industrial con-

trol system and then to work on counter-measures in accordance with the state of the art.

To do so it is essential to classify and understand the vulnerabilities and associated attacks

these systems are exposed to. The vulnerability of common network infrastructures is not

to be proven yet, and [4] shows that industrial networks are not spared. The definition of

the various threats which endangered these networks is orchestrated on multiple layers.

Firstly, considering the hardware platform, it concerns the physical integrity of the

23

2.3. Threats

Vulnerability Impact

N
et
w
or
k

Inadequate log mechanisms
Poor detection of
failures and attacks.

Missing security devices
Open security breaches and
access points for attackers.

Misconfigured security devices
Allows transmission of unnecessary
or dangerous data, leading to data
leakage or malwares spreading.

Inadequate network architecture
Increase the possibility of
security flaws.

Inadequate Security Perimeter
Unknow security flaws and missconfiguration
of security devices.

Unpatched security Vulnerabilities Vulnerability to known threats and exploits.

A
p
p
li
ca
ti
on Communication protocols Integrity

Protocol Messages compromise
and malicious modifications.

Communication protocols Authentication
Facilitate messages interception and
impersonification of interlocutors.

Unpatched security Vulnerabilities Vulnerability to known threats and exploits.
Lack of dedicated security solutions Not adapted and unsufficient security.

Table 2.3: Table of Threats and Vulnerabilities

devices as well as the control of the peoples inside the infrastructure and the security

policies, excluding network related ones. The access control as well as the physical pro-

tection of the devices is one of the crucial points if not the first which may concern an

infrastructure. It includes protecting the power supply and protection against Radio and

Electro-magnetic interferences. Physical access to equipments is a grave problem, USB

ports are often left accessible, and a malicious USB device can easily cause damages. The

lack of backup or redundant equipments as well as non-existing test facilities are aggra-

vating factors. Security policies play a critical role in the vulnerability to the threats of the

devices. Password policy, remote access protection, configuration’s backup and unHard-

ened OS or applications are representative weaknesses of wrong security policies. And

obviously, unpatched security vulnerabilities are themost evident threats. Event if critical

these threats will not be discussed further as they concern problematic not addressed in

this work.

Table 2.3 summarizes the threatswhich concern either the network or the applications.

These are addressed in more details, with their consequences, below, starting with the

network ones:

• Inadequate log mechanisms: the use of logs from network equipments (security equip-

ments as well as process devices) is one of the most efficient way to detect network

24

Chapter 2 2.3. Threats

failures or attacks. Furthermore, after the occurrence, they are useful to track causes

and consequences. The non emission of logs from a device generally results of a bad

configuration, but missing storages and non monitoring of these logs are also prob-

lematical.

• Missing or misconfigured security devices: The lack of security equipments, or their

misconfigurations, allows transmission of unnecessary or dangerous data. It opens

security vulnerabilities whichmay lead tomalware spreading, data leakage and any

other potentials attacks. It is the most obvious and common security threat as it is

based on the lack of security.

• Inadequate Network architecture: Inadequate or poorly built network architecture of-

fers more security flaws, makes more difficult to define proper security perimeter

and policy. Furthermore it can impact the operational process as it may induce loop-

holes and delays.

• Inadequate Security perimeter: The security perimeter, or Information Systems Secu-

rity Policy (ISSP), is used to validate that necessary security controls are deployed, it

defines which are the assets and devices needing protection, against what and how

they need to be protected. Without a proper one it may lead to unknown security

flaws. Furthermore, it increases the difficulty to properly configure security devices.

• Unpatched security vulnerabilities: One of the scourge of the industrial network cy-

bersecurity are the existing, known but unpatched vulnerabilities. Industrial infras-

tructures have a big inertia toward security updates as the standard delay between

the publication of a security patch and its implementation on the network is be-

tween 3 to 6 months, when the patch is accepted, which is not always the case. It

is common for those patches to be voluntary ignored as long as their effects on the

whole network is not fully known. Furthermore, some vulnerabilities require scien-

tific monitoring to be aware of and patched, this work is not always done as it needs

specific skills and time. The problem of updates is also related to how they can be

applied. Not all assets are necessarily connected to a network. Some updates can

only be deployed throughUSB, with the security problems inherent to this protocol.

• Denial of Services: Denial Of Services or DistributedDenial Of Services are very com-

mon attacks where a targeted device or network is flooded by network traffic to ren-

der it unavailable. It is a security threat that targets specifically one of the major

problematic of the industrial network, the availability of the resources.

These threats are a sample of the most common threats targeting a network, as new

25

2.3. Threats

ones emerge every day, they are not specific to industrial networks and affect all types of

network.

Furthermore the communication protocol used from the presentation of the applica-

tion layer of the OSI model brings its own vulnerabilities.

• Industrial protocols address availability and determinism of data exchanges in the

industrial network, they rarely integrate security features such a encryption or au-

thentication. It facilitates greatly the work of attackers as message exchanges are

easy to intercept (often in clear text mode), understand, and it becomes easy to im-

personate one of the interlocutors.

• Some Industrial protocols have their own integrity checking, throughhash andCyclic

Redundancy Check (Modbus), butmost of them rest on the transport layer integrity

checking. It facilitates the compromise of a protocol’s message.

• As well as for network devices, RTUs and PLCs are rarely updated, even for secu-

rity updates. As they directly handle the industrial process, any patch or update

that may change their functions or behaviors is regarded more dangerous that the

security breach itself.

• The network security of industrial control systems is generally handled by common

IT solutions (firewalls). But even if these devices are able to analyse the network

traffic, it rarely goes up to the application layer. Understanding and analysing the

application layer of the network packet is fundamental to assess the incoming threat.

The commercial state of the art lacks of dedicated industrial network supervision

devices (there are still companies that offer these kinds of solutions, but they are

rare).

These threats are common to most of the industrial networks, but each industrial pro-

tocol brings its own sets of exploits [6], depending of its specifications and implementa-

tions. Simple protocols, such as Modbus and S7 are particularly vulnerable to fuzzing,

as they are relatively compact and made of small sized fields, this basic brute force tech-

niques brings results with relatively low implementation complexity. [5] illustrates this

example and gives a complete taxonomy ofModbus flaws and attacks. Themore complex

is the protocol, the more the attacks complexity increases [7].

2.3.1 Incident Scenarios

From the vulnerable machine, left inadvertently accessible (open session), to complex at-

tacks involving propagation through other networks and remote control, passing through

26

Chapter 2 2.3. Threats

the insertion of amalicious program, it exists numerous scenarioswith increasing degrees

of difficulty. Following are chosen failures, or incident scenarios, for Industrial Control

Systems, based on the previously listed vulnerabilities and the threats we intend to ad-

dress:

• Man in the middle: A malicious entity manages to access the network between

the Control System and the PLCs/RTUs. Using simple network manipulation tech-

niques (ARP spoofing), it is able to usurp both the identity of the Control and one

or more PLC. So data and commands sent by the control system to destination of

the PLC will be intercepted by the attacker and the same goes for answers from the

PLC to the control. From this point multiple possibilities are open:

– Simply listening and analyzing the network traffic. The data received are trans-

ferred to their legitimate recipient, the attacker operates a simple translation

without modification, but it allows to retrieve information about the functions

of the process and map the network. It is a stage of learning and discovery.

– Modification of information sent by the control. The attacker will intercept the

messages sent by the control and modify their content. It can lead to poten-

tial damages on the targeted device, modifications or serious malfunctions of

the operational process. To correctly perform, it needs knowledge about the

current process and devices as well as about the industrial protocol used, else

it is possible to perform random alterations on the data, leading to unknown

behaviors.

– False information sent to the control system. In this case, data sent back to the

controller are intercepted and modified. Without correct information the con-

troller will not perform needed operations in case of alert or failure. Further-

more it can be used to cover malicious changes or actions on the PLCs/RTUs.

• Denial of Service. The network traffic is disrupted, slowed down or interrupted,

on a targeted device or on the whole network. It impacts the availability and causes

a denial of resources. It is a very common attack, particularly for IT network, as it

requires relatively low skills and resources.

• Unauthorized modification of the program of any components of the control sys-

tem (DCS, SCADA) or the process (PLC, RTU). A malicious entity manages to

modify the program of a device inside the Industrial network, related to the pro-

cess. It can be achieved through automated malware, transmitted using wireless

devices (portable phone, computer), mass storage (USB key, hard drive), pishing

27

2.4. Case Study

campagne, or through remote access. Doing so, it is possible to change the process

behavior, damage equipments, slow down or stop the production. This method

was used in the well know Stuxnet [1] case, on a centrifuge, leading to accelerated

degradation of the device.

In general, regardless of the scenario of attack, the hacker needs to make an inventory

(mapping, discovery, scan) of the network architecture and devices. Then he will seek to

perform at least one of the following actions :

• Modify a file or a program (directly or not).

• Send wrong or malicious information to its target.

• Observe or register the behaviors of the network and devices, or the impacts of its

own actions.

2.4 Case Study

To illustrate industrial network architectures, protocols and definitions, following are two

examples of industrial context where control systems are commonly used. The first de-

scribe a electric post which is a component of a power plant control system. Power gen-

eration networks being wide and geographically ramified it commonly resorts to con-

trol system to supervise and manage the whole process. The majority of companies that

manufacture large quantities of products, dedicated to marketing, resort to automated

production systems based on one or more control systems. In this context, the second

example describes a bottle filling production line, an automated control system that can

be found in many food and beverage industries. Neither of the two are a complete in-

dustrial process, they are steps, positions, of the whole process which is itself composed

of many. In the case of an automated production line for example, it can count several

dozen of steps. Both examples are followed by a representation of the address plan by the

industrial protocol and superficial security analysis.

2.4.1 Electric Post

A power plant is a complex aggregation of multiple devices, peoples and places, its rep-

resentation if far too complicated to be addressed in this work, a case study on an electric

post is proposed. This post is made of multiple physical implantations, geographically

different and constituted of controllable elementary objects:

28

Chapter 2 2.4. Case Study

������
���	
�������

������
���	
��������

���	
�����
��������

���������

��
�����
��������

��������

��	���
��������
�������

��������
��
��		�����

������

��
�����
��������

���������
�������

��������������

���	
�����
��������

��������

�������

��	���
��������
�������

�������

��	��

��������
�������

�������

Figure 2.8: Example of an electrical Post

• Circuit Breaker and disconnector are breaking organs remotely controllable and

searchable. They have generally two controls for state changes and two for reading

the state. Circuit breakers are able to break the power while disconnectors can not.

• Power transformers are controllable power transformerswith an impulse command

to vary the output voltage.

• Voltage probe allows to measure voltage.

• State probe, an electric post includes a variety of other probes and sensors to ensure

the correct behavior of the process, from fire detectors, state probes, default pass

sensors, failure detectors, and many others.

The initial state of the electrical post is made of two power distributions, each power

transformer is framed by an upstream and downstream circuit breaker. Each power line

has its own circuit breaker and both power distributions are separated by a disconnector,

see figure 2.8 for a representation of the post. It is locally operated, then refers to multiple

distant supervisions of different levels.

Following are rules and scenarios concerning the electric post:

• Upstreamanddownstreamcircuit breakersmust be openedwhenworking onpower

transformers (maintenance operations, replacement).

29

2.4. Case Study

• The downstream circuit breaker can not be closed, while the upstream one is open,

to prevent power trace back.

• Circuit disconnectors can not be opened while charged.

• Circuit breakers and disconnectorsmust not be closedmore than 2 times perminute.

All these rules exist to prevent failures and malfunctions on the electric post, they are

part of the controllers program and are known by any supervision instance.

In terms on industrial protocol usage, IEC61850 [78] and ModBus are both the most

used in electric power systems, in the context of this work we will use ModBus to give

an example of representation and addressing from the control system point of view. Ta-

ble 2.4 summarizes the representation of each controllable component through ModBus

addressing, with their functions, data type they are mapped on and a memory address

map proposal. In the industry, circuits breakers and disconnectors have one control input

modeled by a coil (refer to ModBus data model) to open or close and one status output

modeled also by a coil. These inputs and outputs are logical values, either 0 or 1. Voltage

probes only have one analogic output with the measured value, generally mapped to one

register. Power transformers have two control inputs, one logical to turn it on and off,

and an analogic one to specify the output level, the logical one mapped to a coil while

the analogic to a register. Then, one logical output for the status mapped to a coil, the

register used to specify the output level is readable too. Generally speaking, probes and

sensors among the control systems have one output, either logic or numeric, to return the

measured value or state. When working on complex industrial process, the control part

is split between multiple control devices, such as PLCs, RTUs and IEDs along the pro-

cess, each driving its own set of actuators, sensors, motors. In our case study, due to the

simplicity of the example, one control device is enough to drive it all, but to give better

understanding we split the process in control groups, each representing a dedicated part

of the control. These control groups have either a dedicated control device or one for all

of them.

Rules and dependencies between registers, coils, inputs and outputs, in terms of value

and state, are either handled inside the controller (PLC/RTU) program or by the upper

level of control.

• The first case allows a higher resilience toward application attacks, under condition

that the controller program is cleverly written.

• While the second case lowers the load on the local control device but increases the

exposure to man in the middle attacks.

30

Chapter 2 2.4. Case Study

Control Group Equipment Function ModBus Type Address

Ctrl 1

Upstream Circuit
Breaker 1

Open/Close Coil 0x00
Status Coil 0x01

Probe 1 Value
Input
Register

0x00

Power Transformmer 1

On/Off Coil 0x02
Set output
power level

Holding
Register

0x00

Status Coil 0x03

Probe 2 Value
Input
Register

0x01

Downstream Circuit
Breaker 1

Open/Close Coil 0x04
Status Coil 0x05

Ctrl 2

Upstream Circuit
Breaker 2

Open/Close Coil 0x10
Status Coil 0x11

Probe 3 Value
Input
Register

0x10

Power Transformmer 2

On/Off Coil 0x12
Set output
power level

Holding
Register

0x10

Status Coil 0x13

Probe 4 Value
Input
Register

0x11

Downstream Circuit
Breaker 2

Open/Close Coil 0x14
Status Coil 0x15

Ctrl 3 Circuit Disconnector
Open/Close Coil 0x20
Status Coil 0x21

Ctrl 4
Line 1
Circuit Breaker

Open/Close Coil 0x30
Status Coil 0x31

Probe 5 Value
Input
Register

0x30

Ctrl 5
Line 2
Circuit Breaker

Open/Close Coil 0x40
Status Coil 0x41

Probe 6 Value
Input
Register

0x40

Ctrl 6
Line 3
Circuit Breaker

Open/Close Coil 0x50
Status Coil 0x51

Probe 7 Value
Input
Register

0x50

Table 2.4: ModBus Control Table of the Electric Post

On this kind of industrial example, there are two application attacks which are easy

to consider:

31

2.4. Case Study

• The first concerns interactions between devices, such as circuit breakers, where two

ormore of themmust have conditional states to each others. For example, two circuit

breakers, Downstream Circuit Breaker 1 and Downstream Circuit Breaker 2 should not

be in open state both at the same time because it would cause power break. This

type of attack is very easy to perform with minimal knowledge of the process, as it

can be made through fuzzing or random commands.

• The second attack requires deep knowledge of the current process, as it involves

attacking the power transformer by setting its output power level outside of the

functional levels of the power grid. It may cause equipments destruction, power

failures, and this is hard to counter unless the controller program iswell written and

allows to set limits on memory values (which is not the case on many commercial

controllers).

From this example of industrial process which concerns the energy and public re-

sources we will now discuss of another very popular process which is used as well in

both private and public industries, the automated production line.

2.4.2 Bottle filling line

Most of the industries which resort to automated production lines, have a dedicated Con-

trol System which supervises and ensures the smooth running of the production. There

is no defined model for these lines, as each industrial has its own Control System with its

own architecture to answer its needs. But generally, these processes make intensive use

of PLCs and RTUs to manage a wide variety of sensors, probes, motors, valves, actuators.

To illustrate it, we propose the representation of a generic bottle filling line, as it can be

found in any wine, water, juice or soda factory. It is made of a conveyor to carry empty

bottles under the filling system, this one uses a solenoid or a pump to deliver the liquid,

sensors to control the amount of available liquid, and either level sensors, flow sensors,

or both to check the filling level of the bottles.

In practice, the process is composed of :

• A sensor allowing to know the amount of available liquid for the pump in the tank.

It can be a unique probe, with only one readable state which indicates if the critical

level of liquid is reached, or a multitude, allowing to know with more details the

level of liquid.

• A pump or solenoid with an impulse command to control the flow.

32

Chapter 2 2.4. Case Study

�������
����	�
	��
��
���

�	���
��
���

����

��
������
������������

��
�����
�������

��
�����

�������	���	
��
���

�������������
�����

����

���������
�

�������	���	
��
���

��
������
�����

�������

��
���

��
����
�	��������
�����

Figure 2.9: Example of Bottle Filling Line

• A flow sensor, it measures the flow that has passed through, to know the volume of

elapsed liquid. Typically, it has a readable status with the flowmetering, a reset con-

trol and eventually a writable level cap to send alerts. It is also possible to imagine

liquid level sensors inside the bottle to detect filling level.

• A conveyor, to carry bottles on the filling line a mean of transport is necessary. Tak-

ing as example a belt conveyor, it is generally controllable through a motor with

either impulse or analog level command to control speed and move. To know with

precision the movements of the conveyor, in order to determine the position of the

bottle, various methods exist :

– To extrapolate the position using the conveyor characteristics, prior experi-

ments and knowing the control command sent.

– To use hall effect or mechanical sensors on the motor frame or conveyor mech-

anisms.

– To use various kind of sensors (mechanical, infrared) to detect and determine

the positions of the elements transported by the conveyor.

This kind of line is an example ofwhat can be found inmany industrieswhen speaking

of production line, it induces lots of steps each with its own set of devices and automated

processes. But as the diversity of control systems and automated production processes is

explained by the fact that each answers to specific needs, and every need is different, these

processes present a wide diversity of industrial protocols. For the purpose of matching

with the problematic of this work we will use ModBus to further detail this bottle filling

line control architecture but, in the same way, S7, OPC-UA and various other protocols

could be used.

33

2.4. Case Study

Equipment Function ModBus Type Address
Liquid Available
Sensor

Value
Input
Register

0x00

Pump On/Off Coil 0x00

Flow Sensor Value
Input
Register

0x01

Position
Sensor 1

Value
Input
Register

0x02

Position
Sensor 2

Value
Input
Register

0x03

Conveyor
Motor

Set Rotation
Speed

Holding
Register

0x00

Liquid Level
Sensor

Value
Input
Register

0x04

Table 2.5: ModBus Control Table of the Bottle filling line

As in the previous example, basic sensors, whatever their type, give only an output

value. This information is mapped on a coil, when it is logical, or on an input register

when speaking of analog value, such as voltage and temperature. Electric motors such

as the conveyor one, are indexed in two categories: Alternative Current (AC) and Direct

Current (DC). AC motor rotation speed is controlled through the frequency of the input

supply while DC motor rotation speed depends of the level of the input supply current.

In both cases the speed control is symbolized by a register, motors don’t require an on/off

control input as a non-null supply current fulfills this function. For pumps too it exists

more than one kind, basic one only requires one control input for on/off (supply current

or not) with a non-controllable and constant output flow. While more complex pumps

allow flow control, in the same way as for motors rotation speed. In our case, we will take

into account of a basic pump with only one control input mapped on a coil. See table 2.5

for ModBus mapping control table of the current bottles filling line.

Due to the simplicity of the example there is not much of application attacks available

regarding only one component of the process, only the conveyor belt motor offers the pos-

sibility to stop or increase the rotation speed causing discrepancies and failures. But the

production line correct function is heavily based on the interactions and timing between

devices. When the position sensor gives the right value the conveyor motor should stop,

then the pumpmust be activated for the liquid to flow until the liquid level sensor reaches

the right level. It is in the smooth running of each step that the attack possibly appears.

Activating the pump randomly or falsifying sensors values through man in the middle

attacks are both easy to deploy application attacks.

While simple, both previous examples, Electric post and Bottles filling line, give good

34

Chapter 2 2.5. Protections

understanding of how industrial networks are architected to allow automated processing

and remote control. It also gives an idea of the diversity of industrial control systems in

the industry, as nearly all kind of applications make use of it. But while we show attacks

possibilities and vulnerabilities in these examples, the following section provides state of

the art analysis on protection mechanisms to address these attacks.

2.5 Protections

Today Industrial networks are complete part of every day’s life, as most of the industries

and infrastructures rely on them. While their problematic and implementations differ

from classical IT networks, with dedicated components and protocols, they are still ex-

posed to common challenges. But industrial networks vulnerabilities rely on the applica-

tion layer as well with specific problematics which require dedicated solutions.

2.5.1 Isolation

Among the techniques used by industrials to secure their networks this one is the most

common and most simple one, while it may impose heavy constraints. It consists in iso-

lating the network from the Internet or other connected networks. The isolation can be

physical, without any network gateways, relying on the use of a physical media to trans-

fer data, or logical through specific equipments as diodes, data-diodes. While it seems

efficient, in reality it poses three great problems:

• It requires a good control over the human factor. From access control to the control

of physical medias (usb, mobile phones), any data, device and person that enter the

network needs to be controlled.

• It increases the difficulty to retrieve information and logs from the network, which

requires additionalmeasures, such as a dedicated personwho checksmanually logs

and alarms.

• It is based on the postulate that if it’s disconnected it is not accessible. In fact the

state of the art of hacking techniques shows that it is wrong, nowadays it is possible

to exchange data with an unconnected computer using side channels (EM, light,

sound).

Beyond accessibility problems, updates have to be taken into consideration, as it rep-

resents a necessary access and potential threats to the control system.

On the other hand, isolating the network increases the difficulty for an attacker and

requires little network security equipments. This method was popular and efficient many

35

2.5. Protections

years ago when wireless connectivity was not so common. Today the popularity of IOT

inside industrial networks, promotes the setting of networks made of a multiplicity of

small interconnected devices, often wireless, and complicates heavily the control over

data isolation. Furthermore, the generalization of smartphones and portable computers

is a challenge for physical control of devices in contact with isolated equipments. Physical

isolation is still interesting and used in highly critical infrastructures where the supple-

mentary cost and organization are already necessary (access control, staff audit), such

as power plants and nuclear plants. The efforts needed to ensure complete isolation are

lower than the cost in case of a potential failure/attack, but they remain specific cases and

physical isolation is generally a deprecated method to ensure industrial control system

security. Despite this, logical isolation stays a privileged solution in numerous infrastruc-

tures [51].

2.5.2 Firewall

Firewalls are the most common way to ensure security over a network. They are equip-

ments which scan the network traffic, monitor and authorize applications and flows. It

typically looks at the IP/port of the TCP header or other transport data such as MAC ad-

dress. Additionally, firewalls process routing rules to manage the network. Firewalls, as

they exist in IT networks, work as a first security barrier which protects against a majority

of networks threats, but it is not sufficient when addressing protocol specific threats. Spe-

cific industrial firewalls are able to look at the payload of the network packet to perform

analysis at the application layer, but as we know these are quite uncommon. It allows to

cover the flaws about specific industrial applications of common IT firewalls.

Among all the firewalls on the market we can notably find the company Check Point

[54], Fortinet [55], Cisco with their ASA solution [56] as well as products that target the

industrial environment such as Stormshield [57] and Tofino [58]. But these solutions

are proprietary and deployed turnkey, so they offer little if no space for research. In this

context it is worth mentioning open source firewalls such as netfilter [79], pfsense [80] or

iptable [59], the one used natively by Linux, as they offer possibilities for work, such as

[52] and [53].

One of the points that is worthmentioningwhen speaking about firewalls is the imple-

mentation criteria. It is said that there are commonly two types of firewall, the software

and the hardware one. The software is generally an application running on a host ma-

chine, either a dedicated one or on each workstation, sitting in the network. While the

hardware one is a dedicated device which sits directly behind the router or the network

interconnection and is a point of passage for network traffic. In practice, both firewall

types are software applications running on different platforms. True hardware firewall

36

Chapter 2 2.5. Protections

which performs network security analysis without resorting to softwaremeans, with pure

hardware resources, are very poorly represented outside of the research [61] [62].

One of the popular techniques that firewalls use to perform threats recognition is pat-

terns matching. The incoming data is compared with a set of rules or signature to find a

corresponding match. This method is quite efficient, even if depending of the used im-

plementation some errors may occur, as it allows to quickly detect incoming threats. But

it is based on a list of previously identified threats and there is a type of attack called 0-

day which means a new or recent one, not yet identified, studied and classified. The time

for those threats to be added to the list of patterns checked by the firewall represents a

window of attack not insignificant. Furthermore, security rules of the firewall are written

and entered by an administrator, which inevitably induces a human risk factor.

It is worth mentioning that besides security, firewalls offer features for network archi-

tecture and management, such as redirection or network address translation.

2.5.3 IPS / IDS

Intrusion detection and protection systems are dedicated applications whose work is to

detect and prevent incoming threats. They are very similar to firewalls, they perform anal-

ysis on incoming data, but are typically designed to work on the payload of the packets

to perform finer analysis. Furthermore these applications are generally designed to work

with a SIEM and send abundance of logs. Nowadays with the improvement of firewalls,

IDS, IPS and firewalls tend to be grouped under the acronym UTM for United Threats

Management and are increasingly difficult to differentiate.

Among existing IPS and IDS, Snort [60] is one of the most well known. It is an open

Source network IDS, under GNU GPL license, with a very active community, and inte-

grated in commercial devices by the Sourcefire company. Snort is able to perform real

time analysis on the network traffic at all the levels of the network packet (up to the ap-

plication and protocol layers), string matching as well as detection of various kinds of

probes and attacks. Its popularity is due to its versatility but also because the community

has the opportunity towrite and enrich the security rules database. This allows to bemore

quickly and effectively updated on the recent threat. Today some rules sets available with

Snort are considered so exhaustive that they are used as references for many commercial

and research topics [37] [47].

As this work addresses Industrial Network Cybersecurity, we consider an ideal se-

curity target which fills all the threats and vulnerabilities we intend to cover. This very

exhaustive target will be refined using the state of the art to highlight uncovered security

flaws.

37

2.6. Threat Model and Security Target

2.6 Threat Model and Security Target

First of all, to allow the correct definition of the security target and to list all the needs, it

is necessary to describe the context of usage. We consider a security device allowing to

interconnect two networks, with different levels of security, while ensuring their partition-

ing. Typically this matches the interconnection between the IT network and the industrial

network, refer to Figure 2.2 in the industrial network architecture description. We also

assume that it takes place in a network context which already has the main components

of an industrial architecture, especially a SCADA and logs retrieval mechanisms (such as

a SIEM for example). Concerning the format, we use the First Level Security Certification

(CSPN) standard, promoted by the ANSSI, to construct the security target, it is a deriva-

tive of the Ebios method. This is an alternative to the Common Criterion, more rigorous

than Ebios and with structures, methodologies and a process developed by the ANSSI.

But we are taking the liberty of not using all its codes, in fact we are not writing the target

of an existing device before commercialization but we list security needs in relation to the

state of the art.

In the following of this section we will discuss the assets that we are targeting to pro-

tect, whether they are local, on the device, or on thewhole network, threats that we intend

to address and features used for protection. In a concern for formalism and to facilitate

the recognition of what we seek to address, we will use the prefix A_ followed by a num-

ber for the assets, T_ for the threats and F_ for security features. So the operating mode

of the targeted device should ensure :

• A physical partitioning of networks, despite a logical interconnection.

• A network breakage.

• A protocol breakage.

• The filtering of industrial network protocols according to their standards.

• The semantic filtering of the application load in the protocol payload.

According to the operatingmodes that are targeted, sensitive assets needingprotection

are identified. These will generally take form of features on a security device and as we

are speaking of network security we will consider that the device, this target addresses,

must be configurable and administrable in terms of network and security policies. Table

2.6 summarizes the assets and gives an analysis of their purpose compared to the four

fundamental security principles.

• [A1.LOGGING] The logging policy and function must stay operational.

38

Chapter 2 2.6. Threat Model and Security Target

Assets Confidentiality Authentication Integrity Availability
[A1.LOGGING] X X X
[A2.USER_AUTHENTIFICATON] X X
[A3.CONFIGURATIONS] X X
[A4.DEVICE_INTEGRITY] X X
[A5.PROCESS_INTEGRITY] X X
[A6.APPLICATION_CHECK] X X X
[A7.RULES] X X
[A8.BOOT_CHAIN] X X

Table 2.6: Sensitive assets synthesis

• [A2.USER_AUTHENTIFICATION] The authentication of the users is protected

by a password, its integrity and confidentiality must be protected as well as the

authentication mechanism.

• [A3.CONFIGURATIONS] The configuration must be protected in integrity and

authentication.

• [A4.DEVICE_INTEGRITY] Integrity of network devices which constitute the con-

trol system (PLC, RTU, IED, SCADA, DCS), facing a protocol threat.

• [A5.PROCESS_INTEGRITY] The smooth progress of the industrial process ac-

cording to the automated program and nominal functions.

• [A6.APPLICATION_CHECK] The process of checking the protocol’s network flow

according to the enforced security rules.

• [A7.RULES] The protection of enforced security rules.

• [A8.BOOT_CHAIN] The authentication and integrity of all running software ele-

ments.

In order to make sure that security functions researched in this work cover the needs

and requirements of the security target, it is necessary to define the threats we are ad-

dressing along with their environment. The context of usage of the target as well as the

hypotheses about its environment will allow to refine the security target and ignore some

threats. In fact the following hypotheses remove some of the threats mentioned in the

Threats section, including logs related and hardware related threats, as we are addressing

network and application threats:

• Logs are regularly read, an administrator consults local events journals of the device,

so we consider that any logged event is taken into consideration.

39

2.6. Threat Model and Security Target

• The configuration by an administrator is considered trusted, the staff who config-

ures the device knows what he is doing and can not introduce an error in the con-

figuration.

• The device must be in a secured room with restricted and controlled access. By

controlling the physical environment of the target, we ensure that no physical dete-

riorations will be performed as well as we exclude electronic circuit modifications,

electronic chips replacement and many others side channel attacks.

• The device is well sized and suitable for the desired security needs, it ensures that

the security functions are well adapted to the needs.

• All the staff who will handle and work with the target is trained and well informed

of all the security prerequisites to the use of the device.

Then it is necessary to define the threats applicable to the target, they take into ac-

count an attacker without any specific rights on the network as well as an attacker which

privileged accesses to any device of the network (login/password to a machine, shell on

a device). Attack means are not taken into consideration, attackers may use their own

material as well as a malicious usage of one of the network equipment. Attacks we are

considering in this work are the following:

• [T1.RIGHTS_POLICY_BYPASS] An attacker manages to obtain privileged rights

on the target. From this point he is able to perform various operations, from config-

uration modification to complete modification of the system.

• [T2.IDENTIFIERS_THEFT]The attackermanages to steal connection secrets (login/-

password) of a user. This generally leads to T1.RIGHTS_POLICY_BYPASS.

• [T3.AUTHENTICATION_BYPASS] The attacker identifies himself on the target

without connection secrets. This too leads to T1.RIGHTS_POLICY_BYPASS.

• [T4.DENIAL_OF_SERVICE] An attacker manages to perform a denial of service

on one network to the other, through the device. The denial of service of the target

itself is not considered.

• [T5.CONFIGURATION_CORRUPTION] The attacker manages to modify tem-

porarily or permanently the configuration of the target.

• [T6.FILTERING_BYPASS] Bymanaging to bypass the filtering process, an attacker

can transmit illegitimate data through the device and induce dangerous behaviors

on the network.

40

Chapter 2 2.6. Threat Model and Security Target

• [T7.PARTITIONING_VIOLATION] The attacker manages to bypass the network

breakage and partitioning.

• [T8.LOG_COMPROMISE] The attackermanages to compromise, delete or add log

in the system journal.

• [T9.SYSTEM_COMPROMISE]The attackermanages to alter or compromise a part

or an element of the system. Itwill cause persistent attackswhichwill stay and occur

even after reboot.

• [T10.INDUSTRIAL_PROCESS_COMPROMISE] By sending specific, but not ma-

licious, controls to the industrial process, at critical moments or during critical op-

erations, an attacker can badly damaged and compromised the industrial process.

The attacks previously listed refer to the Threats section, with more detailed version

targeting network and application security. From there, it is important to list the security

features that must respond to these threats. In order to focus on the thesis problematic,

this workmakes use of an existing platform from an industrial partner. It allows to inherit

its architecture, security features and threat model, eliminating the need to address some

of the vulnerabilities as it is already done.

2.6.1 Denelis

As part of this work, the threat model takes into account an existing network security

device marketed by the company SECLAB [43], the DENELIS. It advocates for network

isolation through network and protocol breakage. It takes place at the interconnection

between twonetworks, generally the IT and the industrial one (see Figure 2.10). OSI layers

(Figure 2.3) up to the fourth of incoming network messages are scrap and reconstructed

on the other network (Figure 2.10). Network protocols, which take place on the upper

layer of the OSI model (Figure 2.3), are inspected to check the concordance with their

specifications. The threatmodel is focused around network andprotocol threats, ensuring

secure interconnection between networks with no concerns about the message content.

Furthermore the physical security of the device is not addressed as it is allegedly placed

in highly monitored environments with limited access control.

DENELIS architecture is based on 3 electronic layers, ingrown by three separate elec-

tronic circuits, each possessing its own FPGA. The first one is exposed to the first network,

ensuring exchanges, the third is connected to the second network. The last circuit, called

Core is located between the others two, it handles data transfer between them and is a

guarantee of non-propagation of attacks. The two circuits connected to the networks (on

41

2.6. Threat Model and Security Target

��������
	
���
�

�
������
��
�
���

���������
���

�
����

��
���

�
�
���
�
�
���

�
�
��

�
�
��!
�
�
��"
�
�
��#

�$	$�%&�'
����
�
��
���
�
�����������(�

)�

����

)�

����

Figure 2.10: DENELIS integration in the network architecture

Network
Interface

Embedded
Processor

����������	

��
�	�����	

��

��	

���	
����

�������

�������	�

��
����

Network
Traffic

Network
Breakage

Electronic
Segregation

Network
Interface

Embedded
Processor

����������	

��
�	�����	

��

��	

���	
����

�������

�������	�

��
����

Network
Traffic

Network
Breakage

Electronic
Segregation

Embedded
Processor

�
�� �
�� �
��

�����������

�������

������ �������	
�

��

Figure 2.11: DENELIS high level Architecture

each side), called Gates, embed Linux running systems, and all three circuits are con-

nected through high bandwidth bus. Figure 2.11 shows the high level architecture of a

DENELIS.

The DENELIS is deployed in critical environments where the physical security and

access control are assumed insured. It is installed in server rooms, whose security is han-

dled by the client. It is therefore considered that the safety and physical integrity of the

42

Chapter 2 2.6. Threat Model and Security Target

device are not to be taken into account. It will not be degraded, broken or opened, which

means that internal components (electronic chips, wires, welding) are not accessible. It

avoids lot of attacks and vulnerabilities such as side channel, malicious replacement of

electronic chips, direct probing on data bus and many others. It does not mean that all

these vulnerabilities and attacks are ignored and will never append but it means that the

security issues addressed by this device are not these ones. The DENELIS addresses net-

work and protocol security issues and so its threat model is as follows:

• It addresses network and transport level threats, as OSI layers up to 4 are destroyed,

attacks based on and requiring these layers are addressed.

• Gates are exposed to compromise, from simple denial of services to full control loss,

but the spread to the Core and then to the other Gate is not possible. By making use

of a proprietary protocol for inter-system communications and redundant hardware

verification mechanisms, the compromise is restricted to the Gate and the attacker

is not able to spread to the rest of the device.

• Incoming industrial protocols are checked on each system (Gate and Core). After

destruction of the lower layers of the OSI model, the industrial protocol used in the

layers five (Session), six (Presentation) and seven (Application) is analysed and

checked to ensure that it matches its specifications. This analysis is redundant on

each system in case of compromise.

• Any interactions on the device, other than through the network, that shows a risk is

not covered by the threat model. It means that physical threats, side channels, serial

access, are not considered in the model. The device may include features to cover

these threats but not in the scope of the security target.

If we look at the list of attacks and threats, the DENELIS answers to some of them

through the following security features and the Table 2.7 matches the security functions

with the attacks.

• [F1.CONFIGURATION_INTEGRITY] An unauthorized user can not modify the

configuration, furthermore the integrity is checked.

• [F2.MANAGEMENT_OF_MALFORMED_INPUT] The device is designed to han-

dle correctly malicious or malformed network entries.

• [F3.SECURE_STORAGE_OF_SECRETS]Authentication secrets such as users and

administrator passwords are securely stored, compromising the device does not al-

low to retrieve them.

43

2.6. Threat Model and Security Target

[F
1.
C
O
N
FI
G
U
R
A
T
IO

N
_I
N
T
E
G
R
IT

Y
]

[F
2.
M

A
N
A
G
E
M

E
N
T
_O

F_
M

A
L
FO

R
M

E
D
_I
N
P
U
T
]

[F
3.
S
E
C
U
R
E
_S

T
O
R
A
G
E
_O

F_
S
E
C
R
E
T
S
]

[F
4.
S
E
C
U
R
E
_C

O
N
N
E
X
IO

N
]

[F
5.
S
E
C
U
R
E
_L

O
G
G
IN

G
]

[F
6.
N
E
T
W
O
R
K
_B

R
E
A
K
A
G
E
]

[T1.RIGHTS_POLICY_BYPASS] X X
[T2.IDENTIFIERS_THEFT] X X
[T3.AUTHENTICATION_BYPASS] X X
[T4.DENIAL_OF_SERVICE] X X
[T5.CONFIGURATION_CORRUPTION] X X X
[T6.FILTERING_BYPASS] X X
[T7.PARTITIONING_VIOLATION] X
[T8.LOG_COMPROMISE] X X
[T9.SYSTEM_COMPROMISE]
[T10.INDUSTRIAL_PROCESS_COMPROMISE]

Table 2.7: Security features coverage over identified threats

• [F4.SECURE_CONNEXION] The connection to the administration interface is se-

cured, ensuring integrity and confidentiality.

• [F5.SECURE_LOGGING] The device locally stores logs, securely sends them to a

remote server and allows export by an administrator.

• [F6.NETWORK_BREAKAGE] Each network is protected against network attacks

over integrity and availability from the other network. Compromise of a GATE can

not be propagate to the rest of the device.

Looking at Table 2.7, it appears that threats [T9.SYSTEM_COMPROMISE] and

[T10.INDUSTRIAL_PROCESS_COMPROMISE] are not covered by the actual security

44

Chapter 2 2.6. Threat Model and Security Target

Network
Interface

Embedded
Processor

Network
Traffic

����������	

��
�	�����	

Network
Breakage

Network
Interface

Embedded
Processor

����������	

��
�	�����	

��

��	

���	
����

�������

�������	�

��
����

Network
Traffic

Electronic
Segregation

��

��	

���	
����

Embedded
Processor

�
��

�
��

�
��

������ ������
�	
�

��

����������	

��
�	�����	

��

��	

���	
����

��
�	�����	

��

��	

���	
����

Electronic
Segregation

Protocol
breakage

����������	

Network
Breakage

��
���
�
�����
�
��������

��

Figure 2.12: Research Platform high level Architecture

target of the DENELIS. This work aims to cover these threats and provides security solu-

tions to overcome these critical flaws. To do so we setup a research and experimentation

platform based on the DENELIS architecture.

Research Platform

As it is described in Figure 2.12, the need is to keep the three FPGAs architecture, but as the

target is to perform extensive security operations on the Core’s FPGA, we need to release

as much resources as possible of this FPGA. To do so the protocol checking performed is

removed from the Core and established on the Gates, but the overall Gates functions are

kept untouched. Furthermore to reduce parasitic processes on the Core and to work with

the greatest number of industrial protocols, a stage of protocol breakage will be added on

each Gate (this is discussed in the second contribution).

Protection against network issues is a key point of industrial networks cybersecurity,

firewalls and IPS/IDS are themost represented of the solutions used but, while they gener-

ally resort to patterns matching over network data, they are insufficient when addressing

specific issues. The security target puts in light these issues which concern application fil-

tering and protection against persistent threats. The company Seclab, with the DENELIS,

proposes an uncommon approach which arises as a valuable base platform, while it is

still insufficient on the addressed application and persistent threats. This work targets to

contribute on the state of the art while proposing innovative approaches using FPGA’s

platform.

45

2.7. Problematic

2.7 Problematic

Industrial networks, in the same way as IT networks, are exposed to various threats, but

this is the applications specificities and the probable consequences of a failure that make

them critical targets. Among commercial and scientific solutions to address these net-

works cybersecurity, a recurring safety issue is that they are mainly software applications

running on dedicated, or not, systems. But when considering the security of such appli-

cations, there are two sides to take into consideration. Firstly, the proper configuration of

the security solution, as we explained when addressing the various threats that target a

control system, an improper or incomplete configuration is a serious security threat. And

secondly, these applications, as firewalls and IPS/IDS, run on systems that offer other fea-

tures, such as management interfaces, web services. All these supplementary features

are vulnerable to other forms of attacks, such as buffer overflow [63] for management

interfaces and SQL injection [64] for web services, but it exists even more [65]. On a soft-

ware platform, when an attacker manages to gain an access point, he can easily divert the

operations and disable processes, thus invalidating the security application hosted. Con-

sequently, these applications are considered intrinsically less secure than hardware only

devices. It is therefore necessary to secure such applications in order to protect access and

modification by an attacker.

Furthermore, even if specialized equipments (Industrial Firewalls, IDS/IPS) are able

to handle network and protocol security, they rarely take into consideration the applica-

tion aspect. Looking at a network message inside an Industrial Control System, it has

three security topics, the network (transport), the protocol (communication) and the ap-

plication. The first two topics were covered in the section concerning the threats, what

remains is the application characteristic which is the meaning of the command and the

impact on the operational process below. But to understand the application component,

one needs to have the knowledge and understanding of this process. In fact, taking a le-

gitimate operation, which is commonly requested by the control part, depending of the

process state and behavior, it can cause disastrous consequences. If we take again the

example of the electrical substation, with two power sources which supply a number of

lines, each source can be disconnected by a circuit breaker. Wether it is the field oper-

ator or the control system, they know that both circuit breakers can not be activated or

deactivated at the same time, it would either damage the power sources or cause power

shortage. But a device which does not possess this application knowledge, does not know

or understand the relation between equipments in the industrial process, and thus can not

judge if an incoming operational order is damageable to the process. So in conclusion to

completely acknowledge that a network packet does not present risks for the Industrial

Control System, security devices need to understand the process and track its state, which

46

Chapter 2 2.7. Problematic

is rarely supported by classical and popular solutions.

From the observations made when looking at protection mechanisms and based on

the security target, it appears that two security requirements are not currently addressed.

[T10.INDUSTRIAL_PROCESS_COMPROMISE] concerns the application knowledge

that is required to perform complete network analysis and [T9.SYSTEM_COMPROMISE]

addresses system vulnerabilities toward persistent software attacks which aim to disable

the security operations on the security device. These two security requirements match

both topics discussed above and so they will be the two main problematics we intend to

address in this work. To answer these needs we introduce two contributions, one cen-

tered around a secure boot chain for operating system using FPGA as root of trust. It

addresses the problematic of existing software compromise, we intend to target the long-

term compromise of the system and applications that will put the security analysis in

danger. While the other concerns both hardware application filtering and software com-

promise, we propose to handle the security analysis through hardware resource and in-

troduce an operational-process aware architecture.

2.7.1 Secure Boot

This contribution aims to answer the threat [T9.SYSTEM_COMPROMISE], and to ad-

dress the problematic of non-compromise of the security analysis. To ensure that the

actual running system on the processor is secured, the research platform provides some

features, such as [F1.CONFIGURATION_INTEGRITY], [F3.SECURE_STORAGE _OF

_SECRETS], and it exists many solutions, such as the native firewall of the system or re-

duced access rights. But what about persistent threats, they typically tend to implement

malicious elements which persist even in case of a system reboot. Doing so an attacker

may install a backdoor on a device and durably compromise an application or system. To

cover this threat, this work introduces a Secure boot chain which ensures that software el-

ements running on the FPGA embedded processor are legitimate and not compromised.

From the boot parts (spl,uboot) up to the actual running system (kernel, rootfs), each

boot element is verified by the previous one. On the research platform the target is to

raise the security of the Gates, but it is relevant to any System on Chip running Linux, as

we tend to ensure the legitimacy of the system and its applications. We intend to promote

the FPGA as a root of trust to create a chain of trust from one boot element to the other,

without need for external components (secure elements) or modifications to the FPGA

configuration logic.

47

2.7. Problematic

2.7.2 Application Filtering

To answer the security threats [T10.INDUSTRIAL_PROCESS_COMPROMISE], one

needs to understand the incoming industrial process and to perform security analysis on

the requested operation. One of the method privileged to perform quick and efficient

analysis between a data flow and stored constraints is the patterns matching. It allows to

match a stored operation to incoming data and so to authorize it. But [28] has demon-

strated that simple pattern matching is not enough, advanced application threats need

the security analysis to be aware of the operational-process state to ensure correct filter-

ing. This work tends to introduce a time and operational-process aware patterns match-

ing engine based on multiple dedicated Finite State Machines. Furthermore it introduces

industrial protocols non-dependency through a common model for industrial protocols

representation. But as we tend to propose an operational-process aware architecture us-

ing hardware resources, we address at the same time the problematic of security analysis

compromise. Hardware architectures have a higher resistance to compromise than soft-

ware so we raise the security of the security analysis. Where the first contribution tends to

cover security needs for existing platform or systems through FPGA’s usage, this second

one proposes an alternative architecture. Furthermore aswe rely on softwaremechanisms

to perform industrial protocol non-dependency, we make use of the first contribution to

ensure the non-compromise of these mechanisms.

48

Chapter 3

Chapter 3

Secure Boot

3.1 Operating system boot on FPGA . 50

3.2 Threat Model . 52

3.3 Related Works . 53

3.3.1 Operating System Security . 53

3.3.2 Bitstream Security . 54

3.4 SecBoot - Secure boot using embedded boot parts 54

3.4.1 Concept . 54

3.4.2 Architecture . 55

3.4.3 Results . 56

3.5 Discussion . 58

49

3.1. Operating system boot on FPGA

Among solutions to secure industrial networks, most of them are pure software ap-

plications or eventually Systems on Chip (SoCs), using combination of a CPU and re-

configurable architecure. One of the most basic condition for those devices to ensure

the efficiency of their security processes is the no-compromise and integrity of their soft-

ware system. [8] has shown that security has become a concern for embedded devices,

particularly since their proximity to the users, because they offer easy physical access.

Multiple alternatives are available for a malicious entity to compromise a software appli-

cation, through well known attacks to alter the functions, persistent attacks which remain

even after reboot or directly by replacing some part of the system. This chapter discuss

issues related to operating system boot security on FPGAs and particularly how to ensure

authentication and no-compromise of the system through its boot elements.

3.1 Operating system boot on FPGA

The boot process of an FPGA-based embedded system does not differ that much of a clas-

sic architecture, although it introduces a crucial step when working on reconfigurable

platform, the loading of the matrix. The bitstream is loaded by the configuration logic on

the matrix, the method and the source depend on the configuration. It is either directly

loaded from a memory, typically a flash support, or by the embedded processor (when

there is one) and in this case the sources are multiple, from a memory, from the network

or more generally from any devices or links available to the processor. This additional

boot step only concerns the FPGA, the operating system which runs on the embedded

processor has its own boot sequence which is commonly independent to the FPGA load-

ing. The sequencing of these steps depends on the boot method choice, in one case the

bitstream is loaded first and then the operating system boots and in the other case the

operation system boots first and then loads the FPGA.

Concerning the boot chain of the operating system, it happens as following, while

Figure 3.1 summarizes the whole boot process from the FPGA loading to the operating

system.

• The Boot ROM is the very first software boot step, it is not accessible to the user

as it is written in a dedicated Read Only Memory (ROM) by the FPGA provider.

On power up this short software element handles very low level clocks setup (CPU

clocks setup), reads the PIO configuration which indicates where to find the first

preloader, loads it and jumps to its start.

• The first bootloader is the first boot element customizable by the user, it handles the

basic configurations of physical resources (clocks setting, serial interfaces, network

50

Chapter 3 3.1. Operating system boot on FPGA

������������	
���
����		
��
��	��
����
���
����
���
�����
���
������
����
������
	��
���

�
����

�������

��
�
��
�
����

�		
�	
���
���	��
�		
�	
���

������ �		
��

��
�
��
������	
����
��	��
����
���
��
��
������	��

�������

����		
�
� ���	
���
�������
�
�		
�	
���

��������
��		
�	
���
�	
���
������	�����	��

����
���
����
���
�������
����
������
	��
���

�
����

�������

��

����!" ��
���
��
���
����
�
�
�����
�#����
�$�
�
�����
$%%%&�

'	
���
���������
��	��
����
���
����
���
�����
���
������
����
������
	��
���

�
����

�������

�����������(�����
�����

������
����
�	��	��
������
������	�����
#���	����$��
���$�%%%&

�
������	����
���
������

����

Figure 3.1: Boot chain of a FPGA based System on Chip

interfaces, . . .). This stage takes place in two steps, a part of the bootloader is loaded

in cache by the Boot ROM (L1 and L2), it configures the DDR RAM, then the rest of

the bootloader is loaded in RAM and makes further setting. Its last task is to load

the second bootloader in RAM and jump to it.

• The second bootloader is an optional step of the boot process, it handles similar

configurations as the first bootloader but in more depth and where the first one

focusses on the physical settings, this one focusses on the software configurations

of the resources. Both bootloaders can be combined in one unique element which

performs all the setup. Finally, it loads and starts the operating system.

• Operating system boot timing and operations depend on itself, it is the last step of

the boot chain which leads to the system being ready to use. In case of Linux (which

is the OSwewill be using) the kernel allocates resources (memories, cache, . . .) and

loads the rootfs.

Most, if not all, of the elements of the boot process are loaded from external supports,

such as flash memories.

Knowing the boot process of the System on chip, it is easy to understand that the

compromise, voluntary or accidental, of one of the elements will impact the whole boot

and will prevent the system from working correctly. In this context we construct a threat

model to only consider the attacks which may lead to persistent threats on the software

boot elements.

51

3.2. Threat Model

3.2 Threat Model

Attacks and threats that can target the boot elements are numerous, some take placewhen

the system is running, while others during the boot process, but virtually, nearly all the

attacks can potentially target the boot elements. As well, the flash storages on the device

are a vulnerable locations: a malicious entity might replace or alter memories content

through logical or physical access.

For example, if at runtime an attacker modifies the content of the Flash memory contain-

ing the kernel or rootfs, he is then able to install a backdoor that can persist after reboot.

Even the RAM or the communications between parts of the system can be probed to re-

trieve or alter information.

Attack means are various, as the attacker needs to access with writable right, it can be

achieved through software methods, side channels and many others. The same goes for

the update of the bitstream or software elements, it can be done remotely through the

network or locally with a physical access. In both cases, an attacker can either send ma-

licious elements, or during a remote update, he can intercept and modify the data. All

these attacks and threats can lead to a specific case that we intend to address in this work,

the persistent threats.

Whatever the attack and its consequences, the most basic and efficient way to break or

revert it, is the reboot of the system. Indeed it guarantees to put back the system in its

original state, it does not patch vulnerabilities but it will stop all running processes and

cut all connections. Persistent threats are, in the other hand, threats and attacks that will

persist even after a reboot. Whether it is backdoors or system compromise, which make

it starts in a state different from that expected, there is multiplicity of existing persistent

threats. The most common vector is the modification of the boot elements.

It is the sequence of the boot steps that leads the system in its started state, so if one of

these steps is altered, the state of the whole system is compromised too. The most com-

mon example is the replacement of one bootloader, as it loads the operating system, an

attacker which replace or alter a bootloader can change the operating system that will

start on the device and doing so completely change the behavior.

Our threat model, Figure 3.2, considers that the FPGA is secured. In accordance, bit-

stream encryption is used and then its freshness is checked using themanufacturer mech-

anisms, if available, otherwise the solutions described in [15] and [16] can be employed.

Physical and side channel attacks are not considered in the scope of this work while the

update of the bitstream is done by a certified entity and in a secured environment. The

security of the external DDR RAM is not considered at runtime but approaches based

on Merkel-tree [68] concept or through encryption and checksum [69] may be consid-

ered. We mainly address the security of the kernel and other boot elements stored in the

52

Chapter 3 3.3. Related Works

��������	
����

��

��������	���

���������
������
������

���������	
��������

������
������
������

������
������
������

�� �����	!"����

Figure 3.2: Threat Model

external flash memories.

3.3 Related Works

Literature addresses authentication, integrity and confidentiality of boot sequence ele-

ments, but most of the proposed solutions are expensive and complex: they generally re-

quire user resources, themodification of the configuration logic or supplementary devices

(Crypto Processor, Trusted Platform Module) to operate. Using FPGA security mecha-

nisms and configurable logic, in a cost effective way, it is possible to ensure a root of trust

between consecutive stages of the boot sequence.

3.3.1 Operating System Security

The growing transistors integration enables FPGA to embed processor and run software

applications. Their integrity and authentication are fundamental to ensure the security

of the embedded device, and to prevent advanced persistent threats. By using Hash algo-

rithms [18] and [19] propose to verify the integrity of the kernel loaded on the processor.

Then, signing the hash and verifying it on the device allows to ensure the authentication

of the kernel like described in [20], [21] and [16]. [23] uses a similar mechanism to check

the kernel and performs additional memory measurements to ensure that the binary Im-

age matches the expected size and memory location. To allow each boot stage to verify

the next one, [22] offers a boot chain using a Trusted Platform Module (TPM) to ensure

the authentication and integrity from the lowest elements to the kernel.

53

3.4. SecBoot - Secure boot using embedded boot parts

3.3.2 Bitstream Security

Compared to software only programmable systems, the reconfiguration capability offered

by FPGAs present additional risks because it requires to also protect the bitstream. FPGA

manufacturers (Altera [9], Microsemi [10], Xilinx [11]) offer possibilities such as encrypt-

ing the bitstream generated with their tools. A dedicated hardware engine handles the

decryption of the firmware on the device. [12] proposed to add a CRC check for the bit-

stream to ensure its integrity and [10] achieves the same purpose with their AES-based

MAC. If the bitstream check fails, [13] and [14] propose to fall back on a golden firmware

stored in a dedicated read-only flash memory within the FPGA. To ensure the freshness

of the bitstream and to prevent replay attacks, [14] offers the possibly to add a version

number which is compared and incremented at each update. [15] and [16] suggest a

similar approach by adding TAGs to the bitstream. With the SecReCon architecture, [17]

submits a method based on a Root of Trust (RoT) and requiring a trusted authority, but

the implementation is heavy. Finally to address the problematic of authentication [15]

introduces a process of challenge response between the FPGA and the programmer.

3.4 SecBoot - Secure boot using embedded boot parts

3.4.1 Concept

Embedded systems require highly optimized designs and, to achieve the desired security

level, this contribution aims at developing a newmethod that strikes the balance between

both area and boot sequence integrity. We extend the approach in [16] using Open source

tools to perform the kernel verification and take advantage of FPGA dynamic reconfigu-

ration, as proposed in [70], to reduce the resources overhead. Rather than checking each

element of the boot chain, all the vulnerable elements are embedded in the bitstream. In

the presently proposed boot sequence, the first and second bootloader stages are stored in

embedded BRAMs located in the user logic of the matrix. This allows to take advantage

of security featuresmade available by FPGA vendors for the bitstream, such as encryption

and integrity checking. To reduce the overhead, caused by this method, over the memory

resources, we take advantage of the reconfiguration capabilities of the FPGA and use two

bitstreams. The first (Boot bitstream) with the BRAM memories for boot and the second

(User bitstream) without these BRAMs.

54

Chapter 3 3.4. SecBoot - Secure boot using embedded boot parts

���

������	
�������

��������
�����

�������������

�����

����
�����

�
� �����

�������	

�	��

��!��"

����

��������!

����

��������!

#����	

������

�
�
��
��
�
	

�
�
�

�
�
!
�
�"

�
��

��!���

��$���

%

Figure 3.3: FPGA boot elements locations

3.4.2 Architecture

Embedded early boot stage

For FPGA’s embedded CPU, booting on an embedded bootloader is generally natively

supported. But the first bootloader still needs to be modified to get the correct memory

mapping of the second bootloader. In fact, the first bootloader is not intended to locate

the next one on the FPGA’s matrix, pre-loaded addresses it knows to retrieve the sec-

ond bootloader match standard interfaces such as network and serial. Uboot (Universal

Bootloader) is an open source bootloader which natively supports kernel verification. It

needs an Image Tree Source (ITS) file, which contains the information of the kernel im-

age (path, compression, Image format, load address, ...) that will be verified, and the

algorithms chosen for hash and sign. This file is compiled with a Device Tree Compiler

and with the given set of private keys to generate a Flattened Image Tree (FIT) file. It

contains the binary of all the given images and their signatures. ThenUboot is recompiled

to embed the corresponding public keys. By default Uboot supports up to RSA 2048 for

signature and SHA 256 for hashing, but to harden the signature and improve the security

level, support for RSA 4096 and SHA 512 was added. The generated FIT file is stored in

the external flash in place of the Kernel. The reader may refer to [71] for further preci-

sion about Uboot verification feature. Finally to set up a secure boot chain from FPGA to

OS, the support for signature verification by the initramfs [72] embedded in the kernel

is added. It ensures that the rootfs is authentic and not corrupted by verifying its GNU

Private Guard (GPG) [73] signature. This verification is not in the scope of this work as

the focus is on FPGA to kernel security.

55

3.4. SecBoot - Secure boot using embedded boot parts

Reconfiguration

Embedding early boot elements in the FPGA matrix consumes lots of RAM blocks. It

reserves a part of the resources normally made available to the user and thus limits the

possibility of implementation for the rest of the design. To avoid this overhead we take

advantage of the reconfiguration capabilities of the FPGA. We use two bitstreams, the

first (Boot bitstream) with the reserved RAM resources for boot and the second (User

bitstream) without these RAMs. Figure 3.3 depicts the system overviewwith the location

of each boot element. On FPGA’s power up the first bitstream is loaded from the default

address. During the boot process after kernel verification we reconfigure the FPGA ma-

trix with the second bitstream. The reconfiguration is triggered by Uboot through a spe-

cific gpio. A dedicated IP accesses FPGA’s configuration registers, rewrites the bitstream

source address and then launches the reloading (on an Intel FPGA this IP is the Remote

Update, on a Xilinx it is the Partial Reconfiguration Controller). The reconfiguration only

impacts the user logic, the embedded processor will pursue system’s boot during this

time. The IP used for dynamic reconfiguration must be present in both bitstreams. In

case of a shutdown request from the processor, we want to rewrite the default address in

the FPGA configuration registers before shutdown, to be able to load the first bitstream

on the next power-up. Figure 3.4 summarizes the new boot sequence with the actions of

each element. Another way of freeing the RAM blocks used for the boot is to remap them,

to make them re-usable by other design elements. This involves making these memories

writable and raises a security question. Moreover the feasibility depends entirely on the

design and the FPGA. For example, on a small FPGA, the size of the memory that embeds

the Uboot imposes heavy constraints over the timing of the design and greatly compli-

cates the addition of other IPs. On the contrary, on larger FPGAs, the constraints imposed

by this memory are negligible and remapping is a feasible option.

3.4.3 Results

To demonstrate the occupied resources and time cost of the proposed boot chain we use

an Intel Cyclone V 5CSEA5 FPGA with an EPCQ memory, for bitstream storage, and an

EMMCmemory, for kernel and rootfs storage. The first bootloader we are using is a sim-

ple preloader (SPL), based on Uboot, generated through Intel tools kit SoC EDS, and for

the second bootloader, we use Uboot as mentioned previously. For the dynamic reconfig-

uration of the FPGA we use an Intel IP, the Remote Update (RU), coupled with a custom

state machine.

The FPGA resources consumption of each element needed to implement the proposed

boot chain is displayed in Table 3.1. At the end of the boot, when the OS is operating,

56

Chapter 3 3.4. SecBoot - Secure boot using embedded boot parts

������������	
���
����		
��
��	��
����
���
����
���
�����
���
������
����
������
	��
���

�
����

�������

�
����		
���
��
�������
�������

���
��
��
�������������

��
�
��
� !" #�		
 $����� �		
��

��
�
��
������	
����
��	��
����
���
��
��
������	��

�������

����		
��%�
�	
���
��� !"����
��
������������

���� !"��	
�����		

��	��
����
���
����
���
�����
���
������
����
������
	��
���

�
����

�������

 �

����&'%��
���
��
���
����
�
�
�����
�(����
�)�
�
�����
)***+�

�
������$������
��
����������
�������

���
��
��
�������������

#�		
��	
���
���������
��	��
����
���
����
���
�����
���
������
����
������
	��
���

�
����

�������

�����������������
�����

������
����
�	��	��
������
������	�����
(���	����)��
���)�***+

�
������	����
���
������

����

 ����������	�����
�	��
��

Figure 3.4: Secure Boot Chain with FPGA reconfiguration and kernel verification

Block
Memory Bits

M10Ks Registers LUTs

Before
Reconfiguration

SPL 224,352 28 3 30
Uboot 1,349,960 168 6 213
Remote
Update

0 0 74 125

Total 1,574,312 196 83 368

After
Reconfiguration

Remote
Update

0 0 74 125

Table 3.1: Resource Usage Summarize

only the Remote Update IP and its state machine remain on the matrix. For the FPGA

used in the experiment the resource cost represents a bit more than 0,3% of the available

LUTs which may be considered negligible. In comparison with prior work which relies

on the use of FPGA configuration logic in order to perform security checks over the boot

chain, this work still has an overhead on the user logic. On the contrary, compared to

asymmetric cryptography and hardware acceleration, the resource cost is lowered, we

move the resources overhead from the FPGA to the flash, as we need to store 2 bitstreams

instead of one. But nowadays flash memories are large and cheap, much less expensive

than FPGA resources.

The boot time of the overall system from FPGA to rootfs, using a light kernel, takes

several seconds. The verification of a RSA 4096 signature takes at most 1 or 2 milliseconds

which is negligible in comparison. Furthermore the FPGA reconfiguration, in addition

to being extremely fast, is done in discrete time while the kernel is booting so it will not

impact the boot delay.

57

3.5. Discussion

3.5 Discussion

Even if the experimentation was carried using an Intel FPGA, it remains applicable with

any manufacturer supporting dynamic reconfiguration. For example on a Xilinx target:

[74] and [75] show how to embed the early boot stages. Furthermore, by using the Partial

Reconfiguration Controller IP it should be possible to achieve a similar work as this con-

tribution. RAMblocks are basic IPs and are embedded in all FPGA families. The use of an

Open source software allows free customization of boot elements. All these points allow

a great flexibility in the choices of the system elements. This contribution is focused on

reducing the resources reserved by security mechanism as describes in [16]. Using FPGA

reconfiguration optimizes the area used by the boot elements to a barely negligible level.

It does not require any additional device or processor to perform security mechanisms.

The Kernel integrity and authentication is checked by the Uboot. If an attacker man-

ages to modify the flash content and alter the Kernel, the signature will differ and Uboot

will stop the boot process. At this moment the system is locked and waits for a reboot

or a physical intervention to update the kernel. We can imagine falling back on a golden

Kernel stored in a Read Only memory to perform security checks while waiting for an

intervention. In case of a replay-attack, an attacker could be able to retrieve an older ver-

sion in order to downgrade the Kernel. Uboot verification will end successfully and the

boot process will continue on the downgraded Kernel. In order to limit the risk, it is nec-

essary to change the key used by Uboot to verify the signature and therefore to update

the bitstream. This solution is recommended for security updates, each Kernel version is

signed with a different key to prevent downgrade. All of this depends on the anti-replay

protection of the bitstream. An attacker able to load a previous version of the bitstream

with the Uboot verification key corresponding to the downgraded Kernel signature will

successfully perform a replay-attack on the device. For example with the used Cyclone

V FPGA and the previously described threat model we are vulnerable to replay-attacks.

It is necessary to use other FPGA families or to implement solutions as suggested in [16]

and [15]. Table 3.2 exposes the criteria discussed above in relation to related works.

Secure boot is fundamental to ensure the security of embedded devices. In this con-

tribution we have presented a quick and easy way to secure a Kernel, by capitalizing on

already existing FPGA security, using Uboot. Thanks to the reconfiguration capabilities

we achieved nearly negligible resources and boot time overheads. The presented solu-

tion is compliant with other security features as the protection over early boot stage in-

crease with the security of the bitstream. It allows building a stronger boot chain, with

reduced development time over boot security. Instead of protecting the software system

and applications, against the compromise through signature checking, the next chapter

suggests to replace the software security analysis by a hardware IP. More precisely by a

58

Chapter 3 3.5. Discussion

Kernel
Integrity

Area
optimized

Flexible
FPGA

oriented
Anti-replay

Discretix 2006
[18]

Yes Yes Yes No Yes

Atmel 2006
[19]

Yes Yes No No No

ARM 2009
[21]

Yes No Yes No No

Apple 2009
[20]

Yes Yes Yes No No

Devic 2011
[16]

Yes No Yes Yes Yes

Kai et al. 2012
[23]

Yes Yes No No Yes

Microsemi 2014
[22]

Yes Yes No Yes No

SecBoot 2017 Yes Yes Yes Yes
FPGA

dependent

Table 3.2: Related Works Comparison

patternsmatching architecture that will check the incoming network traffic and integrates

application knowledge to perform operational-process awareness. By construction hard-

ware applications are less vulnerable and more resistant to compromise (not immune),

besides being faster. Furthermore, this work provides a proposition for protocol agnos-

ticism which relies on a software process, so it will use this first contribution to ensure

non-compromise on the current application.

59

Chapter 4

Versatile patterns matching for

application analysis

4.1 Industrial Protocol Common Model and Protocol Breakage 61

4.2 Operational-Process Aware Filtering . 64

4.2.1 Network Dimensioning . 66

4.3 Hardware Pattern matching . 66

4.3.1 Content Addressable Memory . 67

4.3.2 Bloom Filter . 70

4.3.3 State Automaton . 72

4.3.4 Synthesis . 74

4.4 Versatile Operational-Process Aware pattern matching 74

4.4.1 Concept . 75

4.4.2 Architecture . 82

4.4.3 Experimentation . 89

4.4.4 Results . 96

4.4.5 Discussion . 99

60

Chapter 4 4.1. Industrial Protocol Common Model and Protocol Breakage

Network cybersecurity solutions, like Intrusion Detection Systems (IDS), Intrusion

Protection Systems (IPS) or firewalls, extensively resort to pattern or signature match-

ing to identify threats among network data. However, it presents vulnerabilities inherent

to the software implementation, and furthermore, industrial networks have specific con-

straints that are not always covered by solutions coming from the IT world (such as low-

latency or support of specific industrial protocols). In parallel with the researches carried

out on the protection of these software elements (see previous chapter on SecBoot for

example), hardware solutions are more and more investigated [61]. To achieve similar

security features (network filtering, protocol filtering) but on reconfigurable hardware

(FPGA) a versatile solution is described. It uses a dedicated memory space to handle

patterns storage, while FSMs are in charge of the comparisons.

4.1 Industrial Protocol Common Model and Protocol Breakage

This work targets a versatile solution to perform application analysis over network ex-

changes in industrial networks. To do so, incoming network messages will need to match

sets of rules to ensure that there is no risk for the industrial process. But, as the research

platform ensures network breakage and protocol checking in software, to analyse and

understand the application load embedded in the industrial protocol using hardware re-

sources, one need to understand the protocol. There are lots of different industrial proto-

cols, to perform application analysis it would either require to understand every protocols

and to adapt the process, or to abstract the protocol and to have amatching process which

works the same for every protocols.

The unification and homogenization of industrial, IT and IOT networks under a com-

mon network protocol is not a recent topic, but as the interest around the IOT increases,

it is a need that is becoming more and more present [49]. Two examples of this need are

the Common Information Model (CIM) [66] and the Common industrial protocol (CIP)

[67].

• The first (CIM) is an open standard for representation andmodeling of networks. It

allows to describe equipments of the network as objects with attributes, parameters

and relationships in order to exchange management information. Currently main-

tained as a UMLmodel and allowing to derive XML schema, the CIM was officially

adapted by the International Electrotechnical Commission (IEC) as a standard for

electric power industry.

• On the other hand, the CIP is an open industrial protocol, supported by ODVA and

used for industrial automation applications. It was designed to provide a unified

61

4.1. Industrial Protocol Common Model and Protocol Breakage

communication architecture, is media-independent and is supported by many ven-

dors.

• OPC-UA [42] is another protocol which targets the unification of communication

standards inside control networks. Its platform independent architecture was de-

signed to overcome standard OPC limits and to be particularly versatile toward in-

formationmanagement and exchanges. It should be able to handle any kind ofmeta

information allowing to match existing protocols as well as future ones.

But all these three are communication protocols which induce the requirement for

every devices on the network to speak using the same protocol to permit understand-

ing. Unfortunately none of these unification methods are popular or used enough yet, so

resting on one of them would be very reducing, with respect for the diversity of used in-

dustrial protocols, and so reducing experiment possibilities. What we introduce instead

is the use of a format of data organization instead of a complete language. Format and

language are two different things while one make use of the other.

Format addresses data organization the same way as a structure in high level program-

ming languages, it is a structured way to sort data with sizes and limitations. While a

language is a way to express information, it commonly relies on a dictionary to perform

translations with its own vocabulary and makes use of formats to organize data within.

As a format can remain simple or become very complicated when needed, the definition

of a language requires defining its vocabulary, grammar and potentially a dictionary for

each other language needing translation. In practice, languages are muchmore expensive

to define but are very complete in terms of usage. In our case industrial communication

protocols are assimilated to languages.

Looking at the space and resource problematic of this work we don’t want to rely on an

intermediate language, mainly because of the complexity and resource cost of the multi-

ple dictionaries that it would require (one dictionary for each industrial protocol we want

to support). In fact using an intermediate language means that the security process only

needs to understand one protocol and greatly simplifies it. But it would also mean that

for each incoming different industrial protocol we have a dictionary which allows transla-

tion to our intermediate protocol and somultiply the resource cost for each new incoming

protocol. Instead we introduce the use of an intermediate format which is less expensive

for the embedded process.

Most of the industrial communication protocols have in common the type of informa-

tion they use and require to fulfill their needs. These types are as following:

• Routing and access control data such as unique ID or Equipment Name, supple-

mentary to the classic IP address, Port and MAC address used to route data in an

62

Chapter 4 4.1. Industrial Protocol Common Model and Protocol Breakage

Ethernet/IP network. These routing information, either strings or numerical values,

are needed by the protocol to ensure that the communication takes place between

the right interlocutors.

• Operation related parts as described in the introduction to industrial networks, in-

dustrial protocol messages request for an operation, with more or less abstraction.

Information related to that operation, such as Function Code or Operation Number,

are basic because they account for the reason why the message was send.

• Parameters, complementary to the operation, they are additional information that

allow the correct application of the operation. Generally under the form of Address,

Value, Object Identifier or anything which allows to specify the target and the con-

text of the operation.

Figure 4.1 shows on three industrial protocols (Modbus, S7, BacNet), which parts are

Routing, Operation or Parameters. Knowing the types of information, what we do is cre-

ating a structure with a section for each one of these types. Fundamentally this is the

intermediate format we introduce, the target is in fact to reorder the incoming informa-

tion carried by the protocol, while removing unused or irrelevant, to allow the security

engine to process one type at a time and always in the same order. Doing so, instead of

dictionaries, we store and use structures, each incoming protocol matching one structure

which indicates the reordering needing to be done, knowing that this reordering is easily

done using hardware resources. In addition all the supplementary data transported by

the industrial protocol with no connection to the context are classified asmiscellaneous as

they are not needed for security purpose. It allows to introduce a custom format that we

call common representation model constructed as following {[Routing] [Operation] [Param-

eters] [Miscellaneous]} , incoming messages data will be dispatched in the corresponding

types in reference with the corresponding reordering structure.

The use of a common representation for most of the industrial protocols is one simple

way to achieve protocol agnosticism, even if it is not perfect, it is a relatively inexpensive

solution, in terms of resources and speed. Doing so allows to reduce the complexity over

thematching process and keep it as simple and efficient as possible. But patternmatching

alone allows only to compare incoming network messages to a list of registered ones, it

does not take into account the context of the message, the state of the network and other

parameters. As industrial control systems handle events and operations that can be part

of a sequence or a chain, and need synchronization. In this case the context and previous

messages are additional conditions to the pattern matching.

63

4.2. Operational-Process Aware Filtering

���� ���� 	���

�
��
�������
��������������
� ���
�
� ��������
� ������
����

�
��
������
� �
������
� �������

���� �!��"�������
���
 � �� �!�#
�
�$
%
 � �� �!��
����
�����"�
��&�
�
 ��� �!�#
�
�$
%
� ����!�"����
�"�
��&�
�
� � � �!�'(�
�������
���
� � � �!��
�)������������
� � ��!��
�)������������

� �
����
������
�)����	%%�
��
� �
����
�����*	���
�
��	%%�
����
����
� �
����
�����*	���
�
��	%%�
��
� ���
���
�)����%
����
�����*	���
�
��
%%�
��
� +�����
�������
��
�)������,-
�
� +�����
��*	���
�
��	%%�
����
����
� +�����
��*	���
�
��	%%�
��
� +�����
���
�)����%
����
�����*	���
�
��
%%�
��
� .��������

�
��
��	���
� 	�������

� �
�
�

��
��
������/� ���������/� �
���� �����/� �����������%
 �
�

��0� �+�� .

%
� �
�
,
�
�� �
�
,
�
����
�
 �
�

�������

���	�
�

��

��������	 �
��
�����	 ���
�����
	 ��������������	

Figure 4.1: Information Sorting in Industrial Protocols

4.2 Operational-Process Aware Filtering

[28] has demonstrated that simple pattern matching is not enough, advanced application

threats need the security analysis to be aware of the operational-process state to ensure

correct filtering. In accordance with this work and in collaboration with industrials, it

appears that to perform correct security analysis the pattern matching process needs to

64

Chapter 4 4.2. Operational-Process Aware Filtering

be aware of the operational-process state but it needs time awareness too. It can be either

measuring the precise flow of time over an interval or the awareness of the time and date

over the day. Following are two examples of situations where time awareness is needed:

• Many devices have technical constraints that must be respected under penalty of

failure. These constraints might be on the device itself such as operating tempera-

ture and supply voltage, aswell as on other connected equipments that are driven by

it. Inside industrial control systems this second condition is even more true because

the operation of a device can impact all the others that operate below it. Taking the

very common example of a circuit breaker, this kind of device has a breaking per

second limit beyond which it may be damaged. And all the devices supplied by the

power line, controlled by the circuit breaker, have a power breakage limit beyond

which they are destroyed. As connected and remotely controlled circuit breakers

are common, and the breakage command is a legitimate one which is needed in

many cases, an attacker may exploit this command to voluntary overcome the max-

imum breakages per second limit and destroy some equipments. To avoid these

kinds of situations, the security process must be able to monitor a time interval and

to check the time between some specific commands.

• The second case is easier to demonstrate, if we consider a company with a produc-

tion line working from 6am to 5pm, the start-up of one of the device of this line,

outside of these operating schedules, may very well be an attack. For this reason it

is necessary for the security process to be aware of the date and time.

To match these needs, the representation model previously presented is upgraded.

Routing information are split between emitter and reveiver, operation data are divided

between the operation itself (read, write, activate, update), parameters required by the

operation (Address, Object Identifier) and data itself (values, files). The newly updated

common representationmodel is : {[Source] [Destination] [Operation] [Parameters] [Data] [Time

Condition] [Miscellaneous]}.

Thismodel is used for the followingwork on thematching engine, as it allows protocol

agnosticism. As long as both incoming data and stored patterns share the same format

or protocol, the matching will work. For implementation purpose the common repre-

sentation model boundaries are set as followed. Source, Destination and Operation are

mandatory information, it represents the minimum data sent using an industrial protocol

to formulate and order, remaining information (Parameter, Data, Time Condition, Miscel-

laneous) are optional. Technically speaking the proposed representation model does not

hold boundary limitation for fields size, as it is mean to be a model and not a dictionary

65

4.3. Hardware Pattern matching

neither a format. Each field matches the size of the corresponding data in the protocol

message.

But implementation problematic requires to set up size boundaries, as it will impact re-

sources consumption, device choice and feasibility. For the following work, we choose to

set up the maximum size of a protocol message to 1024 bytes, meaning that we will work

with patterns of this maximum size. IT is not randomly chosen, compact protocols such

as ModBus and S7 have relatively small APDU maximum length, 256 bytes for ModBus,

so 1024 bytes of maximum size might appear oversized. But as we target a versatile solu-

tion to handle more that simple protocols, more verbose ones need to be considered, and

so taking i0ton account BacNet and OPC-UA. BacNet maximum APDU size is 1476 bytes

and OPC-UA’s one is more than 2 gigabytes, both overcome the maximum pattern size of

1024 bytes, but they are theoretical limits, in application protocol messages are smaller.

In conclusion, we have chosen this size of 1024 bytes because it offers a good compromise

allowing to work on multiple kind of industrial protocols, and it is a good starting point

to work on pattern matching problematic.

4.2.1 Network Dimensioning

PLCs and others remote controllable automated devices are made to be very versatile,

they offer lots of features, many variables, I/Os, wide memory spaces. On the contrary

industrial processes and architectures are made for maximum reliability. They are kept

as simple as possible with no space for surplus or useless. Consequently the number of

used functions/possibilities is very reduced in comparison ofwhat the devices offer, a typ-

ical industrial network shows limited command sets for supervision and remote control.

During the security analysis of these systems it is appropriate to consider only the used

portions of the devices capacities and features, else the task would be huge and contains

mostly unused functions. Taking into account access control, network routing and the

industrial process, it is possible to reduce the number of interactions available and used

inside the control system. A relatively complex industrial network uses a limited number

of industrial commands (for remote control and supervision). From our experience on

the field and based on research works carried out with industrials, it is estimated that if

we list every single request and command of the control system, a hundred is enough to

model the complete process.

4.3 Hardware Pattern matching

One of the purposes of this work is to increase the protection over the core process of the

network security analysis, the pattern matching. The target is to ensure that this pattern

66

Chapter 4 4.3. Hardware Pattern matching

matching can not be bypassed or altered. And so one of the research trails is to perform

pattern matching on the FPGA’s matrix, only using the programmable logic, without re-

sorting to the embedded processor. In fact hard wired pattern matching is harder to im-

pact, as hardwired designs or IPs can not be stopped or bypassed as easily as cutting a

process or a task on an operating system. It is also interesting to mention that hardware

resources allow higher processing speed, which is notable when speaking of network re-

lated topics. For these reasons we target to rely only on the programmable logic for our

pattern matching. This section addresses state of the art pattern matching using hard-

ware resources, the benefits and constraints of the existing solutions with implementation

demonstrations to select the most suitable starting point in our case.

The simplest form of pattern matching consists in a bit to bit comparison between in-

coming data and stored rules, with the constraint of reading the pattern in memory then

processing to compare and starting again with the next pattern. It implies a significant

delay problem when increasing the number of rules. But literature addresses pattern

matching problematic through a variety of algorithms and methods [31], depending on

the constraints imposed by the application.

From Boyer-moore [77], to locate a pattern in a data flow, to Bloom filters [29], which

allow to compress patterns for space efficiency: each method provides benefits for a dedi-

cated usage. But the industrial context imposes strong constraints, the first relying on the

reliability of the security analysis. Security devices using pattern matching are respon-

sible for scrutinizing the network traffic to ensure that the exchanges comply with the

nominal industrial policy and are not likely to cause dangerous behaviors on the targeted

equipments. The error margin of the matching engines must be as low as possible with

a target at 0% of errors. Since this work is about hardware implementation of pattern

matching engine, the targeted platform for experimentation is an FPGA (Intel Cyclone

V).

Along the following subsections we propose a study and experimentation for three

very popular pattern matching methods, Content Addressable Memories, Bloom filters

and Finite State Automatons. These three are commonly used in network applications

and offer space for research and optimizations as well as very different implementation

methods.

4.3.1 Content Addressable Memory

A Content-Addressable Memory (CAM) is a special type of memory, which compares

input data to a table of stored values, and returns the address of the match. The user

supplies a data word and the CAM searches through its entire memory to see if this data

word is stored anywhere. It is commonly used in very high speed searching applications

67

4.3. Hardware Pattern matching

��������
�	
��
��	

�	
��
��	��
����

��	
����	
���

��	
����	
���

��	
����	
���

�������	
�

�
�
�
	
�
�

������
���
���

Figure 4.2: Typical Architecture of a Content Addressable Memory

due to the fact that it processes and returns the result of the comparisons in one clock

cycle.

CAMs are privileged choices in our context because they cope with the availability and

speed needed by industrial infrastructures and are well suited for hardware implemen-

tation. The drawback is the cost: each stored word needs its own associated comparator

circuit to operate a bit to bit comparison with the input word (Figure 4.2). But it also

means that the architecture is very reliable and leaves no room for uncertainty during

the comparison. CAMs are proved very interesting and efficient when processing small

patterns, experimentation (Figure 4.3) shows that increasing the size of the stored words

compromises the scalability of the architecture. In a simple implementation, a word of

size 1024 bytes requires 6953 Logic registers for storage.

Literature proposes to use RAM blocks, as this function is natively supported by all

FPGAs, to ease the burden on the Logic resources.[76] suggested to use the address width

of the RAM to store CAM words: the data corresponding to a RAM address indicates if

the word is stored or not. The counterpart of this method is that it reserves the resources

needed for storing every words fitting in the address width even if not used : 32 bits

CAM words will need 32 bits RAM address width, which allows more than 4 millions

of possibilities, even if we don’t need this much. Furthermore this method still remains

68

Chapter 4 4.3. Hardware Pattern matching

���� ��� ��� ����

�

����

����

����

����

�����

�����

�����

�����

�����

	
��

	
�

��������������

����������������������

�
�
�
�
�
��

�
�
��

�
�
�
�

Figure 4.3: Logic Resources Usage for one pattern in accord to the CAM words size

not enough when handling large patterns, as the use of RAM blocks remains expensive

(Figure 4.4). Considering, as previously, patterns of size 1024 bytes, itwould requires 8192

bits of address. Divided between 16 bits memories, it represents a total of 512 memory

blocks which is way more that the typical FPGA capacity.

CAMs have great compatibilitywith compression to reduce the resources overhead, as

long as the compression algorithm used on the stored words is used as well on incoming

data. The resources usagewill change accordingwith the compression ratio. On the other

hand, using on the fly compression on incoming datamight induce supplementary delays

and the size of the output data will be variable depending on the size of the input. State

of the art of compression methods ([25] MD5, [26] SHA-512) paired with FPGA quick

processing allows to reduce this flaw (provided the likelihood of collision is low). Taking

example of CAM words of size 1024 bytes, through an implementation of SHA-256, the

newly hashed words of size 256 bits account for a compression ratio of 32, meaning that

the needed resources for storing one word are divided by 32.

Regular expressions are commonly used for pattern matching as they allow to greatly

reduce the patterns size and aswell as patterns factorization. However due to its structure

CAM doesn’t support regular expression matching but it is still able to process ternary

bits. It allows encoding the X value for one bit, each bit has 3 possible values : 0, 1, X.

As shown in [27], it is generally achieved by adding a masking bit for each memory bit

69

4.3. Hardware Pattern matching

���� ��� ��� ����

�

����

����

	���

����

����

����

���

����

����

�

���

���

	��

���

���

���

��

���

���

���

����

����

����

����

�
��������������������

�
�
�
�
��
��
�
�
��
�
�
��

��
�
�!
��
�

"
�
�
�!
#�
�
$
�
�%
�

&
�
�

Figure 4.4: Memory Resources Usage according to the CAM words size

(care/don’t care) or by encoding each memory bit on 2 bits or more (1 is 11, 0 is 00 and

X is either 10 or 01). Sadly it doubles the memory space needed for words storage and is

hardly compatible with compression.

CAM architecture offers high processing speedwith low delays but is not very flexible

and incompatiblewith common patternmatching optimizationmethods like patterns fac-

torization or regular expressions. It is also interesting to note that commercial CAM chips

exist, even if they are not so common, which may answer to a need for industrialization.

Following this we will speak about Bloom filters, which are pattern matching structures

relaying on hash functions to perform space efficient storage.

4.3.2 Bloom Filter

A Bloom filter is a space-efficient structure used to test whether an element is a member

of a set. In our case it tests if the incoming data matches one of the authorized patterns.

It is a bits array of sizem, which uses k different hash functions. Each of them hashes and

maps some set elements to one of the m array bits. To query for an element (test whether

it is in the set), we feed it to each of the k hash functions to get k array positions. If any of

the bits at these positions is 0, the element is definitely not in the set. A major issue of this

structure is the possibility of false positive matches, in other words, a query returns that

the data is in the set but in fact it is not. The filter is defined by two additional parameters:

n is the number of elements in the set and p is the false positive rate. p and kopt - the

70

Chapter 4 4.3. Hardware Pattern matching

Figure 4.5: k and p function of m and n

optimal number of hash functions - can be expressed as functions of m and n.

p = e
−m∗ln(2)2

n (4.1)

kopt
=

9m

13n
(4.2)

To solve the previous equations and determine the size of the bloom filter, two key

constraints need to be considered: availability and security. Industrial network smooth

operating and responsiveness is based on the fact that information is routedwithminimal

delay to its recipient, with transfer times of several milliseconds. The bloom filter has a

fixed processing delay whose major part is due to the hashing of the incoming data, since

the comparison is nearly instantaneous. This processing time can be minimized: [29] and

[30] perform the hashing through combinatorial operations between the incoming data

and random coefficients, allowing to hash the data, byte to byte, in one clock cycle.

The second point is the security: the objective is 0% error margin, which means that a

match of the filter should be trusted and can’t be a processing error: this is a parameter of

the bloom filter known as false positive rate. Practically it is achievable if the bloom filter

stores only one pattern and the hash functions have reliable collision rates, which is not

interesting. To determine the size m of the bits array and the k number of hash functions

needed to achieve a suitable false positive rate p, we choose to split the patterns into small

sections up to 100 patterns, using multiple parallel filters. Figure 4.5 shows the evolution

of k and p depending on the values of n and m.

Considering that a cryptographically acceptable false positive rate is 1

2128 = 2, 94.10−39

(taking into account the state of the art of computing power available, the time and re-

sources needed to find a collision on an algorithmwith such false positive rate are consid-

71

4.3. Hardware Pattern matching

ered not worthy of the cost) but it would require a bits vector of 18466 bits and 128 hash

functions for 100 patterns. Those numbers are not realistic using standard hash functions

implementations. [29] and [30] propose a solution to reduce the implementation cost of

multiple hash functions: for each incoming byte, each hash operation matches to a com-

binatorial operation between the data and a random coefficient. The final hash vector is

obtained by combining all the previous hashes. Doing so, the resources needed for im-

plementing the hash functions are mainly memory blocks, required to store the random

coefficients and the bloom vectors. These works are highly focused on the throughput of

the system, so considering our problem, it is possible to reduce the estimated resource

cost by reducing the lookup capability and performing sequential lookups. So according

to these papers, for a false positive rate of 2, 94.10−39 andwith a bit vector of sizem= 8192

bits, it would require 128 hash functions with 44 patterns per vector. If we use dual ports

memories, it would need 64 M10Ks to perform the desired lookup in one clock cycle. For

100 patterns, it means approximately 2,5 mini blooms of 44 patterns so 160 M10K, and

so forth, it increases linearly. For 1000 patterns it needs 10 times the cost of 100 patterns,

so 23 mini blooms, and a cost of 1472 M10K cells. Otherwise it is possible to reduce the

memory cost, if we consider doing the lookup in more than 1 clock cycle : for example a

4 clock cycles lookup needs 40 M10K cells instead of 160, for 100 patterns. The more pat-

terns needed in the final bloom filter, the more it is possible to increase the lookup delay

to keep the resource cost in acceptable values.

Bloomfilters allow to trade false positive rate for storage efficiencywhich is an interest-

ing compromise for network applications that required lots of patterns. But unfortunately

this work requires a strict level of security where a pattern mismatch can be critical. Even

through extensive resources consumption to reduce the false positive rate, bloom filters

are hardly usable in our context. Now on we will look at Finite State Automatons, these

mathematical models are commonly used in various applications and are privileged im-

plementation choices for numerous pattern matching algorithms.

4.3.3 State Automaton

State Automatons are mathematical models of computation, widely used in software or

hardware applications. This is composed of a finite number of states, connected by tran-

sitions, each one assigned with change conditions. The jump from one state to another

through a transition is determined by a stimulus which triggers the associated condition.

FSMs are common implementation vectors for lots of pattern matching algorithms [36],

and there is variety of known algorithms [31] approached in the literature. Following are

some of the most common and well used ones:

Brute force algorithm [32] could be considered as themost basic form of stringmatch-

72

Chapter 4 4.3. Hardware Pattern matching

ing algorithm. It performs strict comparison between incoming and stored data, without

need for pre-processing or supplementary operations. In case of a match or a mismatch,

it shifts to the next position until it performs a complete match or reaches the end of the

incoming data. It is used to search for the occurrence of a string inside a text but it may

be used to perform strict matching between two strings of the same size, any mismatch

would imply the end of the comparison. Using state automaton implementation, each

character of the pattern is assigned a state and the matching of the current character al-

lows to jump to the next state. This basic method is very resource-intensive and requires

many optimizations to become effective.

Knuth-Morris (KMP)Algorithm [33] searches for occurrence of a chain P in a text S. It

uses pre-processing to compute the position to restart the comparison when a mismatch

occurs. It allows to avoid redundant comparisons, reducing the number of operations

needed.

Boyer-Moore (BM) Algorithm [34] is the algorithm used by SNORT and one of the

best for single pattern matching. Its particularity is that it starts the comparison with the

last character of the string and then, in case of amatch, continues from the first one. In case

of a mismatch, it uses a table of comparison progression in addition to the last character’s

index to establish the next jumping position.

Aho-Corasick (AC) Algorithm [35] computes the dictionary of patterns before hand

to construct a Finite-State-Automaton like tree, containing additional links, to allow tran-

sitions between stages sharing common prefix. Doing so, all the patterns are checked in

the same time, this can lead to multiple matches in the case of patterns sharing inclusive

relations. The efficiency of the algorithm depends of the pre-processing operation to con-

struct the tree, meaning that any changes in the patterns dictionary requires to re-run this

stage.

KMP, BM and AC target problematic is the occurrence of strings inside a stream of in-

coming data. It differs from the target of this work which is the perfect matching between

patterns and incoming data. Consequently optimizations to reduce redundant compar-

isons or to determine shift positions before restarting the matching are useless and may

even deserve the process. Brute force on contrarymay appear to bemissing optimizations

but it offers more alternatives to add pre or post processing.

While speaking of state automatons and matching algorithms, it is worth mentioning

Snort and Suricata, as they make extensive use of Boyer-Moore for pattern recognition,

and hardware implementations based on finite state machine that are available in the

literature [37]. But even if these two NIDS are very used in IT networks they lack the

awareness of the system state and background.

Taking into account all these elements it appears that none of them match our needs.

73

4.4. Versatile Operational-Process Aware pattern matching

Content addressable memories are very quick and efficient but lack scalability, while

bloom filters, despite the scalability offered, pose a security problem due to the false

positive rate. Most of the pattern matching algorithms presented are designed for string

matching inside data flow, while we target a formal matching between two data of the

same size. For these reasons we introduce a custom pattern matching solution based on

brute forcematching using Finite State Automatons with operational-process and time

awareness.

4.3.4 Synthesis

It exists numerous solutions andmethods to perform patternmatching, some rely on spe-

cific and dedicated architectures, while others come under the form of algorithms, with-

out particular implementations. Hardware patternmatching is a popular topic, evenmore

in the network context, as it allows high processing speed, as we can find implementation

such as [37] in the literature. But the context and needs of the industrial environment are

on the other hand badly addressed, and mainly through extended firewall approaches.

The specificity of our contribution is that we intend to combine hardware pattern match-

ing with a very uncommon concern: time and operational-process state awareness. This

would lead to complex application analysis, commonly addressed through dedicated fire-

walls, which are software applications. We target to propose an innovative approach to

patternmatching for industrial network security which resorts to brute for matching with

several post processings.

4.4 Versatile Operational-Process Aware pattern matching

[28] shows that to protect an industrial network against advanced threats, the actual state,

previous and future behaviors of the system need to be taken into consideration as well

as time awareness. Stuxnet [1] is a good example, modifying the rotation speed of an

equipment is a valid operation, allowed on the targeted device. But taking into account

the actual rotation speed, it appears that brutal changes may deteriorate the device. Even

if it was performed through local modifications of the equipment firmware, the same

result would have occurred by reproducing the attack through network communications.

Based on this work we introduce an operational-process aware solution which answers to

our problematic.

74

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

4.4.1 Concept

The purpose of this work is to propose and explore an Operational-Process aware pattern

matching engine with enough versatility to fit the specific needs of most industrial net-

works. Keeping in mind the security, it needs a strong pattern matching algorithm as a

base, but customizable enough to add post-processing and perimeter functions. Based on

the previous state of the art, we sticked to brute force matching, using finite state automa-

ton implementation to ensure the core matching function. It allows perfect trust with no

error margin but lacks optimizations in processing speed or efficiency.

Core matching engine

State automaton’s implementation of Brute force matching using one state per character

is very expensive. Taking as example a string of 1024 characters, with 8 bits characters,

which is on purpose a very long string but remains in the specifications of most recent

industrial protocols.

Two kinds of storage are available to construct the state machine, using logical resources

or memories (RAM blocks). Figure 4.1 shows the cost in resources, for both implemen-

tation methods, for a 1024 bytes patterns. Logical resources are a privileged choice when

processing small patterns, but when their size increases the cost became unbearable, 11%

of the logic blocks for only one pattern is too much. When using RAMs, the states and

transition conditions are stored in memory and the automaton simply reads it. But the

problem is that even if the memory cells cost is under the capacity of one RAM block (10k

bits), it still reserves a complete block, and as those blocks are hard wired in the FPGA

architecture, they come in limited number. Even while storing multiple small patterns

in one RAM block, if it goes beyond the lookup capacity of the device it induces delay

problematic, which quickly becomes a problem in network applications. So the smaller

the pattern is the more memory space it wastes. The test platform uses Cyclone V FPGA

which came with 10K bits RAM blocks, so for a 1024 bytes pattern the wasted memory

space in a block is relatively small (20% loss).

Using one automaton per pattern causes to multiply the resource cost according to the

number of patterns, and is a serious threat to scalability. Merging some state machines to

re-use shared states involves wider automatons with potentially high number of transi-

tions and so the efficiency will worsen greatly as the patterns similarities decrease. When

using RAM blocks for patterns storage, it is possible to perform space optimization by

re-using wasted memory space and store multiple patterns.

Space optimization is made through two parameters, firstly the maximum lookup capac-

ity of the RAM block, which is 2 in our current FPGA, allowing at maximum dual ports

75

4.4. Versatile Operational-Process Aware pattern matching

Implementation Resource Usage
Cyclone V

Resources Usage

Lo
gi
c LABs (Logic blocks) 152 11%

Logic Registers 1403 5%
M10K Memory (10K Bytes) 0 0%

RA
M

LABs (Logic blocks) 1 >1%
Logic Registers 32 1%
M10K Memory (10K Bytes) 1 >1%

Table 4.1: Resource cost of FSM implementations for one 1024 bytes pattern

memories. Secondly the size of the patterns, taking as maximum size 1024 bytes, which is

wide enough even for recent industrial protocols (we are aware that in some case indus-

trial protocolmessagesmay exceed thismaximumbut this is not common). Theminimum

size of patterns is set taking into account of relatively old protocols, 256 bytes is enough

to handle even small patterns with minimal memory loss.

So, to optimize the memory consumption, each RAM block is virtually divided in eight

smaller memory spaces. These may be used individually to store small patterns as well

as combined to handle bigger patterns, allowing to store from 2 to 8 patterns in a RAM

block (depending of the size).

When storing two patterns of 1024 bytes the memory allows to read both at the same

time. To address the problematic of concurrence when handling more than 2 patterns,

the memory words are cut in 4 and the patterns are stored vertically as seen in Figure

4.6. Storing 32 bits or 40 bits words has the same cost (one RAM block in both cases),

so the 8 supplementary bits are reserved for future uses and the words are severed as 4

elements of 8 bits data and 2 bits reserved. The first 10 bits of a memory word belong

to the first pattern, the next 10 bits belong to the second pattern and so on. For patterns

between 257 and 512 bytes, it uses 2 small virtual memory spaces of 256 bytes and so on,

for patterns superior to 512 bytes which use 3 virtual memory spaces. See Figure 4.6 for

patterns representation in a RAM block, depending of their sizes.

Furthermore, as seen in [27], ternary bits are a goodway to optimize patterns number

by allowing factorization. So the same method is used, 4 of the previously reserved bits

in the memory word are used as ternary bits which indicated that the associated 8 bits of

data are processed as "don’t care" (8 bits of data, 1 ternary bit, 1 reserved, and so on).

Still, with the perspective of reducing the patterns number to optimize the resources

consumption, the concept of array/range is introduced in the pattern definition to allow

factorization. The concept is very simple and widely used in all kind of topics, multiple

elements, in our case patterns, which share lots in common are brought together, allow-

ing to store only one time the shared part and keeping the differences. In our case we will

76

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

��������������� ������������� ������������� �������������
�

���

��	

���

����
�������������������

�������������������������

�
��
����
�����

���

 ������
�����

���

�
��
����
�����

��� �
��
����
�����

���

 ������
�����

��� ������
�����

���

�	��
�����
�
��
���!�

���

����
������
��
���!�

���

��
����	�
��
���!�

���

�
�
�
�
��
�"
�
�
��
�
�

�
��

����$�
�

%�������&�

'����(���&�

Figure 4.6: Patterns storage and representation in RAM

target patterns which present only one difference, and on the same part, furthermore we

need these differences to be consecutive values.

For example, two similar patterns whose only difference is the IP address of the recip-

ient, one is 192.168.20.34 and the other 192.168.20.35. Wewill factorize the two patterns in

onewith the recipient IP address expressed as a range from 192.168.20.34 to 192.168.20.35.

It only works if the two values are consecutive, but three patterns can be factorized in the

same way if the third is 192.168.20.36. This method of factorization can appear pretty re-

ductive as it only addresses consecutive values, but in fact they are very common when

speaking of industrial control systems. Whether in the network addressing plan, made

for availability and efficiency it does not need to jump some addresses, or directly inside

the PLCs programs, I/Os and memory cells are mostly successive. Technically speaking,

specifying a range, with lower and upper bounds, in place of a single value allows a pat-

tern tomatchmultiple input values. Typically in industrial process, the partswhichwould

make best use of ranges are values contained in parameter or data fields. So we are using

the last reserved bits in the memory word to indicates the presence of a ranged value in

the pattern. In some cases it may allow to divide by two the space needed for patterns

storage in return for a little increase in the processing complexity of the engine.

As we have spoke about pattern matching, which is the core of this work, we will now

discuss about operational and time awareness, achieved through additional post process-

77

4.4. Versatile Operational-Process Aware pattern matching

ing modules.

Post Processing for operational and time awarness

Patterns are expressed using the previously presented common model for industrial pro-

tocols. Each part/element/field of the common model is assigned a state, taking into

account the fact that parameters and data are optional. The main part of the engine is the

corematching process using virtually split RAMs and state automaton, in addition, a post

processing process will handle operational aware checking and time awareness.

While [28] requests the process state regularly, or when needed, to perform process

aware filtering, thismethod induces supplementary data exchangeswith all deviceswhich

are part of the control system. These supplementary communications can impact the

availability of the devices, if not of the whole network. A less invasive solution consists

in recording some prior-identified messages and determinate the system state in accor-

dance. This requires, on the other hand, to have a knowledge matrix of flows, application

values and operating ranges on which to base the analysis. Even if this study is necessary

before any security analysis, to determine the system state in accordance requires it to be

well detailed.

More precisely the whole system state is not taken into consideration, only the state of

some devices of the network. The first step is to identify when a control device, such as

PLC, RTU and IED, receives a order/command whose execution depends of the actual

state of any other device in the network, as well as the device itself. We will call the com-

mand in question the "Order", while the state it depends is called "Condition state".

For example, taking a heater or burner, when it receives the command to start heating

up, it should not operate if their is nothing to be heated. These kind of relations, when

they occur between elements controlled by the same control device (PLC, RTU, IED), are

not always checked locally inside the automated program, and even less when it appends

between elements linked to separate control devices. Then it is necessary to highlight the

list of events and commands which lead to the "Condition state", they are called "Condition

order", knowing that both "Condition order" and "Order" or in fact patterns. A list of de-

pendencies is constructed for each "Condition state", it takes into account the conditions of

entry but also exit from the state. These dependencies might be only one commandwhich

leads to the "Condition state" as well as a multiplicity, and the same for the exit. They are

converted into expressions which are function of "Condition order" using "OR" and "AND

operators. Finally, knowing the "Order" and functions of "Condition order" we linked them

together using a TAG. It is basically a unique ID which associated a "Condition order", or

a function of them, to an "Order", the value of the TAG indicates if the "Condition state" is

78

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

��
���

��
�

�
��

	�

��

��
	�

��

�
�

���������

�������

����������
���

���������
����������

����� ��
�

�������

�����������������������
 ���
��!

�����������������������
 "����
��!

Figure 4.7: TAGs definition and usage

active or not. "Condition orders" are processed by a dedicated post process, while a cen-

tralized process stores and update the TAGs in a database. The patterns which depend

of one or multiple TAGs for positive matching will cause interrogation of the database to

conclude the matching.

For example, relying on Figure 4.7, taking the pattern number 1 ("Order")whichmatch-

ing ends positive only if the process is in the specific state α ("Condition order"). We deter-

mine that to enter in the wanted state α, the commands corresponding to patterns 10 and

8 ("Condition order") must have been sent to the process and the command correspond-

ing to pattern 15 ("Condition order") makes it exit the state. From this point the state α

is mapped to a new TAG, the number 0 for example, and two functions are made, one

with pattern10 AND pattern8 and one with only pattern15. While the TAG and its value are

stored in a database, the functions, with their impacts on the TAG 0, are handled by an

associated process. Finally, the pattern 1 is completed with the TAG it depends, as well as

its value.

In most cases an "Order" depends on one or two "Condition states" which themselves

only depend of a low number of "Condition orders". The previously described method

works well in these instances, but it can occur time where numerous "Condition state" and

"Condition order" are involved in thematching of a single "Condition state". Tomanage these

situations two solutions are feasible, using factorization methods to perform backcross-

ing on "Condition orders" and "Condition states" to reduce their number, or to deliberately

ignore some, to only consider the most critical "Condition states". Both methods will not

79

4.4. Versatile Operational-Process Aware pattern matching

be discussed furthermore as they are more implementation problematic, but they are not

needed in our experimentation context.

The last post processing operation concerns the time awareness, either through time

measurement or time location. Patterns, which require it, are associatedwith a timestamp

condition, containing either a short time interval with amaximumnumber of occurrences

Structure 4.3, or a time window Structure 4.4 (in hours or even days).

• In case of time intervals, whendefining the security requirements, amaximumnum-

ber of occurrences of the corresponding command in a given amount of time is

set. When we match the command an occurrence counter is increased by one, this

counter is decreased by one each ∆t interval, where ∆t is Time Interval divided by

the Occurrences Limit. If the occurrences counter goes beyond the occurrences limit

value then the match is invalidated as the time awareness condition is broken, else

it confirms the match.

• In case of time window condition, the security requirement is defined with a time

window in which the corresponding operation is allowed, outside it is considered

as a security violation. This time window is characterized by an upper and a lower

bound, it can be counted in hours or days as well as just a couple of seconds or

minutes.

When the corresponding command is matched, the time awareness process will check

the timestamp, associated with the network message, and compare it with the upper and

lower bound of the time condition to validate or invalidate the match.

IntervalStructure{

Occurrences :

OccurrenceLimit :

TimeInterval :

}

(4.3)

WindowStructure{

UpperT imebound :

LowerT imebound :

}

(4.4)

80

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

Distributed Security Analysis

We are resorting to a passive solution to know the current state of the process, as we

extrapolate it from observing network exchanges. Doing so we need to be sure that we

catch any network communications that may impact the operational-process aware analy-

sis. Themost effective waywould be to have asmany network security devices as network

industrial devices, and so being aware of all the messages from and to any of these equip-

ments. In practice it is redundant and unfeasible, as the cost and efforts to deploy all the

security devices and to modify the network architecture would be enormous. A good

compromise, that we propose, is to identify the most critical industrial devices of the net-

work, either in term of security or process state, and to assign them a dedicated security

device.

Then to virtually divide the network in smaller sub-networks, connected by nodes, and

place security devices on these nodes. In Figure 4.8 we take as example a very simplified

representation of the process layer of an industrial control system to show a proposition

of distributed deployment for security devices. Multiple security devices as close as pos-

sible to targeted network equipments allow better control over network communications

than only inspecting network interconnections.

It allows to follow inter-equipment communications inside local sub-networks, and so eas-

ily follow the process state evolutions, as well as it splits the attack surface, reducing the

compromise risks. Furthermore in a context where the resource cost for the implemen-

tation on FPGA is important, dividing the analysis between multiple devices distributes

the cost and may allow to alleviate this constraint.

Synthesis

To summarize we introduced multiple functions, the main is hardware pattern matching

using parallel state automatons in orderedmemories, thenwe spoke of patterns factoriza-

tion through consecutive values. Finally we introduced post processing functions for time

and operational-process awareness. But as we rely on Finite State Automatons, we have

chosen to use a method inspired by RAM based FSMs to select the correct Post processing

needed as well as the correct state transition. The first byte of a pattern is a code that de-

fines what type of pattern it is, currently we process 3 types, simple, operation-aware and

time aware. This code will impact the transition between states as well as the correspond-

ing post process which will be called. In a way, it is similar to RAM based FSM state’s

that found their next state in the current one. This method is quite flexible as it allows to

add or combine post processing stages simply by assigning new codes (pattern types). In

practice the FSM starts by reading the type code and sets up the post processing transition

81

4.4. Versatile Operational-Process Aware pattern matching

���������	
	� ���������	
	�
��������
	
�����

�����

��������
	
�����

�����

�����

�����

�����

�����
���

���

������

	��

	��

	��

	��

��������
�������

�����

�����

�����

�����

���

���

������

	��

	��

	��

	��

������
����
������

���������
�������
�

����	

��	
	�

����	

��	
	�

Figure 4.8: Network Architecture with distributed security devices

state if needed, see Figure 4.9 for graphical representation.

4.4.2 Architecture

Figure 4.10 shows how the contribution is integrated into the research platformpreviously

described, there is a first stage of format translation where the application payload of

the network message is translated into our custom format, and then multiple matching

modules work in parallel to perform the application analysis. The whole architecture of

the application analysis engine, composed of multiple matching modules, is described in

Figure 4.11 and is made as following.

A pattern matching FSM, as described previously, is in charge of the comparison be-

tween incoming messages and patterns stored inside the dedicated memory. But as we

target to increase the bandwidth of the system in terms of pattern comparisons, we rely

on one of the fundamental techniques when working on network application, the paral-

lelization, so we duplicate the matching FSM. As described in the Concept section, we

optimize the sorting of the patterns in memory, so for dual port memory (which is stan-

dard on FPGA) we are able to output eight words of one byte at the time, for a total of

eight pattern matching FSMs, each one processing one byte of its own pattern. In case of

longer patterns, which overlap on multiple sub-memory spaces (see Figure 4.6), one of

the matching FSM is simply deactivated and not used. Then we have one time awareness

post processor for each FSM, they only process the time constraints. Finally Operational-

82

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

������

���	
��	
��

����	
��

������	��

��	�

��		���
����

����	
�����������������
���	����������

�
��������
���	����������

�����	��	
���
�	�	�

��
	 ���������		����	���
����������������	�	�

	����
	
���

Figure 4.9: Post processor set-up in accord with pattern type

Process Awareness is handled by the TAG manager, it is in charge of the TAGs update

and storage as well as answering the FSMswhen requested. The communication between

matchingmodules and the TAGmanager is performed through a customMDIO interface,

matching FSM are divided in two groups of four (one group for each port of the pattern

memory), both group share the same driver to the MDIO bus and each FSM accesses it

through a dedicated buffer. We will now go into more details concerning each element of

the architecture.

The core module of this architecture is the pattern matching module (Figure 4.12),

which is duplicated eight times, and is architected around the pattern matching FSMs.

Firstly a pre-processor multiplexer decodes the pattern type to set up the post-processor,

83

4.4. Versatile Operational-Process Aware pattern matching

Network
Interface

Embedded
Processor

Network
Traffic

����������	

Network
Breakage

Network
Interface

Embedded
Processor

����������	

��
�	�����	

��

��	

���	
����

�������

�������	�

��
����

Network
Traffic

Electronic
Segregation

Embedded
Processor

�
��

�
��

�
��

������ �������	
�

����������	

��
�	�����	

��

��	

���	
����

��
�	�����	

��

��	

���	
����

Electronic
Segregation

Protocol
breakage ����������	

Network
Breakage

��� �
� ��
���� ����

Custom
Format
Translation

Pattern
Matching
Module

Matching
output

Revert the
translation and
reconstruct the
protocol

Passthrough
if matching
OK

Figure 4.10: Overview of the research platform with the application analysis

as a reminder this type is the first byte of the pattern. As the pattern memory has 40

bits words, its outputs are divided into four sub-words of ten bits, see Figure 4.6. Then

the FSMs process the pattern matching, byte by byte, between the incoming data and the

stored words. At the end of the comparison each FSM calls the pre-selected post proces-

sor (if needed, in accordance with the pattern type).

The first post processor is the time aware process, it processes two types of constraints

(see Structure 4.3 and 4.4) which are time interval and time window. In case of time win-

dow constraint, the bounds of the window are embedded in the pattern, so the process

only needs to compare them with the current time and date.

In our case we rely on a I2C interface with a Real Time Clock, outside of the FPGA fabric,

to provide the correct timemeasurement, but it is possible to use any othermethod. When

processing time interval constraint, there too the Occurrences limit and Time interval are

embedded in the pattern but the occurrence counter increment and decrement must be

managed by the post processor. When processing the pattern for the first time, it reads the

constraints and stores the Occurrences limit and ∆t time to decrement the counter (which

is the Time interval divided by the Occurrences limit). Then it creates the Occurrences

counter and manages it, the resource needed to store these values is small as there is at

maximum two of them (∆t time and Occurrences limit) by pattern.

The time aware post-processor is shared between all the eight FSMs as its function is sim-

ple, it allows to conserve resources. The secondpost-processor is dedicated to operational-

84

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

![h]

�������
����	
��

�
�

�������
������

�������
����	
��

�
�

�������������
��������������

�������������
��������������

��
��������

��
��������

����������� �������
�������������

���������
!��������"��#

���
����$�
�

��
��������

��
��
$%�

�������"�
����

�
%
&
�
�

Figure 4.11: Operational-Process Aware Pattern Matching System

85

4.4. Versatile Operational-Process Aware pattern matching

��������
��	
��
�
���

������
������

�����������
	�
�����������

�������
��	��� ���

�
���!�
"���
��

��	��
�
���������
��
��#�

����������!��
��"
���

��"

���

�!

����

����	

�
!
$��
��
�

��%�� ����
	�
��������

&'�(���

)'�(���

�����������"���#����

���������*!����
����#��

�������

&'�(���

)'�(���

+�(���

*!�����
��

�

���
���"���#�
����$�

��	��
"
�����
�
��$������

��,�
���"���#
����$�

���"���#�
�-�.�/�-

Figure 4.12: Architecture of a Operational-Process Aware Pattern Matching Module

process awareness, it is a two parts module, each FSM accesses to a shared customMDIO

interface, through a dedicated buffer. These buffers are necessary to allow multiple ac-

cesses to the same shared resource. We speak about a custom MDIO driver as we are not

using the MDIO standard but a custom format heavily inspired by it, both MDIO packet

and our custom payload are represented in Figure 4.13.

The second part of the operational-state aware process is made of the TAGs handling

module. Its job is, when requested by a pattern matching module, to update or return the

value of one or multiple TAGs. Each pattern has a unique identification number which is

made of the unique IDof the patternmatchingmodule itself and the number of the pattern

(from 1 to 8). These IDs of used by the operational-aware process, their combination is

associated to a TAG and a dictionary is constructed according, it is done offline, in the

same time as the patterns definition. In a more explicit way, taking the pattern number

12-1, which is the pattern one of the pattern matching module twelve, conditional to state

α (see upper for details about conditions and states). The industrial process enters this

state when the pattern number 10-3 is matched and exits the state with the pattern 5-2.

86

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

��������	
�

�
��� � � � � � � � � � �� �� �� �� ��� ��

� ����
�����
����

�� ����� �
���
!"
�#$�
����
%&&�
��

'
(
��
��
%&&�
��

)*�"+��!*"& ����

���"&������������	
��,!����

-*��!�����	
�

�
��� � � � � � � � � � �� �� �� �� ��� ��

� ����� �
���
!"
����
�"�
����#
"(�
,���%&&�
��

����
�"�
.*��
�

/"*�
&)%0�1��*

-*��!����������	
��,!����

Figure 4.13: Comparison between the standard MDIO packet and the custom payload
used

• A first entry is added to the blank dictionary with the TAG number 0, it associates

the pattern 10-3 with the TAG 0, the operation is update and the value 1 (for state

active).

• Then a second entry is addedwith the pattern 5-2, the TAG 0, the operation is update

and the value 0 (state inactive).

• Finally a third entry is added with the pattern 12-1, the TAG 0 and the operation

return.

When a matching FSM processes andmatches the pattern 12-1, it knows from the pat-

tern type number that it is supposed to ask for a TAG value and should compare this

value with the one in the pattern to end the matching. The same goes for pattern 10-3

and 5-2, with the difference that the pattern type is different and the FSM does not ex-

pect answer, it simply notifies the match to the operational-aware process and concludes.

When TAG’s value change is associated to a function of patterns, the corresponding func-

tion is stored in a dictionary. TAGs value are stored in a dedicated database, and as they

87

4.4. Versatile Operational-Process Aware pattern matching

�����
���	
����

������

������
����
������

������
����
������

����

��������

�
�
�
�
��
�
�
�
�

�
��
��
�
�
�
��

����
���� ���

��!���
������

�������!��

"����������!��

�
�
#
�
�

Figure 4.14: Architecture of the TAGs handling Process

are small words with a value of at maximum eight bits, if not binary, we are relying on a

RAM-CAM approach to organize and search through it. It allows very quick search and

update to not delay further the answer and the matching. This operational-aware process

communicates through the custom MDIO interface with all the matching FSMs.

Each matching FSM has a dedicated FIFO then a multiplexer interfaces them to the cus-

tomMDIO bus, one at a time, bus access arbitration is handled by a master which resorts

to token distribution. It gives access to the bus to one FSM through a token, then either the

token is gave back when the exchange is complete or the master forcefully retrieves it. It

is a relatively simple way of operating which ensures a sequential access to the resource.

This architecture is represented in Figure 4.14. Being shared can bring up congestion

problematic and delays, even using CAM, it is feasible to split or duplicate the database

depending on the needs, as it reserves relatively low resources.

One of the topics, that was not addressed until yet, is about updating the patterns,

and so on updating the security policy. In fact one of the key points that ensures network

security is to be up to date. In a context where network security is the next battlefield,

new threats and attacks are found every days, to keep abreast of them and their counter-

measures is a must do. The efficiency of a security device relies on the fact that it is up to

date in the state of the art of the network security. Knowing that it would be unthinkable

to propose and design a not updatable pattern matching engine. As it is described in Fig-

ure 4.15, the whole pattern matching module has a high level supervisor which is able to

put in standby the matching process and allows an update of the patterns, this operation

is done between two matching of course. The pattern memory is writable only through

this supervisor. Even if all the logic needed to correctly load new patterns into the mem-

88

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

��������
���	
����

��

�����
���������
���	�����

��������������
���	����������
���	�����

���������
������

���������������������

������
������

 ����
������

 ����
�����!

���������
������

���������
������

"��#��

�������������
�����������

$���#���
���	
���

�����
������

%
�	&��'�����������������
���������

Figure 4.15: Patterns Update mechanism

ory and set up the matching FSM in accordance, is embedded into the supervisor, the

patterns update is currently not studied in detail nor experimented, as it faces a complex

and unaddressed problem in this work: the security of the updates. This problematic

is vast, as it affects the encryption, authenticity and non-regression of security rules, it

would require a mechanism to ensure secure exchanges between the FPGA and a third

part. Whether through the network, mass storages or files, it addresses needs like shared

secret, encryption mechanisms, keys storage and many others.

4.4.3 Experimentation

For experimentation purpose we use a Cyclone V Intel FPGA, which is a middle sized in-

dustrial one with 15,880 ALMs, 60,376 Logic Registers and 2,7Mmemory bits. The imple-

mentation of the proposed patternmatching architecturewill be done in order tomeasure

some chosen parameters. The resources consumption and area cost of each parts, as well

89

4.4. Versatile Operational-Process Aware pattern matching

En
tit
y

Su
b-
m
od
ul
e

AL
M
s

Lo
gi
c R
eg
ist
er
s

M
em
or
y B

its

Pattern
Matching
Module

Pattern
Memory

0
0%

0
0%

20480
0,75%

Finite
States
Automatons

1793
11,3%

1284
2,1%

0
0%

Custom
MDIO
Driver

132
0,8%

347
0,6%

1024
0,04%

TOTAL
1925
12,1%

1631
2,7%

21504
0,79%

Table 4.2: Resource cost of a versatile pattern matching module

as the whole module, is a basic characteristic which directly impacts the maximum num-

ber of patterns that it will be possible to process, as well as the feasibility of deployment

on embedded architectures.

Another point, which is critical in network applications, is the latency or delay, we will

measure the induced latency of the matching engine in the best case (simple matching)

but also in the case of complex matching, which involves more operations thus more la-

tency. The latency of the whole security device will be given as information, to evaluate

the impact of such equipment inside an existing industrial control system.

Table 4.2 summarizes the resource cost for the implementation of the versatile pattern

matchingmodule, the Synthesis and Place and Route are donewith not specific optimiza-

tions of the compiler.

As expected, the patterns memory is the primary andmain consumption of memory bits,

less than 0,1% of the total available are used by the FIFOs for the custom mdio access.

With a memory consumption under 1% of the total memory bits available we succeed

in reducing the load over memory and thus leaving as much as possible for the interac-

tions with the network (which requires extensive buffering). On the other handwe resort

extensively to using logic elements, standard FSMs (not RAM-based ones) have the draw-

back of using lots of logic resources as the FSM grows in size. The fact that we choose to

perform time aware and operational-process aware analysis increase furthermore the cost

in logic resources.

Then we consider the TAGs manager, its database and the token master, whose cost

in resources are shown in Table 4.3. The resources consumption of the TAGs handler is

90

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

En
tit
y

Su
b-
m
od
ul
e

AL
M
s

Lo
gi
c R
eg
ist
er
s

M
em
or
y B

its

TAGs
manager

TAGs
Memory

0
0%

0
0%

2048
0,076%

TAGs
manager

84
0,53%

262
0,41%

128
>0,01%

TOTAL
84

0,53%
262

0,41%
2176

0,077%

Token master
36

0,23%
12

0,02%
0
0%

Table 4.3: Resource cost of the TAGs handling database and the custom MDIO bus arbi-
trator

relatively small, the database and functions dictionary, we used in the implementation,

were small so the memory bits needed were low. While the FSM which processes the

TAGs request, searches both the dictionary and the database, and answer is simple. In

the same way the cost of the token manager can almost be ignored as it is small.

Considering the whole matching engine, the total cost is about 2045 ALMs, 1905 Logic

Registers and 23680 Memory Bits (Table 4.4), it includes Pattern matching for 2 to 8 pat-

terns, time and operational-process awareness with TAGs management. The addition of

further patterns is made by using more versatile pattern matching modules, for 2 to 8

supplementary patterns (it depends of their size, see Figure 4.6) by module, the total ad-

ditional cost is available in Table 4.2.

If we consider the FPGA used in this experiment, it can fit up to 7 versatile pattern match-

ing modules for a total of 14 to 56 patterns, while having a very low impact on the avail-

able memory resources (less than 7%). The advantage of relying extensively on logic

resources, instead of memories, lies on the fact that the multiplication factor of the logical

elements, from one matrix size to the upper one, is larger than for memory resources.

For example, when going from our current FPGA (5CSEA4) to the upper one (5CSEA5)

the available ALMs are multiplied by two (from 15,880 to 32,075) and the memory bits

by 1,5 (from 2,7M to 3,97M). To reach the targeted number of 100 patterns, the Intel Cy-

clone V 5CSEA5 is enough, considering that we address small patterns (Modbus one for

example), else for bigger ones it would be necessary to go up to the nextmodel (5CSEA6).

One of the fundamental parameter to take into account when working on network

applications/devices is the latency that it adds on network exchanges. In our case the

91

4.4. Versatile Operational-Process Aware pattern matching

En
tit
y

AL
M
s

Lo
gi
c R
eg
ist
er
s

M
em
or
y B

its

TAGs
manager

84
0,53%

262
0,41%

2176
0,077%

Token
master

36
0,23%

12
0,02%

0
0%

Versatile pattern
matching modules

1925
12,1%

1631
2,7%

21504
0,79%

TOTAL
2045

12,86%
1905
3,13%

23680
0,88%

Table 4.4: Total cost of the pattern matching engine with only one versatile pattern match-
ing module

induced delay is calculated on two levels, the latency of the pattern matching and the

latency of the research architecture, the sum of both gives the total latency of the device.

Concerning the latency of the pattern matching, a chronogram of processing for a pattern

is shown in Figure 4.16, it concerns the most basic matching with no post-processing. We

need three clock cycles to perform the pattern matching, one required by the patterns

memory (when asking for the data at the current address, the memory need one clock

cycle to give the output), one needed to process the pattern type (the first octet of the

pattern) and the last cycle for the FSM to end the comparison. For instance three clock

cycles at a frequency of 125 MHz, which is the frequency we have been using for this

design, account for a latency of 24 nanoseconds, which is irrelevant in a network with

common latencies in milliseconds. This delay can be reduced by reading in advance the

pattern type for example but it does not seem necessary. When all the FSMs have finished

their tasks, the wholematchingmodule goes from BUSY toNOT BUSY and the SUCCESS

is lift if a pattern was matched.

92

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

Figure 4.16: Chronogram of matching for simple patterns

93

4.4. Versatile Operational-Process Aware pattern matching

Then, each post-processing and supplementary operation induces more delay, pro-

cessing ranged values will increase the latency by two more clock cycles by array. The

implementation we are currently using only supports two ranged values, one in the pa-

rameter field and one in the data field, for a total of four more clocks cycles in the worst

case.

When speaking of the time aware processing, the latency comes with a variable value,

the temporal constraint requires two clock cycles to be compared, this is a fixed delay, but

monitoring and acquisition of the current time and date depends on the chosen method.

If it is stored locally, inside the FPGAmatrix, the delay can be just a couples of clock cycles,

but if it resorts to external component such as RTC, the latency of the answer can grow up

to several dozens of cycles. The way we handle operational-process awareness involves a

question and answer mechanism between the matching FSM and the TAG manager, this

exchanges is short and compressed in most cases but its duration can increase when mul-

tiple FSMs line up.

As it can be seen on Figure 4.17 the matching FSM asks for the TAG value and the custom

MDIO driver stores and constructs the request, then the driver asks for permission to use

the bus and sends the request. These operations, from the TAG request to the emission

on the bus, are done in 13 cycles. The TAG manager is quick to perform the TAG search

and to answer, as it is master on the bus it can use it right away and don’t need to wait for

the authorization to answer.

The complete question and answer process is made in 30 clock cycles, 240 ns in the best

case, when multiple FSMs need to interrogate the TAGs master, the latency is multiplied

by the number of FSMs. The update of a TAGvalue by the TAGsmanager is not accounted

in the latency calculation as this operation is made after the matching and has no impact

on its processing time.

Table 4.5 recapitulates the induced latency of each part of the process and gives the

total latency, in best and worst case, for the whole versatile pattern matching engine. For

instance, the measured latency of the research platform without any filtering or pattern

matching, in pure data transfer, is around 2 milliseconds. This is inherent to the platform

and depends of the original architecture it is based on, so event if it is possible to optimize

this latency, this is not the subject of this work and will be taken as accounted. The maxi-

mum latency of 1592 nanoseconds for our matching engine, compared to the 2 ms latency

of the platform, it represents an increase of less than 0,1% of the induced delay.

Concerning the security and reliability of the solution, as said previously the patterns

library works as white list, which means that only the stored patterns are allowed to pass

through the engine. In one hand it puts more constraints on the patterns definition as it

94

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

Figure 4.17: TAG request chronogram

95

4.4. Versatile Operational-Process Aware pattern matching

Latency
Best Case Worst Case

Pattern Matching
FSMs

3 clock cycles
24 ns

Ranged Value
(Array)

2 clock cycles
16 ns

4 clock cycles
32 ns

Time Aware
Post-processor

6 clock cycles
48 ns

32 clock cycles
256 ns

Operational-process
Aware Post-processor

30 clock cycles
240 ns

156 clock cycles
1248 ns

Total
43 clock cycles

344 ns
199 clock cycles

1592 ns

Table 4.5: Latencies summary

needs to be exhaustive, but it also gives more security as it prevents from many 0-days

threats. In addition, as we resort to brute force matching, the theoretical error rate is null

(in practice implementation errors or breaches may lead to degraded error rate). When

incoming data is processed, if one matching FSM has a successful matching, it allows the

data to pass through, but the default state of output is data dropped. One topic whichwas

not addressed is about the patterns size compared to input data size. In fact both don’t

need to have the same size, a pattern shorter that the input data can gives a positivematch

but an input data shorter than the pattern will always return a negative match. Looking

back at the common representationmodel introduced, only the [Source] [Destination] [Op-

eration] fields are mandatory, so inputs can easily match a pattern of this form, but in case

of a pattern which includes [Parameter] and [Data] fields, it can not match smaller inputs

anymore. It was made this way to filter some potentially malformed requests that we did

observe during the experiments.

4.4.4 Results

Using experimentation results, we can estimate the area cost by pattern in accordwith the

pattern size. So, for small patterns (under 128 bytes) we achieve a cost of 256 ALMs and

238 Logic Registers with a memory bits imprint of 2960 bits. In case of bigger patterns,

the 1024 bytes one costs 1023 ALMs, 953 Logic Registers and 11840 Memory bits. As said

earlier, the FPGA that we are using in this work can hold 7 occurrences of the versatile

pattern matching module, for a total of 14 to 56 patterns depending of their size. For

example, when working in Industrial control system using ModBus as communication

protocol, we will be able to fit a maximum of 56 patterns on the FPGA, while for more

complex industrial protocols, only 14 patternswill fit. On a Intel CycloneV FPGA5CSEA4

96

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

FP
G
A Patterns

Number
Cost

ALMs
Logic

Registers
Memory

Bits

5CSEA4 14 - 56
14315
90,02%

13335
21,91%

165760
6,16%

5CSEA5 28 - 112
28630
89,3%

26670
20,8%

331520
8,35%

5CSEA6 40 - 160
40900
98,53%

39100
23,54%

476600
8,56%

Table 4.6: Patterns scaling in function of the FPGA size and available resources

it is impossible to fit the targeted 100 patterns, but if we compare with bigger ones from

the same products line, the 5CSEA5 has two timesmoreALMs andLogic Registers and 1,5

timemore memory bits, while the 5CSEA6 has 2,75 times more ALMs and Logic Register,

with two times more Memory bits. So on a 5CSEA5 we can fit up to 112 small patterns

and 28 big ones, for a cost of 89,3% of the available ALMs, 20,8% of the registers and 8,35%

of the memory bits. In the same way, a 5CSEA6 can handle 106 small patterns and 40 big

ones for a cost of 98,53% of the ALMs, 23,54% of the registers and 8,56% of the memory

bits. Table 4.6 summarizes these results.

But practically speaking, filling up the whole FPGA with pattern matching engines

is meaningless, as we need to preserve resources for network interactions. For instance,

the primary prototype we used in the earliest experiments required 6585 ALMs, 10331

Logic Registers and 975886 Memory Bits simply for network communications, and the

current architecture of the research platform requires 5084 ALMs, 10442 Logic Registers

and 1106432 Memory Bits alone. So, on our current FPGA (5CSEA4) we have to reserve

approximately half the Memory bits and Logic registers, and 33% of the ALMs for net-

work interconnections and data transfer, on bigger FPGA this amount is reduced. In Table

4.7 we recalculated and revalued the amount of patterns which is possible to embed on

the three FPGA sizes, taking into account the resources needed by the research architec-

ture. As expected the main bottleneck of resources is the ALMs, but in the other hand the

research architecture mostly needs memory resources (for network interconnections and

buffering) and we freed lots of them. The amount of patterns that we can scale on each

FPGA has decreased, but as we take into account the whole architecture, it is as close to

the reality as possible.

Furthermore, these numbers, on themaximumnumber of patterns that can be brought

in the FPGA, support the distributed security architecture that we introduced earlier, as

the target of 100 patterns is not reachable on our current FPGA (5CSEA4), but also on big-

ger. The Cyclone V 5CSEA4 can fit a maximum of 32 "small" patterns (128 bytes) which

97

4.4. Versatile Operational-Process Aware pattern matching

Cost

ALMs
Logic

Registers
Memory

Bits

5C
S
E
A
4 Research

Platform
5084
33,7%

10442
17,3%

1106432
40,98%

8 - 32
patterns

8180
54,19%

7620
12,62%

94270
3,49%

Total
13264
87,88%

18062
29,92%

1200702
44,47%

5C
S
E
A
5 Research

Platform
5084

15,85%
10442
8,14%

1106432
27,87%

26 - 104
patterns

26585
82,88%

24765
19,30%

307840
7,75%

Total
31669
98,73%

35207
27,44%

1414272
35,62%

5C
S
E
A
6 Research

Platform
5084

12,25%
10442
6,29%

1106432
19,86%

34 - 136
patterns

34765
83,75%

32385
19,50%

402560
7,23%

Total
39849
96%

42827
25,79%

1508992
27,09%

Table 4.7: Realistic Patterns scaling in the research architecture

is not enough to cover the whole control system requirements in terms of security, not

to mention the "big" patterns case (1024 bytes). But even the 5CSEA6 can not handle a

sufficient amount of patterns if we consider more verbose industrial protocols, hence the

need to divide the security analysis between multiple devices in the network. Figure 4.18

shows an example of the patterns distribution in accordance with the criticality of the

equipments and the impact in terms of FPGA required by the security devices.

The highest level of security analysis, located at the networks interconnection, will need

themost resources (the bigger FPGA), as it will process access control patterns, which are

the most numerous. While devices which ensure security for local sub-network will need

smaller FPGA as they will process less patterns, and finally for the most critical targets,

with dedicated security, will accommodate with a low number of patterns and a small

FPGA. It confirms that the available resources factor is one of the fundamental problem-

atic of network security through pure hardware platform.

98

Chapter 4 4.4. Versatile Operational-Process Aware pattern matching

���������	
	�
��������

	
�����

�����

�����

�����
�����

�����

���

���

������

	��

	��

	��

	��

���������
�������
�

����	

��	
	�

�����������
��
��
���� �!�"

������

#�$����
������
��
��

�%!� ���"

������

������

�&
�������

������

������

������

'��������
����

�����
������
��
��

�%�� �(�"

�����
������
��
��

�!� �%�"

Figure 4.18: FPGA requirement of the distributed security analysis in accord with the
patterns distribution

4.4.5 Discussion

This work intends to rely on brute force pattern matching to propose a hardware archi-

tecture for pattern matching than is more reliable that software implementations. It takes

advantages of the flexibility offered by a FSMs based implementations to perform time

and operational-process awareness through dedicated post-processors. Furthermore as

we intend to address problematic from a very strict context, the FSM solution allows a per-

fect matching with no false positive rate. Patterns are stored using memory resources but

the storage is optimized to reduce the memory imprint while processing small patterns.

While the current experiments of the suggested architecture show satisfying results,

with lowmemory imprint and quick processing time, we intend to continue the researches

through further optimizations. Even if the memory resources cost is quite low, conversely

the cost in logic resources is a bit too expensive, sowe intend to reduce this cost by pooling

some operations or states between the multiple FSMs. An other point that we would like

to improve concerns the operational-process awareness through the TAGs management.

This solution is far from perfect, it would be more effective if coupled with a request

system to interrogate the process on its state. Doing so we add some network traffic but

99

4.4. Versatile Operational-Process Aware pattern matching

have a better precision on the process state.

Finally, the major research axis to improve this work is about regular expressions.

Many firewalls and IPS/IDSs make use of regular expressions to optimize their pattern

matching, SNORT and Suricata are both examples which heavily rely on them. The major

advantage of this method concerns the patterns definition, as regular expressions allow

to reduce the patterns size and number, a high number of characters can be represented

through a short expression. Furthermore it simplifies the resort to ranged values and bits

masking. So from this point it appears clearly that regular expressions are the next step

of this work.

100

Chapter 5

Chapter 5

Conclusion

The opening of industrial infrastructures to the Internet caused their exposure to new

types of threats, whether they are network or application related. The most common

counter-measures used by industrials to answer network threats are firewalls, IPSs, IDSs

and other common IT solutions. But application threats showdifferent problematicwhich

are badly addressed by IT means, they require analysis of incoming messages based on a

security policy, but in addition they require deep knowledge of the industrial context and

current process. IT solutions are not designed to handle the knowledge of the industrial

process, so dedicated solutions were made available, such as industrial firewalls, which

take into account the application parts. But unfortunately they are quite uncommon and

mainly lie on a software platform, which is very weak against variety of attacks, through

the network or other means. The main problem is that, when the software platform is

compromised it impacts the security process it hosts, and may allow to modify or bypass

the security. In this context, the purpose of this work was to offer solutions to increase

the security against application threats, either by protecting existing software solutions,

or by offering hardware alternatives.

This work was organized around two major contributions, firstly to increase the secu-

rity over existing software applications protection methods and then to propose a hard-

ened security process by relying on a hardware platform. One of the research axis, for pro-

tecting the software platform of current security devices, addresses the protection against

persistent threats. Ensuring the integrity and authentication of any software element dur-

ing the boot process allows to be sure that after a reboot the system is in a healthy state,

without modifications, and will be able to correctly perform its functions (no persistent

threats). To do so, we suggested to embed software boot elements in the FPGA, allowing

to make a verification chain with security inherited from the bitstream verification mech-

anism. Each element of the boot chain will verify the following one, and to ensure that

101

the first elements are not compromised, they are embedded inside the FPGA matrix (in

the user logic). Doing so they benefit of the security mechanisms put in place by manu-

facturer to ensure the security of the bitstream. Then we used dynamic reconfiguration to

reduce the footprint, of the stored boot elements, over the FPGA resources. We achieved

nearly no resource consumption through the usage of two bitstreams, one with the soft-

ware boot elements and the second with only the user features. Even the slight increase

of the boot delay caused by the reconfiguration can be ignored compared to the boot time

of the operating system.

This work is part of the current trend around roots of trust for embedded systems, even

if our proposed architecture is more restrictive compared to other solutions. The fact that

we depend on the FPGA for most of the security of the low level boot elements, makes

this contribution unusable for CPU-only based architectures. Still, U-boot is a privileged

tool, with kernel verification, widely used in the literature and easily portable on other

platforms. Furthermore one of the major flaw, that we have willfully chosen not to ad-

dress here, concerns the communications with the RAM. As many of the cryptographic

operations, which the security is based on, are made in the RAM, any probing or attack

may endanger the whole chain of trust.

Secondly, we suggested a versatile pattern matching engine relying on FPGA’s hard-

ware resources to offer increased security. The pattern matching is the core process of

many security operations, as it allows to quickly compare incoming network data to a list

of patterns, identifying harmful messages and threats. Using hardware resources to per-

form this security analysis has two benefits, the first is about performances, as hardware

is faster than software, and the second lies on the increased security of the hardware ar-

chitecture. Hardware is less subject to compromise because it is harder to modify and so

it is less vulnerable to attacks. But to ensure correct application check, patternmatching is

needed in addition to time and operational-process state awareness. We propose an archi-

tecture based on FSMs, for brute force pattern matching, and with a dedicated post pro-

cessor for time awareness. The operational-process awareness is achieved through TAGs

management, a post processor links orders that change the state of the process to unique

TAGs, which are requested by thematching engine to check the system state in accordance

with the security policy and current matched pattern. We achieved a suitable resources

cost with a limited memory imprint for the patterns storage, and managed to fit up to 56

modbus patterns in our experiment platform with a Cyclone V 5CSEA4 FPGA. While the

delay induced by the pattern matching is relatively low, we achieved 344 nanosecond of

additional delay for a matching with time and operational-process state awareness, far

from the milliseconds delay of the network.

Today’s trends in terms of pattern matching tend to promote regular expressions, as it

102

Chapter 5

excels in terms of flexibility and storage optimization. We have willfully chosen to work

with brute force matching, without regular expressions, as we intended to define and

test our architecture with the simplest form of matching, but we intend to switch to it in

the future. We are obviously less optimized than widespread solutions which use reg-

ular expressions, such as Snort, as we require more patterns. Because we targeted to

use hardware architecture and resources only, we benefit from faster processing speed

and stronger security, where most of available solutions and research works are software

based. The process state awareness we introduced in this contribution is far from being

perfect, as we chose not to interrogate the process but instead to extrapolate its state from

probed communications, but still, taking into account the process state is rarely done by

common security applications. We are aware that the suggested architecture presented in

this work is not the most efficient when addressing recent industrial protocol like OPC-

UA. But currently the majority of industrial infrastructures make use of older protocols

and were constructed to last at least for 20 to 50 years. This contribution is more suited to

target these infrastructures, that, despite the evolution of the protocols, will require state

of the art security solutions.

From this point there is multiple leads to further continue this research work. Con-

cerning the boot security, in a short-term perspective we are currently working on the root

Image verification. The current secure boot, introduced in this work, suspends the boot

process to perform the verification of the whole file system image. Instead, we target an

alternative where the memory segments of the flash memory that contains this image are

individually signed, then they are verified during runtime when they are read. It should

reduce the boot delay and the whole root file system is still verified, as its signature is the

result of the signatures of all its segments. In a medium to long term perspective, there

is two ways to improve this work, as both bootloaders are located in the bitstream, their

update could either be done by taking them out or by updating the bitstream itself.

• In the first case, one suggestionwould be to encrypt both bootloaders and store them

in an external memory, the same EPCQ used for the bitstream for example. Then

the driver used by the FPGA to access this memory will be located in the user logic

and slightly modified to allow on the fly decryption of the memory content. Doing

so, both bootloaders can be updated, they remain confidential and an encrypted

signature can be added for integrity check.

• In the second case, keeping both bootloaders inside the bitstream and wanting to

update them forces to put in place a remote update mechanism. This will need

dedicated logic, a secured link between the FPGA and the update operator, shared

103

secrets.

Furthermore, as the boot of the operating system is based on the bitstream, if it is cor-

rupted, or not correctly loaded, the whole SoC (System on Chip) will be unusable. It

would require some form of backup to allow the FPGA to fall back on a controlled state

and permit a recovery or an exterior intervention. Xilinx natively supports fallback on a

user specified bitstream when the initial one fail (since the Spartan 6), while Altera gives

tools to the user to perform the same. This contribution heavily relies on the fact that the

hardware is trusted, physical components as well as memories and communication bus.

So the compromise or attacks of any of them will endanger the boot process, it is vulner-

able to fault injections, probing of memories might allow to retrieve critical information.

In the future it would be interesting to use dedicated protectingmethods such as memory

encryption, fault resistant algorithms to cover these vulnerabilities.

This workwas originally designed for industrial architectures, but the principles behind it

stay true for many embedded architectures, with the rise of the IOTwe can easily imagine

using this secure boot for FPGA based IOT devices.

Concerning the pattern matching work, in a short-term we intend to adapt the match-

ing engine to support regular expressionmatching. Relying on regular expressionswould

allow to reduce furthermore the memory usage for the patterns storage as well as it al-

lows more freedom and adaptability in the patterns definition. Brute force matching is a

proven solution, but with the increase in size and complexity of new industrial protocols,

it will become necessary to use regular expressions. Actually the patterns definition and

writing is done manually, through some bash and python scripts, a first improvement

would be to propose a graphical interface for the administrator. But manual definition

requires deep knowledge of the network and process, it can gather multiple trade asso-

ciations. Among possibilities to pursue this contribution, the development of machine

learning techniques and Artificial Intelligence researches, opens new areas of work. The

patterns definition would be automated through these methods, a dedicated entity could

scrutinize the network traffic, learn the patterns and even react to 0 day attacks by identi-

fying suspect behaviors. Furthermore, machine learning may help the matching process,

by learning which are the most used patterns, identifying critical paths and transitions

in the state automatons, it could optimize the matching and increase the efficiency. The

usages are numerous, but machine learning will be a good way to simplify and optimize

complex and laborious learning processes for human administrators.

Among popular trends, the Blockchain is also one of the improvement methods that

should be retained. We can imagine a network architecture where each control device

(PLCs, RTUs, IEDs) is part of a Blockchain which will give its approval to each command

entering the network. Doing so the security process is divided between each device of the

104

Chapter 5

network and not centralized anymore.

Finally, security recommendations tend to advocate for encryption to secure network com-

munications. The analyse and matching of encrypted data (without the decryption key)

is a research topic that requires dedicated algorithms, and it is one of the long-term sub-

jects that will need attention.

105

Chapter 6

Publications relative to the study

6.1 International Conferences

• Peter Rouget, Benoît Badrignans, Pascal Benoit, Lionel Torres, SecBoot - Lightweight

secure boot mechanism for Linux-based embedded systems on FPGAs, ReCoSoC 2017.

• Peter Rouget, Benoît Badrignans, Pascal Benoit, Lionel Torres, FPGA implementation

of pattern matching for Industrial Control Systems, RAW, IPDPS 2018.

106

Bibliography

Bibliography

[1] N. Falliere, L.O. Murchu, E. Chien,W32.stuxnet dossier, Symantec, Tech. Rep., 2011.

[2] B. Galloway, G.P. Hancke, Introduction to Industrial Control Networks, IEEE Communi-

cations Surveys & Tutorials, 2012.

[3] J. Libardo Sanchez Torres, Vulnerability, Interdependencies and risk analysis of coupled in-

frastructures : power distribution network and ICT, Electric power, Université de Greno-

ble, 2013.

[4] B. Zhu, A. Joseph, S. Sastry, A taxonomy of cyber attacks on scada systems, International

Conference on Internet of Things and 4th International Conference onCyber, Physical

and Social Computing, 2011.

[5] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, Attack taxonomies for the modbus pro-

tocols, International Journal of Critical Infrastructure Protection, 2008.

[6] Y. Xu, Y. Yang, T. Nanjing, J. Ju, Q. Wang, Review on Cyber Vulnerabilities of Communi-

cation Protocols in Industrial Control Systems, 2017 IEEE Conference on Energy Internet

and Energy System Integration, 2017.

[7] Z. Drias, A. Serhrouchni, O. Vogel, Taxonomy of attacks on Industrial Control protocols,

International Conference on Protocol Engineering and International Conference on

New Technologies of Distributed Systems, 2015.

[8] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, Security as a new dimension in

embedded system design, Proceedings. 41st Design Automation Conference, 2004.

[9] Altera Corporation, White Paper - Design Security in Stratix III Devices, 2009.

[10] Microsemi Corporation, Introduction to Implementing Design Security with Microsemi

SmartFusion2 and IGLOO2 FPGAs, 2013.

[11] K. Wilkinson,Using Encryption to Secure a 7 Series FPGA Bitstream, Application Note:

7 Series FPGAs, Xilinx, 2015.

107

Bibliography

[12] K. Chawla, T. Siddiqua,Mutation Resistant Runtime Code using Kernel Attestation, OS-

SEC project, 2009.

[13] S. Drimer, M. Kuhn, A Protocol for Secure Remote Updates of FPGA Configurations, Re-

configurable Computing: Architectures, Tools and Applications, 2009.

[14] Lattice corporation, LatticeXP2 Family Handbook, 2012.

[15] B. Badrignans, Using FPGAs for security-sensitive applications, Université Montpellier

II - Sciences et Techniques du Languedoc, 2009.

[16] F. Devic, Securing embedded systems based on FPGA technologies, UniversitéMontpellier

II - Sciences et Techniques du Languedoc, 2012.

[17] K. Kepa, F. Morgan, K. Kosciuszkiewicz, T. Surmacz, SeReCon: a secure reconfigura-

tion controller for self-reconfigurable systems, International Journal of Critical Computer-

Based Systems, 2010.

[18] Discretix corporation, Discretix Secure Boot (DxSB).

[19] Atmel corporation, Safe and Secure Bootloader Implementation, 2006.

[20] J. de Cesare, US 2009/0257595, Apple corporation, 2009.

[21] ARM corporation, Building a Secure System using TrustZone Technology, 2009.

[22] Microsemi Corporation,Microsemi secure boot reference design – White Paper, 2014.

[23] T. Kai, X. Xin, C. Guo, The Secure Boot of Embedded System Based on Mobile Trusted

Module, Intelligent System Design and Engineering Application, 2012.

[24] J.R. Moyne, D.M. Tilbury, The Emergence of Industrial Control Networks for Manufactur-

ing Control, Diagnostics, and Safety Data, Proceedings of the IEEE, 2007.

[25] Z. Shi, C. Ma, J. Cote, B. Wang, Hardware Implementation of Hash Functions, Introduc-

tion to Hardware Security and Trust, 2011.

[26] H. Li, C. Miao,Hardware Implementation of Hash Function SHA-512, First International

Conference on Innovative Computing, Information and Control - Volume I, 2006.

[27] K.M. Binu, A.I. Neethu, Ternary Content Addressable Memory, International Journal of

Recent Trends in Engineering & Research, 2016.

[28] S. Hachana, F. Cuppens, N. Cuppens-Boulahia, Towards a new generation of industrial

firewalls: Operational-process aware filtering, 14th Annual Conference on Privacy, Secu-

rity and Trust (PST), 2016.

108

Bibliography

[29] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J. Lockwood, Deep Packet Inspection

using Parallel Bloom Filters, IEEE Micro, 2004.

[30] J. Crenne, Sécurité Haut-debit pour les Systèmes Embarqués à base de FPGAs, 2012.

[31] K. Al-Khamaiseh, S. ALShagarin, A Survey of String Matching Algorithms, Interna-

tional Journal of Engineering Research and Applications, 2014.

[32] P. Michailidis, K. Margaritis, On-line String Matching Algorithms: Survey and Experi-

mental Results, International Journal of Computer Mathematics, 2001.

[33] D. Knuth, J. Morris, V. Pratt, Fast pattern matching in strings, SIAM Journal on Com-

puting, 1977.

[34] R. Boyer, J. Moore, A fast string searching algorithm, Communications of the ACM,

1977.

[35] A. Aho, M. Corasick, Efficient string matching: An aid to bibliographic search, Commu-

nications of the ACM, 1975.

[36] G.F. Ahmed, N. Khare, Hardware based String Matching Algorithms: A Survey, Inter-

national Journal of Computer Applications, 2014.

[37] E. Azimi, M.B. Ghaznavi-Ghoushchi, A.M. Rahmani, Implementation of Simple

SNORT Processor for Efficient Intrusion Detection Systems, IEEE International Confer-

ence on Intelligent Computing and Intelligent Systems, 2009.

[38] E-ISAC,Analysis of the Cyber Attack on the Ukrainian Power Grid, Defense Use Case, 2016.

[39] www.modbus.org

[40] www.profibus.fr

[41] www.bacnet.org/

[42] opcfoundation.org

[43] www.seclab-security.com/

[44] M.T. Rose, D.E. Cass, RFC1006 - ISO Transport Service on top of the TCP, Northrop

Research and Technology Center, May 1987.

[45] A. McKenzie, RFC905 - ISO Transport Protocol Specification ISO DP 8073, April 1984.

[46] Y. Pouffary, A. Young, RFC2126 - ISO Transport Service on top of TCP (ITOT), March

1997.

109

Bibliography

[47] Z. Feng, S. Qin, X. Huo, P. Pei, Y. Liang, L. Wang, Snort improvement on Profinet RT

for Industrial Control System Intrusion Detection, 2nd IEEE International Conference on

Computer and Communications (ICCC), 2016.

[48] Courtesy: Control Engineering Mobility, Ethernet and Wireless Study, November 2013.

[49] M. Wollschlaeger, T. Sauter, J. Jasperneite, The Future of Industrial Communication:

Automation Networks in the Era of the Internet of Things and Industry 4.0, IEEE Industrial

Electronics Magazine, 2017.

[50] J.D. Decotignie, A perspective on Ethernet-TCP/IP as a fieldbus, IFAC international con-

ference on fieldbus systems and their application, 2001.

[51] Y. Lai, J. Tai, Network Security Improvement with Isolation Implementation Based on ISO-

17799 Standard, International Conference on Network-Based Information Systems,

2007.

[52] B. Sharma, B. Bajaj, Packet Filtering using IP Tables in Linux, International Journal of

Computer Science Issues, 2011.

[53] K. Joshi, T. Kashiparekh, Implementing Firewall using IP Tables in Linux, International

Journal of Emerging Trends in Science and Technology, 2016.

[54] www.checkpoint.com

[55] www.fortinet.com

[56] www.cisco.com

[57] www.stormshield.com

[58] www.tofinosecurity.com

[59] A. Jones, Netfilter and IPTables: A Structural Examination, 2004.

[60] www.snort.org

[61] R. Ajami, A. Dinh, Design a Hardware Network Firewall on FPGA, 24th Canadian Con-

ference on Electrical and Computer, 2011.

[62] A. Kumar, A. Mittal, A. Gupta, S. Ghosh, Firewall Implementation, CS425: Computer

Networks, 2010.

[63] A. Zhiyuan, L. Haiyan, Realization of Buffer Overflow, International Forum on Infor-

mation Technology and Applications, 2010.

110

Bibliography

[64] R. Johari, P. Sharma, A Survey on Web Application Vulnerabilities (SQLIA, XSS) Ex-

ploitation and Security Engine for SQL Injection, International Conference on Commu-

nication Systems and Network Technologies, 2012.

[65] M. Khari, P. Sangwan, Vaishali, Web-application attacks: A survey, 3rd International

Conference on Computing for Sustainable Global Development, 2016.

[66] A.W. McMorran, An Introduction to IEC 61970-301 & 61968-11: The Common Informa-

tion Model, 2007.

[67] V. Schiffer, The Common Industrial Protocol (CIPTM) and the Family of CIP Networks,

ODVA, 2016.

[68] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, A. Martinez, A paral-

lelized way to provide data encryption and integrity checking on a processor-memory bus, Pro-

ceedings of the 43rd annual Design Automation Conference, New York, USA, 2006.

[69] J. Crenne, R. Vaslin, G. Gogniat, J. Diguet, R. Tessier, D. Unnikrishnan, Configurable

Memory Security In Embedded Systems, ACM Transactions on Embedded Computing

Systems, 2013.

[70] L. Bossuet, G. Gogniat, W. Burleson, Dynamically Configurable Security for SRAM

FPGA Bitstreams, International Journal of Embedded Systems, 2016.

[71] M. Vaˇsut, Secure and flexible boot with U-Boot bootloader, 2014.

[72] Gentoo Fundation, Initramfs/Guide, 2016.

[73] The GNU Privacy Guard, 2015. https://www.gnupg.org/

[74] Secure Boot with SecBus. https://secbus.telecom-paristech.fr/wiki/SecureBoot

[75] J. Teki, U-Boot: Verified RSA – Boot on ARM target, U-boot Mini Summit, Edinburgh,

2013.

[76] C.P. Wedage, Efficient Content Addressable Memory Design Using RAM, International

Journal of Electronics and Electrical Engineering, 2016.

[77] K. Al-Khamaiseh, S. ALShagarin, A Survey of String Matching Algorithms, Journal of

Engineering Research and Applications, 2014.

[78] S. Mocanu, M. Kabir-Querrec, J. Thiriet, E. Savary, Cybersécurité des sous-stations élec-

triques IEC 61850, 2015.

[79] www.netfilter.org

111

[80] www.pfsense.org

[81] T.J.Williams, The Purdue enterprise reference architecture, Comuters in Industry Vol 24,

1994.

[82] C. Shields, What do we mean by Network Denial of Service ?, 2002.

ABSTRACT: Study and design of mechanisms for rupture and filtering of industrial protocols
With the rise of Industry 4.0, many infrastructures were forced to open their networks to the Internet, mainly
to meet the growing need for supervision and remote control. But where these infrastructures were previously
isolated, spared from external threats, their opening has caused the emergence of new threats, particularly net-
work ones, which were not addressed and present serious risks.
Network cybersecurity solutions, like Firewalls, Intrusion Detection Systems or Intrusion Protection Systems
are commonly used to address the concern of industrial infrastructures cybersecurity. However the trend of
relying on software-based systems to ensure network protection brought to light the vulnerabilities of these
systems, due to their inherent software implementation. Furthermore, the industry is tied to its own specifici-
ties (low-latency, support of specific network protocols), which are rarely covered by common IT solutions.
The main goal of this thesis is to study the use of FPGA-based devices applied to cybersecurity for industrial
networks. Either as support for software-based security applications, or to perform critical network analysis
operations. First it presents the industrial context, with control systems, their architectures, needs, implemen-
tation rules, specific protocols and also gives two examples of control systems as they can be found in the
industry. Then it highlights the security problematic, with a description of the most common threats, cases
study about their applications and impact in a control system, and discussions on the state of the art counter-
measures available on the market. Through the establishment of a security target, it points the vulnerability of
software elements and operating systems as well as the lack of process state aware security analysis.
To address these issues, we propose, through a first contribution, to enforce the security of the software sys-
tem by taking advantage of existing FPGA’s protection mechanisms. Finally, to answer specific application
threats, we introduce an implementation of a brute force matching architecture with time and operational-
process awareness, on FPGA.
This thesis was conducted in collaboration between the Montpellier computer science, robotic and microelec-
tronic laboratory (LIRMM) and the SECLAB company.

RÉSUMÉ: Étude et conception de mécanismes de rupture et de filtrage de protocoles industriels
Avec l’essor de l’Industrie 4.0, de nombreuses infrastructures ont été contraintes d’ouvrir leurs réseaux à Inter-
net, principalement pour répondre au besoin croissant de supervision et de contrôle à distance. Mais là où ces
infrastructures étaient auparavant isolées, épargnées par les menaces extérieures, leur ouverture a provoqué
l’émergence de nouveaux risques, en particulier à travers le réseau, potentiellement sérieux et qui ne sont pas
couverts.
Les solutions de cybersécurité, comme les pare-feux, les systèmes de détection d’intrusion ou les systèmes de
protection contre les intrusions, sont couramment utilisés pour répondre aux préoccupations liées à la cyber-
sécurité des infrastructures industrielles. Cependant, la tendance à se fier aux systèmes logiciels pour assurer
la protection du réseau a mis en lumière les vulnérabilités de ces systèmes, en raison de leurs implémentations
logicielles inhérentes. En outre, l’industrie est liée à ses propres spécificités (faible latence, support de proto-
coles réseaux spécifiques), qui sont rarement couvertes par les solutions informatiques communes.
L’objectif principal de cette thèse est d’étudier l’utilisation de dispositifs FPGAappliqués à la cybersécurité pour
les réseaux industriels, soit comme support pour des applications de sécurité logicielle, soit pour effectuer des
opérations critiques d’analyse réseau. Ce travail présente d’abord le contexte industriel, avec les systèmes de
contrôle, leurs architectures, leurs besoins, les règles de mise en œuvre, les protocoles spécifiques et donne
également deux exemples de systèmes de contrôle comme on peut en trouver dans l’industrie. Il met ensuite
en lumière les problèmes de sécurité, avec une description des menaces les plus courantes, des études de cas
sur leurs applications et leurs impacts dans un système de contrôle, et des discussions sur les contre-mesures
de pointe disponibles sur le marché. Suite à l’établissement d’une cible de sécurité, nous mettrons en évidence
la vulnérabilité des éléments logiciels et des systèmes d’exploitation. Nous verrons aussi comment l’absence
d’analyse de sécurité tenant compte de l’état des processus peut mener à certaines vulnérabilités.
Pour pallier à ces problèmes, nous proposons, par une première contribution, de renforcer la sécurité des sys-
tèmes logiciels en tirant parti des mécanismes de protection existants du FPGA. Enfin, pour répondre à des
menaces applicatives spécifiques, nous proposons la mise en œuvre d’une architecture de reconnaissance de
motifs, sur FPGA, prenant en considération le cadre temporel et l’état du procédé industriel. Cette thèse a été
réalisée en collaboration avec le Laboratoire d’Informatique, de Robotique et de Microélectronique de Mont-
pellier (LIRMM) et la société SECLAB.

MOTS-CLÉS: FPGA, Sécurité, Reconnaissance de motifs, Protocoles industriels

