
HAL Id: tel-02446215
https://theses.hal.science/tel-02446215

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From monolithic architectural style to microservice one :
structure-based and task-based approaches

Anfel Selmadji

To cite this version:
Anfel Selmadji. From monolithic architectural style to microservice one : structure-based and task-
based approaches. Other [cs.OH]. Université Montpellier, 2019. English. �NNT : 2019MONTS026�.
�tel-02446215�

https://theses.hal.science/tel-02446215
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIER

En Informatique

École doctorale : Information, Structures, Systèmes

Unité de recherche LIRMM

From Monolithic Architectural Style to Microservice
one : Structure-based and Task-based Approaches

Présentée par Anfel SELMADJI

Le 3 octobre 2019

Sous la direction de Abdelhak-Djamel SERIAI

Devant le jury composé de

Flavio OQUENDO, Prof, Université de Bretagne Sud Rapporteur (président du jury)

Philippe COLLET, Prof, Université de Nice Sophia Antipolis Rapporteur

Chirine GHEDIRA GUEGAN, Prof, Université Jean Moulin Lyon 3 Examinatrice

Abdelhak-Djamel SERIAI, MdC, HDR, Université de Montpellier Directeur

Christophe DONY, Prof, Université de Montpellier Co-directeur

Hinde Lilia BOUZIANE, MdC, Université de Montpellier Co-encadrante

Acknowledgments

First and foremost, words cannot adequately express the gratitude I feel to-
wards my advisor, Dr. Abdelhak-Djamel SERIAI, for all what he has done for
me. The list is long. I am thankful for his continuous investment in my thesis
despite the difficulties, for his patience, guidance, kindness, comprehensiveness,
immense knowledge, long meeting hours even when he was exhausted,... For
me, he is much more than an outstanding advisor. I am also immensely grateful
to my co-advisor, Dr. Hinde Lilia BOUZIANE, for always supporting me, being
extremely patient, thoughtful, and kind. My amazing co-advisor did not care
how long our meetings would be, the important was that I learn how to properly
tackle a problem, present things, and write them down. I am also highly thank-
ful to my co-advisor, Prof. Christophe DONY, for his support, help as well as
his constructive and valuable remarks. I am honored, blessed, and lucky to have
Dr. Abdelhak-Djamel SERIAI, Dr. Hinde Lilia BOUZIANE, and Prof. Christophe
DONY as advisors.

I would like to express my gratitude to my PhD committee members, Prof.
Flavio OQUENDO, Prof. Philippe COLLET, and Prof. Chirine GHEDIRA GUE-
GAN, for having accepted to evaluate my thesis. I highly appreciate the valuable
time they took from their busy schedule to do that. I am also extremely grate-
ful for their encouragement as well as their insightful and inspiring comments,
which have widened the scope of our perspectives, and will definitely improve
our work.

Heartfelt appreciations go to every member of MaREL team for having wel-
comed me, and helped me all along. Thank you for your support, motivation,
enriching discussions, and constructive remarks. I am grateful that I have known
you and wish you all the best.

I would like also to express my gratitude to my family members, starting with
my parents to whom I am indebted and I will never ever be able to pay that debt
no matter what I do. Thank you for always believing in me, for your prayers, for
your support, for your unconditional love, for your sacrifices, and for all what
you have done. I am also extremely appreciative to my brother, Mouaadh, my

iv

backbone, who have been always there for me, and gave me wise advice. Thank
you for never being tired of all my questions and for turning my doubt into hope.
Heartfelt appreciations go to my younger brother, Oussama, and my sister, Ritedj,
for lifting up my spirit with their jokes and bright smiles. Thank you for your
care, heartwarming words, and beautiful drawings.

I would like to express my appreciation to my friends for the amazing, and
unforgettable time we spent together. Thank you for the laughs, for all the pre-
cious memories that I will treasure forever, and for being there for me despite the
distance. I wish each and every one of you the best of luck and success in your
future.

Special thanks to all the people in charge of my scholarship in the Algerian
Ministry of Higher Education and Scientific Research, the University of Constan-
tine 2, and the Algerian Consulate in Montpellier.

Finally, genuine thanks to every friend, family member, colleague, professor,
and teacher who contributed to the success of this dissertation. I am lucky to
have you in my life.

Résumé

Les technologies logicielles ne cessent d’évoluer pour faciliter le développe-
ment, le déploiement et la maintenance d’applications dans différents domaines.
En parallèle, ces applications évoluent en continu pour garantir une bonne qua-
lité de service et deviennent de plus en plus complexes. Cette évolution implique
souvent des coûts de développement et de maintenance de plus en plus impor-
tants, auxquels peut s’ajouter une augmentation des coûts de déploiement sur des
infrastructures d’exécution récentes comme le cloud. Réduire ces coûts et amélio-
rer la qualité de ces applications sont actuellement des objectifs centraux du do-
maine du génie logiciel. Récemment, les microservices sont apparus comme un
exemple de technologie ou style architectural favorisant l’atteinte de ces objectifs.

Un microservice peut être vu comme un service à granularité "très" fine dé-
ployable de manière indépendante et pouvant communiquer avec d’autres mi-
croservices. Les microservices permettent une reconfiguration dynamique d’une
application, en ajoutant, supprimant ou remplaçant des microservices pendant
son exécution. Ils semblent ainsi être bien adaptés aux pratiques DevOps qui
visent à réduire les coûts depuis la création d’une application jusqu’à son dé-
ploiement et sa maintenance.

Alors que les microservices peuvent être utilisés pour développer de nou-
velles applications, il existe des applications monolithiques (i.e., monolithes) cons-
truites comme une seule unité et que les propriétaires (e.g., entreprise, etc.) sou-
haitent maintenir et déployer sur le cloud. Dans ce cas, il est fréquent d’envisager
de redévelopper ces applications à partir de rien ou d’envisager une migration
vers de nouveaux styles architecturaux. Redévelopper une application ou réaliser
une migration manuellement peut devenir rapidement une tâche longue, source
d’erreurs et très coûteuse. Une migration automatique apparaît donc comme une
solution évidente.

L’objectif principal de notre thèse est de contribuer à proposer des solutions
pour l’automatisation du processus de migration d’applications monolithiques
orientées objet vers des microservices. Cette migration implique deux étapes :
l’identification de microservices et le packaging de ces microservices. Nous nous

vi

focalisons sur d’identification en s’appuyant sur une analyse du code source.
Nous proposons en particulier deux approches.

La première consiste à identifier des microservices en analysant les relations
structurelles entre les classes du code source ainsi que les accès aux données per-
sistantes. Dans cette approche, nous prenons aussi en compte les recommanda-
tions d’un architecte logiciel. L’originalité de ce travail peut être vue sous trois as-
pects. Tout d’abord, les microservices sont identifiés en se basant sur l’évaluation
d’une fonction bien définie mesurant leur qualité. Cette fonction repose sur des
métriques reflétant la "sémantique" du concept "microservice". Deuxièmement,
les recommandations de l’architecte logiciel ne sont exploitées que lorsqu’elles
sont disponibles. Enfin, deux modèles algorithmiques ont été utilisés pour par-
titionner les classes d’une application orientée objet en microservices : un algo-
rithme de regroupement hiérarchique et un algorithme génétique.

La deuxième approche consiste à extraire à partir d’un code source orienté
objet un workflow qui peut être utilisé en entrée de certaines approches existantes
d’identification des microservices. Un workflow décrit le séquencement de tâches
constituant une application suivant deux formalismes : un flot de contrôle et/ou
un flot de données. L’extraction d’un workflow à partir d’un code source nécessite
d’être capable de définir une correspondance entre les concepts du mon-de objet
et ceux d’un workflow.

Pour valider nos deux approches, nous avons implémenté deux prototypes et
mené des expérimentations sur plusieurs cas d’étude. Les microservices identifiés
ont été évalués qualitativement et quantitativement. Les workflows obtenus ont
été évalués manuellement sur un jeu de tests. Les résultats obtenus montrent res-
pectivement la pertinence des microservices identifiés et l’exactitude des work-
flows obtenus.

Mots-clés : Monolithe, orienté objet, microservice, migration logicielle, réingénie-
rie logicielle, qualité logicielle, métrique de qualité, workflow, flot de données,
flot de contrôle, cloud.

Abstract

Software technologies are constantly evolving to facilitate the development,
deployment, and maintenance of applications in different areas. In parallel, these
applications evolve continuously to guarantee an adequate quality of service, and
they become more and more complex. Such evolution often involves increased
development and maintenance costs, that can become even higher when these
applications are deployed in recent execution infrastructures such as the cloud.
Nowadays, reducing these costs and improving the quality of applications are
main objectives of software engineering. Recently, microservices have emerged
as an example of a technology or architectural style that helps to achieve these
objectives.

A microservice can be seen as a small, independently deployable service that
can communicate with other microservices. Microservices allow dynamic recon-
figuration of an application by adding, removing, or replacing microservices dur-
ing its execution. They also seem to be well-adapted to DevOps practices that aim
to reduce costs from the creation of an application to its deployment, and main-
tenance.

While microservices can be used to develop new applications, there are mono-
lithic ones (i.e., monoliths) built as a single unit and their owners (e.g., companies,
etc.) want to maintain and deploy them in the cloud. In this case, it is common
to consider rewriting these applications from scratch or migrating them towards
recent architectural styles. Rewriting an application or migrating it manually can
quickly become a long, error-prone, and expensive task. An automatic migration
appears as an evident solution.

The ultimate aim of our dissertation is contributing to automate the migration
of monolithic Object-Oriented (OO) applications to microservices. This migration
consists of two steps: microservice identification and microservice packaging. We
focus on microservice identification based on source code analysis. Specifically,
we propose two approaches.

The first one identifies microservices from the source code of a monolithic

viii

OO application relying on code structure, data accesses, and software architect
recommendations. The originality of our approach can be viewed from three
aspects. Firstly, microservices are identified based on the evaluation of a well-
defined function measuring their quality. This function relies on metrics reflect-
ing the "semantics" of the concept "microservice". Secondly, software architect
recommendations are exploited only when they are available. Finally, two algo-
rithmic models have been used to partition the classes of an OO application into
microservices: clustering and genetic algorithms.

The second approach extracts from an OO source code a workflow that can
be used as an input of some existing microservice identification approaches. A
workflow describes the sequencing of tasks constituting an application according
to two formalisms: control flow and /or data flow. Extracting a workflow from
source code requires the ability to map OO concepts into workflow ones.

To validate both approaches, we implemented two prototypes and conducted
experiments on several case studies. The identified microservices have been eval-
uated qualitatively and quantitatively. The extracted workflows have been man-
ually evaluated relying on test suites. The obtained results show respectively
the relevance of the identified microservices and the correctness of the extracted
workflows.

Keywords: Monolith, object-oriented, microservice, software migration, software
reengineering, software quality, quality metrics, workflow, data flow, control flow,
cloud.

Résumé étendu

Au fil des ans, les technologies évoluent pour permettre un développement et
un déploiement de logiciels plus efficaces et plus faciles, ainsi que toute activité
ultérieure à leur livraison, telle que la maintenance. Des exemples de technolo-
gies récentes qui permettent cela et attirent l’attention des chercheurs ainsi que
des industriels, sont le cloud computing, le DevOps et les microservices.

Pour suivre le rythme des avancées technologiques, les applications existantes
développées en utilisant des technologies obsolètes peuvent être réécrites à partir
de zéro ou migrées vers des technologies plus récentes. Notre travail contribue
à la migration des applications monolithiques existantes vers des microservices
afin de les adapter à la fois au cloud computing et au DevOps.

Contexte

Cloud et DevOps

Le cloud computing est un modèle permettant l’accès réseau à un pool partagé
de ressources informatiques configurables telles que l’espace de stockage, les
serveurs, les applications, les services, etc. [101]. Les clients peuvent à la de-
mande allouer et libérer rapidement ces ressources avec un minimum d’effort de
gestion et de communication des fournisseurs de services [101]. Le cloud se car-
actérise par sa haute disponibilité, son élasticité, sa scalabilité et sa flexibilité des
coûts. Il fournit une variété de services qui peuvent être classés dans une hiérar-
chie de termes en tant que service [127]. Une catégorisation simplifiée divise les
services du cloud en trois catégories: SaaS (logiciel en tant que service), PaaS
(plateforme en tant que service) et IaaS (infrastructure en tant que service). Le
SaaS est un paradigme de livraison de logiciels, dans lequel les fournisseurs de
services développent des logiciels et les distribuent via Internet [55]. PaaS offre
des plateformes pour le développement et le déploiement d’applications dans le

x

cloud en utilisant des langages de programmation, des bibliothèques, des outils,
etc. [57]. Les fournisseurs IaaS offrent des ressources de traitement, de stock-
age, de réseau et autres ressources informatiques fondamentales permettant aux
clients de déployer et d’exécuter leurs logiciels [51, 101]. Cela peut être réalisé
en allouant des machines virtuelles (VM) personnalisées avec une capacité de
CPU, de mémoire, de stockage et de bande passante prédéfinie [127]. Les clients
peuvent allouer / libérer des machines virtuelles de manière élastique, et ils sont
facturés en fonction de leur utilisation. SalesForce [5], Google App Engine [2],
Amazon EC2 [3] et Microsoft Azure [4] sont parmi les principaux fournisseurs de
services dans le cloud.

Grâce à ses caractéristiques, de nos jours, le cloud attire l’attention des cherch-
eurs et des industriels. Certains chercheurs le considèrent comme une plate-
forme de développement et d’exécution des applications scientifiques massive-
ment scalables [105]. De plus, au lieu d’investir d’avance dans une infrastructure
sur-provisionnée, ils ne paient que pour ce qu’ils utilisent. Même les entreprises
sont attirées par le cloud en raison de sa scalabilité et de sa flexibilité des coûts
[74]. Ils le voient comme une stratégie commerciale opportuniste leur permettant
de rivaliser avec d’autres entreprises et d’atteindre leurs objectifs commerciaux
[34, 17, 16], en particulier lorsqu’il est fusionné avec DevOps efficace.

DevOps (Développement et Opérations) [26] est un ensemble de pratiques
visant à améliorer la collaboration entre les équipes de développement (par ex-
emple, programmation, tests, etc.) et les équipes d’opérations (par exemple, dé-
ploiement, surveillance, etc.) pour réduire le temps de mise sur le marché. De
plus, ces pratiques garantissent le maintien de la qualité du code et du mécan-
isme de livraison [23]. L’intégration continue (CI) et la livraison continue (CD)
font partie des pratiques clés de DevOps. Le CI permet aux membres des équipes
de développement d’intégrer leur travail fréquemment, généralement plusieurs
fois par jour [121, 59]. Le CD vise à garantir que des logiciels de qualité sont
produits en cycles courts et qu’ils peuvent être livrés de manière fiable à tout mo-
ment [41]. Le CD peut utiliser un ensemble de pratiques, telles que le CI et le
déploiement automatisé [71].

Pour tirer pleinement profit de cloud et de DevOps, il est nécessaire de pren-
dre en compte leurs caractéristiques et leurs exigences lors du développement
d’applications. Par exemple, dans le cloud, une défaillance peut survenir à tout
moment [22, 134]. Par conséquent, les applications à déployer dans cet environ-
nement devraient être en mesure de gérer de telles incertitudes [22]. En outre,
pour une adoption plus fluide de DevOps, il est nécessaire d’avoir un système
constitué de modules qui peuvent être développés, testés et déployés de manière
indépendante. Les systèmes basés sur les microservices peuvent répondre à ces
contraintes.

xi

Microservices

Récemment, les microservices [106, 122, 123, 95] sont apparus comme un style
architectural bien adapté au développement d’applications à déployer sur le cloud
(architecture native pour le cloud [22]), ainsi qu’à celles qui adoptent les pratiques
DevOps. En littérature, la définition la plus communément utilisée de ce style
architectural est celle proposée par Lewis and Fowler [95]. Selon eux, dans ce
style, une application consiste en un ensemble de petits services qui peuvent être
déployés indépendamment. Chaque microservice gère ses propres données et
communique avec les autres en s’appuyant sur des mécanismes légers. De plus,
ils sont couramment emballés et déployés à l’aide de conteneurs [106, 122, 123].

Lors de l’exécution d’une application à base de microservices, ces derniers
peuvent être dupliqués indépendamment ou supprimés à la volée pour réduire
le temps de réponse ou parce qu’ils ne sont pas utilisés. Une telle duplication
dynamique (resp., suppression) nécessite une allocation dynamique (resp., libéra-
tion) des ressources fournies par le cloud. L’allocation et la libération dynamiques
adaptent le coût d’utilisation des ressources aux exigences de l’application. De
plus, chaque microservice peut être déployé à l’aide de ressources qui répon-
dent à ses besoins (par exemple, CPU, mémoire, etc.) [52, 114]. Une telle con-
sommation efficace de ressources permet aux fournisseurs de services d’offrir
plus de garanties de scalabilité [56]. Enfin, les microservices facilitent la reprise
de l’exécution d’une application après une défaillance du cloud, car ils peuvent
être redémarrés facilement et rapidement sans qu’il soit nécessaire de redémarrer
l’application entière [130].

Outre leur adaptabilité au cloud, les microservices sont bien adaptés au De-
vOps. Ils permettent une livraison et un déploiement continus d’applications vo-
lumineuses et complexes [114]. Cela est dû au fait qu’ils peuvent être développés,
testés et déployés séparément. Par conséquent, chaque équipe peut facilement
développer, tester et déployer ses microservices indépendamment des autres [130].

Problème et motivation

Ces dernières années, le style architectural microservices est devenu un élé-
ment essentiel pour le développement d’applications à déployer sur le cloud ainsi
que celles qui adoptent les pratiques DevOps. Néanmoins, de nombreuses appli-
cations ont été développées avant l’émergence de ce style en se basant sur un
style monolithique.

xii

Problème des Applications Monolithiques dans le Contexte de
Cloud et de DevOps

Le style architectural monolithique [128, 52, 114, 95, 112] est la façon tradition-
nelle de développer des logiciels. Dans ce style, une application, appelée mono-
lithique ou monolithe, est construite comme une seule unité combinant l’interface
utilisateur, la logique métier et les accès aux données. Généralement, elle est au-
tonome et indépendante des autres applications.

Le style monolithique est bien adapté au développement de petites applica-
tions ou lorsqu’il existe de fortes dépendances entre les différentes parties d’une
application, durcissant sa décomposition. Autrement, les monolithes ont des lim-
itations importantes, en particulier lorsqu’ils sont déployés sur le cloud:

— Surcoût pour l’utilisation des ressources : la mise à l’échelle d’un mono-
lithe nécessite simplement d’exécuter plusieurs copies de l’application en-
tière derrière un équilibreur de charge [122, 95, 112]. Dans le cloud, les
clients sont généralement facturés en fonction des ressources utilisées, même
si certaines d’entre elles sont inutilement occupées par des parties du mono-
lithe qui ne sont pas fréquemment utilisées (c’est-à-dire qui implémentent
des fonctionnalités moins utilisées) [52]. C’est certainement coûteux de met-
tre une application à l’échelle de telle façon. En outre, pour déployer un
monolithe, les ressources nécessaires sont allouées en fonction des besoins
(par exemple, CPU, mémoire, etc.) de l’ensemble du monolithe. S’il ex-
iste une variation significative en terme de ces exigences lors de l’exécution
du monolithe, les ressources choisies peuvent être sous-optimales ou coû-
teuses.

— Temps d’arrêt considérables : pour reprendre l’exécution après une défail-
lance du cloud, l’application entière peut être redémarrée. Généralement, le
redémarrage d’un monolithe entraîne des temps d’arrêt considérables [52].

— Difficulté à adopter les pratiques DevOps : l’adoption des pratiques De-
vOps n’est pas toujours fluide [146], en particulier lorsqu’il s’agit d’applica-
tions monolithiques. L’adoption de DevOps nécessite de disposer d’un sys-
tème constitué de modules qui peuvent être développés, testés et déployés
de manière indépendante. Ce n’est pas le cas lors de la manipulation de
monolithes.

En raison de ces limitations, les applications monolithiques ne sont bien adap-
tées ni au cloud ni au DevOps. Un moyen possible d’adapter ces applications aux
deux consiste à les migrer vers un style architectural capable de traiter ces limita-
tions.

xiii

Migration des Applications Monolithiques vers des Microservices

Comme expliqué précédemment, les microservices peuvent être développés,
testés et déployés indépendamment, ce qui leur permet de remédier aux limita-
tions des applications monolithiques. Pour cela, les monolithes existants peuvent
être réécrits à partir de zéro en utilisant des microservices ou migrés vers eux.
D’une part, une réécriture complète est considérée comme une tâche risquée,
coûteuse et longue. Généralement, la logique métier documentée des monolithes
n’est pas à jour [93]. De plus, en raison du roulement du personnel, il devient
difficile d’atteindre les experts des applications. En fait, le risque d’échec est
généralement trop élevé pour que les entreprises réécrivent leurs applications
à partir de zéro [30]. Par ailleurs, la migration vers le style architectural microser-
vices apparaît comme une solution évidente. En effet, il est plus sûr et générale-
ment mené.

Par conséquent, l’objectif ultime de notre thèse est de contribuer à automatiser
la migration des applications monolithiques orientées objet vers des microser-
vices afin de les adapter au cloud et au DevOps. Pour cela, nous adressons le
problème de recherche qui consiste à répondre à deux questions principales:

1. Comment identifier, à partir d’une application monolithique orientée ob-
jet, l’architecture à base de microservices correspondante tout en respec-
tant autant que possible les principes de ce style architectural? Cette ques-
tion est liée à l’observation que certaines approches d’identification de mi-
croservices existantes, telles que celles proposées dans [66, 94, 25, 100, 44],
présentent des limitations qui les empêchent de répondre en profondeur à
cette question. Parmi les principales limitations, nous pouvons citer:

— Les critères utilisés pour identifier les microservices ne matérialisent
pas toute la "sémantique" du concept "microservice". Par exemple, le
critère concernant l’autonomie des données des microservices n’est pas
toujours pris en compte, en particulier lorsque les entrées requises par
l’approche d’identification ne sont pas de la documentation.

— Pour identifier des microservices à partir d’un monolithe, certaines in-
formations nécessaires peuvent être récupérées en analysant son code
source. Outre ces informations, les recommandations fournies par les
experts des applications analysés peuvent être exploitées pour amé-
liorer la pertinence/qualité des microservices identifiés. Cependant,
les approches existantes qui nécessitent une intervention d’experts souf-
frent principalement de deux limitations. D’une part, l’intervention
des experts ne se limite pas à fournir des recommandations pertinentes,
mais ils effectuent plutôt certaines étapes de l’approche. D’autre part,
cette intervention est considérée comme toujours nécessaire, ce qui

xiv

limite l’applicabilité de ces approches.

— Le modèle algorithmique utilisé a un impact sur la pertinence/qualité
de l’architecture à base de microservices identifiée. Les approches ex-
istantes reposent principalement sur un nombre limité de modèles tels
que le clustering.

Sur la base de ces limitations, la question ci-dessus peut être encore raffinée
en trois sous-questions:

— Comment identifier des microservices à partir d’une application orien-
tée objet en tenant compte de la "sémantique" du concept "microser-
vice"?

— Quelles sont les recommandations pertinentes permettant de bénéficier
des conseils d’experts et comment peuvent-elles être combinées avec
des informations du code source?

— Quel modèle algorithmique peut être utilisé pour identifier les meill-
eurs microservices possibles en fonction de l’évaluation de leur qual-
ité?

2. Comment extraire à partir d’une application orientée objet un workflow
correspondant utilisé par certaines approches existantes basées sur des
tâches pour identifier des microservices? Cette question est liée au constat
que certaines des approches existantes identifient des microservices à par-
tir des workflows [15] ou leurs constituants [44]. Un workflow spécifie le
mode de séquencement des tâches suivant deux formalismes: flot de con-
trôle et/ou flot de données. Un flot de contrôle décrit l’ordre d’exécution
des tâches à travers différentes constructions telles que des séquences, des
branches conditionnelles (if et switch) et des boucles (for et while). Un
flot de données spécifie les échanges de données entre les tâches. Si un
workflow n’est pas disponible, une identification basée sur les tâches extrait
d’abord celui-ci des artefacts accessibles du monolithe à migrer (par exem-
ple, code source, documentation, etc.), puis l’utilise pour identifier les mi-
croservices. Néanmoins, les approches existantes basées sur les tâches sup-
posent soit l’existence de workflows [15], soit les experts peuvent récupérer
leurs constituants [44], ce qui n’est pas toujours le cas. Pour garantir l’appli-
cabilité de telles approches, un workflow peut être extrait des artefacts dis-
ponibles. Plusieurs approches ont été proposées pour récupérer des work-
flows. Ce-pendant, elles souffrent de deux limitations principales:

— Généralement, leur objectif n’est pas de récupérer tous les constituants
du workflows. Ils extraient soit un flot de contrôle [148, 147, 61, 89, 72,
62, 118, 119, 90] ou un flot de données [43, 33, 99], mais pas les deux.

— Une intervention de l’expert est nécessaire pour effectuer certaines éta-
pes de l’approche manuellement [90], ce qui limite son applicabilité.

xv

Sur la base de ces limitations et de la définition d’un workflow, la question
ci-dessus peut être encore raffinée en trois sous-questions:

— Quelles sont les tâches qui reflètent le workflow correspondant à l’app-
lication orientée objet?

— Quel est le flot de contrôle à définir entre les tâches identifiées?
— Quel est le flot de données à associer aux tâches et au flot de contrôle

identifiés?

Contributions

Pour aborder le problème identifié précédemment, cette thèse présente les
contributions suivantes:

1. Identification des microservices à partir du code source orienté objet basée
sur la structure : notre approche identifie des microservices en se basant
sur l’analyse statique du code source orienté objet d’une application mono-
lithique. Elle s’appuie sur des informations liées à la structure du code
source, les accès aux données persistantes (c’est-à-dire stockées dans des
bases de données) et aux recommandations de l’architecte lorsque ces der-
nières sont disponibles. Son originalité se décline sous trois aspects:

— Identification de microservices basés sur l’évaluation d’une fonction
bien définie mesurant leur qualité: le but de notre approche est d’iden-
tifier des microservices en maximisant une fonction qui évalue leur
qualité. Elle a été proposée en se basant sur des métriques reflétant la
"sémantique" du concept "microservice". Ces métriques ont été définies
en raffinant les caractéristiques des microservices. Les paramètres de la
fonction de qualité sont les dépendances structurelles du code source
et les liens concernant les accès aux données persistantes.

— Exploiter les recommandations de l’architecte uniquement quand
elles sont disponibles: un ensemble bien défini de recommandations,
qu’un architecte peut fournir, a été spécifié et utilisé dans notre ap-
proche. Les recommandations concernent principalement l’utilisation
des applications (par exemple, combien de microservices, quelle classe
est le centre d’un microservice, etc.). De plus, elles sont combinées avec
des informations du code source. Les recommandations, lorsqu’elles
sont disponibles, sont impliquées principalement dans le partitionne-
ment des applications orientées objet en microservices. Les informa-
tions du code source sont utilisées pour mesurer leur qualité. Selon les
recommandations disponibles, différentes identifications de microser-
vices peuvent être effectuées.

xvi

— Modèles algorithmiques de regroupement et de méta-heuristiques
pour identifier des microservices en se basant sur l’évaluation de la
fonction de qualité: notre approche regroupe les classes d’une appli-
cation orientée objet en fonction de leur qualité mesurée à l’aide de la
fonction de qualité proposée. À cette fin, deux modèles algorithmiques
ont été utilisés: un algorithme de regroupement [142] et un algorithme
génétique [69, 103]. La fonction de qualité proposée est considérée
comme une mesure de similarité dans l’algorithme de regroupement et
comme une fonction objective dans l’autre. Il est possible d’identifier
des microservices en utilisant les deux modèles algorithmiques, puis
comparer les résultats obtenus et choisir les meilleurs.

2. Extraction de workflows à partir du code source orienté objet pour per-
mettre l’identification de microservices basée sur des tâches: pour perme-
ttre l’applicabilité de certaines approches d’identification existantes basées
sur des tâches [15, 44] lorsque seul le code source est disponible, nous pro-
posons une approche visant à extraire un workflows en analysant le code
source. Cette extraction nécessite la capacité de mapper les concepts orien-
tés objet dans ceux du workflow. Par exemple, il est nécessaire de spécifier
le mappage du concept tâche par rapport aux concepts orientés objet. Une
fois qu’un tel mappage est établi, les constituants du workflow (c’est-à-dire
tâches, flot de contrôle et flot de données) sont récupérés à partir du code
source orienté objet en s’appuyant sur ce mappage.

Contents

1 Introduction 1

1.1 Context . 2

1.1.1 Cloud Computing and DevOps 2

1.1.2 Microservices . 4

1.2 Problem and Motivation . 5

1.2.1 Monolithic Applications for Cloud and DevOps 5

1.2.2 Migrating Monolithic Applications to Microservices for Cloud
and DevOps . 6

1.3 Contributions . 9

1.4 Thesis Organization . 11

2 State of the Art 13

2.1 Brief Background on Migrating Monolithic OO Software Towards
More Recent Technologies . 14

2.1.1 Software Reengineering and Migration 14

2.1.2 From Object-Oriented to Components, Services and Microser-
vices . 16

2.2 Taxonomy of Related Works . 19

2.2.1 Technical versus Feedback Approaches 19

2.2.2 Technical Approaches . 20

xviii Contents

2.2.3 Feedbacks and Learned Lessons Approaches 56

2.3 Conclusion . 58

3 Migration to Microservices: An Approach Based on Measuring Object-
oriented and Data-oriented Dependencies 59

3.1 Introduction . 60

3.2 Approach Principals . 61

3.2.1 Inputs of the Identification Process: Source Code and Ar-
chitect Recommendations . 61

3.2.2 Measuring the Quality of Microservices 63

3.2.3 Identification Process . 65

3.2.4 Algorithmic Foundations . 66

3.3 Measuring the Quality of Microservices 68

3.3.1 Measuring the Quality of a Microservice Based on Struc-
tural and Behavioral Dependencies 68

3.3.2 Measuring the Quality of a Microservice Based on Data Au-
tonomy . 72

3.3.3 Global Measurement of the Quality of a Microservice 78

3.4 Microservice Identification Using Clustering Algorithms 78

3.4.1 Automatic Identification of Microservices Using a Hierar-
chical Clustering Algorithm 79

3.4.2 Semi-automatic Identification of Microservices Based on a
Hierarchical Clustering Algorithm 80

3.5 Microservice Identification Using Genetic Algorithms 86

3.5.1 A Genetic Model for the Process of Microservice Identification 87

3.5.2 Identification of Microservices Using a Multi-objective Ge-
netic Algorithm . 91

3.6 Conclusion . 95

Contents xix

4 Task-based Migration To Microservices: An Approach Based on Work-
flow Extraction from Source Code 97

4.1 Introduction . 98

4.2 Approach Principals . 98

4.2.1 From Object-Oriented Architectural Style to Workflow-based
one: The Mapping Model . 98

4.2.2 Extraction Process . 100

4.3 Identifying Tasks from OO Source Code 103

4.3.1 Extract Method Refactoring 103

4.3.2 Identifying Task Based on Analyzing the OO Application
Call Graph . 104

4.3.3 Identifying Tasks Inputs and Outputs 108

4.4 Control Flow Recovery . 111

4.5 Data Flow Recovery . 113

4.5.1 Data Flow Graph Construction 113

4.5.2 Computing Def-Use Triplets 114

4.6 Conclusion . 116

5 Experimentations and Validations 117

5.1 Validating the Identification of Microservices from OO Applications 118

5.1.1 Research Questions . 118

5.1.2 Experimental Protocol . 119

5.1.3 Validating the Identification Based on a Clustering Algorithm124

5.1.4 Validating the Identification Based on a Genetic Algorithm . 137

5.1.5 Answering Research Questions 140

5.1.6 Threats to Validity . 141

xx Contents

5.2 Experimentation and Validation of our Extraction Approach of Work-
flows from OO Applications . 143

5.2.1 Data Collection . 143

5.2.2 Experimental Protocol . 144

5.2.3 Workflow Extraction Results and their Interpretations 145

5.2.4 Threats to Validity . 150

5.3 Conclusion . 151

6 Conclusion and Future Directions 153

6.1 Summary of Contributions . 153

6.2 Future Directions . 155

6.2.1 Addressing Limitations and New Related Aspects 155

6.2.2 Experimentations and Validations 156

Personal Publications 159

Appendices 163

A Call Graph Construction Algorithms Based on Static Analysis of OO
Source Code 163

Bibliography 169

List of Figures

1.1 Cloud computing services . 3

1.2 Scheme of DevOps . 3

1.3 Representation of microservices . 4

1.4 Example of a monolithic e-commerce application 7

1.5 Example of the monolithic e-commerce application decomposed
into microservices . 7

1.6 Positioning the contributions of our dissertation within the context
of microservice identification . 12

2.1 Horseshoe model representing the reengineering/migration process 15

2.2 Evolution of technologies . 16

2.3 Taxonomy scheme of microservice identification approaches 21

2.4 Example of structure-based and task-based identifications of mi-
croservices . 22

2.5 Taxonomy scheme of workflow extraction approaches 39

2.6 Example of a workflow . 41

2.7 The extracted workflow by ProCrawl representing the peer-review
process in OpenConf [119] . 47

2.8 Example of data flow construction relying on def-use triplets 49

3.1 The used recommendations of software architect 62

xxii List of Figures

3.2 Process of identifying microservices from OO source code 66

3.3 Example motivating the use of the average to compute FIntra . . . 73

3.4 Example motivating the use of the average to compute DataDepen-
dencies . 75

3.5 Example of the frequency of data manipulations 75

3.6 Example motivating the introduction of standard deviation in the
computing of Freq . 76

3.7 Example used to compute FData . 77

3.8 Dendrogram with a set of microservices 79

3.9 Identified microservices based on the entire set of gravity centers . 82

3.10 Preliminary partitioning of OO classes based on a sub-set of grav-
ity centers . 82

3.11 Encoding of a chromosome . 88

3.12 Example of the crossover operator 89

3.13 Example of the mutation operator 90

4.1 From OO elements to workflow ones: the mapping model. 99

4.2 Process of extracting workflows from OO source code 101

4.3 Overview of task identification, control flow recovery, and data
flow recovery . 102

4.4 Example of extract method refactoring 104

4.5 Schematic overview of the presented call graph construction algo-
rithms and their relationship. 106

4.6 Call graph built from the source code shown in Listing 4.1 107

4.7 Acyclic call graph . 111

4.8 The CFG of the composite task corresponding the method m of the
class Foo shown in Listing 4.1 . 112

List of Figures xxiii

4.9 Example of a CFG recovered in the presence of dynamically dis-
patched calls. 113

4.10 The DFG corresponding to the task mapped to the method m of the
class Foo shown in Listing 4.1 . 114

5.1 Class diagram of FindSportMates application 129

5.2 Microservice identification results from FindSportMates application 130

5.3 Manually identified microservices from FindSportMates application 130

5.4 Composition and decomposition of the automatically generated
microservices to obtain the manually identified ones 131

5.5 Workflow implementation model . 145

5.6 Class diagram of the eLib application 147

5.7 Workflow extracted from eLib application 148

A.1 Example of a call graph constructed using RA 164

A.2 Example of a call graph constructed using CHA 165

A.3 Example of a call graph constructed using RTA 165

A.4 Example of a call graph constructed using XTA 167

A.5 Example of a call graph constructed using VTA 168

List of Tables

2.1 Classification of the investigated microservice identification approaches
based on their objective . 26

2.2 Classification of the investigated microservice identification approaches
based on their required inputs . 28

2.3 Classification of the investigated microservice identification approaches
based on their identification technique 31

2.4 Classification of the investigated microservice identification approaches
based on the remaining identification process aspects 35

2.5 Classification of the investigated microservice identification approaches
based on their outputs . 36

2.6 Classification of the investigated workflow extraction approaches
based on their objective . 43

2.7 Classification of the investigated workflow extraction approaches
based on their required inputs . 45

2.8 Classification of the investigated workflow extraction approaches
based on their task identification, control flow, and data flow re-
covery techniques . 51

2.9 Classification of the investigated workflow extraction approaches
based on the remaining process aspects 54

2.10 Classification of the investigated workflow extraction approaches
based on their outputs . 55

3.1 Measurement of D between the classes of the example shown in
Figure 3.7 . 77

xxvi List of Tables

3.2 Measurement of Freq between the classes of the example shown in
Figure 3.7 . 78

4.1 DEF/USE sets of the methods shown in Listing 4.1 111

4.2 VarUsed and ReachDef computed for each node of the CFG shown
in Figure 4.8 . 116

5.1 Applications metrics . 125

5.2 Number of identified microservices from FindSportMates, Spring-
Blog, and InventoryManagementSystem applications 126

5.3 Measurement results of FMicro, FStructureBehavior, and FData . . . 127

5.4 Microservice classification results . 128

5.5 Recall measurement . 129

5.6 Applications metrics . 136

5.7 Functional independence measurement results 136

5.8 Measurement results of FMicro, FStructureBehavior, and FData . . 138

5.9 Microservice classification results . 139

5.10 Recall measurement . 139

5.11 Applications metrics before applying extract method refactoring . . 144

5.12 Applications metrics after applying extract method refactoring . . . 146

5.13 Workflow extraction results . 146

5.14 Test cases for eLib application . 149

I

Introduction

1.1 Context . 2

1.1.1 Cloud Computing and DevOps 2

1.1.2 Microservices . 4

1.2 Problem and Motivation . 5

1.2.1 Monolithic Applications for Cloud and DevOps 5

1.2.2 Migrating Monolithic Applications to Microservices for
Cloud and DevOps . 6

1.3 Contributions . 9

1.4 Thesis Organization . 11

Over the years, technologies evolve to enable more efficient, and easier soft-
ware development, deployment, as well as any subsequent activity to software
delivery, such as maintenance. Examples of recent technologies allowing that,
and attracting the attention of both researchers as well as industrials are cloud
computing, DevOps, and microservices.

To keep pace with technological advances, existing applications developed
relying on outdated technologies can be rewritten from scratch or migrated to re-
cent ones. Our work contributes to the migration of existing monolithic applica-
tions towards microservices to adapt them to both cloud computing and DevOps.

2 Chapter 1. Introduction

1.1 Context

1.1.1 Cloud Computing and DevOps

Cloud computing is a model for allowing on-demand network access to a
shared pool of configurable computing resources such as storage space, servers,
applications, services, and so on [101]. Customers can allocate and release these
resources quickly with minimum service provider communication and manage-
ment effort [101]. The cloud is characterized by its high availability, elasticity,
scalability, and cost flexibility (i.e., pay-as-you-go model). It provides a variety of
services that can be categorized into a hierarchy of as a Service terms [127]. A sim-
plified categorization (Figure 1.1) partitions cloud services into three categories:
SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastruc-
ture as a Service). SaaS is a software delivery paradigm, where service providers
develop software and deliver it via the Internet [55]. PaaS offers platforms for the
development, and deployment of applications in cloud infrastructure using pro-
gramming languages, libraries, tools, and so on [57]. IaaS providers deliver pro-
cessing, storage, network, and other fundamental computing resources enabling
costumers to deploy and run their software [51, 101]. This can be done by allocat-
ing customized Virtual Machines (VMs) with predefined CPU, memory, storage,
and bandwidth capacity [127]. Customers can elastically allocate/release VMs,
and they are billed based on their usage. Some of the prominent cloud services
providers are SalesForce [5], Google App Engine [2], Amazon EC2 [3], and Mi-
crosoft Azure [4].

Due to its characteristics, nowadays, the cloud is attracting the attention of
both scientific researchers, and industrials. Researchers consider it as a platform
enabling them to develop and run massively scalable scientific applications [105],
that are usually compute and data intensive. Moreover, instead of upfront in-
vestment in an over-provisioned infrastructure, they pay only for what they use.
Even companies are attracted to the cloud due to its scalability and cost flexibility
[74]. They view it as an opportunistic business strategy allowing them to com-
pete with other companies, and meet business goals [34, 17, 16], especially when
merged with efficient DevOps.

DevOps (Development and Operations) [26] is a set of practices aiming to en-
hance the collaboration between development (e.g., programming, testing, etc.)
and operations (e.g., deployment, monitoring, etc.) teams (Figure 1.2) to reduce
the time to market. Furthermore, it ensures maintaining the quality of the code
and the delivery mechanism [23]. Continuous Integration (CI) and Continuous
Delivery (CD) are among the key DevOps practices. CI enables members of de-
velopment teams to integrate their work frequently, usually multiple times per

1.1. Context 3

Figure 1.1 – Cloud computing services

day [121, 59]. CD aims to ensure that valuable software is produced in short cy-
cles and that it can be reliably released at any moment [41]. CD can use a set of
practice, such as CI and automated deployment [71].

Figure 1.2 – Scheme of DevOps

Fully benefiting from cloud and DevOps requires taking into account their
characteristics and requirements when building applications. For instance, in the
cloud, a failure may occur at any moment [22, 134]. Therefore, applications to
be deployed in this environment should be able to deal with such uncertainties
[22]. Furthermore, smoother adoption of DevOps requires having a system con-
sisting of modules that can be developed, tested, and deployed independently.
Microservice-based systems can fulfill these constraints.

4 Chapter 1. Introduction

1.1.2 Microservices

Recently, microservices [106, 122, 123, 95] have appeared as an architectural
style well-adapted for the development of applications to be deployed in the
cloud (i.e., a cloud-native architecture [22]), and for those adopting DevOps prac-
tices. In literature, the most commonly used definition of this architectural style
is the one proposed by Lewis and Fowler [95]. According to them, in this style, an
application consists of a set of small services that are independently deployable
and scalable. Each microservice manages its own data and communicate with
others relying on lightweight mechanisms, generally HTTP resource API (Fig-
ure 1.3). Moreover, they are commonly packed and deployed using containers
[106, 122, 123].

Figure 1.3 – Representation of microservices

During the execution of a microservice-based application, microservices can
independently be duplicated (i.e., scaled) or deleted on the fly to reduce the re-
sponse time or because they are not used. Such dynamic duplication (resp.,
delete) requires a dynamic allocation (resp., release) of resources, which is pro-
vided by the cloud due to its elasticity. The dynamic allocation and release adapt
the usage cost of resources to the application requirements. Furthermore, each
microservice can be deployed using resources that suites its requirements (e.g.,
CPU, memory, etc.) [52, 114]. Such effective consumption of resources allows
cloud service providers to offer higher scalability guarantees [56]. Finally, mi-
croservices facilitate resuming the execution of an application after a cloud fail-
ure because they can easily and quickly be restarted without the need to restart
the entire application [130].

Besides their well-adaptability to the cloud, microservices support DevOps.
They enable continuous delivery and deployment of large and complex applica-

1.2. Problem and Motivation 5

tions [114]. This is due to the fact that they can be developed, tested, and de-
ployed separately. Therefore, each team can easily develop, test, and deploy their
microservices independently from other teams [130].

1.2 Problem and Motivation

In recent years, the microservice architectural style has become an essential
element for the development of applications to be deployed in the cloud and for
those adopting DevOps practices. Nevertheless, many applications have been
developed before the emergence of this style relying on a monolithic one. Some
of these applications, such as the ones used by companies (e.g., Amazon, Netflix,
eBay, etc.) afford a high business value.

1.2.1 Monolithic Applications for Cloud and DevOps

Monolithic architectural style [128, 52, 114, 95, 112] is the traditional way to
develop software systems. In this style, an application, called monolithic or a
monolith, is built as a single unit that combines the user interface, business logic,
and data accesses. Usually, it is autonomous and independent from other appli-
cations.

The monolithic style is well-adapted for the development of small applica-
tions, where a single team works on the code [128], or when there are high de-
pendencies between the different parts of the application hardening the decom-
position. Otherwise, monoliths have significant limitations, especially when de-
ployed in the cloud:

— Extra cost for resource utilization: scaling a monolith requires simply run-
ning multiple copies of the entire application behind a load-balancer [122,
95, 112]. In the cloud, customers are generally billed based on the used
resources, even if some of them are unnecessarily occupied by parts of the
monolith that are not frequently used (i.e., implementing functionalities less
utilized by users) [52]. This is definitely an expensive way to scale an ap-
plication. Besides this, to deploy a monolith, the needed resources are al-
located based on the requirements (e.g., CPU, memory, etc.) of the entire
monolith. If there is a significant variation in term of these requirements
during the execution of the monolith, the chosen resources can either be
sub-optimal or expensive.

6 Chapter 1. Introduction

— Considerable downtimes: to resume the execution after a cloud failure, the
entire application may be rebooted. Generally, considerable downtime is
entailed when restarting a monolith [52].

— Difficulty to adopt DevOps practices: adopting DevOps practices is not
always smooth [146], especially when dealing with monolithic applications.
The adoption of DevOps requires having a system consisting of modules
that can be developed, tested, and deployed independently. This is not the
case when handling monoliths.

Due to these limitations, monolithic applications are not well-adapted neither
to the cloud nor to DevOps. A possible way to adapt such applications to both is
migrating them towards an architectural style that can tackle these limitations.

1.2.2 Migrating Monolithic Applications to Microservices for Cloud
and DevOps

As explained earlier, microservices can independently be developed, tested,
deployed, and scaled, which allows them to address the mentioned limitations
of monolithic applications. To illustrate the limits of these applications and the
advantages of microservices, consider the example of Figure 1.4, which shows
a monolithic e-commerce application running in the cloud. It takes orders from
customers, verifies the availability of the ordered item in the inventory, and ships
them. A user can utilize it as a mobile application or via a web browser. Sup-
posing that a high number of new items that may be ordered by users during the
upcoming holiday season are being added to the inventory to ensure their avail-
ability. Moreover, for the current period, a limited number of orders are being
placed. To reduce the response time and guarantee that items are added easily,
the entire application should be scaled, even though not all its provided func-
tionalities are frequently used (i.e., placing orders and shipping items). Thus,
resources are unnecessarily occupied, and the cost for their usage is paid.

To reduce the response time without paying an extra cost, the monolithic e-
commerce application can be migrated to microservices, and only the microser-
vice managing the inventory should be scaled. Figure 1.5 presents a possible de-
composition of the e-commerce monolith into microservices (inspired from [113]).
The corresponding microservice-based application consists of several microser-
vices, including the Store Web UI, which implements the user interface, and three
other microservices: Account microservice, Inventory microservice, and Shipping mi-
croservice. An API Gateway routes requests from the mobile applications to mi-
croservices, which collaborate via APIs.

1.2. Problem and Motivation 7

Since microservices can address the limitations of monolithic applications, ex-
isting monoliths can be rewritten from scratch relying on microservices or mi-
grated towards them. On the one hand, a complete rewrite is known as a risky,
costly, and time-consuming task. Generally, the documented business logic of
monoliths is not up to date [93]. Moreover, due to staff turnover, reaching to ap-
plications experts becomes difficult. In fact, the risk of failure is usually too high
for companies to rewrite their applications from scratch [30]. On the other hand,
the migration towards microservice architectural style appears as an evident so-
lution. Indeed, it is safer and usually carried out.

Figure 1.4 – Example of a monolithic e-commerce application

Figure 1.5 – Example of the monolithic e-commerce application decomposed into mi-
croservices

8 Chapter 1. Introduction

Therefore, the ultimate aim of our dissertation is contributing to automate
the migration of monolithic OO applications towards microservices in order to
adapt them to both cloud and DevOps. For that purpose, we address the research
problem that consists of answering two main questions:

1. How to identify from a monolithic OO application the corresponding
microservice-based architecture while respecting as much as possible the
principles of this architectural style? This question is related to the obser-
vation that existing microservice identification approaches, such as the ones
presented in [66, 94, 25, 100, 44], have limitations preventing them from
thoroughly answering it. Among the main limitations, we can mention:

— The used criteria to identify microservices do not materialize all the
"semantics" of the concept "microservice". For example, the criterion
concerning data autonomy of microservices is not always taken into
account, especially when the required inputs by the identification ap-
proach are not documentation.

— To identify microservices from a monolith, the needed pieces of infor-
mation can be recovered from its source code by analyzing it. Addi-
tionally to these pieces of information, the ones (i.e., recommendations)
provided by the analyzed application experts can be used to improve
the relevance/ quality of the identified microservices. However, exist-
ing approaches that require experts intervention suffer primarily from
two limitations. On the one hand, the experts intervention is not lim-
ited to providing relevant recommendations but rather perform some
steps of the approach. On the other hand, experts intervention is con-
sidered as always necessary. The aforementioned constraint limits the
applicability of these approaches.

— The used algorithmic model impacts the relevance/quality of the iden-
tified microservice-based architecture. Existing approaches rely mainly
on a limited number of models such as clustering.

Based on these limitations, the above question can be further refined into
three sub-ones:

— How to identify microservices from an OO application while taking
into account the "semantics" of the concept "microservice"?

— What are the relevant recommendations allowing to benefit from the
guidance of experts, and how can they be combined with source code
information?

— Which algorithmic model can be used to have the best possible mi-
croservices based on the evaluation of their quality?

1.3. Contributions 9

2. How to extract from an OO application its corresponding workflow to be
used by existing task-based approaches to identify microservices? This
question is related to the observation that some existing approaches identify
microservices relying on workflows [15] or their constituents [44]. A work-
flow specifies the sequencing mode of tasks following two formalisms: con-
trol flow and/or data flow. A control flow describes the execution order of
tasks through different constructs such as sequences, conditional branches
(if and switch), and loops (for and while). A data flow specifies data ex-
changes between tasks. If a workflow is not available, a task-based iden-
tification firstly extracts it from the accessible artifacts of the monolith to
be migrated (e.g., source code, event logs, etc.), and then use it to identify
microservices. Nevertheless, existing task-based approaches either suppose
that workflows are available [15] or experts can recover their constituents
[44], which is not always the case. To ensure the applicability of such ap-
proaches, a workflow can be extracted from the available artifacts. Several
approaches have been proposed to recover workflows. However, they suf-
fer from two main limitations:

— Usually, their aim is not to recover all the constituents of a workflow.
They either extract a control flow [148, 147, 61, 89, 72, 62, 118, 119, 90]
or a data flow [43, 33, 99], but not both.

— Expert intervention is necessary to perform some steps of the approach
manually [90], which limits its applicability.

Based on these limitations and the definition of a workflow, the above ques-
tion can be further refined into three sub-ones:

— What are the tasks that reflect the workflow corresponding to the OO
application?

— What is the control flow to be defined between the identified tasks?

— What is the data flow to be associated with the identified tasks and
control flow?

1.3 Contributions

To tackle the identified problem in Section 1.2, this dissertation presents the
following contributions:

1. Structure-based identification of microservices from OO source code: our
approach identifies microservices based on the static analysis of OO source
code of a monolithic application. It relies on information related to source

10 Chapter 1. Introduction

code structure, persistent data (i.e., data stored in databases) accesses, and
architect recommendations when these latter are available. Its originality
can be viewed from three aspects:

— Identification of microservices based on the evaluation of a well-
defined function measuring their quality: the goal of our approach
is to identify microservices by maximizing a function which evaluates
their quality. It was proposed based on metrics reflecting the "seman-
tics" of the concept "microservice". These metrics were defined by re-
fining conceptual characteristics of microservices. Parameters of the
quality function are source code structural dependencies and accesses
links to persistent data.

— Exploiting architect recommendations only when available: a well-
defined set of recommendations, that an architect can provide, was
specified and used in our approach. The recommendations are related,
mainly, to the use of the applications (e.g., how many microservices,
which class is the center of a microservice, etc.). Moreover, they are
combined with source code information. Mainly, the recommenda-
tions, when available, are involved in partitioning the OO applications
into microservices. Source code information is used to measure their
quality. Depending on the available recommendations, different mi-
croservice identifications can be carried out.

— Clustering and meta-heuristics algorithmic models to identify mi-
croservices based on the evaluation of the quality function: our ap-
proach group the classes of an OO application based on their quality
measured using the proposed quality function. For that purpose, two
algorithmic models have been used: clustering [142] and genetic al-
gorithms [69, 103]. The proposed quality function is considered as a
similarity measure in the clustering algorithm and as a fitness func-
tion in the genetic one. It is possible to identify microservices relying
on both algorithmic models, then compare the produced results and
chose the best ones.

2. Workflow extraction from OO source code to enable task-based identifi-
cation of microservices: to enable the applicability of some existing task-
based identification approaches [15, 44] when only the source code is avail-
able, we propose an approach aiming to extract workflows by analyzing
the source code. This extraction requires the ability to map OO concepts
into workflow ones. For instance, specifying what is the mapping of the
concept task compared to the OO concepts is necessary. Once such a map-
ping is established, workflow constituents (i.e., tasks, control flow, and data
flow) are recovered from OO source code relying on it.

Both contributions are positioned within the context of microservice identifi-

1.4. Thesis Organization 11

cation, as demonstrated in Figure 1.6 (contributions annotated and highlighted in
blue boxes). As shown in this figure, both identification approaches (i.e., structure-
based and task-based) can have as input source code, and produce as output
microservices. The structure-based identification recovers microservices directly,
whereas the task-based one, that relies on workflows, firstly extracts them, and
then carries out the identification. Moreover, both identifications can be fully
automatic or semi-automatic based on whether they use software architect rec-
ommendations or not.

1.4 Thesis Organization

The remainder of this dissertation is organized into five chapters as follows:

— Chapter 2 discusses the state-of-the-art related to migrating monolithic sys-
tems towards microservices and extracting workflows from the available
software artifacts. In this regards, a taxonomy of the related works is pre-
sented to enable comparing and positioning our contributions.

— Chapter 3 presents our structure-based identification approach that parti-
tions an OO source code into microservices relying on its quality measure-
ment as well as software architect recommendations, when available. More-
over, it uses both clustering and genetic algorithms.

— Chapter 4 presents our contribution aiming to extract a workflow from an
OO application based on static analysis of its source code. The extracted
workflow enables a task-based identification of microservices.

— Chapter 5 presents the conducted experiments to validate our contributions,
interprets results, and discusses threats to validity. It starts by validating
structure-based microservice identification qualitatively and quantitatively.
Then, the workflow extraction is evaluated.

— Chapter 6 summarizes the work realized in this dissertation and gives some
future directions.

12 Chapter 1. Introduction

Figure 1.6 – Positioning the contributions of our dissertation within the context of mi-
croservice identification

II

State of the Art

2.1 Brief Background on Migrating Monolithic OO Software To-
wards More Recent Technologies 14

2.1.1 Software Reengineering and Migration 14

2.1.2 From Object-Oriented to Components, Services and Mi-
croservices . 16

2.2 Taxonomy of Related Works . 19

2.2.1 Technical versus Feedback Approaches 19

2.2.2 Technical Approaches . 20

2.2.3 Feedbacks and Learned Lessons Approaches 56

2.3 Conclusion . 58

This chapter discusses the state-of-the-art related to the migration of mono-
lithic applications to microservices. Firstly, Section 2.1 positions our work com-
pared to the relevant domains. Then, Section 2.2 classifies and discusses the re-
lated approaches. Finlay, Section 2.3 concludes this chapter.

14 Chapter 2. State of the Art

2.1 Brief Background on Migrating Monolithic OO
Software Towards More Recent Technologies

2.1.1 Software Reengineering and Migration

Software reengineering is defined as an engineering process seeking to gener-
ate an evolvable system [120]. Generally, it includes all the subsequent activities
to software delivery that aims at improving the understanding of the software
as well as enhancing various quality parameters, such as system maintainability
and complexity [137]. It is defined by Chikofsky and Cross II [45] as:

"Software reengineering, also known as both renovation and reclamation, is the ex-
amination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form."

Based on this definition, the software reengineering process consists of three
steps [137]. Firstly, the subject system is examined to recover relevant information
(i.e., reverse engineering). The second step alters the system (i.e., transformation).
Finally, the new implementation is generated (i.e., forward engineering).

When the reengineering is driven by a major technology change, it can be
called migration [10], for instance, the migration of OO systems to component-
based ones. In other words, software migration is a variant of software reengi-
neering [10]. It is defined by Bisbal et al. [29] as:

" Migration (...) allows legacy systems to be moved to new environments that allow
information systems to be easily maintained and adapted to new business requirements,
while retaining functionality and data of the original legacy systems without having to
completely redevelop them."

The reengineering/migration process can be represented by a horseshoe model
(Figure 2.1) [84], that displays the steps mentioned above. This model includes
three levels of abstraction: code representation, function representation, and ar-
chitecture representation.

1. Reverse engineering: reverse engineering is the process of recovering high-
level abstractions, such as software architecture, by analyzing lower level
ones, like source code [45]. Its outcome is the basis for the next steps (i.e.,
transformation and forward engineering). For instance, when migrating an
OO application to microservices, reverse engineering can be applied to re-
cover the architecture of the existing application (i.e., its classes and their
relationships). In literature, many terminologies referring to reverse engi-

2.1. Brief Background on Migrating Monolithic OO Software Towards More Recent
Technologies 15

neering have been used, among them extraction [72], mining [62], identifi-
cation [77] and recovery [148]. In our dissertation, these terms are used to
refer to reverse engineering.

Figure 2.1 – Horseshoe model representing the reengineering/migration process

2. Transformation: also known as restructuring, it refers to transforming one
representation form to another at the same level of abstraction (e.g., source-
to-source, model-to-model, etc.) while preserving the functionalities of the
system [45]. In [84], it is called architectural transformation. It aims to trans-
form the reverse engineered architecture to the desired one. For instance, in
this step, the recovered architecture of a monolithic OO application can be
transformed into a microservice-based one. This may be done by partition-
ing the classes of the OO architecture based on their relationships. Each
cluster represents a microservice. It is noteworthy that the transformation
is not included in the reverse engineering [10]. Nevertheless, in literature
and our dissertation, the two steps have been referred to by reverse engi-
neering.
During the transformation, the structure of a system can be improved. This
is known as refactoring. It is defined in [58] as: "the process of changing a
software system in a way that does not alter the external behavior of the code yet
improves its structure. It is a disciplined way to clean the code that minimizes the

16 Chapter 2. State of the Art

chances of introducing bugs. In essence, when you refactor, you are improving the
design of the code after it has been written." The refactoring enables reworking
a bad code into well-structured one by applying simple changes, such as
pulling some code out of a method [58]. The cumulative effect of these
simple changes can thoroughly enhance the structure of the system [58].

3. Forward engineering: forward engineering is the traditional process of
moving from high-level conceptual abstractions to the physical implemen-
tation of a system [45]. For example, when migrating an OO application
to microservices, forward engineering can be applied to generate an imple-
mentation of the microservice-based application relying on the recovered
architecture (i.e., identified microservices) in the previous step.

2.1.2 From Object-Oriented to Components, Services and Mi-
croservices

2.1.2.1 Evolution of Technologies

Over the years, technologies evolve to ease the development of applications,
their deployment, as well as any subsequent activity to their delivery. Figure 2.2
shows the evolution of technologies from Object-Oriented Programming (OOP)
to microservices.

Figure 2.2 – Evolution of technologies

In the 1970s, OOP emerged as a new paradigm in which an application mainly

2.1. Brief Background on Migrating Monolithic OO Software Towards More Recent
Technologies 17

consists of a set of objects that interact with each other. It became broadly used in
the 1980s and early 1990s [7] due to its features. The principal ones are object com-
position, class inheritance, abstraction, encapsulation, and polymorphism [47].
However, the main problem with OOP is that OO classes can have complex mu-
tual dependencies hardening their effective reuse [140] as well as deployment,
complicating maintenance, and increasing costs [12]. Several technologies that
can tackle this problem have appeared: components, services, and microservices.

Component-Based Software Engineering (CBSE) aims to build applications
by selecting off-the-shelf components, and then assemble them [35]. Each com-
ponent can be seen as a black box, whose implementation is entirely hidden be-
hind well-specified interfaces [7]. In fact, components interact with each other via
their required and provided interfaces that explicitly specify their dependencies,
and offered functionalities [124]. Since an application is built as a composite of
subparts, it enables increased reuse and reduced production cost [91].

Service-Oriented Architecture (SOA) "is an approach that addresses the require-
ments of loosely coupled, standards-based, and protocol independent distributed com-
puting" [108]. It enables building an application that provides services either to
end-user applications or to other services distributed in a network, relying on
published and discoverable interfaces [107]. SOA can be considered as an evolu-
tion of CBSE [8]. Potentially, for this reason, there are several similarities between
them. Both service-based applications and component-based ones consist of in-
terconnected services and components respectively. Moreover, both services and
components are autonomous entities that enable using their functionalities only
via their interfaces [8]. Nevertheless, one of the main characteristics of services is
that they are technology and platform independent, which is not always the case
for components [81].

Microservices 1 [106, 122, 123, 95] can be viewed as an architectural style in
which an application consists of a set of small services that are independently de-
ployable and scalable [95]. Each microservice manages its own data [95, 106] and
communicate with others relying on lightweight mechanisms, generally HTTP
resource API [95]. Furthermore, they are commonly packed and deployed using
containers [106, 122, 123]. At a very high level, there are some similarities be-
tween SOA and microservices [114]. Both of them build an application as a set
of services communicating with each other. Nevertheless, digging deep reveals
significant differences. Firstly, in SOA, services are coarse-grained, whereas in
microservice architectural style, even though services may not always be fine-
grained, they are smaller [114], which make their development and maintenance
easier. Moreover, the bigger the services are, the less they become reusable [7].

1. In literature, the most commonly used definition of microservices is the one proposed by
Lewis and Fowler [95].

18 Chapter 2. State of the Art

Therefore, microservices can be more reusable than services. Secondly, unlike
services in SOA, each microservice typically has its own database. Thus, it can be
more autonomous. Finally, SOA and microservices rely on different technology
stacks [75, 114]. Usually, SOA-based applications use heavyweight technologies
(e.g., SOAP, WS* standards, etc.), whereas microservice-based applications tend
to utilize lightweight ones (e.g., REST, gRPC, etc.) [75, 114].

2.1.2.2 Migration of Monolithic Object-Oriented Applications to Components,
Services, and Microservices

Besides the adoption of components, services, and microservices for the de-
velopment of new applications, migrating existing monolithic OO ones towards
these technologies can allow them to benefit from their advantages.

On the one hand, migrating OO applications to component-based ones, com-
monly, consists of three main steps [12]. Firstly, components are identified from
OO source code or any other available software artifacts, such as documenta-
tion. Secondly, the required and provided interfaces of each component are iden-
tified to enable assembling them. Finally, the OO application is transformed
into an operational component-based one relying on the constructed architec-
ture (i.e., components and their interfaces). Several approaches have been pro-
posed to contribute to the migration of OO applications to component-based ones
[140, 38, 28, 53, 11, 12, 85, 13].

On the other hand, the migration of OO applications to SOA consists, com-
monly, of two major steps [7, 125]. The first one identifies services from the
available artifacts, whereas the second step packages and deploys them. Usually,
it wraps the identified services by interfaces and orchestrates their operations
[7]. Several approaches have been proposed to migrate OO applications towards
SOA [144, 39, 145, 126, 40, 8, 125, 18].

Nowadays, OO applications are being migrated towards microservices. Simi-
larly to SOA, the migration process consists mainly of two steps: 1) microservice
identification and 2) microservice packaging and deployment, typically using
containers such as Docker. In our work, we focus on microservice identification,
which is a complex [100] and crucial step for a successful migration. Misidentify-
ing microservices limit benefiting from their advantages. Furthermore, it impacts
negatively the quality of service (e.g., response time, etc.).

2.2. Taxonomy of Related Works 19

2.2 Taxonomy of Related Works

In the context of microservice identification from monolithic applications, a
considerable number of relevant approaches have been proposed. In these ap-
proaches, either a structure-based or a task-based identification has been carried
out. The structure-based identification directly manipulates the required inputs
(e.g., source code, change history, etc.) to partition a monolith into microservices.
Whereas, the task-based one firstly recovers a workflow or its constituents (i.e.,
tasks, control flow, or data flow), if they are not available, and then uses them
to decompose the monolith into microservices. Therefore, workflow extraction
approaches are considered as related works. Note that by workflow extraction,
we refer to recovering the entire workflow or its constituents. This section aims
to investigate, classify, and discuss the related works.

2.2.1 Technical versus Feedback Approaches

Several approaches have been proposed to identify microservices or extract
workflows. Preliminarily, these approaches can be classified into two categories:

1. Technical approaches: it includes all the systematic approaches aiming to
identify microservice [66, 94, 86, 25, 100, 44, 15, 76, 77] or to extract work-
flows [43, 33, 99, 148, 61, 147, 89, 72, 62, 118, 90, 119]. They have well-defined
steps specifying how to produce the desired outputs using the required in-
puts.

2. Feedback approaches: this category includes the approaches presenting ex-
periences, feedbacks, and lessons learned from migrating monolithic appli-
cations to microservices or extracting workflows. To the best of our knowl-
edge, no such approaches have been proposed for workflow extraction. The
existing ones, included in this category, concern migrating monoliths to mi-
croservices [23, 65, 32, 87, 31, 64, 60, 42].

Since our proposed approaches are included in the first category, our focus
will be on its approaches. Therefore, the remainder of this section, firstly, inves-
tigates, classifies, and discusses the related technical approaches, starting with
the ones identifying microservices, followed by the ones extracting workflows.
Then, feedbacks and learned lessons from migrating monolithic applications to
microservices are presented and discussed.

20 Chapter 2. State of the Art

2.2.2 Technical Approaches

2.2.2.1 Microservice Identification Approaches

As mentioned earlier, a microservice identification approach can be structure-
based or task-based. Moreover, its life cycle is composed of objective, inputs, pro-
cess, and outputs [124]. Therefore, this section, firstly, classifies the identification
approaches relying on whether they are structure-based or task-based. Secondly,
they are assorted based on four main dimensions (i.e., multi-dimensional taxon-
omy): the targeted objective, the required inputs, the applied process, and the
desired outputs (Figure 2.3). Finally, the taxonomy results are discussed and the
key findings to keep in mind are presented.

Structure-based versus Task-based Taxonomy

Based on what do they consider when identifying microservices from mono-
lithic applications, there are two main categories of identification approaches:

— Structure-based identification: the structure-based identification considers
microservices as separate entities, which can encapsulate operations and
communicate with each other. Typically, each entity is focused on one func-
tionality. To partition a monolith into microservices, structure-based iden-
tification employs the structural relationships between its entities. Here,
structural relationship refers to any relationship in which the temporal evo-
lution of the execution of the monolith is not taken into account (e.g., se-
mantic similarity, data manipulations, etc.).
For example, in [100], the authors have proposed an approach to identify
microservices from the source code of a monolithic application. They have
used three coupling strategies (i.e., logical, contributor, and semantic cou-
pling) and embed those in a graph-based clustering algorithm. The logi-
cal coupling strategy considers that the classes changed together should be
in the same microservice. The contributor coupling strategy assumes that
the classes modified by the same contributors are more coupled. Seman-
tic coupling strategy considers that the classes containing code about the
same "thing" should be in the same microservice. None of these strategies
take into account the temporal evolution of execution while identifying mi-
croservices, thus they are structure-based. In fact, most of the investigated
approaches [66, 94, 86, 25, 100, 76, 77] are structure-based.

— Task-based identification: the task-based identification considers microser-
vices as a set of highly inter-connected tasks. Potentially, each set represents
a well-specified functionality. The connection can be determined based on
the execution order of these tasks, and their manipulated data (i.e., read

2.2. Taxonomy of Related Works 21

Figure 2.3 – Taxonomy scheme of microservice identification approaches

22 Chapter 2. State of the Art

and/or written data). The ones executed sequentially and manipulating
the same data are more likely to be in the same microservice.
For instance, in [15], the documented workflows (i.e., business processes)
has been partitioned into microservices based on the execution order of
tasks, measured by the relation TP , and their manipulated data, evaluated
by the relation TD. Among the investigated approaches, only two [44, 15]
are task-based.

To better understand the structure-based and task-based identifications, Fig-
ure 2.4 shows an example of the produced microservices by the two types of
identification. On the left side, the structure-based one decomposes the classes of
an OO source code, for instance, based on their semantic similarity, into two mi-
croservices. Each one consists of a set of classes. On the right side, the task-based
identification also produces two microservices. Each one of them consists of a set
of tasks executed sequentially. For example, the execution of Task 6 precedes that
of Task 5. Moreover, the tasks of each microservice manipulate the same data. For
instance, Task 5 defines Data 4 and Data 5 used by Task 6.

Figure 2.4 – Example of structure-based and task-based identifications of microservices

Now that structure-based and task-based identifications have been presented,
the question is which identification to use when migrating a monolithic appli-
cation towards microservices? To answer this question, the two types of iden-

2.2. Taxonomy of Related Works 23

tification will be compared in the remainder of this section. The comparison is
based on the main criteria that can assist and facilitate the choice. These criteria
are the following: objective, partitioned artifacts into microservices, and resource
utilization.

Firstly, both types of identification have the same objective. It is producing
microservices that materialize the semantics of the concept microservice. In fact,
the generated results by these two types of identification have the main character-
istics of microservices, at least some of them, such as providing a well-specified
functionality.

Secondly, structure-based and task-based identifications partition different ar-
tifacts into microservices. On the one hand, the structure-based identification
decomposes artifacts that define the entities of the monolith and their structural
relations. An example of such artifacts is OO source code. Analyzing it enables re-
covering its classes and their relationships (e.g., methods calls, inheritance, etc.).
On the other hand, the task-based identification partitions artifacts that express
the execution order of the different tasks as well as their exchanged data, such as
workflows. Note that a task-based identification recovers these artifacts if they
are not available, and then use them to identify microservices.

Thirdly, unlike structure-based identification, the task-based one potentially
produces microservices that can be executed following a well-specified order.
This is due to the fact that they have been identified relying on the execution
order of tasks. Knowing when each microservice can be executed enables more
efficient use of resources, especially in the cloud, where customers are charged
based on their usage (i.e., pay-as-you-go model). The resources can be allocated
when needed to deploy and run a microservice and released when its execution
is over.

Relying on this comparison, carrying out a structure-based or task-based iden-
tification depends mainly on 1) the available artifacts to partition into microser-
vices and whether it is possible to extract, if not accessible, from them the ones
expressing the execution order of the monolith or not, and on 2) the importance
of optimizing resource usage. In some cases, all the microservices need to be
executed in the cloud permanently because they can be used at any time. For
instance, the microservices of an e-commerce application can be utilized by a
customer to order new items at any moment. Here, optimizing resource utiliza-
tion is not a principal concern. However, when running a scientific application to
produce results, optimizing resource usage can be a primary concern, especially
that these applications are compute and data intensive.

24 Chapter 2. State of the Art

Multi-dimensional Taxonomy

As explained earlier, microservice identification approaches can be classified
based on four main dimensions: the targeted objective, the required inputs, the
applied process, and the desired outputs.

— Objective of microservice identification approaches: the objectives of the
investigated approaches can be one or many among the following ones:

1. Maintainability: maintainability is defined by ISO/IEC 25010:2011 [6]
as "the degree of effectiveness and efficiency with which a product or system
can be modified by the intended maintainers." The modifications may be
performed with the aim of 1) correcting, 2) improving or 3) adapting
an application to changes in environments, requirements, and func-
tional specifications. Decomposing a monolithic OO application into
microservices can enhance its maintainability, mainly because the small
size of each microservice contributes to increasing code understand-
ability [130] and limits the scope of bugs [52].

2. Evolution: according to Lehman [92], software evolution is an intrinsic
and feedback-driven process. It refers to developing an application
and continuously changing it during its life cycle for different reasons
(e.g., organizational and environmental feedbacks, etc.) [92]. Similarly
to maintainability, the small size of microservices can facilitate their
evolution. For this reason, some approaches, such as the one presented
in [94], identify microservices from monolithic applications.

3. Understanding: before maintaining or evolving an application, it should
firstly be understood [136]. When dealing with monoliths, usually
developers, particularly new ones in development teams, are intimi-
dated by the large monolithic code base [112], because it can not be un-
derstood easily. Modern development technologies, such as microser-
vices, can facilitate understanding applications. An application devel-
oped using these technologies consist of modules. Therefore, instead
of understanding the entire application, only the concerned modules
are considered.

4. Scalability: scalability was defined in [78] as: "scalability means not just
the ability to operate, but to operate efficiently and with adequate quality of
service, over the given range of configurations. Increased capacity should
be in proportion to the cost, and quality of service should be maintained."
Thus, scalability can be considered as the ability of an application to
process more workload while maintaining the same quality of ser-
vice and taking into account the cost. This can be achieved by using
more resources (i.e., their number increases) or more powerful ones
(i.e., constant number of resources) [141]. In paying platforms, such as

2.2. Taxonomy of Related Works 25

the cloud, customers are usually charged based on the used resources.
Therefore, adjusting this usage, by scaling only the modules of the ap-
plication having a high workload, enables reducing the cost. To en-
hance their scalability, monolithic applications have been partitioned
into microservices in [77].

5. Migration to the cloud: microservices are well-adapted to the cloud.
They can facilitate the reconfiguration of an application according to
the changes that may occur during its execution. These changes can
be related to cloud resources (e.g., resource allocation, release, etc.),
quality of service (e.g., reduce response time, etc.) or any other event
(e.g., unexpected failure, etc.). Therefore, to migrate monolithic appli-
cations to the cloud, some existing approaches decompose them into
microservices [44, 100, 15].

6. Adoption of DevOps practices: efficient DevOps merged with effi-
cient use of cloud resources produce high Information Technology (IT)
performance [80], which is the aim of today’s highly competitive com-
panies. Nevertheless, adopting DevOps practices is not always smooth
[146], especially when an application is monolithic. Smoother adop-
tion of DevOps requires having a system consisting of modules that
can be developed, tested, and deployed independently. Microservice-
based systems can fulfill this constraint. For this reason and similarly
to our approach, some existing works [100] partition monoliths into
microservices.

Table 2.1 presents the classification results of the investigated approaches
based on their objective. It is noteworthy that some approaches [44, 15]
aims to tackle the limitations of monolithic applications, without specifying
which one exactly. Therefore, their objective is considered as a combination
of all the objectives related to overcoming these limitations and targeted
by the investigated approaches: maintainability, understanding, evolution,
scalability, cloud migration, and adoption of DevOps practices.

— Inputs of microservice identification approaches: the required inputs by
identification approaches can be source code, documentation, human ex-
pert knowledge, and change history.

1. Source code: source code is a set of computer instructions enabling
to describe the execution of a software system [67]. Developers com-
monly write these instructions using computer programming langu-
ages such as Java, C, C++, and so on [124]. In the case of OO program-
ming, the source code primarily consists of a set of classes organized
using packages [115]. The main units of each class are methods and
attributes.

26 Chapter 2. State of the Art

Table 2.1 – Classification of the investigated microservice identification approaches
based on their objective

Approach Maintainability Evolution
Under-

standing Scalability
Migration

to the
cloud

Adoption
of

DevOps
practices

Gysel
et al. [66] X X

Lev-
covitz

et al. [94]
X

Kecskemeti
et al. [86]

X

Chen
et al. [44] X X X X X X

Mazlami
et al.
[100]

X

Baresi
et al. [25] X

Amiri
[15] X X X X X X

Jin et al.
[76] X

Jin et al.
[77] X X

Due to its availability, some of the investigated approaches [94, 100]
use the source code. They partition its classes into disjoint clusters
based on the relationships between them. In the investigated approa-
ches, these relationships are mainly of three types: structural (e.g.,
method invocations, attribute accesses, etc.) [94], semantical [100] or
related to data manipulations [94]. For instance, in [100], the content
and semantics of class files are examined through information retrial
techniques to group the classes containing code about the same thing
into the same microservice.

2. Documentation: any text, model, or illustration associated with a soft-
ware system aiming to explain how it operates or how can it be used
is considered as documentation [110]. It can be requirement documen-
tation, such as use cases, design documentation, like software archi-
tecture [10], and so on. Moreover, it can express data manipulations
and exchanges between the entities of a system. For instance, in [15],
the required input is a business process (i.e., documented workflow)
in which the manipulated data by each task are specified. Whereas,
in [44], the input is a text describing the business logic of a monolithic

2.2. Taxonomy of Related Works 27

system to be decomposed into microservices. This text is used to build
a data flow specifying data dependencies between different tasks.

3. Human expert knowledge: human experts are a source of relevant in-
formation regarding the design and the implementation of a software
system [124]. Among the investigated works, only two [66, 44] requires
experts interventions, not to provide recommendations but rather per-
form some steps manually. In [44], engineers and users conduct busi-
ness requirement analysis to build a Data Flow Diagram (DFD) [143].
The constructed diagram is then used to identify microservices. In [66],
human interaction is needed to provide a machine-readable represen-
tation (i.e., using JavaScript Object Notation (JSON)) of the inputs (e.g.,
Entity-Relationship Models (ERMs), use cases, etc.).

4. Change history: the change history of the source code enables tracking
the performed changes on a system. In the investigated approaches, it
was only used by the approach presented in [100] to identify microser-
vices relying on logical or contributor coupling strategies.

5. Other inputs: some approaches require other inputs. For instance, in
[76, 77], the executable system (i.e., executable instance built from the
targeted monolithic software) as well as pre-prepared test cases (i.e.,
test suite) covering as many functionalities as possible are needed. In
[86], the input is monolithic services deployed in cloud VMs. Accord-
ing to Kecskemeti et al. [86], services "are mostly delivered as a mono-
lithic block of multitude of sometimes vaguely related functionalities", even
though this might not be conform with the "semantics" of the concept
"service".

6. Combination of multiple inputs: some approaches use a combina-
tion of the presented inputs. It can include inputs of the same type
(e.g., documentation, etc.) or different ones. Moreover, in some cases,
the combination is mandatory, while in others, it is optional. An ex-
ample of an approach combining optional inputs of different types is
presented in [100]. In this approach, depending on the chosen cou-
pling strategy, the input is either the source code or the change history.
In [44], two inputs of different types (i.e., documentation and expert
knowledge) are both required.

Table 2.2 presents the classification results of the related microservice iden-
tification approaches based on the required software artifacts as inputs.

— Process of microservice identification approaches: the process of an iden-
tification approach refers to the way this approach achieves its objective us-
ing the required inputs, and how it is validated. This process is composed

28 Chapter 2. State of the Art

Table 2.2 – Classification of the investigated microservice identification approaches
based on their required inputs

Approach Source code

Documentation

Human
expert

Change
history

Other
inputsType

Expressing
data

manip.
and

exchages

Gysel
et al. [66]

System
specification

artifacts
(e.g., ERMs,
use cases,

etc.)

X X

Levcovitz
et al. [94]

- Structural
relationships

- Data
manipulations
relationships

X

Kecskemeti
et al. [86]

X

Monolithic
services

deployed in
cloud VMs

Chen
et al. [44] Text X X

Mazlami
et al. [100]

Semantical
relationships X

Baresi
et al. [25]

OpenAPI
specifications

Amiri [15]
Business
process X

Jin et al.
[76]

- Executable
system
- Test
cases

Jin et al.
[77]

- Executable
software

- Test
cases

of six aspects: 1) microservice identification technique, 2) automation 3) di-
rection, 4) analysis technique, 5) validation, and 6) tool support.

1. Microservice identification technique: the microservice identification
technique refers to the way the process manipulates the required in-
puts to produce the desired outputs. There are four main techniques:

(a) Relying on genetic algorithms: genetic algorithms [69, 103] are
meta-heuristics typically used when the search space is large, and
a fitness function can evaluate a candidate solution (e.g., a possible

2.2. Taxonomy of Related Works 29

decomposition of a monolith into microservices, etc.). The basic
idea of genetic algorithms is to start from a set of initial solutions
and use evolutionary mechanisms inspired by biology (e.g., selec-
tion, mutation, etc.) to create new and potentially better solutions.
For instance, the presented approach in [15] uses a genetic algo-
rithm to partition the tasks of a business process 2 into microser-
vices. The possible partitions were evaluated by the turbo-MQ fit-
ness function [102] that takes into account the execution order of
tasks, as well as their manipulated data.

(b) Using clustering algorithms: clustering algorithms [142] aims to
partition a set of entities into clusters (i.e., groups, subsets, or cat-
egories) so that the entities of a cluster are more similar to each
other than to the ones belonging to other clusters. The used clus-
tering algorithms in the investigated approaches can be classified
into two categories:

i. Graph-based clustering: this clustering consists of building a
graph from the available inputs and then use it to identify mi-
croservices. The constructed graph can be partitioned into mi-
croservices or they are extracted relying on the dependencies
between its nodes.
An example of the first case is presented in [100], where a graph
is built from the source code. In this graph, the nodes corre-
spond to the classes of the monolithic application. Each edge
has a weight evaluated by a weight function that determines
how strong the coupling between two nodes is based on the
chosen coupling strategy (i.e., logical, contributor, and seman-
tic coupling). In this approach, the proposed weight functions
do not consider all the "semantics" of the concept "microser-
vice". For instance, none of them take into account data au-
tonomy, even though it is one of the main characteristics of
microservices.
An example of the second case is presented in [94], where mi-
croservices are identified from monoliths relying on dependen-
cies between facades and databases tables connected by busi-
ness functions. The identification is based mainly on the paths
between the nodes of the constructed graph. The nodes corre-
spond to facades, business functionalities, and database tables.
Facades represent the entry points of the system. They invoke
business functionalities. Edges are created between nodes if
there are 1) calls from facades to business functionalities, 2)

2. A workflow is the automation of a business process [70]. Thus, the later can be considered
as a documented workflow.

30 Chapter 2. State of the Art

calls between business functionalities or 3) accesses from busi-
ness functionalities to database tables. This approach takes
into account the data autonomy of microservices when iden-
tifying them.

ii. Similarity-based clustering: this clustering identifies micro-
services directly relying on the similarity between the avail-
able inputs. For instance, the proposed approach in [25] de-
composes a monolith into microservices based on the semantic
similarity between its operations described in OpenAPI speci-
fications 3.

(c) Synthesis of virtual machines/containers images: in [86], to iden-
tify microservices from monolithic services, the authors rely on
the ENTICE environment. This environment enables VM and con-
tainer images management (e.g., creation, assembly, storage, etc.).
The idea is once the images are created for the monolithic service,
the microservice developer can use the ENTICE environment to
create customized VM/container images that focus only on the de-
sired functionality of the microservice. The main ENTICE environ-
ment techniques used to identify microservices are image synthe-
sis and image analysis.

(d) Hybrid identification: any combination of the previously presented
techniques is considered as a hybrid one. Among the investigated
approaches, only one [77] relies on both similarity based cluster-
ing and genetic algorithms. In this approach, the execution traces
are firstly analyzed to generate clusters of classes, called functional
atoms. Each of them represents a minimal coherent unit, in which
the classes are responsible for the same functional logic. The sim-
ilarity between atoms is measured using the Jaccard Coefficient.
Once the functional atoms are generated, they are grouped relying
on a tailored Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) [50]. The classes of each group correspond to a candidate mi-
croservice.

Table 2.3 presents the classification results of the investigated microser-
vice identification approaches based on the used identification tech-
nique.

2. Automation: process automation refers to how much an approach
requires human interventions [124]. An approach can be automatic,
semi-automatic, or manual.

3. https://github.com/OAI/OpenAPI-Specification

2.2. Taxonomy of Related Works 31

Table 2.3 – Classification of the investigated microservice identification approaches
based on their identification technique

Microservice identification technique
Using clustering

algorithms
Approach

Relying on
genetic

algorithms
Graph-
based

clustering

Similarity
based

clustering

Synthesis
of virtual

machines/
containers

images

Hybrid
identification

Gysel et al. [66] X

Levcovitz et al. [94] X X

Kecskemeti et al. [86] X

Chen et al. [44] X X

Mazlami et al. [100] X

Baresi et al. [25] X

Amiri [15] X X

Jin et al. [76] X

Jin et al. [77] X

(a) Automatic: fully automatic approaches do not require any hu-
man interventions. Actually, there are no entirely automated ap-
proaches [124]. However, similarly to Shatnawi [124], we consider
the ones that human experts do not profoundly impact their re-
sults as fully automatic. Such approaches do not benefit from the
knowledge of experts when it is available, even though this knowl-
edge can enhance the identification results. Examples of fully au-
tomatic approaches are presented in [100, 15, 76].

(b) Semi-automatic: semi-automatic approaches need human experts
to produce results. Their interactions are limited and well-specified.
Nevertheless, since they are necessary, they limit the applicabil-
ity of these approaches. Furthermore, the interactions are not nar-
rowed to providing relevant, simple, and well-defined recommen-
dations to enhance the identification results. Actually, experts per-
form some steps of the approach. For example, in [44], they in-
tervene in the first step of the approach to build a DFD. While, in
[66], human intervention is needed to provide a machine-readable
representation of the required inputs.

(c) Manual: manual approaches rely entirely on human experts [124].
They present steps to systematically produce the desired outputs
using the required inputs manually. Applying such approaches
can be tedious, error-prone, and time-consuming. Among the in-
vestigated approaches, only one is manual [94].

3. Direction: an identification process can follow three directions. They
are top-down, bottom-up, and hybrid.

32 Chapter 2. State of the Art

(a) Top-down: the processes following a top-down direction analyze
high-level software artifacts to recover lower level ones [124]. For
instance, in [44], microservices are identified from the business
logic of a system, described using a natural language. Another
top-down approach has been proposed in [66]. It identifies mi-
croservices relying on system specification artifacts (e.g., ERMs,
use cases, etc.).

(b) Bottom-up: bottom-up processes start by analyzing low-level soft-
ware artifacts, such as source code, to produce higher level ones
[124], like microservices. For instance, in [76, 77], execution traces
are analyzed and clustered to identify microservices.

(c) Hybrid: based on the available inputs and desired outputs, a com-
bination of the two previous directions can be adopted [7]. For
example, a process can start from software requirements, follow-
ing a top-down direction, and from the source code, pursuing a
bottom-up path, to produce the desired output [124]. None of the
investigated approaches follow a hybrid direction.

4. Analysis technique: several analyses can be performed by microser-
vice identification approaches. These analyses are static, dynamic, con-
ceptual, and hybrid.

(a) Static analysis: static analysis operates without executing a soft-
ware system. It examines source code while considering all the
possible behaviors that might occur at run-time [54]. The main ad-
vantage of static analysis is its dependence on source code only
[124]. Nevertheless, some information can not be obtained stati-
cally, such as the one related to polymorphism and dynamic bind-
ing. None of the investigated identification approaches use static
analysis.

(b) Dynamic analysis: dynamic analysis is performed by running a
software system and then examining its executions [54]. It can in-
spect the actual and accurate run-time behavior of the system. The
executions should be carried out relying on sufficient test cases to
maximize the explored functionalities of the system and increase
code coverage [10]. This analysis addresses polymorphism and
dynamic binding. The principal challenge when dynamically an-
alyzing a system, is determining the cases that covers all its func-
tionalities. In [76], microservices are identified relying on dynamic
analysis.

(c) Conceptual analysis: conceptual analysis operates by examining
the contents and semantics of source code files through informa-
tion retrieval techniques [98, 111]. In literature, several metrics

2.2. Taxonomy of Related Works 33

have been proposed based on the semantic information shared be-
tween source code elements (e.g., conceptual coupling [111], con-
ceptual cohesion [98], etc.). This analysis can be applied on any
textual inputs. In [100], Mazlami et al. have proposed a coupling
strategy that relies mainly on the semantic similarity between the
classes of an OO source code to identify microservice. Similarly, in
[25], microservices are identified based on the semantic similarity
between the system operations described in OpenAPI specifica-
tions.

(d) Hybrid analysis: any combination of the previously presented
analyses is considered as a hybrid one. Usually, they can com-
plement and support one another by providing information that
would otherwise be missing. For example, static and dynamic
analyses can be combined to identify dependencies between the
classes of an OO source code [10]. On the one hand, static anal-
ysis recovers static dependencies, such as method calls, by exam-
ining the code. On the other hand, dynamic one identifies run-
time dependencies, for instance, the ones related to polymorphism
and dynamic binding. Among the investigated approaches, only
one [77] relies on a hybrid analysis (i.e., dynamic and conceptual).
In this approach, execution traces are firstly analyzed to identify
functional atoms, as explained earlier in this section. After that,
the generated atoms are grouped based on the calls between the
methods of their classes, specified in the execution traces, as well
as the set of textual terms presented in class identifiers (i.e., con-
ceptual information).

5. Validation: to validate the investigated microservice identification ap-
proaches, several methods were adopted. These methods are large
scale experimentations and extended experimentations.

(a) Large scale experimentations: large scale experimentations are
usually conducted to answer a well-specified set of research ques-
tions. These questions depend mainly on the proposed approach,
as well as its tackled problems. Generally, large scale experimenta-
tions start with collecting enough data from the produced results
by applying the approach on sufficient case studies. Once data are
gathered, they are analyzed to answer the research questions. Ex-
amples of approaches validated relying on large scale experimen-
tation are presented in [100, 25].

(b) Extended experimentations: when it is not possible to collect suffi-
cient case studies, the validation of an approach can be performed
using a limited number of them. Examples of approaches vali-

34 Chapter 2. State of the Art

dated based on extended experimentations are presented in [66,
94, 44, 15].

6. Tool support: the availability of a tool for any approach increases the
chances of using this approach. For instance, when identifying mi-
croservices, software architects can use different tools, developed for
distinct approaches. Then, they compare the produced results and
choose the one that suits them. Moreover, when a tool is backed up
with documentation and a well-structured user interface, allowing to
interact with it and visualize results, the chances of using it are even
higher. Our investigation revealed a lack of tools for microservice iden-
tification. Some approaches provide a prototype implementation, such
as the ones presented in [25, 100, 66].

Table 2.4 shows the classification results of the investigated approaches based
on the remaining process aspects (i.e., automation, direction, analysis tech-
nique, tool support, and validation). "A" and "NA" respectively refer to
accessible online and not accessible online.

— Outputs of microservice identification approaches: the produced microser-
vices by the investigated approaches can be classified into three categories:

1. Design-time microservices: they are identified from documentation.
Examples of approaches recovering design-time microservices are pre-
sented in [44, 25, 15].

2. Unpackaged microservices: they are the microservices identified from
source code without packing them, such as the ones identified in [100].
Note that microservice packaging refers to performing the necessary
transformations on the source code of the analyzed application to con-
certize the identified microservices, and thus they become executable
and deployable entities. An example of such transformation is at-
taching the code of the identified microservice to a container, such
as Docker. Another example is transforming the dependencies be-
tween classes belonging to different microservices into dependencies
via REST Interfaces.

3. Packaged microservices: these microservices are obtained by perform-
ing any of the mentioned transformations above on the identified mi-
croservices. They have been identified in [94, 86, 76, 77].

Table 2.5 presents the classification results of the investigated microservice
identification approaches based on their produced outputs.

2.2.Taxonom
y

ofR
elated

W
orks

35

Table 2.4 – Classification of the investigated microservice identification approaches based on the remaining identification process
aspects

Approach Automation Approach direction Analysis technique Validation Tool support

Auto.
Sem-
auto. Man.

Top-
down

Bottom-
up Hybrid Static Dynamic Conceptual Hybrid

Large scale
exp.

Extended
exp. Prototype Tool

Gysel et al. [66] X X X A
Levcovitz et al. [94] X X X

Kecskemeti et al. [86] X NA
Chen et al. [44] X X X

Mazlami et al. [100] X X X X A
Baresi et al. [25] X X X X A

Amiri [15] X X X

Jin et al. [76] X X X X

Jin et al. [77] X X X X

36 Chapter 2. State of the Art

Table 2.5 – Classification of the investigated microservice identification approaches
based on their outputs

Approach
Approach outputs

Design-time
microservices

Unpackaged
microservices

Packaged
microservices

Gysel et al. [66] X

Levcovitz et al. [94] X

Kecskemeti et al. [86] X

Chen et al. [44] X

Mazlami et al. [100] X

Baresi et al. [25] X

Amiri [15] X

Jin et al. [76] X

Jin et al. [77] X

Discussion

This section discusses the obtained findings from our taxonomy of the investi-
gated microservice identification approaches. The findings are organized relying
on whether approaches are structure-based or task-based, additionally to their
objective, required inputs, applied process, and produced outputs.

— Structure-based versus task-based identification: most of the investigated
microservice identification approaches are structure-based (77.78%). Poten-
tially, this is because the availability of the artifacts to be partitioned into
microservices by the structure-based identification is usually higher than
the task-based one.

— Objective of microservice identification approaches: the most targeted ob-
jective based on the taxonomy is scalability (66.67%). The second place
goes to maintainability and evolution (44.44%). Cloud migration is in third
place (33.33%), followed by understanding and adoption of DevOps prac-
tices (22.22%).

— Inputs of microservice identification approaches: almost half of the inves-
tigated approaches rely mainly on documentation to identify microservices
(44.44%). These approaches can be used for both the development of new
systems from scratch (i.e., forward engineering) or the migration of existing
ones. Roughly all of these approaches use documentation that expresses
data manipulations and exchanges between the different entities of a sys-
tem. All the approaches requiring human experts (44.44%) rely on them
to perform some steps (33.33%) of the approach, if not all of them (11.11%).
22.22% of the investigated approaches consider source code as the main arti-
fact for microservice identification. Nevertheless, only 11.11% of them take
into account the relationships related to data manipulations. 22.22% of the
approaches have as inputs the executable system and its test cases. Only

2.2. Taxonomy of Related Works 37

11.11% of the approaches identify microservices from monolithic services
deployed in cloud VMs.
Even though almost half of the investigated approaches rely on documen-
tation, they can not be used to migrate existing systems unless their docu-
mentation is available and up to date. Similarly, the approaches requiring
human expert intervention can not always be applied. The applicability of
the ones relying on the source code, which is always available for a system
to be migrated, is potentially higher.

— Process of microservice identification approaches: the process applied by
identification approaches has many aspects: microservice identification tech-
nique, automation, direction, analysis technique, validation, and tool sup-
port.
Firstly, several techniques are used to identify microservices. Each of them
manipulates the required inputs to produce the desired outputs. The in-
vestigated approaches rely mainly on clustering algorithms (66.67%). More
precisely, 44.44% of them use graph-based clustering, whereas 22.22% uti-
lize similarity-based clustering. Genetic algorithm, virtual machines/con-
tainers images synthesis and hybrid identification are the least used (11.11%).
It is noteworthy that when these techniques identify microservices from the
source code, the used function are limited and do not consider all the "se-
mantics" of the concept "microservice".
Secondly, fully-automated approaches are preferred than semi-automatic
and manual ones. 55.56% of the investigated approaches are automatic,
33.33% are semi-automatic, while only 11.11% are manual. Thirdly, the
selection of a process direction depends on the required inputs. If it is
documentation, then a top-down process is applied. This is the case with
44.44% of the investigated approaches. When the input is the source code,
a bottom-up process is used (44.44%). Fourthly, conceptual analysis is the
most used (22.22%), followed by dynamic and hybrid ones (11.11%). None
of the investigated approaches analyze statically the code. Fifthly, large
scale experimentations and extended experimentations are evenly used to
validate the investigated approaches (44.44%). Finally, only 33.33% of the
approaches provide a prototype accessible online. Moreover, 11.11% of
them have developed tools.

— Outputs of microservice identification approaches: since almost half of the
investigated approaches rely mainly on documentation, 44.44% of the iden-
tified microservices are design-time ones. 44.44% of the approaches pro-
duce packaged microservices, whereas 11.11% identify unpackaged ones.

To Keep in Mind

The classification results of the investigated microservice identification ap-

38 Chapter 2. State of the Art

proaches revealed the following main limitations:

— When microservices are automatically identified from source code [94, 100],
existing approaches [100] rely on limited functions that do not consider all
the semantics of microservices, especially data autonomy. Therefore, the
produced results by these approaches may not match those that can be
manually identified by an expert. The only approach [94] that identifies mi-
croservices from source code while considering data autonomy is a manual
one.

— Existing approaches either do not benefit from expert knowledge [25, 100,
15, 76, 77] or require expert intervention to perform some of their steps
[66, 86, 44], if not all of them [94], which is tedious, error-prone and time-
consuming. Moreover, it limits their applicability. None of the investigated
approaches rely on a well-specified set of recommendations that can be eas-
ily provided by an expert and allows to enhance the identification results.
Moreover, none of them combine expert recommendations with source code
information.

— Existing approaches are based mainly on clustering algorithms [66, 94, 44,
100, 25, 77].

2.2.2.2 Workflow Extraction Approaches

This section firstly presents workflows. After that, similarly to microservice
identification approaches, since the life cycle of a workflow extraction approach is
composed of four elements, the investigated extraction approaches are classified
relying on four dimensions. They are the targeted objective, the required inputs,
the applied process, and the desired outputs. Figure 2.5 shows our taxonomy
scheme.

Workflows as a Basis for Task-based Identification

As explained earlier, a task-based identification of microservices can be car-
ried out based on the analysis of workflows or their constituents. Initially, work-
flows were introduced in companies to automate administrative procedures, in
which documents are passed between different participants to achieve an overall
business goal [70]. After that, they have experienced an expansion to other areas
(e.g., software engineering, bioinformatics, etc.). Initially, the term workflow has
been defined by the WorkFlow Management Coalition (WFMC) [70] in 1995 as
follows:

"A workflow is the computerized facilitation or automation of a business process, in
whole or part."

2.2. Taxonomy of Related Works 39

Figure 2.5 – Taxonomy scheme of workflow extraction approaches

40 Chapter 2. State of the Art

This standard definition proposes a reference model for creating, deploying,
and controlling workflow applications. It refers to a workflow as a solution for
business processes automation. A process is defined as a coordinated sequence of
a set of tasks leading to a determined result. Coordination specifies the sequenc-
ing mode of tasks (i.e., control flow), as well as the data exchanged between them
(i.e., data flow). In our dissertation, these concepts are defined as follows:

— Task: a task is the basic composition unit of a workflow. It is the smallest
execution unit, which represents an execution stage in the entire applica-
tion. Its implementation does not depend on other tasks, and it is possible
to reuse it in different contexts. It can define input and output data. Input
data represent data needed to execute the task, whereas output data, the
produced ones by this execution. A task can either be primitive or compos-
ite. A composite one may be seen as a sub-workflow consisting of primitive
or composite tasks.

— Control flow: a control flow specifies the execution order of tasks via differ-
ent constructs such as sequences, conditional branches (if and switch), and
loops (for and while). In a sequence construct, a task is enabled once the
execution of its predecessors is completed. In conditional branches, based
on a condition (i.e., predicate) evaluation, one of several branches is chosen.
In loops, tasks can repeatedly be executed.

— Data flow: a data flow describes data dependencies between tasks. If the
outputs of a task Ti are inputs of a task Tj , then Tj cannot be executed until
Ti produces its outputs. Thus, the execution of Tj depends on that of Ti.

Figure 2.6 shows an example of a workflow describing order processing. An
order can be either accepted or rejected depending on the availability of the or-
dered items. If it is accepted, the required information is filled in, an invoice
is sent, payment is approved, and the order is shipped. Otherwise, the order is
closed. As illustrated in Figure 2.6, this workflow consists of six tasks. On the one
hand, the control flow specifies that tasks Fill order, Send invoice, Accept payment
and Ship order are executed sequentially, only if the condition "Acceptance notice
= true" is fulfilled. On the other hand, the data flow indicates that each of the
tasks Receive order and Send invoice produces one output data (resp., Acceptance
notice, and Invoice). The data Acceptance notice is utilized to evaluate the condition
"Acceptance notice = true", whereas Invoice is used by the task Accept payment.

Multi-dimensional Taxonomy

— Objective of workflow Extraction approaches: the targeted objectives by
the investigated workflow extraction approaches are the following:

2.2. Taxonomy of Related Works 41

Figure 2.6 – Example of a workflow

1. Maintainability: having insight into the behavior of an application can
largely enhance its maintainability. Since workflows express the be-
havior (i.e., the execution order of different tasks and their exchanged
data), Schur et al. [119] have proposed a fully automated, though con-
figurable tool, named Process Crawler (ProCrawl), that extracts work-
flows from web applications to improve their maintainability.

2. Understanding: commonly, software engineers rely on documenta-
tion to understand the functionalities, high-level design, and imple-
mentation details of an existing application [131]. Unfortunately, the
documentation is generally outdated [131]. Some approaches aiming
to improve the understanding of existing application use reverse en-
gineering to generate updated documentation. For instance, in [90],
the authors have proposed an approach to recover activity diagrams,
which can represent control flows, from annotated C++ code.

3. Updating traceability links: tractability links between documentation
and source code are important for various software engineering activ-
ities, such as system understanding and maintenance [97]. Usually,

42 Chapter 2. State of the Art

these links are established at the beginning of the development of an
application. Both documentation and source code are subject to con-
stant change and may evolve independently. Hence, over time, the
traceability links between them can drift away from the ones estab-
lished initially. Nevertheless, they can be updated. For example, in
[148], Zou et al. have proposed an approach to update the traceability
links between the as-specified workflow (i.e., documentation) and the
as-implemented one (i.e., source code).

4. Verification and validation: verification and validation (V & V) en-
able determining whether software requirements are implemented cor-
rectly and completely or not [139]. Verification evaluates the software
during each life cycle phase to guarantee that the requirements set in
the previous one are met [138]. Whereas, validation involves testing an
application or its specification at the end of the development to guar-
antee that the requirements are fulfilled [138]. One of the challenges is
determining the test cases that enable a thorough validation of an ap-
plication. Several approaches [33, 99, 43] have been proposed to gen-
erate them based on data flow analysis. Besides this, having insight
into the behavior of the application can support its validation. For this
reason, workflows have been extracted from web applications in [119].

5. Reusing procedural knowledge: procedural knowledge, also known
as how-to knowledge, specifies how to reach a particular goal or per-
form a specific operation via a sequence of steps [118]. An example
of such knowledge is an assembling procedure of a desk outlined in a
manual. Through the web, people describe their own experiences in
solving particular problems (e.g., do-it-yourself instructions for house
repair, etc.) or achieving specific goals (e.g., make a business card, etc.)
[118]. They share it with others to reuse it in forums, blogs, Question-
Answer websites, and so on [109]. This knowledge is usually repre-
sented textually. Modeling it, for instance using workflows, can pro-
mote and facilitate its reuse.

6. Workflow failure handling: while executing a workflow, failure may
take place at any time. One of the possible ways to handle it and ensure
a reliable execution is defining a transactional flow [61, 62]. It focuses
on failure handling from a business point of view by specifying the
changes occurring in the control flow due to task failure [61]. For in-
stance, if a task T1 failed, the task T2 will be canceled. Some approaches
[61, 62] recover the transactional flow from event logs.

7. Improving the quality of a workflow: workflows are usually studied
and designed by workflow and modeling languages experts [72]. Ac-
cording to Ihaddadene [72], the quality of workflows can be enhanced
using their event logs by better detection of parallelism, loops, and du-

2.2. Taxonomy of Related Works 43

Table 2.6 – Classification of the investigated workflow extraction approaches based on
their objective

Approach Maintainability
Under-

standing

Updating
traceability

links

Verification
and

validation

Reusing
procedural
knowledge

Workflow
failure

handling

Improving
workflow

quality
Chen and
Kao [43] X

Buy et al.
[33] X

Martena
et al. [99] X

Zou et al.
[148] X

Gaaloul
and Godart

[61]
X

Zou and
Hung [147] X

Kor-
shunova
et al. [89]

X

Ihaddadene
[72] X

Gaaloul
et al. [62] X

Schu-
macher

et al. [118]
X

Schur et al.
[119] X X X

Kosower
and Lopez-

Villarejo
[90]

X X

plicated tasks.

Table 2.6 presents the classification results of the investigated workflow ex-
traction approaches based on their objective.

— Inputs of workflow extraction approaches: the required inputs by extrac-
tion approaches can be source code, documentation, human expert knowl-
edge, and workflow event logs.

1. Source code: due to its availability, the source code is the most com-
monly used artifact in the investigated approaches [43, 33, 99, 148, 147,
89, 90]. As explained earlier, by workflow extraction, we refer to the
recovery of the entire workflow or its constituents. For instance, the
proposed approach in [148] and its enhancement [147] extract work-
flows from the source code. Whereas, in [89, 90], activity diagrams,
that can represent control flows, are recovered from C++ code.

2. Documentation: as explained earlier, any text, model, or illustration
associated with a software system aiming to explain how it operates or

44 Chapter 2. State of the Art

how can it be used is considered as documentation [110]. For exam-
ple, in [119], workflows were extracted from Document Object Model
(DOM) trees of a web application. These trees represent user interfaces
(UIs).

3. Human expert knowledge: only one approach [90] relies on human
experts. In this approach, programmers intervene by annotating the
source code, which is then analyzed to recover activity diagrams.

4. Workflow event logs: workflow event logs contain information about
the workflow as it is actually executed [135]. It is assumed possible to
record events such that 1) each one refers to a task or an execution of
the workflow, and 2) events are completely ordered [135]. Thus, they
can be used to extract workflows. Examples of approaches requiring
event logs as inputs are presented in [61, 62, 72].

5. Other inputs: some approaches require other inputs. For instance, in
[72], the minimum and maximum durations needed to execute each
task are considered available. Another example, in [119], recovering
a workflow requires specifying system actors (e.g., vendor, customer,
etc.), as well as a start action executed by one of them (e.g., purchase an
article, etc.). The input can also be a semi-structured text, such as the
one required in [118]. It represents a textual description of instructions
(i.e., how to do certain things following a sequence of steps). In this
case, since the text is not associated with a software system, it is not
considered as documentation.

6. Combination of multiple inputs: some investigated approaches use a
combination of the mentioned inputs [72, 119, 90]. This combination
is mandatory. For instance, if a human expert does not annotate the
code, it is not possible to extract activity diagrams using the proposed
approach in [90].

Table 2.7 presents the classification results of the investigated workflow ex-
traction approaches based on the software artifacts required as inputs.

— Process of workflow extraction approaches: the process of an extraction
approach refers to 1) the way this approach achieves its objective using the
required inputs and 2) how it is validated. The process is composed of eight
aspects: 1) task identification technique, 2) control flow recovery technique
3) data flow recovery technique, 5) automation 6) direction, 7) analysis tech-
nique, 8) validation and 9) tool support.

1. Task identification technique: the adopted technique by the inves-
tigated approaches to identify tasks from the required inputs can be

2.2. Taxonomy of Related Works 45

Table 2.7 – Classification of the investigated workflow extraction approaches based on
their required inputs

Approach
Source

code Doc.
Human
expert

Event
logs

Other
inputs

Chen and Kao [43] X

Buy et al. [33] X

Martena et al. [99] X

Zou et al. [148] X

Gaaloul and Godart
[61] X

Zou and Hung [147] X

Korshunova et al. [89] X

Ihaddadene [72] X

Min and max
execution

durations of tasks
Gaaloul et al. [62] X

Schumacher et al.
[118]

- Semi-structured
text

- Dictionary of
verbs

- Dictionary of
inputs

Schur et al. [119]
Document

Object Model
[1] trees

- Actors
- Start action

Kosower and
Lopez-Villarejo [90] X X

source code annotation, event logs analysis, using dictionaries, utiliz-
ing mapping rules, or relying on UI commands. Note that the identifi-
cation of tasks include specifying their input and output data.

(a) Source code annotation: in this technique, each statement or se-
quence of statements delimited by annotations represents a task.
They are usually specified by programmers. In the investigated
approaches, only one [90] relies on annotations. This is potentially
because annotating the code is time-consuming, especially when
dealing with large applications. Moreover, it requires in-depth
knowledge of the source code. This approach does not specify task
inputs and outputs.

(b) Event logs analysis: commonly, task identifiers are specified in
event logs. Therefore, tasks can be straightforwardly recovered
by analyzing these logs. Among the investigated approaches, the
ones that identify tasks from logs [61, 72, 62] do not determine their
inputs and outputs.

(c) Using dictionaries: tasks can be identified from a semi-structured

46 Chapter 2. State of the Art

text that represents procedural knowledge [118]. As explained ear-
lier, procedural knowledge enables achieving a particular goal or
performing a specific operation via a sequence of steps. Usually,
verbs are used to describe these steps (e.g., add, delete, etc.). A task
represents a step in the workflow. Therefore, verbs are identified
as tasks. Nevertheless, not all the verbs correspond to tasks, only
the ones included in the dictionary of verbs, provided as an input
of the approach. Moreover, to identify the input data of each task,
another dictionary specifying all the possible inputs is required.
Among the investigated approaches, there are only two, presented
in [118], that use such dictionaries.

(d) Utilizing mapping rules: when extracting a workflow from source
code, a mapping rule can be used to specify the corresponding of a
task in the code. An approach relying on such rule is presented in
[148]. This approach can be applied only on web applications built
based on controller-centric architecture [148], which uses Model-
View-Controller (MVC) [63] design pattern (i.e., specific mapping
rules). This constraint limit the applicability of the approach.
In this approach, each code fragment implementing business func-
tionalities and complying with business rules is considered as a
task. Commonly, business rules are associated with database ac-
cess and data validation [148]. Thus, the mapping rule is the fol-
lowing: invoked access beans methods, task commands objects,
and any other source code fragments fulfilling the criterion men-
tioned above corresponds to a task.
Here, access beans represent the classes manipulating (i.e., read
and/or write) data stored in the database. They contain meth-
ods performing business rules, such as item validation, and triv-
ial methods, like getters. Trivial methods are not considered as
tasks. Task commands are the classes implementing business logic
pieces. For instance, a task command may be responsible for en-
suring that an item is available. The authors did not specify when
to consider a task command object as a task (e.g., when it is cre-
ated, when one of its methods is invoked, etc.).
The business logic can also be implemented as code fragments. For
this reason, the mapping rule considers these fragments as possi-
ble tasks. They are recovered from the source code by eliminating
the ones that do not implement business logic. For instance, the
code fragments based on Java type classes (e.g., String, etc.) do not
represent tasks.
In this approach, task inputs and outputs were not identified. In
fact, there is a mapping rule that associates task inputs and outputs

2.2. Taxonomy of Related Works 47

Figure 2.7 – The extracted workflow by ProCrawl representing the peer-review process
in OpenConf [119]

with the objects of the classes Vector, Enumeration, List, and access
beans. However, the authors did not specify how to apply this
rule to identify the inputs and outputs of each task from the source
code.

(e) Relying on UI commands: in [119], a tool that recovers a work-
flow from a set of UI views (i.e., technically DOM trees) of a web
application has been introduced. This tool represents the recov-
ered workflow using Extended Finite State Machines (EFSM). In
an EFSM, nodes represent the abstract states of the application.
They are numbered based on their detection order. State transi-
tions denote sequences of UI commands carried out by users. Each
sequence is called action.
For instance, in the example of Figure 2.7, the transition between
the states 1 and 2 denotes the action Author: Make Submission. These
actions can be viewed as tasks. It is noteworthy that the actions
and their execution order (i.e., control flow) are recovered simul-
taneously. More precisely, ProCrawl explores a web application it-
eratively and incrementally. Each iteration consists of three steps.
Firstly, an action among the ones available in the current state of
the system is performed. The first action is an input of the ap-
proach. Secondly, the state resulting from the performed action
is determined. If a new state is detected, the set of actions that
should be explored are generated by applying an abstraction func-
tion on the DOM trees. Finally, each action that changes the state of
the application become a state transition between the current state
and the new one.

2. Control flow recovery technique: to extract a control flow, the inves-
tigated approaches use one of the following techniques: source code
analysis and annotation, text analysis, using control constructs recov-

48 Chapter 2. State of the Art

ery rules, and relying on UI commands.

(a) Source code analysis and annotation: usually, control constructs
(e.g., conditional branches, loops, etc.) are represented in the source
code by control statements (e.g., if, switch, while, etc.). There-
fore, these constructs can be recovered by source code analysis.
For instance, in [90], the authors recovered sequence, conditional
branches, loops, and parallelism constructs from annotated C++
code. The recovery relied on control statements, and annotations
used to specify parallel tasks and describe conditions in a human-
readable way. For example, the condition "!available" will be rep-
resented by "Item not available".

(b) Text analysis: in [118], the control flow is extracted from a semi-
structured text that represents procedural knowledge. Neverthe-
less, only the sequence construct is recovered. Commonly, the tex-
tual description specifies the sequential order of tasks. Thus, the
recovery of this order can be performed by conceptually analyzing
the text.

(c) Using control constructs recovery rules: unlike task identifica-
tion from event logs, the control flow is not recovered straight-
forwardly [61, 72, 62]. Its extraction is usually performed based on
well-defined rules. Each of them specifies how to recover a given
control construct. The definition of these rules depends mainly on
the structure of event logs and on whether additional information
can be provided or not (e.g., minimum and maximum execution
duration of tasks, etc.).

(d) Relying on UI commands: as explained earlier in this section,
only one approach [119] relies on UI commands. It identifies tasks
and recovers control flow simultaneously to built an EFSM. In the
constructed EFSM, tasks executed sequentially can be determined
based on the states of the application, since they are created rely-
ing on their detection order. In the example of Figure 2.7, based on
the states 1, 2 and 3, it is possible to determine that tasks Author:
Make Submission, Chair: Make Assignment and Reviewer: Submit Re-
view are executed sequentially. Conditional branches are expressed
relying on the states transaction guards. Cycles in the EFSM rep-
resent loops.

3. Data flow recovery technique: among the investigated approaches,
the ones recovering a workflow [148, 61, 147, 62, 72] specify only its
control flow. In other words, none of them extract both the control flow
and the data flow. However, there are some approaches [43, 33, 99] that
enable building a data flow from OO source code. These approaches

2.2. Taxonomy of Related Works 49

[43, 33, 99] compute def-use triplets, which specify data dependencies
between statements. Each triplet (var, def, use) precises the name of a
variable var, the line number at which var was defined (i.e., written),
and the one at which this definition is used (i.e., read). These triplets
combined with the corresponding of a task in the source code (e.g., a
statement or sequence of statements, a method, etc.) enable building a
data flow 4.
For instance, in [90], each statement or sequence of statements is con-
sidered as a task. Supposing that the code line 10 contains the state-
ment S1 identified as T1 (Figure 2.8), whereas the line 11 contains S2,
which corresponds to T2. The computing of the triplet (var, 10, 11)
means that there is a data dependency between S1 and S2, and thus
between T1 and T2.

Figure 2.8 – Example of data flow construction relying on def-use triplets

For a primitive variable (i.e., its type is not a class), usually, definitions
and uses can be determined straightforwardly [99]. An assignment
to the variable represents a definition. All other operations are uses
(e.g., predicate, computation, etc.). When handling objects, specifying
definitions and uses cannot be performed that simply. Commonly, any
operation that changes (resp., reads) the value of at least one attribute
of an object is considered as a definition (resp., use). For example, in
[43], an object is considered as defined in three cases: 1) it constructor
is called, 2) one of its attributes is defined (i.e., its value is assigned
explicitly) and 3) a method that modifies at least an attribute of the
object is invoked. It is considered as used in three cases: 1) one of
its attributes is used in a computation or a predicate, 2) the object is

4. More details about the construction of a data flow from def-use triplets will be presented in
Chapter 4.

50 Chapter 2. State of the Art

passed as a parameter and 3) a method that uses at least an attribute of
the object is called.
Therefore, a method call can define and/or use objects. The investi-
gated approaches computing def-use triplets rely on one of the follow-
ing techniques to determine whether a call is a definition and/or a use:

— Building DEF and USE sets: since objects definitions and uses
are determined based on whether their attributes are changed or
read, the idea is to build a DEF and USE sets for each method of
each class. The DEF (resp., USE) set contains the changed (resp.,
read) attributes by the method. A receiving object is considered as
defined (resp., used) by the invoked method if its DEF (resp., USE)
set includes any attributes of the receiving object. This technique
was used in [43].

— Method classification: the methods of each class are classified
based on whether they define and/or use attributes. For instance,
in [99], a method can be a modifier, inspector, or inspector-modifier.
This technique firstly classifies the methods of the classes having
primitive attributes (e.g., int, float, etc.). Then, it moves to the ones
including objects as attributes.

Table 2.8 presents the classification of the investigated workflow ex-
traction approaches based on their task identification, control flow,
and data flow recovery techniques. "SCA", "ELA", "UD","MR", "UI",
"SCAA", "TA", "CCRR", respectively refer to source code annotation,
event logs analysis, using dictionaries, utilizing mapping rules, relying
on UI commands, source code analysis and annotation, text analysis,
and using control constructs recovery rules, whereas "?" means that the
needed information was not specified in the corresponding paper.

4. Automation: an approach can be automatic, semi-automatic, or man-
ual. Most of the investigated workflow extraction approaches are fully
automatic [43, 33, 99, 89, 148, 61, 147, 72, 62]. Only one [90] is semi-
automatic. In this approach, the role of experts is limited to annotating
the code. Still this limits its applicability.

5. Direction: an extraction process can follow three directions: top-down,
bottom-up, and hybrid.

(a) Top-down: there are only two approaches following a top-down
direction [118, 119]. They identify workflows relying mainly on
semi-structural texts [118] and DOM trees [119].

(b) Bottom-up: most of the investigated workflow extraction approa-
ches follow a bottom-up direction. They recover workflows, activ-
ity diagrams and def-use triplets from source code [43, 33, 99, 89,
90, 148, 147] and event logs [61, 62, 72].

2.2.Taxonom
y

ofR
elated

W
orks

51

Table 2.8 – Classification of the investigated workflow extraction approaches based on their task identification, control flow, and
data flow recovery techniques

Approach

Task identification technique Control flow recovery technique Data flow recovery technique

SCA ELA UD MR UI

Inputs/
outputs

identification SCAA TA CCRR UI
Recovered control constructs

Def-use triplets computation

Building
Def/USe

sets

Method
classifi-
cation

Def-Use
triplets

In. Out. Sequence.
Cond.

branch. Loop Parallel.
Prim.
var.

Obj.
var.

Chen and
Kao [43] X X

Buy et al.
[33] X X

Martena
et al. [99] X X

Zou et al.
[148] X X X X X

Gaaloul
and

Godart
[61]

X X X X X X

Zou and
Hung
[147]

X X X X X

Kor-
shunova
et al. [89]

? ? ? ? ? ? ? X X X X

Ihad-
dadene

[72]
X X X X X X

Gaaloul
et al. [62] X X X X X X

Schu-
macher

et al.[118]
X X X X

Schur
et al.[119] X X X X X X

Kosower
and

Lopez-
Villarejo

[90]

X X X X X X

52 Chapter 2. State of the Art

(c) Hybrid: none of the investigated workflow extraction approaches
follow a hybrid direction.

6. Analysis technique: several analyses can be performed by workflow
extraction approaches to produce the desired outputs. These analyses
are static, dynamic, conceptual, and hybrid.

(a) Static analysis: most workflow extraction approaches relies on
static analysis. It is used in [148, 147] to recover workflows from
e-commerce applications. The authors motivate their choice by
the fact that static analysis, unlike dynamic one, does not require
highly skilled experts and computation resources to execute such
large applications. Annotated C++ code is also statically analyzed
in [90] to extract activity diagrams. In [33, 99, 43], def-use triplets
are computed relying on static analysis.

(b) Dynamic analysis: since event logs expose the actual run-time
behavior of a system, we consider that the approaches analyzing
them use dynamic analysis. These approaches are presented in
[61, 72, 62].

(c) Conceptual analysis: in [118], a semi-structured text was concep-
tually analyzed to extract a workflow.

(d) Hybrid analysis: none of the investigated approaches perform a
hybrid analysis.

7. Validation: an approach can be validated using large scale experimen-
tations, extended experimentations, or limited experimentations.

(a) Large scale experimentations: only one workflow extraction ap-
proach was validated relying on large scale experimentations [62].

(b) Extended experimentations: the most commonly used validation
method is extended experimentations [43, 33, 99, 148, 147, 119].

(c) Limited experimentations: limited experimentations verify the va-
lidity of an approach by demonstrating that its theoretical concepts
have practical potentials. Usually, it is small and may not pro-
vide a thorough validation. Examples of workflow extraction ap-
proaches validated using limited experimentations are presented
in [118, 90].

8. Tool support: the availability of a tool for any approach increases the
chances of using it. Our investigation revealed a lack of accessible
tools online for workflow extraction. Several tools were developed
[148, 89, 72, 62, 119], but only one, named Flowgen [90], is accessible.
It recovers activity diagrams from annotated C++ source code. Besides
tools, some approaches provide prototype implementations, such as
the ones presented in [33, 99, 147].

2.2. Taxonomy of Related Works 53

Table 2.9 shows the classification results of the investigated workflow ex-
traction approaches based on the remaining process aspects (i.e., automa-
tion, direction, analysis technique, tool support, and validation). "A" and
"NA" respectively refer to accessible online and not accessible online, whereas
"?" means that the needed information was not specified in the correspond-
ing paper.

— Outputs of workflow extraction approaches: as explained earlier in this
section, workflow extraction refers to recovering the entire workflow or its
constituents. Therefore, the possible outputs of the investigated approaches
are the following: workflow, control flow, or data flow. It is noteworthy
that, since def-use triplets enable building data flows, we consider that the
approaches computing them produce data flows. None of the investigated
approaches express explicitly both data flows and control flows. Thus, their
output is either a control flow or a data flow.
Table 2.10 presents the classification results of the investigated workflow
extraction approaches based on their produced outputs.

Discussion

This section discusses the obtained findings from our taxonomy of the inves-
tigated workflow extraction approaches. The findings are organized based on
the dimensions of the taxonomy: the targeted objective, the required inputs, the
applied process, and the produced outputs.

— Objective of workflow extraction approaches: based on the taxonomy, the
most targeted objective is verification and validation (41.67%). The second
place goes to updating traceability links (25%). Understanding and work-
flow failure handling are in third place (16.67%), followed by maintainabil-
ity (8,33%), reusing procedural knowledge (8,33%), and improving work-
flow quality (8,33%).

— Inputs of workflows extraction approaches: due to its availability, the
source code is the most commonly used artifact by workflow extraction ap-
proaches (58,33%). Only 8.33 % of them combine it with other inputs, pre-
cisely with human expert knowledge. The second place goes to workflow
event logs (25%) and other inputs (25%). Documentation and human expert
(8,33%) are in third place.

— Process of workflow extraction approaches: the process applied by extrac-
tion approaches has many aspects:

1. Task identification technique: several techniques are used to identify
tasks. The most utilized one is event logs analysis (25%). The sec-
ond place goes to mapping rules (16.67%), followed by source code

54
C

hap
ter

2.State
ofthe

A
rt

Table 2.9 – Classification of the investigated workflow extraction approaches based on the remaining process aspects

Approach Automation Approach direction Analysis technique Validation Tool support

Auto.
Sem-
auto. Man.

Top-
down

Bottom-
up Hybrid Static Dynamic Conceptual Hybrid

Large scale
exp.

Extended
exp.

Limited
exp. Prototype Tool

Chen and Kao
[43] X X X X

Buy et al. [33] X X X X NA
Martena et al.

[99] X X X X NA

Zou et al.
[148] X X X X NA

Gaaloul and
Godart [61] X X X

Zou and
Hung [147] X X X X NA

Korshunova
et al. [89] X X ? ? ? ? X NA

Ihaddadene
[72] X X X X NA

Gaaloul et al.
[62] X X X X NA

Schumacher
et al.[118] X X X X NA

Schur et al.
[119] X X X X NA

Kosower and
Lopez-

Villarejo
[90]

X X X X A

2.2. Taxonomy of Related Works 55

Table 2.10 – Classification of the investigated workflow extraction approaches based on
their outputs

Approach
Approach outputs

Workflow Control flow Data flow

Chen and Kao [43] X

Buy et al. [33] X

Martena et al. [99] X

Zou et al. [148] X

Gaaloul and Godart [61] X

Zou and Hung [147] X

Korshunova et al. [89] X

Ihaddadene [72] X

Gaaloul et al. [62] X

Schumacher et al.[118] X

Schur et al. [119] X

Kosower and Lopez-Villarejo [90] X

annotation (8.33%), using dictionaries (8.33%) and relying on UI com-
mands (8.33%). Task inputs are identified in 16.67% of the approaches,
whereas outputs were not determined at all.

2. Control flow recovery technique: control flows are recovered based
on source code analysis and annotation (33,33%), control constructs re-
covery rules (25%), text analysis (8.33%) and relying on UI commands
(8.33%). Only 25% of the approaches extract all the control constructs.
Sequences (75%), conditional branches (66.67%), and loops (66.67%)
are the most commonly recovered.

3. Data flow recovery technique: most of the investigated approaches
do not extract data flows. However, as explained earlier, they can
be built using def-use triplets. 25% of the approaches construct these
triplets. More precisely, 16.66% of them produces triplets containing
object variables, whereas 8.33% include only primitive ones.

4. Automation: fully-automated approaches are preferred than semi-auto-
matic and manual ones. 91.67% of the investigated approaches are
automatic, and 8.33% are semi-automatic. None of the investigated
approaches are manual.

5. Direction: the selection of a process direction depends on the re-
quired inputs. If it is source code and event logs, then a top-down
process is applied. This is the case with 83.33% of the investigated
approaches. When the input is the documentation or semi-structured
text, a bottom-up process is used (16.67%).

6. Analysis technique: static analysis is the most used (50%), followed
by dynamic one (33.33%). Only few approaches rely on conceptual
analysis (8.33%).

56 Chapter 2. State of the Art

7. Validation: the most used validation method is extended experimenta-
tions (58.33%), followed by limited (25%), and large scale ones (8.33%).

8. Tool support: only 50% of the approaches provide tools. Most of
them are not accessible online (41.66%). Moreover, 33.33% of these ap-
proaches have developed prototypes.

— Extraction approach outputs: workflows are recovered in 58.33% of the in-
vestigated approaches, whereas their constituents are extracted in 41,67%
of them (i.e., data flow (25%) and control flow (16.67%)).

To Keep in Mind

The classification results of the investigated workflow extraction approaches
revealed the following main limitations:

— Even though the investigated approaches identify tasks from the available
artifacts, they do not always specify their input and output data. In fact,
only two approaches specify task inputs [118, 119] and none of them recover
task outputs. The specification of these inputs and outputs is necessary to
build a data flow.

— None of the investigated approaches explicitly express both data flows and
control flows. Their ultimate aim is always recovering one of them but not
both.

— The fact that an approach [90] relies on expert intervention to perform any
of its steps, impact negatively its applicability, especially on very large sys-
tems.

— The mapping used to extract workflows [148] from source code is specific to
particular applications (i.e., based on controller-centric architecture) . There-
fore, it may not be applicable on other types of applications.

— The computed def-use triplets from source code either concerns primitive
variables [33] or objects [43, 99] but not both. Moreover, the ones related
to objects focus mainly on the receiving object and not the ones passed as
parameters.

2.2.3 Feedbacks and Learned Lessons Approaches

Now that the technical approaches have been investigated and classified, the
related works concerned by feedbacks and lessons learned during the migration
of existing systems towards microservices will be presented and discussed in this
section. The main elements related to these feedbacks are the following:

2.2. Taxonomy of Related Works 57

— Adequate granularity of microservices: determining the proper granular-
ity of microservices is crucial [65]. On the one hand, if they are coarse-
grained, fully benefiting from their advantages is not possible. On the other
hand, if they are extremely fine-grained, they might introduce additional
costs and performance issues due to network latency and so on. According
to Gouigoux and Tamzalit [65], "the choice of granularity should be driven by
the balance between the costs of Quality Assurance and the cost of deployment."

— Necessity of building autonomous teams: adopting microservices without
changing team structures can limit benefiting from their advantages [23, 42].
If teams are divided by layers (i.e., UI, application logic, and database),
there are usually numerous handoffs (i.e., exchanges) between them. Fully
benefiting from microservices requires removing handoffs and building au-
tonomous teams [42]. Each team is responsible for developing, testing, and
deploying its microservices independently from others.

— Skilled and experienced developers: to get the most out of microservices,
skilled and experienced developers are needed [23]. Novice ones might
miss-use tools, libraries, and so on.

— No silver bullet: microservices are not a silver bullet [106, 23, 42]. Their
adoption will introduce new complexities and challenges [42]. Properly
handling them is crucial to unlocking their benefits. Nevertheless, it can
require significant costs [42]. In [106, 42, 31], some of these challenges are
presented:

— Increased number of microservices: decomposing monoliths into a
considerable number of small microservices introduce a new complex-
ity. For instance, traditionally, the deployment of monolithic applica-
tions involves many manual activities [42]. With the increased number
of microservices, the automation of these activities is required.

— All the associated complexities to distributed systems: even though a
lot of lessons about well management of distributed system have been
learned, it is still hard [106]. Benefiting from microservice advantages
requires mastering deployment, testing, monitoring, scaling, and en-
suring resilience in distributed systems [106, 42]. Moreover, data man-
agement challenges should not be forgotten. According to the CAP
theorem, a distributed data store can provide simultaneously at most
two of the following guarantees: consistency, availability, and partition
tolerance.

58 Chapter 2. State of the Art

2.3 Conclusion

This chapter has presented the state-of-the-art related to the migration of mo-
nolithic applications towards microservices. It is noteworthy that workflow ex-
traction approaches are considered as related works because a task-based identi-
fication of microservices firstly extract workflows or their constituents, if they are
not available, and then use them to identify microservices. The chapter started
by positioning our dissertation compared to domain concepts. Then, the related
works have been classified. The preliminary taxonomy classifies them into two
categories: technical and feedback approaches. After that, microservice iden-
tification and workflow extraction approaches are more finely classified based
mainly on four dimensions: objective, inputs, applied process, and outputs. Fi-
nally, the learned lessons and feedbacks from migrating existing systems to mi-
croservices have been presented and discussed. This chapter is concluded with
the following remarks:

— A considerable number of approaches have been proposed to identify mi-
croservices or to extract workflows.

— Remarks concerning microservice identification approaches

— Some microservice identification approaches do not take into consid-
eration all the semantics of microservices, especially data autonomy.
Moreover, when microservices are identified from source code, only
one approach considers data autonomy.

— The combination of software experts recommendations, when avail-
able, and source code analysis to identify microservices has not been
addressed. Expert knowledge is either mandatory or not used.

— The most commonly used algorithms to identify microservices are clus-
tering algorithms.

— Remarks concerning workflow extraction approaches

— None of the investigated approaches express explicitly both data flows
and control flows.

— Some approaches rely on expert intervention which limits their appli-
cability.

III

Migration to Microservices: An
Approach Based on Measuring

Object-oriented and Data-oriented
Dependencies

3.1 Introduction . 60
3.2 Approach Principals . 61

3.2.1 Inputs of the Identification Process: Source Code and Ar-
chitect Recommendations 61

3.2.2 Measuring the Quality of Microservices 63
3.2.3 Identification Process . 65
3.2.4 Algorithmic Foundations 66

3.3 Measuring the Quality of Microservices 68
3.3.1 Measuring the Quality of a Microservice Based on Struc-

tural and Behavioral Dependencies 68
3.3.2 Measuring the Quality of a Microservice Based on Data

Autonomy . 72
3.3.3 Global Measurement of the Quality of a Microservice . . . 78

3.4 Microservice Identification Using Clustering Algorithms 78
3.4.1 Automatic Identification of Microservices Using a Hier-

archical Clustering Algorithm 79
3.4.2 Semi-automatic Identification of Microservices Based on

a Hierarchical Clustering Algorithm 80

60
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

3.5 Microservice Identification Using Genetic Algorithms 86
3.5.1 A Genetic Model for the Process of Microservice Identifi-

cation . 87
3.5.2 Identification of Microservices Using a Multi-objective Ge-

netic Algorithm . 91
3.6 Conclusion . 95

3.1 Introduction

Our contribution in this chapter is an approach to identify microservices from
monolithic OO applications. This approach uses both architect (i.e., expert) rec-
ommendations and source code information. Nevertheless, these recommenda-
tions are not necessary, they are used when they are available. The proposed
approach offers multiple ways to identify microservices. The identification can
be performed using a clustering algorithm [79] or a genetic one [104]. Moreover,
it can be automatic or semi-automatic, based on whether it is guided by software
architect recommendations or not.

To identify microservices, our approach relies on a well-defined function that
measures their quality by the assessment of their characteristics. It is based on
metrics calculated from the information extracted by static analysis of the mono-
lithic application’s source code. This information relates to both the structural
dependencies between the entities of the source code, as well as their dependen-
cies via shared persistent data. The proposed quality function is considered as a
similarity measure when used in our clustering algorithm, and as a fitness func-
tion when utilized in our genetic one.

This chapter is organized as follows. Section 3.2 introduces the principals
of the proposed approach. Section 3.3 presents the quality measurement of mi-
croservices. Sections 3.4 and 3.5 show how our approach identifies microservices
using clustering as well as genetic algorithms, and how does it inject software
architect recommendations, when available, in the identification process. Finlay,
Section 3.6 concludes this chapter.

3.2. Approach Principals 61

3.2 Approach Principals

Our approach is based on a set of principles that constitutes the prerequisite
for its applicability. They are the following:

— The type of information used to identify microservices: this information
is related to the source code of the monolithic application as well as the
software architect recommendations.

— The foundations of the function that evaluates the quality of potential mi-
croservices (i.e., candidates) mainly concern the analysis of the intrinsic
characteristics of the concept "microservice".

— The identification process is based on two phases: extraction of the OO
model of the source code, and its transformation into a microservice-based
one.

— The algorithmic foundations of the approach involve using two types of
algorithms: a hierarchical clustering algorithm and a search-based one (i.e.,
genetic).

3.2.1 Inputs of the Identification Process: Source Code and Ar-
chitect Recommendations

3.2.1.1 Source Code Information

The only artifact that is necessarily available for an application is its source
code. It is also the sole one reflecting the real functionalities provided by this ap-
plication. Other artifacts, such as documentation, may be obsolete primarily due
to the erosion phenomenon. For this reason, our approach mainly relies on static
analysis of the source code to extract all the information that can be exploited for
microservice identification.

In fact, our approach uses two types of information extracted by statistically
analyzing the source code. The first type includes information related to the
structural relationships between code entities. For instance, in OO code, these re-
lationships include inheritance and composition between classes, methods calls,
shared attributes between methods, and so on. The second type of information
is related to the relationships between source code entities via shared persistent
data. For an OO code, this information concerns the data accessed by each class,
those (i.e., data) shared by classes, the type of operations performed on this data
(i.e., read and/or write), the access frequency of a given data by a class, etc. In

62
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

our proposed identification process, all these pieces of information are analyzed
and together with software architect recommendations, when available, used to
identify microservices with the highest quality function values.

3.2.1.2 Recommendations of Software Architect

It is clear that nothing is worth the human expert to understand software
applications. However, companies aiming to migrate their applications are of-
ten confronted with the problem of turnover and the absence of these experts.
Furthermore, when they are present, their cost makes the migration process ex-
tremely expensive. This cost depends on the time spent by the experts to real-
ize/control the migration process. Hence, clear evidence emerges regarding this
process: 1) the more automated this process is, the better, 2) the migration process
should use the knowledge of the experts, when they are available and 3) when
utilizing experts recommendations, their form should be simple to formulate and
use. Regarding the last point, the required knowledge should be related, mainly,
to the use of the applications (e.g., how many microservices, which class is the
center of a microservice, etc.). In our approach, we decided to exploit certain
recommendations (Figure 3.1). The list of these recommendations is specified
to lighten the expert task as much as possible, allowing to use its knowledge to
enhance the quality of the identified microservices while reducing its cost.

Figure 3.1 – The used recommendations of software architect

An important aspect that determines the quality of the identified microser-
vices is their granularity, which strongly depends on the style of the software
architect. Based on the granularity of microservices, the same application can
be architected differently. Microservices can consist of small grains in one archi-
tecture and larger ones in another. In this case, the microservices of the second

3.2. Approach Principals 63

architecture will simply be aggregates of the first one’s microservices. The rec-
ommendations of an architect concerning the exact number of microservices of
the desired architecture or the interval of their number are crucial information in
relation to this question of granularity.

3.2.2 Measuring the Quality of Microservices

Our identification process partitions into clusters the entities of the original
monolithic model (i.e., classes) to identify the entities of the target model (i.e.,
microservices). In order to determine from all the possible partitions, those that
reflect a relevant microservice-based architecture, it is necessary to measure the
"relevance" of this architecture. Note that the term quality of architecture or mi-
croservice is used to refer to their relevance.

The quality of a microservice-based architecture depends on the quality of
its microservices. It is possible to measure it by two strategies: quantitative or
qualitative. The first one measures the quality using values, whereas the second
strategy allows assigning a qualification (e.g., bad, good, excellent, etc.).

In our approach, the first strategy (i.e., quantitative) was used to measure the
quality of candidate microservices to select the best ones to build the target ar-
chitecture. Both strategies were utilized to evaluate the obtained results by our
approach during experiments.

To quantitatively measure the quality of a candidate microservice, we were
inspired by the ISO/IEC 25010:2011 [6] model, which links the quality charac-
teristics of a software product to the corresponding metrics for measuring each
one. Therefore, the characteristics that reflect the quality of a microservice were
identified, and then refined to obtain the metrics that allow measuring them.

The identification of microservice characteristics is based on an analysis of
their most commonly used definitions. In literature, several ones have been
proposed [95, 106, 122]. Lewis and Fowler 1 [95] define microservices as "small
services, each running in its own process and communicating with lightweight mecha-
nisms, often an HTTP resource API. These services are built around business capabilities
and independently deployable by fully automated deployment machinery. There is a bare
minimum of centralized management of these services, which may be written in different
programming languages and use different data storage technologies". In [106], microser-
vices are defined as small, autonomous services that work together. Another well
admitted definition [122] considers microservices as "self-contained (autonomous)
lightweight processes communicating over HTTP, created and deployed with relatively

1. In literature, the definition proposed by Lewis and Fowler is the most commonly used.

64
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

small effort and ceremony, providing narrowly-focused APIs to their consumers".

Based on these definitions and others [123], the main characteristics of a mi-
croservice are the following:

— Small and focused on one functionality: even if small is not a sufficient
measure to describe microservices, it is used as an attempt to imply their
size [95, 106, 123]. However, a question which is often asked is how small is
small? A microservice is typically responsible for a granular unit of work
(i.e., encapsulates a simple business functionality). Therefore, it is relatively
small in size. It must be small enough so that its whole design and imple-
mentation can be understood. Moreover, it can be maintained or rewritten
easily.

— Autonomous: microservices are separate entities which can be developed,
tested, upgraded, replaced, deployed, and scaled independently from each
other. All communications between the microservices themselves are via
network calls, to enforce separation between them and ensure that they are
loosely coupled (i.e., structural and behavioral autonomy) [95, 106, 122].
Moreover, each one manages its own database (i.e., data autonomy), either
different instances of the same database technology, or entirely different
database systems [95, 106].

— Technology-neutral: with a system composed of a set of collaborating mi-
croservices, it is possible to use different technologies inside each one. This
allows picking the right tool for each job, rather than selecting a more stan-
dardized, one-size-fits-all approach that often ends up being the lowest
common denominator [95, 106]. Additionally, different data storage tech-
nologies can be used for different parts of our system (i.e., microservices)
[95].

— Automatically deployed: with a system consisting of a small number of
microservices, it might be acceptable to manually provision machines to
deploy them. Nevertheless, if this number increases, at some point, the use
of a manual approach might not be possible. Hence, automatic deployment
is required.

These characteristics can be classified into two categories: 1) those related to
the structure and behavior of microservices, and 2) others related to the microser-
vice development platform. The first category concerns characteristics that are in-
dependent of the microservices development platform. They are related to design
(resp., identification) phase of the microservice development (resp., migration)
process. It includes "small and focused on one functionality and "autonomous"
characteristics. The second category depends on development platforms. It in-
cludes "technology-neutral" and "automatically deployed" characteristics, which
are related to the packaging phase of the development/migration process.

3.2. Approach Principals 65

In order to evaluate the quality of candidate microservices, from the above
mentioned characteristics, only the ones that define microservice structure and
behavior are selected: "small and focused on one functionality" and "autonomous".
Note that the autonomy of a microservice includes its structural and behavioral
autonomy as well as its data autonomy.

To measure these characteristics, a set of metrics were chosen and used to de-
fine a quality function. It is a weighted aggregation of two sub-functions. The first
one evaluates the strength of all the structural relationships between source code
elements, that will constitute the implementation of a potential microservice. The
second sub-function measures the degree of dependence of microservice classes
on persistent data. The goal of our approach is to identify microservices with the
maximized quality function values.

3.2.3 Identification Process

A migration process includes three main phases [137]: 1) the extraction of the
source code model, 2) the transformation of this original model into a new target
one, and finally 3) the realization of the new target model in a target program-
ming language.

For our problem of migrating an OO application from a monolithic architec-
tural style to a microservice-based one, the first phase consists of extracting a
model of the OO source code. It involves identifying code elements (e.g., classes,
methods, etc.) and their relationships (e.g., method calls, data access, etc.). These
pieces of information are extracted by a static analysis of the OO source code. The
second phase aims to transform this monolithic code model into a microservice-
based one. The target model entities (i.e., microservices) are identified as clusters
of OO classes of the source model. To be able to identify these clusters that repre-
sent microservices in the target architecture, the quality function presented above
was defined. The third step aims to generate an operational microservice-based
application by packaging and deploying the identified microservices in the pre-
vious step, typically using containers.

Our approach focuses on microservice identification. Therefore, only the first
and second steps of the migration process are addressed. Figure 3.2 shows the
process of identifying microservices from OO source code.

66
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Figure 3.2 – Process of identifying microservices from OO source code

3.2.4 Algorithmic Foundations

As explained earlier in this section, the goal of our approach is to identify
microservices with the maximized quality function values. More precisely, our
aim is to group the classes of the OO application based on their quality measured
using the proposed quality function. For that purpose, two types of algorithms
were used: clustering and genetic algorithms.

3.2.4.1 Clustering Algorithms

Clustering algorithms partition a set of entities into clusters (i.e., groups, sub-
sets, or categories) so that the entities of a cluster are more similar to each other
than to entities belonging to other clusters [73, 142]. The measure of similarity and
dissimilarity (i.e., distance) depends mainly on the features of the entities to be
partitioned, which can be quantitative or qualitative, continuous or binary, nomi-
nal or ordinal [142]. For that reason, several measures have been used by different

3.2. Approach Principals 67

clustering algorithms. For example, the Euclidean distance is used in K-means al-
gorithm [68] to partition M points in N dimensions into K cluster, whereas cosine
similarity is the most commonly utilized measure to cluster documents [142].

Among existing clustering algorithms, we chose a hierarchical clustering to
identify clusters of classes that could be a "good" microservice. Our choice is
motivated by the fact that, unlike some clustering algorithms that rely on the
distance between entities such as K-means, hierarchal clustering is based on sim-
ilarity measure [37]. Therefore, it allows us to use the proposed quality function
as a similarity measure between clusters of OO classes.

3.2.4.2 Genetic Algorithms

Genetic algorithms (GAs) are meta-heuristics developed by Holland and his
colleagues in the 1960s and 1970s [69]. They are based on Darwin’s theory of
evolution [48]. According to this theory, weak and unadapted individuals within
their environment face extinction by natural selection. Whereas, the strong and
well-adapted ones have higher chances to survive and pass their genes to future
generations via reproduction. In the long run, better individuals (i.e., carrying
the correct combination in their genes) dominate their population.

GAs apply this theory on optimization problems. To explore a solution space,
each solution is encoded as an individual or a chromosome. Chromosomes are
made of genes. A gene controls one or more characteristics of the chromosome
[88]. GAs start with an initial population of chromosomes, which evolves at each
generation by applying a set of genetic operators. These operators are mainly of
three types: selection, mutation, and crossover.

In GAs, the adaptation to the environment is evaluated by a fitness function
that measures the quality of each individual. This quality depends on the objec-
tives of the optimization problem.

The solution encoding, operators, and fitness function define a specific genetic
algorithm. However, the exploration of the solution space is shared between all
GAs. The first step consists in determining and evaluating an initial population
using the fitness function. Normally, the population is randomly initialized. Nev-
ertheless, the better the initial population is, the better the solutions will be [37].
The second step is the generation of new solutions from existing ones. Generally,
two chromosomes, called parents, are selected and crossed to generate so-called
offspring children. In the third step, these children are subjected to the muta-
tion that can modify their genes. The role of mutation is critical in GAs. In fact,
crossover leads the population to converge by making the chromosomes in the

68
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

population alike. Mutation reintroduces genetic diversity back into the popu-
lation and guides the search to escape from local optima [88]. The fourth step
consists in evaluating the offspring children, while the fifth one selects the chro-
mosomes of the new generation. GAs need a stopping criterion to terminate the
exploration (e.g., the number of iterations, etc.).

Our goal is to define a genetic model for the problem of microservice identi-
fication and to translate this model into an algorithm enabling to select the best
microservices relying on our quality function, considered as the fitness function
used in GAs.

3.3 Measuring the Quality of Microservices

As explained above, the microservices constituting the target architecture are
identified among a set of candidate ones. The selection criterion concerns their
quality value measured by a well-defined function, which is a weighted aggre-
gation of two sub-ones. The first sub-function measures the quality based on the
structural relationships between source code entities. The second sub-function
evaluates the quality of microservices relying on the data shared between these
entities.

3.3.1 Measuring the Quality of a Microservice Based on Struc-
tural and Behavioral Dependencies

Regarding their structural and behavioral dependencies, the quality of mi-
croservices is measured based on two elements. The first one consists in deter-
mining the conceptual characteristics that a microservice should have and how
they can be evaluated based on metrics. The second element consists in identi-
fying among all the existing implementations of the used metrics, those that best
reflect the characteristics to be assessed.

3.3.1.1 Quality Function based on the Assessment of Appropriate Character-
istics

Measuring ”Focused on One Functionality” Characteristic of a Microservice

In our approach, a microservice is viewed as a set of classes collaborating
to provide a given function. This collaboration can be determined from source

3.3. Measuring the Quality of Microservices 69

code through the internal coupling measure, that represents the degree of direct
and indirect dependencies between the set of classes, representing a candidate
microservice. The more two classes of a candidate microservice use each other’s
methods, the more they are internally coupled. Furthermore, the collaboration
can be determined by measuring the number of volatile data (i.e., not persistent
data) such as attributes whose use is shared by these classes. It reflects the internal
cohesion measure.

To evaluate the characteristic "Focused on One Function" of a set of classes
representing a candidate microservice M, the function FOne is defined as follows:

FOne(M) =
1

2
(InternalCoupling(M) + InternalCohesion(M)) (3.1)

Measuring the Structural and Behavioral Autonomy of a Microservice

As explained earlier, microservices are separate entities which can be devel-
oped, tested, upgraded, replaced, deployed, and scaled independently from each
other. Therefore, in order that a set of classes represents a microservices, they
should be self-sufficient. In other words, their dependencies on external classes
should be minimal. This can be measured using external coupling, which evalu-
ates the degree of direct and indirect dependencies between the classes belonging
to the microservices and the external classes.

To evaluate the structural and behavioral autonomy of a candidate microser-
vice M, the function FAutonomy was defined as follows:

FAutonomy(M) = ExternalCoupling(M) (3.2)

Quality Measurement Relying on Structural and Behavioral Dependencies

The two functions that measure the quality of a microservice based on struc-
tural and behavioral dependencies were aggregated in one FStructureBehavior as
follows:

FStructureBehavior(M) =
1

n
(αFOne(M) − βFAutonomy(M)) (3.3)

Where α and β are coefficient weights specified by a software architect and
n = α + β. The default value of each term is 1.

70
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

3.3.1.2 Measuring Microservice Characteristics Based on Appropriate Metrics

Earlier in this section, two microservice characteristics have been evaluated
using some metrics. The rest of this section presents how these metrics are com-
puted to reflect the semantics of the corresponding measures.

Internal coupling

The internal coupling measures the degree of direct and indirect dependen-
cies between the classes of a microservice. These dependencies correspond to
method calls. The more two classes use each other’s methods, the more they are
internally coupled (i.e., higher internal coupling values). This can be evaluated
by measuring the frequency of internal calls between classes. Hence, the internal
coupling is computed as follows:

InternalCoupling(M) =

∑

CouplingPair(P)

NbPossiblePairs
(3.4)

Where P= (C1, C2) is a pair of classes of the microservice M, NbPossiblePairs is
the number of possible pairs of classes in M, while CouplingPair is computed as
follows:

CouplingPair(C1, C2) =
NbCalls(C1, C2) + NbCalls(C2, C1)

TotalNbCalls
(3.5)

Where NbCalls(C1, C2) is the number of calls of the methods of C1 by the
methods of C2 and TotalNbCalls represents the total number of method calls in
the OO application.

In fact, computing internal coupling using Equation 3.4 considers the frequency
of calls between methods. Nevertheless, it does not promote clusters in which the
values of the CouplingPair are close (i.e., all the classes are coupled). To tackle this
problem, the standard deviation between the coupling values was introduced in
the computing of the internal coupling as follows:

InternalCoupling(M) =

∑

CouplingPair(P) −
∑

P V al∈P airsV al σ(PV al)

NbPossiblePairs
(3.6)

Where σ(PV al) is the stand deviation between the CouplingPair values of the
pair PV al belonging to all the possible pairs of values PairsV al.

3.3. Measuring the Quality of Microservices 71

Note that introducing the standard deviation in the computing of the internal
coupling ensures that very big or very small coupling values between a small
sub-set of microservice classes do not impact the overall evaluation of the internal
coupling.

External coupling

External coupling measures the degree of direct and indirect dependencies of
the classes belonging to a candidate microservice on external classes. It is com-
puted as shown in Equation 3.7. Where P is a pair of classes such that only one
class belongs to the microservice M, but not both, CouplingPair is measured using
Equation 3.5, σ(PV al) is the standard deviation between the CouplingPair values
of the pair PV al belonging to all the possible pairs of values PairsV al. Whereas,
NbPossibleExternalPairs is the number of pairs of classes in which only one class
belong to the microservice M. It is noteworthy that the main difference in the
evaluation of internal and external coupling is the used pairs of classes.

ExternalCoupling(M) =

∑

CouplingPair(P) −
∑

P V al∈P airsV al σ(PV al)

NbPossibleExternalPairs
(3.7)

Internal cohesion

Internal cohesion evaluates the strength of interactions between classes. Gen-
erally, if the methods of two classes manipulate the same attributes, these classes
are more interactive. Hence, internal cohesion is computed as follows:

InternalCohesion(M) =
NbDirectConnections

NbPossibleConnections
(3.8)

Where NbPossibleConnections is the number of possible connections between
the methods of the classes belonging to the microservice M, while NbDirectCon-
nections is the number of connections between these methods. Two methods
method1 and method2 are directly connected if they both access the same attribute
or the call trees starting at method1 and method2 access the same attributes.

Note that when measuring the internal cohesion using Equation 3.8, the con-
nections between the methods of the same class are taken into account. However,
our goal is to evaluate the cohesion between the classes of the candidate microser-
vices. To solve this problem, the connections between the methods of the same
class are not considered. It is noteworthy that the proposed internal cohesion
evaluation metric is a variation of the metric TCC (Tight Class Cohesion) [27].

72
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

3.3.2 Measuring the Quality of a Microservice Based on Data
Autonomy

One of the main characteristics of a microservice is its data autonomy [95, 106].
A microservice can be completely data autonomous if it does not require any
data from others. In order that a microservice needs less data, the internal data
manipulations (i.e., reading and writing operations) between its classes should
be maximized, while the accesses to external data should be minimized.

To identify such microservices, FData is defined as shown in Equation 3.9.
Where α and β are coefficient weights specified by a software architect and n =
α + β. The default value of each term is 1. FData is based on measuring data
dependencies between the classes of the microservice (FIntra), as well as their
dependencies with external classes (FInter). Note that the microservices having
high accesses to data manipulated by external classes (i.e., high values of FInter)
are penalized. Indeed, the greater FInter is, the lower FData will be.

FData(M) =
1

n
(αFIntra(M) − βFInter(M)) (3.9)

3.3.2.1 Computing FIntra

FIntra function applied on a microservice M represents the average of data
dependencies measurement between all the possible pairs of classes belonging to
M (Equation 3.10). We chose the average of the data manipulations measurement
instead of the sum because the latter promotes large microservices (i.e., consisting
of a high number of classes) even if their classes do not manipulate the same data.

FIntra(M) =

∑

ci,cj∈M DataDependencies(ci, cj)

NbPossiblePairsInMicroservice
(3.10)

To better understand, Figure 3.3 shows an example, in which the microservice
M2 contains four classes (C4, C5, C6, and C7) manipulating the same data (D2 and
D3). Whereas, M1 has only two classes (C1 and C2) accessing to D1. Therefore,
the sum of data manipulations measurement for M2 will be higher than M1. This
indicates that M2 is better, while it is not the case, since all the classes of M1
manipulate the same data, whereas merely a one-third of M2’s classes do that.

3.3. Measuring the Quality of Microservices 73

Figure 3.3 – Example motivating the use of the average to compute FIntra

3.3.2.2 Computing FInter

FInter represents the average of measuring data dependencies between all
the pairs of classes in which only one class belongs to the microservice M (Equa-
tion 3.11). Note that the main difference between FIntra and FInter is the used
pairs of classes.

FInter(M) =

∑

ci,cj∈Classes DataDependencies(ci, cj)

NbPossibleExternalPairs
(3.11)

3.3.2.3 Computing DataDependencies

Both FIntra and FInter rely on DataDependencies. This function measures data
dependencies between two classes based on their read and written data. Consid-
ering the access mode to data (i.e., read and/or write) while measuring the data
autonomy of a microservice is important. Based on the data ownership pattern
proposed to decompose a monolith into microservices [24], a data can be mod-
ified or created just through its owner (i.e., corresponding microservice). Other
microservices are allowed to have a copy of the data that they do not own, but
they should be careful about its staleness.

74
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

DataDependencies is measured as follows:

DataDependencies(ci, cj) =

∑

k∈Data D(ci, cj, k)

NbDataManipulatedInMicroservice
(3.12)

Where Data is the set of data manipulated in the microservice M and NbData-
ManipulatedInMicroservice is its size. D is defined, inspired by the proposed ap-
proach in [15], as follows:

D(ci, cj, k) =

1 if ci and cj write k.
0.5 if a class writes k and the other one reads it.
0.25 if ci and cj read k.
0 otherwise.

In fact, DataDependencies is the average of data manipulation measurement
for a given pair of classes. We chose the average instead of the sum to promote
microservices manipulating data more strongly (i.e., microservices having higher
values of D). Note that if a class reads and writes the same data only the writing
(major) operation is considered.

Figure 3.4 shows an example of two microservices M1 and M2. The results of
measuring DataDependencies for each one are the following:

— DataDependencies(M1)=D(C1,C2,D1)/1=1/1=1

— DataDependencies(M2)=D(C4,C5,D1)+D(C6,C7,D2)+D(C12,C13,D3)+
DataDependencies(M2)=D(C14,C15,D4))/4=(0.25+0.5+0.25+0.25)/4
DataDependencies(M2)=1,25/4=0.31

In this example, while measuring DataDependencies only the pairs of classes
for which the value of D is different from null were taken into account for brief-
ness and clarity. Moreover, as can be seen, the use of the average to compute
DataDepndencies promotes M1.

Measuring DataDependencies using Equation 3.12 does not take into account
the frequency of data manipulations. This frequency has a substantial impact on
the autonomy of the identified microservices. For instance, if a class of a can-
didate microservice M1 frequently manipulates a data D1 associated to another
microservice M2 (i.e., D1 was associated to M2 because this microservice con-
tains more classes manipulating it less often (Figure 3.5)). Once the microservice
identification and packaging are done, each manipulation will be interpreted as a

3.3. Measuring the Quality of Microservices 75

Figure 3.4 – Example motivating the use of the average to compute DataDependencies

communication between M1 and M2. Frequent manipulations produce frequent
communications, which reduce the autonomy of the identified microservices.

Figure 3.5 – Example of the frequency of data manipulations

Hence, to identify autonomous microservices, the frequency was introduced
in the DataDependencies measurement, as shown in Equation 3.13.

DataDependencies(ci, cj) =

∑

k∈Data(D(ci, cj, k) ∗ Freq(ci, cj, k))

NbDataManipulatedInMicro
(3.13)

Where Freq(ci, cj, k) is the number of times the classes ci and cj manipulate k.

76
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

It is defined as follows:

Freq(ci, cj, k) = FreqCl(ci, k) + FreqCl(cj, k) (3.14)

Measuring the frequency using Equation 3.14 does not promote clusters in
which the data manipulation frequency of k for the two classes ci and cj is close.
For instance, in the example of Figure 3.6, the classes of the microservice M1 ma-
nipulates D1 with almost the same frequency, unlike the classes of the microser-
vice M2.

Figure 3.6 – Example motivating the introduction of standard deviation in the computing
of Freq

To tackle this problem, the standard deviation was introduced in the frequency
measurement, as shown in Equation 3.15.

Freq(ci, cj, k) = FreqCl(ci, k) + FreqCl(cj, k) − σ(FreqCl(ci, k), F reqCl(cj, k))
(3.15)

Example of FData computation

To better understand, let us measure FData of the microservice M1 consisting
of the classes C1 and C2, as shown in Figure 3.7.

There is only one possible pair of classes belonging to M1: (C1,C2). Whereas,
the possible pairs in which only one class is in M1 are (C1,C3), (C1,C4), (C1,C5),
(C2,C3), (C2,C4) and (C2,C5).

3.3. Measuring the Quality of Microservices 77

Figure 3.7 – Example used to compute FData

To evaluate FData, the values of D and the frequency of data manipulations
were computed. The results are shown in tables 3.1 and 3.2 respectively. Based
on these computations, FData is measured as follows:

— DataDependencies(C1,C2)= (D(C1,C2,D1)*Freq(C1,C2,D1)+D(C1,C2,D2)*
DataDependencies(C1,C2)=Freq(C1,C2,D2)+D(C1,C2,D3)*Freq(C1,C2,D3))/3
DataDependencies(C1,C2)=(2.5+0.63+1)/3
DataDependencies(C1,C2)=1.38

— FIntra(M1)=DataDependencies(C1,C2)/1= 1.38

— FInter(M1)= (DataDependencies(C1,C3)+DataDependencies(C1,C4)+
FInter(M1)=DataDependencies(C1,C5)+DataDependencies(C2,C3)+
FInter(M1)=DataDependencies(C2,C4)+DataDependencies(C2,C5))/6
FInter(M1)= (0.42+0.83+1.67+1.17+1.42+2.17)/6
FInter(M1)=1.28

— FData(M1)= (1*FIntra-1*FInter)/2= 1.38-1.28/2=0.05

Table 3.1 – Measurement of D between the classes of the example shown in Figure 3.7

D1 D2 D3
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 / 1 0.5 0 1 / 0.25 0.5 0.5 0.5 / 0.5 0 0.5 0.5
C2 1 / 0.5 0 1 0.25 / 0.5 0.5 0.5 0,5 / 0 1 1
C3 0.5 0.5 / 0 0.5 0.5 0,5 / 1 1 0 0 / 0 0
C4 0 0 0 / 0 0.5 0.5 1 / 1 0.5 1 0 / 1
C5 1 1 0.5 0 / 0.5 0.5 1 1 / 0.5 1 0 1 /

78
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Table 3.2 – Measurement of Freq between the classes of the example shown in Figure 3.7

D1 D2 D3
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 / 2.5 4.5 0 2.5 / 2.5 2.5 2 2.5 / 2 0 3 2.5
C2 2.5 / 3 0 2 2.5 / 4 2.5 4 2 / 0 3 2.5
C3 4.5 3 / 0 3 2.5 4 / 2.5 4 0 0 / 0 0
C4 0 0 0 / 0 2 2.5 2.5 / 2.5 3 3 0 / 4.5
C5 2.5 2 3 0 / 2.5 4 4 2.5 / 2.5 2.5 0 4.5 /

3.3.3 Global Measurement of the Quality of a Microservice

The global evaluation of the quality of a microservice depends on the mea-
surement of its quality based on structural and behavioral dependencies, as well
its quality relying on its data autonomy. To measure this quality, the function
FMicro was defined as follows:

FMicro(M) =
1

n
(αFStructureBehavior(M) + βFData(M)) (3.16)

Where α and β are coefficient weights specified by a software architect and
n = α + β. The default value of each term is 1.

Note that the coefficient weights show the importance of the relationships
between code entities (FStructureBehavior) and their relationships with persistent
data (FData). A software architect, according to his/her knowledge of the system
to migrate, can decide to give more or less importance either to FStructureBehavior
or FData.

For example, if the source code was developed respecting the rules of sepa-
ration of responsibility, modularity, and so on, the architect can give a high co-
efficient weight to FStructureBehavior. Otherwise, he/she can lower it. Similarly,
the architect can give a high coefficient weight to FData if the migration process
aims to partition the database, and lower them if not. Note that it is possible to
use different coefficient weights, then compare the produced results and chose
the best one.

3.4 Microservice Identification Using Clustering Al-
gorithms

In order to identify microservices, our approach groups the classes of an OO
application based on their quality measured using the proposed quality function

3.4. Microservice Identification Using Clustering Algorithms 79

presented above. For that purpose, a hierarchical clustering algorithm [79] with
our quality function as a similarity measure was defined. It partitions source code
classes into clusters corresponding each to a microservice. The goal is to have in
each cluster, classes that are more similar to each other.

3.4.1 Automatic Identification of Microservices Using a Hierar-
chical Clustering Algorithm

The automatic identification of microservices from OO source code using a
hierarchical clustering algorithm consists of two steps:

— Step 1: in this step, the hierarchical clustering algorithm, which produces
a binary tree also called dendrogram, is applied on the classes of the OO
application.

— Step 2: this step aims to obtain disjoint clusters from the dendrogram. Each
cluster is considered as a microservice.

3.4.1.1 Building a Dendrogram from OO Source Code

Hierarchical clustering algorithm groups together the classes with the maxi-
mized value of the quality function. In the beginning, each class is considered as
a cluster. Then, the quality function is measured between all pairs of clusters. The
clusters with the highest quality function value are merged into a new one. Next,
the algorithm measures the quality function between the newly formed cluster
and all others and successively merge the pair with the highest quality function
value. These steps are repeated until the number of clusters equals one, as shown
in Algorithm 1. Consequently, the classes of the OO source code are expressed in
a hierarchical view presented in a dendrogram (Figure 3.8).

Figure 3.8 – Dendrogram with a set of microservices

80
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Algorithm 1: Hierarchal clustering
input : OO source code code

output: A dendrogram dendro

1 let Sclasses be the set of classes extracted from the OO source code code;
2 Let SClusters be a set of clusters of classes;
3 for each class ∈ Sclasses do
4 let class be a cluster;
5 add cluster to SClusters;
6 end
7 while size(SClusters) > 1 do
8 Let (cluster1, cluster2) be the closest clusters based on the quality function;
9 Let Newcluster ← merge(cluster1, cluster2);

10 remove cluster1 and cluster2 from SClusters;
11 add Newcluster to SClusters;
12 end
13 dendro← getCluster(SClusters);
14 return dendro;

3.4.1.2 Partitioning a Dendrogram to Obtain Microservices

So as to obtain a partition of disjoint clusters, the resulting dendrogram has
to be cut at some point. To determine the best cutting point, the standard depth-
first search (DFS) algorithm was used. Initially, on the root node, the quality of
the current node is compared to the quality of its child nodes. If the quality value
of the current node is lower than the average quality value of its children, the
current node is a cutting point. Otherwise, the algorithm continues recursively
through its children. Figure 3.8 shows an example of partitioning a set of classes
into microservices.

3.4.2 Semi-automatic Identification of Microservices Based on a
Hierarchical Clustering Algorithm

The used recommendations in our approach are mainly related to architec-
tural aspects. Depending on the availability of these recommendations, five ways
to define our clustering algorithm were proposed.

3.4.2.1 Use of Information Related to the Gravity Centers of Microservices

In many cases, a microservice is built around a class that constitutes its "grav-
ity center". It represents the functional core of the microservice (i.e., the main

3.4. Microservice Identification Using Clustering Algorithms 81

class). Other classes revolve around this "core" class to constitute the complete
implementation of the microservice. This information, when available, is ex-
ploited to build microservices, where each center of gravity will be the starting
point to group the classes.

Two cases were considered. The first one concerns the situation where the
entire set of gravity centers is available. The second case is related to the situation
where only a sub-set of these centers is known.

Microservice Identification Based on the Entire Set of Gravity Centers

To identify microservices, the idea is to consider each gravity center as a clus-
ter. Then, the remaining classes of the OO application are partitioned iteratively
on these clusters based on their quality evaluation. At each iteration, a remaining
class is associated to the cluster for which adding this class produce the highest
value of the quality function. In the end, the OO application classes are parti-
tioned into clusters. Each one of them contains one gravity center (Figure 3.9).
Algorithm 2 shows the presented clustering.

Algorithm 2: Clustering based on the entire set of gravity centers
input : A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

output: A set of clusters SClusters

1 for each class ∈ SGcenters do
2 let class be a cluster;
3 add cluster to SClusters;
4 end
5 for each class ∈ SRclasses do
6 for each cluster ∈ SClusters do
7 let tempCluster be a cluster containing all the classes of cluster;
8 add class to tempCluster;
9 let quality be the quality function value of tempCluster;

10 save the pair (quality,cluster);
11 end
12 let bestcluster be the cluster of the pair (quality,cluster) such that quality is the

highest value in all pairs;
13 add class to bestcluster;
14 end
15 return SClusters;

82
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Figure 3.9 – Identified microservices based on the entire set of gravity centers

Microservice Identification Based on a Sub-set of Gravity Centers

In the case where only a sub-set of gravity centers is available, making use
of this information is important. The question is how can this be done? To an-
swer this question, Algorithm 3 was proposed. In this algorithm, initially, each
gravity center is considered as a cluster (lines 1 to 4). Moreover, an additional
one is added (lines 5 and 6). This cluster represents the pair of the remaining
classes with the highest quality function value. The idea is to firstly partition
the remaining classes of the OO application iteratively on these clusters based on
their quality evaluation (lines 7 to 16). Therefore, all the produced clusters con-
tain a gravity center except the additional cluster, as shown in Figure 3.10. After
that, this additional cluster will be decomposed using the hierarchical clustering
algorithm presented in Section 3.4.1 (lines 17 to 19).

Figure 3.10 – Preliminary partitioning of OO classes based on a sub-set of gravity centers

3.4. Microservice Identification Using Clustering Algorithms 83

Algorithm 3: Clustering based on a sub-set of gravity centers
input : A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

output: A set of clusters SClusters

1 for each class ∈ SGcenters do
2 let class be a cluster;
3 add cluster to SClusters;
4 end
5 let addcluster be the pair of SRclasses with the highest quality value;
6 add addcluster to SClusters;
7 for each class ∈ SRclasses do
8 for each cluster ∈ SClusters do
9 let tempCluster be a cluster containing all the classes of cluster;

10 add class to tempCluster;
11 let quality be the quality value of tempCluster;
12 save the pair (quality,cluster);
13 end
14 let bestcluster be the cluster of the pair (quality,cluster) such that quality is the

highest value in all pairs;
15 add class to bestcluster;
16 end
17 let remainingclusters the clusters resulting from partitioning addcluster using the

hierarchical clustering algorithm;
18 remove addcluster from SClusters;
19 add remainingclusters to SClusters;
20 return SClusters;

3.4.2.2 Use of Information Related to the Number of Microservices

The granularity of the microservices constituting the target architecture is a
determinant element of their relevance. Nevertheless, this element is very de-
pendent on the architect’s style (i.e., coarse grains versus fine grains). For this
reason, the granularity can be very variable in the approaches based only on the
source code. Two pieces of information from the architect can be indicators of
this granularity: the number of classes per microservice and the number of mi-
croservices in the target architecture. We believe that defining the same num-
ber of classes for all microservices goes against a partitioning that depends on
their quality (i.e., in the same architecture, it is not excluded that some microser-
vices can be relatively larger than others). Giving the exact number of classes
for each microservice amounts to manually identifying them (i.e., against a semi-
automatic approach). Hence, the retained recommendation as an indicator of the
granularity of microservices is their number in the target architecture.

84
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Two cases were considered. The first one concerns the situation where the ex-
act number of microservices is known. The second case is related to the situation
where only an interval of their number is available.

Microservice Identification Based on their Exact Number

To make use of the availability of the exact number of microservices, our idea
is to firstly identify microservices, and then compose/decompose the identified
ones to obtain the exact number, while taking into account the quality of the iden-
tified microservices. Thus, there are two steps: 1) microservices identification,
and 2) microservice composition/decomposition (Algorithm 4).

Algorithm 4: Clustering based on the exact number of microservices
input : A number of microservices Nb

A set of OO classes SClasses

A dendrogram dendrogram

output: A set SClusters consisting of Nb cluster

1 let initialclusters be the identified clusters using the hierarchical clustering algorithm;
2 if sizeOf(initialclusters) = Nb then
3 SClusters ← initialclusters;
4 else
5 if sizeOf(initialclusters) < Nb then
6 SClusters ← decomposeMicro(Nb,initialclusters,dendrogram);
7 else
8 SClusters ← composeMicro(Nb,initialclusters,dendrogram);
9 end

10 end
11 return SClusters;

Step 1: Microservices identification: to identify microservices, the hierarchical
clustering algorithm presented in Section 3.4.1. is used.

Step 2: Microservices composition/decomposition: once the microservices are
identified, their number is compared to the exact one:

— If they are equal, the identification is completed.

— If the number of identified microservice is lower than the exact number,
these microservices are decomposed. The question is which ones should
be decomposed? An adequate answer to this question should take into ac-
count the quality of the produced decomposition. Therefore, our idea is to
decompose a microservice at a time and compute the sum of the quality
function values for the new set of microservices. The decomposition which
produces the best result is chosen. This step is repeated as long as the num-
ber of microservices is lower then the requested one. Algorithm 5 shows
the proposed microservices decomposition.

3.4. Microservice Identification Using Clustering Algorithms 85

Algorithm 5: Decompose microservices
input : A number of requested microservices Nbreq

A set of clusters SClusters

A dendrogram dendrogram

output: A set SClusters consisting of Nbreq cluster

1 while sizeOf(SClusters) Ó= Nbreq do
2 for each cluster ∈ SClusters do
3 let Stemp be a set of clusters containing all the clusters of SClusters;
4 find cluster children in dendrogram;
5 replace cluster by its children in Stemp;
6 let sum ←

∑

tcluster∈Stemp
FMicro(tcluster);

7 save the pair (sum,cluster);
8 end
9 let bestcluster be the cluster of the pair (sum,cluster) such that sum is the highest value

in all pairs;
10 replace bestcluster by its children in SClusters;
11 end
12 return SClusters;

— If the number of identified microservice is higher than the requested one,
instead of decomposing them, they are composed until the exact number is
obtained (Algorithm 6).

Algorithm 6: Compose microservices
input : A number of requested microservices Nbreq

A set of clusters SClusters

A dendrogram dendrogram

output: A set SClusters consisting of Nbreq cluster

1 while sizeOf(SClusters) Ó= Nbreq do
2 for each cluster ∈ SClusters do
3 let Stemp be a set of clusters containing all the clusters of SClusters;
4 let root be the root node of cluster in dendrogram;
5 let cluster2 be the cluster having the same root of cluster;
6 replace cluster and cluster2 by root in Stemp;
7 let sum ←

∑

tcluster∈Stemp
FMicro(tcluster);

8 save the pair (sum,root);
9 end

10 let bestcluster be the cluster of the pair (sum,cluster) such that sum is the highest value
in all pairs;

11 remove bestcluster children from SClusters;
12 add bestcluster to SClusters;
13 end
14 return SClusters;

Composing/decomposing microservices this way allow us, on the one hand,
to obtain the exact number of microservices, and on the other hand, produce a

86
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

decomposition with the highest quality function values.

Microservice Identification Based on an Interval of their Number

In order to identify microservices using an interval of their number, the idea
is to firstly choose a random number within this interval, then apply Algorithm
4 (Algorithm 7).

Algorithm 7: Clustering based on an interval of the number of microservices
input : A minimum number of microservices Nbmin

A maximum number of microservices Nbmax

A set of OO classes SClasses

output: A set SClusters consisting of Nb cluster

1 let Nb be a random number within [Nbmin, Nbmax];
2 SClusters ← Nb microservices identified using Algorithm 4;
3 return SClusters;

3.4.2.3 Microservice Identification Based on their Exact Number and a Sub-set
of Gravity Centers

In the case where, in addition to the exact number of microservices, a sub-
set of gravity centers is available, making use of this information is important.
The question is how can it be used in combination with the number of requested
microservices? The answer to this question is by combining Algorithm 3 and Al-
gorithm 4 with some adjustments. The idea is, similarly to Algorithm 3, initially,
each gravity center is considered as a cluster. Furthermore, an additional cluster
is added. This cluster represents the pair of the remaining classes with the highest
quality function value. In the end, the additional cluster (i.e., the cluster which
does not contain any gravity center) will be partitioned using Algorithm 4 to ob-
tain the exact number of microservices. In this case, the number of microservices
produced by Algorithm 4 equals to the exact number of microservices minus the
size of the sub-set of gravity centers. Algorithm 8 shows the presented clustering.

3.5 Microservice Identification Using Genetic Algo-
rithms

This section presents our genetic model of the microservice identification prob-
lem as well as a set of algorithms implementing this model. They integrate taking
into account the software architect recommendations or not.

3.5. Microservice Identification Using Genetic Algorithms 87

Algorithm 8: Clustering based on the exact number microservices and a sub-
set of gravity centers

input : A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

output: A set SClusters consisting of Nb cluster

1 for each class ∈ SGcenters do
2 let class be a cluster;
3 add cluster to SClusters;
4 end
5 let addcluster be the pair of SRclasses with the highest quality value;
6 add addcluster to SClusters;
7 for each class ∈ SRclasses do
8 for each cluster ∈ SClusters do
9 let tempCluster be a cluster containing all the classes of cluster;

10 add class to tempCluster;
11 let quality be the quality value of tempCluster;
12 save the pair (quality,cluster);
13 end
14 let bestcluster be the cluster of the pair (quality,cluster) such that quality is the

highest value in all pairs;
15 add class to bestcluster;
16 end
17 let restmicro ← Nb - SizeOf(SGcenters);
18 let remainingclusters the restmicro clusters resulting from partitioning addcluster

using Algorithm 4;
19 remove addcluster from SClusters;
20 add remainingclusters to SClusters;
21 return SClusters;

3.5.1 A Genetic Model for the Process of Microservice Identifi-
cation

To emulate the process of natural evolution, a genetic model should define
several elements: the encoding of the problem, the specification of the genetic
operators, the initial population and the fitness function.

3.5.1.1 Encoding of the Problem

In our approach, a GA is used to identify microservices from OO source code.
Thus, a potential solution is a partition of these classes such that 1) none of its
subsets is empty, 2) their union represents all the classes of the OO application

88
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

and 3) their intersection is empty. In GAs, each solution is traditionally encoded
as a single chromosome consisting of one or more gene(s). In our case, a gene
represents a set of classes. Figure 3.11 illustrates a chromosome with three genes.

Figure 3.11 – Encoding of a chromosome

3.5.1.2 Definition of the Genetic Operators

Genetic operators explore a solution space by creating new solutions from
existing ones. Their role is to allow the evolution of the population until an ac-
ceptable solution is reached. These operators are mainly of three types:

— Selection operators: there are two selection operators used in GAs. The
first operator selects the pair of chromosomes for the crossover. The second
one chooses the chromosomes of the next generation. The question is "On
what basis chromosomes can be selected?". Several techniques have been
proposed to answer this question such as ranking, random, and roulette
wheel. The ranking selects the chromosomes according to their adaptation,
measured by the fitness function, to have an offspring and a new gener-
ation made up of better chromosomes. Chardigny[37] explains that this
technique may reduce genetic diversity because weak chromosomes will
not pass their genes. The random technique, as the name suggests, involves
selecting a random chromosome from the population. But still, there is a
risk of losing the best genes which could lead to a mediocre population.
The roulette wheel brings a balance between the previous two techniques.
It highlights the best chromosomes while giving a chance to the weak ones
to be selected. This technique assigns to each chromosome a probability

3.5. Microservice Identification Using Genetic Algorithms 89

proportional to its adaptation before performing the selection. The roulette
wheel was used in our GA to select the parents to be crossed. Nevertheless,
inspired by [37], this technique was slightly modified for the selection of the
chromosomes of the new generation. An aging process that determines the
life span of chromosomes was integrated.

— Crossover operators: from two parents, the crossover operators generate
two new chromosomes, each inheriting part of the parents’ genes. However,
since the union of the chromosome genes must correspond to all the classes
of the existing application, such crossover seems inappropriate. Indeed,
offsprings can end up with duplicated classes or missing ones. Therefore,
the proposed crossover operator in [37] was adopted. This operator consists
in keeping all the genes of one of the parents, adding a part of the genes of
the second parent and then eliminating duplicates (Figure 3.12).

Figure 3.12 – Example of the crossover operator

— Mutation operators: these operators modify the chromosomes to introduce
new genes. In the original version of GA, genes were assumed to be bi-
nary digits [88]. Thus, the mutation consists in randomly inverting a bit.
In our case, since losing any gene is not acceptable (for the completeness of
the system), the mutation will be either a gene fusion, separation, or both
[37]. Fusion consists in grouping two genes, while separation divides the
classes of a gene into two distinct genes. Figure 3.13 shows the mutation of
a chromosome depending on whether it undergoes a fusion, a separation,
or both.

90
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Figure 3.13 – Example of the mutation operator

3.5.1.3 Initial Population

The definition of the initial population is a crucial step in a GA. Depending
on the diversity it presents, it can promote the success or failure of the algorithm.
Hence, it is vital to ensure that chromosomes are varied, especially when per-
forming random generation. Our initial population consists of 50 chromosomes,
a number which allows widening the research space while increasing the possi-
bilities of chromosomes diversification.

3.5.1.4 Multi-objective Genetic Algorithms

Mainly, there are two types of modeling of an optimization problem [117]:
single-objective and multi-objective. The goal of a single-objective optimization
is to find the solution that has the best global result. This result is calculated
by combining the values of all its characteristics. The combination may follow a
weighting scheme (i.e., performing a weighted sum of all the objectives).

In a multi-objective optimization, the solution is not unique. Usually, the goal
of these optimizations is to find all the possible trade-offs between several objec-
tive functions. Our aim is to direct the exploration towards the solutions that
present the best trade-offs between the function FStructureBehavior and the
function FData. Therefore, the multi-objective genetic algorithm proposed in
[104] was chosen. This algorithm produces optimal non-dominated solutions or
Pareto optimal ones, where no objective can be improved without degrading the
value of one or more other objectives.

One of the particularities of the chosen algorithm is the establishment of an eli-
tist strategy that preserves and adds to the new population the chromosomes hav-
ing the best results in each objective. This strategy aims to increase the chances of
spreading the best genes. At the end of its execution, the algorithm presents a set
of Pareto optimal solutions to the architect, allowing him to make his choice.

3.5. Microservice Identification Using Genetic Algorithms 91

3.5.2 Identification of Microservices Using a Multi-objective Ge-
netic Algorithm

3.5.2.1 A Genetic Algorithm for Automatic Identification of Microservices

Our approach aims to identify microservices from OO source code. For that
purpose, the generic algorithm proposed in [104] was adapted to our problem, as
shown in Algorithm 9. This algorithm starts by initializing the population ran-
domly (line 1). The initialization aims essentially to ensure that the population
consists of various chromosomes. Then, it updates the Pareto optimal solutions
(line 6) and chooses elites (lines 7 and 8) based on the computed values of FStruc-
tureBehavior and FData for each chromosome (lines 3 to 5). Once Pareto solutions
and elites are determined, the next step is applying genetic operators. To avoid
population explosion, they are applied only N times. Finally, the new population
is generated. It contains the offsprings, the elites, and the selected chromosomes
from the current population (lines 19 and 20).

Algorithm 9: Automatic identification of microservices
input : A set of OO classes SClasses

A number of iteration I

A probability of mutation Pm

output: A set of Pareto optimal solutions Pareto

1 initialize the population P using SClasses;
2 for i ← 1 to I do
3 for each chromosome c ∈ P do
4 Compute FStructureBehavior(c) and FData(c);
5 end
6 update Pareto;
7 E1 ←Elite(FStructureBehavior);
8 E2 ← Elite(FData);
9 for j ← 1 to N do

10 for each chromosome c ∈ P do
11 Compute FMicro(c);
12 end
13 (c1, c2) ← Select a pair of chromosomes;
14 (offspring1, offspring2) ←Crossover(c1, c2);
15 mutate(offspring1, Pm);
16 mutate(offspring2, Pm);
17 save offspring1 and offspring2 in offspring;
18 end
19 Pi+1 ← offspring + E1 + E2;
20 Pi+1 ← Select(P);
21 end
22 return Pareto;

92
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

3.5.2.2 Semi-automatic Identification of Microservices Based on a Genetic Al-
gorithm

Whenever software architect recommendations are available, they are used
to guide the identification process. The question is "How can they be combined
with a multi-objective genetic algorithm ?". These recommendations are related
to architectural aspects of the microservices such as their number, if not the range
of that number, and so on. Therefore, on the one hand, they are integrated at the
initialization of the population. On the other hand, they will not be affected by
genetic operators. For instance, if the identification is guided by the entire set of
gravity centers, even after applying genetic operators each gene should contain
one gravity center. Compared to automatic identification, only the initialization
is different. The remaining steps of the genetic algorithm are unchanged, except
that architect recommendations will not be affected by genetic operators.

Population Initialization Based on the Knowledge of the Gravity Centers

Depending on the available gravity centers, two cases were considered:

— Population initialization based on the entire set of gravity centers: initial-
izing a population based on the entire set of gravity centers aims to create
an initial population consisting of S chromosomes (i.e., possible decompo-
sition of the OO application). Each chromosome should contain a set of
genes and each gene includes one gravity center. Algorithm 10 shows the
proposed initialization.

Algorithm 10: Population initialization based on the entire set of gravity
centers

input : A set of OO classes SClasses

A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

A population size S

output: An initial population P

1 for i ← 1 to S do
2 Temp ← SRclasses;
3 Let Chromosome be a chromosome;
4 for each Class ∈ SGcenters do
5 add Class to Gene;
6 add n random classes of Temp to Gene ;
7 remove the n random classes from Temp;
8 add Gene to Chromosome;
9 end

10 add Chromosome to P ;
11 end
12 return P ;

3.5. Microservice Identification Using Genetic Algorithms 93

This algorithm iteratively starts by creating a chromosome and its genes
(lines 2 to 9). Then, the created chromosome is added to the population
(line 10). Each gene consists of a gravity center (line 5) as well as a random
number of the OO application classes (line 6). Therefore, the number of
genes in each chromosome equals the number of gravity centers.

— Population initialization based on a sub-set of gravity centers: when only
a sub-set of gravity centers is available, the initialization generates S chro-
mosomes. Each one consists of a set of genes. However, not all the genes
contain a gravity center, as specified in Algorithm 11. To carry out such ini-
tialization, the idea is to firstly create the genes containing gravity centers
(lines 2 to 9) and then generate random ones (lines 10 to 13).

Algorithm 11: Population initialization based on a sub-set of gravity centers
input : A set of OO classes SClasses

A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

A population size S

output: An initial population P

1 for i ← 1 to S do
2 Temp ← SRclasses;
3 Let Chromosome be a chromosome;
4 for each Class ∈ SGcenters do
5 add Class to Gene;
6 add n random classes of Temp to Gene ;
7 remove the n random classes from Temp;
8 add Gene to Chromosome;
9 end

10 while Temp is not empty do
11 create a random gene RandomGene;
12 add RandomGene to Chromosome;
13 end
14 add Chromosome to P ;
15 end
16 return P ;

Population Initialization Based on the knowledge of the Number of Microser-
vices

— Population initialization based on the exact number of microservices: when
the exact number of microservices Nbreq is provided, the goal of the initial-
ization is to generate S chromosomes, such that each one consists of Nbreq

genes. To create each chromosome, the classes of the OO application are
partitioned randomly. Algorithm 12 shows the proposed initialization.

94
Chapter 3. Migration to Microservices: An Approach Based on Measuring

Object-oriented and Data-oriented Dependencies

Algorithm 12: Population initialization based on the exact number of mi-
croservices

input : A set of OO classes SClasses

A number of requested microservices Nbreq

A population size S

output: An initial population P

1 for i ← 1 to S do
2 create a random chromosome Chromosome consisting of Nbreq genes;
3 add Chromosome to P ;
4 end
5 return P ;

— Population initialization based on an interval of the number of microser-
vices: the only difference between the previous initialization and this one
is that here the number of required microservices is a random one within
the provided interval. Algorithm 13 presents this initialization. To create a
new chromosome, the first step is choosing a random number Nbrand within
the specified interval (line 2), followed by generating Nbrand genes for this
chromosome (line 3).

Algorithm 13: Population initialization based on an interval of the number
of microservices

input : A set of OO classes SClasses

A minimum number of microservices Nbmin

A maximum number of microservices Nbmax

A population size S

output: An initial population P

1 for i ← 1 to S do
2 let Nbrand be a random number within [Nbmin, Nbmax];
3 create a random chromosome Chromosome consisting of Nbrand genes;
4 add Chromosome to P ;
5 end
6 return P ;

Population Initialization Based on the Exact Number of Microservices and a
Sub-set of Gravity Centers

This initialization combines two recommendations: the exact number of mi-
croservices Nbreq and a sub-set of gravity centers. Therefore, on the one hand,
any chromosome should consist of Nbreq genes. On the other hand, each gene
contains at most one gravity center (Algorithm 14).

3.6. Conclusion 95

Algorithm 14: Population initialization based on the exact number of mi-
croservices and a sub-set of gravity centers

input : A set of gravity centers SGcenters

A set of remaining OO classes SRclasses

A number of requested microservices Nbreq

A population size S

output: An initial population P

1 for i ← 1 to S do
2 create a random chromosome Chromosome consisting of Nbreq genes such that

no gene contain more than one class of SGcenters;
3 add Chromosome to P ;
4 end
5 return P ;

3.6 Conclusion

The main contribution of the work presented in this chapter is the proposal
of an approach for the identification of microservices from OO source code. The
proposed approach is based mainly on two types of information: the source code
information and the knowledge, often partial, of the architect concerning the sys-
tem to migrate. On the one hand, the source code information includes relation-
ships between its elements as well as their relationships with the persistent data
manipulated in this code. In fact, source code information is used by a qual-
ity function to evaluate the relevance of a candidate microservice. This function
was defined based on the analysis of microservice characteristics. On the other
hand, architect recommendations are related, mainly, to the use of the applica-
tions (e.g., how many microservices, which class is the center of a microservice,
etc.). Our approach proposes to identify microservices using a hierarchical clus-
tering algorithm or a multi-objective genetic one. Moreover, it can be automatic
or semi-automatic, based on whether software architect recommendations guide
it or not.

IV

Task-based Migration To
Microservices: An Approach Based

on Workflow Extraction from Source
Code

4.1 Introduction . 98

4.2 Approach Principals . 98

4.2.1 From Object-Oriented Architectural Style to Workflow-
based one: The Mapping Model 98

4.2.2 Extraction Process . 100

4.3 Identifying Tasks from OO Source Code 103

4.3.1 Extract Method Refactoring 103

4.3.2 Identifying Task Based on Analyzing the OO Application
Call Graph . 104

4.3.3 Identifying Tasks Inputs and Outputs 108

4.4 Control Flow Recovery . 111

4.5 Data Flow Recovery . 113

4.5.1 Data Flow Graph Construction 113

4.5.2 Computing Def-Use Triplets 114

4.6 Conclusion . 116

98
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

4.1 Introduction

Microservices can be identified relying on two approaches, namely structure-
based identification and task-based one. In Chapter 3, the structure-based ap-
proach has been proposed. This chapter presents our contribution to the task-
based identification, which is the extraction of a workflow from OO source code
to ensure that existing task-based identification approaches can be applied, even
when the only available artifact is the source code.

The extraction of a workflow from OO source code requires the ability to map
OO concepts into workflow ones. For instance, specifying what is the mapping of
the concept task compared to the OO concepts is necessary. Once such a mapping
is established, workflow constituents (i.e., tasks, control flow, and data flow) are
recovered from the OO source code relying on it.

This chapter is organized as follows. Section 4.2, firstly, presents a possible
mapping from OO concepts to workflow ones. Then, it introduces the proposed
extraction process. Section 4.3 presents a solution for task identification. Sections
4.4 and 4.5 present respectively control as well as data flows recovery solutions.
Finlay, Section 4.6 concludes this chapter.

4.2 Approach Principals

4.2.1 From Object-Oriented Architectural Style to Workflow-based
one: The Mapping Model

A task is the basic unit of composition of a workflow. It is the smallest execu-
tion unit, representing an execution stage in a whole application. Based on this
definition, we consider that a method can be mapped to a task in a workflow (Fig-
ure 4.1). In particular, we assume that a method that contains only assignment
statements or invokes only methods provided by a standard library is mapped
to a primitive task, whereas a method that includes a sequence of methods in-
vocations and control statements is mapped to a composite task. For methods
including both methods invocations, control statements, and other statements,
the source code has to be refactored to wrap these later in a method. In fact, a
workflow, as seen in Figure 4.1, does not include assignment statements as a unit
of composition.

4.2. Approach Principals 99

A task can define input and output data, where input data represent data re-
quired for executing the task and output data, the produced ones. Since a task
corresponds to an OO method, task inputs represent data needed to execute the
corresponding method, while task outputs are the data generated from this exe-
cution. To be executed, a method requires a receiving object and its input param-
eters. Once executed, the method’s produced data are its modified inputs (i.e.,
receiving object and/or input parameters), and/or its output parameter (i.e., re-
turned value). Hence, each method’s produced data that represents a modified
input corresponds to two data in a workflow, an input and an output data (Figure
4.1).

In a workflow, the execution order of tasks is expressed using different control
constructs such as sequence, conditional branches and loops. In OO style, the

Figure 4.1 – From OO elements to workflow ones: the mapping model.

100
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

execution order of methods invocations, which corresponds to the execution of
tasks, depends on control statements (e.g., if statement, while statement, etc.).
Hence, we consider that a control statement can be mapped to a control construct.
Thus, the input data of a control construct corresponds to data manipulated in
the corresponding control statement (i.e., in the condition and the body of the
control statement), while control construct outputs are the data defined in the
control statement and used in the following statements.

The explained mapping between OO concepts and workflow ones is illus-
trated in Figure 4.1.

4.2.2 Extraction Process

Our approach aims to recover a workflow based on static analysis of OO
source code. For that purpose, an extraction process has been proposed (Figure
4.2). It consists of two steps:

— Step 1: the aim of this step is recovering a model of the OO source code. It
involves identifying the application structural elements (e.g., classes, meth-
ods, etc.) and their relationships (e.g., method calls, class inheritances, etc.)
by analyzing the existing source code.

— Step 2: the second step consists of transforming the OO model into a work-
flow-based one relying on the proposed mapping model. It starts by iden-
tifying primitive and composite tasks, as well as their respective input and
output data, and then recovering the control flow, and the data flow asso-
ciated to these tasks so that the extracted workflow represents the behavior
of the OO application.

In order to realize this process, the following questions need to be answered:

— What are the tasks that reflect the workflow corresponding to the existing
OO application? Answering this question requires identifying, at the in-
stance level, a matching between task entities and OO methods invoked on
object instances.

— What is the control flow to be specified between the identified tasks to rep-
resent the behavior of the existing OO application? Answering this question
requires, along with others, rendering explicit the implicit control flow due
to OO features (e.g., polymorphism and dynamic binding, etc.).

— What is the data flow to be associated with the identified tasks and control
flow? The aim is defining for each task its input and output data so that
the recovered workflow specifies the correct data dependencies between

4.2. Approach Principals 101

Figure 4.2 – Process of extracting workflows from OO source code

tasks. This is mainly identifying the flow of objects associated with the tasks
already identified.

An overview of task identification, control flow recovery, and data flow recov-
ery enabling to explain how these questions are answered will be presented and
illustrated (Figure 4.3).

— Task identification: it starts by applying extract method refactoring on
methods containing a combination of method calls, control statements, and
other statements. As explained earlier, tasks correspond to methods, and
their type (i.e., primitive or composite) depends on whether they call other
methods or not. Therefore, the call graph of the refactored source code is
built and analyzed to identify them. To finalize the identification of tasks,
their inputs and outputs are specified based on the DEF and USE sets of
their corresponding methods. The DEF (resp., USE) set contains parame-
ters and attributes defined (resp., used) by these methods.

— Control flow recovery: control flow recovery aims to build a Control Flow
Graph (CFG) for each composite task. To construct this graph statically,
dynamically dispatched calls are refactored into nested if-else statements.

102
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

Figure 4.3 – Overview of task identification, control flow recovery, and data flow recov-
ery

— Data flow recovery: data flow recovery aims to build a Data Flow Graph
(DFG) for each composite task. For that purpose, the def-use triplets for the
corresponding methods to composite tasks are firstly computed and then
used to construct DFGs. Each triplet (var, def, use) specifies the name of a

4.3. Identifying Tasks from OO Source Code 103

variable var, the line number at which this variable is defined def , and the
line number at which this definition is used use.

4.3 Identifying Tasks from OO Source Code

Our mapping model between OO concepts and workflow ones establishes a
unique mapping for workflow tasks. A task is mapped to an OO method (Figure
4.1). Therefore, relying on code refactoring, and more precisely extract method
refactoring, all statements that do not represent method invocations in the OO
source code are transformed into method invocations. Once this refactoring is
done, among all the methods in the OO source code, those that correspond to
primitive tasks and those that correspond to composite ones are determined. Fi-
nally, the input and output data for each one of them are specified.

4.3.1 Extract Method Refactoring

The refactoring of OO source code consists of extracting each sequence of
statements delimited by user method invocations as a new method and replac-
ing this sequence with an invocation of the newly extracted method. Note that
only statements belonging to the same block can be extracted to guarantee the
syntactical correctness of the new method.

Figure 4.4 shows an example of extract method refactoring. In this example,
the statements delimited by method invocations s.initializeInputs() and s.update-
Inputs(internalInput) cannot be extracted as a new method because they do not
belong to the same block. However, it is possible to divide this sequence into two
fragments based on whether the statements belong to the same bloc or not. Each
fragment is extracted as a new method (method m1 and method m2).

Once the statements to be extracted are specified, the extraction starts. Vari-
ables acceded (i.e., defined or used) but not declared by these statements (i.e.,
the variables declaration statements do not belong to these statements) should be
passed in as input parameters of the new method. Whereas, variables defined
by these statements and acceded by following ones should be passed out as its
output parameters. Note that the definition of a variable means that its value is
modified (i.e., writing access), while its usage implies that its value is read (i.e.,
reading access).

In the example shown in Figure 4.4, the statement extracted as the method m2
uses the variables internalInput and step. Therefore, these variables are passed in

104
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

Figure 4.4 – Example of extract method refactoring

as input parameters of m2. Moreover, the variable internalInput is defined by the
statement to be extracted as m2 and used in the method invocation s.updateInputs-
(internalInput), and thus it is an output parameter of m2.

Some OO languages (e.g., Java, etc.) imposes that a method can have at most
one output parameter (i.e., returned value). For this reason, if a sequence of state-
ments to be extracted has more than one output value, this sequence should be
divided into multiple fragments. Each one of them is extracted as a new method
and return at most one output parameter. It is noteworthy that this code fragmen-
tation and method extraction do not re-order code statements, which excludes the
possibility of breaking down program semantics (i.e., the program’s behavior is
preserved).

4.3.2 Identifying Task Based on Analyzing the OO Application
Call Graph

As explained earlier in Section 4.2.1, there are two types of tasks in a work-
flow: primitive and composite ones. Since a task corresponds to a method in OO
source code, a method that does not contains calls to others is considered as a
primitive task. Otherwise, it is a composite one. Therefore, the identification of
primitive and composite tasks is based on the analysis of the OO application’s
call graph.

4.3. Identifying Tasks from OO Source Code 105

4.3.2.1 Choosing a Call Graph Construction Algorithm

A call graph is an artifact that specifies for each caller method its callees. It can
be built by statically analyzing the source code. In OO languages with dynamic
dispatch, the crucial step in building a call graph is determining a conservative
approximation of the set of methods that can be invoked by a virtual method call
(i.e., a dynamically dispatched call) [132].

In literature, several algorithms [49, 20, 21, 132, 129] have been proposed to
construct call graphs based on static analysis of the source code. Their objective
is to build accurate graphs (i.e., consisting of the fewest nodes and edges possi-
ble) while being sound (i.e., containing all the edges that may occur at run-time).
The main difference between most of these algorithms is the used information to
approximate the run-time types of a receiver [132]. Intuitively, algorithms that
use more information build a more accurate call graph, but they need more time
and space [132], which might affect their scalability.

Several well-known algorithms will firstly be presented briefly (Appendix A
for more details), and then one of them will be chosen. These algorithms are the
following:

— Reachability Analysis (RA): RA is a simple algorithm for constructing a call
graph. It only considers the name of a method. A slightly more advanced
version of this algorithm takes into account method signatures instead of
their names.

— Class Hierarchy Analysis (CHA): the call graph constructed using RA can
be improved by considering the class hierarchy. For that purpose, CHA [49]
was proposed. This analysis uses the static type of a receiver of a virtual
call, combined with the class hierarchy, to determine the methods that can
be invoked at run-time.

— Rapid Type Analysis (RTA): RTA [20, 21] is an improvement of CHA by
taking into account class instantiation information. A possible type of a
receiver can only be a class that has been instantiated in the OO application
via a new.

— XTA analysis and its variants: XTA [132] is an improvement of RTA. The
idea is that by giving methods and fields a more precise local view of the
types of objects available, virtual calls may be resolved more precisely. By
associating a distinct set to each class, method and/or field, different vari-
ants of XTA can be obtained (i.e., Class Type Analysis (CTA), Method Type
Analysis (MTA) and Field Type Analysis (CTA)).

— Variable Type Analysis (VTA): another enhancement of RTA is VTA [129].
Instead of collecting class instantiations from the OO application and use

106
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

them to prune the call graph, VTA relies on the types of objects that can
reach each variable (i.e., the instantiations that might be assigned to this
variable).

In [132], a schematic overview showing the relationship between these algo-
rithms has been proposed. Figure 4.5 shows a reproduction of this overview with
a simple modification (i.e., adding VTA). All the presented algorithms have been
shown to scale well [132, 129].

Figure 4.5 – Schematic overview of the presented call graph construction algorithms and
their relationship.

In our approach, we chose to use XTA. Firstly, it is cheap and produces an
accurate call graph compared to other algorithms. Secondly, it is simple, easy to
implement, and scales well. Finally, unlike VTA, it does not require a 3-address
representation to simplify the analysis.

4.3.2.2 Identifying Tasks

Once the call graph is built, its leaves are mapped to primitive tasks, while
the remaining nodes are mapped to composite ones. Nevertheless, when ana-
lyzing the call graph to identify tasks, there is a particular case that needs to be
handled. This case concerns direct or indirect recursive calls. Since workflows do
not always support recursive transitions between tasks (i.e., the ability of a task
to invoke itself directly or indirectly during its execution) [116], recursive calls
between methods are transformed as follows: a method M in a directed cycle is
mapped to a primitive task if all its invoked methods belong to this cycle (method
Foo.incX in Listing 4.1). Otherwise, this method is mapped to a composite task
(method Foo.setX and Foo.performComputations).

Figure 4.6 represents the call graph built from the source code shown in List-
ing 4.1. The methods Main.main, Bar.m, Foo.setX, and Foo.performComputations cor-

4.3. Identifying Tasks from OO Source Code 107

respond to composite tasks, whereas the methods Foo.initializeX, Foo.getX, Foo.incX,
Foo.printX and Foo.multiplyX are mapped to primitive ones.

Listing 4.1 – Classes Foo, Bar and Main
1 class Foo {

2 int x;

3 void setX(int y, boolean isDifferent){

4 if (isDifferent)

5 initializeX(y);

6 else

7 performComputations(y);}

8 void initializeX(int y) {

9 x=y;}

10 void performComputations(int y){

11 int z= multiplyX(y);

12 incX(z);}

13 int multiplyX(int y) {

14 return 2*y;}

15 int incX(int y){

16 if (x!=y)

17 setX(y, true);

18 else

19 setX(y, false);

20 return x;}

21 int getX(){

22 return x;}

23 void printX(int y) {

24 System.out.println(y);}}

25 class Bar{

26 Foo foo= new Foo();

27 void m(){

28 foo.initializeX(1);

29 int x= foo.getX();

30 while (x<20){

31 x=foo.incX(x);

32 foo.printX(x);}}}

33 class Main {

34 static Bar bar= new Bar();

35 public static void main(String[]args){

36 bar.m();}}

Figure 4.6 – Call graph built from the source code shown in Listing 4.1

108
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

4.3.3 Identifying Tasks Inputs and Outputs

Each task in a workflow, primitive or composite, has input and output data.
Therefore, once the tasks are identified from OO source code, their input and out-
put data need to be specified. As explained in Section 4.2.1, task inputs are the
parameters and the receiving object of the corresponding method. While its out-
puts correspond to the modified inputs and the returned value by this method.
Note that task outputs include its modified inputs because this task generates
their new values.

To identify the inputs that can be modified by a method, and thus the corre-
sponding task outputs, for each method M two sets are computed: DEF and USE
sets. These sets were inspired by [43]. The DEF (resp., USE) set contains param-
eters and attributes defined (resp., used) by M. In other words, parameters and
attributes that their values are modified (resp., read) by M. A task input INDATA
is considered as modified if either 1) INDATA is the receiving object of M and at
least one of its attributes ∈ DEF(M) or 2) INDATA ∈ DEF(M).

For instance, the inputs of the corresponding task to the method initializeX
of the class Foo, shown in Listing 4.1, are the receiving object and the parameter
y, whereas the output of this task is the receiving object because its attribute x
is defined in the method initializeX (in Line 9). However, for the corresponding
task to the method getX of the class Foo, the receiving object is only input since its
value is not modified in this method.

4.3.3.1 Computing DEF and USE sets

In our approach, we consider that assignment on a variable of a primitive type
(i.e., a type which is not a class) as a DEF operation. All other operations on prim-
itive variables are considered as USE ones [99]. Nevertheless, when dealing with
objects, we assume that operations are DEF ones in three cases: 1) this operation
defines at least one attribute of the object 2) it is a constructor invocation or 3) it
is a call of a method that modifies this object (i.e., modifies at least one attribute
of this object) [43]. Otherwise, these operations are of USE category.

Based on these cases, determining whether an input INDATA of a method M
(i.e., a parameter or the receiving object) is in the DEF or to USE sets depends
on the DEF and USE sets of the called methods by M. An input INDATA of M
is considered as defined (resp., used) if it is defined (resp., used) by either 1)
a statement of M which is not a method invocation (e.g., assignment, etc.) or
2) at least one of the methods called by M. More precisely, an input INDATA is
considered as defined (resp., used) in a called method CalledM by M in two cases.

4.3. Identifying Tasks from OO Source Code 109

— Case 1: INDATA is the receiving object of the invocation of CalledM, and at
least one of the attribute of INDATA is in the DEF(resp., USE) set of CalledM.
For instance, the receiving object foo of the invocation of the method ini-
tilizeX in Line 28 (Listing 4.1) is considered as defined since the method
initializeX defines the attribute x of the receiving object in Line 9.

— Case 2: INDATA is passed as a parameter in the invocation of CalledM, and
its corresponding formal parameter belongs to the DEF(resp., USE) set of
CalledM. In the example shown in Listing 4.1, the input y passed as param-
eter in the invocation of the method initializeX in Line 28 is considered as
used because its corresponding formal parameter y is used in the method
initializeX (Line 9).

The above constraints related to computing DEF sets can be formalized as fol-
lows:

*** ***
- INDATA is defined in M (1)
- ∃ stat∈ {Statements(M) − MethodCalls(M)} (2)
- INDATA is defined in stat (3)
- ∃ call ∈ MethodCalls(M) (4)
- ReceivingObj(call) = INDATA (5)
- ∃ attribute ∈ AttributeOf(INDATA) (6)
- attribute ∈ DEF (CorrespondingMethod(call)) (7)
- INDATA ∈ ActualParameter(call) (8)
- FormalParameter(INDATA) ∈ DEF (CorrespondingMethod(call)) (9)
*** ***
(1) ⇒ ((2) ∧ (3)) ∨ ((4) ∧ (((5) ∧ (6) ∧(7)) ∨ ((8) ∧ (9)))
*** ***

Where:

— Statements(M) denotes the set of statements of M .

— MethodCalls(M) represents the set of method calls in M .

— ReceivingObj(call) specifies the receiving object of a method call.

— AttributeOf(INDATA) denotes the set of attributes of INDATA.

— ActualParameter(call) determines the set of actual parameters in a call.

— FormalParameter(INDATA) indicates the corresponding formal parame-
ter of an actual parameter INDATA.

— CorrespondingMethod(call) represents the called method in call.

110
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

Note that by replacing the DEF set with USE set in the formula presented
above, it specifies when an input INDATA is considered as used.

Based on the above constraints, it is clear that determining DEF and USE sets
of any method M depends on the sets of its called methods. For this reason, the
computation of DEF and USE sets requires an analysis order of methods. For
instance, to compute DEF and USE sets of the method m (Listing 4.1), DEF and
USE sets of the called methods by m on the attribute foo (initializeX, getX, incX
and printX) are needed to check whether foo is defined and/or used.

The built call graph allows the definition of a topological total order of its
nodes. Analyzing methods according to this order ensures that a called method
is always analyzed before its callers. In the total order, the first methods are the
ones that do not contain any others. These methods correspond to the leaves of
the graph.

4.3.3.2 Handling Call Graph Cycles

In the presence of direct or indirect recursion, the call graph contains cycles.
Therefore, it is not possible to define an analysis order. Replacing each cycle in
the graph with a representative node allows solving this problem (i.e., allows
the definition of a total order). Once the order is defined, the call graph nodes
are then analyzed following this order. If a node represents a method, then DEF
and USE sets are computed relying on the former constraints. If the node is a
representative, DEF and USE sets of each method in the cycle represented by
this node are calculated, firstly, without taking into account calls to the methods
belonging to the cycle, and then these sets are re-computed while considering the
calls between the methods of the cycle.

For example, computing DEF and USE sets of the methods shown in Listing
4.1, requires replacing the cycle containing methods setX, performComputations
and incX with a representative node Cycle1 (Figure 4.7). Once the cycle is re-
placed, the nodes can be ordered as follows: 1) Foo.initializeX, 2) Foo.getX, 3)
Foo.multiplyX, 4) Foo.printX 3) Cycle1, 4) Bar.m and 5) Main.main. Table 4.1
shows DEF and USE sets computed for these methods.

4.4. Control Flow Recovery 111

Figure 4.7 – Acyclic call graph

Table 4.1 – DEF/USE sets of the methods shown in Listing 4.1

Method DEF set USE set
initializeX {x} {y}

getX ∅ {x}
multiplyX ∅ {y}

printX ∅ {y}
setX {x} {x, y, isDifferent}

performComputations {x} {x,y}
incX {x} {x, y}

m {foo} {foo}
main {bar} {bar}

4.4 Control Flow Recovery

A workflow can be viewed as an application consisting of a set of tasks, with
possible dependencies specified relying on control and data flows. Therefore,
once the tasks are identified, the corresponding control flow needs to be recov-
ered. This later specifies the execution order of tasks. When dealing with compos-
ite ones, their control flow describes the execution order of their enclosed tasks.

In our approach, a control flow is represented as a graph, named Control Flow
Graph (CFG). A CFG consists of a set of nodes and a set of edges. Each node
represents either a method call, a predicate, or a control. A predicate specifies
a condition utilized in a control statement, for instance, if statement. Note that
CFG nodes representing a method call or a predicate are labeled relying on their
line number in the source code. CFG edges specify the execution order of method
calls and evaluation of predicates.

112
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

To build a CFG, the statements, which represents the body of the correspond-
ing method to the composite task, are traversed and the graph is constructed
incrementally. For example, the CFG corresponding to the composite task which
is the mapping of the method m of the class Foo, shown in Listing 4.1, is illustrated
in Figure 4.8.

Figure 4.8 – The CFG of the composite task corresponding the method m of the class Foo
shown in Listing 4.1

As explained earlier, in the CFG, a node can represent a method call. Never-
theless, if this call is dynamically dispatched, it is not possible to resolve statically
(i.e., at compile time) the exact method to invoke. Hence, to enable building a
CFG statically, our idea is to refactor each dynamically dispatched call by replac-
ing it with nested if-else statements. In these statements, conditions represent the
possible run-time types of the receiving object of the call, whereas the branches
are the different implementations of the called method in each possible receiving
object type.

An example of a CFG recovered in the presence of dynamically dispatched
calls is shown in Figure 4.9. The method m of the class Bar calls the method
printX of the class Foo, the class FooExp or the class FooPro. Therefore, the corre-
sponding CFG contains a path for each possible run-time type of the receiver (i.e.,
Foo, FooExp, and FooPro).

4.5. Data Flow Recovery 113

Figure 4.9 – Example of a CFG recovered in the presence of dynamically dispatched calls.

4.5 Data Flow Recovery

In addition to the identification of tasks and control flow, the construction of a
workflow also requires the recovery of data flow, which specifies the dependency
links between the data of the identified tasks (i.e., which output data of a task
represents an input data of another one).

4.5.1 Data Flow Graph Construction

In our approach, a data flow is represented as a graph, named Data Flow
Graph (DFG). A DFG has the same nodes as a CFG. Nevertheless, an edge be-
tween two nodes Ni and Nj labeled using the name of the variable v means that
v is defined in Ni and used in Nj .

For instance, in the example shown in Figure 4.10, the edge between the nodes
foo.initializeX(1) and foo.getX() labeled with foo specifies that the variable foo is
defined in the node foo.initializeX(1) and used in the node foo.getX().

114
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

Figure 4.10 – The DFG corresponding to the task mapped to the method m of the class
Foo shown in Listing 4.1

As explained earlier, a composite task encloses other primitive and composite
ones. Hence, a data flow is recovered for each composite task to specify data
dependencies between its enclosed tasks.

To build a DFG for a composite task, def-use triplets for the corresponding
method to this task are computed. Each triplet (var, def, use) specifies the name
of a variable var, the line number at which this variable is defined def and the
line number at which this definition is used use. As explained in section 4, CFG
nodes are labeled relying on the corresponding line numbers in the source code.
Therefore, a data flow edge is created between two nodes denoted by k and l only
if the def-use triplets of the corresponding method include the triplet (v, k, l).

For example, in the DFG represented in Figure 4.10, an edge is created be-
tween the nodes denoted by 31 and 32 because the def-use triplets of the method
m include the triplet (foo,31,32). In the rest of this section, the process of comput-
ing def-use triplets will be explained.

4.5.2 Computing Def-Use Triplets

The process of computing def-use triplets consists of three steps. The first
step aims to compute VarUsed sets. Each set specifies the variables used in a CFG
node. The goal of the second step is to determine ReachDef sets. Each set specifies

4.5. Data Flow Recovery 115

the definitions that reach a node of the CFG. A definition of a variable v in a node
Ni, denoted (v,Ni), reaches a node Nj if there is a path in the CFG between Ni and
Nj without a redefinition of v. In the third step, def-use triplets are computed
relying on VarUsed and ReachDef sets. The rest of this section explains in details
these steps.

Step1: Computing VarUsed sets: computing the VarUsed sets requires determin-
ing USE sets for all the methods in the source code (Section 4.3.3). Once these
sets are determined, for each node in the CFG representing a method call, the re-
ceiving object is used (i.e., included in the VarUsed set) if the USE set of the called
method contains at least one of its attributes. An effective parameter is used if
the USE set of the invoked method includes its corresponding formal parame-
ter. The VarUsed of a predicate node contains variables used in the corresponding
expression.

Step2: Computing ReachDef sets: determining reaching definitions requires
computing DEF sets for all the methods in the source code (Section 4.3.3). When
the DEF sets are computed, the produced definitions by each node in the CFG
are specified. For a node that represents a method call, the receiving object is
considered as defined (i.e., included in the produced definitions) if the DEF set
of the called method contains at least one of its attributes. An effective param-
eter is considered as defined if the DEF set of the invoked method includes its
corresponding formal parameter.

Once the definitions produced by each node are specified, reaching defini-
tion are determined using the following propagation algorithm proposed by Aho
et al. [9] (Algorithm 15). In this algorithm, each node N of the CFG stores the
incoming and outgoing definitions respectively inside the sets ReachDef(N) and
ReachOut(N), which are initially empty. Moreover, each node N generates defi-
nitions contained in the Gen(N) set, and prevents the elements in the kill(N) set
from being further propagated after the node N. Incoming definitions for a node
N (i.e., ReachDef(N)) are obtained from its predecessors as the union of the respec-
tive ReachOut sets (forward propagation).

Step3: Computing def-use triplets: for each CFG node N, if a variable v ∈
VarUsed (N) and (v,def) ∈ ReachDef(N), then a triplet (v,def,N) is constructed.

For example, using VarUsed and ReachDef sets (Table 4.2) computed for each
node of the CFG shown in Figure 4.8, def-use triplets constructed are (foo,28,29),
(foo,28, 31), (foo,31,31), (x,29,30),(x,31,30), (x,29,31), (x,31,31) and (x, 31,32).

116
Chapter 4. Task-based Migration To Microservices: An Approach Based on Workflow

Extraction from Source Code

Algorithm 15: Compute reaching definitions
input : Control flow graph CFG

Gen and Kill sets for each node of the CFG
output: ReachDef and ReachOut sets for each node of the CFG

1 for each node n of CFG do
2 ReachDef(N) ← ∅;
3 ReachOut(N) ← ∅;
4 end
5 while any ReachDef(N) or ReachOut(N) changes do
6 for each node N of CFG do
7 ReachDef(N) ← ∪P ∈predecessor(N) ReachOut(P);
8 ReachOut(N) ← Gen(N) ∪ (ReachDef(N) − Kill(N));
9 end

10 end

Table 4.2 – VarUsed and ReachDef computed for each node of the CFG shown in Figure
4.8

Node VarUsed ReachDef
28 ∅ ∅
29 {foo} {(foo, 28)}
30 {x} {(foo, 28), (foo,31), (x,29), (x,31)}
31 {x,foo} {(foo, 28), (foo,31), (x,29), (x,31)}
32 {x} {(foo, 31), (x,31)}

4.6 Conclusion

The main contributions of the work presented in this chapter is an extraction
approach aiming to recover a workflow from OO source code. To achieve that
aim, firstly a mapping model between OO concepts and workflow ones has been
defined. Then, to identify this mapping from OO source code, an extraction pro-
cess consisting of three steps has been proposed. Each step recovers a workflow
constituent (i.e., tasks, control flow, and data flow). It is noteworthy that the ex-
tracted workflow can be used to identify microservices or as documentation, due
to its hierarchal structure.

V

Experimentations and Validations

5.1 Validating the Identification of Microservices from OO Appli-
cations . 118
5.1.1 Research Questions . 118
5.1.2 Experimental Protocol . 119
5.1.3 Validating the Identification Based on a Clustering Algo-

rithm . 124
5.1.4 Validating the Identification Based on a Genetic Algorithm 137
5.1.5 Answering Research Questions 140
5.1.6 Threats to Validity . 141

5.2 Experimentation and Validation of our Extraction Approach of
Workflows from OO Applications 143
5.2.1 Data Collection . 143
5.2.2 Experimental Protocol . 144
5.2.3 Workflow Extraction Results and their Interpretations . . . 145
5.2.4 Threats to Validity . 150

5.3 Conclusion . 151

This chapter presents the conducted experiments on case studies to validate
our approaches. Firstly, Section 5.1 presents the carried out experiments to vali-
date qualitatively and quantitatively our identification approach of microservices
from OO applications. Qualitative evaluation is performed based on three case
studies of different sizes, from small to relatively large. The quantitative assess-
ment is carried out using two case studies, and the obtained results are compared
with those produced during the evaluation of two state-of-the-art approaches

118 Chapter 5. Experimentations and Validations

among the well-known ones. They have been proposed in [100] and [76]. Sec-
ondly, Section 5.2 presents the validation of our extraction approach of workflows
from OO applications. Finally, Section 5.3 concludes this chapter.

5.1 Validating the Identification of Microservices from
OO Applications

In this section, we present the research questions that we have attempted to
answer empirically in order to validate our microservice identification approach.
We also present the experimental protocols of the two types of experiments car-
ried out to answer the research questions. These two types of experiments are
respectively related to two different evaluation methods. The first one allows a
qualitative assessment of the identified microservices by our approach. The sec-
ond one allows a quantitative evaluation, via certain metrics measuring the func-
tional independence of the recovered microservices. We compare the obtained
measurement values of these metrics with those obtained during the evaluation
of two state-of-the-art approaches among the well-known ones. Once the results
of both evaluations are produced, we use them to answer the research questions.
In this section, we also present our analysis of the internal and external threats to
validity with respect to the conducted experiments.

5.1.1 Research Questions

To validate our proposal, we conducted experiments to answer the following
research questions:

— RQ1: does the proposed quality function produce an adequate decomposi-
tion of an OO application into microservices?
Our approach partitions an OO application into microservices based on the
proposed quality function and software architect recommendations, when
available. This question aims to check whether the defined function enables
obtaining relevant microservices without considering the recommendations
of a software architect.

— RQ2: is the definition of the quality function, without considering data au-
tonomy, adequate?
The goal behind this research question is to check whether the assessment of
the characteristics "focused on one function" and "structural and behavioral
autonomy" produce appropriate microservices.

5.1. Validating the Identification of Microservices from OO Applications 119

— RQ3: does the evaluation of data autonomy characteristic enhance the qual-
ity of microservices?
This question aims to check whether the function FData related to the eval-
uation of data autonomy characteristic allows improving the quality of the
identified microservices compared to those identified only based on the as-
sessment of "focused on one function" and "structural and behavioral au-
tonomy" characteristics.

— RQ4: does the use of software architect recommendations enhance the iden-
tification results?
The goal behind this research question is to check whether software archi-
tect recommendations guide our approach to produce better results.

— RQ5: what are the software architect recommendations that generate the
best decomposition of an OO application into microservices?
Since our approach uses several recommendations, this question aims to
determine the ones that produce the best results.

5.1.2 Experimental Protocol

Our experiments conducted to answer the previous research questions are
based on a prototype plug-in that we developed in Java. It carries out the identi-
fication process defined in our approach. This section presents the experimental
protocols followed to answer these questions based on qualitative, and quantita-
tive evaluation of the identified microservices using our plug-in.

5.1.2.1 Experimental Protocol for the Qualitative Evaluation of Microservices

In order to answer the RQ1, we used our plug-in to partition three Java ap-
plications, that will be presented in Section 5.1.3.1. Since the goal of the RQ1 is
to evaluate the correctness of the proposed quality function, we set the plug-in to
apply the clustering algorithm that does not take as inputs any software architect
recommendations (i.e., fully automatic). Then, we compared the produced mi-
croservices with those identified manually. The manual identification was based
on source code analysis and known features of these applications. It is note-
worthy that to avoid biasing the results, we firstly partitioned these applications
manually. After that, we carried out the identification using our plug-in.

The protocol for answering the RQ2 is similar to the one used to answer the
RQ1 with only one difference: we set our plug-in to identify microservices based
on the sub-function FStructureBehavior related only to the characteristics "focused
on one function" and "structural and behavioral autonomy".

120 Chapter 5. Experimentations and Validations

To answer the RQ3, we simply compare the recall values obtained respectively
from the experiment related to answering the RQ1 and the RQ2 (i.e., quality func-
tion with and without the evaluation of data autonomy).

The protocol for answering the RQ4 is based on comparing the results gen-
erated by our identification approach using the software architect recommenda-
tions (i.e., semi-automatic) with those obtained without using them (i.e., fully au-
tomatic). The results of the manual identification remain of course the reference
of confidence to calculate the distance between the two modes of identification
(i.e., fully automatic or semi-automatic).

To answer the RQ5, we simply compare the identification results using the dif-
ferent software architect recommendations (e.g., exact number of microservices,
interval of numbers, etc.). The recommendations that produce the most relevant
microservices are the best ones to guide the identification process.

As explained earlier, to evaluate the produced microservices, we compare
them with those identified manually. Thus, we classify the microservices ob-
tained manually in three categories:

— Category 1: Excellent microservices: this category includes the microser-
vices that exactly match the ones identified by our approach.

— Category 2: Good microservices: the microservices that can be obtained by
at most three composition/decomposition operations of the ones identified
by our approach are considered as good microservices. It is noteworthy
that the composition and decomposition operations of microservices make
it possible to adjust their granularity to that chosen by the software archi-
tect. Indeed, the granularity of a microservice is known to be strongly de-
pendent on the style of each architect.

— Category 3: Bad microservices: they are the ones that are neither in the first
nor the second categories.

5.1.2.2 Experimental Protocol for the Quantitative Evaluation of Microservices

We propose to evaluate our approach quantitatively based on the functional
independence quality criterion presented in [76]. This criterion qualifies whether
microservices can have their own functionalities independently. It has been pro-
posed while taking into account the fact that a microservice should be function-
ally cohesive and decoupled from others [106].

The functional independence criterion relies on five metrics collected from
existing works. They are CoHesion at Message level (CHM), CoHesion at Domain

5.1. Validating the Identification of Microservices from OO Applications 121

level (CHD), InterFace Number (IFN), OPeration Number (OPN) and InteRaction
Number (IRN). CHM and CHD evaluate the functional cohesion of microservices,
whereas IFN, OPN, and IRN measure the coupling between them.

These metrics are evaluated relying mainly on microservice interfaces and
their operations. The operations represent the methods implicated in the inter-
actions between microservices. The interfaces correspond to the classes of the
monolithic application containing these methods. It is noteworthy that to evalu-
ate the functional independence of the identified microservices by our approach,
the interfaces of each microservice as well as their operations were identified.

In [76], to present these metrics, the authors defined several parameters:

— Microservices =
⋃

i=1,..,K Microservicei

— Microservicei = (S_Ci,S_Ii)

— S_Ci = {Ci1, .., Ciki
} represents the classes of the Microservicei.

— S_Ii = {Ii1, .., Iini
} is the set of provided interfaces by Microservicei. Each

interface Ii has a set operations Opi: Ii = {Opi1, .., Opili}.

— Opi = (resi, namei, pasi) is an operation provided by an interface Ii. It has
returned parameters resi = {ri1, .., ripi

}, a name namei and input parame-
ters pasi = {pi1, .., pimi

}.

— TOpi
is the set of domain terms recovered from namei of Opi. The recovery

of these terms is based on the assumption that the names of the operations
follow standard naming conventions. For instance, in Java 1, if a method
name consists of one word, it should be a verb starting with a lowercase
letter. Otherwise, the first letter of each internal word is capitalized.

Measuring CHM

CHM evaluates the average cohesion of microservice interfaces at message
level. It represents a variant of Message-Level Cohesion LoCmsg [19]. Since mi-
croservices should be functionally cohesive, the higher CHM is the better. It is
measured as follows:

CHM =

∑

∑K

i=1
ni

j=1 CHMj
∑K

i=1 ni

(5.1)

Where CHMj computes the cohesion of a microservice interface Ij at message
level as shown in Equation 5.2.

1. https://www.oracle.com/technetwork/java/codeconventions-135099.ht
ml

122 Chapter 5. Experimentations and Validations

CHMj =

∑

(k,m)
fsimM (Opk,Opm)

|Ij |∗(|Ij |−1)/2
if |Ij| Ó= 1

1 if |Ij| = 1
(5.2)

— ni: number of provided interfaces by the Microservicei.

— K: number of identified microservices.

— Opk and Opm are operations of Ij such that k Ó= m.

— fsimM measures the similarity between two operations at message level. It
is computed as the average similarity in term of input and returned param-
eters as follows:

fsimM(Opk, Opm) =
(
|resk

⋂

resm|
|resk

⋃

resm|
+

|pask

⋂

pasm|
|pask

⋃

pasm|
)

2
(5.3)

Measuring CHD

CHD evaluates the average cohesion of microservice interfaces at domain level.
It represents a variant of Domain-Level Cohesion LoCdom [19]. Similarly to CHM,
the higher CHD is, the better. It is computed as follows:

CHD =

∑

∑K

i=1
ni

j=1 CHDj
∑K

i=1 ni

(5.4)

Where:

— CHDj evaluates the cohesion of a microservice interface Ij at domain level
using the following equation:

CHDj =

∑

(k,m)
fsimD(Opk,Opm)

|Ii|∗(|Ii|−1)/2
if |Ii| Ó= 1

1 if |Ii| = 1
(5.5)

— fsimD measures the similarity between two operations at domain level. It is
evaluated as follows:

fsimD(Opk, Opm) =
|TOpk

⋂

TOpm
|

|TOpk

⋃

TOpm
|

(5.6)

5.1. Validating the Identification of Microservices from OO Applications 123

Measuring IFN

IFN denotes the average number of interfaces provided by the identified mi-
croservices. It is inspired by [8]. Since microservices should be functionally de-
coupled, the lower IFN is, the better. It is evaluated as follows:

IFN =
1

K

∣

∣

∣

∣

∣

∣

⋃

i=1,..,K

S_Ii

∣

∣

∣

∣

∣

∣

(5.7)

Measuring OPN

OPN represents the number of operations provided by the identified microser-
vices. The lower OPN is, the better. It is measured as follows:

OPN =

∣

∣

∣

∣

∣

∣

∣

⋃

i=1,..,
∑K

i=1
ni

Ii

∣

∣

∣

∣

∣

∣

∣

(5.8)

Measuring IRN

IRN denotes the number of method calls between two microservices. It is
evaluated as follows:

IRN =
∑

Opi,Opj

wi,j (5.9)

Where wi,j represents the frequency of calls from Opi to Opj . Both opera-
tions are implicated in interactions between microservices. Similarly to IFN and
OPN , since microservices should be functionally decoupled, the lower IRN is,
the better.

Measuring Functional Independence to Answer Research Questions

The presented metrics above enable determining the functional independence
of microservices based on their values. For instance, high values of CHD and
CHM indicates that the microservices are highly cohesive. Whereas, low values
of IFN, IRN, and OPN imply that they are highly decoupled from each other. As
specified in [76], several microservice identification approaches can be compared
by determining the number of metrics in which an approach outperforms the
other ones.

To answer RQ1 relying on functional independence measurement, we used

124 Chapter 5. Experimentations and Validations

our plug-in to partition automatically (i.e., without architect recommendations)
two Java applications. They will be presented in Section 5.1.3.2. Then, we evalu-
ated the functional independence of the produced microservices. To better inter-
pret results, we compare them with the ones obtained during the evaluation of
the identified microservices from the same applications, using two well-known
state-of-the-art approaches.

The protocol for answering the RQ2 is similar to the one used to answer RQ1
with only one difference: we set our plug-in to identify microservices based on
the sub-function FStructureBehavior related only to the characteristics "focused on
one function" and "structural and behavioral autonomy".

To answer the RQ3, we simply compare the results of functional indepen-
dence measurement of the identified microservices with and without considering
data autonomy.

The protocol for answering the RQ4 is based on comparing the results of func-
tional independence evaluation of the identified microservices by our approach
with and without architect recommendations.

To answer the RQ5, we compare the results of functional independence mea-
surement of the identified microservices relying on the different software archi-
tect recommendations.

5.1.3 Validating the Identification Based on a Clustering Algo-
rithm

5.1.3.1 Qualitative Evaluation

In this section, we firstly outline the Java applications used to validate our ap-
proach qualitatively. After that, we present the microservice identification results
from these applications using the clustering algorithm. Finally, we interpret the
obtained results.

Data Collection

To have a codebase for partitioning OO applications into microservices, we
collected several Java projects from GitHub. These projects have different sizes:
small (FindSportMates 2), average (SpringBlog 3), and relatively large (Inventory-

2. https://github.com/chihweil5/FindSportMates
3. https://github.com/Raysmond/SpringBlog

5.1. Validating the Identification of Microservices from OO Applications 125

ManagementSystem 4). The source code of these applications used in our experi-
ment, as well as their libraries, have been gathered in https://seafile.lirm

m.fr/d/2bb141de92c9420092b9/. Table 5.1 provides some metrics on these
applications.

Table 5.1 – Applications metrics

Application

No of
classes

and
interfaces

No of classes representing
database tables

Code size
(LOC)

FindSportMates 17 2 895
SpringBlog 43 5 1617

InventoryManagementSystem 104 19 13449

FindSportMates is an application which allows users to find groups of peo-
ple with whom they can play certain sports. Users can create a sport group or
join existing ones. SpringBlog is a straightforward and clean-design blog system
implemented with Spring Boot. It is powered by several frameworks and third-
party projects (e.g., Spring MVC, Spring JPA, etc.). InventoryManagementSystem
is an application that supports the main inventory management operations: get-
ting items from different vendors, storing them in warehouses, selling or sending
them to a third party, stocking ledger, etc.

Microservices Identification Results

The source code of each of the previous applications was partitioned into a set
of clusters. Each cluster consists of one or more classes and corresponds to a mi-
croservice. Table 5.2 shows the number of microservices obtained relying respec-
tively on the proposed fully automatic and semi-automatic clustering algorithms.
Whereas, Table 5.3 presents the measurement results (i.e., minimum, maximum,
and average values) of FMicro, FStructureBehavior, and FData of the identified
microservices. It is noteworthy that to facilitate interpreting the measurement
results, before printing them, the plug-in normalizes the values of FStructureBe-
havior and FData by dividing them on the maximum value, if it is higher than
1. After that, the plug-in computes FMicro based on the normalized values. The
normalization does not impact the identification process.

For example, if we have the following measurements and coefficient weights:

— FStructureBehavior(micro)= 0.5

— FData(micro)= 0.9

4. https://github.com/gtiwari333/java-inventory-management-system-swi
ng-hibernate-nepal

126 Chapter 5. Experimentations and Validations

Table 5.2 – Number of identified microservices from FindSportMates, SpringBlog, and In-
ventoryManagementSystem applications

Microservice identification
Number of microservices

FindSport
Mates

Spring
Blog

Inventory
Management

System
Automatic

identification
Based on FMicro 3 7 16

Based only on FStructureBehavior 2 5 14

Semi-automatic
identification

Gravity centers
Entire set 3 10 20
Sub-set 3 8 16

Number of
microservices

Exact number 3 10 20
Interval of

number 2 9 17

Exact number and a sub-set
of gravity centers 3 10 20

— Max(FData)= 1.2
— Max(FStructureBehavior)= 0.8
— α=1 and β= 1

Since the maximum value of FData measurement results is higher than 1, it is
normalized. The printed values by the plug-in are the following:

— NormalisedFData(micro)=0.9/1.2= 0.75
— FStructureBehavior(micro)=0.5
— NormalizedMax(FData)= 1.2/1.2=1
— Max(FStructureBehavior)= 0.9
— FMicro(micro) = (α*FStructureBehavior(micro)+β*NormalisedFData(micro))/(α+β)

FMicro(micro) = (0.5+0.75)/2
FMicro(micro) = 0.625

We normalized the values to guarantee that the maximum is always 1. Never-
theless, we did not make sure that the minimum is always 0 since in most cases,
the obtained minimum values are not lower than 0. To guarantee that the values
are between 0 and 1, we can normalize them as follow:

normalizedV alue(value) =
value − mimimeum

maximeum − minimeum
(5.10)

The results of classifying the identified microservices based on our protocol
(Section 5.1.2.1) are described in Table 5.4 and expressed in term of recall in Table
5.5. Recall assesses the ratio between the number of excellent and good microser-
vices to the number of the manually identified ones.

5.1. Validating the Identification of Microservices from OO Applications 127

Table 5.3 – Measurement results of FMicro, FStructureBehavior, and FData

Microservice identification
Applications

FindSport
Mates

Spring
Blog

Inventory
Management

System

Automatic
identification

Based on FMicro

FMicro
Min 0,78 0 0
Max 0,9 0,67 1
Avg 0.83 0.25 0.16

FStructure
Behavior

Min 0.58 0 -0.73
Max 1 0.51 1
Avg 0.86 0.15 0.08

FData
Min 0.71 0 0
Max 1 1 1
Avg 0.83 0.3 0.18

Based only on
FStructureBehavior

FMicro
Min 0.9 0 0
Max 1 0.51 0.62
Avg 0.95 0.13 0.2

FStructure
Behavior

Min 0.9 0 0
Max 1 0.51 0.62
Avg 0.95 0.13 0.2

FData
Min / / /
Max / / /
Avg / / /

Semi-automatic
identification

Gravity centers

Entire set

FMicro
Min 0.1 0 0
Max 0.92 0.5 0.52
Avg 0.61 0.2 0.19

FStructure
Behavior

Min 0.38 0 0
Max 1 1 1
Avg 0.76 0.2 0.12

FData
Min 0 0 0
Max 0.9 0.72 0.73
Avg 0.56 0.21 0.27

Sub-set

FMicro
Min 0.1 0 0
Max 0.63 0.5 0.67
Avg 0.42 0.18 0.14

FStructure
Behavior

Min 0.39 0 0
Max 1 1 1
Avg 0.75 0.28 0.16

FData
Min 0 0 0
Max 0.5 0.66 1
Avg 0.31 0.08 0.13

Number of
microservices

Exact
number

FMicro
Min 0.78 0 0
Max 0.9 0.52 0.55
Avg 0.83 0.25 0.15

FStructure
Behavior

Min 0.58 0 0
Max 1 1 1
Avg 0.86 0.22 0.13

FData
Min 0.71 0 0
Max 1 0.72 0.73
Avg 0.83 0.29 0.18

Interval of
number

FMicro
Min 0.63 0 0
Max 0.87 0.51 0.54
Avg 0.75 0.24 0.14

FStructure
Behavior

Min 0.97 0 0
Max 1 1 1
Avg 0.98 0.25 0.15

FData
Min 0.51 0 0
Max 0.82 0.72 0.73
Avg 0.67 0.24 0.13

Exact number and a sub-set of
gravity centers

FMicro
Min 0.1 0 0
Max 0.92 0.5 0.5
Avg 0.61 0.13 0.21

FStructure
Behavior

Min 0.38 0 0
Max 1 1 1
Avg 0.76 0.2 0.15

FData
Min 0 0 0
Max 0.9 0.66 0.73
Avg 0.56 0.07 0.27

128 Chapter 5. Experimentations and Validations

Table 5.4 – Microservice classification results

Applications

Microservice identification FindSport
Mates

Spring
Blog

Inventory
Management

System

Number of excellent
microservices 1 0 1

Number of good
microservices 2 8 15Based on FMicro

Number of bad
microservices 0 2 4

Number of excellent
microservices 0 0 0

Number of good
microservices 3 7 13

Automatic
identification

Based on FStructure
Bahavior

Number of bad
microservices 0 3 7

Number of excellent
microservices 1 2 5

Number of good
microservices 2 8 15Entire set

Number of bad
microservices 0 0 0

Number of excellent
microservices 0 1 5

Number of good
microservices 3 8 14

Gravity centers

Sub-set

Number of bad
microservices 0 1 1

Number of excellent
microservices 1 1 2

Number of good
microservices 2 7 15Exact

number

Number of bad
microservices 0 2 3

Number of excellent
microservices 0 0 1

Number of good
microservices 3 8 16

Number of
microservices

Interval of
number

Number of bad
microservices 0 2 3

Number of excellent
microservices 1 3 5

Number of good
microservices 2 6 14

Semi-automatic
identification

Exact number and a sub-set of
gravity centers

Number of bad
microservices 0 1 1

5.1. Validating the Identification of Microservices from OO Applications 129

Table 5.5 – Recall measurement

Microservice identification
Recall

FindSport
Mates

Spring
Blog

Inventory
Management

System
Automatic

identification
FMicro 100% 80% 80%

FStructureBehavior 100% 70% 65%

Semi-automatic
identification

Gravity centers
Entire set 100% 100% 100%
Sub-set 100% 90% 95%

Number of
microservices

Exact number 100% 80% 85%
Interval of

number 100% 80% 85%

Exact number and a sub-set
of gravity centers 100% 90% 95%

To better understand and since FindSportMates is a small application, we will
consider it as an example. Figure 5.1 represents its class diagram. It was re-
covered from the source code of this application using the tool ObjectAid UML
Explorer 5. For clarity and briefness, the operations are not represented in the dia-
gram. Figure 5.2 displays the identified microservices by our approach (i.e., fully
automatic identification), as well as their data manipulations. Whereas, Figure
5.3 shows the manually identified microservices.

Figure 5.1 – Class diagram of FindSportMates application

5. https://www.objectaid.com/home

130 Chapter 5. Experimentations and Validations

Figure 5.2 – Microservice identification results from FindSportMates application

Figure 5.3 – Manually identified microservices from FindSportMates application

5.1. Validating the Identification of Microservices from OO Applications 131

Our approach identified three microservice: Automatic user microservice, Au-
tomatic participant microservice, and Automatic event microservice. Automatic user
microservice is identical to the one identified manually. As shown in Figure 5.4,
the decomposition of Automatic event microservice produces Manual event microser-
vice (i.e., one operation), and Automatic event sub-microservice. The later can be
composed with Automatic participant microservice to produce the Manual partici-
pant microservice (i.e., two operations). Therefore, our approach identified two
good microservices and an excellent one.

Figure 5.4 – Composition and decomposition of the automatically generated microser-
vices to obtain the manually identified ones

We analyzed the source code of FindSportMates application to understand why
only one excellent microservice was identified. We found out that ParticipantDAO
and ParticipantDAOImpl are not used by the other classes of the application. In

132 Chapter 5. Experimentations and Validations

other words, they can be deleted without any impact. Moreover, the body of the
methods of ParticipantDAOImpl is empty.

Interpreting Results

Now that the microservice identification results have been presented, we will
interpret them. Firstly, we will discuss the obtained number of microservices by
the different variants of our approach. After that, we will interpret the measure-
ment results of FStructureBehavior, FData, and FMicro. Finally, we will discuss the
classification results.

(a) Number of identified microservices: on the one hand, the number of pro-
duced microservices from the three applications FindSportMates, SpringBlog, and
InventoryManagementSystem based on FMicro (resp., 3, 7, and 16) is higher than the
one obtained without evaluating data autonomy (resp., 2, 5, and 14). Moreover, it
is closer to the exact number that we specified (resp., 3, 10, and 20). On the other
hand, the number of generated microservices relying on software architect rec-
ommendations is equal to or higher than the one obtained automatically, except
for FindSportMates. The identification based on an interval of numbers produced
two microservices. We specified the interval [2, 4]. Since choosing a number
within this interval is random, it was lower than the automatically obtained one.
Still, this number is close to the exact one.

These results show that generally using more information (i.e., extracted from
source code or provided by software architect) increases the chances of identify-
ing the exact number of microservices. Note that here, we focus on the recom-
mendations that do not precise the exact number (i.e., sub-set of gravity centers
and interval of numbers), since the other ones produce the desired number of
microservices.

(b) Measurement results of FStructureBehavior, FData, and FMicro: firstly,
the values of FStructureBehavior depend mainly on the values of the metrics (i.e.,
internal coupling, internal cohesion, and external coupling) used in its sub-func-
tions (i.e., FOne and FAutonomy). The values of internal and external coupling are
affected by the size of applications. For this reason, the average values of FStruc-
tureBehavior of the identified microservices from FindSportMates application (be-
tween 0.75 and 0.98) are higher than those obtained from SpringBlog (between
0.13 and 0.28), and InventoryManagementSystem (between 0.08 and 0.2). This is
due to the fact that large applications contain a higher number of total calls (i.e.,
TotalNbCalls used to measure CouplingPair as explained in Section 3.3.1.2). There-
fore, even if the classes of a microservice contain methods calling each other fre-
quently, the number of calls is small compared to the total. Thus, the values of
internal coupling will not be high. Nevertheless, they will definitely be higher
than those obtained from microservices containing independent classes (i.e., do

5.1. Validating the Identification of Microservices from OO Applications 133

not call each other’s methods). Furthermore, since we do not consider attribute
accesses by the methods of the same class (Section 3.3.1.2), the cohesion values
are not high.

Note that during the identification process, we used double-precision floating-
point values (e.g., 0.000724637681159420, etc.). For clarity and briefness, we printed
only two digits after the decimal point. Therefore, the minimum value of FStruc-
tureBahavior is generally 0. This value is produced when the number of internal
structural dependencies between the classes of a microservice is almost equal to
the number of external ones (i.e., the value of FOne is very closed to the value
of FAuotonomy). There is only one minimum value lower than 0 (- 0.73). This
value was obtained because the standard deviation between the coupling values
of the corresponding microservices classes is high. The following question may
be asked: why this microservices was identified even though the measurement
result of FStructureBehavior is low? The answer is: it was identified because its
classes manipulate the same data, and we gave a higher coefficient weight to
FData.

Secondly, the values of FData depend mainly on the number of the classes of
the OO application manipulating data. They also depend on the frequency of ma-
nipulation. For instance, most classes of FindSportMates application read/write
data (Figure 5.2). Therefore, for this application, the average values of FData ob-
tained relying on the different variants of our approach are between 0.31 and 0.83.
The low minimum values of FData (i.e., Min= 0) are related to the microservices
that do not manipulate any data (i.e., their classes do not read/write data). The
high number of these microservice decreases the average value of FData. This is
the case with SpringBlog and InventoryManegementSystem.

Finally, the values of FMicro depend primarily on the ones obtained by eval-
uating its sub-functions (i.e., FStructureBehavior and FData). When their average
values are high, the average of FMicro is also high and vice versa. Similarly, high
maximum (resp., minimum) values of FStructureBehavior and FData produce high
(resp., low) maximum (resp., minimum) values of FMicro. For instance, since
the averages of the FStructureBehavior and FData obtained from InventoryManage-
mentSystem based on the exact number of microservices are low (resp., 0.13 and
0.18), the average of FMicro is also low (0.15).

(c) Classification of the identified microservices: firstly, the recall values
related to the results obtained based only on the quality function FMicro (i.e.,
without architect recommendations) are equals to or greater than 80% (80% and
100%). This shows that a large part of the produced microservices are those iden-
tified manually. However, for InventoryManagementSystem, the number of bad
microservices is relatively high (i.e., 4 bad microservices). When analyzing re-
sults, we found out that usually, the bad microservices are the ones containing

134 Chapter 5. Experimentations and Validations

utility classes. Manually, we identified them as microservices because they par-
ticipate in the realization of several functionalities of InventoryManagementSystem
application. The utility classes generally do not use each other’s methods or at-
tributes. Moreover, they do not manipulate any data. Therefore, our approach
could not identify them as microservices.

Secondly, the recall values obtained relying on the sub-function FStructureBe-
havior are between 65% and 100% (65%, 70%, and 100%). They are equal to or
less than those obtained based on the entire quality function FMicro. Neverthe-
less, they remain high. An analysis of Table 5.1 allows us to understand that the
same values are related to the application FindSpotMates that does not have many
persistent data.

Thirdly, the recall values obtained using software architect recommendations
are higher than 80%. These values are equal to or higher than those obtained
without using software architect recommendations. Furthermore, for SpringBlog
and InventoryManagementSystem, the highest values are produced relying on soft-
ware architect recommendations (100%). For FindSportMates, the highest value is
100%. Nevertheless, since this application is small, it was partitioned correctly
with and without software architect recommendations. Additionally, by analyz-
ing the results of Table 5.5, we can see that precise (i.e., exact number) and com-
plete (i.e., entire set of gravity centers) produce better results (i.e., higher recall
values or more excellent microservices). For instance, the recall values related
to the results obtained from SpringBlog relying on the exact number and interval
of numbers are the same (80%). However, the identification guided by the exact
number produced 1 excellent microservices and 7 good ones, whereas the one
guided by an interval of numbers produced 8 good microservices.

Finally, the recall values obtained based on more recommendations (i.e., entire-
set of gravity centers, which imply the availability of the number of microser-
vices, or the exact number and a sub-set of gravity centers) are equal or higher
than those obtained based on one recommendation (i.e., sub-set of gravity center,
exact number or interval of numbers). Usually, when the values are the same,
more recommendations produce a higher number of excellent microservices. For
instance, the identification results related to SpringBlog application based on soft-
ware architect recommendations can be ordered as follows: 1) entire set of grav-
ity centers (100%), 2) exact number and a sub-set of gravity centers (90% and 3
excellent microservices), 3) sub-set of gravity centers (90% and 1 excellent mi-
croservices), 4) exact number (80% and 1 excellent microservice) and 5) interval
of numbers (80% and no excellent microservice). It is noteworthy that the identi-
fication guided by the entire set of gravity centers produce the best results for the
three applications (100%).

5.1. Validating the Identification of Microservices from OO Applications 135

5.1.3.2 Quantitative Evaluation and Comparison with Some Existing Approaches

Our evaluation presented in the previous section is qualitative (i.e., associate
a qualification to the identified microservices). In this section, we assess our ap-
proach quantitatively relying on the functional independence quality criterion.
As explained earlier, this criterion is based on five metrics. To better interpret the
values of these metrics obtained from the assessment of the identified microser-
vices by our approach, we compare them with those collected during the evalu-
ation of two state-of-the-art approaches among the well-known ones. They are
Microservice Extraction Model (MEM) [100] and Functionally-oriented Microser-
vice Extraction (FoME) [76]. We selected these approaches for the following main
reasons:

— Both approaches have been recently proposed.

— Similarly to our approach, they aim to identify microservices as clusters of
classes.

— To validate FoME, Jin et al. [76] have proposed the functional independence
quality criterion. They relied on it to compare the identified microservices
by their approach with other ones, including MEM [100]. More precisely,
in [100], the authors have proposed three coupling strategies (i.e., logical,
semantic, and contributor) and embed them in a graph-based clustering al-
gorithm. Only the semantic coupling strategy was compared in [76] since
the other ones cover a very limited number of the classes of the decomposed
monolithic applications. The measurement results have been presented in
the corresponding paper. Therefore, we simply have to identify microser-
vices using our approach from the same applications utilized by Jin et al.,
implement as well as measure functional independence and then compare
results.

In the remainder of this section, we firstly introduce the used applications.
After that, we present the evaluation results, and compare them.

Data Collection

Among the four applications used in [76], two were collected to be an exper-
imentation base for our approach: JPetStore and SpringBlog. JPetStore 6 is a web
application for an e-commerce pet store. SpringBlog 7 is a blogging system. It can
be considered as another version of the application presented in Section 5.1.3.1.
On GitHub, it is specified that this SpringBlog application was forked from the
one presented earlier. Table 5.6 provides some metrics on these applications.

6. https://github.com/wj86/jpetstore-6
7. https://github.com/wj86/SpringBlog

136 Chapter 5. Experimentations and Validations

Table 5.6 – Applications metrics

Application
No of classes
and interfaces

No of classes representing
database tables

Code size (LOC)

JPetStore 24 9 1441
SpringBlog 93 10 3802

Results of Functional Independence Evaluation

The source code of each of the previous applications was partitioned into a set
of microservices. Each one of them consists of one or more classes. To evaluate
the identified microservices quantitatively and compare our approach with MEM
and FoME, we measured their functional independence. Table 5.7 displays the
measurement results. As explained earlier, the higher (resp., lower) CHD and
CHM (resp., IFN, OPN, and IRN) are, the better.

Comparison and Results Interpretation

Table 5.7 – Functional independence measurement results

Approach
Our approach

Fully
automatic Semi-automatic

Gravity centers
Number of

microservicesAppli-
cation

Metrics MEM FOME
FMicro FStructure

Behavior
Entire

set
Sub-
set

Exact
number

Interval
of

number

Exact
number +
sub-set of

gravity
centers

CHM 0.5-0.6 0.7-0.8 0.3-0.4 0.4-0.5 0.7-0.8 0.3-0.4 0.3-0.4 0.3-0.4 0.3-0.4
CHD 0.6-0.7 0.6-0.7 0.6-0.7 0.6-0.7 0.7-0.8 0.6-0.7 0.6-0.7 0.6-0.7 0.6-0.7
IFN 0.6667 1 1.6667 3 2 2.5 1.6667 1.6667 3
OPN 39 22 11 22 14 22 11 11 18
IRN 48 35 14 24 15 31 14 14 27
Total 1 1 2 0 2 0 2 2 0
Total* 3 3 4 3 3 3 3

JPet
Store

No
micro 3 3 3 2 3 4 3 3 3

CHM 0.7-0.8 0.7-0.8 0.8-0.9 0.3-0.4 0.9-1 0.9-1 0.8-0.9 0.7-0.8 0.8-0.9
CHD 0.8-0.9 0.8-0.9 0.5-0.6 0.1-0.2 0.8-0.9 0.7-0.8 0.6-0.7 0.4-0.5 0.8-0.9
IFN 1.4286 1.0000 1.3333 2 1.5714 1.6667 0.5714 0.5000 1.2857
OPN 21 7 6 15 14 14 9 8 12
IRN 30 26 12 16 26 26 12 10 23
Total 1 1 1 0 2 1 0 1 1
Total* 3 1 3 2 3 3 3

Spring
Blog

No
micro 7 7 3 2 7 6 7 6 7

— Total: the number of metrics, in which an approach outperforms the others. Here, we compare even the variants
of our approach.

— Total*: the number of metrics, in which a variant of our approach outperforms MEM and FOME.

— No micro: number of identified microservices.

— Highlighted in red and underlined: best results.

5.1. Validating the Identification of Microservices from OO Applications 137

Firstly, based on the Total* row, our automatic approach outperforms both
MEM and FoME. More precisely, the identified microservice by our approach
from JPetStore have the same value of CHD and lower values of OPN as well
as IRN, compared to those obtained by MEM and FoMe. For SpringBlog, our ap-
proach produced lower OPN as well as IRN and higher CHM values.

Secondly, the produced microservices relying on FMicro are better than those
obtained based on the sub-function FStructureBehavior. However, for JPetStore,
they still better than those produced by MEM and FoME (i.e., the same values of
CHD and OPN and lower value of IRN). For SpringBlog, only a lower IRN was
obtained. This shows the importance of data autonomy evaluation.

Thirdly, based on the Total* row, generally the use of software architect recom-
mendations either produce the same total obtained by the automatic approach
(i.e., 3 for JPetStore and 3 for SpringBlog) or increase it (i.e., 4 for JPetStore), except
for the obtained total based on a sub-set of gravity center from JPetStore. This is
potentially because we miss-specified this sub-set.

Finally, the Total* values obtained based on the different recommendations are
almost always the same for each application, except in two cases: 1) for JPetStore,
the entire set of gravity centers produced a better result and 2) for SpringBlog, the
Total* value obtained based on sub-set of gravity centers is lower. The entire set of
gravity center is a complete and precise recommendation. Thus, using it enabled
producing better results. The low value of Total* obtained based on a sub-set of
gravity centers is potentially because we miss-specified this sub-set.

5.1.4 Validating the Identification Based on a Genetic Algorithm

Our microservice identification approach enables identifying microservices
based on a clustering algorithm or a genetic one. In the previous section, we
showed the relevance of the obtained microservices based on the clustering al-
gorithm. To validate the ones produced relying on the genetic one, our idea is
to compare the results of the automatic identification based on both algorithms,
since we already demonstrated the importance of taking into account architect
recommendations. For that purpose, we identified microservices from the three
applications presented in Table 5.1. The remainder of this section presents the
obtained results as well as their interpretations.

138 Chapter 5. Experimentations and Validations

5.1.4.1 Microservices Identification Results

The source code of each of the previous applications was partitioned into a set
of clusters. Each cluster consists of one or more classes and corresponds to a mi-
croservice. Table 5.8 presents the measurement results (i.e., minimum, maximum,
and average values) of FMicro, FStructureBehavior, and FData of the identified mi-
croservices.

To facilitate interpreting the measurement results, before printing them, the
values of FStructureBehavior and FData are normalized by dividing them on the
maximum value, if it is higher than 1. After that, FMicro is computed based on
the normalized values. Note that all the results related to the clustering algorithm
are the ones presented earlier in this section. We repeated them here to facilitate
the comparison of the two algorithms.

Table 5.8 – Measurement results of FMicro, FStructureBehavior, and FData

Microservice identification
Applications

FindSport
Mates SpringBlog

InventoryManagement
System

Clustering algoritm

FMicro
Min 0,78 0 0
Max 0.9 0.67 1
Avg 0.83 0.25 0.16

FStructure
Behavior

Min 0.58 0 -0.73
Max 1 0.51 1
Avg 0.86 0.15 0.08

FData
Min 0.71 0 0
Max 1 1 1
Avg 0.83 0.3 0.18

Genetic algorithm

FMicro
Min 0.35 0.15 0.12
Max 0.96 0.84 0.86
Avg 0.57 0.41 0.53

FStructure
Behavior

Min 0.75 0.37 0
Max 1 1 1
Avg 0.9 0.65 0.41

FData
Min 0.25 0 0
Max 1 1 1
Avg 0.52 0.33 0.55

The results of classifying the identified microservices based on our protocol
(Section 5.1.2.1) are described in Table 5.9 and expressed in term of recall in Table
5.10. Recall assesses the ratio between the number of excellent and good mi-
croservices to the number of the manually identified ones.

5.1. Validating the Identification of Microservices from OO Applications 139

Table 5.9 – Microservice classification results

Microservice identification
Applications

FindSport
Mates

Spring
Blog

Inventory
Management

System

Clustering algorithm

Number of excellent
microservices 1 0 1

Number of good
microservices 2 8 15

Number of bad
microservices 0 2 4

Genetic algorithm

Number of excellent
microservices 0 0 0

Number of good
microservices 3 9 19

Number of bad
microservices 0 1 1

Table 5.10 – Recall measurement

Microservice identification
Applications

FindSportMates SpringBlog InventoryManagementSystem
Clustering algorithm 100% 80% 80%

Genetic algorithm 100% 90% 95%

5.1.4.2 Interpreting Results

Measurement Results of FStructureBehavior, FData, and FMicro

The interpretations of the obtained measurements results of FStructureBehav-
ior, FData, and FMicro (e.g., low values, high values, etc.) were presented in de-
tails in Section 5.1.3.1. Thus, we will not reinterpret them here. Still, it is notewor-
thy that overall, the genetic algorithm produced higher minimum, maximum,
and average values of FStructureBehavior, FData, and FMicro.

Classification of the Identified Microservices

The recall values related to the results obtained based on the genetic algorithm
are equals to or greater than 90% (90%, 95%, and 100%). This shows that a large
part of the produced microservices are those identified manually. These values
are equal to or higher than those produced by the clustering algorithm (80% and
100%). Furthermore, for SpringBlog and InventoryManagementSystem, the high-
est values are produced relying on the genetic algorithm (90% and 95%). For
FindSportMates, the highest value is 100%. Nevertheless, since this application

140 Chapter 5. Experimentations and Validations

is small, it was partitioned correctly by both algorithms. Based on the obtained
recall results, the genetic algorithm outperforms the clustering one.

It is noteworthy that the genetic algorithm identified a lower number of bad
microservices. However, it did not produce any excellent ones. This is likely
because the population was randomly initialized. According to Chardigny [37],
the better the initial population is, the better the produced results will be. Hence,
initializing the population, for instance, relying on the clustering algorithm can
profoundly improve results.

5.1.5 Answering Research Questions

To validate our microservice identification approach, this section aims to an-
swer the research questions based on the obtained results. For that purpose, we
will focus on those generated by the clustering algorithm. As demonstrated ear-
lier, the genetic one produces better results. Therefore, if the obtained ones by the
clustering algorithm allow validating our approach empirically, the generated re-
sults by the genetic algorithm will potentially enable a better validation.

5.1.5.1 Answers Based on the Qualitative Evaluation

Based on the qualitative evaluation of the obtained results by our approach,
the research questions can be answered as follows:

1. Since a large part of the identified microservices without using the architect
recommendations are those identified manually, we answer the RQ1 as fol-
lows: the proposed quality function produces an adequate decomposition
of an OO application into microservices.

2. Even though the obtained recall values based on the sub-function FStruc-
tureBehavior are equal to or lower than those produced by FMicro, they still
high. Therefore, we answer the RQ2 as follows: the definition of the quality
function, without considering data autonomy, is adequate.

3. The obtained recall values based on FMicro are equal to or higher than those
obtained relying on FStructureBehavior. Moreover, the same values are re-
lated to the application that does not have many persistent data. Hence,
we answer RQ3 as follows: the evaluation of data autonomy characteristic
enhance the quality of microservices.

4. The recall values obtained using software architect recommendations are
equal to or higher than those obtained without using them. Furthermore,

5.1. Validating the Identification of Microservices from OO Applications 141

the best results are always produced relying on these recommendations.
Therefore, the answer to RQ4 is the following: the use of software architect
recommendations enhance the identification results.

5. Since the best identification results are produced based on the entire set of
gravity centers, we answer RQ5 as follows: the software architect recom-
mendations that generate the best decomposition of an OO application into
microservices is the entire set of gravity centers.

5.1.5.2 Answers Based on the Quantitative Evaluation

Based on the quantitative evaluation of the obtained results by our approach,
the research questions can be answered as follows:

1. Since our automatic identification, based on FMicro, outperforms both MEM
and FoME, we answer the RQ1 as follows: the proposed quality function
produces an adequate decomposition of an OO application into microser-
vices.

2. For JPetStore, the obtained results relying only on the sub-function FStruc-
tureBehavior are better than the ones produced by MEM and FoME. How-
ever, for SpringBlog, the existing approaches generate better values. Relying
on these results, we cannot answer RQ2 quantitatively unless we experi-
ment on other applications.

3. The obtained results based on the quality function FMicro are better than the
ones produced relying only on the sub-function FStructureBahavior. There-
fore, we answer the RQ3 as follows: the evaluation of data autonomy char-
acteristic enhance the quality of microservices.

4. Generally, the use of software architect recommendations either produce the
same results obtained by the automatic approach or improve them. Thus,
the answer to RQ4 is the following: the use of software architect recommen-
dations can enhance the identification results.

5. Since, for both applications, the best evaluation results are produced based
on the entire set of gravity centers, we answer RQ5 as follows: the software
architect recommendations that generate the best decomposition of an OO
application into microservices is the entire set of gravity centers.

5.1.6 Threats to Validity

Our microservice identification approach is concerned by two types of threats
to validity: internal and external. We will present the main ones in this section.

142 Chapter 5. Experimentations and Validations

5.1.6.1 Threats to Internal Validity

The proposed approach may be affected by the following internal threats:

— Our decomposition of an OO application into microservices realizes a parti-
tion of the classes. Therefore, each class belongs to one and only one cluster,
so it is part of the implementation of one and only one microservice. This
may not reflect the reality of some applications where some classes may par-
ticipate in the realization of several functionalities, and thus could be part
of the implementation of several microservices. In this case, the results of
the identification could be negatively impacted. Nevertheless, this threat is
limited because it generally concerns only certain classes that the architect
can duplicate to correct the concerned microservices.

— We rely on a hierarchical clustering algorithm to partition the classes of an
OO application. This algorithm does not allow to obtain optimal values of
the quality function. Indeed, some grouping choices may not be the best
considering the whole process of grouping and not just the one at a given
moment. Nevertheless, the algorithm makes it possible to obtain values
close to optimal ones because this algorithm performs optimization at each
clustering step.

5.1.6.2 Threats to External Validity

Our approach could be concerned with the following external threats:

— The quality of the OO source code can impact the results of the microser-
vice identification. Indeed, besides the use of software architect recommen-
dations, our approach analyzes, on the one hand, the relations between the
entities of the code, and on the other hand, relationships between these en-
tities and their manipulated data. Thus, for example, the microservices ob-
tained from a source code that does not respect the basic rules of modularity
will be of the same quality of the original source code. To reduce the impact
of this factor, and obtain more relevant microservices, a possible refactoring
of the monolithic applications enabling the improvement of their modular-
ity may be necessary.

— The matching between the microservices that can be obtained by our ap-
proach and those obtained manually can vary according to the granularity
of microservices obtained by a manual identification. Granularity is known
to be dependent on the architectural style of the software architect. De-
pending on his style, an architect can manually adjust the granularity of

5.2. Experimentation and Validation of our Extraction Approach of Workflows from OO
Applications 143

microservices obtained by our approach. This adjustment can be achieved
by a limited number of microservices composition/decomposition opera-
tions.

— Our approach was experimented only on Java applications. To apply it on
the ones implemented using other languages (e.g., C++, C#, etc.), we have
to adapt it to take into consideration the specificities of these languages,
such as multiple inheritance in C++.

— To compare our microservice identification against FoME and MEM, we
evaluated the microservices identified by our approach and recovered the
functional independence measurement provided in the paper for FoME and
MEM. In other words, the three approaches were not evaluated using the
same implementation. However, we implemented the functional indepen-
dence measurement relying on the explanations provided in the paper [76]
proposing it.

5.2 Experimentation and Validation of our Extraction
Approach of Workflows from OO Applications

This section aims to present the conducted experiments to validate our work-
flow extraction approach. It starts with introducing the used applications, fol-
lowed by the experimental protocol. After that, the workflow extraction results
are presented and discussed. Finally, we analyze the internal and external threats.

5.2.1 Data Collection

To validate our workflow extraction approach, we used three applications:
eLib, PostOffice, and FindSportMates. eLib is a Java application supporting the
main functionalities operated in a library: 1) inserting and removing users/docu-
ments, 2) searching for users/documents, and 3) loan management. The code of
this application is provided in [133]. PostOffice is also a Java application that de-
termines for each postal item (i.e., letters, parcels, and express parcels) its postage
fee and its reimbursement rate. Moreover, it allows printing the information of
any chosen item. FindSportMates has been presented earlier in Section 5.1.3.1.
Table 5.11 provides some metrics on these applications before applying extract
method refactoring. It is noteworthy that to identify microservices, we used the
refactored FindSportMates application since it is more structured.

144 Chapter 5. Experimentations and Validations

Table 5.11 – Applications metrics before applying extract method refactoring

Application No of classes No of methods
Code size

(LOC)
PostOffice 6 50 270

eLib 9 73 534
FindSportMates 12 92 796

5.2.2 Experimental Protocol

The validation of our workflow extraction approach is based on a prototype
plug-in developed in Java. It carries out the extraction process defined in our
approach. To demonstrate that the recovered workflow reflects the behavior of
the analyzed OO application (i.e., correct workflow), we use two methods:

Running the Extracted Workflow

The idea is to execute both the extracted workflow and the corresponding
OO application using the same test suite and compare results. If given the same
inputs, the workflow and the OO application produce the same outputs, then the
extracted workflow is correct. To be able to run the recovered workflow, we have
proposed the implementation model shown in Figure 5.5. In this model, each
task is an instance of the class Task. It has two data lists: a list of inputs and a list
of outputs. The execution of any task requires invoking the method run on the
corresponding instance. However, the method run of a primitive task is not the
same as a composite one:

— Primitive task: the method run of a primitive task initializes inputs and
invokes the corresponding method to this task.

— Composite task: in the method run of a composite task, instances corre-
sponding to the enclosed elements in this task are created and their meth-
ods run are executed. Note that these elements are specified in the attribute
taskSubelements of the class CompositeTask. Moreover, they can either be con-
trol constructs or other tasks. These elements are executed based on their
order in the list taskSubelements.

Similarly, to run a control construct (i.e., if construct or while construct), an in-
stance of the corresponding class to this construct (i.e., IfConstruct class or While-
Construct class) is created, and the method run is invoked on this instance. The
run method initializes control construct inputs and evaluates its condition. For
example, in the case of while construct, if the condition is true, then instances

5.2. Experimentation and Validation of our Extraction Approach of Workflows from OO
Applications 145

Figure 5.5 – Workflow implementation model

corresponding to the elements of the list whileElements are created, and their run
methods are executed. In the case of if construct, when the condition is true (i.e.,
resp false), instances corresponding to the elements of the list IfElements (i.e., resp
elseElements) are created, and their run methods are executed.

It is noteworthy that the generated implementation of the recovered workflow
preserves the object entities of the original source code. In other words, object in-
stances are not be transformed into primitive elements (i.e., the values of their
attributes). Hence, the produced implementation is based on "task" entities con-
nected by input and output data and whose control flow is explicitly specified at
the architectural level. This means that the produced source code consists of task
entities, implemented relying on the object entities of the original source code.

Manual Evaluation

The manual evaluation consists to extract the corresponding workflow to each
of the analyzed applications manually and automatically (i.e., using our plug-in),
and compare them.

5.2.3 Workflow Extraction Results and their Interpretations

We used our plug-in to generate the corresponding workflow to each of the
analyzed OO applications. The first step in our process (i.e., task identification)

146 Chapter 5. Experimentations and Validations

requires applying extract method refactoring. Table 5.12 provides some metrics
on the three applications after applying this refactoring.

Table 5.12 – Applications metrics after applying extract method refactoring

Application No of classes No of methods
Code size

(LOC)
% of the added

methods
PostOffice 6 67 341 34%

eLib 9 113 788 54.79%
FindSportMates 12 121 895 31.52%

As we can notice, the number of methods after applying extract method refac-
toring increased by an average of 40.10% with a standard deviation of 10.43. This
can be explained by the fact that new methods were created depending on the
number of fragments to be extracted (i.e., fragments consisting of statements de-
limited by user method invocations that belong to the same block), in the source
code of the OO applications.

Once the refactoring is done, the plug-in analyzes the source code to identify
tasks. Table 5.13 shows the results in term of the number of primitive and com-
posite tasks for each application, as well as the total number of identified tasks.

Table 5.13 – Workflow extraction results

Application No of primitive tasks No of composite tasks Total
PostOffice 51 16 67

eLib 77 36 113
FindSportMates 91 30 121

To better understand, we will consider eLib as an example. Figure 5.6 repre-
sents its class diagram. It was recovered from the source code of this application
using the tool ObjectAid UML Explorer. For clarity and briefness, the operations of
each class were not represented in the diagram. Figure 5.7 displays the extracted
workflow. It consists of seven tasks: six primitive ones and a composite task,
which corresponds to the method dispatchCommand.

For each application, we executed both the code corresponding to the work-
flow and the one corresponding to the OO application relying on the same test
suite (i.e., test cases). Both executions produced the same results. Note that the
test suites for the analyzed applications were specified manually while taking

5.2. Experimentation and Validation of our Extraction Approach of Workflows from OO
Applications 147

into account their functionalities. As an example, Table 5.14 presents the test
cases for eLib application, which offers 15 fine-grained functionalities.

Moreover, we identified workflows manually from each application and com-
pared them with the ones generated by our plug-in. Similarly, we found out that
they are the same.

Based on the obtained results from the conducted experiments, the extracted
workflows from OO source code reflects the behavior of the analyzed OO appli-
cation (i.e., correct workflow).

Figure 5.6 – Class diagram of the eLib application

148 Chapter 5. Experimentations and Validations

Figure 5.7 – Workflow extracted from eLib application

5.2. Experimentation and Validation of our Extraction Approach of Workflows from OO
Applications 149

Table 5.14 – Test cases for eLib application

Functionality Test case Description

Adding a user
addUser Ritedj, 340 rue Ada Bat A

Log 21 Montpellier, 0764124578 Adding a new user

addUser Oussama, 111 rue du Faubourg
Bat C Log 50 Montpellier, 0664524971 Adding a new user

Adding an internal user
addIntUser Jack, 340 rue Maurice et Katia
Bat A Log 20 Montpellier, 0764264931, 3 Adding a new internal user

addIntUser Mouaadh, 340 rue Ada Bat F
Log 211 Montpellier, 0764264931, 4 Adding a new internal user

Remove a user rmUser 4 Removing Mouaadh
rmUser 5 Error: removing unsubscribed user

Adding a book

addBook DevOps, Leonard J. Bass et al,
978-0-1340-4984-7 Add a new book

addBook Microservices,
Eberhard Wolff, 978-0134602417 Add a new book

addBook Refactoring Databases,
Scott W Ambler and Pramod J

Sadalage, 978-0321293534
Add a new book

Adding a report
addReport Workflow control-flow patterns:

A revised view, BPM-06-22, Nick
Russell et al.

Add a new report

Adding a journal

addJournal IEEE Transactions on
Software Engineering Add a new journal

addJournal International Journal
of Software Engineering and

Knowledge Engineering
Add a new journal

addJournal Autoomated
Softaware Engineering Add a new journal

Removing a document rmDoc 7
Removing the journal

"Automated Softaware Engineering"
rmDoc 8 Error: no document with Id=8

Borrowing a document

borrowDoc 1, 3
Ritedj borrows the book
"Refactoring Databases"

borrowDoc 1,1 Ritedj borrows the book "DevOps"

borrowDoc 1, 2
Error: Ritedj already has the maximem

autorised loans

borrowDoc 2, 5
Oussama borrows the journal "IEEE

Transactions on Software Engineering"

borrowDoc 3, 3
Error: Jack wants to borrows an

unavailable book (already borrowed)
borrowDoc 4, 3 Error: no user with Id=4
borrowDoc 1,8 Error: no document with Id=8

Returning a document

returnDoc 5
Oussama returns the journal "IEEE

Transactions on Software Engineering"

returnDoc 6
Error: "International Journal of

Software Engineering and Knowledge
Engineering" is not borrowed

returnDoc 8 Error: no document with Id=8

Searching for users searchUser Ritedj
Searching for the users with the

name "Ritedj"
searchUser Mouaadh Error: no users with the name "Mouaadh"

Search for documents searchDoc Microservices
Looking for the documents with the title

"Microservices"
searchDoc Model-Driven Software

Migration
Error: no document with this title in

the libreary

Finding wheter a
user is holding

a document

isHolding 1, 3
Finding whether Ritedj is holding the book

"Refactoring Databases"
isHolding 1, 8 Error: no document with Id=8
isHolding 4, 2 Error: no user with Id=4

Printing Loans printLoans Printing all the loans

Printing the information
of a document

printDoc 2
Printing the information of the book

"Microservices"
printDoc 8 Error: no document with Id=8

Printing the information
of a user

printUser 1 Printing the information of Ritedj
printUser 4 Error: no user with Id=4

150 Chapter 5. Experimentations and Validations

5.2.4 Threats to Validity

Our workflow extraction approach is concerned by two types of threats to
validity: internal and external. We will present the main ones in this section.

5.2.4.1 Threats to Internal Validity

Our workflow extraction approach may be affected by the following internal
threats:

1. To restructure OO source code, we utilized Extract method refactoring. Nev-
ertheless, the statements extracted as new methods are not functionally re-
lated. They do not, for instance, manipulate the same variables or perform
a well-specified operation. They were extracted as new methods just be-
cause they are delimited by user method invocations. Therefore, as a per-
spective, we intend to restructure the code to obtain methods that have a
purpose (e.g., their statements manipulate the same variables to perform a
well-specified operation, etc.) [36] [83] [82].

2. Recovering control flow from OO source code statically in the presence of
polymorphism and dynamic binding requires considering all the possible
run-time types of a receiver. Thus, if a method includes N virtual calls
and each one has M run-time types of a receiver, the CFG will contain at
least N*M paths. For this reason, we can not guarantee the scalability of the
proposed approach. To tackle this problem, we plan to combine dynamic
and static analysis. We will utilize dynamic analysis to determine the exact
run-time type of a receiver, whereas static analysis collects the remaining
information needed by our approach.

3. In our experiments, we recovered CFGs without considering exception-
handling. Taking it into account requires extending our control flow re-
covery method to be able to handle implicit transfers related to exception
raising.

4. The presence of aliasing does not affect the applicability of our approach.
The only requirement for our data flow recovery in the presence of alias is
the availability of some alias analysis [46]. When the list of aliases is avail-
able, any definition/use of an alias is considered as a definition/use of all
of them. For instance, supposing that variables var1 and var2 are aliases. If
a task defines var1, then its outputs are var1 and var2 because any definition
of var1 is a definition of var2 and vice versa.

5.3. Conclusion 151

5.2.4.2 Threats to External Validity

Our workflow extraction approach could be concerned with the following ex-
ternal threats:

1. The applications utilized in our experimentation were implemented using
Java programming language. To apply it on the ones implemented using
other languages (e.g., C++, C#, etc.), we have to adapt it to take into consid-
eration the specificities of these languages, such as multiple inheritance in
C++.

2. Only three applications have been collected in the experimentation. There-
fore, to consolidate and strengthen our approach, we need to experiment it
on a large number of case studies, especially those of a considerably large
size (i.e., thousands of classes), as well as industrial ones.

3. To validate our approach, we executed the source code corresponding to
the workflow and the one corresponding to the analyzed OO application
relying on the same test cases. Similarly to any approach using test cases,
the principal challenge is determining the ones that cover all the functional-
ities of an application. We manually identified these test cases based on our
sufficient knowledge of the analyzed systems. Thus, we can ensure that the
main functionalities are covered.

5.3 Conclusion

In this chapter, the conducted experiments on case studies to validate our ap-
proaches have been presented. The obtained results show the relevance of the
identified microservices and the correctness of the recovered workflow. In other
words, our microservice identification approach proposes an adequate decom-
position of an OO application into microservices. Moreover, the recovered work-
flow by our workflow extraction approach reflects the behavior of the OO appli-
cation. However, to consolidate and strengthen both approaches, they have to
be evaluated on larger applications. Additionally, for microservice identification,
a human expert is needed. He/she would provide the recommendations and
assess the recovered microservices more objectively.

VI

Conclusion and Future Directions

6.1 Summary of Contributions . 153
6.2 Future Directions . 155

6.2.1 Addressing Limitations and New Related Aspects 155
6.2.2 Experimentations and Validations 156

This chapter presents a summary of the contributions that were proposed in
this dissertation. Additionally, it outlines future research directions.

6.1 Summary of Contributions

The ultimate aim of our dissertation is contributing to the migration of mono-
lithic OO applications to microservices in order to adapt them to both cloud and
DevOps. Towards this aim, we propose to identify microservices from existing
monoliths. Microservice identification is known as a complex and crucial step
for a successful migration. Moreover, it can be structure-based or task-based, de-
pending on what does it consider when decomposing a monolith into microser-
vices. As a big picture, on the one hand, we proposed a structure-based identi-
fication approach that partitions a monolithic OO application into microservices
relying on source code structure, data accesses, and architect recommendations,
when available. On the other hand, to ensure the applicability of existing task-
based identification approaches, which either suppose that workflows are avail-
able or experts can recover their constituents, we proposed an approach that ex-

154 Chapter 6. Conclusion and Future Directions

tracts a workflow from OO source code. More specifically, our contributions are
the following:

— Structure-based identification of microservices from OO source code: our
approach partitions the classes of an OO application into clusters, each one
of them represents a microservices. The identification is based on a quality
function that assesses the relevance/quality of microservices. Unlike some
existing approaches, our function relies on metrics that reflect the "seman-
tics" of the concept "microservice". These metrics are evaluated from the
source code based on the relationships between its entities and their depen-
dence on persistent data.
The goal of our approach is to identify microservices with maximized qual-
ity function values. For that purpose, two algorithmic models can be used:
genetic and clustering algorithms. It is up to the user of our approach to de-
cide which algorithmic model to utilize. The quality function is considered
as a similarity measure in the clustering algorithm and as a fitness function
in the genetic algorithm.
Besides source code information, our approach uses software architect rec-
ommendations, when available, to guide the identification. These recom-
mendations are related mainly to the use of the application and depending
on the available ones, different identifications can be carried out.
To validate our approach, it was evaluated qualitatively and quantitatively.
The qualitative evaluation was performed relying on three case studies of
different sizes. Quantitative evaluation was carried out based on two case
studies, and the evaluation results were compared with two state-of-the-art
approaches among the well-known ones. The produced results show the
relevance of the identified microservices by our approach.

— Workflow extraction from OO source code: our approach extracts a work-
flow based on static analysis of OO source code. This extraction requires the
ability to map OO concepts to workflow ones. For that purpose, a mapping
model that associates to OO concepts their corresponding in workflows was
established. The defined mapping is used by an extraction process consist-
ing of two steps. The first step aims to recover a model of the OO source
code. It involves identifying the structural elements of the application and
their relationships by analyzing the source code. The second step consists
of transforming the OO model into a workflow-based one relying on the
defined mapping model. It starts by identifying primitive and composite
tasks, as well as their respective input and output data, and then recovering
the control flow and the data flow associated to these tasks.
To validate our approach, it was applied on three applications. The obtained
results show that the recovered workflow reflects the behavior of the OO
application.

6.2. Future Directions 155

6.2 Future Directions

Based on the presented approaches in this dissertation, several future direc-
tions have been identified. The main ones are the following:

6.2.1 Addressing Limitations and New Related Aspects

— Combining static and dynamic analysis: our approaches rely on static
analysis to recover the needed information from the source code. Hence,
the problem of handling polymorphism and dynamic binding confronts us.
On the one hand, to identify microservices, measuring the quality of each
one, and using the clustering algorithm already require considerable com-
putations. Therefore, and since estimating the possible run-time types of the
receiving objects of all the virtual calls requires more computations, their
static type was used. This did not have a high negative impact on the pro-
duced results. Based on the qualitative and quantitative evaluations, our
approach identified relevant microservices.
On the other hand, to recover the control flow, we conservatively estimated
the run-time type of the receiver. Thus, if a method includes N virtual calls
and each one have M run-time types of a receiver, the CFG will contain at
least N*M paths. Thus, the scalability of our approach is not assured. To
tackle this problem and determine the impact of addressing polymorphism
as well as dynamic binding on microservice identification, we plan to com-
bine dynamic and static analysis. Dynamic analysis is used to determine
the exact run-time type of a receiver, whereas static analysis collects the re-
maining information needed by our approaches.

— Identifying microservices from the extracted workflows: to identify mi-
croservices from the extracted workflows, we intend to either apply the pre-
sented approach in [15] or propose our own approach. Once the task-based
microservices are identified, they will be compared with the structure-based
ones, to determine the impact of taking into account the temporal evolution
of execution on microservice identification.

— Packaging the identified microservices: our microservice identification ap-
proach addresses the first step of the migration process towards microser-
vices. However, to have an operational microservice-based application, the
identified microservices need to be packaged. To achieve this purpose, the
OO dependencies between them should be transformed. We plan to do that
inspired by the proposed approach in [13], which specifies and transforms
these dependencies in order to migrate OO applications to component-based
one. According to Alshara et al. [13], these dependencies are either explicit
or implicit. Explicit ones include method calls and instantiations, whereas

156 Chapter 6. Conclusion and Future Directions

implicit dependencies are caused by inheritance and exception handling. It
is noteworthy that even though microservices interfaces have been identi-
fied to compare the recovered microservices by our approach with the ones
produced by existing approaches, only method calls were handled.

— Decomposing the database: our microservice identification approach takes
into account the manipulated data by microservices when identifying them.
This may facilitate the decomposition of the database, nevertheless it still a
challenging task. Several microservices may share database tables. There-
fore, an efficient decomposition, aiming to reduce the communications due
to data exchanges, may require refactoring the database [14]. We intend to
address this problem.

— Deploying microservices in the cloud and measuring their performance:
since we aim to migrate monolithic applications towards microservices be-
cause they are well-adapted to the cloud, we intend to deploy and run them
in the cloud using containers, such as Docker. Moreover, we plan to mea-
sure the impact of this migration on the performance of applications. De-
composing a monolith into microservices leads to additional communica-
tion between them, combined with network latency, they may impact the
performance negatively.

— Extending the scope of software architect recommendations: our microser-
vice identification approach relies on software architect recommendations,
when available. To lighten the expert task as much as possible, and thus
reduce its cost, the list of these recommendations was specified. We plan
to extend this list in order to identify more relevant microservices. For in-
stance, the architect can specify the set of classes, instead of one class, that
constitutes the gravity center of a microservice.

6.2.2 Experimentations and Validations

— Experimenting on more and larger applications: both approaches were
validated relying on a limited number of applications. Therefore, to consol-
idate and strengthen them, we intend to experiment on more applications,
especially complex and large ones (i.e., thousands of classes). Moreover, we
plan to contact industrials aiming to migrate their applications to microser-
vices and collaborate with their software architects to apply our approach.
Even though this might be difficult, it still worth trying. Finally, we exper-
imented using only Java applications. To demonstrate that our approaches
are not limited just to Java, we plan to adapt them, if necessary, and test
them on case studies developed using other OO programming languages
such as C++.

— Combining clustering and genetic algorithms: the proposed microservice

6.2. Future Directions 157

identification approach enables extracting microservices either based on clus-
tering or genetic algorithms. Our idea is to use both successively by initial-
izing the population of the genetic algorithm relying on the identified mi-
croservices by the clustering one, and then applying the genetic algorithm.
Once the results are produced, we will evaluate them qualitatively as well
as quantitatively, and compare them with those obtained by the current ver-
sion of our genetic algorithm initialized randomly.

— Thorough quantitative validation of the identified microservices: to val-
idate our approach, the quantitative assessment proposed by Jin et al. [76],
which evaluate the functional independence of the identified microservices,
was used. The authors improved their quantitative evaluation in [77] by
considering two other characteristics: modularity and independence of evo-
lvability. If a microservice is well-modularized, its internal entities should
be cohesive, whereas external entities should be loosely coupled. The mod-
ularity is evaluated relying on an extended version of the proposed mod-
ularity measure in [96]. The independence of evolvability is assessed by
three metrics: Internal Co-change Frequency (ICF), External Co-change Fre-
quency (ECF), and Ratio of ECF to ICF (REI). ICF and ECF are derived from
the change history of the monolithic application. We plan to validate our ap-
proach relying on the new quantitative evaluation since it considers other
characteristics of microservices, and it was applied on a larger number of
applications compared to the old one.

Personal Publications

— Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia Bouziane, Christophe
Dony, and Chouki Tibermacine. Refactoring object-oriented applications
for a deployment in the cloud - workflow generation based on static analy-
sis of source code. In Proceedings of the 13th International Conference on Eval-
uation of Novel Approaches to Software Engineering (ENASE 2018), Funchal,
Madeira, Portugal, March 23-24, 2018., pages 111–123, 2018. URL https:

//doi.org/10.5220/0006699101110123.

— Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia Bouziane, Christophe
Dony, and Rahina Oumarou Mahamane. Re-architecting OO software into
microservices - A quality-centred approach. In Proceedings of the the 7th Eu-
ropean Conference on Service-Oriented and Cloud Computing (ESOCC 2018),
Como, Italy, September 12-14, 2018., pages 65–73, 2018. URL https://do

i.org/10.1007/978-3-319-99819-0_5.

— Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde-Lilia Bouziane, and Chris-
tophe Dony. From object-oriented to workflow: Refactoring of OO applica-
tions into workflows for an efficient resources management in the cloud. In
Evaluation of Novel Approaches to Software Engineering - 13th International Con-
ference (ENASE 2018), Funchal, Madeira, Portugal, March 23-24, 2019, Revised
Selected Papers, pages 186–214, 2018. URL https://doi.org/10.1007/

978-3-030-22559-9_9.

— Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, and Chris-
tophe Dony. From Monolith to Microservice Architectural Style: A Migra-
tion Process Based on the Analysis of Source Code Structure, Data Accesses
and Architect Recommendations. Being submitted to Journal of Systemes and
Software (JSS).

— Rahina Oumarou Mahamane, Anfel Selmadji, Abdelhak-Djamel Seriai, Ab-
derrahmane Seriai, Seza Adjoyan, Hinde Lilia Bouziane, and Christophe
Dony. Microservice Identification Using a Multi-Objective Genetic Algo-
rithm. To be submitted to European Conference on Software Architecture (ECSA)
2020 or International Conference on Software Architecture (ICSA) 2020.

Appendices

A

Call Graph Construction Algorithms
Based on Static Analysis of OO

Source Code

Our workflow extraction approach identifies tasks and recovers control as
well as data flows based on static analysis of OO source code. To identify tasks,
we relied on the call graph of the analyzed OO application. In literature, several
algorithms [49, 20, 21, 132, 129] have been proposed to construct call graphs by
statically analyzing OO source code. According to Tip and Palsberg [132], the
common idea between these algorithms is to abstract an object (resp., a set of
objects) into the name of its class (resp., a set of their class names). Then, for a
given method call obj.m(), the goal is to determine a set of class names that ap-
proximate the run-time types of the receiver obj. Once this set is computed, the
possible invoked methods can be determined by examining the class hierarchy.
Several well-known call graph construction algorithms will be presented in this
appendix.

Reachability Analysis (RA)

RA is a simple algorithm for constructing a call graph. It only considers
method names. The basic idea is to determine for each method m, the names
of its callees. Then create an edge between m and all the methods that have the
same name of any callee. A slightly more advanced version of this algorithm
takes into account method signatures instead of their names.

164
Appendix A. Call Graph Construction Algorithms Based on Static Analysis of OO

Source Code

Figure A.1 shows a call graph constructed using RA. In this example, since
the method Main.m1 (resp., Main.m2) contains a virtual call param1.m() (resp.,
obj3.m()), edges from the node representing Main.m1 (resp., Main.m2) towards
all the nodes corresponding to methods with the name m were created.

Figure A.1 – Example of a call graph constructed using RA

Class Hierarchy Analysis (CHA)

The call graph constructed using RA can be improved by considering the class
hierarchy. For that purpose, CHA [49] have been proposed. This analysis uses the
static type of a receiver obj of a virtual call obj.m(), combined with the class hier-
archy, to determine the methods that can be invoked at run-time. Every method
with the name m that is inherited by a subtype of the static type of obj is a possible
target.

An example is shown in Figure A.2. CHA removed three edges from the call
graph built using RA.

Rapid Type Analysis (RTA)

RTA [20, 21] is an improvement of CHA by taking into account class instanti-
ation information. A possible type of a receiver can only be a class that has been
instantiated in the OO application via a new. Therefore, by collecting class instan-
tiations, it is possible to improve results produced by CHA. More precisely, given
a receiver obj of a virtual call obj.m() within an OO application, the approximated
run-time types of obj are the classes belonging to the intersection between its class
hierarchy and the instantiated classes in this application. Note that the call graph
is constructed on-the-fly, and only the instantiations that are in the methods al-
ready contained in this graph are taken into account.

165

Figure A.2 – Example of a call graph constructed using CHA

Figure A.3 shows an example of a call graph produced by RTA. Two of the
edges constructed by CHA were removed.

Figure A.3 – Example of a call graph constructed using RTA

XTA Analysis

XTA [132] is an improvement of RTA. The idea is that by giving methods and
fields a more precise local view of the types of objects available, virtual calls may
be resolved more precisely. Therefore, instead of considering a single set of class
instantiations for the entire application, a local set is defined for each method Sm

166
Appendix A. Call Graph Construction Algorithms Based on Static Analysis of OO

Source Code

and each field Sx.

To compute these sets, Tip and Palsberg [132] defined the following constraints:

1. main ∈ R

2. For each method m, each virtual call obj.m1() in m, and each class C ∈
SubTypes (StaticType(obj)) where StaticLookup(C, m1) = m′:
(m ∈ R) ∧ (C ∈ Sm) =⇒

m′ ∈ R ∧
SubTypes(ParamTypes(m′)) ∩ Sm ⊆ Sm′ ∧
SubTypes(ReturnType(m′)) ∩ Sm′ ⊆ Sm ∧
C ∈ Sm′

3. For each method m, and for each ”newC()” in m:
(m ∈ R) =⇒ C ∈ Sm

4. For each method m reading a field x:
(m ∈ R) =⇒ Sx ⊆ Sm

5. For each method m writing a field x:
(m ∈ R) =⇒ (SubTypes(StaticType(x)) ∩ Sm) ⊆ Sx

Where:

— R represents the set of reachable methods.

— StaticType(obj) is the static type of obj.

— SubTypes(t) denotes the set of declared subtypes of t.

— StaticLookup(C, m) represents a definition of a method named m that can
be found in the class C by a static method lookup.

— ParamTypes(m) the static types of the parameters of m.

— ReturnedType(m) the returned type by m.

The first constraint supposes that the main method of the OO application is
reachable. The second constraint captures the flow of data from m to m′, and
from m′ back to m through the two inclusions. The third constraint adds the class
C to the set of instantiations available in m. The fourth constraint expresses the
data flow from a field to a method. Whereas, the fifth constraint reflects a data
flow from a method to a field, while taking into account class hierarchy, as well
as instantiation information.

Figure A.4 shows an example of a call graph built by XTA. One edge con-
structed by RTA was removed.

167

Figure A.4 – Example of a call graph constructed using XTA

Variants of XTA

By associating a distinct set to each class, method and/or field, different vari-
ants of XTA can be obtained. In [132], three of them have been experimented:

— Class Type Analysis (CTA): in CTA, a distinct set SC is used for each class C.

— Method Type Analysis (MTA): MTA associates a distinct set SC to each class
C and a set Sx to each field x.

— Field Type Analysis (FTA): FTA associates a distinct set SC to each class C and
a set Sm to each method m.

Variable Type Analysis (VTA)

VTA [129] is an enhancement of RTA. Indeed, instead of collecting class in-
stantiations from the OO application and use them to prune the call graph, VTA
relies on the types of objects that can reach each variable (i.e., the instantiations
that might be assigned to this variable). VTA is based on a type propagation
graph. In this graph, nodes represent variables, whereas edges specify the flow
of types due to assignments. Note that even implicit assignments, resulting from
method invocations and returns, are taken into account. To build a call graph,
VTA proceeds by:

1. Building the type propagation graph.

168
Appendix A. Call Graph Construction Algorithms Based on Static Analysis of OO

Source Code

2. Initializing reaching type information using assignments of the form obj =
newC() (i.e., the type C is associated to the node representing obj).

3. Propagating type information along directed edges to find out the set of
types reaching each variable.

4. Filtering out impossible reaching types by intersecting with possible types
as indicated in the class hierarchy (i.e., ReachingTypes(obj)∩SubTypes(obj)).

In order that the analysis be simple, VTA was implemented based on a typed
3-address representation which provides explicit names and types for all local
variables.

An example of a call graph constructed using VTA is shown in Figure A.5.
One edge from the call graph constructed by XTA was removed.

Figure A.5 – Example of a call graph constructed using VTA

Bibliography

[1] Domain Object Model. https://www.w3.org/DOM/. Accessed: May
2019. 45

[2] Google App Engine. https://cloud.google.com/appengine. Ac-
cessed: May 2019. x, 2

[3] Amazon EC2. https://aws.amazon.com/ec2/. Accessed: May 2019.
x, 2

[4] Microsoft Azure. https://azure.microsoft.com. Accessed: May
2019. x, 2

[5] Salesforce. https://www.salesforce.com/au/saas/. Accessed:
May 2019. x, 2

[6] ISO/IEC 25010:2011, systems and software engineering - systems and
software quality requirements and evaluation (SQuaRE) - system and
software quality models. Technical report, British Standards Institution,
2013. URL https://pdfs.semanticscholar.org/57a5/b99eceff

9da205e244337c9f4678b5b23d25.pdf. 24, 63

[7] Seza Adjoyan. Describing Dynamic and Variable Software Architecture Based
on Identified Services From Object-Oriented Legacy Applications. (Architecture
Dynamique Basée sur la Description de la Variabilité et des Services Identifiés
Depuis des Applications Orientées Objet). PhD thesis, University of Mont-
pellier, France, 2016. URL https://tel.archives-ouvertes.fr/t

el-01693061. 17, 18, 32

[8] Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shatnawi. Service identi-
fication based on quality metrics: Object-oriented legacy system migration
towards SOA. In The 26th International Conference on Software Engineering
and Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1-3,
2013., pages 1–6, 2014. 17, 18, 123

[9] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley series in computer science / World

170 Bibliography

student series edition. Addison-Wesley, 1986. ISBN 0-201-10088-6. URL
http://www.worldcat.org/oclc/12285707. 115

[10] Zakarea Al-Shara. Migrating Object Oriented Applications into Component-
Based ones (Migration des Applications Orientées Objet vers Celles á Base de
Composants). PhD thesis, University of Montpellier, France, 2016. URL
https://tel.archives-ouvertes.fr/tel-01816975/. 14, 15, 26,
32, 33

[11] Simon Allier, Houari A. Sahraoui, Salah Sadou, and Stéphane Vaucher. Re-
structuring object-oriented applications into component-oriented applica-
tions by using consistency with execution traces. In Component-Based Soft-
ware Engineering, 13th International Symposium, CBSE 2010, Prague, Czech
Republic, June 23-25, 2010. Proceedings, pages 216–231, 2010. URL https:

//doi.org/10.1007/978-3-642-13238-4_13. 18

[12] Simon Allier, Salah Sadou, Houari A. Sahraoui, and Régis Fleurquin.
From object-oriented applications to component-oriented applications via
component-oriented architecture. In 9th Working IEEE/IFIP Conference on
Software Architecture, WICSA 2011, Boulder, Colorado, USA, June 20-24, 2011,
pages 214–223, 2011. URL https://doi.org/10.1109/WICSA.2011.

35. 17, 18

[13] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine, Hinde-
Lilia Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large
object-oriented applications into component-based ones: Instantiation and
inheritance transformation. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Experiences,
GPCE 2015, Pittsburgh, PA, USA, October 26-27, 2015, pages 55–64, 2015.
URL https://doi.org/10.1145/2814204.2814223. 18, 155

[14] Scott W Ambler and Pramod J Sadalage. Refactoring Databases: Evolution-
ary Database Design. Addison-Wesley Signature Series (Fowler). Addison-
Wesley Professional, 2006. ISBN 978-0321293534. 156

[15] Mohammad Javad Amiri. Object-aware identification of microservices. In
2018 IEEE International Conference on Services Computing, SCC 2018, San
Francisco, CA, USA, July 2-7, 2018, pages 253–256, 2018. URL https:

//doi.org/10.1109/SCC.2018.00042. xiv, xvi, 9, 10, 19, 22, 25, 26,
28, 29, 31, 34, 35, 36, 38, 74, 155

[16] Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch.
How to adapt applications for the cloud environment: Challenges and so-
lutions in migrating applications to the cloud. Computing, 95(6):493–535,
2013. URL https://doi.org/10.1007/s00607-012-0248-2. x, 2

Bibliography 171

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Com-
mun. ACM, 53(4):50–58, 2010. URL http://doi.acm.org/10.1145/

1721654.1721672. x, 2

[18] Dionysis Athanasopoulos. Usage-aware service identification for archi-
tecture migration of object-oriented systems to soa. In Database and Ex-
pert Systems Applications - 28th International Conference, DEXA 2017, Lyon,
France, August 28-31, 2017, Proceedings, Part II, pages 54–64, 2017. URL
https://doi.org/10.1007/978-3-319-64471-4_6. 18

[19] Dionysis Athanasopoulos, Apostolos V. Zarras, George Miskos, Valérie Is-
sarny, and Panos Vassiliadis. Cohesion-driven decomposition of service in-
terfaces without access to source code. IEEE Transactions on Services Comput-
ing, 8(4):550–562, 2015. URL https://doi.org/10.1109/TSC.2014.

2310195. 121, 122

[20] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function calls. In Proceedings of the 1996 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA ’96), San
Jose, California, USA, October 6-10, 1996., pages 324–341, 1996. URL https:

//doi.org/10.1145/236337.236371. 105, 163, 164

[21] David Francis Bacon. Fast and effective optimization of statically typed object-
oriented languages. PhD thesis, University of California, Berkeley, USA,
1997. URL http://web.cs.ucla.edu/~palsberg/tba/papers/b

acon-thesis97.pdf. 105, 163, 164

[22] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrat-
ing to cloud-native architectures using microservices: An experience
report. In Advances in Service-Oriented and Cloud Computing - Work-
shops of ESOCC 2015, Taormina, Italy, September 15-17, 2015, Revised Se-
lected Papers, pages 201–215, 2015. URL https://doi.org/10.1007/

978-3-319-33313-7_15. x, xi, 3, 4

[23] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microser-
vices architecture enables devops: Migration to a cloud-native architecture.
IEEE Software, 33(3):42–52, 2016. URL https://doi.org/10.1109/MS

.2016.64. x, 2, 19, 57

[24] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tam-
burri, and Theo Lynn. Microservices migration patterns. Softw., Pract.
Exper., 48(11):2019–2042, 2018. URL https://doi.org/10.1002/spe.

2608. 73

172 Bibliography

[25] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices iden-
tification through interface analysis. In Service-Oriented and Cloud Com-
puting - 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Nor-
way, September 27-29, 2017, Proceedings, pages 19–33, 2017. URL https:

//doi.org/10.1007/978-3-319-67262-5_2. xiii, 8, 19, 20, 26, 28, 30,
31, 33, 34, 35, 36, 38

[26] Leonard J. Bass, Ingo M. Weber, and Liming Zhu. DevOps: A Software Archi-
tect’s Perspective. SEI series in software engineering. Addison-Wesley, 2015.
ISBN 978-0-1340-4984-7. URL https://www.oreilly.com/library/

view/devops-a-software/9780134049885/. x, 2

[27] James M. Bieman and Byung-Kyoo Kang. Cohesion and reuse in an
object-oriented system. In ACM SIGSOFT Symposium on Software Reusabil-
ity (SSR), pages 259–262, 1995. URL https://doi.org/10.1145/

211782.211856. 71

[28] Dominik Birkmeier and Sven Overhage. On component identification ap-
proaches: Classification, state of the art, and comparison. In Component-
Based Software Engineering, 12th International Symposium, CBSE 2009, East
Stroudsburg, PA, USA, June 24-26, 2009, Proceedings, pages 1–18, 2009. URL
https://doi.org/10.1007/978-3-642-02414-6_1. 18

[29] Jesús Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson. Legacy infor-
mation system migration: A brief review of problems, solutions and re-
search issues. Technical report, Computer Science Department, Trinity Col-
lege, Dublin, Ireland, 1999. URL https://pdfs.semanticscholar.o

rg/5481/704b2c7a1e92d44b8583c26fb3e3cd6096b5.pdf. 14

[30] Jesus Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson. Legacy infor-
mation systems: Issues and directions. IEEE Software, 16(5):103–111, 1999.
URL https://doi.org/10.1109/52.795108. xiii, 7

[31] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan Thordal
Larsen, and Manuel Mazzara. From monolithic to microservices: An expe-
rience report from the banking domain. IEEE Software, 35(3):50–55, 2018.
URL https://doi.org/10.1109/MS.2018.2141026. 19, 57

[32] Georg Buchgeher, Mario Winterer, Rainer Weinreich, Johannes Luger,
Roland Wingelhofer, and Mario Aistleitner. Microservices in a small de-
velopment organization - an industrial experience report. In Software Ar-
chitecture - 11th European Conference, ECSA 2017, Canterbury, UK, September
11-15, 2017, Proceedings, pages 208–215, 2017. URL https://doi.org/

10.1007/978-3-319-65831-5_15. 19

Bibliography 173

[33] Ugo A. Buy, Alessandro Orso, and Mauro Pezzè. Automated testing of
classes. In Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA 2000, Portland, OR, USA, August 21-24, 2000, pages 39–48,
2000. URL https://doi.org/10.1145/347324.348870. xiv, 9, 19,
42, 43, 45, 48, 49, 50, 51, 52, 54, 55, 56

[34] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future Generation
Comp. Syst., 25(6):599–616, 2009. URL https://doi.org/10.1016/j.

future.2008.12.001. x, 2

[35] Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based
software engineering: technologies, development frameworks, and qual-
ity assurance schemes. In 7th Asia-Pacific Software Engineering Conference
(APSEC 2000), 5-8 December 2000, Singapore, page 372, 2000. URL https:

//doi.org/10.1109/APSEC.2000.896722. 17

[36] Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeor-
giou, Antonios Gkortzis, and Paris Avgeriou. Identifying extract method
refactoring opportunities based on functional relevance. IEEE Transactions
on Software Engineering, 43(10):954–974, 2017. URL https://doi.org/

10.1109/TSE.2016.2645572. 150

[37] Sylvain Chardigny. Extraction d’une architecture logicielle à base de composants
depuis un système orienté objet: Une aproche par exploration. (Component-based
software architecture recovery from an object oriented system: A search-based ap-
proach). PhD thesis, University of Nantes, France, 2009. URL https:

//tel.archives-ouvertes.fr/tel-00456367. 67, 88, 89, 140

[38] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, and Dalila Tamza-
lit. Extraction of component-based architecture from object-oriented sys-
tems. In Seventh Working IEEE / IFIP Conference on Software Architecture
(WICSA 2008), 18-22 February 2008, Vancouver, BC, Canada, pages 285–288,
2008. URL https://doi.org/10.1109/WICSA.2008.44. 18

[39] Feng Chen, Shaoyun Li, and William Cheng-Chung Chu. Feature analysis
for service-oriented reengineering. In 12th Asia-Pacific Software Engineering
Conference (APSEC 2005), 15-17 December 2005, Taipei, Taiwan, pages 201–
208, 2005. URL https://doi.org/10.1109/APSEC.2005.67. 18

[40] Feng Chen, Zhuopeng Zhang, Jianzhi Li, Jian Kang, and Hongji Yang. Ser-
vice identification via ontology mapping. In Proceedings of the 33rd Annual
IEEE International Computer Software and Applications Conference (COMPSAC
2009), Seattle, Washington, USA, July 20-24, 2009. Volume 1, pages 486–491,
2009. URL https://doi.org/10.1109/COMPSAC.2009.71. 18

174 Bibliography

[41] Lianping Chen. Continuous delivery: Huge benefits, but challenges too.
IEEE Software, 32(2):50–54, 2015. URL https://doi.org/10.1109/MS

.2015.27. x, 3

[42] Lianping Chen. Microservices: Architecting for continuous delivery and
devops. In IEEE International Conference on Software Architecture (ICSA 2018),
Seattle, WA, USA, April 30 - May 4, 2018, pages 39–46, 2018. URL https:

//doi.org/10.1109/ICSA.2018.00013. 19, 57

[43] Mei-Hwa Chen and Howard M. Kao. Testing object-oriented programs: An
integrated approach. In 10th International Symposium on Software Reliability
Engineering, ISSRE, 1999, Boca Raton, FL, USA, November 1-4, 1999, pages
73–82, 1999. URL https://doi.org/10.1109/ISSRE.1999.809312.
xiv, 9, 19, 42, 43, 45, 48, 49, 50, 51, 52, 54, 55, 56, 108

[44] Rui Chen, Shanshan Li, and Zheng Li. From monolith to microservices: A
dataflow-driven approach. In 24th Asia-Pacific Software Engineering Confer-
ence, APSEC 2017, Nanjing, China, December 4-8, 2017, pages 466–475, 2017.
URL https://doi.org/10.1109/APSEC.2017.53. xiii, xiv, xvi, 8, 9,
10, 19, 22, 25, 26, 27, 28, 31, 32, 34, 35, 36, 38

[45] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990. URL https://do

i.org/10.1109/52.43044. 14, 15, 16

[46] Dave Clarke, James Noble, and Tobias Wrigstad, editors. Aliasing in Object-
Oriented Programming: Types, Analysis and Verification, volume 7850 of Lec-
ture Notes in Computer Science. Springer, 2013. ISBN 978-3-642-36945-2. URL
https://doi.org/10.1007/978-3-642-36946-9. 150

[47] Brad J. Cox and Andrew J. Novobilski. Object-oriented programming: An
evolutionary approach. Addison-Wesley, 1991. ISBN 978-0-201-54834-1. 17

[48] Charles Darwin. On the Origin of Species: A facsimile of the first edition.
Harvard Paperbacks series. Harvard University Press, 2001. ISBN 978-
0674637528. 67

[49] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In European Confer-
ence on Object-Oriented Programming (ECOOP’95), Århus, Denmark, August
7-11, 1995, Proceedings, pages 77–101, 1995. URL https://doi.org/10.

1007/3-540-49538-X_5. 105, 163, 164

[50] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, 2002. URL https://doi.org/

10.1109/4235.996017. 30

Bibliography 175

[51] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: Issues
and challenges. In Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on, pages 27–33. Ieee, 2010. x, 2

[52] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microser-
vices: Yesterday, today, and tomorrow. In Present and Ulterior Software En-
gineering, pages 195–216. Springer, 2017. URL https://doi.org/10.

1007/978-3-319-67425-4_12. xi, xii, 4, 5, 6, 24

[53] Stéphane Ducasse and Damien Pollet. Software architecture reconstruction:
A process-oriented taxonomy. IEEE Transactions on Software Engineering, 35
(4):573–591, 2009. URL https://doi.org/10.1109/TSE.2009.19. 18

[54] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In
ICSE Workshop on Dynamic Analysis (WODA 2003). New Mexico State Uni-
versity Portland, OR, pages 24–27, 2003. URL https://homes.cs.washi

ngton.edu/~mernst/pubs/staticdynamic-woda2003.pdf. 32

[55] Javier Espadas, Arturo Molina, Guillermo Jiménez, Martín Molina, Raúl
Ramírez, and David Concha. A tenant-based resource allocation model
for scaling software-as-a-service applications over cloud computing infras-
tructures. Future Generation Computer Systems, 29(1):273–286, 2013. URL
https://doi.org/10.1016/j.future.2011.10.013. ix, 2

[56] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo.
Challenges in delivering software in the cloud as microservices. IEEE Cloud
Computing, 3(5):10–14, 2016. URL https://doi.org/10.1109/MCC.

2016.105. xi, 4

[57] Fairouz Fakhfakh, Hatem Hadj Kacem, and Ahmed Hadj Kacem. Work-
flow scheduling in cloud computing: A survey. In 18th IEEE International
Enterprise Distributed Object Computing Conference Workshops and Demonstra-
tions (EDOC Workshops 2014), Ulm, Germany, September 1-2, 2014, pages 372–
378, 2014. URL https://doi.org/10.1109/EDOCW.2014.61. x, 2

[58] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addi-
son Wesley object technology series. Addison-Wesley, 1999. ISBN 978-0-
201-48567-7. URL http://martinfowler.com/books/refactoring

.html. 15, 16

[59] Martin Fowler. Continuous Integration. https://martinfowler.c

om/articles/continuousIntegration.html, 2006. Accessed: May
2019. x, 3

176 Bibliography

[60] Andrei Furda, Colin J. Fidge, Olaf Zimmermann, Wayne Kelly, and Alis-
tair Barros. Migrating enterprise legacy source code to microservices: On
multitenancy, statefulness, and data consistency. IEEE Software, 35(3):63–72,
2018. URL https://doi.org/10.1109/MS.2017.440134612. 19

[61] Walid Gaaloul and Claude Godart. Mining workflow recovery from event
based logs. In Business Process Management, 3rd International Conference,
BPM 2005, Nancy, France, September 5-8, 2005, Proceedings, pages 169–185,
2005. URL https://doi.org/10.1007/11538394_12. xiv, 9, 19, 42,
43, 44, 45, 48, 50, 51, 52, 54, 55

[62] Walid Gaaloul, Khaled Gaaloul, Sami Bhiri, Armin Haller, and Manfred
Hauswirth. Log-based transactional workflow mining. Distributed and Par-
allel Databases, 25(3):193–240, 2009. URL https://doi.org/10.1007/

s10619-009-7040-0. xiv, 9, 15, 19, 42, 43, 44, 45, 48, 50, 51, 52, 54, 55

[63] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley pro-
fessional computing series. Addison Wesley, 1994. ISBN 978-0201633610. 46

[64] David García Gil and Rubén Aguilera Díaz-Heredero. A microservices
experience in the banking industry. In Proceedings of the 12th European
Conference on Software Architecture (ECSA 2018): Companion Proceedings,
Madrid, Spain, September 24-28, 2018, pages 13:1–13:2, 2018. URL https:

//doi.org/10.1145/3241403.3241418. 19

[65] Jean-Philippe Gouigoux and Dalila Tamzalit. From monolith to microser-
vices: Lessons learned on an industrial migration to a web oriented archi-
tecture. In 2017 IEEE International Conference on Software Architecture Work-
shops, ICSA Workshops 2017, Gothenburg, Sweden, April 5-7, 2017, pages 62–
65, 2017. URL https://doi.org/10.1109/ICSAW.2017.35. 19, 57

[66] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmer-
mann. Service cutter: A systematic approach to service decomposition. In
Service-Oriented and Cloud Computing - 5th IFIP WG 2.14 European Conference,
ESOCC 2016, Vienna, Austria, September 5-7, 2016, Proceedings, pages 185–
200, 2016. URL https://doi.org/10.1007/978-3-319-44482-6_

12. xiii, 8, 19, 20, 26, 27, 28, 31, 32, 34, 35, 36, 38

[67] Mark Harman. Why source code analysis and manipulation will always
be important. In Tenth IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2010), Timisoara, Romania, 12-13 September
2010, pages 7–19, 2010. URL https://doi.org/10.1109/SCAM.2010.

28. 25

Bibliography 177

[68] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979. URL https://www.jstor.org/stable

/2346830?seq=1#page_scan_tab_contents. 67

[69] John H Holland. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence.
University of Michigan Press, 1975. ISBN 978-0472084609. URL https:

//books.google.fr/books/about/Adaptation_in_natural_an

d_artificial_sys.html?id=JE5RAAAAMAAJ&redir_esc=y. xvi,
10, 28, 67

[70] D Hollingsworth. Workflow management coalition: The workflow refer-
ence model. Technical report, Workflow Management Coalition, 1995. 29,
38

[71] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build. Addison Wesley, 2010. ISBN 978-0321601919. x, 3

[72] Nacim Ihaddadene. Extraction of business process models from work-
flow events logs. International Journal of Parallel, Emergent and Dis-
tributed Systems, 23(3):247–258, 2008. URL https://doi.org/10.1080/

17445760701536183. xiv, 9, 15, 19, 42, 43, 44, 45, 48, 50, 51, 52, 54, 55

[73] Anil K Jain, Richard C Dubes, et al. Algorithms for clustering data. Prentice
Hall Advanced Refrence Series. Prentice hall Englewood Cliffs, 1988. ISBN
0-13-022278-X. URL https://homepages.inf.ed.ac.uk/rbf/BOOKS
/JAIN/Clustering_Jain_Dubes.pdf. 66

[74] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud migration re-
search: A systematic review. IEEE Transactions on Cloud Computing, 1(2):
142–157, 2013. URL https://doi.org/10.1109/TCC.2013.10. x, 2

[75] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE Soft-
ware, 35(3):24–35, 2018. URL https://doi.org/10.1109/MS.2018.

2141039. 18

[76] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang Cai.
Functionality-oriented microservice extraction based on execution trace
clustering. In 2018 IEEE International Conference on Web Services (ICWS
2018), San Francisco, CA, USA, July 2-7, 2018, pages 211–218, 2018. URL
https://doi.org/10.1109/ICWS.2018.00034. 19, 20, 26, 27, 28, 31,
32, 34, 35, 36, 38, 118, 120, 121, 123, 135, 143, 157

178 Bibliography

[77] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua
Zheng. Service candidate identification from monolithic systems based on
execution traces. IEEE Transactions on Software Engineering, 2019. URL ht

tps://ieeexplore.ieee.org/document/8686152. 15, 19, 20, 25, 26,
27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 157

[78] Prasad Jogalekar and C. Murray Woodside. Evaluating the scalability of
distributed systems. IEEE Transactions on Parallel and Distributed Systems,
11(6):589–603, 2000. URL https://doi.org/10.1109/71.862209. 24

[79] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32
(3):241–254, 1967. URL https://link.springer.com/article/10.

1007/BF02289588. 60, 79

[80] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven
design for cloud infrastructure devops. In 2016 IEEE International Conference
on Cloud Engineering (IC2E 2016), Berlin, Germany, April 4-8, 2016, pages
202–211, 2016. URL https://doi.org/10.1109/IC2E.2016.26. 25

[81] Dimka Karastoyanova and Alejandro P. Buchmann. Components, middle-
ware and web services. In Proceedings of the IADIS International Conference
WWW/Internet (ICWI 2003), Algarve, Portugal, November 5-8, 2003, pages
967–970, 2003. 17

[82] Mehmet Kaya and James W. Fawcett. Identifying extract method opportu-
nities based on variable references (S). In The 25th International Conference
on Software Engineering and Knowledge Engineering, Boston, MA, USA, June
27-29, 2013., pages 153–158, 2013. 150

[83] Mehmet Kaya and James W. Fawcett. Identification of extract method refac-
toring opportunities through analysis of variable declarations and uses. In-
ternational Journal of Software Engineering and Knowledge Engineering, 27(1):
49–70, 2017. URL https://doi.org/10.1142/S0218194017500036.
150

[84] Rick Kazman, Steven S. Woods, and S. Jeromy Carrière. Requirements for
integrating software architecture and reengineering models: CORUM II. In
5th Working Conference on Reverse Engineering, WCRE ’98, Honolulu, Hawai,
USA, October 12-14, 1998, pages 154–163, 1998. URL https://doi.org/

10.1109/WCRE.1998.723185. 14, 15

[85] Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny, and Allaoua
Chaoui. Quality-centric approach for software component identification
from object-oriented code. In 2012 Joint Working IEEE/IFIP Conference on

Bibliography 179

Software Architecture and European Conference on Software Architecture (WIC-
SA/ECSA 2012), Helsinki, Finland, August 20-24, 2012, pages 181–190, 2012.
URL https://doi.org/10.1109/WICSA-ECSA.212.26. 18

[86] Gabor Kecskemeti, Attila Csaba Marosi, and Attila Kertész. The ENTICE
approach to decompose monolithic services into microservices. In Interna-
tional Conference on High Performance Computing & Simulation (HPCS 2016),
Innsbruck, Austria, July 18-22, 2016, pages 591–596, 2016. URL https:

//doi.org/10.1109/HPCSim.2016.7568389. 19, 20, 26, 27, 28, 30,
31, 34, 35, 36, 38

[87] Holger Knoche and Wilhelm Hasselbring. Using microservices for legacy
software modernization. IEEE Software, 35(3):44–49, 2018. URL https:

//doi.org/10.1109/MS.2018.2141035. 19

[88] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective op-
timization using genetic algorithms: A tutorial. Reliability Engineering &
System Safety, 91(9):992–1007, 2006. URL https://doi.org/10.1016/

j.ress.2005.11.018. 67, 68, 89

[89] E. Korshunova, Marija Petkovic, M. G. J. van den Brand, and Moham-
mad Reza Mousavi. CPP2XMI: reverse engineering of UML class, se-
quence, and activity diagrams from C++ source code. In 13th Working
Conference on Reverse Engineering (WCRE 2006), 23-27 October 2006, Ben-
evento, Italy, pages 297–298, 2006. URL https://doi.org/10.1109/

WCRE.2006.21. xiv, 9, 19, 43, 45, 50, 51, 52, 54, 55

[90] David A. Kosower and Juan J. Lopez-Villarejo. Flowgen: Flowchart-based
documentation for C++ codes. Computer Physics Communications, 196:497–
505, 2015. URL https://doi.org/10.1016/j.cpc.2015.05.029.
xiv, 9, 19, 41, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56

[91] Kung-Kiu Lau and Zheng Wang. Software component models. IEEE
Transactions on Software Engineering, 33(10):709–724, 2007. URL https:

//doi.org/10.1109/TSE.2007.70726. 17

[92] Meir M Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980. URL https://ieeexplo

re.ieee.org/document/1456074. 24

[93] Timothy Lethbridge, Janice Singer, and Andrew Forward. How software
engineers use documentation: The state of the practice. IEEE Software, 20
(6):35–39, 2003. URL https://doi.org/10.1109/MS.2003.1241364.
xiii, 7

180 Bibliography

[94] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. Towards
a technique for extracting microservices from monolithic enterprise sys-
tems. CoRR, abs/1605.03175, 2016. URL http://arxiv.org/abs/

1605.03175. xiii, 8, 19, 20, 24, 26, 28, 29, 31, 34, 35, 36, 38

[95] James Lewis and Martin Fowler. Microservices: a definition of this new
architectural term. https://martinfowler.com/articles/micros

ervices.html, 2014. Accessed: May 2019. xi, xii, 4, 5, 17, 63, 64, 72

[96] Spiros Mancoridis, Brian S. Mitchell, Chris Rorres, Yih-Farn Chen, and Em-
den R. Gansner. Using automatic clustering to produce high-level system
organizations of source code. In 6th International Workshop on Program Com-
prehension (IWPC ’98), June 24-26, 1998, Ischia, Italy, pages 45–52, 1998. URL
https://doi.org/10.1109/WPC.1998.693283. 157

[97] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing. In Proceedings
of the 25th International Conference on Software Engineering, May 3-10, 2003,
Portland, Oregon, USA, pages 125–137, 2003. URL https://doi.org/

10.1109/ICSE.2003.1201194. 41

[98] Andrian Marcus and Denys Poshyvanyk. The conceptual cohesion of
classes. In 21st IEEE International Conference on Software Maintenance (ICSM
2005), 25-30 September 2005, Budapest, Hungary, pages 133–142, 2005. URL
https://doi.org/10.1109/ICSM.2005.89. 32, 33

[99] Vincenzo Martena, Alessandro Orso, and Mauro Pezzè. Interclass testing
of object oriented software. In 8th International Conference on Engineering
of Complex Computer Systems (ICECCS 2002), 2-4 December 2002, Greenbelt,
MD, USA, pages 135–144, 2002. URL https://doi.org/10.1109/IC

ECCS.2002.1181506. xiv, 9, 19, 42, 43, 45, 48, 49, 50, 51, 52, 54, 55, 56, 108

[100] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microser-
vices from monolithic software architectures. In IEEE International Confer-
ence on Web Services (ICWS 2017), Honolulu, HI, USA, June 25-30, 2017, pages
524–531, 2017. URL https://doi.org/10.1109/ICWS.2017.61. xiii,
8, 18, 19, 20, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 118, 135

[101] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing.
National Institute of Standards and Technology, Gaithersburg, 2011. ix, x, 2

[102] Brian S. Mitchell, Martin Traverso, and Spiros Mancoridis. An architec-
ture for distributing the computation of software clustering algorithms. In
Working IEEE / IFIP Conference on Software Architecture (WICSA 2001), 28-
31 August 2001, Amsterdam, The Netherlands, pages 181–190, 2001. URL
https://doi.org/10.1109/WICSA.2001.948427. 29

Bibliography 181

[103] Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.
ISBN 978-0-262-63185-3. xvi, 10, 28

[104] Tadahiko Murata, Hisao Ishibuchi, and Hideo Tanaka. Multi-objective ge-
netic algorithm and its applications to flowshop scheduling. Computers &
Industrial Engineering, 30(4):957–968, 1996. URL https://www.scienced

irect.com/science/article/pii/0360835296000459. 60, 90, 91

[105] Iulian Neamtiu and Tudor Dumitras. Cloud software upgrades: Challenges
and opportunities. In 5th IEEE International Workshop on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2011),
Williamsburg, VA, USA, September 26, 2011, pages 1–10, 2011. URL https:

//doi.org/10.1109/MESOCA.2011.6049037. x, 2

[106] Sam Newman. Building microservices: Designing fine-grained systems, 1st Edi-
tion. O’Reilly, 2015. ISBN 9781491950357. URL http://www.worldcat

.org/oclc/904463848. xi, 4, 17, 57, 63, 64, 72, 120

[107] Michael P. Papazoglou. Web Services: Principles and Technology. Prentice
Hall, 2008. ISBN 978-0-321-15555-9. 17

[108] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service ori-
ented architectures: Approaches, technologies and research issues.
VLDB J., 16(3):389–415, 2007. URL https://doi.org/10.1007/

s00778-007-0044-3. 17

[109] Enric Plaza. On reusing other people’s experiences. Künstliche Intelligenz
(KI), 23(1):18–23, 2009. 42

[110] Klaus Pohl. Requirements Engineering: Fundamentals, Princi-
ples, and Techniques. Springer, 2010. ISBN 978-3-642-12577-
5. URL http://www.springer.com/computer/swe/book

/978-3-642-12577-5?changeHeader. 26, 44

[111] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling met-
rics for object-oriented systems. In 22nd IEEE International Conference on
Software Maintenance (ICSM 2006), 24-27 September 2006, Philadelphia, Penn-
sylvania, USA, pages 469–478, 2006. URL https://doi.org/10.1109/

ICSM.2006.67. 32, 33

[112] Chris Richardson. Pattern: Monolithic Architecture. https://microser
vices.io/patterns/monolithic.html, . Accessed: May 2019. xii, 5,
24

[113] Chris Richardson. Pattern: Microservice Architecture. https://micros
ervices.io/patterns/microservices.html, . Accessed: May 2019.
6

182 Bibliography

[114] Chris Richardson. Microservice patterns. Manning Publications, 2017. ISBN
978-1617294549. xi, xii, 4, 5, 17, 18

[115] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented modeling and design. Prentice-Hall, 1991.
ISBN 0-13-629841-9. URL https://dl.acm.org/citation.cfm?id

=130437. 25

[116] Nick Russell, Arthur HM Ter Hofstede, Wil MP Van Der Aalst, and Na-
taliya Mulyar. Workflow control-flow patterns: A revised view. BPM Center
Report BPM-06-22, 2006. 106

[117] Dragan Savic. Single-objective vs. multiobjective optimisation for in-
tegrated decision support. In Proceedings of the International Congress of
Environmental Modelling and Software (iEMSs), pages 7–12, 2002. URL
https://scholarsarchive.byu.edu/iemssconference/2002/

all/119/. 90

[118] Pol Schumacher, Mirjam Minor, Kirstin Walter, and Ralph Bergmann. Ex-
traction of procedural knowledge from the web: a comparison of two work-
flow extraction approaches. In Proceedings of the 21st World Wide Web Con-
ference (WWW), Lyon, France, April 16-20, 2012 (Companion Volume), pages
739–747, 2012. URL https://doi.org/10.1145/2187980.2188194.
xiv, 9, 19, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56

[119] Matthias Schur, Andreas Roth, and Andreas Zeller. Mining workflow
models from web applications. IEEE Transactions on Software Engineering,
41(12):1184–1201, 2015. URL https://doi.org/10.1109/TSE.2015.

2461542. xiv, xxi, 9, 19, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 56

[120] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing
Legacy Systems: Software Technologies, Engineering Processes, and Business
Practices. SEI series in software engineering. Addison-Wesley, 2003. ISBN
978-0-321-11884-4. URL http://www.informit.com/store/moderni

zing-legacy-systems-software-technologies-engineering

-9780321118844. 14

[121] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous in-
tegration, delivery and deployment: a systematic review on approaches,
tools, challenges and practices. IEEE Access, 5:3909–3943, 2017. URL
https://ieeexplore.ieee.org/document/7884954. x, 3

[122] Sourabh Sharma. Mastering Microservices with Java. Packt Publishing Lim-
ited, 2016. ISBN 978-1785285172. xi, xii, 4, 5, 17, 63, 64

Bibliography 183

[123] Sourabh Sharma, Rajech RV, and David Gonzalez. Microservices: Build-
ing scalable software. Packt Publishing, 2017. ISBN 1787280985.
URL https://www.packtpub.com/application-development/m

icroservices-building-scalable-software. xi, 4, 17, 64

[124] Anas Shatnawi. Supporting Reuse by Reverse Engineering Software Architecture
and Component from Object-Oriented Product Variants and APIs . (Support à la
réutilisation par la rétro-ingénierie des architectures et des composants logiciels à
partir du code source orienté objet des variantes de produits logiciels et d’APIs).
PhD thesis, University of Montpellier, France, 2015. URL https://tel.

archives-ouvertes.fr/tel-01322864. 17, 20, 25, 27, 30, 31, 32

[125] Anas Shatnawi, Hafedh Mili, Manel Abdellatif, Ghizlane El-Boussaidi,
Yann-Gaël Guéhéneuc, Naouel Moha, and Jean Privat. What should
you know before developing a service identification approach. CoRR,
abs/1803.05282, 2018. URL http://arxiv.org/abs/1803.05282. 18

[126] Harry M. Sneed. Integrating legacy software into a service oriented ar-
chitecture. In 10th European Conference on Software Maintenance and Reengi-
neering (CSMR 2006), 22-24 March 2006, Bari, Italy, pages 3–14, 2006. URL
https://doi.org/10.1109/CSMR.2006.28. 18

[127] Maria Alejandra Rodriguez Sossa. Resource provisioning and scheduling al-
gorithms for scientific workflows in cloud computing environments. PhD thesis,
University of Melbourne, Australia, 2016. URL http://hdl.handle.n

et/11343/119597. ix, x, 2

[128] Rod Stephens. Beginning software engineering. Wrox, 2015. ISBN 978-
1118969144. xii, 5

[129] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-
Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual
method call resolution for java. In Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
2000), Minneapolis, Minnesota, USA, October 15-19, 2000., pages 264–280,
2000. URL https://doi.org/10.1145/353171.353189. 105, 106,
163, 167

[130] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motiva-
tions, and issues for migrating to microservices architectures: An empir-
ical investigation. IEEE Cloud Computing, 4(5):22–32, 2017. URL https:

//doi.org/10.1109/MCC.2017.4250931. xi, 4, 5, 24

[131] Bill Thomas and Scott R. Tilley. Documentation for software engineers:
what is needed to aid system understanding? In The Nineteenth Annual
International Conference of Computer Documentation: Communicating in the

184 Bibliography

New Millennium (SIGDOC 2001), Santa Fe, New Mexico, USA, October 21-24,
2001, pages 235–236, 2001. URL https://doi.org/10.1145/501516.

501570. 41

[132] Frank Tip and Jens Palsberg. Scalable propagation-based call graph con-
struction algorithms. In Proceedings of the 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
2000), Minneapolis, Minnesota, USA, October 15-19, 2000., pages 281–293,
2000. 105, 106, 163, 165, 166, 167

[133] Paolo Tonella and Alessandra Potrich. Reverse Engineering of Object Oriented
Code. Monographs in Computer Science. Springer, 2005. ISBN 978-0-387-
40295-6. URL https://doi.org/10.1007/b102522. 143

[134] John R Vacca. Computer and information security handbook. Morgan Kauf-
mann, 2017. ISBN 978-0123943972. x, 3

[135] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbst, Laura
Maruster, Guido Schimm, and A. J. M. M. Weijters. Workflow mining:
A survey of issues and approaches. Data & Knowledge Engineering, 47(2):
237–267, 2003. URL https://doi.org/10.1016/S0169-023X(03)

00066-1. 44

[136] Anneliese von Mayrhauser and A. Marie Vans. Program understanding:
Models and experiments. Advances in Computers, 40:1–38, 1995. URL http

s://doi.org/10.1016/S0065-2458(08)60543-4. 24

[137] Christian Wagner. Model-Driven Software Migration: A Methodology -
Reengineering, Recovery and Modernization of Legacy Systems. Springer,
2014. ISBN 978-3-658-05269-0. URL https://doi.org/10.1007/

978-3-658-05270-6. 14, 65

[138] Dolores R. Wallace and Roger U. Fujii. Software verification and validation:
An overview. IEEE Software, 6(3):10–17, 1989. URL https://doi.org/

10.1109/52.28119. 42

[139] Dolores R Wallace, Laura M Ippolito, and Barbara B Cuthill. Reference infor-
mation for the software verification and validation process. Diane Pub Co, 1996.
ISBN 978-0788143403. 42

[140] Hironori Washizaki and Yoshiaki Fukazawa. A technique for automatic
component extraction from object-oriented programs by refactoring. Sci-
ence of Computer Programming, 56(1-2):99–116, 2005. URL https://doi.

org/10.1016/j.scico.2004.11.007. 17, 18

Bibliography 185

[141] Eberhard Wolff. Microservices: Flexible Software Architecture. Addison
Wesley, 2016. ISBN 978-0134602417. URL https://www.worldcat.org

/title/microservices-flexible-software-architecture/oc

lc/965730846&referer=brief_results. 24

[142] Rui Xu and Donald C. Wunsch II. Survey of clustering algorithms. IEEE
Trans. Neural Networks, 16(3):645–678, 2005. URL https://doi.org/10.

1109/TNN.2005.845141. xvi, 10, 29, 66, 67

[143] Edward Yourdon and Larry L Constantine. Structured design: Fundamentals
of a discipline of computer program and systems design. Prentice-Hall, Inc., 1979.
27

[144] Zhuopeng Zhang and Hongji Yang. Incubating services in legacy systems
for architectural migration. In 11th Asia-Pacific Software Engineering Con-
ference (APSEC 2004), 30 November - 3 December 2004, Busan, Korea, pages
196–203, 2004. URL https://doi.org/10.1109/APSEC.2004.61. 18

[145] Zhuopeng Zhang, Hongji Yang, and William C. Chu. Extracting reusable
object-oriented legacy code segments with combined formal concept analy-
sis and slicing techniques for service integration. In Sixth International Con-
ference on Quality Software (QSIC 2006), 26-28 October 2006, Beijing, China,
pages 385–392, 2006. URL https://doi.org/10.1109/QSIC.2006.

29. 18

[146] Liming Zhu, Len Bass, and George Champlin-Scharff. Devops and its
practices. IEEE Software, 33(3):32–34, 2016. URL https://doi.org/10.

1109/MS.2016.81. xii, 6, 25

[147] Ying Zou and Maokeng Hung. An approach for extracting workflows from
e-commerce applications. In 14th International Conference on Program Com-
prehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages 127–136, 2006.
URL https://doi.org/10.1109/ICPC.2006.9. xiv, 9, 19, 43, 45, 48,
50, 51, 52, 54, 55

[148] Ying Zou, Terence C. Lau, Kostas Kontogiannis, Tack Tong, and Ross McK-
egney. Model-driven business process recovery. In 11th Working Confer-
ence on Reverse Engineering (WCRE 2004), Delft, The Netherlands, November
8-12, 2004, pages 224–233, 2004. URL https://doi.org/10.1109/WC

RE.2004.30. xiv, 9, 15, 19, 42, 43, 45, 46, 48, 50, 51, 52, 54, 55, 56

